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ABSTRACT

This thesis presents two global analysis approaches to the calculation of the natural 

frequencies of high rise buildings. The structures are proportional and their component 

members are repeated at each storey level unless there is a step change of properties. 

Within this scope many geometric configurations can be encompassed, ranging from 

uniform structures with doubly symmetric floor plans to doubly asymmetric ones 

comprising plane frame and wall structures running in two orthogonal directions.

The first method utilises a continuum element approach in which the structure is divided 

into segments by cutting through the structure horizontally at those storey levels 

corresponding to changes in storey properties. A typical segment is then replaced by an 

appropriate substitute beam that has uniformly distributed mass and stiffness. 

Subsequently, the governing differential equations of the substitute beam are formulated 

using the continuum approach and posed in the form of a dynamic member stiffness 

matrix that is exact to small deflection theory. Since the formulation allows for the 

distributed mass and stiffness of the member, it necessitates the solution of a 

transcendental eigenvalue problem. The required natural frequencies are thus determined 

using a cantilever model in conjunction with the Wittrick-Williams algorithm, which 

ensures that no natural frequencies can be missed. In addition, a two step process has been 

developed for certain asymmetric structures in which the natural frequencies 

corresponding to coupled motion between the planes of vibration can be obtained from 

the equivalent uncoupled ones through a simple cubic relationship. This enables coupled, 

three-dimensional vibration problems to be solved very efficiently using a two 

dimensional approach.

The second method utilises the Principle of Multiples which, when applicable, enables 

any frame, regardless of the number of storeys or bays, to be simplified to an equivalent 

one bay frame, that has precisely the same natural frequencies. If the original frame does 

not fully satisfy the Principle, the same process can still be utilised, but the resulting 

substitute frame will yield approximate frequencies, although they will normally be
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acceptable to engineering accuracy. Like the first method, it can also be used for the 

vibration analysis of asymmetric, three-dimensional frame and wall-frame structures in a 

two-step procedure. First the analogous uncoupled system is analysed using substitute 

frames, then the relationship between the uncoupled and coupled responses is imposed 

through a cubic equation.

Both of the above methods assume rigid floor diaphragms and require a knowledge of the 

building’s static eccentricity at each storey level. The current methods of calculating this 

are cumbersome and even the definitions are open to dispute. A practical method of 

calculation is therefore presented and a small parametric study enables recommendations 

to be made.

Overall, the proposed methods require little effort, offer clear and concise output and can 

sometimes yield solutions of sufficient accuracy for definitive checks, but more usually 

provide engineering accuracy for intermediate checks during tasks such as scheme 

development or remedial work. This claim is supported by the results of extensive 

parametric studies undertaken for this thesis. In all examples, the results from the 

proposed methods have been compared with the results of a full finite element analysis of 

the original structure obtained using the vibration programme ETABS. The exercise 

confirms that the proposed methods can yield results of sufficient accuracy for 

engineering calculations.
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CHAPTER 1 

INTRODUCTION

1.1 INTRODUCTION

The calculation of the natural frequencies and mode shapes of multi-storey structures has 

become commonplace due to the widespread availability of powerful desktop computers 

and a variety of inexpensive finite element software. However, such models often require 

elaborate data preparation and checking and the voluminous output may well lack clarity. 

A compelling alternative is to run simple models that require little effort, offer clear and 

concise output and which can sometimes yield solutions of sufficient accuracy for 

definitive checks, but more usually provide engineering accuracy for intermediate checks 

during tasks such as scheme development or remedial work.

A considerable amount of research effort has been expended on developing approximate 

methods for the frequency analysis of structures over the last thirty years or so. These 

methods can be classified into two main categories called Continuum and Substitute 

Frame methods.
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1.2 CONTINUUM METHOD

The most widely used approximate methods have utilised a continuum approach, in which 

the building structure is replaced by a cantilever beam with uniformly distributed mass 

and stiffness. Research in this area was initially focused on two-dimensional and 

symmetric, three-dimensional structures, with many authors developing a variety of 

approximate methods for frames (Bolton 1978; Rafezy and Howson 2003; Roberts and 

Wood 1981; Williams et al. 1983); shear-walls (Rosman 1974; Rutenberg 1975); wall- 

ffames (Kollar 1991) and three-dimensional symmetric structures comprising frames, 

coupled walls, wall-frames and braced frames (Delpak et al. 1997; Smith and Crowe 

1986). The method has also been successfully applied to the critical load calculation of 

various structures by many authors, e.g. (Macleod and Zalka 1996; Zalka 1979; Zalka and 

Macleod 1996). In symmetric, three-dimensional structures the translational and torsional 

vibrations can be analysed independently. This means that they can be analysed by all of 

those methods that have been developed for two-dimensional structures. However, in the 

majority of building structures, the functional and architectural requirements result in an 

asymmetric location of structural elements. For such structural configurations, the 

translational and torsional modes of vibration can no longer be treated independently due 

to coupling between the three components of displacement. This type of coupled vibration 

characterises building structures with asymmetric floor plans.

More recently approximate methods have been developed that can deal with the coupled 

vibration of asymmetric, three-dimensional structures. Kuang and Ng (Kuang and Ng 

2000; Kuang and Ng 2001) considered the problem of doubly asymmetric, proportional 

structures in which the motion is dominated by shear walls. For the analysis, the structure 

is replaced by an equivalent uniform cantilever whose deformation is coupled in flexure 

and warping torsion. The same authors extended this concept to the case of wall-frame 

structures by allowing for bending and shear. In this case however, the wall and frame 

systems are independently proportional, but result in a non-proportional structural form 

(Ng and Kuang 2000). Wall-frame structures have also been addressed by Wang et.al. 

(Wang et al. 2000). They used an equivalent eccentricity technique that is appropriate for 

non-proportional structures, but the analysis is limited to finding the first two coupled 

natural frequencies of uniform structures with singly asymmetric plan form.
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Hand methods have also received considerable attention and are particularly suitable for 

check calculations. In a recent paper by Zalka (Zalka 2001), such a method is presented 

which can deal with the three-dimensional frequency analysis of buildings braced by 

frameworks, coupled shear-walls and cores. The paper also reviews similar related work 

in some depth.

The most recent contribution has been made by Potzta and Kollar, who replace the 

original structure by an equivalent sandwich beam that can model both slender and wide 

structures consisting of frames, trusses and coupled shear walls (Potzta and Kollar 2003). 

In a subsequent paper, Tarjan and Kollar (Taijan and Kollar 2004) present an alternative 

approach in which the natural frequencies of the replacement beam are solved 

approximately. This, together with other simplifying assumptions, leads to simple 

formulae for determining the required natural frequencies. A useful tabulated summary of 

related work by the following authors is also included (Basu 1983; Kopecsiri and Kollar 

1999a; Kopecsiri and Kollar 1999b; Rosman 1974; Rutenberg 1975; Skattum 1971; Smith 

and Crowe 1986; Smith and Yoon 1991; Zalka 2001).

The methods developed in the references above offer solutions of varying accuracy 

depending on the assumptions employed. Most of them consider structures with singly 

symmetric floor plan and surprisingly none of them allows for step changes of properties 

along the height of the structure, despite the fact that this is almost inevitably the case in 

practical building structures of reasonable height. This study therefore seeks to present 

the simplest model that retains the essential characteristics necessary for calculating the 

natural frequencies of structures ranging from two-dimensional to doubly asymmetric, 

three-dimensional structures whose members may be uniform throughout the height of the 

structure or may have step changes of properties at one or more storey levels.

The approach adopted is to dissect the original building structure into segments, by 

cutting through the structure horizontally at those storey levels corresponding to changes 

in storey properties. Thus the storeys contained within a segment between any two 

adjacent cut planes are identical. In the case of three-dimensional structures, it is also 

assumed that the plan view of a segment comprises two sets of resisting elements running
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in orthogonal directions. A typical segment is then considered in isolation. In the case o f 

three-dimensional structures a primary resisting element in one direction is replaced 

initially by an appropriate substitute beam that has uniformly distributed mass and 

stiffness, thus utilising the continuum approach. (The various types of substitute beams 

which can be utilised for the vibration analysis structures are explained in detail in 

Chapter 2). In turn, each resisting element running in the same direction is replaced by its 

own substitute beam and the effect of all these beams is summed to model the effect of 

the original resisting elements. This leads directly to the differential equation governing 

the sway motion of the segment in the chosen direction. The same procedure is then 

adopted for those resisting elements running in the orthogonal direction. Once both 

equations are available it requires little effort to write down the substitute expressions for 

the coupled torsional motion. The three equations thus formed are subsequently solved 

precisely and posed in dynamic stiffness matrix form, which relates the harmonically 

varying forces to the harmonically varying displacements at the nodes of the beam 

element. The resulting coupled translation-torsion beam element, substitute beam, can 

then be used to reconstitute the original structure by assembling the dynamic stiffness 

matrices for the individual segments in the usual manner.

It should be noted that the element formulation accounts for the uniform distribution of 

mass and stiffness, with the result that the final model has a transcendental dependence 

upon the frequency parameter. The required natural frequencies are then determined by 

solving the model using a precise technique, based on the Wittrick-Williams algorithm 

(Wittrick and Williams 1971), that can be arrested after achieving any desired accuracy 

and which also ensures that no natural frequencies can be missed. In the following section 

an historical review of the vibration of beams with symmetric and asymmetric cross- 

section is given, together with a literature survey of the development of the dynamic 

stiffness matrix method. This is followed by an explanation of the generalised procedure 

for the derivation of the dynamic stiffness matrix used in Chapters 2, 5 and 6 of this 

thesis.

PhD Thesis, B. Rafezy, 2004 4



1.2.1 Dynamic stiffness matrix method

1.2.1.1 Historical review of the vibration of beam members

The vibration of beams has been of interest to engineers and mathematicians for many 

years. As early as 1688, Christiaan Huygens described a series of vibrational experiments 

carried out on a simple beam. Newton and Leibnitz independently formulated the 

calculus, while James and Daniel Bernoulli obtained the static bending relationship for a 

thin beam. In 1743 D’Alembert took a major step forward in vibration theory when he 

showed that problems in dynamics could be stated in such a way that they could be solved 

using the rules of statics. In the following year Daniel Bernoulli and Leonard Euler 

independently presented the partial differential equation for the flexural motion of a 

slender beam. By 1824 the corresponding equation for longitudinal motion had been 

developed by Navier. Five years later Poisson presented the equivalent equation for 

torsion, the third of the three basic equations needed to completely define the small 

amplitude motion of linearly elastic thin beam.

By 1877 these uncoupled equations had received a good deal of attention. It was during 

this year that Lord Rayleigh published his famous treatise “Theory of Sound” (Rayleigh 

1877). In this exceptional work Rayleigh reported in some depth on the advances in the 

field of beam vibrations. He showed that the equations of longitudinal and torsional 

motion were unaffected by the presence of a permanent axial load, but that the equation of 

flexural had to be modified. In the same work, Rayleigh suggested how the basic flexural 

equation could be modified to account for the effect of rotary inertia. A more significant 

effect was pointed out by Timoshenko in 1921 (Timoshenko 1921) when he extended 

Rayleigh’s solution to include the effects of transverse shear deformation. He showed 

additionally that the effects of rotary inertia and shear deformation are unimportant if the 

wavelength of the transverse vibration is large compared to the dimensions of the cross- 

section.
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Thus by 1921 the three differential equations used to analyse the flexural motion of beams 

had been developed. It has since become common practice to classify beams according to 

the simplest theory which adequately describes their flexural motion. A Bemoulli-Euler 

beam is therefore one in which only the effect of bending is important, unlike the 

Rayleigh beam where the effect of rotary inertia must be included. The Timoshenko beam 

takes its name from sophisticated of the three analysis in which the effects of bending, 

rotary inertia and shear deflection are all accounted for.

With the advent of the digital computer, matrix methods of problem solution became 

extremely popular. In the field of structural engineering these are typified by the force and 

displacement methods of static analysis. However, while it has long been recognised that 

dynamic problems could be formulated in precisely the same fashion, it is only in the last 

three decades that they have begun to command appreciable interest.

The overall dynamic stiffness matrix for a structure can be assembled from the dynamic 

member stiffness matrices in precisely the same way as for the static case. The individual 

member matrices may be developed in an approximate way or by a method which can be 

considered to be exact. Undoubtedly the most popular of the approximate methods is the 

powerful finite element approach. In this method the dynamic stiffness matrix is derived 

by assuming a static displaced shape for the member. The matrix itself consists of two 

individual matrices, the static stiffness matrix, defining the elastic properties of the 

structure, and the mass matrix, which defines the inertial properties. This leads to a set of 

equations from which the natural frequencies are determined by solving a generalised 

linear eigenvalue problem. The overall method of approach has been widely reported 

(Gupta 1970; Peters and Wilkinson 1969) as have the methods of solving the eigenvalue 

problem itself (Wilkinson 1965).

The exact method of approach, with which this thesis will be solely concerned from now 

on, consists of deriving the dynamic member stiffness matrix by solving the partial 

differential equations of motion for each beam exactly. The dynamic member stiffness 

matrix is then a single matrix and the mass of the member, whose uniform distribution is 

automatically accounted for, is an inextricable part of it. The overall matrix can then be 

formed as before and the natural frequencies found by solving the resulting non-linear
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eigenvalue problem. The word ‘exact’ in this method means that the solution is a correct 

implementation of the governing equations and thus yields exact results in the area of 

assumptions (Macleod 1990). Consider now the development of this exact method.

1.2.1.2 literature survey of the development of the exact dynamic stiffness method

The concept of dynamic stiffness and dynamic carry-over factors was developed by 

Veletsos and Newmark and presented in a notable paper in 1955 (Veletsos and Newmark 

1955). In this paper the natural frequencies of continuous beam and certain frame 

structures were obtained using exact expressions, based on Bemoulli-Euler theory, for the 

rotational stiffness and carry-over factors. In 1969 Bolton (Bolton 1969) used the same 

rotational stiffness and carry-over factors to determine the natural frequencies of 

continuous beams. In the absence of joint translations he obtained a simplified dynamic 

slope deflection equation which is analogous to that used in the static case. The procedure 

used to determine the natural frequencies then parallels those which are familiar in critical 

load analysis (Bolton 1955). In the same year (1969) a paper by Armstrong (Armstrong 

1969a) extended Bolton’s work to cover multi-bay, multi-storey frames, with and without 

sidesway. He later (Armstrong 1969b) presented a comprehensive set of dynamic stability 

functions that enable such problems to be solved by hand.

Matrix methods of problem solution started to receive considerable attention in the late 

60’s. One of the first papers to describe the formulation of a dynamic stiffness matrix was 

presented by Laursen et a/. (Laursen et al. 1962). Initially attention is focused on the 

development of the individual member matrix, which relates the amplitudes of the 

sinusoidally varying moment and shear forces at the end of a beam member to the 

corresponding displacements. Subsequently it is shown how these matrices can be formed 

into an overall dynamic stiffness matrix for a structure. However, the overall matrix used 

by Laursen et al does not account for the rigid body motion of the members. Thus when 

considering structures in which longitudinal or sway modes are of interest, the overall 

matrix must be augmented by the relevant inertia matrix. The necessity of having this 

additional matrix was overcome by Henshell and Warburton (Henshell and Warburton 

1969). Their method consisted of forming a more general dynamic stiffness matrix which
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included additional stiffness elements to account for both the longitudinal and torsional 

motion of the member. Cheng (Cheng 1970) and Wang and Kinsman (Wang and 

Kinsman 1971) also developed the dynamic stiffness matrix for a Timoshenko beam that 

could be used in the vibration analysis of frameworks. Later Howson and Williams 

(Howson and Williams 1973) derived the dynamic stiffness matrix of an axially loaded 

Timoshenko beam that has been used extensively in the eigensolution of plane frames 

(Howson 1979; Howson 1985; Howson et al. 1983).

In last two decades, research on the dynamic stiffness matrix formulation for beams has 

grown enormously and has taken numerous turns, including beams on elastic foundations 

(Capron and Williams 1988; Issa 1988; Williams and Kennedy 1987), tapered beams 

(Baneijee and Williams 1985) and curved beams (Howson and Jemah 1999a; Howson and 

Jemah 1999b; Howson et al. 1995; Issa 1988). However, one important area of 

developing interest is the dynamic stiffness matrix formulation of the bending-torsion 

coupled beam. In such beams the elastic centre and the centre of mass are not coincident, 

so the translational and torsional modes are inherently coupled as a result of this offset. 

The solution for individual beams has been approached in different ways by Gere and Lin 

(Gere and Lin 1958), Falco and Gasparetto (Falco and Gasparetto 1973) and Dokumaci 

(Dokumaci 1987). However, development of the dynamic stiffness matrix for coupled 

beams is relatively new and has been considered by only a few investigators. Hellauer and 

Liu (Hallauer and Liu 1982) derived the exact dynamic stiffness matrix for a straight, 

elementary bending-torsion beam where bending translation was restricted to one 

direction. Friberg (Friberg 1983) formulated a 12x12 element dynamic stiffness matrix for 

a bending-torsion coupled beam by using Euler-Bemoulli-Saint Venant theory. He later 

(Friberg 1985) included the effect of axial load and warping rigidity using Vlasov’s 

torsion theory to obtain the 14x14 dynamic stiffness matrix for such a member 

numerically, whereas Banerjee (Baneijee 1989) derived explicit expressions for each of 

the dynamic stiffness matrix elements and later included the effect of shear deformation 

and rotary inertia (Baneijee and Williams 1992). Subsequently, Baneijee et al (Baneijee 

et al. 1996) studied the vibration of a bending-torsion beam with singly asymmetric cross- 

section including warping rigidity and showed that large errors may be incurred in the 

calculation of natural frequencies of thin walled open section beam assemblies when the 

effect of warping rigidity is ignored.
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In a recent paper Rafezy and Howson (Rafezy and Howson 2004) considered the 

vibration analysis of shear beams with doubly asymmetric cross-section. This approach 

can be used very efficiently in the approximate determination of the lower natural 

frequencies of three-dimensional, multi-storey framed structures (Rafezy and Howson 

2003), including those that are doubly asymmetric on plan.

The general procedure for the derivation of dynamic stiffness matrices has been long 

established and used by many authors, e.g. Baneijee (Banerjee 1997), and is given in the 

following section.

1.2.2 Dynamic Stiffness Formulation

The first step towards the formulation of the dynamic stiffness matrix of a beam element 

is to derive its governing differential equations of motion. This can be accomplished in 

various ways such as applying Newton’s laws, D’Alembert’s principle, principle of 

virtual work, etc.

The governing differential equation of motion of a beam element in free undamped 

vibration can be written as

where L is a differential operator and u is the corresponding displacement vector.

The next step is to solve Eq. (1.1) for harmonically varying u, so that the displacement u 

may be expressed as

where U denotes the amplitude of the displacements, co is the circular frequency, t is time

Z,(u) = 0 ( 1.1)

u = Ue,fl* ( 1.2)

and i = 4 - 1 .
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Substituting Eq. (1.2) into Eq. (1.1) eliminates the time dependent terms in the differential 

equation to give

A (U ,^) = 0 (1.3)

where L\ is a differential operator.

The general solution of the differential equation (1.3) is obtained in the form

U = AC (1.4)

in which C is a vector of constants and A is a frequency dependent square matrix.

The boundary conditions for displacements and forces are now applied to eliminate the 

vector C and subsequently to obtain the force-displacement relationship via the dynamic 

stiffness matrix. First the boundary conditions for nodal displacements are applied to give

D = SC (1.5)

where D is the nodal displacement vector and S is a square matrix obtained from A when 

the displacement boundary conditions are applied. Next the force boundary conditions are 

applied and the vector of nodal forces are related to the constant vector C by a similar 

procedure to that of Eq. (1.5) to give

F = BC (1.6)

in which F is the vector of amplitudes of nodal forces and B is a frequency dependent 

matrix.

The vector C can now be eliminated from Eqs. (1.5) and (1.6) to give 

F = BS"'D = KD (1.7)
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where

K = BS'1 (1.8)

and is the required dynamic stiffness matrix.

In Eq. (1.8), the two steps involved to obtain the dynamic stiffness matrix are: (i) to invert 

the S matrix to obtain S'1, and then (ii) to premultiply the inverted matrix (S’1) by the B 

matrix to give K. Implementation of these steps can be accomplished either numerically 

or algebraically. It is always preferable to derive the elements of the dynamic stiffness 

matrix explicitly. However, the task of inverting the S matrix algebraically and then 

premultiplying by the B matrix, again algebraically, can be quite formidable(Baneijee and 

Williams 1994; Baneijee and Williams 1995). In this thesis the numerical approach for 

obtaining the dynamic stiffness matrix will be used most often.

Once the overall dynamic stiffness matrix of the structure, K, is assembled from the 

dynamic stiffness matrices of all the individual elements, the natural frequencies then 

correspond to the values of the circular frequency co which satisfy the matrix equation

KD = 0 (1.1)

where D is the vector of amplitudes of the harmonically varying nodal displacements and 

K is a function of co. In most cases the required natural frequencies correspond to |K|, the

determinant of K, being equal to zero. In early formulations (Blaszkowiak and 

Kaczkowski 1966; Cheng 1970; Henshell and Warburton 1969; Mohsin and Sadek 1968; 

Wang and Kinsman 1971), the required natural frequencies have mainly been ascertained 

by simply tracking the value of |K| and noting the value of co corresponding to |K|= 0.

However when K is developed from exact member theory, the determinant is a highly 

irregular, transcendental function of co. Additionally, several natural frequencies may be 

close together or coincident, while others may exceptionally correspond to D = 0. Thus 

any trial and error method which involves computing Ik| =0 and noting when it changes
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sign through zero can miss roots. These problems can be overcome by use of the Wittrick- 

Williams algorithm (Wittrick and Williams 1971) which has received wide attention in 

the literature (Williams and Wittrick 1983). The algorithm requires the overall dynamic 

stiffness matrix of the structure, together with information about the clamped-clamped 

natural frequencies of the constituent members. The use of the algorithm has been 

frequently discussed in the literature, but for a detailed insight, reference should be made 

to (Wittrick and Williams 1971). The Wittrick-Williams algorithm then yields the number 

of natural frequencies of a structure that lie below an arbitrarily chosen trial frequency. 

This clearly enables a systematic procedure to be developed for converging upon any 

natural frequency of the structure to any desired accuracy.

In this thesis, the dynamic stiffness matrix of various beam members ranging from two- 

dimensional shear sensitive beams on continuous rotational elastic supports to three- 

dimensional beams with doubly asymmetric cross section are developed. These are then 

used efficiently in the approximate determination of the natural frequencies of two and 

thee-dimensional, asymmetric frame and wall-frame structures with step changes of 

properties along the height of the structure. The Wittrick-Williams algorithm is used for 

the solution of the transcendental non-linear eigenvalue problems, which ensures that no 

natural frequencies are missed.

1.3 SUBSTITUTE FRAME METHOD

The Substitute Frame method has already been used in the buckling and vibration analysis 

of braced and unbraced plane frame structures. See the next section. The method utilises 

the Principle of Multiples which, when applicable, enables any frame, regardless of the 

number of storeys or bays, to be simplified to an equivalent one bay frame, having the 

same displacements, buckling loads or natural frequencies as the original frame. If the 

original multi-bay frame does not obey the Principle of Multiples, the same procedure 

may be adopted, but the resulting frame only yields approximate frequency results for the 

original structure. The accuracy of the results is dependent on how close the frame is to 

satisfying the Principle of Multiples, but will normally yield results of acceptable 

accuracy for engineering calculations.
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The basis of Principle of Multiples is that, if the beams and columns have such stiffness 

ratios that the joint rotations at any storey level would be the same, then a multi-storey, 

multi-bay frame can be split up into several single bay frames all of which would have the 

same response. The application of the Principle of Multiples for a two-bay frame is 

illustrated in Figure 1.1 and will be explained in detail in Chapter 2 of this thesis.

3F.

6F 2F. +
k4 2k4 1.51-

Figure 1.1 The Principle of Multiples applied to a two-bay frame 
(the k’s indicate the stiffness of the columns and beams)

1.3.1 Literature Survey for the Substitute Frame Method

Numerous authors have dealt with the use of the Principle of Multiples and associated 

simple methods for lateral loading, buckling calculations and vibration of plane sway 

frames with and without cladding. The specific use of substitute frames is probably 

attributable to Grinter (Grinter 1937), with the techniques being developed by Lightfoot 

and others (Home and Merchant 1965; Lightfoot 1956a; Lightfoot 1956b; Lightfoot 1957; 

Lightfoot 1958; Williams 1977; Williams 1979; Williams and Butler 1988) and through 

Wood’s significant contribution (Wood 1974a; Wood 1974b; Wood 1974c) finally being 

adopted as an appropriate design method in current Codes of Practice. The extension of 

simplified methods to the calculation of natural frequencies (Bolton 1978; Delpak et al. 

1997; Roberts and Wood 1981; Williams et al. 1983) and critical buckling loads (Bolton 

1976; Home 1975; Williams and Howson 1977) of framed structures has developed 

steadily over the last twenty-five years. In a recent paper, Howson and Williams (Howson
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and Williams 1999) have applied the substitute frame method to the vibration analysis of 

plane braced and unbraced frames on the assumption of both inextensible and extensible 

member theory. They have shown that, for unbraced frames, the substitute frame gives 

acceptable accuracy for most practical engineering structures.

The earliest attempt to account for torsional deformation under static loads, using only a 

plane frame program, was given by Coull and Smith (Coull and Smith 1973). In a recent 

development Howson and Rafezy (Howson and Rafezy 2002) have succesfully applied 

the substitute frame method when determining the nodal deflections of multi-bay, multi­

storey asymmetric proportional building structures subjected to static loads. This was 

probably the first time that the substitute frame was used for the analysis of asymmetric 

structures.

In this thesis, the substitute frame technique will be extended to cover the calculation of 

the natural frequencies of three-dimensional, symmetric and asymmetric frame and wall- 

frame structures, which appears not to have received any direct attention before. The 

method is best suited to regular, doubly symmetric structures, although asymmetric plan 

forms can be treated with equal accuracy so long as the structural properties of parallel 

primary frames and walls are proportional. Buildings that do not fulfil these ideal 

requirements can usually be analysed to sufficient accuracy for scheme development. 

Each substitute frame is a single bay, multi-storey frame that has the same number of 

storeys and the same storey heights as the original frame but is symmetric, allows for the 

uniform distribution of mass in its members and comprises only in-plane stiffnesses. The 

method is based on the Principle of Multiples; requires only the use of a standard plane 

frame computer program and can yield almost exact solutions for certain combinations of 

structural topology and member properties. In asymmetric structures, the proposed 

method will be applied in a two-step procedure. First the analogous uncoupled system 

will be analysed then the relation between the uncoupled and coupled responses will be 

imposed through a cubic equation.
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1.4 VERIFICATION OF RESULTS

A theory cannot be considered correct in an absolute sense (Macleod 1990; Popper 1977). 

It can only be shown to be ‘not false’ to some degree. In this study the results are usually 

verified by comparing them with equivalent results obtained from a finite element 

analysis using the vibration programme ETABS (Wilson et al. 1995), which is widely 

used in engineering analysis. The main assumptions inherent in using ETABS will be 

given whenever it is used. In Chapter 2 the results from developed models are compared 

with results obtained using exact buckling and vibration programme called BUNVIS-RG 

(Anderson and Williams 1986). The main assumptions for this programme have been 

given in Section 2.4.1.

In this thesis, the description ‘good’ means that the results represent the real behaviour of 

the structures fairly accurately and ‘acceptable’ means that the results may be used for 

most engineering purposes. When the description ‘exact’ is used, it only means that the 

solution is a correct implementation of the governing equations, as there are no basic 

assumptions that can be described as ‘exact’ (Macleod 1990).

1.5 BASIC ASSUMPTIONS

The following assumptions are assumed in this thesis

1. The simplest model has been developed for each type of building. In certain cases 

two models with different complexities have been considered and the validity 

limits of each model have been determined e.g. In Chapter 2, elastic support and 

shear beam models have been compared.

2. The in-plane stiffness of the floor systems used in most building structures is 

extremely large compared to the stiffness of the framing members. Thus the theory 

in which rigid floor diaphragms are assumed has been maintained in the thesis. As 

a result, the in-plane deformations of beams can often be neglected, and columns
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and walls connected to a given diaphragm will be constrained to move as one 

single unit in the lateral directions.

3. Inextensible member theory has been assumed in the whole thesis. It means that 

the full height bending deformation of buildings as a whole has been neglected. 

The reason for this is to avoid any unnecessary complexity when developing 

simple substitute models which can model structures satisfactorily. A small 

parametric study has been undertaken to assess the effect of this assumption when 

determining the natural frequencies of a series of three-dimensional, asymmetric, 

multi-storey buildings and the results have been given in Section 5.4.1.

1.6 OUTLINE OF THE THESIS

The contents of this thesis are presented in seven chapters. The outline of each chapter is 

briefly given as follows:

Chapter 1 describes the aims and objectives of the thesis and gives a brief literature 

survey for the proposed methods classified as continuum and substitute frame methods.

Chapter 2 deals with the vibration problem of two-dimensional frame and wall-frame 

structures. Two substitute beam models, namely elastic support and shear beam models, 

are proposed for finding the natural frequencies of plane structures.

Chapter 3 extends the continuum and substitute frame approach to three-dimensional 

structures with symmetric floor plans. It is shown that symmetric structures can be 

analysed using the same approximate methods that were developed for planar structures. 

The appropriate transformations for converting a symmetric structures to three planar 

substitute structures are given.

Chapter 4 presents a practical method for locating the centres of rigidity and shear and 

hence the static eccentricity of asymmetric structures. The method is based on the use of a 

plane frame computer programme and utilises the flexibility matrix of each resisting plane
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element to establish a matrix relation between the loading on the elements and the total 

lateral loading on the building.

Chapter 5 derives the governing differential equations of a three-dimensional shear beam 

with doubly asymmetric cross-section in the form of a dynamic stiffness matrix. This is 

subsequently used successfully for the vibration analysis of asymmetric frame structures 

in conjunction with the Wittrick-Williams algorithm. This chapter further extends the 

substitute frame technique to cover the calculation of the natural frequencies of three- 

dimensional, asymmetric frame structures

Chapter 6 extends both substitute beam and frame methods to three-dimensional wall- 

frame structures with an asymmetric arrangement of frames and walls. The plane frames 

that run in two orthogonal directions are assumed to be proportional to each other in any 

one direction, as are the walls, but the proportionality is not necessarily the same in both 

directions.

Finally Chapter 7 provides a summary of the thesis, draws conclusions and suggests those 

areas of this thesis that could be usefully extended.
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CHAPTER 2

LATERAL VIBRATION ANALYSIS OF PLANE FRAME

AND WALL-FRAME STRUCTURES

2.1 INTRODUCTION

This chapter presents two methods of analysis for determining the lateral frequencies of 

planar structures, in which the structure is simplified prior to analysis. Such an approach 

leads to simple models that can be solved easily, either by the use of short computer 

programs or by hand. Each method is able to analyse plane frame and wall-frame 

structures i.e. a combination of shear walls and frames whose members may be uniform 

throughout the height of the structure or may have step changes of properties at one or 

more storey levels.

The first method utilises a continuum approach so that a plane frame or wall-frame 

structure is divided into segments, by cutting through the structure horizontally at those 

storey levels corresponding to changes in storey properties. Thus the storeys contained 

within a segment between any two adjacent cut planes are identical. Then a typical 

segment is replaced by an appropriate substitute beam that has uniformly distributed mass
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and stiffness, thus utilising the continuum approach. Two types of substitute beams that 

can be used for the vibration analysis of plane frame and wall-frame structures will be 

developed. Each are derived from a study of the vibration of a shear sensitive Bemoulli- 

Euler beam on continuous rotational elastic support. These will be called the elastic 

support model and shear beam model respectively. Both models lead to a dynamic 

stiffness formulation that necessitates the solution of a transcendental eigenvalue 

problem. The eigenvalues correspond to the required natural frequencies and can be 

determined to any desired accuracy using the Wittrick-Williams algorithm (Wittrick and 

Williams 1971) with the certain knowledge that none have been missed.

The second method utilises the Principle of Multiples which, when applicable, enables 

any frame, regardless of the number of storeys or bays, to be simplified to an equivalent 

one bay frame, having the same natural frequencies of vibration as the original frame. If 

the original multi-bay frame does not obey the Principle of Multiples, the same procedure 

is adopted, but the resulting frame only yields approximate frequency results for the 

multi-bay case. Then, using the results of the elastic support model, the method is 

extended and applied to the frequency analysis of wall-frame structures.

In order to validate the use of the proposed methods, it was deemed necessary to carry out 

a parametric study to ascertain the accuracy that might be expected from the proposed 

methods.

2.2 CONTINUUM METHOD

The continuum approach will be used to develop two simple models for calculating the 

lower natural frequencies of plane sway frames. These will be called, the elastic support 

and shear beam model, respectively. It will be necessary to derive a dynamic stiffness 

matrix for each model, both of which represent transcendental eigenvalue problems in 

which the eigenvalues correspond to the required natural frequencies. The detailed 

development of the models will be presented in the following sections, but first it is 

necessary to derive the governing differential equation of a Bemoulli-Euler beam on a 

rotational elastic support, including the effect of shear deformation.
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2.2.1 Bernoulli-Euler beam on a rotational elastic support allowing for shear 

deformation

The member considered is a basic Bernoulli beam enhanced by taking the following 

effects into account

• shear deformation

• continuous rotational elastic support

The deflection of the beam results not only from the longitudinal extension and 

contraction of the fibres due to the normal bending stresses, as assumed by Bernoulli, but 

also from transverse displacements of cross-section due to the shear stresses. When 

deformed by bending (Figure 2.1b) with the effect of shear neglected, the deflection of 

the beam axis is uh(z,t) and the rotation of the tangent to the axis is the angle 6{z ,t) .

When the effect of shear is added (Figure 2.1c) the deflection is increased by us(z,t) 

with the rotation increased by y(z,t) . The total deflection and the total rotation of the 

beam axis are then

Where y, the shear slope (strain), related to the shearing force through elementary bending 

theory as

u(z,t) = ub(z,t) + us(z,t) 

du(z, I))dz = B(z, f) + y(z,<)

(2 .1)

(2.2)

Q = yGA (2.3)

in which GA, is the shear rigidity of the cross section including the section shape factor 

and Q is the transverse force in the cross section.
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a) undeformed 
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x

Figure 2.1 Deformation of beam element

Figure 2.2(a) shows a member of mass/unit length m undergoing flexural vibrations in the 

z-x plane and subjected to a rotational stiffness per unit length k *. Using the following 

notation and considering a typical element of the member as shown in Figure 2.2(b), Eqs. 

(2.4)-(2.7) are easily obtained, as follows
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Figure 2.2(a) Forces and displacements in member coordinates in 
the z-x plane. All the forces and displacements vary sinusoidally 
with time.
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Figure 2.2(b) Positive forces and displacements on an elemental 
length of the member in local coordinates
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a) dynamic equilibrium in the x direction

dz -Q- m d u 
~dtr

Sz = 0 (2.4)

where Q is the transverse force.

b) dynamic moment equilibrium

QSz + M M  + (— )Sz 
dz

-  {k'6)Sz = 0 (2.5)

where Mis the bending moment.

c) bending theory

M  = -E l dG_
dz

(2.6)

where E  is Young’s modulus and I  is the second moment of area for bending in the z-x 

plane.

d) Consideration of the shearing of the element gives

dz GA.
(2.7)

Eqs. (2.3) to (2.7) can be rewritten as

dz dt

Q -  —  - k '0  = O 
dz

(2.8)

(2.9)
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M  = -E I ee_
dz

du
Q = GA (——  0 )

dz

(2.10)

(2.11)

Substituting Eq. (2.11) and the derivative of Eq. (2.10) in terms of z in Eq. (2.9) gives

GA, (— - 0 )  + E I ^ - - k ’0 = O 
dz dz2

(2. 12)

and differentiating gives

t t ! ,  ( £ £ _  « £ ) + £ / £ ! _ * •  odz dz dz dz
(2.13)

Substituting Eq. (2.11) in Eq. (2.8) gives

GA. d u d0
dz2 dz

m d' u -  n m — — =  U
dt2

(2.14)

Then

d0 _ d 2u m d u 
~dz~~d?~ GA. dt2

(2.15)

and

d 0 d3u m d3u
dz2 dz3 GA, dzdt2

d30 d4u m d4u
dz1 dz4 GA. dz2dt2

(2.16)

(2.17)

Substituting Eq. (2.15) to Eq. (2.17) in Eq. (2.13) gives
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which, on rearranging, gives

r,Td4u * m d2u *d2u El d2u n
E l— -  + (m + k ----- )— -— k — - - m  7 — 7  = ° (2.19)

dz4 G A /d t2 dz2 GAV dz dt

Eq. (2.19) is the governing differential equation for free vibration of the member.

If a sinusoidal variation of u with circular frequency co is assumed then

u(z,t) = U(z)sincot (2.20)

where U(z) is the amplitude of the sinusoidally varying displacement.

d 4U ,G)2m k* d 2U co2m /1 k* . . .  .— -  + (------------ )—   (l + ------)U = 0 (2.21)
dz4 GAr E IJ dz2 El G A /

Introducing the non-dimensional parameter

£ = z lL  (2.22)

Eq. (2.21) can be written as

€ .Ui p  + ]} ( / n _ * _ ) _ L4 + — )U(Z) = 0 (2.23)
d4* GAS El d%2 E l GAS

where L is the length of the member.

In the following sections Eq. (2.23) will be used for the derivation of the dynamic

stiffness matrix of two different element types, each of which can be used for the free

vibration analysis of plane frame and wall-frame structures.
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2.2.2 Elastic Support Model

2.2.2.1 Plane rigid frame structures

A rigid high-rise frame structure typically comprises parallel or orthogonally arranged 

bents consisting of columns and girders with moment resistant joints. Resistance to 

horizontal loading is provided by the bending resistance of the columns, girders and 

joints. The continuity of the frame also contributes to resisting gravity loading, by 

reducing the moment in the girders. The advantage of rigid frames are the simplicity and 

convenience of its rectangular form. Its unobstructed arrangement, clear of bracing 

members and structural walls, allows freedom internally for the layout and externally for 

the fenestration. Rigid frames are considered economical for buildings of up to about 25 

storeys, above which their drift resistance is costly to control. If however, a rigid frame is 

combined with shear walls or cores, the resisting structure is very much stiffer so that is 

its height potential may extend up to 50 storeys or more(Smith and Coull 1991).

The total deformation of a rigid frame can be determined by superimposing its three 

component parts(Zalka 2001): i.e. the full-height bending deformation of the structure as 

a whole, the full-height bending deformation of the individual columns and the shear 

deformation of the structure, see Figures 2.3(a)-2.3(c).

(a) (b) (c)

Figure 2.3 Components of frame deformation (Zalka 2001) (a) 
The full height bending deformation of the structure as a whole
(b) The full height bending deformation of the individual columns
(c) Shear deformation of the structure
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The elastic support model incorporates components (b) and (c) of the total deformation 

and the motion is governed by a fourth order differential equation. When posed in 

dynamic stiffness form it accounts for both lateral translation and rotation at each node 

and is generally applicable to any kind of frame structure. The resulting member stiffness 

matrix (exact finite element) can be assembled to form the dynamic structure stiffness 

matrix, K, in the usual way and can therefore be used for the analysis of frames with step 

changes of properties along the height of the structure. The required natural frequencies 

then correspond to those values of co, the circular frequency, that satisfy the equation

K D = 0 (2.24)

where D is the vector of amplitudes of the harmonically varying nodal displacements and 

K is a function of co. Convergence to the required natural frequencies is achieved using 

the Wittrick-Williams algorithm(Howson and Williams 1973), which guarantees that no 

natural frequencies can be missed.

The first step in developing the elastic support model is to establish a substitute frame 

corresponding to the original frame structure. This process is well documented (Howson 

and Rafezy 2002) and results in a symmetric, single bay frame with the same number of 

storeys as the original frame and members whose properties are adjusted to replicate the 

behaviour of the original frame, see Figure 2.4(a). Such substitute frames can yield 

precise results for certain combinations of structure topology and member properties and 

will be explained in detail in following Sections under the title of Principle of Multiples. 

