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ABSTRACT

In recent years, there has been an increase in demand for unified field multipliers for 

Elliptic Curve Cryptography in the electronics industry because they provide 

flexibility for customers to choose between Prime (GF(p)) and Binary (GF(2")) Galois 

Fields. Also, having the ability to carry out arithmetic over both GF(p) and GF(2") in 

the same hardware provides the possibility of performing any cryptographic operation 

that requires the use of both fields. The unified field multiplier is relatively future 

proof compared with multipliers that only perform arithmetic over a single chosen 

field. The security provided by the architecture is also very important. It is known 

that the longer the key length, the more susceptible the system is to differential power 

attacks due to the increased amount of data leakage. Therefore, it is beneficial to 

design hardware that is scalable, so that more data can be processed per cycle. 

Another advantage of designing a multiplier that is capable of dealing with long word 

length is improvement in performance in terms of delay, because less cycles are 

needed. This is very important because typical elliptic curve cryptography involves 

key size of 160 bits.

A novel unified field radix-4 multiplier using Montgomery Multiplication for the use 

of GF(p) and GF(2”) has been proposed. This design makes use of the unexploited 

state in number representation for operation in GF(2") where all carries are 

suppressed. The addition is carried out using a modified (4:2) redundant adder to 

accommodate the extra 1 * state. The proposed adder and the partial product generator 

design are capable of radix-4 operation, which reduces the number of computation 

cycles required. Also, the proposed adder is more scalable than existing designs.
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1 Introduction

1.1 Motivation

This thesis will describe the VLSI implementation of a modular multiplier that is 

capable of performing multiplication in both GF(p) and GF(2”) Galois Fields for 

elliptic curve cryptography. Elliptic curve cryptography is becoming more popular 

compared with traditional cryptographic systems because it provides a similar level of 

security but much smaller key lengths are required.

One of the most used operations in cryptographic systems is modular exponentiation, 

which involves many long wordlength modular multiplications. For elliptic curve 

cryptography, modular multiplication is one of the most computationally demanding 

operations involved. For these reasons, elliptic curve cryptography was chosen to be 

the target system and hardware implementation for modular multiplication will be 

designed.

In recent years, there has been an increase in demand for unified field multipliers for 

Elliptic Curve Cryptography in the electronics industry, because they provide 

flexibility for the customer to choose between the Prime (GF(p)) and the Binary 

(GF(2n)) Field. Also, having the ability to carry out arithmetic over both GF(p) and 

GF(2") in the same hardware provides the possibility of performing any cryptographic 

operation that requires the use of both fields. The unified field multiplier is relatively 

future proof compared with multipliers that only perform arithmetic over a single 

chosen field.

The security provided by the architecture is also very important. It is known that the 

longer the key length, the more susceptible the system is to differential power attacks, 

due te the increase amount of data leakage. Therefore, it is beneficial to design a 

hardware that is scalable, so that more data can be processed per cycle. A scalable 

system is a system that can expand word length without affecting logic depth. An 

additional advantage of designing a multiplier that is capable of dealing with long 

wordlengths is improvement in performance in terms of delay, as less iterations are
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needed. This is very important because typical elliptic curve cryptography involves 

key size of 160 bits.

Apart from being scalable and capable of dual field operation, the system must also 

be impartial, which means that it must not favour either of the fields. This unified 

field multiplier should avoid the need to compromise on speed and area in order to 

gain the dual field ability.

1.2 Thesis Outline

In this thesis, the hardware implementation of ECC in two different fields GF(p) and 

GF(2") will be explored. Even though GF(p) and GF(2”) are structurally very 

different, they are very similar in nature, this can be exploited when designing this 

unified multiplier. This unified ECC multiplier for GF(p) and GF(2”) provides a 

simple generic solution to the industry which could give flexibility to their customers 

to choose between GF(p) and GF(2”) field with minimal penalty. Note that all the 

arithmetic operations in systems such as AES are carried out in finite field GF(2"), 

therefore the proposed multiplier could be used for this as well.

Unlike the existing designs, the proposed design does not require an external control 

signal that will be propagated to all the cell modules, which cause very high fan-out 

to the field selection signal that could affect the scalability of the design. Instead, the 

proposed design makes use of a unique 1 * implementation to embed field information 

into the number encoding itself.

The proposed multiplier will operate in radix-4; by increasing the radix of the system, 

the number of iterations will be reduced. However, there is a trade-off between the 

area consumption and the improvement in speed. Radix-4 system is considered to 

have the best trade-off between speed and area.

Furthermore, the design uses redundant addition to avoid long carry chains. The 

multiplier is in digit serial fashion and Montgomery multiplication is used.
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The thesis is organised as follows:

Chapter 2 will provides the basic background theory on cryptography, particularly on 

common systems such as DES and RSA. Elliptic curve cryptography systems are also 

introduced.

In Chapter 3, the operational details of elliptic curves functions will be explored. This 

will first be explained in basic real number groups, then elliptic curve groups over 

GF(p) and GF(2") will be investigated. The second part of Chapter 3 will be dedicated 

to explaining side channel attacks, e.g. differential power attacks and timing attacks. 

The final section of Chapter 3 will explore what other unified field operators in 

particular multipliers have been implemented.

Chapter 4 describes the implementation of the proposed unified field redundant adder 

for multiplication in either GF(p) or GF(2"). This section will explain the unique 

encoding method that is employed in this design. The scalability of the adder will be 

assessed at the end of the chapter using a technique called Logical Effort.

Chapter 5 will present the overall implementation of the dual field multiplier. 

Montgomery multiplication will be compared with other modular multiplication 

methods such as Barrett modular multiplication, showing that Montgomery is more 

appropriate for the design. It will show the implementation of the partial product 

generator, modular reduction, carry test unit and the final redundant to binary 

conversion unit.

Chapter 6  will assess the results of the multiplier, suggest alternative methods to 

improve the operation of the multiplier, such as using a 4-input tri-state inverter to 

implement a multiplexer, rather than using a traditional design. This chapter will also 

examine radix- 2  multiplier design and investigate the operation of the multiplier for 

A/xM  multiplication. Finally, there is a conclusion.
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2 Cryptography

Cryptography has become an integral part of modem day life as it provides secure 

communications. It provides a set of techniques to achieve the goal of different 

aspects of security, which are: confidentiality; data integrity; authentication and non

repudiation. Therefore, in order to achieve an adequate level of security for any 

communication, the following issues should be addressed:

• The data should only be readable by authorised recipients;

• the data itself should not be altered by any unauthorised person;

• parties involved in the communication and the data origination should be 

identified and authenticated;

• finally, no actions taken by any party involved are deniable.

This is achieved by encrypting the original data, or the plaintext, with a mathematical 

function, in order to convert it to the ciphertext. The recipient will then decrypt the 

ciphertext with a mathematical function to obtain the plaintext. It is assumed that the 

transmission medium is unsecured and eavesdropper could interrupt, intercept, 

modify or fabricate the data. Figure 2.1 shows the basic concept of encryption and 

decryption. The plaintext m is encrypted by function E with key e. The ciphertext C is 

then transmitted to the recipient. The recipient decrypts C using function D with key 

d  and the decrypted text can be retrieved. The keys should possess the following 

properties: Dj = Ee' \  therefore, DJJEe{m)) = m. The two keys d  and e could be the 

same.
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Eavesdropper

Encrypted 
message c

unsecured
channel

Ecryption
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Decryption 
Dd(c) =  m

Decrypted
TextmPlaintext m

Sender Recipient

Figure 2.1 Schematic to show encryption and decryption

The security of a cryptosystem depends upon the strength of the algorithm, and the 

length of the keys used for encryption and decryption. A cryptosystem should be 

secure enough to be able to avoid most attacks except “brute-force”, which is a 

known-plaintext attack. The key length must be sufficiently great so that brute-force 

attack becomes computationally infeasible. However, it has been discovered that the 

longer the key is required by a system, the higher chance of the system being 

successfully attacked by differential power attacks [1]. Differential power attacks will 

be discussed in Section 3.4.4.

One-way function and trapdoor-one-way-function form the backbone of modem 

(public key) cryptography. One-way function is relatively easy to carry out in one 

direction, but computationally infeasible or impossible to carry out the reverse 

operation Trapdoor-one-way-function is a one-way function such that, given the 

extra trapdoor information, the computation of the reverse function becomes 

computationally feasible or else it will be difficult or even impossible to reverse.

The main aim of cryptography is to keep the communication secure, which 

fundamentally means keeping the plaintext secret by keeping the decryption key 

secret. Cryptanalysis is the science of recovering the plaintext of the message without 

the knowledge of the key. Each attempt at Cryptanalysis is called an “attack”. One 

should assume that the cryptanalyst has complete details of the cryptographic
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algorithm and implementation. There are six commonly known attacks on encryption 

schemes rather than attacks on the implementation.

1. A ciphertext-only attack is one where the cryptanalyst only has knowledge of 

the ciphertext and tries to deduce the plaintext or the decryption key by 

observing the ciphertext.

2. A known-plaintext attack is one where the cryptanalyst obtains a quantity of 

plaintext and its corresponding ciphertext.

3. A chosen-plaintext attack is one where the cryptanalyst chooses the plaintext 

and is then able to obtain the corresponding ciphertext, by using this 

information the cryptanalyst can deduce the remaining plaintext of the 

ciphertext which was previously unseen.

4. An adaptive chosen-plaintext attack is fundamentally a chosen-plaintext 

attack, however, the choice of plaintext may depend on the ciphertext from the 

previous requests.

5. A chosen-ciphertext attack is one where the cryptanalyst chooses the 

ciphertext and is then able to obtain the corresponding plaintext. However, in 

order to carry out such operation the attacker needs to be able to gain access to 

the decryption equipment but not the decryption key. The cryptanalyst could 

now recover the corresponding plaintext of the different ciphertext from the 

information deduced before without access to such equipment.

6 . An adaptive chosen-ciphertext attack is fundamentally a chosen-ciphertext 

attack, however, the choice of ciphertext may depend on the plaintext from the 

previous requests.

There are two different types of cryptography, Symmetric (Private Key) and 

Asymmetric (Public Key) cryptography.

6



2.1 Symmetric key cryptography

Symmetric key cryptography is a cryptographic system where the encryption key (e) 

is generated from the decryption key (d) or vice versa, as shown in the following 

equation:

d = e~l (2 .1 )

In most cases, the most practical choice of the key pair for symmetric key 

cryptography is when the encryption key (e) equals to the decryption key (d). 

Therefore, in order to keep the data secure, the key used must be kept secret. As a 

result, symmetric key cryptography is also called private key cryptography. However, 

there lies a so-called “key distribution problem”, where an efficient protocol needs to 

be established for key agreement and key exchange in a secure manner (such 

protocols will not be discussed in this thesis). Figure 2.2 shows the schematic 

diagram of symmetric key cryptography.

Eavesdropper
A

key source |-  
(e) i

Encryption 
_ _  key_a__

Ecryption 
EJm) = c

IK

Plaintext m

secured
channel

Encrypted 
m essage c

unsecured
channel

Decryption 
DJc) = m

V
Decrypted 

Text m

Sender Recipient

Figure 2.2 Schematic to show Symmetric key cryptography
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There are two different types of symmetric key cryptography, and they are block 

cipher and stream cipher. Block ciphers can be either symmetric key or public key; 

only symmetric key block ciphers are addressed in this section.

Block ciphers operate on plaintext and ciphertext in a group of bits, usually 64 bits 

but it could be longer. The blocklength of the plaintext blocks and the ciphertext 

blocks are the same. The most important classes of block ciphers are substitution

ciphers and transposition ciphers. These ciphers substitute symbols or a group of

symbols by other symbols or other group of symbols or the symbols in a block is 

permuted by a transposition function.

The encryption transformation Ee of a simple substitution cipher where e e K can be 

shown as follows:

E,(m) = (e(m, )e(m2 )..e(m,)) = (c,c2 ..£,)= c ,  (2.2)

over A, defined to be an alphabet of q  symbols, and M, the set of all strings of length t 

over A In addition, K  is the set of all permutations on the set A m = (mini2 .. .mt) e M 

For decryption, inverse permutation is carried out such that d = e'1. The decryption 

transformation is:

Dd{c) = 0 d(cx)d(c2 )...d{ct)) = (mxm2 ...mt) = m . (2 .3)

For an encryption scheme with block length /, the encryption function e which is a 

transposition function, where K  is defined as the set of all permutation on the set {1, 

2 .../} can be shown as follows:

Et (m) = = (c,c2 ...c,) = c . (2.4)

For decryption, inverse permutation is carried out such that d = e’1. The decryption 

function is:

8



(2.5)

Stream ciphers operate on streams of plaintext and ciphertext. They convert plaintext 

to ciphertext one bit at a time. Therefore, they can be considered as a very simple 

block cipher with block length equal to one. The encryption transformation Ee could 

be defined as follows, which makes use of a simple substitution cipher with block 

length equals to one:

(2 .6)

The keystream is defined as a sequence of symbols • - -e\ e K, where K is the key 

space for a set of encryption transformations. The keystream can be generated at 

random by an algorithm called keystream generator. The decryption transformation 

can be described as follows, where d, denotes the inverse of e{.

mi = Ddl (c,). (2.7)

In general, block ciphers are more suitable for software implementations and stream 

ciphers are faster and require less complex implementation in hardware. Stream 

ciphers are more appropriate for situations where buffering is limited and error 

transmissions are high because they have little or no error propagation.

2.2 DES and Triple DES

The most popular symmetric key cryptographic algorithm is Data Encryption 

Standard (DES). DES is symmetric block cipher that uses 56-bit encryption key and 

has 64-bit block size. This is essentially an improvement of the algorithm “Lucifer” 

developed by IBM in the early 1970s [2]. In July 1977, the National Institute of 

Standards and Technology (NIST) adopted and issued DES as Federal Information 

Processing Standard Publication 46 (FIBS PUB 46) [3]. It provided standards and 

guidelines for this algorithm to be used by US Federal agencies. However, the 

standard could also be implemented and used by those outside the Federal
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government, such as for commercial use. The American National Standards Institute 

(ANSI) approved DES as a voluntary standard in 1981 (ANSI X3.92) [4], calling it 

the Data Encryption Algorithm (DEA). Figure 2.3 shows the encryption process of 

DES.

INPUT

6 4  b its

INITIAL PERMUTATION

^  3 2  b its3 2  b its  ^
PERMUTED

INPUT

Ri = L0©f(R0l Kn)

R2=Li©^(R1, K2)

16

PR EO UTP UT

INVERSE INITIAL PERMUTATION

OUTPUT

R 15“  L 1 4 ©  ̂ ( R  14, K15)

R i 6 = L i 5© f ( R i 5 , K i e )

denotes XOR

Figure 2.3 DES Encryption

DES is a Feistel network, which means that a block of length n is divided into two 

halves: L and R. An iterated block cipher is defined where the outputs of the 7th round 

is determined from the output of the previous round and are defined as follows:
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L, = 

R, = L,.t ©/(^.i,^,)

(2.8)

(2.9)

where K, is the sub-key for f *1 iteration and / i s  an arbitrary function. Feistel function 

is invertible and so the same algorithm can be used for both encryption and 

decryption.

For DES encryption, the 64 bits input block will first undergo the initial permutation 

IP. The permutated input block becomes the input of a 16-stage complex key 

computation process. The output of the 16-stage computation plus a final stage of 

block interchange produce the preoutput block, which will then undergo the inverse 

of the initial permutation to provide the final encrypted output. The cipher function /  

operates on two blocks, the 32 bits R„ and the 48 bits Kn chosen from the 64-bit key 

and produces a block of 32 bits. This 32 bits block becomes the block R input for the 

next iteration. Figure 2.4 depicts the DES cipher function /  and the function is 

described as follows:

f ( R l_l,K l) = P(S(E(Rl_l © * ,))) , (2.10)

The implementation of DES is relatively easy particularly on special purpose chip due 

to its repetitive nature.
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Figure 2.4 DES inner function/

However, due to improvement in computational power, “single” 56-bit key DES has 

become less secure and so “single” DES has been phased out and is being replaced by 

Triple DES algorithm (TDEA) [5], which has an effective key length of 156 bits, 

even though the overall key length is 192 bits. This is because although the input key 

of DES is 64 bits, only 56 bits are actually used by the DES algorithm. The other 8  

bits, which are not used by the algorithm, may be used for error detection and the 

least significant bit in each byte is a parity bit and is ignored. The procedure for 

encryption is the same as regular DES, but it is repeated three times and so TDEA is 

three times slower than single DES. The input block is first encrypted using DES 

algorithm with the first key (KEY1), the output will then become the input of the 

second stage where the block will be decrypted using the second key (KEY2). 

Finally, the output of the second stage will become the input of the third and last 

stage. The input block is encrypted using the third key (KEY3). The final result will 

then be used in the computation of the ciphertext. None of the intermediate results is 

revealed outside the cryptographic boundary.

DES is a hardware friendly algorithm due to its regular structure, which makes 

exploitation of parallelism by pipelining easy. DES and Triple-DES commercial
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implementations are generally available in smart card IC design, such as mifare pro 

X P8RF6008 by Philips [6 ]. This particular design makes use of a Triple-DES co

processor to speed up the calculation time. According to the specifications, by using a 

co-processor, about three orders of magnitude of speed improvement could be 

achieved compared to software solutions and the total time for a triple-DES 

calculation to less than 35ps at 13.56MHz. Another example of Triple-DES IC smart 

card design is KS88C92008/4/2/1 by Samsung Electronics [7]. In this 

implementation, a specific Triple-DES module is included in the smart card design. 

The fastest DES execution time performed by this module is 77.9 ps at 4.52 MHz.

Even though DES was developed for implementation on hardware, many software 

implementations have been developed. However, DES implementation in software 

tends to be less efficient, an example of software implementation of DES can be 

found in [8 ]. In this report, the author shows the results of DES algorithm 

implementation using C code on the C6000 Digital Signal Processing platform and 

compiled on the Texas Instruments’ Optimizing C Compiler where no assembly code 

is used. In this report, DES is implemented at data rates as high as 52.4 Mbits per 

second for DES and 22.3 Mbits per second for triple-DES on the C6201 McEVM 

(200 MHz). Using the C6211 DSK (150 MHz), data rates were measured as high as 

38.8 Mbits per second for DES and 17.8 Mbits per second for triple-DES. The author 

found that using C code for DES implementation provides flexibility, and is a quick 

and inexpensive way to add encryption functionality to a design. Other DES software 

implementation examples can be found in [161] and [163].

2.3 Other Symmetrical Block Cipher Algorithm -  IDEA & AES

In this section more symmetrical block cipher algorithm are introduced and they are 

IDEA and AES.
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2.3.1 IDEA

International Data Encryption Algorithm (IDEA) is a symmetrical block cipher 

algorithm with a 64-bit block length and a 128-bit input key. It was first proposed in 

1990 by Xuejia Lai and James Massey and was called Proposed Encryption Standard 

(PES) [9]. It was then strengthened and renamed, from Improved Proposed 

Encryption Standard (IPES) to IDEA in 1992 [10]. Figure 2.5 shows the clock 

diagram of the IDEA algorithm. As in DES, IDEA is of the Feistel structure, it

consists of eight iterations plus an output transformation only. The 64-bit input block

is divided into four 16-bit sub-blocks and are denoted as X\, Xj, X3, X4. In the course 

of each iteration, the following events will take place:

1. Multiply plain text block X\ by the first sub-key Ki

2. Add plain text block X 2 with the second sub-key K2

3. Add plain text block X 3 with the third sub-key K3

4. Multiply plain text block X4 by the fourth sub-key K4

5. XOR the results of step 1 and step 3

6 . XOR the results of step 2 and step 4

7. Multiply the result of step 5 by the fifth sub-key K5

8 . Add the results of step 6  and step 7

9. Multiply the result of step 8  by the sixth sub-key K6

10. Add the results of step 7 and step 9

11. XOR the results of step 1 and step 9
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12. XOR the results of step 3 and step 9

13. XOR the results of step 2 and step 10

14. XOR the results of step 4 and step 10

16 K

MA - box

K ,(9)

16
*

Yi

round  1

K4(9)

16

ro u n d  2 ,.., 8 
(2<r<8)

o u tp u t
tra n sfo rm a tio n

V4
plaintext (X,, X2, X 3, X4) 
subkeys K j (r> for round r 

ciphertext (Yi, Y2t Y3i Y4)
© bitwise XOR of 16-bits 

sub-blocks 
®  addition mod 216
#  multiplication mod 216 + 1 (with 0 interpreted as 216)

Figure 2.5 Block Diagram of the IDEA algorithm
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2.3.2 AES

In September 1997, NIST initiated the development of a new Encryption Standard -  

Advanced Encryption Standard (AES), they requested candidates develop a new 

algorithm strong enough to replace DES and Triple DES. On 26th November, 2001, 

NIST published a new federal standard known as FIPS PUB 197 [11], the chosen 

algorithm was called Rijndael [12].

The AES algorithm is a symmetric block cipher that is capable of using cryptographic 

keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. AES 

processes data in a group of eight (a byte), i.e., a sequence of eight bits is treated as 

one entity. Therefore, all the arithmetic operations required are carried out in finite
O  Q

field GF(2 ). More details on arithmetic operations in GF(2 ) are described in chapter

3.

2.4 Public Key Cryptography

As mentioned in section 2.1, secret key cryptography has a weakness of “key 

distribution problem” or “key management problem”. This is caused by the fact that 

the same key is used for both encryption and decryption and therefore the key must 

be kept secret. Public key cryptography or asymmetric key cryptography overcomes 

this problem by using different encryption (e) and decryption (d) key pair so that 

confidentiality, data integrity, authentication and non-repudiation can be achieved. 

Figure 2.6 shows the schematic diagram of public key cryptography operations.
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Figure 2.6 Schematic to show public key cryptography

2.4.1 Diffle-Hellman key agreement protocol

In 1976, Diffie and Heilman proposed a new cryptography system that makes use of 

public key with a key agreement protocol [13], which provided the ground for future 

development of public key cryptography. The key agreement protocol provides a 

means for two users to agree on a secret key over an insecure channel without prior 

arrangement. The security of the protocol depends on the discrete logarithm problem 

over a finite field GF(p) where p  is a prime number. It has been proven that under 

certain assumptions breaking the Diffie-Hellman protocol is equivalent to computing 

discrete logarithms [14]. The Diffie-Hellman key agreement protocol involves a 

prime parameter p  and a generator g, which is an integer smaller than p. Let:

n = g k modp  fo ri <&</?-1 (2.11)

Therefore, k is:

k = logg nm odp  for 1 < n <p-\ (2.12)
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User A and user B can share a secret key by first of all generating a random private 

value a and b respectively, where both value a and b are from the set of integers {1, 

...,p - \ }. They then generate their respective public keys:

g amodp  and g bmodp  (2.13)

When the two users wish to communicate privately, they exchange their public keys.

A computes:

g ab= (gb)a mod p  (2.14)

User B computes:

g 1™ = (ga)b mod/? (2.15)

Since gab = gba, therefore they now have a shared key. It is assumed that the secret 

component gab is computationally infeasible to be worked out providing the random 

prime number p  is large enough. In the same paper, Diffie and Heilman also 

suggested the idea of using digital signatures to ensure the authenticity of the data. 

Much research has been done to improve the authenticity of the data, Diffee et al 

proposed an authentication and authenticated key exchange protocol called station-to- 

station (STS) in 1992 [15].

Public key cryptography works on the assumption that it is computationally infeasible 

to work out decryption key d  given the encryption key e. Encryption Ee is being 

viewed here as a trapdoor one-way function with the decryption key d  being the 

trapdoor information necessary to compute the inverse function, hence allow 

decryption. Given that it is not necessary for the encryption key e to be kept secret, 

therefore it can be made public and hence it is called the public key. However, the 

corresponding decryption key must be kept secret and hence it is called the private 

key. The public key allows any entity to send encrypted messages to the same
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recipient using the same public key, only the intended recipient can decrypt the 

message using their private key.

It is particularly important for public key cryptography to ensure the authenticity of 

the public keys to avoid protocol failure where the origin of the public keys are not 

known. Without appropriate measures, an adversary could impersonate the intended 

recipient B and issue false public key to sender A. The adversary will then be able to 

intercept and decrypt the message with the private key before sending the message to 

B, which is now encrypted with B’s public key. One solution to such problem is by 

making use of Digital Signature Algorithm (DSA). The concept of digital signature 

algorithm is as follows:

Sender A “signs” the message set M = {my, m2 , ...} by using a signature

transformation function Sa, which will be kept secret by the sender. The signature 

transformation function transforms the message set to give signature set S = {sy, $2 , 

S3 , ...}. This transformation can be interpreted as follow:

Sender A transmits the signature pair (m; s) where s is the signature for message m. 

The recipient can verify the signature by obtaining the verification function Va from 

A. Recipient B computes the following to verify the signature:

The recipient accepts the signature when the signature pair (m; s) matches; otherwise, 

the signature is rejected.

In general, DSA enables digital signatures to be generated and verified. It is a pair of 

large numbers, which form the key pair, that are computed according to the specified 

algorithm, within parameters to verify the authenticity of the signature and hence the 

integrity of the data.

s = SA(m) (2.16)

u = VA(m;s) (2.17)
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In practice, a hash function, sometimes called one-way hash function, is used in the 

signature generation process to obtain a condensed version of data called a message 

digest. Figure 2.7 shows digital signature generation and verification with a Secure 

Hash Algorithm. The Secure Hash Standard that is specified by NIST is known as 

FIPS PUB 180-1 [16] and the Secure Hash Algorithm is called SHA-1.

Signature Generation Signature Verification

Message Received
Message

Private
Key

Secure Hash 
Algorithm

Secure Hash 
Algorithm

i
Message

Digest
1

l
Message

Digest
1

1 Digital Public 
Signature Key

1 Digital

DSA Signature DSA
Verification
Operation

Signature

Operation

Signature Verified 
or

Signature not Verified

Figure 2.7 DSA with SHA

The hash function is a process that produces a condensed version of data of arbitrary 

length (signed or pre-signed message), called the hash value. In the case of FIPS 180- 

1 standard, the input message must be less than 264 bits in length, the output of the 

Secure Hash algorithm is called the message digest, and is 160 bits long. Hash 

function has the following properties:

1. It is relatively easy to compute for any given input.

2. It is one-way.

3. It is collision-free -  this means that the Hash function is computationally 

infeasible to find any two messages x and y  such that H(x) = H(y).
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For the digital signature generation process, the message digest becomes one of the 

two inputs to the digital signature operation, which generates the digital signature as 

the output. The digital signature and the signed message are sent to the verifier.

For digital signature verification process, the message digest is one of the three inputs 

to the digital signature verification operation, which verifies whether the signature 

matches or not. The Hash function used must be the same as the one used for 

signature generation.

Note that for digital signature operation with signature hash algorithm, only the hash 

value is signed. Compared with processes where the message is signed directly, 

signing just the message digest saves time and space. With the direct signing method, 

the message needs to be split into blocks of appropriate size and each block is signed 

individually.

Various other signature schemes exist, such as, the ElGamal signature scheme [17] 

and the Digital Signature Standard (DSS) FIPS 186 published by NIST in 1991 [18], 

which is a variant of ElGamal scheme. Another well-known digital signature scheme 

is RSA signature scheme, which was first introduced in 1977 [19] [20]. In July 2002, 

Alfred Menezes published Evaluation of Security Level of Cryptography: RSA 

Signature Schemes (PKCS#1 vl.5, ANSI X9.31, ISO 9796), which gave a good 

overview of the security of RSA signature schemes [21]. Digital Signature Standard 

(DSS) published by NIST on 27 January 2000 [22] described three algorithms for 

digital signature generation and verification. They are the following:

1. Digital Signature Algorithm (DSA)

2. RSA digital signature algorithm

3. Elliptic Curve Digital Signature Algorithm (ECDSA)
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2.4.2 RSA

RSA cryptosystem was invented by R. Rivest, A. Shamir, and L. Adleman in 1978 

[20], and is one of the most widely used public key cryptosystems. As mentioned 

previously, RSA not only encrypts and decrypts messages; it can also be used for 

digital signatures. Its strength is based on integer factorization problem, where a large 

number is to be factorized.

Prior to encryption, the RSA public key and the corresponding private key have to be 

generated before the entity A could encrypt the message with entity B’s public key. 

The procedure for RSA key generation is as follows:

1. Generate two large random and distinct prime numbers p  and q, for 

maximum security,/? and q should be of equal length.

2. Compute the product:

3. Select a random integer encryption exponent e, 1 < e < 0  , such that 

gcd(e, 0  ) = 1, i.e. they are relatively prime.

4. Use the extended Euclidean algorithm (see Appendix 1) to compute the 

unique integer decryption exponent d, I < d < 0 , such that ed= 1 mod 0 , 

hence, d  and n are also relatively prime.

n= pq

and

(2.18)

0  = ( p - \ ) ( q - \ ) (2.19)

d = e~l mod ((p-!)(#-!)) (2.20)

5. R’s public key is («, e); B’s private key is d.

6 . p  and q could now be discarded and should never be revealed.
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A can now encrypt a message for B, and B can decrypt using the private key. The 

RSA encryption and decryption procedures are as follows:

1. Encryption:

a. Obtain B 's authentic public key (n, e).

b. Represent the message as an integer m in the interval [0; n - 1].

c. Compute c = me mod n

d. Send the ciphertext c to B.

2. Decryption:

A decrypts plaintext m from c by carrying out the following: 

m = cd mod n.

The assumption is that the RSA function is a trapdoor one-way function and the 

private key is the trapdoor. In order to compute c — me mod n efficiently, a “Repeated 

square-and-multiply algorithm for exponentiation in Zn” could be used (see Appendix 

1). This kind of modular exponentiation is performed each time a part of the message 

is encrypted/decrypted. Both e and n are very large integers and so this operation is 

very computationally intensive, however, the Chinese Remainder Theorem (CRT) 

(see Appendix 1) can be used as a method for computing the modular exponentiation. 

By using CRT, the large modulo exponentiation can be split into two smaller 

exponentiations, namely over p  and over q, which are already known. Fermat’s Little 

Theorem (see Appendix 1) can be used to further reduce the size of the problem.

Even with these improvements, RSA cryptography is slower than the commonly used 

symmetric-key encryption algorithms such as DES (typically, in software, DES is 100 

times faster than RSA and in hardware can be between 1,000 to 10,000 times faster 

depending on the implementation). In practice, RSA encryption is most commonly
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used for the transport of symmetric-key encryption algorithm keys and for the 

encryption of small data items.

RSA Laboratories’ recommended standards can be found in [23]. RSA Laboratories 

recommended in 1999 that the current industry standards for the RSA algorithm, such 

as the ANSI X9.31 [24] banking standard for RSA signatures, require a minimum of 

1024 bits for an additional level of security.

When entity B wants to send a signed message M  to entity A, first B computes his 

signature for message M with his private decryption key (Db):

S = Db(M ) (2.21)

B then encrypts the signed message using A ’s public key:

C = Ea(S) (2.22)

A can decrypt the encrypted signed message with his private decryption key (Da):

S = Da(C) (2.23)

S = Da(Ea(S)) (2.24)

A can recover the message using B’s public encryption key Eb'

M  = Eb(S) (2.25)

M  = Eb(Db(M)) (2.26)

Hence, RSA signature scheme recovers the message from the signature, the sender 

does not need to send the encrypted message separately with the signature.
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2.4.3 RSA Problem (RSAP)

The RSA Problem is defined as follows, given a positive integer n = pq, where p  and 

q are two distinct odd primes; a positive integer e such that gcd(e; (p-l)(#-l)) = 1; 

Find the plaintext integer m such that me = c (mod ri). Therefore, one has to find the 

e* roots modulo a composite integer n. There is exactly one m e(0, 1, ..., n-\) for 

each integer ce(0, 1 ,..., n-\). Rivest and Kaliski [25] provides a good insight into the 

RSA Problem.

RSA assumption is that the security of RSA depends on large integer factorisation 

problem: RSA Problem becomes difficult to solve when the modulus n is sufficiently 

large and both p  and q are two large random and distinct prime numbers, therefore 

both the plaintext m and ciphertext c is a random number between 0 to n-\. It is 

important for plaintext m to be random and be over a wide range of [0, n-1], 

otherwise an adversary can compute m by trying all possible values form.

Factoring is believed to be a mathematically difficult problem, i.e. NP complete, it 

has not yet been mathematically proven and an efficient factoring algorithm remains 

to be discovered, however, this is widely believed to be unlikely.

