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Summary

The hippocampus and the prefrontal cortex are two areas of the brain that are 
fundamental for a wide range of cognitive processes. Studies of both human patients who 
have incurred damage to these regions, and animals with circumscribed lesions, have led 
to a variety of theories concerning their contributions to cognitive behaviours. The 
hippocampus and the prefrontal cortex are connected anatomically, but the behavioural 
sequelae of experimental lesions have been shown to be dissociable. This thesis 
investigates the roles of the hippocampus and the prefrontal cortex in the rat, with a focus 
on delayed matching working memory tasks.

Chapter 4 reports on a study which demonstrated a delay-dependent deficit on 
retention of delayed matching to position (DMTP) in the Skinner box following 
prefrontal lesions; hippocampal lesions left performance intact. Neither lesion impaired 
the ability to switch between matching and non-matching rules. Chapter 5 describes an 
experiment which revealed that neither area was involved in postoperative acquisition of 
DMTP. Next, rats with lesions of the two main hippocampal pathways were assessed on 
retention of DMTP in Chapter 6. Lesions of the fornix revealed a delay-independent 
deficit, whereas entorhinal cortex lesions were without effect. Chapter 7 investigated 
recognition memory using a spontaneous novelty preference task. None of the lesions 
impaired performance on this task up to a 2 hour delay, however hippocampal lesions 
showed an impairment when a spatial component was included. Furthermore, there was a 
suggestion of both prefrontal and hippocampal involvement when memory for relative 
recency was assessed. Finally, Chapter 8 investigated a novel task in the Skinner box 
which combined both rules within one session. This task revealed a surprising pattern of 
results, with hippocampal lesions producing a dramatic impairment, whilst prefrontal 
lesions were without effect. Additionally, water maze data provided ample support for a 
hippocampal role in spatial memory.
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Abbreviations

9HB nine-hole box

AChE acetylcholinesterase

CCD continuous conditional

discrimination 

CDM/NMTP conditional delayed matching/ 

non-matching to position 

Cgl cingulate cortex area 1

Cg2 cingulate cortex area 2

CNM continuous matching/ non

matching to sample 

d dorsal

DG dentate gyrus

DMS delayed matching to sample

DMTP delayed matching to position

DNMS delayed non-matching to

sample

DNMTP delayed non-matching to

position

ED extra-dimensional

ERC entorhinal cortex

ERP event-related potential

fMRI functional magnetic resonance

imaging 

Fr2 frontal area 2

Fx fornix

HPC hippocampus

hr hour

IBO ibotenic acid

ID intra-dimensional

IL infralimbic cortex

ITI inter-trial interval

m medial

M2 secondary motor cortex

MD mediodorsal nucleus o f the

thalamus

min minute

MO medial orbital cortex

MTL medial temporal lobe

NAC nucleus accumbens

NMDA V-methyl-D-aspartate

ns not significant

PBS phosphate buffered saline

PET positron emission topography

PFA paraformaldehyde

PFC prefrontal cortex

PrL prelimbic cortex

RAM radial arm maze

SDT signal detection theory

sec second

SEM standard error o f  the mean

V ventral

VI variable interval

VPC visual paired comparison

WCST Wisconsin card sorting test

N.B. The abbreviations listed here are those that 

are used throughout the text, other abbreviations 

may occur but will be clearly indicated in the 

appropriate figure legend.
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Chapter 1 Introduction

The hippocampus (HPC) and prefrontal cortex (PFC) are two regions of the brain that are 

fundamental to cognition. The HPC is implicated in memory and spatial processing 

(O’Keefe, 1983; Olton, 1983; Squire et ah, 2004; Zola-Morgan and Squire, 1992), whilst 

the PFC contributes to processes involved in a variety o f higher cognitive functions, 

including planning and organising goal-directed behaviour, as well as short-term memory 

(Fuster, 1997; Goldman-Rakic, 1996; Miller, 2000). As both HPC and PFC are thought 

to have key roles in a number of diseases, including dementia, a greater understanding of 

these areas is integral in advancing scientific knowledge with a view to establishing 

effective treatment strategies for these conditions. The aim of this thesis is to compare 

the involvement of the HPC and PFC in cognitive behaviours in the rat, by investigating 

both novel and established tasks that are sensitive to disruption of these areas.

Much can be gleaned from the study of patients with gross lesions of these brain 

areas, whether caused by natural events, accidents or as treatments for other illnesses. 

However, these lesions are seldom well controlled in their extent or location, and the 

remaining brain tissue is often damaged, causing behavioural consequences distinct from 

pathology in the area o f interest (Berman and Weinberger, 1990). This is one of the 

many reasons why animal models are useful for understanding the functional organisation 

o f the mammalian brain. Both monkeys and rats have been widely used, providing the 

potential to perform circumscribed lesions of specific brain areas with suitable controls. 

The advantage of rat models is that group sizes can be significantly larger than those 

permissible in the study of higher order animals, such as the monkey, conferring a greater 

potential for validity. Additionally, there is scope for controlling and manipulating 

experimental parameters to an extent not feasible in the human. This introduction begins 

with a brief summary of the neuroanatomy of the rat HPC and PFC, and then goes on to 

provide an overview of the behavioural sequelae of damage to both of these areas, 

covering human, non-human primates and rodent studies, before finally outlining the 

specific aims and strategies addressed within this thesis.

1
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1.1 Neuroanatomv

1.1.1 Rat hippocampus

The hippocampal formation lies within the medial temporal lobe (MTL) of the brain and 

comprises four main regions defined by their connectional, cytoarchitectonic and 

functional properties. These four main regions are the dentate gyrus (DG), the 

hippocampus proper (HPC), the subicular complex and the entorhinal cortex (ERC) 

(Amaral and Witter, 1989; Amaral and Witter, 1995). The HPC can be divided into three 

sub-regions based on differences in pyramidal cell size and connectivity, termed CA1, 

CA2 and CA3; these regions are named after Ammon’s Horn (Latin: Cornu Ammonis), as 

they were thought to resemble the horns of this Egyptian deity (Fitzgerald, 1996). The 

subicular complex consists of the subiculum, presubiculum and the parasubiculum, whilst 

the ERC can be divided into two or more subdivisions (Amaral and Witter, 1989; Amaral 

and Witter, 1995). The hippocampal formation is a C-shaped structure that extends 

longitudinally from the septal nuclei of the basal forebrain, over the thalamus, to the 

temporal lobe, and is thus often discussed in terms of its septotemporal axis, with the 

septal pole being the most rostral (Amaral and Witter, 1995).

These areas are grouped together under the term “hippocampal formation”, due to 

their unique intrinsic connections (see figure 1.1). The DG receives its major input from 

the ERC by way of the perforant path; the granule cells of the DG then project their 

mossy fibres to the CA3 subfield of the HPC, which in turn projects to the CA1 field via 

Schaffer collaterals (Amaral and Witter, 1995). Finally the CA1 field projects back to the 

ERC, both directly and indirectly via the subiculum (Witter et al., 2000). Adjacent 

cortices such as the perirhinal cortex are not included under the term hippocampal 

formation due to connections with the ERC being reciprocal in nature (Amaral and 

Witter, 1995; Burwell and Amaral, 1998b), although there are direct projections from the 

perirhinal cortex to the CA1 region (Liu and Bilkey, 1996).

In addition to its intrinsic connectivity, the HPC has dense reciprocal connections 

to the rest of the brain by way of two main routes, the ERC and the fibres of the fornix 

(Fx). The ERC projects to the entire cortical mantle including motor, auditory, visual and 

somatosensory areas (Insausti et al., 1997; Swanson and Kohler, 1986), as well as being

2



I. INTRODUCTION

the principal relay for this information to the HPC (Witter et al., 1989). The Fx is a fibre 

tract which links the subiculum and HPC with various cortical and subcortical sites, 

including the mamillary bodies, hypothalamic and thalamic nuclei, basal forebrain, 

nucleus accumbens (NAC) and PFC (Aggleton et al., 1992; Swanson et al., 1987), and 

provides the majority of cholinergic inputs to the HPC (Swanson et al., 1987). Fibres 

originate from the pyramidal cells of the HPC and subiculum, and collect in a thicker 

fibre bundle called the fimbria, before leaving the HPC as the Fx (Amaral and Witter,

1995).

Sch

mf

g c -;v '  Fx PP

Figure 1.1 Schematic diagram o f hippocampal circuitry in the rat, adapted from Bliss (1979). 

Commissural fibres from contralateral hemisphere (comm), granule cells o f  dentate gyrus (gc), mossy 

fibres (mf), perforant path (pp), Schaffer collaterals (Sch).

1.1.2 Rat prefrontal cortex

The cortex of the anterior part of the frontal lobe of the brain is commonly designated the 

PFC (Fuster, 1997). There is ongoing speculation as to whether or not there is an area in 

the rat cortex that is equivalent to the PFC of primates (Kolb, 1990b; Preuss, 1995). The 

definition of PFC originally relied on cytoarchitecture, namely the presence of a granular 

cell layer in layer IV of the cortex. However this presents an obstacle in the rat as the 

prefrontal area is in fact agranular (Preuss, 1995). To define the PFC by means of 

cytoarchitecture alone is not practical, due to variability both within and between 

species(Fuster, 1997) and, as such, alternative criteria for inferring homologies between 

brain regions in different species must be taken into consideration. These criteria include

3
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the pattern and relative density of nerve connections and functional correlates resulting 

from lesions and electrical stimulation studies (Uylings and van Eden, 1990).

The most widely accepted definition of the rat PFC is that it is the area innervated 

by the mediodorsal nucleus (MD) of the thalamus (Conde et al., 1990; Divac et al., 1978; 

Groenewegen et al., 1990; Kolb, 1990b; Rose and Woolsey, 1948). However, this 

definition requires further qualification, because not only does the MD project to cortical 

areas outwith the PFC, but the PFC also receives inputs from other thalamic nuclei (e.g. 

the midline and intralaminar nuclei (Groenewegen and Berendse, 1994; Uylings et al., 

2003). As a final refinement, it has been suggested that the only areas which can be 

included in the PFC are those with reciprocal connections to the MD that are stronger 

than the reciprocal connections with other thalamic nuclei (Uylings et al., 2003; Uylings 

and van Eden, 1990).

Based on these criteria, three distinct regions of the PFC can be identified in the 

rat, see figure 1.2 (Dailey et al., 2004; Kesner, 2000; Uylings and van Eden, 1990). The 

lateral PFC includes the dorsal and ventral agranular insular cortices (AID and AIV, 

respectively) and the lateral orbital (LO) cortices. The ventral PFC contains the ventral 

orbital (VO) and ventral lateral orbital (VLO) cortices. The final and most significant 

region in this thesis is the medial PFC which includes a dorsal portion consisting of 

frontal area 2 (Fr2)* and cingulate areas 1 and 2 (Cgl, Cg2), and a ventral portion 

comprising the prelimbic (PrL), infralimbic (IL) and medial orbital (MO) cortices. 

However, some authors dispute the inclusion of the rat Fr2 and Cg areas in the PFC (see 

(Conde et al., 1990; Conde et al., 1995; Preuss, 1995). It is the ventral medial PFC that 

will be targeted in the lesion studies discussed within this thesis, and therefore 

connections primarily with these areas will be discussed below.

Terminology for prefrontal areas varies between authors, with some regions having multiple synonyms. 

The Fr2 region, based on Z illes’ (1995) nomenclature, is frequently referred to as the precentral medial area 

(PrCm). Cgl is often dorsal anterior cingulate, with Cg2 being ventral anterior cingulate, additionally PrL 

is sometimes termed Cg3. In an attempt to provide some level o f  consistency, the terminology o f  Paxinos 

and Watson (1998) will be adopted wherever possible; although these authors use secondary motor cortex 

(M2) in lieu o f Fr2 or PrCm.

4
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A

B

Ventral medial 

Dorsal medial 

Lateral 

Ventral

F igure 1.2 Illustrative diagrams o f the rat PFC, schematics taken from Paxinos and Watson (1998), based 

on Dailey et al (2004). Lateral view, 0.9 mm from the midline (A). Coronal section, approximately 2.7 

mm anterior to bregma, indicated by arrow in A (B). Shadings represent the major subdivisions, not all 

components are present on this section. Dorsal and ventral agranular insular cortices (AID, AIV), corpus 

callosum (cc), genu o f corpus callosum (gcc), cingulate area 1 (Cgl), cingulate area 2 (Cg2), dorsal 

peduncular cortex (DP), frontal association area (FrA), infralimbic cortex (IL), lateral orbital cortex (LO), 

primary and secondary motor cortices (M l and M2), olfactory bulb (OB), prelimbic cortex (PrL), ventral 

orbital cortrex (VO).

The MD nucleus itself can be subdivided based on its cytoarchitecture and its reciprocal 

connections with the PFC; the rostral part of the medial segment projects mainly to the 

PrL and Cgl cortices, while the IL projects to the most medial part of the nucleus

C*1

5



(Groenewegen, 1988). In addition to the connections with the MD nucleus, the PFC has 

an abundance of connections both to other cortical regions and to subcortical structures. 

It receives afferents from the amygdala, ventral tegmentum, hypothalamus, brain stem 

(Divac et al., 1978), and the hippocampal formation (discussed below in more detail). 

Basal ganglia-thalamocortical circuits exist, where multiple inputs from functionally 

related cortical areas project to a restricted portion of the striatum; this striatal region then 

sends converging projections to the globus pallidus and substantia nigra, which then in 

turn project to a specific region of the thalamus. The “closed loop” portion of the circuit 

is completed by the thalamic region projecting back to just one of the original cortical 

areas (Alexander et al., 1986; Groenewegen et al., 1990). Fibres from the medial PFC 

project to the rostral and medial parts of the striatum (Berendse et al., 1992), with the PrL 

projecting specifically to the NAC (Gorelova and Yang, 1997; Groenewegen et al., 

1990).

The PFC also has multiple cortico-cortical connections which are predominantly 

ipsilateral (Uylings et al., 2003); these can be divided into those from sensory regions and 

those from the posterior parietal area (Kolb, 1990a; Kolb, 1990b). The PrL and the 

rostral part of the Cg cortex are extensively connected, but fewer direct projections exist 

between PrL and IL cortices. However there are sparse afferents from the PrL to the IL, 

with slightly more dense projections from the IL to the ventral PrL (Fisk and Wyss, 1999; 

Hurley et al., 1991); both areas have dense connections with the contralateral cortex (Fisk 

and Wyss, 1999). The PrL and IL cortices share a number of common afferents, 

including projections from the agranular insular cortex and the entorhinal and piriform 

cortices (Conde et al., 1995).

When comparing the cortical and subcortical connections between monkey and 

rat a very similar pattern emerges, providing justification for using the rat as a model for 

understanding this brain region (Kolb, 1990a). Most authors are in agreement that, 

despite the relative undifferentiation of the rat PFC useful comparisons can still be made 

(Brown and Bowman, 2002; Uylings et al., 2003). The PrL cortex in particular provides 

the most likely homologue to the dorsolateral PFC of humans and non-human primates 

(Granon and Poucet, 2000; Preuss, 1995).

6
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Swanson (1981) was the first to report a direct projection from the HPC to the 

PFC, specifically from CA1 to the IL (Swanson, 1981). Since then numerous studies 

have replicated this finding with direct projections being shown to exist between the CA1 

region and subiculum and the PrL and MO cortices (Carr and Sesack, 1996; Ferino et al., 

1987; Ishikawa and Nakamura, 2003; Jay et al., 1989; Jay and Witter, 1991; Thierry et 

al., 2000; Verwer et al., 1997). A well established projection also exists between the 

ERC and PrL and IL cortices (Burwell and Amaral, 1998a; Swanson and Kohler, 1986), 

with more lateral regions of ERC projecting to the PrL and more medial regions 

projecting to the IL cortex (Insausti et al., 1997).

1.2 Hippocampus: behavioural findings

1.2.1 Introduction to memory

Memory is the storage of information acquired as a result of specific learning experiences 

(Eichenbaum, 2002; Longstaff, 2000). Rather than being a unitary system, there are 

thought to be multiple memory systems that operate in parallel (Moscovitch, 1992). The 

most unambiguous distinction is between the broad categories of declarative and 

nondeclarative memory (Milner et al., 1998; Squire, 1986; Zola-Morgan and Squire, 

1993). Declarative memory (often called explicit memory) affords the capacity to 

consciously recall facts and events (Eichenbaum, 1997). Declarative learning is fast and 

requires few trials, the memories can be consciously recalled and are easily forgotten 

(Longstaff, 2000). Nondeclarative memory (often called procedural or implicit memory) 

includes the learning of skills and habits, such as riding a bike, or playing a musical 

instrument (Zola-Morgan and Squire, 1993). In contrast to declarative memory, 

procedural memory is acquired gradually and requires a lot of rehearsal; critically, it does 

not involve conscious recall and once established this type of memory can be retained for 

many years (Eichenbaum, 2000; Milner et al., 1998).

Declarative memory can be further subdivided into episodic and semantic 

components (Squire and Zola, 1998). Episodic memory is defined as the capacity to 

recollect individual events which are specific in time and space (Baddeley, 2001; 

Tulving, 1983), whereas semantic memory is general knowledge of factual information

7
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that can be acquired and recalled in isolation (Manns et al., 2003b). For example, 

remembering where you dined and what you ate the previous evening requires episodic 

memory, whereas the knowledge that there are sixty seconds in a minute is purely 

semantic. Another important form of declarative memory is recognition memory, which 

will be discussed in detail later in this introduction.

These different facets of memory were originally delineated through the study of 

amnesic patients (Cohen and Squire, 1980) and the observation that performance on tasks 

that taxed certain types of memory remained intact. Thus declarative and nondeclarative 

memory systems are thought to rely on different neural substrates; for example, the HPC 

and related areas are implicated in declarative memory (Eichenbaum, 1997; Squire, 1992) 

whilst the striatum is implicated in nondeclarative, procedural memory (Da Cunha et al., 

2003; White, 1997). The emergence of novel non-invasive functional imaging methods 

has also advanced our understanding of the different brain areas involved in the various 

aspects of learning and memory (Zola-Morgan and Squire, 1993). The most common 

techniques include measuring blood oxygenation by functional magnetic resonance 

imaging (fMRJ) and task-related differences in regional blood flow using positron 

emission topography (PET) (Fletcher et al., 1997; Zola-Morgan and Squire, 1993). These 

techniques supplement findings from studies of lesioned individuals and provide valuable 

insight into the brain activity that supports memory in normal healthy subjects.

1.2.2 Human data

It is well established that damage to the MTL in humans can result in severe memory 

impairment (Gaffan and Gaffan, 1991; Scoville and Milner, 1957; Squire et al., 2004; 

Zola-Morgan and Squire, 1992). Patient H.M. was the first, and continues to be the most 

thoroughly studied, of such cases; he underwent bilateral surgical removal of the MTL to 

treat severe epilepsy which resulted in a distinctive memory impairment (Scoville and 

Milner, 1957). H.M. suffers from profound memory loss for day to day events, whilst 

retaining normal intellectual ability and intact short-term memory (Corkin, 2002; Scoville 

and Milner, 1957). He suffers from severe anterograde amnesia (loss of memory for 

information acquired after the onset of amnesia), resulting in impaired acquisition for 

events that have a specific spatial and temporal context (episodic memory), and for

8
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general knowledge and factual information (semantic memory) (Corkin, 2002). 

However, recent evidence suggests that his ability to acquire semantic knowledge about 

famous people has not been lost entirely (O'Kane et al., 2004). These impairments occur 

regardless of the sensory modality of the information (Corkin, 2002); this holds true for 

other subjects with damage to the medial temporal lobes (Levy et al., 2003; Levy et al., 

2004; Squire et al., 2001b), in accordance with the MTL receiving inputs from all the 

sensory modalities (Lavenex and Amaral, 2000). H.M. maintains intact nondeclarative 

memory; for example, his performance improves on a mirror-tracing task despite having 

no explicit memory of having experienced the task before (Corkin, 2002). He is also 

impaired on recall of the spatial location of objects in an array (Smith, 1988) - a theme 

that will be revisited later in this introduction.

In recent years many more cases with similar damage have been described, 

including patient R.B., who provided the first detailed post mortem neuropathological 

examination of a patient with severe anterograde amnesia (Zola-Morgan et al., 1986). 

R.B. became amnesic after an ischemic episode, and was shown to have damage 

restricted bilaterally to the entire CA1 field of the HPC (Zola-Morgan et al., 1986). What 

is clear is that patients with damage limited to the HPC region (Rempel-Clower et al., 

1996; Zola-Morgan et al., 1986) have a memory impairment that is less severe than that 

seen in patients with larger lesions that include adjacent cortical areas (Corkin et al., 

1997; Stefanacci et al., 2000). A common feature in all these cases is intact short term, or 

immediate, memory; for example patients with HPC damage are unimpaired on a 

standard test of digit span (Cave and Squire, 1992), and patient H.M. is able to retain two 

or three digit numbers over several minutes, provided rehearsal is allowed during the 

delay (Milner et al., 1998).

There is little doubt that the MTL, and the structures therein, are involved in 

declarative memory (Eichenbaum, 1997; Hasselmo and McClelland, 1999; Squire et al., 

2004; Squire and Zola-Morgan, 1991), as distinct from nondeclarative abilities such as 

habits and skills that are expressed through performance as opposed to recollection 

(Manns et al., 2003a; Squire, 1986). However, there is some debate over whether the 

integrity of these structures is required for both the semantic and episodic types of 

declarative memory. Some studies point to a role for the HPC in both types of memory
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(Bayley and Squire, 2005; Manns et al., 2003a; Manns et al., 2003b; Squire and Zola,

1998), while others implicate the HPC to a greater extent in episodic as opposed to the 

semantic acquisition of factual knowledge (Schmolck et al., 2002; Tulving and 

Markowitsch, 1998; Vargha-Khadem et al., 1997).

Recognition memory is a type of declarative memory that provides the capacity to 

judge recently encountered information as familiar. This can be further subdivided into 

an episodic component (the ability to remember the specific episode in which an item 

was encountered, often referred to as “remembering”, e.g ability to remember someone’s 

name and the context of meeting) and a familiarity component (the ability to recognise 

the item, often referred to as “knowing”, e.g. knowing you’ve met someone before, but 

being unable to remember who they are or under what circumstances you met them) 

(Brown and Aggleton, 2001; Manns et al., 2003a; Yonelinas et al., 2002). Dissociating 

these two facets of recognition memory is a complicated matter, but there is evidence to 

suggest that HPC damage affects both “knowing” and “remembering” components 

(Manns et al., 2003a; Reed and Squire, 1997).

Functional neuroimaging studies have been crucial in furthering our 

understanding about the various functions of the HPC in the intact brain. These studies 

have confirmed the involvement of the HPC in the encoding and retrieval o f episodic 

memory (Cabeza and Nyberg, 2000; Yancey and Phelps, 2001), with the HPC thought to 

be critically involved in representing relationships amongst various objects and events 

(Cohen et al., 1999). For example, a PET study demonstrated greater HPC activation 

during a task that required learning an association between two pictures than when these 

two items had to be encoded separately (Henke et al., 1997). Dissociations have also 

been observed between the activity o f different brain regions within the MTL depending 

on the type of episodic memory being retrieved e.g. autobiographical events versus 

general knowledge and public events (Maguire et al., 2000).

Imaging studies also suggest that the detection of novelty depends on the HPC to 

some extent (Tulving and Markowitsch, 1997; Yancey and Phelps, 2001). In a matching 

task using complex colour scenes the HPC shows a greater signal change when subjects 

are required to match and maintain novel as opposed to familiar stimuli (Stem et al.,

2001). A separate fMRI study reports HPC activation that is maximal where the overall
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degree of novelty is largest when learning category-exemplar word pairs (e.g. 1st pair- 

dog... boxer, 2nd pair- stone ...granite (new category and exemplar); this contrasts with 

maximal PFC activation when there is a change in a category-exemplar pairing (e.g. 1st 

set- dog...boxer, 2nd set- sportsman...boxer (new category, same exemplar)) (Dolan and 

Fletcher, 1997). Furthermore, in humans HPC damage is shown to reduce characteristic 

intracranial event-related potentials (ERPs) upon presentation of novel stimuli (Knight, 

1996). These studies all provide strong evidence for the involvement of the HPC in 

registering stimulus novelty in the human.

An important factor in many patients with damage to the MTL is the presence of a 

temporally graded retrograde amnesia (Bayley et al., 2003; Corkin, 2002; Kapur and 

Brooks, 1999; Manns et al., 2003b; Rempel-Clower et al., 1996; Stefanacci et al., 2000), 

that is more profound loss of recent as opposed to remote memories. This phenomenon 

has been instrumental in the development of theories involving the HPC in consolidation 

of memory processes (Squire and Alvarez, 1995). These theories suggest that those 

memories that were acquired nearer the amnesic episode are more likely to be susceptible 

to disruption, with the HPC having a time-limited role in information storage, and that 

reorganisation, or “consolidation” of memories occurs with the neocortex gradually 

coming to support stable long-term storage (Murray and Bussey, 2001). Indeed, these 

findings have been replicated in animal studies where animals were trained at two or 

more distinct times prior to bilateral damage of the HPC system before being assessed on 

postoperative retention (Squire et al., 2001a; Sutherland et al., 2001; Wiig et al., 1996; 

Winocur, 1990; Winocur et al., 2001; Zola-Morgan and Squire, 1990). However, the 

water maze has yet to reveal such a distinct temporal gradient of retrograde amnesia in 

the rat (Clark et al., 2005a; Mumby et al., 1999).

Other authors propose an alternative theory for the involvement of the HPC in 

memory consolidation, namely the multiple-trace model (Moscovitch and Nadel, 1998; 

Nadel et al., 2000). In this view the HPC is always involved in the storage and retrieval 

of episodic memory, and does not have a time-limited role. This view is substantiated by 

neuroimaging studies which suggest that retrieval of remote memories elicit just as much 

HPC activation as retrieval of recent memories (Nadel and Moscovitch, 2001; Ryan et al.,

2001). Furthermore, in this model a clear distinction is made between episodic and
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semantic memory, with the latter becoming independent of the HPC and stabilised within 

the cortex (Nadel et al., 2000).

1.2.3 Monkey data

Monkey models of amnesia have been successfully developed in which behavioural 

impairments are comparable with those seen in amnesic patients (Zola-Morgan and 

Squire, 1985). The prototypical recognition memory task in the monkey is that of 

delayed non-matching to sample (DNMS). DNMS and its variants are typically carried 

out in an apparatus called the Wisconsin General Test Apparatus (WGTA), which is a 

chamber that has an opaque shutter which provides the monkey with access to food wells 

when in the raised position (Ridley and Baker, 1993). This task involves the monkey 

being presented with a baited object followed by a delay, and then choosing between the 

previously encountered object and a novel object to receive a reward: choosing the novel 

object is rewarded in non-matching, choosing the previously encountered object is 

rewarded in the matching version (DMS). The side of the correct object is randomised 

across trials and stimuli can be either trial unique or repetitive, with repetitive stimuli 

providing a greater challenge to the animal and thus requiring more training (Mishkin and 

Delacour, 1975).

Zola-Morgan and Squire (1985) demonstrated that monkeys with aspirative MTL 

lesions involving HPC and the amygdala were impaired on four different tasks which are 

known to be sensitive to human amnesia. Monkeys were impaired on delayed retention 

of object discriminations, concurrent discrimination learning (eight separate pairs of 

objects presented five times each randomly across a session with the same object in each 

pair always being rewarded, therefore all eight discriminations must be learnt 

simultaneously), DNMS and delayed-response tests, which had previously been 

suggested to be sensitive to MTL damage (Mahut et al., 1982; Moss et al., 1981). Zola- 

Morgan and Squire (1985) elaborated on these findings by demonstrating that 

impairments were exacerbated by an increase in the delay, or by distraction during the 

delay. Monkeys with these lesions had previously been shown to be unimpaired on 

learning motor and skill based tasks, such as complicated manipulation of food rewards 

and pattern discrimination learning (Zola-Morgan and Squire, 1984). This corresponds
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nicely with the human literature (Corkin, 2002; Squire et al., 2004) and serves to support 

the viability of this animal model of the human amnesic syndrome. Indeed when amnesic 

patients are tested on tasks explicitly designed to replicate the animal models of DNMS 

and object discrimination, they are impaired to a similar degree as the monkeys (Owen et 

al., 1995; Squire et al., 1988). Further support for involvement of the human HPC in the 

DNMS task comes from an fMRI study which confirms that during the encoding phase of 

this task a greater activation is elicited in the right HPC than in a control perceptuomotor 

task (Monk et al., 2002). In another study long (15 sec) delays in DNMS were associated 

with greater activity in the HPC than short (5 sec) delays (Elliott and Dolan, 1999), which 

correlates with the delay-dependent deficit seen in both monkeys (Alvarez et al., 1995) 

and humans (Owen et al., 1995). In addition, metabolic rate, as measured by a local 

cerebral glucose utilisation technique, was shown to increase in the HPC of monkeys 

performing a delayed object alternation task (Friedman and Goldman-Rakic, 1988).

There is substantial evidence to corroborate the findings reported above, with 

monkeys showing delay-dependent impairments in DNMS following circumscribed HPC 

damage induced by a variety o f techniques (aspirative: Zola-Morgan and Squire, (1986); 

ischemic damage: Zola et al., (2000); Zola-Morgan et al., (1992); radio-frequency 

lesions: Alvarez et al., (1995); Zola et al., (2000); ibotenic acid (IBO) lesions: Beason- 

Held et al., (1999); Zola et al., (2000)). In contrast to this body of work is the study by 

Murray and Mishkin (1998) which reported no deficit on DNMS following excitotoxic 

lesions of the HPC and amygdala. However, this discrepancy might be accounted for by 

the fact that the monkeys received extensive preoperative training on the task, in contrast 

to the studies discussed above. This training may have provided the animals with 

sufficient practise at retaining novel objects in memory to overcome any postoperative 

impairment, additionally the IBO lesions were performed in two sequential surgery 

phases which may add to the inconsistencies (Murray and Mishkin, 1998; Zola et al., 

2000). As in humans, the degree of memory impairment in monkeys has been shown to 

be related to both the locus and extent of damage within the MTL, with the most severe 

deficits arising from damage that encompasses the HPC, adjacent ERC and perirhinal 

cortex (Zola-Morgan et al., 1994).

13



Monkeys with damage limited to the HPC have also been shown to be impaired in 

a delay-dependent manner on the visual paired-comparison task (Zola et al., 2000), a task 

known to be disrupted in amnesic patients (McKee and Squire, 1993). This task was 

adapted for the monkey by Bachevalier et al (1993), and involved the monkey being 

presented with one new picture along-side one recently presented picture, with the 

tendency to look at the new picture being measured. Monkeys have also been shown to 

be impaired on a delayed recognition span test in which the animal is required to identify 

the novel stimulus in an increasing array of previously presented stimuli (Beason-Held et 

al., 1999). The animals were equally impaired on spatial, colour and object conditions of 

the test, with the number of correct responses before an error constituting the span score 

(Beason-Held et al., 1999). Monkeys with Fx transection are impaired on conditional 

visuomotor associations using a touch-screen (Brasted et al., 2002) and conditional 

object-choice discriminations using a non-spatial paradigm (Ridley et al., 2002). These 

results suggest that, in the monkey at least, the HPC can be regarded as having an 

important and widespread role in memory processes, and significantly, a role that is not 

limited to the spatial element.

1.2.4 Assessing cognitive behaviour in the rat

Before reviewing the behavioural literature concerning the rat, it is necessary to provide a 

brief introduction to the most common methods employed in assessing cognitive 

behaviour. In cognitive testing one can only make inferences regarding mnemonic 

capabilities based on overt behaviours displayed by the animal (Sarter, 2004; Steckler and 

Muir, 1996). This usually comprises of either learning to repeat a behaviour that results 

in a palatable reward, or avoiding a behaviour that results in an aversive situation for that 

animal, e.g. receiving a footshock, or even just receiving slightly less food!

1.2.4.1 Mazes

A number of maze paradigms exist for the study of spatial working memory in the rat. 

These are centred around mazes of different shapes and comprising of different numbers 

of arms, for example the T-maze (or Y-maze) and the radial arm maze (RAM). These 

mazes generally require the rat to “navigate” through the maze to locate a hidden food
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reward positioned at the far end of an arm, based on a variety of different rules. One of 

the most common procedures in the T-maze is the delayed alternation task, which 

involves a free series of trials with the opposite arm to the previously visited arm being 

baited. A variant of this is the forced alternation or pair-trial delayed alternation 

procedure, in which the rat is permitted entry to only one arm on the first run, followed 

by a delay, and then must choose the opposite arm in the choice run to receive the reward 

(Dudchenko, 2004). It should be noted that this task is sometimes called DNMTP; 

however, authors often refer to it as DNMS. For the purposes of this discussion, the task 

will always be referred to as DNMTP, because the animal knows the location of the 

required response before the delay, in comparison with a true DNMTS task where the 

response position is not predictable until after the delay. These tasks are thought to rely 

on representation of extra-maze cues, although Dudchenko et al (2001) have shown that 

rats are still able to perform this task in the absence of cues, which suggests a variety of 

strategies could be in operation.

The standard RAM (Olton, 1987) procedure uses a maze with eight arms radiating 

out from a central platform, each of which has a baited food well at its distal end. 

Working memory, as applied to animal cognition, is defined as a short term memory for 

an object, stimulus or location that is used within a testing session and which is readily 

forgotten (Dudchenko, 2004). It is distinct from reference memory which is typically 

acquired with repeated training and is memory for events that happen in all sessions, for 

example remembering the general rule that food pellets are present at the end of a maze 

arm (Dudchenko, 2004; Olton, 1983). Working memory is assessed in the RAM by 

measuring the rats’ ability to avoid re-visiting arms from which it has already received a 

reward within a session. Jarrard et al (1983) developed a version of the RAM which 

allows working and reference memory to be assessed simultaneously. In this version the 

same four arms are baited daily and entry into a never-baited arm constitutes a reference 

memory error; re-entry to one of the four baited arms within a session would constitute a 

working memory error.

The Morris water maze (Morris, 1984; Stewart and Morris, 1993) has been used 

extensively as a means for testing spatial learning and memory in the rat. This task was 

designed to eliminate the possibility of intra-maze cues, such as scent-marking. The task
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requires rats to find a submerged platform in a large circular pool of opaque water. In a 

typical reference memory version, the platform remains in the same location in the pool 

across days, and rats learn the position of the platform to a high degree of accuracy based 

on the spatial relationship between the platform and extra-maze landmarks. This task can 

also be modified to assess working memory by moving the platform to a new location 

each day and observing any reduction in latency to find the platform across trials (Cassel 

et al., 1998; Stewart and Morris, 1993). This task will be discussed in further detail 

within the relevant experimental chapters.

1.2.4.2 Automated operant testing

Despite the value of such maze tasks, they tend to be time-consuming to run and labour 

intensive, which naturally imposes limits on the number of animals that can be run and 

the number of trials attempted (Rawlins and Deacon, 1993). Automated operant tasks 

assess an animal’s performance on a task, which usually consists of a learned response to 

a stimulus, reinforced by a food or liquid reward or avoidance of an aversive stimulus. 

Operant testing is typically conducted in one of two pieces o f apparatus, the Skinner box 

and the nine-hole box (9HB) (Robbins et al., 1993), in which every aspect of the test is 

under computer control. Both boxes are enclosed in sound attenuating chambers and 

require rats to make lever presses (Skinner box) or nose-pokes into holes fitted with infra

red beams (9HB). Multiple boxes can be controlled simultaneously by one computer 

allowing many animals to be run at the same time, and computer control means the speed 

of each trial is significantly shorter than that taken in a traditional maze test. The greater 

number of animals that can be tested and the greater number of trials that can be assessed 

all serve to increase the statistical power of the results obtained (Dunnett, 1993).

1.2.5 Rat data

Performance on DNMTP in the T-maze is shown to be indisputably impaired following 

HPC damage, whether caused by excitotoxic lesion (Bannerman et al., 1999; Bannerman 

et al., 2002a; Deacon et al., 2001), aspiration (Aggleton et al., 1986) or transection of the 

Fx (Aggleton et al., 1995; Bannerman et al., 2001b; Bussey et al., 2000; Rawlins and 

Olton, 1982; Shaw and Aggleton, 1993). A similar pattern emerges when considering the
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RAM, with HPC damage resulting in impairment in spatial working memory tasks 

(Cassel et al., 1998; Jarrard et al., 2004; Liu and Bilkey, 2001; Mair et al., 1998; Winters 

et al., 2004). In a four-arm plus shaped maze, inactivation of the HPC with lidocaine, an 

anaesthetic, resulted in an impairment in a place learning task, where the position of the 

rewarded arm remained constant throughout testing (Chang and Gold, 2003). However, 

in a response version, where the relationship between the start and goal arms was always 

the same (e.g. 90°), these same animals actually showed an enhancement of performance 

when compared with controls (Chang and Gold, 2003). This effect was also shown using 

a plus maze located in a water maze pool, where again HPC inactivation actually 

promoted performance of a response task (Schroeder et al., 2002). Thus it appears that 

by removing the contribution of the HPC it is possible to enhance learning in a response 

task, perhaps by preventing the ineffective application of spatial strategies.

Rats with HPC damage have also been assessed on a variety of non-spatial 

DNMS tasks. For example, rats with HPC lesions were not impaired on a version of the 

Y-maze that required the rat to choose the arm based on distinctive goal boxes (Aggleton 

et al., 1986). Similarly, no impairment was seen in HPC-lesioned rats on a version of the 

RAM where the baited arms were indicated by inserts of different materials (Jarrard et 

al., 2004); although Olton and Feustle (1981) demonstrated a significant impairment in 

this non-spatial version of the RAM following Fx lesions. A rat version of the DNMS 

task has been developed using trial-unique objects in a runway consisting of two identical 

goal areas (Mumby et al., 1990). This task has been used extensively in an attempt to 

establish the involvement of the HPC in DNMS, with results ranging from little or no 

impairments following HPC damage (Mumby et al., 1992; Mumby et al., 1995) to 

significant delay-dependent deficits (Clark et al., 2001). However, ischemia-induced 

HPC damage results in severe DNMS impairments (Mumby et al., 1996; Wood et al., 

1993), despite this damage being restricted to the CA1 region of the HPC. The 

paradoxical effect o f restricted damage exposing a greater impairment than total HPC 

ablation (Mumby et al., 1996) is thought to be due to some extra-HPC damage induced 

by the ischemia; indeed focal cytotoxic injections in the CA1 region leave DNMS 

performance intact (Duva et al., 1997). Evidence implicates the rhinal cortex (lateral 

ERC and perirhinal cortex) as being critical for performance on DNMS (Mumby and
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Pinel, 1994). Furthermore, an alternative DNMS test has been developed which relies on 

the rats’ innate preference for exploring novel over familiar objects (Ennaceur and 

Delacour, 1988). Thus object recognition memory can be assessed without the need for 

extensive training (Ennaceur and Delacour, 1988); this spontaneous novelty preference 

task is discussed in detail in Chapter 8, where experimental results are also reported.

Recognition memory can also be assessed in a task in which the rat is required to 

dig in cups of artificially scented sand and remember the odours. Animals are introduced 

to a sequence of different odours by digging for food rewards buried deep in the cups, 

once they have been exposed to the sequence they are then tested for either recognition of 

odour or sequential order. The recognition test is a single-choice test in which the rat is 

presented with two cups, one containing a novel odour and the other containing one of 

the odours from the sequence, and the rat is rewarded for choosing the novel odour. The 

sequential order test is also a single-choice test where the rat is presented with two odours 

from the original sequence and is rewarded for selecting the odour that appeared earlier in 

the sequence. Using these tests it has been shown that rats with HPC lesions are able to 

discriminate and remember the odours, as illustrated by the recognition test, but they are 

impaired upon remembering the order of the sequence (Fortin et al., 2002; Kesner et al., 

2002). Dudchenko et al (2000) reported a similar test where they trained rats in an odour 

span task, rats were trained to sequentially non-match an increasing number of odours; 

when tested postoperatively, rats with neurotoxic lesions of the HPC performed as 

controls, even up to 24 odours. However a separate group of rats were trained on a 

spatial span task, where they had to remember an increasing number of spatial locations, 

HPC lesioned rats were able only to recall one spatial location before performance 

dropped to chance (Dudchenko et al., 2000). These results clearly implicate the HPC in 

separating sensory events in time and suggest a role for mediating associations between 

events that constitute elements of episodic memory.

Further support for involvement of the rat HPC in episodic-type memory comes 

from a study designed to test this memory explicitly. Ergorul and Eichenbaum (2004) 

trained rats to remember single training episodes, each composed of a series of odours 

presented in different locations on an open field. Rats were then presented with a choice 

between an arbitrarily selected pair of the previous odours in their original positions and
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were rewarded for choosing the stimulus that occurred earlier in the sequence; normal 

rats were shown to use a combination of spatial and olfactory cues to distinguish between 

the stimuli. However, rats with HPC lesions performed at chance and were impaired at 

integrating the various components of the information (“what”, “where” and “when”), 

despite being able to perceive the different spatial and odour cues (Ergorul and 

Eichenbaum, 2004). This result may also reflect an impairment in the ability to 

remember the order of the sequence, providing further impetus to the HPC being critical 

for episodic memory.

