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Summary

This thesis considers the question: What roles do the tear film and corneal nerves play 

in the normal blink mechanism? The hypothesis proposed is that tear film thinning, 

which occurs prior to full break-up, allows increased evaporation of the tear film. The 

evaporation produces a localised reduction in the tear film temperature, which is then 

detected by the temperature sensitive nerves in the corneal epithelium.

To test this hypothesis, a series o f experiments was completed. The first study, which 

investigated the pattern o f diurnal change in corneal sensitivity, revealed that corneal 

sensitivity increases during the day following post-sleep eyelid opening to reach a 

plateau approximately five hours after eye opening (Kruskall-Wallis, p<0.05). The 

second study assessed corneal nerve function under anaesthesia produced by 0.5% 

Proxymetacaine Hydrochloride. Onset o f anaesthesia was observed within 2 minutes 

(Wilcoxon matched pairs test, p<0.05), with a maximum of anaesthesia reached at 15 

minutes post-instillation (Wilcoxon matched pairs test, p<0.05). Corneal sensitivity 

did not return to pre-instillation levels at 60 minutes post-instillation (Wilcoxon 

matched pairs test, p<0.05). The third study assessed the effect of iris colour and 

ethnic origin on corneal sensitivity, skin sensitivity, tear film stability and blink rate. 

The study showed that corneal sensitivity for a cooling stimulus was affected by iris 

colour and ethnic origin (Kruskall-Wallis, p<0.05): as iris pigmentation increases, 

corneal sensitivity decreases. Although statistically tear film stability was found to be 

influenced by iris colour, no clear pattern o f change was associated with iris colour 

(Kruskall-Wallis, p>0.05). Tear film stability was not affected by ethnic origin
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(Kruskall-Wallis, p>0.05). Blink rate was significantly correlated to tear film stability 

(Spearman, r = -0.536, p<0.05).

The fourth study considered the relationship between blink rate, corneal sensitivity, 

tear film stability, anaesthesia, ocular surface temperature and ocular surface 

evaporation. Tear film stability was strongly correlated to blink rate, with the blink 

rate increasing as tear film stability decreases (Spearman, r = 0.926, p<0.05). Corneal 

sensitivity was significantly correlated to corneal sensitivity, but only at low corneal 

sensitivity levels. Blocking corneal sensitivity by anaesthesia, the blink rate was 

significantly reduced, suggesting that corneal sensitivity is involved in the mechanism 

controlling normal involuntary blinking (Wilcoxon matched pairs test, p<0.05). Tear 

film evaporation from the ocular surface was not correlated to the blink frequency 

(Spearman, r = -0.381, p>0.05). The amount o f temperature cooling at the inter-blink 

interval was not correlated to blink rate (Spearman, r = 0.241, p>0.05).

The final experimental study examined involuntary blinking with contact lens wear 

discomfort. There was a significant increase in the blink rate with increasing 

discomfort (Kruskall-Wallis, p<0.05). Subjects experiencing discomfort had a less 

stable tear-film, both with (Mann Whitney test, p<0.05) and without (Mann Whitney 

test, p<0.05) contact lens wear, and had an elevated blink-rate compared to subjects 

experiencing comfort (Mann Whitney test, p<0.05). Ocular surface discomfort was 

not related to an elevated corneal sensitivity (Mann-Whitney test, p>0.05).
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These series o f studies showed that tear film stability and corneal sensitivity are 

involved in the blink mechanism, providing strong evidence that normal involuntary 

blinking is affected by sensory stimuli arising from the exposed ocular surface.
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1. General Introduction

Normal blinking plays an important role in maintaining a healthy ocular surface. 

Blinking stimulates tear production and spreads the tear film to prevent drying o f the 

ocular surface and to produce a smooth refractive surface of high optical quality. If 

blinking is deliberately prevented, the tear film will thin and break-up in a random 

manner. The factors involved in the control of blinking are not well understood, but 

there is evidence that the central nervous system and sensory stimuli arising from the 

exposed ocular surface play a role in the control of spontaneous blinking.

Based on the proposed evidence that sensory stimuli arising from the ocular surface 

may control blinking, the aim o f this thesis was to focus on the ocular surface 

conditions and find out the role o f the tear film and corneal nerves in the normal 

involuntary blinking.

The hypothesis proposed by this thesis is that tear film thinning, which occurs prior to 

full tear film break-up, allows increased evaporation o f the tear film. The evaporation 

produces a localised reduction in the tear film temperature, which is then detected by 

the temperature sensitive nerves in the corneal epithelium.

To investigate the proposed hypothesis several ocular surface conditions were 

correlated with blink frequency: tear film stability, corneal sensitivity, temperature of 

the anterior ocular surface, and evaporation of the anterior ocular surface. 

Preliminary studies were also made in order create a background for the later studies.

1



The literature review that follows provides the background knowledge on the anatomy 

and innervation o f the cornea, anatomy of the tear film, corneal sensitivity, ocular 

surface evaporation, ocular surface temperature, blinking, necessary for the 

understanding and continuation o f this work.
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2. Literature Review

2.1 Anatomy of the Human Cornea

The cornea is a transparent, avascular tissue that is continuous with the opaque sclera 

and semi-transparent conjunctiva. It covers one sixth of the circumference of the 

eyeball, and is the major refractive component of the eye, contributing approximately 

+48 DS.

The comea has three primary functions. First, it serves the dual optical functions of 

maintaining a transparent “clear window” to the eye to allow the transmission of light. 

Second, it refracts light to help focus the object being viewed on the retina. Third, it 

protects the delicate intraocular structures from trauma (Nishida, 1977).

The corneal thickness varies across its surface. It is approximately 0.5 mm thick in 

the centre, but this increases gradually towards the periphery of the comea where it is 

about 0.7mm thick. The radius o f curvature is also not constant over the entire 

surface. It is steepest in the centre and becomes flatter in the periphery, creating an 

aspheric surface (Pepose and Ubels, 1992).

The comea is described as a five-layered structure: l) Epithelium (outermost layer), 2) 

Bowman’s Layer (anterior limiting lamina), 3) Stroma, 4) Descemet’s Membrane 

(posterior limiting lamina), and 5) Endothelium (innermost layer).
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2.2 Corneal Structure

2.2.1 Epithelium

The epithelium forms the outermost layer of the comea and is a non-keratinized, 

stratified, non-secretory, squamous epithelium. Its anterior surface is bordered by the 

tear-film, while the posterior surface is anchored, through its basement membrane, to 

Bowman’s Layer (Klyce and Beuerman, 1988; Fepose and Ubels, 1992).

basal cells

membrane 

Bowman’s layer

wing cells

stroma

tears film  

squamous cells

Fig 2.1: The layers of the comeal epithelium (From Saude T: Ocular Anatomy and 

Physiology, Blackwell Scientific Publications, Oxford, 1993).

The comeal epithelium consists of five to seven layers of three different types of 

epithelial cell: two to three layers of superficial cells, two to three layers of “wing” 

cells, and a monolayer of columnar basal cells. No spaces are evident between the 

cells. The comeal epithelium shows continuity with the conjunctival epithelium, 

which itself is continuous with the skin of the eyelid (Bergamanson, 2001). The 

epithelial layer measures approximately 50.6±3.9pm in thickness (Li et al., 1997).
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The anterior surface consists o f two to three differentiated layers of superficial cells 

(or squamous cells). They are extremely flat, polygonal cells with a diameter of 40- 

60pm and a thickness o f 2 -6  pm. The surface of these superficial cells is covered 

with microvilli that form microplicae. These microvilli are important in maintaining 

the adhension of the tear mucus layer to the epithelium {Hazlett, 1980 #2(Hazlett et 

al., 1980; Nichols et al., 1983; Pfister, 1973). Adhering to these microvilli is a 

glycocalyx that interacts with the mucin layer o f the tears to promote the formation of 

a stable, smooth tear film on the corneal surface. These structures enlarge the total 

surface area, thus enhancing the stability o f the tear film, and allowing the exchange 

of oxygen and nutrients between the comea and the tears. When viewed by scanning 

electron microscopy, two different types o f superficial cells can be observed: large, 

dark cells and small, light cells (Pfister, 1973). The large, dark cells have a dense coat 

of microvilli and are mature cells that are about to desquamated into the tear film. 

The smaller, light cells have fewer microvilli and are believed to be younger cells. 

The apparent difference is due to the dark cells having fewer microvilli than the light 

cells. The superficial cells are joined together by tight junctional complexes near the 

apical surface. These junctional complexes, called zonula occludens, provide a 

barrier to the intercellular movement o f substances from the tear layer, and prevent 

the uptake of excess fluid from the tear film. Any breakdown in this barrier function 

leads to epithelial oedema, and is often referred to as “Sattler’s veil” because of the 

significant visual effects o f these conditions (Krutsinger and Bergamanson, 1985). 