It has been said that the RSA problem is closely related to factoring, Boneh and 

Venkatesan show the RSA problem may not be equivalent to integer factorisation 

when the public exponent is small [26], an example is given where public exponent e 

= 3. Another RSA problem consideration is that, it is not necessarily true that a large 

number is more difficult to factor than a small number. However, it is known that a 

number with large prime factors is more difficult to factor than a number with small 

prime factors; hence, large modulus should be used for an RSA cryptosystem. There 

are other rules in choosing the modulus in order to preserve security of RSA, as 

mentioned before, the two primes, p  and q, which form the modulus should be of 

roughly equal length. In addition, one should be aware that if the two primes are too 

close together, it increases the ease of determining the values by the adversary, since:

Ifp^q, let mean ofp  and q = m = [(p+tf)/2]; then p can be determined as:
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p  = m ± J (m 2 - n )  ; (2.27)

Where n =pq.

However, the probability of this happening in reality is low. Another concern over 

increasing key size is that the overall RSA algorithm operations will also take longer. 

For example, doubling the length of the modulus will on average increase the time 

required for encryption and signature verification, (which made use of the public key) 

by a factor of four, and increase the time taken by the decryption and signature 

operation, (which make use of the private key) by a factor of eight. The reason why 

public key operations are affected less than private key operations is that the public 

exponent can remain fixed while the modulus is increased, whereas the length of the 

private exponent increases proportionally. One should choose a modulus (key) length 

with the following considerations:

1. The value of the protected data and the length of time it needs to be protected;

2. How powerful are the threats.

2.4.4 Security of RSA

In the previous section, the security of RSA cryptosystems relating to RSA problem 

and factoring was discussed. In this section, more security issues and attacks on RSA 

cryptography will be reviewed. Boneh provides a good general insight into security of 

RSA encryption [27].

1.- Attack relating to RSA factoring problem / Chosen Cipher Attack

As mentioned previously, public key cryptography is susceptible to chosen 

cipher attacks, RSA is also prone to this type of attack. Some 

characteristics of RSA can be exploited to perform chosen cipher attack,
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such as multiplicative property of RSA. This is described in [28]. More 

chosen cipher attack on RSA are described in [29] and [30].

An effective method to defeat such an attack is known as Optimal 

Asymmetric Encryption Padding (OAEP) [31]. The objective of OAEP is 

to mask the plaintext message M  with the hash G of a random number r 

and this string of masked data is concatenated with the XOR of hash H  of 

the mask data (MBG(r)) with random string r as shown follows:

[M © G(r)]||[r © H (M  © G(r))] (2.28)

|| denotes concatenation. Different variations of OAEP can be found in 

[32] and [33].

2. Small Encryption Exponent e

The advantage of using small encryption exponent e, such as e = 3 is that 

faster public key encryption and faster public key signature verification 

can be gained. However, it has been shown by Hastad [34] that having 

small encryption key could be insecure when the same plaintext is sent to 

many different recipients. Each recipient has their own public moduli, 

since these moduli are most likely pair-wise relatively prime, therefore an 

attacker could quite easily compute the plain text using Gauss’s algorithm. 

In such cases, small encryption exponent should be avoided.

3. Forward Search Attack

As mentioned previously, the range of message must be large and 

. unpredictable, otherwise an adversary can decrypt a ciphertext by 

encrypting all possible plaintext. One method to avoid this attack is to 

append pseudorandom bit-string to the pre-encrypted plaintext message.

4. Small Decryption Exponent d
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To speed up RSA signature generation or decryption time, one may 

choose to use small decryption exponent d, however, Boneh and Durfee 

[35] shows that when the private key used in the RSA public key 

cryptosystem is less than A025, the system is insecure. Wiener [36] also 

proposed an attack on RSA when small decryption exponent d is used. To 

avoid this attack, the decryption exponent d  should be roughly the same 

size as n.

5. Multiplicative Properties

Let m\ and m2 be two plaintext messages and let c\ and C2 be their 

respective RSA encryption:

(mlm2y  = m*m2 = cxc2 (modn) (2.29)

This means that the plaintext m = mi m2 mod n and the corresponding 

ciphertext is c = C1C2 mod n. Due to this property of RSA, adaptive chosen 

cipher attack can be performed, and the adversary can retrieve the 

plaintext. This can be avoided by applying pre-defined structure 

constraints on the plaintext. All ciphertext decrypted to a message which 

does not possess the same pre-defined structure will be rejected as 

fraudulent.

6. Common Modulus Attack

RSA system where the users within an organization would share the 

public modulus is susceptible to this type of attack. For example, the 

administration would choose the public modulus n, two users would then 

have their encryption and decryption key generated ((ei, n), di)) and ((e2 , 

n), d2)) from the same modulus. The eavesdropper can recover the 

plaintext by doing the following:
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C, = M el mod 77 (2.30)

C2 = M e2 mod n (2.31)

(el )a + (e2 )b = 1 i f  g c d ^ , e2 ) = 1 (2.32)

M  = C° + C2 mod 77 (2.33)

To avoid this attack each entity should choose its own RSA modulus n. 

Since any knowledge of encryption and decryption key pair allow for the 

factorisation of the modulus n.

7. Cycling Attack

Given c = me mod n, there exists a k such that ce mod n = c , so

c**' modrt = m . ce* mod/7 is then computed until c is obtained and the 

previous power is the message. However, this attack is considered non

threatening to the security of RSA since factoring n is assumed to be 

intractable.

8. Message Concealing

A message is unconcealed when it encrypts back to itself, i.e. me=m{mod 

n), however, this cannot be avoided since there will always be some 

messages which are unconcealed, such as, when m = 0, m = 1 and m = n-l. 

Even though this might be the case, it does in actuality pose a threat since 

the proportion of the unconcealed message is small as p  and q are 

randomly chosen prime numbers, and e is also chose at random.

2.4.5 ElGamal

The ElGamal system [17] is a public-key cryptosystem, which unlike RSA algorithm 

is based on the discrete logarithm problem, where the security of RSA is based on 

integer factorisation. It is commonly used for both encryption and signature. The 

ElGamal encryption algorithm is similar in nature to the Diffie-Hellman key
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agreement protocol, the system contains a prime integer p  and an integer called 

generator g, whose power modulo p  generates a large number of elements. Each 

entity creates a public key and a corresponding private key. Entity A creates the key 

pair and sends public key information to entity B. B will then encrypt the message 

with A’s public key. A decrypts the message with his/her own private key. All entities 

can choose to use the same prime p  and generator g. If common parameters are 

chosen, they do not need to be published as part of a public key. The advantage of 

having a common parameter is that the computation can be sped up by using 

precomputations. The disadvantage is that a larger moduli p  may be needed in case of 

security being compromised.

The ElGamal system is based on discrete logarithm problems like the Diffie-Hellman 

system. For any cryptographic system that is based on discrete logarithm problems, 

the chosen large prime p  must be chosen such that (p-1) has at least one large prime 

factor, otherwise the security of the system will be compromised. Discrete logarithm 

problems apply to mathematical structures called groups, where a group consists of a 

set G which could be finite or infinite, together with a binary operation called group 

multiplication. This group multiplication is defined as:

* G x G -> G  (2.34)

This means that the product of a*b is e G for any two elements a and b e G. A  

group consists of the following properties:

1. Associatively: The operation * is associative, i.e. a*(b*c) = (a*b)*c for 

any a, b, c, e G.

2. Identity element: For each element a e G, there is an identity element 

where a*e = e*a = a.

3. Inverse element: For each element a e G, there is an inverse element, 

such that a*b = b*a = e which is the identity element where b e G.
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The group G is said to be closed for all a, be G, a* be G, also the group G is said to 

be Abelian (or commutative) if a*b = b*a for all a, be G.

For g e G and a number n, gn means that g  is multiplied itself n times, e.g. g3 = g*g*g 

and the discrete logarithm problem is defined as follows:

Let g e G and h e G, find the value x such that:

g x =h (2.35)

The basic ElGamal Encryption scheme is defined as follows:

1. Key generation for ElGamal public key encryption:

a. Generate a large random prime number p  and a generator g  of the 

multiplicative group of the integer modulo p.

b. Select a random integer a, where a is 1 < a < p-2 , then compute ga

mod p.

c. Public key: (p, g, ga); Private key: a.

2. ElGamal public encryption:

a. Obtain recipient’s authentic public key (p, g, ga).

b. Represent the message as an integer m in the range {0, 1 1 } .

c. Select a random integer k, where kis  1 <k<p-2 ,

d. Compute the /and S:

7  -  g k mod/? (2.36)
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S = m -(ga)k mod p (2.37)

e. Ciphertext c = {y, S)

3. ElGamal decryption:

a. Compute the following:

y p~x~a mod p  (2.38)

Where a is the private key of the recipient and f ' 1'0  = Y~° = gak.

b. Recover the message m by computing the following:

i.Y a) ' 8  m°d P (2.39)

Note that the ElGamal Encryption scheme requires two modular exponentiations, and 

the ciphertext is double the size of the message. ElGamal algorithm is slower 

compared with the RSA algorithm, particularly for signing. The randomness required 

by this encryption scheme reduces the effectiveness of a chosen-cipher attack. As 

mentioned before, the security of the ElGamal system is based on discrete logarithm 

problem in Z j , however, it has not yet been proven that this is equivalent to a discrete 

logarithm problem in , on the other hand, the ElGamal system is equivalent to the 

Diffie-Hellman problem. In order to ensure the security of the system, the 

randomness of random integer k must be ensured, it is very important that a different 

random integer k is used for encrypting the different messages. Apart from the 

multiplicative group Zp*, the ElGamal system is also suitable for the following 

groups:

1. The multiplicative group F2m of the finite field F2m of characteristic two.

2. The multiplicative group Fq* of the finite field where q = p m and p  is a 

prime.
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3. The group of units , where n is a composite integer.

4. The class of group of an imaginary quadratic number field.

5. The group of points on an elliptic curve over a finite field.

6. The jacobian of a hyperelliptic curve defined over a finite field.

The ElGamal Digital Signature scheme is as follows:

The key generation process is the same as ElGamal encryption as shown before:

• Public key: (p, g, ga)

• Private key: a.

1. Signature generation:

a. Choose random secret integer k, where k is 1 < k < (p-2) and gcd (k, p-

1) = 1.

b. Compute the followings:

r = g k modp (2.40)

Solve for s in the signing equation:

m = ar + ks mod(p -1)

/. s = k~l (m -  ar) mod(/? -1) (2.42)

(2.41)

c. The digital signature is (r, s) and the signed message is (m, (r, 5 ))
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2. Signature verification:

a. Verify that 1 < r< p -1; if not, reject.

b. Accept the signature if and only if

(ga)rrs modp  = g m modp  (2.43)

As mentioned before, DSS is NIST’s modification of ElGamal Signature Scheme, 

however, DSS is only useful for signing, and it is not good for encryption. The 

differences between DSS and ElGamal Signature scheme is as follows:

• Use + instead of -  in signature verification

• Introduce prime q which is a 160-bit prime factor of (p-\) and hence signature 

(r, s) has been changed to the following:

r = (gk modp)modq  (2.44)

s = k~l(h(m) + ar) mod q (2.45)

• p  is a 512-bit (revised up to 1024-bit) prime such that q divides (p-1)

• q is 160-bit prime factor of (p-\)

• h is a 160 bit one-way hash function

• 512-bit Public key

• 160-bit private key a
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2.5 Comparisons: Symmetric Key Cryptography vs. Public key

Cryptography

Table 2.1 -  Advantages and disadvantages of Symmetric Key Algorithm

Advantages • High rates o f data throughput, especially for hardware 
implementation and less processor-intense

• Relatively short key needed

• Can be used as primitives to construct other cryptographic 
mechanism, e.g., hash functions and digital signature 
scheme

• Can be transformed into strong product ciphers

• Long history

Disadvantages • Key distribution problem -  key must be kept secret, 
particularly in large communication network

• Key management problem in large network -  need 
unconditionally trusted TTP

• Keys have to be changed as frequently as each session in a 
two party communication

• Symmetric key signature scheme requires large key for 
verification or need trusted TTP

Table 2.2 -  Advantages and disadvantages of Public Key Algorithm
Advantages • Only need to keep private key secret, however, the 

authenticity o f the public key must be ensured through 
other means

-
• For key management, only a functionally trusted third 

party (TTP) is needed (Offline manner), instead o f a 
unconditionally trusted TTP that is required by TTP (Real
time)

• Depending on the type o f communication, the key pair can 
be reused many times
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• Relatively efficient digital signature scheme

• Suitable in a large network communication, considerably 
smaller keys required than in case o f symmetric key system

Disadvantages • Throughputs rates for most encryption methods are
several magnitudes slower than that o f common symmetric 
key system

• Need large key size compare with symmetric key (by a 
factor o f 1 0  or more) to minimise the chance o f short-cut 
attacks (e.g. factoring); the most effective attack on 
symmetric key schemes is exhaustive key search.

• The security o f public key systems are based on a
presumed “hard” problem o f number theory, however, it 
has not been proven to be secure

• Relatively short history, discovered in mid 1970s

Table 2.1 and Table 2.2 show the advantages and disadvantages of symmetric key 

and public key system respectively. In summary, both symmetric key scheme and 

public key system have different complementary advantages. In order to make use of 

the strength of both systems, a so called hybrid encryption can be used. Since 

symmetric key encryption is more efficient and public key cryptography has the 

benefit of having reusable public and private key pairs, the best way to make use of 

both schemes is to use a symmetric key scheme for encryption of the message and a 

public key system for key establishment and management. Furthermore, a public key 

can also be used for signing digital signature and encrypting session key. Because of 

the low throughput rates of public key encryption compared with symmetric key 

encryption, public key encryption is only suitable for encrypting small data, whereas 

symmetric key encryption systems can be used for encrypting larger sized data. By 

employing the two schemes as mentioned earlier, the cryptographic system can 

achieve encryption efficiency provided by symmetric key encryption and attain the 

non-repudiation and authentication objectives with the public key system digital 

signature and secure key exchange provided by public key management. One 

example of a cryptographic system that makes use of such arrangement is called
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PGP2 (Pretty Good Privacy 2) [37]. This was created by P. Zimmermans in 1991, this 

design makes use of both RSA and IDEAL.

When comparing symmetric key with public key systems, apart from their 

functionality, another important concern is their key sizes and equivalent security 

level. Traditionally, the strength of security of an algorithm given the key size is 

described as the amount of time it takes to exhaust all possible keys for a symmetric 

algorithm. NIST recommendation for the key size used for RSA system should be 

1024 bit or higher for long-term security [38].

Table 2.3 can be found in [38], it provides the equivalent strength of different 

algorithms with the recommended key size, such as 1024-bit RSA should have 

equivalent security to 80-bit symmetric key. The final column of the table shows the 

equivalent security strength of elliptic curve cryptography. Elliptic curve 

cryptography was first proposed by Victor Miller and Neal Koblitz independently in 

the mid 1980s. Elliptic curve cryptography is an approach to public key system 

making use of the mathematics of elliptic curves. When defining an elliptic curve 

system, a curve and a base point are required. Elliptic curve cryptography will be 

discussed later on in this chapter.

Table 2,3 - Equivalent Strength

Bits of 
Security

Symmetric
key

Algorithm

Hash
Algorithm

Discrete 
Logs (DSA, 
DH, MQV)

RSA Elliptic
Curves

80 SHA-1 L = 1024 
N=  160

£ = 1024 II O
N o

112 TDES L = 2048 
N=  224

£ = 2048 / =  224

128 AES-128 SHA-256 L = 3072 
N=  256

£ = 3072 / =  256

192 AES-192 SHA-384 L = 7680 
N=  384

£=7680 f -  384

256 AES-256 SHA-512 L = 15360 
N= 512

£= 15360 / =  512

The following explains each column of Table 2.3 [38]:
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• Column 1 indicates the number of bits of security provided by the 

algorithms and key sizes in a particular row.

• Column 2 provides the symmetric key algorithms that provide the 

indicated level of security, where TDES is approved in FIPS46-3 [5] and 

specified in ANSI X9.52 [39], and AES is specified in FIPS197 [11]. 

Note: it is assumed in the table that TDES is using three distinct keys.

• Column 3 provides the equivalent hash algorithms that are specified in 

FIPS180-2 [40] for the given level of security.

• Column 4 indicates the size of the parameters associated with the 

standards that use discrete logs (DSA as defined in FIPS 186-3 [22] for 

digital signatures, and Diffie-Hellman (DH) and MQV key agreement as 

defined in ANSI X9.42 [41] and SP 800-56 [42]), where L is the size of 

the modulus p, and N  is the size of q. The value of L is considered to be 

the key size.

• Column 5 defines the value for k (the size of the modulus n) for the RSA 

algorithm specified in ANSIX9.31 [24] and PKCS1 [43] and adopted in 

FIPS 186-3 [22] for digital signatures, and specified in ANSIX9.44 [44] 

and adopted in SP 800-56 [42] for key establishment. The value of k is 

commonly considered to be the key size.

• Column 6 defines the value of /  (the order of the base point G of the 

selected elliptic curve) for the elliptic curve algorithms specified for 

digital signatures in ANSIX9.62 [45] and adopted in FIPS 186-3 [22], and 

for key establishment as specified in ANSIX9.63 [46] and adopted in SP 

800-56 [39] The value o f/is  commonly considered to be the key size.

As discussed earlier, due to different strengths of different schemes, a combination of 

different algorithms can be used to achieve optimized cryptographic results. Table 2.4 

[38] provides recommendations that could be used to select the appropriate set of
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algorithms with their appropriate key sizes. [38] suggests a minimum of 80 bits 

symmetric algorithm equivalent are adequate for most applications until year 2015, 

for longer term security, minimum of 112 bits is recommended.

Table 2.4 - Recommended algorithms and minimum key sizes

Years Symmetr 
-ic key 

algorithm 
s

(Encrypti 
on & 
Mac)

Hash
Algorithm

HMAC DSA RSA Elliptic
Cueves

Present
-2015

TDES 

AES-128 

AES-192 

AES-256

SHA-1

SHA-256

SHA-384

SHA-512

SHA-1 (>80 bit key)

SHA-256 (>128 bit 
key)

SHA-384 (>192 bit 
key)

Min:

L = 1024 

N =  160

Min: 

it =1024

Min: 

/ =  160

2016
and
beyond

TDES 

AES-128 

AES-192 

AES-256

SHA-256

SHA-384

SHA-512

SHA-256 (>128 bit 
key)

SHA-384 (>192 bit 
key)

SHA-512 (>256 bit

Min:

L = 2048 

A =224

Min: 

it = 2048

Min: 

/ =  224

The followings explain each column of Table 2.4 [38]:

• Column 1 indicates the years during which the algorithms specified in 

subsequent columns are appropriate for use.

• Column 2 identifies appropriate symmetric key algorithms and key sizes: the 

Triple DES algorithm (TDES) is specified in FIPS46-3 [5], the AES algorithm 

is specified in FIPS 197 [11], and the computation of Message Authentication 

Codes (MACs) using block ciphers is specified in SP800-38b [47].

• Column 3 specifies the hash sizes to be used for most hash applications (e.g., 

digital signatures). Hash algorithms are specified in FIPS 180-2 [40].
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• Column 4 specifies the hash algorithm and minimum key size to be used for 

keyed-hash (HMAC) computations. HMAC is specified in FIPS 198 [48].

• Column 5 indicates the minimum size of the parameters associated with DSA 

as defined in FIPS 186-3 [22].

• Column 6 defines the minimum size of the modulus for the RSA algorithm 

specified in ANSIX9.31 [24] and PKCS1 [43] and adopted in FIPS 186-3 [22] 

for digital signatures, and specified in ANSIX9.44 [44] and adopted in SP 

800-56 [40] for key establishment.

• Column 7 defines the minimum size of the base point for the elliptic curve 

algorithms specified for digital signatures in ANSIX9.62 [45] and adopted in 

FIPS 186-3 [22], and for key establishment as specified in ANSIX9.63 [46] 

and adopted in SP 800-56 [49].

Even though it has been suggested that 1024-bit RSA should be sufficient to last for 

another 10 years for general data (see Table 2.4) [38], there has been concern that this 

may not be the case. More and more research is being carried out aiming at improving 

the technical aspect of integer factorization problems such as the well-known method 

Number Field Sieve. This research could threaten the strength of security of 1024-bit 

RSA, such as [49] suggested implementation techniques of Number Field Sieve to 

reduce the amount of memory required to break very large RSA keys. Shamir and 

Tromer presented a paper on a custom-built hardware device for performing the 

sieving step of the Number Field Sieve algorithm in 2003 called TWIRL [50]. The 

paper gave a hypothetical estimation that all the sieving required for factoring 1024- 

bit integers can be completed within 1 year by a device that costs $10M to 

manufacture plus a one-time cost of S20M for all the pre-device cost such as design, 

simulation, mask creation etc. Based on analysis of all this recent research, RSA 

Security0 produced a technical note [51] which provides the following 

recommendation for key sizes:
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Table 2.5 - Recommended minimum symmetric security levels and RSA key

sizes based on protection lifetime

Protect Life of Data Present - 2010 Present - 2030 Present -  2031 and 
Beyond

Minimum 
symmetric security 
level

80 bits 112 bits 128 bits

Minimum RSA key 
size

1024 bits 2048 bits 3072 bits

[51] recommended that 112-bit security is possibly higher than needed for present 

time, but it should be convenient for implementation since triple-DES is readily 

available and 2048-bit RSA key size is also convenient as it is already recommended 

for use in root keys. As an interim measure, a minimum 1536-bit RSA signature is 

reasonable, as recommended by New European Schemes for Signatures, Integrity and 

Encryption (NESSIE) [52], however, due to the complexity of the upgrading process, 

RSA Security0 [51] advised that 2048 bits is a better goal.

Increasing the key length provides increase in security against Brute-force attack, 

however, It reduces the performance of the system because the number of cycles of 

computation involved also increases (providing the same size hardware is used). In 

the next section, elliptic curve cryptography will be introduced. This type of 

cryptographic system requires a smaller key but the security is not compromised. This 

will be discussed in further details in the next section.

2.6 Elliptic Curve Cryptography (ECC)

In the previous section, two main families of public key algorithms were introduced; 

integer factorisation schemes, e.g. RSA and discrete logarithm schemes, e.g. Diffie- 

Hellman. There exists another form of cryptographic scheme and it is called Elliptic 

Curve Cryptography (ECC). In this section, ECC encryption and other applications 

will be explained, however the details of elliptic curve algebraic theory and finite 

field arithmetic will be explained in Chapter 3.
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Elliptic Curve Cryptography was first proposed by Miller [53] and Koblitz [54] in 

1985. They independently proposed the idea of using a group of points on an elliptic 

curve to perform necessary cryptographic operations. Like other public key systems, 

ECC relies on difficult mathematical problems. Some common ECC cryptographic 

schemes are analogous to other public key schemes are:

• Elliptic Curve Discrete Logarithm Problem (ECDLP)

• Elliptic Curve Diffie-Hellman (ECDH)

• Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic curve schemes that analogue to RSA can also be implemented; however, it 

provides no realistic benefits compare with an RSA system because of the complex 

calculation involved in elliptic curve arithmetic.

2.6.1 Elliptic Curve Discrete Logarithm Problem (ECDLP)

As mentioned previously, the security of cryptographic systems rely on hard 

mathematical problems that are computationally infeasible to solve. The foundation 

of ECC lies upon elliptic curve discrete logarithm problem (ECDLP). ECDLP is 

based on the intractability of scalar multiplication products (more details on scalar 

multiplication can be found in Chapter 3).

ECDLP can be defined as follows:

Given an elliptic curve group E(&), where k is a finite field, points Q and P are 

points in the group, find the discrete logarithm k of Q to the base P, such that 

P = Q. k should be large enough so that it is computational infeasible to 

exhaustively search for the discrete logarithm. [53] [54].
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2.6.2 Elliptic Curve Diffie-Hellman (ECDH)

Elliptic Curve Diffie-Hellman (ECDH) [55] is analogue of Diffie-Hellman key 

exchange algorithm; therefore, ECDH is for key exchange prior to the use of a private 

key cryptosystem. In order to establish a common key before the encryption process, 

both entity A and B follow the following steps:

1. Fix a finite field Fq, an elliptic curve E defined over it and a base point B e E.

2. Choose a random integer aeFq for entity A and aeFq for entity B as secret 

key.

3. Calculate public key :

a. Entity^:

aBeE  (2.46)

b. Entity B :

bBeE  (2.47)

4. The common key is:

P = abB e  E (2.48)

To perform elliptic curve algorithm analogous to that of ElGamal scheme, entity A 

and B perform step 1-3 as shown above. If entity A wants to send a message P to 

entity B, A needs to perform the following steps:

1. Choose a random integer k.

2. Compute and send (kB, P+k(bB)) to B.

To decrypt the message, B has to multiply the first point of the point pair by his secret 

key b: b(kB), then subtract this from the second point of the point pair:
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P = (P+k(bB))-b(kB) (2.49)

2.6.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Digital Signature Algorithm is equivalent to the digital signature 

schemes and is approved by NIST under FIPS 186-2 [22]. ECDSA is described in 

ANSI X9.62 [45]. The process of ECDSA, where entity A is to send a digitally signed 

message M  to entity B and entity B is to verify the message is from entity A, can be 

described by the following steps:

• Entity yf:

o Setting up the elliptic curve

■ Choose a finite field Fq

■ Choose an elliptic curve E over the field

■ Set a base point G with order n

■ Private key: d

■ Public key: Q 

o Signature Generation

■ Choose a random number k where k is 1 < k < n-\

■ Compute:
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• kG = (xu yi) (2.50)

• r= xim odn  (2.51)

• i f  r = 0 , re-choose random number k

■ Compute k' 1 mod n

■ Compute e = SHA-1 (M)

■ Compute s = k~l (e + dr) mod n; i f  s = 0, re-choose random 

number k

■ Signature for message M  is (r, s)

• Entity B :

o Signature Verification

■ Verify r, 5  are integers in the interval [1, n-1 ]

■ Compute e = SHA-1 (M)

■ Compute w = s '1 mod n

■ Compute:

• ul = ew mod n (2.52)

• u2 = rw mod n (2.53)

■ Compute X= u\G  + ujQ, where X  = (x\, y\)
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• i f X = 0  , reject signature

■ Else, compute v = x\ mod n

■ If v = r, accept signature

2.6.4 ECC vs. RSA

Table 2.3 shows that 160-bit ECC is equivalent to 1024-bit RSA in terms of security, 

which is equivalent to 80-bit symmetric key. Therefore, ECC could provide similar 

level of security compared with RSA but require smaller key size, hence, smaller 

register size and also faster processing speed. Secondly, in order to match the 

security of 112-bit symmetric key, ECC only needs to increase its key length to 224- 

bit, which is an increase of about 1.3 times, whereas RSA system needs to double its 

key length to match the level of security. Another benefit of having shorter key 

length is that it enhances the resistance to differential power analysis [1], this will be 

explained further in Chapter 3. Structurally, ECC is very different to RSA, this can 

be shown by Table 2.6 taken from [1] [56]. Table 2.6 shows that setting up system 

parameters for ECC is more complex compared to RSA, however, for public and 

private key generation, ECC is relatively easy to generate. An ECC private key is a 

random number k, whereas RSA private key is d  = e'x mod ((p-l)(#-l)). ECC public 

key is kG, which is a simple calculation, whereas RSA public key pair is (n, e), 

where e is just a random integer, n =pq, where pq are two large prime numbers.
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Table 2.6 - System requirements for elliptic curve cryptosystems and RSA

ECDSA and ECES RSA
System parameters • The field F

• Two field 
elements that 
represent the 
curve

• The generator G 
on the curve

• The order of G

• None

Public key • Point P = kG on 
the elliptic curve

• Modulus n
• Exponent e

Private key • An integer k 
where 0 < k< q

• Exponent d

Or

• Corresponding CRT 
information

Table 2.7 shows a very basic comparison in terms of storage requirements in bits of 

1024-bit RSA (with public exponent 216+1) and with ECC over GF(q) where q is 

160-bit in length and the field is either of characteristic 2 or of odd characteristic 

[56]. In this comparison, ECC has a lower storage requirement compare with RSA 

based on the system parameters and keys needed.

Table 2.7 - The storage requirements in bits when making a naive comparison 

between an elliptic curve cryptosystem over GFfa) where a is 160 bits in length

and RSA with a 1024-bit modulus

ECDSA and ECES over 
GF(q)

RSA 1024-bit n and e = 
2 16+ 1

System parameters (4 x 160)+1 =641 0
Public key 160+1= 161 1024 + 17 + 1041
Private key 160 (801 with system 

parameters)
2048 (or 2560 with CRT 
information)

Another very important advantage of ECC is that there is not yet a known sub

exponential algorithm for ECDLP; this implies ECDLP should be more secure than
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conventional discrete logarithm cryptosystems. Current algorithms that are used for 

solving conventional discrete logarithm systems cannot be applied to solving ECDLP, 

since these algorithms are of sub-exponential time.

The disadvantage of ECC is that care needs to be taken when setting up ECC system 

parameters, which includes selecting the appropriate curves. There are curves that are 

known to be susceptible to attacks and compromise on the security of the system, 

such as supersingular elliptic curves [57] and Koblitz curves [58]. Another 

disadvantage of ECC is that it is relatively new compared with RSA, and therefore it 

is less well established and studied.

In conclusion, because ECC requires small key size for a similar level of security 

compared with other public key systems, ECC is particularly useful in 

computationally and power constrained environments, e.g. wireless computation and 

smart cards. ECC is also very useful for areas that require heavy workload, such as 

secure server networks. It also saves bandwidth for communications overhead.
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3 Finite Field Arithmetic in Hardware and Literature

Review

The first part of this chapter will be dedicated to exploring the operations of elliptic 

curve and finite field arithmetic involved, understanding the nature of elliptic curve is 

essential to the design of the unified field multiplier for GF(p) and GF(2”) (Note that 

GF(p) and GF(2") can also be expressed as Fp and Fin respectively). The second part 

of this chapter will explore attacks that need to be considered, which would severely 

undermine the security of the cryptographic system. Cryptanalysis is an important 

part of the study of cryptography. By understanding more about how a cryptosystem 

could be attacked, techniques against attacks can be employed or certain well-known 

weakness, such as weak curve, can be avoided. Finally, previously designed unified 

field multipliers will be reviewed.

The study of elliptic curve mathematics has been going on for many years, it was only 

in 1985 that the use of elliptic curve on cryptography was first proposed.

There are two different forms of elliptic curve:

1. Montgomery Form:

3.1 What is Elliptic Curve?

e m . b y 2 = x 3 + a x 2 + x (3.1)

2. Weierstrass Form:

y 2 + axxy + a3y  = x 3 + a2x 2 + a4x + a6 (3.2)
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Weierstrass Form is the most standard form of elliptic curves. The definition 

presented above is so called the “long Weierstrass form”, which is valid for any field. 

However, only finite fields are used in cryptography, therefore simpler equations are 

generated and an example of a short Weierstrass form curve can be represented as 

follows:

E : y 2 =x3+ax + b (3.3)

Value x and y  in shown equation 3.3 are variables and value a and b are constant 

values from the chosen field. Montgomery [59] introduced this non-standard form in 

1987. Okeya et. al. [60] provided evidence that elliptic curve cryptosystem based on 

Montgomery Form are immune to timing attacks [61] [62], which is a form of side 

channel attacks based on timing information retrieved by the attacker. This will be 

investigated later on in section 3.4.5. It is possible to transfer Weierstrass form to 

Montgomery form, providing the following criteria are met [60]:

1. The equation x3+ax+b = 0 has at least one root in finite field where p  is 

a prime andp  > 5.

2. The number 3o? + a  is quadratic residue in Fp» where a  is a root of the 

equation x3+ax+b = 0 in Fp.

Reference [63] provides more proof on why not every elliptic curve over a prime field 

can be transformed into Montgomery form over the same prime field. The reason for 

that is because Montgomery-form elliptic curves with co-factor 4 over Fp’ are more 

numerous than Weierstrass-form elliptic curves with co-factor 1 over Fp (Weierstrass- 

form elliptic curve defined over the field Fp with co-factor 1, is security equivalent to 

a Montgomery-form elliptic curve with co-factor 4 defined over the field Fp> which is 

larger than Fp by two bits). Please refer to [63] for details.

Any Montgomery Form elliptic curve can be transformed into Weierstrass Form. 