However, the substitute frame technique more regularly offers results of engineering 

accuracy when the original frame is irregular.
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Figure 2.4 Development of the elastic support model.

Since the substitute frame is symmetric, it can only vibrate in a symmetric or anti­

symmetric mode, of which only the anti-symmetric mode is of interest when considering 

the lower natural frequencies. Hence the substitute frame can be replaced by the model of 

Figure 2.4(b). This can be further simplified by replacing it with a bending cantilever that 

carries a lumped mass and rotational spring stiffness at each floor level to represent the 

beams, see Figure 2.4(c). The spring could be a dynamic stiffness, resulting in virtually 

no loss of accuracy, or more conveniently the equivalent static beam stiffness which, for 

the lower natural frequencies, yields negligibly small errors. The mass to be added to the 

cantilever at each floor level is then M , where M  is half the mass of a beam on Figure 

2.4(a) and, assuming inextensible member theory, the required static stiffness is easily 

determined from the slope deflection equations to be

kb =6EIb/b

where b is the bay width, and h  is the second moment of area of a beam. The final 

simplification is to smear the mass and stiffness of the beams along the column so that 

they become uniformly distributed. When consecutive storeys are identical, their 

smeared properties define a new member, which together with other members form the 

final model. This leads to the uniform, single member cantilever of Figure 2.4(d) when
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all storeys are identical. The model then corresponds to a 2 x 2 dynamic stiffness matrix 

developed from the original substitute frame column, but carrying the added distributed 

mass, m*, and distributed stiffness, k *b, respectively, which are given by

m’ = M /h s and k\ = k j h ,  =6EIb/bhs (2.25)

where hs is the storey height.

Now consider only the single member idealisation of Figure 2.4(d). It is clear that the 

smeared beam stiffness k\ becomes infinite when the original beam stiffnesses become

infinite. Hence the model of Figure 2.4(d) yields only infinite natural frequencies. 

However, in identical circumstances the model of Figure 2.4(c) would yield those sway 

frequencies corresponding to double curvature of the columns between nodes. This form 

of sway deformation has therefore been lost, but can be accounted for as follows.

Consider the shear deformation of two adjacent storeys as shown in Figure 2.5, in which 

the beams of the frame are restricted from bending. It is clear that applying the slope 

deflection equations between the points of contra-flexure yields the shear stiffness kc and 

the equivalent smeared stiffness k* as

kc = M A/0A = l2E I'/h , and k] = k jh ,  = X lE lJh]  (2.26)

where Ic is the second moment of area of a column and MA and 6A are defined in Figure

2.5 . The smeared bending and shear stiffnesses can now be combined into a single 

stiffness k* using the Foppl-Papkovich theorem(Tarani 1999), such that

7 r  = lT  + 7^  or l A j  (2.27)k kb kc kb +kc

i.e. the initial beam stiffness should be factored by k \/{k \ +£*), which is always less 

than one. The equation also shows that the local sway of columns can be ignored when
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the frame has relatively stiff columns, e.g. in the case of coupled shear walls. 

Substituting Eqs. (2.25) and (2.26) inEq. (2.27) gives

k - _ 12£V c
h(2Icb + I bh)

(2.28)

to•Si<N
to"Si

Figure 2.5 Development of column shear stiffness.

k* equals half the effective shear rigidity of the frame (GAS), which has been defined in 

reference(Smith and Coull 1991). This parameter expresses the racking stiffness of frame 

on a storey-height average basis. The composite symbol (GAS) is used because it 

corresponds to the shear rigidity of an analogous shear cantilever of sectional area A and 

modulus of rigidity G. A storey-height segment of such a cantilever maybe compared 

(Figure 2.6a) with a corresponding portion of a rigid frame as Figure 2.6b.

Surface area A

Shear modulus

Q

hs

Q

(a) (b)

Figure 2.6 a) storey-height segment of analogous shear wall b) 
single storey of rigid frame (Smith and Coull 1991)
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Stafford Smith and Coull (Smith and Coull 1991) have shown that the effective shear 

rigidity of a frame at floor level /, (GAs)iy can be obtained as follows. This is based on the 

assumption that the points of contraflexure occur in the frame at the mid-storey level of 

the columns and at the mid-span of the beams. This is a reasonable assumption for high- 

rise rigid frames for all stories near the top and bottom.

(GA), = \2E (2.29)

in which hs is the storey height, G -  (/*,/£,) f°r beams of span bj across floor level

i and C = /h s) for all columns in storey level / of the bent. E is the Young’s

modulus of elasticity and hj and /c; are the second moments of area of the columns and 

beams, respectively.

It can be concluded that when consecutive storeys of a frame are identical, their smeared 

properties define a new member, which together with other members form the final 

model. The second moment of area of the member equals the sum of the second moment 

of area of the columns and the rigidity of the rotational elastic support equals the effective 

shear rigidity of the frame, which can be obtained from Eq. (2.29). Finally the uniformly 

distributed mass of the element equals the sum of the distributed mass of the columns 

plus the smeared mass of the beams. In fact the fixing effect of the columns and beams as 

well as the mass in the beams is distributed downwards, which is clearly an 

approximation that will remain in the continuum model. In the following section the 

governing differential equation of the elastic support model is simply obtained from Eq. 

(2.23). It will then be used to formulate the required element stiffness matrix which has a 

transcendental dependence upon co.

2.2.2.1.1 Governing equation o f free vibration -  elastic beam model

Eq. (2.23) represents the governing differential equation of a Bemoulli-Euler beam with 

shear rigidity GAS on a rotational elastic support k*. It will be used for the derivation of
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the differential equation of the elastic support model, on the assumption that the shear 

deflection of the columns is ignored by putting GAS= oo. The governing differential of the 

elastic support model can then be written as follows

- L 2— d U^P  -  L4 U(4r) = 0 (2.30)
d4‘ El d f  E l

in which k equals the effective shear rigidity of the frame as described in Eq. (2.29), /  is 

the sum of the second moment area of the columns on a floor level and m is the smeared 

mass of the frame along the height of the structure.

Eq. (2.30) can be written in the following non-dimensional form

U” {g) -  a 2Un{g) -  p 2co2U{g) = 0 (2.31)

in which a 2 = k*L2/E I  and p 2 = mL*/ El (2.32)

The solution of the Eq. (2.31) can be obtained by substituting the trial solution

U{%) = es* to give the characteristic equation

s 4 - a 2s2 - P 2(d2 = 0 (2.33)

The solution of Eq. (2.33) in terms of s2 is

It is evident that s2 has one positive and one negative solution so the roots of 

characteristic equation i.e. sj-s4 are

si,2 = an(* s3A = +iA2 (2.35)
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in which i = V-T and

.4   2

l / ? V  +
.4  _ 2

4 2
(2.36)

It follows that the solution of Eq. (2.31) is of the form

U(g) = Cx coshA^ + C2 s i n h ^  + C3 cosX2̂  + C4 sinX2<̂ (2.37)

Following the sign convention of Figures 2.2(b) and 2.2(c), the expression for the bending 

slope #(£), shear force Q{£) and bending moment M(g) can be obtained from Eq. 

(2.7), Eq. (2.9) and Eq. (2.10) as follows

0(£) = (1 /L)U'(£) = (l/ZXQvlj sinh^^ + C2\  c o s h ^  -  C3̂  s in ^ f  + C X  c o s ^ f )
(2.38)

g (2) = dM{z) + = _ EJ d_0(z) + = _£I d U(z) + <rt/(r)

El

dz dz

Q(g) = — sinhA,^ + C X  c o s h ^  + C3̂  sinX,^ -  C X  cos^£]
L

k*
+ — [Q \  sinh/^£ + C2X, coshA,^ -  C X  sinA^ + C X  cos^g]

LI
(2.39)

M {z)= - E I£ m
dz

FI

El
M(g) = — 2-[Ci>^ coshXJ; + C X  sinh/^£ -  C3>̂  cosA^ -  C4A2 s i n ^ ]  (2.40)

L

where a prime now denotes differentiation with respect to £.

PhD Thesis, B. Rafezy, 2004
33



The end conditions for displacements and forces of the beam based on the sign 

convention Figures 2.2(b) and 2.2(c) are respectively,

At end 1 (5=0) U = U, and 6 = 0,

At end 2 (5=1) U = U2 and 6 = 02 (2.41)

and

At end 1 (£=0) Q = -Q, and M  = M, 

At end 2 (5=1) Q = Q2 and M  = -M 2 (2.42)

Substituting Eq. (2.41) into Eqs. (2.37) and (2.38) gives

'u ;
e

1

u2

i
1

'

K
)

1

1 0
0 X, !L

Chx, Shx,
X,Shx, / L X,Chx,IL

C.

0
X .IL  
S:A2 ^A2

^2^x2 !L X2Cx2!L

'C,'
c2
C,
c*.

(2.43)

i.e.

d = s c (2.44)

Where Chxi = cosh X, , Shxi = sinh X, , CXI = cos X, and SXI = sin X, and the same 

abbreviation applies for X2 . (2.45)

Substituting Eq. (2.42) into Eqs. (2.39) and (2.40) gives

0
E l  ,3 k*

0--------------- AlI?
Q\ E l  ,2

0 E l ,2
M, _ i? ^ i'}
q2
m 2 ^ - § - f i+ T )ShM

E l  -> k*

L L
■§■4Chu17 ^ S k n - ~ 4 C a2

L5 L 

Zr

Q
C2
c3
A

(2.46)
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i.e.

f = b c (2.47)

Eqs. (2.44) and (2.47) give

f = kd (2.48)

i.e

' a '
M t

a
Mi.

^ 1,1 K X2 ^ 1,3 ^ 1,4

■̂2,2 ^2,3 ^2,4
Sym. K33 K3 4

K 4,4

' a '
0,
a

it

(2.49)

where k = b s-l (2.50)

is the required dynamic stiffness matrix of the member.

2,2,2.1.2 Wittrick- Williams Algorithm

The dynamic stiffness matrix, K, when assembled from the member stiffness matrices 

yields the required natural frequencies as solutions of the equation

K D = 0 (2.50)

where D is the vector of amplitudes of the harmonically varying nodal displacements and 

K is a function of o), the circular frequency. In most cases the required natural frequencies 

correspond to |K |, the determinant of K, being equal to zero. Traditionally the required

values have been ascertained by simply tracking the value of Ik | and noting the value of
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co corresponding to |K| =0. However when K is developed from exact member theory, 

defined in Chapter 1, the determinant is a highly irregular, transcendental function of co.

Additionally, several natural frequencies maybe close together or coincident, while others 

may exceptionally correspond to D = 0. Thus any trial and error method which involves 

computing |K| =0 and noting when it changes sign through zero can miss roots. This can

be overcome by use of Wittrick-Williams algorithm (Wittrick and Williams 1971) which 

has received wide attention in the literature(Williams and Wittrick 1983). The algorithm 

states that

J  = J 0 +s{  K} (2.51)

where J  is the number of natural frequencies of the structure exceeded by some trial 

frequency, co*, J0 is the number of natural frequencies which would still be exceeded if all 

members were clamped at their ends so as to make D = 0 and s{K} is the sign count of 

the matrix K  s{K} is defined in Ref. (Wittrick and Williams 1971)and is equal to the 

number of negative elements on the leading diagonal of the upper triangular matrix 

obtained from K, when co - co, by the standard form of Gauss elimination without row 

interchanges.

The knowledge of J  corresponding to any trial frequency makes it possible to develop a 

method for converging upon any required natural frequency to any desired accuracy. 

However, while s{K} is easily computed, the value of Jo is sometimes more difficult to 

determine, as in the present case. A procedure for the calculation of Jo i.e. the sum of the 

clamped-clamped natural frequencies of each member in the structure which is the below 

the trial frequency co*, is described below. (Note that Jo can also be interpreted as the 

number of natural frequencies of the structure corresponding to D = 0 which is below the 

trial frequency co*).

Calculation o f Jo
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From the definition of Jo it can be seen that (Williams and Wittrick 1983; Wittrick and 

Williams 1971)

Jo = (2.52)

where Jm is the number of natural frequencies of an element, with its end clamped, which 

has been exceeded by co*, and the summation extends over all elements. In some cases it 

is possible to determine the value of Jm for a structural member symbolically using a 

direct approach (Howson 1979) which gives an analytical expression for Jm. However this 

is impractical in the present case due to the algebraic complicity of the expression. 

Instead, the result (i.e. the calculation of Jm) is achieved by an argument based on Eq. 

(2.51) and applies the Wittrick-Williams algorithm (Wittrick and Williams 1971) in 

reverse. The procedure corresponds to the one originally proposed by Howson and 

Williams (Howson and Williams 1973) and is described as follows.

Consider an element which has been isolated from its neighbours by clamping its ends. 

Treating this members as a complete structure, it is evident that the required value of Jm 

could be evaluated if its natural frequencies were known. Unfortunately this simple 

structure can rarely be solved easily. We therefore seek to establish a different set of 

boundary conditions (other than clamped-clamped) which admit a simple solution from 

which the solution for the clamped-clamped case can be deduced. This is most easily 

achieved by imposing pin-pin support conditions at the ends of the member, which 

prevent lateral displacements but allow rotational displacements.

The stiffness relationship for this single member with simply supported ends can be 

obtained by deleting appropriate rows and columns from Eq. (2.49) give

(2.53)
' u ; K 2a '
_m 2_ i K> l P i .

or

nigs kg* 6g, (2.54)
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where is the required 2x2 stiffness matrix of this simple one-member structure. 

Application of the Wittrick-Williams algorithm (Wittrick and Williams 1971) to this 

simple structure gives

(2-55)

where Jss is the number of natural frequencies for the simply supported case that lie below 

the trial frequency co*, Jm is the required number of clamped-clamped natural frequencies 

of the member lying between co =0 and <o =co*,s{ kgS} is the number of negative elements 

on the leading diagonal of k*; and k* is the upper triangular matrix obtained by

applying the usual form of Guess elimination to kg,. Thus clearly (Baneijee and Williams 

1994)

s{k.,}= |(2-sgn[*:22]-sg n [£ 44 - K l j K 22]) (2.56)

where sgn[ ] is +1 when the content of the brackets [ ] is positive and is -1 when the 

content of the brackets [ ] is negative. Hence from Eq. (2.55),

.*} (2.57)

s{k*s} can then be easily obtained.

Evaluation of Jss is more difficult, but relates to boundary conditions that yield a simple 

solution, as explained below.

For the pin-pin support, the boundary conditions are defined for

£=0 and 5=1 as U=M=0 (2.58)

These conditions are satisfied by assuming a solution for the displacement U(£) of the 

form(Timoshenko et al. 1974).
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U(£) = Ct sin(i^f) ( i  = 1,2,3, ...,<x>) (2.59)

where C, are constants.

Substituting Eq. (2.59) into.Eq. (2.31) gives

((/a-)4 + a 2(w )2 - j 8 V ) =  0 (2.60)

and yields one possible value for co for each value of / as follows

<  = ^ V “ 2+ ( ^ ) 2 (2.6i)

where increases monotonically with /. Therefore, ,/M can be calculated from

J s s = i

where i is the highest value of i for which lies below co*. Once Jss is known, Jm can be 

calculated from Eq. (2.57).

2.2,2.2 Plane wall-frame structures

A wall-frame structure is the combination of shear walls and rigid frames, or in the case 

of a steel structure, the combination of braced bents with rigid frames. Since walls tend to 

deflect in a flexural configuration and frames tend to deflect in a shear mode, where they 

are constrained to adopt a common deflected shape by the horizontal rigidity of the floor 

slabs, they interact horizontally, especially at the top, thus a stiffer and stronger structure 

is provided.

Another advantage of the wall-frame structure is that, in a carefully designed structure, 

the shear in the frame can be made approximately uniform over the height. Allowing the 

floor framing to be repetitive.
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A further understanding of the interaction between the wall and the frame in a wall-frame 

structure is given by the deflected shapes of a shear wall and a rigid frame, subjected 

separately to horizontal loading, as shown in Figure 2.6(a) and (b)(Smith and Coull 

1991). The wall deflects in a flexural mode with concavity downwind and a maximum 

slope at the top, while the frame deflects in a shear mode with concavity upwind and a 

maximum slope at the base. When the wall and frame are connected together by pin- 

ended links and subjected to horizontal loading, the deflected shape of the composite 

structure has a flexural profile in the lower part and a shear profile in the upper part 

(Figure 2.6c). Axial forces in the connecting links cause the wall to restrain the frame 

near the base and the frame to restrain the wall at the top. Illustration of the effects of 

wall-frame interaction are given by the curves for deflection, moment, and shear for a 

typical wall-frame structure, as shown in figure 2.7(a), (b) and (c), respectively. The 

deflection curve (Figure 2.7(a)) and the wall moment curve (Figure 2.7(b)) indicate a 

reversal in curvature with a point of inflexion, above which the wall moment is opposite 

in sense to that of a free cantilever. Figure 2.7(c) shows the shear as approximately 

uniform over the height of the frame, except near the base where it reduces to a negligible 

amount. At the top, where the external shear is zero, the frame is subjected to a significant 

positive shear, which is balanced by an equal negative shear at the top of the wall.

shape

(a) (b) (c)

Figure 2.6 (a) wall subjected to uniformly distributed horizontal 
loading; (b) frame subjected to uniformly distributed horizontal 
loading; (c) wall-frame structure subjected to uniformly 
distributed horizontal loading(Smith and Coull 1991).
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frame

shear forcebending m om ent

X

points of contraftexure

horizontal deflection

(a) (b) (c)

Figure 2.7 - (a) Typical deflection diagram of laterally loaded 
wall-frame structure (b) typical moment diagrams for 
components of wall-frame structure (c) typical shear diagram 
for components of wall-frame structure(Smith and Coull 1991).

2.2.2.2.1 Governing equation o f free vibration

Stafford Smith (Smith and Coull 1991) derived the differential equation governing the 

static displacement of a plane wall-frame structure subjected to lateral distributed load 

using the continuum method. In this study, his work is extended to cover the vibration 

analysis of plane wall-frame structures. It is assumed that the properties of the wall and 

frame members are uniform, but subject to step wise change over the height of the 

structure.

The plane wall-frame in Figure 2.8(a) may be taken to represent either a structure with 

walls and frames interacting in the same plane, or one with walls and frames in parallel 

planes(Smith and Coull 1991). This is possible since, in a non-twisting structure, parallel 

walls and frames translate identically and may therefore be simulated by a plane linked 

model.
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The governing differential equation of motion can be obtained by cutting the wall-frame 

through the structure horizontally at those storey levels corresponding to changes in 

storey properties and considering the equilibrium of a typical segment. However, for 

simplicity the governing equation of motion will be obtained by considering a uniform 

cantilever as shown in Figure 2.8 and writing the equation of equilibrium for shear forces 

in an arbitrary cross section. The following assumptions are adopted to achieve this:

1. The properties of the wall and the frame members are uniform along the height of the 

structure.

2. The wall may be represented by a flexural cantilever, i.e., one which deforms in 

bending only.

3. The frame may be represented by a continuous shear cantilever, which deforms in 

shear only. This implies that the frame deflects only by reverse bending of the 

columns and girders and that the columns are axially rigid (Figure 2.3(c)).

4. The connecting members (pin ended links) may be represented by a horizontally rigid 

connecting medium that transmits horizontal forces only and that causes the flexural 

and shear cantilevers to deflect identically.

Consider the wall and frame separately, as in Figure 2.8(c), w(z) and q{z) are, 

respectively, the distributed external loading and the distributed internal interactive force, 

whose intensities vary with height. Qh is a concentrated horizontal force that acts between 

the top of the wall and the frame. mw and w/ are the uniformly distributed mass per unit 

length of the wall and the frame, respectively.

PhD Thesis, B. Rafezy, 2004
42



Elw GA

w(z) W all

shear cantilever or shear cantilever or
elastic support model ,teXLiral cantilever elastic support model

\  Qh /

§(*)

(a) (b) (c)

Figure 2.8 -(a) Planar wall-frame structure (b) continuum method 
for wall-frame (c) free body diagrams for wall and frame (Smith 
and Coull 1991)

The differential equation for shear in the flexural member is

-  E I, ^  = jm ,  ^ p -d z  + J  [w(z) -  q(z)]dz- (2.62)

and, for shear in the shear cantilever is

GAs ^  = jm f ^ d z  + jq(z)dz + Qlf (2.63)

in which L is the height of the structure, EIW is the flexural rigidity of the walls and the 

parameter GAS represents the storey-height averaged shear rigidity of the frame, as though 

it were a shear member with an effective shear area A and a shear modulus G. Note that G 

is not the shear modulus of the frame material nor is A the area of its members.

Differentiating and summing Eqs (2.62) and (2.63) gives

axialy rigid 
continuum

flexural cantilever

\  1 /
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in which m is the uniformly distributed mass per unit length of the structure and equals 

mw + nif.

Substituting w(z)=0, yields the governing differential equation for the free vibration of a 

plane wall-frame element as

i r Td u ^ yl d u  d u  f A ^El —t ~GAs — T + m—r- = 0 (2.65)
w dz4 dz2 dt2

If a sinusoidal variation of u with circular frequency co is assumed, then

u(z,t) = U(z) sin cot (2.66)

where U(z) is the amplitude of the sinusoidally varying displacement. Substituting the 

non dimensional parameter

(  = z !L  (2.67)

Eq. (2.65) can be written as.

“L1L _12 = o (2.68)
dt* E l, d ?  E l,

Clearly Eq. (2.68) is directly comparable with Eq. (2.30), so the elastic support model can 

be used for the vibration analysis of wall-frame structures that can be modelled in planar 

form. It further means that the derived dynamic stiffness matrix of Eq. (2.49) can be used 

for the frequency analysis of plane wall-frame structures when El and k* are replaced by 

the flexural rigidity of the wall and GAS of the frame, respectively.
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This conclusion can also be reached from physical arguments based on the fact that the 

flexural deformation of the wall occurs in the same form as the full-height bending 

deformation of the individual columns of the frame (Figure 2.3(b)).

Plane wall-frame structures can also be analysed more accurately if the shear cantilever of 

Figure 2.8(b) is replaced with an elastic support model. If this is the case Eq. (2.63) can 

be substituted with the following equation

EI + GA = m , + q(x) (2.69)
c dz4 ' dz2 r dt* *

in which Ic is the sum of the second moment of area of individual columns.

With a similar procedure it can be shown that the governing differential equation of the 

free vibration of such a model can be written in the following form

 — -----^ L - L * -----— ---- £/(#) = 0 (2.70)
d f 4 { E l .+ E I J d f 1 (E I.+ E I.)

Therefore substituting EI with EIC+EIW in the formulation of the elastic support model can 

give better result for the frequency analysis of wall-frame structures.

2.2.3 Shear Beam Model

The second model proposed, like the first, is a continuum model of a cantilever, but 

allows only for shear deformation and therefore is only applicable to the free vibration 

analysis of rigid frame structures. Thus, for the regular frame considered in previous 

sections, the equivalent model would require only one degree of freedom. The motion is 

governed by a second order differential equation that is easily developed from first 

principles or can be deduced from any published beam theory which allows for shear 

deformation e.g. the theory developed in Section 2.2.1 of this study. The latter course 

would require the bending rigidity to be set to infinity, elastic support stiffness to be set to
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zero and the shear rigidity to be set to an equivalent shear frame rigidity(Zalka 2001). The 

effective shear rigidity was previously explained in detail in section 2.2.2. As the full 

height bending stiffness of the individual columns (Figure 2.3(b)) is ignored in this 

model, the model will be more accurate for tall buildings with relatively weak columns.

2.2.3.1 Governing differential equation -  shear beam model

Eq. (2.23) represents the governing differential equation of a beam with shear rigidity GAS 

on a continuous rotational elastic support k* and can be used to obtain the governing 

differential equation of the shear beam model. On ignoring the elastic support (k* =0) 

and setting the bending rigidity to infinity (.EI=oo, <9=0), the required differential equation 

can be obtained from Figures 2.2(a) and 2.2(b) as follows

Dynamic equilibrium in the x direction gives

dQ d2u
 m  :
dz dt'

= 0 (2.71)

Substituting 0=0 in Eq. (2.7) gives

d u = _Q_ 
dz GAS

Therefore

Q = GAs ^ -  and hence = GAS ~  (2.72)
dz dz dz

Substituting Eq. (2.71) in Eq. (2.72) gives

d2u m d2u
dz1 GA. dt2 ( }
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If a sinusoidal variation of u with circular frequency co is assumed then

u(z, t) = U(z) sin cot (2.74)

where (J(z) is the amplitude of the sinusoidally varying displacement.

Substituting Eq. (2.74) in Eq (2.73) results

d 2U mco2 r .- T  + -— U(z) = 0 (2.75)
dz GAr

Using the non-dimensional parameter g=z/Lt the governing differential equation of a 

shear beam can be written as follows.

d 2U'2 +A2cd2U(Z) = 0 (2.76)

in which A2 = (2.77)
GA„

The solution of the differential Eq. (2.76) can be obtained by substituting the trial solution 

U(%) = to give the characteristic equation

s 2 + A 2 c d 2 =  0 (2.78)

with the result that

5 = ±iAco (2.79)

It follows that the solution of Eq. (2.76) is of the form

U (£) = C, cos Aoot; + C2 sin Aco^ (2.80)
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Following the sign convention of Figures 2.2(a) and 2.2(b), the expression for the shear 

force Q(g) can be obtained from Eq. (2.72) as follows

Q = GASdU
dz

Thus

(2.81)

G(f) =
GAS dU _ GAS 

L d%~ L
(~CxAco sin  Aco% + C2Ag) cos Acog) (2.82)

The boundary conditions for displacements and forces of the beam, based on the sign 

conventions of Figures 2.2(a) and 2.2(b), are respectively

At end 1 (£*0) U = UX

At end 2 (f= l) U = U2 (2.83)

and

At end 1 (£=0) 0  = - f t

At end 2 (£=1) Q = Q2 (2.84)

Substituting Eq. (2.83) into Eq. (2.80) gives

' u ; i 0 C,

p 2_ cos Aco sin Aco c 2
(2.85)

or

c r i sin Aco ° p . '
c 2. sin Aco -co s Aco

(2.86)

Substituting Eq. (2.84) into Eq. (2.82) gives 
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" a " GAS 0 -Aco
\ Cl'L -  Aco sin Aco Aco cos Aco Ia _

(2.87)

Eqs. (2.86) and (2.87) gives

'a ‘ GAsAco cos Aco - 1 \U  11
.a. (sin Aco)L - 1 cos Aco P i .

(2 .88)

or

f = kd (2.89)

where k is the dynamic stiffness matrix for the shear beam model.

2.23.2 Wittrick-WiUiams Algorithm

The dynamic stiffness matrix, K, when assembled from the member stiffness matrices, 

yields the required natural frequencies as solutions of the equation

K D  = 0 (2.90)

The Wittrick-Williams algorithm can then be used again to solve this transcendental 

eigenvalue problem. As was explained in Section 2.2.2.1.2, Eq. (2.51) yields the number 

of natural frequencies of the structure exceed by the trial frequency co*. In this case it is 

possible to determine the value of Jm for a structural member symbolically, using a direct 

approach as follows.

The governing differential equation of a shear beam and its general solution are written 

here again for convenience
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^ -  + X2a>2U(4) = 0d g 2

U (£) = Q cos Aco% + C2 sin Acog

(2.91)

(2.92)

The end displacement conditions for a clamped-clamped member are

At end 1 (£=0) f/(0) = 0

At end 2 (£=1) £/(!) = 0

(2.93)

(2.94)

Substituting Eqs. (2.93) and (2.94) in Eq. (2.92) gives Ci=0 and

C2 sin Act) = 0 or Aco -  in and (i= 1,2,3,...) (2.95)

or

co = in (2.96)

so Jm for any trial frequency co can be given as follows

J' -  int co
(x/X)_

(2.97)

in which int represents the image integer function i.e. the greatest integer < co •/(WA).

It should be noted that when all storeys of a frame are identical, the whole frame can be 

modelled with one element which is free at one end and clamped at the other. Imposing 

these boundary conditions on Eq. (2.88) gives the frequency equation of such a frame as

cos Aco = 0 where A2 = mll/GA (2.98)
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As the structure compromises only one element, L can be replaced by H, the height of the 

whole frame. Thus

A2 =mH2/GA

in which m and H  are the mass per unit length and height of the substitute column, 

respectively, and GA is the shear rigidity of the frame. The required natural frequencies 

are therefore given by

Aa> = {2j-\)nl2  or a, = where j= 1,2,3,... (2.99)

It should be noted from Section 2.2.2.1 that m, the mass per unit length of the substitute 

beam, equals the sum of distributed mass of columns plus the smeared mass of the beams 

between floors. Moreover, the mass in the beams is distributed downwards, which will 

produce small errors in the model. Also, as the full height bending stiffness of the 

individual columns (Figure 2.3(b)) is ignored here, the model will be more accurate for 

tall buildings with relatively weak columns and short storey height.

2.3 SUBSTITUTE FRAME METHOD

2.3.1 The Principle of Multiples

The Principle of Multiples (Howson and Williams 1999) was first applied to unbraced, 

rigidly jointed, multi-bay, multi-storey plane frames and is exact on the basis of 

inextensible member theory. It can be used to prove that the frames of Figures 2.9 (a)-(d) 

share the same horizontal deflections for static or harmonic response calculations when F

* 0, that they share the same critical value of W for buckling problems when F = 0 and W

* 0 and that they share the same natural frequencies when F = 0. In general the response

---------------------------------------------------------------------------------------------------------------------------------------51
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and natural frequency calculations will be performed with W = 0, but non-zero values of 

W can be used when it is required to allow for the magnifying effect that compressive 

vertical loads have on horizontal deflections caused by lateral loading or the 

corresponding reduction in natural frequencies. The static response has been dealt with 

elsewhere (Howson and Rafezy 2002) and can be modified easily to deal with harmonic 

response by incorporating the dynamic stiffness matrix defined in(Howson and Williams 

1973). The arguments that follow therefore relate only to natural frequency calculations 

for which F = 0.

w W 2W 2W 4W 4W

3W 3W

2F

k.

6W

2k.

4F.

4k,12W12W

1.5L

(a) (b) (c)

W 2W 3W 2W

4F_

8F

ki
2k2

3W

I

ki
314

6W

1

2k i

9W 6W

I  J

»
CM

Jt

------------------------f

^ 3

3k,

2k 3

1.5L

(d)

Figure 2.9 Frames (a) -  (d) comply with the Principle of 
Multiples

In Figure 2.9, the k’s are values of EI/L for the members, where EI is the flexural rigidity 

and L is the length. Additionally, values are identical when the subscripts are identical, so
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that the frame of Figure 2.9(a) is symmetrical. Note also that any vertical loading is 

symmetric and therefore the frame must vibrate with a symmetric or an anti-symmetric 

mode and it is easily proved that the anti-symmetric mode gives the lowest possible 

natural frequency. Thus, it is clear that any frame which is identical to frame (a) must 

have the same natural frequency and the same deflected shape. Therefore any frame 

obtained by superposing N such frames (where N need not be integer), in the sense 

implied by frames (b) and (c), must also share the natural frequency and the deflected 

shape of frame (a), even if the frames are all clamped together. Hence putting N=2 and 

N=4 gives the required proofs for frames (b) and (c), respectively. Moreover, frame (d) 

can be obtained by fastening together two frame (a)’s and a frame (b) that are situated 

side by side in the appropriate way. Since frames (a) and (b) share the same natural 

frequencies and sway with an anti-symmetric deflection pattern, the process of fastening 

them together to form frame (d) leaves the natural frequencies and the deflections 

unaltered.

It is evident, however, that most frames do not obey the Principle of Multiples. 

Fortunately, a well established method exists for reducing multi-bay, multi-storey frames 

to single bay, multi-storey ‘substitute’ frames that can then be used to obtain approximate 

results for the multi-bay case. The substitute frame has the same number of storeys and 

the same storey heights as the original frame, but differs in that it has only one bay, is 

symmetric and may only be loaded symmetrically. The required details of the substitute 

frame are found from the actual frame as follows: the substitute column k (mass/unit 

length) is equal to half the sum of the k’s (mass/unit length) for all actual columns at the 

same storey level; the substitute beam k (mass/unit length) is equal to the sum of the k’s 

(mass/unit length) for all beams at the same storey level.

Applying the above rules to the frame of 2.9(d) gives the frame of Figure 2.9(c) and 

hence it can be deduced that when a frame obeys the Principle of Multiples the rules yield 

a substitute frame which gives correct results for the actual frame, remembering that 

inextensible member theory is assumed.

However, there are some practical problems that need to be addressed. For the current 

purpose it is assumed that ‘exact’ member theory is used in the sense that the distributed 

mass of the members and the attached walls and floors are incorporated when calculating
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the dynamic member stiffness matrices, which are therefore transcendental functions of 

both frequency and load per unit length. Hence, there are two additional restrictions that 

apply to the application of the Principle of Multiples to vibration. These are that members 

sharing the same subscript on Figure 2.9 must have the same mass per unit length as well 

as the same value of k and that all bays must have identical spans. The second 

requirement occurs because, whereas in the static case a beam (because it is in 

contraflexure) contributes 6k to the overall stiffness matrix of the half substitute frame 

analysed, in vibration problems the stiffness contributed depends both on k and on a 

dynamic stability function which is a transcendental function of both the beam span and 

the mass per unit length.

Therefore rules must be adopted to establish the values of L and ju for the beams of the 

substitute frame where fi is the distributed mass of the beam per unit length. The rules 

adopted herein are that L is taken as the average value of the bay widths of the actual 

frame, so that EI can be calculated from the rules given in the previous section for 

calculating the substitute beam k, and n  for the substitute beam is obtained by dividing its 

L into the total mass of all beams at the same storey level of the actual frame(Howson and 

Williams 1999).

2.3.2 Application of the Substitute Frame method in plane frame structures

It was explained in Section 2.3.1 that, by the application of the Principle of Multiples, any 

frame, regardless of number of storeys or bays, maybe simplified to an equivalent one bay 

frame, having the same natural frequencies of vibration as the original frame if the 

conditions of the Principle of Multiples are adhered to. If the conditions of the Principle 

of Multiples are not achieved, the substitute frame method can still be applied for the 

frequency analysis of plane frame structures and the results will normally achieve 

acceptable engineering accuracy. The substitute frame has many fewer design variables 

than the actual frame. Therefore, parametric studies undertaken with the substitute frame 

can give the designer insights into the behaviour of the full range of possible actual 

frames, i.e. the full range of multi-storey, multi-bay frames, with very small
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computational effort and without the designer overload referred to in the introduction 

occurring.

2.3.3 Application of the Substitute Frame method in plane wall-frame structures

In Section 2.2.2.2.1 it was shown that the governing differential equation of free vibration 

of a plane wall-frame structure is directly comparable to the differential equation of free 

vibration of a frame. This means that if the sum of the second moment of area of the 

columns in a frame structure equals the sum of the second moment of area of the columns 

and walls of a wall-frame structure, the governing differential equations will be same for 

both structures. This can also be explained by comparing Figures 2.10(a) and 2.10(c), in 

which Ii is the second moment of area of the individual columns of the wall-frame 

structure and I sub is the second moment of area of columns of one-bay substitute frame. If 

I SUb equals (JV , + I w) / 2  then the continuum models of the plane wall-frame in Figure

2.10(a) and the substitute frame in Figure 2.10(c) will be same. Therefore the substitute 

frame for a plane wall-frame structure can be defined by the aforementioned rule. This 

simplification can also be justified by a study of the behaviour of frame and wall-frame 

structures. A comparison of Figure 2.7(a) and Figure 2.3(b) shows that the flexural 

behaviour of the wall in a wall-frame structure is identical to the full-height bending 

deformation of the individual columns in a frame structure, so applying the elastic support 

model will result in a unique structure for both a wall-frame structure and its substitute 

frame obtained by the above rule.
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Figure 2.10 (a) and (b) a plane wall-frame and its elastic support 
model (c) and (d) a one bay substitute frame and its elastic support 
model
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2.4 NUMERICAL RESULTS

In order to validate the use of the proposed methods it was deemed necessary to carry out 

a parametric study to ascertain the accuracy that might be expected from the proposed 

methods. These have been achieved by developing two computer programs for the 

vibration analysis of shear beam and elastic support models in Qbasic language.

2.4.1 Example 2.1

The results from the “elastic support” and “shear beam” models are now compared with 

results obtained using exact buckling and vibration programme called BUNVIS-RG 

(Anderson and Williams 1986) by analysing four concrete plane frames comprising 5, 7, 

10 and 20 storeys, respectively. Each frame has equal storey heights of 4.0m and three 

equal bays of width 7.5m, as shown in Figure 2.11(a). Young’s modulus for all members 

is taken as E=2xl010 N/m2. The column and beam properties are as follows.

Column properties: external (1) Ic = 0.0026m4 m = 300 kg/m

internal (2) Ic = 0.0052m4 m = 600 kg/m

Beam properties: roof (3) h  — 0.0026m4 m = 300 kg/m

floor (4) h  = 0.0052m4 m = 600 kg/m

All frames obey the Principle of Multiples and assume inextensible member theory. 

Therefore the results will only show the errors that are inherent in the application of the 

proposed methods. If the frames don’t obey the Principle of Multiples the error will 

increase as there will be an extra error due to reducing multi-bay frames to single bay 

substitute frames.

Each method has been applied in two different ways. In the first case, termed “Lump 

mass”, every storey has been considered as an element and the mass of the beams has 

been lumped at the nodes (Figure 2.11(b)). In the second case, termed “Dist. mass”, the 

whole frame has been considered as a single element and the mass of the beams at each 

storey level has been distributed along the height of the structure and added to the mass of
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the columns (Figure 2.11(c)). It is obvious that the application of the second case is much 

simpler and the solution can sometimes be obtained by hand methods.

4m

4m

4m

4m

4m

4m

4m

4m

4m

4m

(b) (c)

Figure 2.11 (a) Frame of Example 2.1 and its continuum model 
with lumped (b) and distributed mass (c)

Columns 2 and 4 of Table 2.1 show the natural frequencies (Hz.) of the frames obtained 

from the shear model with the beam mass lumped and distributed, respectively (easel and 

2). Columns 6 and 8 likewise show the natural frequencies obtained from the elastic 

support model. The last column in the table shows the result obtained using an exact 

buckling and vibration programme called BUNVIS-RG( Anderson and Williams 1986). 

Finally columns 3, 5, 7 and 9 show the difference between the results of the substitute 

beam models and BUNVIS-RG. When analysing frames with BUNVIS-RG it is assumed 

that beams and columns obey Bemoulli-Euler theory and therefore don’t allow for shear 

deformation and rotary inertia. Additionally the following assumptions have been made 

when modelling buildings with BUNVIS-RG

• No P -  A effect

• No reduction in the stiffness of columns due to compressive axial loads (no 

geometric rigidity)

0 0 0
0 0 0 0

0 0 0

0 0 0 0

0 0 0
0
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• Inextensible member theory is imposed by multiplying the cross-sectional area of 

the beams and columns by a factor, typically 103.