These anatomic characteristics represent the mechanical barrier function of the 

comeal epithelium. Additional adhesions between the cells are provided by numerous 

desmosomes, which provide lateral mechanical stability (Khodadoust et al., 1968; 

Nishida, 1977; Pepose and Ubels, 1992).
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Beneath the superficial cells are two to three layers of wing cells, so called because of 

their characteristic wing-like shape. These cells are in an intermediate state of 

differentiation between basal and superficial cells and are rich in intracellular 

tonofilaments called keratins (Klyce and Beuerman, 1988; Nishida, 1977; Pepose and 

Ubels, 1992). The wing cells are joined by desmosomes to superficial cells and to 

one another. Numerous large gap junctions are also present between the wing cells, 

allowing a high degree o f intercellular communication in this layer.

The basal cells form a single layer o f cuboidal, columnar cells, which rest on the 

basement membrane. O f the various types o f corneal epithelial cells, only basal cells 

have mitotic activity (Klyce and Beuerman, 1988; Pepose and Ubels, 1992). Basal 

cells are the source o f wing cells and superficial cells. The daughter cells push 

anteriorly and change their shape, becoming wing cells. As the cells continue to 

move anteriorly, they become superficial cells, before being shed into the tear film in 

a process known as desquamation. The epithelium turns over approximately once 

every seven days, resulting in an entirely new epithelium anteriorly to the basal 

mitotic cells (Hanna et al., 1961; Hanna and O'Bien, 1960). The basal cells are joined 

together by desmosomes and gap junctions, and by hemi-desmosomes to Bowman’s 

Membrane (Gipson et al., 1987; Khodadoust et al., 1968).

The basement membrane (or basal lamina) is an extracellular product of the basal 

cells that lies anterior to Bowman’s Layer and is about 40-60nm thick (Klyce and 

Beuerman, 1988; Pepose and Ubels, 1992). Posterior to the epithelial basal cells, the 

continuous, thin basement membrane is composed of the lamina lucida (adjacent to 

the cell membrane) and the lamina densa (adjacent to the Bowman’s Layer). The
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presence o f the basement membrane between the basal epithelium and the underlying 

stroma fixes the polarity of the epithelial cells and creates a boundary that separates 

the epithelium from the stroma (Klyce and Beuerman, 1988; Pepose and Ubels, 

1992). Furthermore it provides a matrix on which cells can migrate, helping to 

maintain a stratified and well-organized corneal epithelium. It also may play a role in 

epithelial wound healing (Nishida, 1997).

2.2.2 Bowman’s Laver

An acellular membrane-like zone known as Bowman’s Layer (or Bowman’s 

membrane) is observed by light microscopy at the interface between the corneal 

epithelium and the corneal stroma in humans (Fig 2.1). Bowman’s Layer is not a 

membrane but a simple condensation of collagen fibres and proteoglycans. It consists 

o f randomly arranged, but tightly connected, collagen fibrils, which are finer in cross- 

section than the underlying stromal collagen, and proteoglycans. It is a modified 

stromal tissue and measures 16 .6± l.lpm  in thickness (Li et al., 1997). Bowman’s 

Layer is considered to be the anterior portion o f the stroma since the collagen fibers in 

the membrane are secreted by the stromal keratocytes and there is continuity between 

the fibers in the membrane and those in the stroma (Nishida, 1977; Pepose and Ubels, 

1992; Assil and Quantock, 1993). Bowm an’s Layer plays an important role in the 

maintenance o f the epithelial structure, but is not regenerated after injury. Recent 

clinical experience with excimer laser photoablation demonstrates that a normal 

epithelium is formed and maintained even when Bowman’s layer is absent. Also, 

many other mammals do not have a Bowman’s Layer, but still have a well-organised 

epithelial structure. Therefore the physiologic function of Bowman’s Layer is not 

fully understood (Nishida, 1997).
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2.2 3 Stroma

The stroma (or substania propia) is the middle layer of the cornea and is 

approximately 500pm thick, constituting about 90% of the corneal thickness. The 

characteristics o f the cornea, such as its physical strength, constancy of shape, and 

transparency are principally based on the anatomic and biochemical characteristics of 

the comeal stroma.

The comeal stroma is formed by collagen fibrils, keratocytes (comeal fibroblasts) and 

matrix. The collagen fibrils have a high tensile strength and low extensibility. They 

are extremely uniform in diameter (22.5-35nm) (Giraud et al., 1975; Komai and 

Ushiki, 1991) and the distance between collagen fibers is also uniform and constant 

(41.4±0.5 nm) (Hamada, 1976). This regular arrangement of collagen fibers in the 

stroma contributes to comeal transparency. The collagen fibrils run parallel to one 

another, forming bundles that are called lamellae.

In the comeal stroma, the collagen fibers form about 300 lamellae (Hamada, 1976), 

which are distributed throughout the stroma. The lamellae run parallel to the surface 

o f the eye and cross each other at various angles. Each lamella contains straight 

collagen fibrils that extend across the entire comea, from limbus to limbus. They are 

stacked on top of each other, gradually becoming more orthogonal in orientation 

towards the posterior stroma (Meek et al., 1987). In the anterior one-third o f the 

stroma, the lamellae are thin, and branch and interweave more than in the deeper 

layers (Goldman et al., 1968; Komai and Ushiki, 1991). In the posterior two-thirds of 

the stroma, the arrangement is more regular and the lamellae become larger (Komai 

and Ushiki, 1991). In the innermost layer, adjacent to Descemet’s membrane, the



fibrils interlace to form a thin collagenous sheet that contributes to the binding 

between the stroma and Descemef s membrane. This anatomical variation between 

anterior and posterior lamellae may partly explain the tendency of the comea to swell 

from a posterior to an anterior direction (Nishida, 1997).

epithelium 

Bowman's layer

stroma

Descemet’s
membrane

endothelium

Fig 2.2 : Cross-section of the comea (From Saude, T: Ocular Anatomy and 

Physiology, Blackwell Scientific Publications, Oxford, 1993).

Fibroblasts o r keratocytes are the principal cell of the stroma and occupy 3-5% of 

the stromal volume (Klyce and Beuerman, 1988). They are flattened cells, with scant 

cytoplasm, lying between the collagen lamellae (Poole et al., 1993). They have a 

spindle shape with long processes that extend horizontally. Recently, a number of 

researchers have reported the existence of gap junctions between keratocytes (Muller 

et al., 1995; Watsky, 1995; Doughty et al., 2001). Through the gap junctions the 

keratocytes can communicate across the comea in both the horizontal direction and 

vertically. The highest density of keratocytes is found anteriorly and this declines



posteriorly by as much as 30% (Moller-Pedersen and Ehlers, 1995; Petroll et al.,

1995).

2.2.4 Descemet’s Membrane

Descemet’s Membrane is the basement membrane of the corneal endothelium, and is 

3-20pm thick. It is continuously synthesized at a high rate throughout life by the 

endothelial cells. At birth, the membrane is approximately 3pm thick, and it grows at 

a rate of 1pm per decade (Johnson et al., 1982). The most anterior portion is the 

oldest and is also the least uniform.

Although no elastic fibers are present, the collagen fibrils are arranged in such a way 

that they give an elastic property to the membrane. It consists o f laminim and 

fibronectin, and it has been suggested that fibronectin has a role in the adhesion of the 

endothelial cells to the membrane (Gospodarowicz et al., 1979; Waring et al., 1982).

Descem ef s membrane is tightly adherent to the posterior surface of the comeal 

stroma and reflects any change in the shape of the stroma. If the corneal stroma 

swells, folding o f Descemet’s membrane can be observed clinically. When 

Descemet’s membrane is ruptured by physical stress, such as compression birth 

injury, aqueous humour penetrates into the comeal stroma, resulting in stromal 

oedema. Descem ef s membrane does not regenerate, but if endothelial cells migrate 

over the denuded stroma at the site o f a tear, Descemet’s membrane covers the 

ruptured area, and the stromal oedema subsides clinically (Nishida, 1997).
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2.2.5 Endothelium

A single layer o f corneal squamous epithelial cells forms the Endothelium, which 

cover the posterior surface o f Descemet’s Membrane in a well-arranged mosaic 

pattern (Pepose and Ubels, 1992). The endothelial cells are polygonal, mostly 

hexagonal in shape, and are about 20pm in diameter and 5pm thick. In the normal 

comea, the dimensions o f endothelial cells are quite uniform. The anterior surface of 

the endothelial cells lies flat against Descemet’s Membrane and the posterior surface 

bulges into the anterior chamber, and forms microvilli and marginal folds, thereby 

exposing greater cell surface area to the aqueous humour (Pepose and Ubels, 1992; 

Nishida, 1977; Bergamanson, 2001).

At birth, endothelial cell density is about 4000 cells/mm , but because the cells do not 

undergo mitosis, the density decreases throughout life to about 2000 cells/mm in the 

eighth or ninth decades o f life (Bourne and Kaufman, 1976). However, the cells have 

the ability to enlarge and to maintain tight apposition with neighbouring cells. 