More details on these transformations can be found in [60]. Okeya [64] compares 

Montgomery form with Weierstrass form, and shows that the scalar multiplication on
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a Montgomery form elliptic curve is faster than that on a Weierstrass form elliptic 

curve if the size is smaller than 391 bits.

The self-evaluation reports published by Hitachi Ltd [63] provide more insight into 

the comparisons on application of Montgomery form and Weierstrass form. This 

report showed that even though Montgomery form elliptic curves are restricted 

curves, they have enough generality to be used for cryptosystems securely. It 

concluded that the security of cryptosystems using Montgomery-form elliptic curves 

is equivalent to the security of cryptosystem using Weierstrass-form elliptic curve 

providing a suitable size of definition field is chosen.

The points of the curve could be represented in two forms [65]:

1. Affine Coordinates

2. Projective Coordinates

The Weierstrass equation in the projective plane is represented as follow:

Y1Z + aiXYZ + alYZ2 = X 1 +a2 X 2Z+ atX Z 2 - t - a ^  (3.4)

This is a homogeneous equation of degree 3. The definition of a homogeneous 

polynomial is that every term in the polynomial has the same total degree, which is 3 

in this case. It is possible to convert the point representation between affine and 

projective coordinates.

Given a point P(x, y) e E  (Fq) in affine coordinates, its projective coordinates 

equivalent is P \X , Y, Z) e E  {Fq), where x = X ,y = Y and Z = 1, therefore:

P{x,y y=P'(X,Y, Z) (3.5)
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(3.6)

(3.7)

The computation of the curve operation for different coordination systems is 

different. For a non-supersingular curve over K  = F2m, the number of field operations 

required to perform point addition and point multiplication in affine and projective 

coordinates is shown in Table 3.1 [66]. ESUM denotes elliptic curve field addition 

and EDBL denotes elliptic curve field doubling.

Table 3.1 - Number of field multiplications and inversions for affine and 

projective point addition and doubling

Operation Affine Projective

ESUM EDBL ESUM EDBL

Field Multiplication 2 3 13 7

Field inversion 1 1 0 0

Projective coordinates does not involve field inversion calculation, however more 

field multiplication is required. Therefore in the case where inversion is much slower 

than multiplication, calculations in projective coordinates should be more efficient 

than that in affine coordinates.

It is widely accepted that the inversion calculation is generally less efficient than 

other necessary ECC operations, such as multiplication. Reference [67] shows 

timings in ps required by software implementation of different binary field operations 

carried out in field GF 2 163, GF 2233 and GF 2283 on a 1000 MHz Pentium III, as shown 

in Table 3.2. Notice the ratio of inversion to multiplication shows that inversion 

operation is generally 9 - 1 0  times slower than multiplication. In such a cases, the 

number of inversions involved should be minimised, i.e. projective coordinates 

should be used instead of affine coordinates.
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Table 3.2 - Timings (in us) on a 1000 MHz Pentium III over Binary Field

G F 2m g f 2

Addition 0.032 0.039 0.041
Modular Reduction 0.081 0.094 0.145
Multiplication ( induing reduction)

• Shift-and add 6.11 9.66 13.25
• LR (left-to-right) comb with 1.06 1.92 2.40
• Karatsuba 1.49 2.69 3.13

Squaring 0.19 0.24 0.31
Inversion 10.0 17.4 24.5
Inversion/ Multiplication ratio 9.5 9.1 10.2

The disadvantage of using projective coordinates is that they require greater 

temporary storage, extra registers are needed to store the points and store intermediate 

results when doing the addition. Therefore, in the case where memory resources are 

extremely constrained, affine coordinates may be a more appropriate choice. Leung 

[68] provides the processing time required to process point multiplication in affine 

and projective coordinates using the same hardware and microcode with different 

number of bits n. The results are shown in Table 3.3, and demonstrate that 

multiplication using affine coordinates is 10 -  23% slower than using projective 

coordinates.

Table 3.3 - Execution time for projective and affine coordinate implementations

of elliptic curve multiplication

n No of cycles 

(affine)

No of cycles 

(projective)

Hardware 

times 

Affine (ms)

Hardware

times

Projective

(ms)

Ratio

PA

113 148581 134484 4.8 4.3 0.9
144 324717 249879 10.8 8.3 0.77

173 402926 310043 14.4 11.1 0.77
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Affine and projective coordinates are the two traditional representations, however 

new sets of coordinates have been explored, such as Jacobian and Chudnovsky 

Jacobian coordinates [89], which have been researched a great deal in recent years. 

Reference [70] proposed a system for the use of mixed coordinates, so that the 

optimal set of combination could be used for calculating elliptic curve exponentiation.

3.2 Elliptic Curve Mathematical Background

Elliptic curve cryptography makes use of elliptic curve operations over finite fields. 

The idea of group operations was briefly explained in section 2.4.5. The addition 

rules for points in an abelian group are as follows [6 6 ]:

For all P, Q e E

1. O +  P = P a n d P+O = P

2 . - 0 = 0

3. I f Q = -P, then/> + Q= O

4. If P = (jti, y\) * O, then -P  = (jci, -y\ -a \X \  -  <2 3) (Note that P and -P  are the 

only points on E  with x-coordinates equal to xj)

5. l f P * 0 9 Q *  O and Q ^  -P, then let R be the third point of intersection of 

either the line PQ if P * Q (see Figure 3.1), or the tangent line to the curve at 

P ifP  = Q (see Figure 3.2), with the curve, where the tangent line to the curve

fix, y) = 0 at P(a, b) is the line — (P)(x -  a) + — (P)(x -  b) = 0. Then P + Q
dx dy

= -R.

The definition of point at infinity 0  is as follows [6 6 ]:
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An elliptic curve E  (or an algebraic curve of genus 1) is the set of all solution in 

projective plane P (K) of a smooth Weierstrass equation. There is exactly one pomt 

in E  with Z-coordinate equal to 0, namely (0:1:0), which is called point at infinity 0.

The Weierstrass equation is said to be small or non-singular if for all projective points 

P = (X: Y: Z) e P 2 (K ) satisfy the following:

F (X ,Y Z )  = Y2Z  + axXYZ + a,YZ2 - X 3 - a 2X 2Z - a4 X Z 2 - a6 Z 3 = 0 (3.8)

i „ . - . - , . dF dF d F . _at lieast one of the three partial denvatives — ,— , or— is non-zero at P. The
dX dY dZ

Weierstrass equation is said to be singular when it possesses a singular point P where 

all three partial derivatives vanish.

A group G it said to be finite if it contains a finite set of elements, and the number of 

elements in the group is denoted as #<7. A finite field or Galois field covers a finite set 

of points. The order of the elliptic curve E  over a finite field q is denoted as #E(q). 

The two most common finite fields that are used in elliptic curve cryptography are:

1. GF(p) -  prime field

2. GF(2") -  binary extension field

GF(p) is a finite field with p  elements where p  is a prime number. Given an elliptic 

curve E(a, *)(GF(p)), for /? * 2, 3, and let a, b e GF(p) the inequality 4a3+21b2 * 0, the 

curve can be defined as the set of points (x, y) e GF(p) x GF(p), together with the 

point at infinity 0  , that satisfy the equation (3.3).

In the case where p  = 2, 3, then the curve is said to be supersingular if and only if the 

y-invariant of E, j(E) = 0. A curve is said to be supersingular if p  divides t where 

#E(Fq) = q + 1 -  t, otherwise they are called non-supersingular. An example of

supersingular curve is y 2  + y = x 3 + a4x + a6, they are very efficient in terms of
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computation, supersingular curves are not secure enough for cryptography, as 

motioned in section 2.6.4[57].

GF (2") is a finite field with 2n elements and is represented in either polynomial or 

normal basis number. Given n > 1, then the non-supersingular elliptic curve can be 

defined as the set of solutions (x, y) e GF(2") x GF(2”), along with the point at 

infinity O, to the following equation:

GF (2”) is particularly efficient for hardware implementation due to its binary nature. 

[71] provides a very good overview on the characteristic of different finite fields.

3.2.1 The order of an element

The order of an element is the smallest exponent that yields the identity element, 

where j  < p:

3.2.2 Generator

There exists an element in all fields, when raised to a power, it gives rise to another 

element in the field, such that for prime number fields:

y 2 +xy = x 3 + ax2 + b (3.9)

aj = lmod p (3.10)

a = g J mod p (3.11)
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For every j  between 0 and p -1, a different element in the field can be obtained. 

However, not every element in a field is a generator. A generator has the maximum 

possible order of p -1 elements.

3.2.3 Modular Arithmetic

Modular arithmetic is a very important operation in elliptic curve cryptography, since 

GF(p) and GF(2") means a number modular either a prime number p  or a polynomial 

of degree n with binary coefficients respectively. The expression a = b(modn) 

means that a and b are both in the same "congruence class" modulo n, i.e., both leave 

the same remainder on division by n:

a mod n = r (3.12)

bmodn = r (3.13)

Also, the difference between a and b is a multiple k of n, such that:

(ia - b )  = k n (3.14)

The multiplicative inverse a 1 of a modulo n is the solution x of the congruence

ax = l(modrt) (3.15)

where x is in the range of 1 to n-1 .
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3.2.4 Polynomial Basis

A polynomial is a sum of terms consisting of different powers of a variable as shown 

below:

an-\x" 1 + ’' ’ + aix 2  + + a0x° (3.16)

Where a„s are the coefficients and x  is the variable. For polynomial over Galios field 

GF2,n, the elements of the polynomial of of degree less than m and with coefficient in 

F2, therefore the coefficients at e {0,1}. It is generally believed that polynomial basis 

is more suitable for software implementation [72] [73] [74]. The following section 

describes arithmetic operations in F 2 1.

1. Addition

2. Subtraction

In F 2m, addition and subtraction are equivalent, because each element is its 

own additive inverse, therefore:

(3.17)

In terms of hardware implementation, addition in F™ means bitwise-XOR 

c, = a; ® b: .

( a * . , + (am_v ..axa0) = (0...00) (3.18)

3. Multiplication

(3.19)
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rm-\Xm X + ... + r1x + r0 is the remainder of the multiplication divided by the 

irreducible polynomial fix) over Fi, where

f ( x ) = x m + + ...+ f 2 x 2  + f i x  + / 0 . It cannot be factorised into two

polynomials over F2 .

4. Exponentiation

0am_v ..axa0)e (3.20)

This is equivalent to multiplying the polynomial by itself e times, where e is 

an integer exponent.

5. Multiplicative Inverse

Given an element generator ge  F™, where a = g‘, the multiplicative inverse 

a -1 is:

a~l =g-' mod(2," - l )  (3.21)

3.2.5 Optimal Normal Basis

Optimal normal basis (ONB) [75] [76] is the alternative representation for elements in 

finite field GY2™. It is widely believed that optimal normal basis is more suitable for 

hardware implementation, because the squaring of an element is equivalent to a cyclic 

shift of the binary representation [77] [78] [79], because the sequence of operations 

for each coefficient can be parallelised easily in hardware, whereas the parallelism is 

difficult to implement in software.
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Let p  e G F/

P  = anxn +...  + axx + ac (3.22)

where n<m.

The normal basis of the field GF2™ is represented as follows:

{Ppm\...tp p\ p p,P) (3.23)

For GF2m, finite field of characteristic 2, each element A in the field can be 

represented as:

A = J ^ A P 2' (3.24)
1=0

where at e F2 and p  e GF2OT.

As in the case of polynomial basis, addition is computed as bitwise-XOR and 

subtraction is equivalent to addition. The computation of multiplication in ONB is 

more complex and is described as follows:

^  = (3.25)
/=0

m - \

B = Y b , p V (3.26)
y=0
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The multiplication C = A*B:

m - 1 m - l

C = A B  = Y j Y . a.h,P 2' P V (3.27)
i*0 7=0

m-l
C = £ c t /?2* (3-28)

*=0

The sum of the basis terms:

m - l

PTP V = E ^ 2 (3-29)
£=0

The A,,# coefficient is called the lambda matrix and A,^e{0,l}, substituting the 

lambda matrix into the multiplication equation:

m -l m -l

Q = I 5 > M *  (3-3°)
/=0 j =0

where 0 < k < n-\

m -l

iP 2'Pv ) - T ‘ (3-31)
*=0

m— i

P T  P 1"' = E ^ / 9 2' (3.32)
*=0

61



2o
Equate to the equation above, the c* is as follows:

(3.33)
»=0 7=0

iw-1 gi-1

(3.34)
/=0 7 -0

There are two classifications of ONB and it is determined by the value of m: 

1. Type I ONB

The ONB must meet the following two criteria:

i. m+ 1 must be prime.

ii. 2 must be primitive in Zm+i, where Z„+\ is a ring of integer 

modulo m+1. This means that when 2 is raised to any power in 

the range {0 , ..., m -l} modulo (m+1 ), the result must be an 

unique integer in the range of {0 , . . m}.

2. Type II ONB

There are two versions of Type II ONB, the ONB must meet the following 

two criteria:

i. 2m+l must be prime.

ii.(a) 2 is primitive in Zm+\, this means that every 2*modulo 2m+l, is 

in the range 1 to 2m (0 < k < 2m-\). Therefore 2 is the 

generator for all the possible locations in the 2m+l field.
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or

ii.(b) 2m+1 = 3 mod 4 and 2 generates the quadratic residues in 

Z2m+i, this means that even if (2 *mod 2m+l) does not generate 

every element in the range 1 to 2 m, 4 l k  mod 2 /w + l could be 

taken so that half of the points in the field form by rule iia can 

be generated.

This section has introduced different parameters involved in setting up an elliptic 

curve, it has also described their advantages and disadvantages. Since the

combinations of these parameters affect the design of the architecture, one must select

these parameters very carefully at the beginning of the design. For the purpose of this 

dual field multiplier, generality is the key to the design to provide flexibility to users. 

Hence the more common Weierstrass Form elliptic curve is more appropriate than 

Montgomery Form, which is shown to be immune to timing attacks but is much more 

complex. As for the representation for the points on the curve, simplicity and 

commonality is of consideration, therefore the chosen representation is affine 

coordinates. Also, by affine coordinates, the amount of temporary storage and extra 

registers needed are minimised. For the design of dual field multiplier, the basis 

chosen for GF(2") field must correspond to that of GF(p) for straightforward 

implementation. Therefore, polynomial basis is the most suitable for the purpose of 

this design.

The next section will introduce some of the most basic elliptic curve operations in 

GF(p) and GF(2").
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3.3 Elliptic Curve Operations

In this section, the general elliptic curve operations will be introduced; they include 

point addition and point multiplication. Examples will be first given in elliptic curve 

over real number plane, over prime fields and finally in primary binary field. The 

examples given in this chapter are taken from [80].

For real number plane, the simpler form of the equation is the same as equation 3.3 

and shown again as follows:

y 2 = x 3 +ax + b

where a and b are real numbers.

3.3.1 Point Addition over real number plane

The point P on the curve is represented as P = (x, y) and its reflection in the x-axis 

forms its negative -P = (-x, y). In order to add point P with Q, a straight line is drawn 

through the two points. The point where this straight line intersects the curve gives 

the reflection in the x-axis of the result, as demonstrated in Figure 3.1. However, the 

addition of P + (-P), the line does not intersect with a third point and it is a vertical 

line, which provides the point of infinity O. P + (-P) = O because P and -P  are 

reflection of each other in the x-axis as mentioned previously. The properties of the 

point at infinity were described in section 3.2.
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P (-235 , - 1.36)

Q (-0.1,0.836)
-22 (3 .89 , 5 .62)

R  (3.89, -5.62)

P+ Q = R  = (3.89, -5.62).

y2 = x3 - 7x

Figure 3.1 P+Q=R

Given the point P = (xp, yp) and Q = (xg, yq) and they are not negative of each other, 

then P + Q = R could be obtained by first of all finding the slope of the intersecting 

line as follows:

s = yp yq (3.35)

The coordination of R = (xr, yr):

x = s 2 - x p - x q (3.36)

y r = - y p +s(xp - x r) (3.37)

3.3.2 Point Doubling over real number plane

Point doubling on an elliptic curve group is defined as follows:
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(3.38)

The approach to perform point doubling, which is essentially adding the point to 

itself, is to draw a tangent on the point P, instead of drawing a line through two points 

P and Q. If the ^-coordinate of P is not 0, i.e. it is not on the x-axis, then the tangent 

will intersect the curve at one other point and that point is the reflection in the x-axis 

of the result. This is demonstrated in Figure 3.2. In the case where the y-coordinate of 

P is 0, the tangent is a vertical line and it does not intersect the elliptic curve at other 

point, i.e. 2 P = O.

y2 =x3 - 3* + 5

Figure 3.2 2P=R

Given the point P = (xp, yp), yp * 0 and a which is a parameter chosen when the 

elliptic curve is first set up. To calculate 2P = R, the tangent needs to be found first.

The tangent of the point P is given by:

3x1 +a
s =   (3.39)
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The coordination of R = (xr, yr):

x r = s 2 - 2 x p
(3.40)

y r = - y P+s(xp - x r) (3.41)

3.3.3 Point Addition over GF(p)

Elliptic curve over GF(p) is defined as follows:

Let F(p) be a finite field with p  > 3, the elliptic curve E over the field GF(p) can be 

described by the short Weierstrass equation as shown in equation 3.3 :

y 2 -  x 3 +ax + b

where a, b e GF(p). If x3 + ax + b contains no repeating factors or, equivalently, if the 

inequlity (4a3 + 21b2) mod p * 0, then the elliptic curve can be used to form a group. 

The elliptic curve group over GF(p) includes all points (x*y) which satisfy the elliptic 

curve equation (Equation 3.3) modulo p, where x and y  e GF(p), together with the 

point at infinity O. There are finite number of points on such an elliptic curve.

The following shows an example of elliptic curve over GF(p) field F 2 3 . With a -  1 

and b -  0, Equation 3.3 becomes yr -  x  + x and the following 23 points satisfy the 

curve and are represented in Figure 3.3. Note that there is symmetry about y  = 11.5. 

Over the field of F 2 3 , the negative components in the y-values are taken modulo 23, 

resulting in a positive number with {0 , . . . , 2 2 }.
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(0,0) (1,5) (1,18) (9,5) (9,18) (11,10) (11,13) (13,5)

(13,18) (15,3) (15,20) (16,8) (16,15) (17,10) (17,13) (18,10)

(18,13) (19,1) (19,22) (20,4) (20,19) (21,6) (21,7)

y
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 22 x

Elliptic curve equation:.?2 = x3 +x  over

Figure 3.3 y2 = x3 + x over GF(p) field F23

The algebraic rules for the arithmetic are adapted for calculations of elliptic curves 

over GF(p) Given the points P = (xp, yp), -P = (xp, -yp mod p) and Q -  (xq, yq) and 

point P * Q, then P + Q = R is calculated as follows:

y P- y q As = —  -m od p (3.42)



The coordination of R = (xr, yr)\ 

x =  s2 —x  -  xq modp

y r = - y p +s(xp - x r)modp

3.3.4 Point Doubling over GF(p)

Given the point P = (xp, yp) and is yp * 0, to calculate 2P = R:

3x2+a 
s = — ----- mod p

2y P

xr = s 2 -  2x mod p

y, = - y p +s(xp - x r)modp

3.3.5 Point Addition over GF(2")

Elliptic curve over GF(2") is can be defined as follow:

y 2 + xy = x3 + ax2 + b 

where a, b e GF(2") and b *■ 0.

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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The elliptic curve group over GF(2") includes all points (x,y) which satisfy the elliptic 

curve equation (Equation 3.48), where x and y  e GF(2”) , together with the point at 

infinity O. There are finitely many points on such an elliptic curve.

An example of elliptic curve over GF(2") field F 4 is shown as follows and it is 

defined by using polynomial representation with the irreducible polynomial

f ( x )  = x 4 +x +1.

Given the element g  = (0010) is the generators for the field, the powers of g  are:

fir0 = (0001) g1 = (0010) ^  = (0100) g3=(1000) qt4 = (0011) g5 = (0110)

g6 = (1100) g7 = (1011) g8 = (0101) g9 = (1010) g10 = (0111) g11 = (1110)

g12 = (1111) g13 = (1101) g14 = (1001) g15 = (0001)

Consider the elliptic curve:

y  + x y  = x  + g  x  +1 (3.49)

Note that a  in equation 3.48 has been substituted with g4 and b with g° = 1. The 

fifteen points that satisfy the equations are shown as follows, these points can be 

depicted in a graph as shown in Figure 3.4.

(1-g13) (g3, g13) (9s, 9") (96,g u) te9,013) (s1V )  (sr12,g12)
(1.9s) (g\ 96) (9s, 93) (96, 9 s) (sr9.910) (91°. 9) (9 ^ 0 ) (0, 1)
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1 g g 3 g3 g4 g5 g<5g7 g8 g9 g10 g11 g u  g13 g14 0 X

y^+ xy  =jc3  + g*x2 + 1  over 4  

Figure 3.4 jc3 + g4x2 + 1 over Fj4

The algebraic rules for the arithmetic are adapted for calculations o f  elliptic curves 

over F2m Given the points P = (xp, yp), -P = (xp, xp +yp ) and Q = (xq, yq) and point P *  

-Q, then P + Q = R is calculated as follows:

y P- y qs ~ — ------
X P ' X ,

(3.50)

x r= s +s + xp +xq +a (3.51)

y r =s(xp +xr) + xr +y. (3.52)

The properties of the point of infinity that is shown in the real number plane case also 

applies to GF(2”). such that, P + (-P) = O and P + o = P.
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3.3.6 Point Doubling over GF (2W)

Given the point P = {xp, yp) and is yp * 0, to calculate 2P = R:

s = xp +'

x = s  +s + a

y r = x .+ (s + \)* x r

If yp = 0, then 2P = O.

(3.53)

(3.54)

(3.55)

3.4 ECC and Side Channel Attacks

In the first part of this section, some known attacks for solving the elliptic curve 

discrete logarithm problem (ECDLP) and the techniques to avoid these attacks will be 

explained. In the second part of this section, side channel attacks will be introduced. 

Instead of attacking the algorithm itself, side channel attacks are attacks against the 

cryptographic devices and their implementations.

3.4.1 Known ECDLP attacks

Some known weaknesses in elliptic curve cryptography algorithms will be explained 

in this section. The purpose of these attacks is to solve the elliptic curve discrete 

logarithm problem (ECDLP), which was described in section 2.6.1. Some of the 

points have been mentioned briefly previously in this chapter, more explanations will 

be given in this chapter. [81] and [82] provides a good overview on this topic.
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1. Naive exhaustive search

This method requires the attacker to compute successive multiples of P: P, 2P, 

3P, 4P... until the public key is obtained. This attack is impractical for high 

order cryptosystem.

2. Pohlig-Hellman algorithm [83]

This attack exploits the factorization of the order of the point P, n. This 

algorithm reduces the complexity of recovering the discrete logarithm k of Q 

to the base P to the problem of recovering k modulo each of the prime factors 

of n, where k can then be recovered by using the Chinese Remainder 

Theorem. In order to construct the most difficult case of the ECDLP, the order 

of the elliptic curve chosen must be divisible by a large prime n, e.g., n>  2160 

bits. Preferably, this order should be a prime number or almost a prime, which 

means that a large prime number times a small integer.

3. Baby-step giant-step algorithm

This attack is a time-memory trade-off of exhaustive search. Instead of the 

worst case of up to n steps required by traditional exhaustive search, only Vrz 

steps in the worst case but requires memory for Vm points, where m denotes 

the memory size.

4. Pollard’s Rho algorithm [84]

This algorithm is generally regarded as the best general-purpose algorithm 

known for solving ECDLP [82]. This is essentially a randomized version of 

baby-step giant stop algorithm. The running time of this algorithm is very 

similar to that of baby-step giant-step algorithm, however, it requires less 

memory space. Teske [85] provided an improved version, which has an

expected running time of yjm ! 2 and negligible storage requirements. This
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algorithm is most effective for factoring integers with small factors, therefore, 

this can be avoided by using a high order number.

5. Parallelized Pollard’s Pho algorithm [86]

Van Oorschot and Wiener described the method to parallelise the Pollard’s 

Rho algorithm. When the algorithm is run in parallel using r processors, it

6. Multiple logarithms [87]

Silverman and Stapleton suggested that successive logarithms become easier 

to solve once the first instance of the ECDLP has been worked out. The 

method to avoid this occurring is to ensure that the elliptic curve parameters 

are chosen so that the first instance is infeasible to solve.

7. Supersingular Elliptic curves [66] [88] [89]

Supersingular curve is an elliptic curve E  over Fq where the trace t of E  is 

divisible by the characteristic p  of Fq. It is known that supersingular curves 

are of some extension field Fqk where k < 6 and a subexponential-time 

algorithm exists for the ECDLP in singular curves.

In general, under mild assumptions, the ECDLP in an elliptic curve E  defined 

over a finite field Fq can be reduced to the ordinary DLP in the multiplicative 

group of some extension field Fq for some k > 1, where the number field 

sieve algorithm applies. This is known as the Weil and Tate pairing attacks. In 

order to ensure the reduction algorithm does not apply to a particular curve, 

the order n of the point P should not divide qk -  1 for all small k for which the 

DLP in Fq is tractable.

results in an r-fold speed up of roughly steps.
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8. Weil Descent [90] [91] [92]

Weil descent is efficient for reducing the ECDLP in an elliptic curve E  over a 

characteristic two finite field F™ to the discrete logarithm problem in the 

jacobian Jc(Fi) of an algebraic curve C defined over a subfield F-fi of F™ 

[91].

Let k -  Fq denote some finite field of characteristic two, and let n > 2 denote 

an integer, where n is quite small and q is large such that qn > 2160 in practice. 

Let K  denote the field extension Fqn, with &-basis {y/o, y/\, y/n-i}- Given an

elliptic curve E over K:

Y 2+XY = X 3+fi (3.56)

where f i e  K. Assume that E(Fq‘") contains a subgroup of prime order p  with p  

* q \

fi = b0y/ 0 + bxy/x +... + bn_xy/n_x (3.57)

X  = x0i/ / 0 + xxy/x +... + xn_xy/n_x (3.58)

^ = ^ 0 + ^ 1  + -  +  ^ - 1 ^ - 1 (3.59)

By substituting Equation 3.57, 3.58 and 3.59 into Equation 3.56 and equating 

coefficients of y/i, an abelian variety A define over k of dimension n is 

obtained. The abelian variety A is called the Weil restriction and the process 

shown above, where the abelian variety A could be achieved, is called Weil 

decent.

Gaudry Hess and Smart [92] gave an explicit algorithm for the case where the 

algebraic curve C is a hyperelliptic curve of genus g  defined over F i.  The 

variation of attack is known as GHS attack.
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In order to prevent these attacks, the use of elliptic curves over finite fields 

F2m where m is composite should be avoided.

9. Prime field anomalous curves

[93] [94] [95] showed ECDLP can be solved efficiently for prime field 

anomalous curves where the number of point of an elliptic curve E  over FP, 

#E(FP) is equal to p. Therefore, the number of points on an elliptic curve must 

not equal to the cardinality of the underlying field

10. Hyperelliptic curves

Hyperelliptic curves are a family of algebraic curves of arbitrary genus that 

includes elliptic curves, therefore an elliptic curve is effectively a hyperelliptic 

curve of genus 1. The definition of hyper elliptic curve is as follows:

Let Fq be a finite field. A hyperelliptic curve C of genus g  over Fq (g > 1) is a 

non-singular curve given by an equation of the form:

y 2 +h(x)y = f ( x )  (3.60)

where h(x) e Fq[x] is a polynomial of degree < g  and^x) e Fq[x\ is a monic 

polynomial of degree 2g+l.

Adleman, DeMarrais and Huang [96] presented a subexponential-time 

algorithm for DLP in the jacobian of a large genus hyperelliptic curve over a 

finite field of prime characteristic. Enge [97] provided a subexponential 

algorithm for solving the discrete logarithm problem in Jacobians of high- 

genus hyperelliptic curves over any finite fields. Therefore high-genus 

hyperelliptic curves should be avoided.

11. Non-applicability of index-calculus methods
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No general subexponential-time algorithm has been discovered yet. [53] and 

[98] provided arguments for why the index-calculus algorithms may be 

applicable to the ECDLP.

In summary, the general methods to avoid these attacks are to avoid using certain 

known curves and also the size of the modulus should abide to the recommended 

minimal size (see Table 2.3).

3.4.2 Side channel attacks

Side channel attacks were first proposed by Kocher [99] in 1996. Unlike the attacks 

that were mentioned previously, which are based on information on the plaintext or 

the ciphertext, side channel attacks are based on measurable side channel information 

that can be retrieved, such as computation time and power consumption. By making 

use of these side channel information, the attacker can deduce the inner-working 

algorithm of the system and so some secret information needed, such as the secret 

key. There are two different classes of side channel attacks depending on side channel 

information retrieved and they are:

• Simple side channel attacks, where only a single measurement is needed

• Differential side channel attacks, where several measurements handled 

together with statistical tools to correlate the secret information with the 

collected data

In this section, some of the common side channel attacks will be described, also the 

techniques required to defend against these attacks will also be introduced.
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3.4.3 Simple Side Channel Analysis

Two of the most common simple side channel analyses are:

1. Timing attack

Timing attack was first introduced by Kocher [99] . Timing attacks are based 

on measuring the time taken for the system to perform certain cryptographic 

operation.

2. Simple Power Analysis

Simple power analysis (SPA) was discussed in [100]. SPA is based on 

analysing the power consumption of the device during operation. Since the 

integrated circuits are made up of many transistors, the charging and 

discharging activity of each transistor while switching can be detected. The 

method to measure the power consumption of a device is to simply connect a 

small resistor, e.g. 50 ohm, in series with the power or the ground input, the 

power consumption can be calculated simply by computing I  (current) = V 

(voltage)/ R (resistance).

In the case of elliptic curve cryptography, one of the most common techniques for 

computation of a scalar multiplication is the double-and-add method, which is 

described in Figure 3.5. It is very common that input P is public and the scalar k is 

secret, therefore k is of interest to the attacker.
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Algorithm: double-and-add

Input: P, *=(1, ki.2, ..., ko) 2

Output: kP

Q := 0
For i from n-\ down to 0 do
Q '=  2 Q
if kt = 1 then

Q:=Q + P
return Q

Figure 3.5 Double-and-add method

Based on this common algorithm, the attacker can attempt to determine important 

information by performing simple timing analysis or simple power analysis on the 

system at the if-branch (see line 4 of Figure 3.5). Since that point doubling happens in 

every iteration, but point addition is only executed wheny'th bit of k is equal to 1, the 

attacker may be able to distinguish the two operations based on the information 

collected. [101] provided suggestions on parallel scalar multiplication on general 

elliptic curves over Fp hedged against non-differential power attacks, by using the 

Montgomery Ladder algorithm (See Section 3.4.5 for more details).

3.4.4 Differential Power Analysis (DPA) attack

One of the most common differential power attacks is differential power analysis 

[100]. Similar to SPA, DP A requires the knowledge of power consumption of system 

to obtain desired knowledge of the cryptosystem, however, unlike SPA where only a 

single measurement is involved, DPA consists not only of study of various visual data 

sample, but also statistical analysis and error correction statistical methods. DPA is 

such a powerful attack that it can automatically locate correlated regions in a device’s 

power consumption, the attack can be automated and little or no information on the 

implementation of the system is required.

The attacker observes m encryption operations and captures some powers traces
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where each trace should contain k samples each and record the corresponding 

ciphertext. The attacker will then be able to use the information on power 

consumption from the power traces obtained and statistical methods to determine the 

secret information. For example, DPA attacks on DES round one can be carried out as 

follows [162]: recall the S-Box that exists within the DES function as shown in 

Figure 2.4, each of these box is analysed one at a time by DPA. Differential power 

consumption curves (PCCs) of the subject are then collected. The PCCs are then 

grouped together in to calculate a differential curve. The attack will have to perform 

the partial traces calculation for each of the 26 6-bit partial subkey combinations. The 

correct subkey can be known by looking for the curve that is formed by the correct 

subkey. Coron [102] presented a general overview of resistance against DPA for 

ECC, summarised as follows:

3.4.5 Countermeasure Against Side Channel Attacks

1 General Countermeasures

In terms of hardware implementation, smart card is particularly prone to side 

channel analysis attacks, so tamper-resistant smart card should be used. 

Kommerling and Kuhn [103] provided a good overview on smart card 

technology against side-channel attacks.

Secondly, system parameters and inputs should be validated first since there are 

some attacks that attack the system by feeding predefined special [104] or 

erroneous input to the algorithm [105], or to provoke faults in the process [106].