Table 2.1 - Natural frequencies for the frames of Example 2.1 obtained using 
the SB and ES models, compared with BUNVIS-RG results

N=5
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies f(Hz.) diff.% f(Hz.) diff.% RHz.) diff.% f(Hz.) diff.% f(Hz.)
1 1.56 15.68 1.57 15.14 1.73 6.49 1.75 5.41 1.85
2 4.48 22.09 4.7 18.26 5.2 9.56 5.61 2.43 5.75
3 6.87 31.70 7.84 22.07 9.19 8.65 10.45 3.88 10.06
4 8.94 38.26 10.97 24.24 14.32 1.10 16.7 15.33 14.48
5 10.66 47.17 14.11 30.08 19.68 2.48 24.62 22.00 20.18

Average 
(1st ,2nd ,3rd)

• 23.16 18.49 8.23 3.91

N=7
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.)
1 1.12 11.11 1.12 11.11 1.21 3.97 1.21 3.97 1.26
2 3.29 14.99 3.36 13.18 3.66 5.43 3.77 2.58 3.87
3 5.29 21.28 5.60 16.67 6.27 6.70 6.73 0.15 6.72
4 7.02 28.73 7.84 20.41 9.35 5.08 10.29 4.47 9.85
5 8.58 38.27 10.08 27.48 13.05 6.12 14.58 4.89 13.90

Average 
(1st ,2nd ,3rd) 15.79 13.65

.  ..
5.36 2.23

N=10
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.)
1 0.78 8.24 0.78 8.24 0.83 2.35 0.83 2.35 0.85
2 2.33 9.69 2.35 8.91 2.50 3.10 2.53 1.94 2.58
3 3.83 13.54 3.92 11.51 4.26 3.84 4.38 1.13 4.43
4 5.24 18.38 5.49 14.49 6.16 4.05 6.47 0.78 6.42
5 6.53 23.80 7.05 17.74 8.30 3.15 8.85 3.27 8.57

Average 
(1st-5 th ) 14.73 12.18 3.30 1.89

N=20
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.)
1 0.39 4.88 0.39 4.88 0.40 2.44 0.40 2.44 0.41
2 1.18 3.28 1.18 3.28 1.21 0.82 1.21 0.82 1.22
3 1.96 4.85 1.96 4.85 2.04 0.97 2.04 0.97 2.06
4 2.74 5.84 2.74 5.84 2.89 0.69 2.91 0.00 2.91
5 3.53 7.35 3.53 7.35 3.77 1.05 3.81 0.00 3.81

Average 
(1st- 5 th)

5.24 5.24 1.19 0.85
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As expected, the results from the shear model are poor for low numbers of storeys, 

whereas the results from the elastic support model generally show good agreement with 

BUNVIS results. To get a general idea o f the magnitude of the difference, the average of 

the differences of the 1st, 2nd and 3rd natural frequencies of the 5 and 7 storey frames and 

also the average of the differences o f first 5 natural frequencies o f the 10 and 20 storey 

frames have been calculated and recorded in the last rows o f the Table 2.1. The graph of 

the average differences in each case is presented in Figure 2.12.

P aram etric  s tu d y  
SB & ES C om parison  - Exam ple 2.1

SB-Lump
SB-Dist.
ES-Lump
ES-Dist.

Number of storeys

Figure 2.12 The graph of the difference in each model of Example 2.1 

The following results can be obtained from the graph.

• The differences in all models decrease with increasing number of storeys.

• All models give acceptable results for frames with 20 storeys or more.

• Both forms of the elastic support model give acceptable results (difference < 10%) for 

any number of storeys.

• The difference between the lumped and distributed mass models is small and can be 

safely ignored
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2.4.2 Example 2.2

This example investigates the accuracy of the proposed methods when applied to frames 

with strong columns and weak beams. The data and assumptions of Example 2.1 are used 

again, except that the second moment o f area and the mass per unit length of columns is 

increased by a factor o f 5. The data are as follows.

Column properties:

Beam properties:

external (1) 

internal (2) 

roof (3) 

floor (4)

/c = 0.013m4 m — 1500 kg/m 

Ic = 0.026m4 m = 3000 kg/m 

h  = 0.0026m4 m = 300 kg/m 

h  =  0.0052m4 m = 600 kg/m

The results are given in previous format in Table 2.2 and Figure 2.13.

Table 2.2 -  Natural frequencies for the frames o f Example 2.2 obtained using 
the SB and ES models, compared with BUNVIS-RG results

N=5
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies KHz.) diff.% KHz.) diff.% KHz.) diff.% KHz.) diff.% KHz.)
1 1.19 21.19 1.19 21.19 1.49 1.32 1.49 1.32 1.51
2 3.40 32.27 3.58 28.69 5.13 2.19 5.19 3.39 5.02
3 5.35 46.07 5.97 39.82 10.66 7.46 10.96 10.48 9.92
4 7.37 59.55 8.35 54.17 18.43 1.15 19.33 6.09 18.22
5 9.32 65.22 10.74 59.93 27.61 3.02 30.47 13.69 26.80

Average 
(1st ,2nd ,3rd) 33.18 29.90 3.66 5.06

N=7
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies KHz.) diff.% KHz.) diff.% KHz.) diff.% KHz.) diff.% KHz.)
1 0.85 15.84 0.85 15.84 1.00 0.99 1.00 0.99 1.01
2 2.51 23.01 2.56 21.47 3.28 0.61 3.30 1.23 3.26
3 4.04 35.67 4.26 32.17 6.40 1.91 6.47 3.03 6.28
4 5.49 44.66 5.97 39.82 10.63 7.16 10.84 9.27 9.92
5 6.98 56.02 7.67 51.67 16.07 1.26 16.56 4.35 15.87

Average 
(1st ,2nd ,3rd) 24.84 23.16 1.17 1.75
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N=T0 Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
storeys Lump mass Dist. mass Lump mass Dist. mass

frequencies f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% KHz.) diff.% KHz.)
1 0.60 10.45 0.59 11.94 0.66 1.49 0.66 1.49 0.67
2 1.78 15.64 1.78 15.64 2.11 0.00 2.11 0.00 2.11
3 2.93 23.70 2.98 22.40 3.89 1.30 3.90 1.56 3.84
4 4.02 33.55 4.17 31.07 6.14 1.49 6.19 2.31 6.05
5 5.08 42.53 5.37 39.25 8.97 1.47 9.08 2.71 8.84

Average 
(1st-5 th )

25.17 24.06 1.15 _ 1.62

N=20
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies KHz.) diff.% KHz.) diff.% KHz.) diff.% f(Hz.) diff.% KHz.)

1 0.30 3.23 0.30 3.23 0.31 0.00 0.31 0.00 0.31
2 0.89 5.32 0.89 5.32 0.96 2.13 0.96 2.13 0.94
3 1.49 8.59 1.49 8.59 1.64 0.61 1.66 1.84 1.63
4 2.08 12.24 2.09 11.81 2.40 1.27 2.43 2.53 2.37
5 2.66 17.90 2.68 17.28 3.26 0.62 3.31 2.16 3.24

Average 
(1st- 5 th) ! 9.45 9.25 0.92 1.73

Param etric s tu d y  
SB & ES C om parison  * Exam ple 2.2

—♦ —SB-Lump 
— SB-Dist.

ES-Lump 
—* — ES-Dist.

N um ber of s to rey s

Figure 2.13 The graph of the difference in each model of Example 2.2

The graph clearly shows that the difference in the shear beam model has now increased in 

comparison with Example 2.1. This can be explained as follows.

The full height bending deformation of the individual columns of such a frame (Figure 

2.3(b)) now plays a considerable role in the total deformation of the frame (Figure 2.3). 

The shear beam model ignores this component of the total deformation, so it was
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anticipated that the results would be poor. On the other hand, the accuracy of the elastic 

support model has improved.

2.4.3 Example 2.3

The final example considers the case o f strong beams and weak columns. As before, the 

data and assumptions of Example 2.1 are used again but this time the second moment o f  

area and the mass per unit length of the beams are increased by a factor o f 5. The data are 

as follows.

Column properties:

Beam properties:

external (1) Ic = 0.0026m4 m = 300 kg/m

internal (2) Ic = 0.0052m4 m = 600 kg/m

roof (3) Ib = 0.013m4 m =  1500 kg/m

floor (4) 4  = 0.026m4 m = 3000 kg/m

Once more, the results are given in previous format in Table 2.3 and Figure 2.14.

Table 2.3 -  Natural frequencies for the frames of Example 2.3 obtained using 
the SB and ES models and compared with BUNVIS-RG results

N=5
Storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

Frequencies f(Hz.) diff.% KHz.) difif.% KHz.) diff.% f(Hz.) difif.% KHz.)
1 1.19 11.85 1.19 11.85 1.28 5.19 1.28 5.19 1.35
2 3.47 13.68 3.58 10.95 3.91 2.74 4.00 0.50 4.02
3 5.46 16.00 5.97 8.15 6.62 1.85 7.12 9.54 6.50
4 6.95 17.16 8.35 0.48 9.25 10.25 10.89 29.80 8.39
5 7.75 28.64 10.74 1.10 11.52 6.08 15.31 40.98 10.86

Average 
(I s* ,2nd ,3rd)

13.84 10.32 3.26 5.07

N=7
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RGLump mass Dist. mass Lump mass Dist. mass
frequencies KHz.) diff.% KHz.) diff.% KHz.) diff.% KHz.) diff.% KHz.)

1 0.85 8.60 0.85 8.60 0.90 3.23 0.90 3.23 0.93
2 2.52 9.68 2.56 8.24 2.73 2.15 2.75 1.43 2.79
3 4.08 11.30 4.26 7.39 4.64 0.87 4.76 3.48 4.60
4 5.46 13.47 5.97 5.39 6.62 4.91 7.01 11.09 6.31
5 6.58 15.21 7.67 1.16 8.60 10.82 9.58 23.45 7.76

Average 
(1st ,2nd ,3rd) 9.86 8.08 2.08 2.71

-
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N=10
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.) diff.% f(Hz.)
1 0.60 4.76 0.59 6.35 0.62 1.59 0.62 1.59 0.63

2 1.78 6.32 1.78 6.32 1.87 1.58 1.87 1.58 1.90

3 2.92 7.59 2.98 5.70 3.16 0.00 3.19 0.95 3.16
4 4.00 9.09 4.17 5.23 4.51 2.50 4.59 4.32 4.40

5 5.00 10.71 5.37 4.11 5.91 5.54 6.12 9.29 5.60
Average

-  5‘h> 1 ....
, 7 0 5.54

______
2.24 | j 3.54 |

N=20
storeys

Shear Beam model (SB) Elastic Support model (ES) BUNVIS-RG
Lump mass Dist. mass Lump mass Dist. mass

frequencies f(Hz.) diff.% f(Hz.) diff.% f.H/ : diff.% f(Hz.) diff.% f(Hz.)
1 0.30 0.00 0.30 0.00 0.30 0.00 0.30 0.00 0.30
2 0.89 2.20 0.89 2.20 0.91 0.00 0.91 0.00 0.91
3 1.48 2.63 1.49 1.97 1.53 0.66 1.53 0.66 1.52
4 2.06 3.74 2.09 2.34 2.15 0.47 2.16 0.93 2.14
5 2.63 3.66 2.68 1.83 2.79 2.20 2.81 2.93 2.73

Average 
(1st-5 th ) 2.45 | 1.67 0.66 0 90 j

Param etric s tudy
SB & ES C om parison - Exam ple 2.3

OC-i
30 \

S5 25 ♦  SB-LumpO 4J 1 
®o 20 —■— SB-DistC A* 1
g 15 J ES-Lump<d ■ 1
| i o

— ES-Dist.
Tf  |

5 \
n Ju

5 7 10 20

N um ber of s to re y s

Figure 2.14 The graph of the difference in each model of Example 2.3

The graph clearly shows that the difference in the shear beam model has been reduced to its 

lowest values of all examples for the converse reasons to those described in Example 2.2.

2.4.4 Conclusions

Table 2.4 shows the average difference for the application of the shear beam and elastic 

support models in Examples 2.1, 2.2 and 2.3. Figure 2.15 has been drawn from the
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information in the table and can be used to draw the final conclusion of the parametric

study as follows

• The differences in all models decrease and converge on each other as the number of 

storeys increases.

• Shear beam models give acceptable results for 20 storey frames and higher. It can also 

be used for the frames with 10 or more storeys if  the frame does not comprise very 

strong columns relative to the beams. However more investigation is necessary to 

define more precisely the limitations o f the shear beam model.

• The elastic support model gives acceptable results (difference < 10%) for any type of 

frame in the range of the solved examples

• The difference between the results for the lumped and distributed mass models is 

small and can safely be ignored.

Table 2.4 - The average difference (%) for the application of SB and ES models in
Examples 2.1,2.2 and 2.3

Number of Storeys Shear Beam model (SB) Elastic Support model (ES)
Lump mass Dist. mass Lump mass Dist. mass

5 23.39 19.57 5.05 4.68
7 16.83 14.96 2.87 2.23
10 15.87 13.93 2.23 2.35
20 5.71 5.38 0.93 1.16

Parametric study 
SB & ES Comaprison - Average Examples 1, 2 & 3

35.00 j --------------------------------------- -j
30.00 --------      -J

?  25.00 - ----------------------------------------- ------
c  20.00 \--------------------------------- — — -----------------
115.00 L - —  i------
I  10.00 \----  — -------------------^ -------

5.00 \------------ --------------------------- —* -----
o . o o  .r , :

5 7 10 20
Number of storeys

Figure 2.15 The graph o f the average difference in each model

•SB-Lump

SB-Dist.

ES-Lump

ES-Dist.
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CHAPTER 3

VIBRATION ANALYSIS OF SYMMETRIC THREE- 

DIMENSIONAL FRAME AND WALL-FRAME

STRUCTURES

3.1 INTRODUCTION

This chapter presents two methods of analysis for determining the natural frequencies of 

symmetric, three-dimensional frame and wall-frame structures. Such structures comprise 

symmetric and parallel arrangements of plane frame and wall-frame systems, which have 

been joined to each other by a rigid diaphragm at each floor level. Each method is able to 

deal with structures whose properties may vary with height in a stepwise fashion at one or 

more storey levels.

The first method utilises a continuum approach that accounts for stepwise changes in 

storey properties by notionally cutting through the structure horizontally at those storey 

levels corresponding to changes in storey properties. A typical segment of the structure 

thus formed is then considered in isolation. Initially, a primary frame or wall-frame in 

one direction is replaced by an appropriate substitute beam that has uniformly distributed
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mass and stiffness, thus utilising the continuum approach. In turn, each frame or wall- 

frame running in the same direction is replaced by its own substitute beam and the effect 

of all such beams is summed to model the effect of the original frames. This leads directly 

to the differential equation governing the sway motion of the segment in the chosen 

direction. The same procedure is then adopted for those frames running in the orthogonal 

direction. Once both equations are available it requires little effort to write down the 

substitute expressions for the torsional motion. Both elastic support and shear substitute 

beams will be used here to model plane frame and wall-frame structures running in two 

orthogonal directions.

The second method utilises the Principle of Multiples and extends its application to three- 

dimensional structures. This is achieved by defining three different substitute frames 

corresponding to the three uncoupled modes of vibration, namely torsional motion and 

sway in the two lateral directions.

3.2 CONTINUUM METHOD

3.2.1 Elastic Support Model

3,2.1.1 Symmetric three-dimensional rigid frame structures

Consider a typical floor plan of a symmetric, three-dimensional frame structure idealised 

as a set of orthogonal plane frames, as shown in Figure 3.1. The coordinate system is 

fixed at the centre of symmetry, C, with the x and y axes running parallel to the axes of 

symmetry and z defining the height of the structure. It is assumed that the plane frames 

are connected by a rigid diaphragm (slab) at each floor level, so that the structure will 

have two pure translational modes and one pure torsional mode of vibration as shown in
 ____________________________    <7
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Figures 3.2(a), (b) and (c). These uncoupled modes can therefore be studied separately. 

Since the aim is to find the natural frequencies of the structure, the external forces Px and 

Py that act through the centre of pressure, CP, are zero.

(0

(0

CM
<0

rigid
diaphragm

Frame j

CP

a.

Figure 3.1 Typical floor plan of a symmetric three-dimensional 
frame structure

1 v(z,t)  —

(a) (b) (c)

Figure 3.2 Three uncoupled modes of vibration of a symmetric 
structure (a) and (b) are the translational modes in the x and y 
directions; (c) is the torsional mode about the z axis
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3.2.1.1.1. Translational vibration

The structure is now divided into segments along the z axis by notionally cutting the 

structure along horizontal planes at those storey levels corresponding to changes in storey 

properties. Figure 3.3 shows a typical segment formed by cutting the structure through 

planes EkFkGkHk and Ek+\Fk+\Gk+\Hk+\ that correspond to the k^ and £+1* changes in 

storey properties. The number of storeys in any one segment can vary from one, to the 

total number of storeys in the structure if it is uniform throughout its height. However, in 

any one segment each storey must have the same properties.

lk+l

Figure 3.3 Typical segment formed by cutting the structure 
through planes EkFkGkHk and Ek+\Fk+\Gk+\Hk+\ that correspond to 
the k and k+lth changes in storey properties. (Some column and 
beam members have been omitted for clarity.)

We now consider a typical segment in isolation and seek to replace each primary frame by 

a substitute elastic support beam that replicates its in-plane motion. We start by 

considering a typical frame, frame /, that runs parallel to the y-z plane, see Figure 3.1. 

This whole frame is replaced by the single substitute beam, beam /, shown in Figure 3.4. 

This beam is a two-dimensional elastic support beam of length L and has uniformly 

distributed mass myh flexural rigidity EIyi and rotational elastic support stiffness equal to 

GAyil\m\t length. The mass and elastic axes therefore coincide with the local z-axis and the
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elastic axis is permitted deformation vf(z,r) in the y  direction, where z and t denote 

distance from the local origin and time, respectively.

m y i

Iy*

dQ
Q + - 3 ^  5zVy< QZ

)
)
)
) i

Qy*

6z

(a) (b)

L

Figure 3.4 Elastic support substitute beam of plane frame i 
a) substitute beam b) shear force on a typical element length of 
beam (internal moments have been omitted for clarity)

Using Eqs (2.7) to (2.11), the following equation can be written for the transverse force in 

the substitute elastic support model.

dr dz
(3.1)

in which Qyi(z,t) is the shear force on the element.

Dynamic equilibrium of the element in the y direction gives

^ & = w  (3.2)
dz " dt2

Substituting Eq. (3.1) into Eq. (3.2) gives
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E l
d \ ( z 9t) d \ { z 9t) d \ ( z 9t)

y* -G A *
dz'

+ myi dr
=  o (3.3)

This is the governing differential equation for the elastic support substitute beam of frame 

/. It was shown in Figure 3.2(b) that, because of the rigid diaphragm, all frames running 

parallel to the y direction share the same deflection (v(z,r)), so the dynamic equilibrium 

in the y direction for all frames can be written as follows

d X  d3v(z,t) dv(z,t) X  d2v(z,t)
t~ Q L - £^  a 3 + L GAy> • ;  ' >& = z X .  - ,y  & (3-4)dz 7^ dz M dz m d r

in which ny is the number of frames running parallel to the y direction. 

Noting that EIyi and GAyi are constant along the length of the member gives

in which

£ / , = I X ,  (3.6a)
1=1

GAy =^GA„. (3.6b)
i=l

= £ > *  (3.6c)m y
(=1

and v(z,/) is the common deformation of frames in the y direction.

Eqs (3.5) and (3.6a-c) define an elastic support model for the frequency analysis of a 

three-dimensional frame in the y direction, so the dynamic stiffness matrix obtained in 

Chapter 2 for an elastic support model can also be used for the frequency analysis of 

symmetric three-dimensional frame structures.
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It should be noted that the contribution from frames running in the x direction to the 

vibration of the structure in the y direction should be taken into account. The shear 

rigidity of frames in the x direction does not have any effect on the vibration of the 

structure in the y direction, but the distributed mass of the beams should be considered by 

smearing it over the height of the model. Also, if any column of a plane frame running in 

the x direction does not belong to a plane frame in the y direction, its mass and second 

moment of area about the x axis should be added to the corresponding properties of the 

column of the elastic support model, since such a column deflects like a flexural 

cantilever in the y direction.

An identical argument enables us to define an elastic support substitute beam for vibration 

of the structure in the x direction. The analogous differential equation for the elastic 

support beam in the x direction can be written as

where nx is the number of plane frames running in the x direction and u(z,t) is the 

common deformation of frames in the x direction.

3.2.1.1.2. Torsional vibration

(3.7)

in which

(3.8a)

(3.8b)

(3.8c)
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It was shown in Figure 3.2 that the pure torsional mode of vibration is one of the three 

basic modes of vibration in symmetric structures. Consider two typical frames, i in the y 

direction and j  in the x direction, whose distance from the centre of torsion are and yj, 

respectively (Figure 3.1). Replacing these frames with their elastic support substitute 

beams and writing the equation for torsional equilibrium about C, gives

Because of the rigid diaphragm at each floor level (Figure 3.2c), there is a linear relation 

between wy(z,f), v ^ z j )  and (p{z,t), which is given by

(3.9)

Uj{z, t )  = -yj<p(z, t)  

v,{z,t) = xt(p(z,t)

(3.10)

(3.11)

where (p{z,t) is the torsional deflection of the structure about C.

Differentiating Eqs. (3.10) and (3.11) and substituting into Eq. (3.9) gives

(3.12)

or

(3.13)
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in which

r ̂
>

£3 ■s. (3.14a)
V i=1 7=1 >

f ny nx

GJ = Z G A ^ + Z G A ^ (3.14b)
V =1 7=1 J
f X'

[ v ! + (3.14c)
I =1 7=1 J

Eqs. (3.13) and (3.14a-c) define an elastic support model for the torsional frequency 

analysis of symmetric, three-dimensional frame structures.

As every frame in the x and y directions was replaced by its elastic support model in its 

plane of symmetry, the out of plane effect (stiffness and inertia) of the frames in torsion 

was lost. Therefore if any column in frame i does not belong to any frame in the x 

direction, its out of plane stiffness and inertia should be taken into account. As such a 

column behaves like a flexural cantilever, its out of plane stiffness (El) should be 

multiplied by the square of its distance from the x axis and added to E l^ . This also

applies to any column in frame j  which does not belong to any frame in the y direction.

Eq. (3.14c) clearly shows that I ^  is the polar second moment of mass about the z axis, so

it would be more accurate to calculate I ^  based on the distribution of mass in the real

structure rather than the elastic support models. Simple formulae for calculating I ^  for

the case in which the mass is uniformly distributed in the beams or rigid diaphragms 

(slabs) can be found in handbooks.

3.2.1.2 Symmetric three-dimentional wall-frame structures

A symmetric three-dimensional wall-frame structure is the combination of shear walls and 

rigid frames in which both the walls and the frames are located symmetrically on plan and

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  7 4
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connected to each other by a rigid diaphragm at floor levels (Figure 3.5). The behaviour 

of plane wall-frame structures was discussed in Section 2.2.2.2 and it is extended here to 

calculate the natural frequencies of symmetric, three-dimensional wall-frame structures 

using the elastic support substitute beam.

3.2.1.2.1. Translational vibration

Figure 3.4. shows a typical floor plan of a symmetric, three-dimensional wall-frame 

structure. Consider a typical wall, wall /, running in the y direction with second moment 

of area I ^  and uniformly distributed mass , together with a typical wall, wall J,

running in the x direction with second moment of area of I  . and uniformly distributed

mass m ^  acting with the system of planar frames considered before (Figure 3.5).

Wall j

r ig id
d ia p h ra g m

Frame j

Figure 3.5 Typical floor plan of a symmetric three-dimensional 
wall-frame structure

Based on the continuum theory explained in Chapter 2, all walls may be replaced with 

flexural substitute beams and all frames with their elastic support substitute beams, so that 

the dynamic equilibrium in the y dirction for the combination of walls and frames can be 

written using Eqs. (2.65) and (2.69) as
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i= 1 i=l

M.'O ’ d2vt(z,t) . v  ™ A f e O/ » « — 1V  ' + V  w,„ ,
t t  dt t f  * a/2

(3.15)

or

( E I ^ + E I V)
d4v(z,t) 

dz4
-G A

d2v(z,t)
dz2

+ (mwy+mv) d2v ( z j )
ar2

= o (3.16)

in which

EIv ~ f lEIvl
<=1

(3.17a)

and

m = S mwyz
i=l

(3.17b)

where is the number of walls in the y direction and Ely, GAy and my were defined in 

Eqs. (3.6a-c).

Here again the contribution of the walls in the x direction to the behaviour of the structure 

in the y direction should be taken into account. The out-of-plane stiffness of the walls can 

safely be ignored, but their uniformly distributed mass should be considered by adding it 

directly to the continuum model. Eq. (3.16) is in the form of the governing differential 

equation of an elastic support model so it can be concluded that an elastic support model 

may be defined for the vibration analysis of symmetric wall-frame structures in the y 

direction.
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An identical argument enables us to define an elastic support substitute beam for the 

vibration of the structure in the x direction. The analogous differential equation may be 

written as

(3.18)

in which

(3.19a)

"wx
= 2 > „ (3.19b)

where EIX, GAX and mx were defined in Eqs. (3.8a-c) and nwx is the number of walls in the 

x direction.

3.2.1.2.2. Torsional vibration

The governing differential equation for torsional vibration of a symmetric wall-frame 

structure can be achieved by replacing walls with flexural substitute beams and plane 

frames with elastic support substitute beams and writing the torsional equilibrium about C 

as follows

in which
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xf is the distance of wall i from the centre of symmetry C, 

pj is the distance of wall j  from the centre of symmetry C,

(z,t) is the deflection of wall i in the y direction 

and

Uj(z,t) is the deflection of wall j  in the x direction.

Because of the rigid diaphragm, there is a linear relation between Uj(z,t) , vf(zyt) and 

(p{z,t) , which is given by

Substituting Eqs (3.10), (3.11), (3.21) and (3.22) and their derivatives in Eq. (3.20) gives

where El^ , GJ and Igf were defined in Eqs. (3.14a-c).

Eqs (3.23) and (3.24) define an elastic support substitute beam for the torsional frequency 

analysis of symmetric, three-dimensional wall-frame structures.

(3.21)

(3.22)

(3.23)

in which

(3.24a)

(3.24b)
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Here again the out of plane rigidity and moment inertia of the frames and walls should be 

taken into account in a similar way to that of Section 3.2.1.1.2.

3.2.2 Shear Beam Model

3.2.2.1 Symmetric three-dimensional frame structures

In Section 3.2.1.1, the natural frequencies of symmetric, three-dimensional frames were 

calculated using the elastic support model. In this section a similar approach will be 

developed using the shear beam model. Consider Figure 3.1 again with the characteristics 

described in Section 3.2.1.1. Substituting any frame in both the x and y directions by its 

substitute shear beam and writing the dynamic equilibrium for the x, y and torsional 

directions will provide the governing differential equations for translational and torsional 

vibration of the structure.

3.2.2.1.1. Translational vibration

For the substitute shear beam of frame i shown in Figure 3.6, the transverse load can be 

obtained using Eq. (2.72) as follows

6 , - 0 (3.25) 

in which (z,t) is the shear force on the element.
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Figure 3.6 Shear substitute beam of frame i a) substitute shear 
beam b) shear force on element

Dynamic equilibrium of the element in the y direction gives

(1 2 r )

Sustituting Eq. (3.25) into Eq. (3.2r) gives

^  5 v,(z,r) _  d \ ( z , t )
= ( 3 2 6 )

which is the governing differential equation of the shear substitute beam of frame /. It was 

shown in Figure 3.2(b) that, because of the rigid diaphragm, all frames in the y direction 

share the same deflection (v(z,r)), so the dynamic equilibrium in the y direction for all 

frames can be written as follows

= ° (3-27)
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or

(3.28)

in which

(3.29a)

" y

m y =  ' L m v (3.29b)

The contribution of frames running in the x direction to the vibration of the structure in 

the y direction should be taken into account in the same way as for the elastic support 

substitute beam in Section 3.2.1.1.1.

An identical argument enables us to define a shear substitute beam for the vibration of the 

structure in the x direction. The analogous differential equation may be written as

(3.30)

in which

GA, = (3.31a)

"x
m*= Yam*> (3.31b)

3.2.2.1.2. Torsional vibration
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The governing differential equation for torsional vibration of a symmetric frame structure 

can be achieved by replacing any frame in both the x and y directions with its shear 

substitute beam and writing the torsional equilibrium about the z axis as follows

0.32)

Substituting Eqs (3.10) and (3.11) and their derivatives into Eq. (3.32) gives

C J d2<p(z,t) J d2<p(z,t) _ Q
dz1 '* dt2

(3.33)

in which

GJ =

i=l

(3.34a)

(3.34b)
7=1

GJ is the torsional rigidity of all frames about the centre of torsion and Igf is the polar 

second moment of mass about the centre of symmetry.

Finally it should be noted that the shear beam model, as in the case of two-dimensional 

frames, can not be used for the frequency analysis of wall-frame structures.

3.2.3 Conclusions (Continuum Models)

It has been shown that the free vibration of a symmetric, three-dimensional frame and 

wall-frame structure can be modelled by three plane continuum models in the x, y and 

torsional directions. On the assumption that the translational and torsional modes of the 

original structure are all uncoupled, it was shown that the two continuum models for the
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vibration of the structure in the x and y directions can be analysed using the methods of 

Chapter 2 to yield the lower eigenvalues of the original structure in each of its two 

orthogonal planes. It was further shown that, with little additional effort, the torsional 

properties of the structure could be set in the same context to yield the torsional 

eigenvalues of the structure.

3.3 SUBSTITUTE FRAME METHOD

3.3.1 Application of the Substitute Frame Method to the Static and Dynamic 

Analysis of Symmetric Three-dimensional Frame Structures

It was explained in Section 2.3.1 that, by the application of the Principle of Multiples, any 

two-dimensional frame, may be simplified to an equivalent one bay frame, having the 

same natural frequencies of vibration as the original frame if the conditions of Principle of 

Multiples are adhered to. If the conditions of the Principle of Multiples are not achieved, 

the substitute frame method can still be applied in most cases for the frequency analysis of 

any plane frame structure although the results will be approximate, but will normally have 

sufficient accuracy for engineering purposes.

Howson and Rafezy (Howson and Rafezy 2002) have extended the application of the 

substitute frame method from two dimensional structures to calculating the static nodal 

displacements of doubly plan asymmetric, three-dimensional, multi-bay, multi-storey 

skeletal sway frames. In this section their method will be extended to calculate the natural 

frequencies of such frames. The solution to this three dimensional problem will be 

achieved using a single substitute plane frame for each of the three uncoupled modes of 

vibration corresponding to torsion and the two orthogonal sway directions. Each 

substitute frame is a single bay, multi-storey frame that has the same number of storeys 

and the same storey heights as the original frame, but is symmetric and comprises only in 

plane stiffnesses. Thus a plane frame computer programme can be used to calculate the
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lower sway frequencies in the two orthogonal directions together with the torsional 

frequencies. In the next section, the theory will be further extended to include the 

equivalent wall-frame structures.

At this stage it is assumed that the structure is doubly symmetric and that the centre of 

rigidity and mass, C, are coincident and lie in a common vertical line. The centre of 

pressure CP, the point at which the resultant horizontal load acts at each floor level, does 

not need to be coincident with the centre of symmetry but should lie on a vertical line 

through the building. It is also assumed that inextensional member theory is used.

3.3.1.1 Substitute frame for translation

Consider Figure 3.1 again. It shows the plan view of a multi-storey structure idealised as a 

set of plane frames running in the x and y directions. If we consider only a typical frame, 

frame i, running in the y direction, it is clear that we can determine the material and 

geometric properties of each individual member of the equivalent substitute plane frame 

using the procedure described in Section 2.3.1. The substitute frame stiffness s^.can then

be assembled in the usual way from the member stiffness relationship given in Figures 

3.7(a) and (b), where the stiffness elements are defined for both buckling and vibration 

theoiy in references(Howson 1979; Howson et al. 1983).

' y!L2 v / L  - e l l }  d l l ' ‘4
_ EI v / L  a  - S / L  P 0i

k ~ L - e / l l  - S I L  y / L2 - v / L S2
m2 S / L  P  - v ! L  a 02

(a) (b)

Figure 3.7 (a) Member end forces and displacements; (b)
Member stiffness relationship.
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Hence the stiffness relationship for the typical frame i is given by

(3.25)

where pyi is the vector of external forces and is the corresponding vector of nodal

displacements. Based on the assumption of a rigid diaphragm at each floor level, it is clear 

that we can add together the substitute frames arising from all such frames running in the 

y direction to obtain a further substitute frame whose stiffness is given by

where ny is the number of plane frames running in the y direction i.e. the individual 

substitute frames have been clamped together as described in Section 2.3.1. The 

corresponding force vector is given by

It should be noted that the contribution from frames running in the x direction to the 

behaviour of the structure in the y direction should be taken into account. The shear 

rigidity of frames in the x direction does not have any effect on the stiffness of the 

structure in the y direction, but the distributed mass of the beams should be considered by 

adding them to the mass of the beam in the substitute frame. Also, if any column in a 

plane frame in the x direction does not belong to a plane frame in the y direction, its mass 

and second moment of area about the x-axis should be halved and added to the 

corresponding properties of each column of the substitute frame.

An identical argument enables us to write the equivalent expressions for the stiffness and 

force vector of the nx frames running in the the x direction as

" y

~ zC sy» (3.26)

" y

(3.27)

S* = I X (3.28)
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and

(3.29)

The stiffness relationships in the x and y directions, respectively, can therefore be written 

as

where Dx and Dy are the corresponding nodal displacement vectors. Noting that 

Px =P>,= 0 when calculating natural frequencies, Eqs. (3.30) and (3.31) can be solved

using the Wittrick-Williams algorithm (Wittrick and Williams 1971) which guarantees 

that no required eigenvalues can be missed. The modal vectors Dx and Dy then follow 

directly. A suitable computer program for such solution is freely available in the 

literature(Howson et al. 1983).

The modal displacements at points on the original frame can then be retrieved from Dx 

and Dy in a straightforward manner. If the torsional deformation of the original structure 

is deemed to be negligible, this completes the analysis.

3.3.1.2 Substitute frame for torsion

The moment resisted by a typical substitute frame running in the y direction, shown in 

Figure (3.8) as AB, is

P = S DX X X (3.30)

and

P = S D (3.31)

(3.32)
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where n  is the external force vector acting on the substitute frame corresponding to the
V y i

original plane frame /', and are the corresponding stiffness matrix and

displacement vector, respectively, and x, is the distance of the substitute frame from the 

centre of symmetry, C.

*

\ I

4*7 V—■!
\
w

w

c ^ ~ ~  ~ ,
r\ % c p  *

e x  f Pi -—A y

0

B

d

Xi

X d -/h

Figure 3.8 Two typical orthogonal substitute frames

It is now desirable to refer this substitute frame to a more convenient datum location at a 

distance xj from the centre of resistance along the the x axis. Since its effect must remain 

unchanged we may write

s d x = s' d ,x .yi yi i yi yd d (3.33)

where is the equivalent stiffness at location Xd and d ^  is the corresponding 

displacement vector.

Now since the floor diaphragms (slabs) are assumed to be rigid in their plane

d * * , = (3.34)
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Substituting Eq. (3.34) into Eq. (3.33) gives

r \ 2 x

\ x d j
(3.35)

Thus the effective stiffness of all such substitute frames running in the y direction is given 

by

1 n y

s 'y = - r i L s -'x
x d i=1

(3.36)

In an exactly similar way, a typical substitute frame running in the x direction, i.e. frame j  

in Figure 3.1 and shown in Figure 3.8 as AC, resists a moment

p . v . = s d v (3.37)

where the symbols have the equivalent meaning to the previous derivation.

Again we refer the substitute frame to an equivalent datum location distance x d from the

centre of resistance, but this time along the y axis. The equivalent stiffness is then given 

by

\ Xd J
(3.38)

and the effective stiffness of all such substitute frames is given by

(3.39)
ld j=i

Since both sets of frames resist the applied moment and their effective stiffnesses have 

been calculated for the same effective datum, they can be added directly to give the total 

effective stiffness as
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1 f  ny nx 1

s ' = s ;  + s :  = - S » ^ ’ + 'L ° * y 2j \
Xd L i=l J=1 J

(3.40)

The vector of applied moments, M, can then be written down as 

M = S 'D jĉ  (3.41)

where D is the vector of in-plane substitute frame displacements corresponding to S'. In 

turn it can be seen from Figure 3.8 that

M = Vyex - P xey (3.42)

where ex and ey are the eccentricities of the applied force vectors.

Noting that

D = 0 (3.43)

where 0 is the required vector of torsional displacements and substituting Eqs. (3.40), 

(4.42) and (3.43) into Eq. (3.41) gives

{
ny nx )

z X * . 2 + I X ^ j e  (3-44)

Once more p * = p ,  =  o when calculating natural frequencies, hence Eq. (3.44) can be 

solved for the required eigenvalues in the same way as Section 3.3.1.1.

The modal displacements at points on the original frame can then be retrieved from D*, Dy 

and 0 in a straightforward manner.
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Since every frame running in the x and y directions was replaced by a one-bay substitute 

plane frame, the out of plane contribution of the original frames to the torsional behaviour 

of the structure was lost. Furthermore, if any column in frame i does not belong to any 

frame running the in the x direction, its out of plane stiffness and inertia should be taken 

into account. This is because such a column behaves as a flexural cantilever and its out of 

plane rigidity (I) should therefore be multiplied by the square of its distance from the x 

axis and added to the second moment area of the columns of the substitute frame for 

torsion. This also applies to any column in frame j  that does not belong to any frame that 

runs in the y direction.

In similar view to Section 3.2.1.1.2, it can be seen that the total mass of the beam and 

columns of the torsional substitute frame equals the polar second moment of mass of the 

beams (or rigid diaphragm) and columns of the original frame.

Finally it can be concluded that the natural frequencies of a symmetric, three-dimensional 

frame structure in both the translational and torsional directions can be obtained by 

replacing it with three one-bay, multi-storey, substitute plane frames with the properties 

given by Eqs (3.30), (3.31) and (3.44). The complete analysis can be undertaken using 

only a plane frame programme.

3.3.2 Application of the Substitute Frame Method in the Static and Dynamic 

Analysis of Symmetric Three-Dimensional Wall-Frame Structures

In this section it will be shown that the static nodal displacements or the sway and 

torsional natural frequencies of a symmetric three-dimensional wall-frame structure may 

be estimated by replacing the original wall-frame structure with an appropriate substitute 

plane wall-frame structure of the type shown in Figure 3.9.
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Figure 3.9 Characteristics of a typical substitute wall-frame

3.3.2.1 Substitute wall-frame for translation

Consider a typical floor plan of a doubly symmetric three-dimentional jhgj wall-frame 

structure, such as shown in Figure 3.5. If we consider only a typical wall, wall z, running 

in the y direction, it is clear that we can determine the material and geometric properties 

of its equivalent continuum model as a flexural member. The dynamic stiffness matrix 

s^of such a member can be assembled in the usual way from the member stiffness

relationship given in Figures 3.7(a) and (b).

Hence the stiffness relationship for the typical wall i is given by

(3-45)

A

where py/ is the vector of external forces and dyi is the corresponding vector of nodal 

displacements. Based on the assumption of a rigid diaphragm at each floor level, it is clear
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that we can add together the stiffness arising from all frames and walls running in the y 

direction to obtain a further substitute wall-frame whose stiffness is given by

wy
(3.46)

where is the number of walls running in the y direction. The corresponding force 

vector is given by

It should be noted that the contribution of the frames and walls running in the x direction 

to the behaviour of the structure in the y direction should be taken into account by using 

the method explained in Section 3.3.1.1

An identical argument enables us to write the equivalent expressions for the stiffness and 

force vectors of the nx frames and walls running in the x direction as

The stiffness relationships in the x and y directions, respectively, can therefore be written 

as

(3.47)
7=1

(3.48)

and

(3.49)
y=l y=i

P = S. D,

P,= S,»,

(3.51a)

(3.51b)
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where Dx and Dv are the corresponding nodal displacement vectors. Noting that 

Px =Py= 0 when calculating natural frequencies, Eqs. (3.50) and (3.51) can be solved

using the Wittrick-Williams algorithm (Wittrick and Williams 1971) which guarantees 

that no required eigenvalues can be missed. The modal vectors Dx and Dy then follow 

directly. A suitable computer program for such solution is freely available in the 

literature(Howson et al. 1983).

The modal displacements at points on the original frame can then be retrieved from Dx 

and Dy in a straightforward manner. If the torsional deformation of the original structure is 

deemed to be negligible, this completes the analysis.

33.2.2 Substitute wall-frame for torsion

Considering the assumptions of Section 3.3.2.1 and noting the method of finding the 

substitute frame for torsion in Section 3.3.1.2, the corresponding stiffness relation for the 

torsional substitute wall-frame can be written as follows

{ny rrwy nx nwx 1
£ v . ! + Z  v 2 + Z s*»2 + Z ^  fe (3.52)
/ = 1  / = l  j= i j= \  J

Once more P* = Py = 0 when calculating natural frequencies, hence equation (3.52) can 

be solved for the required eigenvalues in the same way as the previous section.

The modal displacements at points on the original frame can then be retrieved from Dx, Dy 

and 0 in a straightforward manner.

The out of plane rigidity and mass inertia of planar frames and walls in the torsional 

behaviour of the structure can be taken into account by using the method explained in 

Section 3.3.1.2.
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Finally it can be concluded that the natural frequencies of a symmetric three-dimentional 

wall-frame structure in x, y and torsional directions can be obtained by replacing it with 

three, one-bay, multi-storey substitute plane wall-frames with the properties given by Eqs.