Transmission electron microscopy has shown that several junctional complex 

structures are present (zonula occludens, macula occludens, macula adherens), but no 

desmosomes (Pepose and Ubels, 1992). Along the lateral sides, but near the apical 

side, junctional complexes are found. These include tight junctions (zonula 

occludents), gap junctions, and intermediate junctions. The gap junctions are 

concerned with intercellular communication, allowing the penetration of small 

molecules and electrolytes between endothelial cells, while the intermediate junctions 

(zonula adherents) provide cell-to-cell adhesion. This inter-connection between the 

endothelial cells provides a barrier to the aqueous humour entering the stroma 

(Waring et al., 1982). Clinically, any loss or damage to the corneal endothelial cells
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leads to increased imbibition of water by the corneal stroma. Each endothelial cell 

contains a large numbers of mitochondria and golgi bodies, as well as a large 

ribosomal content and a pair of centrioles (Marshall and Grindle, 1978).

Fig 2.3: Scanning electron micrograph of the human comeal endothelium 

(Magnification: xlOOO) (From Hart WM: Adler’s Physiology of the Eye, Mosby-Year 

Book, St Louis, 1992).

The most important physiologic function of the comeal endothelium is to regulate the 

water content of the comeal stroma, which is normally 78%, and so preserve comeal 

transparency (Pepose and Ubels, 1992).

2.3 Innervation of the Cornea

The human cornea is a densely innervated structure, richly supplied by sensory 

nerves, characterized as the most sensitive tissue in the body: 300-600 times that of 

the skin and 20-40 times that of tooth pulp. It is endowed with very sensitive nerves, 

derived from the trigeminal nerve, which respond to mechanical, thermal, and 

chemical stimulation, and serve a protective function (Rozsa and Beuerman, 1982).
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In addition to these sensory fibres, the cornea contains autonomic sympathetic nerve 

fibres.

Corneal innervation is important for the maintenance of corneal structure and 

function, and provides protective mechanisms against factors that might be potentially 

damaging to the cornea (Muller et al., 2003). Innervation also plays an important 

trophic function in corneal repair in relation to disease, trauma or surgery (Ishikawa et 

al., 1994; Linna et al., 1998; Murphy et al., 1999a). Denervation and decreased 

corneal sensitivity are associated with impairment of epithelial and endothelial cell 

function, increased epithelial and endothelial permeability, decreased cell migration 

and cell mitosis (Auran et al., 1955). In addition, denervated corneas are predisposed 

to epithelial or stromal abnormalities, recurrent erosion, impaired wound healing, and 

infection (Rosenberg et al., 2000).

2.3.1 Corneal Nerve Supply

Most corneal nerve fibres are sensory in origin and are derived from the Nasociliary 

Nerves, which originate from the Ophthalmic Branch of the Vth Cranial Nerve, the 

Trigeminal Nerve, so called because it has three peripheral divisions -  Ophthalmic, 

Maxillary, and Mandibular. However, in some cases, the inferior cornea receives 

some o f its innervation from the Maxillary Branch of the trigeminal nerve. The 

Ophthalmic Nerve divides into three major branches: Frontal, Lacrimal and 

Nasociliary. Each o f these nerves further sub-divides into terminal branches that 

innervate the eye and surroundings tissues.
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Fig 2.4: Sensory innervation of the eyeball: 1 long ciliary nerves, 2 short ciliary 

nerves, 3 ciliary ganglion, 4 lacrimal nerve, 5 frontal nerve, 6 nasociliary nerve, 7 

ophthalmic nerve, 8 gasserian ganglion (from Draeger J: Corneal Sensitivity, 

Measurement and Clinical Importance, Springer-Verlag, Vienna, 1984)

The nerves from the nasocilliary branch pass through the long ciliary nerve which 

penetrate the posterior of the eye and pass between the sclera and choroid, coursing 

anteriorly to supply sensory fibres the cornea, iris, ciliary body, trabecular meshwork 

and sclera (Burton, 1992; Klyce and Beuerman, 1988).

2.3.2 Corneal Innervation

Nerve bundles enter the cornea from the limbus, in a radial fashion, and run parallel to 

the corneal surface, alongside the collagen bundles (Muller et al., 2003; Muller et al.,

1996). Most of the stromal nerves fibres in humans are located in the anterior third of 

the stroma (Muller et al., 2001, 2003; Radner and Mallinger, 2002).

The bundles contain around 900-1200 myelinated and unmyelinated axons of 

diameter 0.5-5pm. The myelinated nerve fibres lose their myelin sheath within 

approximately 1mm of the limbus, and continue into the cornea surrounded only by 

Schwann cells sheaths (Muller et al., 2003). As the axons pass towards the 

epithelium, they ramify and divide to form a poorly characterized nerve plexus 

beneath Bowman’s Layer, in the superficial stroma. At this level, the nerves are still



considered to be pre-terminal although the perineural sheaths have been lost 

(Matsuda, 1968; Beuerman and Schimmelpfennig, 1980; Rozsa and Beuerman, 1982; 

Rozsa et al., 1982; Burton, 1992).

As they course through the stroma, the unmyelinated nerve bundles in the central 

cornea contain a variable number o f axons and are embedded in an electron dense 

amorphous extracellular matrix. Keratocytes are often located in close proximity to 

the nerve fibres and will occasionally enwrap adjacent nerve fibres in cytoplasmic 

extensions (Muller et al., 2003). Before penetration of Bowman’s Layer, at the 

anterior stroma, just beneath Bowman’s layer, the stromal nerves fibres form the sub- 

epithelial nerve plexus.

From the stromal plexus, the innervation of the corneal epithelium is demonstrated by 

four main structures (Schimmelpfennig, 1982):

1) Stromal nerves penetrating Bowman’s Layer.

2) Sub-basal epithelial nerve plexus.

3) Dendritic cells interspersed among the basal cell plexus.

4) Fine nerve endings, originating from the basal epithelial plexus, and dividing 

dichotomously in the superficial epithelial layer.
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Fig 2.5: Innervation of the limbus and cornea (From Hogan MJ, Alvarado JA, 

Weddell JE: Histology of the Human Eye, WB Saunders, Philadelphia, 1971).

2.3.2.1 Stromal Nerves Penetrating Bowman’s Layer

From the sub-epithelial stromal nerve plexus, the nerves turn abruptly 90° (along 

temporal to medial axis), and proceed towards the corneal surface. In human corneas, 

nerves penetrate Bowman’s layer throughout the peripheral and central cornea 

(Muller et al., 1996). After penetrating Bowman’s layer, the large nerve bundles 

divide into several smaller ones. Each small nerve bundle again turns abruptly at 90° 

(inferior to superior axis), and continues parallel to the corneal surface, between the 

basal cell layer and Bowman’s layer, as an epithelial leash (Muller et al., 2003).
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Fig 2.6: Graphical illustration of the three dimensional design of corneal epithelial 

innervation (From Rozsa AJ, Beuerman RW: Pain 14:105-120, 1982).

2.3.2.2 Sub-Basal Epithelial Layer

Long fibres, originating from the penetrating stromal nerves, are the main constituents 

of the sub-basal epithelial layer plexus which merges above and below Bowman’s 

layer (Muller et al., 1996, 2003; Grupcheva et al., 2002). The fibres are mostly 

arranged in a parallel fashion and extend for a considerable distance across the cornea. 

During their course, they are connected by multiple thin, beaded fibres or just bridged 

by a short branch (Schimmelpfennig, 1982).

The sub-basal epithelial layer nerve plexus contains a mixed population of beaded and 

straight fibers. Only the beaded fibers bifurcate from the bundle and turn upwards 

through the epithelium (Muller et al., 2003).
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Using in vivo corfocal microscopy o f the human comeal apex, most studies have 

found the sub-basal layer nerve fibres to be orientated along the superior to inferior 

axis (90°) (Masters and Thaer, 1994; Linna et al., 2000; Rosenberg et al., 2000; 

Vesaluoma et al., 2000a; 2000b; 2000c; Oliveira-Soto and Efron, 2001). However, a 

few studies show nerve fibres orientated along the temporal to medial axis (180°). In 

an effort to provide a better understanding of nerve architecture in this sensitive area 

o f the human cornea, Muller et al (2003) examined tissue sections away from the 

apex, in the nasal, temporal, superior and inferior areas of the cornea. This study 

revealed that leashes extend across the comeal apex preferentially in the 

superior/inferior direction. Other leashes approach the apex in the 30°, 60°, 120°, and 

150° axes, but they do not reach the comeal apex nor enter the epithelium (Muller at 

al., 2003).

A recent study o f Muller and Pels (ARVO, 2005), looking at the distribution of 

stromal and sub-basal nerves, established a scheme for the sub-basal nerve plexus in 

human corneas. At 6 and 12 o ’ clock large deep stromal nerves have essentially a 

vertical orientation, whereas nasal and temporal (2, 3, 4 and 8, 9, 10 hours) large 

nerves have essentially a horizontal orientation. The latter keep their orientation in 

the mid-anterior stroma and their number seems to exceed that of the vertical 

orientated nerves. The large nerves run obliquely towards the stromal surface and 

bifurcate into medium and subsequently into small nerves. In the apex only few small 

stromal nerves are present, indicating that most of the stromal nerves pass Bowman’s 

layer in the mid-periphery to form the plexus of sub-basal nerves. These sub-basal 

nerves run parallel to Bowman’s layer over 1-4 mm in a vertical direction in the apex, 

in a vertical or a horizontal direction in the mid-periphery and are present near the
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limbus. However, below the limbal epithelium there is a plexus of curved nerves, 

which found only at the nasal side.