2 Countermeasures against Simple Analysis Attacks

The main approach to defend simple analysis attacks is to achieve uniform 

execution pattern. This can be realized by the following methods:

80



o Using an algorithm where the order of operations is fixed, so that the 

operations become indistinguishable because of their regular 

occurrences. [102] [104] [107]

o Reconstruct the common double-and-add algorithm so that the same 

field arithmetic operations are used to disguise the differences of the 

two operations. [108] [109] [110]

o Used random values to split or mask the secret data. [102]

As mentioned at the beginning of this chapter, Montgomery Form is secure 

against timing attacks [60]. Since the time required to perform the conventional 

scalar multiplication algorithm based on the Weierstrass-form depends on the bit 

patterns of the secret value (and on the ratio between the number of zeros and 

ones), systems based on Weierstrass-form are insecure against timing attacks.

However, this is not the case for systems based on Montgomery Form. It has 

exactly seven multiplications and four square-multiplications on Fp per bit. 

Reference [61] also suggested the use of the randomised projective coordinate 

representation increases the difficulty to measuring the timing of the algorithm. 

This approach has a limitation to specially chosen curves, in this case, curves 

with Montgomery form of group order divisible by 4.

Another method to defend simple analysis attacks is to use Montgomery ladder 

[61] [101]. The Montgomery Ladder was initially designed to accelerate the scalar 

multiplication on a restricted class of curves over Fp. Reference [111] provides a 

good overview on Montgomery Ladder.

Figure 3.6 shows the Montgomery Ladder algorithm. Let A: be a positive integer 

and (k„.u its binary representation. Initially we have the pair (P, 2P) and

at the beginning of each iteration, the pair (Pi, P2) = (mP, (m+\)P), where m = (kn.

i , ..., kn.u). The final result is (kP, (k+\)P).
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Algorithm: The Montgomery Ladder

Input: P, int k > 1 
Output: kP

Pi:= P and Pi\= 2P
For i from n-1 down to 0 do
if hi = 1 then

P\ = P\+ Pi and Pr= 2P2

else
P i'- P\+ Pi and P\ = IPi 

return Pi

Figure 3.6 The Montgomery Ladder

Coron [102] presented a revised double-and-add algorithm so that the operation in the 

algorithm, such as the branching operation, can not be identified; this is shown in 

Figure 3.7. This technique works based on insertion of dummy instructions.

Algorithm: Double-and-add resistant against SPA

Input: P, int k >1 
Outout: kP

Qo:=P
For i from n-1 down to 0 do 
Qo'.- 2  Qo
Qi-= Qo+P 
Qo’= Qi
Return Qo

Figure 3.7 Double-and-add resistant against SPA

3 Countermeasures against Differential Analysis Attacks

The main approach to defend simple analysis attacks is to diminish the correlation 

between any assessment results. This can be achieved by randomizing the values
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of the base point P  and any intermediate points involved in a calculation. This can 

be realized by the following methods:

o Reference [112] and [113] proposed the use of randomized algorithms, 

which could obscure the correlation of the intermediate results.

o Reference [114] introduced the idea of disguising the elliptic curve or 

the field by replacing it with random, isomorphic versions

o Reference [102] also contributed toward defence DPA. Coron 

introduced three countermeasures:

■ Randomisation of the private component

■ Blinding the point P by adding a secret random point R

■ Randomisation of the representation projective coordinates by 

introducing a random scaling factor.

Walter [1] suggested that the longer the key length the greater the side channel 

leakage, even with the increase in mathematical strength in the cryptosystem. 

Therefore with longer key, it could actually mean lower security, because of the 

greater number of arithmetic operation needed leading to greater leakage. The fact 

that ECC can provide similar level of security compared with RSA with a much 

shorter key length (see Table 2.3), ECC is better option in terms of resistance to side 

channel attacks.

3.5 Literature Review

There have been many different hardware designs for different arithmetic processes 

for the fields GF(p) and GF(2”). For example, Guajardo et. al. described a hardware 

implementation of a modulo multiplier for GF(p) based on Residue Number System
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(RNS) [115]. Gutub et. al. [116] presented a scalable VLSI architecture for GF(p) 

Montgomery modular inverse computation. Scalability implied the flexibility of 

having an arbitrary operand size, such that the same design of hardware can be reused 

to expand the size of the operand, but at the same time the logic depth of the structure 

is unchanged. This is important for cryptographic hardware, since the mathematical 

difficulty of the cryptosystem lies in the length of the key and the requirements of key 

length varies. Also, Wu [117] presented a bit-parallel Montgomery multiplier design 

for GF(2 ) for modulo multiplication and squaring that use m gates.

The use of Montgomery multiplication [118] is very popular because of the simple 

modulo reduction operation used. Montgomery multiplication makes use of the least 

significant digit of an accumulating product to determine the multiple of M  to 

subtract. Another example of a scalable modular multiplier based on Montgomery 

multiplication is presented by Tenca and Koc [119]. Walter [120] provided an 

overview on techniques for the hardware implementation of Modular Multiplication, 

more details on the implementation of Montgomery multiplication will be presented 

in Chapter 4.

Sava§ et. al proposed the first hardware implementation of a unified field multiplier 

which can operate on both GF(p) and GF(2”) [121], [122]. This design makes use of a 

LSB-first word-serial Montgomery multiplication and the operands are required to be 

transformed into the Montgomery domain.

Word-serial architecture is similar to “pen and paper” method such that to compute A 

x B where A = {au aM, •. .fli, tfo} and B = {bh 6M, ...bu bo}:
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Algorithm: pen and paper 
multiplication

Input: A, B 
Outout: C = A*B

C:= 0
For n for from i down to 0 do 
Q :=A * bn 
C, := C, *2"'+ C,.,
Return C

Figure 3.8 Pen and paper multiplication

Bit-parallel means that instead of having A multiplied by each bit of B (b,) to give 

individual values of Ab, one cycle at a time, all the Abt values are generated at once 

and then summed up. The disadvantage of bit-serial is that the process is very slow 

however it is very simple and easy to implement; the disadvantage of bit-parallel is it 

is area consuming.

The processing unit of Sava§’ design is shown in Figure 3.9.

TC.ars <»

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

FSEL

Shift & 
Alignment 

Layer

B , 7= multiplicand B 
bit / h iteration 

P ,J = muodulus P tA b i t / h 
iteration 

a, = multiplier a  f**1 bit 
c  =  carry
FSE L  = field selection 
(T C 0*, TSfi*) = partial sum 

T  expressed in 
redundant carry 
save form 

■ ■  = pipeline latches

TC20-1> T S 20-1> T C 1°'1) T S ^ 1) T C / 1) T S / 1>

Figure 3.9 Sava§’ et. al. Processing Unit: wordlength = 3
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The selection of the field is done by setting the FSEL input. When FSEL = 1, the 

system performs operation over G¥(p) and when FSEL = 0, the system runs in the 

GF(2”) mode. Figure 3.10 shows the dual-field adder circuit synthesised for this 

implementation. Note that in this dual field circuit, the critical path from any data 

input (a, b or c) to either output traverses four logic levels, assuming XOR gates have 

a logic depth of 2.

FSEL

Figure 3.10 Sava§’ dual-field adder synthesised by Mentor

Johann GroPshadl [123] proposed a bit-serial unified multiplier architecture for finite 

field GF(p) and GF(2") in 2001 based on an MSB-first iterative algorithm for modulo 

multiplication. Figure 3.11 shows the arithmetic unit that is used for the 

implementation of the modular multiplier. The first («+l)-bit carry-save adder 

performs the addition of the partial products. The output Sum Rs and Carry Rc are 

used to estimate the multiple of the modulus to be subtracted in the next step with 

another («+l)-bit carry-save adder.

Figure 3.12 is a block diagram of Gropshadl’s bit-serial multiplier architecture. In 

order to perform carry-free addition for GF(2"), all the carry bits of the adder (Rc) are 

set to 0, which in turn set further control signals. Modulo reduction occurs within the 

multiplication process by concurrent subtraction of a multiple of the modulus.
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Figure 3.11 Arithmetic unit of Gropshadl’s n-bit unified multiplier
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n-bit Multiplier Register

(m-l)-bit Modul/IPRegister

Figure 3.12 Block diagram of Gropshadl’s bit-serial multiplier architecture

Wolkerstorfer has also proposed a dual-field arithmetic unit for GF(p) and GF(2”) 

[124]. Figure 3.13 shows the carry-save adder used in his design. Dual-field 

architecture designs also exist for field inversion ([125] and [126]).
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Figure 3.13 Carry Save Adder in Wolkerstorfer’s design

All these proposals require broadcasting a control signal to all the full adder cells to 

force the output carries low from all the full adders in the multiplier. This is costly 

and slow, especially when switching between fields, as can occur often in a server 

operating on many different data streams. This thesis describes a new multiplier 

which operates in both GF(p) and GF(2"), and makes use of a novel dual field adder 

based on a (4:2) carry-save adder cell, modified so that it is capable of adding 

specially-encoded operand digits [127], which will be described in chapter 4.
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4 Unified Field Redundant Adder

Chapter 3 demonstrated that all the previous dual-field designs required the field 

information signal to be broadcasted throughout the adder structure, which is costly 

and slow due to high signal fan-out. In this chapter, the implementation of the 

proposed unified field redundant adder, which is required for the overall 

implementation of the unified field multiplier, will be described.

The design of this unified field adder can perform addition in both prime and binary 

field without compromising the performance and area requirement compared with 

conventional adders and previous designs. The main difference between the proposed 

design and the previous designs is that, in the proposed design, the field information 

is embedded within the encoding itself, such that field information signal is not 

broadcasted throughout the module. The proposed design is impartial such that 

addition in either field can be carried out equally easily. Furthermore, this design is 

scalable, where the wordlength can be scaled up or down by reusing, replicating or 

truncating the adder modules, without affecting the logic depth of the hardware 

structure.

4.1 Truly scalable unified field redundant adder

Many of the existing unified multiplier designs require an external field selector 

signal to choose between the two fields - GF(p) and GF(2"). This external signal is 

fed into the adder gates to force the carries low in GF(2"), however, this also means 

that this one signal has very high fan-out especially for large multiplication which is 

often the case in cryptography. This can be demonstrated by the processing unit of the 

multiplier proposed by Savas [121], which is shown in Figure 3.9, where one can see 

that for a processing unit of word length = 3 bits, the field select signal has to drive 6 

gates. Therefore for an n-bit processor, the field select signal will have to drive 2-n 

bits. This method is inefficient because the field select signal will need to have a very 

high drive strength which could also affect the scalability of the overall multiplier 

since buffers will need to be added.
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The proposed method to avoid this problem is to incorporate the field information 

into the representation of the number itself.

4.1.1 Redundant Number Representation and redundant adder

The Redundant Binary Adder, illustrated in Figure 4.1, is a binary adder capable of 

adding two numbers with the digit set e {0, 1, 2} (or equivalently e {-1, 0, 1}) 

such that carry bits do not propagate over the whole length of the sum [128]. Note 

that carry signals transform from {0,2} to {0,1} as they are carried forward to the 

next bit. Each block in the first two rows of Figure 4.1 can be implemented as a full 

adder as shown in Figure 4.2. The last row of blocks simply merges pairs of inputs to 

provide the output digits.

In the Redundant Binary Adder, digits are implemented using two binary signals. If 

neither signal is ‘High’ the value ‘O’ is represented; if both signals are ‘High’ the 

value ‘2’ is represented; otherwise, if either one of the signals is ‘High’ the value ‘1’ 

is represented as shown in Table 4.1. A variety of other coding schemes are possible, 

but similar to the example just given, only 3 signal combinations are needed to 

represent 3 values, i.e. there will always be a redundant set of combination. The 

advantage of redundant adder is that it can avoid long carry chain and has a constant 

delay, which is independent of the adder width. Additionally, the area cost is directly 

proportional to the word length n. (4:2) redundant adders have been used before in 

binary multiplier designs as an alternative to carry-save adders because they have 

more regular multiplier tree layouts, requiring less interconnect than other reduction 

tree topologies [129], [130]. The new adder will make use of these same layout 

advantages to be applied to Galois Field multiplication under either GF(p) or GF(2"). 

The schematic diagram of the conventional (4:2) redundant adder is shown in Figure

4.1. In conventional redundant adder design, the states ‘O’, ‘1’ and ‘2’ are represented 

by two wires as shown in Figure 4.1, therefore, in conventional (4:2) redundant adder 

design, the state ‘ 1 ’ is represented by both ’01’ and ‘10’.
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Table 4.1 Conventional Redundant Representation

wires Number

representation

00 0

01 1

10 1

11 2

{0..2} {0 . 2} {0. 2} {0..2} {0 ..2} {0..2}

{0 ,2}

{0 ,1} {0 ..: {0,1} {0..2;
Sum
[0-3]

{0,2}

{0,1} 0,1} {0,1 {0,1} {0,1 {0,1} {0,1}

Sum
[0-2]

{0-2}

Sum
[0-4]

Sum
[0-4]

Sum
[0..3]

Sum
[0 ..2]

Sum
[0-3]

Figure 4.1 Conventional Redundant Adder w = 6

f >

Figure 4.2 Binary Full Adder



4.2 Unified field Redundant Adder

A dual-field Galois Field adder can be constructed by introducing a fourth digit value, 

denoted 1*, that indicates the digit ‘1’ over GF(2"). Hence, addition over GF(p) is 

implementable using the digits {0,1,2}, while addition over GF(2”) is implementable 

using the digit set{0,l*}. The characteristic of addition over GF(p) is depicted in 

Table 4.2. Addition over GF(2n) can be characterised by the expressions: 1* + 1* = 0, 

and 0 + k = k+  0 = k and is shown in Table 4.3. The digit sets for addition in the two 

fields can be defined as follows:

• for GF(p), 3 values are needed: {0,1, 2}

• for GF(2”), only 2 values are needed: {0,1 *}

Therefore, 5 values are apparently required in total. However, only 4 values are 

actually needed because the zero elements in both fields are defined identically, such 

that 0 + 0 = 0 in both cases (see Table 4.2 and Table 4.3).

Table 4.2 Table of addition for GF(p)

0 1 2

,-0 -----/
1

2

\  1N ' 2 3

2 2 3 4

Table 4.3 Table of addition of for GF(2")
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By incorporating the 1* digit into the Redundant Binary Adder (Figure 4.1), a dual 

Galois Field adder can be formed with little adjustment, as shown in Figure 4.3. This 

enables us to take advantage of previously unexploited “don’t care” states in the (4:2) 

adder cell. The four symbols {0,1,2,1*} require two wires for their full representation, 

similar to the redundant binary adder of Figure 4.1. The unified field adder will be 

structurally very similar to the Redundant Binary Adder (Figure 4.1), however, the 

cells are not now full adders, and so optimum logic circuits for the dual field adder 

need to be derived.

[0 , 1 , 2 , 1*] [0 , 1 , 2 , 1*] [0 , 1 , 2 , 1*] [0 , 1 , 2 , 1*]

Cell A :

Cell B :

Cell C:

S U M  A
[0..4, 1*]

[0 , 1 , 2 , 1*]

2 „

/  \

'  2

S U M  A
[0..4, 1*]

[0, 1, 2, 1*] 
*
\

'2
/

S U M  B S U M  B
m

t  • [0..3 1*] ] [ 0 ^ [ 0 . 3 ,  1*]

[0. 1, 1*]

\

1
1
l

S U M  C
[0 . .2 , 1*]

[0 , 1 , 2 , 1*]

Figure 4.3 Redundant Dual Field adder

The new (4:2) adder comprises three separate stages, implemented using three 

different cells: the first stage (cell A) receives two 2-bit operands, x(l:0) and y(l :0) 

with the digit set, d e {0,1,2,1*}, and adds them to form a 2-bit sum digit, SA e 

{0,1,2,1*}, and a carry bit, Ca e {0,2}. The addition is summarised in Table 4.4, 

showing that there is much flexibility available for the cell’s implementation. Don’t 

care state is formed when a value in GF(p) is to be added to a digit in GF(2"), since 

this is prohibited. Note that, the output digit ‘2’, can be represented by either SA = 2 

and Ca = 0 or Sa = 0 and CA = 2.
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Table 4.4 Cell A addition

0 1 2 1*
0 0 1 2 1*
1 1 2 3 X
2 2 3 4 X
1* 1* X X 0

The second stage (cell B) receives the 2-bit sum digit, Sa, and the shifted carry bit, 

CA, from the previous bit of cell A, and adds them to form the 2-bit sum digit, Sb e 

{0,1,1*}, and a carry bit, Cb e {0,2}. The addition is summarised in Table 4.5, 

showing that there is less flexibility available in this cell’s implementation than in cell 

A, as there is only one don’t care state.

Table 4.5 Cell B addition

0 1
0 0 1
1 1 2
2 2 3
1* 1* X

Finally, the third stage (cell C) receives the 2-bit sum digit, Sb> and the shifted carry 

bit, Cb, from previous bit of cell B and adds them to form the 2-bit sum digit, Sc e 

{0,1,2,1*}. This digit set matches the digit set of the (4:2) adder’s inputs, so that the 

addition is complete [128]. The third stage of the addition is summarised in Table 4.6, 

showing that there is more flexibility available in this cell’s implementation, due to 

the increased number of don’t care states.

Table 4.6 Cell C Addition

0 1
0 0 1
1 1 2
X X X
1* 1* X
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4.2.1 Cell A digit coding

The digit coding for cell A was chosen as follows: 5^(0) should be a 2-input XOR 

function, to match the delay of a basic (4:2) adder, the other two logic functions are 

required to be as simple as possible. Having experimented with all possible coding 

combinations, the most efficient coding scheme was found to be (0,1) = 1*, and (1,1) 

= 1. (0,0) was chosen to be 0, leaving (1,0) = 2. Filling out Table 4.4 with these digit 

representations gives the Karnaugh map shown in Table 4.7, where ‘-’ reflects that 

the decision about how to represent the output ‘2’ is yet to be made, and ‘X’ denotes 

“don’t care”.

Table 4.7 Karnaugh Map for Cell A addition

0-> 00 1*->01 1->11 2 -> 10
0 -> 00 0, (0,0) 0, (0,1) 0,(1,1) -, (-,0)
1*->01 0, (0,1) 0, (0,0) X, (X,0) X, (X,l)
1->11 0,(1,1) X, (X,0) -, (-,0) 1,0 ,1)
2 -> 10 -, (-,0) X, (X,l) 1 ,0 ,1) 1,0 ,0)

The (-,0)’ entries must become either ‘1, (0,0)’ or ‘0, (1,0)’ to represent an output 

value of 2 (see Table 4.8). If they are set to ‘0, (1,0)’, then 5^(1) = jc(1) v  y(l), using 

the don’t care states. Finally, by setting all the remaining don’t care states for Ca low, 

Ca = x(l) a  y(l) a  {■’Jc(O) v ~y(0)} is obtained, which is implemented as a 2-input 

NAND driving a 3-input AND, matching the CMOS VLSI delay of the XOR. Note 

that -1 denotes inversion, v denotes ‘OR’ function and a  denotes ‘AND’ function. The 

final map for cell A is presented in Table 4.9.



Table 4.8 Redundant representation of sums

Total SUM CARRY

0 0 0

1 1 0

2 2 0

2 0 1

3 1 1

4 2 1

Table 4.9 Karnaugh Map for Cell A addition

0->00 1*->01 1->11 2->10
0->00 0, (0,0) 0, (0,1) 0,0,1) 0,0,0)
1*->01 0, (0,1) 0, (0,0) 0, (1,0) 0,0,1)
1->11 o. (1.1) 0, (1,0) 0,0,0) 1,0,1)
2 -»10 0,(1,0) 0,(1,1) 1,0,1) 1,0,0)

4.2.2 Cell B digit coding

Using the same coding for cell B as was used in cell A gives S b(0 )  =  5 ^ ( 0 )  ©  Ca , as 

required. However, the logic for S ^ l) is not simple enough with this encoding. 

Swapping the output representations for 1 and 1* - that is replacing (0,1) by (1,1) and 

vice versa, did not impact the Sb(0) logic, but allowed the 5^(1) logic to be SB(l)  = 

“^ ( l )  a  & ( 0 ) .  Finally, C B = Sa (1 ) a  (~^Sa (0) v Ca). The Karnaugh map for cell B is 

presented in Table 4.10.
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Table 4.10 Karnaugh Map for Cell B

0 1

0 —> 00 0, (0,0) 0, (0,1)

1*-»01 0, ( 1,1) 0, ( 1,0)

1 -> 11 0, (0,1) 1, (0,0)

2 -> 10 1, (0,0) 1, (0,1)

4.2.3 Cell C digit coding

Finally, the output coding must match the input coding of cell A (i.e. 1* -> (0,1) and 

1 -» (1,1)), and the input coding matches the output coding of cell B. By using the 

don’t cares, the logic equations are Sc{ 1) = ^ S b{  1) a  S^O) v  C b , and Sc{0) = S b{0) ® 

Cb- The final Karnaugh map of Cell C is presented in Table 4.11.

Table 4.11 Karnaugh Map for Cell C

0 1

0 -» 0 0 (0,0) (1,1)

1-»01 (1,1) (1,0)

1* 11 (0,1) (1,0)

X ->10 (0,0) (1,1)

Figure 4.4 shows the final CMOS gate implementation of the adder, where some 

further logic optimisation has been made (i) to cover the lack of AND and OR gates 

in CMOS, and (ii) to take advantage of CMOS complex gates. Note there is no FSEL 

input needed in this adder design.
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y[1:0]x[1:0]
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<C,

Cell B

Sb[0]

<0,
Cell C

Sc[0]SJ1]

Figure 4.4 Overall gate implementation of new dual field (4:2) adder

For bit 0 of the adder, since the two carry inputs Ca and Q, are 0, Sc[0] can be 

simplified to x[0] © >>[0] and Sc[ 1] is simplified to *S'<ar[l] + Sa[0] . This ensures the data 

necessary for computing Montgomery modular multiple is ready as soon as possible. 

This also provides the opportunity to simplify the circuit design for the Montgomery 

modular multiple generation unit as will be seen later in section 5.3.
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4.3 Unified field adders comparison

4.3.1 Area and Speed

The complete adder of Figure 4.4 was simulated using NC-Verilog and synthesised 

using Synopsis, which showed that the critical path (through the three XOR gates) 

was 1.50 ns using 0.18pm VLSI technology. By comparison, the four-input carry- 

save adders presented by Sava§ in [121] are implemented as pairs of full adders with 

extra gates on the carry outputs to force carries to ‘0’ (see Figure 3.10). Ignoring 

pipeline stages, Sava§’ adder cells have a total CMOS logic gate count of 14 

(counting XOR gates as two gates) as follows:

• 2 x 2  XOR (equivalent to 8 CMOS logic gates)

• 2 x 1  NOR

• 2 x 1  NOT

• 2 x 1  AOI CMOS complex gate

The proposed adder has a critical path length of only three XOR gates, with a CMOS 

logic gate count of only 13, made up as follows:

• 3 XOR/XNOR

• 2 NOR

• 1NAND

• 1 NOT

• 2 OAI CMOS complex gates

• 1 AOI CMOS complex gate

Logical Effort (see Appendix 2 for description of theory) can be used to assess the

speed of the adder [131]. The reason why logical effort is used is because the results
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are close to reality and also it is technology independent. The delay is often 

represented in terms of F04, which denotes “fanout of 4 inverters”. This means the 

delay through an inverter that has to provide the output drive current sufficient to 

drive 4 other inverters of comparable sizes. Take the critical path of the (4:2) adder, 

which is the 3 XOR gates. These gates are connected to:

• XOR A: XOR, NOR, OR of OAI + wire

• XOR B: XOR, OR of OAI + wire

• XOR C: register

Assume the logical effort of an XOR is 4 as suggested in [131]. Also assume the 

logical effort of wire is 2/3 per fan-out. The input to XOR A is connected to an XOR 

and an AOI, such that the logical effort of the input is 4 (XOR) + 2 (AOI) + 2x2/3 for

the wire, therefore the total logical effort of the input is 22/3. Table 4.12 shows the

logical effort of the proposed adder.

Table 4.12 Logical effort of (4:2) unified field adder

Logical

effort#

Branching 

effort b

Electrical 

effort h

Parasitic 

effort p

Path effort 

gb(h)

Input 1 (22/3)/4 1 22/12

XOR A 4 (4 + 5/3 + 

6/3 + 

3x2/3)/4

1 4 29/3

XOR B 4 (4 + 6/3 + 

2x2/3)/4

1 4 22/3

XOR C 4 Assume 1 

for register

1 4 4

The total path effort of the critical path for w word length is:
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F = GBH= 22/12 x 29/3 x 22/3 x 4 

= 519.9

The number of stages N  needed including buffers can be calculated as follows:

N  = Rnd (log4 F)

Rnd (log4 519.9) = Rnd (In 519.9/ In 4) = Rnd (4.51)

Rnd 4.51 =5

But XOR gates in CMOS have 2 stages. Therefore N  is 6, not 5.

The stage load/drive a  is calculated as follows:

a  = f 1,n= 519.9 1/6 

= 2.84

The delay along the critical path D is defined as D = (N x a  + P)/5 in F04 unit.

D = (6x2.84 + 12)/5 = 5.80 F04

There are two paths through the unified field adder used by Sava§ et.al: the first goes 

from inputs a or b to output S  and the second goes from inputs a or b to output Cout. 

The logical effort of the path through two XOR gates to output S  is shown in Table 

4.13. The input is connected to an XOR and the AND of the AOI = 4 + 2 + 4/3 = 

22/3. Table 4.13 shows the logical effort of Sava§’ adder.
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Table 4.13 Logical effort of path 1 of Savas unified field adder

Logical 

effort £

Branching effort 

b

Electrical 

effort h

Parasitic 

effort p

Path

effort

gb(h)

Input 1 (22/3)/4 1 22/12

XOR A 4 (4 + 2 + 4/3)/4 1 4 22/3

XOR B 4 1 1 4 4

Path Effort of the critical path F — GBH (critical path) = 22/12 x 22/3 x 4 = 53.8

The number of stages N  needed including buffers can be calculated as follows:

N  = Rnd (log4  F)

= Rnd (og4 53.8) = Rnd (In 53.8/ In 4) = Rnd (2.87)

Rnd 2.87 = 3

As before, each XOR gate consists of two CMOS stages. Therefore, N  = 4. The stage

load/drive a  and the delay D is calculated as follows:

a = f vn = 53.8 1/4 = 2.71

D = (N x  a+  P)/5 = (4 x 2.71 + 8)/5 = 3.77 F04

The second path goes through the first XOR gate, and then through the AOI and the 

NOR gates. The logical effort of this path is shown in Table 4.14.
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Table 4.14 Logical effort of path 2 of Savas unified field adder

Logical 

effort £

Branching effort 

b

Electrical 

effort h

Parasitic 

effort p

Path

effort

gb(h)

Input 1 (22/3)/4 1 22/12

XOR A 4 (4 + 2 + 4/3)/2 1 4 44/3

AOI 2 (5/3 + 2/3) / (5/3) 1 4 14/5

NOR 5/3 1 1 2 5/3

Path Effort of the critical path F  = GBH (critical path) = 22/12 x 44/3 x 14/5 x 5/3 =

125.5

The number of stages N  needed including buffers can be calculated as follows:

N  = rnd (log4  F)

= log4  125.5 = In 125.5/ In 4 = 3.49 

Rnd 3.49 = 3

But, XOR gates consist of two CMOS stages. Therefore, N= 4. The stage load/drive 

a  and the delay D is calculated as follows:

a  = f i,n= 125.5 1/4 = 3.35

D = ( N x  a+ P )/5 = (4 x 3.35 + 10)/5 = 4.68 F04

In terms of delay, the proposed design is 24% slower than Savas’, however, the 

proposed design is capable of radix-4 operation, which will be beneficial to the 

implementation of the unified field multiplier. Also, the adder has one major 

advantage compared with Sava§’s design and that is scalability.
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4.3.2 Scalability

When compared with Sava§ et a V s design [121], shown in Figure 3.9, the unified 

multiplier presented here has the advantage that the Galois Field selection line does 

not cause extra delays due to potentially large fanouts. In Figure 3.9, the FSEL line 

has to drive 2w NOT gates and a long wire in the dual field adders, where w is the 

word-length of the adder.

The delay o f  the FSEL line driving 2w  inverters can be estimated by using Logical 

Effort [131] as being roughly log42w F04 delays. However, this does not include load 

due to wire. Previously, b = 2/3 per fan-out was assigned to track delay. However, 

this is too small for this calculation because the figure o f  2/3 assumed gates are 

placed next to each other. Here, gates are placed one adder apart so that b should 

increase to 5 x 2/3 = 10/3 because there are 5 gates in an adder. Therefore the delay 

o f  the buffer is estimated by log4{2xl+10/3}w  = log4(16/3)w. Hence, the ratio o f  

delay due to transistor and wire to the delay due to transistors alone can be 

summerised as log4(16/3)w: log42w. Table 4.15 and Figure 4.5 show the relationship 

between delay due to transistor and wire to the delay due to transistors for different 

wordlength. The pipeline delay comprises this buffer delay and the adder delay, 

assuming that the partial product is generated in a prior pipeline stage.

Table 4.15 The ratio of delay due to transistor and wire to the delay due to
transistors alone

wordlength log4(16/3)w log42w Ratio

log4(16/3)w: log42w
4 2.2075 1.5 1.4717 1
16 3.2075 2.5 1.2828 1
32 3.7075 3 1.2358 1
64 4.2075 3.5 1.2021 1
256 5.2075 4.5 1.1572 1
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Figure 4.5 The ratio of delay due to transistor and wire to the delay due to
transistors alone

In Figure 3.10, there are two critical paths through the adder: one starts with inputs a 

and b and traverses an XOR gate, a (2,2) AND-OR-invert (AOI) gate, and a NOR 

gate; the other starts with the FSEL line and comprises the FSEL buffer, an inverter, 

and the same NOR gate as the other path. The FSEL delay dominates the pipeline 

stage when the buffer delay becomes larger than the difference between these paths. 

From Logical Effort, the delay of the adder (path 2) was found to be 4.68 F04. Now 

the delay of the inverter and NOR gate must be calculated.

Table 4.16 Logical effort of FSEL path in Savas unified field adder

Logical

effort#

Branching effort 

b

Electrical 

effort h

Parasitic

effort/?

Path

effort

gb(h)

Input 1 1 1 1

NOT 1 (5/3 + 2/3) / 5/3 1 1 7/5

NOR 5/3 1 1 2 5/3
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Path Effort of the critical path F — GBH (critical path) = 7/5 x 5/3 = 2.33

The number of stages N  needed including buffers can be calculated as follows:

N  = Rnd (log4  F)

= Rnd (log4 2.33) = Rnd (In 2.33/ In 4) = Rnd (0.61)

Rnd 0.61 = 1

:.N=  1

Logical Effort says only one stage is needed. However, Savas’s design has two 

stages, therefore N= 2. The stage load/drive a  and the delay D is calculated as 

follows:

a  =2.33 UN = 2.33 1/2 = 1.53

D = (N x  a  + P)/5 = (2x 1.53 + 3)/5 = 1.21 F04

Therefore when log4(16/3)w > 4.68 -  1.21, or w = 23, the FSEL buffer delay starts to 

dominate the critical path and affects the maximum clock rate achievable. Moreover, 

if only one bit is processed per pipeline stage, then this design could be vulnerable to 

Power Analysis cryptographic attacks as the word-length is small [1]. However, 

increasing the number of bits per stage increases the fan-out on the FSEL line, further 

degrading performance. Also, Sava§’ adder is slower than the proposed unified adder 

when w > 109.

Table 4.17 (obtained from [121]) is a table to show the synthesis results of Sava§’ 

adder using 1.2 pm CMOS technology. The delays include the time needed to form 

the partial product bjA, the multiple of the modulus qiM, and the necessary buffers. 