(3.50), (3.51) and (3.52).

The final substitute wall-frames can be further simplified using the theory of Section 2.3.3 

and be replaced with a one-bay multi-storey substitute frame. The characteristics of final 

substitute frame is shown in Figure 3.10 in which

Iw is the second moment of area of the wall in the substitute wall-frame

7/c is the second moment or area of columns of the frame in the substitute wall-frame

Ijb is the second moment or area of beam of the frame in the substitute wall-frame

i w

cs
&

/777777777777777777777777T77

Ifb

If c Lfc T 4 •ki/c+_2" 4+^

(a) (b)

Figure 3.10 (a) Substitute wall-frame (b) Corresponding
substitute frame
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3.4 NUMERICAL RESULTS

In order to verify the proposed methods, it was deemed necessary to carry out a 

parametric study to ascertain the accuracy that might be expected from the proposed 

methods. The translational behaviour of symmetric three-dimensional frame and wall- 

frame structures can be transformed directly to a planar problem, so the accuracy 

achieved in the parametric study of Chapter 2 can be anticipated here too. Thus, in the 

following examples, only torsional modes of the structures will be considered.

3.4.1 Example 3.1

Consider a series of 5, 7, 10 and 20 storey buildings, each of which have equal storey 

heights of 3m. The structures consist of 5 plane frames in the y direction (F1-F5) and 4 

plane frames in the x direction (F6-F9), which have been connected to each other by 

typical rigid diaphragms at each floor level with the arrangement shown in Figure 3.11.

in 7Young’s modulus for all members is taken as £'=2x10 N/m and the intensity of 

distributed mass on the diaphragms is assumed to be m=360 Kg/m2. This incorporates the 

distributed mass in the beams and columns. Table 3.1 shows the second moment of area 

of the columns about the x and y axes. The second moment of area of all beams is 

assumed to be 0.003m4 and inextensible member theory is assumed.

Table 3.1 - Column properties

Column 1,5,10,14,15,16 2,3,4,13 6,11 7,8,9,12

h 0.0035 0.007 0.0035 0.007

h 0.0035 0.0035 0.007 0.007
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[_ 4 x 6  = 24m_______________ j

Figure 3.11 Floor plan of the structures considerd in Example 3.1

3.4. 1.1 Torsional natural frequencies

3.4.1.1.1. Elastic support model

The characteristics of the equivalent elastic support model for torsional vibration of the 

structure can be calculated using Eqs (3.14a-c). For this purpose it is necessary to 

calculate the shear rigidity of a typical frame in the y and x directions using Eq. (2.29).

GAy = 98.824 x 106 N (Frames F1-F5)

GAj =131.764 x 106 N (Frames F6-F9)
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Substituting the properties of the columns (Table 3.1) in Eq. (3.14a) gives

E l^  = 2 x 106 x 12.6 Nm

and substituting the shear rigidity of the plane frames in the x and y directions in Eq. 

(3.14b) gives

GJ = 59294.16xl06 Nm2

The polar second moment of the rigid diaphragm assuming uniformly distributed mass 

(about the centre of symmetry) can be calculated using the closed form formula given as 

follows

^18x243 24xl8n
v 12 12

x 360 = 11664000 Kg.m2

It should be noted that this allows for the distributed mass in the columns and beams.

3.4.1.1.2. Shear beam model

The properties of the equivalent shear beam model for torsional vibration of the structures 

can be calculated using Eqs (3.34a-b) as follows

GJ = 59294.16xl06 Nm2

^18x24 + 2 4 x l£ >|x360 = 11664000 K g m 2

12 12

3.4.1.1.3. Substitute frame method
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With a similar procedure, the characteristics of the substitute frame for torsional vibration 

of the structure can be obtained as follows

I  column 6.3 ITl

^ = 5 . 4 m 4

^  = 11664000 Kg

3.4.1.1.4. Results

Columns 2 and 4 of Table 3.2 show the torsional natural frequencies (Hz.) of the structure 

obtained from the shear beam model when the beam mass is lumped and distributed along 

the height of substitute beam, respectively. Columns 6 and 8 likewise show the natural 

frequencies obtained from the elastic support model and column 10 shows the torsional 

natural frequencies of the structure obtained by the application of substitute frame 

method. The last column in the table shows the results from a finite element analysis 

(FEM) of the whole frame, obtained using the vibration programme ETABS(Wilson et al. 

1995). Finally, columns 3, 5, 7, 9 and 11 show the difference between the results of the 

substitute beam and frame methods with those of ETABS. The following assumptions 

have been made in modelling buildings with ETABS.

• The floor diaphragm at each storey level is assumed to be rigid and its mass is 

uniformly distributed.

• The mass of the beams, columns and shearwalls is distributed into the floor 

diaphragm.

• No allowance has been made for the shear deformation and rotary inertia of 

beams, columns and shearwalls

• No P -A  effect

• No reduction in the stiffness of columns due to compressive axial loads (no 

geometric rigidity)

• Inextensible member theory is imposed by multiplying the cross-sectional area of 

the beams and columns by a factor, typically 103.
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Table 3.2 - Torsional natural frequencies of the structures of Example 3.1 obtained using 
SB, ES and SF models, compared with the corresponding FEM results (NS stands for 
number of storeys, SB for shear beam model, ES for elastic support model, SF for 
substitute frame method and Diff for difference between the results of substitute frame 
and FEM methods)

N.S. Shear Beam model (SB) Elastic Support model(ES) Substitute FEM
5 Lump mass Dist. mass Lump mass Dist mass Frame Method ETABS

Freq. f(Hz.) Diff.% ftHz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.)
1 1.86 13.49 2.05 4.65 2.15 0.00 2.41 12.09 2.15 0.00 2.15
2 5.44 22.95 6.17 12.61 6.84 3.12 8.05 14.02 7.06 0.00 7.06
3 8.58 36.54 10.29 23.89 13.33 1.41 15.89 17.53 13.52 0.00 13.52

Av. 24.32 ... 13.72 1.51 14.55 0.00

NS Shear Beam model (SB) Elastic Support model(ES) Substitute FEM
7 Lump mass Dist. mass Lump mass Dist mass Frame Method ETABS

Freq. f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.)
1 1.37 9.87 1.47 3.29 1.52 0.00 1.64 7.89 1.52 0.00 1.52
2 4.05 15.80 4.41 8.32 4.74 1.46 5.27 9.56 4.81 0.00 4.81
3 6.55 25.74 L 7 35 16.67 8.66 1.81 9.81 11.22 8.83 0.11 8.82

Av. 17.14 9.42 1.09 9.56 0.04

NS Shear Beam model (SB) Elastic Support model(ES) Substitute FEM
10 Lumpi mass Dist. mass Lump mass Dist mass Frame Method ETABS

Freq. ffHz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% ftHz.) Diff.% f(Hz.) Diff.% f(Hz.)
1 0.98 6.67 1.03 1.90 1.05 0.00 1.11 5.71 1.05 0.00 1.05
2 2.91 10.74 3.09 5.21 3.24 0.61 3.46 6.13 3.25 0.31 3.26
3 4.79 16.70 5.15 10.43 5.69 1.04 6.16 7.13 5.75 0.00 5.75

Av. 11.37 I 5.85 0.55 6.33 0.10

NS Shear Beam model (SB) Elastic Support model(ES) Substitute FEM
20 Lump mass Dist. mass Lum3 mass Dist mass Frame Method ETABS

Freq. f(Hz.) Diff.% RHz.) Diff.% ftHz.) Diff.% | f(Hz.) Diff.% ftHz.) Diff.% RHz.)
1 0.5 3.85 0.51 1.92 0.52 0.00 0.53 1.92 0.52 0.00 0.52
2 1.5 4.46 1.54 1.91 1.57 0.00 1.62 3.18 1.57 0.00 1.57
3 2.49 6.74 2.57 3.75 2.67 0.00 2.75 3.00 2.67 0.00 2.67

Av. I 5.02 felKsd 2.53 0.00 2.70 ; 0.00

As expected, the results from the shear beam model are poor for small numbers of storeys, 

whereas the results of the elastic support model generally show good agreement with 

ETABS results. The results of the substitute frame method are very accurate and show 

that the substitute frame method can be used with almost no loss of accuracy when the 

plane frames are proportional. To get a general idea about the magnitude of the 

differences, the average difference of the natural frequencies of the structures has been 

calculated and recorded in the last row of each component of Table 3.2. The 

corresponding diagram is shown in Figure 3.12.

PhD Thesis, B. Rafezy, 2004 99



Exam ple 3.1 - Sym m etric 3D Fram e 
T orsional F requencies

Diff.%

SB(lump)
SB(dist.)
ES(lump)
ES(dist.)

SF

10 20
N um ber o f s to re y s

Figure 3.12 The difference graph for example 3.1. SB stands for 
shear beam model, ES for elastic support model and SF substitute 
frame method

The following conclusions can be obtained from the graph.

• The difference between the results of substitute frame and FEM methods are almost 

zero.

• The differences in both the SB and ES models when compared with FEM method 

decrease and converge on each other as the number of storeys increases.

• All models give acceptable results for 20 storeys and higher.

• The elastic support model gives acceptable results for any number of storeys.

• The difference between the results for lump and distributed mass is considerable, so it 

is necessary to assess when it is appropriate to use these models.

3.4.2 Example 3.2

Consider a series of 5, 7, 10 and 20 storey wall-frame buildings that have equal storey 

heights of 3m. The structures consist of 5 plane frames in the y direction (F1-F5), 4 plane 

frames in the x direction (F6-F9), 4 shear walls in the y direction (W2) and 4 shear walls 

in the x direction (Wl), which are connected to each other by rigid diaphragms at the 

floor levels with the arrangement shown in Figure 3.13.
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Young’s modulus for all members is taken as £=2xlO10 N/m2 and the intensity of 

distributed mass on the diaphragms is assumed to be m=360 Kg/m . This incorporates the 

distributed mass in the beams, columns and walls. The characteristics of the frame 

component of the structures are the same as those of Example 3.1. The thickness of the 

walls are 0.25m, so the second moment of area of the walls in the x and y directions are 

1.51875m4 and 1.06667m4, respectively. Inextensible member theory is assumed.
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Figure 3.13 Floor plan of the structures considerd in Example 3.2

3.4.2.1 Torsional natural frequencies

3.4.2.1.1. Elastic support model

The characteristics of the equivalent elastic support model for torsional vibration of the 

structures can be calculated using Eqs (3.14a-c) and Eqs. (3.24a-b).
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E l^  = 2xl010 xl2.6 Nm4 

EIm = 2x l010x 1874.48 Nm4 

GJ = 59294.16xl06 Nm2

18 x 363 36xl83'l x 360 = 31492800 Kg.m2+
 ̂ 12 12 J

It should be noted that this allows for the distributed mass in the columns, beams and 

walls.

3.4.2.1.2. Substitute wall-frame for torsion

With a similar procedure, the characteristics of the substitute wall-frame for torsional 

vibration of the structures can be obtained as follows

3.4.2.1.3. Substitute frame for torsion

With additional simplification, a one-bay substitute frame can be defined for torsional 

vibration analysis of the structures by the rules of Figure 3.10.

I  cotom  = 6-3 m41.

I ^ ,  =1874.48 m4 

=31492800 Kg

I.column

=31492800 Kg
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3.4.2.1.4. Results

Columns 2 and 4 of Table 3.3 show the torsional natural frequencies (Hz.) of the structure 

obtained from the elastic support model with the beam mass lumped and distributed, 

respectively. Columns 6 and 8 show the torsional natural frequencies of the structure 

obtained by the application of substitute wall-frame and frame method respectively. 

Finally, the last column in the table shows the result obtained from a finite element 

analysis of the whole wall-frame, using the vibration programme ETABS(Wilson et al. 

1995).

Table 3.3 -  Torsional natural frequencies of the structures of Example 3.2 obtained using, 
ES, substitute wall-frame and substitute frame methods, compared with FEM results

NS
5

Elastic Support model (ES) Substitute
Wall-Frame

Substitute
Frame

FEM
ETABSLump mass Dist. mass

f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% ((Hz.)
1 4.18 1.21 5.02 21.55 4.13 0.00 4.13 0.00 4.13
2 25.34 13.99 29.9 34.50 22.44 0.94 21.01 5.49 22.23
3 71.2 34.44 83.04 56.80 53.87 1.72 47.75 9.84 52.96

Av. 16.55 37.62 0.89 5.11

NS
7

Elastic Support model (ES) Substitute
Wall-Frame

Substitute
Frame

FEM 
ETABS tLump mass Dist. mass

f(Hz.) Diff.% f(Hz.) Diff.% ffHz.) Diff.% f(Hz.) Diff.% f(Hz.)
1 2.36 0.00 2.69 13.98 2.36 0.00 2.39 1.27 2.36
2 13.61 7.25 15.44 21.67 12.76 0.55 12.3 3.07 12.69
3 37.85 18.24 42.51 32.80 32.37 1.12 29.87 6.69 32.01

Av. 8.50 22.82 0.56 3.68

NS
10

Elastic Support model (ES) Substitute
Wall-Frame

Substitute
Frame

FEM
ETABSLump mass Dist. mass

f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.)
1 1.32 0.75 1.45 9.02 1.33 0.00 1.37 3.01 1.33
2 7.05 3.37 7.72 13.20 6.84 0.29 6.74 1.17 6.82
3 19.23 9.01 _ j 20.98 18.93 17.75 0.62 16.95 3.91 17.64

Av. 4.38 13.72 0.31 2.70

NS
20

Elastic Support model (ES) Substitute
Wall-Frame

Substitute
Frame

FEM
ETABSLump mass Dist. mass

f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.) Diff.% f(Hz.)
1 0.48 0.00 0.50 4.17 0.48 0.00 0.51 6.25 0.48
2 2.06 0.49 2.16 5.37 2.05 0.00 2.1 2.44 2.05
3 5.21 2.16 5.46 7.06 5.11 0.20 5.08 0.39 5.1

Av. 0.88 5.53 0.07 3.03

To get a general idea about the magnitude of the differences, i.e. the difference between 

the results of proposed and FEM methods, the average differences have been calculated
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and recorded in the last row of each component of Table 3.3. The corresponding diagram 

is given in Figure 3.12. In the diagram ES stands for elastic support model, SWF stands 

for substitute wall-frame method and SF stands for substitute frame method.

Example 3.2 Symmetric 3D WtiH-Frame rotational

Diff.%
frequencies

40
30
20
10
0

------------

7 10

Nutter of Storeys

ESflunp)
ES(dist)
SWF
SF

20

Figure 3.14 The difference graph for Example 3.2

The following conclusions can be obtained from the graph.

• The difference between the results o f substitute wall-frame and FEM methods are 

almost zero.

• The substitute frame method gives acceptable result for all structures. (Diff.%<5%)

• The ES model is not suggested for low rise structures, (less than 7 storeys)

• The differences of the ES model decrease with increase in the number of storeys.

• All models give acceptable results for 20 storeys and higher.

• The elastic support model (Lump mass) gives acceptable results for structures with 7

storeys or higher.

• The difference between the results for the lump and distributed mass models is 

considerable, so it is necessary to assess when it is appropriate to use these models.
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CHAPTER 4

STATIC ECCENTRICITY IN ASYMMETRIC MULTI­

STOREY BUILDINGS

4.1 INTRODUCTION

Buildings subjected to lateral loads caused by, for example, wind or earthquake ground 

motions may undergo torsional as well as lateral displacements. In buildings with doubly 

symmetric floor plans it could be due to the rotational component in the ground motion or 

unforeseen conditions such as asymmetric distribution of mass in the floors etc. Coupled 

translational-torsional motion could also arise due to asymmetry in geometry, stiffness or 

mass distribution in the plan of asymmetric buildings. In both cases, lateral loading leads 

to torsional response in addition to the lateral response. Therefore, the structure should be 

designed for the additional torques that may be induced simultaneously due to lateral 

forces. The applied torque at each floor level is calculated as the product of lateral load 

and structural static eccentricity at that floor level. Static eccentricity at a floor level is 

commonly defined as the distance between its centre of mass (or axis of applied load) and 

the centre of rigidity. Thus, assuming that the line of action of the resultant lateral load at
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each floor level is known, the problem of determining the structural eccentricity reduces 

to locating the centre of rigidity at each floor level.

The determination of the location of centres of rigidity of buildings has two major 

applications. Firstly, it is required in the wind or static earthquake analysis of buildings 

when using formulae typically adopted by codes of practice in which the increment of 

torque at each floor level needs to be evaluated. Secondly it is a key step in the application 

of building code provisions, since the classification criteria are typically based on the 

concept of static eccentricity (Paz 1994). Moreover, even if a three-dimensional analysis 

is performed, some codes account for dynamic amplification by increasing the static 

eccentricity by a magnifying factor, which requires calculation of the centres of rigidity. 

However, most building codes do not provide clear definitions of centres of rigidity or 

give practical procedures to determine their locations. For this reason there is still some 

confusion about what exactly is meant by centres of rigidity of multi-storey buildings and 

whether the location of these centres are inherent properties of the building or if they are a 

function of lateral loads.

Several investigators have studied this over the last three decades, giving different 

definitions of the centres. Most of these studies are restricted to structures with resisting 

elements running in two orthogonal directions. Different terms have been used in the 

literature for defining centres of rigidity of structures, sometimes implying that these are 

different terms for the same point. Some of the terms that have been used are; centres of 

rigidity, centres of resistance, centres of stiffness, shear centres, load (or pressure) centres, 

centres of twist and centres of torsion.

Poole (Poole 1977) defines the centre of rigidity of a floor as the location of the resultant 

of the shear forces of various resisting elements in that floor when the building is 

subjected to a static lateral loading that causes no torsion in any of the storeys. In other 

words, centres of rigidity are defined as the shear centres of the building. Humar and 

Award (Humar and Awad 1983) define the centre of rigidity of a floor as that point in the 

floor through which a static horizontal force should be applied to cause the floor to 

translate without rotating, other floors however may rotate.
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The work of Cheung and Tso (Cheung and Tso 1986) distinguishes between centres of 

rigidity, shear centres and centres of twist of a multi-storey building. They have extended 

the concept of eccentricity from single-storey buildings to multi-storey buildings and have 

shown that all terms used for centres of resistance are interchangeable when referring to a 

single-storey structure. Mathematical expressions are then presented for the locations of 

the centres of rigidity and centres of twist of multi-storey buildings. Also an alternative 

procedure to locate the centres of rigidity, and hence floor eccentricity, has been given 

that does not require the explicit use of the global stiffness matrix of the structure and is 

therefore more suitable for use in the design context. This procedure is explained below 

and will be referred to as Cheung and Tso’s method later on.

The approach is based on the interpretation of the centre of rigidities as “load centres” at 

each floor level. Therefore, if the loading on each resisting structural element at each floor 

is known under the assumption of no rotational deformation, the load centre at each floor 

can be obtained by dividing the first moment of the element loads by the total loading at 

that floor level. Assuming the building is restrained from rotation, the lateral floor 

displacement in one direction, e.g. the x direction, and the inter-storey shear of all 

elements under loading in the same direction, can readily be obtained by means of a 

standard plane frame programme. The global stiffness of the structure in the assumed 

direction, x, can be simulated by joining all the resisting elements spanning in the x 

direction by rigid beam elements with pinned ends at floor levels. Therefore, the inter­

storey shear force of each resisting element can be calculated by analysing the simulated 

structure under total lateral loading of the structure. The floor loads for the individual 

elements then follow directly. The y coordinate of the load centres, i.e. rigidity centres, is 

then given by the ratio of the first moment of these floor loads about reference axis z and 

the total floor load at that level. An identical procedure can then be followed to calculate 

the x coordinate of the rigidity centres.

Cheung and Tso (Cheung and Tso 1986) also showed that the centres of twist do not 

generally coincide with the centres of rigidity or shear centres. For a special class of 

buildings, in which the lateral stiffness matrices of all resisting frames are proportional, 

the location of the centres of twist and rigidity were shown to be coincident, independent 

of the lateral forces and to lie on a vertical line through the height of the structure. Hejal 

(Hejal and Chopra 1987) extended Cheung and Tso’s work (Cheung and Tso 1986) to
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multi-storey buildings with a generalised floor plan comprising plane frames, columns, 

shear walls and cores and investigated the conditions that must be satisfied for the centres 

to be coincident and uniquely defined.

Riddell and Vasquez (Riddell and Vasquez 1984) concluded that the centres of resistance 

exist only for a particular class of structures and that for a general multi-storey building 

such concepts are meaningless. This particular class is referred to as “compensable 

buildings” and are shown to have centres of resistance that lie on a vertical line and are 

not load dependent. The conditions satisfied by this class of building are in agreement 

with those identified by Cheung (Cheung and Tso 1986). For buildings that are nearly 

“compensable” two approaches are given to determine approximate locations of the 

centres of rigidity, all of which lie on a vertical line.

This review of existing studies shows that there is inconsistency in the definitions given 

for centres of rigidity. However most studies (Cheung and Tso 1986; Hejal and Chopra 

1987; Jiang et al. 1993; Riddell and Vasquez 1984; Smith and Vezina 1985) identify a 

class of buildings in which the centre of rigidity of each floor is independent of the lateral 

load and lies on a vertical line through the height of the structure. In this study this class 

of buildings will be referred to as proportional structures.

The objective of this study is to investigate further the definition of each of the centres 

mentioned earlier. A practical method is then presented for locating centres of rigidity and 

shear centres and hence the static eccentricity. The method is based on the use of a plane 

frame computer programme and utilises the flexibility matrix of resisting plane elements 

to form a matrix relation between loading on the elements and total lateral loading of the 

building. The centres of rigidity of the building are then obtained using the fact that they 

can be interpreted as the load centres at each floor level under the assumption of no 

rotational deformation. A number of examples are included to illustrate the method.
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4.2 STATIC ECCENTRICITY IN MULTI-STOREY BUILDINGS

4.2.1 Basic concepts

In a multi-storey building, the resultant lateral load at each floor level passes through the 

centre of mass in the case of seismic ground motion and the centre of pressure when the 

building is subjected to wind loads. Thus the problem of calculating floor eccentricities 

reduces to the problem of determining the centre of rigidity at each floor level. The 

following definitions are accepted for different centres of buildings that are generally 

called the centres of reference in this study.

The centre of rigidity at each floor of a building is that point on the floor diaphragm 

through which the resultant of any set of static horizontal forces at that level causes no 

rotation or twisting of any of the floors.

The shear centre of a floor is that point on the floor diaphragm through which the resultant 

of the inter-storey shear forces at that level experienced by all resisting elements passes 

when the resultant of applied lateral force passes through the centre of rigidity.

The centres of twist of the floors of a building are the points on the floor diaphragms 

which do not translate when floor levels are subjected to any set of static torsional 

moments.

The centre of mass at each floor is the point on the floor through which the resultant of the 

inertia forces of the floor passes. If the masses of individual resisting elements are 

assumed to be distributed uniformly over the floor diaphragms, or are negligible 

compared to the masses of the floors, the centres of mass of a building coincide with the 

geometric centres of the floors.

The static eccentricity of the j th floor, ey, is defined as the distance between its centre of 

mass and centre of rigidity. In some building codes (Japan Earthquake Code; Hejal and
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Chopra 1987), the static eccentricity of a floor is defined as the distance between its centre 

of mass and the shear centre.

Tso (Tso 1984) has shown that the different “centres” described above are coincident in 

the case of single-storey buildings. The approach uses the work-energy principle of 

mechanics and is explained below.

Consider a single-storey building that is subjected to a torque T and a horizontal point 

load P, whose line of action passes through the centre of rigidity. When load P is applied 

first, the floor diaphragm experiences a pure translation, 8 . The work done by P is

The torque T is then applied and the diaphragm rotates an angle 6 about the centre of 

twist. Assuming that the centre of rigidity does not coincide with the centre of twist, the 

centre of rigidity will move a further distance equal to c 6 , where c is the distance 

between the centres of rigidity and twist. The total work done by the forces is

If the load sequence is reversed, i.e. T is applied first, followed by P, the total work done 

will be

For a linear elastic structure, the total strain energy in the structure is independent of the 

sequence of load application.

Comparing Eqs (4.2) and (4.3) gives

W = PS/2 (4.1)

wx =Pd/2+Te/2+Pce (4.2)

W2 =T0/2 + P8/2 (4.3)

Pc0 = 0 (4.4)

Since P * 0 and 0 * 0, this leads to
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c = 0 (4.5)

Thus the centre of rigidity is coincident with the centre of twist for a single-storey 

building. Also, based on the definition of the shear centre, it is obvious that the shear 

centre of the building is coincident with the rigidity centre, since inter-storey shear force 

and lateral loading of resisting elements are equal in the case of single-storey buildings.

This approach can be extended to multi-storey buildings subjected to a lateral force vector 

P and torque T. If the pure translation and rotational displacement vectors of the 

diaphragms are represented by 8 and 0 , the work experienced for the two sequences o f 

loading are

Where A r  and A t  are diagonal matrices whose elements correspond to the location of the 

centres of rigidity and twist with respect to an arbitrary origin, respectively. Comparison 

of Eqs (4.6) and (4.7) once more leads to the equivalent conclusion that

Eq. (4.8) is a single linear equation with multiple unknown parameters so (A  ̂-  Ar ) = 0 is 

a sufficient, but not a necessary condition for the equation to be satisfied. Therefore, Eq. 

(4.8) can be satisfied without requiring the centres of rigidity and twist to be coincident.

4.2.2 Location of the centres of rigidity

In this section, a matrix method will be developed for determining the location of the 

centres of rigidity of multi-storey buildings using a two-dimensional approach. It requires

W i ~ \  p T &  +  T X T °  +  p T <A *  “  A t  ) #

w 2 = - t t 0 + - p t 5 
2 2

(4.6)

(4.7)

PT(As -A r )e = 0 (4.8)

PhD Thesis, B. Rafezy, 2004 111



a knowledge of the distribution of lateral loads between resisting elements that satisfies 

the equations of equilibrium and compatibility of deformations.

Consider a typical floor plan of a multi-storey building comprising plane resisting 

elements (frames, columns, shearwalls or bracings) that run in two orthogonal directions, 

as shown in Figure 4.1. Plane resisting elements are assumed to have no out of plane 

rigidities and to be jointed to each other by rigid diaphragms at each floor level. The 

coordinate system Oxy is fixed at an arbitrary point on the plan, with the x and y axes 

running parallel to the orthogonal planes of the resisting elements. It is assumed that the 

building is subjected to a known set of lateral loads, defined by the vectors

v ;  = [Vxl v,2 V,3 . . V j  (4.9a)

and

v ; = h , K 2 y , 3  ■ ■ V J  ( 4 .9 b )

where VXJ and Vyj (j=l,n) are the resultant lateral loads applied at j th storey level in the x 

and y directions, respectively, and n is the number of storeys.

II-------------------------- 1I---------------------- ■ ---------- ----------

Floor diaphragm

C•

t y

X

0
i i -------------------------- 1

Floor diaphragm

Figure 4.1 Floor plan of an asymmetric multi story building 
comprising resisting elements running in two orthogonal 
directions.
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In similar fashion, the

x £ = t a .  * J (4.10a)

and

y R=[Ym h2  I'm • •
(4.10b)

are assumed to contain, respectively, the unknown x and y coordinates, XRj and 

(j= \,«), that define the location of the centre of rigidity at floor level /  We now assume 

that the resultant lateral loads at each floor level are applied at their respective rigidity 

centres. Hence the building will undergo pure translation in both directions. Since the 

plane resisting elements have no out of plane stiffnesses, the structure can be analysed in 

the x and y directions separately.

From the definition of rigidity centres, the coordinates and Yr of rigidity centres can 

be interpreted as defining the load centres at floor levels. Therefore, if the loading on each 

resisting element at each floor level is known under the assumption of no rotational 

deformation, the load centre at each floor can be obtained by summing up the first 

moment of the element loads at that floor and dividing the moment by the total loading of 

the floor.

The loading on each resisting element can be calculated using equilibrium equations and 

the knowledge that the elements in either direction have equal deflections when the 

building is subjected to lateral loads applied through the centres of rigidity.

4.2.2.1 Equations o f equilibrium

Consider the y direction first, where the building is subjected to lateral forces Yy only. If 

the loading on the ith resisting element in the y direction is represented by p , where
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(4.11)

in which p™ is the loading of the ith element in the f h floor, the equation of equilibrium 

in the y direction gives

m

v„=£ p (;> ( 4 . i 2 )
i=l

in which m is the number of resisting elements running in the y direction.

4.2.2.2 Equations of displacement compatibility

Applying lateral loads at the centres of rigidity of the building requires that the 

displacement vector of all resisting elements in the y direction be equal. This gives

d«>=d^2)= d (; >= - = d <") = d y (4. i3)

in which d <0 denotes the displacement vector of resisting element /, where

Af  = [ <  4 "  • ■ < ]  (4-14)

and d {̂  gives the deflection of element / at the f h floor

Displacement vector d^° can now be written in terms of the stiffness matrix and lateral 

loading of the ih resisting element as

in which k (,)' is the inverse of the stiffness matrix of the ith element in the y direction.
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The stiffness matrix of a resisting element however, is not always readily available. An 

alternative approach is therefore suggested that does not require its explicit use and as a 

result is more suitable for use in the design context.

Consider the ith resisting element subjected to lateral load as shown in Figure 4.2.

D(0 , (0 
* y 4  d y  4

/Z77777

Figure 4.2 Resisting element z subjected to lateral loading p (y° 

and the resulting displacement vector d^0

The relationship between p(y° and d^° can be established by using flexibility coefficients, 

8^1, which relates the deflection of the f 1 floor of element z to a lateral unit force applied 

at level k. See Figure 4.3.

Since the behaviour of the building is assumed to be linear and elastic, the deflection of 

the j h floor of element z subjected to p^° can be written as

(417>*=i

or

d (yi ,= 8< :y ') (4.18)
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where 8 j} is the flexibility matrix of element i in which S^k is the coefficient of the

matrix located at the intersection of row j  and column k. Therefore the equation of 

compatibility of deflections can be written as

5(V° -dV v  r v =  0 (4.19)

>31

>11

>32

y$4

y24

yl4>13

Figure 4.3 Resisting element i subjected to lateral unit 
forces at different floor levels

Eqs. (4.12) and (4.19) can be combined to give an n{m +1) system of algebraic equations 

for calculating p(y° and d^ as
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5<1} 0 0 . 0 I r p ?  i '  0 '

0 a<2) 0 0 I 0

0 0 a<3) • 0 I p?}
—

0

0 0 0 .
6 C*) I p ST} 0

I I I I 0

(4.20)

Once p(,) are determined, the location of the centres of rigidity X R can be obtained as

Z > S )jri
Y — JzL A Rj ~ v„ (4.21)

in which xt is the distance of element i from the y axis. Thus the vector XR, containing 

the x coordinates for each of the j  centres of rigidity is obtained as

X , = v ^ x . (4.22)

in which

0 0 0 . V,yn

0 0 . . 0 ■ p {2 p%  • ■ p ?
0 0 . . 0 p%  • ■ p j?
0 0 V» ■ . 0

p.. = p% p $ p% ■ ■ p $

P il) P {2) p i3)r  yn r  yn r  yn
_<»»

r  yn

X„ =

(4.23a,b,c)

It can be seen that the location of the centres of rigidity are, in general, load dependent 

and do not lie on a vertical line through the building.
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4.2.3 Proportional buildings

One special case would be a building with proportional resisting elements. In this case, 

the stiffness matrices of the resisting elements are proportional to one another in each of 

the co-ordinate directions. In other words, the stiffness matrix of resisting element i in the 

y direction, k (0, can be expressed as

k f = a tK y (4.24)

where a { is a proportionality constant for element i and K y is the sum of the stiffness 

matrices of the resisting elements in the y direction, i.e.

(4.25)
/=1

and

m

2 > ,  = 1 (4.26)
i=l

The load-displacement relation for resisting element i can be written using Eqs. (4.13) and 

(4.16) as

p ‘° = k « d , (4.27)

and using Eq. (4.24) gives

p(y° = a iK yd y (4.28)

Summation of Eq. (4.27) gives
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m m
Z p ? = 2 > X»=1 M

(4.29)

Eq. (4.29) can be written in the following form using Eqs. (4.12) and (4.25)

Vy=KA (4.30)

Substituting Eq. (4.30) in Eq. (4.28) gives

P (v° =  ay, (4.31)

Eq. (4.31) can be written in the following matrix format using the definition of ¥y and Vyc/ 

in Eq. (4.23a,b)

P, = V ^ua (4.32)

where u is the (n x m) unitary matrix whose elements are all equal to 1 and a  is the 

diagonal (m x m) matrix given by

a =

....
..1 a 0 0  .

io

0 a 2 0  . . 0

0 0 a 3 . . 0

i 
...

...
...

.
o 

• • 
o

• 
o

is

(4.33)

Substituting Eq. (4.32) in Eq. (4.22) gives

X R = uaX e (4.34)

Eq. (4.34) shows that the location of the centre of rigidity of the f h floor can be expressed 

as
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* » = ! > , * ,  (4-35)
i=1

Eq. (4.35) clearly shows that in this particular case, the location of centres of rigidity are 

not load dependent and lie on a vertical line through the height of the structure. It also 

illustrates that these locations can be determined using relative stiffnesses of resisting 

elements in each direction independently. In the design profession, this is usually 

achieved by comparing the relative displacements at top floors of resisting elements under 

unit forces applied at the top floors.

An identical procedure can be used to determine the y components of the centres of 

rigidity of buildings by considering the motion of the structure in the x direction.

4.3 NUMERICAL RESULTS

Three singly asymmetric multi-storey buildings will be considered in this section to 

investigate the location of the centres of rigidity and shear centres of proportional and 

non-proportional structures using the proposed method. Each of these buildings has ten 

storeys with uniform storey height of 3 m and rectangular floor plan of dimensions 24m 

by 18m. The arrangement of resisting elements is such that each building is symmetric 

about the x axis and asymmetric about the y axis. The building of Example 4.1 consists of 

proportional plane frames running in the y direction where Examples 4.2 and 4.3 consider 

asymmetric, non-proprtional frame and wall-frame structures, respectively.

Young’s modulus for all members is taken as is=2xl01() N/m2 and the intensity of the 

distributed mass of the diaphragms is assumed to be m=360 kg/m2. All buildings are 

considered to be located in seismic zone 1 (Paz 1994) in Iran and to be subjected to 

seismic lateral loading in the y-direction. The base shear and distributed lateral load along 

the height of the structures are determined according to the Iranian Earthquake Code (Paz 

1994) and are given in Table 4.1.
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Table 4.1 -  The lateral load distribution of the buildings o f Examples 4.1,4.2 and 4.3

Storey Height (m) Mass (Kg) V* (KN) V, (KN)

10 30.00 155520 448.22 448.22

9 27.00 155520 294.75 294.75

8 24.00 155520 262.00 262.00

7 21.00 155520 229.25 229.25

6 18.00 155520 196.50 196.50

5 15.00 155520 163.75 163.75

4 12.00 155520 131.00 131.00

3 9.00 155520 98.25 98.25

2 6.00 155520 65.50 65.50

1 3.00 155520 32.75 32.75

Inextensible member theory is assumed.

4.3.1 Example 4.1

It is required to determine the location of centres of rigidity and shear centres of a ten- 

storey, three-dimensional, singly asymmetric building comprising five proportional plane 

frames running in the y direction (F1-F5), which are connected to each other by typical 

rigid diaphragms at each floor level with the arrangement shown in Figure 4.4
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Figure 4.4 Floor plan of the building considerd in Example 4.1.

The properties of the structural elements do not change along the height of the structure 

and Table 4.2 shows the uniform second moment of area of columns and beams about the 

x and y axes.

Table 4.2 -  The properties of columns and beams of the building of Example 4.1
■soo+-» Columns Beams

1,2,7,12,13,14 5,6,10,11 3,8 4,9 all

Iy(m4) 0.0035 0.007 0.0035 0.007 0.003

Ix(m4) 0.0035 0.0035 0.007 0.007 0.003

All the plane frames in this example are proprtional, so according to Section 4.2.3 we 

would expect to determine a unique position for the centres of rigidity at different floor 

levels.

Table 4.3 shows the locations of the centres of mass, rigidity and shear of the building in 

the coordinate system Oxy shown in Figure 4.4 obtained using the proposed theory. It 

illustrates that the location of the centres of rigidity and shear are coincident and lie on a 

vertical line through the height of the structure.
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Table 4.3 -  The location o f the rigidity and shear centres o f the building of Examples 4.1

Storey Height (m) X*(m) Xs(m) Zrx (m) e& (m)

10 30.00 8.00 8.00 4.00 4.00

9 27.00 8.00 8.00 4.00 4.00

8 24.00 8.00 8.00 4.00 4.00

7 21.00 8.00 8.00 4.00 4.00

6 18.00 8.00 8.00 4.00 4.00

5 15.00 8.00 8.00 4.00 4.00

4 12.00 8.00 8.00 4.00 4.00

3 9.00 8.00 8.00 4.00 4.00

2 6.00 8.00 8.00 4.00 4.00

1 3.00 8.00 8.00 4.00 4.00

Xr and Xs are the vectors of the x coordinate of the centers of rigidity and shear relative 

to the coordinate system Oxy shown in Figure 4.4. e/& and esx represent the static 

eccentricity vectors based on two definitions of eccentricity in different codes. The first 

definition, e/&, specifies the eccentricity at floor levels based on the distance between the 

centers of mass and rigidity, where as the second definition, e^, defines it based on the 

distance between the centers of mass and shear rigidity.

4.3.2 Example 4.2

It is required to determine the location of the centres of rigidity and shear centres of the 

ten-storey building of Example 4.1, except that the properties of the columns are changed 

as shown in Table 4.4. Thus the plane frames running in the y direction are non­

proportional

Table 4.4 -  The properties of the columns and beams
of the building of Exampie 4.2

1st to 10th Columns (all) Beams (all)

I y ( m 4) 0.0035 0.003

I x ( m 4) 0.0035 0.003
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Table 4.5 shows the locations of the centres of mass, rigidity and shear of the building in 

the coordinate system Oxy shown in Figure 4.4. It illustrates that the location of the 

centres of rigidity and shear are not coincident and do not lie on a vertical line through the 

height of the structure.

Table 4.5 -  The location of the rigidity and shear centres of the building of Examples 4.2

Storey Height (m) X*(m) Xs(m) e * x ( m ) e&(m)

10 30.00 8.17 8.17 3.83 3.83

9 27.00 8.77 8.41 3.23 3.59

8 24.00 8.37 8.40 3.63 3.60

7 21.00 8.42 8.40 3.58 3.60

6 18.00 8.32 8.39 3.68 3.61

5 15.00 8.40 8.39 3.60 3.61

4 12.00 8.53 8.40 3.47 3.60

3 9.00 8.74 8.42 3.26 3.58

2 6.00 10.00 8.48 2.00 3.52

1 3.00 37.80 8.98 25.80 3.02

4.3.3 Example 4.3

It is now required to determine the centres of rigidity and shear of a ten-storey three- 

dimensional singly asymmetric, wall-frame building comprising 3 proportional plane 

frames (F1-F3) and two identical shear walls (W1-W2). These resisting elements run in 

the y direction and are connected to each other by a typical rigid diaphragm at each floor 

level with the arrangement shown in Figure 4.5.
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Figure 4.5 Floor plan of the building considerd in Example 4.3.

The properties of the structural elements do not change along the height of the building 

and Table 4.6 shows the uniform second moment of area of the columns and beams about 

the x and y directions. The shear walls have a uniform cross-section with second moment 

of area of 1.3333 m4 about the x axis.