The orientation o f the sub-basal nerves in the apex, nasal, temporal, superior and 

inferior periphery of intact human corneas was also established (Jacobi et al, Arvo 

2005). In the apex, thick sub-basal nerves of most pairs of eyes had a preferred 6-12 

orientation. In addition eyes had a second preferred orientation, which was for right 

eyes in the 5-11 and 6-11 direction and for left eyes in the 7-1, 8-2, 9-3 direction, 

indicating a second preference towards the temporal side. In the periphery screening 

was performed in the 12, 3, 6, and 9 o ’clock position and thin sub-basal nerves ran in 

the 6-12 direction at the superior and inferior location and in the 3-9 direction at the 

nasal and temporal location. Because such findings had not been observed in 

previous publications, one person was scanned along every clock hour and these thin 

sub-basal nerve appeared to be radially organised along the circumference. In the 

mid-periphery close to the radial fibres many passages o f stromal nerves through 

Bowman’s layer as well as small curved stromal nerves below the epithelium (sub- 

epithelial nerves) were frequently observed.

The diameter o f individual nerve fibres in the sub-basal plexus varies between 0.05 

and 2.5 pm and most are in the range o f 0.1-0.5 pm. These small sizes are consistent 

with A-delta and C-fibres, as described by electrophysiological methods (Giraldez et 

al., 1979; Maclver and Tanelian, 1993a; Belmonte et al., 1997).
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2.3.2.3 Dendritic Cells Interspersed among the Sub-basal 

Epithelial Cell Plexus

Dendritic cells are interspersed within the basal cell layer and are possibly connected 

with the nerve fibres. The individual cells are dendritic in shape and seem to be 

interconnected by long processes, some of which are approached by thin, beaded 

nerve fibres (Segawa, 1964;Schimmelpfennig, 1982).

Fig 2.7: Parallel axon terminals are seen within the basal cell layer. Cell outlines of 

the basal cells are seen, as well as dendritic cells (arrow) (From Kaufman HE, Barron 

BA, McDonald MB, Waltman SR. The Cornea, Churchill-Livingstone, New-York, 

1988).

2.3.2.4 Fine Nerve Endings

Epithelial leashes, arising from the sub-basal epithelial layer nerve plexus, consist of a 

mixture of straight and beaded nerve fibres. Occasionally, fibres in the leash bundle 

branch at right angles to the main bundle. Both single nerves and small nerve bundles
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protrude between adjacent basal cells, from which they remain separated by unit 

membranes. Individual beaded fibers, but not straight fibers, separate from the sub- 

basal bundles and course obliquely through the wing cell layer into the more 

superficial epithelial cell layers, where they eventually terminate (Muller et al., 2003). 

Some of the fine nerve endings can extend up to the last desmosomal junction 

between two superficial cells, and are separated from the external environment only 

by this junction (Matsuda, 1968; Rozsa and Beuerman, 1982; Schimmelpfennig, 

1982; Burton, 1992).

Two different types of fibres are observed and then arranged within the corneal 

epithelium according to their type. Myelinated AS fibres are long, straight slender 

processes of small diameter that respond to mechanical stimuli. They run parallel to 

the corneal surface at a depth o f 10-20pm, for distances of 0.1-1.2mm within the basal 

cell layer. These endings could originate from the terminal region of single fibres, but 

more often are seen emerging along the length of fibres running just above the basal 

epithelial cell layer. Unmyelinated C fibres are beaded nerves, and appear as a cluster 

of bright spots in flat mount, running upwards from the epithelial plexus towards the 

corneal surface (Maclver and Tanelian, 1993a). They are large in diameter and 

respond to thermal and chemical stimuli (Tanelian and Beuerman, 1984; Belmonte et 

al., 1991; Gallar et al., 1993; Muller et al., 1996).

As the nerve fibres pass from the sub-basal epithelial layer nerve plexus towards the 

corneal surface, they branch extensively producing large receptive fields for each 

axon. These receptive fields can cover 50-200mm of the comeal surface and may lie 

as far as three/fourths o f the distance across the cornea from the axon’s entry point at
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the limbus (Zander and Weddell, 1951). Recordings from single nerve fibres in 

rabbits, has confirmed this innervation pattern by finding fibres that are activated from 

receptives fields that cover 25-33% o f the corneal surface (Mark and Maurice, 1977). 

However, the receptive fields are typically much smaller in size and range from 5- 

20% (10.7-45.2mm2) of the corneal surface (Tanelian and Beuerman, 1984). If we 

assume that each o f the 400 nerve axons that penetrate Bowman’s Layer has only one 

receptive field and that each receptive field covers 5% of the comeal surface, then that 

receptive field will overlap with 19 others. If each axon’s receptive field covers 20%, 

it will overlap with 80 others. This produces a large level of overlap in the receptive 

fields which maximises sensitivity, at the expense of localisation.

2.3.3 Corneal Nerve Density

In vivo confocal microscopy studies o f comeal nerves in control individuals, has 

shown an average o f 6-8 nerve bundles per image (Rosenberg et al., 2000; Vesaluoma 

et al., 2000a; 2000b; Oliveira-Soto and Efron, 2001). If we consider that a confocal 

microscope image is about 0.1mm2 in size, and that the total surface area of the 

human cornea is approximately 90mm2, it can be calculated that there are 

approximately 5400-7200 nerve bundles in the human sub-basal plexus. Since each 

sub-basal nerve fibre bundle gives rise to many side branches, each containing 3-7 

individual axons (Muller et al., 1997), it can easily be estimated that the total number 

of axons in the sub-basal epithelial plexus is between 19000-44000. If we assume 

that one fibre gives rise to 10-20 nerve terminals, then it can be extrapolated that there 

are between 315000 and 630000, or approximately 7000 nociceptors/mm . A 

homogenous distribution o f nerve endings across the cornea guarantees an efficient 

detection of external stimuli (Muller at al, 2003). In conclusion we have to note that
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the nerve bundles found in the sub-basal plexus of the human cornea form a regular 

dense meshwork over a large central and central-peripheral area. Because o f their 

size the majority of nerves innervating the epithelium are C-fibres (Muller et al, 

1997).

2.3.4 Corneal Neurons

Based on the sensory neurons responsiveness to various forms of stimulating energy, 

several sub-classes o f corneal neurons can be distinguished (Belmonte and Gallar, 

1996).

2.3.4.1 Mechano-Sensory Neurons

Mechano-sensory neurons that respond only to mechanical forces have been reported 

in cat and rabbit corneas (Lele and Weddell, 1959; Tanelian and Beuerman, 1984; 

Belmonte et al., 1991; Maclver and Tanelian, 1993a). These units belong to the 

highest conduction velocity group o f corneal neurons (A-5) and give large amplitude, 

fast action potentials. Pure mechano-sensory units represent about 30% of the 

population of the thin, myelinated fibres innervating the cat’s cornea (Lele and 

Weddell, 1959; Belmonte et al, 1991) and about two-thirds of corneal sensory fibres 

in the rabbit (Tanelian and Beuerman, 1984).

Mechano-sensory units are more easily excited by a moving stimulus than by a 

sustained indentation (Mosso and Kruger, 1973; Belmonte and Giraldez, 1981). 

Sustained indentations evoke a burst o f nerve impulses, whose duration, latency and 

instantaneous frequency are roughly proportional to the amplitude of the stimulus and
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velocity o f comeal indentation. In most units, long lasting mechanical pulses cause a 

complete adaptation of the response (Belmonte et al., 1997).

Within the receptive field o f a mechano-sensory neuron, there are differences in 

thresholds between the center and the periphery. In comeo-scleral units o f the cat, the 

threshold is usually lowest in the limbus, but increases by two to three times as the 

stimulus is moved into the sclera (Belmonte et al., 1991). Maclver and Tanelian 

(1993a) showed that the receptive fields of mechano-sensory units have an elongated 

shape, corresponding to the trajectory o f the fibre observed with fluorescence 

microscopy. Electrical stimuli moving parallel to the long axis of the receptive area 

produced maximum activation, while perpendicular stimuli were less effective. This 

organization may provide a certain degree o f directional sensitivity to this type of 

fibre.

2 . 3 . 4.2 Polymodal Neurons

The existence of a separate population o f A5 and C comeal neurons, each o f which 

can respond to mechanical forces, temperature changes and chemical agents, was 

established through the application o f controlled mechanical, thermal and chemical 

stimuli to the cat’s cornea, while recording single unit activity of A5 and C ciliary 

nerve afferents (Giraldez et al., 1979; Belmonte and Giraldez, 1981; Belmonte et al., 

1991; Chen et al., 1995; Gallar et al., 1993). These polymodal neurons are the most 

abundant class of comeal sensory unit found in the cat. Comeal polymodal neurons 

have large receptive fields (about 25mm ), that often cover the adjacent episclera. 

They are usually silent at rest but may fire occasional spikes at very low frequency
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(0.06/sec in A-8, 0.1/sec in C fibres) in the absence of intended stimulation or comeal 

damage.