1.2.6 The hippocampus and spatial memory

The involvement of the HPC in tasks that require memory for spatial information is one 

o f the most universally accepted doctrines regarding this structure, whether it has an 

exclusive role in this type of memory is worthy of considerable debate. The most 

compelling evidence for this involvement arises from the discovery of so-called place 

cells in the rat HPC. Unit activity recordings of cells in the HPC of freely moving rats 

demonstrated that there were certain units that fired maximally only when the rat was in a 

specific position on the testing platform (O'Keefe and Dostrovsky, 1971). The firing 

activity in these units, or place cells, has been shown to be independent of sensory 

stimuli, by virtue of maintained firing following modifications such as rotating the 

platform, changing the surrounding environment, or turning off the room lights (O'Keefe, 

1976; O'Keefe and Dostrovsky, 1971; Quirk et al., 1990). Place cell activity has even 

been recorded in blind rats giving further support to the suggestion that this firing is 

independent of any visual environmental cues (Save et al., 1998). These findings led to 

the cognitive map theory which postulates that the HPC is the neural substrate for an 

allocentric cognitive representation of environmental space (Nadel, 1991; O'Keefe, 1991; 

O'Keefe and Nadel, 1978). There has been some investigation of place cells in the HPC 

of the monkey, providing evidence for these location-specific cells (Ono et al., 1993) and 

also cells whose firing is dependent on the direction of auditory and visual stimuli 

(Tamura et al., 1992). In contrast, a separate study in monkeys found no evidence for 

place cells, and instead located cells that were maximally activated in response to spatial 

views (Rolls, 1999).
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Some authors argue that this spatial mapping theory is too narrow and that spatial 

memory is merely an example of a broader category of tasks that require the HPC (Squire 

and Cave, 1991). Unit activity was recorded in rats performing an odour-guided non

matching to sample task using different locations on an open platform (Wood et al.,

1999). Over half the recorded cells were associated with nonspatial variables, such as the 

odour or the rule in question (matching or non-matching), furthering the idea that the 

HPC has a broader role in information processing than is allowed by the cognitive map 

theory (Wood et al., 1999).

Impairment of allocentric spatial memory is a hallmark of HPC damage in the 

human (Holdstock et al., 2000; Smith, 1988). When patients with unilateral HPC 

removal were tested on a virtual version of the water maze task, they were found to be 

severely impaired compared with both age-matched controls and patients with damage 

outside the temporal lobes. This impairment was irrespective of which hemisphere had 

been damaged (Astur et al., 2002). The HPC has also been implicated in learning and 

reversing associations between stimuli and spatial locations; subjects were observed 

under fMRl whilst performing a stimulus-compatability task, where buttons (1,2,3) 

corresponded to different digits (1,2,3). When an incompatible rule was applied, e.g. 

press button 3 for digit 1, HPC activity was observed (Casey et al., 2002). However, 

humans with HPC damage are capable of remembering spatial information provided they 

have extensive premorbid experience of the environment in question, for example the 

neighbourhood they grew up in, or their family home (Corkin, 2002; Rosenbaum et al., 

2000; Teng and Squire, 1999). This preservation of spatial information is similarly true 

in rats which are exposed to a complex environment prior to excitotoxic lesioning of the 

HPC (Winocur et al., 2005). However, rats that received extensive training early in life 

on the water maze were impaired on remote memory for this task following HPC lesions 

(Clark et al., 2005b).

One of the most characteristic impairments following HPC damage in the rat is 

that of the reference memory task in the water maze (Bannerman et al., 1999; Broersen, 

2000; Cassel et al., 1998; Duva et al., 1997; Galani et al., 1998; Good and Honey, 1997; 

Gould et al., 2002; Liu and Bilkey, 2001; Morris et al., 1982; Richmond et al., 1999; 

Wright et al., 2004). Indeed this task is used in this thesis as a behavioural screen to

20



S I \  I Ki ' ! !< >\

validate the integrity of the HPC lesions. The HPC does not function in isolation; rather 

it is thought to act in concert with adjacent cortical areas such as the ERC and postrhinal 

cortex, with multiple routes proposed for the relay of spatial information to both the HPC 

and subiculum. However lesion studies of these discrete cortical areas fail to confirm 

their direct involvement in spatial processing, although this may merely reflect the fact 

that these lesions only partial disconnect the HPC, due to the presence of alternative 

pathways (Aggleton et al., 2000).

1.2.7 Functional differentiation

There is a widely held opinion that the HPC is functionally differentiated along its 

septotemporal axis (Moser and Moser, 1998b); however, this thesis does not attempt to 

address this topic and as such only a brief summary follows. The majority of evidence 

comes from studies in the rat, with dorsal and ventral HPC lesions showing functional 

heterogeneity in a delayed alternation task in an operant chamber (Maruki et al., 2001) 

and in spatial learning in the water maze (Moser et al., 1993). Further evidence for 

differentiation along this axis comes from studies comparing dorsal, ventral and complete 

HPC lesions on a variety of tests including the water maze, elevated T-maze, locomotor 

activity and the differential reinforcement of low rates task, which requires the rat to 

suppress responding in an operant chamber until some minimum time has elapsed 

(Bannerman et al., 1999; Bannerman et al., 2002a). A study on recognition memory in 

the monkey failed to reveal any correlation between lesion size and performance, but, as 

the authors highlight, the study was not designed to test this supposition, and as such 

group sizes were relatively small (Zola et al., 2000). Of significance is that the lesions 

were intended to remove the entire HPC uniformly, so there were only three monkeys 

with minimal lesions; if this minimal lesion was sufficient to induce the maximal deficit 

then no correlation could emerge (Zola et al., 2000; Zola and Squire, 2001).

In addition to the debate over functional differentiation in the HPC, there is the 

issue of whether the neurons that are responsible for encoding and retrieving spatial 

memories are localised or distributed diffusely throughout the HPC. Moser and Moser 

(1998a) investigated this issue by inactivating small regions of the HPC in pretrained rats 

prior to a retention test in the water maze. By systematically varying the volume of
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dorsal and ventral HPC lesions they were able to show that successful retrieval required 

the integrity of the entire dorsal 70% of the HPC. This suggests that normal encoding and 

retrieval of memories relies on a widely distributed HPC network and not on a specific 

localised ensemble of neurons.

Many studies have been explicitly designed to test the contribution of adjacent 

hippocampal cortical areas to certain types of memory. It is generally agreed that there is 

at least some dissociation between the effects of the perirhinal cortex and the HPC, with 

these lesions having little or no effect on spatial memory (Ennaceur et al., 1996; Machin 

et al., 2002; Winters et al., 2004; Winters and Bussey, 2005), whilst being implicated in 

certain types of recognition memory (Wan et al., 1999). The role of the ERC in spatial 

and other types of memory is less clear-cut (Bannerman et al., 2001b; Eijkenboom et al., 

2000; Good and Honey, 1997) and this area will be further investigated and discussed 

within this thesis.

1.3 Prefrontal cortex: behavioural findings

1.3.1 Human data

One of the earliest and best-known cases of prefrontal damage is that of Phineas Gage, a 

railroad constructor foreman, who was the victim of a horrific accident in 1848. The 

accident arose from an explosion, which resulted in a pointed tamping iron penetrating 

Gage’s face and exiting through his skull, inflicting massive damage to the frontal lobes 

of his brain. Remarkably, Gage survived this ordeal and lived for a further 14 years, 

which allowed the considerable changes in his personality to be well documented. 

Before the accident, Gage was responsible and socially well-adapted, but following it he 

exhibited profanity, poor planning, impulsivity and irreverence, whilst remaining able- 

bodied and of sound intelligence (Harlow, 1848, as cited in Fuster, 1997 and Damasio et 

al, 1994). The damage is thought to have involved both left and right PFC, and provided 

the first insight into the function of this area in human cognitive and emotive processes 

(Damasio et al., 1994). It follows that one of the most important roles of the frontal lobes 

is often believed to be for social and personality development and self-awareness (Stuss 

and Alexander, 2000). For example, impaired social and moral reasoning (Anderson et
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al., 1999) and insensitivity to future consequences (Bechara et al., 1994) are often 

common in patients with frontal damage.

“Executive function” is the umbrella term used to describe the complex 

coordination of cognitive processes thought to engage the PFC and which is necessary for 

higher cognitive functions such as language, planning and problem-solving (Baddeley, 

1992; Duncan, 2001; Duncan and Owen, 2000; Fuster, 1997; Miller, 2000; Stuss and 

Alexander, 2000). Working memory is an example of this type of process and is the 

ability to hold, manipulate and monitor information “on-line” whilst constantly updating 

and discarding information that is no longer relevant (Goldman-Rakic, 1990). There is 

abundant evidence to suggest that this type of memory is supported by the PFC (Smith 

and Jonides, 1999), for example, patients with frontal lobe damage are impaired on both 

delayed alternation and delayed response paradigms (Freedman and Oscar-Berman, 

1986). Neuroimaging methods in healthy individuals have also been instrumental in 

establishing the involvement of the PFC in working memory (Cabeza and Nyberg, 2000), 

with fMRI studies confirming the activation of PFC during tasks such as the sequential- 

letter (/7-back) memory task (Cohen et al., 1997; Smith and Jonides, 1999). In this task 

the subject is presented with a sequence of consonants on a computer screen; in the 0- 

back condition they must respond to a single pre-specified target letter. In the 1-back 

condition the target is any letter identical to the one preceding it, and then in the 2-back 

condition the target is any letter identical to the one presented two trials previously, and 

so on (Cohen et al., 1997).

fMRI has also revealed the activation of the PFC when subjects are required to 

perform two tasks concurrently, but not when each task is performed in isolation 

(D'Esposito et al., 1995). For example, activation of the PFC is detected when subjects 

perform an auditory and a visual choice reaction task concurrently (Szameitat et al.,

2002). This dual-task performance requires an enhanced level of executive control to 

coordinate the competing streams of information, and the imaging data suggest that this 

executive function is localised in the PFC (Szameitat et al., 2002). However, there is 

ongoing debate regarding functional specificity of the different subdivisions of the PFC 

and working memory, with a number of alternative models being proposed (Muller et al.,

2002). Briefly, the “type of information” theory argues for fractionation based on
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different stimulus categories, for example spatial v. object memory (Goldman-Rakic,

1996), whilst the “type of processing” model assumes fractionation based on the degree 

to which memory content must be manipulated or monitored (D'Esposito et al., 1998; 

Owen, 1997; Owen et al., 1999).

The symptoms of disorganisation and problems with planning and decision 

making are common in patients with frontal lobe damage (Burgess, 2000; Gershberg and 

Shimamura, 1995; Shallice and Burgess, 1991). Deficits in attention are also commonly 

reported following PFC damage, for example in a task requiring stimuli to be counted 

patients are only impaired when stimuli are presented at a slower rate, suggesting a lack 

of voluntary attentional mechanisms (Wilkins et al., 1987). Subjects with frontal lesions 

are also known to be more susceptible to distractors, for example in an auditory DMS 

task, revealing a failure in the inhibitory control of sensory processing (Chao and Knight, 

1995; Chao and Knight, 1998).

Like the HPC, the PFC is thought to have a role in episodic memory (Yancey and 

Phelps, 2001), although the PFC may only be implicated when highly elaborate retrieval 

strategies are required (Fletcher et al., 1997). In patients with frontal lobe lesions, 

memory for the exact source of information is impaired; patients can remember facts that 

have been presented to them in experimental sessions, but are unable to remember where 

and when those facts were learnt, often attributing it incorrectly to another source, e.g. 

seen in a magazine (Janowsky et al., 1989b). These same patients showed intact word 

recognition and cued recall, but were impaired on free recall (Janowsky et al., 1989a). 

This impairment is of particular interest as it is thought to result from a deficit in 

subjective organisational strategies that usually serve to aid this type of free recall 

(Gershberg and Shimamura, 1995); for example, grouping words into categories based on 

semantic meaning, such as fruit versus animals.

The human PFC has been shown to have a role in the temporal ordering of 

memory; frontal lobe damage is known to cause impairments in judging the relative 

recency of items (Milner et al., 1985; Milner et al., 1991; Milner and Petrides, 1984). 

However, this impairment can be overcome by providing suitably salient associations 

with the item, like including an action such as “squeeze the sponge” (McAndrews and 

Milner, 1991). In further support of this idea, frontal-damage patients were unable to
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reproduce the correct order of a list of 15 words, despite being able to recognise the 

words themselves (Shimamura et al., 1990). Additionally, an fMRI study of healthy 

individuals confirmed that in a verbal recency judgment task the PFC is more active than 

in a control non-mnemonic task (Zorrilla et al., 1996).

1.3.2 Monkey data

The behavioural deficit induced by frontal ablation in the monkey was first described by 

Jacobsen (1935; 1936). This deficit was shown in the delayed-response test, which 

requires the short-term retention of sensory cues, and differs from the DNMS test 

discussed above in that it requires the position of a baited object to be retained over the 

delay. Each trial involves the monkey being shown food being placed under one of two 

identical objects, then follows a delay where the objects are out of reach or sight, finally 

the monkey is presented with both objects and must choose the correctly baited object in 

order to receive the food reward (Fuster, 1997; Jacobsen, 1936).

Deficits on this delayed response task have been replicated consistently in a 

wealth of studies on monkeys with frontal damage (Mishkin and Pribram, 1956; Pribram 

et al., 1952; Pribram, 1961). Monkeys have also been shown to be impaired on delayed 

alternation following lesions of the PFC (Goldman et al., 1971; Mishkin, 1957; Mishkin 

and Pribram, 1955), along with impairments on delayed matching using colours 

(Passingham, 1975) and DNMS (Kolb, 1990a; Mishkin and Appenzeller, 1987). Deficits 

are also reported in a spatial working memory task that involved monkeys having to 

locate peanuts from behind 25 different doors, the lesioned monkeys would revisit 

already visited doors (Passingham, 1985). Thus PFC damage induces impairments in 

tasks where information must be retained across a delay interval, and deficits are apparent 

under both spatial and non-spatial conditions.

1.3.3 Rat data

Prefrontal damage affects the way that rats respond in the T-maze, with a reduction seen 

in spontaneous alternation following PrL lesions (Delatour and Gisquet-Verrier, 1996). 

Delay-dependent deficits have been routinely shown in the DNMTP task (or forced 

alternation), in the T-maze, thus indicating an impairment in spatial working memory
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(Brito and Brito, 1990; Delatour and Gisquet-Verrier, 1996). Rats with aspirative PFC 

lesions were impaired on a NMTP in the Y-maze, but the same rats were'not impaired on 

a non-spatial Y-maze task using goal boxes to indicate the correct arm, suggesting that 

PFC damage affects performance only under certain circumstances (Shaw and Aggleton, 

1993). A NMTP T-maze task that allowed reference memory to be assessed in addition 

to working memory, revealed effects of PrL lesions on the working memory component 

only (Granon et al., 1994). There is also evidence for greater impairment on MTP 

relative to NMTP, which is thought to reflect the more effortful nature of the MTP rule, 

given that it uses a rule that is counter to the animals’ innate tendency to alternate 

between the two arms (Dias and Aggleton, 2000; Granon et al., 1994). However, 

Aggleton et al (1995) report no such deficit in a forced alternation task even when the 

delay was 60 sec, and a group of rats with lesions of the PrL/IL areas were able to 

overcome an initial deficit when trained on DNMTP in a plus maze (Delatour and 

Gisquet-Verrier, 2000). These discrepancies may reflect subtle differences in the task 

parameters and differences in lesion techniques and locations.

Reports of PFC lesion effects on the standard eight arm RAM test vary, ranging 

from impairments during acquisition which are transient (Fritts et al., 1998; Joel et al., 

1997a), to no discemable impairment whatsoever (Delatour and Gisquet-Verrier, 1996). 

However, this task is thought to rely predominantly on unlearned, spontaneous strategies 

which may make it less sensitive to PFC damage (Granon and Poucet, 2000). Rats with 

medial PFC lesions were not impaired on a two choice DNMP task in the RAM, provided 

the arms were selected at random; alternatively, if the same two arms were used in every 

trial then the rats did show an impairment, suggesting an increased susceptibility to 

interference between trials (Porter and Mair, 1997). Impairments have also been shown 

following inactivation o f the PrL in the delayed win-shift task in the RAM, where four 

arms are baited in the first phase, followed by a delay, and then the remaining four arms 

must be chosen (Di Pietro et al., 2004). An impairment in a similar experimental set-up 

was only apparent when the PrL was inactivated between the training and test phases and 

not when inactivated before training (Seamans et al., 1995), implicating the region 

specifically in retrieval or use of information acquired during the delay.
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Additionally, studies have suggested that the rat PFC is involved in the ability to 

make effort-based decisions. For example, rats were trained preoperatively in a cost- 

benefit T-maze, where a choice was made between climbing a barrier to access an arm 

containing a high reward, or choosing the arm with no barrier for a low reward (Walton et 

al., 2002). Prior to surgery rats consistently chose the high reward, but following 

excitotoxic lesions to the PFC they were much more likely to select the arm with the low 

reward. This suggests that the PFC is involved in making decisions which are motivated 

by cost-benefit. Cardinal et al (2001) assessed rats on a related task, where “impulsivity” 

can be measured in an operant chamber; choosing a small but immediately available 

reward in preference to a larger but delayed reward is indicative of impulsive choice 

behaviour. Lesions of the NAC, of which PrL is an afferent, induced impulsive choice 

behaviour in this task, however direct lesions of the mPFC were without effect (Cardinal 

et al., 2001). Thus in this task the cost is in terms of the delay in reward delivery, which 

may not depend on the integrity of the PFC in the same way that climbing a barrier in the 

T-maze task does (Walton et al., 2002).

Hanneson et al (2004b) reported a study that assessed rats’ ability to judge the 

temporal order of arms that had been visited in the RAM; whereas a normal rat will direct 

more exploration at the least recently explored familiar arm, a rat with lidocaine 

inactivation of the PFC will not, however these rats are still able to perform the 

recognition component. A similar deficit had been noted in animals with aspirative 

lesions of the PFC (Kesner and Holbrook, 1987), helping to verify that it is likely that the 

rat PFC is involved in some way in the temporal ordering of memory, at least as far as 

memory for spatial locations is concerned.

Evidence for the involvement of PFC in working memory for egocentric 

responses comes from a study by Ragozzino and Kesner (2001), where rats with 

excitotoxic PFC lesions were impaired on a DMTP task on a plus shaped maze which 

required a solution based entirely on a body turn. This deficit had also been seen in rats 

with aspirative PFC lesions in an eight arm RAM using an adjacent arm task, whilst 

performance on an allocentric cheeseboard task remained intact (Kesner et al., 1989). 

The exact role of the PFC in spatial working memory is unclear, although performance on 

navigation-based tasks is commonly intact (Broersen, 2000; de Bruin et al., 1994; de
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Bruin et al., 2001; Kesner et al., 1989; Lacroix et al., 2002; Sullivan and Gratton, 2002). 

Efforts to establish the existence of place cells in the rat PFC have located cells that are 

activated according to the exact type of behaviour being performed, and not necessarily 

the spatial location of the animal (Jung et al., 1998; Poucet, 1997); although recent 

evidence suggests that there may be some cells which mediate a similar function to the 

place cells of the HPC (Hok et al., 2005). It has been shown that in the rat there are 

spatio-selective units in the medial PFC that fire differentially according to the side of the 

cue in a delayed performance U-shaped maze. Different units also respond at different 

stages in the trial (Batuev et al., 1990), thus providing further evidence for the 

involvement of this area in short-term memory function in the rat.

PFC lesions also result in impairments on a variety of tasks performed in operant 

chambers; these include GO/NO-GO tasks, where the rat must alternate between 

responding and withholding a response (Sakurai and Sugimoto, 1985), conditional 

discrimination (Delatour and Gisquet-Verrier, 1999), delayed alternation between two 

levers (Dunnett et al., 1999; Izaki et al., 2001; van Haaren et al., 1985) and tasks which 

assess attention in the 9HB (Chudasama et al., 2003; Muir et al., 1996). Temporary 

inactivation of either the PFC or HPC has also been shown to disrupt lever responding in 

the Skinner box (Izaki et al., 2000).

1.3.4 Attentional set shifting

One critical role of the PFC is thought to be in providing behavioural flexibility, which is 

the ability to adapt and respond to changes in circumstance. The Wisconsin Card Sorting 

Task (WCST) (see figure 1.3) is a classic test of PFC damage in humans. Subjects are 

required to sort cards according to the shape, colour or number of symbols on the card. 

The test starts with one rule (e.g. sort by colour) and then the experimenter changes the 

rule without informing the subject. Normal subjects have very little difficulty in 

switching between the rules, but those with PFC damage or schizophrenia tend to learn 

the first rule and are then unable to shift to the new one (Janowsky et al., 1989a; Milner 

and Petrides, 1984; Shimamura et al., 1992). They tend to perseverate with the original 

incorrect rule, indicating an inability to “set-shiff’, i.e. an inability to inhibit a previously
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1. INTRODUCTION

First sort by odor

Th«n sort by shape

Figure 1J  The Wisconsin Card Sorting Test from Bear et al (19% ).

acquired cognitive set (Bear et al., 1996; Miller, 2000; Stuss et al., 2000). Additionally, 

this type of set-shifting is related to increased activity of the PFC during neuroimaging 

studies (Konishi et al., 2003; Nagahama et al., 1996; Rogers et al., 2000; Rushworth et 

al., 2002). However, Anderson et al (1991) were unable to reveal any deficit in the 

WCST in patients with PFC lesions, and caution against relying on it as a sole indicator 

of frontal lobe damage. Another example of a task which reveals a prefrontal deficit of 

this nature is an odd-man-out task, where cues indicating the relevant dimension to be 

attended to can be presented or withheld to vary task complexity (Ravizza and Ciranni, 

2002). In this task, the “odd-man-ouf ’ is one of four stimuli comprised of letters within 

shapes, with either of these two attributes being the relevant dimension; when the 

relevant dimension was switched, patients with PFC damage were impaired at choosing 

the odd-man-out, even with the presence of a cue e.g. LETTER.

The WCST and its related tasks are useful tools in the field of animal models of 

disease, and various analogues have been developed to allow the investigation of 

behavioural flexibility and strategy switching. One common paradigm involves subjects 

performing a visual compound discrimination involving either a shift within the 

previously relevant dimension (intra-dimensional (ID) shift) or a shift of attentional set 

from one dimension to another (extra-dimensional (ED) shift) (Roberts and Sahakian, 

1993; Rushworth et al., 2002). If the performance of the ID shift is superior to the ED 

shift this is taken as evidence that the subject has developed an attentional set (e.g. attend 

to colour only, ignore shape), because shifting to the previously irrelevant dimension is
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significantly harder. Patients with frontal lobe damage have been shown to be selectively 

impaired on the ED but not the ID stage of the test, with damage to other areas being 

devoid of this selective impairment (e.g. HPC or amygdala) (Owen et al., 1991). A 

version of the task has been used successfully in the monkey (Roberts et al., 1988; 

Roberts et al., 1994) and adapted by Dias et al (1996; 1997). Monkeys were trained to 

make visual discriminations between two compound stimuli, each consisting of a black 

line superimposed on a blue polygon; monkeys were trained to maintain an attentional set 

towards one dimension (e.g. line) using ID shifts, prior to ED shifts. This task provided a 

double dissociation within the PFC with orbital lesions disrupting ID but not ED shifts, 

and lateral lesions disrupting ED but not ID shifts (Dias et al., 1996). These findings 

provided evidence for yet another theory of PFC working memory fractionation, based on 

a hierarchy of the complexity of rules required to solve a task (Wise et al., 1996).

Various attempts have been made to develop models of this attentional set- 

shifting paradigm in the rodent. One example investigated the involvement of rodent 

prefrontal cortex subregions in strategy switching using a task known as the cheeseboard 

task (Ragozzino et al., 1999). This is a dry-land version of the water maze, using a 

circular platform containing small round holes in which food rewards can be hidden. Rats 

were tested first on spatial and then visual-cued versions of the task and vice-versa. It 

was shown that inactivation of the PrL and IL areas, but not the dorsal anterior cingulate 

(Cgl) area, impaired the rats performance when they switched from one version of the 

task to the other. This suggests that an intact PrL/IL area is crucial for this type of 

strategy switching. Birrel and Brown (2000) developed an elegant model for testing 

attentional set-shifting in the rat, utilising food-rewarded bowls that differed in either 

their odours, the medium that filled the bowls or the covering texture. Rats were required 

to make a series of discriminations between two bowls, one of which contained a food 

reward, based on these different dimensions. Rats with lesions encompassing PrL, IL and 

often encroaching on Cgl and Cg2, were seen to have no deficit in simple reversals or ID 

shifts, but did show a significant impairment on ED shifts (Birrel and Brown, 2000), 

which correlates with the effects seen following lateral PFC lesions in the monkey (Dias 

et al., 1996; Dias et al., 1997). Similarly, rats with PrL/IL damage were unimpaired on 

learning odour discriminations, but when the task was switched such that the position of
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the bowl rather than the odour became the relevant dimension, these same rats were 

impaired (Ragozzino et al., 2003).

Further evidence for deficits in rule switching following PrL inactivation exists in 

tasks involving the RAM. PrL rats are impaired on a delayed spatial win-shift paradigm, 

but not a non-delayed random foraging task (Seamans et al., 1995). However, when 

switched unexpectedly between the two different tasks the PrL rats were unable to adapt 

to the new foraging strategy, providing further impetus to the idea that the PrL is 

involved in strategy switching (Seamans et al., 1995). Also, rats with PrL and IL lesions 

were shown to be impaired when switched between a fixed-goal task (same goal-arm 

every day) and a variable-goal task (same goal-arm on each trial, but differed across 

days) (Delatour and Gisquet-Verrier, 1996). However, rats with either discrete or 

combined lesions of Cgl or PrL were not impaired compared with controls, when the 

four baited arms on a RAM were reversed (Joel et al., 1997a). Finally, rats with 

excitotoxic lesions of the PrL/IL were able to learn to locate the one baited box out of 

thirteen located in a circular arena, provided just one start position is used (Delatour and 

Gisquet-Verrier, 2000). These same rats were severely disrupted if four different start 

positions were used in this task, suggesting an impairment in behavioural flexibility.

The T-maze has also been used to investigate involvement of the PFC in 

behavioural flexibility and strategy switching, with rats being exposed to rule switches 

between MTP and NMTP paradigms. Rats with excitotoxic lesions of the PrL were 

impaired on this type of switching, tending to perseverate with the incorrect rule for 

longer than control rats (Dias and Aggleton, 2000). This impairment mirrors that seen in 

an identical task following lesions of the MD, which is densely connected with the PFC 

(Hunt and Aggleton, 1998). However, these tasks cannot be interpreted as providing 

deficits in switching attentional set per se, as clearly both rules exploit the same stimuli 

of allocentric spatial cues; rather, they might be interpreted as evidence of a failure to 

shift response rules (Dias and Aggleton, 2000; Hunt and Aggleton, 1998). Similar types 

of switching deficits are being assessed in the Skinner Box, using the switch from 

DNMTP to DMTP, for example, to investigate effects of lesions of the mPFC in rats 

(Joel et al., 1997b). One of the aims of this thesis is to investigate these types o f tasks
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further, and therefore a more detailed discussion of this topic will follow in the 

appropriate experimental chapters.

1.4 Hippocampus and prefrontal cortex compared

So far in this introduction, involvements of the HPC and PFC in cognitive behaviour 

have been considered in isolation. However, one of the aims of this thesis is to try to 

establish a dissociation between the effects of lesions of these two areas within the same 

task. In order to provide a rationale for predicting any such dissociation it is necessary to 

review studies in which these two lesions have been directly compared, utilising both 

lesion and disconnection paradigms.

Dissociations have been observed between the effects of HPC and PFC lesions on 

complex maze learning (Winocur and Moscovitch, 1990). Winocur and Moscovitch 

(1990) trained rats which had received either HPC and PFC lesions on one of two 

complex mazes (Maze A) from the Hebb-Williams series; these mazes are arenas in 

which the rat must learn the route from a start box to a goal box containing food, barriers 

are inserted to create different mazes of comparable difficulty. A separate cohort of 

lesioned rats did not receive any training prior to the test period, which consisted of both 

trained and non-trained animals being tested on Maze A and Maze B. Trained HPC rats 

showed sparing for the general skill of maze learning but poor recall for the specific maze 

they had been trained on (as demonstrated by an equal number of errors in Maze A and B 

but enhanced performance compared with their non-trained counterparts). The opposite 

pattern was observed in the trained PFC group, with no sparing of the general skills 

required for maze learning but evidence for recall o f the specific maze (as demonstrated 

by similar performance to non-trained counterparts on unfamiliar Maze B, but enhanced 

performance on Maze A). These findings implicate the FIPC in transferring relevant 

information to similar problems and remembering non-specific skill-related information; 

for example, the general rule for not re-entering blind alleys is not applied to the new 

maze problem by PFC-lesioned rats, with rats showing an increased tendency for 

repeating incorrect responses. In contrast, the PFC is implicated in remembering highly
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specific information rather than retention of the general skills required for learning the 

maze problems (Winocur and Moscovitch, 1990).

Dissociations have also been found between the effects of these lesions in operant 

chambers. In a conditional-discrimination learning paradigm, HPC-lesioned rats 

exhibited a delay-dependent deficit compared with an impairment at all delays following 

PFC lesions (Winocur, 1991). This paradigm involved rats having to respond to the left 

lever in response to being presented with any combination of three lights on the left side 

of the chamber, and similarly responding to the right lever on presentation of lights on the 

right side. PFC-lesioned rats were thought to be impaired on organising the available 

information to perform the conditional discrimination, whereas HPC-lesioned rats 

showed performance that deteriorated with increasing delay, suggesting a compromised 

capacity for working memory. This pattern of impairments was also demonstrated in 

another study by Winocur (1992a), in which rats were trained on an MTS task in an 

operant chamber. This task required rats to respond on a lever when two lights of 

identical brightness were presented in succession, but to withhold responding if the two 

lights differed. Rats with HPC lesions were impaired in a delay-dependent manner, 

whereas rats with PFC lesions were impaired across all delay intervals. A final example 

of this dissociation is that HPC and PFC-lesioned rats exhibit this impairment pattern on 

a delayed alternation task in the Skinner box utilising the GO/ NO-GO regime (Winocur, 

1992b).

Fundamental to these dissociations is the idea that multiple memory systems exist 

within the brain (Kim and Baxter, 2001; Squire, 1992). Kesner and Rogers (2004) 

propose that memory is organised into three main systems, namely event-based (akin to 

episodic memory), knowledge-based (akin to semantic memory) and rule-based (receives 

and integrates information from the event-based and knowledge-based systems and 

applies rules for subsequent actions). They also propose that dissociations between the 

HPC and PFC may arise from the relative contributions of these two areas to the event- 

based and rule-based memory systems respectively (Kesner and Rogers, 2004). Support 

for this theory has already been provided by the maze learning study discussed above 

(Winocur and Moscovitch, 1990), but studies which examine the dynamic interaction
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between the PFC and HPC can also be of value in determining the functions of these two 

areas.

Asymmetric disconnection procedures involve blocking the transmission of 

information within specific pathways in each hemisphere (Floresco et al., 1997). This 

technique has been used successfully to determine that different pathways are involved in 

different foraging strategies in the rat. Unilateral lidocaine inactivation of the vCAl/ 

subicular region combined with contralateral inactivation of the PrL resulted in impaired 

performance on a delayed spatial win-shift paradigm in the RAM, but left performance 

on a non-delayed random foraging version intact. Conversely, a similar procedure 

inactivating the vCAl/ subicular region and the NAC resulted in the opposite pattern of 

results, with impairment on the non-delayed random foraging version. These results 

indicate that different aspects of spatial foraging behaviour are served by separate 

networks, and that the neural circuit linking the PFC and HPC is an essential pathway for 

the integration of spatial information (Floresco et al., 1997).

Another study which investigated the relationship between the PFC and HPC in 

the rat utilised a DNMTP task in the RAM with short-term (10 sec) or long-term (5 min) 

delays (Lee and Kesner, 2003). In this study bilateral cytotoxic lesions of either dorsal 

HPC or mPFC (PrL and IL) were assessed alone and in combination with bilateral 

reversible inactivation of the opposite structure e.g. mPFC lesion + inactivation of the 

dHPC or vice versa. A dramatic set of results was obtained; both bilateral lesions 

resulted in an initial impairment in working memory at the short-term delay (5 sec), with 

performance recovering to control levels by the second testing block. This suggests that 

some sort of compensatory adjustment took place that allowed performance to be 

maintained at this delay. However, if both structures were inactivated performance at this 

delay was severely impaired, indicating that at least one of these structures must be intact 

for successful short-term spatial memory function. The final important finding was that 

the dHPC lesion impaired performance at the longer delay interval, whereas the PFC 

lesion was without effect. Therefore, from these data it would appear that the dHPC and 

PFC process spatial memory in parallel within the short-term range, but once a critical 

time period is exceeded the dHPC becomes crucial (Lee and Kesner, 2003). These 

results suggest that the delay interval is an essential factor in the dissociation of the
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functions of the HPC and the PFC in this type of delayed-choice task (Kesner and 

Rogers, 2004).

1.5 Delaved matching to position

1.5.1 The task

The predominant task used in this study is the Delayed Matching to Position (DMTP) 

task in the Skinner box (Dunnett, 1985; Dunnett et al., 1988). This task will be discussed 

in full before reviewing the relevant literature. DMTP was designed as an analogue of 

the monkey DMS tests, with the response levers of the box providing spatially distinct 

stimuli (Dunnett, 1985). Some similar paradigms exist that involve using “ports” as 

opposed to levers in which the rat must nose-poke and break the infra-red beam (Harrison 

and Mair, 1996; Young et al., 1996). DMTP has proven successful in assessing the 

effects of aging (Dunnett et al., 1988; Kolb, 1990b), lesions (Dobrossy et al., 1996; Mair 

et al., 1998; Porter et al., 2001) and drugs (Han et al., 2000; Iversen, 1997). Each trial 

involves the rat remembering the side of the sample lever over a variable delay interval 

and then responding to this lever (matching) in the choice phase to receive a food reward. 

The fundamental aspect of this task that allows working memory to be assessed is the 

inclusion of the variable delay interval; this also allows a distinction to be made between 

mnemonic impairments and non-specific impairments. Rats can show intact performance 

at the shortest delays, thereby demonstrating knowledge of the specific rule, but 

progressively impaired performance as the delay increases, and thus the load on working 

memory is increased (Dunnett, 1993); this would be considered a delay-dependent 

mnemonic deficit. In contrast, non-specific impairments are manifest at all delay 

intervals and may involve factors such as impaired retention of the matching rule, 

diminished attentiveness to the task and general motivational, motor or sensory 

impairments (Dunnett et al., 1990; van Hest and Steckler, 2001). This distinction can be 

particularly useful in teasing out differences between related brain areas (Dunnett, 1985; 

Dunnett, 1990; Young et al., 1996).

DMTP has an obvious variant, namely delayed non-matching to position 

(DNMTP), where responding to the opposite lever in the choice phase (non-matching) is
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rewarded. Although believed to be logically symmetrical to DMTP, there is evidence to 

suggest that there may be differences between the two variants. Dunnett (1988) has 

shown that aged rats show lower asymptotic variance on DNMTP in comparison with 

DMTP. Lesions of the basal forebrain had dissociable effects on reversing between the 

two rules, depending on which rule had been learnt first, i.e. an impairment was seen on 

reversing from DMTP to DNMTP, but not in the opposite scenario (Dunnett et al., 1989). 

Additionally, in these animals there was a deficit in acquiring DNMTP but not DMTP 

(Dunnett et al., 1989). The two rules are also learnt in different manners, with the DMTP 

rule requiring a correction procedure in order to prevent a position bias being adopted, 

whereas DNMTP is learnt in a more gradual fashion and does not require the use of a 

correction procedure (Dunnett, 1993). These findings highlight the need for caution 

when comparing results between the two contingencies and suggest that they may involve 

separate strategies at least at the acquisition stages (Blokland and Dunnett, 1995).

1.5.2 Effective parameter manipulation

The selection of appropriate delays between the sample and choice presentation is 

essential in providing meaningful data (van Hest and Steckler, 2001). Delay intervals 

must be chosen with the expected outcome of the lesion or drug manipulation in mind. If 

a manipulation is expected to enhance performance, suitably long delays must be chosen 

to prevent any ceiling effects which might act to mask any enhancement. Similarly, if a 

manipulation is expected to reduce accuracy, control performance must be such that floor 

effects are avoided in order for the genuine effect to be apparent (Dunnett, 1993). 

Alternatively, delay intervals can be adjusted for each animal as the session progresses, in 

a so called titration paradigm (Han et al., 2000). This allows performance to be 

maintained across a chosen accuracy for every animal, however this means delays will 

differ between subjects and memory load will not be consistent (van Hest and Steckler, 

2001).

Other procedural variables which may be manipulated include the inter-trial 

interval (ITI), and the reinforcement contingency (van Hest and Steckler, 2001). 

Proactive interference is a phenomenon whereby the stimulus and response on the 

previous trial can interfere and effect choice accuracy on the current trial; the shorter the
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ITI the greater the chance of proactive interference (Dunnett and Martel, 1990). For a 

task to be regarded as taxing working memory, the performance of the animal should be 

affected by the manipulation of these parameters, for example if a particular response no 

longer elicited a reward (devaluation) the animal would be expected to cease performing 

that response (Corbit and Balleine, 2000).

Tasks need to be designed with regard for the instinctive behaviour of the species 

in question, such as natural exploratory tendencies (Thorpe et al., 2004). For example, in 

a study by Wilkie et al (1999) rats were trained to press one lever in a four-lever Skinner 

box to receive food in a morning session, whilst pressing a different lever resulted in food 

in the afternoon sessions. Responses from the start o f each session were recorded, prior 

to food reinforcement; these responses were taken as indicative of which lever the rat 

expected to result in food presentation. However, rats were seen to “patrol” all four 

levers in the box equally, i.e. they were not discriminating between the two rewarded 

levers, and were pressing levers which never resulted in food. With the simple 

introduction of a 10-sec time-out procedure at the start of the session, performance was 

improved to well above chance levels. Thus, instinctive tendencies can conflict with 

experimental demands; it should be noted that in the Skinner box tests employed in this 

thesis, rats were always allowed at least 30 sec in the boxes before the session began.

1.5.3 Delayed matching to position: effects of hippocampal and 
prefrontal damage

The DMTP task was originally designed as an analogue of the DMS test (Dunnett, 1985). 

DM/NMS has been shown to be sensitive to HPC damage in humans (Owen et al., 1995; 

Squire et al., 1988) and monkeys (Alvarez et al., 1995; Beason-Held et al., 1999; Zola et 

al., 2000; Zola-Morgan and Squire, 1986). Similarly damage to the PFC has also been 

shown to impair performance on this task in humans (Fuster, 1997) and monkeys (Fuster, 

1997; Kolb, 1990a; Mishkin and Appenzeller, 1987; Passingham, 1975). Tables 1.1, 1.2 

and 1.3 provide summaries of the literature concerning operant DM/NMTP tasks in the 

rat, they summarise the effects of HPC, Fx and PFC lesions respectively. These studies 

will be discussed in full in the relevant experimental chapters, but it is necessary to 

briefly review their findings in order to highlight the disparities that exist.
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Damage to the HPC provides contradictory results on DM/NMTP (Table 1.1), 

with evidence for delay-dependent and delay-independent deficits, whilst other studies 

report intact performance. Additionally, the only known study to have investigated 

cytotoxic lesions of the HPC is confounded by the lack of control group (Hampson et al., 

1999), thus providing grounds for investigating this type of fibre-sparing lesion technique 

within the present thesis. There have been numerous studies investigating the effect of 

Fx damage on DM/NMTP (Table 1.2) and these have proved to be slightly more 

consistent than studies of specific HPC lesions. A significant number of these studies 

report delay-dependent deficits, although again there is some evidence for delay- 

independent impairments. In contrast to the HPC lesions, rats with Fx damage always 

incurred impairments in performance of this task, rendering this lesion suitable for use as 

a “control” lesion, i.e. one likely to provide a deficit. Finally, studies on the 

consequences of PFC lesions (Table 1.3) tend to be in agreement that delay-independent 

impairments are incurred, although there are some exceptions to this general supposition. 