Table 4.6 -  The properties of the columns and beams of the building of Example 4.3

1st to lO4
Columns Beams

1,2,13,14 6,11 3,8 4,9 all

I y ( m 4) 0.0035 0.007 0.0035 0.007 0.003

I x ( t n 4 ) 0.0035 0.0035 0.007 0.007 0.003

Table 4.7 shows the locations of the centres of mass, rigidity and shear of the building in 

the coordinate system Oxy shown in Figure 4.5. It demonstrates that the location of the 

centres of rigidity and shear are not coincident and do not lie on a vertical line throughout 

the height of the structure. It can be concluded that even when the frames and walls of a 

wall-frame building are independently proportional, the whole building needs to be 

considered as a non proportional structure i.e. there is no proportional wall-frame 

structure.
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Table 4.7 -  The location o f the rigidity and shear centres o f the building of Examples 4.3

Storey Height (m) X*(m) Xs(m) e*x(m) tsx (m)

10 30.00 -9.89 -9.89 21.89 21.89

9 27.00 30.89 6.29 18.89 5.71

8 24.00 13.76 8.24 1.76 3.76

7 21.00 18.09 10.07 6.09 1.93

6 18.00 18.17 11.19 6.17 0.81

5 15.00 20.63 12.15 8.63 0.15

4 12.00 24.68 13.10 12.68 1.10

3 9.00 32.04 14.12 20.04 2.12

2 6.00 48.97 15.33 36.97 3.33

1 3.00 103.76 16.83 91.73 4.83

4.4 CONCLUSIONS

A practical method to locate the centers of rigidity, shear centers and hence static 

eccentricity has been given. The method is based on the use of a plane frame computer 

programme but does not need the explicit expressions for the stiffness matrix of the 

resisting elements. The method has the following advantages in comparison with the 

Cheung and Tso’s method(Cheung and Tso 1986), which was explained in Section 4.1.

• Resisting elements are analyzed separately, so the input file is much smaller and

there is no need for the modeling of pin-pin rigid beams in floor levels

• Identical plane elements are analyzed only once, since they all have a unique 8(,)

• The method lends itself to simple data generation and programming

• The method is easily extendable to cover the static analysis of doubly asymmetric

structures with rigid diaphragms, using the two-dimensional approach

• The method can be modified to account for the analysis of structures with flexible 

diaphragms.
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It was shown that the centers of rigidity and shear centers of the floors of multi-storey 

buildings do not generally coincide. Their locations are not only dependent on the 

geometric and stiffness characteristics of the building, but also on the lateral forces. Also, 

their locations do not generally lie on a vertical line through the height of the structure. A 

particular class of buildings was distinguished, the so called proportional buildings, in 

which the centers of rigidity and shear of the floors are coincident, load independent and 

lie on a vertical line throughout their height. Buildings belonging to this special class 

comprise resisting elements that have proportional stiffness matrices along both their 

principal planes. The proportionality in the x and y directions are independent and it is not 

necessary that the resisting elements running in the x direction be proportional to those 

running in the y direction.

Torsional provision in most building codes is based on the evaluation of static 

eccentricity, usually given as the distance between the centers of mass and the centers of 

rigidity of a building. However it is applicable only to proportional structures where there 

is a unique eccentricity throughout the building. Since the diversion of location of shear 

centers along the height of the structures is smaller than that of centers of rigidity, it 

seems more practical for code provisions to give their rules based on eccentricity defined 

as the distance between the centers of mass and shear centers.
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CHAPTER 5

VIBRATION ANALYSIS OF ASYMMETRIC THREE- 

DIMENSIONAL FRAME STRUCTURES

5.1 INTRODUCTION

It was shown in Chapter 3 that in a doubly symmetric structure in which the centres of 

mass and rigidity are coincident, the translational and torsional vibration of the structure 

could be treated separately. However, in the majority of buildings, the serviceability 

requirements lead to an asymmetric location of structural elements. In such asymmetric 

structures the translational and torsional behaviour of the building can no longer be 

treated independently and the governing equations are coupled.

This chapter presents two methods of analysis for determining the natural frequencies of 

asymmetric three-dimensional frame structures. Such structures comprise asymmetric 

arrangements of planar frame systems, which have been joined to each other by rigid 

diaphragms at floor level. Each method is able to analyse asymmetric, three-dimensional 

frame structures whose properties may vary through the height of the structure in a 

stepwise fashion at one or more storey levels.



The first method utilises a continuum approach so that an asymmetric, three-dimensional 

frame structure is divided into segments, by cutting through the structure horizontally at 

those storey levels corresponding to changes in storey properties. A typical segment is 

then considered in isolation. Initially, a primary frame in one direction is replaced by its 

shear substitute beam that has uniformly distributed mass and shear rigidity, thus utilising 

the continuum approach. In turn, each frame in the same direction is replaced by its own 

shear substitute beam and the effect of all these beams is summed to model the effect of 

the original frames. This leads directly to the differential equation governing the sway 

motion of the segment in the chosen direction. The same procedure is then adopted for 

those frames running in the orthogonal direction. Once both equations are available it 

requires little effort to write down the substitute expressions for the torsional motion.

The second method utilises the Principle of Multiples and extends its application to three- 

dimensional asymmetric structures. It will be shown that the substitute frame method can 

be used for the vibration analysis in a two-step procedure. First the analogous uncoupled 

system will be analysed using substitute frames then the relation between the uncoupled 

and coupled responses will be imposed through a cubic equation.

In order to validate the accuracy which might be expected from the proposed methods, it 

was deemed necessary to carry out a parametric study.
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5.2 CONTINUUM METHOD

5.2.1 Coupled Vibration Analysis

Consider the hypothetical layout of a typical floor plan of the asymmetric, three- 

dimensional frame structure shown in Figure 5.1. The plane frames run in two orthogonal 

directions and are proportional to each other in any one direction, but the proportionality 

is not necessarily the same in both directions. The shear centre, S, at each floor level thus 

lies on a vertical line through the height of the structure.

It is assumed that the origin of the co-ordinate system is located at the shear centre, with 

the x and y co-ordinates running parallel to the plane frames. The z-axis runs vertically 

from the base of the building and therefore coincides with the rigidity axis. Point 

C (xc, y c) denotes the centre of mass at a typical floor level. It is assumed that the floor

system is rigid in its plane and that the centre of mass at each level lies on a vertical line, 

the mass axis, that runs through the height of the structure. When the rigidity and mass 

axes of a structure do not coincide, the lateral and torsional motion of the building will 

always be coupled in one or more planes.
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Figure 5.1 Typical floor plan of an asymmetric three-dimensional 
frame structure. S and C denote the locations of the shear and 
mass centres, respectively. The floor system EFGH is considered 
to be rigid in its plane.

During vibration, the displacement of the mass centre at any time t in the x-y plane can be 

determined as the result of a pure translation followed by a pure rotation about the shear 

centre, see Figure 5.2. During the translation phase the shear centre S moves to S' and the 

mass centre C moves to C', displacements in each case of u(z,t) and v(z,t) in the x and y 

directions, respectively. During rotation, the mass centre moves additionally from C' to 

C", an angular rotation of g{z,t) about S'. The resulting translations, uc and vc, of the mass 

centre in the x and y directions, respectively, are

uc(z,t) = u (z ,t) -y c<p(z,t) 

vc(zF) = v(z,t) + xc(p(ztt)

(5.1a)

(5.1b)

More generally, it is clear that the displacements of a typical point (xny,) are given by 

Eqs. (5.la) and(5.lb) when c - i .
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Figure 5.2 Coupled translational-torsional vibration of the 
structure. S and C move to S' andC ', respectively, during 
translation and C' moves additionally to C” during rotation about 
S ' .

The structure is now divided into segments along the z axis by notionally cutting the 

structure along horizontal planes at those storey levels corresponding to changes in storey 

properties. Figure 5.3 shows a typical segment formed by cutting the structure through 

planes E^FkGiMk and Ek+\Fk+xGk+\Hk+\ that correspond to the and £+1* changes in

storey properties. The number of storeys in any one segment can vary from one, to the 

total number of storeys in the structure if it is uniform throughout its height. However, in 

any one segment each storey must have the same properties.
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I

Figure 5.3 Typical segment formed by cutting the structure 
through planes EkFkGkHk and Ek+\Fk+\Gk+\Hk+\ that correspond to 
the k and k+1th changes in storey properties. (Some column and 
beam members have been omitted for clarity.)

We now consider a typical segment in isolation and seek to replace each primary frame by 

a substitute shear beam that replicates its in-plane motion. We start by considering a 

typical frame, frame z, that runs parallel to the y-z plane, see Figure 5.1. This whole 

frame is replaced by the single substitute beam, beam z, shown in Figure 5.4. This beam 

is a two-dimensional shear beam of length L and has uniformly distributed mass and shear 

stiffness. The mass and elastic axes therefore coincide with the local z-axis and the elastic 

axis is only permitted shear deformation vt(z,t) in the y direction, where z and t denote 

distance from the local origin and time, respectively.
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Figure 5.4 Coordinate system and sign convention for the 
substitute two-dimensional shear beam in the local y-z plane, a) 
Member convention. b) Element convention.

The equations of motion for the substitute beam can be developed by considering a typical 

elemental length of the beam, Sz. Thus equating the resultant shear force to the mass 

acceleration gives

dQy>{z,‘) _ 32v,(z,f)
Sz myt 8t2

(5.2)

where Qyl{z,t) is the shear force on the element and myi is the uniformly distributed mass 

per unit length.

The constitutive relationship for pure shear is given by

Qyi(zJ ) dv^zj)
GAyt dz

(5.3)

in which GA# is the effective shear rigidity in the y  direction (Smith and Coull 1991). 
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Substituting the derivative o f Eq. (5.3) into Eq. (5.2) gives

d2v,(z,t) e v,(z,<) _ Q

dz2 GAy, dt2

which is the required differential equation of motion for the shear beam element in the y-z 

plane.

If the equivalent procedure is carried out for all of the i frames that run parallel to the y-z 

plane, the dynamic equilibrium for motion in the y-z plane may be written as

where ny is the number of frames.

Noting that GA^ is constant over the length of the member and substituting for vt(z,t) 

from Eq. (5. lb) with c replaced by i gives

d2v(z,/) ^  d 2q>{z,t) ^  d 2v ( z , t ) ^  d 2(p{z,t) ^  ^
l GA» —r r ~ +Z,ga**‘—Z2— — L my‘x' -,,2— =0 ( '
i=l OZ /=1 OZ j=I Ot i=l Ot

where xt is the distance of frame / from the shear centre, S. The second term in Eq. (5.6) 

equals zero, since S is the centre of rigidity of the structure. As C is the centre of mass, 

A  n>
X  m yix i can be replaced with myXc, where my = X rnyi, so Eq. (5.6) can be written as
»=i i=i

follows

GAy d̂ - myd̂ - myXc? p l  = 0 (5.7)

in which GAy = X GAyi (5-8)
/=i

----------------------------------------------------------------  — --------------------------------    13 5
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Since the total mass of the segment contributes to its vibration, including the mass of the 

frames running in the x direction and the rigid diaphragms, my should be replaced by m, 

where m is the equivalent distributed mass over the height of the segment. Therefore

GA (5.9)
* dz2 d t2 d t2

In an identical fashion, the dynamic equilibrium relationship for motion in the x-z plane 

yields the second governing differential equation as

% G A + ggf ef )  . 0  (5.10)
%  * dz2 %  dz2 ~  * dt2 ~  dt2

where nx is the number of frames running in the x direction and yj is the distance of

frame j  from the shear centre, S. GA . and mxj are the effective shear rigidity in the x

direction and uniformly distributed mass per unit length of the replacement beam for 

frame j, respectively. Once more the second term in Eq. (5.10) equals zero, since S is the 

centre of rigidity of the structure. This leads to

GA _ m g_»(z ,o  a * » .o  =0 (511)
dz2 d t2 d t2

in which GA, = £  GAV (5.12)
7=1

Finally, it should be noted that the plane frames running parallel to the x-z and y-z planes 

also provide the torsional stiffness of the building. Thus the required equation for torsion 

can be developed from a consideration of the torsional equilibrium about S, which yields

d 2(v(z,t) + xtip(z,t)) ;

/■=1 dz‘ 1=1

d 2(v{z ,t)  + xi(p{z,t)) 

dt2

^  d 2(u (z , t ) - y . (p ( z , t ) )hGA*yj----- t ~2--------2*m*yj-------^2------j =i dz j=\ dt
=  0 (5.13)
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Eq. (5.13) can be simplified to

f  n.

T,GAyiX? +j]GAXJy
Mi = 1

d2(p(z,t) d2v(z,t) d2u(z,t)
dz' 

r r,

- m y X c  ~ y  ' +  m x y c
d t

Y t myixl  + J ] mxjy
1=1 7=1

d2(p(z,t)
dz4

d t

= o (5.14)

As before, the total mass of the frames running in the x  and y  directions, as well as that of 

the rigid diaphragms, should be taken into account. Thus, Eq. (5.14) can finally be 

written as

dz* c d t dt dz*
(5.15)

in which Ig is the polar second moment of mass of the system about the shear centre and

(  n.

GJ = +’Z G A jy]
1= 1 ;=1

(5.16)

where GJ is the effective torsional rigidity of the structure about the shear centre S.

Eqs. (5.9), (5.11) and (5.15) are the required differential equations of motion and can be 

rearranged in the following form

GA_ d M z j )  _ m 3 V v )  + d M z j )  _  0
dz* dt* d t

y  n_ 2dz* d t dt*

GJ + my, -  mx, ^ 4 ^  -  mrl = 0
dz* d t d t dz*

(5.17a)

(5.17b)

(5.17c)

where rm is the polar mass radius of gyration of the structure about shear centre S.
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5.2.2 Member Dynamic Stiffness Matrix

Eqs. (5.17) are now solved and posed in dynamic stiffness form. Although each equation 

was developed individually from a consideration of the planar shear beam of Figure 5.4, 

they now describe the motion of a three-dimensional, shear-torsion coupled beam whose 

coordinate system and sign convention are shown in Figure 5.5. This beam (exact finite 

element) will replace a typical segment of the original, asymmetric, three-dimensional 

frame structure. The whole of the original structure can then be reconstituted by 

assembling the exact finite elements corresponding to each segment in the usual way.

z z

U2
0 2 x

L

Q  i x

(a)

PhD Thesis, B. Rafezy, 2004 138



8 T
dz

I
0

■O

0■Oc3 ~o

(b)

Figure 5.5 Coordinate system and sign convention for forces and 
displacements of the three-dimensional shear-torsion coupled 
beam, a) Member and element convention for the x-z plane, b)
Member and element convention for the y-z plane

Eqs. (5.17) are solved on the assumption of harmonic motion, so that the instantaneous 

displacements can be written as

u(z,t) = U(z)smajt v(z,0 = V{z)smcot (p(z,t) = <P(z)sina>t (5.18a,b,c)

where U(z), V(z) and <P(z) are the amplitudes of the sinusoidally varying displacements 

and co is the circular frequency.

Substituting Eqs. (5.18) into Eqs. (5.17) and re-writing in non-dimensional form gives

£/'(#) + a>2A2xU(Z) -  y eto2Al<P(f) = 0 (5.19a)

V 'tf)  + a>2A.2yV(4) + xea> 2X\<Hg) = 0 (5.19b)

0 " ( ^ - ( l / r 2)yca, 2AlU(4) + ( \ / r 2)xca>2^ V ^ )  + a 2Al0(4) = 0 (5.19c)
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where

A2x = mL2/GAx A2y =mL2/GAy A2 = r2(mL2/GJ) and £ = (z / L) (5.20a,b,c, d)

Eqs. (5.19) can be re-written in the following matrix form

D2+co2A2x 0 ~U{£)
0 D2+©24 V{4)

-{M rD y/o 1̂ D2 +w 2A2

in which D = d!cU;.

Eq. (5.21) can be combined into one equation by eliminating either U, For 0  to give the 

sixth-order differential equation

D2+co2A2x
0

0
D2+a)2A2

- y cw A
2 i2

X C(D X y

2  o 2  t~v2 , _ 2  o2

IV(f) = 0 (5.22)

where W = U, V or 0 .

The solution of Eq. (5.22) is found by substituting the trial solution W((f) = eŝ  to yield 

the characteristic equation

b2+A2 0
0 b2+A2

- y X
XXy

2/1.2 , o2
= o (5.23)

where b2 = (s ! co'y
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Eq. (5.23) is a cubic equation in the frequency parameter b2 and it can be proven 

(Appendix 5A) that it always has three negative real roots. Let these three roots be

-  b? , -  b\ and -  b\ , where bj (/= 1,2,3) are all real and positive. Therefore

( —) 2 = -b 2j giving s = ±icobj (J= 1,2,3) where/ = V - T  (5.24)
co

It follows that the solution of Eq. (5.22) can be written in the form

W(£) = Cj cosbxcot; + C2 sinbxa)E, + C3 cosb2cog 
+ C4 sin b2(dg + C5 cos b3a>̂  + C6 sin b3(Oif

Eq. (5.25) represents the solution for U{£), V(g) and <P(g) , since they are all related via 

Eq. (5.21). They can be written individually as

U(£) = (C, cosbxG>j; + C2 sin b^g ) + tu2 (C3 cosb2a)%
+ C4 sin b2ct)̂ ) +t3 (C5 cosb3cô  + C6 sin b3o)g)

V(£) = f,v (Q cosb ^  + C2 sin b^g )  + t v2 (C3 cosb2on% 
+ C4 sin b2o)%) + t v3 (C5 cosb3cô  + C6 sin b3cog)

&(<!;) = Cx cos bx(o  ̂+ C2 sin bxa>̂  + C3 cos b2a 
+ C4 sin b2co% + C5 cos b3co% + C6 sin b3a>%

(5.26a)

(5.26b)

(5.26c)

in which the constants t" and /J (/=1,2,3) are given by

0=1’2’3) (5 -27a,b)

Substituting Eqs. (5.18) and (5.26) into Eq. (5.2) yields the equations for the lateral shear 

forces and torsional moment of the substitute shear beam as

Qx(z) = GAx ~ ^ - ^ j G A x~ ^ f -  (5.28a)
dz L d%
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Qyiz)=GAyd m = L GAy^ m
J y dz L y d£

T(z) = G J ^ ^ -  = - GJ
dz L d£

(5.28b)

(5.28c)

The nodal forces and displacements can now be defined in the member co-ordinate 

system of the substitute shear-torsion beam shown in Figures 5.5(a) and 5.5(b), as follows

At f =0:  U=Uh V=Vh 0= 0,, Qx=~Qlx, Qy= -Q iyi T=~T, (5.29a)

At f = l :  U=U2, V=V2, 0 = 0 h Q ^Q ^, Qy=Q2y, T=T2 (5.29b)

The nodal displacements can then be determined from Eqs. (5.26) as

di E 0 I 0

d2 0 E C s
C£
c. (5.30)

where

u ; u 2 C, “<V t\ t“
d1 = K >d2 = V2 y C„ = c 3 , C . = c< > E = tv tv tv*1 2 ‘ 3

A . A . , C 5 . Q_ 1 1 1

0 0 -

V  0 0 "

c  = 0 ĉ b2<o 0 ,S  = 0 ^ b2w 0 y

0 0 0 0

I is the unit matrix, Sba) = sm(bjO)) and Cb = cosibm) (/= 1,2,3) (5.31)

Hence the vector of constants [C0 CeJ  can be determined from Eq. (5.30) as

o © I 0" -1 E 0" -i
r - , i

1
V

I c  s i
wo

i

..-1<N]

In similar fashion the vector of nodal forces can be determined from Eqs. (5.28) as 
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Pi
p 2

DEb 0 ~ 0 - I " "C0“
0 DEb - S c _ce_

(5.33)

where

Q \ x "a/
, D = — 

L

~g ax 0 0 ' 0 0“
Pi = Q \ y 5 P2 ~ Q l y 0 GAy 0 and b = 0 b2 0

_r i_ T2 0 0 GJ 0 0 3̂_
(5.34)

Thus the required stiffness matrix can be developed by substituting Eqs. (5.32) into Eqs. 

(5.33) to give

Pi
P2

DEb 0 T O  - I T I  0
0 DEb - S  C C S

-1 "E 0" -i
V

0 E _d2_
(5.35)

or

p=kd (5.36)

5.2.2.1 Wittrick-Williams algorithm

The dynamic stiffness matrix, K, when assembled from the member stiffness matrices, 

yields the required natural frequencies as solutions of the equation

K D  = 0 (5.37)

The Wittrick-Williams algorithm can then be used again to solve this transcendental 

eigenvalue problem. The algorithm has already been explained in Section 2.2.2.1.2 and 

here only two key equations for finding the natural frequencies of the structure exceeded 

by the trial frequency co are given for convenience as
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where

(5.39)

In the present case it is possible to determine the value of Jm symbolically, using a direct 

approach, as follows

The end conditions for a clamped-clamped member are dj = d 2 = 0 (5.40)

If Eqs. (5.40) are substituted into Eq. (5.30) it is clear that the condition for non-trivial 

solutions is

E Oil I 0
0 E C  S

=  0 (5.41)

However, it is easy to show that the left-hand determinant can never be zero. Thus, 

noting that the right-hand determinant is that of a lower triangular matrix, Eq. (5.41) is 

only satisfied when the product of its significant leading diagonal terms is zero, i.e.

nv=°i-1
(5.42)

which is satisfied when cok. = —  y= l>2,3 ; k= 1,2,3,.
b,.

(5.43)

so Jm for any trial frequency co* can be found from

= int
co

( x / b l)
+ int co + int co

(x/b3)
(5.44)
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in which int represents the image integer function i.e. the greatest integer < co *j{n lb j) ,  

j= 1,2,3.

5.2.2.2 Special case: uniform structures

When all storeys of a frame are identical, the whole frame can be considered as a single 

segment and this can be modelled with a substitute shear beam, which is free at one end 

and clamped at the other end. The end conditions for such abeam are

d4 =0

p 2 =0

(5.45)

(5.46)

Eq. (5.46) can be written in the following form using Eqs. (5.28)

=  l)' 

V '(f = i) 
* '( f  = i)

= 0 or d ; = 0 (5.47)

where d f2 is the derivative of the vector of displacement functions when £ = 1.

If Eqs. (5.45) and (5.47) are substituted in Eqs. (5.30) it is clear that the condition for non­

trivial solutions is

bxb2b̂ co:
E Oil 0 
0 E S  C

=  0 (5.48)

However, it is easy to show that the left-hand determinant as well as b}, b2, b$ and co are 

not generally zero. Thus, noting that the right-hand determinant is that of a lower 

triangular matrix, Eq. (5.48) is only satisfied when the product of its significant leading 

diagonal terms is zero, i.e.
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3

(5.49)

1 71which is satisfied when co) ~{k  — )— j= 1,2,3 ; h= 1,2,3,...
2 b.

(5.50)

Hence the required natural frequencies can conveniently be determined using Eqs. (5.50)

5.2.3 Alternative Method Using the Analogous Uncoupled System

In Section 5.2.1 the simultaneous differential Eqs. (5.17) were used to demonstrate the 

spatial behaviour of a three-dimensional shear beam with asymmetric cross-section. The 

nature of the behaviour depends on the relative position of the shear centre and the centre 

of mass. The torsion angle (p appears in all three equations, showing that the resulting 

deformation is composed of both translation and torsion. In the latter section the set of 

coupled Eqs. (5.17) were solved and the result posed in the form of a dynamic stiffness 

matrix for such an element. There is, however, a simpler way of producing the coupled 

natural frequencies. It will be proven in the following section that the system of 

differential equations (5.17) can be solved exactly with a simple two-step procedure if the 

frame is modelled as a single uniform cantilever.

In this method xc and yc are first set equal to zero. This yields the uncoupled natural 

frequencies, which are then used to determine the coupled natural frequencies by way of a 

cubic coupling relationship.
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5.2.3.1 Analogous uncoupled system

The natural frequencies of the analogous uncoupled system can easily be calculated using 

Eqs. (5.23) and (5.50) with the assumption of xc = y c = 0. From Eq. (5.23) it is clear that

b2=-rx , b2 =-X2y and b2 = -A; (5.51)

or

b\ — Xx , — Xy and b̂ (5.52)

and hence from Eqs. (5.50)

co, - k -

" ’ " H r

(5.53a)

(5.53b)

(5.53c)

5.2.3.2 Coupling effect

Multiplying the first row of Eq. (5.23) by 1 /(b2X2x), the second row by \/(b2X2) and the 

third row by 1 /(b2X2v) gives
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Substituting Eqs. (5.55) and (5.56) in Eq. (5.54) gives

2 2 
CD - ( D Z

2 2 
co -C D y

-y c<°
xca>2 

2 / „ 2
- y c(D x c(D rm {(D - a > * )

=  0 (5.57)

Eq. (5.57) is precise for the shear cantilever considered and can be used as a simpler way 

of calculating the natural frequencies of asymmetric systems using the natural frequencies 

of the analogous uncoupled systems. This equation has already been used by several 

authors(Ng and Kuang 2000; Zalka 1994; Zalka and Macleod 1996).
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5.3 SUBSTITUTE FRAME METHOD

5.3.1 Application of the Substitute Frame Method in the Static and Dynamic 

Analysis of Asymmetric Three-dimensional Frame Structures

It was explained in Section 2.3.1 that any two-dimensional frame, may be simplified to an 

equivalent one bay substitute frame which has the same natural frequencies of vibration as 

the original frame if the original frame satisfies Principle of Multiples. If it does not, the 

substitute frame method can still be applied and the accuracy of the results will normally 

be satisfactory for engineering problems.

Nodal displacements of three-dimensional, multi-bay, multi-storey skeletal sway frames 

have already been investigated by Howson and Rafezy (Howson and Rafezy 2002) using 

the substitute frame method. In this section their method will be extended to calculate the 

coupled natural frequencies of asymmetric three-dimensional, multi -bay, multi-storey 

sway frames. Each substitute frame has a single bay and the same number of storeys and 

storey heights as the original frame, but is symmetric and comprises only in plane 

stiffnesses.

It is assumed that the original structure is doubly asymmetric and that the centre of 

rigidity of different floor levels coincides with the z-axis passing through the shear centre 

S. Point C on a typical floor denotes the centre of mass and its location in the coordinate 

system Sxy is given by xc and yc (Figure 5.1). When the centres of shear and mass do not 

coincide, the transverse vibration of the structure will always be coupled, i.e. the motion 

will be a combination of translation and torsion.

The centre of pressure CP, the point at which the resultant horizontal load acts at each 

floor level, lies on a vertical line through the building. Its location in the coordinate 

system Sxy is given by ex and ey. The three centres of shear, mass and pressure don’t 

need to be coincident, but they have to be in three vertical lines that are parallel to each 

other. It is also assumed that inextensional member theory is used.



Consider Figure 5.1 again. It shows the plan view of a multi-storey structure that is 

idealised as a set of plane frames running in the x and y directions. If we consider only a 

typical frame, frame /', running in the y direction, it is clear that we can determine the 

material and geometric properties of each individual member of the equivalent substitute 

plane frame using the procedure described in Section 2.3.1. The substitute frame stiffness 

syt can then be assembled in the usual way from the member stiffness relationship given in 

Figure 5.4(a) and (b), where the stiffness elements are defined for both buckling and 

vibration theory in references (Howson 1979; Howson et al. 1983).

Figure 5.6 (a) Member end forces and displacements; (b)
Member stiffness relationship.

Hence the stiffness relationship for the typical frame i is given by

P (5.58)

where py/ is the vector of external forces and d y. is the corresponding vector of nodal

displacements. During vibration, the structure undergoes translation and torsion (Figure 

5.2). Based on the assumption of a rigid diaphragm at each floor level, dyi can be related 

to the vector of nodal displacement at the shear centre, d^, through the following equation

&yi =&yo+xfi (5.59)

in which 0 is the vector of torsional displacements and xt is the distance of frame i from 

the shear centre S.
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With an identical argument, the corresponding relationship for frames running in the x 

direction is

(5.60)

in which y, is the distance of frame j  from shear centre S.

Eqs. (5.59) and (5.60) show that the frames running in the x and y directions no longer 

share a unique displacement, so the substitute frame method cannot be applied in the way 

described for symmetric structures in Chapter 3. However, the study of asymmetric 

structures using the continuum method suggests that asymmetric structures can be treated 

in a two step process i.e. the analogous uncoupled system can be analysed first then the 

relation between the uncoupled and coupled response can be applied through Eq. (5.57).

5.3.1.1 The analogous uncoupled system

In the analogous uncoupled system it is assumed that the centre of mass and pressure are 

coincident with the centre of shear, therefore the structure would be in pure translation or 

torsion. In the following sections, the translational and torsional substitute frames for the 

vibration of the analogous uncoupled systems will be studied.

5.3.1.1.1. Substitute frame for translation

Considering the translational modes in the y direction first, and noting the fact that the 

displacement vector of all frames running in the y direction are the same, dyo, it is clear 

that we can add together the substitute frames arising from all such frames to obtain a 

further substitute frame whose stiffness is given by

(5.61)
i=l
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where ny is the number of plane frames running in the y direction i.e. the individual 

substitute frames have been notionally clamped together as described in Section 2.3.1. 

The corresponding force vector is given by

r ,  = z  V* (5-62>»=1

An identical argument enables us to write the equivalent expressions for the stiffness and 

force vector of the nx frames running in the x direction as

S, = £  »* (5-63)
M

and

P , = Z p * (5.64)
M

The stiffness relationships in the x and y directions for the analogous uncoupled structure, 

respectively, can therefore be written as

P = S , D .  (5.65)

and

P = S D  (5.66)

where Dx and Dy are the corresponding nodal displacement vectors. Noting that 

P,, =Py -  0 when calculating natural frequencies, Eqs. (5.65) and (5.66) can be solved

using the Wittrick-Williams algorithm (Wittrick and Williams 1971) which guarantees 

that no required eigenvalues can be missed. The modal vectors Dx and Dy then follow
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directly in the usual way, A suitable computer program for such solution is freely 

available in the literature (Howson et al. 1983).

The out of plane contribution of plane frames running in the x direction to the 

translational vibration of the structure in the y direction should be taken into account, as in 

the case of three-dimensional symmetric structures. The same argument applies for the 

vibration of the structure in the x direction.

5.3.1.1.2. Substitute frame for torsion

The substitute frame for torsion of the analogous uncoupled structure can be obtained in a 

similar way to that for torsion for symmetric structures in Section 3.3.1.2. As pure torsion 

accurse about the shear centre S, it is enough to rewrite all equations with respect to the 

shear centre S.

Hence the corresponding force-displacement equation for torsional vibration of the 

structure can be obtained as

Once more Px = = 0 when calculating natural frequencies, hence equation (5.67) can

be solved for the required eigenvalues in the same way as the previous section.

The modal displacements at specific points on the original frame follow from Dx, Dy and 

0 in a straightforward manner.

The out of plane effects should be taken into account in the same way as for the 

symmetric structures of Chapter 3.

(5.67)
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5.3.1.2 Coupling effect

Once the natural frequencies of the analogous uncoupled system have been obtained, the 

final coupled natural frequencies of the asymmetric structure can be calculated using Eq. 

(5.57). As Eq. (5.57) has been obtained using continuum theory, its accuracy in the 

substitute frame method will be investigated by numerical examples in the following 

section.

5.4 NUMERICAL RESULTS

The vibrational behaviour of asymmetric three-dimentional frame structures are now 

investigated using the proposed methods. Examples 5.1 compare the results obtained from 

the continuum method with the results obtained from a finite element analysis of the 

whole structure using the vibration programme ETABS (Wilson et al. 1995) for a series of 

asymmetric concrete multi storey frame structures. Example 5.2 does the same thing for 

substitute frame method.

5.4.1 Example 5.1

The work of this section consolidates the foregoing theory by performing a small 

parametric study on four frames of varying slenderness and comparing the lower natural 

frequencies with those obtained from a full finite element analysis of the original 

structures. The frames, which have 5, 10, 20 and 30 storeys, respectively, all have the 

same doubly asymmetric floor plan and equal storey height of 3 m. Each structure 

consists of 5 plane frames in they direction (F1-F5) and 4 plane frames in the x direction 

(F6-F9) which are connected to each other by typical rigid diaphragms at each floor level 

with the arrangement shown in Figure 5.7. In the 5 and 10 storey buildings, the properties 

of the structural elements do not change along the height of the structure, so each structure 

can be modelled using a single substitute beam element. In the 20 and 30 storey 

buildings, the properties of the structural elements change in a step-wise fashion every 10
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storeys. Tables 5.1a to 5.1c shows the second moment of area of the columns and beams 

about the x and y  directions for the 1st-10th, 11^-20* and 21st-30th floors of the buildings, 

respectively.

£
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1 X

rigid 
diaphragm

12 13 14
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7 S 10
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L = 4x6 = 24m

F4 F5

J
Figure 5.7 Floor plan of structures considerd in Examples 5.1 and 5.2 

Table 5.1a -  The properties of the columns and beams of the buildings from 1st to 10th floors

1st to 10th
Columns (members are defined in Figure 5.7) Beams

1,5,10,14,15,16 2,3,4,13 6,11 7,8,9,12 all

U m>) 0.0035 0.007 0.0035 0.007 0.003

Um*) 0.0035 0.0035 0.007 0.007 0.003

Table 5. lb -  The properties of the columns and beams of the buildings from 11th to 20m floorstfi.

11th to 20th
Columns (members are defined in Figure 5.7) Beams

1,5,10,14,15,16 2,3,4,13 6,11 7,8,9,12 all

/^m 4) 0.0025 0.005 0.0025 0.0025 0.002143

U m 1) 0.0025 0.0025 0.005 0.0025 0.002143
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Table 5 .1c- The properties of the columns and beams of the buildings from 21st to 30th floors

21st to 30th
Columns (members are defined in Figure 5.7) Beams

1,5,10,14,15,16 2,3,4,13 6,11 7,8,9,12 all

/ /  m4) 0.0015 0.003 0.0015 0.003 0.001286

IJ.m) 0.0015 0.0015 0.003 0.003 0.001286

For simplicity in determining member masses, half the mass of the columns framing into 

and emanating from a floor diaphragm, together with the mass of the diaphragm and any 

associated beams, is stated as an equivalent uniformly distributed floor mass at that storey 

level. Thus the centre of mass is at the geometric centre of the floor plan. This 

corresponds precisely to the automatic idealisation process in ETABS (Wilson et al. 1995) 

and additionally only requires the total mass of the floor to be converted into the 

equivalent uniformly distributed mass of the member in the substitute beam approach. 

Arbitrarily the mass is assumed to have a constant value of 360 Kg/m2 at each floor level, 

even where the stiffness properties of the member change. Young’s modulus for all 

members is taken to be E  = 2 x 1010 N/m2 and inextensible member theory is assumed.

All the plane frames in this example are proprtional, so that the shear centre at each floor 

level lies in a vertical line through the building. The eccentricities in the x andy directions 

can then be calculated using Eq. (4.33) as follows

xc = 2.727m , y c = 2.5m

The effective distributed mass of the shear beam (smeared from the diaphragm) and the 

polar mass radius of gyration of the diaphragms about the shear centre can be calculated 

as follows

m = 18x24x360/3 = 51840 kg/m

r 2 = 18 +24 + 72 + 2 52 = gg 686 m2
12

Tables 5.2a, 5.2b and 5.2c show the effective shear rigidities of the plane frames in the x 

and y  directions obtained using the formula presented by Smith and Coull (Smith and
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Coull 1991) and the torsional rigidity of the buildings about the shear centre S, which was 

calculated using Eq. (5.16)

Table 5.2a -  Translational and torsional rigidity of the buildingslst to 10th floors

Plane
Frames Xj yj GAxj- 106N GAyt - 106N G/-106N

FI -9.273 - - 98.824 8497.69

F2 -3.273 - - 98.824 1058.65

F3 2.727 - - 65.882 489.936

F4 8.727 - - 65.882 5017.64

F5 14.727 - - 32.941 7144.43

F6 - -6.50 131.764 - 5567.06

F7 - -0.50 131.764 - 32.941

F8 - 5.50 98.824 - 2989.41

F9 - 11.50 32.941 - 4356.47

I Gi4x=395.294 GAy=362.353 07=35154.231

Table 5.2b -  Translational and torsional rigidity of the buildingsl 1th to 20th floors

Plane
Frames Xt yj GAXJ - 106N GAyi- 106N G/-106N

FI -9.273 - - 70.589 6069.78

F2 -3.273 - - 70.589 756.179

F3 2.727 - - 45.059 349.954

F4 8.727 - - 45.059 3584.03

F5 14.727 - - 23.529 5103.17

F6 - -6.50 94.177 - 3976.47

F7 - -0.50 94.117 - 23.529

F8 - 5.50 70.589 - 2135.29

F9 - 11.50 23.529 - 3111.77

I GAX=282.353 GAy=258.824 G«/=25110.165
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Table 5.2c -  Translational and torsional rigidity of the buildings21stto 30th floors

Plane
Frames x, yj GAxj - 106N GAyi - 106N GJ- 106N

FI -9.273 - - 42.353 3641.87

F2 -3.273 - - 42.353 453.707

F3 2.727 - - 28.235 209.973

F4 8.727 - - 28.235 2150.42

F5 14.727 - - 14.118 3061.9

F6 - -6.50 56.47 - 2385.88

F7 - -0.50 56.47 - 14.117

F8 - 5.50 42.353 - 1281.18

F9 - 11.50 14.118 - 1867.06

I GAX=\69A\2 G ^ = 155.294 07=15066.099

5.4.1.1 Results

Column 2 of Tables 5.3a to 5.3d show the coupled natural frequencies (Hz) of the 5, 10, 

20 and 30 storey frames obtained from the three-dimensional shear beam theory 

respectively. The third column in each table shows the results of a full finite element 

analysis of the frames (3D model of the original frame), obtained using the vibration 

programme ETABS (Wilson et al. 1995). Finally, column 4 shows the difference between 

the results of the substitute beam method with those of ETABS. The following 

assumptions have been made in modelling buildings with ETABS.

• The floor diaphragm at each storey level is assumed to be rigid and its mass is 

uniformly distributed.

• The mass of the beams, columns and shearwalls is distributed into the floor 

diaphragm.

• No allowance has been made for the shear deformation and rotary inertia of beams 

and columns
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No P - A  effect

No reduction in the stiffness of columns due to compressive axial loads (no 

geometric rigidity)

Inextensible member theory is imposed by multiplying the cross-sectional area of 

the beams and columns by a factor, typically 103.

Table 5.3a- Coupled natural frequencies of the 5-storey frame 
obtained from the continuum and FEM models

Frequency
No.

3D Shear beam ETABS (FEM)
Difference%

frequency (Hz) frequency (Hz)

1 1.22 1.27 3.94

2 1.43 1.49 4.03

3 1.85 1.93 4.15

4 3.65 4.18 12.68

5 4.28 4.9 12.65

6 5.55 6.35 12.60

Average 8.34

Table 5.3b- Coupled natural frequencies of the 10-storey frame 
obtained from the continuum and FEM models

Frequency
No.

3D Shear beam ETABS (FEM)
Difference%

frequency (Hz) frequency (Hz)

1 0.61 0.62 1.61

2 0.71 0.73 2.74

3 0.92 0.94 2.13

4 1.83 1.92 4.69

5 2.14 2.26 5.31

6 2.77 2.92 5.14

7 3.04 3.4 10.59

8 3.56 3.99 10.78

9 4.26 5.13 16.96

Average 6.66
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Table 5.3c- Coupled natural frequencies o f the 20-storey frame
obtained from the continuum and FEM models

Frequency
No.

3D Shear beam ETABS (FEM)
Difference%

frequency (Hz) frequency (Hz)

1 0.29 0.3 3.33

2 0.34 0.35 2.86

3 0.45 0.45 0.00

4 0.82 0.84 2.38

5 0.96 0.98 2.04

6 1.25 1.27 1.57

7 1.41 1.46 3.42

8 1.65 1.71 3.51

9 1.94 2.07 6.28

Average 2.82

Table 5.3d- Coupled natural frequencies of the 30-storey frame 
obtained from the continuum and FEM models

Frequency
No.

3D Shear beam ETABS (FEM)
Difference%

frequency (Hz) frequency (Hz)

1 0.18 0.18 0.00

2 0.22 0.22 0.00

3 0.28 0.28 0.00

4 0.49 0.49 0.00

5 0.57 0.58 1.72

6 0.74 0.75 1.33

7 0.81 0.83 2.41

8 0.95 0.97 2.06

9 1.15 1.19 3.36

10 1.24 1.26 1.59

11 1.35 1.39 2.88

12 1.47 1.55 5.16

Average 1.71
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The three-dimensional shear beam model shows very good agreement for all frames and 

the average difference (last row in the tables) never exceeds 10%. The model is less 

accurate for small numbers of storeys, since the model cannot consider the full height 

bending stiffness of individual columns (Figure 2.3(b)). The difference is perfectly 

acceptable (less than 4%) for the first three natural frequencies that play the most 

dominant role in the vibrational behaviour of structures. The results also show that the 

method presented has easily been able to model step changes in member properties along 

the height of the structure to equal accuracy i.e. the 20 and 30 storey frames (Figure 5.8).