> Response to mechanical forces

Polymodal units respond to mechanical stimulation of the cornea with an irregular 

discharge o f impulses like the pure mechano-sensory neurons. However polymodal 

afferents more often show spontaneous activity and have a slightly lower mechanical 

threshold. In response to a sustained mechanical indentation, they give a tonic, 

irregular discharge that persists throughout the stimulus with a variable degree of 

adaptation. This adaptation is roughly proportional to the intensity of the applied 

force. They also show a post-discharge after high intensity stimuli and fatigue when 

these are repeated at short intervals. All these response characteristics -  tonic 

discharge, fatigue and long lasting post-discharge, are more prominent in 

unmyelinated C fibres, than in thin myelinated A5 polymodal units (Gallar et al., 

1993).

> Response to temperature changes

Heating the comeal surface excites both A5 and C polymodal neurons when 

temperatures over 38-39°C are attained. The response to a sudden, suprathreshold 

temperature elevation consists o f an accelerating train of impulses, whose frequency 

reaches a peak and then decays gradually to a lower, maintained level. During 

sustained heating of the cornea, this impulse discharge is irregular. Temperature 

increases between threshold and noxious levels are encoded by proportional 

elevations of the mean firing frequency o f the impulse discharge. Returning to basal 

temperature stops firing transiently. Nevertheless when noxious thermal levels have
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been exceeded, causing tissues damage, activity resumes after a few seconds later as 

an irregular, low-frequency, background impulse discharge (Giraldez et al., 1979; 

Belmonte and Giraldez, 1981; Belmonte et al., 1991; G allaretal., 1993).

Cold is usually ineffective in activating corneal polymodal units. Only a small 

proportion of A5 afferents were weakly excited in the cat by temperature decreases 

within the noxious range (Belmonte and Giraldez, 1981). In fact, temperature 

decreases below 20°C tend to diminish or silence background activity of polymodal 

neurons (Belmonte et al., 1997).

> Response to chemicals 

In the cat’s cornea, afferent units exhibiting sensitivity to mechanical stimuli (and to 

heat, when this stimulus was tested), where classified as polymodals if they also 

responded to acid and/or hyperosmolar NaCl (Belmonte et al, 1991; Gallar et al, 

1993; Chen et al, 1995).

Local decreases in pH have been produced on the cornea by applying solutions of 

increasing acetic acid concentrations (down to pH 3.0), or using gas jet of CO2, which 

combines with water to produce carbonic acid locally (Chen et al, 1995). About 60% 

of comeal fibres exhibiting mechano-sensitivity also respond, after a short latency, to 

acidic stimulation with acetic acid or CO2 producing a discharge of impulses. In 15% 

of the fibers that were sensitive to CO 2, the impulse discharge appeared after a long 

latency (10-20 sec) (Chen et al, 1995).
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Acetylcholine (ACh) and the enzymes required for its synthesis (AChE) are present at 

high concentrations in the corneal epithelium of various mammalian species (Alphen 

and H.M., 1957; Gnadinger et al., 1967; Fitzgerald and Cooper, 1971). The 

possibility that ACh released by injured corneal cells acts as a sensory mediator in the 

activation of corneal nociceptive endings was suggested by Fitzgerald and Cooper 

(1971), based on the observation that hemicholinium, which blocks Ach synthesis, 

apparently reduced the mechanical sensitivity o f the rabbit cornea. Other roles for 

comeal ACh, such as modulation of ion transport or regulation of the 

phosphatidyl inositol cycle (thus regulating the production of inflammatory mediators 

from arachidonic acid), were also proposed to explain the high concentration of this 

substance in comeal tissue (Pesin and Candia, 1982; Proia et al., 1986). However, the 

functions o f ACh in the cornea remain largely mysterious.

2.3A. 3 Mechano-Heat Neurons

The term “mechano-heat nociceptor” was employed to describe cutaneous nociceptors 

that were presumably polymodal, but in which chemo-sensitivity was not 

systematically explored (Meyer et al., 1994). In the cornea of the cat, a small 

proportion of A6 neurons presented mechanical and thermal sensitivity, but failed to 

respond initially to acetic or carbonic acids. These units exhibited a high mechanical 

threshold and developed sensitivity to acid after repeated noxious heating (Belmonte 

et al., 1991). Likewise, AS “bimodal afferents” responding to high intensity 

mechanical forces and to heat, but not to ACh, have been reported in the rabbit cornea 

(Maclver and Tanelian, 1993a). The comparatively high mechanical threshold of 

mechano-heat fibres of the cornea may indicate that they are, in reality, polymodal
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nociceptors with the highest chemical threshold, rather than a specific sub-population 

o f nociceptive fibres (Adriaensen et al., 1983; Belmonte et al., 1991).

2.3A .4 Cold Neurons

Changes in multi-unit impulse discharges of comeal nerves induced by temperature 

reductions were described in early reports (Lele and Weddell, 1959; Mark and 

Maurice, 1977). Tanelian and Beuerman (1984) using a saline jet at controlled 

temperature, detected the existence in the rabbit cornea of sensory fibres conducting 

in the C range that responded to decreases in temperature. Similar units have been 

identified in the cat’s cornea, where their functional properties have been studied in 

detail (Gallar et al., 1993).

Cold sensory neurons are unmyelinated and fire spontaneously at the resting 

temperature o f the cornea (around 33°C), giving an irregular discharge of impulses 

(0.75/sec in the cat). They respond to cooling steps with a vigorous impulse discharge 

during the temperature drop, whose frequency is roughly proportional to the 

magnitude of the corneal temperature reduction. However, sustained low 

temperatures gave similar low frequency impulse discharges irrespectively o f their 

value, indicating that these fibres do not encode steady state comeal temperatures. In 

accordance with these response characteristics, cold units fire repeatedly when cold 

air is blown to the cornea, or when a drop of saline is applied (Belmonte et al., 1997).

The receptive fields of comeal cold-sensitive neurons are smaller than those of 

polymodal units (about 10mm2), and are preferentially found in the periphery of the
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cornea. Comeal cold fibres do not respond consistently to mechanical stimulation, 

but have a weak response to acid and hypertonic NaCl.

2.4 Innervation of the Conjunctiva

The conjunctiva is innervated by a plexiform network of sensory fibres originating 

from branches of the Ophthalmic and Maxillary nerves of the Trigeminal nerve 

(Oduntan and Ruskell, 1992). This plexus is denser in the palpebral conjunctiva than 

in the bulbar conjunctiva, especially at the lid margin. The nerve plexus is more 

concentrated around the blood vessels, the muscles, and Meibomian glands (Luhtala 

et al., 1991; Luhtala and Uusitalo, 1991 Elsas et al., 1994).

The morphology o f the sensory nerves in the conjunctiva is different from that of the 

cornea. Except for free nerve terminals, the sensory nerves are encapsulated nerve 

endings in the conjunctiva, with a higher density in the limbal conjunctiva 

(Oppenheimer et al., 1958; Wolter and Mich, 1964; Lawrenson and Ruskell, 1991, 

1993).

The function of the encapsulated nerves is still obscure, von Frey believed that 

Krause corpuscles were the specific receptors for cold (Oppenheimer et al, 1958). 

Other studies suggest that the corpuscles in the limbal conjunctiva are the receptors 

for touch (Lawrenson and Ruskell, 1991; 1993).
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2.4.1 Sensitivity of the Conjunctiva

There are a limited number of studies measuring conjunctival sensitivity. The 

conjunctival mechanical sensitivity is lower than that of the cornea (Boberg-Ans, 

1955; Draeger, 1984). The limbal conjunctiva is more sensitive than the bulbar 

conjunctiva to touch stimuli (Lawrenson and Ruksell, 1993). The edge of the eyelid 

is more sensitive than the bulbar conjunctiva to mechanical stimulation (Norn, 1973; 

McGowan et al., 1994). A study o f Murphy et al (2002) assessed the response o f the 

corneal and conjunctival sensory nerves to a cooling stimulus. It was found that the 

temporal conjunctiva was less sensitive than the nasal conjunctiva, as well as the 

temporal conjunctival and superior corneal locations had similar sensitivities. A 

recent study o f Stapleton et al (2004) showed that inferior conjunctival sensitivity, to 

cooling stimuli, was lower than that o f the central and inferior corneal sensitivity. It 

was also shown that conjunctival sensitivity was increased after wear of highly 

oxygen permeable contact lenses but unaffected by wear of low oxygen permeable 

contact lenses.

2.4.2 Conjunctival Neurons

Most o f the sensory nerve endings in the conjunctiva are mechano-sensory afferents 

(70% in guinea pig), which respond to mechanical stimulation (Aracil et al, 2001). 

They are A5 fibres with high conductive speed, small receptive fields (round or oval 

in shape and about 1 to 3mm2 in size) and are rapidly adapting. These nerves are 

denser in the limbus and may morphologically correlate to the low-threshold 

mechano-sensory units in the cornea (Belmonte et al., 1997; Aracil et al., 2001).
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Cold sensitive fibres are also found in conjunctiva with a relatively low proportion 

(7% in guinea pig). They are A5 and C fibres, are sensitive to decrease in temperature 

and have no response to heating (Aracil at al, 2001).