Ho et.al [132] proposed the idea that 1 F04 = line-width (pm) x 360ps, for this 

instance, 1 F04 = 1.2 x 360ps = 0.43ns. By using this equation the equivalent delay 

of Sava§ adder in F04 can be found as shown in Table 4.17.
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Table 4,17 Savas* Adder results

Wordlength Delay (ns) Delay (F04) {bjA + buf} + 

FSEL buf delay

Buffering F04

16 6.87 15.9 15.9-4.68 = 

11.22

11.22-5-1.5 = 

4.72

32 9.22 21.4 21.4-4.68 = 

16.72

16.72-5-1.5 = 

10.22

64 12.55 29.2 29.2-4.68 = 

24.52

24.52-5-1.5 = 

18.02

The delay should increase logarithmically with wordlength, but the extra delay going 

from w = 32 to w = 64 causes extra increase in buffering delay

The last column calculates the delay due to buffering and forming bjA or q,M by 

subtracting the delay of the adder. Assuming bjA (or qtM) takes approximately 1 .3 -

1.5 F04 to be formed (using a 2-input NAND gate), and allowing 4 - 5  F04 for 

register set-up and clk-to-q delays, the table shows that buffering dominates the delay 

for w > 16, see last column of Table 4.17. For example, at w — 16, 11.22 -  5 -  1.5 = 

4.72 F04 are needed for buffering, which is very close to the delay as calculated for 

the adder (4.68 F04). This matches with the logical effort estimation.

The word length in the proposed design can be increased per pipeline stage as much 

as needed, without causing extra delay - so that this design is truly scalable. 

Moreover, this design could process more than one digit per pipeline stage without 

any extra delay due to field selection, although there would be additional delay due to 

the extra adders in each pipeline stage. However, the Multiplicand A and the Modulus 

M  need to be converted into the novel redundant number coding, this can be done in 

parallel with the Multiplier B being fed to the row of partial product generators, thus 

avoiding any delay due solely to field selection.

The next chapter shows how a complete dual-field multiplier can be designed based 

on the dual-field adder introduced here.
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5 Unified Field Multiplier

In this chapter, the design of the proposed unified field multiplier will be described. 

The definition of unified field architecture is one architecture that is able to perform 

operations in both prime field GF(/?) and binary extension field GF(2") using the same 

data path. The proposed multiplier has the following properties:

• Scalable - the hardware structure can be scaled up or down by reusing, 

replicating or truncating, without affecting clock period

• Fast -  the performance of the multiplier should not be compromised by being 

dual-field instead of dedicated to single field

• Impartial -  the multiplier must not favour one prime number or an irreducible 

polynomial over others for flexibility of applications

Unified field multipliers have the advantages of low manufacturing cost, they also 

provide compatibility and flexibility by being interoperable. Even though GF(p) and 

GF(2") have very different properties, their representations and structures are very 

similar. They can both be represented as bit strings and their arithmetic structures are 

the same except that GF(p) performs modulo a prime p  and GF(2”) performs modulo 

an irreducible polynomial M(x). This provides the opportunity to implement 

arithmetic unit that is interoperable between either fields.

Chapter 4 described the unified field redundant adder that is employed in the 

proposed unified field multiplier. The technique of embedding field information into 

the encoding of the data was introduced in section 4.2. The same encoding will be 

used throughout the implementation of the multiplier.

In the first part of this chapter, different common modular reduction techniques are 

discussed, which includes the chosen Montgomery modular multiplication. The 

second section shows the implementation of the proposed multiplier design and the

108



final section of this chapter discusses the strengths of the proposed design compared 

with the previously proposed architectures.

5.1 Modular Multiplication Algorithm

Modular multiplication is required for many cryptosystems such as RSA and ECC 

because it allows encrypted data, which are very large in size, to be securely stored in 

public domain but could only be decrypted by the users who hold the authorised key. 

Modular multiplication means that, for A, B and M<  /7-bit:

R = A B m o d M  (5.1)

Modular multiplication is computed using the multiply-and-reduce method, which 

can be expressed by the following equations:

Multiply: X  = A x B  (5.2)

Reduce :R = X  mod M  (5.3)

The multiplication part is relatively simple to compute, except that the numbers 

involved tend to be very big and the size of partial product result X  becomes 2/7-bit, 

this should be reduced by the modular reduction operation to n-bit. Modular 

reduction is the remainder R of a division such that:

(5.4)

R = X  -  qM (5.5)
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The modulus M  and the partial product resu lt^  of base b are defined as follows:

M  = 'YJmibl , 0 < w w_1< 6 a n d  0<mt <b, for / = 0, 1........n-2
i=0

(5.6)

/ - i

X  = , 0 < xM < b and 0 < x, < b , for / = 0, 1........ /-2
i=0

(5.7)

The “pencil-and-paper” division approach for modular reduction requires n 

subtractions and shifts, one long multiplication and one final subtraction. Knuth [133] 

formalized the “pencil-and-paper” method to give the so-called classical algorithm. 

The pseudo code of the classical method is shown in Figure 5.1:

{Pre-condition: 0 <AxB < Mxrn}
R:=AxB
For i := n-\ down to 0 
Do

Begin
q := R div (M x r');
R := R -  q x M  x rl;
{ Invariant: 0 < R < Mxrl8c R = (AxB) mod M }

End ;
{Post-Condition : R = {AxB) mod M)

Figure 5.1 The classified pen-and-paper division method

Since the quotient q is not required in modular reduction, working out the exact 

quotient is extremely time consuming, and so different methods have been introduced 

to speed up the process, such as by estimating the quotient. Knuth provided methods 

to estimate the quotient based on the fact that the condition XIM < b (b is the base of 

the number) is equivalent to Lx/bJ < M. Since R = X  -  qM and q is an integer such 

that 0 < R < M  therefore an approximation of q, denoted by q , can be obtained by
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dividing the most significant digits of X, xi.\ and X1-2 , where / is the wordlength of X, 

by the most significant digit of M, m*. \. If the result is b or larger, then replace it by b- 

1 such that:

q = min( xM fr + X/ - 2

m k - \
, b - l ) (5.8)

The pseudo code of the Knuth algorithm is given in [134] and is shown in Figure 5.2.

if(A > Mb1'") then
X=X-M b'-";  

for (/ = / - l ; / > n -\; /--) do { 
if (Xi = = mn. i) then 

q = b-1;
else

q = (xtb + xm) div m„.i; 
while (q(mn.\b + mn.2) > Xfb2 + x\.\b + xt.2) do 

q = q-1 
X = X -q M b ‘-n; 
if (X < 0) then

X = X + M b i'n;
}

Figure 5.2 Knuth Algorithm (m„-i ^ Lb/2_|)

Dhem [135] suggested that this method is more advantageous in the case where a fast 

and large divider is readily available; otherwise a hardware divider is slower and 

more expensive than a hardware multiplier.

Another example of a method that improves the speed of modular multiplication by 

estimating the quotient q is called Brickell method [136]. This method makes use of 

delayed carry, adders, which is a modified version of carry-save adders. This method 

determines the multiple of modulus M  to be subtracted from the partial multiplication 

as a result of assessing the top digits of the partial multiplication results. This is 

similar to SRT division.
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In general, the three most common methods to compute modular multiplications are:

• Interleaved modular multiplication -  compute a multiplication followed by a 

reduction. This approach makes use of the usual modular multiplication order, 

which multiplies from the most significant bit to the least significant bit. This 

method has the benefit of keeping the register requirement of the partial sum 

to «-bits and thereby saving register space.

• Barrett modular multiplication [137] [138] -  The pseudo code of Barrett’s 

algorithm is shown in Figure 5.3 [134]. Barrett suggested pre-computing the 

inverse of each modulus M at the beginning of computation:

Where n is the wordlength of the operands. Instead of division by M, 

multiplication of W which has n + 1 digits, is performed because division is 

less efficient. Typically, division is 10 times or more slower than 

multiplication on a microprocessor.

R = X  - ( X  - W) • M  (5.10)

This method approximates the quotient by using a scaled estimate of the 

modulus’ reciprocal such that:

9 = -W) (5-ID

This means multiplying the most significant («+l) digits of X  by W, which is 

the inverse of M. The n most significant digits of the approximation of the 

quotient is then multiplied by M. The estimated remainder is attained by 

subtracting the n+1 least significant digits of qM  from the corresponding part 

of the partial product X. This can be summarised as follows:

112



R = (Xmod6"*' - (qM)modb"*')modb"*1 (5.12)

Bosselaers [134] explained that, in the calculation of the product

X
q = (--j—- • W) , the calculation of the t-2 least significant digits can be 

b

avoided because the carry from position t to position t+1 can be accurately 

estimated by calculating the digits at position t-l and t. This means that the 

estimation of the remainder is similar to that of the quotient, such that only a 

partial multiplication is needed. Dhem [135] provided an improved Barrett’s 

algorithm by introducing a new parameter a  that would refine the estimation 

on the quotient. Another example of implementation that makes use of the 

Barrett’s algorithm can be found in [139].

q = ((x div bn~l)n) div b 
x = x  mod b"*1 -  (qm) mod h”*1; 
if (x < 0) then

x = x + b"*1; 
while ( jc > m) do 
x = x - m

Figure 5.3 Barrett's Algorithm (// = b2n div m)

• Montgomery modular multiplication [118] -  The main purpose of this 

algorithm is to find an appropriate multiple of the modulus to be added to 

partial product AxB  so that the lowest k bits will become 0. If the lowest k bits 

are 0, instead of the need for modular division, k bit right shift is performed.

Unlike usual multiplication practice, Montgomery modular multiplication 

chooses digits from least to most significant bit, and shifts down during each 

iteration. The modulo multiple q is computed from the lowest digits of the 

modulus M  and partial sum (PS) where PS = A x bt + R and R is the result 

from the previous iteration. The advantage of this design is that there is no 

need to wait for any carry propagation. The Montgomery’s algorithm is
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described in Figure 5.4. Let R be the remainder, r be the radix, M  is the 

modulus involved and gcd(M, R) = 1. The quotient q is chosen such that 

R+qM is a multiple of r. Many implementation of the Montgomery modular 

multiplication can be found, such as reference [156] and reference [164], it 

will be described in more detail later on in this chapter.

(Pre-condition: 0 <A < r"}
R:= 0;
For / := 0 to n — 1 do 
Begin

9i ■= (~(Ro + a0b,)m~' )m o d r;
R :=(R + A x bt + q x M )div r ; 
(Invariant: 0 < R < M+B}

End;
(Post-condition: R = (AxBxr"n) mod M}

Figure 5.4 Montgomery's Algorithm

These three common modular reduction algorithms -  the classical method, the 

Barrett’s method and the Montgomery reduction -  were compared and the following 

results were found [134]:

Table 5.1 Complexity of the three reduction algorithm in reducing a 2A-digit 

num ber x  modulo a A-digit modulus m

Algorithm Modulo Multiplication Ordinary

MultiplicationClassical Barrett Montgomery
Multiplications n(k+2.5) n(n+4) n(n+1) nl
Divisions N 0 0 0
Precalculation Normalization bZn div m -/wo*1 div b None
Argument

Transformation

None None /w-residue None

Postcalculation Unnormalization None Reduction None
Restrictions None x < blk x < mbk None
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Table 5.2 Execution times for the reduction of a 2A-digit number modulo a k- 

digit modulus m for the three reduction algorithms compared to the execution 

time of a k  x k  - digit multiplication 0  = 2 16. on a 33 MHz 80386 based PC with

WATCOM C/386 9.0)

K Length of 

m in bits

Times in mseconds

Classical Barrett Montgomery Multiplication

8 128 0.278 0.312 0.205 0.182

16 256 0.870 0.871 0.668 0.632

32 512 3.05 2.84 2.43 2.36

48 768 6.56 5.96 5.33 5.19

64 1024 11.39 10.23 9.33 9.12

The most time consuming operations within the three algorithms are the 

multiplications and divisions, therefore comparing the number of multiplications and 

divisions needed should provide a fairly accurate indication of the comparisons 

between the three algorithms. Note that Table 5.1 shows only the number of 

multiplications and divisions for the reduction operation. If only the reduction 

operation is considered, assuming that the arguments are twice the length of the 

modulus, Table 5.2 shows that Montgomery’s algorithm is faster than the other two 

algorithms. Note that Montgomery’s algorithm is only applicable when the modulus 

m is gcd (m, r) = 1. For the purpose of this thesis, m is assumed to be an odd number.

Table 5.2 shows the execution time taken to perform the reduction operation on a 2k- 

digit number modulo a Ar-digit modulus M  where the radix r is 216 using the three 

different algorithms. This is performed on a 33 MHz based PC with 32-bit compiler 

WATCOM C/386 9.0. The timing shown in Table 5.2 confirms the assumptions used 

in Table 5.1. However, due to the pre- and post-calculations and the m-residue 

transformation required by Montgomery’s algorithm, the benefits of the high 

reduction speed of Montgomery’s algorithm is maximised in the case where the 

numbers involved in the modular reduction are very big, such as in the case of 

modular exponentiation for cryptography.
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In general, Montgomery multiplication is the chosen method for modular 

multiplication because the division operation required for modulo reductions is 

replaced by shift operations, which is particularly beneficial for implementation. It 

has been shown that Montgomery’s algorithm is efficient especially when the 

multiplication calculation is intensive, which is often the case in cryptography. Other 

advantages of Montgomery multiplication are [140]:

• Scalable

• Highly parallel

• Suitable for pipelining

• Use only addition instead of subtraction

Section 5.2.1 describes the implementation of Montgomery multiplication in GF(p) 

and section 5.2.2 shows the implementation of Montgomery multiplication in GF(2”). 

In section 5.2.3, the means to implement a unified field multiplier will be explained. 

It shows that even though the two fields are different in nature, dual field arithmetic 

hardware can be easily implemented because they are structurally very similar.

5.2 Unified Field Montgomery Multiplication

5.2.1 Montgomery Multiplication in GF(p)

There have been many proposed designs on Montgomery Multiplication in GF(p), 

such as [141], [142] and [143].

The elements of GF(p) are made up of integers {0, 1,2, ..., p- \)  and radix r = 2*. 

They are represented as:

A  =  (® n- \  ’ ^ n -2  v » ^ i  5 ^ 0 ) 2 *

B — (bn_\»bn-i  v > ^ i  9 ^ 0 ) 2 *
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R = (/•„_,, r„_2,...,rt,r0)lt

Addition and Multiplication operations in GF(p) are performed as regular integer 

addition or multiplication, therefore carry propagation are involved. The addition or 

multiplication result will then be reduced by the modulus so that the final result will 

be smaller than the modulus.

The Montgomery Multiplication algorithm in GF(p) is shown in Figure 5.5.

Input: A, B, M(A < M , B > 0)
Output: R = AB 2~n mod p

R:= 0
for i = 0 to n-1

qt := (so + a 0 6 ,)(-m “l )m odr
S  := (S  + A x bt■ + qt x M)divr 

i f(S> M )  then S = S - M

Figure 5.5 Montgomery Multiplication in GF(p)

5.2.2 Montgomery Multiplication in GF(2W)

For GF(2n), elements are represented in polynomials of degree < n-1 and the 

coefficient e GF(2) if polynomial basis is used:

A^x') =  Ctn_\X i&n-2^

B{x) = bn_xx n' \ b n_2x n~2,...,bAx,bQ

The irreducible polynomial of degree m is represented as follows:

M{x) = x n +mn_lx n~\m n_2x n~2,...,mlx,m0
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Unlike addition in GF(p) which involves carry propagation, no carry propagation is 

required for addition in GF(2"), so the degree of the resulting polynomial will not 

exceed degree n, this means that the final reduction step required in GF(p) 

multiplication is not necessary here. Therefore bit-wise modulo-2 addition is used 

instead of normal addition with carry, thus XOR gates are utilised.

The Montgomery Multiplication algorithm in GF(2") is shown in Figure 5.6.

Input: A(x), B(x), M(x)
Output: R(x)

R(x) := 0 
for i — 0  to n- 1

q, (x) := (s0 (x) + a0(x)bt (x)){-m~x (x)) modx k 

S(x) := (S(x) + A(x) x bj (x) + qt (x) x M(x))divxk

Figure 5.6 Montgomery multiplication in GF(2n)

Some examples of previously proposed Montgomery multiplier can be found in 

[144], [145].

5.2.3 Unified Field Montgomery Multiplication

As presented in section 4.2 and 4.3, it can be seen that the elements of the two fields 

can be presented using almost the same data structures. For example for GF(1) with 

modulus = 7, the elements can be represented as:

GF(7)= {000, 001,010,011, 100, 101, 110}

For GF{2 ) with irreducible polynomial =x +x+\, the elements can be represented as:

GF(23) = {000,001,010,011,100,101, 110,111}
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Also, the structures of the algorithm for basic arithmetic operations in both fields are 

very similar. The main difference is that arithmetic operations in GF(p) are carried 

out like regular arithmetic operations, where carry propagation is involved. Whereas 

for GF{2”) operations, bit-wise modulo-2 operation is performed. This provides the 

possibility of implementing unified multiplier architectures. Some previously 

proposed unified field multipliers could be found in [121], [123], [124] and [122].

The remaining sections in this chapter will describe the proposed unified field 

multiplier. This design is in word-serial nature to show the proposed method to 

implement dual field multiplier without the need to have a field-select signal. This 

solution has a very high fan-out because it is fed into multiple gates, as in previously 

published designs.

Section 5.3 will describe the overall structure design of the multiplier, 

implementation details of individual module involved will be shown in subsequent 

sections.

5.3 Proposed Word-Serial Montgomery Multiplier 

Architecture

Figure 5.8 shows the proposed word-digit dual-field multiplier architecture, which 

corresponds to the step-by-step codes shown in Figure 5.7. It involves two partial 

product generations, two partial product summations and one modulo multiple 

determination process.
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Input: A , B e  GF(p) and n = [log2 M 1 
Output: R g GF(p)

R := 0
for / = 0  to «-l

PP : = ^ ,
PS :=R + PP 
R :=PS+ qM 
R:=R/2 

if R > m, then R:= R-m 
return R

Figure 5.7 Bit-wise Montgomery Multiplication (step-by-step)

Because of the novel coding system used, binary numbers are encoded into redundant 

numbers. Details on the coding systems are explained earlier in section 5.2, where the 

description of implementation of proposed redundant adder can also be found. 

Section 5.3.1 shows the implementation of the partial product generator and the 

binary to redundant encoder. The implementation of the circuit for modular reduction 

is found in section 5.3.2.

The overall structure of this multiplier is shown in Figure 5.8. It shows that the 

multiplier comprises six different modules: (1) Binary to Redundant number encoder; 

(2) Partial Product Generator; (3) (4:2) adders for partial products summation; (4) 

Modulus Multiplier Digit Selection; (5) Modulus Multiple Generator; (6 ) (4:2) adders 

for modulo reduction. However, only four different modules are required because the 

two (4:2) adders required are the same, as are the partial product and modulus 

multiple generators. The (4:2) adder has already been introduced, so the following 

sections shall present the design of binary to redundant number encoder and also the 

design of the partial product generator. The modular reduction will be presented in 

the last section of the Chapter.
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GF(p)?
1 -> GF(p) 

0-> GF(2An)
i  Encode 
| Binary to 
| Redun- 
| dant

Encode 
Binary to 
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dant

Encode 
Binary to 
Redun

dant

Encode 
Binary to 
Redun

dant

Partial 
Produc 

Generator < -

Partial
Produc

Partial
Produc

■G&TWraTBr*
Partial
Produc

Generator'

p p .

4:2 Adder 4:2 Adder 4:2 Adder 4:2 Adder

BS[1]

Modulo Multiple

q xM

PS,

4:2 Adder 4:2 Adder 4:2 Adder

Figure 5.8 Proposed Word -Digit Dual-Field Multiplier Architecture

5.3.1 Unified radix-4 Partial Product Generator

5.3.1.1 Radix-2 integer multiplication

The multiplication of unsigned radix-2 AxB = P multiplication is discussed in this 

section. A, B and C denote the multiplier, the multiplicand and the product, they are 

represented as follows:

Multiplier^: 4 _ ,2 "‘ + 4 . 2 2 ' ’ 2 + ... + 4 2 1 +4,2°

MultiplicandB: 5 ,.,2‘~' + 5,_2 21’ 2 +... + 5,2 ' + 502°
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Product (AxB) = P: P{l 2i~2 + />_,221' 3 + i>_2 22" 4 +... + Px2l + P0 2°

Figure 5.9 shows the multiplication of an i-bit number by a 4-bit number. The product 

is formed by summing all partial products, each partial product is produced by BrA-21. 

Since Bt is in {0,1}, each partial product term can only be equal 0 or A-21. This 

operation can be represented by the logical AND. Therefore, the binary multiplication 

is equivalent to the summation of partial products, which is either 0  or shifted version 

of A. Avizienis gives an example of a radix-2 multiplier implementation [128].

An A3 a 2 Ao

b 3 b 2 Bo

Partial
Product

1

Partial
Product

2

Partial
Product

3

... P3

P m

Pa

P2

Po

Po

Partial
Product

4 P m • ■ ■

Final
Product

Mi
♦3

M i

♦2 ■ S B

Pa

Pa

P2

P2

Po

Ms M4 Mj Mo

BoA2°

B1A21

BaA2

BaA23

Figure S.9 unsigned Radix-2 AxB Multiplication

5.3.1.2 Radix-4 multiplication

By increasing the radix of the multiplier to 2k, the number of iteration for partial 

product calculation is reduced because this is equivalent to operating k bits of the 

radix- 2  multiplier per iteration.
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The implementation of high radix multiplier is becoming more common: for example, 

designs such as [146], [147], [148] and [149] all describe high-radix modular 

multiplication implementations. Walter [150] discussed the trade off between time 

and space when implementation high-radix design. It is said that by having a 

moderate increase in radix value, it can provide a faster alternative to that of the 

radix- 2  designs.

Figure 5.10 shows the multiplication of an /'-bit number by a 4-bit number in radix-4. 

In radix-2 multiplication, the partial products are either 0 or shifted version of A. In 

radix-4 multiplication, one needs to consider the multiples: OxA, 1 xA, 2xA and 3xA. 

Figure 5.11 depicts the partial product generation in radix-4 to compute the multiples: 

OxA, IxA, 2xA and 3xA. Note that in the diagram the multiple 3xA is assumed to be 

pre-computed.

An Aj-2 A 3 a 2 A, Ao

b 3 b 2 B, Bo

Partial
Product

1

Partial
Product

2

P m P i-2

P m Pi-2 P3

P2

Po

Po (B^yu0

(B3B2)A41

Final
Product

Mi
+3

Mi
+2

Ms M4 m3 m2 Mi M0

Figure 5.10 Radix-4 multiplication
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multiplier

3 A

2A

'M

MUX

To th e  a d d e r

Figure 5.11 partial product generation in radix-4 with pre-computation of 3jl4

Gropschadl [151] described a unified radix-4 partial product generator. For GF(p), 

the generation of partial products is performed according to the modified Booth 

recoding technique [152] (see Figure 5.12). For GF(2"), the partial products are 

generated in the same way as this is done by a digit-serial polynomial-multiplier with 

a digit size of d -  2. Therefore, two bits of the multiplier are processed in either case, 

generating one partial product. The unified partial product generator is shown in 

Figure 5.13.

shl = shift left 
trp = transport 
inv = invert

Figure 5.12 Gro(3schadl Booth encoder circuit

124



Figure 5.13 Gropschadl unified radix-4 partial product generator

In the proposed design, the two digits input to the (4:2) adders - namely, the result of 

the previous iteration, Rn, and the partial product, PPm both have the digit set, d  e {0, 

1, 1*, 2}. The partial product generation is decomposed into two steps: firstly, the 

selected Galois Field is embedded into the multiplicand word by encoding it using the 

novel d=  1 * representation; secondly, the radix-4 partial product is derived by using 

the available redundant d  = 2 representation. The first of these steps, embedding the 

Galois Field, is implemented by the simple circuit shown in Figure 5.14. This is the 

same coding system as used for the adder described in Chapter 4. Even though the 

GF(p) line may have a very high fan out when the wordlength is long (see Figure 

5.8), buffers can be added to the signal; moreover, the GF(p) line is out of the critical 

path, hence the buffering does not affect the overall delay of the multiplier.

GF(p)?
1 -> GF(p) 

0-> GF(2An)

A

V J

a, [11 3j[(

Figure 5.14 Field-Embedded Binary Number Encoder

Every two bits of the multiplier word, B, are recoded as a radix-4 digit, and the 

multiplicand, A, then multiplied by the recoded bit to yield the appropriate partial

125



product, as shown in Table 5.3. Figure 5.15 shows the logic diagram of the partial 

product generator, including the Field-embedded binary number encoder, which is 

similar to that shown in Figure 5.11. It is seen to be simpler than the standard radix-4 

Booth’s encoder, such as the one shown in Figure 5.13 [151]. In particular, the 

negative multiple increment bits that occur in Booth’s coding are avoided, as these 

can increase the logic depth of the adder array and negative partial products do not 

exist in modular arithmetic. Note how the availability of the redundant digit, d = 2, at 

the (4:2) adder input means there is no need for a carry-propagate addition when 

encoding the radix-4 digit of 3.

Table 5.3 Radix-4 Partial Product Generation

(Bh BiA) Radix-4 digit Partial product, PP/[1:0]
0 0 0 0

0 1 1 A
1 0 2 Left shifts 1 bit
1 1 3 1A + 2A

GF(p)?
1 -> GF(p) 

0-> GF(2An)

0

y s r

Figure 5.15 Radix-4 Partial Product Generator

~j_____ \ _9P__°J_1°j_  1 j  ? Multiplier
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5.3.2 Unified Modulo Reduction

In order to carry out Montgomery reduction, one needs to work out the multiple of the 

modulus such that when added to the partial product, the result of the last two digits 

(for radix-4) becomes zero. Figure 5.8 shows that the modular multiple selection (i.e. 

determining qj) causes irregularity in the design and is on the critical path. Therefore, 

effort is needed to reduce the delay by taking into consideration pre-known factors as 

early on in the calculation as possible. For example, the modulus M  is always an odd 

number (because r = 2”), so that the last bit of M, M[0], will always be 1. Therefore 

the information presented in Table 5.4 regarding the two LSB’s of qrM is already 

known before any modulo reductions are performed.

Table 5.4 Multiple of M

Multiple of M A/[1 ,0 ] = 0 1 Mi>o] = n
1 0 1 1 1

2 1 0 1 0

3 1 1 0 1

Table 5.5 shows what value of q, is required to ensure R = BS[ 1, 0] + qrM= 00 as a 

function of the selected Galois Field, where the two LSB’s of the Partial Sum, 

denoted by BS[ 1:0], are in conventional binary form rather than in redundant form.

Table 5.5 Selection of Modulo Multiple. ai*M

GF (p), 

GF = 1

Partial Binary Sum, 

BSri:01

<7>[L0]
ifMn .0 1 = 0 1

<7/11:0] 
if MH.01 = 11

00 00 00
01 11 01
10 10 10
11 01 11

GF(2”) , ' 

GF = 0

00 00 00
01 01 11
10 10 10
11 11 01
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From Table 5.5, it is easy to see that q,[0] = ££[0] independently of both the Galois 

Field and M[ 1:0]. However, #,[1] is a function of M[ 1], BS[ 1:0], and the Galois Field 

flag, GF. Figure 5.16 shows a simple circuit implementing the necessary logic 

organised as a multiplexer controlled by ££[0 ].

B S [1 ] G F , . M[1]

BS[0]

Figure 5.16 qi[ 1] logic

Montgomery’s modular reduction technique is performed on non-redundant binary 

numbers. Therefore, the redundant representation returned by the (4:2) adders must 

be converted to binary to obtain the bits ££[1:0]. Table 5.6 presents this conversion 

process, where PS, denotes the two bits representing the partial sum at bit position i 

(see Figure 5.8). Note that ££i[l] is not included in the Table, because it is weighted 

+ 2  and so has no effect on the value of ££[1 ].

The Table shows that ££[0] = ££o[0]. In fact, since Ca and Q> to the (4:2) adder are 

both 0, ££[0] = ££o[0] ©  £o[0], and is available much earlier than ££[1]. The logic 

for ££[1] is presented in Figure 5.17 as a multiplexer controlled by ££[0], in common 

with Figure 5.16. Merging Figure 5.16 and Figure 5.17 yields the simplified circuit 

for q,[\] shown in Figure 5.18.
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Table 5.6 Binary Conversion

PSi[l] PS1[01 PS0[1] PSofOl digit[l] digit[0] BS [1] BS [0]
0 0 0 0 0 0 0 0
0 0 0 1 0 1* 0 1
0 0 1 0 0 2 1 0
0 0 1 1 0 1 0 1
0 1 0 0 1* 0 1 0
0 1 0 1 1* 1* 1 1
0 1 1 0 1* 2 0(x) 0(x)
0 1 1 1 1* 1 l(x) l(x)
1 0 0 0 2 0 0 0
1 0 0 1 2 1* 0(x) l(x)
1 0 1 0 2 2 1 0
1 0 1 1 2 1 0 1
1 1 0 0 1 0 1 0
1 1 0 1 1 1* l(x) l(x)
1 1 1 0 1 2 0 0
1 1 1 1 1 1 1 1

[0 ,1 ,2 ,1 1  ^  ^

[0,1]

Figure 5.17 Logic for BS[ 1]

G F  M [1 ]

B S [0 ]

q[1J

Figure 5.18 Simplified logic for qt[ 1] combined with 2?5[1] logic
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Once qt has been determined, the modulo M  is multiplied by qt using the modulo 

multiple generator shown in Figure 5.19, which has the same logic design as the 

partial product generator presented earlier. Finally, the multiple, qrM, is then added 

to partial sum (.PS) using the same modified (4:2) adder as shown in Figure 4.4. Note 

that in Figure 5.8, the least significant four bits (2 binary bits) are discarded as they 

are now zero and what was R2  is now fed back to the partial product adder as Ro-

GF(p)?
1 -> GF(p) 

0-> GF(2*n)

choice of 
mJtipie

Figure 5.19 Modulo multiple generator 

5.3.3 Carry absorption Unit

In order to perform Montgomery modulo reduction, the last radix-4 digit of the partial 

result was forced to zero by adding an appropriate multiple of the modulus. However, 

due to the design of the specially adapted (4:2) redundant adder, the output of the last 

two bits may not necessarily both become 0 ; instead they may stay in their redundant 

form, i.e. 2. Therefore, effort has to be made to ensure that a ‘2’ digit will be changed 

to 0 plus a carry. This can be easily done with an AND gate as shown in Figure 5.20. 

Since the carry inputs to the first of the (4:2) adders are not used (and were previously 

set to zero) the carry caused by changing a 2  to a 0  can be absorbed by that carry 

input.
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pp,
PP0 -

4:2 Adder 4:2  Adder 4:2 Adder 4:2 Adder

BS[1]PS, BS[0]

Modulo Multiple

q x M

PS,

4:2 A dder 4:2  Adder 4:2 Adder

1 upper bit 
only

Figure 5.20 Modified architecture with carry absorption

However, if the carry is absorbed this way, then Ca[0] may no longer stay as 0 which 

would affect the simplified design of the Montgomery modular reduction module. A 

test unit can be implemented to check if value 2 will appear in the addition of the last 

two bits of Ro = PS + qiM.

Since the input A could only be of value {0} or {1}, the last two bits of the partial 

product PP formed by A*bt could only be of value {00}, {01}, {10}, {11} and {21}, 

as shown in Table 5.7.
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Table 5.7 Possible results PP = A*bi

Aj+i, Aj 00 01 10 11

PP = A*bi

*0 = 00 *0 = 00 * © II o o * o II o o

ooII*

*1 = 0 1 *1 = 10 *1 = 11

* to II o o * 2 = 1 0 *2 = 00 * 2 = 1 0

*3 = 00 *3 = 11 *3 = 10 *3 = 21

Table 5.8 shows all possible result of the last two bits of PS = PP + R, verified by 

simulation. The possible results are limited to {00}, {01}, {10}, {11} and {20}.

Table 5.8 All possible PS = PP+ R for GF(p)

PS R[1:0]

00 01 02 10 11 12 20 21 22

00 00 01 10 10 11 20 00 01 10

01 01 10 11 11 20 01 01 10 11

PP[1:0] 10 10 11 20 00 01 10 10 11 20

11 11 20 01 01 10 11 11 20 01

21 01 10 11 11 20 01 01 10 11

Montgomery modular reduction requires PS to be added to the appropriate multiple of 

the Modulus, so that the last two bits of the sum become 00. Table 5.9 shows all 

combination of PS + q,M. Table 5.8 already shows all the possible PS from 

simulation. Due to the implementation of the adder, the sum of PS + qtM  may not stay 

as 2 even though the value is equivalent to 2. Instead, a carry may be carried forward 

to the next bit. For example, 10 + 10 = 00 with carry and 11 +01 =20.
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Table 5.9 Combinations of PS + aM

PS

00 01 10 11 20

qiM +00 +11 +10 +01 +00

carry no yes yes Yes yes

Table 5.10 shows the q*Mt results for all possible cases of PS (2 LSB only) for when 

M  =01 or 11. Table 5.9 shows all the results of PS + M*q„ note that some of the 

results stay in the form of {20} instead of turning into {00} as explained earlier. Also, 

c denotes a carry of 1 has been propagated to the next bit during the addition and d  

denotes a carry of 1 is required to be propagated to the next bit because of the state 

“2” being remained as a result of the addition. This concurred with the result from 

Table 5.9, when PS = {00} and no carry is produced.