Two studies have investigated cytotoxic lesions of the PrL and both resulted in delay- 

independent deficits on this task (DNMTP: Aggleton et al., 1995; DMTP: Chudasama 

and Muir, 1997), however in one of these studies the lesions encompassed the cingulate 

cortex (Aggleton et al., 1995) and therefore further investigation of more discrete lesions 

is warranted. Based on this literature it would appear that a dissociation between the 

effects of HPC and PFC lesions would not be unexpected, and one might speculate that 

HPC lesions would result in deficits that were more dependent upon delay interval than 

the PFC group, which might exhibit a more non-specific impairment. The hope is that 

the studies presented within this thesis might make some inroads towards a reconciliation 

of the inconsistencies in the data reviewed above, and provide a clearer view of the 

involvement of the HPC and PFC in this particular task.
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Target
area

Type of lesion 
or
manipulation

Task Im pairm ent Reference

Aspiration DNMTP in Skinner box Delay-dependent (Aggleton et al., 1992)
N/A* DNMTP in Skinner box Delay-dependent (Broersen, 2000)
Scopolamine DMTP in Skinner box Delay-dependent (Dunnett et al., 1990)
IBO DMTP and DNMTP in Skinner box Delay-dependent ^ (Hampson et al., 1999)

UfU Radiofrequency DNMTP in Skinner box Delay-independent (Porter et al., 2000)
S3 Radiofrequency DMTP in Skinner box None (M airetal., 1998)

Cholinergic DNMTP and switch to DMTP in None (Winters and Dunnett,
Skinner box 2004)

Radioffequency DMTP and DNMTP in operant 
chamber equipped with “ports”

None (Young etal., 1996)

T able  1.1 Summary o f  rat studies o f  HPC involvement on working memory DM/NMTP tasks performed in operant chambers. All studies assess postoperative 

retention o f  the rule. These results were presented within a review paper and lesion details were not made available (Broersen, 2000). * There was no control 

group within this study; instead postoperative and preoperative performance were compared (Hampson et al., 1999).
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Target
area

Type of lesion 
or

manipulation
Task Impairment Reference

Radiofrequency DNMTP in Skinner box Delay-dependent (Aggleton et al., 1991)
Radiofrequency DNMTP in Skinner box Delay-dependent (Aggleton et al., 1992)
Radiofrequency DNMTP in Skinner box Delay-dependent (Aggleton et al., 1995)
Radiofrequency DMTP in Skinner box Delay-dependent (Chudasama and Muir,

1997)
Aspiration DMTP in Skinner box Delay-dependent (Dunnett, 1985)
Aspiration DMTP in Skinner box Delay-dependent (Dunnett, 1990)

M Radiofrequency DNMTP in Skinner box Delay-dependent (Ennaceur et al., 1996)
Aspiration DMTP and DNMTP in 9HB Delay-dependent (although see (Etherington et al.,

discussion in Ch.6) 1987)
Knife-cut DNMTP in Skinner box Delay-dependent (Weiner et al., 1998)
Aspiration DNMTP and switch to DMTP 

in Skinner box
Evidence for both delay- 
dependent and independent 
impairments

(Winters and Dunnett, 
2004)

Radiofrequency DMTP and DNMTP in operant 
chamber equipped with “ports”

Delay-independent (Young etal., 1996)

T able 1.2 Summary o f  rat studies o f  Fx transection on working memory DM/NMTP tasks performed in operant chambers. All studies assess postoperative 

retention o f the rule.



Target
area

Type of lesion or 
manipulation and specific 
target area

Task Impairment Reference

Scopolamine-Fr2 DMTP in Skinner box Delay-dependent (Broersen et al., 1994)
Aspiration-M2,MO,Cg 1 ,PrL DMTP in Skinner box Delay-dependent (Dunnett, 1990)
NMDA-mPFC, inc. Cgl DNMTP in Skinner box Delay-independent (Aggleton et al., 1995)
N/A* DNMTP in Skinner box Delay-independent (Broersen, 2000)
Aspiration- PrL, Cgl and 
Cg2

DMTP in Skinner box Delay-independent (Dunnett, 1990)

Scopolamine-PrL and IL DMTP in Skinner box Delay-independent (Dunnett et al., 1990)
NMDA- PrL DMTP in Skinner box Delay-independent (Chudasama and Muir, 

1997)

U
Scopolamine- (Cgl and PrL) DMTP in Skinner box Delay-independent (Herremans et al., 

1996)
Radiofrequency- Cgl, Cg2 
and Fr2

DMTP in Skinner box Delay-independent (M airetal., 1998)

Radiofrequency- Cgl, Cg2, 
Fr2 and PrL

DNMTP in Skinner box Delay-independent (Porter et al., 2000)

Radiofrequency -mPFC DMTP and DNMTP in operant 
chamber equipped with “ports”

Delay-independent (Young et al., 1996)

Radioffequency - mPFC DNMTP in operant chamber 
equipped with “ports”

Impaired at 3 sec fixed 
delay

(Harrison and Mair, 
1996)

Electrolytic- Cgl, Fr2 and 
PrL

Acquired DNMTP 
postoperatively, then switched 
to DMTP: Skinner box

Impaired on switch 
between rules, but not 
on initial acquisition

(Joel et al., 1997b)

Table 1.3 Summary o f rat studies o f  PFC involvement on working memory DM/NMTP tasks performed in operant chambers. All studies assess postoperative 

retention o f  the rule unless stated otherwise. These results were presented within a review paper and lesion details were not made available (Broersen, 2000)
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1.6 Hippocampus and prefrontal cortex in disease

Finally, it is worth considering that both the HPC and the PFC are thought to be involved 

in a range of diseases in the human; abnormalities in these areas are thought to underlie 

the cognitive deficits that underpin many of these disease states. For example, PFC 

dysfunction is widely held to be involved in the cognitive aspects of schizophrenia 

(Goldberg et al., 1987; Joel et al., 1997b; Li et al., 2002; Weinberger and Berman, 1998). 

Upregulation of Di dopamine receptors in the PFC of schizophrenic patients has been 

shown to be predictive of working memory deficits (Abi-Dargham et al., 2002) and 

schizophrenic patients exhibit reduced activity in the PFC when performing tasks such as 

the WCST, as measured by reduced regional cortical blood flow (Berman and 

Weinberger, 1990; Meyer-Lindenberg et al., 2002). The HPC is also implicated in this 

disease; rats with ventral HPC lesions made on day 7 of life exhibited behavioural 

changes indicative of schizophrenic like symptoms (Daenen et al., 2002). Ventral HPC 

lesions have also been shown to produce differential changes in cortical and limbic 

dopamine activity that may also be of significance in the search for a viable animal model 

of schizophrenia (Lipska et al., 1992). Neuroimaging techniques have shown that 

schizophrenics demonstrate abnormal levels of hippocampal activity at rest, during the 

experience of auditory hallucinations and during the performance of memory retrieval 

tasks (Heckers, 2001). It has also been observed that the HPC of schizophrenic patients 

is reduced in volume compared with controls (Harrison, 2004; Heckers, 2001) and 

synaptic circuitry is altered both within the HPC and in its extrinsic connections, 

particularly with the PFC (Harrison, 2004).

In addition to the undisputable involvement of these areas in schizophrenia, there 

is also evidence for involvement in both Parkinson’s and Alzheimer’s diseases. 

Parkinson’s disease is accompanied by deficits in executive functioning and attentional 

set-shifting, resembling those seen in patients with frontal lobe damage (Owen et al., 

1992; Owen, 2004; Tsuchiya et al., 2000), suggesting that there might be some 

underlying prefrontal pathology associated with this disease. Dysfunction of the PFC is 

thought to underlie the cognitive deficits seen in Alzheimer’s disease (Akbarian et al., 

1995; Berman and Weinberger, 1990), with abnormal nicotinic binding in the HPC also
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thought to be of significance (Levin et al., 1999; London et al., 1989; Newhouse and 

Kelton, 2000). Furthermore, the earliest pathological changes are evident in the ERC and 

the HPC, before progressing on to other cortical areas (Braak et al., 1993; Panegyres, 

2004).

The brief summary above clearly illustrates the fundamental need to understand these 

areas further in order to implement successful treatment strategies, and the rat is widely 

regarded as a viable model from which one can make valid assumptions about the human 

mind (Davis, 1996; Kolb, 1990a). Obviously, experiments must be designed carefully 

(D'Mello and Steckler, 1996) and the review of the literature presented in this chapter 

hopefully serves to illustrate the many ways in which subtle aspects of cognition can be 

assessed in the rodent. Experimental work in rats will continue to provide a framework 

from which insight into the workings of the human brain can be made.

1.7 Aims of thesis

The aim of this thesis is to provide a clearer understanding of the involvement of the PFC 

and HPC in cognitive behaviours in the rat, by investigating both novel and established 

tasks that are sensitive to disruption of these areas. It is hoped that investigation of these 

two regions in parallel may be effective in the advancement of animal models of human 

brain dysfunction, with both areas implicated in an array of diseases which result in 

complex cognitive impairments. In the future, strategies for brain repair may be assessed 

in these models, either through neuroprotective drug treatment or cell transplantation 

therapies. In particular, as reviewed above, many studies have investigated the effects of 

either PFC or HPC lesions on a range of tasks, but seldom have the two lesions been 

explicitly compared in the same study.

This thesis employs discrete excitotoxic lesions of PFC, HPC and ERC, with 

aspirative lesions of the Fx providing a further comparison group. Chapter 4 compares 

PFC and HPC lesions on retention of DMTP in the Skinner box, with Chapter 5 

discussing the effects of these lesions on acquisition o f the task. Chapter 6 describes 

lesions o f other components of the MTL, namely the ERC and Fx, and assesses their 

effects on retention of DMTP, providing a comparison with the HPC lesions. In Chapter
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7, an object recognition task is described which provides a distinct method of assessing 

the rats’ behaviour on a delayed non-matching task. This task differs significantly from 

the Skinner box tasks in many ways, with the most prominent being that rather than 

relying on a learned response that requires extensive training, it utilises the rats’ 

spontaneous tendency to explore novel objects. The effects of lesions of PFC, HPC, ERC 

and Fx are assessed on variants of this task which explore recognition memory across 

different retention intervals and incorporate both spatial and recency components. 

Finally, Chapter 8 details a novel task in the Skinner box (originally developed by Mate 

Dobrossy and described in his thesis (1997)), on which the effects of PFC and HPC 

lesions are assessed.
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Chapter 2 Behavioural Methods

2.1 Introduction

This chapter contains descriptions of the various behavioural apparatus and paradigms 

used throughout this thesis. Tests involving the Skinner box, water maze, spontaneous 

locomotor activity and spontaneous novelty preference are described in detail. Any 

deviations from these procedures are noted in the appropriate section.

2.2 Subjects

Male Lister Hooded adult rats (Harlan, UK) were used throughout; all rats weighed at 

least 350 g before testing. Rats were housed four per cage, in a holding room with a 12- 

hr light/ dark cycle (lights on at 07:00), maintained at 23 ± 1°C. All procedures adhered 

to Home Office regulations and complied with the Scientific Procedures Act (1986). The 

rats had ad libitum access to food and water when not being tested, except for when they 

were undergoing Skinner box testing. At least three days prior to Skinner box testing, 

rats were food restricted in order to maintain their weight at no less than 90% of their free 

feeding weight for the duration of the testing period.

2.3 Skinner Box

2.3.1 Apparatus

Behavioural testing was carried out in either 8 or 12 Skinner boxes (Paul Fray Ltd., 

Cambridge) enclosed in sound attenuating, ventilated chambers (figure 2.1). Each box 

was equipped with two retractable levers, 7.5 cm on either side of a central food hopper; 

access to the food hopper was gained by nose poking a perspex hinged panel which was 

subsequently registered as a panel press. The food hopper could be illuminated from 

behind the perspex panel and a house light permitted illumination of the chamber. A 

pellet dispenser delivered 45 mg sucrose pellets (NOYES precision pellets: Research
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2. BEHAVIOURAL METHODS

Diets, Inc., NJ) to the food hopper. Cameras were positioned in the ceiling of each box to 

allow observation of the animals’ behaviour on monitors outside the testing room.

A

B

p ellet
d is p e n s e r

s t im u lu s  p an el 
l i a h t s ^ v ^  light

actable

Figure 2.1 Photo o f rat in Skinner box with perspex door open (A), schematic diagram o f Skinner box (B).

46



2 Hi ! i \ \  !( >! K \ ! \  1 i 1 ' K >i >s

2.3.2 Software

The Skinner boxes were controlled by an Acorn A500 computer programmed in Basic, 

modified with the Arachnid control language (Fray, 1993). The Arachnid/Basic 

programming language is an event-based, real-time language which allows the 

performance of several animals to be monitored and acted upon simultaneously. The 

programmes for the operant behaviour paradigms were written by Prof. Stephen Dunnett 

and modified by Hazel Sloan.

2.3.3 Training

2.3.3.1 Habituation to pellets

Rats were given a handful of sugar pellets in their home cages for three days prior to 

Skinner box testing. This procedure habituated the rats to the smell and taste of the 

pellets in order to facilitate Skinner box training in which these pellets serve as the 

positive reinforcer. Training in the Skinner boxes consisted of 4 phases; rats were tested 

once a day during the light phase for a 30-min session duration, the house light remained 

illuminated throughout.

2.3.3.2 Phase 1; habituation to boxes

25 pellets were delivered at the start o f the session and the central panel light was 

illuminated throughout. Initially the central panel was propped open by 5 additional 

pellets to allow the rats easy access. Rats were moved to phase 2 usually after 1 or 2 

sessions, once they were consuming all the pellets.

2.3.3.3 Phase 2: panel pressing to collect intermittent food pellets

One pellet was delivered every 10 sec and the central panel light was illuminated upon 

delivery. The panel light remained on until the rat collected the pellet and initiated a 5- 

sec interval. Rats progressed to the next training level once they were all receiving at 

least 100 pellets per session.
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2.3.3.4 Phase 3: continuous reinforcement

Both levers were extended throughout and a response on either lever was reinforced with 

delivery of a pellet. Rats can become biased to responding to one lever if kept at this 

training stage for too long, so as soon as they were achieving 100 lever responses per 

session they were moved to the final training level.

2.3.3.5 Phase 4: alternating continuous reinforcement

Rats were presented with one lever at a time, alternating between trials, and a press on the 

lever resulted in delivery of a pellet. Three days on this training programme was 

sufficient for all rats to be completing at least 100 presses per session

2.3.4 Delayed matching to position task (DMTP)

A DMTP trial consists of three phases, the sample, delay and choice, as illustrated in 

figure 2.2. DMTP sessions were of either 30 or 40-min durations depending on the 

experiment, with the houselight illuminated throughout except during time-out periods. 

The side of the sample lever was chosen pseudorandomly by the computer before the 

start o f the trial, such that left and right levers were presented approximately the same 

number of times in each session. Once the rat had pressed the sample lever, it was 

retracted and the central panel light illuminated. The first nose poke made in the central 

panel after the delay interval had elapsed initiated the choice phase. This insured a high 

rate of nose poking during the delay and prevented the rats from waiting at the sample 

lever for the duration of the delay. Both levers were extended for the choice phase and a 

correct response (to the sample lever) was rewarded with delivery of a food pellet, upon 

collection of the pellet the 5-sec intertrial interval began prior to the next trial. An 

incorrect response was punished by a time-out period of 5 sec, during which the 

houselight was extinguished and no reward was delivered.

2.3.4.1 DMTP0

Training began with a programme that had no delay interval between the sample and 

choice phases. A correction procedure was introduced to prevent rats from always 

responding to the same lever during the choice phase, so that the incorrect trial was
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repeated (i.e. sample presented on the same side) until a correct response was made. Any 

rats that stopped responding completely due to this correction procedure were returned to 

phase 4 of training until they had made -100 lever presses and then switched straight 

onto DMTPO. Performance of over 80% correct on two consecutive days resulted in 

progression onto the next programme.

Intertrial interval: 
no levers or lights-5 sec

SAMPLE phase: 
present one lever

DELAY phase: 
Repeat nose pokes: 
VI schedule 0-24 sec

CHOICE phase: panel light off, 
extend both levers

ERROR: Opposite response 
all lights off, 5 sec time-out

CORRECT: Same response 
panel light on and food pellet

T7

Figure 2.2 Schematic diagram o f one trial o f  DMTP, variable interval (VI).
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2.3.4.2 DMTP1

This programme introduced the delay component to the task; the computer chose the 

delay at random from a set of 7 possible durations, again such that each delay appeared 

equally throughout the session. In DMTP1 the delays were 0,1,2,3,4,5 and 6 sec. 

Performance of over 85% correct on two consecutive days resulted in progression onto 

the next programme.

2.3.4.3 DMTP2

This programme was identical to DMTP1 but with delays chosen from 0,1,2,4,8,12 and 

16 sec. Performance of over 85% correct on two consecutive days resulted in progression 

onto the next programme.

2.3.4.4 DMTP3

Identical to DMTP1 but with delays chosen from 0,2,4,8,12,18 and 24 sec. This was the 

final pre-lesion delay set and rats were trained to asymptotic levels of performance, with 

baseline measures detailed in the appropriate section.

2.3.4.5 DMTP4

Identical to DMTP1 but with delays chosen from 0,6,12,18,24,32 and 40 sec.

2.3.4.6 DNMTP

Delayed non-matching to position (DNMTP) required a response to the opposite lever to 

the sample lever during the choice phase. Other than this non-matching rule, DNMTP 

was performed in an identical manner to DMTP.

2.3.5 Conditional delayed matching/non-matching to position task 
(CDM/NMTP)

Habituation and lever press training were exactly as outlined in section 2.3.3. This task 

combined both the matching and non-matching rules within one session, using distinct 

visual cues to distinguish which rule was needed to perform the trial correctly. Rats were 

first trained on DMTP with no delays for 1 hr sessions; the stimulus light above the
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central panel was illuminated on presentation of the sample lever, and remained on until a 

choice response was made (see figure 2.3 A). In addition, the houselight remained off for 

the duration of the session, and was switched on only to signal a time-out period; this 

served to increase the likelihood of the rat attending to the stimulus lights, and did not 

impair acquisition of the task relative to those animals trained with the houselight on. 

Upon reaching asymptotic performance on this task, rats were switched to the non

matching version of the task. In this version of the task, the stimulus lights above both 

levers were illuminated throughout the trial until a choice response had been achieved. 

Once rats reached asymptotic performance on the non-matching version they were then 

subject to subsequent switches between the rules, with the number of sessions required to 

reach asymptotic performance on each task becoming progressively fewer, until they 

required only one session on each. The next stage of training involved integrating the 

two rules within one session; initially the rats were exposed to one rule for 30 min, 

followed by the alternate rule for the remaining 30 min. Finally, both rules were 

presented randomly within the same session. Extensive training was required for the rats 

to master this combined task, on reaching asymptotic performance at this zero-delay 

version, delays of 0, 1, 2, 4, 8, 12 and 16 sec were gradually introduced, and session time 

was reduced to 40 min. The paradigm for the final task is described in figure 2.3 B.
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Matching
rule

Central stimulus light

Non-matching
rule

Lever stimulus lights

Response c . Panel Response _ . Panel
. . I . ____  F O O d  l a u o r c  h 0 0 < 1  l i n h t

B
levers H M  levers ™  Ugh,

Stimulus= Matching rule Stimulus= Non-matching rule

Intertrial interval: 
no levers or lights

SAMPLE phase:
present one lever and stimulus

DELAY phase: Repeat nose pokes 
VI schedule 1 ...16 sec

CHOICE phase: panel light off, extend levers :

CORRECT: same response 
panel light + food pellet

J'rW -

ERROR: same response 
house light on, 5 sec time-out

- E P ^ W

T f

Figure 2 3  Schematics o f the CDM/NMTP task. Schematic o f  the front wall o f  the Skinner box, indicating 

the visual cues for each rule (A), these stimulus lights were illuminated from the start o f  the sample phase 

until a choice response was made. Schematic diagram o f one trial o f the CDM/NMTP task (B).
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2.3.6 Data collection and analysis

The computer software was capable of recording a vast range of parameters and 

measures, for clarity, only those used in reporting the results are discussed below. The 

most intuitive of these measures is that of percent correct, or accuracy. This measure is 

the number of correct trials divided by the total number of trials, expressed as a 

percentage. Percent correct is used to look at the accuracy both across sessions and 

across delays within sessions. Other measures include the number or rate of panel 

presses during the delays, the latency to make the first panel press following the end of 

the delay and the total number of trials completed per session.

In addition to these measures a more detailed characterisation of deficits can be 

achieved by applying measures derived from signal detection theory (SDT) (Marston et 

al., 1993; Marston, 1996). Briefly, SDT applies procedures derived from human 

cognitive neuropsychology to examine performance in working memory tasks involving 

a choice (e.g. DMTP). Performance is proposed to depend on two independent factors: 

neural accuracy or sensitivity, and the subject’s motivational state, represented as 

response or perceptual bias (Pontecorvo et al., 1996). Non-parametric measures are 

employed in this study, with two measures of accuracy, or sensitivity, (A' and SI) and two 

measures of bias (B" and R1); A ’ and B" represent indexes of sensitivity and perceptual 

bias derived by Grier (1971), SI and RI are known as the sensitivity index and the 

responsivity index (or response bias) and were computed by Frey and Colliver (1973). 

SDT analysis requires the determination of rates of probabilities of hits (h)- a correct 

detection, and false positives (f)- an incorrect detection or false alarm. In the context of 

the two-lever DMTP task these probabilities are calculated as follows: h= number of 

correct left responses divided by the number of correct left responses plus the number of 

incorrect right responses, f= number of incorrect left responses divided by the number of 

incorrect left responses plus the correct right reponses (Steckler et al., 1994). The 

calculations for the individual measures are then as follows:

A ' = 0.5+ (h-f)( 1 +h-f)
4h (1-f)

f f " = h(T-hVf(T-f) 
h (l-h)+f (1-f)
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SI = h-f
2(h-f)-(h+f)2

RI= h+f-1 
l-(f-h)2

An additional measure that does not derive from SDT is the “cognitive” bias 

measure Index Y (Ty) (Sahgal, 1987). Iy contrasts accuracy between the two levers and is 

defined as the absolute value of left minus right lever correct responses, divided by the 

total number of correct responses. The absolute values of both B" and RI will also be 

used as magnitude rather than side of bias is o f interest. Both B" and RI will be shown 

averaged across all delays, because the paucity of incorrect responses at the shortest 

delays can lead to misrepresentative results. This type of analysis has proved useful in 

numerous papers in which operant matching or non-matching procedures have been 

employed (Aggleton et al., 1992; Ennaceur et al., 1996; Estape and Steckler, 2001; 

Herremans et al., 1996; Pouzet et al., 1999b; Reading and Dunnett, 1991).

2.4 Water maze

2.4.1 Apparatus

Spatial reference memory was assessed in an open-field water maze consisting of a large 

circular fibreglass tank (diameter: 200 cm, height: 60 cm) containing water at a 

temperature of ~25°C and a depth of 32 cm. The maze was located in a room that 

contained various visual extra-maze cues including posters and abstract shapes which 

remained constant throughout the testing period. The room was illuminated by four 

floodlights and one light directly above the centre of the tank, illumination was kept 

constant throughout testing. A stable circular platform (10 cm diameter) was submerged 

2 cm below the surface o f the water to serve as the escape platform. The platform was 

hidden from the rat’s view by the addition of 500 ml of non-toxic white paint to the water 

to render it opaque. A separate platform with a 28 cm high black pole screwed into its 

base served as a visual cue, a circular piece of white card was attached to the top of the 

pole to prevent the tracking system from visualising it.
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Eight points of equal spacing along the circumference of the pool were arbitrarily 

assigned as the cardinal points: North (N), Northeast (NE), East (E), Southeast (SE), 

South (S), Southwest (SW), West (W) and Northwest (NW). These points were used as 

the starting positions for the trials, at which the rats were carefully lowered into the water 

facing the wall of the tank. The tank was conceptually divided into four quadrants of 

equal size (NE, SE, SW, NW) and initially platform locations were in the centre of these 

quadrants 50 cm from the tank wall (figure 2.4). The most proximal start position to the 

platform was never used, e.g. start position NW was never used with the platform in the 

NW quadrant, giving a total of seven different start positions per platform.

N

N W N E

W

SES W

s
F igure  2.4 Schematic representation o f  water maze, the four small circles indicate the platform positions.

2.4.2 Software
A video camera was mounted above the centre of the water maze; this camera was 

connected to an image analysis system (HVS Image, Hampton, UK) which in turn was 

connected to a PC running the HVS maze software. The swim path of the animal was 

tracked and stored for subsequent behavioural analysis using the same software. The 

experimenter observed the rats’ swim paths on a monitor located behind a screen; escape
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latency was measured manually by operating a remote switch connected to the PC which 

was also used to signal the start and end of the trial.

2.4.3 Reference memory task

2.4.3.1 Training to platform

Rats were assigned to one of four groups, each trained to a different platform position; 

groups were counterbalanced such that equal numbers of rats from each lesion group 

were trained to each quadrant. The order of testing was also counterbalanced so that time 

of day could not contribute to any potential differences in performance. Rats were tested 

for 6 days, receiving 4 consecutive training trials per day with a gap of approximately 15 

sec between each trial. Platform position for each rat was kept the same across trials and 

days but the start position varied pseudorandomly across trials and days. Trials ended 

either when the rat found the platform, or, if the rat had failed to locate the platform 

within the maximum time of 120 sec, when they were guided to it. Once on the platform, 

rats were given 30 sec before commencing the next trial. Following their final trial, rats 

were hand dried with a towel and placed in a heated recovery cage before being returned 

to their home cages.

2.4.3.2 Probe Trial

Twenty-four hours after the final training trial, rats were exposed to a probe trial that 

involved the rats being placed into the tank for 60 sec in the absence of the platform. 

Start position was always from the quadrant opposite the training quadrant to allow 

accurate comparison of rats’ swim paths.

2.4.3.3 Reversal

Rats were trained for 4 days with the platform position moved to the opposite quadrant to 

the one that they had been trained to, e.g. initial position NW, moved to SE. All testing 

was conducted as described previously, with 4 consecutive trials per day with the start 

position varying across trials and days.
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2.4.3.4 Visual cue

The visual cue platform was used for these trials, therefore the rats should have been able 

to use the clear visual cue of the black pole to locate the platform. This served to assess 

the rats’ levels of motivation to escape and whether motor and sensory skills were intact. 

Rats received 4 consecutive trials with the platform position and start position being 

moved pseudorandomly between trials, this order was the same for all rats. Platform 

positions were chosen from a total of eight positions that were 25 or 75 cm from the edge 

of the tank, thus no rat had to swim to the exact position it had originally been trained to.

2.4.4 Data collection

The main parameters that were collected during training sessions were the latency to find 

the platform and the distance travelled before locating the platform. These data were 

averaged across the 4 trials of each day’s training. In the probe trial the percentage of 

time and the percentage of the path length in the training quadrant were collected. Swim 

paths were also collected to give representative patterns for each lesion group.

2.5 Spontaneous locomotor activity

2.5.1 Apparatus and assessment

Spontaneous locomotor activity was assessed in a set of eight wire cages (36 cm long x 

22 cm high x 24 cm wide) in which two horizontal photocell beams transected the long 

axis of each cage (approximately 12 cm from both ends and 2 cm above the floor). 

Activity data were collected by computer (Acorn A500) using specialized software 

(Arachnid activity monitor: Paul Fray Ltd., Cambridge, UK). Rats were placed 

individually into the cages for session durations of either 60 or 120 min at the same time 

of day as Skinner box testing took place. Rats were always on food restriction when 

activity testing took place. The total number of beam breaks were recorded across the 

session in 5 or 10-min blocks.
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2.6 Object recognition: spontaneous novelty preference

2.6.1 Apparatus

The apparatus consisted of an open-field arena (1 m2 base, 60 cm high) made of wood 

painted matt grey. The floor of the arena was covered with sawdust which was moved 

around between trials to prevent odours from building up in any particular location. The 

arena was situated in a well lit room with various posters and shapes on the walls to serve 

as cues. A video camera was mounted directly above the arena to enable the rats’ 

behaviour to be analysed and recorded. The objects to be discriminated were made of 

glass, plastic, metal or ceramic (figure 2.5) and, if needed, were filled with sand to 

prevent displacement by the rats. Objects were available in triplicate copies to prevent 

scent-marking between familiarisation and test phases, all objects were cleaned 

thoroughly with alcohol between trials. Figure 2.6 shows the positions of the objects 

within the arenas for each test.

✓

Figure 2.5 Representative objects used in the spontaneous novelty preference test.
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2. BEHAVIOURAL METHODS

1 - Standard
Sample

AA

Test

Delay interval: 
2 min or 2 hr

2 - Spatial Shift
Sample Test

#  o Delay interval: 
2 min

i----\
o

w  O
1----1/

W ®

Sample-1

3 - Recency
Sample-2

A6

Test

Delay: 
1 hr

Delay: 
1 hr

Figure 2.6 Schematic diagrams o f  the three spontaneous novelty preference tasks. “Novel” objects 

indicated by orange circle, arrow indicates start position o f  rat. The standard object positions were in two 

adjacent comers (27 cm from the opposing comers). For the spatial shift trials two additional positions 

(also 27 cm from opposing com ers) were used.
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2.6.2 Behavioural procedures

2.6.2.1 Habituation

Rats received two days of habituation to familiarise them with the arena and the test room 

prior to the first test phase. Day 1 consisted of a 10-min session in the empty arena, 

while day 2 was a 5-min session with two identical objects present in the arena; these 

objects were never used in subsequent experimental trials. Timing of the rats’ 

exploratory behaviour in this habituation session allowed determination of a suitable cut 

off point for the exploration time in familiarisation sessions; this also allowed assessment 

of any potential positional bias.

2.6.2.2 Testing

Each trial consisted of three main phases; sample, delay and test. The sample phase 

commenced when the rat was placed facing outwards at the start position. The rat was 

then allowed to explore the objects until the cumulative exploration time had been 

reached, or for 5 min; if the rat had not achieved the required amount of exploration 

within the 5-min period, its data for that trial was excluded. Next, the rat was removed 

ffom the arena and placed in its home cage in the adjacent room for the duration of the 

delay. During the delay phase both novel and identical copies of familiar objects were 

positioned as required. Finally, the test phase began, with the rat being placed at the start 

position and allowed to explore for 3 min. Prior to commencing the next trial, objects 

were cleaned with alcohol and the sawdust was moved around with any fecal boli 

removed.

2.6.2.3 Standard test

The standard test is shown schematically in figure 2.6. Two identical objects were 

explored in the sample phase, followed by a delay of either 2 min or 2 hr. In the test 

phase an identical copy of one of these “familiar” objects and one totally novel object 

were positioned in the arena and the rats’ exploration was recorded.
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2.6.2.4 Spatial shift

The spatial shift test is shown schematically in figure 2.6. Four different objects were 

explored in the sample phase, followed by a delay of 2 min. In the test phase identical 

copies of all four objects were placed in the arena, but the locations of two of the objects 

were switched; the rats’ exploration of the four objects was recorded. In this test, the 

objects that had been displaced were now the “novel” objects and the objects that had 

remained in their original positions constituted the “familiar” objects.

2.6.2.5 Recency

The recency test is shown schematically in figure 2.6; this test differed from the other two 

tests in that it involved two separate sample phases. In sample phase 1, two identical 

objects were explored, followed by a 1 -hr delay. Sample phase 2 allowed the rats to 

explore two more identical objects different from those presented in sample phase 1. 

Following the final delay phase of 1 hr, the rat was presented with one copy of each of 

the objects from the two sample phases and exploration was recorded. In this test the 

object explored in sample 1 was the “novel” object as it was encountered least recently; 

the object from sample 2 was the “familiar” object, as it was relatively more familiar than 

the sample 1 object.

2.6.3 Experimental design

Each rat received three trials of each test, although the order of tests was not randomised, 

object and side of novel object were fully counterbalanced across and between groups. 

Objects were presented to each rat for one trial only, i.e. no object was reused at any 

point for any given rat. The testing schedule was governed by the availability of the 

Ethovision® system, with no rat receiving trials on consecutive days. Blocks of testing 

ranged from 6 to 8 days, with rats always receiving a 5-min habituation session before 

each new block commenced. Prior to the 1st spatial shift trial rats were subject to a 5-min 

habituation session with four objects present in the arena; this allowed the determination 

of a suitable cut-off point for this task.
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2.6.4 Scoring and analyses

All phases of the trial were analysed “on-line” using Ethovision® (Noldus) software; 

trials were also videoed to provide a back-up. Keyboard buttons were assigned to the 

objects to allow exploratory behaviour to be recorded manually; this was defined as when 

the rat was directly attending to the object at a distance of no more than 2 cm and did not 

include using the object as a platform, sitting on the object or touching the object with the 

body but heading in another direction. In addition to this manual score, the software 

recorded time spent in a defined zone around the objects (2 cm from perimeter of object). 

A wealth of behavioural measures could be analysed following data collection, for 

clarity, only the exploration time of the objects and a discrimination ratio are presented. 

The calculation for the discrimination ratio is shown below:

(time exploring novel object- time exploring familiar object) 
total exploration time

Therefore the ratio ranged from -1 (if the rat explored only the familiar object) to +1 (if 

the rat explored only the novel object), with a score of 0 indicating no discrimination 

between the two objects.

2.7 Statistical analysis

Data were manipulated using Microsoft Excel 2003, plotted using SigmaPlot 8.0 (SPSS, 

Erkrath, Germany) and analysed using the Statistica package (STATISTICA for 

Windows (version 5.0), StatSoft, Inc., Tulsa, USA). Statistical analyses were carried out 

using repeated-measures analyses of variance (ANOVA) with lesion group as the 

between-subject factor and sessions, delays etc. treated as the within-subject factors as 

appropriate, unless stated otherwise. Newman-Keuls’ post hoc test was used to 

determine the locus of significant main effects and any interactions. A significance level 

of p<0.05 was set for all statistical analyses, with p  values greater than 0.05 reported as 

not significant (ns), unless particularly noteworthy.
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Chapter 3 Surgical and histological methods

3.1 General

3.1.1 Excito toxins

Excitotoxins are glutametergic compounds that are capable of producing neuronal 

degeneration (Meldrum, 1990). Their mechanism of action is exclusively post synaptic, 

with excessive activation of N-methyl-D-aspartate (NMDA)-type glutamate receptors 

leading to increased intracellular calcium concentrations and the subsequent cascade of 

enzyme activation that ultimately results in cell death (Lynch and Guttmann, 2002; 

Meldrum, 1990). Although NMDA itself was piloted, ibotenic acid (IBO) was used for 

all experimental excitotoxic lesions.

IBO is a glutamate analogue derived from the poisonous fungus Amanita 

muscarina (Michelot and Melendez-Howell, 2003); its neurotoxic properties were first 

described by Johnston et al (1968). When injected intracerebrally into rats, IBO produces 

a marked degeneration of nerve cells, with axons of passage and nerve terminals 

remaining undamaged (Schwarcz et al., 1979). Advantages to using this toxin, as 

opposed to other similar toxins (e.g. kainic acid), are its lower toxicity to the animal, and 

its ability to produce more discrete lesions (Schwarcz et al., 1979). Decarboxylation of 

IBO gives rise to muscimol which is a widely used gamma-aminobutyric acid (GABA)- 

analogue (Johnston et al., 1968). It is this metabolism to muscimol that is thought to 

account for the anaesthesia-potentiating effects sometimes observed after intracerebral 

injection of IBO (Schwarcz et al., 1979).

Jarrard (1989) described an elegant approach for lesioning the HPC of the rat 

using multiple stereotactically guided injections of IBO. These lesions are more selective 

than those made with conventional lesion techniques such as aspiration, electrolytic or 

thermocoagulation (Jarrard, 1989). Determination of the exact concentrations and 

volumes of IBO is crucial to prevent spread to adjacent structures (Jarrard, 2002). In 

addition to lesioning the HPC, IBO has been successfully used in lesioning the PFC
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(Delatour and Gisquet-Verrier, 1996; Sullivan and Gratton, 2002), the striatum (Isacson 

et al., 1984) and components of the hippocampal system such as the ERC (Eijkenboom et 

al., 2000; Hagan et al., 1992).

3.1.2 Surgical techniques

All surgical procedures were conducted under Isoflurane (Abbott, UK) anaesthesia, with 

either Oxygen and Nitrous Oxide, or Oxygen alone as the carrier gas. Rats were secured 

in a stereotaxic frame (Kopf instruments) using atraumatic ear-bars. Stereotaxic 

coordinates are given with dorsal-ventral (DV) relative to dura and anterior-posterior 

(AP) and medial-lateral (ML) measured relative to bregma, except in those prefrontal 

lesions mentioned where the ML coordinate is taken as the midline of the exposed 

sagittal sinus. All lesions were induced by injection of IBO (Biosearch Technologies, 

Inc., CA, USA) dissolved in 0.1 M phosphate buffered saline (PBS) and adjusted to pH 

7.4 with NaOH. Following surgery, wounds were cleaned and sutured and covered with 

topical antibiotic powder (Aureomycin). Rats received 5 ml of glucose-saline 

subcutaneously to reduce any postoperative dehydration and recovered in a heated cage. 

All animals received soluble paracetamol in their home cages for at least two days post 

surgery.

3.2 Pilot Surgery

3.2.1 Parameter manipulation

Prior to and throughout these experiments numerous pilot surgeries were performed to 

minimise problems with variability in lesion extent and size. These pilots involved 

systematic manipulation of the many parameters involved in the surgery to try to optimise 

lesion reproducibility; these manipulations are summarised in table 3.1.
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Table 
3.1 

Param
eters 

m
anipulated 

during 
pilot surgeries.

Parameter Modifications

Toxin Both HPC and PFC lesions were piloted using NMDA and IBO.

Concentration and 
volume of toxin

Concentrations of toxin were adjusted for PFC lesions, as were volumes of toxin injected at each 
site.

Anaesthetic and 
post-surgery care

Surgeries were conducted with and without nitrous oxide delivery and post-surgery diazepam 
injections.

Delivery Method
A variety of injection methods were tested, these comprised: (1) a 30-guage stainless steel cannula 
connected by polyethylene tubing to a 10 pi Hamilton glass syringe mounted on a Harvard 
microdrive pump, (2) a 25-guage bevelled stainless steel needle on a 2 pi Hamilton syringe 
mounted directly on the frame with a manual microdriver system (Kopf), (3) a 33-guage blunt 
ended stainless steel needle on a 5 pi Hamilton syringe mounted directly on the frame with a 
digital microdriver system (kd Scientific, PA, USA), and (4) a 26-guage bevelled stainless steel 
needle on a 2 pi Hamilton syringe mounted directly on the frame with a digital microdriver system.

Bone flap vs. drill 
holes

Bone flap removal was compared with discrete drill holes at every injection site for both HPC and 
PFC lesions.

Coordinates Number and position of injection sites were varied according to both lesion results and fluorescent 
bead injection pilots.
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3.2.2 Fluorescent bead injections

Fluorescent latex microspheres or “beads” (Lumafluor Corp., FL, USA) were injected to 

establish exact location of injection sites. Beads were injected using a 26-guage bevelled 

stainless steel needle on a 2 pi Hamilton syringe mounted directly on the frame. A digital 

microdriver system (kd Scientific, PA, USA) was used to inject the beads at the same rate 

as the corresponding lesion (i.e. 0.03 pl/min for entorhinal and hippocampal placement, 

0.25 pl/min for preffontal placement). The bead solution was injected neat without any 

dilution; 0.1 pi was injected at each site, with a 2-min diffusion time. Rats were perfused 

as normal with 4% Paraformaldehdye (PFA), brains were left in PFA overnight before 

being transferred to 25% sucrose until they sunk. 60 pm-sections were taken on a
thmicrotome and every 6 section was mounted, dehydrated in ascending alcohols and 

coverslipped with DPX. Another 1:6 series of sections was stained with Cresyl Violet 

before coverslipping. Representative photomicrographs are shown in figure 3.1.
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3. SURGICAL AND HISTOLOGICAL METHODS

A B

Figure 3.1 Representative photomicrographs o f  horizontal sections o f pilot fluorescent bead injections, 

note coordinates will have been modified based on these results. Cresyl Violet stained ERC pilot (A), ERC 

pilot section, adjacent to ‘A ’, with no staining viewed under fluorescence (B), Cresyl Violet stained HPC 

pilot (C), HPC pilot section, adjacent to ‘C ’, with no staining viewed under fluorescence (D). Scale bar in 

A =1 mm.
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3. SI RGICAL AND HISTOLOGICAL METHODS

3.2.3 Pilot results

Figures 3.2, 3.3 and 3.4 show representative pilot lesions of ERC, PFC and HPC lesions 

respectively. Lesions techniques may have been modified resulting from these pilots and 

as such they may not be identical to experimental lesions.

A B

Figure 3.2 Photomicrographs o f  Cresyl Violet stained horizontal sections through a unilateral ERC pilot, 

intact side (A), lesioned side (B). Scale bar in A =1 mm.

Figure 3.3 Photomicrograph o f  a Cresyl Violet stained coronal section through a bilateral PFC pilot. Scale 

bar =2 mm.
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3 .  SI 'RGICAL AND HISTOLOGICAL METHODS

Figure 3.4 Photomicrographs o f  Cresyl Violet stained horizontal sections through a unilateral HPC pilot; 

with A the most dorsal and C the most ventral section. Scale bar in C =2 mm.
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3.3 Experimental Surgery

3.3.1 Bilateral PFC lesions

Bilateral IBO (0.05 M) lesions were centred on the PrL and IL areas of the PFC with 

injection coordinates shown in table 3.2. All PFC lesions were performed using nitrous 

oxide (0.4 L/min) and oxygen (0.8 L/min) as the carrier gases. Injections were made via 

a 30-guage stainless steel cannula connected by polyethylene tubing to a 10 pi Hamilton 

glass syringe mounted on a Harvard microdrive pump; rate of injection was maintained at 

0.25 pl/min. Rats used in Experiment 1 had discrete drill holes at each of the four sites, 

rats in Experiments 2, 4 and 6 received bone flap removals. For bone flap removals the 

skull was exposed, and a small piece of bone overlying the site was carefully removed 

using a hand-held mechanical drill (Foredom), the dura was incised with a syringe tip at 

each site. Removal of the bone flap exposed the sagittal sinus which was taken as the 

midline coordinate, because pilot lesions had shown this to be a more accurate measure 

than taking the midline from bregma.