Coupled natural frequencis of 3D 
asymmetric frames

10

8

6

4

2

0
5 10 20 30

N um ber of s to re y s

Figure 5.8 Average percentage difference between the continuum 
and FE models

A small parametric study has been undertaken to assess the effect of inextensible member 

theory when determining the natural frequencies of a series of three-dimensional, 

asymmetric, multi-storey buildings with the plan configuration of Figure 5.7. It shows that 

the difference between the results of extensible and inextensible member theory increases 

with increasing number of storeys. It also shows that the difference is less than 5% for 

buildings up to 20 storeys and less than 7.5% for buildings up to 40 storeys. Thus the 

model developed may be used for buildings up to 20 or 40 stories depending upon the 

required accuracy and for taller structures more investigations are necessary.
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5.4.2 Example 5.2

To investigate the accuracy of the substitute frame method, the frames of Example 5.1 are 

analysed again, but this time using the substitute frame method. First, the substitute 

frames of the analogous uncoupled system in the x, y and torsional directions are 

modelled to yield the uncoupled natural frequencies. The effect of coupling is then 

imposed through Eq. (5.57).

Summary of the basic data for this example:

E = 2xl010 Kg/m2 

x = 2.121mc

yc = 2.5 m

m = 18x24x360 = 155520 Kg

r 2 = J18 - t - 4 +2.727*+2.52 =88.686 m2
* V 12

Igf = 360x18x24x88.686=13792446 kgm2

5.4.2.1 Uncoupled system

5.4.2.1.1. Characteristics o f the substitute frames that run in the x direction

The characteristics of the substitute frame can be calculated using Eqs. (5 .63) and (5 .65) 

as follows

a) 1st -10th floors

Ibeami=12x0.003=0.036m4

Icoiumni^O.5 x(0.0035 x 8+0.007 x 8)=0.042m4
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mbeam= l 8x24x360/6=155520 Kg

^ co lu m n = 0

b) 11 lh-20th floors 

Ibeam2=12x0.002143=0.02571m4 

Icoiumn 2 = 0 . 5 x ( 0 . 0 0 2 5  x  8 + 0 . 0 0 5  x8)=0.03m4 

mteam=18x24x360/6=155520 Kg

filcolumn

c) 21st-30th floors 

Ibeam3=12x0.001286=0.01543m4 

Icoiumn3=0-5x(0.0015x8+0.003x8)=0.018m4 

nibeam= l 8 x 24 x360/6= 155520 Kg

tfrcolunm

5.4.2.1.2. Characteristics o f the substitute frames that run in the y direction

a) 1st -10th floors 

Ibeaml=Hx0.003=0.033m4

Iootam. .̂SxtO.OOSSxlO+O.OOTxe .̂OSSSm4 

11^=18x24x360/6=155520 Kg

Olcolunin

b) 1 l ^ O 1*1 floors

Ibeam2=l 1 x0.002143=0.02357m4 

lcoiumn2=0.5 x (0.0025 x 10+0.005 x6)=0.0275m4 

mbeam=l 8x24x360/6=155520 Kg

Iflcolumo 0

c) 21st-30lh floors

Ib«un3 =l 1 ><0.001286=0.01414m4
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I«>iuirm3=0-5x(0.0015xlO+0.003x6)=0.0165m4

mbeam= l 8 *24 *360=155520 Kg

^colum n 0

5.4.2.1.3. Characteristics o f  the substitute frames for torsion

The characteristics o f the substitute frame for torsion can be calculated using Eq. (5.67) as 

follows

a) 1st-10th floors

Ibeami=(4x0.003x6.S2)+(4x0.003x0.52)+(3x0.003x5.52)+ (1x0.003x11.52)+
(3x0.003x9.2732)+ (3x0.003x3.2732)+(2x0.003x2.7272)+(2x0.003x8.7272)+
(1 x0.003x 14.7272)= 3.2015 m4

IooiUmni=0.5[(2x0.0035+3x0.007)x6.52+(2x0.0035+3x0.007)x0.52+ 
(2x0.003+2x0.007)x5.52+2x0.0035xll.52+(2x0.0035+2x0.007)x9.2732+ 
(2x0.0035+2x0.007)x3.2732+2x0.0035+0.007)x2.7272+(2x0.0035+0.007)x 
8.7272+2x0.0035x 14.7272]= 3.7351 m4

mbeam=360x(18x243/12+24x 183/12+24x 18x(2.7272+2.52))=13792529 Kg

01 column 0

b) l l th-20th floors

Ibeam2K4x0.002143x6.52)+(4x0.002143x0.52)+(3x0.002143x5.52)+ 
(Ix0.002143xll.52)+(3x0.002143x9.2732)+(3x0.002143x3.2732)+ 
(2x0.002143x2.7272)+(2x0.002143x8.7272)+ (Ix0.002143xl4.7272) =
2.2868 m4

Icoiumn2=0.5[(2x0.0025+3x0.005)x6.52+(2x0.0025+3x0.005)x0.52+ 
(2x0.003+2x0.005)x5.52+2x0.0025x 11,52+(2x0.0025+2x0.005)x9.2732+ 
(2x0.0025+2x0.005)x3.2732+2x0.0025+0.005)x2.7272+(2x0.0025+0.005)x 
8.7272+2x0.0025x 14.7272]= 2.6679 m4

nibeam=360x(18 x243/12+24xl83/12+24xl8x(2.7272+2.52))=l 3792529 Kg

Olcolitmn 0

c) 21s,-30lh floors
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Ibeam3=(4x0.001286x6.52)+(4x0.001286x0.52)+(3 x0.001286x5.52)+
(1x0.001286x11.52)+(3x0.001286x9.2732)+(3x0.001286x3.2732)+ 
(2x0.001286x2.7272)+(2x0.001286x8.7272)+ (1x0.001286x 14 7272)=
1.3721 m4

Icoiumn3=0 .5[(2x0.0015+3 x0.003)x6.52+(2x0.0015+3x0.003)x0.52+ 
(2x0.003+2x0.003)x5.52+2x0.00 15x 11.52+(2x0.0015+2x0.003)x9.2732+
(2x0.0015+2x0.003)x3.2732+2x0.0015+0.003)x2.7272+(2x0.0015+0.003)x 
8.7272+2x0.0015x 14.7272]= 1.6008 m4

mbeam~360 *(18* 243/ 12+24 x 183/ 12+24 * 18 * (2.7272+2.52))= 13792529 Kg

ĉolumn 0

These values can then be used with other data in a general plane frame program, which in 

addition may be able to account for the destabilising effect o f member axial force, shear 

deflection etc., to obtain the uncoupled natural frequencies o f  the frame. These are shown 

in columns 2-4 o f Tables 5.4a-d below. The results can then be converted easily to the 

equivalent coupled natural frequencies o f the frame using Eq. (5.57). These are shown in 

columns 5-7. Note that all results assume inextensible member theory that can be 

simulated in a general program by multiplying the cross-sectional area o f the original 

member by 103.

Table 5.4a -  The uncoupled and coupled natural frequencies of the 5 storey frame

Mode k
Uncoupled natural frequencies 

using one-bay multi-storey 
substitute frames (Hz)

Coupled natural frequencies 
using Eq. (5.57)

(Hz)

x dir. y dir. torsion

1 1.5211 1.4564 1.5232 1.2721 1.4923 1.9330

2 4.9938 4.7812 5.0006 4.1762 4.8992 6.3459

3 9.5596 9.1526 9.5727 7.9945 9.3784 12.1480
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Table 5.4b -  The uncoupled and coupled natural frequencies o f the 10 storey frame

Mode k
Uncoupled natural frequencies 

using one-bay multi-storey 
substitute frames (Hz)

Coupled natural frequencies 
using Eq. (5.57)

(Hz)

x dir. y dir. torsion

1 0.7426 0.7109 0.7435 0.6209 0.7285 0.9436

2 2.3017 2.2037 2.3047 1.9248 2.258 2.9249

3 4.0679 3.8947 4.0734 3.4019 3.9908 5.1694

4 6.137 5.8757 6.1453 5.1322 6.0206 7.7986

Table 5.4c -  The uncoupled and coupled natural frequencies of the 20 storey frame

Mode k
Uncoupled natural frequencies 

using one-bay multi-storey 
substitute frames (Hz)

Coupled natural frequencies 
using Eq. (5.57)

(Hz)

x dir. y dir. torsion

1 0.3538 0.3387 0.3541 0.2958 0.3471 0.4495

2 1.002 0.9593 1.0032 0.8379 0.9831 1.2732

3 1.7419 1.6678 1.7442 1.4567 1.709 2.2135

4 2.4761 2.3707 2.4794 2.0707 2.4292 3.1465

Table 5.4d -  The uncoupled and coupled natural frequencies of the 30 storey frame

Mode k
Uncoupled natural frequencies 

using one-bay multi-storey 
substitute frames (Hz)

Coupled natural frequencies 
using Eq. (5.57)

(Hz)

x dir. y dir. torsion

1 0.2205 0.2112 0.2207 0.1844 0.2164 0.2802

2 0.5893 0.5642 0.59 0.4929 0.5782 0.7488

3 0.9917 0.9494 0.993 0.8293 0.9729 1.2602

4 1.4208 1.3603 1.4227 1.1882 1.3939 1.8055

5 1.8525 1.7736 1.855 1.5492 1.8174 2.3541

The results from the continuum and substitute frame methods are compared with finite 

element results in Tables 5.5a to 5.5d.
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Table 5.5a- Coupled natural frequencies o f the 5-storey frame
obtained from the continuum, substitute and FEM methods

Frequency
No.

3D Shear beam Substitute 
Frame method ETABS (FEM)

frequency (Hz) frequency (Hz) frequency (Hz)

1 1.22 1.27 1.27

2 1.43 1.49 1.49

3 1.85 1.93 1.93

4 3.65 4.18 4.18

5 4.28 4.9 4.9

6 5.55 6.35 6.35

Table 5.5b- Coupled natural frequencies of the 10-storey frame 
obtained from the continuum, substitute and FEM methods

Frequency
No.

3D Shear beam Substitute 
Frame method ETABS (FEM)

frequency (Hz) frequency (Flz) frequency (Hz)

1 0.61 0.62 0.62

2 0.71 0.73 0.73

3 0.92 0.94 0.94

4 1.83 1.92 1.92

5 2.14 2.26 2.26

6 2.77 2.92 2.92

7 3.04 3.4 3.4

8 3.56 3.99 3.99

9 4.26 5.13 5.13
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Table 5.5c- Coupled natural frequencies o f the 20-storey frame
obtained from the continuum, substitute and FEM methods

Frequency
No.

3D Shear beam Substitute 
Frame method ETABS (FEM)

frequency (Hz) frequency (Hz) frequency (Hz)

1 0.29 0.30 0.30
2 0.34 0.35 0.35
3 0.45 0.45 0.45
4 0.82 0.84 0.84
5 0.96 0.98 0.98

6 1.25 1.27 1.27

7 1.41 1.46 1.46

8 1.65 1.71 1.71

9 1.94 2.07 2.07

Table 5.5d- Coupled natural frequencies of the 30-storey frame 
obtained from the continuum, substitute and FEM methods

Frequency
No.

3D Shear beam Substitute 
Frame method ETABS (FEM)

frequency (Hz) frequency (Hz) frequency (Hz)

1 0.18 0.18 0.18

2 0.22 0.22 0.22

3 0.28 0.28 0.28

4 0.49 0.49 0.49

5 0.57 0.58 0.58

6 0.74 0.75 0.75

7 0.81 0.83 0.83

8 0.95 0.97 0.97

9 1.15 1.19 1.19

10 1.24 1.26 1.26

11 1.35 1.39 1.39

12 1.47 1.55 1.55
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The results show that the substitute frame method gives precise results with no difference 

in comparison with the FEM method. It can be justified as follows. The plane frames obey 

the principle of multiples so there was no loss of accuracy in reducing multi-bay plane 

frames to a single-bay substitute frames. There is also no loss of accuracy in applying the 

coupling of modes, as Eq. (5.57) is precise for a uniform shear cantilever.

5.5 CONCLUSIONS

The following conclusions can be drawn from the parametric study presented in examples

5.1 and 5.2.

• The continuum method gives acceptable results for any number of storeys 

(difference<8%). The difference was less than 4% for the first three natural 

frequencies.

• Eq. (5.57) can take into account the coupling of modes and is precise for the shear 

cantilever presented. The results show that the effect of coupling between the 

natural frequencies of asymmetric buildings should be taken into account and 

ignoring it can lead to substantial inaccuracy

• The Substitute frame method gives very accurate results in proportional 

asymmetric 3D frames
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Appendix 5A -  The nature of the roots of the characteristic Eq. (5.21)

The nature of the roots of the characteristic Eq. (5.23) is investigated in this appendix. For 

this purpose, Eq. (5.23) is re-written again for convenience.

;2+ a 2A2 - y ^ 2A2 
xcco2A2y

-(1 l r 2m)ycco2A\ {M r 2m)xcco2 A\ s2 +a>2%
s 2 + a)2A2 (5A.1)

Since A] , A2y, A^, xc and y c are all real constants, the coefficients in Eq. (5A.1) are all real. 

It will be convenient to note that the left-hand side of the Eq. (5A. 1) is a 3rd order

(  s Vpolynomial function f ( e )  in which s  = — .Therefore

m =

s + A2x 
0

- y  A2J  c  <p

s  + A2
- y X

X  A 2.

x A2 r 2(s + A2)c  <p m  V <p /

(5A.2)

The quantity / (e) is a smooth continuous function, that becomes infinite and positive as 

s  tends to + qo and becomes infinite and negative as e tends to -  oo. It is shown below 

that the quantity / (e) has a positive value as £ tends zero.

Substituting zero for e in Eq. (5A. 2) gives

/(O ) = ( r l~ x l - y ] )X \X \X \  (5A.3)

in which rm is the polar mass radius of gyration about the shear centre and can be related 

to the polar mass radius of gyration about the centre of mass, rmc, through the following 

equation

r 2 ~ r 2 + x 2 + y 2 (5A.4)
m m e c y  c  x '
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therefore

(5A.5)

The right side of Eq. (5 A. 3) is the product of four positive parameters and therefore /(0 ) 

is always positive.

Before discussing the roots of f { £ ) ~  0 it is useful to calculate the quantity / (s) when 

s = -A] and s -  -A2y as follows

Replacing s  with -  A] and -  A2y in Eq. (5A.2) gives, respectively,

It will be shown that f ( s )  has a constant sign at the four key points, which are£ = 0, 

e = -A ] , £ = -A 2y and £ = - o o .

Three main cases are distinguished and studied separately as follows

Case 1: -  A] < -A2y

Eqs. (5A.6) and (5A.7) give,

/(0 )> 0  (5 A. 8a)

(5A.6)

and

(5A.7)

0

f « ) >  o

(5 A. 8b)

(5 A. 8c)
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/ ( - 0 0 )  < 0 (5A.8d)

This implies that there are three negative real roots of the function / (s) in the intervals 

( 0-A2), (-A2y -A2x) and ( - ^ , - 0 0 ). (Figure 5A. 1(a))

Case 2: -  A2y < -A]

Eqs. (5A. 6) and (5 A. 7) give,

/(0 )>  0 (5A.9a)

f « ) <  0 (5A.9b)

f { -A) )>  0 (5A.9c)

/(-°o )<  0 (5A.9d)

This implies that there are three negative real roots of the function f ( e )  in the intervals 

(0 ,-^ ) ,  (-A2x,-A2) and (—A2 —0 0 ). (Figure 5A. 1(b))

Case 3: - A 2y = -A2x = -A 2

By inspection it can be seen that if Ay = Ax -  £ ,  Eq. (5 A.2) becomes

f ( e )  =  ( £  +A2) [ r 2 ( s  + A2) ( £  + A2) -  A 2A \ ( x 2 + y 2e )] (5A. 10)

and the roots may be calculated from

(e + A2 )[£2 + / 3£  + y] = 0 (5A. 11)

where

P = A2 + 4  and Y = - * l  - y 2eV £  (5A12)
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The required roots ej (/'= 1,2,3) are therefore

£, = -T 2, 2 e 2 = - 0 - A  and 2e} = -J3 + A (5A.13)

where A2 = 0 2 - A y  = (A2 -  A2 )2 +4A2A2(jc2 + y 2) / ^  (5A.14)

£! is clearly a negative root, as are e2 and e3, since

A > 0, y  > 0 and -  (3 < 0 (5A. 15)

Cases 1, 2 and 3 include all possibilities, so f { e )  always has three negative real roots i.e.

{slcof = - b 2 0 = 1 , 2 , 3 )

—X

/
-Xe

-X. -X

(a) (b) (c)

Figure 5A.1 The diagram of f ( s )  in terms of e

(a)

(b)

(c)

Case 1: -  X  < - Xx  y

Case 2: -  A2 < -Al

Case3: - A 2 =-A,
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CHAPTER 6

VIBRATION ANALYSIS OF ASYMMETRIC THREE- 

DIMENSIONAL WALL-FRAME STRUCTURES

6.1 INTRODUCTION

Three dimensional vibration of symmetric wall-frame structures were studied in Chapter 

three and it was shown that the translational and torsional vibration of such structures can 

be treated independently. However, in most wall-frame structures the serviceability 

requirements lead to an asymmetric arrangement of walls and frames. In such structural 

configurations, the translational and torsional vibration of the structure can no longer be 

studied separately since the set of governing equations of motion are coupled.

This chapter presents two methods of analysis for determining the natural frequencies of 

asymmetric, three-dimensional wall-frame structures. Such structures comprise 

asymmetric arrangements of planar frames and walls, which have been joined to each 

other by rigid diaphragms at each floor level. Each method is able to analyse asymmetric, 

three-dimensional wall-frame structures whose properties may vary through the height of 

the structure in a stepwise fashion at one or more storey levels.
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The first method utilises a continuum approach so that an asymmetric, three-dimensional 

wall-frame structure is divided into segments, by cutting through the structure 

horizontally at those storey levels corresponding to changes in storey properties. A typical 

segment is then considered in isolation. Initially, a primary frame and wall in one 

direction is replaced by its shear and flexural substitute beam, respectively, that have 

uniformly distributed mass and rigidity, thus utilising the continuum approach. In turn, 

each frame and wall in the same direction is replaced by their own substitute beams and 

the effect of all these beams is summed to model the effect of the original frames and 

walls. This leads directly to the differential equation governing the motion of the segment 

in the chosen direction. The same procedure is then adopted for those frames and walls 

running in the orthogonal direction. Once both equations are available it requires little 

effort to write down the substitute expressions for the torsional motion.

The second method utilises the Principle of Multiples and extends its application to three- 

dimensional asymmetric wall-frame structures. It will be shown that the substitute frame 

or wall-frame method can be used for the vibration analysis of asymmetric structures in a 

two-step procedure. First, the analogous uncoupled system will be analysed using the 

substitute frame or wall-frame method, then the relationship between the uncoupled and 

coupled frequencies will be determined via a cubic equation.

In order to validate the accuracy of the proposed methods, it was deemed necessary to 

carry out a parametric study.
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».2 CONTINUUM METHOD

>.2.1 Coupled Vibration Analysis

Consider the hypothetical layout of a typical floor plan of the asymmetric, three- 

limensional wall-frame structure shown in Figure 6.1. The plane frames run in two 

irthogonal directions are proportional to each other in any one direction, as are the walls, 

)ut the proportionality is not necessarily the same in both directions. The shear centre, S, 

ind flexural rigidity centre, O, at each floor level thus lie on a vertical line through the 

leight of the structure.

t  is assumed that the origin of the co-ordinate system is located at the flexural centre, 

vith the x and y co-ordinates running parallel to the plane frames and walls. The z-axis 

uns vertically from the base of the building. Points S ( ^ ,y s) and C(xc,yc) denote the

»hear rigidity centre and the centre of mass at a typical floor level, respectively. It is 

issumed that the floor system is rigid in its plane and that the centre of mass at each level 

lies on a vertical line, the mass axis, that runs through the height of the structure. When 

lie rigidity and mass axes of a structure do not coincide, the lateral and torsional motion 

if  the building will always be coupled in one or more planes. Since the aim is to find the 

latural frequencies of the structure, the externally applied forces Px and Py are zero.

Hie structure comprises wH> walls and ny frames running in the y direction and nHX walls 

md nx frames running in the x direction. The second moment of area and uniformly 

distributed mass of a typical wall i in the y direction are I ^  and m^.  respectively, while

those of wall j  running in the x direction are I wjg and . Likewise the effective shear

rigidity and uniformly distributed mass of a typical frame i in the y direction are 

represented by GAyi and and those of frame j  running in the x direction by GA^ and

mfi9
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H

Frame j

rigid  
diaphragm

t xs S

CP

Xf

Wall j p

Figure 6.1 Typical floor plan of an asymmetric three-dimensional 
wall-frame structure. O, S and C denote the locations of the 
flexure, shear and mass centres, respectively. The floor system 
EFGH is considered to be rigid in its plane.

During vibration, the displacement of the shear rigidity and mass centres at any time t in 

the x-y plane can be determined as the result of a pure translation followed by a pure 

rotation about the flexural rigidity centre, see Figure 6.2. During the translation phase the 

flexural rigidity centre moves to O', the shear rigidity centre S moves to S' and the mass 

centre C moves to C', displacements in each case of u{z,t) and v(z,t) in the x and y 

directions, respectively. During rotation, the shear and mass centres moves additionally 

from S' and C' to S" and C", respectively, an angular rotation of (p{z,t) about O'. The 

resulting translations, (us,vs) and(«c,vc) of the shear and mass centres in the x and y 

directions, respectively, are

v,(z>0 = v{z,t) + xs<p{z,t)

(6.1a)

(6.1b)

and
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Uc(z,t) = -u{z,t) - y c<p(zj) 

v c ( z >t )  = v(z ,t) + x c<p(z,t)

(6.1c) 

(6. Id)

More generally, it is clear that the displacements of a typical point (xlty,) are given by 

Eqs. (6.la) and (6.lb) when s = /.

• s
■G->

0-

—  O a —

Figure 6.2 Coupled translational-torsional vibration of the 
structure. O, S and C move to O ', S' and C ', respectively, during 
translation and S' and C' moves additionally to S" and C* during 
rotation about O '.

The structure is now divided into segments along the z axis by notionally cutting the 

structure along horizontal planes at those storey levels corresponding to changes in storey 

properties. Figure 6.3 shows a typical segment formed by cutting the structure through 

planes EkFkGkHk and Ek+\Fk+\Gk+\Hk+\ that correspond to the k and k+ 1 changes in 

storey properties. The number of storeys in any one segment can vary from one, to the
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total number of storeys in the structure if it is uniform throughout its height. However, in 

any one segment each storey must have the same properties.

k+ l

k + l

■k+l

Figure 6.3 Typical segment formed by cutting the structure 
through planes and Ek+\Fk+\Gk+\Hk+\ that correspond to
the k and k+l*  changes in storey properties. (Walls and some 
column and beam members have been omitted for clarity.)

We now consider a typical segment in isolation and seek to replace each primary frame 

with a substitute shear beam and each primary wall with a substitute flexural beam that 

replicate their in-plane motion. We start by considering a typical frame, frame that runs 

parallel to the y-z plane, see Figure 6.1. This whole frame is replaced by the single 

substitute shear beam, beam /, shown in Figure 6.4a. This beam is a two-dimensional 

shear beam of length L and has uniformly distributed mass and shear stiffness. The mass 

and elastic axes therefore coincide with the local z-axis and the elastic axis is only 

permitted shear deformation v .(z j )  in the y direction, where z and t denote distance from

the local origin and time, respectively. Likewise, we consider a typical wall, wall /, 

running parallel to the y-z plane and replace it by the single flexural substitute beam, 

beam /, shown in Figure 6.4b. This beam is a two-dimensional flexural beam of length L 

and has uniformly distributed mass and flexural stiffness. The mass and elastic axes
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therefore coincide with the local z-axis and the elastic axis is only permitted deformation 

v, (z ,0  in the y direction.

L
■o
©
t)
©

"O
c3

(a)
Q \y i

(b)

Figure 6.4a Coordinate system and sign convention for the 
substitute two-dimensional shear beam in the local y-z plane, 
a) Member convention b) Element convention.

V2i

L
T3

y
Q \yi

(a)

Figure 6.4b Coordinate system and sign convention for the 
substitute two-dimensional flexural beam in the local y-z plane, 
a) Member convention b) Element convention.
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The motion of two-dimensional, shear and flexural beams have already been studied in 

Chapters 2 and 5. The transverse shear force for the substitute shear and flexural beams 

for frame and wall i running in the y-z plane, respectively, are

e , - o A , ^ H  ( 6 2 a )
oz

Q.y, = -E l„  d 'V̂ / > (6.2b)

where v. and v, are the deformation of frame i and wall / in the y direction, respectively.

The dynamic equilibrium for motion of the structure in the y-z plane may then be written 

as

d ^  d3vy(z,/) a 2v ,( z ,0 ^

(6.3)

Noting that GAyi and Elwyi are constant over the length of the member and substituting for 

vi (z , t) and v, (z,t) from Eq. (6. lb) with c replaced by i gives

Y - R I  d4(v(*,0 + *<p(*,0) , d2(v(z,t) + x i<p(z,t))
h  *  dz4 tT  * dz2

-  Y  m d 2 ̂ Z’ ̂  + *‘̂ Z’ ̂  ^  -  d2(y(z,t) + xi<p(z,t)) _
^  dt2 t r  dt

-  £ mfyl ■ = 0 (6 4>

where jc, and Jcr. are the distance of frame / and wall / from the flexure centre, O , 

respectively. Since O is the centre of flexural rigidity, ^ E I ^ X ;  = 0 and Eq. (6.4) can be
/=!

simplified to
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£ j  d v(z,t) d v(z t) q a  ^  <P(z,t) d v(z,t) , & 9>(z>0  _ «
-  dz4 dz2 +m>' + X‘m>' ~ °

in which
(6.5)

EI* > = L E1*yt (6.6a)
r = l

= j^x .G A ^  where GAy = J^GAy: (6.6b)
/= 1  i = I

n*y ny
and x c m y = Z  + Z Jr-mM w h e re  m y  = + Z 7”*. (6-7)-

/ = !  »=1 r = l  »=1

Since the total mass of the segment contributes to its vibration, including the mass of the 

frames running in the x direction and the rigid diaphragms, my should be replaced by m, 

where m is the equivalent distributed mass over the height of the segment. Therefore Eq. 

(6.5) becomes

El x f i A y ^ l  + m ^ H  + Xcm ^ l  = 0 (6.8)
*  dz4 y dz2 y dz2 dt2 dt2

In an identical fashion, the dynamic equilibrium relationship for motion in the x-z plane 

yields the second governing differential equation as

E Im ^ ^ - G A ^ ^  + ysGAx^ ^  + m ^ ^ - ycm^ i ^ ^ 0  (6.9) 
dz4 dz2 dz2 dt2 dt1

in which

7=1

y,GA, = X  yjGA^ where GA„ = £  GA^ (6.11)
7=1 7=1

y*m,  = T aW *  + l L y j m*  where m* = Z m««+ L m/» (612)
7=1 7=1 7=1 7=1
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where y ,  and y j are the distance of frame j  and wall j  from the flexural rigidity centre O, 

respectively.

Finally, it should be noted that the plane frames and walls running parallel to the x-z and 

y-z planes also provide the torsional stiffness of the building. Thus the required equation 

for torsion can be developed from a consideration of the torsional equilibrium about O, 

which yields

„ d 2( u ( z , t ) - y  g>(z,t)) d 2( u ( z , t ) - y . p ( z , t ) )
I > ^ , ---------- *5-------------2 > ^ ----------- *5----------  “ 0 ( 6 . 1 3 )

or

( 6 . 1 4 )

in which

( 6 . 1 5 )

( 6 . 1 6 )

( 6 . 1 7 )
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E l and GJ0 are the torsional rigidity of the walls and frames about the flexural rigidity 

O, respectively. Comparing Eq. (6.14) with the theory describing the torsion of members 

with thin walled cross-sections, E I ^  and GJ0 can be recognised as the warping and Saint- 

Venant torsional rigidity respectively. Ig is the polar second moment of mass about the 

flexural rigidity centre O.

As in the case of symmetric structures, the out of plane stiffness and inertia of the plane 

frames and walls running in the x and y directions, as well as that of the rigid diaphragms, 

should be taken into account. Thus Eqs. (6.8), (6.9) and (6.14) can be rearranged in the 

following form

E I _  -  GA. dE E H  +  y sGAx + m ^ l - y cm^ p O  =0(6.18a)
dz d z ‘ d z ‘ dr dr

El... _ GA.. _ XmGA_ g > ( y )  + + Xjn  = 0(6.18b)
y d z : 

\2

s  y

El . . .  d  -  G J .  +  y  GA,

d z 2 

d 2u ( z , t )

8 t 2 ‘ df
s2.

W*K

+ 1 ,

dz

d 2(p(z , t )

d t 2

d z ‘ dz
2 -  x sGAy

d zv ( z ,  t)  

d z 2

- y cm
d 2u ( z , t )  d 2v ( z , t )

dr
+ x m

dr
=  0 (6.18c)

Eqs. (6.18a-c) are the governing differential equations of vibration of an asymmetric 

three-dimensional wall-frame structure.

6.2.2 M em ber Dynamic Stiffness Matrix

Eqs. (6.18) are now solved and posed in dynamic stiffness form. Although each equation 

was developed individually from a consideration of the planar flexural and shear beams of 

Figure 6.4, they now describe the motion of a three-dimensional, flexural-shear coupled 

substitute beam whose coordinate system and sign convention are shown in Figure 6.5. 

This beam (exact finite element) will replace a typical segment of the original, 

asymmetric, three-dimensional wall-frame structure. The whole of the original structure 

can then be reconstituted by assembling the exact finite elements corresponding to each 

segment in the usual way.
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B i

undeflected

deflected

{?2r

B

5 u

8 z

(a)

undeflected

B

M +

t + % Ldz

(b)

Figure 6.5 Coordinate system and sign convention for forces and 
displacements of the three-dimensional flexural-shear coupled 
substitute beam, a) Member and element convention for the x-z 
plane, b) Member and element convention for the y-z plane
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Eqs. (6.18) are solved on the assumption of harmonic motion, so that the instantaneous 

displacements can be written as

u(z,t) = U{z)smcot (6.19a)

v(z,r) = F(z)sintftf (6.19b)

(p(z,t) = &{z)smcot (6.19c)

where U(z), V(z) and <P(z) are the amplitudes of the sinusoidally varying translations and 

torsion, respectively and co is the circular frequency.

Substituting Eqs. (6.19a-c) into Eqs. (6.18a-c) gives:

EIwxU wn{z) -  GAxU \ z )  + y aGAx<S>\z) -  mco2U{z) + y cmo)20(z)  = 0 (6.20a)

EIyryVWf,{z)-  GAyV \ z )  -  xsGAy0 \ z )  -  mco2V{z) -  xcmco2&(z) = 0 (6.20b)

E U & ' i z )  -  GJ0<S>\z) + y,GAxU \ z )  -  xsGAyV \z )

-  I gco2<&(z) + y cmo)2U{z) -  xcmo)2V{z) = 0 (6.20c)

Eqs. (6.20a-c) can be written in the following non-dimensional form

U ” {£) ~ cc]U\£)  + y sa 2x<t>”(Z) -  J32xco2U(£) + y cco2/? > (£ )  = 0 (6.21a)

V " ( f )  -  a ] V ’(4) -  xsa]<S>"(4) -  p 2w 2V(4) -  xcco2 p 2y<P(4) = 0 (6.21b)

<b"{£) -  a 2Q>’(4) + y ,  -  x, %  V"(4)
r ,  Yy

-  (O2 + y y  ^ -U (4 )  -  X,a>2 ^yV (4 ) = 0 (6.21c)
Y ,  Y y

in which £ = (z IL) ,L  is the length of the element, and

a ] = ^ L 2, a 2 and a 2 = ^ L 2 (6.22a>b,c)
EIX Ely E lw
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R2 = Tll_ r 2 rnL4
El  ’ v EL.

, n2 mL4 2and p i  =  r“
El

2  El
r x = EI.

and ^  =2 £7.
y El.

(6.23a,b,c) 

(6.24a,b)

where rm is the polar mass radius of gyration about O i.e.

(6.24c)

Eqs. (6.21a-c) can be rewritten in matrix form as

D4 ~ <x2xD 2 -co2Pi  
0

ay s —f D + y car
r x r:

y sa 2x E>2 + y c<»'P.
-  xsa \D 2 - x cco2p 2yD 4 - a \ D 2 -o ) 2p ;

- ^ 4 o 2 - ^ 24  D ' - a f ' D ' - a ' P l
r v r v

v{£)
*Kf)

= 0(6.25)

in which D = d / d g .

Eq. (6.25) can be combined into one equation by eliminating all but one of the 

displacements to give the twelfth-order differential equation

D4 - a 2xD 2 -co 2P 2X 
0

a  I 2 2 Pi
y * - f D  - f

r x r x

o
D 4 - a 2D 2 -co2p\y r y

a 2 B2y r \  2 2 r yx . —r-D -  x m  —tt

y , a 2xD 2 + y ca>2fi  
~ x sa 2D 2 - x cco2fi2

D A- a l D 2 - m 2/3l

2  n 2

W (f) = 0 (6.26)

where W -  U, V or 0

The solution of the differential Eq. (6.26) can be obtained by substituting the trial solution 

= es4 to give the characteristic equation

PhD Thesis, B. Rafezy, 2004
187



T2 - a 2xT - ( 0 2p 2x

0

<*l 2 P\y s - i-r+ yc&  - f  
r x r x

T2 - a 2yT-CQ*p
a

~  X ,

y
% - T - W

2
y

pl
r l

y ,a lz  + y c0)2p 2x 
- x m I t - x m 1 f t

T - a 9T a>2Pl

W { 4 ) = o (6.27)

or

f6 _ ( a x  +<*l+al)T5 H-a>2P l - c o 2p 2y -CO2Pl  +  « #  +  a > 2 + a X  - x 2s ^ - y ] 4 ) r '

y  y y x
+ (co2a l P l + o r a 2xP l + a} 2a l P l  + a 2a 2yP l  + coWy p l  + w 2a l p 2y - « » ;

p2 /j2 4
v  s .y 2 n , 2 P *  9 v r- ^ 2 ^v2 P y  2 2 S  . ,2  2 y _ 3

- —  ~ l x c x s G )  a  —  +  Xsax —  +  y sa  —  ) t
r x  Y y  Y y  Y x

+ (co‘P l P l  + co>P l P l + c o >P l P l - c o 2a l a 2y P l  - c o 2a l a \ P l - c o W ^ p l

-  x X  4  -  > '> 4 4  + 2X y x X a X y  4  + 2W 2« K  4  + * > 2 A  4 +
r v r* r v r .

+ (-o>4a l P 2yP l - < o 4a 2yP l P l - c o ' c t l P l P l  + *2®4a 2 4  + 4
^  V

+ 2 x . x X P l P l  4  + 2 y * y X P \ P l  4 ) r
rv r ,

>2
+ {-CO6 P l P l P l  + *eV  A  4  + r > 6 A2 4 )  = 0 <628)

r ,  r  x

in which r  = 52 (6.29)

Eq. (6.28) is a sixth order equation in terms of r  and it can be proved (Appendix 6A) that 

it always has three negative and three positive real roots. Let these six roots be r,, r2, r3,

-  r 4, -  r 5 and -  r6, where ry (/= 1,6) are all real and positive. Therefore the twelve roots

of Eq. (6.27) are

a - a  P , - P  y ~ y  i S - i S  iTj- i r j  i f * - i p
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where i = V-T and

a = VC P = 2. r = VC 5 = VC V = V*7 and M = ^ (6.30)

It follows that the solution of Eq. (6.26) is of the form

W(g) = Cj cosh + C2 sinh + C3 cosh + C4 sinh /?£ + C5 cosh yg + C6 sinh yg +

Eq. (6.31) represents the solution for both displacements U(g), V(g) and torsion 0 (g ) . 

Since U(g) , V(g) and 0(g)  are related via Eq. (6.26), they can be written as

U(g) = C" cosh ag + C“ sinh ag + C3“ cosh fig  + C “ sinh fig + C“ cosh + Q  sinh +

C“ cos + Cg sin Sg + Cl cos 77<f + C"0 sin rjg + Q" cos //£ + C“2 sin fig (6.32a)

V(g) = Qv cosh ag  + Cl sinh ag  + C3 cosh fig  + C\ sinh fig + C5V cosh yg + Cl sinh yg +

Cl cos Sg + Cg sin Sg + Cl cos rjg + Cjv0 sin rjg + C^ cos jug + C{2 sin fig (6.32b)

* ( f )  = Q  cosh + C2 sinh c&f + C3 cosh fig + C4 sinh fig + C5 cosh + C6 sinh ̂  +

C7 cos + C8 sin Sg + C9 cos rjg + C10 sin tjg + Cn cos jug + C12 sin jug (6.32c)

in which the constants C " , CJ and Cy (y =1,12 ) can be related through Eq. (6.26) as

C7 cos Sg + Cg sin Sg + C9 cos rjg + C10 sin rjg + CU cos jug + C12 sin jug (6.31)

c; = t'jCj and c; = t]Cj (7= 1,12) (6.33a,b)

where

(6.34b)

(6.34a)

PhD Thesis, B. Rafezy, 2004
189



x . a l x , + x.a>2p l
tV2M = t l j = - y  % > 0 -1 2 ,3 )  (6.34c)

Tj -c iy t j  -a> p 2y

, , ~ xsa l Tj + xcco2 P i
2 j - \  ~ t 2 j  ~ 2 , f y 2  2 r>2 (/~4>5>6) (6.34d)Tj + a yTj -  co Py

Following the sign convention of Figures 6.5(a) and 6.5(b), the expressions for the 

bending rotations O f t )  and 0y( ^ ) , bending moments M x(<̂ ) and M  f t )  and the shear

forces Q f t )  and Q f t )  in the x and y directions, the torque T(g) and the bi-moment

B ft)  can be obtained from the appropriate stress/strain relationships as

0,(£) = = ( -)(c ,“a  sinh a #  + C ‘a  cosh + C “P  sinh P%+C\p  cosh P4 + C“y sinh r i
Is L

C l y c °sh -  C l S s in 8% + C 8“S c o s - C l 77s in rj£ + C"0 77cos 77^ - Cj“n sin f t  + Ĉ 2jucos f t )
(6.35a)

0y (£) = Y S i l  = ( I ) ( c iv«  sinh + C2vacosh + C V,J3 sinh f t  + C\(Scosh f t  + C5>  sinh
Is Id

C lr  cosh y ^ - C ^ S  sin f t  + Cg S  cos S ^ - C ^ tj sin 77^ + 6 ^ 7 7  cos 77^ -  C*,// sin //£ + C^/i cos //^)
(6.35b)

1 dO 1 /0 '(£) = —(---- ) = (—)(Cya sinh ag + C2a  coshf t  + Ĉ J3 sinh f t  + C4f i cosh /?^ + C5 7'sinh 7 '^
L L

C6 y cosh y^ - C jS  sin 5% + CsS  cosS £ - C 9tj sin f t  + Cl0rjcos f t  - C nju sin f t  + C12// cos //£)
(6.35c)

in which 6X, 0y and 0 '  are the gradient of U, V and 0  with respect to z, respectively. 

The expressions for the corresponding forces are

M f t )  = 

M f t )  =

G ,(f) = 

e , ( f )  =

- E l

~ 1 F

- E l
~ T 2

- E l

U f t )  

> v*(g)

GA,
U-{£) + — ± ( u { Z ) - y s<t>(4)) 

L L

—-Y- v’it) + — ^(K(f >+x.neii
I s  T/

(6.36)

(6.37)

(6.38)

(6.39)
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-  FT
B(4) = — ^ < p ’(4) (6.40)

T(4) = ~ ^ < p m( 4 ) + ^ 0 ' ( . 4 ) +^ ( Y ( 4 ) + xs0 (4 ) iX s -  ^ ( U ( 4 )  -  y ,0 (4 ) i y ,

(6.41)

in which GJS is the torsional rigidity of the walls about the shear rigidity centre S. Eq. 