Approximately 23% of guinea pig conjunctival neurons are polymodal receptors, 

which respond to mechanical, chemical, and heat stimulation. For these receptors, the 

mechanical threshold is lowest in the limbal region. The thermal threshold of the 

conjunctival nerves is 2-3 °C higher than in the cornea (Belmonte et al, 1997; Aracil 

at al, 2001).

Sensations evoked from the human conjunctiva are either cool or warm, when 

stimulated with thermal stimuli, which seems to be similar to that of the skin (Nafe 

and Wagoner, 1936; Kenshalo, 1960; Acosta et al., 2001).

2.5 Corneal Sensitivity

2.5.1 What is Corneal Sensitivity?

Corneal sensitivity is the ability o f the cornea to respond to a mechanical, electrical, 

chemical or thermal stimulus, and is maintained by the free nerve endings within the 

epithelium of the cornea. Mechanical stimulation causes a sensation of touch or pain, 

electrical stimulation o f pain or irritation, chemical stimulation of irritation, hot 

thermal stimulation of irritation and cold stimulation of cooling (Beuerman and 

Tanelian, 1979; Tanelian and Beuerman, 1984; Belmomte and Gallar, 1996). The 

patient’s response to these different stimuli can be measured to assess the corneal
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nerve function. Corneal sensitivity is measured using an instrument, called an 

Aesthesiometer.

Measuring corneal sensitivity is important for a number of reasons:

> It assesses the integrity o f the cornea.

> It assesses the recovery of the cornea from any condition that has affected it, 

by observing the return o f corneal sensitivity to normal levels.

> It assesses the baseline corneal sensitivity of each eye before contact lens 

fitting, allowing a better management of the patient.

>  It ensures that corneal anaesthesia with a given anaesthetic is of sufficient 

depth to perform the appropriate procedure.

2.5.2 Methods of Measuring Corneal Sensitivity: Aesthesiometrv

The first approach for the assessment o f corneal sensitivity was by von Frey in 1894 

who used horse hairs o f different lengths attached with wax to the tip of a glass rod. 

These hairs had different tip configurations, evoking both touch and pain sensation, 

and they were calibrated on a precision scale. Other aesthesiometers that used the 

same, or some other method, were devised over the following years. However, in 

1955, Boberg-Ans introduced his aesthesiometer that used a single nylon 

monofilament of constant diameter which could be varied in length to produce 

different forces when applied against the cornea.

In 1960, Cochet and Bonnet constructed an improved aesthesiometer, based on the 

Boberg-Ans instrument. The principal advance was to increase the diameter of the 

thread from 0.112mm to 0.12mm. This improved the mechanical stability of the
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thread and allowed the maximum length to be increased from 55mm to 60mm. This, 

in turn, increased the possible range o f stimulus intensities to 1 l-200mg/mm2. Their 

improvements led the Cochet-Bonnet aesthesiometer to be the most widely used 

clinical aesthesiometer (Cochet and Bonnet, 1960). Details of its design and method 

of use and measurement are given in section 3.1.2.

However, the disadvantages o f the Cochet-Bonnet aesthesiometer were recognised 

early. One of the important limitations is that it has a restricted range of stimulus 

pressure intensities, and often presents stimuli of supra-threshold levels. Another 

deficiency is the invasive and visible nature of its stimulus, both of which can modify 

the corneal touch threshold either by producing a slight trauma to the corneal 

epithelium or by making subjects anxious when they see the thread approaching their 

eyes. It also limits its clinical use, as it is not suitable for patients with corneal injury 

or after surgery (Murphy et al., 1996).

The development o f ocular surface aesthesiometry underwent a change with the 

introduction of pneumatic aesthesiometry, overcoming most of the drawbacks of 

Cochet-Bonnet Aesthesiometer (Bonnet and Millodot, 1966; Millodot and O'Leary, 

1981; Murphy et al., 1998). Pneumatic aesthesiometry uses air to evaluate the corneal 

and conjunctival sensitivity (Weinstein et al., 1992; Chen et al., 1995; Murphy et al., 

1996; Vega et al., 1999; Belmonte et al., 1999). The pneumatic aesthesiometers of 

Murphy et al (1996) and Vega et al (1999) use a controlled pulse o f atmospheric air 

aimed at the cornea, whereas the Belmonte Aesthesiometer (1999) uses air and CO2 

which can be mixed together at different temperatures to deliver chemical, thermal, 

and mechanical stimuli.
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The Non-Contact Comeal Aesthesiomer (NCCA) (Murphy et al., 1966) uses a 

controlled pulse o f air, directed at the comeal surface, to stimulate the sensitive cold 

C-fibres o f the comeal epithelium. Further explanation of its design and method of 

use and measurement are described in section 3.1.1.

When the Cochet-Bonnet aesthesiometer was compared with a pneumatic 

aesthesiometer, no correlation in the measured thresholds was found, suggesting that 

this difference in results was due to the different modes of stimulation exerted by the 

nylon thread and the pneumatic air (Murphy et al., 1998; Vega et al., 1999; Acosta et 

al., 2001).

2.5.3 Factors Affecting Corneal Sensitivity

2.5.3.1 Physiological Factors 

2.5.3,1.1. Corneal Topography

As described by Millodot (1984) using the Cochet-Bonnet Aesthesiometer, comeal 

sensitivity varies from a maximum at the centre of the cornea (average CTT, 10- 

14mg/mm ) to a minimum in the periphery (average CTT, 20-30mg/mm ). The 

superior region of the cornea, which is covered frequently by the upper lid, has the 

lowest sensitivity (average CTT, 30-45mg/mm ). The inferior region has a similar 

sensitivity to the nasal and temporal periphery (average CTT, 25-30mg/mm2). The 

values correspond well with anatomical findings showing nerve density to be highest 

centrally (Rozsa and Beuerman, 1982; Millodot, 1984; Lawrenson and Ruskell, 1993; 

McGowan et al., 1994). Similar findings were found by Roskowska et al (2004) who
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also used mechanical stimulation using the Cochet-Bonnet Aesthesiometer, with the 

central cornea being more sensitive, and the horizontal meridian being more sensitive 

compared with the vertical meridian.

2.5.3.1.2 Age

Corneal sensitivity was found to remain unchanged between the ages of 10-50 years, 

with only a slow gradual reduction, as assessed by mechanical stimulation. Beyond 

that age, it diminishes rapidly, reaching half of the previous level after 65 years, and 

then continues to decline as age increases (Millodot, 1977a, 1984). A recent study of 

Roskowska et al (2004) evaluating the central and peripheral corneal sensitivity in 

relation to age, using the Cochet-Bonnet aesthesiometer, found that comeal sensitivity 

remains stable in the central zone until the age of 60, when it begins to decrease. The 

decrease of peripheral sensitivity starts earlier and it progresses at a faster rate. They 

concluded that the age-related decrease in comeal sensitivity involves the periphery at 

first and successively extends towards the centre. Finally, a recent study of Murphy et 

al (2004), using the Non-Contact Comeal Aesthesiometer to assess the cooling 

sensation threshold, demonstrated a gradual reduction in comeal sensation between 

the ages o f 20 and 50 years.

2.5.3.1.3 Iris Colour

A striking finding is the effect o f iris colour on comeal sensitivity as assessed by 

mechanical stimulation (Millodot, 1975a, 1976a). People with blue eyes have more 

sensitive corneas than those with brown eyes, and non-Caucasians with dark brown
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irides usually have less sensitive corneas than Caucasians. However, the mechanism 

for these differences is still unknown (Millodot, 1975a, 1976a; Tota and La Marka, 

1982). This effect of iris colour on corneal sensitivity will be further investigated in 

this thesis (Chapter 6).

2.5.3.1.4 Diurnal Variation

Corneal sensitivity shows a variation in its threshold during the day, being lowest in 

the morning and highest in the evening (du Toit et al., 2003; Millodot, 1972). 

Millodot (1972), considering the sensitivity to a touch stimulus, found a variation of 

about 28%, whereas du Toit et al (2003) considering the sensitivity to a cooling 

stimulus, using the noncontact pneumatic aesthesiometer (Vega et al., 1999) found a 

variation o f 35%. This reduction in the sensitivity can be attributed to the reduction in 

oxygen tension at the epithelial surface with eyelid closure (Efron and Carney, 1979; 

Fatt and Hill, 1970). The diurnal variation of corneal sensitivity is further 

investigated in this thesis.

2.5.3.1.5 Hormonal Influences

Males and females present the same corneal sensitivity as assessed by both 

mechanical and thermal stimulation (Roskowska et al, 2004; Murphy et al, 2004), 

except for several days during the pre-menstruation and the onset of menstruation 

where sensitivity is reduced in women (Millodot and Lamont, 1974; Riss et al, 1982). 

In women taking contraceptives, no hormonal changes occur and the sensitivity 

remains more or less equal (Millodot and Lamont, 1974; Guttridge, 1994). Changes
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in the sensitivity threshold also occur during pregnancy, with significant reductions in 

the last few weeks before delivery (Martin and Safran, 1988; Millodot, 1977b, 1984; 

Riss and Riss, 1981).