Table 5.10 Result M*q,- for different cases of PS

PSi+u PS, 00 01(0) 10(0) 11(0) 20

M*qt M = 01

ooIIo*

*3 = 11 * 2 = 1 0 *1 = 11

ooIIo*

M =  11

ooIIo*

*1 = 11 * 2 =  10 *3 = 21 * o II o o

Table 5.11 Results for R

PSi+u PS, 00 01 10 11 20

PS + M % M = 01 +00 = 00 +11 = 2 0  

(d=l)

+10 = 00 

(c=l)

+01 = 20 

(d=l)

+00 = 00 

(c = 1)

M =  11 +00 = 00 +11 = 2 0  

(d=l)

+10 = 00 

(c=l)

+21 = 2 0

(c=l)

( d = l )

+00 = 00 

( c=  1)
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Therefore unless the last two bit of PS = 00, a carry of 1 will be carried forward to the 

rest of addition result R, so we can do a carry-test, which is carried out at the same 

time as q{*M, as seen in Figure 5.21.

Carry only occurs for GF(p), therefore the carry test only needs to test for either PS = 

1 (recoded as 11) or 2 (recoded as 10). Therefore only the upper bit of the two LSB of 

PS need to be checked.

Since the least significant two (4:2) units are basically unused, the third (4:2) unit 

effectively becomes the first (4:2) unit. The output of the carry test unit is then 

connected to the Ca input of the (4:2) adder. Note that in the case when PS = {11} and 

M  = {11}, two different carries are produced. The second carry can be absorbed by 

connecting it to signal C&.

The implementation of the carry test module is shown in Figure 5.22, it is 

implemented as an OR gate for Ca and an additional 3-input NAND gate for C*.
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Figure 5.21 Overall architecture with carry test
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PS0[1]PSi[1] MIlJPS^IJPSoM]

Figure 5.22 Carry Test

5.3.4 Redundant to Binary Number Conversion

The last step is to convert the final result of the multiplication from redundant 

representation back to binary numbers. Table 5.12 shows the conversion of the 

representations. 00 represent 0; both 01 and 11 represent 1 and 10 represents 2, which 

mean 0 with a carry. Table 5.13 shows all the details of the conversion. The binary 

value of each bit is not just based upon its value alone; it is also dependent on the 

carry bit from the next least significant redundant digit.

Table 5.12 Redundant to binary representation

Binary representation

SUM CARRY

Redundant

representation

0 0 0

1 1 0

1* 1 0

2 0 1
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Table 5.13 Redundant to binary conversion with Carry

Bit z Bit z'-l

X I x_o Y_1 Y_0

Carry from 

bit z-1 bit z

Carry to bit 

z+1

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 1 1 0

0 0 1 1 0 0 0

0 1 0 0 0 1 0

0 1 0 1 0 1 0

0 1 1 0 X X X

0 1 1 1 X X X

1 0 0 0 0 0 1

1 0 0 1 0 X X

1 0 1 0 1 1 1

1 0 1 1 0 0 1

1 1 0 0 0 1 0

1 1 0 1 0 X X

1 1 1 0 1 0 1

1 1 1 1 0 1 0

Bit z-1

Bit z 

0 (00)
1*

(01)
1 (11) 2 (10)

0 (00) 0 1 1 0

1*

(01)
1

0 1 X X

1 (11) 0 X 1 0

2 ( 10) 1 X 0 1
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Table 5.15 Karnaugh mao for carry bit generation

Bit /

1*
Carry 0(00) 1(11) 2(10)

(01)

0 (00) 0 0 1 1

1*

(01)
Bit i-l

0 0 X X

1 ( 11) 0 X 0 1

2 (10) 0 X 1 1

The actual value of the previous redundant representation is not essential; the 

information that is required from the previous redundant bit is whether or not it will 

provide a carry. That is when the radix-4 number is {10} which represents 2, the 

carry bit is 1. Therefore, Table 5.16 will be more appropriate. Table 5.17 and Figure 

5.18 show the relevant Karnaugh map.

Table 5.16 Redundant to binary conversion by checking carry from bit i-l

x j x_0 Carry from bit /-I Bit / Q

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 X X

1 0 0 0 1

1 0 1 1 1

1 1 0 1 0

1 1 1 0 1
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Table 5.17 Karnaugh map for binary conversion by checking carry from the bit

i-l

Carry 

from 

bit z-1

Bit z

Binary 0 1 * 1 2

bit ( 0 0 ) ( 0 1 ) ( 1 1 ) ( 1 0 )

0 0 1 1 0

1 1 X 0 1

Table 5.18 Karnaugh map for carry bit generation by checking carry from the

bit i-l

Carry 

from 

bit z-1

Bit i 
0 1* 1 2

Carry
(00) (01) (11) (10)

0 0 0 0 1

1 0 X 1 1

Because of the way the numbers are coded, the lower bit of ‘O’ and ‘2’ are both ‘O’ 

and the lower bit for ‘l ’and ‘1*’ are both one, the upper bit effectively provides the 

field information, apart from the state ‘O’, which shares the same characteristic in 

both state. Therefore, for binary conversion, only the lower bit needs to be 

considered, along with the cany bit from the previous redundant representation. For 

the generation of the carry bit to the next bit, only three cases will produce a carry:

• state ‘2’ with no cany from bit z-1

• state ‘2’ with carry from the bit z-1
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• state 41 ’ with carry from the bit i- 1

Therefore, each binary conversion module consists of the following circuit as shown 

in Figure 5.23. Figure 5.24 shows the overall architecture of the multiplier.

c
P S ,

Figure 5.23 circuit for binary conversion

This chapter has presented a radix-4 unified field digit-serial Montgomery multiplier, 

which includes:

• A novel (4:2) adder for unified GF(p) and GF(2") Galois Field Multiplication.

• A partial product generator to work with the proposed (4:2) adder

• A Montgomery reduction module

At the beginning of this chapter, common modulo reduction methods were discussed 

and it was shown that Montgomery’s algorithm is considered to be one of the most 

efficient algorithms around and is particularly suitable for the scope of this design. 

The implementation of individual modules was then discussed. The redundant adder 

described in Chapter 4 was used to reduce the long carry chain. The main difference 

in implementation between the proposed idea and other previous research is that the 

information regarding the Galois Field under which the addition is to be performed is 

embedded into the digit coding, so that there is no need for a globally-broadcast 

control signal.
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In this Chapter, the proposed radix-4 unified field digit-serial Montgomery multiplier 

was shown. This multiplier is:

• Scalable -  the proposed design embeds the field information into the digit 

coding such that it does not allow the FSEL delay dominates the pipeline 

stage. (4:2) redundant adder is used to remove carry propagation.

• Fast - This design is particularly suitable for long word length. It does not 

have the problem that FSEL buffer delay starts to dominate the critical path 

and affect the maximum clock rate achievable. This design can be pipelined to 

enhance the performance.

• Impartial - Both GF(p) and GF(2") operations can be carried out equally 

easily.

In the next chapter, the area and the delay in terms of Logical Effort will be assessed. 

Methods to improve the overall performance of the multiplier will be introduced, 

which include hardware optimisation and the use of quotient pipelining. Other 

improvements and further research possibilities will be discussed and finally, the 

conclusions from this research will be drawn.
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6 Comparisons, Improvements and Conclusions

Chapter 5 presented a radix-4 unified field digit-serial Montgomery multiplier, which 

included:

• A novel (4:2) adder for unified G¥(p) and GF(2") Galois Field Multiplication.

• A new partial product generator to work with the proposed (4:2) adder

• A Montgomery reduction module adapted for redundant digits

In this chapter, the design of the unified field multiplier will be assessed and 

compared with the previously proposed design. Chapter 4 showed that the proposed 

redundant adder design is very much more scalable compared with that of Sava§ et.al. 

[121]. This is due to the fact that in the proposed design, instead of broadcasting the 

field information throughout the whole circuit, it is encoded within the number itself. 

Scalability of a cryptographic processor is important because long word-length 

multiplication is often required. Moreover, from the security point of view, the larger 

the cryptographic operation processor, the less susceptible it is to differential power 

attacks [1], therefore it is beneficial to make the design as large as possible without 

compromising on the performance. The scalability of the partial product generator 

will be assessed in the first part of this chapter. The use of quotient pipelining will be 

introduced as a means of improving the performance of the multiplier. Conclusions 

will be drawn in the third part of this chapter; improvement methods that could also 

be applied to this radix-4 hardware multiplier will also be discussed.

6.1 Overall unified field multiplier assessments

The multiplier comprises four different modules: (1) Binary to Redundant number 

encoder (AND gate); (2) Partial Product Generator; (3) (4:2) adder for partial 

products summation and modulo reduction; (4) Modulus Multiplier Digit Selection. 

These designs have been presented in the previous Chapters. The speed of the (4:2) 

adder has been assessed using Logical Effort so the other modules will also be
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evaluated using this method. However, the Binary to Redundant number encoder is 

not on the critical path of the multiplier so there is no need to calculate its delay.

6.1.1 Area and Speed of Partial Product Generator

The gate count of the partial product generator for w-bit operands including the 

binary to redundant number encoder is as follows:

• 2w AND

• 2w 4-input MUX

• 1 w OR

• lwXOR

The partial product generator processes the multiplicand in radix-4 format, i.e. two 

bits are scanned per iteration. This halves the number of iterations required; however, 

the area of the circuit is compromised. A traditional 4-input multiplexer 

implementation is shown in Figure 6.1, but improvement can be made by 

implementing each 4-input multiplexer as 4-way tri-state inverter [131], as shown in 

Figure 6.2 and Figure 6.3.

lo

A

B

Z

Figure 6.1 Traditional MUX implementation
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4=11

-q-=11

Figure 6.2 MUX implementation for Pi[l] as a 4-inputtri-state inverter

4=11q = o a

Figure 6.3 MUX implementation for Pi[0] as a 4-input tri-state inverter

Figure 6.4 shows the overall multiplexer input connection of the modulus 

multiplication qtM. This also shows that instead of using unencoded multiplier and 

multiplicand operands as inputs, and then decoding them using the 3-input NAND 

gate implementation of multiplexers, it is more efficient to use the encoded multiplier
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and multiplicand as inputs along with the tri-state inverter implementation of the 

multiplexer. The same layout can be applied to the partial product generation AxB. 

The timing and scalability assessment of the partial product generator using Logical 

Effort is discussed in Section 6.1.2.

The 4-way inverting multiplexer consists of four transistor-select arms, each to be 

selected by respective selection signal:

• s* 1 -  multiplier A x B = 00, i.e. qt[ 1] NOR #,[0]

• s*2 -  multiplier A x B = 01, i.e. (NOT #,[0]) NOR qt[ 1]

• s*3 -  multiplier A x B = 10, i.e. (NOT qt[ 1]) NOR #,[0]

• s*4 -  multiplier A x B = 11, i.e. (NOT qt[ 1]) NOR (NOT #,[0])

Each of the respective data input is connected to the output such that when an input is 

selected, the relevant bundle will then be driven to state TRUE.
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The gate count of the modulo multiple q selection module (see Figure 5.18) is as 

follows:

• 3 XOR

• 1 2-input MUX

This small module forms irregularity on the critical path, therefore effort is made to 

ensure data is derived as efficiently as possible; details are discussed in Section 5.3.2. 

Since there is an individual module that does not need to be replicated, the size of the 

module becomes insignificant compared with the rest of the circuit. This module 

operates in radix-4 mode such that the effect of the bottle-neck on the critical path is 

minimised.

p
s *'

p
s® p 

S« '
pS’

:7 =:2 /  :
i

:2 /  ::7 ::2/  ::2/  •
q*ur qxM

'2 R. '2 Rj

P
S 4

4 2  Adder

'2 R,

4:2 Adder 4:2 Adder4:2 Adder

M oduo  Multiple

4:2 Adder 4:2 Adder 4:2 Adder

Figure 6.5 8-bit Multiplier simulation diagram

The 8-bit multiplier shown in Figure 6.5 was simulated using NC-Verilog and 

synthesised using Synopsys, which showed that the critical path from the input to the 

first row of adders to the output of the second row of adders was 3.77 ns including

0.31 ns register delay in 0.18pm VLSI technology (See Appendix 3 for timing 

report.). Note that the multiplexer implementation used for the purpose of this
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synthesis was in the form of traditional “AND -  OR” gate structure as shown in 

Figure 6.1. Section 6.1.2 will assess the implementation of multiplexer using tri-state 

inverters as shown in Figure 6.2. Section 6.1.2 will show how this implementation 

can provide an improvement on the multiplexer delay.

6.1.2 Overall unified field multiplier assessment - Scalability

In section 4.3, the scalability of the unified field adder was discussed, it was 

concluded that (4:2) unified field adder provide the ability to increase the word length 

of the adder without causing extra delay due to high fanout, which means the 

proposed adder is truly scalable. This ability is granted by absorbing the field 

information into the coding such that the field select signal does not need to be 

broadcast through the adder.

In terms of the overall multiplier design, there are four occasions where a signal is to 

be propagated along a chain of modules, which could affect the scalability of the 

multiplier due to high fanout, they are:

1. Field information to multiplier A for partial product generation

2. Multiplicand digit bt propagation for partial product generation

3. Field information to modulus M  for Modulus multiplication

4. qt propagation for modulus multiplication

Situations 1 and 3 do not impose any severe threats to the overall propagation delay, 

because both multiplier A and modulus M  stay constant while the multiplicand digit bt 

and the modulo multiple qi change every iteration. The possible delay caused by long 

propagation of multiplicand digit bt does not affect the critical path because the output 

is well latched till it is required for the next computation. However, the delay is 

affected by the modulo multiple qt which propagates along two times the word-length 

worth of multiplexers, as shown in Figure 6.6. Later in this chapter we will show how 

this situation can be rectified by applying appropriate pipelining.
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Figure 6.6 PPG unit quotient qt propagation

Figure 6.7 shows the implementation of a multiplexer required for partial product 

generation. The input load is connected to an inverter and two 3-input NAND gates. 

Therefore, the branching effort (b) for qo and q\ is (1 + 5/3 + 5/3 + 3x2/3) = 19/3 per 

multiplexer. Each partial product generation module has 2 multiplexers, therefore the 

total branching effort b of the partial product generation module is (19/3x2) = 38/3 

per bit. The calculation of the Logical Effort for the partial product generator is 

shown in Table 6.1.

<*0---------

q1 TT

!U|[i] 2M[i] 3

q0qi = 01 q0qi = 10

M[i]

q0qi = 11

qM[i]

Figure 6.7 MUX implementation
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Table 6.1 4 input MUX logical effort

Logical 
effort g

Branching effort 
b

Electrical 
effort h

Parasitic 
effort p

Path
effort
Sb(h)

Input 1 38/3 w 1 38/3 w

NOT 1 (5/3 + 2/3) / (5/3) 1 1 7/5

3 - NAND 5/3 (5/3 + 2/3) / (5/3) 1 3 5/3

3 -NAND 5/3 (2 + 4 + 4/3) / 4 

(AOI + XOR)

1 3 55/18

Notice that the output of the final 3-input NAND gate is connected to the (4:2) 

redundant adder, which means it is connected to an AOI and an XOR gate for the 

worst case. The total path effort of the critical path for w word length is: F = GBH = 

(w x 38/3) x 7/5 x 5/3 x 55/18 = 90.3 w.

The number of stages N  needed including buffers can be calculated as follows:

If w = 1 bit:

N  = Rnd (log4 F)

= Rnd (log4 90.3) = Rnd( In (90.3)/ In 4 ) = Rnd 3.25

:.N=  3

This means that 3 stages should be included in the path and therefore no buffers need 

to be added. The stage load/drive a  is calculated as follows:

a  = j r l/N -  90.3 1/3 = 4.49

Finally, the delay along the critical path D is defined as Dcriticai = (N x a  + P)/5 in 

F04 unit.
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D = (3x4.49 + 7)/5 = 4.09 F04

The delay of the 4-input multiplexer for different wordlength implemented using 

NAND gates is summarised in Table 6.4.

Table 6.2 Logical effort delay for the 4-input multiplexer (traditional 
implementation) of different wordlength

Wordlength

(bit)

ft ll D = (Na + P)/5 (F04)

4 (90.3 x 4)1/4 = 4.36 (4 x 4.36 + 7 + 1) /5 = 5.09

16 (90.3 x 4 x 4)1/5 = 4.29 (5 x 4.29 + 7 + 2) /5 = 6.09

64 (90.3 x 4 x 4 x 4)1/6 = 4.24 (6 x 4.24 + 7 +  3) 15 = 7.08

256 (90.3 x 4 x 4 x 4x 4)1/7 = 4.20 (7 x 4.20 + 7 + 4) /5 = 8.08

Figure 6.8 is a graph showing the relationship between wordlength of the multiplexer 

chain vs. the delay from qt to qtM  in F04 for both traditional multiplexer 

implementation and tri-state inverter implementation. There is a logarithmic 

relationship between the wordlength and the delay, whereby increasing w by a factor 

of 4 adds only 1 F04 to the delay of buffering qt across the w-bit multiplexer.

Recall in section 4.3.2 shows that design by Sava§ et. al. has restriction on the word 

length of adder before the delay caused by the field signal broadcast will dominate the 

critical path. The proposed design is an improvement in comparison. However, 

further improvement can be made by implementing the 4-input multiplexer as four 

tri-state inverters as mentioned in Section 6.1.1.

The logical effort on each input for this 4-to-l multiplexer is (4+2)/3 = 2, plus 2/3 for 

wire gives the total logical effort of 8/3 per bit. This is done by bundling the

complementary selection input “ab = xx” and “ab = xx” together. The parasitic delay 

p  is equal to 8. Whereas for the case using the 3-input NAND gate implementation, 

the logical effort is equalled to 38/3 per bit. This can be summarised as shown in 

Table 6.3.
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Table 6.3 Logical effort for the 4-input multiplexer (4-input tri-state inverter

implementation)

Logical 
effort £

Branching effort 
b

Electrical 
effort h

Parasitic 
delay p

Path
effort
gb(h)

Input 1 (8/3 x 2 x w) / 2 
(2 muxes per bit)

1 8/3 w

MUX-4 2 (2 + 4 + 4/3) / 4 
(AOI + XOR)

1 8 22/6

Path Effort of the critical path F  = gb(h) (critical path) = (w x 8/3) x 22/6 = 9.78 w, 

compared with 90.3 w as in the previous case, there is a nine-fold improvement.

The number of stage N  needed including buffers can be calculated as follows:

If w = 1 bit:

N  = Rnd (log4  F)

= log4  9.78 = In (9.78)/ In 4 = 1.64

Rnd 1.64 = 2

:.N=  2

Therefore, there is no need for extra buffer, only 2 stages are needed. The stage 

load/drive a  and the delay D is calculated as follows:

a  = f l/N = 9 7 3  1/2 = 3.13

D =( Nx  a+ P )/5 = (2x3.13 + 8)/5 = 2.85 F04

The delay of the 4-input multiplexer for different wordlength is summarised in Table 

6.4.
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Table 6.4 Logical effort delay for the 4-input multiplexer (tri-state inverter
implementation) of different wordlength

Wordlength

(bit)

a ii D =(Na+P)/5(F04)

4 (9.78 x 4)1/3 = 3.39 (3x3.39 + 8 + l)/5 = 3.84

16 (9.78 x 4 x 4)1/4 = 3.54 (4x3.54 + 8 + 2) /5 = 4.83

64 (9.78 x 4 x 4 x 4)1/5 = 3.62 (5x3.62 + 8 + 3) /5 = 5.82

256 (9.78 x 4 x 4 x 4 x 4)1/6 = 3.68 (6x3.68 + 8 + 4) /5 = 6.82

9
8
7
6
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2
1

0
300250200100 1500

wordlength (w)

-♦— Traditional 
implementation 

■*— tri-state inverter 
implementation

Figure 6.8 Wordlength w vs. Delay (F04) for traditional and tri-state inverter

multiplexer implementation

Figure 6.8 shows the relationship between the wordlength and the delay of the 

multiplexer. It shows the improvement of delay by using the tri-state multiplexer 

compared with the traditional implementation, in fact the tri-state multiplexer 

improves the speed by 1.2 F04 for all word-lengths.
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6.1.3 Area and Speed of Modulus Multiplier Digit Selection

Finally, the delay of the modulus multiplier digit selection has to be found. Section 

6.1.1 described the implementation of the tri-state inverter including the four 

selection signals for the 4-input tri-state inverter. Table 6.5 shows the delay of the 

modulus multiplier digit selection, considering the input 2?[1] is connected to an XOR 

and a 2-input multiplexer, allowing 2x2/3 for wires, the total branching effort is 

22/12. This is then connected to a NOR gate for encoding of tri-state inverter 

selection.

Table 6.5 Modulus Multiplication Digit

Logical 
effort £

Branching effort 
b

Electrical 
effort h

Parasitic 
effort p

Path
effort
Zb(h)

Input 
B[ 1]

1 (4 + 2 + 4/3) / 4 1 22/12

XOR 4 (2+  2/3) /2 1 4 16/3

MUX 2 (5/3 + 5/3 + 1 + 
6/3) / (5/3)

1 4 38/5

NOR 5/3 2
(q input to tri
state MUX)

1 2 10/3

Path Effort of the critical path F  = GBH (critical path) = 247.7.

The number of stages N  needed including buffers can be calculated as follows:

N  = Rnd (log4  F)

= log4 247.7 = In (247.7)/ In 4 = 3.98 

Rnd 3.98 = 4

:.N= 4
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However, there are 5 stages in the circuit because XORs have two stages.

01 = f l,N = 247.7 1/5 = 3.01

D = ( N x a + P ) / 5  = (5x3.01 + 10)/5 = 5.01 F04

The combined delay of the partial product generator and multiplier digit selector for

w bits is 2.85 + log4>v + 5.01 = log4W + 7.86. This delay is greater than the (4:2)

adder and so methods are needed to minimise the impact of it.

6.2 Quotient pipelining

Another method to improve the performance of the multiplier is by quotient 

pipelining the architecture. Quotient pipeline was introduced by Shand [153] and 

further developed by Orup [154]. They presented a variant of the Montgomery’s 

algorithm such that the determination of the quotient becomes trivial and the cycle 

time becomes independent of the choice of radix. The idea is to delay the use of 

quotient digit q ^ , determined from information available in iteration i-d by d 

iterations. This method is also used in designs such as [155] and [156].

The basic algorithm and the structure of the Montgomery multiplier presented so far 

are based on the algorithm shown in Figure 6.9 and architecture shown inFigure 6.10. 

The dependency of the modulus multiple selection unit to the last two non-redundant 

bit of the addition of (R + byA) becomes the bottleneck to the design of the pipelined 

structure.
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Algorithm 1: MonProl (A, B, M) (radix-2) 

MonProl (A, B, M)
i

R-1 := 0;
for / = 0 to n-1 do

qt := (Rj.i + bjA) Mod 2;
Ri := (i?M+ q,M+ bjA)/2; 

end for 
return R„.\;
}

Figure 6.9 Algorithm 1 non-pipelined

MSB, .. LSB

MS|B, LgB+2

Adder

Adder

D enotes PPG generation

s  Denotes registers 

X D enotes discarded bit

Figure 6.10 Architecture 1 non-pipelined

The quotient selection process is dependent on 2fcS[l] and 2?£[0] from the first row of 

(4:2) adders, these are formed from the addition of the partial product AxBt and the 

partial result from the previous iteration. In order to pipeline this structure efficiently, 

the quotient pipelining method forces the last bit (in a radix-2 design), or in this case, 

the last two bits of A to 0, since this design is a radix 4 operation. By doing so, the 

two binary bits that are inspected for determining the quotient bit will only be 

dependent on the partial result from the previous iteration, thus removing this logic
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from the critical path. The algorithm for radix-2 operation and the architecture for the 

proposed radix-4 multiplier are shown in Figure 6.11 and Figure 6.12 respectively.

Algorithm 2: MonPro2 (A, B, M)

MonPro2 (A, B, M)
{

5-i := 0;
A := 2x^4; 
for / = 0 to n do

qt := (Sm) Mod 2;
Si := (Si-i + qtM+  M )  /2; 

end for 
return Sn;
}

Figure 6.11 Algorithm 2 with quotient pipelining for radix-2 multiplication

A dder

A dder

M S B , . . . , L S B + 2 r  lsbi

Modulus 
se lectior  

<7

R a-i (O )

D enotes P P G  generation 

X D enotes d iscarded  bit

,LSBo

Figure 6.12 Proposed architecture with quotient pipelining (for radix-4

multiplication)

Figure 6.13 shows how quotient pipelining based on Algorithm 2 shown in Figure 

6.11 can be incorporated into the proposed unified field multiplier.
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Figure 6.13 Quotient Pipelined multiplier architecture

This procedure requires one extra cycle of pre-processing and one extra cycle of post

processing to remove the effects of the extra factor of 4. The quotient pipelined 

version described above was simulated with w = 8 using NC-Verilog and synthesised 

using Synopsys, which showed that the critical path which now only goes through the 

(4:2) adders was 3.20 ns (worst case + register set up) using 0.18pm VLSI 

technology. This is 0.57 ns faster than the original design because the qtM  logic has 

been removed from the critical path. At larger values of w the speed-up is even more 

apparent.

Figure 6.13 shows that the qt selector and qtM  partial product generator operate in 

parallel with the first (4:2) adder. Since the delay of the (4:2) dual field redundant 

adder is 5.80 F04 and the selector and generator have a combined delay of 7.86 + 

log4W F04, quotient pipelining does not completely “hide” the delay of the buffering.

Most delay is due to partial product generator (2.85 + log4>v F04) instead of qt 

selector (5 F04) for w > 16. Taking the critical path as the PPG and the two (4:2)
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adders, the delay in F04 calculated using logical effort would be: (2.85 + log4W + 2  x 

5.8) =15.95 F04 for w = 8 .

Critical path does not go through q, every cycle because there is only a need to work 

out once for each multi-precision word-serial multiplication. Since critical path 

doesn’t go through <7 —selection unit every cycle, as a new q,, it is only needed to be 

worked out once for each multi-precision word-serial multiplication. Therefore given 

the size of the multiplier as L and the wordlength of A as w, the selection unit is 

only used once in every w/L iterations. Therefore the critical path lies on the two dual 

field (4:2) redundant adders. The domination of the (4:2) adder delay will be shown 

clearly in the M xM  example.

2 A bi M

+ (n) - bit Adder

A M—► *

(n+1) - bit Adder

M S B ,  . . .  

S j ( n )  , .

L S B  +  1 L S B

X

B + 1

s  D e n o te s  P P G  g enera tion

D e n o te s  re g is te rs  

X D e n o te s  d isc a rd e d  bit

Figure 6.14 Daly's modified architecture

Daly and Mamane [156] suggested the idea of rearranging the order of the additions, 

as shown in Figure 6.14, such that 2A xB can be parallelised with q,M. The number of 

cycles required will be the same as that of the previous version where n+ 1 clock 

cycles are required. Daly and Mamane [156] stated that there is a significant increase 

in operation speed compared with the previous architecture because the summation of 

the partial product 2Abi (radix-2 case) and the modulus multiple qtM  can be 

performed as soon as the LSB of the other addition are complete. However, due to the 

fact that in the proposed radix-4 design, the modulus multiple selection process is 

more complex, the partial product generation of q\M can only be carried out after the
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modulus multiple selection is done. In the case of radix-2, there is only a need to 

choose multiple of 0 or multiple of 1, whereas in the proposed radix-4 case, the 

modulus multiple selection unit has to decide between xO, x l, x2 and x3, see Figure 

6.15. Therefore, this reconfigured version of pipeline, does not affect the proposed 

design dramatically as in the case of Daly and Mamane [156]. The main benefit is 

that it provides a more symmetrical architecture. In fact, the original pipelined 

architecture as shown in Figure 6.13 has only got 3 pipeline stages, whereas the 

proposed multiplier using Daly’s quotient pipeline structure consists of 4 pipeline 

stage, therefore, this new structure is not suitable for the proposed design. In Figure 

6.13, the effect of buffering of qtM  partial product generation is covered up by the 

delay of the (4:2) addition; this is not the case in Figure 6.15. Therefore if Figure 6.15 

is used, the width of the partial product generation will seriously affect not just the 

scalability but also the delay. Another disadvantage of this pipeline architecture is 

that the partial product generation modules can not be reused since they are operated 

on simultaneously.

(4:2) Adders

R egisterR egister

Modulo
Multiple
S elector

Partial Product 
Generator

Partial Product 
Generator

(4:2) Adders

Figure 6*15 Proposed architecture using Daly’s quotient pipelined structure
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6.3 M-bit x M-bit multiplication

For 160-bit x 160-bit multiplication, if the size of the multiplier is of 32-bit then the 

operations of the multiplier is discussed as follows:

The partial product generation A*B  will be done in 160/32 * 160/2 cycles = 400 

cycles. 32-bits of multiplier A is multiplied by 2 bits of bt at each cycle and each b t 

has to multiply 5 sets of A from bit {0...31}, {32...63}, {64...95}, {96...127}and 

{128... 159}. 32 partial product generator modules are needed. Note that because of 

the special encoding system used for the unified field design, each binary bit of 

multiplier A is represented by two wires, therefore the register that holds yf{n..„+3 i}*/>j 

is 32*2+2 = 66 bits in size.

Once the first set of partial product PP{32(n-\)... 3 2«-i} is generated, it can then be added 

to the result of the previous iteration Ri{3 2(n-i)... 3 2«-i}, in the meantime the next set of 

partial product PP{32n... 3 2(«+i> -i}can be generated. 32 (4:2) dual field redundant adder 

modules are needed to perform the addition and configured as shown below. Note the 

MSB (4:2) dual field redundant adder module is to take care of the possible overflow.

In order to perform the Montgomery modulo reduction, the 2 LSB of the addition is 

connected to the modulus multiplier digit selection unit. Since this process is only 

applied to the two LSBs, therefore it can be carried out as soon as the numbers are 

available and can be processed in parallel with the rest of the additions.

Once q* is computed, qiM{3 2(n-\)... 3 2«-i} can be computed. Once again, it is generated in 

5 groups of 32 bits: bit {0...31}, {32...63}, {64...95}, {96...127} and {128...159} 

using 32+1 = 33 sets of partial product generator modules. The extra set of P P G  

module is to take care of the possible overflow. For example, if the 2 MSB  ={11} and 

bj = 3, an over-flow will occur. Thus the results will be stored in a register that is 66 

bits in size. As shown in Figure 6.16, the qtM should only be computed only once the 

computation of A * b i  is completed. This is to avoid the need of having to have two 

sets of partial product generation modules.
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The carry test can be carried out as soon a sPS\[\] and PSotl] are available, since the 

test is only an AND and a 3-input NAND gate and it is not on the critical path, it is 

not important when it is carried out, as long as it is done before the addition of PS + 

qiM.

The process of the addition of PS + qtM  will commence as soon as generation of PS is 

completed. This is to avoid the need to have two sets of (4:2) redundant adder 

modules; additionally one needs to make sure all the values required for this 

calculation are available before the computation of the addition. Figure 6.17 shows 

the timing diagram of the overall M*M  operation, where both the adder and the 

partial product generator modules are reused.

Figure 6.17 shows that the addition takes up 5.8 F04, whereas partial product 

generation using 4-input tri-state inverter takes only 2.85 F04. Hence, the partial
thproduct generator finishes all the calculations for the i iteration before the (4:2) 

adder even completes the first half of addition. Partial product generation for the next 

iteration i+l (A*bi+j) and i+2 (A*bi+ 2) can be performed before the adder is ready to 

compute addition for the next iteration.