AP ML DV Vol (pi)_  _  _  __
+2.2 +0.6 -4.3 0.2

+3.7 ±0.6 -3.0 0.3

Table 3.2 Stereotaxic coordinates for bilateral cytotoxic lesion o f the PFC using IBO (0.05 M) with an 

infusion rate o f  0.25 nl/min. Nose bar set to 2.3 mm below the interaural line. Cannula left in situ for 3 min 

after each injection to allow diffusion.

In experiment 1, sham PFC lesions were performed exactly as the toxin lesions, except 

PBS was injected instead of IBO. In experiments 2, 4 and 6, sham lesions were 

performed by removing the bone flap and incising the dura, no needle was lowered into
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the brain. The decision to change the sham protocol was taken following the findings 

discussed in Chapter 4, whereby non-specific damage could not be ruled out.

3.3.2 Bilateral HPC lesions

Bilateral hippocampal lesions were achieved by injection of IBO (0.063 M) at the 

coordinates shown in table 3.3 (Experiment 1) and table 3.4 (Experiments 2, 4 and 6). 

All experimental HPC lesions were performed using a bone flap technique; a piece of 

bone was removed bilaterally from above the injection areas and the dura was then 

incised with a syringe tip at the individual sites of injection. Both nitrous oxide and 

oxygen were used as the carrier gases for experiment 1, the surgery for all remaining 

experiments was performed with oxygen alone. Sham lesions in Experiment 1 were 

performed exactly as toxin injections but with PBS injected instead of IBO. Sham 

lesions in Experiments 2, 4 and 6 had bone flap removal and dura incision but no 

injection or lowering of the needle. Again this decision to modify the sham protocol was 

taken following the findings discussed in Chapter 4, where two of the HPC sham rats had 

received non-specific damage resulting in behavioural impairments in the water maze. 

Due to the length of these surgeries rats required special post operative care, this included 

hand feeding with porridge and extra glucose-saline injections. Rats were kept in a 

heated cage until they had recovered fully which often took at least 24 hr.
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AP ML DV Vol (nl)

-2.4 ±1.0 -3.0 0.05

-3.1 ±1.4 -2.1 0.10

-3.1 ±1.4 -3.0 0.10

-3.1 ±3.0 -2.7 0.10

-3.9 ±2.2 -1.8 0.10

-3.9 ±2.2 -3.0 0.10

-3.9 ±3.5 -2.7 0.10

-4.7 ±4.0 -3.5 0.05

-4.7 ±4.0 -7.2 0.10

-4.7 ±5.0 -6.6 0.05

-4.7 ±5.0 -3.7 0.05

-5.4 ±4.2 -3.1 0.10

-5.4 ±5.0 -4.5 0.09

-5.4 ±5.0 -5.3 0.08

-5.4 ±5.0 -6.1 0.08

Table 3.3 Experiment 1: Stereotaxic coordinates for bilateral cytotoxic lesions o f  the HPC using IBO 

(0.063 M). The nose bar was adjusted so that the head was level between bregma and lambda. Injection 

was via a 25-guage bevelled stainless steel needle on a 2 pi Hamilton syringe mounted directly on the 

frame with a manual microdriver system (Kopf). The needle was left in situ for 2 min after each injection 

to allow diffusion. Height o f  dura was taken from the highlighted coordinate. Coordinates adapted from 

those received by personal communication from Dr. Mark Good (Cardiff University, Psychology 

Department).
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AP ML

-2.4 ±1.0

-3.1 ±1.4

-3.1 ±1.4

-3.1 ±3.0

-3.9 ±2.2

-3.9 ±2.2

-3.9 ±3.5

-4.7 ±4.0
-4.7 ±4.0

-4.7 ±4.5

-5.4 ±4.2

-5.4 ±5.0

-5.4 ±5.0

-5.4 ±5.0

DV Vol (jj.1)

-3.0 0.05

-2.1 0.10

-3.0 0.10

-2.7 0.10

-1.8 0.10

-3.0 0.10

-2.7 0.10

-3.5 0.05

-7.2 0.10

-6.5 0.05

-3.1 0.10

-4.5 0.09

-5.3 0.08

-6.1 0.08

Table 3.4 Experiments 2, 4 and 6: stereotaxic coordinates for bilateral cytotoxic lesions o f the HPC using 

IBO (0.063 M). The nose bar was adjusted so that the head was level between bregma and lambda. 

Injection was via a 26-guage bevelled stainless steel needle on a 2pl Hamilton syringe mounted directly on 

the frame with a digital microdriver system, injection rate o f 0.03 pl/min. Needle was left in situ for 2 min 

after each injection to allow diffusion. Height o f  dura was taken from the coordinate in bold. Coordinates 

received by personal communication from Dr. Mark Good (Cardiff University, Psychology Department).

3.3.3 Bilateral ERC lesions

Rats used in experiments 3 and 5 received bilateral IBO (0.063 M) lesions of the ERC 

using the coordinates in table 3.5. Bilateral bone flaps overlying the injection sites were 

removed as detailed in section 3.3.2, but for these lesions this involved removing a large
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portion of the lateral ridge of the skull; a new DV reading was taken at each injection site. 

Sham ERC lesions received bone flap removal and piercing of the dura, but no injection 

or lowering of the needle.

A P   ......    M L ... .............. ~..... DV... .......  *...  Vol(pLl)

-6.5 ±5.8 -6.4 0.08

-7.0 ±4.5 -6.1 0.08

-7.0 ±5.8 -5.3 0.08

-7.5 ±4.6 -5.3 0.1

-8.0 ±4.7 -4.8 0.1

-8.5 ±4.8 -3.1 0.1

Table 3.5 Experiments 3 and 5: stereotaxic coordinates for bilateral cytotoxic lesions o f the ERC using 

IBO (0.063 M). The nose bar was set to 3.3 mm below the interaural line. Toxin injection was via a 26- 

guage bevelled stainless steel needle on a 2 pi Hamilton syringe mounted directly on the frame with a 

digital microdriver system, injection rate o f  0.03 pl/min. Needle was left in situ for 2 min after each 

injection to allow diffusion.

3.3.4 Bilateral Fx transections

Rats in experiments 3 and 5 received bilateral aspirative lesions of the Fx. Lesions were 

made under visual guidance through an operating microscope. A small bone flap was 

removed just posterior and lateral to bregma on either side of the midline. An 18-guage 

stainless steel aspiration cannula was attached via polyethylene tubing to an aspirator 

(Aesculap, Portable 80; Germany) and was used to aspirate a small hole bilaterally 

through the cortex and corpus callosum to reveal the fibres of the Fx which was 

transected by suction. Upon completion o f aspiration of the Fx each hole was packed 

with gelfoam (Spongostan® standard, Johnson & Johnson Medical Limited, UK) and 

closed. Sham animals received aspiration of the overlying cortex alone followed by 

packing with gelfoam.
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3.4 Histology

3.4.1 Perfusion and preparation of tissue

Rats under deep Euthatal (Rhone Merieux, Essex, UK) anaesthesia were transcardially 

perfused with prewash buffer (pH 7.3) followed by 4% PFA (pH 7.3). The brains were 

removed and postfixed overnight in PFA and then transferred to 25% sucrose until they 

sank. Brains were sectioned on a freezing sledge microtome (Bright) at 60-p.m thickness. 

Adjacent 1:6 series were mounted on slides prior to staining, following which they were 

dehydrated in ascending alcohols to xylene and then coverslipped using DPX mountant. 

For staining protocols and fixative preparation see Appendix A.

3.4.2 Staining methods

3.4.2.1 Cresyl Violet

The Cresyl Violet stain is the most commonly used standard staining method; the stain 

labels ribosomes, referred to as Nissl bodies. It is a non-specific marker, staining cell 

bodies independent of their phenotype. In the central nervous system it is used to mark 

both neurons and glial cells. Staining was carried out using a conventional Cresyl Violet 

protocol given in full in Appendix B.

3.4.2.2 Acetylcholinesterase

Acetylcholinesterase (AChE) is the enzyme responsible for hydrolysing acetylcholine 

upon its release into the synaptic cleft. The enzyme is localised in the presynaptic 

terminal and in the cell body. Staining o f AChE is therefore used as a marker of 

cholinergic neurons and terminals within the CNS. The staining protocol is given in 

Appendix C.

3.4.3 Methods of assessment of lesions

Lesions were assessed using either a Leica DMRBE microscope or a Wild Makroskop. 

Lesion extent was then mapped onto serial sections taken from the atlas of Paxinos and 

Watson (1998).
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Chapter 4 Retention of delayed matching to

position; effect of hippocampal and prefrontal 

lesions

Experiment 1

4.1 Introduction

HPC damage has been shown to have varied effects on performance in delayed matching 

to position tasks (DMTP) in the Skinner box, however, the majority of studies conclude 

that damage results in delay-dependent impairments in this task (Aggleton et al., 1992; 

Broersen, 2000; Dunnett et ah, 1990; Hampson et ah, 1999). Conversely, the water maze 

provides much more conclusive results after HPC lesions, with lesions routinely causing 

severe and robust impairments in spatial learning (Bannerman et ah, 1999; Duva et ah, 

1997; Good and Honey, 1997; Gould et ah, 2002; Liu and Bilkey, 2001; Morris et ah, 

1982; Morris et ah, 1990; Richmond et ah, 1999; Wright et ah, 2004).

PFC lesions have primarily been shown to produce delay-independent deficits in 

delayed matching tasks (Broersen, 2000; Chudasama and Muir, 1997; Dunnett et ah, 

1990; Herremans et ah, 1996; Joel et ah, 1997b; Mair et ah, 1998), indicative of a non- 

mnemonic effect, such as attentional or motivational problems. In the water maze, PFC 

lesions are shown to have little if any effect on performance (de Bruin et ah, 1994; 

Lacroix et ah, 2002; Mogensen et ah, 2004; Sullivan and Gratton, 2002), although the 

area may be implicated if complexity of the task is increased sufficiently (de Bruin et ah, 

1997; Granon and Poucet, 1995; Lacroix et ah, 2002).

There have been few direct comparisons of the effects of these lesions within the 

same experimental group, on either the Skinner box task or the water maze. Therefore 

the present experiment aims to provide such a direct comparison, with excitotoxic lesions 

of HPC or PFC being assessed in DMTP in the Skinner box, and on a reference memory 

task in the water maze. Rats were trained preoperatively on DMTP with postoperative
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retention of the task being assessed; water maze performance and general locomotor 

activity were assessed following surgery but prior to retesting on DMTP. Following 

testing for retention of DMTP rats were exposed to a switch in the task rule (from 

matching to non-matching); this was to serve as an analogue of switching between 

decision rules in the human WCST, in which human patients with PFC damage are 

impaired (Berman and Weinberger, 1990; Goldberg et al., 1987; Stuss et ah, 2000; 

Tsuchiya et ah, 2000). Experiments have provided support for the hypothesis that the 

PFC is also engaged in rule switching in the rat (Dias and Aggleton, 2000; Joel et ah, 

1997b). It is therefore postulated that there may be a dissociation in performance on the 

DMTP task with the two lesions, and furthermore a difference between the way that the 

lesions affect the rats’ ability to switch between the rules. The water maze is expected to 

reveal a clear HPC deficit, with PFC performance remaining intact, although reversal of 

the platform position could provide a deficit unique to the PFC group.

4.2 Materials and methods

4.2.1 Subjects

In this experiment a group of 32 rats were used. In the course of training 2 rats were 

sacrificed due to repeated seizures and 1 rat, which was unable to learn the task, was used 

for a pilot lesion, resulting in a final group size of 29. All other subject details are 

covered in section 2.2.

4.2.2 Behavioural testing

Rats were trained on 40-min sessions of DMTP in the Skinner box as detailed in section 

2.3. Upon reaching asymptotic performance at the final delay set (0-24 sec), rats were 

tested for two 5-session blocks to provide a baseline. Following baseline testing rats 

were assigned to one of four surgical treatment groups using a random matching 

procedure based on accuracy. Treatments were HPC lesions («=10), sham HPC (n=4), 

PFC lesions («=10) and sham PFC («=5), with all surgical details in section 3.3. Rats 

were given two weeks to recover from surgery before they were tested in the water maze 

where they received the testing schedule outlined in table 4.1, all details in section 2.4.
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Days Water maze procedure
D l-6 Place learning-1 
D7 Probe-1

Two week break 
Dl-4 Place leaming-2 
D5 Probe-2
D6-9 Reversal of platform position 
DIO Visual Cue

Table 4.1 Water maze testing procedure

In the first place learning and probe tests two animals from the sham HPC group were 

shown to be clear outliers in their performance; a two week break before retesting with 

the same platform positions was given to see if this behaviour was due to surgery-related 

complications that might be overcome. However, these two rats remained outlying 

performers; both consistently failed to locate the platform within the 120 sec maximum 

trial time and were thus excluded from all analyses.

After water maze testing rats had their locomotor activity assessed over a 2-hr 

period. Rats were then tested for postoperative performance in the Skinner boxes as 

outlined in table 4.2.

5-session block ; Skinner box task
  1 DMTP3

2 ; DMTP3
3 DMTP4
4 | DNMTP3 (Non-matching)
5 | DNMTP3
6 | DNMTP3

Table 4.2 Postoperative Skinner box testing procedure, dashed line indicates rule switch from matching to 

non-matching. D(N)MTP3 indicates delay set o f 0-24 sec; DMTP4 indicates delay set o f  0-40 sec.

Rats received three blocks of DMTP testing before the rule switch to DNMTP for 

another three blocks. Upon completion of block six, rats were run on a 30-min DNMTP 

programme with a fixed 2-sec delay to minimise any deficits. They were run on this 

programme for a total of 13 days, with the programme modified such that data could be 

analysed trial by trial. This trial by trial analysis allowed the assessment of whether there
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were group differences across the length of the session. Rats were then finally switched 

to DMTP with a 2-sec delay for 5 days and data were assessed in a trial by trial manner. 

No group differences were seen at any point in this phase of testing and as such results 

are not reported. Following completion of Skinner box testing all rats were sacrificed and 

histology dealt with as detailed in section 3.4.
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4. RETENTION OF DMTP: EFFECT OF HPC AND PFC LESIONS

4.3 Results

4.3.1 Histology

4.3.1.1 Bilateral PFC lesions

Figure 4.1 shows photomicrographs of a representative lesion and figure 4.2 illustrates 

the minimum and maximum lesion extent. In all cases there was substantial cell loss 

within the PrL and IL cortices, with complete neuron loss within these regions in most 

animals. One animal had damage extending to the most rostral MO cortex and two 

animals showed damage encompassing the Cgl, Cg2 and DP cortices. Out of the ten rats 

in this surgery group, four did not incur sufficient bilateral damage and were therefore 

excluded from all analyses. These excluded animals all showed unilateral damage; this 

prompted the thorough piloting of the bone flap technique to allow the medial-lateral 

coordinate to be taken from the sagittal sinus, thereby providing more consistency in 

lesions.

A C

Figure 4.1 Photomicrographs o f  a representative bilateral PFC lesion, coronal sections stained with Cresyl 

Violet, with A being the most anterior. Scale bar =2 mm.
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3.7

2.7

Figure 4.2 Extent o f  the largest (grey) and smallest (black) PFC lesions, with duplicate sections indicating 

the specific regions. Numbers indicate mm anterior to bregma, abbreviations: cingulate cortex area 1 

(C gl), cingulate cortex area 2 (Cg2), dorsolateral orbital cortex (DLO), dorsal peduncular cortex (DP), 

frontal association cortex (FrA), infralimbic cortex (IL), lateral orbital cortex (LO), primary motor cortex 

(M l), secondary motor cortex (M2), medial orbital cortex (MO), prelimbic cortex (PrL), ventral orbital 

cortex (VO). Drawings taken from Paxinos and Watson (1998).

4.3.1.2 Bilateral HPC lesions

Figure 4.3 shows photomicrographs of a representative case that was included in analyses 

and figure 4.4 illustrates the minimum and maximum lesion extent. Successful cases had 

extensive cell loss throughout the dorso-ventral extent of the hippocampal formation. 

The case with the most extensive cortical damage showed damage in the trunk region of 

the primary somatosensory cortex, the parietal association cortex and the medial areas of
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4. RETENTION OF DMTP: EFFECT OF HPC AND PFC LESIONS

the secondary visual cortex, whilst another animal showed considerable sparing of the 

dorsal hippocampal formation (see figure 4.4, minimal extent); neither of these cases 

differed from the others in their behavioural performance. Histological analysis revealed 

a large degree of variability with five out of ten rats having to be excluded from all 

analyses. Those rats that were excluded had very minimal cell loss, perhaps from 

injections being made into the ventricle or from toxin loss at the seal between the syringe 

barrel and the needle, again prompting further pilot studies.

Figure 4 3  Photomicrographs o f  a representative bilateral HPC lesion, coronal sections stained with Cresyl 

Violet, with A being the most anterior. Scale bar = 2  mm.
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4.8

Figure 4.4 Extent o f  the largest (grey) and smallest (black) HPC lesions, the extent o f  the greatest cortical 

damage is indicated by the striped areas, note that the greatest cortical damage did not occur in the animal 

with the most complete HPC lesion. Numbers indicate mm posterior to bregma. Drawings taken from 

Paxinos and Watson (1998).

4.3.1.3 Sham lesions

Sham lesion cases were not found to have any cellular loss or any obvious damage as a 

result of the needle penetration. However, the possibility remains that there may have 

been some underlying damage that went undetected, which will be considered further 

within the discussion. HPC shams had a small amount of cortical swelling resulting from 

the bone flap removal. The two HPC sham rats that were later excluded from all analyses
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based on their water maze performance did not show any obvious distinction in their 

histological analysis. There was no significant difference between the data for the two 

sham groups and as such the groups were pooled for clarity giving a control group of 

seven individuals.
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4.3.2 Behaviour

4.3.2.1 DMTP

4.3.2.1.1 Baseline

After reaching asymptotic performance, where rats were consistently performing at 

around 90% accuracy, rats were tested for two additional baseline blocks of 5 sessions to 

allow allocation into performance-matched groups. As can be seen from figure 4.5, there 

was no difference between the groups preoperatively in measures of accuracy, total trials 

performed or rate of panel pressing (accuracy: Group (F(215)=0.36, ns), total trials: Group 

(F(2,i5)=2.76, ns), rate of panel pressing: Group (F(215)=0.59, ns)).

Data were also analysed across delays (figure 4.6) which showed that 

performance decreased as delay interval increased and that there was no difference 

between the groups preoperatively (Block 1: Group (F(215)=1.07, ns), Delay (F(690)=45.07, 

/?<0.01), Group x Delay (F()29O)=0.54, ns). Block 2: Group (F(215)=1.14, ns), Delay 

(F(6j9or27.94,/?<0.01), Group x Delay (F(12j9O)::=0.47, ns)).
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Figure 4.5 DMTP3 baseline pre-surgery data for animals used in each group. % Correct against sessions 

(A), total trials per session against sessions (B), panel press rate against sessions (C). Data expressed as 

mean ± standard error o f the mean (SEM) (Control n=7, PFC n=6, HPC n=5).
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Baseline block 1 Baseline block 2

100  -

—O— Control

70 -
—A —  PFC
- V -  HPC

60
0 2 4 12 18 24 0 2 4 12 18 24

Delays (sec)

Figure 4.6 % Correct against delays for blocks 1 and 2 o f  baseline DMTP3. Data expressed as mean ± 

SEM (Control n=7, PFC n=6, HPC w=5).

4.3.2.1.2 Postoperative testing

Figure 4.7 shows accuracy across sessions both before and after surgery. Data were 

analysed across all the postoperative sessions, i.e. 30 sessions in total. There was a 

significant effect of group and session (Group (F(2,i5)=7.90, ^<0.01), Session 

(F(29,435)= l 03.20, /t<0.01)), with post hoc analysis revealing that this group difference was 

due to the significant impairment of the PFC group relative to both the HPC and control 

groups (Newman-Keuls: PFC v. FIPC /?<0.01, PFC v. Control p<0.05). However, there 

was no significant interaction between the lesion groups and the session (Group x Session 

(F(58,435)=0.75, ns)). Analysis was also performed comparing the baseline block with the 

first postoperative block and additionally the final DMTP block with the first DNMTP 

block, with block as a within-subject factor. The baseline v. first postoperative block 

analysis revealed a significant effect of group (F(2>15)=5.11, /K0.05) and block 

(F(i,i5)=40.72, /?<0.01) and a significant group by block interaction (F(2;15)=6.07, /K0.05). 

The PFC group were significantly impaired compared with the HPC group, however the 

PFC group failed to differ significantly on comparison with the controls (Newman-Keuls: 

/?=0.07). The interaction revealed that the performance of the HPC group was the only 

group which did not differ significantly between blocks. The analysis of the final DMTP 

block v. the first DNMTP block revealed significant effects of group (F(215)=7.96, p<0.01) 

and block (F(115)=360.66, /?<0.01), but no interaction between group and block
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(F(2.,s,= 0 -7 7 ,  ns). Post hoc analysis indicated that the PFC group were impaired compared 

with both control and HPC groups (Newman-Keuls: PFC v Control (p<0.05), v HPC 

(p<0.01). This shows that the session manipulations did not affect the groups 

differentially, i.e. they were all affected by the increase in delays and the rule switch to 

the same extent. Following surgery all animals were impaired compared with pre-surgery 

figures; the increase in the delay set in the third block of DMTP testing reduced the 

performance of all groups. Switching the rule from DMTP to DNMTP caused a marked 

reduction in performance in all groups, with all groups performing below chance for the 

first block.

Final
Baseline

block

Control
PFC
HPC

F igure 4.7 % Correct against sessions for 1 block o f  baseline and 6 blocks o f  postoperative testing. The 

rule switch indicates the switch from DMTP to DNMTP. D(N)MTP3 indicates a delay set o f  0-24 sec; 

DMTP4 indicates a delay set o f  0-40 sec. Data expressed as mean ± SEM (Control n=7, PFC n= 6, HPC 

n= 5).
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Data were analysed across delays to assess the nature of the deficit. Figure 4.8 

shows data for the average of blocks 1 and 2 which utilised the same delay set (0-24 sec) 

and figure 4.9 shows the data across all 3 blocks of DMTP. The averaged data for blocks 

1 and 2 showed that there were main effects of lesion group and delay, and a significant 

interaction between group and delay (Group (F(2I5)=6.45, p<0.01), Delay (F(690)=64.65, 

/?<0.01), Group x Delay (F(12j90)=5.14, /?<0.01)). Post hoc analysis revealed that the PFC 

group were significantly impaired compared with the HPC group (Newman-Keuls: PFC 

v. HPC (p<0.01), and just failed to reach significance for the comparison with controls 

(Newman-Keuls: PFC v. Control (p=0.054, ns). Analysis of the interaction between 

group and delay revealed that the PFC group were impaired compared with the HPC 

group at all but the shortest 2 delays.

block 1 and block 2 average DMTP
100 -I

90 -

80 -
o
£L_
O 70 -o

60 -

Control
PFC
HPC

50 -

40
0 2 4 8 12 18 24

Delays (sec)

F igure  4.8 % Correct against delays for the average across blocks 1 and 2 o f DMTP3. Data expressed as 

mean ± SEM (Control n= 7, PFC n=6, HPC n=5).
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Block 1 Block 2 Block 3

100

o
©>_

Oo

Control
PFC
HPC

024 8 12 18 24 024 8 12 18 24 0 4 8 12 16 24 40

D elays (sec )

F igure 4.9 % Correct against delays for the 3 blocks o f  DMTP testing. Data expressed as mean ± SEM 

(Control n~l, PFC n -6, HPC n -5).

Despite there not being a significant main effect between the PFC and control groups, 

they were shown to differ significantly on all but the shortest 3 delays as determined by 

post hoc analysis of the interaction. Indeed it is noteworthy that the HPC group were 

even shown to be significantly more accurate than the control group at the 3 longest delay 

intervals. Therefore the PFC group were impaired, with a tendency for the deficit to be 

greater at longer delays. In block 3 of testing the delays were increased up to 40 sec, in 

this block there were main effects of group and delay, and a group by delay interaction 

(Group (F(2;i5)= 4.67 ,/?< 0 .05), Delay (F(6j9o)=39.32,/?<0.01), Group x Delay (F(i2,90)==1.87, 

/?<0.05)). Post hoc analysis revealed that the group difference was due solely to the 

significant difference between the PFC and HPC groups (Newman-Keuls: PFC v. HPC 

(p<0.05). Post hoc analysis of the interaction between group and delay indicated that the 

PFC group differed from the HPC group at every delay except for 0 and 4 sec. The 

controls were significantly different from the HPC group, but only at the two longest 

delays of 24 and 40 sec. Finally, the PFC group did not differ from the controls on this 

block of testing.
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Rats with PFC lesions therefore exhibited a significant deficit in the first two 

blocks of retesting; following the introduction of longer delays this deficit failed to reach 

significance when they were compared to controls, however performance was 

significantly poorer than the HPC group in a delay-dependent manner. The final three 

blocks of testing involved the rule switch from DMTP to DNMTP, figure 4.10 illustrates 

that all groups were severely impaired in the first block of DNMTP testing, with recovery 

evident over the next two blocks. The data illustrate that animals experienced an 

enduring deficit at the shortest delay; this is probably due to the rats being unable to 

withhold their previously learned response of matching at this shortest delay. In blocks 1, 

2 and 3 there was a significant effect of the delay, but no interaction between the group 

and delay (block 1: Delay (F(6j90)=42.68, /K0.01), Group x Delay (F^go^O-TS, ns), block 

2: Delay (F(6j90)= 12.60, /?<0.01), Group x Delay (F(1290)=0.71, ns), block 3 : Delay 

(F(6,90)=6.70,/?<0.01), Group x Delay (F(l2,9O)=0.47, ns)). An effect of group was seen only 

in block 2, where the PFC group where shown to be significantly impaired compared 

with the HPC group (block 1: Group (F(215)= 1.12, ns), block 2: Group (F(2I5)=3.77, 

/?<0.05), Newman-Keuls: PFC v. HPC, /?<0.05), block 3: Group (F(215)=2.67, ns)).

Block 1 Block 2 Block 3100 n

80 -

60 -o
£
oo

40 -

Control
PFC
HPC20  -

02 4  8 12 18 24 024 8 12 18 24 024 8 12 18 24

Delays (sec)

Figure 4.10 % Correct against delays for blocks 1, 2 and 3 o f  DNMTP. Dashed line indicates chance 

level. Data expressed as mean ± SEM (Control «=7, PFC n= 6, HPC /7=5).
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In an effort to clarify the deficit further, two measures which might reveal 

motivational factors were investigated, namely number o f panel presses and the latency to 

the 1st panel press after the delay (figure 4.11). Panel press data did not reveal any effects 

of group (F(2?i5)=0.47, ns) or any group by delay interaction (F(12i9o)= 0 .90 , ns); predictably 

it did reveal an effect of delay, with more panel presses being achieved the longer the 

delay duration (F (6j9O)= 2 9 5 .2 0 , p<0.01). However, latency data revealed main effects of 

group (F(2>,5)=5.99, /K0.05) and delay (F(6>90)= 13.88, /?<0.01), and a group by delay 

interaction (F0290)=2.71, /?<0.01). Post hoc analysis revealed that the PFC group 

exhibited a longer latency than the controls, the interaction revealed that this was due to a 

significant difference between the latencies of these two groups at the two longest delays.

40  -

30  -o<0to
£a
cto
a.

—O — Control 
—A — PFC 
—V “  HPC

10 -

B
3.0

2.5

o '  2.0a«
>*L>
£  1.5

1.0

0.5

20 4 8 12 18 24

Delays (sec)

F igure 4.11 Graphs o f  panel presses (A) and latency (B) against delays averaged across the first two 

blocks o f postoperative testing. Data expressed as mean ± SEM (Control «=7, PFC n=6, HPC «=5).
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In addition, measures derived from signal detection theory (SDT) were also analysed; 

figure 4.12 shows measures corresponding to accuracy and figure 4.13 shows measures 

corresponding to bias. Results for both the accuracy measures were essentially identical, 

with main effects of group (A': F(2>15)=3.93, /?<0.05. SI: F(2>15)=6.44, /K0.01), delay (Af: 

F(6,90)—31.21, /K0.01. SI: F(6>9o)=72.09, p<0.01) and group by delay interactions (A': 

F(i2,9O)=2.05, /?<0.05. SI: F(1290)=2.66, /?<0.01). Post hoc analysis revealed that the PFC 

group were significantly impaired compared with the HPC and control groups at the four 

longest delays. For the SI  measure only, the HPC group achieved a significantly higher 

score than the control group for the longest two delays. The bias indice Iy, which 

contrasts accuracy across levers, failed to reveal any effect of group, or any group by 

delay interaction. Similarly, the bias indices RI and B" failed to reveal any effect of 

group when assessed over all delays

Control
PFC
HPC

t .o

o.e

o.e

0.7

0.6

0.5

B
1.0

0.8

0.6

CO
0.4

0.2

0.0 0 2 8 124 18 24

D elays (sec )

Figure 4.12 Accuracy measures against delays based on SDT, for average o f  blocks 1 and 2. A' (A), SI 

(B). Data expressed as mean ± SEM (Control n= 7, PFC n=6, HPC n= 5).
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0.1
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Delays (sec)
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I Control 
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I HPC

q  0-2

Figure 4.13 Bias indices for blocks 1 and 2. ly across delays (A), RJ averaged across all delays (B) and B" 

averaged across all delays (C). D ata expressed as mean ± SEM (Control n=7, PFC n=6, HPC n-5).
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4.3.2.2 Water maze 

4.3.2.2.1 Place learning-1

Figure 4.14 (A) shows the latency data for the first 6 days of place learning. There was a 

significant effect of both group (F(2>i5)=7.68, p<0.01) and day (F(5,7S)=36.99, p<0.01), but 

no group by day interaction (F(1075)=1.17, ns). Post hoc analysis revealed that the group 

difference was due to the HPC group being significantly different from both the PFC and 

the controls, who did not differ (Newman-Keuls: HPC v. PFC (p<0.01) and Control 

(p<0.05)). Therefore the HPC group showed a deficit in learning this task, their 

performance improved across days (as indicated by the decrease in latency to find the 

platform) but they did not show the same level of improvement as the other two groups.
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2500120
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HPC

100 - 2000 -

Eoo<DM 1500 -£O)ca>*oc
3(0_i
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1000 -
(0a.40 -
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20  -

5 63 4 21 2 1 3 64 5

Days (av. o f 4 trials per day) Days (av. of 4 trials per day)

Figure 4.14 Place learning-1: Latency against days (A), path length against days (B). Data expressed as 

mean ± SEM (Control «=7, PFC n= 6, HPC n= 5).

The PFC lesion group was shown to be without effect on this task using the measure of 

latency. To establish if these effects were measure-specific, the path length of each trial 

was also investigated; these data are shown in figure 4.14 (B). The path length data show 

a very similar pattern to the latency data, thus ruling out the possibly of swimming speed 

being a factor in the results. There was a significant effect of group and day, but no 

group by day interaction (Group (F(2>15)=10.82,/?<0.01), Day (F(5j75)=28.74,/?<0.01), Group
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x Day (F(10i75):=0.89, ns)). Post hoc analysis revealed that this group effect was again due 

to the difference between the HPC group and the PFC and control groups (Newman- 

Keuls: HPC v. PFC and Control, /K0.01).

On day 7 of testing a 60-sec probe trial was undertaken in which the platform was 

absent. Figure 4.15 shows the probe data for the percentage of time and path length spent 

in the training quadrant. The HPC group spent significantly less time in the training 

quadrant than the other two groups (Group (F(2j15)= 9.35,/K0.01), Newman-Keuls: HPC v. 

PFC and Control, p<0.05). The same pattern was seen for the percentage of path length 

in the training quadrant, with the HPC group shown to have significantly less of their 

path length within the correct quadrant compared with PFC and control animals (Group 

(F(2,i5)-6.92, /?<0.01), Newman-Keuls: HPC v. PFC and Control, /K0.05). This suggests 

that the HPC rats had not learnt the platform position as well as the other two groups and 

were in fact performing near chance for these two measures in the probe trial. Figure 

4.16 illustrates representative swim paths for each lesion group on day 1 and day 6 of 

training and on the 60-sec probe session, the traces for days 1 and 6 are taken from the 4th 

trial. The representative for each group was chosen as the animal which showed the 

nearest score to the group average for “% time in the training quadrant” on the probe day.
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Figure 4.15 Place Ieaming-1 Probe. % Time in training quadrant against group (A), % path length in 

training quadrant against group (B). Dashed line indicates chance level. Data expressed as mean ± SEM 

(Control n=7, PFC n=6, HPC n=5).
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Figure 4.16 Representative swim paths for hippocampal (HPC), prefrontal (PFC) and control rats on days 

1 and 6 o f  place learning and the 60-sec probe trial. Filled circles indicate the platform position, empty 

circles in the probe trials indicate the position o f  the platform in training trials and hence the “target” 

quadrant. Numbers refer to the four different platform positions used.
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4.3.2.2.2 Place learning-2

The second place learning training occurred two weeks after the probe trial, animals were 

retested primarily to see if the deficit in the two sham HPC rats had diminished. These 

two animals still performed poorly, consistently failing to find the platform within the 

maximum time of 120 sec, and were therefore excluded from all analyses. Figure 4.17 

shows the latency data for the second block of place learning, path length data are not 

presented as the same pattern as latency was revealed. Group and day both had a 

significant effect, but there was no group by day interaction (Group (F(2I5)=5.03,/?<0.05), 

Day (F(345)=7.93, /?<0.01), Group x Day (F(645)=1.52, ns). The HPC group were 

significantly slower at finding the platform than the PFC and control groups (Newman- 

Keuls: HPC v. PFC and Control, /K0.05). A second probe was carried out following the 

4 days of training with data shown in figure 4.18. Despite the significant effect on 

latency, neither measure on this probe reached significance for a group effect (% Time: 

Group (F(2,i5)=1.96, ns), % Path Length: Group (F(2 i5)=l .34, ns)).
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30 -

20

10  -

Control
PFC
HPC

2 3

Days (av. of 4 trials per day)

Figure 4.17 Latency against days for place learning-2. Data expressed as mean ± SEM (Control n=7, PFC 

n=6, HPC «=5).
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A

CONTROL

CONTROL PFC HPC

Figure 4.18 Place leaming-2 probe. %  Time in training quadrant against group (A), % path length in 

training quadrant (B). Dashed line indicates chance level. Data expressed as mean ± SEM (Control n= 7, 

PFC n=6, HPC n=5).

4.3.2.2.3 Place learning- Reversal

Rats were exposed to a reversal of the platform position so that it was in the opposite 

quadrant to the one that they had been trained to. All water maze latency data are 

summarised in figure 4.19, to illustrate the increase in latency following platform 

reversal. There was no effect of group on this reversal, but there was an effect of day and 

a group by day interaction (Group (F(2>i5)=2.19, ns), Day (F(3>45)=21.17, p<0.01), Group x 

Day (F(6>45)=4.11, p<0.01)). This shows that all the groups exhibited the same increase in 

the amount of time taken to find the platform when it was relocated. However the HPC 

group again showed that they were less effective at learning the platform position than 

the other groups.
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4.3.2.2.4 Visual Cue

The visual cue test consisted of four trials with a different platform and start position used 

for each, the data are illustrated in figure 4.19. There was no effect of group in either 

latency or path length (latency: Group (F(2>i5)=1.00, ns), path length: Group (F(2>i5)=0.74, 

ns)). This verifies that the groups were not suffering from any motor or sensory deficits 

and that all were similarly motivated to escape the pool when presented with this visible 

platform. This also confirms that any difference seen in performance between groups 

was likely to be due to a deficit in learning the location of the platform.
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Figure 4.19 Latency against days for place learning-1, place leaming-2, reversal and visual cue. Data 

expressed as mean ± SEM (Control n~7, PFC n-6, HPC n -5).
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4.3.2.3 Spontaneous locomotor activity

Rats were assessed on locomotor activity over a 120-min session, the results are shown in 

figure 4.20. There was a main effect of group (F(2>15)=4.65, /?<0.05), and block 

(F(IU6S)=17.23, /7<0.01), but no group by block interaction (F(22 165)=1.15, ns). Activity 

decreased across all groups as the session progressed; both lesion groups were more 

active than controls, but whereas this was significant in the HPC group (Newman-Keuls, 

/?<0.05), it just failed to reach significance for the PFC group (Newman-Keuls, 

p=0.0528). HPC and PFC groups did not differ from each other.
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Figure 4.20 Total activity counts against 10-min blocks. Data expressed as mean ± SEM (Control n=l, 

PFC n-6, HPC n=5).
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4.4 Discussion

This experiment sought to examine the effects of HPC or PFC lesions on DMTP and a 

reference memory task in the water maze, in order to clarify the roles of these two areas 

within these tasks. The two lesions revealed a double dissociation of behavioural 

consequences. HPC lesions resulted in a robust impairment in the water maze task, 

whilst performance on the DMTP task in the Skinner box was not compromised. 

Conversely, PFC lesions induced a delay-dependent deficit in the DMTP task whilst 

allowing control levels of performance in the water maze. The DMTP results are 

contrary to many published findings and are therefore of particular interest with respect to 

understanding the extent of involvement of these two areas in the task.

Retention o f DMTP: HPC lesions

HPC rats displayed absolutely no impairment at any point during testing. They 

performed as well as controls on the rule switch and when assessed across delays they 

showed no deficit even at the longest durations; indeed hippocampal rats had 

significantly enhanced performance compared with the controls at the longest two delay 

intervals in the first two weeks of testing. These rats were also unimpaired on all 

measures of motivational performance. These findings are not consistent with Aggleton 

and colleagues’ work (1992), which showed that HPC lesions produced delay-dependent 

deficits on DNMTP. However, their lesions were aspirative and additionally the task was 

non-matching rather than matching (Aggleton et al., 1992). The rule is unlikely to have 

resulted in this discrepancy because the experiment described in this chapter also shows 

that HPC rats were not impaired on DNMTP, albeit after switching rule from DMTP. 

Another study in support of delay-dependent HPC involvement in DNMTP is that of 

Broersen (2000). However, it is unfortunate that Broersen’s results are mentioned only as 

part of a review and therefore lesion details, group sizes and exact training protocol are 

absent, providing little information with which to compare the present results. Despite 

these difficulties this paper will be cited frequently, as it provides one of the few 

examples of HPC and PFC lesion comparisons within both DNMTP and the water maze 

(Broersen, 2000). Additionally, scopolamine (a muscarinic receptor antagonist)
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injections in the dorsal HPC have also been seen to induce delay-dependent impairments 

in DMTP (Dunnett et al., 1990).

However, the most pertinent findings come from a study in which rats were 

trained on either DMTP or DNMTP, then retested following IBO lesioning of the HPC 

(Hampson et al., 1999). These rats were shown to have a delay-dependent impairment on 

both tasks. A fundamental problem with this study was the absence of a control group; 

lesioned rats were compared to their own preoperative performance and as such the 

potential effects of training and surgical procedures have not been taken into 

consideration. This study required rats to nose-poke in a device on the back wall of the 

box throughout the delay period (Hampson et al., 1999). This served to preclude the rats 

from using mediation strategies (see Chapter 9), and therefore may suggest the use of 

these strategies for intact task performance in this present experiment.

Evidence in support of the present findings also exists, with cholinergic specific 

lesions of the HPC shown to have no effect on rats pretrained and retested on DNMTP, 

then switched to DMTP in the Skinner box (Winters and Dunnett, 2004). 

Radiofrequency lesions of the HPC elicited no deficit in DMTP, when rats were trained 

in a chamber that required a response on an additional lever on the back wall to initiate 

the choice phase (Mair et al., 1998). However similar lesions in an identical apparatus 

were seen to produce delay-independent deficits on DNMTP (Porter et al., 2000), 

suggesting that the rule may be a significant factor. Young et al (1996) have also 

demonstrated a lack of impairment in delayed matching and non-matching tasks in an 

operant box, in rats that received radioffequency lesions of the dorsal HPC. The 

apparatus required nose-poking in ports equipped with infra-red photocells, but was 

essentially equivalent to DMTP/DNMTP, except that it also required a response on the 

back wall to initiate the choice phase (Young et al., 1996).

Therefore it would appear that the present finding of a lack of effect of HPC 

lesions on DMTP is not outwith the scope of the existing work on this subject. 

Discrepancies may arise from differing lesion techniques and specificities, and also 

variability in task details and training requirements. The possibility of intact performance 

by means of a mediating strategy alone cannot be entirely dismissed. However, as 

mentioned above, other studies have shown that in tasks where such strategies should at
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least in part be eliminated, HPC damage still failed to cause any deficit (Mair et al., 1998; 

Young et al., 1996).

Retention of DMTP: PFC lesions

In contrast to the preserved performance seen following surgery in the HPC group, PFC 

rats showed a distinct impairment in this task. They were significantly impaired 

compared with both control and HPC rats; this deficit was shown to be delay-dependent. 