(6.41) can be simplified to

T(4) = + ^ f - 0 \ 4 )  + V'(4) -  ^ - U ' ( 4 )  (6.42)
jL L/ xL/

The nodal displacements and forces can now be defined in the member co-ordinate 

system of Figures 6.5(a) and 6.5(b), as follows

At

0ll u = u{, 0x = ou . v  = vl , ey =e,y , 0  = <p „ 0 '  = <p [ (6.43)

At 4 = 1 u = u2, e, = e2x, v  = v2, ey =e2y, 0  = 0 2, <p ' = 0'2 (6.44)

At 4 = 0 QI = -Q lx, M x = M ix,Q y = ~Qi,> M y = M ly, T = -7 i ,  B = B, (6.45)

At 4 = 1 Q* = Qix, M x = - m 2x , Qy = & ,.  M y = -M 2y, T  = T2, B = - B 2 (6.46)

The nodal displacements can then be determined from Eqs. (6.32) and (6.35) as

0.,

v2

V2

*2

<r 0 n 0 0 0 h 0 *n 0
0 a _

l ' 2 0 i< 0 f ' ‘ 0 S .
Lf* 0 L*'0 0 E f  L 12

'.v 0 tl 0 0 t? 0 0 <r. 0
0 a v

r ' 2
0 h 0 0 S v 

L * 0 f ; 0

1 0 1 0 1 0 1 0 1 0 1 0
0 a

T 0 p_
L 0 7_

L 0 8
L 0 n

L 0 £
L

<*cha ‘‘Sha tjChp t,Shfi ‘“Chr ‘ISh, h C s li Ss 9̂ C rf 1̂0^17 *11CM ll2 SM
—t“Sha L ' 0

—t“Cha L 2 0
Sh.L 3 p T ‘:ch' T -,;chrL * T — tiSs L 7 * £ * ' zIL.-sL 9 * TLt'C L 14 7

zJLt-sL " A Et-rL 12 M
t;cha r2sha tjCh p **Shp t;ch. ‘;shr hCj CtSs **Cq 1̂0 Sq 1̂1 c p ‘nSp

-ccha L 2 0
f ; » . T':Ch> — tiSsL 7 * -rtcsL * 5

— t;snL 9 ” TireL 4 zJLrsL 11 " TireL 12 "Cha Sha Chp Shfi Chr Shr c* S,
—  Sh —Ch —Sh. — Ch. —Sh7 T-chr ^ S . -c ,L L ° L P L p L T L r L * L * L ” L ” L “ L A .

(6.47)

C,
Ca
C,
c4
C,
c,
C7
C,
C9
c, 0
C»
c„

i.e.
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d=sc (6.48)

where

Cha = cosh a , Chp = cosh j.3 , Chy = cosh y , Cs ~ cos£ , Cv ~ cos7 7 , CM = cos/i  

5/2a = sinh a , Sh^ = sinh P , Shy = sinh p , 5^ = sin £ , = sin 7 7 , = sin n  (6.49)

Hence the vector of constants c can be determined from Eq. (6.47) as

c=s'*d (6.50)

In similar fashion the vector of nodal forces can be determined from Eqs. (6.36-42) and 

(6.45-46) as

‘ a / 0 * 1 ,2 0
* M

0 * , 6 0 0 * 1,10 0 * 1 ,1 2 ■ Q "

W , . * 2 ,1 0 * 2 , 3 0 * 2 ,5 0 * 2 , 7 0 * 2 ,9 0 * 2 ,1 1 0 c 2

a ,
0 * 3 ,2 0 * 3,4 0 * 3 , 6 0 * 3 ,8 0 * 3 ,1 0 0 * 3 ,1 2 c 3

* 4 ,1 0 * 4 , 3 0 * 4 , 5 0 * 4 , 7 0 * 4 ,9 0 * 4 ,1 1 0 Q

T, 0 £ 5,2 0 * 5 . 4 0 * 5 , 6 0 * 5 ,8 0 * 5 ,1 0 0 * 5 ,1 2 c 5

A , * 6 ,1 0 * 6 ,3 0 * 6 ,5 0 * 6 , 7 0 * 6 ,9 0 * 6 ,1 1 0 Q

Qu B 7.1 * 7 , 2 * 7 , 3 * 7 . 4 * 7 , 5 * 7 . 6 * 7 ,7 * 7 ,8 * 7 ,9 * 7 ,1 0 * 7 ,1 1 * 7 ,1 2 c 7

* M * 8 , 2 * 8 ,3 * 8 ,4 * 8 ,5 * 8 ,6 * 8 ,7 * 8 ,8 * 8 ,9 * 8 ,1 0 * 8 ,11 * 8 ,1 2 C 8

Q i , * 9 ,1 * 9 , 2 * 9 ,3 * 9 , 4 * 9 , 5 * 9 ,6 * 9 ,7 * 9 ,8 * 9 ,9 * 9 ,1 0 * 9 ,1 1 * 9 ,1 2 c 9

M , * 1 0 ,1 * 1 0 ,2 * 1 0 ,3 * 1 0 ,4 * 1 0 ,5 * 1 0 ,6 * 1 0 ,7 * 1 0 ,8 * 1 0 ,9 * 10,10 * 10,11 *10 ,12 C 10

7 ) *11 ,1 * 1 1 ,2 * 1 1 ,3 * 1 1 ,4 * 1 1 ,5 * 1 1 ,6 * 1 1 ,7 * 1 1 ,8 * 1 1 ,9
D

^ l U O *11,11 *11,12

. B 2 . _ * 1 2 ,1 * 1 2 ,2 * 1 2 ,3 * 1 2 ,4 * 1 2 ,5 * 1 2 ,6 * 1 2 ,7 * 1 2 ,8 * 1 2 ,9 * 12,10 *12,11 * 12 ,12  _ . ^ 1 2  _

(6.51)

i.e.

f=bc (6.52)

where
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b i ,2 =  tu1{a3Bx - a C x) + y 4aCx (6.53)

B,,4 = tuA f i 3Bx - f iC x) +  y spC, (6.54)

B u = t;< r i B , - j c , ) + y , r e , (6.55)

Bl s = tZ (-S3Bx -S C x) + y sSC, (6.56)

B u o  -  ‘«>(-viB< - * £ , ) + y,ircx (6.57)

B\,\2 ~  Bx ~ B ^ x ) + y sBCx (6.58)

B 2,l ~  ~h Ax) (6.59)

b 2,3 = - ‘“(P 2a x) (6.60)

b 2 ,s  = - ‘“( r 2Ax) (6.61)

B 2 J  = / , “ ( S 2Ax) (6.62)

S 29 = l“(rj2Ax) (6.63)

B2,U = ‘u(P 2Ax) (6.64)

b 3,2 = t l i a i By -  aCy) -  xsaCy (6.65)

Bi4 = t l{ P iBy -f3Cy ) - x s/3Cy (6.66)

B i ,e  = tl ( r iBy - l C y) - x syCy (6.67)

BM = t l ( - S 3By -S C y) - x sSCy (6.68)

S 3.10 = C ( - ,7 2By - V C y) - X sT]Cy (6.69)

B X \2  = ‘ \7 (~M3B,  ~ / £ y ) - X sfjCy (6.70)

B4 l = - t [ ( a 2Ay ) (6.71)

B4̂ - t l ( p 2Ay ) (6.72)

B4 i = - t ; ( r 2Ay ) (6.73)

B4J = t] (8 2Ay) (6.74)

B4 9 =t;(rj2Ay ) (6.75)

B4M =<t\(M 2Ay) (6.76)

B, , 2  = ‘ I  (y,aCx) - 1\ (xsaCy) + a  3E „ -  ccF0 (6.77)

B5.4 = t“4{yspCx) - t l { x ,p C y) +  p 3Ea -  pFa (6.78)
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S 5,6 = ee (y .fC , ) -  ‘I (xsyCy) + y 2E0 -  yFa (6.79)

Bs,» = i y A ' i ) ~ t l(x sSCr ) - S 3Ea - sf„ (6.80)

5j.,o = CO '.'TC ,) -  ' 1 0  ) - r j 3E „ -  tjF, (6.81)

B sn= t'2{y ,vC ,)-tIA X sV C y ) - M 3E0 - jliF0 (6.82)

B6., = ~ a 2D0 (6.83)

Be, 3 = - P 2D0 (6.84)

B u  = - / 2«„ (6.85)

S6.7 = S 2D0 (6.86)

Be,, = Ij’D. (6.87)

f l 6,U  = (6.88)

A , = (~ a 3BxSha + aCxSha ) - (6.89)

fi7.2 = t“( - a 3BxCha + aCxCha ) -  y xaCxCha (6.90)

B „  = / “ ( - f t i BxSh/! + pCxShf ) -  y ,pC xShf (6.91)

Bn. 4  = 'I  { - p 3BxChp + ^ C A , ) -  y,fiCxChfi (6.92)

R,, 5 = <5" ( - r sBxShy + yCxShy) -  y xyCxShy (6.93)

Bn.e = ‘ "e ( - r 3BxChy + yCxChy) -  j y C xC ^ (6.94)

B ,j = t ; ( - S 3BxSs -S C xSs ) + y ,X :xS s (6.95)

Bi,i = t% (S3BxCs +SC,C3) - y sSCxCs (6.96)

Bn., = /9" ( V A S ,  -  * 7 ,5 ,)+  S, (6.97)

a , , 10 = (io('?!b , c ,  + ^ A C ,) -  y , v c , c q (6.98)

Bn, 1 , = (-A 3a  A  -  A -,A .)+ (6.99)

^ 7 .1 2 = ?a (ji 'B xClt+ vC xC ' ' ) - y ,v C xClt (6.100)

B%x = t ‘ ( a 2A , C \ ) (6.101)

B>2= t‘ (a 2AxSha) (6.102)

BS3=r3( p 2AxChfi) (6.103)

Bm = t “( 0 2AxShfi) (6.104)
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B8l5 = ‘“( r 2AxChr ) (6.105)

B>, 6 = t l ( Y 2A,Shr ) (6.106)

Bv  = - l “(S2AxCs ) (6.107)

BM = - t “(S2AxSs ) (6.108)

= - n t f A c , ) (6.109)

^8,10 = 1̂ 0 (̂ 7 AxSjj) (6.110)

^8,11 = -tn(M AXCp) (6.111)

8̂,12 = ~hl (/* ) (6.112)

£ 9i1 = r; (-cc3BySha + oCy5/2a) + xsocCySha (6.113)

B9,2 = t l i -a *  ByCK + a CyCha) + xsoCyCha (6.114)

B9,t> = t ; ( -p*ByShfi + fiCyShp) + xspCyShp (6.115)

B9A = t ; { - p 3ByChf} +/3CyChp ) + xspCyChf} (6.116)

b95 = t v5( - r 3Byshr + } c yshr ) + x sj c yshr (6.117)

B9,e = t v6( - r 3Bychr +Je ychr ) + x sle ychr (6.118)

B9J = t ; ( - S 3BySs - S C ySs ) - x sSCySs (6.119)

B9<s = t ;  C8 3ByCs + SCyCs ) + x,acyc s (6.120)

B99 = t9(-rj3BySn - TjCySn) - xs7jCySn (6.121)

£ 9,10 = '1 0  in3 Byc n + ) + x r̂jCyC^ (6.122)

B9,n =th(~M3BySM - { jC ySM) - x s/jCySM (6.123)

b 9 1 2  = t i2(ju3ByCM +{/CyCM) + xs{jCyCfi (6.124)

Bm  = t ; ( a 2AyCha) (6.125)

Bl0'2 = t v2( a 2 AySha ) (6.126)

Bl0A= t ; ( f i 2AyChp ) (6.127)

B\o,4 -  t vA(P 2AyShp) (6.128)

Bl0,5 = t V5 ( r 2AyChy) (6.129)

B i 0,6 = t l ( Y 2AySh7) (6.130)
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s io,7 =-t'1(S2AyC3) (6.131)

Bl<iX= - t H d 2AySs ) (6.132)

B\o,9=-tl{n2AyCv) (6.133)

Bio,io =-tw(*l2A,Sv) (6.134)

BWM = -t'n(M2 AyC „) (6.135)

5.0.12=-'|2 (M2AySM) (6.136)

Bm  = ( - y M ' ,S h a ) + t^(x,aCySha ) -  + aFoSha (6.137)

Bi i,2  = { - y sccCxCha ) + r) (xsaCyCha) -  a 3E0Cha + <xF0Cha (6.138)

, 3  = t" ( - y ,p C xShf ) + 1; (xspCyShp) -  /33E0Shfi + fiF0Shf  (6.139)

B, , , 4  = t ‘t { - y s{!CxChp) + r) (xspCyChf ) -  f E ^  + pF0Chp (6.140)

*U 5 = (~ ys)<-\Shr ) + tl(x,yCyShy) -  f E 0Shr + (6.141)

Bi1 6  = t “ i - y s )CxChy) + t l  (xs 7CyChy) -  r*E0Chr +yFcChr (6.142)

« „ . 7  =t'1{ysSC,Ss ) + t ; { -x sSCyS s ) - S i E0Ss -SF 0Ss (6.143)

B^ = t l ( . - y ,S C ,C s ) + t l (x sSCyCs ) + 8 iEl>Cs +3F0CS (6.144)

5 . . . 9  = ( y , l C J „ ) + (~xxrjCyS n) -  t,2E0S, - ijF .S , (6.145)

«u.o = C (-3 ',7 C ;tC ,) + rr0( x ^ C , )  + 7 3£ <>C, (6.146)

Bn.u = t Un(ysFCxS),) + t;i( -xsfjCySll) - n , E<,Sl, - juF0Sm (6.147)

S,U2 = ‘n ( - y ^ / : , ) + t K x , ^ : / : ^ ) + ^ e 0c ,  + ^ c y (6.148)

Bw = a 2D0Cha (6.149)

Bn 2 = a 2D0Sha (6.150)

So* = P 2D.Ch, (6.151)

Bl24= p 2D0Shfi (6.152)

Bi2,i = r 2DaChy (6.153)

S.2.6 = r 2D„Shy (6.154)

Bw  = S ' D . C ,  (6.155)

Bi2X= - 5 2D0S s (6.156)

-----------------------------------------------------------------------------------------   196
PhD Thesis, B. Rafezy, 2004



5 i 2 , 9 = - ' 7  2D„Cn (6.157)

Bi2.v,=~V1D0S n (6.158)

fii2.n = -M 2d oC„ (6.159)

Ba,i2=-M2D0SII (6.160)

and

, K ] * , F J y
Ay = ~[f- (6.161a,b)

El El
B* = - j f - ' By = - J T  (6.162a,b)

GA GAV
Cx = , Cy = — (6. 163a, b)

L L

EJw*_ F E l ^  GJr
1} ’ ° ]} ’ ° L

D0 = EQ = , F0 = (6.164a,b,c)

Thus the required stiffness matrix K  can be formed by substituting Eq.(6.50) into Eq.

(6.52) as

k=bs_1 (6.165)

6.2.3 W ittrick-W illiam s Algorithm

The dynamic stiffness matrix, K, when assembled from the member stiffness matrices, 

yields the required natural frequencies as solutions of the equation

K D  = 0 (6.166)

The Wittrick-Williams algorithm can then be used again to solve this transcendental 

eigenvalue problem. The algorithm has already been explained in Section 2.2.2.1.2 and
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here only two key equations for finding the natural frequencies of the structure exceeded 

by trial frequency co are given for convenience as

J  = J 0 + s{K } (6.167)

where

(6.168)

In the present case due to complicity of the expression it is impractical to determine the 

value of Jm for a structural member symbolically using direct approach. However the 

result is achieved by an argument based on Eq. (6.167) and applied Wittrick-Williams 

algorithm (Wittrick and Williams 1971) in reverse. The procedure corresponds to the one 

originally proposed by Howson and Williams (Howson and Williams 1973) and was 

described in Section 2.2.2.1.2.

The stiffness relationship for this single member with simply supported ends can be 

obtained by deleting appropriate rows and columns from Eq. (6.165) as

^ 2 . 2 * 2 , 4 * 2 , 6 N) OO 2,10 2,12 Ou
* 4 , 4 k 4,6 * 4 , 8 * 4 , 0 * 4 ,1 2 *1,

A * 6 , 4 * « * 6 ,8 * 6 ,1 0 * 6 ,2 <P\

* 8 , 2 * . . 4 * 8 , 6

00 8,10 * 8,12 0 2 ,

10,2 * 1 0 ,4 *,o,o 0 00 * 1 0 ,1 0 * 10,12 0 2  y
B 2 _ _ * 1 2 ,2 * 1 2 ,4 * . 2,6 2,8 12,10 * 1 2 ,1 2 _ * 2

(6.169)

or

m„ k«i 0s (6.170)

where k,s is the required 6x6 stiffness matrix of this simple one-member structure 

Application of the Wittrick-Williams algorithm to this simple structure gives
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J „ = J m+ s{km} (6.171)

or

J m = J „ - s { k  J  (6.172)

Where Jm, Jss, and s{kM} have already been defined in Section 2.2.2.1.2.

Evaluation of J„ relates to the boundary conditions that yield a simple exact solution, as 

explained below.

For the simply supported case, the boundary conditions are defined for 

£ = 0 and £ = 1 as U = V = <D = 0 and M  = M  = B = 0 (6.173)•* y

Based on Eqs. (6.32a-c), (6.36-37) and (6.40), these conditions are satisfied by assuming 

solutions for the displacements (/(f), F(f) and 0(f) of the form

(/( f)  = C, sin(//rf) ( i  = 1,2,3,...,oo) (6.174a)

E(f)  = Df sin(/;rf) 0  = 1,2,3,... ,co) (6.174b)

0 ( f )  = sin(//rf) f i  = A2,3, (6.174c)

where C/, A  and E, are constants.

Substituting Eqs. (6.174a-c) into Eq. (6.25) gives
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(in)4 + a 2x(i7t)2 -  co2Pi  
0

.2 n l

2 n l0 - y sa x{in) + y ca> P
{hr)4 + a \(iK )2 -  a 2p \  xsa \{ in )2 -  xcco2p l

a
- y s - ^ ( i x )  + y ca>d

K
5
r\

%
r'y

Xs - ^ { i 7 t f  - X C(D2 ^ f  ( j * ) 4 + a l ( i 7 T ) 2 -CD2P i

Q

D i

E :

0

(6.175)

in which co represents the coupled natural frequencies of the member with simply 

supported ends. The non-trivial solution of Eq. (6.175) is obtained when

(i*)4 + a \ ( i n f  -  co2p]  
0

2 n 2

0 2 n l- y sa x(i7t) + ycm P
( in Y  + a 2J i i t ) 2 -a>2Pi x a l { i n ) 2 - x ca 2p l

- y s ^ i i x f + y e c o 2^
K

a P i

r* Y
y ( i x ) 2 -  xcCD2 q -  (ix)4 + a l ( ix ) 2 -CD2p l

Y y

=  0

(6.176)

Eq. (6.176) is a cubic equation in co2 and yields three positive values of co for each value 

of i. It is then possible to calculate for any trial value of co*. Once is known, J m

can be calculated from Eq. (6.172).

However, a very helpful simplification can be made to Eq. (6.176), based on the fact that 

the theory stems from the use of planar elements. It was shown in Chapter 2 that Eq. 

(2.61)yields the natural frequencies of a two-dimensional shear-flexural element with both 

ends simply supported as

2 Ox ycor =
P ‘

(a2 +( ix)2) (6.177)

in which a  and P  are the parameters of the shear-flexural element defined in Section

2.2.2.1.2 as

G A  2 A  na  = — L and P = -----
E l  E l

(6.178a,b)
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Eq. (6.176) can then be rewritten in the following form

^ ~ ( a 2x + ( i x f ) - a '
P

GA . 2 2- y . —ifO*) +yc<»mL

0

O'*)2
P i

(a2y +(i7r)2)-a>:

GA, 
m L2

( m f  -  xcm‘

GAr ,. N 2 2
-ys—rrO*) +ye*>mL

GA,
ml)
v2

■ ( / 7 r ) 2  - = 0(6.179)

which reduces to

2 2 cox -co
0

JV ^ + .J 'c® 2

co\-a>2 

Xs°}l f - Xca>2

- y,a>lr + y c<o2
Xs®Pyf x c(02

r.2k - ® 2)

=  0 (6.180)

where

o ) l = ^ - { a l + { i z f )  (6.181a)
r-'jc

°>\ = ^ ~ ( a l  + 0 * )2) (6.181b)
PjV

< = ^ § r ^ + 0 * ) 2) (6181c)
Ptp

where cox, 6^ and <2^  are the natural frequencies of the analogous uncoupled member 

with both ends simply supported and

<  = ° * )2̂ Ax (6.182a)
mL

, ( in )2GA
(oh = -  - 2 -  (6182b)mL
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and o)^ are the natural frequencies of the equivalent planar shear beam when both 

ends are simply supported. See Eq. (2.97).

This again leads to the fact that the frequencies of a member with asymmetric cross- 

section may be obtained precisely by using the frequencies of the analogous uncoupled 

system in certain cases.

6.3 SUBSTITUTE FRAM E M ETHOD

6.3.1 Application of the Substitute Frame Method in the Static and Dynamic 

Analysis of Asym metric Three-Dimensional Wall-Frame Structures

The application of the substitute frame method in the analysis of symmetric three- 

dimensional wall-frame structures was studied in Section 3.3.2. In this section the method 

will be extended to cover the dynamic analysis of asymmetric three-dimensional wall- 

frame structures. In such structures the asymmetric arrangement of walls and frames 

results in different locations for the centres of mass and rigidity and hence the transverse 

response of the structure will always be coupled, i.e. the motion will be a combination of 

translation and torsion.

Consider Figure 6.1 again. It shows the plan view of a multi-storey wall-frame structure 

that is idealised as a set of plane walls and frames running in the x and y directions, as 

described in Section 6.2.1. The substitute frame method can be applied to the vibration 

analysis of such structures, in a similar way to the case of three-dimensional asymmetric 

frame structures. This means that such structures can be treated in a two step process i.e. 

the analogous uncoupled system can be analysed first then the relation between the 

uncoupled and coupled response may be applied through Eq. (5.57).
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6.3.1.1 The analogous uncoupled system

In the analogous uncoupled system it is assumed that the centre of mass is coincident with 

the centre of rigidity, therefore the structure would be in pure translation or pure torsion. 

However in a wall-frame structure, due to the non proportional mode shapes of the walls 

and frames, the centres of rigidity of the floors inevitably do not lie on a common vertical 

line throughout the height of the structure. Hence it is not straightforward to define the 

analogous uncoupled system. Nevertheless the structure can be perceived as an equivalent 

proportional one, in which the centres of rigidity of the floors are considered to be located 

along a fictitious single vertical line.

In deciding how to estimate the location of the fictitious centre of rigidity R, i.e. the centre 

of torsional rotation, it is reasonable to approach it in terms of the likely significance of 

the centres of flexure and shear rigidity. It means that when the wall system is 

predominant in the lateral behaviour of the structure, the fictitious centre of rigidity will 

be close to the centre of flexural rigidity of the wall system O. On the other hand, the 

fictitious centre of rigidity will be close to the centre of shear rigidity of the frame system 

S when the frame system dominates the lateral motion. In the case where neither the wall 

nor the frame system is predominant, the fictitious centre of rigidity will be located 

between the centres of flexural rigidity O and shear rigidity S.

Wang et al. (Wang et al. 2000) has presented a method in which the position of the 

fictitious centre of rigidity can be determined from the ratio of the second natural 

frequency to the fundamental frequency of the structure, as follows.

Theoretically, the frequency ratio for a pure flexure cantilever is 6.27 and 3 for a pure 

shear cantilever. Since a frame system of regular shape is dominated by shear-type lateral 

deformation, it would be expected that its lateral modal frequency ratio will be close to 

the value of 3. On the other hand, a slender wall system is expected to have a frequency 

ratio close to the value of 6.27. This suggests that if the frequency ratio of a uniform 

multi-storey wall-frame structure in lateral motion is close to 6.27, the wall system in the 

building will be predominant in the lateral behaviour and the fictitious centre of rigidity 

will be close to the centre of flexural rigidity of the wall system. In contrast, the frame 

system in a building will be predominant in the lateral behaviour and the fictitious centre
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of rigidity will be close to the centre of shear rigidity of the frame system if the frequency 

ratio approaches the value of 3. Therefore, the fictitious centre of rigidity may be 

determined from the frequency ratio of the lateral vibration modes by linear interpolation. 

In this study the frequency ratio of the structure will be obtained using the analogous 

uncoupled system in the x and y directions.

Three other options can be considered for determining the location of the fictitious centre 

of rigidity that makes the definition of the analogous uncoupled system much simpler. In 

the first case it would be assumed that the fictitious centre of rigidity coincides with the 

centre of flexural rigidity O. In the second case it would be assumed that it coincides with 

the centre of shear rigidity S. The third case assumes that the fictitious centre of rigidity is 

located at the middle point of the straight line connecting the centres of flexural and shear 

rigidities. Wang’s method is termed as case 4.

Once the analogous uncoupled wall-frame system is defined, the uncoupled natural 

frequencies can be obtained using the three one-bay, multi-storey substitute planar wall- 

ffames presented in Section 3.3.2. The final substitute wall-frames can be further 

simplified using the theory of Section 2.3.3 and be replaced by one-bay multi-storey 

substitute frames.

6.3.1.2 Coupling effect

Once the natural frequencies of the analogous uncoupled system are obtained, the final 

coupled natural frequencies of the asymmetric structure can be calculated using Eq. 

(5.57). In the numerical results section an extensive parametric study is undertaken to 

investigate the accuracy of the substitute frame method in the frequency analysis of 

asymmetric wall-frame structures using the analogous uncoupled system for the four 

cases defined earlier.
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6.4 NUMERICAL RESULTS

The vibrational behaviour of asymmetric three-dimensional wall-frame structures is now 

investigated using the proposed methods. Example 6.1 compares the results obtained from 

the continuum method with those obtained from a full finite element analysis of the 

original structure using ETABS (Wilson et al. 1995). The structure considered is a 20 

storey, multi-bay, asymmetric concrete wall-frame building. Examples 6.2 to 6.4 

investigate the accuracy of the subtitute frame method. Example 6.2 considers a series of 

asymmetric wall-frame structures in which the walls and frames have almost equal 

rigidities. In Example 6.3 the frames make the most significant contribution, while in 

example 6.4 the wall system is predominant

6.4.1 Example 6.1

It is required to determine the coupled natural frequencies of a 20 storey building which 

has equal storey heights of 3m. The structure consist of 5 plane frames (F1-F5) and three 

shearwalls (W1-W3) in the y direction and also 4 plane frames (F6-F9) and three 

shearwalls (W4-W6) in the x direction, which are connected to each other by typical rigid 

diaphragms at each floor level with the arrangement shown in Figure 6.6.

F1 F2 F3 F4 F5

r CM

6
°°
II !

VO
X

CO

CD

W2

W1
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F9

F8
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W4 F6

W6
15

,11

16

12 13 .14

6 7

y

.... s

C

8 ,9
O

1 2i----------------1
3

i • ■—.... i 4i----------------1

10

W5

W3

4 5 ! •£>
L  4 5 ___ I L 4 x 6  = 24m ,1-5. 4.5

Figure 6.6 Floor plan of the 20 storey wall-frame structure 
considered in Example 6.1
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For simplicity in determining member masses, half the mass of the walls and columns 

framing into and emanating from a floor diaphragm, together with the mass of the 

diaphragm and any associated beams, is stated as an equivalent uniformly distributed 

floor mass at that storey level. Thus the centre of mass is at the geometric centre of the 

floor plan. This corresponds precisely to the automatic idealisation process in ETABS 

(Wilson et al. 1995) and additionally only requires the total mass of the floor to be 

converted into the equivalent uniformly distributed mass of the member in the substitute 

beam approach. Arbitrarily the mass is assumed to have a constant value of 360 Kg/m2 at 

each floor level, even where the stiffness properties of the member change. Young’s 

modulus for all members is taken to be E = 2 x 10!0 N/m2 and inextensible member 

theory is assumed.

The properties of the structural elements change in a step-wise fashion every 10 storeys. 

Tables 6.1a and 6.1b show the second moment of area of the columns and beams about 

the x and y axes between the 1st- 10th and 1 l th-20th floors of the building respectively. Also 

Tables 6.2a and 6.2b show the properties of the walls in the x and y directions between 

1st-10th and 11^-2 0th floors respectively. Inextensible member theory is assumed.

Table 6. la -  The properties of the columns and beams of the building from the 1st to 10th
floors

Ex. 6.1
Columns (members are defined in Figure 6.6) Beams

1,5,10,14,15,16 2,3,4,13 6,11 7,8,9,12 all

/ /m 4) 0.0035 0.007 0.0035 0.007 0.003

« m 4) 0.0035 0.0035 0.007 0.007 0.003

Table 6. lb -  The properties of the columns and beams of the building from the 11th to 20th
floors

Ex. 6.1
Columns (members are defined in Figure 6.6) Beams

1,5,10,14,15,16 2,3,4,13 6,11 7,8,9,12 all

M m4) 0.0025 0.005 0.0025 0.0025 0.002143

« m 4) 0.0025 0.0025 0.005 0.0025 0.002143
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Table 6.2a -  The properties o f the walls o f the building from the 1st to 10th floors

Ex. 6.1 Shearwalls Length (m) Thickness (m)

Shearwalls in the y direction W l, W2 and W3 4.0 0.2

Shearwalls in the x direction W4, W5 and W6 4.5 0.2

Table 6.2b -  The properties of the walls of the building from the 11th to 20th floors

Ex. 6.1 Shearwalls Length (m) Thickness (m)

Shearwalls in the y direction W l, W2 and W3 4.0 0.15

Shearwalls in the x direction W4, W5 and W6 4.5 0.15

All the plane frames and walls in this example are independently proprtional, so that the 

flexure and shear centre at each floor level lies in a vertical line through the building. The 

eccentricities in the x and y  directions can then be calculated as follows

jr  = 3.273m jt = 6ms  c

y s -  0.500m ’ y c -  3m

The effective distributed mass of the substitute beam (smeared from the diaphragm) and 

the polar mass radius of gyration of the diaphragms about the flexural rigidity centre O 

can be calculated as follows

m = 18x36x360/3 = 77760 kg/m

r 2 = I 8 2 1 ^ _. + 62 + 32 =180 m2 
12

Tables 6.3a and 6.3b show the effective shear rigidities of the plane frames in the x  and y  

directions obtained using the formula presented by Smith and Coull (Smith and Coull 

1991) and the torsional rigidity of the buildings about the flexure centre O was calculated 

using Eq. (6.16).
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Table 6.3a -  Translational and torsional rigidities o f the building from l stto 10th floors

Plane Frames yj GAXJ- 106N GAyi - 106N GJ -106Nm2

FI -6 - - 98.824 3557.66

F2 0 - - 98.824 0

F3 6 - - 65.882 2371.75

F4 12 - - 65.882 9487.01

F5 18 - - 32.941 10672.88

F6 - -6 131.764 - 4743.50

F7 - 0 131.764 - 0

F8 - 6 98.824 - 3557.66

F9 - 12 32.941 - 4743.50

I GAX=395.294 GAy=362.353 07=39134

Table 6.3b -  Translational and torsional rigidities of the building from 1 l^ o  20th floors

Plane Frames x, yj G A XJ - 106N GAyi - 106N G7-106 Nm2

FI -6 - - 70.589 2541.20

F2 0 - - 70.589 0

F3 6 - - 45.059 1622.12

F4 12 - - 45.059 6488.50

F5 18 - - 23.529 7623.40

F6 - -6 94.177 - 3390.37

F7 - 0 94.117 - 0

F8 - 6 70.589 - 2541.20

F9 - 12 23.529 - 3388.18

I GAX=282.353 GAy=258.824 07=27594
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Tables 6.4a and 6.4b show the translational and warping torsional rigidities o f the plane

walls about the flexural rigidity centre O.

Table 6.4a -  Translational and warping rigidities of the building from the l stto 10th floors

Walls yj EIWXJ - 109 Nm2 E l ^ -  109Nm2 El** -109Nm4

W1 -12 - - 21.333 3071.95

W2 -12 - - 21.333 3071.95

W3 24 - - 21.333 12287.81

W4 - -6 30.375 - 1093.5

W5 - -6 30.375 - 1093.5

W6 - 12 30.375 - 4374

I £7X=91.125 7s7y=64.00 £7^=24992.7

Table 6.4b -  Translational and warping rigidities of the building from the 1 l^to 20th
floors

Walls *t h Elwxj - 109Nm2 E I ^ -  109Nm2 El** -109Nm4

W1 -12 - - 16 2303.96

W2 -12 - - 16 2303.96

W3 24 - - 16 9215.86

W4 - -6 22.781 - 820.13

W5 - -6 22.781 - 820.13

W6 - 12 22.781 - 3280.5

I £ /x=91.125 Ely=6 4.00 £7^=18744.5
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6.4.1.1 Results

Column 2 of Table 6.5 shows the coupled natural frequencies (Hz) of the 20 storey 

building obtained from the proposed continuum theory. For every ten storeys of the 

building, one element has been used and the final natural frequencies have been calculated 

using a Qbasic code that assembles the two elements. The third column in the table shows 

the results of a full finite element analysis of the structure (3D model of whole frame), 

obtained using the finite element programme ETABS (Wilson et al. 1995). Finally the 

fourth column shows the difference between the two, which never exceeds 7%. The 

difference is quite low (less than 5%) for the first three natural frequencies that play the 

most dominant role in the vibrational behaviour of structures. The results also show that 

the method presented has easily been able to model varying properties along the height of 

the structure with no additional loss of accuracy. The basic assumptions in modelling the 

structure with ETABS have been given in Section 5.4.1.1.

Table 6 .5 - The coupled natural frequencies of the structure of 
Example 6.1 obtained from the continuum and FEM methods

Frequency
No.

Continuum
method

FEM
(ETABS) Difference%

frequency(Hz) frequency(Hz)

1 0.30 0.29 3.45

2 0.36 0.35 2.86

3 0.44 0.42 4.70

4 1.12 1.08 3.57

5 1.33 1.27 4.51

6 1.79 1.70 5.29

7 2.53 2.40 5.41

8 3.06 2.88 6.25

9 4.50 4.22 6.63
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6.4.2 Example 6.2

It is required to determine the coupled natural frequencies of a series of wall-frame 

structures using the substitute frame method and to investigate the accuracy of the method 

in the vibrational analsis of such structures. Twelve asymmetric wall-frame structures are 

considered and catagorised in the three groups labelled Groups 2a, 2b and 2c. Figures 

6.6a, 6.6b and 6.6c show the arrangment of the frames, walls and rigid diaphragm for each 

group, respectively. Each group consists of a series of 5, 10, 20 and 30 storey asymmetric 

wall-frame structures with equal storey heights of 3m and uniform properties along the 

height of the structure. All the structures in this example consist of 5 plane frames and 

three shearwalls in the y direction and four plane frames and three shearwalls in the x 

direction, which are connected to each other by rigid diaphragms at each floor level. It is 

seen that in the structures of group 2a, the frames and walls have almost symmetric 

distribution around the centre of mass, while groups 2b and 2c include structures in which 

the walls or frames are mainly on one side of the centre of mass, C.
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Figure 6.6a Floor plan of the structures considerd in groups 2a, 
3a and 4a in Examples 6.2, 6.3 and 6.4 respectively
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For simplicity in determining member masses, half the mass of the walls and columns 

framing into and emanating from a floor diaphragm, together with the mass of the 

diaphragm and any associated beams, is stated as an equivalent uniformly distributed 

floor mass at that storey level. Thus the centre of mass is at the geometric centre of the 

floor plan. This corresponds precisely to the automatic idealisation process in ETABS 

(Wilson et al. 1995) and additionally only requires the total mass of the floor to be 

converted into the equivalent uniformly distributed mass of the member in the substitute 

beam approach. Arbitrarily the mass is assumed to have a constant value of 360 Kg/m2 at 

each floor level, even where the stiffness properties of the member change. Young’s 

modulus for all members is taken to be E = 2 x 1010 N/m2 and inextensible member 

theory is assumed.

Table 6.6 shows the second moment of area of the columns and beams about the x and y 

directions and Table 6.7 shows the characteristics of the shearwalls in the x and y 

directions..

Table 6.6 -  The properties of the columns and beams of the structures in groups 2a, 2b
and 2c

Groups 2a, 
2b and 2c

Columns (members are defined in Figure 6.6a,b and c) Beams

1,5,10,14,15,16 2,3,4,13 6,11 7,8,9,12 all

Iy(m4) 0.0035 0.007 0.0035 0.007 0.003

Ix(m4) 0.0035 0.0035 0.007 0.007 0.003

Table 6.7 -  The properties of the shearwalls of the structures in groups 2a, 2b and 2c

Groups 2a, 2b and 2c Shearwalls Length (m) Thickness (m)

Shearwalls in the y direction W l, W2 and W3 4.0 0.2

Shearwalls in the x direction W4, W5 and W6 4.5 0.2

Once more, the plane frames and walls in this example are proprtional, so that the flexure 

and shear centre at each floor level lies in a vertical line through the building. The 

eccentricities for the structures of Groups 2a, 2b and 2c in the x and y directions of 

Figures 6.6a, 6.6b and 6.6c, respectively, can then be calculated as follows
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Group 2a:

xs = 3.273m 
y s = 0.500m *

x c = 6 m
y c = 3 m

Group 2b:

x s = 19.273m 
0.500m ’

xc = 16m 
y c = 3  to

Group 2c:

jcs = -22.727m 
= 0.500m ’

jcc = -14m

yc = 3 w

The structures will be analysed in a two step process i.e. first the analogous uncoupled 

system will be analysed using the substitute frame method assuming no eccentricities, 

then the relation between the uncoupled and coupled response will be obtained through

Four cases can be assumed for determining the location of the fictitious centre of rigidity 

R (the centre of torsional rotation), which makes the definition of the analogous 

uncoupled system feasible. These four cases were described previously and are 

summarised as follows

Case 1: The fictitious centre of rigidity is at the centre of flexural rigidity (O)

Case 2: The fictitious centre of rigidity is at the centre of shear rigidity (S)

Case 3: The centre of fictitious rigidity is at the middle of a line connecting O and S 

Case 4: The centre of fictitious rigidity is somewhere between O and S 

based on the ratio of the 2nd to the 1st natural frequency

Table 6.8a shows the natural frequencies of the 10 storey wall-frame of Group 2a 

obtained from the substitute frame method of case 1 and compares it with the result of a 

full finite element analysis of the wall-frames, obtained using the finite element program 

ETABS (Wilson et al. 1995). Like the symmetric, three-dimensional, wall-frame

Eq. (5.57).
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structures of Section 3.3.2, the final substitute frames are classified as type W-F and type 

F-F as shown in Figure 6.7.

In Table 6.8a, i in column 1 represents the mode of vibration and columns 3 and 6 show 

the uncoupled natural frequencies of the analogous uncoupled system in the x, y and 

torsional directions using substitute frame type W-F and F-F, respectively. Columns 4 and 

7 in the table show the coupled natural frequencies obtained using Eq. (5.57), while 

columns 5 and 8 show the difference between W-F and F-F types, respectively, when 

compared to the finite element results in column 10. Column 9 shows the Importance 

Factor of the modes of vibration, which shows the contribution of every mode in the total 

response of the structure and has been explained in Appendix 6B. In the last row of the 

table, the average difference between the natural frequencies has been given after 

applying the importance factor to every mode.

Tables 6.8b, 6.8c and 6.8d show the same information for the 10 storey wall-frame for 

cases 2, 3 and 4 respectively.