2.5.3.1.6 Environmental Factors

Ambient temperature can cause an effect on corneal sensitivity. Kolstad (1970) using 

a mechanical stimulation, observed a nine-fold reduction in sensitivity when the 

outside temperature changed from 22 to -14°C. This may explain the relative comfort 

o f contact lens wearers in cold weather conditions (Kolstad, 1970).

UV radiation exposure, between 280-3 lOnm, produces a reduction o f about 75% in 

the normal level o f corneal sensitivity. This reduction lasts for two hours 

approximately, after which the subject will experience severe pain (Millodot, 1984; 

Millodot and Earlam, 1984; Bergmanson, 1990).

2.5.3.1.7 Pharmacological Factors

The topical administration o f anaesthetics to the eye produces a partial or complete 

loss in corneal sensitivity depending on the concentration, volume and efficacy of the 

drug used (Poise et al., 1978; Weiss and Goren, 1991; Lawrenson et al., 1993; 

Murphy et al., 1997; Nomura et al., 2001; Peyman et al., 1994). The effect of 

anaesthetics on corneal sensitivity is discussed in greater detail in Chapter 5.
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Timolol is a beta-blocker widely used in the treatment of glaucoma to lower 

intraocular pressure. However, it has some anaesthetic effect and can produce a 

reduction in corneal sensitivity in some subjects. The effect only lasts for a short 

period o f time (Van Buskirk, 1979; Martin and Safran, 1988; Weissman and Asbell, 

1990). Only Kitazawa and Tsuchisaka (1980) reported no change in corneal 

sensitivity during four weeks o f timolol administration.

The effect of topical administration o f non-steroidal anti-inflammatory drugs, used to 

reduce fever and alleviate pain that accompanies injury or inflammation, on comeal 

sensitivity was demonstrated in rabbit (Loya, 1993; Loya et al., 1994) and human 

corneas (Szerenyi et al., 1994; Perry et al., 1995; Tauber et al., 1995; Aragona et al., 

2000). A significant reduction in sensitivity occurred with repeated applications, but 

once instillation stopped there was a complete recovery to previous levels within 60 

minutes.

2.5.3.2 Contact Lens Wear

Contact lens wear can produce a reduction in comeal sensitivity, depending on the 

contact lens type, the oxygen permeability o f the material, the extent of daily wear, 

the years of wear, or whether the lenses are daily or extended wear types (Millodot, 

1976b, 1984; Larke and Hirji, 1979). This diminution of sensitivity is beneficial, as it 

helps the subject to adapt more easily to the lenses.

Most studies have shown this reduction in sensitivity, which has been attributed to 

mechanical adaptation (Bradley and Schoessler, 1979; Millodot, 1976b; Murphy et
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al., 2001), and the suppression of sensory nerve function by metabolic change, 

especially from tissue acidosis resulting from hypoxia (Thoft and Friend, 1975; 

Brennan and Bruce, 1991;).

A fuller review of the effect of contact lenses on corneal sensation is given in the 

review paper in Appendix.

2.5.3.3 Ocular and Systematic Disease

Corneal aesthesiometry can play a useful role in the diagnosis and management of 

many ocular conditions (Boberg-Ans, 1956; Brennan and Bruce, 1991), since corneal 

sensitivity is affected.

In glaucoma, there is a direct relationship between a decreased corneal sensitivity and 

optic atrophy, but no relationship has been found between increased intraocular 

pressure and loss o f corneal sensitivity (Boberg-Ans, 1955).

Patients with diabetes mellitus have shown a decreased sensitivity as assessed by 

mechanical stimulation, but a better correlation is found between corneal sensitivity 

and retinal status (Schwartz, 1974; Nielsen, 1978; Rogell, 1980; Martin and Safran, 

1988; Ruben, 1994; Hosotani et al., 1995; McNamara et al., 1998; Rosenberg et al., 

2000). Eyes with normal fundi have normal corneal sensitivity, while those with 

background retinopathy show a somewhat decreased sensitivity, and those with 

proliferative retinopathy have a greater loss of comeal sensitivity (Rogell, 1980). It 

has also been shown that there is a trend of reduction in sensitivity with the duration
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of diabetes (Rosenberg et al., 2000). This reduction in sensitivity is believed to be 

due to diffuse neuropathy affecting the peripheral sensory nervous system.

Also, a reduction in corneal sensitivity has been observed in Herpetic Keratitis, and a 

relationship has been shown between the severity of the disease and the loss of 

corneal sensitivity indicating that the more severe the disease, the greater the loss of 

the sensitivity. Recovery o f sensitivity after superficial keratitis takes more than two 

years (Norn, 1970; Martin and Safran, 1988; Kodama et al., 1992; Rioux and 

Brunette, 1995).

Corneal Dystrophies, like Lattice Corneal Dystrophy (Type I), Hereditary Fleck 

Dystrophy, and Reis-Buckler dystrophy, are known to produce a decrease in corneal 

sensitivity (Boberg-Ans, 1955; Bimdorf and Ginsberg, 1972; Millodot, 1984).

In Keratoconus there is a reduced corneal sensitivity, especially in the central area. 

The amount o f reduction is inversely proportional to the severity of the cone 

(Millodot and Owens, 1983).

In Scleritis and Episcleritis there is a reduction in corneal sensitivity, although the 

patients with scleritis are more affected than patients with episcleritis. Sensitivity 

returns to normal when the scleritis is resolved except if a large area o f scleral ectasia 

is present (Boberg-Ans, 1955; Lyne, 1977).

In Leprosy, a significant loss o f sensitivity can occur, leading to corneal injuries that 

may lead to ulceration. This loss o f sensitivity can result without any clinically
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detectable eye pathology (Martin and Safran, 1988; Karacorlu et al., 1991; Hieselaar 

et al., 1995). In Myasthenia Gravis a reduced corneal sensitivity has been found to 

occur (Nazarian and O'Leary, 1985), as well as in Adie’s Syndrome (Purcell et al., 

1977).

2.5.3.4 Ocular Surgery

Ocular surgery, and particularly corneal refractive surgery, has the potential to disrupt 

the normal organization of corneal innervation, thus damaging corneal sensitivity. 

The extent of nerve loss and nerve regeneration depends on the type, depth, and extent 

o f incision made during surgery (Lyne, 1982; Macalister et al., 1993; Murphy et al., 

1999a). The recovery o f the sensitivity can be correlated to the regeneration of the 

nerves Wilson, 1999(Kohlhaas, 1998; Wilson, 1999; Murphy et al., 1999a; Patel et 

al., 2001; Kaminski et al., 2002; Kumano et al., 2003).

2.5.3.5 Therapeutic Ocular Surgery

In traditional, large incision Cataract Surgery, the incision made cuts both the limbal 

nerves plexus and the large centripetal nerve fibres, causing the corneal epithelium 

and the stroma supplied by these nerves to become denervated. The recovery of 

sensation shows a small improvement one year post-operatively, but even after two 

years it is still below baseline levels for most cases (Guillon and Morris, 1982; 

Holden et al., 1982; Lyne, 1982; Kohlhaas, 1998). With small incision cataract 

surgery, central corneal sensation was found to remain intact (John, 1995). It has also
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been found that comeal sensitivity after comeal incision cataract operation was more 

decreased than by scleral incision (Kadonosono et al., 1995).

Comeal transplantation, or Penetrating Keratoplasty (PK), produces a complete loss 

o f sensitivity within the graft. Comeal sensitivity is not detectable until 18 months 

post-operatively at the earliest. There is a slow recovery initiated from the periphery 

and progressing towards the centre o f the graft (Ruben and Colebrook, 1979; Rao et 

al., 1985; Mathers et al., 1988; Tugal Tutkun et al., 1993). Skriver (1978) reported a 

return of comeal sensitivity to normal levels within 12 months after PK. However, 

Rao et al (1985) found that even 32 years post-operative, the graft was still 

hypoaesthetic. Macalister et al (1993) also found that even 4 years post-operative two 

thirds o f the subjects had no central sensitivity and only 9% had normal sensitivity. 

After seven years of the transplantation, 39% of the subjects had no measurable 

sensitivity.

In Trabeculectomy or Iridectomy, the small incision arc causes small nerve damage, 

causing a sensitivity loss. Recovery to pre-operative levels occurs within nine months 

(Lyne, 1982).

In Retinal Detachment surgery, there is a significant decrease in sensitivity in eyes 

that were treated with an encircling band, whereas in eyes that were treated with a 

localised radial or circumferential silicone sponge explants alone, no significant 

decrease in sensitivity was found. The effect of sensitivity seems to be long-term, 

without correlating with the post-operative time (Binder and Riss, 1981; Gibson, 

1981).
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2.5.3.5 Refractive Corneal Surgery

In Epikeratophakia, a technique that involves the grafting of a lenticule of donor 

tissue to the anterior surface o f the cornea, there is a damaging of the radial nerve 

fibres located at the mid-stromal level (Koenig et al., 1983). The new anterior surface 

has no nerve supply and a new innervation must develop. The sensitivity o f the 

central corneal epithelium overlying the donor lenticule is totally depressed three 

years after surgery.