Specifically, performance did not differ from either of the other two groups at the shortest 

two delays. Panel pressing was not affected by the lesion; however, latency to make the 

first panel press after the delay was shown to increase in a delay-dependent manner. This 

effect on latency could be due to the PFC rats being more distractible and less able to 

sustain attention over these longer delay periods, or as a consequence of the increased 

difficulty in processing the task with increasing delay length. Measures derived from 

signal detection theory corroborate the % correct data, with prefrontal rats being impaired 

on the accuracy and sensitivity measures in a delay-dependent manner. The bias 

measures failed to reveal any significant effects of this group, suggesting that their deficit 

in performance was more likely to be due to some mnemonic impairment rather than the 

adoption of positional biases which could reduce accuracy.

The delay-dependent effect on accuracy is of great interest in light of numerous 

reports that damage to the PFC in operant tests of delayed matching and non-matching 

results in delay-independent deficits (Broersen, 2000; Dunnett et al., 1990; Harrison and 

Mair, 1996; Herremans et al., 1996; Mair et al., 1998; Porter et al., 2000; Young et al., 

1996). One study has also shown delay-independent deficits following excitotoxic 

lesions of the medial striatum (innervated by dorsal PrL, amongst other areas) and the 

NAC and ventral striatum (innervated by ventral PrL and IL) (Burk and Mair, 2001). 

These studies suggest that an impairment in performance that is equal across all delays is 

indicative of an effect on more non-specific factors such as reduced attention, motivation 

or planning. However, the majority of these studies use alternative lesion techniques 

such as aspiration, radiofrequency or neurotransmitter specific lesions, with lesions often 

being less selective than in the present study.

Studies that utilised comparable lesion techniques to the one used in this study 

tend to replicate the delay-independent deficits mentioned above. Chudasama and Muir’s
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work (1997) showed that NMDA-induced lesions centred on the PrL resulted in delay- 

independent deficits in DMTP; which they suggested was due to an impairment in 

effective utilisation o f mediation strategies to solve the task. NMDA lesions of the PFC 

have also been shown to induce delay-independent deficits on DNMTP, although lesions 

were larger than in this experiment, encompassing Cgl (Aggleton et al., 1995). Of 

particular interest is that this study showed increases in the SDT measures of bias, RI and 

B ", in addition to deficits in the accuracy measures (Aggleton et al., 1995). This may be 

a reflection of the larger lesion size, as in the present study no effect was seen on any of 

the bias measures. The only prior evidence for PFC lesions resulting in delay-dependent 

deficits in DMTP comes from a paper by Dunnett (1990). This study used an identical 

procedure to the one used in the present experiment, except that PFC lesions were 

induced by aspiration; rats were seen to have delay-dependent deficits when PFC lesions 

were more rostral, but delay-independent deficits when lesions were more caudal and 

extensive (Dunnett, 1990). Additionally, a study has suggested delay-dependent 

impairments in DMTP following scopolamine injections into the dorsal medial PFC 

(Broersen et al., 1994). However, these injections appear to have been rather lateral and 

the authors indicate that they were in the Fr2 and dorsal anterior cingulate (Cgl) areas; 

yet on comparison with a more current brain atlas (Paxinos and Watson, 1998), they 

appear to be in the M2 (or Fr2) area alone and as such cannot be compared directly with 

the results of the present experiment (Broersen et al., 1994).

The present experiment also shows that PFC rats were not differentially affected 

by the rule switch from matching to non-matching; this result is surprising and is in 

contrast to a study which suggests that the PFC is involved in exactly this type of 

switching situation (Joel et al., 1997b). However, Joel et al (1997b) used electrolytic 

rather than excitotoxic lesions and rats acquired DNMTP following surgery before being 

switched to DMTP. PFC rats were reported to take longer than controls to reach criterion 

performance, and performance across all blocks was worse in the PFC group. It should 

be noted that the authors do concede that there was no difference between the rate of 

improvement in the PFC group versus the controls (Joel et al., 1997b); this therefore 

suggests that their impairment might not be specific to the rule switch per se, but rather 

that the PFC group exhibited a more general impairment in task performance.
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Impairments have also been demonstrated in a paradigm involving switching from a 

matching to a non-matching rule using an aversively motivated visual discrimination task 

in a novel rotating T-maze (Li and Shao, 1998). However, this task does not provide a 

valuable comparison with the present study, due to both the aversive nature of the task 

and the use of mechanically-induced lesions within the PFC (Li and Shao, 1998). The 

lack of PFC effect on the rule switch in the present study is interesting as it contrasts with 

the rat literature implicating both the PrL and IL in behavioural flexibility and tasks 

which involve switching between the use of different attributes (see Chapter 1 for more 

detail) (Birrel and Brown, 2000; Ragozzino et al., 1999; Ragozzino et al., 2003). 

However, it should be made clear that the present study does not involve a switch in 

attention to a new dimensional attribute, but rather a reversal o f the rule; with rule 

reversals within the same dimension typically being unaffected by PFC lesions (Birrel 

and Brown, 2000; Ragozzino et al., 2003). Nevertheless, there is evidence for PFC 

involvement in even the simplest forms of spatial reversal learning (Salazar et al., 2004).

Thus the present finding of PFC-lesioned rats performing as controls on switching 

between the matching and non-matching rules, and therefore successfully inhibiting a 

previously learned response, is clearly quite distinctive. This finding may in part be due 

to the specificity o f the lesions and the excitotoxic lesion technique, although to my 

knowledge this is the first investigation of adaptation to a rule switch o f this nature that 

was trained preoperatively.

Retention o f DMTP: Sham lesions

One finding that must be addressed is the issue of whether or not there may have been an 

effect of the sham lesions on performance of the DMTP task. Despite there being no 

difference between the HPC group and controls when assessed across sessions, there was 

a tendency for the HPC group to perform above controls, as exemplified by the 

significant difference between these two groups at the longer delays. Thus it might be 

that rather than the HPC group showing enhanced performance, the sham PFC group may 

instead have incurred sufficient non-specific damage from the lowering of the needle, 

and/or the PBS injection, to impair performance. Unfortunately the small group sizes 

precluded any statistical difference between the two sham groups from being established.

107



I .  K !  1 1  \  I K  > \  O l  D M T P :  i I H  < M  >! H I T ’ W l )  I T C  I I s | n \ s

A variety o f techniques for performing sham PFC lesions have been used in other 

studies that investigated PFC lesions on D(N)MTP tasks. In those studies that employed 

electrolytic, radiofrequency or aspirative lesions, controls were either unoperated or had 

small pieces of bone removed from the skull above the corresponding site to the lesion 

(Dunnett, 1990; Harrison and Mair, 1996; Joel et al., 1997b; Young et al., 1996). In 

studies where excitotoxic lesions were used shams were unoperated (Chudasama and 

Muir, 1997) or had incisions made in the dura with no lowering of the needle (Aggleton 

et al., 1995). Finally, the study by Broersen (2000) does not provide details of lesion 

techniques or sham surgeries. Therefore none of these studies used sham techniques that 

were directly comparable with those of the present study, where the needle was lowered 

and an equivalent volume of PBS injected. Thus one can only speculate as to whether or 

not there was an effect o f the sham PFC lesions on performance, which in turn led to the 

apparent enhancement o f the HPC group at the longest delays. However, it does seem a 

likely explanation given that previously there has been no report of enhancement of HPC 

lesions on performance on this task, and that the control group was comprised of five 

PFC shams and just two HPC shams.

Reference memory water maze task: HPC lesions

HPC rats displayed a severe impairment in this task, with longer latencies to find the 

platform and significantly less time spent in the training quadrant than the other groups; 

this is in full accordance with the literature (Bannerman et al., 1999; Broersen, 2000; 

Cassel et al., 1998; Duva et al., 1997; Galani et al., 1998; Good and Honey, 1997; Gould 

et al., 2002; Liu and Bilkey, 2001; Morris et al., 1982; Richmond et al., 1999; Wright et 

al., 2004). It should be noted that HPC-lesioned rats have been shown to learn a platform 

position provided that the start position remained fixed (Compton et al., 1997), 

suggesting that flexible use of cue relationships is the crucial faculty lost following these 

lesions. HPC rats were not affected by the positional reversal, although they still took 

longer to find the platform than the other groups. Finally, the visual cue test clarified that 

the hippocampal rats were not experiencing any motor or motivational problems which 

might lead to this reduced performance. The water maze results serve to substantiate the 

Skinner box data, namely HPC lesions that are without behavioural effects on DMTP 

induce a characteristic deficit in the water maze.
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Reference memory water maze task: PFC lesions

PFC rats did not show any impairment in learning the position of the platform and their 

latencies decreased across days. This is consistent with many reports where PFC lesions 

were without effect on learning a reference memory task in the water maze (Broersen, 

2000; de Bruin et al., 1994; de Bruin et al., 2001; Lacroix et al., 2002; Sullivan and 

Gratton, 2002), although some early reports give evidence for PFC deficits (Kolb et al., 

1983; Sutherland et al., 1982). Furthermore, PFC rats were not differentially affected by 

the reversal of the platform position. This is in general accordance with previous work in 

which mild impairments following reversal (de Bruin et al., 1994; Lacroix et al., 2002), 

or no impairment at all (Broersen, 2000; de Bruin et al., 2001; Sullivan and Gratton, 

2002; Sutherland et al., 1982), are reported. Granon and Poucet (1995) demonstrated that 

PFC rats were capable of learning the position of a platform after it was reversed, 

provided start positions remained fixed at just two locations. But when two more start 

positions were introduced, PFC rats took longer to find the platform with the impairment 

specific to the two new start locations (Granon and Poucet, 1995). This suggests an 

impairment due to the contingency being switched, i.e. from using just two start positions 

to using four, because the present study utilised all seven start positions at random and 

there was no impairment in the PFC group.

The PFC is thought to be involved in egocentric tasks in the water maze 

(Broersen, 2000; de Bruin et al., 2001; Mogensen et al., 2005; Nieto-Escamez et al., 

2002), where a particular body movement is required to find the platform irrespective of 

external cues (e.g. turn to the right). However it is unlikely that this type of task would 

have provided further dissociation between the effects of these two lesions, as the HPC is 

also thought to have a role in egocentric water maze tasks (Broersen, 2000; Mogensen et 

al., 2005). From this experiment there is no evidence to suggest a role for the PFC in 

spatial memory. Furthermore, the lack of effect on the reversal does not provide 

additional evidence for a role in behavioural flexibility.

Spontaneous locomotor activity

Spontaneous locomotor activity was assessed in the rats over a 120-min session. HPC 

rats exhibited hyperactivity compared with controls, in line with numerous reports of 

HPC damage resulting in increased locomotor activity (Bannerman et al., 2002a; Cassel
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et al., 1998; Coutureau et al., 2000; Galani et al., 1998; Good and Honey, 1997; Higgs et 

al., 2001). This characteristic o f HPC-lesioned animals has been attributed to the HPC 

serving as an inhibitor of general activation; upon its removal, this level of inhibitory 

control is eliminated and subsequently levels of activity are amplified (Tracy et al., 

2001).

PFC lesions did not induce such a clear-cut effect on locomotor activity. The 

difference between the PFC group and controls just failed to reach significance when 

their total activity counts were compared across 10-min blocks. This result could 

therefore be interpreted as a tendency for increased locomotor activity. This result is not 

unexpected as both NMDA lesions (Salazar et al., 2004) and dopamine depletion 

(Sokolowski and Salamone, 1994) in the PFC have been shown to have no effect on 

locomotor activity. However Yee’s paper (2000) presents some evidence in support of 

PFC rats showing some hyperactivity; namely NMDA-lesioned rats showed increased 

locomotor activity, although only over the first two 5-min blocks.

Conclusions

The aim of this experiment was to provide a direct comparison between lesions of the 

HPC or PFC on DMTP in the Skinner box, and a reference memory task in the water 

maze. A double dissociation has been revealed, with HPC lesions impairing performance 

in the water maze and not DMTP, and PFC lesions impairing DMTP and not water maze 

performance. This suggests that the HPC is not critical to performance of DMTP, at least 

using the selective lesion techniques described herein. However, PFC lesions reveal a 

delay-dependent deficit, implicating this task as a potentially viable tool for assessing 

novel therapeutic strategies for ameliorating cognitive impairments associated with 

frontal damage.
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Chapter 5 Acquisition of delayed matching to 

position; effect of hippocampal and prefrontal 

lesions

Experiment 2

5.1 Introduction

As discussed in Chapter 4, both the HPC and the PFC have been implicated in the DMTP 

task in the Skinner box. Experiment 1 tested retention of DMTP following preoperative 

training on the rule and revealed a significant effect of the PFC lesion on this task, with a 

delay-dependent deficit being evident; HPC lesioned rats showed intact performance. 

However, often different areas can be targeted when acquisition of the rule is tested 

instead, where learning the rule and task contingencies are in question. It is possible that 

learning of a rule recruits different neural substrates in comparison with performance of a 

rule attained prior to surgical intervention, and it is this hypothesis which will be tested in 

the experiment described within this chapter.

There is evidence to suggest that acquisition and retention of certain tasks do 

indeed show dissociations, and that preoperative training can have significant effects on 

retention performance (Wilcott, 1986). PFC lesions have even been shown to facilitate 

learning in some operant procedures such as the acquisition of a conditional association, 

despite impairment on operant delayed alternation (van Haaren et al., 1988). 

Furthermore, preoperative training can affect performance on tasks such as MTP and 

NMTP in the T-maze (Granon et al., 1994). Preoperatively-trained rats with medial PFC 

lesions showed a permanent deficit on MTP, but NMTP performance recovered to control 

levels; in contrast, postoperatively-trained rats displayed similar deficits in both MTP and 

NMTP (Granon et al., 1994). Rats can also be impaired on acquisition of a task and not 

retention (MTP in T-maze with MD nucleus lesions, Hunt et al (1998)), or conversely 

impaired on retention and not acquisition (object discrimination in Y-maze with angular
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bundle lesions which disrupt the perforant pathway, Vnek et al (1995)). In the monkey, 

preoperative training is thought to account for the lack of effect of HPC lesions on a 

DNMTS task, perhaps by providing practice at holding information over a delay (Murray 

and Mishkin, 1998). Further evidence of practice effects come from a reference memory 

task in the water maze, where preoperative training in Fx-lesioned rats speeded 

postoperative attainment o f asymptotic performance levels, when compared with rats that 

received only postoperative training (Hannesson and Skelton, 1998). These pretrained 

animals did not show any retention of the platform position per se, but it is thought that 

the procedural aspects of the task may have been retained and thus facilitated relearning 

of the position. Thus it appears that pretraining may have a significant influence on the 

outcome of an experiment, either by masking any potential impairment, or by involving 

different brain areas to those required for the initial learning of task contingencies.

This experiment investigated the effects of lesions of the HPC or the PFC on the 

acquisition of DMTP in the Skinner box. Rats received no training prior to surgery and 

were therefore experimentally naive upon introduction into the Skinner boxes. Following 

DMTP acquisition, rats were exposed to a switch in the task rule (from matching to non

matching), this was to serve as an analogue of the switching between decision rules in the 

human WCST, in which human patients with prefrontal damage are impaired. Rats were 

also subjected to a reference memory task in the Morris water maze and to general 

locomotor activity evaluation.

Therefore the aim of this experiment was to provide data on the effects of HPC 

and PFC lesions on acquisition o f DMTP that were directly comparable with the results 

from Experiment 1, where retention of the task was investigated. This would hopefully 

identify any potential dissociation in performance based on whether or not the rats had 

received preoperative training.

5.2 Materials and methods

5.2.1 Subjects

32 rats were used in this experiment; all other subject details are covered in section 2.2. 

Rats were assigned to one o f four surgical treatment groups with treatments being HPC
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lesions («=10), sham HPC («=6), PFC lesions («=10) and sham PFC (n=6), with all 

surgical details in section 3.3. Rats were given two weeks to recover from surgery before 

testing began.

5.2.2 Behavioural testing

Locomotor activity was assessed over a 60-min session, one day prior to commencing 

training in the Skinner boxes. All Skinner box training procedures are described in detail 

in section 2.3, briefly, rats were habituated to the pellets in their home cages, then trained 

to collect pellets from the central panel and finally to press the levers to obtain the pellets 

as reward. In the course of training one rat had repeated seizures prior to being placed in 

the Skinner box and was therefore removed from the experimental group and used for 

pilot lesioning; this rat had a PFC lesion and therefore the PFC group size was reduced to 

nine. Upon reaching asymptotic levels of performance at alternating continuous 

reinforcement, rats were trained on 30-min sessions of DMTP in the Skinner box as 

detailed in section 2.3. Rats received training as outlined in table 5.1.

Skinner box task Ii  Days training
DMTPO j 4

DMTPO +CP S: i i
DMTP2 10
DMTP3 10

DNTMP3 | 20

Table 5.1 Training procedure for Skinner box. Dashed line indicates switch from matching to non

matching, DMTPO indicates no delay, DM TP2 indicates delay set o f  0-16 sec, D(N)MTP3 indicates delay 

set o f  0-24 sec, CP indicates the inclusion o f  a correction procedure.

One month after completion o f Skinner box testing rats were tested in the water maze. 

They received 6 days o f place learning testing followed by a probe day where the 

platform was not present. Following completion of water maze testing, all rats went on to 

be tested in the spontaneous novelty preference task reported in Chapter 8.
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5.3 Results

5.3.1 Histology

5.3.1.1 Bilateral PFC lesions

Figure 5.1 shows photomicrographs of a representative lesion and figure 5.2 illustrates 

the minimum and maximum lesion extent. In all cases there was substantial cell loss 

within the PrL and IL cortices, with complete neuron loss within these regions in most 

animals. Two animals had damage that encompassed the Cgl cortex, one of these 

animals also incurred damage to the MO and DP cortices. Out of the nine rats in this 

surgery group, three did not incur suitable damage and were therefore excluded from all 

analyses, leaving a group size of six. One of these excluded rats showed only unilateral 

damage, whilst the other rats had lesions that were too extensive, with damage in the FrA, 

Cgl and M2 cortices.

Figure 5.1 Photomicrographs o f  a representative bilateral PFC lesion, coronal sections stained with Cresyl 

Violet, with A being the most anterior. Scale bar =2 mm.
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Figure 5.2 Extent o f the largest (grey) and smallest (black) PFC lesions, adjacent sections show specific 

regions. Numbers indicate mm anterior to bregma, abbreviations: cingulate cortex area 1 (C gl), cingulate 

cortex area 2 (Cg2), dorsolateral orbital cortex (DLO), dorsal peduncular cortex (DP), frontal association 

cortex (FrA), infralimbic cortex (LL), lateral orbital cortex (LO), primary m otor cortex (M l), secondary 

motor cortex (M2), medial orbital cortex (MO), prelimbic cortex (PrL), ventral orbital cortex (VO). 

Coronal drawings taken from Paxinos and Watson (1998).

5.3.1.2 Bilateral HPC lesions

Brains with HPC lesions were sectioned horizontally to allow clearer examination of 

lesion extent, and to prevent sections from becoming detached. Histological analysis of 

HPC lesions revealed that all but one out of the ten animals had sufficient bilateral 

damage for inclusion in analyses. This excluded rat showed only unilateral damage.
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Figure 5.3 shows photomicrographs of a representative case that was included in analyses 

and figure 5.4 illustrates the minimum and maximum lesion extent. Successful cases had 

extensive cell loss throughout the dorso-ventral extent of the hippocampal formation, 

with some subicular damage.

A D

Figure 5.3 Photomicrographs o f  a representative bilateral HPC lesion, horizontal sections stained with 

Cresyl Violet, with A being the m ost dorsal. Scale bar =2 mm.
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6.38

Figure 5.4 Extent o f the largest (grey) and smallest (black) HPC lesions. Numbers indicate mm below the 

horizontal plane passing through bregm a and lambda. Horizontal drawings taken from Paxinos and Watson 

(1998).
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5.3.1.3 Sham lesions

Sham lesion cases were not shown to have any cellular loss or damage. A small amount 

of swelling resulting from the bone flap removal was evident in some cases. The data 

from the two different sham groups did not differ significantly and as such the two groups 

were pooled for clarity giving a control group of twelve individuals.
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5..3.2 Behaviour

5.3.2.1 Delayed matching to position (DMTP)

There were no group differences for the initial stages of learning such as lever press 

acquisition, therefore these data are not reported. Figure 5.5 shows the data for the 

subsequent training phases o f DMTP, which clearly illustrates that there were no group 

differences at any point in acquisition. In the first four days of DMTP training there was 

no effect o f group or any group by session interaction, effect of session also failed to 

reach significance (DMTPO; Group (F{224)=::0.95, ns), Group x Session (F(672)=0.05, ns), 

Session (F(3>72)=2.42, ns (/?=0.07)).

Figure 5.5 Accuracy against sessions for rats trained following surgery. DMTPO indicates no delay, 

DMTP2 indicates delay set o f  0-16 sec, DNM/MTP3 indicates delay set o f  0-24 sec, CP indicates the 

inclusion o f  a correction procedure. Data expressed as mean ± SEM (Control n= 12, PFC n= 6, UPC n= 9).

DMTPO DMTPO DMTP2 DMTP3 
+ CP (0-16secs) (0-24)

DNMTP3

Control
PFC
HPC

0
0 5 10 15 20 25 30 35 40 45 50 55

Sessions
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Following these first 4 days of training at DMTPO a correction procedure was introduced; 

this fixed the side of the sample lever if the previous trial had been incorrect, 

randomisation of sample side was only reinstigated once a trial was performed correctly. 

This manipulation again did not show any group differences, although all rats improved 

their accuracy across sessions (DMTPO+CP; Group (F(2<24)=0.24, ns), Group x Session 

(F(2o,24O)==0.69, ns), Session (F(10̂ 40)=23.20,/?<0.01)). Longer delay sets were subsequently 

introduced, neither delay set caused any group differences (DMTP2; Group (F(224)=2.90, 

ns), Group x Session (F(18>216)=1.35, ns), Session (F(9>2I6)=17.31, /K0.01). DMTP3; Group 

(F(2,24)=0.35, ns), Group x Session (F(18216)=0.53, ns), Session (F(9>216)=7.53,/K0.01)). The 

final intervention was the rule switch from matching to non-matching. Again there were 

no significant differences between the groups (DNMTP3; Group (F(224)=0.01, ns), Group 

x Session (F(3M56)=0.81, ns), Session (F(19>456)=90.54,/?<0.01)).

Days to criterion performance were also analysed to provide a measure of rate of 

acquisition. This was taken as the number of days required to achieve a performance of > 

85 % correct on the “DMTPO + correction procedure” phase of task. This measure failed 

to reveal any difference between groups (F(224)=0.39, ns), with a high level o f variation 

between individual animals (mean± SEM: Control 4.42± 0.73, PFC 3.83± 1.19, HPC 

5.22± 1.27)).

5,3,2.2 Water maze

Figure 5.6 illustrates the latency data across the 6 days of place learning testing. There 

was a significant effect of group (F(2j24)=1 1.44,/?<0.01) and day (F(5120)=45 .92, p<0.01) but 

no group by day interaction (F(lo,i2o)=0.84, ns). Post hoc analysis revealed that the group 

difference was due to the HPC group being significantly different from both the PFC and 

the controls, who did not differ (Newman-Keuls: HPC v. PFC and Control (/?<0.01). 

Therefore the HPC group showed a clear deficit in learning this water maze task whilst 

PFC lesions were without effect.
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Figure 5.6 Latency against days for place learning. Data expressed as mean ± SEM (Control n= 12, PFC 

n=6, HPC n=9).

Figure 5.7 illustrates the data for the probe trial undertaken on the final day of testing. 

The HPC group spent significantly less time in the training quadrant than the other two 

groups (Group (F(2 ,2 4 )~8.57, /K0.01), Newman-Keuls: HPC v. PFC and Control 

(p<0.01)). This pattern of results was replicated in the percentage of path length spent in 

the training quadrant (Group (F(2,24)=7.18, /?<0.01), Newman-Keuls: HPC v. PFC 

(p<0.05) and control (p<0.01)). This suggests that the HPC rats had not learnt the 

platform position as well as the other two groups and were performing near chance for 

both measures in the probe trial. Finally, figure 5.8 illustrates representative swim paths 

for each lesion group on day 1 and day 6 of training and also on the 60-sec probe session, 

the traces for days 1 and 6 are taken from the 4th trial. The representative for each group 

was chosen as the animal which showed the nearest score to the group average for % time 

in the training quadrant on the probe day.
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CONTROL

CONTROL

Figure 5.7 Probe data. %  Time in training quadrant against group (A), % path length in training quadrant 

against group (B). Dashed line indicates chance level. Data expressed as mean ± SEM (Control n= 12, PFC 

n= 6, HPC n=9).
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Figure 5.8 Representative swim paths for hippocampal (HPC), prefrontal (PFC) and control rats on days 1 

and 6 o f  place learning and the 60-sec probe trial. Filled circles indicate the platform position, empty 

circles in the probe trials indicate the position o f  the platform in training trials and hence the “target” 

quadrant. Numbers refer to the four different platform positions used.
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5.3.2.3 Spontaneous Locomotor Activity

Rats were assessed over a 60-min session, just prior to DMTP training; the results are 

shown in figure 5.9. There was a main effect of group (F(224)=5.82, p<0.01) and block 

(F(iU64)=20.59, p<0.01) but no group by block interaction (F(22;264)=1.44, ns). Post hoc 

analysis revealed that the HPC rats were more active than the PFC and control rats, who 

did not differ (Newman-Keuls: HPC v. PFC and Control (p<0.05)).

200

Control
PFC
HPC

150

3c3Oo 100
3ot-

3 6 10 111 2 5 7 8 9 124

5-min blocks

Figure 5.9 Total activity counts against 5-min blocks for a 60-min session. Data expressed as mean ± 

SEM (Control «= 12, PFC «=6, HPC «=9).
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5.4 Discussion

This experiment examined the effects of HPC and PFC lesions on acquisition of DMTP 

in the Skinner box. Neither o f these two lesions resulted in an impairment on learning or 

performing this task when compared with control animals. The rats were also exposed to 

a switch in the rule from matching to non-matching, all three groups of rats were able to 

adapt to the new rule in a similar fashion, with no significant differences in the rate of 

acquisition. The rats were also tested in a standard reference memory task in the water 

maze, which revealed a characteristic HPC lesion-induced impairment.

Acquisition of DMTP: HPC lesions

HPC lesions were without effect on acquisition of DMTP, additionally, the present 

experiment also demonstrated that the rats were able to adapt to the switch in rule, in 

accordance with Experiment 1. The “days to criterion” measure also failed to reveal any 

differences; this might be due to the high degree of variability in this measure resulting 

from the tendency for rats to acquire the task in an all or nothing fashion, i.e. rats often 

acquired the task to near perfect performance within the space of one session. Few 

studies have assessed the effects of HPC lesions on acquisition of operant D(N)MTP, 

possibly because preoperative training provides the additional benefit of allowing 

surgical groups to be behaviourally matched. The review by Broersen (2000), mentioned 

previously in Chapter 4, discusses the effects of HPC lesions on acquisition of DNMTP 

in the Skinner box. Although the review does not provide precise experimental details, it 

does serve to substantiate the results of this experiment, with HPC lesions having no 

effect on acquisition o f DNMTP. In the case of the Broersen study, this finding was of 

particular significance given that they had also shown delay-dependent deficits on 

retention of DNMTP.

Another study, which aimed to address the effects of IBO-induced HPC lesions 

on acquisition of this type of task, is that of Hampson et al (1999). However, their group 

of naive animals with HPC specific lesions was comprised o f only two individuals. 

Furthermore, there were no control animals with which to compare performance, 

rendering the results somewhat difficult to interpret. Nonetheless, on a DNMTP task 

leamt after surgery these two rats performed better than pretrained HPC-lesioned rats, but
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worse than those rats’ prelesion performance. In further support of this finding, an 

additional group o f rats with lesions that included ERC and subiculum showed a similar 

pattern of behaviour (Hampson et al., 1999). These studies suggest that where an HPC 

lesion results in impairment on retention of DNMTP, the same lesion may have little or 

no detrimental effect on acquisition of the task.

Acquisition o f DMTP: PFC lesions

PFC lesions did not result in any impairment on acquisition of DMTP, in stark contrast to 

the delay-dependent deficit that was evident when postoperative retention of the rule was 

assessed in Experiment 1. The ability to switch between the rules was not affected 

differentially by the PFC lesion, again concurring with Experiment 1. In addition to HPC 

lesions, Broersen’s study (2000) also investigated the effects of PFC lesions on 

acquisition of DNMTP; it demonstrated that, like HPC lesions, PFC lesions did not 

impede learning of the task. Another study investigated the effects of electrolytic lesions 

of the medial PFC of the rat on acquisition of DNMTP in the Skinner box and its 

subsequent reversal to DMTP (Joel et al., 1997b). These lesions did not impair the 

acquisition of NMTP in the absence of delays, which concurs with the present study’s 

finding on DMTP; these same animals were then impaired upon introduction of delays in 

a delay-independent fashion, a finding which was not replicated by the present study. 

When the rats in Joel et al’s study (1997b) were switched from DNMTP to NMTP the 

PFC group were slower to acquire the new rule as revealed by significantly greater days 

to criterion. It should be noted that this study differed from the present study in a number 

of ways, which may have contributed to the discrepancies between the two findings. In 

addition to the different lesion technique used, the Joel et al study (1997b) tested the rats 

on the original rule with no delays, prior to making the switch to MTP also initially 

without delays. However, in the present study the rule was switched with both tasks on 

the maximal delay; one might assume that rather than masking any apparent deficits this 

would in fact exaggerate any impairment in learning the new rule.

Broersen (2000) and Joel at al (1997b) both used a non-matching procedure rather 

than the matching procedure used in this study. It is possible that the choice of the initial 

rule may determine the outcome o f the experiment, as it has been shown that the two 

variants are not learnt in exactly the same manner (Blokland and Dunnett, 1995).
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However the present study replicates the Broersen study (2000), with no effect on 

acquisition even when delays were introduced, suggesting that in these two cases at least, 

PFC lesions did not impair acquisition regardless of the rule.

Reference memory water maze task: HPC and PFC lesions

HPC lesions resulted in a significant impairment in this task, with longer latencies to find 

the platform and less time spent in the training quadrant than the other two groups. The 

PFC group did not differ from the control group at any point. The swim paths indicate 

that the HPC group may have employed a strategy in which a certain distance from the 

pool edge was maintained; this resulted in a decrease in latency over days, however, the 

probe day suggests that these rats were not using an allocentric representation of extra

maze cues to guide their behaviour. These findings replicate those found in Experiment 

1, and correspond with the literature on this topic (see Chapter 4 discussion). This 

verifies that the HPC lesions were sufficient to impair performance on this HPC-sensitive 

task, despite being without effect on the Skinner box paradigm.

Spontaneous locomotor activity: HPC and PFC lesions

Spontaneous locomotor activity was assessed over a 60-min session. HPC rats were 

significantly hyperactive compared with the PFC group and the controls, which did not 

differ from each other. This again corroborates the results from Experiment 1 and the 

literature discussed in Chapter 4, and provides further validation of the HPC lesions.

Conclusions

The aim of this experiment was to investigate whether rats trained on DMTP following 

surgery would exhibit a dissociation in performance compared with those that had 

received training prior to surgery. A considerable dissociation was evident in rats that 

had received PFC lesions, with no effect on acquisition in comparison with the deficit on 

retention that had been shown in Experiment 1. Thus it would appear that the PFC may 

be involved in working memory processes only when it is functionally involved in the 

acquisition of the task in question. However, the HPC lesions were without effect on 

acquisition, which corroborates the lack o f effect on retention demonstrated in 

Experiment 1. Therefore, these two experiments do not provide support for the
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hypothesis that the HPC might be integral for successful performance on D(N)MTP. It 

can be concluded that the processes involved in learning a rule compared with retention 

of a rule are clearly very distinct, and should be taken into consideration when comparing 

across species and tasks.
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Chapter 6 Retention of delayed matching to 

position: effect of entorhinal cortex and fornix 

lesions

Experiment 3

6.1 Introduction

Experiments 1 and 2 demonstrated that excitotoxic lesions of the HPC were without 

effect on the acquisition or retention of the DMTP task. This finding is at variance with 

the majority of the literature that reports hippocampal deficits in this type of task 

(Aggleton et al., 1992; Broersen, 2000; Dunnett et al., 1990; Hampson et al., 1999). One 

possible explanation for the lack of effect could be the specificity of the lesion, which left 

the adjacent cortical areas intact. The hippocampal formation comprises four main 

regions, namely the DG, HPC proper, subicular complex and the ERC (Amaral and 

Witter, 1989; Amaral and Witter, 1995). Of these four regions, only the ERC had been 

spared in the HPC lesions described in experiments 1 and 2. Thus the possibility arose 

that this cortical area might be the critical locus for performance in the DMTP task.

The ERC has a pivotal role within the hippocampal formation, providing the 

major input to the DG via the perforant path and being the principal relay for reciprocal 

connections with the cortex (Amaral and Witter, 1989; Swanson and Kohler, 1986; 

Witter et al., 1989; Witter et al., 2000). The ERC also has efferent projections to the CA1 

and CA3 fields o f the HPC (Burwell et al., 1995; Swanson et al., 1987; Witter et al., 

1989). Thus there follows a natural assumption that the ERC might be critical for normal 

hippocampal functioning(0'Keefe and Nadel, 1978). However, studies involving lesions 

of the ERC on hippocampal-dependent learning have yet to provide conclusive results. 

For example, although there are reports of ERC lesions resulting in reference memory 

deficits in the water maze (Eijkenboom et al., 2000; Good and Honey, 1997; Oswald and 

Good, 2000; Parron et al., 2004; Schenk and Morris, 1985; Spowart-Manning and van der
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Staay, 2005), there are also studies which show intact performance on this task following 

these lesions (Bannerman et al., 2001b; Galani et al., 1998 (impaired on working memory 

but not reference memory version); Hagan et al., 1992; Pouzet et al., 1999b). These 

discrepancies cannot be explained solely on the basis of lesion technique as studies within 

both factions have employed comparable methods; however, the studies that showed no 

impairments generally had less subicular damage, implicating this area in performance of 

the task. Contextual fear conditioning, which is impaired following HPC damage (Good 

and Honey, 1997), is not impaired following ERC damage (Bannerman et al., 2001a; 

Good and Honey, 1997), lending support to the hypothesis that the ERC is not necessarily 

crucial to HPC-dependent learning.

Further motivation for studying the involvement of the ERC in cognitive 

behaviour comes from the observation that damage occurs in this area in the initial stage 

of Alzheimer’s disease. The damage correlates with memory deficits that are present 

during this stage of the disease (Braak et al., 1993; Hyman et al., 1986; Hyman et al.,

1987). It has therefore been proposed that animals with lesions of the ERC might serve 

as a model for investigating the cognitive deficits that accompany Alzheimer’s disease 

(Eijkenboom et al., 2000; Miwa and Ueki, 1996; Spowart-Manning and van der Staay, 

2005).

The other major route by which the HPC has reciprocal connections with the rest 

of the brain is the fornix (Fx). This fibre tract provides the majority of cholinergic inputs 

to the HPC, and links the HPC with a multitude of cortical and subcortical sites (Amaral 

and Witter, 1995; Swanson et al., 1987). Debate exists over whether or not transection of 

the Fx results in a similar pattern of behavioural impairments to those of specific lesions 

of the HPC (Aggleton et al., 1992; Whishaw and Jarrard, 1995b). The reference memory 

task in the water maze is routinely impaired following disruption of the Fx (Bannerman et 

al., 2001b; Cassel et al., 1998; de Bruin et al., 2001; Pouzet et al., 1999a; Whishaw and 

Jarrard, 1995a; Whishaw and Jarrard, 1995b), although performance may eventually 

recover (Hannesson and Skelton, 1998; Mogensen et al., 2004); this suggests that, in this 

task at least, Fx transection can provide equivalent behavioural consequences to HPC 

lesions. Fx lesions have also been shown to induce delay-dependent deficits on 

D(N)MTP (Aggleton et al., 1991; Aggleton et al., 1992; Aggleton et al., 1995;
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Chudasama and Muir, 1997; Dunnett, 1985; Dunnett, 1990; Ennaceur et al., 1996; 

Weiner et al., 1998), and it is for this reason that they are included within the current 

experiment.

The aim of this experiment was to explore the involvement of the ERC in the 

DMTP task, with a view to establishing if this area has a role in this working memory 

task. Rats with excitotoxic lesions of the ERC or aspirative lesions of the Fx were 

assessed on postoperative retention of DMTP performance in the Skinner box. In 

addition they were exposed to a switch in the task contingency from matching to non

matching, before being subjected to general locomotor activity evaluation. Of particular 

interest was whether the ERC lesions would induce a deficit in DMTP, given that 

experiment 1 found no deficit following HPC lesions. The Fx group were included with 

the hope that a deficit might be revealed in this experiment, providing validation that such 

a deficit is attainable using the present experimental conditions and providing a 

comparison with the effects o f the ERC lesions. Also of interest would be the 

comparison between Fx lesions and the HPC lesions from Experiment 1, i.e. would it be 

possible to show a behavioural dissociation between damage of the target structure, and 

damage to one of its major pathways?

6.2 Materials and methods

6.2.1 Subjects

In this experiment a group of 32 rats were used. In the course of training one rat was 

sacrificed due to illness whilst another rat, which was unable to learn the task, was used 

for a pilot lesion; this resulted in a presurgery group size of 30. All other subject details 

are covered in section 2.2.

6.2.2 Behavioural testing

Rats were trained on 30-min sessions of DMTP in the Skinner box as detailed in section 

2.3. Upon reaching asymptotic levels of performance at the final delay set (0-24 sec) rats 

were tested for two 5-session blocks to provide a baseline. Following baseline testing 

rats were assigned to one o f four surgical treatment groups using a random matching
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procedure based on accuracy. Treatments were bilateral ERC lesions («=10), sham ERC 

lesions (n=5), bilateral aspirative Fx lesions («=10) and sham Fx lesions (n=5), with all 

surgical details in section 3.3. Rats were given two weeks to recover from surgery before 

they received the testing schedule outlined in table 6.1, all details in section 2.3.

5-session block Skinner box task
  1-4 ....  D M TP3  .............."

5 DMTP4
6 i DMTP1

7-9 DNMTP 1 (Non-matching)
10 DNMTP3

Table 6.1 Testing procedure for Skinner box. Dashed line indicates switch from matching to non

matching, D(N)MTP1 indicates delay set o f  0-6 sec, D(N)MTP3 indicates delay set o f 0-24 sec, DMTP4 

indicates delay set o f  0-40 sec.

Rats were retested on DMTP3 before increasing the delay set up to 40 sec in block five. 

Prior to switching the rule, rats received one week of testing on DMTP1 to minimise any 

pre-switch group differences, they were then tested on DNMTP. Following completion 

of Skinner box testing, all rats went on to be tested in the spontaneous novelty preference 

task reported in Chapter 8. After testing on that task was complete, rats had their 

locomotor activity assessed over a 60-min session. Due to technical reasons the water 

maze task could not be assessed during this experiment. Finally, all rats were sacrificed 

and histology was dealt with as detailed in section 3.4.
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6.3 Results

6.3.1 Histology

6.3.1.1 Bilateral ERC lesions

Out of the ten rats in this surgery group, one incurred substantial damage to the CA1 

region of the HPC and was therefore excluded from all analyses, leaving a group size of 

nine. Figure 6.1 shows photomicrographs of a representative lesion and figure 6.2 

illustrates the minimum and maximum lesion extent. In all cases there was significant 

cell loss in the presubiculum and parasubiculum, with the majority of the medial ERC 

being lesioned. The lateral ERC was completely spared as was the subiculum proper, 

therefore rather than being complete ERC lesions, these lesions were restricted to the 

medial region of this cortex.

1 3 3



6. RETENTION OF DMTP: EFFECT OF ERC AND FX LESION

A: SHAM B: LESION

Figure 6.1 Photomicrographs o f  horizontal sections stained with Cresyl Violet. Sham ERC lesion (A), 

excitotoxic ERC lesion (B), from most dorsal to ventral. Scale bar =1 mm.
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3.10

Figure 6.2 Extent o f  the largest (grey) and smallest (black) ERC lesions. Numbers indicate mm below the 

horizontal plane passing through bregm a and lambda. Horizontal drawings taken from Paxinos and Watson 

(1998).
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6. RETENTION OF DMTP: EFFECT OF ERC AND FX LESION

6.3.1.2 Bilateral Fx lesions

Figure 6.3 illustrates the AChE staining, figure 6.4 shows representative 

photomicrographs of a sham (A) and a lesion animal (B) and figure 6.5 illustrates the 

minimum and maximum lesion extent. All lesions involved cell loss in the Fx, although 

in most cases there was sparing of the lateral tips; AChE staining was reduced in all cases 

although it was not completely abolished. These two characteristics suggest that the 

aspirative lesion did not descend far enough down ventrally, thus leaving some of the Fx 

tract intact, and as such must be described as a partial, rather than complete, lesion. 

There was also substantial aspirative damage to cingulate, Ml and M2 cortices. One of 

the ten Fx rats died soon after surgery and two were excluded from all data analysis based 

on histology, leaving a group size of seven. One of these excluded rats had received 

substantial damage to the dorsal HPC, whilst the other showed intact acetylcholinesterase 

(AChE) staining in the HPC and minimal cell loss in the Fx.