-w

a
£

>

///fr?rjyy

i

l f c

J b

l f c I  4-A  
2 1Jc +  -

(a) (b)

Figure 6.7 (a) Substitute wall-frame type W-F (b) Substitute 
frame type F-F
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Table 6.8a -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 2a & Case 1

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 5.9857 4.877 -1.26 6.2151 5.0644 2.58 0.847 4.9423

2(y) 5.4268 5.8962 1.2 5.6562 6.1239 5.14 0.847 5.8302

3(z) 6.7899 8.8568 17.19 6.9941 9.1542 21.16 0.847 7.5602

<N
II

1(x) 26.3869 21.6923 0.78 26.0362 21.5146 -0.06 0.131 21.5324

2(y) 23.1098 26.0169 0.59 22.9587 25.6792 -0.73 0.131 25.8682

3(z) 34.8845 43.5235 13.84 34.3495 42.9141 12.25 0.131 38.2362

II

1(x) 64.5314 53.2893 1.51 60.9593 50.5942 -3.63 0.022 52.5043

2(y) 56.2669 63.7002 0.44 53.396 60.1978 -5.07 0.022 63.4232

3(z) 89.9343 111.0807 12.61 85.6788 105.7331 7.18 0.022 98.6467

Av. Diff.% ( W-F ): 6.32 ( F-F ): 8.83

Table 6.8b -  Uncoupled and Coupled natural frequencies o f the 10 storey wall-frame structure of
Group 2a & Case 2

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 5.9857 5.196 5.22 6.2151 5.3994 9.26 0.847 4.9423

2(y) 5.4268 5.8189 -0.17 5.6562 6.0409 3.77 0.847 5.8302

3(z) 6.7331 7.5916 0.53 6.9208 7.8281 3.57 0.847 7.5602

<N
II

1(x) 26.3869 22.6729 5.33 26.0362 22.5084 4.54 0.131 21.5324

2(y) 23.1098 25.892 0.13 22.9587 25.5495 -1.23 0.131 25.8682

3(z) 35.1527 38.3213 0.24 34.5927 37.7355 -1.3 0.131 38.2362

II

1(x) 64.5314 55.3962 5.51 60.9593 52.5787 0.16 0.022 52.5043

2(y) 56.2669 63.501 0.13 53.396 60.0158 -5.37 0.022 63.4232

3(z) 90.9653 98.5389 -0.11 86.6911 93.8463 -4.86 0.022 98.6467

Av. Diff.% (W-F): 1.96 ( F-F ): 5.07
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Table 6.8c -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 2a & Case 3

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 5.9857 5.0128 1.57 6.2151 5.2052 5.42 0.847 4.9423

2(y) 5.4268 5.8654 0.68 5.6562 6.0915 4.63 0.847 5.8302

3(2) 6.7158 8.1177 7.41 6.9083 8.3801 10.98 0.847 7.5602

C-l
II

1(x) 26.3869 22.1699 2.96 26.0362 21.996 2.17 0.131 21.5324

2(y) 23.1098 25.9489 0.32 22.9587 25.6103 -1 0.131 25.8682

3(z) 34.8638 40.4328 5.76 34.3157 39.8397 4.22 0.131 38.2362

m
II

1(x) 64.5314 54.3428 3.51 60.9593 51.5878 -1.73 0.022 52.5043

2(y) 56.2669 63.5798 0.26 53.396 60.0879 -5.25 0.022 63.4232

3(2) 90.1005 103.5971 5.03 85.8567 98.6385 0 0.022 98.6467

Av. Diff.% (W-F): 3.19 ( F-F ) . 6.31

Table 6.8d -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 2a & Case 4

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 5.9857 5.0436 2.18 6.2151 5.2374 6.02 0.847 4.9423

2(y) 5.4268 5.8581 0.51 5.6562 6.0836 4.46 0.847 5.8302

3(z) 6.712 8.0038 5.95 6.9032 8.2607 9.39 0.847 7.5602

II

1(x) 26.3869 22.2645 3.43 26.0362 22.0919 2.64 0.131 21.5324

2(y) 23.1098 25.9364 0.28 22.9587 25.5974 -1.03 0.131 25.8682

3(z) 34.8939 39.965 4.53 34.3435 39.3739 2.99 0.131 38.2362

m
II

1(x) 64.5314 54.5452 3.89 60.9593 51.7784 -1.37 0.022 52.5043

2(y) 56.2669 63.5599 0.22 53.396 60.0697 -5.28 0.022 63.4232

3(z) 90.2078 102.4702 3.88 85.9616 97.5704 -1.09 0.022 98.6467

Av. Diff.% ( W-F ): 2.86 ( F-F ): 5.96

Similar tables have been produced for the 12 wall-frame structures of Example 6.2, which 

are not presented here due to lack of space. However Figures 6.8a to 6.8c show the
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average diffemce in the application o f the substitute frame metehod (type W-F) on the 

structures o f  Groups 2a, 2b and 2c. Thus the data of Tables 6.8a-d corresponds to the 

second bar group o f Figure 6.8a.. Figure 6.8d shows the average differences for the 

groups 2a, 2b and 2c in one graph. Figures 6.9a to 6.9d comprise the same information 

resulting from the application o f the substitute frame method (type F-F). Finally Figure 

6.10 compares the final average difference from the application of the substitute frame 

method (types W-F and F-F) on the structures o f Example 6.2.

G ro u p  2a - Type W-F

10 20 30

N u m b er o f  s to re y s

av.

B C a se l 
■  Case2
□  Case3

□  Case4

Figure 6.8a -  The average difference in the application of substitute 

frame method (type W-F) on the structures of Group 2a

G ro u p  2b  - T ype W-F

r1_

b r JTn £k Lirh
5 10 20 30 av.

N um ber o f s to re y s

□ C asel
■  Case2
□  Case3

□  Case4

Figure 6.8b -  The average difference in the application of substitute 

frame method (type W-F) on the structures o f Group 2b
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G ro u p  2 c - T y p e  W-F

■ C asel
■ Case2
□ Case3
□ Case4

10 20 30
N um ber o f s to re y s

av.

Figure 6.8c -  The average difference in the application of substitute 

frame method (type W-F) on the structures o f Group 2c

G ro u p s  2a ,2 b ,2 c  - T ype W-F

50
^  40 £  30|  20

10 H t h  I V - i  f l h - ,
2a 2b 2c av. 

G ro u p s  2a, 2b an d  2c

■  C asel
■  Case2
□  Case3
□  Case4

Figure 6.8d -  The average difference in the application o f substitute 

frame method (type W-F) on the structures of Groups 2a, 2b and 2c

G ro u p  2a - Type F-F

15

5? 10 
i t
5  5

■  Casel
■  Case2
□  Case3
□  Case4

10 20 30 av.
N um ber o f s to re y s

Figure 6.9a -  The average difference in the application of substitute 

frame method (type F-F) on the structures o f Group 2a
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G ro u p  2b - Type F-F

!fc 40

S  C asel 
■  Case2
□  Case3
□  Case4

10 20 30

N um ber o f s to re y s

av.

Figure 6.9b -  The average difference in the application o f substitute 

frame method (type F-F) on the structures o f Group 2b

G ro u p  2c - T ype F-F

80  

gs 60  
£  40  
°  2 0  j r

0 I
10 20  30

N um ber o f  s to re y s

av.

a Casel 
a Case2
□ Case3
□ Case4

Figure 6.9c -  The average difference in the application o f substitute 

frame method (type F-F) on the structures o f Group 2c

G ro u p s  2a, 2b, 2c - Type F-F

60  

S* 40  

Q 20

2a 2b 2c Av.

G ro u p s  2a, 2b an d  2c

1 r i ___  ___

L

aQ m k h  1B B C t L

B C asel 
B Case2
□  Case3
□  Case4

Figure 6.9d -  The average difference in the application of substitute 

frame method (type F-F) on the structures o f Group 2a, 2b and 2c
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W-F and F-F comparison

40 -1

0

□ C asel 
■ Case2
□ Case3
□ Case4

Av. W-F Av. F-F
Total a v e ra g e  d iffe ren ce  of G ro u p s  2a, 2b  and  2c

Figure 6.10 -  The final average difference comparison in the application o f the 

substitute frame method on the structures o f Example 6.2 

(Type W-F) & (Type F-F)

6.4.3 Example 6.3

This example considers the second class o f wall-frame structures in which the frames 

provide the dominant role in their lateral behaviour. For simplicity the structures of 

Example 6.2 will be considered again with some changes in the properties o f the wall 

system. In order to make the contribution o f the frames more dominant, the second 

moment o f area o f the walls has been weakened by a factor o f a four. Other data are the 

same as those o f Example 6.2. Similarly, structures with the plan form o f Figures 6.4, 6.5 

and 6.6 are catagorised as Groups 3a, 3b and 3c, respectively. The analogous tables and 

graphs are given as follows. See Example 6.2 for an explanatio o f the tables and graphs.
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Table 6.9a -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 3a & Case 1

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 4 .7143 3 .7357 -1.71 4.7422 3.8074 0.13 0.87 3.8052

2(y) 4.3795 4 .6505 1.79 4.4045 4.6798 2.23 0.87 4.5779

3(z) 4.7527 6 .5 2 1 9 19.33 4.9379 6.6838 22.26 0.87 5.4721

<N
II

1(x) 17.0946 14.0447 -1.19 16.5551 13.7274 -3.44 0.103 14.2191

2(y) 15.5383 16.8517 1.01 15.1183 16.3349 -2.1 0.103 16.6914

3(z) 19.8458 25 .7 1 8 5 16.69 19.6514 25.3277 14.92 0.103 22.041

II

1(x) 37.0957 30 .835 0.14 33.8883 28.4774 -7.52 0.027 30.7964

2(y) 33.1667 3 6 .5948 0.6 30.4801 33.4679 -8 0.027 36.3816

3(z) 47.63 59.9671 14.67 44.9712 56.2782 7.62 0.027 52.3031

Av. Diff.% ( W-F ) :  7.41 ( F-F ): 8.05

Table 6.9b -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 3a & Case 2

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 4.7143 3.9866 4.86 4.7422 4.0636 6.96 0.87 3.8052

2(y) 4.3795 4.5679 -0.17 4.4045 4.6031 0.7 0.87 4.5779

3(z) 4.6272 5.5058 0.69 4.812 5.639 3.07 0.87 5.4721

CN
II

1(x) 17.0946 14.9382 5.07 16.5551 14.5717 2.54 0.103 14.2191

2(y) 15.5383 16.657 -0.19 15.1183 16.1651 -3.12 0.103 16.6914

3(z) 19.7388 22.1136 0.36 19.5443 21.7939 -1.09 0.103 22.041

m
II

1(x) 37.0957 32.4013 5.24 33.8883 29.8408 -3.07 0.027 30.7964

2(y) 33.1667 36.3611 -0.03 30.4801 33.2893 -8.5 0.027 36.3816

3(z) 47.8557 52.4481 0.29 45.2565 49.3857 -5.57 0.027 52.3031

Av. Diff.% ( W-F ) :1.90 ( F -F ) :3.50
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Table 6.9c -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 3a & Case 3

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 4.7143 3.8287 0.65 4.7422 3.9043 2.75 0.87 3.8052

2(y) 4.3795 4.6222 1.14 4.4045 4.6531 1.79 0.87 4.5779

3(z) 4.6462 5.9306 8.55 4.8304 6.076 11.11 0.87 5.4721

<N
II

1(x) 17.0946 14.4327 1.56 16.5551 14.0972 -0.84 0.103 14.2191

2(y) 15.5383 16.7723 0.53 15.1183 16.2649 -2.52 0.103 16.6914

3(z) 19.6668 23.6109 7.17 19.474 23.2576 5.53 0.103 22.041

c*l
II

1(x) 37.0957 31.5763 2.55 33.8883 29.1315 -5.38 0.027 30.7964

2(y) 33.1667 36.4803 0.3 30.4801 33.3781 -8.25 0.027 36.3816

3(z) 47 .5109 55.521 6 .16 44.9058 52.1918 -0.2 0.027 52.3031

Av. Diff.% ( W-F ): 3 .40 ( F -F ) :4.97

Table 6.9d -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 3a & Case 4

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 4.7143 3.9218 3.28 4.7422 3.9989 5.12 0.87 3.8052

2(y) 4.3795 4.5916 0.48 4.4045 4.6248 1.14 0.87 4.5779

3(z) 4.6237 5.6379 3.07 4.808 5.775 5.63 0.87 5.4721

<s
ii

1(x) 17.0946 14.7478 3.74 16.5551 14.394 1.27 0.103 14.2191

2(y) 15.5383 16.7022 0.11 15.1183 16.2039 -2.88 0.103 16.6914

3(z) 19.684 22.5746 2.45 19.4904 22.2432 0.95 0.103 22.041

m
II

1(x) 37.0957 32.1085 4.27 33.8883 29.5914 -3.88 0.027 30.7964

2(y) 33.1667 36.4007 0.08 30.4801 33.3179 -8.41 0.027 36.3816

3(z) 47.6789 53.3785 2.07 45.083 50.2318 -3.95 0.027 52.3031

Av. Diff.% ( W-F ): 2.26 ( F -F ) :3.77
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G ro u p  3a  - Type W-F
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5  C asel 
■ Case2
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Figure 6.11a -  The average difference in the application of substitute 

frame method (type W-F) on the structures of Group 3a

G ro u p  3b  T ype W-F
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Figure 6.11b -  The average difference in the application of substitute 

frame method (type W-F) on the structures of Group 3b
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Figure 6.11c -  The average difference in the application of substitute 

frame method (type W-F) on the structures of Group 3c
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G ro u p s  3a, 3b an d  3c - Type W-F

B C asel 
■ Case2
□ Case3
□ Case4

G ro u p s  3a, 3b an d  3c

Figure 6.1 Id -  The average difference in the application of substitute 

frame method (type W-F) on the structures of Groups 3a, 3b and 3c

G ro u p  3a - T ype F-F
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N um ber o f s to re y s

Figure 6.12a -  The average difference in the application of substitute 

frame method (type F-F) on the structures of Group 3a

G ro u p  3b - T ype F-F
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Figure 6.12b -  The average difference in the application of substitute 

frame method (type F-F) on the structures of Group 3b
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Group 3c - Type F-F

6 0

S?40 
St
5  20

0
5 10 20 30 av.

N um ber o f  s to re y s

EL

■ C asel
■ Case2
□ Case3
□ Case4

Figure 6.12c -  The average difference in the application o f substitute 

frame method (type F-F) on the structures o f Group 3c

G ro u p s  3a, 3b, 3c - T ype F-F
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G ro u p s  3a, 3b an d  3c
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Figure 6.12d -  The average difference in the application of substitute 

frame method (type F-F) on the structures o f Group 3a, 3b and 3c
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Figure 6.13 -  The final average difference comparison in the application o f the 

substitute frame method on the structures of Example 6.3 

(Type W-F) & (Type F-F)
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6.4.4 Example 6.4

This example comprises the third class of wall-frame structures in which walls provide 

the dominant role in their lateral behaviour. Once more, the structures of Example 6.2 will 

be considered again with some changes in the properties of the wall system. In order to 

make the contribution of the walls more dominant, the second moment area of the walls 

has been increased by a factor of 2.5. Other data are the same as those of Example 6.2. In 

the same manner as before, structures with the plan form of Figures 6.4, 6.5 and 6.6 are 

catagorised as groups 4a, 4b and 4c, respectively. The analogous tables and graphs are 

given bellow, but see Example 6.2 for an explanations of the tables and graphs.

Table 6.10a -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 4a & Case 1

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 7.6641 6 .2798 -0.1 7.899 6.4806 3.24 0.875 6.2861

2(y) 6.7814 7.5493 0.79 7.0306 7.7811 3.99 0.875 7.4909

3(z) 9.5361 12.0717 15.25 9.6848 12.3159 17.54 0.875 10.4815

<s
II

1(x) 38.6811 31.5812 1.52 38.0396 31.1808 0.23 0.11 31.1177

2(y) 33.3192 38.1568 0.5 32.9318 37.5293 -1.16 0.11 37.9687

3(z) 53.4869 66.0556 12.94 52.4954 64.8911 10.95 0.11 58.489

CO
II

1(x) 98.6925 81.221 1.85 93.7995 77.4617 -2.86 0.015 79.7501

2(y) 85.4202 97.4455 0.42 81.4645 92.6347 -4.54 0.015 97.0458

3(z) 140.4546 172.7506 12.22 134.0259 164.8035 7.06 0.015 153.943

Av. Diff.% ( W-F ):  5.33 ( F-F ):  7.75
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Table 6.10b -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
Group 4a & Case 2

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 7.6641 6 .6126 5.31 7.899 6.8393 8.81 0.875 6.2861

2(y) 6 .7814 7.492 0.12 7.0306 7.7152 3.06 0.875 7.4909

3(z) 9.5582 10.5235 0.46 9.6898 10.7026 2.18 0.875 10.4815

<N
II

1(x) 38.6811 32 .8134 5.47 38.0396 32.4191 4.19 0.11 31.1177

2(y) 33.3192 38.0402 0.21 32.9318 37.4084 -1.47 0.11 37.9687

3(z) 54.0941 58.6164 0.23 53.0743 57.5355 -1.63 0.11 58.489

C"!
II

1(x) 98.6925 84 .2193 5.6 93.7995 80.32 0.73 0.015 79.7501

2(y) 85.4202 97.2041 0.17 81.4645 92.4065 -4.78 0.015 97.0458

3(z) 142.2811 153.7675 -0.11 135.7869 146.7134 -4.69 0.015 153.943

Av. Diff.% ( W -F ) :1.97 ( F -F ) :4.42

Table 6 .10c -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure o f
Group 4a & Case 3

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 7.6641 6.4352 2.45 7.899 6.6457 5.79 0.875 6.2861

2(y) 6.7814 7 .5216 0.52 7.0306 7.7505 3.59 0.875 7.4909

3(z) 9.4974 11.1575 6.48 9.6343 11.3651 8.48 0.875 10.4815

(N
II

1(x) 38.6811 32 .1986 3.48 38.0396 31.7993 2.19 0.11 31.1177

2(y) 33.3192 38 .0843 0.32 32.9318 37.4557 -1.34 0.11 37.9687

3(z) 53.5818 61 .6149 5.35 52.5776 60.5025 3.45 0.11 58.489

m
II

1(x) 98.6925 82.7371 3.75 93.7995 78.9071 -1.06 0.015 79.7501

2(y) 85.4202 97 .289 0.25 81.4645 92.4876 -4.69 0.015 97.0458

3(z) 140.8541 161.4014 4.85 134.4189 153.9881 0.03 0.015 153.943

Av. Diff.% ( W - F ) :  3.13 ( F-F ): 5.49
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Table 6.10d -  Uncoupled and Coupled natural frequencies of the 10 storey wall-frame structure of
G roup  4a & Case 4

Mode Dir.
Uncoupled

SF
(W-F)

Coupled
Eq.(5.57)

(W-F)

Diff.%
(W-F)

Uncoupled
SF

(F-F)

Coupled
Eq.(5.57)

(F-F)

Diff.%
(F-F)

Imp.
Factor

FEM
ETABS

ii

1(x) 7.6641 6.3995 1.81 7.899 6.6073 5.15 0.875 6.2861

2(y) 6.7814 7.528 0.52 7.0306 7.7576 3.59 0.875 7.4909

3(2) 9.4972 11.3286 8.1 9.6362 11.5432 10.2 0.875 10.4815

<N
II

1(x) 38.6811 32.0634 3.06 38.0396 31.6636 1.78 0.11 31.1177

2(y) 33.3192 38.0987 0.34 32.9318 37.4705 -1.29 0.11 37.9687

3(2) 53.5268 62.4395 6.76 52.5256 61.3178 4.85 0.11 58.489

cn
II

1(x) 98.6925 82.4076 3.33 93.7995 78.5931 -1.44 0.015 79.7501

2(y) 85.4202 97.3194 0.29 81.4645 92.5162 -4.66 0.015 97.0458

3(2) 140.6836 163.5069 6.21 134.2542 155.9947 1.34 0.015 153.943

Av. Diff.% ( W-F ): 3.46 ( F-F ): 5.85

G ro u p  4 a  - T ype W-F

M i r
10 20  30

N um ber o f s to re y s

av.

B C asel 
B Case2
□ Case3
□ Case4

Figure 6.14a -  The average difference in the application of substitute 

frame method (type W-F) on the structures o f Group 4a

PhD Thesis, B. Rafezy, 2004
229



G ro u p  4 b  -  T ype W-F

6 0

*  40  !fc
S 2 0 -H

0 L-n lirh [Wh
C asel 
Case2

□ C ase3
□ Case4

10 20  30

N um ber o f  s to re y s

av.

Figure 6.14b -  The average difference in the application of substitute 

frame method (type W-F) on the structures o f Group 4b

G ro u p  4c - T ype W-F
o n

5? Af\ _
□ C asel 
■ Case2
□ Case3
□ Case4S“ lh I L 1

5 10 20  30 av. 

N u m b er o f s to re y s

Figure 6.14c -  The average difference in the application o f substitute 

frame method (type W-F) on the structures o f Group 4c

G ro u p s  4a, 4b, 4c  - T ype W-F

40
3? 30
£ 20 o

10
0 l l r

C asel 
Case2

□ Case3
□ Case4

4a 4b 4c Av. 

G ro u p s  4a, 4b and  4c

Figure 6.14d -  The average difference in the application o f substitute 

frame method (type W-F) on the structures of Groups 4a, 4b and 4c
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Group 4a - Type F-F

B C asel 
■ Case2
□ Case3
□ Case4

5 10 20 30 av.

N um ber o f s to re y s

Figure 6.15a -  The average difference in the application of substitute 

frame method (type F-F) on the structures o f Group 4a

G ro u p  4b  - T ype F-F

□ C asel 
■ Case2
□ Case3
□ Case4

5 10 20 30 av.

N um ber o f s to re y s

Figure 6.15b -  The average difference in the application of substitute 

frame method (type F-F) on the structures o f Group 4b

G ro u p  4c - T ype F-F

60 -  -

2  40  

S  2 0 -  

0 -

5 10 20 30 av.

N um ber o f s to re y s

Figure 6.15c -  The average difference in the application of substitute 

frame method (type F-F) on the structures o f Group 4c

H C asel 
■ Case2
□ Case3
□ Case4
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G ro u p s  4a, 4b  an d  4c - Type F-F

50
40
30
20
10
0

L

d m I T r IIh r U tn J
4a 4b 4c  

G ro u p s  4a, ab  an d  4c

Av.

C asel 
i Case2

□ Case3
□ Case4

Figure 6.15d -  The average difference in the application of substitute 

frame method (type F-F) on the structures o f Groups 4a, 4b and 4c

40
8® 30

W-F a n d  F-F co m p ariso n

□ C asel 
■ Case2
□ Case3
□ Case4

Av. W-F Av. F-F

Total a v e ra g e  d iffe ren ce  of G ro u p s  4a, 4b  and  4c

Figure 6.16 -  The final average difference comparison in the application o f the 

substitute frame method on the structures of Example 6.4 

(Type W-F) & (Type F-F)
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6.5 CONCLUSIONS

Figures 6.17 to 6.19, summarise the result of parametric study on the application of the 

substitute frame method on the wall-frame structures of Examples 6.2 to 6.4

Type W-F

50
^  40 £  30
5  20 -10 I JE T n

□ Casel 
■ Case2
□ Case3
□ Case4

2 3 4 Av. W-F

Examples 6.2, 6.3 and 6.4

Figure 6.17 -  The final average difference comparison in the application of substitute 

frame method (type W-F) on the structures of Examples 6.2, 6.3 and 6.4

Type F-F

4 0

* 301  
S t 2 0  -

5  10 I
■ 1  i r - i F i f r r

H Casel 
■ Case2
□ Case3
□ Case4

2 3 4 Av. F-F

Examples 6.2, 6.3 and 6.4

Figure 6.18 -  The final average difference comparison in the application of substitute 

frame method (type F-F) on the structures of Examples 6.2, 6.3 and 6.4

40

*  30 
£  20
°  10

0

W-F an d  F-F C o m p ariso n  (FINAL)

■  I- 1 _ ■  n

□ C asel

Av. W-F Av. F-F
Total av e rag e  differece of exam ples 6.2, 

6.3 and 6.4

Figure 6.19 -  The final average difference for types W-F and F-F
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The following conclusions can be drawn from the parametric study o f Examples 6.2-6A

• The substitute frame method gives better result when the frames and walls have an 

almost symmetric distribution around the centre of mass e.g. Figure 6.6a. See 

Figures 6.8d, 6.9d, 6.l id , 6.12d, 6.14d, 6.15d.

• Generally Case 4 gives the best expression for the position of the fictitious centre 

of rigidity, whereas Casel gives the worst definition. However the difference 

between the results, obtained from Cases 3 and 4 are very small, so it would 

appear that Case 3 gives a reasonably simple and effective definition for the 

fictitious centre of rigidity.

• The difference in the results of the structures of Groups 2a, 3a and 4a, with the 

plan form of Figure 6.6a, is quite small and never exceeds 8% (Type W-F) and 

12% (Type F-F). See Figures 6.8a, 6.9a, 6.1 la, 6.12a, 6.14a, 6.15a.

• The examples show that the substitute frame method may be used for the analysis 

of wall-frame structures with acceptable accuracy (Figures 6.8a-d to 6.15a-d)

• The Type W-F model always gives better result than Type F-F. However the 

difference is small and in most cases the results of Type F-F are acceptable (less 

than 10%).

• The continuum and the substitute frame method (Cases 2, 3 and 4) give good 

results for the frequency analysis of three-dimensional, asymmetric wall-frame 

structures
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Appendix 6A -  The nature of the roots of the characteristic Eq. (6.27)

The nature of the roots of the characteristic Eq. (6.27) is investigated in this appendix. For 

this purpose, Eq. (6.27) is re-written again for convenience.

2  n  2r - a xT-co p  
0

2 Pi
y s - f r  + y ca  ~ T

rx

o
t 2 - a 2yT - m 2p 2y

cel . Pi-  x. r - x m
r\ r

2 nl

-  Xsa \x  -  xc0) 2p)  

T - a \ x - a P p l

w(4) = o (6A.1)

Since a  a 2y , p ] ,  p ] ,  P l , r l , r \ ,  *0 . yc, xs and ys are all real constants, the

coefficients in Eq. (6A. 1) are all real. It will be convenient to note that the left-hand side 

of Eq. (6A. 1) is a 6 order polynomial function / ( r )  so that

/(f) =
A(t)

0 5(f)
D{t)  
E( r)

-i-D (r) \ e (t ) C(r)
r l  Yy

(6A.2)

in which

A(t) = -  a xr -  a 2Pi  (6A.3)

B(t) = t2 -  a 2yr -  (o2 p 2y (6A.4)

C(t) = t 2 - ccI t - co2PI (6A.5)

D{t) = y sa 2xT + y c(D2 Pi  (6A.6)

E{t) = - x sa 2yr -  xcco2p 2y (6A.7)

The quantity / (r) is a smooth continuous function that becomes infinite and positive as 

r  tends to + 0 0  and - 0 0  (Figure 6A. 2). It is shown below that the quantity / ( r )  has a 

negative value as r  tends zero.
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Substituting zero for r in Eq. (6A.2) gives

/ ( 0) =
- 0 ) 2p l

0

rx

o
-co2 P 2y 

P2 Pi

2 n 2yc°> P:
-  W P \

G? Pi

(6A.8)

or

m  =  -co2 Pl (o)4 Pl P l - ^ x ^ P D  + y^ P K -^ y^ P lP D
r y rx
l . 2  4 o 2 1 .2 /j2 /o2 (6 A. 9)

Eq. (6A.9) can be simplified to

m  = -(1/ r l  \ r l  -  x] -  y] ) P l P l p l v (6 A. 10)

in which rm is the polar mass radius of gyration about the flexural rigidity centre O and 

can be related to the polar mass radius of gyration about the centre of mass, rmc, through 

the following equation

r 2 = r 2 + x 2 + y2m  m e  c  s c (6A.11)

Therefore

( r 2 - x 2 - y 2) > 0V m  c  J  c  /
(6 A. 12)

The right hand side of Eq. (6 A. 10) is the product of six positive parameters multiplied by 

a negative sign and therefore / (0 )  is always negative.
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A(r) is a second order equation in terms of r  and always has one positive ( x x) and one 

negative ( jc2 ) root as follows

* i = ^  + |V « * + 4 ® A 2 (6A.13)

2
(6A.13)

Also B(t) is a second order equation in terms of r  with one positive ( j^)  and one 

negative ( y 2) root as follows

2 2

y 2 = ^ r - \ ^ 4y +4m2/32y (6A.13)
2 2

Before discussing the roots of / ( r )  = 0 it is useful to calculate the quantity f ( t )  when 

r = jCj as follows

/(* ,)  = — y D 2^ , ) ^ )  (6A.14)
r ,

Since ^  and D2(xx) always have positive values, the sign of f ( x x) only depends on the 

sign of £(*,).

Also the quantity / (r) when r  = y x can be written as

/(yi) = —V^O'.MO',) (6A15>
Y,

Since y and E (y t ) are always positive, the sign of f ( y t) depends on the sign of

A(yt)
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Eq. (6A.3) and Figure 6A. 1(a) show that

A(t) < 0 when x2 < x < x1

and

A(t) > 0 when x> x x or x < x 2.

Similarly, Eq. (6A.4) and Figure 6A. lb show that

B(r) < 0 when y 2 < r  < y x

and

(6A.16)

(6A.17)

(6A.18)

B(x) > 0 when r > y l or r  < y 2. (6 A. 19)

^ ( t )

(a)

Figure 6A.1 a) Graph of A(r) versus x b) Graph of B(x) 
versus r

We now wish to consider the two cases in which xx < y x and xx > y x.
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Figures 6A. 1(a) and 6A. 1(b) show that when x{ < y { then 5 (^ t) < 0 and A{yx) > 0 so 

that

f ( x  i ) > 0  

/ ( ^ ) < 0

(6A.20)

(6A.21)

The Figures also show that when xl > y { then B(xY) > 0 and A(yx) < 0 so that

(6 A. 22) 

(6A.23)

If \  represents the minimum value of x l and y l , i.e. \  = Min[jc, , y {], and A2 represents 

the maximum value of xx and y {, i.e. = Max[jt, , y }], then

/ ( 0) < 0 

f W > 0  

/ (^ )<  0 

/(CO) > 0

(6 A. 24) 

(6A.25) 

(6 A. 26) 

(6A.27)

This implies that there are at least three positive real roots of the function / ( r) in the 

intervals (0 ,^ ) ,  and ( ^ , 0 0 ). See Figure 6A.2.

f ( x )

Figure 6A.2 Graph of / ( r )  versus r
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With a similar argument, the nature of the roots of / ( r )  for negative values of r  can be 

considered as follows

f ( x 2) = — \ - D 2(x2)B(x2) (6A.28)
r x

Since y 2x and D 2(x2) always have positive values, the sign of f ( x 2) only depends on the

sign of B ( x 2 ). In similar fashion

and

f ( y 2) = ~ E 2 (y2 )A(y2) (6A.29)
n

and y 2y and E 2{y2) are always positive, thus the sign of f { y 2) depends on the sign of 

A y  2 )

We now wish to consider the two cases in which x2 < y 2 and x2 > y 2.

Figures 6A. 1 and 6A. 2 show that when x 2 < y 2, B(x2) > 0 and A(y2) < 0 so that

f ( x 2) c  0 (6A.20)

f ( y 2)>  0 (6A.21)

The Figures also show that when x 2 > y 2, B(x2) < 0 and A(y2) > 0 so that

f ( x 2) > 0 (6A.22)

f ( y 2)< 0  (6A.23)

If A3 represents the maximum value of x2 and y 2, i.e. Aj=Max[x2,y 2] and 

represents the minimum value of x2 and y 2, i.e. XA -  Min[x2, y 2], then
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/ ( 0 ) < 0  (6 A. 24)

m s ) > 0  (6A.25)

/ W 4) < 0  (6A.26)

/(-oo) > 0 (6A.27)

This implies that there are at least three negative real roots of the function / ( r )  in the 

intervals (-oo,A4), and (A^O). See Figure 6A.3.

Since Eq. (6A.1) is a six order equation in terms of r ,  it has been proved that it will 

always have three negative and three positive real roots.
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Appendix 6B -  Importance factor of modes of vibration

The contribution of the lower natural frequencies on the overall response of a structure is 

greater than the higher frequencies, so it is reasonable to define an importance factor for 

every mode of vibration when calculating the average difference of the models. For this 

purpose, the contribution of every mode to the total base shear of the structure in the RSA 

method (Response Spectra Analysis) is defined as the importance factor of that mode.

Based on the theory of RSA, the base shear due to the n^ mode of vibration is given by

in which g  is the acceleration due to gravity, is the value of pseudo-acceleration

mass matrix and r is the influence factor, in which the components that have the same 

direction as the ground motion are 1 and the rest are zero.

(Paz 1994)

art
g

(6B.1)

thresponse for the n natural frequency and Wn is the effective weight of the structure in the
thn mode of vibration. Wn can be calculated as follows

(6B.2)

thwhere Ln and Mn for the n natural mode are

(6B.3)

and

=q>lMq>II (6B.4)

Mn is defined as the generalised mass and <pn is the vector of the nth mode shape, M is the
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Based on the SRSS (Square Root of Sum Squares) method, the final base shear is 

obtained as

v  = (6B.5)

The ratio of the base shear due to the nth mode of vibration to the total base shear of the 

structure will be used as the importance factor of the nth mode, en, and can be calculated as 

follows.

e = (6B.6)

In this study, the “Iranian code of practice for seismic resistance design of buildings” (Paz 

1994) has been used for San-
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CHAPTER 7 

SUMMARY, CONCLUSIONS AND FUTURE WORK

7.1 SUMMARY

This thesis presents two global analysis approaches to the calculation of the natural 

frequencies of high rise buildings. The structures are proportional and their component 

members are repeated at each storey level unless there is a step change of properties. 

Within this scope many geometric configurations can be encompassed, ranging from 

uniform structures with doubly symmetric floor plans to doubly asymmetric ones 

comprising plane frame and wall structures running in two orthogonal directions.

The first method utilises a continuum element approach in which the structure is divided 

into segments by cutting through the structure horizontally at those storey levels 

corresponding to changes in storey properties. A typical segment is then replaced by an 

appropriate substitute beam that has uniformly distributed mass and stiffness. 

Subsequently, the governing differential equations of the substitute beam are formulated 

using the continuum approach and posed in the form of a dynamic member stiffness 

matrix that is precise to small deflection theory. Since the formulation allows for the
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distributed mass and stiffness of the member, it necessitates the solution of transcendental 

eigenvalue problem. The required natural frequencies are thus determined using a simple 

cantilever model in conjunction with the Wittrick-Williams algorithm (Wittrick and 

Williams 1971), which ensures that no natural frequencies can be missed. Also, a cubic 

equation has been derived for imposing the relationship between the uncoupled and 

coupled frequencies which enables that the coupled three-dimensional vibration problems 

can be dealt using a two dimensional approach in certain cases.

The second method utilises the Principle of Multiples which, when applicable, enables 

any frame, regardless of the number of storeys or bays, to be simplified to an equivalent 

one bay frame, that had precisely the same natural frequencies. If the original frame does 

not satisfy the Principle, the same process can still be obtained, but the resulting substitute 

frame will yield approximate frequencies, although they will normally be acceptable 

engineering accuracy. Like the first method, it can also be used for the vibration analysis 

of asymmetric, three-dimensional frame and wall-frame structures in a two-step 

procedure. First the analogous uncoupled system is analysed using substitute frames then 

the relationship between the uncoupled and coupled responses is imposed through a cubic 

equation.

In general, the computation of the coupled vibration of building structures may be done 

by using appropriate finite element software. However, the analytical technique of 

continuum modelling, as well as using the substitute frame method, not only provide a 

simple and convenient means for the analysis of coupled vibrations, but also permit direct 

and easy visualisation of the dynamic performance of building structures. In turn this 

leads to a qualitative understanding of how the natural frequencies and corresponding 

mode shapes of uncoupled and coupled vibration are related to the structural parameters 

through the use of quick and effective parametric studies.

Finally, the proposed methods require relatively little effort, offer clear and concise output 

and can sometimes yield solutions of sufficient accuracy for definitive checks, but more 

usually provide engineering accuracy for intermediate checks during tasks such as scheme 

development or remedial work. This claim is supported by the results of relatively 

extensive parametric studies done in the ‘‘Numerical Results” section of Chapters 2 to 6 of 

this thesis. In examples of Chapters 3,5 and 6, the results from the proposed methods have
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been compared with the results of a full finite element analysis of the original structure 

obtained using the vibration programme ETABS (Wilson et al. 1995). The exercise 

confirms that the proposed methods can yield results of sufficient accuracy for 

engineering calculations.

7.2 CONCLUSIONS

The principle objectives of the investigation into the coupled vibration of asymmetric 

structures have been achieved, as described above. Also, since every chapter of this thesis 

has its own conclusions, it is now appropriate to bind these together and emphasise the 

major conclusions, as follows

1. The thesis systematically describes the calculation of the natural frequencies for 

both uncoupled and coupled vibration of symmetric and asymmetric structures. 

Structure properties may be uniform throughout the height of the structure or may 

have step changes of properties at one or more storey levels.

2. This is achieved using two global analysis approaches to the vibration analysis of 

symmetric and asymmetric structures. The first method is based on the well- 

established and well-known continuum approach in which a building structure 

may be replaced by a cantilever continuum representing both structural 

characteristics and geometric properties. The second method is based on the 

Principle of Multiples and offers the possibility of replacing the original structure 

by substitute frames that normally yield solutions of engineering accuracy, but 

under certain conditions provide precise solutions.

3. A cubic equation has been derived for imposing the relationship between the 

uncoupled and coupled frequencies of asymmetric, three-dimensional structures. It 

was shown that this relation is precise for a uniform shear cantilever and can also 

yield results of good accuracy for other cases.

4. The results of parametric studies on asymmetric structures show that the effect of 

coupling between the natural frequencies should be taken into account, since 

ignoring it can lead to substantial inaccuracy.
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5. Results from the continuum method improves as the building height increases. It 

always gives results of sufficient accuracy for engineering calculations in building 

structures with more than 10 storeys.

6. The Substitute Frame method normally yields results to acceptable engineering 

accuracy for most regular buildings with any number of storeys. It was shown in 

Chapter 6 that a one-bay substitute frame (Type F-F) can still lead to results of 

sufficient accuracy for wall-frame structures.

7. A practical method to locate the centers of rigidity, shear centers and hence static 

eccentricity has been given. It was shown that the method has major advantages in 

comparison with Cheung and Tso’s method (Cheung and Tso 1986). It was also 

shown that the centers of rigidity and shear centers of the floors of multi-storey 

buildings do not generally coincide. Their locations are not only dependent on the 

geometric and stiffness characteristics of the building, but also on the lateral 

forces. Also, their locations rarely lie on a vertical line through the height of the 

structure. A particular class of buildings was distinguished, the so called 

proportional buildings, in which the centers of rigidity and shear of the floors are 

coincident, load independent and lie on a vertical line throughout the height of the 

structure.

8. The research carried out in this thesis can be considered as a second basis for the 

development of a more general theoretical approach to the coupled vibration 

analysis of a variety of tall buildings.

7.3 FUTURE WORK

The following suggestions are made as to how the current work may be extended.

1. A more detailed study into the vibration analysis of two-dimensional structures 

with cladding

2. Developing the substitute beam approach for plane coupled shearwalls

3. Study of the vibration of symmetric and asymmetric structures comprising walls 

and/or cores
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4. Extending substitute beam method to cover asymmetric structures comprising 

walls, frames, cores and coupled shear walls.

5. Extending the proposed methods to include structures with an arbitrary 

configuration of plane resisting elements i.e. frames, walls, cores and coupled 

shear walls (not running in two orthogonal directions)

6. A further investigation into the accuracy of the cubic equation that imposes the 

relationship between the uncoupled and coupled natural frequencies of the 

asymmetric, three-dimensional structures

7. Investigating the vibration of three-dimensional shear and flexural beams with 

asymmetric cross-section using the two-dimensional approach

8. Assessing the affect of axial deformation of columns and beams on overall 

behaviour of the structures (no inextensible member theory assumption)

9. Investigating the relationship between the uncoupled and coupled natural 

frequencies end assessing the accuracy of Eq. ( 6.180) for variety of end 

conditions

10. Extending the method of Chapter 4 for analysing three-dimensional asymmetric 

structures using two-dimensional approach.

11. The method of Chapter 4 can also be extended to cover the analysis of symmetric 

and asymmetric structures with flexible floor diaphragms.

12. More study is also required on the definitions of centres of shear and rigidity of 

non-proportional buildings in earthquake codes.

13. Investigating the analogous buckling problem for those cases that have been 

identified in this thesis or have been suggested above
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