Figure 6.17 also shows that the cycle delay is dependent on the delay of the two (4:2) 

redundant addition process. The time taken to perform the first cycle Montgomery 

Multiplication is (5.8 x 10 + 2.85 + log432) F04 = 63.35 F04. The total delay in F04 

for 160 bit x 160 bit Montgomery Multiplication is [(5.8 x 10) x 160/2 + 2.85 + 

log432] = 4645.35 FQ4.
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Figure 6.17 Tim ing diagram for radix-4 operation (reuse all modules)
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Figure 6.18 shows the delay for radix-4 multiplication, however in this case the area 

consumption is compromised by having a duplicated set of (4:2) adder modules. By 

having this second set of (4:2) adder, the ^M {/.../+31} + PS{z.../+31} can be 

preformed as soon as qt and q,M{i.. .i+31} are available. The time taken to perform 

the first cycle Montgomery Multiplication is [(2.85 + log432) x 6 + 5.8 x 5] F04 = 

61.1 F04. The delay for the first cycle in this case is slightly faster then that of the 

previous case where all the modules are reused. This is because the delay is mainly 

due to the PPG Axbi and the qtM{0. ..31} and its buffer delay.

The total delay in F04 for 160 bit x 160 bit Montgomery Multiplication is [(5.8 x 5) 

x 160/2 + (2.85 + log432) x 6] = 2352.1 F04. The overall delay is due to the

qtM{i...i+3\} PPG modules and the PPG Axbi and the q\M{0 31} and its buffer

delay. Note that by having an extra (4:2) module, the total delay of the operation has 

been reduced by almost 50%.

Figure 6.19 shows the delay for radix-4 multiplication, however in this case, the area 

consumption is further compromised by having a duplicated set of (4:2) adder 

modules and a duplicated set of PPG modules. By having this second set of (4:2) 

adder, the qtM{i...i+31} + PS{/.../+31} can be preformed as soon as qt and 

q,M{i...i+3l} are available. Also, Axbi+i can be carried out as soon as Axbt has 

completed. The time taken to perform the first cycle Montgomery Multiplication is 

the same as the case where an extra set of (4:2) adder is included: [(2.85 + log432) x 6 

+ 5.8 x 5] F04 = 61.1F04. The delay for the first cycle in this case is slightly faster 

than that of the previous case where all the modules are reused. This is because the 

delay is mainly due to the PPG Axbi and the qiM{0...31} and its buffer delay. There 

is no improvement in terms of delay because qiM{ 0—31} could only begin its 

operation once b 4 { 0...31}, PP{0...31}+  i?{0...31} and qt selection are completed.

The total delay in F04 for 160 bit x 160 bit Montgomery Multiplication is [(5.8 x 5) 

x 160/2 + (2.85 + log432) x 6] = 2352.1 F04. The overall delay is due to the 

qtM{i...i+31} PPG modules and the PPG Axbi and the qtM{0...31} and its buffer 

delay. Note that by having an extra PPG unit, the total delay of the operation is not 

affected compared with the previous case. This is because by having extra PPG
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modules, more Axbi can be performed within a cycle, however as the critical path lies 

on qiM{i...i+31} + PS{/.../+31}, the improve performance on PPG does not affect 

the overall delay of the Montgomery Multiplication.

In conclusion, if the multiplier is designed with hardware area consumption in mind 

where there is only one of each module, the overall delay is the slowest. By having an 

extra set of (4:2) adders, the total delay is improved significantly and the extra area 

consumption is:

• 3x32 XOR/XNOR

• 2x32 NOR

• 1x32 NAND

• 1x32 NOT

• 2 x320AI CMOS complex gates

• 1x32 AOI CMOS complex gate

Finally, if both the adder and the PPG units are duplicated, it provides no extra 

benefits in terms of delay, but at the same time the extra PPG units consume the 

following:

• 2x32 AND

• 1x32 OR

• 1x32 XOR

• 2x32 4-input MUX

Therefore, having extra set of (4:2) redundant adders provides the best trade off 

between delay and area.
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Figure 6.19 Radix-4 operation (duplicated adder and PPG modules)
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6.4 Radix-2 Multiplier design

A novel unified field radix-4 multiplier using Montgomery Multiplication for the use 

of GF(p) and GF(2") has been proposed. In terms of delay, the proposed adder design 

is 24% slower than Sava§’s design, however, the proposed design is capable of radix- 

4 operation, which will be beneficial to the implementation of the unified field 

multiplier. Also, the adder has one major advantage compared with Sava§’s design 

and that is scalability. However, the design of the partial product generator is severely 

affected by the word length of the multiplier where buffering is needed. The partial 

product generator scalability problem is largely due to the radix 4 design, in the case 

of radix 4 multiplication x2 and x3 require “looking back” to the previous bit which 

implies that the signal has to go through an extra set of multiplexers, requiring 

extra buffering. Since the scalability problem of PPG is caused by the high radix 

involved, radix 2 PPG should be investigated for its suitability.

For radix-2 design, the addition operation should remain the same. The values will 

still be coded using the novel dual field representation:

Encoding

• 0 -00

• 1* -01

• 1 - 11

• 2 - 10

The operations of multiplication in radix-2 simplifies the circuit requirements, since 

the multiplicand bt is only 0 or 1 ( 1 *), therefore the possible outcome per bit is only 

0, l(or 1*). Note that the partial product generation no longer depends on the 

previous bit as in the case of radix-4, since there is no x2 and x3. Figure 6.20 shows 

the overall radix 2 multiplication results. Table 6.6 shows the logic circuit of the radix 

2 PPG unit.
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Table 6.6 Radix 2 multiplication

-'d/j Ai-j bi = 0 b '= l

00 00 00

01 00 01

10 00 10

G F  (p )
1 ->G F(p)

Figure 6.20 Radix 2 PPG unit

6.4.1 Qrselection

In order to carry out Montgomery reduction, an appropriate multiple of the modulus 

must be added to the Partial Sum PS, so that the last bit will equal 0. Unlike the 

process of Montgomery reduction in radix—4, only one bit is under consideration in 

the radix-2 case, which simplifies the matter greatly. For both GF(p) and GF(2”), 0+0 

= 0 and 1+1 = 0. Note that since the LSB of M is always 1, therefore qt = PSb[0]. 

Hence, no delay is due to the logic; however, q( signal has high propagation delay as 

discussed earlier in this chapter. Table 6.7 shows all radix 2 ^-selection possibilities.
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Table 6.7 Radix 2 q- selection

PSo + qMo ^  = 0*1 ^ = 1*1

00 (0) 00 -

01 (1*) - 00

10(2) 00 -

11(1) - 00

6.4.2 Carry Test

Table 6.8 All possible PS

PS
R

00 01 02 10 11 12 20 21 22

00 00 01 10 10 11 20 00 01 10

M 01 01 10 11 11 20 01 01 10 11

10 10 11 20 00 01 10 10 11 20

Table 6.9 PS and a ftf combination

+ (PSi)PSo

(0)0 (0)1 (1)0 (1)1 (2)0

+0 00 - 0 - 0

qMo +1 10

(c= 1)

0

(c= 1)

Table 6.8 shows that the last bit of PSo will never become 2, however, a carry will be 

propagated to the next bit when PSo is 1 or 2 (GF(p) only). Therefore, only PSoP] 

needs to be examined, where PSoP] = 0, carry test also is 0 and when PSoP] = 1, 

carry test also is 1. This is possible because PSo = 2 would not happen and in the case 

of GF(2"), PSoP] = 0 . Hence, the carry test required is identical to the value of 

PSoP] as summarised in Table 6.9.
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6.4.3 qjM + PS

In the radix-4 case (see Figure 5.24), it has already been shown that the 2 LSB (4:2) 

dual field redundant adders are no longer necessary, in the case of radix-2, the LSB is 

no longer needed. It was mentioned before that for the partial product generation, 

since only xO and xl are required, the PPG modules are not dependent on the 

previous bit; therefore qtMo serves no purpose in this design. Figure 6.21 shows the 

overall simplified radix-2 dual field Montgomery multiplier architecture.

6.4.4 M-bit x M-bit multiplication using radix-2

As in the radix-4 multiplication case (see section 6.3), the operation of a 160-bit x 

160-bit multiplication radix-2 multiplication, where the size of the multiplier is 32-bit 

is shown as follows:

For radix-2, the partial product generation^*B  will be done in 160/32 * 160/1 cycles 

= 800 cycles. This is double the number of cycle required by radix-4 multiplier. Since 

multiplier A is multiplied by only 1 bit of bt at each cycle. Note that the register size 

required for A n+3 i}* bi is 32*2 = 64 bit instead of 66 bit as in the radix-4 case 

because A is now multiplied by either 0 or 1 . Apart from the points mentioned above, 

the structure and operation of the radix-2 multiplier is the same as the proposed radix- 

4 version. The overall radix-2 operation is show in Figure 6.22, it shows that the q,M 

should only be computed only once the computation of A *bi is completed. This is to 

avoid the need of having to have two sets of partial product generation modules.
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The delay o f  the radix-2 multiplication is found as follows:

The input load is connected to w-bit of PPG modules and each module consists of two 

2-input NAND gates. Therefore, the branching effort (b) for b, (including allowance 

for wires) is (2x4/3 + 2x2/3)w = 4w. Table 6.10 shows the logical effort calculation 

of the radix 2 Montgomery Multiplier.

Table 6.10 Radix -2 Redundant Montgomery Multiplier Delay

Logical 

effort £

Branching effort 

b

Electrical 

effort h

Parasitic

effort/?

Path

effort

gb(h)

Input

B[l]

1 (2 x 4/3 + 4/3) w / 

4/3

1 3 w

NAND 2 (22/3)/4 1 2 22/6

Path Effort of the critical path F  = GBH (critical path) =11 w

The number of stages N  needed including buffers can be calculated as follows:

N  = md (log4 F)

= log4 11 = In (11)/ In 4 =  1.73 

Rnd 1.73 = 2 

: .N ~  2

Therefore 2 stages are needed, i.e. one buffer stage is added. 

a  = p ' IN= 11 1/2 = 3.32

D = ( N x  a  + P)/5 = (2x3.32 + 2+l)/5 = 1.93 F04
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Figure 6.22 shows the overall operation of the 160x160 bit radix 2 multiplier. Figure 

6.23 shows that the addition takes up 5.8 F04, whereas partial product generation 

using a 2-input NAND gate is only 1.93 F04.

Hence, the partial product generator finishes all the calculations for the z-th iteration 

before the (4:2) adder even completes the first half of addition. Partial product 

generation for the next iteration z'+l (A*bi+J), i+2 (A*bi+2), z+3 (A*bi+3) and z+4 

(A*bi+4) can be performed before the adder is ready to compute addition for the next 

iteration.

Radix-2 design reduces the delay of partial product generation, Montgomery modulus 

selection which caused scalability problem and caused irregularity to the design and 

affect the critical path in the radix-4 case. The scalability of the radix-4 design is 

proven as follows:

It has been worked out that the (4:2) adder has a delay of 5.8 F04, it has been 

mentioned that since the carry in to the adder is 0, which means that the LSB is ready 

after only one XOR gate effectively » 5.8/3 = 1.93 F04. The delay of the qtM  is also 

1.93 F04. Therefore, the time allowed for buffer delay where the (4:2) adder delay is 

5.8 F04 is calculated as: (5.8 -  1.93) F04 to buffer (log4w) and form qtM  (1.93). 

Therefore, even without quotient pipelining can have w= 16 radix-2 modulo multiplier 

adder whose delay is not impacted by w.

If quotient pipelining is applied, similar calculations can be carried out except there 

are 5.8 F04 to buffer (log4 >v) and form #,M( 1.93), instead of (5.8 — 1.93) as in the 

previous case. Therefore, w = 43 9 = 222 is allowed without impacting the delay, 

hence, radix-2 design is scalable especially when quotient pipelining is employed.

However, as can be seen in Figure 6.23, the delay of the addition dominates the 

critical path, therefore the reduction in speed in the PPG operations and Montgomery 

modulus selection does not affect the overall delay. Since for radix-2 operations,

176



twice as many iterations as needed for radix-4 are required; hence, although radix-2 

operation has better scalability, its delay is two times worse than the radix-4 design.
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Figure 6.22 Radix 2 operation
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6.5 Conclusion

This thesis first of all described some of the most common symmetric key and public 

key cryptography systems, and then showed the operations of elliptic curve 

cryptography. The reason why elliptic curve cryptography was chosen is because it 

provides similar level of security as previous systems but requires smaller key length. 

It improves the security of system, because it reduces the possibility of the system 

being susceptible to differential power attacks.

This thesis has introduced a new dual-field adder and a novel unified field radix-4 

multiplier using Montgomery Multiplication for GF(p) and GF(2"). This design 

makes use of the unexploited state in number representation for operation in GF(2") 

where all carries are suppressed. The addition is carried out using a modified (4:2) 

redundant adder to accommodate the extra 1* state.

In terms of delay, the proposed design is 24% slower than Savas’, however, the 

proposed design is capable of radix-4 operation, which will be beneficial to the 

implementation of the unified field multiplier. Also, the adder is more scalable 

compared with Sava§’s design. It was found that when wordlength w = 23, the FSEL 

buffer delay starts to dominate the critical path and affects the maximum clock rate 

achievable. Also, Sava§’ adder is slower than the proposed unified adder when w > 

109, and hence it is also less future prove than the proposed design.

The overall design of the proposed unified field multiplier was described in chapter 5. 

The unified field multipliers have the advantages of low manufacturing cost, they also 

provide compatibility and flexibility by being interoperable.

The radix-4 partial product generation units are made up of 2 multiplexers, 1 AND 

and 1 XOR gate plus buffers. The multiplexers are implemented as 4-input tri-state 

inverters to reduce delay compared with the traditional implementation using NAND 

gates. A radix-4 Montgomery modulus selection has also been introduced, which 

comprises 1 multiplexer and 2 XOR gates. It was also shown that 4-way inverting 

multiplexer significantly improve the delay and scalability of the multiplier compared 

with traditional multiplexer design.
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The proposed Montgomery multiplier possesses some unique features such as the use 

of the 1 * encoding, however, it does not provide the expected degree of improvement 

over the previously proposed design. It has been identified that the partial product 

generator modules is one of the main causes of poor scalability. The combined delay 

of the partial product generator and multiplier digit selector for w bits is 2.85 + log4W 

+ 5.01 = log4 >v + 7.86. This delay is greater than the (4:2) adder and so adequate 

pipelining methods could be used to minimise the impact. Quotient pipelining was 

discussed as a possible pipelined architecture.

M-bit x M-bit multiplication operation was investigated for both radix-4 and radix-2 

design. Three different scenarios were assessed: (1) both the adders and PPG modules 

are reused; (2) reuse PPG modules only and (3) reuse both adder and PPG modules. 

The best trade off between speed and area consumption is the second case where only 

PPG modules are reused.

Radix-2 PPG design reduces the delay, area and the scalability requirement of the 

multiplier circuit; however, it increases the overall delay significantly due to doubling 

the number of cycles required. Radix-4 design has limited scalability due to the 

buffering delay of q„ but the overall delay is better than that of radix-2 design, 

especially in the case when a separate adder is available.

Further investigation in the design of the multiplier could be done by exploring 

different PPG designs. It is understood that increasing the radix will not improve the 

situation since the circuit design of the PPG modules will become very complex to 

perform x4, x5, x6 and x7. Another possibility is to explore the idea of mixed radix 

architecture, with higher radix for GF(2"), since the GF(2") design is simpler because 

of the lack of carry propagation, however, this will favour the theoretically less 

complex design of GF(2”), i.e there is no longer impartial between fields.
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Appendix 1 -  Algorithms

1. Extended Euclidean Algorithm [157]

Given nonnegative integers u and v, this algorithm determines a vector (mI, m2, m3) 

such that mmI + v m 2 = m 3 = gcd(M, v). The computation makes use of auxiliary vectors 

(vl, v2, v3), (/l, t2, /3); all vectors are manipulated in such a way that the relations

lit\ +  Vt2 =  t 3 , MM, + vm2 = m3 , mv, + w 2 = v3 

Hold through the calculation

XI. [Initialize.] Set (m i , m2, m3}<- (1, 0, m), (vi, v2, v3) <- (0, 1, v)

XI. [Is v3 = 0?] If v3 = 0, the algorithm terminates.

X3. [Divide, subtract.] Set q <- I_m3/ v3J and then set

(*i, h, h) <- (mi, m2, m3) -  (vi, v2, v3)̂ r,

(M l, M2, M3)  (Vl, V2, V3), (Vl, Y2, v3) <- ( / l ,  /2, /3)

Return Step X I.
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2. Repeated square-and-multiply algorithm for exponentiation in Z„ [158]

INPUT: a e Zn and integer 0 < k < n  whose binary representation is k = ^ & ,2 '.
i=0

OUTPUT: a* mod n

1. Set b 1. If k = 0 then return (b).

2. Set A a.

3. If ko = 1 then set b <-ar.

4. From i from 1 to t do the following:

1. Set A <- A2 mod n

2. If kj = 1 then set b 4rA*b mod n

5. Return (b).

3. Chinese Remainder Theorem (CRT)

Let nil, m2 , . . mr be positive integers that are relatively prime in pairs, i.e., 

gcd(my ,mk) = \ when j  * k.

Let m = m\9 m2, ...mr, and let a, u\, u2, . . ur be integers. Then there is exactly one 

integer u that satisfies the conditions:

a< u  <a + m 

and

u = Uj (modulo ) for 1 < j  < r.
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4. Fermat’s Little Theorem

l ip  is a prime and a is an integer with gcd(a, p)  = 1, then 

ap~l = l(mod p)
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Appendix 2 -  Logical Effort

Logical effort was first introduced by [131] and [159] describes logical effort in 

details. Logical effort is a design model to estimate the performance of CMOS logical 

circuit, namely the number of CMOS stage including buffers required and the overall 

delay of the circuit.

The delay of CMOS logic gate (d) is defined as:

d = f  + p  (A-2. 1)

Where / denotes effort delay and p  denotes parasitic delay 

The effort delay if) consists of two components:

f  = gh (A-2.2)

Where g  denotes logical effort and h denotes electrical effort. Therefore,

d  = gh + p  (A-2. 3)

This is equivalent to:

d  = load / drive + tgate (A-2. 4)

Definitions:

1. Logical effort g  -  the input capacitance of a logic gate relative to that of a 

minimum size inverter

2. Electrical effort h -  ratio of output capacitance to gate input capacitance
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3. Parasitic delay p  -  total diffusion capacitance on the output node of a CMOS 

logic gate relative to the input FET gate capacitance of a minimum-sized 

inverter

Thus, Table A-2. 1 and Table A-2. 2 can be formed based on the definitions shown 

above.

Table A -2 .1 Logical effort of static CMOS gates

Gate Number of inputs

1 2 3 4 5 n

Inverter

NAND

1

4/3 5/3 6/3 7/3 (n+2)/3

NOR 5/3 7/3 9/3 11/3 (2«+l)/3

Multiplexer 2 2 5 2 2

XOR,

XNOR

4 12 32

Table A-2. 2 Parasitic delay of static CMOS gates

Gate Parasitic Delay

Inverter P inv ~

w-input NAND ftP inv

w-input NOR ftP inv

n-way multiplexer 2nP inv

2-input XOR, XNOR 4nPim

It is common to approximate the delay in terms of fan-out — 4 (“F04”) inverter 

delays. F04 delay means that the delay of 1 NOT gate with load of 4 NOT gates:
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d = gh + p (A-2. 5)

d foa —1*4 + 1 — 5 (A-2. 6)

Therefore, to get the F04 delay, simply divide the total gate delay by 5.

Logical effort can also estimate the delay along the critical path; however, Branching 

effort b and Path effort F  will also need to be considered.

Definitions:

4. Branching effort b - ratio of total capacitative load on one CMOS logic gate’s 

output along the critical path to the FET gate capacitance of the next CMOS 

gate on the critical path

5. Path effort F:

Where G = Tig, B = Tib, and H  = Tlh.

The total electrical effort H  reduces to the ratio of the output capacitance loading the 

last CMOS logic gate to the FET gate capacitance of the first CMOS logic gate along 

the critical path (CQJ  Cjn). Usually, H  is forced to 1 by assuming that the circuit 

being modelled is connected to a copy of itself. This allows input branching effort to 

be incorporated in a delay estimate, and allows individual subcircuits to be modelled 

independently before being cascaded to form a whole.

F = GBH (critical path) (A-2. 7)
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6. Delay along a critical path D :

D = N a  + P
or (A-2.8)
D = N a  + P /5 (F 04)

Where N  is the number of CMOS gates (including buffer) and a is load/drive.

7. The number of stages (including buffer) N can be found by:

N= md (log3.670 (A-2. 9)

Where “md (*)” denotes round up or down to the nearest integer.

8. load/drive a is defined as:

a  = F vn (A-2. 10)

The delay of the critical path as shown in Equation A-2.8 can now be calculated.
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Appendix 3 - Synthesis result report
Information: Updating design information... (UID-85)
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Report : timing
-path full 
-delay max 
-nworst 10 
-input_pins 
-nets
-max_paths 100 
-capacitance 

Design : top_level 
Version: 2000.11-SP1 
Date : Fri Aug 1 14:59:33 2003

Operating Conditions: tsmcl8osl20_max Library: tsmcl8osl20_max 
Wire Load Model Mode: enclosed

Startpoint: uClock_Timer/y_reg[0]
(rising edge-triggered flip-flop clocked by CLK) 

Endpoint: T_S[2] (output port clocked by CLK)
Path Group: CLK 
Path Type: max

Des/Clust/Port Wire Load Model Library

top_level
Clock_Timer
sixteenFA_l
Four_mux_6
CELL_C_6
mux
sixteenFA_0
CELL_A_3
eight_two
CELL_B_5
q_selector

Point

4000
4000
ForQA
ForQA
ForQA
ForQA
4000
ForQA
4000
ForQA
ForQA

tsmcl8osl20_
tsmcl8osl20_
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20_
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20

Fanout

max
max
max
max
max
max
max
max
max
max
max

Cap Incr Path
0.00 0.00
0.00 0.00
0.00 0.00 r
0.31 0.31 f

0.01 0.00 0.31 f
0.00 0.31 f
0.10 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r
0.42 0.83 f

0.03 0.00 0.83 f
0.00 0.83 f

0.03 0.00 0.83 f
0.00 0.83 f

0.03 0.00 0.83 f
0.00 0.84 f
0.07 0.90 r

0.01 0.00 0.90 r
0.00 0.90 r
0.19 1.09 r

0.01 0.00 1.09 r
0.00 1.09 r

0.01 0.00 1.09 r
0.00 1.09 r

clock CLK (rise edge) 
clock network delay (ideal) 
uClock_Timer/y_reg[0]/CP (dfcrnl) 
uClock_Timer/y_reg[0]/QN (dfcrnl) 
uClock_Timer/n203 (net) 
uClock_Timer/U59/I (invOdl) 
uClock_Timer/U59/ZN (invOdl) 
uClock_Timer/y[0] (net) 
uClock_Timer/y[0] (Clock_Timer) 
y [0] (net)
ueight_two/y[0] (eight_two) 
ueight_two/y(0] (net) 
ueight_two/Ul/y[0] (sixteenFA_l)
ueight_two/Ul/y[0] (net) 
ueight_two/Ul/Al/y_0 (CELL_A_7) 
ueight_two/Ul/Al/y_0 (net) 
ueight_two/Ul/Al/U13/A2 (xr02d2) 
ueight_two/Ul/Al/U13/Z (xr02d2) 
ueight_two/Ul/Al/S_a_0 (net) 
ueight_two/Ul/Al/S_a_0 (CELL_A_7) 
ueight_two/Ul/S_a[0] (net) 
ueight_two/Ul/Bl/S_a_0 (CELL_B_5) 
ueight_two/Ul/Bl/S_a_0 (net) 
ueight_two/Ul/Bl/Ul3/A2 (ndl2d2) 
ueight_two/Ul/Bl/Ul3/ZN (ndl2d2) 
ueight_two/Ul/Bl/nl07 (net) 
ueight_two/Ul/Bl/U12/Al (an02dl) 
ueight_two/Ul/Bl/Ul2/Z (an02dl) 
ueight_two/Ul/Bl/C_b (net) 
ueight_two/Ul/Bl/C_b (CELL_B_5) 
ueight_two/Ul/C_b[0] (net) 
ueight_two/Ul/C2/C_b (CELL_C_6)
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ueight_two/Ul/C2/C_b (net) 
ueight_two/Ul/C2/U9/I (inv0d2) 
ueight_two/Ul/C2/U9/ZN (inv0d2) 
ueight_two/Ul/C2/nl03 (net) 
ueight_two/Ul/C2/U8/A2 (xn02d2) 
ueight_two/Ul/C2/U8/ZN (xn02d2) 
ueight_two/Ul/C2/S_c_0 (net) 
ueight_two/Ul/C2/s_c_0 (CELL_C__6) 
ueight_two/Ul/S[2] (net) 
ueight_two/Ul/S[2] (sixteenFA_l)
ueight_two/aS[2] (net) 
ueight_two/q/xl_0 (q_selector) 
ueight_two/q/xl_0 (net) 
ueight_two/q/U8/A2 (xr02dl) 
ueight_two/q/U8/Z (xr02dl) 
ueight_two/q/wire_b (net) 
ueight_two/q/muxl/b (mux) 
ueight_two/q/muxl/b (net) 
ueight_two/q/muxl/Ull/IO (mx02d2) 
ueight_two/q/muxl/Ull/Z (mx02d2) 
ueight_two/q/muxl/n25 (net) 
ueight_two/q/muxl/U10/I (inv0d7) 
ueight_two/q/muxl/U10/ZN (inv0d7) 
ueight_two/q/muxl/n26 (net) 
ueight_two/q/muxl/U12/I (invOda) 
ueight_two/q/muxl/U12/ZN (invOda) 
ueight_two/q/muxl/op (net) 
ueight_two/q/muxl/op (mux) 
ueight_two/q/q_l (net) 
ueight_two/q/q_l (q_selector) 
ueight_two/q_l (net) 
ueight_two/qMl/B[1] (qM_3)
ueight_two/qMl/B[1] (net) 
ueight_two/qMl/mux2/sel[1] (Four_mux_6) 
ueight_two/qMl/mux2/sel[1] (net) 
ueight_two/qMl/mux2/U12/S (mx02d0) 
ueight_two/qMl/mux2/U12/Z (mx02d0) 
ueight_two/qMl/mux2/n97 (net) 
ueight_two/qMl/mux2/U10/Il (mx02dl) 
ueight_two/qMl/mux2/U10/Z (mx02dl) 
ueight_two/qMl/mux2/op (net) 
ueight_two/qMl/mux2/op (Four_mux_6) 
ueight_two/qMl/P_0 (net) 
ueight_two/qMl/P_0 (qM_3) 
ueight_two/P[0] (net) 
ueight_two/U2/y[0] (sixteenFA_0)
ueight_two/U2/y[0] (net) 
ueight_two/U2/Al/y_0 (CELL_A_3) 
ueight_two/U2/Al/y_0 (net) 
ueight_two/U2/Al/U10/Al (nd02dl) 
ueight_two/U2/Al/U10/ZN (nd02dl) 
ueight_two/U2/Al/n85 (net) 
ueight_two/U2/Al/U8/Al (an02d4) 
ueight_two/U2/Al/U8/Z (an02d4) 
ueight_two/U2/Al/C_a (net) 
ueight_two/U2/Al/C_a (CELL_A_3) 
ueight_two/U2/C_a[0] (net) 
ueight_two/U2/B2/C_a (CELL_B_3) 
ueight_two/U2/B2/C_a (net) 
ueight_two/U2/B2/UlO/A2 (xr02d2) 
ueight_two/U2/B2/U10/Z (xr02d2) 
ueight_two/U2/B2/S_b_0 (net) 
ueight_two/U2/B2/S_b_0 (CELL_B_3) 
ueight_two/U2/S_b[2] (net) 
ueight_two/U2/C2/S_b_0 (CELL_C_1) 
ueight_two/U2/C2/S_b_0 (net) 
ueight_two/U2/C2/U12/Al (xr02dl) 
ueight_two/U2/C2/Ul2/Z (xr02dl) 
ueight_two/U2/C2/S_c_0 (net) 
ueight_two/U2/C2/S_c_0 (CELL_C_1) 
ueight_two/U2/S[2] (net) 
ueight_two/U2/S[2] (sixteenFA_0) 
ueight_two/S[2] (net) 
ueight_two/S[2] (eight_two)
S [2] (net)
uClock_Timer/S[2] (Clock_Timer) 
uClock Timer/S[2] (net)

0.01 0.00 1.09 r
0.00 1.09 r
0.05 1.14 f

2 0.02 0.00 1.14 f
0.00 1.14 f
0.34 1.48 f

3 0.02 0.00 1.48 f
0.00 1.48 f

0.02 0.00 1.48 f
0.00 1.48 f

0.02 0.00 1.48 f
0.00 1.48 f

0.02 0.00 1.48 f
0.00 1.48 f
0.32 1.81 f

1 0.01 0.00 1.81 f
0.00 1.81 f

0.01 0.00 1.81 f
0.00 1.81 f
0.31 2.11 f

1 0.03 0.00 2.11 f
0.00 2.11 f
0.06 2.18 r

1 0.04 0.00 2.18 r
0.00 2.18 r
0.06 2.23 f

13 0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.02 2.25 f
0.32 2.58 r

1 0.01 0.00 2.58 r
0.00 2.58 r
0.21 2.79 r

2 0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r
0.11 2.89 f

1 0.01 0.00 2.89 f
0.00 2.89 f
0.20 3.10 f

2 0.02 0.00 3.10 f
0.00 3.10 f

0.02 0.00 3.10 f
0.00 3.10 f

0.02 0.00 3.10 f
0.00 3.10 f
0.39 3.49 f

2 0.02 0.00 3.49 f
0.00 3.49 f

0.02 0.00 3.49 f
0.00 3.49 f

0.02 0.00 3.49 f
0.00 3.49 f
0.29 3.77 r

1 0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r
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uClock_Timer/T S [2] (Clock Timer) 0.00 3.77 r
T S [2] (net) 0.00 0.00 3.77 r
T_S[2] (out) 0.00 3.77 r
data arrival time 3.77
clock CLK (rise edge) 4.00 4.00
clock network delay (ideal) 0.00 4.00
clock uncertainty -0.20 3.80
output external delay 0.00 3.80
data required time 3.80

data required time 3.80
data arrival time -3.77

slack (MET) 0.03
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Appendix 4 -  Paper 1 [1271

A (4:2) Adder for Unified GF (p) and GF (2°) Galois Field Multipliers

Lai Sze Au and Neil Burgess, 

Cardiff School o f Engineering, 

Queens Buildings,

The Parade, 

CARDIFF CF24 3TF 

U.K.

{auls,burgessn}@cf.ac.uk

Abstract
This p a p e r  d e s c r ib e s  a  n e w  re d u n d a n t b in a r y  a d d e r  
th a t su p p o r ts  c a r r y - s a v e  a d d it io n s  u n d e r  e i th e r  o f  th e  
G a lo is  F ie ld s , G F (p )  o r  G F (2"), w ith o u t th e  n e e d  f o r  
an  e x te rn a l c o n tro l  s ig n a l  to  s p e c ify  w h ich  f i e l d  is  to  
b e  used. The p r o p o s e d  a d d e r  w il l  f i n d  u se  in  u n ified  
G a lo is  F ie ld  m u ltip lie r s  f o r  c r y p to g ra p h ic  
a p p lica tio n s . I ts  m a in  a d v a n ta g e  o v e r  p r e v io u s ly  
r e p o r te d  a d d e r s  is  th a t  a  c o n tr o l  s ig n a l  w h ich  is 
b ro a d c a s t to  a l l  c e l ls  to  su p p r e s s  c a r r ie s  u n d er  
G F (T )  is  n o t n eed ed , le a d in g  to  a  su b s ta n tia l  g a in  in  
im p lem en ta tio n  e ffic ien cy .

1: Introduction

The prime Galois Field GF(p>) and the binary 
extension Galois Field GF(2”) are the two most 
important number systems for elliptic curve 
cryptosystems. The popularity and the need for 
implementation o f dual mode Galois Field 
Arithmetic operators has increased, due to the 
interest in inter-operation between different fields. A 
small number o f  attempts have been made in recent 
years to design dual field arithmetic multipliers.

E. Sava? e t  a l. [3] proposed a scalable and unified 
multiplier architecture for finite fields GF(p) and GF 
(2") in 2000, which makes use o f  Montgomery 
multiplication to facilitate LSB-first processing.

This work was supported by ARM Ltd. URL: www.arm.com 
URL: www.arm.com

Figure 1 shows the Processing Unit (PU) of the 
multiplier. In this design, the operands are required to 
be transformed into the Montgomery domain.