A B

Figure 6.3 AChE staining in coronal sections o f  a sham Fx lesion (A) and a Fx lesion (B). Scale bar =1 

mm.
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6. RETENTION OF DMTP: EFFECT OF ERC AND FX LESION

A: SHAM B: LESION

Figure 6.4 Photomicrographs o f  coronal sections stained with Cresyl Violet. Sham Fx lesion -0.92 mm 

posterior to bregma (A). Aspirative Fx lesion-0 .9 2  mm posterior to bregma (B). Scale bar =2 mm.
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B: LESIONA: SHAM

1 4 0  1.40

Figure 6.5 Extent o f  the cortical damage in a representative sham Fx animal (striped areas) (A), extent of 

the largest (grey) and smallest (black) Fx lesion (B). Numbers indicate mm posterior to bregma, coronal 

drawings taken from Paxinos and W atson (1998).

6.3.1.3 Sham lesions

Sham Fx lesions can be seen in figures 6.3, 6.4 and 6.5. Damage extended to the corpus 

callosum and cortical damage was similar to that in the Fx lesions except that in most 

cases the most medial portion o f the cingulate cortex was spared. ERC shams incurred 

no cortical damage; however one of these animals had to be sacrificed due to poor health. 

The two sham groups were not seen to differ significantly from each other in the 

behavioural assays and as such the two groups were pooled for clarity giving a control 

group of nine.

1 3 8
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6.3.2 Behaviour

6.3.2.1 Delayed matching to position (DMTP)

6.3.2.1.1 Baseline

After reaching asymptotic levels of performance, rats were tested for two additional 

baseline blocks of 5 sessions to allow allocation into performance-matched groups. As 

shown in figure 6.6, there was no difference between the groups preoperatively in 

measures of % correct (F(2>22)=0.37, ns), total trials performed (F(2>22)=0.78, ns) or rate of 

panel pressing (F(222)=0.19, ns). Data were also analysed across delays (see figure 6.7) 

which demonstrated that performance decreased as delay interval increased and that there 

was no difference between the groups preoperatively (Week 1: Group (F(2 22)=0.66, ns), 

Delay (F(6,32)= 103.1 1, /?<0.01), Group x Delay (F(12132)=0.83, ns). Week 2: Group 

(F(2,22)=0.47, ns), Delay (F(6>,32)= 102.44, /?<0.01), Group x Delay (F(12,132)=1.00, ns)).
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F igure 6.6 DMTP3 baseline data for animals used in each group. % Correct against sessions (A), total 

trials against sessions (B), panel press rate against sessions (C). Data expressed as mean ± SEM (Control 

9, ERC n=9, Fx n=7).
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Figure 6.7 % Correct against delays for blocks 1 and 2 o f baseline DMTP3. Data expressed as mean ± 

SEM (Control n=9, ERC n=9, Fx n=7).

6.3.2.1.2 Postoperative testing

Figure 6.8 shows % correct across sessions both before and after surgery. Analysing the 

first 20 sessions of DMTP3 following surgery revealed a significant effect of group 

(F(2,22)=7.53, /XO.Ol), and session (F(19418)= 15.01, /?<0.01), but no group by session 

interaction (F(384,8)=l .18, ns). Post hoc analysis revealed that this group difference was 

due to the significant impairment of the Fx group relative to both the ERC and control 

groups (Newman-Keuls: Fx vs. ERC and Control /?<0.01), which did not differ; all 

groups improved their performance with session progression. Data were also assessed by 

comparing across the baseline block and the first postoperative block, with block as a 

within subject factor. This analysis revealed significant main effects of group 

(F(2,22)=7.07,/><0.01) and block (F(122)=118.02,/K0.01), with the Fx group being impaired 

compared with controls and ERC. In addition there was an interaction between block and 

group (F(2j22)= 14.70, /?<0.01) with the Fx group showing the most significant drop in 

performance after surgery. The 5-session block of DMTP4 failed to show any group 

differences (F(2>22)=2.19, ns) or any group by session interaction (F(8>88)=0.89, ns), however 

there was an effect o f session (F(4>88)=3.88, /K0.01). Therefore the Fx group were 

impaired compared with the ERC and control groups, which did not differ, and the 

introduction of the longer delay set did not reveal any further deficits.
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Sessions

Figure 6.8 % Correct against sessions. DMTP3 indicates a delay set o f  0-24 sec, DMTP4 indicates a delay 

set o f  0-40 sec. Data expressed as mean ± SEM (Control n= 9, ERC «=9, Fx «=7).

Data were analysed across delays to allow further assessment of the nature of the deficit 

seen in the Fx group. Figure 6.9 shows the data averaged across all four blocks of 

DMTP3 testing. There was a clear effect of lesion group (F(2j22)=7.17, /KO.Ol) and delay 

(F(6, ,32)=91.05, p<0.01), but no group by delay interaction (FO2j132)=0.97, ns). Post hoc 

analysis verifies that this group effect was due to the impairment of the Fx group 

compared with both the ERC and control groups (Newman-Keuls: Fx v. ERC and 

Control /?<0.01). Therefore the Fx group was significantly impaired at all delays, 

suggestive o f a non-mnemonic deficit.
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Figure 6.9 % Correct against delays averaged across all four blocks o f  DMTP3 testing. Data expressed as 

mean ± SEM (Control n=9, ERC n=9, Fx rr= 7).

Figure 6.10 shows the data across sessions for the final block of DMTP testing where 

delays were reduced to between 0 and 6 sec, the three subsequent DNTMP1 blocks and 

then the final DNMTP3 block. The block of DMTP 1 testing was performed to minimise 

any differences between the three groups before performing the rule switch, this was 

demonstrated by the lack o f any group effect (F(2>22)=2.30, ns) or any group by session 

interaction (F(8>88)=11.21, ns), with only an effect of delay (F(4>88)=3.87, j!?<0.01) apparent in 

this block. The implementation of the rule switch did not effect any of the groups 

differentially; analysing the first 15 sessions of DNMTP1 testing showed no effect of 

group (F(222)=1.16, ns) or any group by session interaction (F(28j308)=1.03, ns), with a clear 

main effect of session (F(14j308)= 147.80, p<0.01). Furthermore, the final DMTP block was 

compared with the first DNMTP block, with a significant effect of block being revealed 

(F(i,22)=339.09, /K0.01). Crucially, this analysis did not reveal any effect of group 

(F(2,22)=1.23, ns) or interactions between group, block and session (Group x Block 

(F(2,22)=0.68, ns); Group x Session (F(8>88)=0.50, ns); Group x Session x Block (F(8;88)=1.10, 

ns)). Therefore all groups were impaired by the switch but learnt and adapted to the new 

rule at a similar rate.

Finally, the fourth block of DNMTP was analysed; in this block the original delay 

set of 0-24 sec was reinstated. In this final block of DNTMP there was no effect of group
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Figure 6.10 % Correct against sessions for DMTP1 (0-6 sec delays), DNMTP1 and DNMTP3 (0-24 sec 

delays). Data expressed as mean ± SEM  (Control 9, ERC n= 9, Fx n=l).

(F(2,22)= l -33, ns), suggesting that the lesion-induced deficit in the Fx group was transient 

in nature. Panel presses and latency to the 1st panel press after the delay were both 

investigated, in order to provide further clarification of the deficit. These two measures 

were assessed collapsed across the four blocks of DMTP3 testing (figure 6.11). Panel 

press data just failed to reveal any effect o f group (F(222)=2.88, ns), however there was 

both a significant effect of delay (F(6>132)= 348.42, /K0.01) and a group by delay 

interaction (F(12J32)=2.40, /?<0.01). Post hoc tests revealed that the Fx group performed 

significantly fewer panel presses than the control and ERC groups at the 3 longest delays 

(Newman-Keuls: Fx v. Control and ERC,/?<0.05). Latency data did reveal a group effect 

(F(2,22)=7.50,/t<0.01) and an effect of delay (F(6>132)=26.50,/?<0.01), but no group by delay 

interaction (F(12132)=0.76, ns). Post hoc analysis revealed that the Fx group exhibited
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Figure 6.11 Panel presses (A) and latency (B) against delays, averaged across the four blocks o f DMTP3 

testing. Data expressed as mean ± SEM (Control n= 9, ERC n= 9, Fx n= 7).

significantly longer latencies than the control and ERC groups (Newman-Keuls: Fx v. 

Control and ERC,/?<0.01).

In addition, measures derived from SDT were also analysed, figure 6.12 shows 

measures corresponding to accuracy and figure 6.13 shows measures corresponding to 

bias. The accuracy measure A ' revealed effects o f group, delay and a group by delay 

interaction (Group: (F(2j22)==6.02, /K0.01), Delay: (F(6126)=98.67, /KO.Ol), Group x Delay 

(F(i2,i32)=2.07, /7<0.01)). The group effect was due to the difference between the Fx group 

and the other two groups (Newman-Keuls: Fx v. Control and ERC, /?<0.01), while the 

interaction resulted from the Fx group differing from the ERC and controls only at the 

four longest delays. SI revealed similar results, except that there was no interaction
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between group and delay (Group: (F(2;22)=4.59, /?<0.05), Delay: (F(6>132)=191.58, p<0.01), 

Group x Delay (F(I2132)=0.87, ns)). The bias measure, Iy, revealed a significant effect of 

group (F(2̂ 2)=8.57, /?<0.01) and delay (F(6132)= 15.02, /?<0.01) but no group by delay 

interaction (F(12132)=0.48, ns), with post hoc tests confirming that the Fx group differed 

from both the control and ERC groups (Newman-Keuls: Fx v. Control and ERC,/?<0.01). 

R1 revealed an effect of group (F(2 22)=4.40, /?<0.05), with the Fx group differing from the 

control and ERC groups (Newman-Keuls: Fx v. Control and ERC, /?<0.05). This group 

difference did not reach significance for the B" measure (Group (F(222)=2.69, ns).

A

0.8 -

0 .4  -

Control
ERC

0.0

B

0.8 -

0 .4  -

0.2 -

0.0
12 248 180 42

Delays (sec)

Figure 6 J 2  Accuracy measures based on SDT for average across all four blocks o f  DMTP3, A' (A), SI 

(B). Data expressed as mean ± SEM (Control n~9, ERC n=9, Fx n=7).

146



6 . R E T E N T I O N  O F  D M T P :  E F F E C T  O F  E R C  A N D  F X  L E S IO N

A
0.7

0.3

0.2

0 2 4 8 12 18 24

Delays (sec)

i i Control 
ERC

F igure 6.13 Bias indices for average across all four blocks o f  DMTP3, Iy (A), RI (B) and B" (C). Data 

expressed as mean ±  SEM (Control n=9, ERC n=9, Fx n=7)
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6.3.2.2 Spontaneous Locomotor Activity

In the course o f object recognition testing one rat from the ERC group had to be 

sacrificed due to ill health and prior to the locomotor assessment another ERC rat had 

become ill and was not assessed; this resulted in group sizes o f n=9 (control), n=l (ERC) 

and n=l (Fx). Figure 6.14 shows the results across the 60-min session in 5-min blocks. 

Fx rats were shown to be hyperactive compared with the other two groups. There was a 

significant effect o f group (F(2̂ o)= 5.50, /?<0.01) and block (F(11220)= 18.40, /?<0.01) but no 

group by block interaction (F(22j22O)=0.62, ns). Therefore activity decreased uniformly 

across all groups as session progressed, but the Fx group were significantly more active 

than both the ERC and control groups, which did not differ (Newman-Keuls: Fx v. ERC 

/?<0.05 and Control /?<0.01).

180
Control
ERC

160

140

BC 120 
3 O O
_  100
5oK- 80

60

40

20
10 11 126 7 8 953 421

5-min blocks

Figure 6.14 Total activity counts against 5-min blocks. Data expressed as mean ± SEM (Control n= 9, 

ERC n=7, Fx n=7)
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6.4 Discussion

This experiment sought to examine the effects of ERC and Fx lesions on retention of the 

DMTP task and its subsequent switch to DNMTP. The ERC lesion was completely 

without effect on this task and the Fx lesion induced a delay-independent deficit, 

suggesting a non-mnemonic impairment.

Retention of DMTP: ERC lesions

Excitotoxic lesions that damaged the medial ERC were wholly without effect on retention 

of DMTP; they were also without effect on the ability to adapt to the switch in the rule 

from matching to non-matching. These results suggest that the medial ERC does not play 

a key role in the type o f working memory assessed in this task, with performance 

paralleling control levels even at the longest delay intervals. To my knowledge, the only 

study to have addressed the specific issue o f involvement of the ERC in DMTP is that of 

Pouzet et al (1999b). This study provides a good comparison with the present 

experiment, with excitotoxic lesions being utilised (NMDA-induced), although rats were 

tested for acquisition o f DMTP rather than retention. This study found no effect of the 

lesion group at any point even up to delay intervals of forty seconds, in agreement with 

the findings in the present experiment on retention of DMTP. Pouzet et al (1999b) also 

subjected their rats to a rule switch from matching to non-matching, which also failed to 

reveal any effect o f the ERC lesion.

The ERC does not have a uniform cytoarchitecture; instead it is comprised o f two 

distinct subdivisions known as the lateral and medial ERC (Witter et al., 2000). One 

potential explanation for the lack o f effect of the ERC lesions in the present study might 

be that the lateral ERC was completely spared in almost all cases. These two 

subdivisions not only have different projection fields within the HPC (Witter et al., 2000) 

but they also receive distinct afferent projections from the perirhinal cortex (projects to 

lateral ERC) and the postrhinal cortex (projects to medial ERC) (Burwell and Amaral, 

1998b; Suzuki, 1996; Witter et al., 1989). Therefore, it is thought that at least two 

parallel pathways exist mediated via the perirhinal and postrhinal cortices, although the 

presence of a functional dissociation between them has yet to be confirmed (Aggleton 

and Pearce, 2001; Burwell and Amaral, 1998a; Witter et al., 2000). Furthermore, this
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anatomical distinction in connectivity extends to the entorhinal projections to the PFC, 

with the medial ERC projecting to the IL, and the lateral area projecting to the PrL 

(Insausti et al., 1997). One could therefore argue that if it were damage to the PrL rather 

than the IL that contributed to the deficit seen in the PFC group from Experiment 1, then 

the integrity of this pathway might spare performance on this task. The counter to this 

argument would be that lesion of the lateral area would be expected to impair 

performance; however Pouzet et al’s (1999b) lesions encompassed the lateral area and 

were still without effect. Finally there is evidence from studies in monkeys (Leonard et 

al., 1995) and mice (Cho and Jaffard, 1994) that lesions of the ERC might effect 

acquisition rather than retention o f delayed matching tasks. However, the Pouzet et al 

study (1999b) indicates that ERC lesions are similarly without effect on acquisition of 

DMTP. Thus, from the present results, there is no evidence in support of the ERC being 

involved in working memory of this nature.

Retention o f DMTP: Fx lesions

Aspirative lesions of the Fx induced a deficit on retention of DMTP and were without 

effect on the switch between the task contingencies. The deficit was apparent in % 

correct data and the two SDT derived accuracy measures A ' and SI, with % correct and SI 

showing a delay-independent deficit. The accuracy measure A ' did however reveal some 

evidence for delay-dependency, with a significant group by delay interaction due to the 

Fx group differing from the ERC and control groups at the 4 longest delay intervals. The 

Fx group also exhibited significant differences compared with the other two groups in the 

side bias measures Iy and RI, but not the perceptual bias measure B"; they also displayed a 

reduction in panel presses that was only apparent at the 4 longest delay intervals. These 

findings concur with previous reports of Fx-induced deficits on D(N)MTP tasks, however 

the majority of these have shown delay-dependent deficits (Aggleton et al., 1991; 

Aggleton et al., 1995; Chudasama and Muir, 1997; Dunnett, 1985; Dunnett, 1990; 

Ennaceur et al., 1996; Weiner et al., 1998). The increase in bias observed in the present 

study has also been reported previously in Fx-lesioned rats (Aggleton et al., 1992; 

Aggleton et al., 1995; Ennaceur et al., 1996; Winters and Dunnett, 2004).

The predominantly delay-independent deficit described in the present experiment 

is not completely uncharacteristic, with Fx lesions resulting in a similar deficit in an

150



( » .  K l  ! I \  I K  ) \  < »[  | ) \ |  I P :  I I I ! ■ (  I < ' I  I K ( ' \ \ ! )  I \  1 !  S l (  ) \

operant chamber equipped with ports and not levers (Young et al., 1996). Moreover, 

Aggleton and colleagues (1992) report a deficit on DNMTP that is “consistent with 

mnemonic impairment”, however this is not corroborated by a delay by group interaction. 

The most significant study for comparison with the present findings is that of Winters and 

Dunnett (2004), where aspirative Fx lesions were assessed on retention of DNMTP and a 

subsequent switch to DMTP. Interestingly this study failed to reveal any Fx-induced 

deficit in DNMTP until the third postoperative 5-session testing block, at which point the 

deficit was not significantly delay-dependent. Rats were not impaired on acquiring the 

switched rule, which mirrors the results of the present study in which the opposite order 

of rules was applied. This provides confirmation that the intact acquisition performance 

in both the present study and Winters and Dunnetf s (2004) cannot be accounted for by 

the specific nature o f the rule in question. Finally, after these rats had acquired the new 

task contingency (DMTP) delays were introduced; after two blocks of testing the Fx 

deficit was again apparent, but on this occasion it was shown to be only at the longer 

delay intervals (Winters and Dunnett, 2004).

A complementary version of the D(N)MTP task has been investigated using the 9- 

hole box apparatus (Etherington et al., 1987). In this task, aspirative Fx lesions induced a 

deficit that the authors described as delay-dependent. However, it would appear that this 

“delay-dependent” effect may in fact have resulted from the Fx group showing a 

distinctive improvement in performance at the longest delay interval. Furthermore, 

although the Fx group were undoubtedly impaired compared with the controls, there is 

evidence for impairment at the shortest delays from the graphical data (Etherington et al., 

1987); this suggests that the deficit may be comparable with that revealed in the present 

study.

The present results are indicative of a non-mnemonic impairment in the rats with 

Fx damage, however, the ability to acquire the new rule at a rate akin to the control 

animals suggests that general levels o f motivation and sensory and learning abilities must 

be intact. The deficit on accuracy might be secondary to the development of the side bias 

(Iy), as both are apparent at all delay intervals. This significant impairment is clearly in 

stark contrast with the intact performance shown in the HPC-lesioned rats in Experiment 

1. One study has shown that Fx lesions can have more pronounced behavioural
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consequences than selective lesions of the HPC in a water maze task (Whishaw and 

Jarrard, 1995b). Thus it is a possibility that damage to the Fx disrupts fibres that are 

associated with extra-hippocampal structures which may be important for performance on 

this task.

Spontaneous locomotor activity

Spontaneous locomotor activity was assessed over a 60-min session and provided 

unambiguous results. ERC lesions did not result in an increase in locomotor activity 

when compared with controls; this is in line with previous findings (Coutureau et al., 

2000; Hagan et al., 1992), except for one study which did demonstrate hyperactivity but 

this was when activity was assessed in the home cage and not a novel environment 

(Galani et al., 1998). Fx lesions induced hyperactivity compared with controls, this 

activity decreased across the session but remained significantly above both the controls 

and the ERC group throughout. This is in agreement with previous work (Bussey et al., 

2000; Coutureau et al., 2000; Dunnett, 1990; Pouzet et al., 1999a; Weiner et al., 1998; 

Whishaw and Jarrard, 1995b) and suggests that severing the Fx pathway might be 

assumed to remove the level of inhibitory control normally provided by the HPC (Tracy 

et al., 2001).

Conclusions

The primary aim of this experiment was to investigate the involvement of the ERC in the 

DMTP task. The results are unambiguous and suggest that the medial ERC does not have 

a role in this working memory task. Moreover, it is unlikely that lesions encompassing 

the lateral ERC would induce a deficit (Pouzet et al., 1999b). The lack of dissociation 

between the ERC group and controls indicates that this particular model could not be a 

candidate for investigating the cognitive deficits that accompany Alzheimer’s disease.

Lesions of the Fx were also investigated and an impairment in the DMTP task 

was revealed. This provided not only validation of the task, but also a comparison with 

the HPC-lesioned group in Experiment 1. The dissociation between the effects of Fx 

lesions and the ERC or HPC lesions is consistent with the idea that the separate 

components of the hippocampal formation may have independent and complementary 

roles within the memory system. It is likely that performance in a task of this nature
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involves a complex interplay between a number of different neural structures and perhaps 

disconnection studies might be able to provide greater insight into these relationships.
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Chapter 7 Object recognition - spontaneous 

novelty preference task; effect of prefrontal and 

hippocampal system lesions.

Experiments 4 and 5

7.1 Introduction

The aim of the experiments presented within this chapter is to investigate the involvement 

of the PFC and the hippocampal system in a test of object recognition memory known as 

the spontaneous novelty preference task. In the standard version of this task a rat is 

placed into an open-field arena and allowed to explore two identical sample objects, 

usually until a certain amount o f exploration has been accumulated (Ennaceur and 

Delacour, 1988). The rat is then removed from the arena for a delay period, following 

which it is returned to the arena which contains one identical copy of the object from the 

sample phase and one completely novel object; the amount of time spent exploring each 

object is subsequently recorded over a fixed period of time. This task exploits the rat’s 

natural tendency towards exploring novel objects over familiar objects, thus a normal rat 

will spontaneously explore the novel object in preference to the object it has encountered 

previously, provided it retains some memory of the sample object. The difference 

between the time spent exploring the novel versus the familiar object is taken as an index 

of recognition memory, with normal rats typically being able to discriminate between the 

two objects up to delays of 24 hours (Ennaceur et al., 2005; Ennaceur and Delacour, 

1988; Mumby, 2001). Rats can display intact recognition memory for objects 

encountered as long as 5 weeks before retest (Gaskin et al., 2003).

This task benefits from being free from a reference memory component, thus rats 

are not required to learn and remember a particular contingency. Therefore any 

impairment resulting from a particular treatment can be regarded as an indication that the 

rat cannot discriminate between the two objects (Ennaceur and Delacour, 1988).
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However, an alternative interpretation of such a deficit might be that the treatment has 

simply disrupted the rat’s natural bias for the novel object; this hypothesis could only be 

rejected categorically if discrimination remained intact at minimal delays (Mumby, 

2001).

The spontaneous novelty preference task was originally developed to serve as a 

rat alternative to the trial-unique DNMS task of the monkey; however it is more strictly 

analogous to the visual paired-comparison (VPC) task, in which subjects are presented 

with two pictures, one novel and one familiar, and the tendency to look at the novel 

picture is recorded (Bachevalier et al., 1993; Mumby, 2001). However, in the 

spontaneous novelty preference task rats may also utilise tactual properties of the objects 

in addition to the visual properties provided in the VPC task. Amnesic patients (McKee 

and Squire, 1993) and monkeys with HPC damage (Bachevalier et al., 1993; Nemanic et 

al., 2004; Zola et al., 2000) have both been shown to be impaired on the VPC task, 

implicating the HPC in this type of novelty detection.

Further evidence for a hippocampal role in novelty detection comes from a study 

in which HPC damaged patients exhibited reduced characteristic intracranial ERPs upon 

presentation of novel stimuli (Knight, 1996). However, it is thought that the role of the 

HPC in recognition memory may have been overemphasised (Mumby, 2001), with 

considerable evidence pointing to a more significant involvement for the adjacent rhinal 

cortical areas (Aggleton et al., 1997; Bussey et al., 1999; Meunier et al., 1993; Mishkin 

and Murray, 1994; Mumby and Pinel, 1994; Winters et al., 2004; Winters and Bussey, 

2005). Indeed, in the rat, HPC lesions tend to leave spontaneous object recognition 

performance intact (Galani et al., 1998; Gaskin et al., 2003; Mumby et al., 2002; Winters 

et al., 2004), although there has been an exception to this finding (Clark et al., 2000).

Despite PFC involvement in the DNMS (Fuster, 1997; Kolb, 1990a) and DNMTP 

tasks (Broersen, 2000; Chudasama and Muir, 1997; Dunnett et al., 1990; Herremans et 

al., 1996; Joel et al., 1997b; Mair et al., 1998), evidence suggests that rats with PFC 

lesions are not impaired on discriminating between the novel and familiar objects in the 

spontaneous novelty preference task (Ennaceur et al., 1997; Granon et al., 1996; 

Hannesson et al., 2004a; Mitchell and Laiacona, 1998; Mogensen et al., 2004; Yee, 

2000).
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The spontaneous novelty preference paradigm has been successfully adapted to 

investigate different facets of recognition memory, such as the ability to remember the 

position of an object, and the ability to judge the relative recency of previously 

encountered objects. Two main versions exist for assessing the memory for location of 

objects; in the first, the sample phase is identical to the standard configuration but in the 

test phase two identical copies o f the original objects are present, but one is positioned in 

a novel location. Normal rats will discriminate between the two objects based on their 

locations, and therefore spend more time exploring the displaced object (Dix and 

Aggleton, 1999). The second version requires memory for both object and position, in 

the previous version recognition of the object per se need not be intact to allow 

discrimination based on the location. Therefore, in this second “spatial shift” version rats 

explore four different objects in the sample phase, following a delay they then explore 

these same four objects but two of the objects have their locations switched. Normal rats 

are able to discriminate between those objects that have been displaced and those objects 

that have remained in their original position (Dix and Aggleton, 1999). This task 

assesses memory for the objects and their location within the environment, an ability 

often attributed to the HPC (especially the right side) in the human (Crane and Milner, 

2005; Milner et al., 1997; Pigott and Milner, 1993; Spiers et al., 2001).

The version that assesses memory for the relative familiarity of objects, or 

“recency” consists of three phases and was first employed by Mitchell and Laiacona 

(1998). There are two sample phases, separated by a one hour delay, in which two 

different pairs of identical objects are explored. Following a delay the test phase occurs, 

in which one copy of each of the previously explored objects is present in the arena. 

These two objects now differ in their relative familiarity and a normal rat will direct more 

exploration towards the object that was seen least recently, i.e. the object from the 1st 

sample phase. This task has been validated by Hannesson et al (2004a), who 

demonstrated that rats had not merely forgotten the first object (thus equating the task to 

the standard version), as they would reliably explore a completely novel object in 

preference to the first object in the test phase. The PFC has been implicated in temporal 

memory in the human, with frontal lobe damage routinely impairing the ability to make 

recency judgements (Butters et al., 1994; McAndrews and Milner, 1991; Milner et al.,
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1985; Milner et al., 1991; Milner and Petrides, 1984; Shimamura et al., 1990; Zorrilla et 

al., 1996). There is also some evidence to suggest that the HPC might be involved in the 

capacity to judge recency under certain circumstances (Charles et al., 2004; Fortin et al., 

2002; Kesner et al., 2002).

The experiments described in this chapter assess the effects of PFC and FIPC 

lesions (Experiment 4) and ERC and Fx lesions (Experiment 5) on the spontaneous 

novelty preference task. Three separate versions are investigated; these are the standard 

configuration (at two separate retention delays), the spatial shift configuration and finally 

the recency version. The aim is to establish the relative involvements of the lesioned 

areas within these tasks. It is hypothesised that damage to the HPC, by way of cytotoxic 

lesion, Fx transection or ERC lesion, might disrupt discrimination in the spatial shift task, 

with this area being responsible for this type of object-location specific memory in the 

human. Conversely, the PFC may play a more significant role in the recency task, 

although the HPC has also been implicated in temporal memory.

7.2 Materials and methods

7.2.1 Experiment 4:PFC and HPC lesions

The rats used in this experiment had previously been used in experiment 2, described in 

Chapter 5; they had therefore been tested on acquisition of DMTP in the Skinner box and 

had also received water maze testing. All subject details are outlined in section 5.2 with 

histological results discussed in section 5.3.1. Following histology, group sizes were 

control («= 12), HPC lesions (n=9) and PFC lesions («=6). All details of the spontaneous 

novelty preference task are discussed in detail in section 2.6. Rats received testing on a 

total of three different versions, namely the standard configuration (at delay intervals of 2 

min or 2 hr), spatial shift and recency tasks. Each rat was exposed to each task for 3 

repetitions, with the averaged data from these repetitions being used in analysis. Each rat 

was exposed to each object only once, objects used and the side of the novel object, or 

side of the spatial shift, were fully counterbalanced within and between groups.

Due to the exclusion o f those rats that did not explore the sample objects for at 

least 40 seconds in the standard and recency tests, or 80 seconds in the spatial shift, group

157



O B J F t ' I  RFC ( H . M  T I O N :  I I I i ( I < >1 RFC O R  H P C  S Y S T F M  i . F S I O N S

sizes varied between tests and are noted in the figure legends. During the course of this 

experiment one rat had to be sacrificed due to illness, this will be similarly detailed in the 

appropriate figure legends.

7.2.2 Experiment 5: ERC and Fx lesions

The rats used in this experiment had previously been used in experiment 3, reported in 

Chapter 6; they had therefore been tested on retention of the DMTP task in the Skinner 

box. All subject details are outlined in section 6.2 with histological results discussed in 

section 6.3.1. Following histology, group sizes were control («=9), ERC lesions («=9) 

and Fx lesions («=7). All details o f the spontaneous novelty preference task are 

discussed in detail in section 2.6 and above in section 7.2.1. This experiment commenced 

following the completion of experiment 4, therefore methods and objects used were 

identical between the two experiments. During the course of this experiment three rats 

had to be sacrificed, this will be detailed in the appropriate figure legends.
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7.3 Results

7.3.1 Experiment 4: PFC and HPC lesions

7.3.1.1 Habituation

Data collected during the habituation sessions were used to validate the manually 

recorded exploration time and also to judge a suitable cut-off point for exploration in the 

sample phase of the tasks. Figure 7.1 shows the exploration time for the manually 

recorded exploration time measure and the software recorded “time in zone” measure, 

over a 5-min habituation session in which two identical objects were present in the arena.

100 n

4 0  -

20

I 1 Control ■  PFC I— ~1 HPC

Manual recording Time in zone

Figure 7.1 Experiment 4: PFC and HPC lesions. Exploration time against two different measures during a 

5-min habituation session where two identical novel objects were present. Data expressed as mean ± SEM 

(Control n= 12, PFC n=6, HPC n= 8 (1 rat did not explore the objects)).

An ANOVA, with group as the between subject factor and measure as the within subject 

factor, revealed that there was no effect of group (F(2(23)=0.59, ns) or any group by 

measure interaction ( F ^ r T  .87, ns), however there was a clear effect of measure 

(F(i.23)=51.68,/?<0.01), with all groups showing a greater exploration time in the “time in 

zone” measure. The Pearson product moment correlation coefficient (r) was calculated to 

assess the correlation between these two measures (r =0.83); this shows that there was a 

highly significant correlation to a confidence level of 0.05%. Thus the same pattern
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between groups was seen in each measure, but a greater overall exploratory time was 

recorded by the software. This greater time was most likely to be due to the software 

recording the amount o f time spent within a defined zone around the object, irrespective 

of the rats’ behaviour within that zone, e.g. this included passes through the zone where 

no object exploration occurred, sitting in the zone but heading in the opposite direction 

and grooming within the zone. Recording these behaviours as “exploratory time” is 

clearly not valid in this task, in which actual exploration of the object is the crucial factor.

Therefore the “time in zone” measure was used only for computing the cut-off 

point for each rat in the sample phase, thus providing a similar object exposure time for 

each rat. The manually recorded time spent exploring the objects was therefore used in 

all test data, as this was deemed to be more accurate than the “time in zone “ measure for 

the reasons discussed above. This measure was also used to calculate the “discrimination 

ratio”, equivalent to “d2” from Ennaceur and Delacour (1988):

(time exploring novel object- time exploring familiar object) 
total exploration time

This discrimination ratio therefore ranged from -1 to +1, with 0 indicating no 

discrimination, and greater than 0 indicating a preference for exploring the novel object. 

All groups were spending an average of more than 60 sec exploring the objects according 

to the time in zone measure; as such, a cut-off point of 40 sec was chosen to be 

conservative enough to allow the inclusion of the majority of animals in each test.

Figure 7.2 shows exploration time against the side of the object in the arena, to 

assess if the rats were showing any side bias. There was no effect of group (F(2̂ 3)=0.09, 

ns), side (F(1j23)=1.34, ns) or any group by side interaction (F(2j23)=0.10, ns). Despite this 

demonstration of equivalent exploration of the objects regardless of side, the side of the 

“novel” object in each test was always fully counterbalanced to ensure validity of the test.

Habituation to four objects prior to the spatial shift test gave the following mean 

manually recorded exploration times over a 5-min session: Control (117.65± 6.90), PFC 

(123.07± 9.56) and HPC (137.87± 6.11), with no group difference (F(2̂ 3)=2.05, ns). The 

cut-off point was therefore doubled to 80 sec for the spatial shift test to allow all four 

objects to be explored.
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I 1 Control ■ ■  PFC CZZ] HPC

Left Right

Figure 7.2 Experiment 4: PFC and HPC lesions. Exploration time against side o f  object for 5-min 

habituation session. Data expressed as mean ± SEM (Control w=12, PFC n=6, HPC n= 8 (1 rat did not 

explore the objects)).

7.3.1.2 Standard Configuration

Figure 7.3 illustrates the data for the standard configuration test with a 2-min retention 

delay. Exploration time data showed no group effect (F(2̂ 0)=2.62, ns) or any group by 

object interaction (F(2>2o)=l .98, ns), however there was a significant effect of object 

(F(uo)= 6 9 .2 9 ,/K 0 .0 1 ) , with all rats directing more exploration towards the novel object.

S ta n d a rd  C o n fig u ra tio n : 2-m in d elay  

A B
50

I I Control
p f c  

1 = )  HPC
V ////A  Novel 
i i Familiar

Control PFC HPC

Figure 7.3 Experiment 4: PFC and HPC lesions. Standard configuration: 2-min delay, exploration time 

against groups (A), discrimination ratio against groups (B). Data expressed as mean ± SEM (Control «=10 

(2 rats excluded for failing to reach cut-off in sample), PFC n=6, HPC n=7 (1 rat did not reach cut-off in 

sample, 1 ill rat sacrificed)).
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The discrimination ratio also showed no group effect (F(2>2o)= 1.31, ns), with all three 

groups showing significant discrimination for the novel object, i.e. significantly greater 

than zero (one-sample t-tests: Control f 9)=8.89, /K0.01; PFC f 5)=6.02, /?<0.01; HPC 

t(6)=3.77, /K0.01). In summary, after a 2-min retention interval, all groups were able to 

discriminate successfully between a novel and a familiar object.

Figure 7.4 shows the data for the standard configuration with a 2-hr delay. These 

results replicated those seen for the 2-min delay, with no group effect (F(223)=2.02, ns) or 

any group by object interaction (F(2t23)=0.27, ns), but there was a significant effect of 

object (F(lt23)=19.23, / t<0.01), with all rats directing more exploration towards the novel 

object. The discrimination ratio also showed no group effect (F(2>23)=0.83, ns) with all 

three groups showing significant discrimination for the novel object (Control t0i>=2.59, 

/?<0.05; PFC t(S)=2.87, /?<0.05; HPC t(7)=3.83, p<0.01). Therefore, after a 2-hr retention 

interval, all groups were able to discriminate successfully between a novel and a familiar 

object.

S tan d ard  C on figu ra tion : 2-hr d e la y  

A B

=  20 -  

I «
Soa 10
UJ

V ////A  Novel 
1 1 Familiar

0.4 - 1 1 Control
mm p f c
(ZZD HPC

O 0.3 -

0 5
« 0.2

E■c
1a  0.1

Control PFC HPC

Figure 7.4 Experiment 4: PFC and HPC lesions. Standard configuration: 2-hr delay, exploration time 

against groups (A), discrimination ratio against groups (B). Data expressed as mean ± SEM (Control n=12, 

PFC n=6, HPC n -  8 (1 ill rat sacrificed)).

In order to determine the effect of delay on the discrimination ratio, an ANOVA was 

performed with delay as the within subject factor, those rats that were excluded from the 

2-min delay, due to lack o f exploration in the sample phase, were also excluded from the 

2-hr data for this analysis. This revealed no effect of group (F(2j2O)=0.01, ns) or group by
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delay interaction (F(2̂ O)=2.70, ns), but there was a significant effect of delay (F(1t2o)= 15.61, 

/K0.01), with all groups showing less clear discrimination with the longer delay.

7.3.1.3 Spatial Shift

Figure 7.5 shows the data for the spatial shift task. In this task the rat samples four 

different objects, following a 2-min delay it is presented with copies of these same four 

objects, but two have had their positions switched i.e. they are no longer in the same 

spatial configuration. The results from this test for the exploration time show no main 

effect of group (F(2>23)=0.84, ns) and the group by object interaction just failed to reach 

significance (F(2̂ 3)=3.25, ns, /?=0.057), although there was a main effect of object 

(F0i23)=32.44, /K0.01). However, analysis of the discrimination ratio revealed a main 

effect of group (F(2>23)=3.73, p<0.05). Post hoc analysis revealed that the HPC group 

showed significantly less discrimination than the PFC group (Newman-Keuls: HPC v. 

PFC /K0.05), but the comparison between HPC and control groups approached but failed 

to reach significance (Newman-Keuls: HPC v. Control, ns,p=0.07).

50 -

^  40
g</>
01
E 3 0 -  0 
c0
1 20o

-I

S p a tia l Sh ift

Novel
Familiar

B

Control
PFC

Control PFC HPC

Figure 7.5 Experiment 4: PFC and HPC lesion. Spatial shift, exploration time against groups (A), 

discrimination ratio against groups (B). “Novel” now refers to the displaced objects, i.e. the cumulative 

time spent exploring the two objects that underwent the spatial shift, whilst “familiar” indicates the two 

non-displaced objects. D ata expressed as mean ± SEM (Control w=12, PFC n=6, HPC n= 8 (1 ill rat had 

been sacrificed)).
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Upon analysis of the discrimination ratio, both the control and PFC groups showed 

discrimination that was significantly above chance (Control /?<0.01; PFC

t(5)=3.42, /?<0.05). However, the HPC group were unable to discriminate between 

displaced and non-displaced objects (HPC t(7)=0.94, n s /

7.3.1.4 Recency

Figure 7.6 shows the data from the recency test. This test consists of two sampling 

phases with two different objects separated by 1 hr; the test occurs 1 hr after the second 

sample, with one object from each of the two sample phases present. Analysis of the 

exploration time data revealed only an effect of object (F(U3)=7.61, /?<0.05), with no 

difference between group (F(2>23)=2.85, ns) or group by object interaction (F(2j23)=0.45, ns). 

The discrimination ratio data failed to reveal any effect of group (F(2j23)=0.80, ns), 

suggesting that there was no significant difference between the groups. However, 

separate t-tests revealed that only the control group showed a significant discrimination 

(Control td,)=2.92,p<0.05; PFC t(S)= 1.99, ns; HPC t(7)=0.81, ns).

35
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■ a  p f c  
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0.2 -

E
u
O 0.1

i

Figure 7.6 Experiment 4: PFC and HPC lesions. Recency, exploration times against groups (A), 

discrimination ratio against groups (B). “Novel” now refers to the object from sample-1, i.e. the least 

recently sampled, whilst “familiar” indicates the object from sample-2, i.e. the more recently sampled. 

Data expressed as mean ± SEM (Control n=12, PFC n=6, HPC n=8 (one ill rat had been sacrificed)).
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7.3.2 Experiment 5: ERC and Fx lesions

7.3.2.1. Habituation

All three groups in this experiment showed similar exploration times of two novel 

identical objects over a 5-min habituation session; means for manually recorded 

exploration time were control (53.33± 5.70), ERC (55.31± 13.60) and Fx (50.94± 6.33), 

with no group difference (F(222)=0.05, ns). This mirrored the times seen in the previous 

experiment (Control mean 49.38± 3.78), and a 40 sec cut-off point for exploration in the 

sample phase was therefore maintained.

Habituation to four novel objects over a 5-min session also demonstrated that all 

groups displayed similar exploration times; means were control (118.64± 15.24), ERC 

(116.17± 8.00) and Fx (96.17± 8.30), with no group difference (F(2t20)= 1.01, ns). Again, 

these results were equivalent to those from the previous experiment (Control mean 

117.65± 6.90), therefore the 80 sec cut-off point for the spatial shift version was also 

maintained.

1322 Standard Configuration

Figure 7.7 shows the data for the standard configuration version of the task, with a 2-min 

delay between sample and test. The exploration time data revealed a significant effect of 

object (F(lj2i)=93.27, /KO.Ol), with no group (F(2j21)=3.19, ns) or group by object 

(F(2,2i)=0.85, ns) effects. The discrimination ratio revealed that there was no difference 

between the groups (F(2>21)=1.39, ns) with all groups showing significant discrimination 

(Control t(8)=7.26, /K0.01; ERC t(7)=8.75, /K0.01; Fx t(6)=6.71, /K0.01). Therefore all 

three groups were able to discriminate successfully between a novel and familiar object at 

a 2-min retention delay. Figure 7.8 shows the data following a 2-hr retention delay. 

Exploration data showed no effect of group (F(2>19)=1.20, ns) or any group by object 

interaction (F(2 ]9)=1.92, ns), but again there was a significant effect of object (F(1I9)=59.75, 

/?<0.01), with all groups directing more exploration towards the novel object. However, 

the discrimination ratio data revealed a significant main effect of group (F(2>i9)=3.88, 

/?<0.05), with post hoc testing indicating this effect was due to a significant difference
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Figure 7.7 Experiment 5: ERC and Fx lesions. Standard configuration: 2-min delay, exploration time 

against groups (A), discrimination ratio against groups (B). Data expressed as mean ± SEM (Control n -9, 

ERC w=8 (1 ill rat had been sacrificed), Fx n= 7).
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Figure 7.8 Experiment 5: ERC and Fx lesions. Standard configuration: 2-hr delay, exploration time 

against groups (A), discrimination ratio against groups (B). Data expressed as mean ± SEM (Control n- 8 

(1 rat not exploring), ERC n=l (1 rat not exploring, 1 ill rat had been sacrificed), Fx n=7).
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between the control and ERC groups (Newman-Keuls: Control v. ERC p<0.05). 

Individual t-tests confirmed that despite this group difference, each group showed 

significant discrimination following this delay (Control t^ f ^ .40, p<0.01, PFC t<6)=5.42, 

p<0.01, HPC t(6)=4.37, /KO.Ol). Therefore all groups were able to discriminate at this 

delay with some evidence for an enhancement in performance in the ERC group when 

compared with controls.

In order to assess the effect o f delay on the discrimination ratio, an ANOVA was 

performed with delay as the within subject factor, those rats that were excluded from the 

2-hr delay, due to lack of exploration in the sample phase, were also excluded from the 2- 

min data for this analysis. This did not reveal an effect of group (F(2j19)=2.55, ns), but did 

reveal a significant effect of delay (F(I i9)=4.64,/K0.05), and a significant delay by group 

interaction (F(2>19)=3.78,/?<0.05). Post hoc testing revealed that this interaction was due to 

the significant difference between the discrimination ratios of the control group at either 

delay (Newman-Keuls: Control 2 min v. Control 2 hr p<0.05). Therefore, in this 

experiment, only the control group showed a reduction in their ability to discriminate 

when the retention delay was increased from 2 min to 2 hr.

7.3.2.3 Spatial Shift

Figure 7.9 shows the data for the spatial shift test, where two of the four objects were 

displaced in the test phase. The exploration time data showed only an effect of object 

(F(1;2o)=20.91, /K0.01), with no effect of group (F(2j20)= 1 .16 , ns) or any group by object 

interaction (F(2;20)=0.25, ns). The discrimination ratio also failed to reveal any effect of 

group (F(2>2o)= 0 .01 , ns). However, individual t-tests showed that the Control and Fx 

groups were able to discriminate between the displaced and the non-displaced objects 

(Control t(8)=2.48, p<0.05, Fx t(6)=3.71,/?<0.01), but for the ERC group this just failed to 

reach significance (ERC t(6)=2.39,/?=0.054).

167



■\ O B J E C T  R E C  O G N I T I O N :  E F F E C T  O F  P F (  O R  H P C  S Y S T E M  L E S IO N S

50 -

40 -

E 30

g  20O
Q.
X

* 10 -I

Control ERC

S p a tia l sh ift

B

V ////A  Novel 
n ~ ~ l  Familiar

0.4 - 1 1 Control 
■ ■ 1  ERC
1------ 1 Fx

O 0.3 *s

o
2 0.2

Q  0.1 -

0.0
Fx

i L

Figure 7.9 Experiment 5: ERC and Fx lesions. Spatial shift, exploration tim e against groups (A), 

discrimination ratio against groups (B). “Novel” now refers to the displaced objects, i.e. the cumulative 

time spent exploring the two objects that underwent the spatial shift, whilst “familiar” indicates the two 

non-displaced objects Data expressed as mean ± SEM (Control n=9, ERC rr= 7 (2 ill rats had been 

sacrificed), Fx n=7).

7.3.2.4 Recency

The results from the recency test are shown in figure 7.10. Exploration time data 

revealed that there was no effect of group (F(216)=0.19, ns) or any group by object 

interaction (F(2>i6)=2.57, ns), there was however an effect of object (F(U6)=26.47, /?<0.01), 

indicating that all rats were spending more time exploring the least recently seen object in 

preference to the object presented more recently. The discrimination ratio data also failed 

to reveal a group effect (F(2,i6)= 1-20, ns), with the control and Fx group showing 

discrimination significantly above chance (Control t(6)=5.36, /K0.01, Fx t(5)=4.36, 

/K0.01), but on this version the ERC group did not show significant discrimination (ERC 

t<5)= l .89, ns).
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Figure 7.10 Experiment 5: ERC and Fx lesions. Recency, exploration time against groups (A), 

discrimination ratio against groups (B). “Novel” now refers to the object from sam ple-1, i.e. the least 

recently sampled, whilst “familiar” indicates the object from sample-2, i.e. the more recently sampled. 

Data expressed as mean ± SEM (Control n=l (1 rat not exploring, 1 ill rat had been sacrificed), ERC n=6 (1 

rat not exploring, 2 ill rats had been sacrificed), Fx n=6 (1 rat not exploring)).
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7.4 Discussion

These experiments aimed to address the involvement of the PFC and components of the 

HPC system within various object recognition paradigms relying on the rats’ innate 

preference to explore novel over familiar objects. Control rats were shown to be able to 

discriminate on all three versions of the task, with a significant reduction in performance 

between the 2-min and 2-hr delay versions. This shows that they could discriminate on 

the basis of the location and relative recency of the objects, and also that their 

performance was impaired with an increase in the retention interval. Performance in the 

recency task was not probed explicitly by a test phase, for example by including the 1st 

sample object and an entirely novel object (see Hannesson et al., 2004a). However, intact 

discrimination at the 2-hr delay in the standard version serves to validate the recency task 

by verifying that the rats can remember object information up to at least a 2-hr retention 

interval - with 2 hr being the time elapsed since exploring the 1st object. The results from 

the lesion groups will be discussed in detail below, but briefly, none of the lesion groups 

impaired performance on the standard version of the task; the spatial shift version may 

have shown a slight impairment following HPC and ERC lesions. Finally, all lesion 

groups except for the Fx group exhibited a modest disruption in performance on the 

recency task.

It is worth mentioning that there is another commonly used paradigm for 

investigating spontaneous novelty preference in the rat. This alternative paradigm uses a 

circular arena containing usually four or five objects, and typically consists of seven 

successive 6-min sessions separated by 3-min delays. The normal testing procedure, as 

described by Save et al (1992), is as follows: session 1; habituation session in empty 

arena, session 2 to 4; exploration of five objects which remain in the same position, 

session 5 and 6; spatial change - exploration of five objects, one of which replaces the 

position of another object, which in turn is displaced to a new location within the arena, 

session 7; novel object - one of the objects that was not displaced previously is replaced 

by a new object.

Variations on this paradigm exist, but what is clear is that in all versions there is 

likely to be some level of interference between the sessions (Granon et al., 1996). For
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example, an object may acquire an intermediary status when it has recently moved 

position, making it more salient than other objects, but less so than a novel object. The 

novel object substitution occurs at the final stage of testing, by which point rats may no 

longer be attending to the task, or might still be preferentially exploring those objects that 

were displaced two sessions previously. Therefore there is some question over the 

validity of this task. However, it has been effective in establishing lesion-induced 

differences and will therefore be included within this discussion. Hereafter, it shall be 

described as the “continuous spontaneous novelty preference task” to differentiate it from 

the paradigm used in the present experiments where discrete trials were employed.

Finally, it should be noted that there is a chance that these data may have been 

confounded by the sequential presentation of the tasks. Unfortunately, the lack of 

counterbalancing was necessary in the first instance to allow assessment o f whether or 

not rats could discriminate up to the 2 hr point, as this was crucial in order to rationalise 

the recency task. Experiment 5 was then conducted in the same order as Experiment 4 in 

order to allow a valid comparison between the two. However, it is assumed that any 

interference or additive effects would be minimal due to sessions being conducted on 

separate days; furthermore, there was consistency in the amount of exploration across all 

four versions.

Experiment 4: PFC and HPC lesions 

PFC: standard configuration

The PFC group showed intact discrimination performance at both the 2-min and the 2-hr 

delays. Their level of discrimination was attenuated at the longer delay, which implies a 

temporal decay for the memory o f the object. This finding of intact spontaneous novelty 

preference following PFC damage in the rat is in line with many studies where varying 

delay intervals have been used (15-min delay: Ennaceur et al., 1997; 6-min delay: 

Granon et al., 1996; 105-min delay: Hannesson et al., 2004a; 24-hr delay: Mitchell and 

Laiacona, 1998; 15-min delay: Mogensen et al., 2004; 15-min delay: Yee, 2000). 

Therefore, it is likely that the rat PFC does not play a significant role in the detection of 

novelty in a paradigm of this nature.
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PFC: spatial shift

The PFC group were not impaired in discriminating between objects that were displaced 

and those that remained in the same position. This concurs with a study where NMDA 

lesions of the PrL left discrimination intact when two objects were explored and then one 

was subsequently displaced to a novel location (Ennaceur et al., 1997). This has also 

been demonstrated using the continuous spontaneous novelty preference task, where rats 

with radiofrequency lesions of the mPFC were shown to explore the displaced objects 

exclusively (Poucet, 1989). Another study which used the continuous version of the task 

suggested that rats with radiofrequency lesions of the mPFC actually reacted more 

strongly to the spatial change than control rats, although once the 6-min session was 

broken down into smaller time bins the control rats were shown to preferentially explore 

the displaced objects. This highlights the notion that discrimination will be maximal at 

the beginning of a test session, because as the novel object is explored it becomes 

progressively more “familiar”, ultimately abolishing its novel status (Dix and Aggleton, 

1999; Ennaceur et al., 2005). This provides a further confound to the continuous version 

where sessions are usually of 6-min duration, and thus differences may be masked once 

data are pooled across the session. There is therefore no evidence to suggest that the rat 

PFC is involved in remembering the spatial attributes of an object.

PFC: recency

The PFC group did not show a significant difference from the control group on the 

recency version of the task; both the exploration time and the discrimination ratio data 

were concurrent, with no main effect of group. However, upon analysis o f the 

discrimination ratio it was revealed that the PFC group did not show a discrimination that 

was significantly above zero. These results are therefore somewhat inconclusive, as it 

would appear that the PFC group were able to discriminate based on relative recency, but 

the lack of a significant discrimination ratio clearly argues against this. The overall 

discrimination ratio for the PFC group is actually slightly greater than in the control 

group, but the amount of variability ensuing from the smaller group size may be a 

contributory factor in the non-significant result.
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One might expect that damage to the PFC would result in a deficit on this version 

of the task, due to the considerable evidence for the involvement of this area in temporal 

memory in the human (McAndrews and Milner, 1991; Milner et a l, 1985; Milner et al., 

1991; Milner and Petrides, 1984; Shimamura et al., 1990; Zorrilla et al., 1996). Deficits 

on judgements o f recency in a RAM task have also been observed in rats following both 

lidocaine inactivation (Hannesson et al., 2004b) and aspirative lesions (Kesner and 

Holbrook, 1987) o f the PFC.

There have been at least two studies examining the effects of PFC damage on this 

recency version o f the spontaneous novelty preference task. The first examined 

radiofrequency lesions o f the PFC and demonstrated that rats maintained intact 

discrimination for novel objects up to 24 hr delays, but that discrimination was abolished 

on the recency version o f this task (Mitchell and Laiacona, 1998). This provides 

evidence for a PFC involvement on this task; however it should be noted that rats were 

compared to their own prelesion performance, and as such surgical procedures were not 

controlled for. The second study showed that lidocaine inactivation of the PFC impaired 

the recency version (1 hr gap between sample phases, 45 min before test) but not the 

standard familiarity version (Hannesson et al., 2004a). These studies substantiate the 

hypothesised involvement o f the PFC in recency judgement, but unfortunately the 

experiment discussed in this chapter provides only mild support for this theory based on 

the discrimination ratio data. It would be unwise to attempt to draw any definitive 

conclusions from these data as one can only postulate whether a larger group size might 

have confirmed the presence o f a deficit or in fact revealed intact performance.

HPC: standard configuration

The HPC group showed intact discrimination on the standard version of the spontaneous 

novelty preference task at both the 2-min and the 2-hr delays. Their level of 

discrimination was lower for the longer delay interval, paralleling the result seen in the 

PFC group, and demonstrating that memory for the object decayed with time. This 

finding concurs with numerous studies which confirm intact novelty preference after 

HPC damage following a range o f delay intervals between sample and test (48-hr delay: 

Forwood et al., 2005; continuous version, 6-min delay: Galani et al., 1998; 24-hr delay:
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Gaskin et al., 2003; continuous version, 6-min delay: Lee et al., 2005; 5-min delay: 

Mumby et al., 2002; 24-hr delay: Winters et al., 2004).

A study by Liu and Bilkey (2001) failed to show significant discrimination 

following IBO-induced lesions o f the HPC, however this result may have been 

confounded by the fact that this group had accumulated less exploration of the objects in 

the sample phase. The only remaining case for impaired recognition memory following 

HPC damage comes from a study by Clark et al (2000), which revealed a deficit in 

discrimination at longer delay intervals following IBO or radiofrequency induced lesions 

of the HPC. However, on closer inspection of the data this interpretation is somewhat 

questionable, as the radiofrequency-lesioned rats were not in fact shown to be impaired 

compared with the control group at the longest delay of 24 hours: indeed at this delay 

these rats were in fact performing marginally above chance. Therefore it would appear 

that the present finding o f intact performance following HPC damage is in agreement 

with the majority of the literature.

HPC: spatial shift

There is some evidence to suggest that the HPC group were impaired on discriminating 

between the objects based on the spatial displacement. Although there was no overall 

effect of group in the exploration time measure, the interaction between the groups and 

the objects only just fails to reach significance (p=0.057). The discrimination ratio does 

reveal a main effect o f group, however this is attributed to the fact that the HPC group are 

significantly impaired compared with the PFC group, but this comparison just fails to 

reach significance with the control group (p=0.07). Of greatest significance is the finding 

that the HPC rats do not show discrimination between the displaced and non-displaced 

objects based on the ratio. This suggests that despite failing to demonstrate an overall 

difference from the control group, it would appear that the HPC-lesioned rats are unable 

to discriminate based on the spatial shift.

This finding is in agreement with previous studies which utilised either the 

continuous version o f the task (Galani et al., 1998; Lee et al., 2005; Liu and Bilkey, 2001; 

Save et al., 1992) or the paradigm where two objects are explored and one is relocated to
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a new position (Mumby et al., 2002). It is also fits well with the concept that the HPC is 

critical in those tasks that contain a spatial component.

HPC: recency

The HPC group were shown to be unable to discriminate between objects based on their 

relative familiarity according to the discrimination ratio. Disappointingly, no main effect 

of group was revealed due to the high degree of variability within the groups. However, 

the ratio data indicate that there was at least some evidence for an impairment on judging 

the recency of the objects. To my knowledge there have been no previous studies 

investigating lesions of the HPC on this recency version of the spontaneous novelty 

preference task in the rat. O f interest are studies that have shown that lesions of the HPC 

can impair the capacity to recall the correct sequence of a series of odours, despite being 

without effect on recognition memory (Fortin et al., 2002; Kesner et al., 2002). These 

findings sit well with the current demonstration of intact performance on the standard 

version of the novelty preference task, but deficits when the recency component is 

incorporated.

Experiment 5: ERC and Fx lesions 

ERC: standard configuration

Rats with lesions of the ERC were not impaired on discriminating at the 2-min delay on 

the standard version of this task. At the 2-hr delay discriminatory performance remained 

intact, to the extent that there was a significant difference between the ERC group and the 

control group, with the ERC group spending a significantly greater proportion of time 

exploring the novel object. This finding also meant that the ability to recall the sample 

object had not declined following the 2-hr retention interval.

Two studies have reported the effects of ERC damage on the spontaneous novelty 

preference task, although both utilised the continuous version and therefore comparisons 

are difficult. Galani et al (1998) used aspirative ERC lesions on a paradigm involving 7 

successive sessions, the novel object substitution occurred in the final session and 

therefore suffered from the interference effects discussed earlier. These rats did not 

demonstrate any preferential exploration of the novel object; however variability was
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large within the group which might have resulted from the relatively small group size 

(n=6) or the fact that the test was performed only once. O f interest is the observation that 

their lesions encroached upon the perirhinal cortex, which is known to be critical for 

exactly this type o f task (Aggleton et al., 1997; Bussey et al., 2000; Winters et al., 2004; 

Winters and Bussey, 2005). Therefore the apparent lack of discrimination may have been 

due to the perirhinal rather than entorhinal cortical damage. The other study investigated 

radiofrequency lesions on a continuous version of the task where the novel object 

substitution occurred in the 10th and final session (Parron and Save, 2004). A deficit in 

reaction to the novel object was reported, based on a significant difference between the 

ERC and control groups, however, it is unclear whether or not the ERC group were in 

fact showing a significant discrimination between the novel and familiar objects (Parron 

and Save, 2004). From the present study there is no evidence to suggest that the medial 

ERC is involved in recognition memory for objects.

ERC: spatial shift

The ERC group did not display any difference between their performance and the 

performance of the control group. However, upon analysis of their discrimination ratio it 

became apparent that they just failed (p=0.054) to reach a significant level of 

discrimination between the displaced and the non-displaced objects. Again the two 

studies mentioned previously (Galani et al., 1998; Parron and Save, 2004) both reported a 

deficit in reacting to a spatial change in the objects, although obviously these studies 

utilised the continuous paradigm and are not directly comparable with the present study. 

However Galani et al (1998) did demonstrate a slight increase in exploration for the 

displaced objects, but in the absence o f an index of discrimination taking into account the 

total exploration time, it is impossible to tell if  this exploration was greater than for the 

non-displaced objects. Therefore the present study suggests that the ERC might have 

some involvement in remembering the spatial attributes o f an object, although this result 

is marginal and is based only on the lack of intact discrimination, with no difference seen 

between groups overall.
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ERC: recency

There was no difference between the ERC and control groups on performance in the 

recency version of the test. However, on analysis of the discrimination ratio the ERC 

group did not show significant discrimination based on the relative familiarity of the 

objects. As in the PFC group, small group size may have been a contributory factor to 

the amount of variation that was apparent in this group. To my knowledge there have 

been no previous studies to substantiate this finding.

Fx: standard configuration

The group that received Fx lesions were not impaired on discriminating at either the 2- 

min or 2-hr standard versions o f the task. This group did not show an attenuation of 

discrimination with the longer delay interval; however their performance did not differ 

significantly from the control group at the longer 2-hr delay. There have been numerous 

studies which confirm that disruption of the fomical pathway leaves object recognition 

performance on this task intact after delays of 15 min (Bussey et al., 2000; Ennaceur et 

al., 1996; Ennaceur et al., 1997; Ennaceur and Aggleton, 1994; Mogensen et al., 2004), 

and even up to 24 hours (Clark et al., 2000). It would appear that the current finding of 

intact object recognition up to the 2-hr delay period corresponds with most of the 

literature and substantiates the idea that the hippocampal formation is not essential for 

this type of memory, at least up to a 2-hr retention interval.

Fx: spatial shift

The Fx group did not reveal any impairment in discriminating between the objects based 

on their spatial location. This finding contrasts with the impairment in the capacity to 

remember the spatial attributes of the objects following from the specific HPC lesion, and 

further suggests that transection o f the Fx need not induce the same behavioural sequelae 

as lesions of the HPC itself. Previous studies are in agreement that lesions of the Fx 

result in impaired discrimination between familiar objects that have been moved to novel 

locations (Bussey et al., 2000; Ennaceur et al., 1997).

However, previous work using the same spatial shift paradigm as that employed 

in the present study is less conclusive. Rats with Fx lesions did not show any overall 

group difference from controls, and in fact, when analysed over the first minute of
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testing, they were actually achieving significantly higher discrimination scores than the 

controls (Bussey et al., 2000). Although when analysed across the full 3-min testing 

block the Fx group were not significantly above chance for the d2 measure- equivalent to 

the discrimination ratio in the present study (Bussey et al., 2000). However in Bussey et 

al’s paradigm rats were not matched for exploration time in the sample phase, in fact the 

Fx rats displayed significantly higher levels of exploration than the other groups, which 

may complicate interpretation o f the results. In the present study there was clearly no 

evidence for an impairment on discriminating between objects in rats that had received 

lesions of the Fx.

Fx: recency

The Fx group showed intact performance on the task that relied on judging the relative 

familiarity of the objects. They were the only lesion group to do so, with the 

discrimination ratio indicating that they were spending significantly more time exploring 

the object that was presented least recently. There is little information available on 

whether or not the Fx has a role in this type of temporal memory. A study in monkeys 

using a rewarded version o f a recency task suggests that damage to the Fx does impair 

this type of memory (Charles et al., 2004).

Conclusions

The aim of experiments 4 and 5 was to investigate the involvement of the PFC and the 

hippocampal system in the spontaneous novelty preference task. There was no evidence 

to implicate the PFC, HPC, ERC or Fx in this particular form of recognition memory, 

even up to retention delays o f 2 hours. This finding validates that all lesion groups 

retained the capacity to appreciate novelty. In the spatial shift task there was an 

indication that the HPC group were impaired on remembering the spatial attributes of the 

objects, with this group failing to achieve significant discrimination. Finally, the recency 

test resulted in a high degree o f variability, with the Fx group being the only lesion group 

to show significant discrimination. Therefore little can be gleaned from the recency data, 

although it does provide anecdotal support to the idea that the PFC and the hippocampal 

system are involved in the temporal organisation of memory.
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Chapter 8 Retention of conditional delayed 

matching/ non-matching to position task: effect of 

hippocampal and prefrontal lesions

Experiment 6

8.1 Introduction

The work described in this thesis so far has not revealed an effect of specific excitotoxic 

lesions of the HPC on the DMTP task in the Skinner box. This finding is significant for 

two main reasons, firstly it is contradictory to a number of studies which implicate the 

HPC in this type of task (Aggleton et al., 1992; Broersen, 2000; Dunnett et al., 1990; 

Hampson et al., 1999), and secondly it questions the involvement of the HPC in working 

memory in the rat. Thus far, the only behavioural sequelae of this type of lesion have 

been impairment in the allocentric spatial reference memory task in the water maze, an 

increase in spontaneous locomotor activity and a suggestion of an impairment in the 

spatial and recency versions of the spontaneous novelty preference task. These findings 

provide validation that the HPC lesions were comprehensive enough to induce deficits 

characteristic of this lesion, and provide further proof that the lack of effect on DMTP 

was not just an anomalous finding.

In an effort to establish if  there might be some facet of the DMTP task that 

renders it insensitive to HPC lesions, a novel working memory task of considerably 

greater complexity was employed. The task used was the conditional delayed 

matching/non-matching to position task (CDM/NMTP) in the Skinner box. CDM/NMTP 

uses the presence of specific cues (stimulus light above levers or central panel) to indicate 

whether a particular trial is matching or non-matching in nature. Thus it incorporates 

both the task contingencies within one session, and supplements the requirement for 

remembering the side o f the lever in the sample phase with attending to the stimulus 

lights and remembering the conditional discrimination for the rule. The increased
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complexity of this task naturally requires a much more extensive training phase than 

DMTP, with each component o f the task being introduced gradually. The rats must leam 

each o f the rules separately, then leam the conditional visual discrimination that signals 

each rule by having both occurring randomly throughout the session, and finally maintain 

their performance over delay intervals. This task was first described in Dobrossy’s thesis 

(1997), where bilateral dorsal striatal lesions resulted in a general decline on both the 

matching and non-matching trials, with performance being reduced to chance levels. 

This work proved an invaluable reference point with which to compare the current study, 

particularly as far as training procedures were concerned.

The aim of this experiment was to assess the effects of HPC and PFC lesions on 

retention of CDM/NMTP. Rats were trained thoroughly prior to surgery, with 

postoperative lesion effects being assessed. It was hoped that this more complex task 

might be sensitive to damage of the HPC. It was also hypothesised that the PFC group 

would be impaired on this task, given the demonstration in Experiment 1 that these 

lesions produced a delay-dependent deficit in DMTP alone. Rats were also subjected to 

general locomotor evaluation.

8.2 Materials and methods

Forty rats were used in this experiment; all other subject details are covered in section 

2.2. Rats were trained on the CDM/NMTP task described in detail in section 2.3.5. 

Briefly, this task involved combining the matching and non-matching rules in one 

session, using visual cues to indicate which rule was needed for correct performance of 

each trial. The illumination of the central stimulus light indicated a matching trial, whilst 

the illumination of the two stimulus lights above the levers indicated a non-matching 

trial. Rats were initially trained on DMTP then switched to DNMTP upon reaching 

asymptotic performance. Subsequent rule switches were performed until both types of 

trial were presented randomly throughout the session. Following this stage, one rat had 

to be sacrificed due to recurring seizures before being placed in the box. Delays were 

introduced gradually and after reaching asymptotic performance at a delay set of 0-16 

sec, rats were tested for a 5-session baseline block. Following baseline testing, rats were
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assigned to one o f four surgical treatment groups using a random matching procedure 

based on accuracy. Treatments were HPC lesions («= 12), sham HPC (n=7), PFC lesions 

(n= 12) and sham PFC (n=8), with all surgical details in section 3.3. One rat died during 

HPC surgery and was therefore substituted with an animal that would have had sham 

PFC surgery, therefore resulting in a final group size of seven for the sham PFC group.

Rats were given two weeks to recover from surgery before having general 

locomotor activity assessed over a 60-min session. They were then retested on 

CDM/NMTP with a delay set o f 0-16 sec; rats received four blocks of five sessions. A 

measure of bias was analysed to indicate any preference for either the matching or non

matching contingencies. Bias was calculated as the number of correct matching trials 

plus the number o f incorrect non-matching trials divided by the total number of trials; 

scores therefore ranged from 0 to 1, with 0.5 indicating no preference, scores above this 

figure indicated preference for matching and below it indicated preference for non

matching. Finally rats were sacrificed and histology was dealt with as detailed in section 

3.4.
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8. RETENTION OF CDM/NMTP: EFFECT OF HPC AND PFC LESIONS

8.3 Results

8.3.1 Histology

8.3.1.1 Bilateral PFC lesions

Figure 8.1 shows photomicrographs of a representative lesion and figure 8.2 illustrates 

the minimum and maximum lesion extent. In all cases there was substantial cell loss 

within the PrL and IL cortices, with complete neuron loss within these regions in most 

animals. One animal had damage that encompassed the most rostral MO cortex and two 

animals showed damage to Cgl and Cg2, the largest lesion extended ventrally into the 

DP cortex. Out of the twelve rats in this surgery group, four did not incur sufficient 

bilateral damage and where therefore excluded from all analyses.

Figure 8.1 Photomicrographs o f  a representative bilateral PFC lesion, coronal sections stained with Cresyl 

Violet, with A being the most anterior. Scale bar =2 mm.
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Figure 8.2 Extent o f  the largest (grey) and smallest (black) PFC lesions, with duplicate sections indicating 

the specific regions. Numbers indicate mm anterior to bregma, abbreviations: cingulate cortex area 1 

(C gl), cingulate cortex area 2 (Cg2), dorsolateral orbital cortex (DLO), dorsal peduncular cortex (DP), 

frontal association cortex (FrA), infralimbic cortex (IL), lateral orbital cortex (LO), primary motor cortex 

(M l), secondary motor cortex (M 2), medial orbital cortex (MO), prelimbic cortex (PrL), ventral orbital 

cortex (VO). Drawings taken from Paxinos and Watson (1998).
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8.3.1.2 Bilateral HPC lesions

Figure 8.3 shows photomicrographs of a representative case that was included in analyses 

and figure 8.4 illustrates the minimum and maximum lesion extent. Successful cases had 

extensive cell loss throughout the dorso-ventral extent of the hippocampal formation. 

One case showed some sparing o f the CA1 unilaterally (see figure 8.4, minimal extent); 

this case did not differ from the others in its behavioural performance. Histological 

analysis revealed that three out o f the total o f twelve rats had insufficient damage to be 

included in analyses. Those rats that were excluded had very minimal cell loss, with two 

having only unilateral damage.

8.3.1.3 Sham lesions

Sham lesion cases were not shown to have any cellular loss or any obvious cell damage. 

HPC shams had a small amount o f cortical swelling resulting from the bone flap removal. 

The data from the two groups were not shown to differ significantly, and as such they 

were pooled for clarity giving a control group of 14 individuals.
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8. RETENTION OF CDM/NMTP: EFFECT OF HPC AND PFC LESIONS

A D

Figure 8 3  Photomicrographs o f  a representative bilateral HPC lesion, horizontal sections stained with 

Cresyl Violet. ~3.86 mm below the horizontal plane passing through bregma and lambda (A). ~6.1mm 

below the horizontal plane passing through bregma and lambda (B). Scale bar =2mm.
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5.32

F igure 8.4 Extent o f  the largest (grey) and smallest (black) FIPC lesions. Numbers indicate mm below the 

horizontal plane passing through bregm a and lambda. Horizontal drawings taken from Paxinos and Watson 

(1998).
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8.3.2 Behaviour

8.3.2.1 CDM/NMTP

8.3.2.1.1 Training

Rats required approximately four months of training before both matching and non

matching could be introduced within the same session. Figure 8.5 shows the training data 

across sessions for the combined rule task, at the zero delay interval. % Correct data are 

shown for each trial type and as an average between the two versions. An ANOVA, with 

trial type and sessions as within-subjects factors, revealed main effects of both trial type 

(F(1,39) 145.24, /K0.01) and sessions (F^20 78O) 82.38,^7^0.01), with a significant interaction 

between the two (F(20,780)=3.73, /7<0.01) (N.B. all 40 trained rats were used in these 

analyses). Post hoc tests showed that performance improved over sessions in both trial 

types, but that rats were significantly more accurate on matching as opposed to non

matching trials at every session. Rats were gradually introduced to delays before baseline 

measures were taken.

100

90  -

80  -

Oa> 70  -

oo
60  -

overall
match
non-match

50  -

40  -

15 201050

S ession s

Figure 8.5 % Correct against sessions for zero-delay CDM /NM TP task. Data expressed as mean ± SEM 

(«=40).
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8.3.2.1.2 Baseline

Rats were tested for five sessions after reaching asymptotic performance on CDM/NMTP 

with 0-16 sec delays. Figure 8.6 shows these baseline data, with no differences seen 

between the groups on measures of % correct (F(2 28)=0.96, ns), total trials completed 

(F(2,28)= l -29, ns) or rate o f panel pressing (F(2j28)=0.15, ns).

A B C
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g  1.6mm
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! 14 
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i  1.2
c

1.0
41 2 3 5

100 150 -i
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140 -
80 -

130 -

60 -

120 -

50 -

40 110
53 421 3 52 41

S e s s io n s  S e ss io n s  S essio n s

F igu re  8.6 CD M /NM TP (0-16 sec delays) baseline data, % correct (A), total trials (B) and panel press rate 

(C) against sessions. Data expressed as mean ± SEM (Control n= 14, PFC #7=8, HPC #7=9).

Data were also analysed across delays (see figure 8.7) for % correct; no difference 

between groups was seen (F(2t28)=0.85, ns), although there was a significant effect of 

delays (F(6>168)=67.93, /?<0.01). This confirmed that performance levels decreased as the 

delay interval increased, verifying the mnemonic element of the task. The measure of 

bias between matching and non-matching (matching > 0.5 > non-matching) was also 

assessed over the baseline week. None o f the groups displayed a significant bias towards 

applying one rule over the other, and no difference was seen between the groups 

(F(2,28)= l .87, ns); means for each group were controls (0.506± 0.008), PFC (0.490± 0.012) 

and HPC (0.515.± 0.005).
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F igure  8.7 C D M /N M TP (0-16 sec delays) baseline data, % correct against sessions. Data expressed as 

mean ± SEM (Control n= 14, PFC n=8, HPC n=9).

8.3.2.1.3 Postoperative testing

Figure 8.8 illustrates % correct data against sessions following surgery, with significant 

effects of group (F(228)= l 1.32, /?<0.01), session (F(l9532)=12.16, /K0.01) and a group by 

session interaction (Ff38.532>= l -77, /?<0.01). Post hoc analysis revealed that the group 

effect was due to the impairment in the HPC group relative to both the PFC group and 

controls (Newman-Keuls: HPC v. PFC and Control, /KO.Ol). Overall performance 

increased across sessions, although the interaction showed that whereas both PFC and 

control rats showed an improvement over sessions, the HPC group failed to show a 

similar increase in accuracy across sessions. Figure 8.9 illustrates these data across 

delays collapsed across all 20 postoperative sessions. The percent correct measure 

revealed effects o f group (F(2j28)=1 1.53, /t<0.01), delay (F(6J68)=38.87,/?<0.01) and a group 

by delay interaction (F(12168)=2.89, /?<0.01). The group difference was due again to the 

HPC group showing significantly poorer performance than both PFC and control rats 

(Newman-Keuls: HPC v. PFC and Control, /?<0.01).
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F igure 8.8 CDM /NM TP (0-16 sec delays) postoperative data, % correct against sessions. Data expressed 

as mean ± SEM (Control «=14, PFC n= 8, HPC n~9).
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F igu re  8.9 CDM /NM TP (0-16 sec delays) postoperative data averaged across all 20 sessions, % correct 

against delays. Data expressed as mean ± SEM (Control n~ 14, PFC n=8, HPC «=9).
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The HPC group differed from both the PFC and control groups at each delay interval, 

thus showing that the deficit was apparent even at the shortest delay. There was a 

significant effect o f delay on all groups, although in the HPC group this was accounted 

for by only the first three delay intervals, with the performance at zero delay differing 

only from the longest delay, and delays o f 1 and 2 sec giving significantly higher 

accuracy than at 8, 12 and 16 sec. The measure o f bias between matching and non

matching (matching > 0.5 > non-matching) was also assessed averaged across all four 

blocks of DMTP3. None o f the groups displayed a significant bias towards applying one 

rule over the other, and no difference was seen between the groups (F(228)=0.63, ns); 

means for each group were controls (0.495 ± 0.005), PFC (0.502± 0.006) and HPC 

(0.502.± 0.003).

For further characterisation o f the deficit resulting from the HPC lesion, numbers 

of panel presses across delays and latency to the first panel press after the delay were 

investigated. These data are not presented as neither measure revealed any differences 

between groups, although both increased with increasing delays as expected (Panel 

presses: Group (F(228)=0.25, ns), Delay (F(6j168)=589.46, /?<0.01), Group x Delay 

(F<i2.i68)=0 .7 6 , ns). Latency: Group (F(228)=0.78, ns), Delay (F(6>168)=16.37,/?<0.01), Group 

x Delay (F()2J68)=0.90, ns)).

Measures from SDT were also analysed, and are presented in figures 8.10 and 

8.11. The two accuracy measures, A ' and 57, provided very similar results with 

significant effects o f group (Af: F(2>28)= 18.44, / K O I .  57: F(2>28)= 10.46, /K0.01), delay (Af: 

F(6,i68)=7.20, /XO.Ol. SI: F(6168)=:35.37, /K0.01) and group by delay interactions (A': 

F(i2,i68)=L93, p<0.05. SI: F()2j 68)=4.08, /?<0.01). Post hoc analysis showed that for A ' the 

HPC group differed from the PFC and control groups at each delay except for 1 and 2 

sec, and that there was a significant effect o f delay on the HPC group, with higher 

performance at the shorter delays. S I  data showed that the HPC group differed from PFC 

and controls at each delay, and that performance at 1 and 2 sec delays was greater than at 

the 12-sec delay. The three measures o f bias did not reveal any effect of group (Iy: 

(Fp.2srl.24, ns), RI: (F(2j28)=2.00, ns) and B": (F(2>28)=0.80, ns), or any effect of delay or 

interactions for Iy (Delay (F(6>168)=0.52, ns), Group x Delay (F(12168)=0.70, ns)).
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F igu re  8.10 CDM /NM TP (0-16 sec delays) postoperative data averaged across all 20 sessions. A ' (A) and 

SI (B) against delays. Data expressed as m ean ± SEM  (Control «=14, PFC n= 8, HPC n= 9).
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F igure 8.11 CDM /NM TP (0-16 sec delays) postoperative data averaged across all 20 sessions. Iv (A), RI 

(B) and B" (C). Data expressed as mean ± SEM (Control n=14, PFC n= 8, HPC n=9).

8.3.2.2 Spontaneous locomotor activity

Rats were assessed before being retested on CDM/NMTP and results across the duration 

of the 60-min session are shown in figure 8.12. There was a main effect of group 

(F(2,28)= 17.12, pcO.Ol) and block (F (1]i3o8)= 2 7 .9 0 , /?<0.01), but no group by block 

interaction (F(22,308)= l-08, ns). Activity decreased as the session progressed, with all three 

groups significantly different from each other; controls were the least active, and the HPC 

group were the most active (Newman-Keuls: HPC v. PFC and control, /K0.01, PFC v. 

Control, p<0.05). Therefore HPC and PFC rats were hyperactive compared with 

controls, although this effect was significantly greater in the HPC group.
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F igure 8.12 Total activity counts against 5-m in blocks. Data expressed as mean ± SEM (Control n= 14, 

PFC n=8, HPC n=9).
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8.4 Discussion

This experiment sought to examine the effects o f HPC and PFC lesions on CDM/NMTP, 

a more complex working memory task in the Skinner box that combined the elements of 

matching and non-matching within a session. There was a clear dissociation in the 

effects of these two lesions, the nature o f which was entirely unanticipated. The HPC 

lesions were seen to induce a deficit in performance that was apparent at all delays, 

whereas the PFC lesions did not result in any deviation from the performance of the 

control group. The more surprising result is the intact performance in the PFC group. 

Rats with these lesions were impaired on the DMTP task in Experiment 1, which was a 

considerably less complex task comprised of just one o f the components involved in the 

CDM/NMTP.

Training and baseline performance

Dobrossy (1997) has previously demonstrated that when the visual signals for the 

conditional discrimination were not present during the delay stage, performance dropped 

to chance levels. It was for this reason that the stimulus lights remained on throughout 

the entire delay phase, despite this compromising the mnemonic load on the rats. The 

animals took approximately four months o f training before being introduced to the zero 

delay interval version o f the CDM/NMTP task. Rats then required 21 sessions to achieve 

asymptotic performance, this is considerably fewer than were needed in Dobrossy’s 

thesis (1997), where 38 were required. This difference may have arisen from the fact that 

the present study used slightly longer sessions in this training phase (60 min v. 50 min) 

and also that rats were exposed to more switches between the two contingencies. Rats in 

the present study also received an additional training phase where the rule was switched 

half way through a session; this may have facilitated the transition to the final phase 

where both rules were presented randomly throughout the session.

Over the 21 sessions, rats were shown to be consistently more accurate on 

matching as opposed to non-matching trials; this is corroborated by Dobrossy’s work 

(1997) where a similar result was seen. This may reflect the inherent difference between 

the two variants, as discussed in Chapter 1 (Blokland and Dunnett, 1995; Dunnett et al., 

1988; Dunnett et al., 1989; Dunnett, 1993; Sahgal et al., 1990). Alternatively, it might be
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an indication that the matching visual cue discrimination is easier to acquire than the non

matching discrimination, perhaps because of interference for remembering the side of the 

lever when the two lever stimulus lights are illuminated in the latter. Baseline measures 

confirmed a delay-dependent decrease in performance, validating that the task probes 

working memory (Dunnett, 1993). Bias data did not reveal any preference towards either 

rule, which suggests the initial preference for the matching rule observed during zero- 

delay training had diminished completely by the point of baseline testing.

Previous attempts have been made to combine both task contingencies within one 

session. For example, the continuous matching/ non-matching to sample test (CNM), of 

Pontecorvo et al (1988; 1991), relies on trial stimuli that are not paired, but instead are 

continuously related to each other. In each trial one stimulus (e.g. light or tone) is 

presented along with both levers, if  the stimulus matches the stimulus presented in the 

previous trial then one o f the levers is reinforced, if they do not match the other lever is 

reinforced. Thus the rat must remember the most recent stimulus in order to compare it 

with the current one and then select a lever based on whether these two stimuli match; 

therefore the task is a true matching task in the sense that the position of the response 

cannot be determined until after the interval between trials.

Another task, designed explicitly to preclude rats from using postural mediating 

strategies, is the combined D(N)MTP task (Pache et al., 1999; Pache et al., 2003). This 

task is similar to the present DMTP task in that it combines matching and non-matching 

within a session and uses distinct sample, delay and choice phases. However, in the 

combined D(N)MTP task, the side o f the correct choice lever is indicated by the 

illumination o f the stimulus light above this same lever in the sample phase. Therefore 

for example, if  the left light is illuminated in the sample, irrespective of the side of the 

sample lever, then a response to the left lever is rewarded in the choice phase (Pache et 

al., 1999)^ The authors then designate each trial as matching or non-matching, 

depending upon whether the correct response matches the sample lever. However, one 

should be cautious regarding the implication that the rat is applying a matching or non-

+ An identical procedure is adopted in the later study by Pache et al (2003); except that rather than 

signalling the side o f  the correct response using the stimulus lights located above the levers, this study uses 

darkness or flashing lights.
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matching rule, because the side o f the sample lever is in fact irrelevant to the solution of 

the trial; rather the rat is matching its response to the side of the stimulus light in all trials. 