TC« TS,* TCATB,*

shifts 
I Alignment 

j  Layer

DualMiekl
Adder

Dual-field
Adder

Dual-field
Adder

TC,m TSjM TC,*’I TS,»'I TC,^> TS,*"

Figure 1 Sava? et aTs Processing Unit with w = 3

The Dual-field Adder in Figure 1 is a full adder 
with an extra control signal as shown in Figure 2. In 
order to perform the dual-field function o f the Dual
field Adder, a control signal FSE L  is needed.
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c O

• d >  
b O

Figure 2 Synthesized circuit of the dual-field 
adder

When the control signal is 1, the multiplier will 
perform arithmetic functions in the field of GF(p) 
and when it is 0, the carry-out will be forced to 0 and 
the multiplier performs operations in the field of 
GF(2n).

Johann GroPshadl [2] proposed a bit-serial unified 
multiplier architecture for finite field GF(p) and 
GF(2") in 2001 based on an MSB-first iterative 
algorithm for modulo multiplication.

Figure 3 shows the arithmetic unit that is used for 
the implementation of the modulo multiplier. The 
first (w+l)-bit carry-save adder performs the addition 
of the partial products. The output Sum Rs and Carry 
Rc are used to 6stimate the multiples of modulus to be 
subtracted in the next step with another (w+l)-bit 
carry-save adder. Figure 4 is a block diagram of the 
bit-serial multiplier architecture described in [3]. In 
order to perform carry-free addition for GF (2"), all 
the carry bits of the adder (Rc) are set to 0, which in 
turn set further control signals. Modulo reduction 
occurs within the multiplication process by 
concurrent subtraction of a multiple of the modulus.

Both these proposals require broadcasting a control 
signal, which is costly and slow, to all the full adder 
cells so as to suppress all carries in a multiplier. This 
is especially true when switching between fields, as

can occur in a server operating on many different 
data streams. This paper describes a limited carry 
propagation adder circuit capable of adding numbers 
over either a prime Galois field denoted GF(p) or a 
binary Galois field denoted GF(2"), but without the 
need for a control signal to specify which of the two 
field types is being used.

Rs Rc

Rc

Rs Rc

/(-bit 
h ard w ired  

le ft sh ift r. 
k e  {0,1} Rs RC

Rs Rc

(n+1)-bit Sum  and Carry Latch

(n+ 1)-bit Sum  and Carry Latch

(n+1)-bit Carry-Save A dder

 ̂Rs

(n+1)-bit Carry Save Adder

Figure 3 Arithmetic unit of an /i-bit unified 
multiplier

I n p u t  (
O u tp u t  (w  b it)

n - b i t  M u l t ip l i e r  R e g i s t e r

sin

R cR s

n - b i t  B u s

( n + 1 ) - b i t  M o d u l / I P R e g i s t e r

P i p e l in e d  
C L A  (w  b it)

n - b i t  I/O  R e g i s t e r

n - b i t  M u lt i p l ic a n d  R e g i s t e r

(n +  1 ) - b i t  A r ith m  e t i c  U n it

Figure 4 Block diagram of the bit-serial multiplier architecture
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2: Dual Field (4:2) Adder Table 1 Redundant Binary Adder Coding

The main arithmetic operations in prime GF(p) 
and binary field GF(2W) are addition, multiplication 
and inversion. The most important of these 
operations is the field multiplication operation, 
formulated as a sequence of additions and 
subtractions. Although die GF(p) and GF(2") fields 
have different properties, addition operations in the 
two fields are structurally very similar. The crucial 
difference between arithmetic over these two types 
of Galois field is that addition over GF(p) is 
identical to conventional addition in which carry 
signals propagate along the length of the sum 
during the addition, whereas addition over GF(2") 
comprises a bit-wise XOR operation with no carries 
propagating along the sum. The adder presented 
here is a so-called “restricted carry” adder which is 
capable of adding numbers over GF(p) or GF(2") in 
such a way that carries propagate only a limited 
distance over GF(p) and not at all over GF(2").

This section introduces a new dual field adder 
based on the (4:2) carry-save adder modified so that 
it is capable of adding specially-encoded operand 
digits. Hence, no external control signal is needed 
to suppress carries in GF(2") arithmetic. (4:2) 
adders have been used before in binary multiplier 
designs as an alternative to carry-save adders 
because they have more regular multiplier tree 
layouts. The new adder will permit these same 
layout advantages to be applied to Galois Field 
multiplication under either GF(p) or GF(2") with 
some performance advantage over previously 
reported work.

2.1: Redundant Binary Adder

The Redundant Binary Adder, illustrated in 
Figure 5, is a binary adder capable of adding two 
numbers with the digit set e {0, 1, 2} (or 
equivalently dx e {-1, 0, 1}) such that carries do not 
traverse the length of the sum [1]. Note that carry 
signals transform from {0,2} to {0,1} as they shift 
one place to the left. Each block in the first two 
rows of Figure 5 can be implemented as a full adder 
to yield a structure similar to that of Figure 2. The 
last row of blocks simply concatenate pairs of 
inputs to provide the output digits.

In the Redundant Binary Adder, digits are 
implemented using two binary signals (or, in silicon 
chip terms, wires). If neither signal is ‘High’ the 
value ‘0’ is represented; if both signals are ‘High’ 
the value ‘2’ is represented; otherwise, if only one 
signal is ‘High’ the value ‘1’ is represented (see 
Table 1). A variety of other coding schemes are 
possible, but all have the characteristic that only 
three digits need be represented differently.

Code Digit

00 0

01 1

10 1

11 2

{0..2} {0 ..2} {0..2} {0..2}

{0 ,2} {0,2}

0 ,1 } {0 ..; 0,1} {0..:

{0,2} {0.2}

{0 .1} 0,1} {0,1 0,1} {0,1

Sum
[0 ..2]

Sum
[0-3]

Sum
[0-2]

Sum
[0-3]

Sum
[0-3]

{0..2} {0- 2} {0..2}

Figure 5 Schematic diagram of a Redundant 
Binary Adder

2.2: Dual-mode Galois Field Adder

A dual-mode Galois Field adder can be 
constructed by introducing a fourth digit, denoted 
1*, that indicates the digit ‘1’ over GF(2^. Then, 
addition over GF(p) is implementable using the 
digits {0,1,2}, while addition over GF(2") is 
implementable using the digits {0,1*}. Addition 
over GF(2") can be summarised by the expressions: 
1 * + 1 * = 0, and 0 + k = k + 0 = k. The following 
digit sets are defined for addition in the two fields:

• for GF(p), 3 values are needed: {0, 1,2}
• for GF(2"), only 2 values are needed: {0, 

1*}
Therefore, 5 values are apparently needed in 

total. However, only 4 values are actually needed 
because the zero elements in both fields are defined 
identically (see Tables 2 and 3).
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Table 2 Table of addition for GF(p)

0 1 2

0 /o 1

1 \ \ i \ \ \ \ \
3

2 2 3 4

needed. Moreover, there are several don’t care 
states which also give some degrees of freedom: for 
example, the sums 1 * + 1 and 1 * + 2 cannot occur 
in any cell. After some experiments, the digit set 
encoding shown in Table 4 was chosen for the input 
to cell A.

Table 4 Cell A input coding

Table 3 Table of addition of for GF(2")

iiiii
o 

1ii\

i *

0 / '  0 1* ^

1 *

i

V 1 * - — " 0

Incorporating the 1* digit into the Redundant 
Binary Adder is readily accommodated to yield a 
dual-mode Galois Field adder, as shown in Figure 
6. The four symbols {0,1,2,1*} require two wires 
for their full representation, in common with the 
redundant binary adder of Figure 1. This enables a 
unified adder to be constructed, similar in structure 
to the Redundant Binary Adder (Figure 5). 
However, the blocks are not now full adders, and so 
optimum logic circuits for the dual field adder need 
to be derived.

x(1:0) y (1 :0) x(1:0) y (1:0)
10,1,2,1*]  (0 , 1 , 2 . 1*J  [0 , 1 , 2 , 1* ]  [0 , 1 , 2 , 1* ]

[0 . .4 ](0 . .4 ]

[0 . 3 ][0 .3 ]

(0 . 2 ][0 . 2 ]

V V
Figure 6 Redundant Dual Field adder

3: Logic Design of Dual Adder

The digits used in the dual adder can be encoded 
in a variety of different ways. In order to implement 
the most efficient gate design, i.e. as close to the 
number of gates required by the original full adder 
based design as possible, different number 
encodings are utilised in different cells where

Code Sum

00: 0

01: 1*

10: 2

11: 1

The optimal coding for the output sum digit of 
Cell A was found to be the same as the digit input 
coding. Also, the output coding of cell C had to be 
identical to that of cell A, so that the outputs of one 
dual field adder could be connected directly to the 
inputs of another in order to realise multiplier 
designs. The most efficient output sum digit coding 
for Cell B was found to be different to that of Cells 
A and C (see Table 5). In this case, the codes for 
“1” and “1*” were swapped over for the most 
efficient truth table realisation. The don’t care state 
occurs because the digit “2” is not required by the 
sum output of Cell B.

Table 5 Cell B output coding

Code Sum

00: 0

01: 1

10: X

11: 1*

A diagram of the logic circuit of the complete 
adder is shown in Figure 7.
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Figure 7 Overall gate implementation of adder

4: Comparisons and Conclusions

This paper has presented a novel (4:2) adder for 
unified GF(p) and GF(2") Galois Field 
Multiplication. The main difference in 
implementation between the proposed idea and 
other previous research is that information 
regarding the Galois Field under which the addition 
is to be performed is embedded into the digit 
coding, obviating the need for a globally-broadcast 
control signal.

The complete adder of Figure 7 was simulated 
using NC-Verilog and synthesised using Synopsis, 
which showed that the critical path (through the 
three XOR gates) was 1.5 ns using 0.18pm VLSI 
technology. By comparison, the four-input carry-

save adders presented in [3,4] are implemented as 
pairs of full adders with extra gates on the carry 
outputs to suppress carries (see Figure 2). Ignoring 
pipeline stages, these adder cells have a total 
CMOS logic gate count of 14 (counting XOR gates 
as two gates) as follows:

• 2 x 2  XOR
• 2 x 1  NOR
• 2 x 1  NOT
• 2 x 1 AOI CMOS complex gate

The proposed adder has a critical path length of 
only three XOR gates, with a CMOS logic gate 
count of only 13, made upas follows:

• 3 XOR/XNOR
• 2 NOR
• 1 NAND
• 1 NOT
• 2 OAI CMOS complex gates
• 1 AOI CMOS complex gate

Hence, the new adder is faster and has a simpler 
field specification mechanism, as well as requiring 
slightly less logic than previous dual field adders.

Full implementation of a multiplier architecture 
based on the proposed dual field adder is in 
progress.

5: References

[1] A. Azivienis, “Signed-Digit Number 
Representations for fast parallel Arithmetic”, 
IR E  Trans. E lec t. C o m p ., EC-10, pp.389-400, 
Sept. 1961

[2] Johann Gropschadl, “A bit-serial unified 

multiplier architecture for finite fields GF(p) 

and GF(2Am)’\  Proc. CHES 2001, Paris, 2001,

pp 202-218.

[3] E. Savas, A.F. Tenca, and C.K. Koc, “A 

scalable and unified multiplier architecture for 

finite fields GF(p) and GF (2'")”, Proc. CHES 

2000, Worcester, MA, August 17-18 2000, pp. 

277-295

195



Appendix 5 -  Paper 2 [1601

Unified Radix-4 Multiplier for GF(p) and GF(2Aw)

Lai-Sze Au and Neil Burgess 
Cardiff School o f  Engineering,

Queen’s Buildings,
The Parade,

CARDIFF CF24 3TF 
United Kingdom 

{auls, burgessn}@cfac. uk

Abstract

This paper describes a scalable unified architecture fo r  Montgomery multiplication over 
either o f  the fin ite  fie lds GF(p) and GF(T). This architecture has the advantage o f  
possessing a new redundant binary adder that supports carry-save additions under either o f  
the Galois Fields without the needfor an external control signal to specify which fie ld  is to be 
used. Its main advantage over previously reported dual fie ld  multiplier is that a control 
signal which is broadcast to all cells to suppress carries under GF(T) is not needed. 
Consequently, large multipliers can be synthesised whose pipelined speed is independent o f  
the buffering required fo r  the control signal.

1. Introduction

There are two recent trends in multiplier design for cryptographic applications: firstly, the 
multiplier should be designed as a parallel medium-wordlength architecture so as to increase 
performance while enhancing resistance to attacks based on differential power analysis [1]; 
secondly, the multiplier should be capable o f operating on either of the popular Galois Field 
systems [2]. The prime Galois Field GF(/?) and the binary extension Galois Field GF(2") are 
the two most important number systems for elliptic curve cryptosystems. The popularity and 
the need for implementation o f dual mode Galois Field Arithmetic operators has increased 
due to the interest in inter-operation between different fields, and attempts have been made in 
recent years to design “dual field” Galois field arithmetic multipliers capable of operating 
under either field [3-5].

E. Sava§ et al. [3] proposed a scalable and unified multiplier architecture for finite fields 
GF ip) and GF(2”) in 2000, which makes use o f Montgomery multiplication to facilitate LSB- 
first processing. Figure 1 shows the Processing Unit (PU) of the multiplier. In this design, 
the operands are required to be transformed into the Montgomery domain. The Dual-field 
Adder in Figure 1 is a full adder with an extra control signal as shown in Figure 2. In order to 
perform the dual-field function o f the Dual-field Adder, a control signal FSEL is needed. 
When the control signal is 1, the multiplier will perform arithmetic functions in the field of 
GF^)- and when it is 0, the carry-out will be forced to 0 and the multiplier performs 
operations in the field o f GF(2”). Note that the critical path from any data input {a, b or c) to 
either output traverses four logic levels, assuming XOR gates have a logic depth of 2.
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Figure 1. Sava$ et a/’s Processing Unit with_w = 3

FSEL

Figure 2. Synthesized circuit of the dual-field adder

Johann Groszshaedl [4] proposed a bit-serial unified multiplier architecture for finite field 
GF(p) and GF(2”) in 2001 based on an MSB-first iterative algorithm for modulo 
multiplication. Figure 3 shows the arithmetic unit that is used for the implementation of the 
modulo multiplier. The first («+l)-bit carry-save adder performs the addition of the partial 
products. The output Sum Rs and Carry Rc are used to estimate the multiple of the modulus to 
be subtracted in the next step with another (n+l)-bit carry-save adder.

Figure 4 is a block diagram of the bit-serial multiplier architecture described in [4]. In 
order to perform carry-free addition for GF(2"), all the carry bits of the adder (Rc) are set to 0, 
which in turn set further control signals. Modulo reduction occurs within the multiplication 
process by concurrent subtraction of a multiple of the modulus.
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Figure 4. Block diagram of the bit-serial multiplier architecture

Both these proposals (and others such as [5]) require broadcasting a control signal to all 
the full adder cells to suppress the output carries from all the full adders in the multiplier. 
This is costly and slow, especially when switching between fields, as can occur often in a 
server operating on many different data streams. This paper describes a new multiplier which 
operates in both GF(/?) and GF(2"). The new multiplier makes use of our previously- 
presented dual field adder based on a (4:2) carry-save adder cell, modified so that it is capable 
of adding specially-encoded operand digits [6]. Our unified field multiplier avoids the delay 
of field-control signal propagation, particularly important as multipliers increase in 
wordlength for both improved performance and security. The paper is organised as follows: 
in the next section, we describe the detailed design of the modified (4:2) adder, showing how 
the particular digit coding schemes employed were selected. Sections 3 and 4 present the full 
multiplier architecture, together with modules for binary number conversion, partial product 
generation, and modulo reduction. The paper concludes in Section 5 with a brief discussion 
of further work.



2. Dual-mode Galois Field Adder Design

(4:2) adders have been used before in binary multiplier designs as an alternative to carry- 
save adders because they have more regular multiplier tree layouts, requiring less 
interconnect than other reduction tree topologies [7,8]. The new adder will permit these same 
layout advantages to be applied to Galois Field multiplication under either GF(p) or GF(2”). 
In [6], we described how introducing a fourth digit, denoted 1*, that indicates the digit ‘1’ 
over GF(2”) enabled us to take advantage o f  previously unexploited don’t care states in the 
(4:2) adder cell.

The new (4:2) adder com prises three separate stages, implemented using three different 
cells: the first stage (cell A) receives two 2-bit operands, x (l :0) an d y (l :0) with the digit set, d  
e  {0, 1,2, 1*}, and adds them  so that the to form a 2-bit sum digit, sA e  {0,1,2,1*}, and a carry 
bit, cA e  {0,2}. The addition is summarised in Table 1, showing that there is considerable 
flexibility available in the ce ll’s implementation. Specifically, there are four don’t care 
states, and the output digit ‘2 ’, can be represented by either sA = 2 or cA = 2 .

Table 1. Cell A addition Table 2. Cell B addition Table 3. Cell C addition

0 1 2 1*
0 0 1 2 1*
1 1 2 3 X
2 2 3 4 X
1* 1* X X 0

0 1
0 0 1
1 1 2
2 2 3
1* 1* X

0 1
0 0 1
1 1 2
X X X
1* 1* X

The second stage (cell B) receives the 2-bit sum digit, sA, and the shifted carry bit, cA, from 
cell A, and adds them  to form the 2-bit sum digit, sB e  {0,1,1*}, and a carry bit, cB e  {0,2}. 
The addition is summ arised in Table 2, showing that there is less flexibility available in this 
cell’s implementation than in cell A, as there is only one don’t care state.

Finally, the third stage (cell C) receives the 2-bit sum digit, sB, and the shifted carry bit, cB, 
output by cell B and adds them to form the 2-bit sum digit, sc e  {0,1,2,1*}. This digit set 
matches the digit set o f  the (4:2) adder’s inputs, so that the addition is complete [9]. The 
third stage o f  the addition is summ arised in Table 3, showing that there is more flexibility 
available in this ce ll’s im plem entation, due to the increased number o f don’t care states.

2.1. Cell A digit coding

The digit coding for cell A was chosen as follows: 5̂ (0) should be a 2-input XOR 
function, so as to m atch the delay o f  a conventional (4:2) adder, and the other two logic 
functions are required to be as sim ple as possible. This immediately implies the codes for 1 
and 1* should have a Ham ming distance o f  1 to meet the 5̂ (0) constraint. After some 
experiments, we made the assignm ents (0, 1) = 1*, and ( 1, 1) = 1, together with the arbitrary 
assignment (0,0) = 0, leaving (1,0) = 2. Filling out Table 1 with these digit representations 
gives the Karnaugh map shown in Table 4, where *-’ reflects that the decision about how to 
represent the output ‘2 ’ is yet to be made, and ‘X ’ denotes “don’t care”.

Table 4. Karnaugh Map for Cell A addition

0->00 1* -»01 1 ->11 2-> 10
0->00 o. (o.o) 0. (0.1) 0. (1.1) (-.0)
1* -*01 0, (0,1) 0. (0.0) X, (X.0) X, (X.1)
1 -> 11 o.n .n X. (X.0) -,(-,0) 1.(1-1)
2 —>10 (-,0) X. (X.l) 1.(1.1) 1. (1.0)
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The (-,0)’ entries must become either ‘1, (0,0)’ or ‘0, (1,0)’ to represent an output o f 2. If  
they are set consistently to ‘0, ( 1,0)*, then 5̂ (1) = x ( l)  v y ( l )  is obtained by exploiting the 
don’t care states. Finally, by setting all the remaining don’t care states for cA low, we obtain 
Q = ^ ( 1 ) a > ( 1 ) a  {-*(0) v  “’XO)}, implementable as a 2-input NAND driving a 3-input 
AND, matching the CM OS VLSI delay o f the XOR. The final map for cell A is presented in 
Table 5.

Table 5. Karnaugh Map for Cell A addition

0->00 1*->01 1 ->11 2->10
0->00 0. (0.0) 0, (0,1) 0. (1.1) 0. (1.0)
1*->01 o. (o.n 0. (0.0) 0. (1.0) 0. (1.1)
1 -*11 o.n .n 0, (1.0) 0.(1.0) 1. (1.1)
2->10 o.n.o) 0. (1.1) 1. (1-1) 1. (1.0)

2.2. Cell B digit coding

Using the same coding for cell B as was used in cell A yields 5^(0) = 5̂ (0) © cAi as 
required. However, the logic for sb(  1) is not as simple as required with this output encoding. 
Swapping the output representations for 1 and 1* - that is replacing (0,1) by (1,1) and vice 
versa, did not impact the 5X0) logic, while simplifying the 5^(1) logic to 5g(l) = “^ ( l )  a  
^ (0 )- Finally, c b  = ^ ( 1 )  a  (“^ (O )  v  c a ) .  The Karnaugh map for cell B is presented in Table 
6 .

Table 6. Karnaugh Map for Cell Table 7. Karnaugh Map for Cell

0 1
0 -> 0 0 0, (0,0) 0, (0, 1)
1* ->01 0, ( 1, 1) 0, (1,0)
1 -> 11 0, (0, 1) 1, (0,0)
2 -> 1 0 1, (0,0) 1, ( 0,1)

0 1
0 - > 0 0 (0 ,0 ) (1 ,1 )
1 - > 0 1 (1 ,1 ) (1 ,0 )

1 * - > 1 1 (0 ,1 ) (1 .0 )
X - > 1 0 (0 ,0 ) (1 .1 )

23. Cell C digit coding

This design is straightforward: the output coding must match the input coding o f cell A 
(i.e. 1* -»  (0,1) and 1 —> (1,1)), and the input coding matches the output coding o f cell B. By 
exploiting the don’t care states, the logic equations are 5X1) = “^ ( l )  a  5fl(0) v  Cb, and 5c(0) = 
5X0) ® cb• The final Karnaugh map o f  Cell C is presented in Table 7.

Figure 5 shows the final CM OS gate implementation o f  the adder, where some further 
logic optimisation has been made (i) to cover the lack o f AND and OR gates in CMOS, and
(ii) to take advantage o f  CM OS com plex gates.

3. Multiplier Design

The overall structure o f  this m ultiplier is shown in Figure 6 . It shows that the multiplier 
comprises six different modules: (1) Binary to Redundant number encoder; (2) Partial 
Product Generator; (3) (4:2) adders for partial products summation; (4) Modulus Multiplier 
D ig it Selection; (5) M odulus M ultiple Generator; (6) (4:2) adders for modulo reduction. 
However, only four different modules are required because the two (4:2) adders required are 
the same as are the partial product and modulus multiple generators are also identical. The 
(4 :2) adder has already been introduced, so this section shall present the design o f binary to 
redundant num ber encoder and also the design o f  the partial product generator. The modulo 
reduction will be presented in the next section o f the paper.
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x[1:0] y[1:0]

i Cell A

S,[0]Sa[1]

<C.
Cell B

Sb[0]Sb[1]

! Cell C

Figure 5. Overall gate implementation of dual field (4:2) adder

The two digits input to the (4:2) adders - namely, the result o f  the previous iteration, Rn, 
and the partial product, PP„, both have the digit set, d  e  (0, 1, 1*, 2}. The partial product 
generation is decomposed into two steps: firstly, the selected Galois Field is embedded into 
the multiplicand word by encoding it using the novel d -  1 * representation; secondly, the 
radix-4 partial product is derived by using the available redundant d  = 2 representation. The 
first o f  these steps, embedding the Galois Field, is implemented by the simple circuit shown 
in Figure 7.

Every two bits o f  the m ultiplier word, B , are recoded as a radix-4 digit, and the 
multiplicand, A, then m ultiplied by the recoded bit to yield the appropriate partial product, as 
shown in Table 8. Figure 8 shows the logic diagram o f  the partial product generator, 
including the Field-embedded binary num ber encoder, and is seen to be simpler than the 
standard radix-4 B ooth’s encoder [10]. In particular, the negative multiple increment bits that 
occur in Booth’s coding are avoided, as these can increase the logic depth o f the adder array. 
Note how the availability o f  the redundant digit, d — 2, at the (4:2) adder input obviates the 
need for a carry-propagate addition when encoding the radix-4 digit o f  3.
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GF(p)?
1 -> GF(p) 
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Figure 8. Field-Embedded 
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Figure 7. Radix-4 Partial Product 
Generator

Table 8. Radix-4 Partial Product Generation

(B„ Radix-4 digit Partial product. PPA 1:01
00 0 0
01 1 A
10 2 Left shift A 1 bit
11 3 1A + 2A
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4. Modular Reduction

This design made use o f  M ontgom ery’s multiplication techniques to perform the modular 
multiplication. M ontgom ery’s m odular multiplication algorithm is described as follows:

Montgomery’s Modular Multiplication Algorithm

{Pre-condition: M prime to r  and^4 non-redundant}
S:= 0;
For i := 0 to n - 1 do 
Begin

9, := (s0 + a,b0)(-m ~] )m o d r ;
S := (S + a, x B + qt x M )d ivr ;
{Invariant: 0 < S < M+B}

End;
{Post-condition: Sxr* = A x B  + Q xM )

Figure 6 shows that the m odular m ultiple selection (i.e. determining q,) causes irregularity 
in the design and is on the critical path. Therefore, effort is needed to reduce the delay by 
taking into consideration pre-known factors as early on in the calculation as possible. For
example, the m odulus M  is always an odd number (because r -  2”), so that the last bit o f  M,
M[0], will always be 1. Therefore the information presented in Table 9 regarding the two 
LSB’s o f  q ? M is already known before any modulo reductions are performed.

BS[1] GF . i M[1]

Table 9. Multiple of M
Multiple o f M M l . 01 = 01 M 1.01 = 11

1 01 11
2 10 10
3 11 01 BS[0]

q,(1] T
Figure 9. ,̂[1] logic

Table 10 shows what value o f  qt is required to ensure R  = 2?5[1, 0] + q?M  = 00 as a 
function o f  the selected Galois Field, where the two LSB’s o f the Partial Sum, denoted 
BS[1:0], are in conventional binary form rather than in redundant form.

Table. 10 Selection of Modulo Multiple, arM

GF(p), 
GF = 1

Partial Binary Sum, ofl:01  ifMH,01 = 01 <i,ri:01 ifMB.01 = 11
00 00 00
01 11 01
10 10 10
11 01 11

GF(2"), 
GF = 0

nn nn nn
01 01 11
10 10 10
11 11 01

From Table 10, it is easy to see that #,[0] = BS[0] independently o f  both the Galois Field 
and A/[1:0]. However, qt[ 1] is a function o f  A /PL BS[1:0], and the Galois Field flag, GF. 
Figure 9 shows a simple circuit implementing the necessary logic organised as a multiplexer 
controlled by BS[0].
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M ontgom ery’s m odular reduction technique is performed on non-redundant binary 
numbers. Therefore, the redundant representation returned by the (4:2) adders must be 
converted to binary to obtain the bits 5«S[1:0]. Table 11 presents this conversion process, 
where PS, denotes the two bits representing the partial sum at bit position i (see Figure 6). 
Note that P S j[l]  is not included in the Table, because it is weighted +2 and so has no effect 
on the value o f  BS[1].

Table 10.1. Binary Conversion

PSi[0] P S n li] PSn[0] digit[1] digit[0] BS [1] BS [0]
0 0 0 0 0 0 0
0 0 1 0 1* 0 1
0 1 0 0 2 1 0
0 1 1 0 1 0 1
1 0 0 1* 0 1 0
1 0 1 1* 1* 1 1

1 1 0 1* 2 0(x) ooo
1 1 1 1* 1 100 100
0 0 0 2 0 0 0
0 0 1 2 1* 000 1(X)
0 1 0 2 2 1 0
0 1 1 2 1 0 1
1 0 0 1 0 1 0
1 0 1 1 1* 100 1(x)
1 1 0 1 2 0 0
1 1 1 1 1 1 1

The Table shows that ^ [ 0 ]  = /W0[0]. In fact, since Ca and Cb to the (4:2) adder are both 
0, BS[0] = .PPotO] © ^o[0], and is available much earlier than BS[1]. The logic for BS[1] is 
presented in Figure 10 as a m ultiplexer controlled by BS[0], in common with Figure 9. 
M erging Figures 9 and 10 yields the simplified circuit for qt[ 1] shown in Figure 11.

P S o l l J P S J O ]  GFl I M[1 ]

X 7 -BS[0]

q.m |
Figure 10. Logic for BS111

PSJ1] PS,[0]

BS[0]

[  BS[1]

Figure 11. Simplified logic for <7.111

Once has been determined, the modulo M  is multiplied by qt using the modulo multiple 
generator shown in Figure 12, which has the same logic design as in the partial product 
generator presented earlier. Finally, the multiple, q,-M, is then added to partial sum (PS) 
using the same m odified (4:2) adder as shown in Figure 5. Note that in Figure 6, the least 
significant four bits (2 binary bits) are discarded as they are now zero and what was R2 is now 
fed back to the partial product adder as Rq.
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5. Comparisons

When compared with E. Sava° et a l.’s design [5], previously shown in Figure 1, the unified 
multiplier presented here has the advantage that the Galois Field selection line does not cause 
extra delays due to potentially large fanouts. In Figure 1, the FSEL line has to drive 2w  NOT 
gates in the dual field adders, where w  is the word-length o f  the adder.
The delay o f  the FSEL line driving 2w  inverters can be estimated by using Logical Effort [11] 
as being roughly log42w F 0 4  delays, where F 0 4  denotes “fanout o f 4 inverters” . The pipeline 
delay comprises this buffer delay and the adder delay, assuming that the partial product is 
gener-ated in a prior pipeline stage.

In Figure 2, there are two critical paths through the adder: one starts with inputs a  and b and 
traverses an XOR gate, a (2,2) AND-OR-invert (AOI) gate, and a NOR gate; the other starts 
with the FSEL line and com prises the FSEL buffer, an inverter, and the same NOR gate as 
the other path. The FSEL delay dom inates the pipeline stage when the buffer delay becomes 
larger than the delay o f  the XOR combined with the AOI gate. From Logical Effort, the delay 
o f the buffer was found to be log4w; the delay o f  an XOR gate (assuming its implementation 
by a CMOS (2,2) AOI gate) and a second (2,2) AOI gate is given by 2((2(1 + 4)/5 = 2.4 F04, 
using the equation d  = g h + p  and inserting the relevant values. Therefore when log42w > 2.4, 
or w = 14, the FSEL buffer delay starts to dominate the critical path and affects the maximum 
clock rate achievable. M ore-over, if  only one bit is processed per pipeline stage, then this 
design could be vulnerable to Pow er Analysis cryptographic attacks as the word-length is 
small [1]. However, increasing the num ber o f  bits per stage increases the fanout on the FSEL 
line, further degrading performance.

The word-length in the proposed design can be increased per pipeline stage as much as 
needed without causing extra delay so that this design is truly scalable. Moreover, this design 
could proc-ess more than one digit per pipeline stage without any extra delay due to field 
selection, although there would be additional delay due to the extra adders in each pipeline 
stage. However, the M ul-tiplicand A  and the Modulus A /need to be converted into the novel 
redundant num ber coding, but this can be done in parallel with the M ultiplier B  being fed to 
the row o f  partial product genera-tors, thus avoiding any delay due solely to field selection.

In terms o f  area, E. Sava° et a l.’s design requires two extra gates per full adder for field 
selec-tion. The proposed design requires w  extra AND gates in the partial product and 
modulus multi-pie generators to embed the field information into the digits, while the unified 
field (4:2) adders have the same num ber o f  logic gates as two full adders [6]. Thus, the area 
o f  the proposed design m atches that o f  previous designs.
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6. Conclusion and future work

This paper has presented a Montgomery modulo multiplier using a novel (4:2) adder 
for uni-fied GF(/?) and GF(2«) Galois Field Multiplication. The main difference in 
implementation be-tween the proposed idea and other previous research is that information 
regarding the Galois Field under which the addition is to be performed is embedded into the 
digit coding, obviating the need for a globally-broadcast control signal. Also, both the partial 
product generation and modulo reduction are performed using radix-4 algorithms to 
accelerate the processing time.

The critical path of this architecture, from the input to the first row of (4:2) adders to the 
out-put of the second row of (4:2) adders consists of 7 XOR gates and 2 multiplexers, of 
which 6 XOR gates are in the two (4:2) adders. This logic depth compares favourably with 
the radix-2 unified adders presented in Section 1 of this paper, which have a critical path of 8 
logic levels excluding the logic needed to derive qt. We are currently implementing the 
proposed design in CMOS VLSI.
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