The assertion that this task design may preclude mediation strategies is obviously 

confounded by the position o f the response being determined before the delay begins. In 

defence of the design, the authors were able to identify drug-induced effects that were 

dissociable depending on the trial type (Pache et al., 1999; Pache et al., 2003). However 

it is possible that this may merely reflect a greater susceptibility to interference between 

the side of the sample lever and the choice response in one “rule” over the other.

Therefore, it would appear that although the present CDM/NMTP task does not 

rule out mediation strategies, it does provide a valid means for testing both types of rule 

within a session. It requires that the rat switches response strategies according to the 

stimulus presented in that trial, and therefore introduces a significantly greater degree of 

complexity to the original DMTP task.

Retention o f  CDM/NMTP: effect o f  HPC lesions

Excitotoxic lesions of the HPC were shown to induce a substantial deficit in performance 

on CDM/NMTP that was apparent at all delays. In contrast to the control and PFC 

groups, the HPC group failed to show an increase in accuracy across sessions. There was 

however a significant effect o f delay on the HPC group, suggesting that some element of 

the task contingencies had been retained at the shortest delays, but if delays were greater 

than 2 sec performance dropped to near chance levels. The accuracy measures derived 

from SDT substantiated these data, with both A ' and SI revealing a significant impairment 

in the HPC group compared with the control and PFC groups. A ' revealed a sizeable 

effect o f delay in the HPC group, with higher scores at the shorter delays. There was no 

evidence for bias towards either o f the rules, and additionally no effect on the SDT 

measures of side bias.

It is necessary to address the nature o f this deficit in order to postulate what the 

role of the HPC might be in this task; an impairment in working memory cannot be 

assumed unless all other interpretations can be discounted. Firstly, one can eliminate bias 

as being a contributory factor towards the impairment, as the rats showed neither bias 

towards either lever, nor preference for either rule. Secondly, it is highly unlikely that the
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effect is due to a non-specific impairment such as motor, sensory or motivational 

difficulties (Dunnett, 1985) due to the intact performance of rats with identical lesions in 

the DMTP task in Experiment 1. However, one cannot rule out a general decline in 

attentiveness that may have arisen from the inherent complexity of the task. The most 

significant difference between the CDM/NMTP and the DMTP task is the requirement to 

attend to the conditional visual stimuli and respond accordingly. The rats might thus be 

impaired on remembering the conditional discrimination, or alternatively they might be 

unable to distinguish between the two separate stimuli.

There is some evidence to implicate the HPC in conditional discrimination tasks, 

with humans with MTL damage being impaired on eye-blink conditioning, e.g. red light 

+ tone= puff, green light+ tone= no puff (Fortier et al., 2003). Some authors implicate 

the HPC in the performance o f conditional discriminations in the rat (Gray and 

McNaughton, 1983; Gray and McNaughton, 2003). A study by Ross et al (1984) 

demonstrated a dissociation in the performance of HPC-lesioned rats, with impairment on 

a conditional discrimination and intact performance on a nonconditional discrimination. 

In this task the conditional discrimination was o f the form (B- A+, A-), with B being a 5- 

sec light and A being a 5-sec tone which followed B after a 5-sec delay; reinforcement 

was only delivered when A was presented following B, and not if presented alone. The 

nonconditional discrimination was o f the form (C+, D-), where C and D were two novel 

stimuli. However, this finding has not been replicated in other studies, where rats with 

IBO-induced HPC lesions exhibited intact performance on retention (Davidson and 

Jarrard, 1989) and acquisition (Jarrard and Davidson, 1990) of a similar conditional 

discrimination. Interestingly, when lesions were aspiratively induced, as in the Ross et al 

(1984) study, performance was selectively impaired on the conditional but not the 

nonconditional task (Jarrard and Davidson, 1991). Thus it would seem that extra- 

hippocampal damage may account for the impairment in this task, with aspirative lesions 

resulting in damage to adjacent areas such as the subiculum and presubiculum in addition 

to disruption of fibres o f passage (Jarrard and Davidson, 1991).

Another study supporting the idea that the HPC itself might not be crucial for 

conditional discrimination tasks comes from work by Deacon et al (2001). These authors 

assessed rats with IBO-induced HPC lesions on a variety of tests; these included
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conditional object discriminations cued by internal states (if hungry, A+B- = food: if 

thirsty, A-B+ = water) or visuospatially (if two copies of object A, always choose 

lefthand object: if two copies o f object B always choose righthand object). The lesioned 

rats were not impaired on either o f these tasks (Deacon et al., 2001), which suggests that 

the HPC is not essential for the capacity to make conditional discriminations of this sort. 

It is unlikely that the deficit that was apparent in the present study can be accounted for 

by an impairment on the conditional discrimination. The most significant factor is the 

delay-dependency that was observed; this verifies that performance was better at the 

shorter delays; indicating that the rats had retained the conditional rule and were able to 

apply it to allow correct performance.

An alternative explanation might be that the HPC-lesioned rats were more 

susceptible to interference than the other groups. Working memory is susceptible to 

interference (Olton et al., 1979) and, specifically, proactive interference occurs when 

responses on previous trials interfere with choice accuracy on the current trial (Dunnett 

and Martel, 1990). This interference can be reduced by increasing the ITI and in the 

DMTP task it is most influenced by the previous response i.e. a greater accuracy is 

achieved on those trials in which the previous response was to the same side as the 

current trial (Dunnett and Martel, 1990). There is evidence to suggest that interference 

may be an important consideration in tasks involving the HPC. The effect of HPC 

lesions were assessed in a MTS procedure using delayed object recognition; an 

impairment was only apparent when a single pair o f objects was used throughout the 

session, and not when stimuli were trial-unique stimuli (Rawlins et al., 1993). Moreover, 

this susceptibility to interference has also been demonstrated in the operant chamber. 

Interference was specifically manipulated in the CNM task (Pontecorvo et al., 1988; 

1991) mentioned earlier in this discussion, and HPC-lesioned rats were shown to have a 

deficit that increased with both increasing delay and interference (Wan et al., 1994). 

Interference was highest when stimuli changed from trial to trial (i.e. high proportion of 

non-match trials) and it was therefore the ratio of non-matching to matching trials that 

was altered to increase interference (Wan et al., 1994). One can therefore hypothesise 

that the HPC group may have been subject to greater levels o f interference than the other 

groups in the CDM/NMTP task; this interference may have arisen from the presentation
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of the different stimuli, in conjunction with interference from the side of the previous 

responses. This possibility obviously warrants further investigation and could be 

clarified by a more in depth analysis of performance. This would necessitate 

modifications in the programme which would allow collection of supplementary 

parameters, including percent correct by previous rule being the same or opposite to the 

current trial, and by previous side o f response being the same or opposite.

The final possibility for the deficit seen in the HPC rats would be an impairment 

in working memory. There is evidence to implicate the HPC in working memory that is 

non-spatial in nature (Aggleton et al., 1992; Broersen, 2000; Clark et al., 2001; Wan et 

al., 1994; Winocur, 1991), however one o f the hallmarks of this type of deficit is intact 

performance at minimal delays. Clearly the HPC group had a significant impairment that 

was apparent at even the shortest delay, which indicates that although a working memory 

deficit cannot be ruled out, it is unlikely to account for the substantial deficit that was 

observed.

Retention o f CDM/NMTP: effect o f  PFC lesions

The PFC-lesioned rats performed exactly as controls throughout testing; their 

performance mirrored the controls with a decrease across delays and no evidence of bias 

towards either rule or side o f lever. This result was unexpected in light of the impaired 

performance o f the PFC group in Experiment 1 which involved the DMTP task. The 

CDM/NMTP task is essentially a more complicated version o f DMTP, involving both 

matching and non-matching rules signalled by different stimuli; thus the idea that 

performance is intact on CDM/NMTP but impaired on DMTP is paradoxical in the 

extreme.

Any suppositions to explain this intact performance are usually belied by the 

impaired performance on DMTP in Experiment 1. For example, upon considering 

whether the PFC-lesioned rats might have employed a mediating strategy in order to 

circumvent the complexity of the CDM/NMTP task, it becomes clear that this is unlikely 

given that no such strategy was employed successfully in DMTP. The CDM/NMTP task 

utilised a conditional discrimination component to indicate the pertinent rule, so the role 

of the PFC on this class o f task must be considered. Unfortunately the literature on the

2 0 0



\ \ i  '  I M  (  ! M  M i  i \ s

involvement o f the rat PFC in conditional discrimination is somewhat inconclusive. 

Winocur (1991) demonstrated an impairment across all delays in PFC-lesioned rats using 

a simple conditional discrimination learning paradigm. This paradigm was discussed in 

Chapter 1 and used an operant chamber, however a tone-light conditional discrimination 

in another study revealed a deficit that was only apparent at longer delays (Delatour and 

Gisquet-Verrier, 1999). However, there is also evidence for intact performance on 

conditional tasks, with rats with cytotoxic lesions o f the PrL/IL showing no impairment 

on acquisition of a conditional discrimination performed using a touch-screen apparatus 

(Chudasama et al., 2001). This task required the rats to learn a discrimination of the type 

“if stimulus A go left, if stimulus B go right”, although crucially presentation of the two 

choice stimuli occurred immediately upon responding to the sample stimuli. Therefore in 

this task the lack of effect may simply have been due to the proximity of the sample and 

choice phases (Chudasama et al., 2001).

There is ample evidence to suggest that the present finding is uncharacteristic. 

Not only is the PFC implicated in operant DM/NMTP tasks (Aggleton et al., 1995; 

Broersen, 2000; Chudasama and Muir, 1997; Dunnett et al., 1990; Dunnett, 1990; 

Herremans et al., 1996; Mair et al., 1998; Porter et al., 2000; Young et al., 1996) and 

conditional discrimination (see above), but it is also implicated in switching between 

matching and non-matching rules (Dias and Aggleton, 2000; Joel et al., 1997b). This 

switching deficit is observed when rules were switched between sessions, so one might 

speculate that this impairment should actually be exacerbated when switching occurs 

from trial to trial as in CDM/NMTP. However, Experiment 1 failed to reveal a PFC- 

induced deficit on switching between the two rules in the Skinner box. Histological 

analysis did not reveal any differences between the lesions in the present experiment and 

those in Experiment 1. If anything, the present lesions encroached slightly further into 

the more posterior cingulate areas, which certainly argues against the lack of impairment 

resulting from an insufficient lesion.

Spontaneous locomotor activity

Spontaneous locomotor activity was assessed in the rats over a 60-min session. HPC rats 

demonstrated significantly higher levels of activity than both the controls and the PFC
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group, this is in line with the many previous reports of HPC-induced hyperactivity 

(Bannerman et al., 2002a; Cassel et al., 1998; Coutureau et al., 2000; Galani et al., 1998; 

Good and Honey, 1997; Higgs et al., 2001). However, of particular significance was the 

observation that the PFC group were significantly more active than the controls. 

Therefore HPC and PFC rats were hyperactive compared with controls, although this 

effect was significantly greater in the HPC group. The PFC effect is not totally 

uncharacteristic (Yee, 2000), and indeed in Experiment 1 the PFC group only just failed 

to attain a significant difference from the control group (p=0.0528).

Conclusions

The aim of this experiment was to establish the effects o f HPC and PFC lesions on 

CDM/NMTP. The hypothesis was that an HPC-related deficit might be revealed, whilst 

the PFC lesions were anticipated to result in a significant impairment. However, a 

dissociation was revealed between the two lesions, with HPC lesions inducing a deficit 

that was apparent at all delays, and PFC lesions leaving performance entirely intact. The 

most convincing explanation for the HPC deficit is likely to be a combination o f reduced 

attentiveness, increased susceptibility to interference and perhaps some impairment in 

working memory performance. Conversely, the intact performance in the PFC group is 

wholly counterintuitive in light o f the impairment observed in Experiment 1. 

Nonetheless, this result is unlikely to be an anomalous finding because the spontaneous 

locomotor activity concurs with that observed in Experiment 1. Additionally there is no 

ambiguity regarding the statistical analysis, and no suggestion that the lesions are more 

minimal in the present experiment than in Experiment 1. Further investigation is 

obviously required in order to substantiate this result.
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Chapter 9 General Discussion

This thesis has sought to investigate the involvement of the PFC and HPC in cognitive 

behaviours in the rat. Specifically, working memory was assessed using an operant 

delayed matching task with a view to establishing the extent o f the roles of the PFC and 

HPC in this task. Rats were also assessed for their capacity to recall objects in the 

spontaneous novelty preference test. Finally, a novel task was used to expand on the 

DMTP data, and to investigate the viability o f including both matching and non-matching 

trials within one session. The findings presented in this thesis have been both revealing 

and contradictory. This general discussion will synthesise the findings from the 

individual experimental chapters, and discuss them in terms of the themes that were 

introduced in Chapter 1. For example, is there sufficient evidence to implicate the HPC 

in cognitive behaviours that are distinct from spatial memory processes, and what might 

be the key role o f the rodent mPFC? Methods o f improving and expanding upon the 

current results will also be considered.

Delayed matching tasks and the PFC

Experiments 1 and 2 revealed that the PFC is critical for maintaining performance of the 

preoperatively-leamed DMTP task: however, it is not implicated when the task is 

acquired following surgery. It is necessary first to establish how these findings relate to 

the existing data in the field (see Table 1.3), before discussing what the broader 

implications of these results might be. Previous studies are all in agreement that damage 

to the mPFC results in some degree o f impairment on postoperative retention of this task. 

These results vary with respect to the nature o f the impairment, with the majority 

indicating a deficit that is independent o f delay. Two studies that indicated a delay- 

dependent deficit similar to Experiment 1 targeted more discrete (Fr2: Broersen et al., 

1994) or more rostral and extensive areas o f the PFC (M2, MO, Cgl and PrL: Dunnett, 

1990). However, the two most closely comparable studies in terms of lesion technique 

have both demonstrated delay-independent impairments (Aggleton et al., 1995; 

Chudasama and Muir, 1997), although lesions in Chudasama and Muir’s (1997) study
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were more discrete than in Experiment 1. Furthermore, the intact acquisition observed in 

Experiment 2 replicates the findings o f both Broersen (2000) and Joel et al (1997b), 

where PFC lesions were similarly without effect.

O f particular interest are studies which investigate the involvement of the NAC in 

DMTP. The NAC is intimately connected with both the PFC (Gorelova and Yang, 1997; 

Groenewegen et al., 1990) and the HPC (Kelley and Domesick, 1982; Powell and Leman, 

1976), making it a worthwhile comparison between the lesions examined within this 

thesis. Lesions o f the NAC have been shown to result in a similar spectrum of 

impairments to HPC lesions in the rat, for example in the T-maze and water maze (Annett 

et al., 1989). However, these lesions have been shown to induce delay-dependent deficits 

on DMTP (Dunnett, 1990), similar to the effect of PFC lesions in Experiment 1. This 

finding has been replicated, with further analysis revealing that the deficit may have 

resulted from a side-dependent response bias, as indicated by the SDT bias measure Iy 

(Reading and Dunnett, 1991). Despite a slight indication of an increase in Iy in the PFC 

group compared to other groups in Experiment 1 this was not statistically significant, 

suggesting that the nature o f  this deficit was not identical to the NAC-lesion-induced 

impairment. Further evidence arguing against a direct correlation between the effects of 

the two lesions is that NAC lesions were shown to impair switching between the 

matching and non-matching rules, in either direction (Reading and Dunnett, 1991). This 

finding is clearly at odds with the intact switching observed in the PFC group.

It is clear that direct comparisons between studies that have utilised different 

lesion techniques, and also targeted different areas, should be made with caution. In the 

light o f the proposed functional heterogeneity within the rodent PFC (Fuster, 1997; 

Gisquet-Verrier et al., 2000; Kesner, 2000; Kolb, 1990b), it is perhaps no surprise that the 

current findings do not precisely mirror those from other studies. Experiments 1 and 2 

destroyed cells within the PrL and IL regions o f the PFC; the results obtained in these 

experiments suggest that these areas contribute to the maintenance of working memory 

across delays in the DMTP task, but not to the learning of this rule if acquired 

postoperatively. The relative contributions of these areas cannot be determined until 

more specific lesion studies are undertaken; it is therefore conceivable that one area
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might be wholly responsible for the observed deficit, or indeed that both areas are 

similarly implicated.

A putative role for the PFC in working memory has received wide acceptance 

(Fuster, 1997; Granon et al., 1994; Kesner, 2000), and the findings reported above seem 

to concur with this proposition. However, the intact performance observed in Experiment 

6 is much harder to reconcile. This experiment investigated the CDM/NMTP task, where 

one of the main premises was that the task would certainly recruit the PFC, given its 

greater degree o f complexity in comparison to DMTP. Indeed the PrL is thought to be 

critical when task demands are increased, such that information processing is made more 

difficult (Granon and Poucet, 2000). However, what transpired was retention of 

performance that was on a par with control rats. This finding is not only remarkable 

because o f the numerous reports o f prefrontal involvement in DMTP (see table 1.3), but 

also with respect to the impaired performance seen in the PFC-group in DMTP in this 

thesis. CDM/NMTP is essentially comprised of DMTP and DNMTP within one session 

thus the idea that rats with similar lesions can be impaired on DMTP alone is perplexing. 

Obviously, these two experiments involved different groups of rats so a direct 

comparison is not entirely defensible; however, apparatus and surgical techniques were 

identical, in addition to the similar effect on locomotor activity, all of which suggests that 

these two results have direct relevance. We cannot assume a result is anomalous purely 

because it does not conform to the expected pattern and does not merit a satisfactory 

explanation. Only with further investigation and replication (or otherwise) of this finding 

might this matter be resolved.

PFC: no evidence fo r involvement in behavioural flexibility

Another remarkable finding obtained in this thesis is the lack of any corroboration of the 

notion that the PFC -  especially the PrL and IL areas - is involved in behavioural 

flexibility. In fact the data seem to argue against any such involvement. PFC-lesioned 

rats were not differentially affected by the shift between rules in the DMTP task 

(Experiment 1 and 2), similarly they were not affected by the reversal of the platform 

position in the water maze task (Experiment 1). The most surprising result comes from 

the intact performance on the CDM/NMTP task, which has already been discussed above. 

This task requires the rats to switch between different strategies from trial to trial; which
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confers a degree o f complexity that one would assume would implicate any region 

proposed to mediate behavioural flexibility. Although there have been reports of PFC 

lesions impairing switching between matching and non-matching rules (Dias and 

Aggleton, 2000; Joel et al., 1997b), more commonly, impairments in behavioural 

flexibility attributed to the PFC result from more significant shifts in strategy. For 

example, PFC-lesioned rats were impaired when switching between an odour and a place 

based strategy in an odour discrimination task (Ragozzino et al., 2003). Thus a possible 

explanation for the intact performance on the DMTP switch might be due to the nature of 

the task, which does not require rats to shift their attention to a new dimension (as in the 

ED/ID shift tasks discussed in Chapter 1). Rats did not exhibit the perseverative 

tendencies that were apparent on tasks that explicitly tested ED shifts (Birrel and Brown, 

2000; Ragozzino et al., 1999; Ragozzino et al., 2003).

Instrumental conditioning: PFC involvement

The concept of instrumental conditioning merits a brief consideration in this discussion, 

by virtue of the increasing evidence implicating the PFC in this type of learning. 

Instrumental conditioning is the learning that takes place when a rat is required to acquire 

a seemingly arbitrary action, such as pressing a lever, to gain access to food. This type of 

learning is thought to comprise two distinct processes which may depend on different 

neural structures (Dickinson and Balleine, 1994). The initial acquisition of an 

instrumental action is based on goal-directed action-outcome (A-O) associations which 

are thought to be encoded in declarative memory. As training proceeds, performance is 

thought to become more habitual and ultimately independent o f the value of the goal, 

such associations are termed stimulus-response (S-R), and are assumed to be encoded in 

procedural memory (Corbit and Balleine, 2000; Killcross and Coutureau, 2003). The 

distinction between processes that are under either A-O or S-R control can be ascertained 

experimentally using goal devaluation procedures. For example, a specific satiety 

procedure involves rats being trained to press one lever to receive pellets and another to 

receive a sucrose solution; then, before being given a choice between both levers, rats are 

pre-fed on one of these reinforcers which serves to devalue that specific outcome (Corbit 

and Balleine, 2003). If performance is under goal-directed A-O control then rats should 

reduce the number o f responses on the lever that is associated with the devalued outcome.
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However, if performance is S-R guided, rats should be insensitive to this devaluation 

procedure. The PrL has been strongly implicated in goal-directed control of 

conditioning. Lesions o f the PrL render rats insensitive to reward devaluation suggesting 

that these animals are habit-driven (Balleine and Dickinson, 1998; Corbit and Balleine, 

2003; Killcross and Coutureau, 2003), furthermore the IL is thought to mediate the ability 

to inhibit goal-directed responding in order to permit an S-R response (Coutureau and 

Killcross, 2003; Killcross and Coutureau, 2003). Similarly, the A-O contingency can be 

degraded such that reward is delivered irrespective o f the action. Whereas control 

animals reduce performance on the non-contingent lever, rats with either PrL (Balleine 

and Dickinson, 1998) or dHPC (Corbit and Balleine, 2000) lesions have shown 

insensitivity to this degradation. This thesis has not attempted to address the issue of 

whether or not performance on the operant tasks was under A-O or S-R control. 

Nevertheless, it would seem from the evidence above that both the PFC and HPC may be 

involved in contingency learning and representing the causal relationship between an 

action and its consequences. Thus deficits arising from inabilities to make A-O 

associations would be expected to affect both lesion groups, and therefore this would not 

provide a satisfactory explanation for the double dissociation seen between the lesions on 

DMTP and CDM/NMTP.

Delayed matching tasks and the hippocampal system

Lesions of the HPC were without effect on retention and acquisition o f DMTP. This 

impairment concurs with a lack o f effect on this task after radiofrequency or cholinergic 

manipulations o f the HPC (Mair et al., 1998; Winters and Dunnett, 2004; Young et al.,

1996), however other authors have reported deficits (Aggleton et al., 1992; Broersen, 

2000; Dunnett et al., 1990; Hampson et al., 1999; Porter et al., 2000). This finding does 

not provide any evidence towards a role for the HPC in non-spatial working memory as 

suggested by some authors (Clark et al., 2001; Winocur, 1991; Winocur, 1992a). This 

result is in stark contrast to the substantial impairment observed in the CDM/NMTP task. 

In this experiment rats with cytotoxic lesions of the HPC were severely impaired across 

all delays, although they showed some evidence of retention of the conditional rule by 

way of a significant delay effect. This finding is postulated to result from a combination 

of reduced attentiveness, increased susceptibility to interference and possibly some
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impairment in working memory performance (see Chapter 8 discussion). Although the 

presence o f such a dramatic deficit does not lend itself well to the notion of a pure 

working memory deficit and a more global impairment, such as interference, seems to be 

the more plausible argument.

The HPC has two major routes of communication with the rest of the brain, 

namely the Fx and the ERC. Lesions o f these two areas have been shown to result in 

behavioural consequences that can be dissociated from each other, and additionally also 

from selective lesions o f the HPC (Bannerman et al., 2001b; Bannerman et al., 2002b; 

Cassel et al., 1998; Coutureau et al., 2000; Galani et al., 2002). Thus cytotoxic lesions of 

the ERC and aspirative lesions of the Fx were compared on the DMTP task. Lesions of 

the ERC left retention of DMTP intact, in line with a previous study (Pouzet et al., 

1999b). Conversely, the Fx lesions resulted in an impairment that was independent of 

delay. Deficits in DMTP are routinely reported following Fx damage. However, the 

majority o f studies have demonstrated delay-dependent deficits (see table 1.2). The 

dissociation between lesions of the HPC itself and the Fx suggest that some extra-HPC 

structure may be involved in the performance of this task, and that perhaps inadvertent 

damage outwith the HPC may account for the numerous HPC-dependent deficits reported 

on this task.

Further investigation of the proximal cortical areas is warranted on this task. The 

perirhinal and postrhinal areas are also intimately connected with the HPC both directly 

(Kosel et al., 1983; Liu and Bilkey, 1996) and indirectly via the ERC (Burwell and 

Amaral, 1998b; Witter et al., 2000). These two areas are also connected with the PFC via 

two parallel pathways which may serve separate learning and memory processes 

(Delatour and Witter, 2002). Furthermore, they have reciprocal connections with 

widespread cortical sensory areas (Suzuki, 1996), which make them suitable candidates 

for involvement in mnemonic functions. However, the behavioural significance of these 

areas has yet to be fully established. There is evidence to suggest that lesions of 

peri/postrhinal cortices have little or no effect on spatial tasks in the rat (Aggleton et al., 

2000; Bussey et al., 1999; Ennaceur et al., 1996; Machin et al., 2002), thus distinguishing 

them from lesions o f the HPC. A proposed key role for the peri/postrhinal cortices in 

recognition memory is gaining increasing credence (Brown and Aggleton, 2001; Bussey
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et al., 1999; Winters et al., 2004; Winters and Bussey, 2005). There is evidence to 

suggest that the perirhinal cortex is involved in processing information essential for 

recognition memory o f individual items, whereas the HPC is more implicated in recalling 

arrangement o f items, such as complex scenes (Wan et al., 1999). Moreover, interactions 

between the PFC and the perirhinal cortex are thought to be necessary for long-term 

retrieval of temporal object information (Hannesson et al., 2004a).

Some studies have investigated the involvement of the perirhinal cortex in 

delayed matching paradigms in the rat, but yet again, the results are inconclusive. 

Lesions that involved the perirhinal cortex and the lateral ERC induced a delay- 

dependent impairment on DNMS using objects (Mumby and Pinel, 1994). Similarly, a 

delay-dependent deficit was demonstrated in DNMTP in the Skinner box following 

lesions that were confined to the perirhinal cortex (Wiig and Burwell, 1998). However, 

in another study these lesions left DNMTP performance intact (Ennaceur et al., 1996), 

suggesting that this issue is far from resolved.

Allocentric spatial memory and the HPC

One of the clearest findings in this thesis is the impairment in the reference memory 

water maze task following HPC lesions. This impairment was first demonstrated in 

Experiment 1 and was subsequently replicated in Experiment 2. This finding is 

completely in line with the existing literature (Bannerman et al., 1999; Broersen, 2000; 

Cassel et al., 1998; Duva et al., 1997; Galani et al., 1998; Good and Honey, 1997; Gould 

et al., 2002; Liu and Bilkey, 2001; Morris et al., 1982; Richmond et al., 1999; Wright et 

al., 2004), and serves to corroborate the idea that the HPC is implicated in allocentric 

spatial information processing. Further support for this idea is provided by the 

spontaneous novelty preference data reported in Chapter 7. Despite no overall group 

difference in the discrimination ratio, rats with HPC lesions failed to show a significant 

discrimination on the spatial shift version o f this task. This version required the rats to 

discriminate between objects based on their spatial displacement, and thus taxed the 

ability to recall not only the object but also its location within the arena with respect to 

the other objects and the environmental cues. Therefore this thesis provides a convincing 

endorsement of the belief that the HPC is vital for accurate performance in allocentric 

spatial memory tasks (Aggleton et al., 2000). However, the CDM/NMTP task reveals
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that the HPC may also have a much wider role in information processing, and that 

perhaps it is only recruited in non-spatial tasks under certain conditions.

Task design

Statements attributing overt behaviours displayed by animals to memory function should 

always be made with caution (Sarter, 2004; Steckler and Muir, 1996). Indeed many 

authors question the validity o f DMTP type tasks with respect to working memory 

deficits, suggesting that rather than retaining the relevant information over the delay, they 

are in fact using mediating strategies to facilitate performance (Chudasama and Muir, 

1997; Dudchenko, 2004; Dudchenko and Sarter, 1992; Herremans et al., 1996; Melia et 

al., 1990). These strategies arise from the fact that the correct response can be 

determined before the delay phase, i.e. the rat knows which lever it must respond to, and 

the rat can then perform behaviours to “bridge” the gap between sample and choice 

(Steckler and Muir, 1996). These behaviours can take the form o f the assumption of 

body postures, licking or even biting towards the correct lever for the duration of the 

delay, thereby negating any memory component. In the paradigm employed within this 

thesis the rat was forced to nose-poke in the central panel to initiate the choice phase of 

the task in order to limit the use o f such strategies (Dunnett, 1985). Delay intervals were 

variable, and therefore the most effective strategy was to nose-poke as frequently as 

possible throughout the delay period; this high consistent rate of responding is what is 

normally seen and suggests that the rats typically remain centralised between the two 

choice levers (Dunnett, 1993). However, there is increasing evidence to suggest that this 

is not always the case.

Herremans et al (1996) have shown that rats will display behaviour such as 

looking at, or moving towards, the correct lever, with subsequent responding on the 

correct lever, for approximately 50% o f all trials. Chudasama and Muir (1997) provided 

a more detailed analysis o f these mediating behaviours using systematic analysis of video 

clips restricted to the delay periods in DNMTP. Two independent observers were able to 

predict the animals’ response to a high degree o f accuracy, based on behaviours such as 

head turns, nose pokes and paw pushes performed during the retention interval. These 

authors report delay-independent (scopolamine and PrL lesions) and delay-dependent (Fx 

lesions) deficits on this task, but suggest that these impairments may not be fully
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accounted for by mnemonic failure, but may instead reflect a disruption in effective use 

of mediating strategies (Chudasama and Muir, 1997). Furthermore, rats were shown to 

maintain biased body positions in a spatial working memory task in a modified 9HB 

(Gutnikov et al., 1994); this study also indicated that drug-induced deficits could result 

from simple locomotor effects, for example disrupting the ability to maintain a particular 

body alignment, rather than true amnesic impairments. This hypothesis was echoed in a 

study employing DMTP in the Skinner box, where concerns over the potential motor and 

motivational effects o f certain drugs were raised (Stanhope et al., 1995). Additional 

strategies to preclude animals from using these facilitatory behaviours include the 

insertion of dividers between the central panel and the levers (Stanhope et al., 1995), and 

the addition of admission levers or responses, such that the animal must make a nose 

poke or lever press on the back wall o f the chamber to initiate the choice phase of the task 

(Hampson et al., 1999; Mair et al., 1998). One task explicitly designed to remove 

mediation strategies is the delayed conditional discrimination (DCD) task designed by 

Herremans et al (1994). The DCD task involves the rat being presented with a stimulus 

(light or tone) which signals whether that trial’s correct response will be to the left or 

right lever. Following a delay, an admission lever is presented (always the same side for 

each rat) which must be pressed before the choice phase commences; this task has been 

proven to be effective in reducing mediation strategies (Herremans et al., 1994; 

Herremans and Hijzen, 1997). Another such task is the combined delayed matching and 

non-matching to position task o f Pache et al (1999; 2003), this task is discussed in full in 

chapter 8; however, it does not appear to preclude the use of mediating strategies as the 

side of response is determined in the sample phase, and the choice phase is only initiated 

after the first panel press following the delay (as in Dunnett’s (1993) task). The CNM 

task also discussed in chapter 8 provides a more viable alternative for reducing the 

probability of mediating strategies (Pontecorvo et al., 1988; Pontecorvo et al., 1991).

It would appear that the only definitive way of preventing mediating behaviours 

would be to have a true matching to stimulus task in which the response cannot be 

anticipated before the choice presentation (Herremans and Hijzen, 1997). Operant 

DNMS tasks have been investigated, for example responding to the opposite lever to the 

one under the sample stimulus (e.g. high frequency flashing stimulus light) (Dobrossy,
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1997). However, accuracy has not been suitably high enough to permit the introduction 

of delay schedules (Dobrossy, 1997; Pontecorvo et al., 1996). With the advent of 

touchscreen technology the potential scope o f behavioural paradigms will be increased 

dramatically (Bussey et al., 1997). For example, this technology could be used to allow 

computer generation o f stimuli and randomisation o f the location of the correct response 

(Sahgal and Steckler, 1994).

Nonetheless, despite the potential confound o f mediation strategies, DMTP has 

routinely been shown to result in dissociable lesion effects (e.g. Aggleton et al., 1995; 

Broersen, 2000; Dunnett, 1985; Winters and Dunnett, 2004). Indeed this thesis provides 

further justification towards the use o f this paradigm. The impairment exhibited by the 

PFC group in DMTP is highly unlikely to be a result o f an inability to successfully apply 

a mediation strategy; if  such a strategy was the sole means of solving the task then the 

PFC-group would be expected to be at least as impaired on the CDM/NMTP task. 

However, although casual observation o f the rats’ behaviour did not reveal any obvious 

postural biases or strategy use, this matter warrants more formal investigation. This 

would have to take the form o f employing an unbiased observer to predict the side of the 

response based on the behaviour during the delay (Chudasama and Muir, 1997), and only 

once this analysis had been performed could the integrity o f the task be established.

The various tasks employed within this thesis have served to highlight some of 

the pitfalls encountered in behavioural testing. The object recognition task used in 

Experiments 4 and 5 has been advocated as a pure test of recognition memory that 

involves no training due to relying on an innate exploratory response displayed by the rat. 

However, in the hands o f this experimenter at least, these data were subject to a large 

degree o f variability even when trials were repeated on three separate occasions. This 

variability is an inevitable consequence o f measuring behaviours that have an inherent 

degree o f variation and serves to highlight the value o f operant tasks in eliminating these 

problems. Operant tasks would appear to provide a more reliable and robust means of 

assessing cognitive behaviours, allowing more animals to be tested in shorter daily 

sessions and with greater consistency across procedures. However, greater task 

complexity demands an increase in the required training time; for example CDM/NMTP 

required 7 months o f training compared with 4 months for the less complex DMTP task.
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Clearly, when designing a task, a balance must be reached between the amount of 

training time and a sufficient degree o f difficulty to avoid ceiling effects.

Evidence for multiple memory systems

It is generally assumed that memory can be divided into multiple systems that are served 

by different neural substrates (Kim and Baxter, 2001). There are numerous accounts of 

studies which provide evidence for the existence of such systems (e.g. McDonald and 

White, 1993; Packard et al., 1989). Moreover, it is also widely considered that the PFC 

and HPC may be dissociable based on their relative contributions to these systems 

(Kesner and Rogers, 2004). There are three basic classes of interaction; these are 

competition, synergism and independence (Kim and Baxter, 2001). This thesis has 

certainly provided evidence o f independent memory systems, for example with HPC 

lesions impairing water maze performance, whilst PFC lesions left performance intact. 

Similarly the suggestion o f an impairment in the spatial shift version o f the spontaneous 

novelty preference task indicates that again the HPC is involved in a system that is 

concerned with spatial information processing. There is also a suggestion that there 

might be a degree o f synergistic interaction, indicated by the probable involvement of 

both the PFC and HPC in the recency version o f the spontaneous novelty preference task. 

The assertion that these structures might have a role in temporal memory correlates with 

a number o f studies (e.g. Fortin et al., 2002; Kesner et al., 2002; Milner et al., 1985; 

Zorrilla et al., 1996). It would be o f great interest to probe this synergistic interaction by 

examining crossed-uni lateral inactivation lesions on these two areas. If the two areas are 

indeed acting synergistically then inactivation o f both would be expected to completely 

abolish performance on this task (Kim and Baxter, 2001).

The most significant and novel finding reported in this thesis is the distinct double 

dissociation between the effects o f PFC and HPC lesions on the DMTP and CDM/NMTP 

tasks respectively. This suggests that these two tasks are being governed by different 

memory systems, which in turn are mediated by different neural substrates. 

Undoubtedly, such an incongruous result requires further validation and clarification 

before one can speculate as to the grounds for the dissociation. Manipulation of the 

relevant task parameters might serve to elucidate the exact nature of the deficits; for 

example, increasing the ITI in the CDM/NMTP task would be expected to minimise any
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interference effects between trials and would therefore test the hypothesis that the HPC- 

deficit was related to these effects. Furthermore, it would be of interest to delineate the 

exact contributions o f the PrL, IL and Cgl cortices to the DMTP task by performing 

restricted cytotoxic lesions of these areas. Finally, as mentioned above, disconnection 

studies might provide a more lucid account o f the underlying mechanisms involved in the 

performance of these tasks.

Conclusions

The aim o f this thesis was to provide a clearer understanding of the involvement of the 

PFC and HPC in cognitive behaviours in the rat; although this aim has not been met 

resolutely, what has been established is that the behaviours that control performance on 

delayed matching tasks are certainly complex and multifaceted. A variety of interesting 

results have been obtained which highlight the crucial functions in which both the PFC 

and HPC participate. The HPC has been implicated unambiguously in spatial 

information processing, whereas the PFC has been shown to mediate no such role. Both 

areas are implicated in the temporal organisation of memory, a capacity which is vital for 

performance on numerous tasks and confers the ability to coordinate information to a 

high degree of sophistication. Finally, the DMTP task provided evidence that the PFC is 

involved in working memory, and the CDM/NMTP task suggested that HPC involvement 

in this function cannot be discounted. Evidently, the significance of these two brain areas 

should not be underestimated, this is attested to by their reputed roles in a wide array of 

diseases that bear impairments o f a cognitive nature. Ultimately, further investigation of 

these matters should go some way towards providing the rationale for effective treatment 

strategies for amelioration o f a wealth o f cognitive deficits.

2 1 4



APPENDIX

Appendix

Appendix A

Solutions used in perfusion and fixation protocols, and general buffers.

1. PRE WASH for perfusions

Di-sodium hydrogen phosphate (dihydrate) 18 g

Sodium chloride 9 g

Make up to 1 litre with distilled water. Adjust to pH 7.4 with orthophosphoric acid (store 

in cold room).

2. 20% PARAFORMALDEHYDE stock solution

Paraformaldehyde 1 kg

Distilled water 5 litres

Dissolve with heat on the stirrer without boiling. Add 5 ml o f 10 M sodium hydroxide to 

make the solution alkaline, thus promoting the paraformaldehyde to go into solution.

3. 4% PARAFORMALDEHYDE perfusate

Di-sodium hydrogen phosphate (dehydrate) 90 g

Sodium chloride 45 g

20% paraformaldehyde stock solution 1 litre

Make up to 5 litres with distilled water. Adjust to pH 7.3 with orthophosphoric acid.

4. 25% SUCROSE solution (used for crvoprotection of brains)

Di-sodium hydrogen phosphate (dihydrate) 18 g

Sodium chloride 9 g

Sucrose 250 g

Make up to 1 litre with distilled water.

5. PHOSPHATE BUFFERED SALINE (PBS)

Basic 0.1 M solution used as vehicle for Ibotenic acid.

Distilled water 1 litre

Disodium hydrogen orthophosphate (dihydrate) 11.46 g
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Sodium dihydrogen orthophosphate (dihydrate) 

Sodium chloride

2 .9 6  g

9 .0 0  g

Heat the distilled water gently whilst adding the salts until all are dissolved. Adjust to pH 

7.4 with hydrochloric acid (store at +4°C).

Appendix B

Cresyl fast violet (nissl) stain 

Solutions:

1. Cresyl violet working solution

Cresyl violet acetate 7.04 g

Sodium acetate (anhydrous) 5.00 g

Distilled water 600 ml

Mix on stirrer overnight. Adjust to pH 3.5 with glacial acetic acid, make up to final 

volume of 1 litre with distilled water and filter (store at room temp.).

2. Acid alcohol

Add 5 ml of acetic acid to 200 ml o f 95% alcohol.

Method:

1. STAINING using a Shandon processing machine

70% alcohol 5 min

95% alcohol 5 min

100% alcohol 5 min

50/50 chloroform alcohol 20 min

95% alcohol 5 min

70% alcohol 5 min

Distilled water 5 min

Cresyl violet 5 min

Distilled water STOP

Racks are then removed from the machine and sections allowed to sit in distilled water 

for 10-30 min before differentiation and dehydration.
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2 DIFFERENTIATION AND DEHYDRATION 

70% alcohol 5 min

as necessary to achieve desired degree of staining 

5 min 

5 min 

5 min

Acid alcohol

95% alcohol

100% alcohol

Xylene

Coverslip using DPX.

Appendix C

Acetylcholinesterase (AChE) histochemistry.

(method based on that o f Koelle (1955))

Solutions:

1. Stock incubation solution

Copper sulphate (5 H2 O) 781 mg

Glycine 750 mg

Sodium acetate 2.88 g

Make up to 1 litre with Distilled water and adjust to pH 5.0 with acetic acid (store at 

+4°C).

2. Incubation medium (made up just prior to use)

Stock incubation solution 200 ml

Acetylcholine iodide 230 mg

Ethopropazine 10 mg

Heat solution to 40-50°C to dissolve substrates; allow to cool to 37°C or less before use.

3. Sulphide solution (mix and use in fume cupboard)

Sodium sulphide 2 g

Distilled water 200 ml

Adjust to pH 7.5 with acetic acid.
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Method:

This is a metal precipitation method and glass Coplin jars and plastic forceps are used at 

all times.

1. Sections are mounted on gelatinised slides and allowed to dry at 37°C overnight.

2. Leave slides in incubation medium for minimum of 3 hr at 37°C (or overnight at room 

temp.).

3. Wash 4 x 3  min in distilled water.

4. Develop in the sulphide solution, for approximately 30 sec to 2 min, until golden 

brown.

5. Wash 4 x 3  min in distilled water.

6. Dehydrate in ascending alcohols to xylene and mount in DPX.
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