In Radial Keratotomy (RK), one of the two principal techniques for altering the 

curvature o f the cornea, radial incisions are made to flatten the cornea. The degree of 

flattening depends on the type, depth, and number of incisions made, and the extent of 

sensitivity loss is also defined by these factors (Waring et al., 1983). The normal 

radial incisions cause a small damage on the corneal nerves as they are made along 

the axis of the radiating stromal nerve fibres. For the correction of astigmatism, a 

transverse incision will cut across the nerve fibres in a similar manner to cataract 

surgery and with a similar effect on sensitivity. A deeper incision will cause a greater 

damage to the nerves. Linnik (1984) reported a complete recovery of corneal 

sensitivity six months after radial keratotomy. Shivitz and Arrowsmith (1988) found 

that with an incision of less than 80% corneal thickness, 72.8% of patients had a 

normal sensitivity after one year, whereas with 90% corneal thickness incisions, no 

recovery o f sensation occurred after one year. Kohlhaas et al (1994) showed that 

corneal sensitivity returned to normal levels one month after surgery.

Photorefractive Keratectomy (PRK) is the second principal surgical technique for 

refractive correction. This method utilises excimer laser technology that affects the
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comeal nerve supply in a totally different way to incision surgery (Marshall et al., 

1985). Rather than cutting the nerves by incision, the entire neural architecture within 

the zone of ablation is obliterated. The ablation removes the comeal epithelium, 

Bowman’s membrane and the anterior stroma in the ablated area, causing damage to 

the epithelial nerve endings, epithelial and sub-epithelial nerve plexi, and in stromal 

nerves. Thus the loss o f comeal sensitivity is more complete, and the extent and 

pattern of nerve degeneration is altered significantly (Tervo et al., 1994; Murphy et 

al., 1999a).

Many studies have been conducted on the effect of PRK on comeal sensitivity. 

Campos et al (1992) measured comeal sensitivity in 14 patients who underwent PRK 

for either compound astigmatism or severe myopia. They reported a mild decrease in 

sensitivity that did not persist for longer than three post-operative months. Ishikawa 

et al (1994) studied the changes in comeal sensation after PRK in 17 myopic eyes, 

dividing the subjects into two groups o f shallow (0-30pm) and deep (31-70 pm) 

ablation depths. It was found that the recovery was dependent on the depth of 

ablation. For the shallow group the sensitivity returned to pre-operative levels within 

one month, while the deep ablation group had sub-normal sensitivity even six months 

post-operative. Kohlhaas et al (1994), using the Draeger aesthesiometer to measure 

comeal sensitivity in 156 eyes that had PRK surgery for correction of myopia, found 

that comeal sensitivity for patients with a pre-operative myopia up to 15 dioptres had 

a mildly reduced sensitivity one year after surgery. In contrast, for patients with pre

operative myopia up to 25 dioptres, there was a reduced sensitivity even two years 

after surgery. Lawerenson et al (1995, 1997) found comeal sensitivity to have 

recovered by six months after PRK surgery and for ablation depths up to 78 pm to not
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affect the result. Murphy et al (1999a) investigated the effect of corneal sensitivity 

after PRK surgery using the Non-Contact Corneal Aesthesiometer and found that 

corneal sensitivity did not recover to pre-operative normal levels until 12 months. 

Additionally, for all the PRK procedures used in this study, which removed tissue 

over a range o f depths from 26 to 78 pm, no depth effect on the recovery of corneal 

sensitivity was detectable at one year post-operatively. Perez-Santonja et al (1999) 

found a recovery after one month for nasal, inferior, temporal, and superior cornea, 

but recovery o f the central cornea occurred three months post-operatively. Matsui et 

al (2001) reported that corneal sensitivity began to recover at 1 week, returning to pre- 

operative values at three months. Kumano et al (2003) reported no decrease in central 

corneal sensitivity at any post-operative interval after PRK, using a 6.5mm diameter 

laser and a beam of 6mm diameter to perform the ablation.

Laser in Situ Keratomileusis (LASIK) introduced by Pallikaris and Siganos (1990), 

offers good results for the correction o f moderate and severe myopia, astigmatism 

and, more recently, hyperopia (Pallikaris et al., 1991; Pallikaris and Siganos, 1994; 

Guell and Muller, 1996; Salah et al., 1996; Perez-Santonja et al., 1997a, 1997b, 

1997c; Ibrahim, 1998; Nassaralla et al., 2000, 2003). This technique combines the 

use of an excimer laser, for the refractive ablation, with a lamellar corneal flap 

technique. In LASIK, a corneal flap allows the excimer laser to be directed at a 

deeper region of the stroma, sparing the epithelium and Bowman’s layer. The micro- 

keratome, used to create the flap, cuts the sub-basal nerve fibre bundles and the 

superficial stromal nerves in the flap margin, but spares the nerves within the hinge of 

the flap. The higher the refractive error correction, the deeper the ablation and the 

greater the amount of corneal tissue removed (Pallikaris et al, 1991). However, the
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flap hinge preserves some of the corneal epithelial innervation and so the magnitude 

of corneal sensitivity loss after LASIK may be less than the loss after PRK 

(Kanellopoulos et al., 1997; Perez-Santonja et al., 1999; Patel et al., 2001).

The majority of studies using a mechanical stimulus to assess the recovery of corneal 

sensitivity after LASIK have shown that corneal sensitivity returns to normal levels 

by six months after surgery (Kanellopoulos et al, 1997; Perez-Santonja et al, 1999). 

Although Kim and Kim (1999) showed that comeal sensitivity did not return to pre

operative levels by 6 months after LASIK, in their study the laser treatment was not 

only for myopia, but also for compound myopic astigmatism that requires a different 

laser treatment pattern. Linna et al (2000) investigated the effect of LASIK on 

comeal sensitivity, and considered whether the morphology of the sub-basal nerves 

corresponds to comeal sensitivity after LASIK (Linna et al., 2000). Comeal 

sensitivity returned to pre-operative levels after six months of surgery. In vivo 

confocal microscopy reveals that LASIK induces alterations in sub-basal nerve 

morphology, thus enabling a direct comparison of comeal sensory innervation and 

sensitivity. Chuck et al (2000) reported that corneal sensation returned to near pre

operative levels by 3 weeks after LASIK. This observed time is substantially shorter 

than previously reported works (Chuck et al., 2000). Patel et al (2001), using a cool 

stimulus, found that corneal sensitivity was below normal levels at 14 weeks post- 

operatively. Nassaralla et al (2003), in an effort to evaluate the changes in comeal 

sensitivity after LASIK for the correction of different degrees of myopia, used a 

mechanical stimulus and found a full recovery of comeal sensitivity after 6 months for 

myopia ranging between 0.75-7.75 Dioptres, and after 9 months for myopia ranging 

between 8-16 Dioptres. The depth o f ablation seemed to be an important factor in the
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temporary decrease of corneal sensitivity and its recovery. Kumano et al (2003) 

found that the recovery of corneal sensation began 3 months after LASIK, with a 

complete recovery after 12 months. A significantly greater decrease in sensitivity was 

apparent in the LASIK patients with a nasal hinge than in those with a superior hinge. 

Stapleton et al (2003) showed that that the central corneal mechanical sensitivity was 

significantly reduced in subjects following LASIK, however inferior mechanical 

sensitivity and chemical sensitivity at both sites was unaffected. Recovery was seen 

three months after surgery, with a similar recovery trend to be observed for nerve 

morphology. A recent study of Donnenfeld et al (2004), investigating the effect of 

hinge width on corneal sensation after LASIK, found that comeal sensation was 

significantly reduced from preoperative levels through six months in the narrow-hinge 

group and through three months in the wider-hinge group, indicating a further loss in 

comeal sensation in eyes with a narrow hinge flap than in eyes with a wider hinge 

flap.

Laser Sub-Epithelial Keratomileusis (LASEK) is a modified PRK technique that is 

based on the detachment of an epithelial flap after the application of an alcohol 

solution, and then the repositioning o f this flap following laser application (Lee et al., 

2002b; Camellin, 2003; Herrmann et al., 2005).

A recent study by Herrmann et al (2004) investigated the recovery time of comeal 

sensation after LASEK for the correction of mild to moderate myopia (range -2.5 D to 

-8 D). Comeal sensation was significantly reduced at 3 days and 14 days after 

surgery. It increased during the first month after surgery, reaching baseline levels and 

staying stable at 3 and 6 months after surgery.
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2.6 The Tear Film

2.6.1 Tear Film Structure and Function

A complex liquid known as the pre-ocular tear film covers the bulbar and palpebral 

conjunctiva and the cornea. The pre-ocular tear film has traditionally been described 

as a tri-laminar structure, consisting o f three distinct layers: a superficial lipid layer, a 

predominantly watery aqueous phase beneath the lipid layer, and an underlying 

mucous layer (Wolff, 1946; Holly and Lemp, 1977).

The tear film is vital for normal comeal function and has a number of important roles. 

It fills in small surface irregularities in the comeal epithelium, thereby providing a 

smooth optical surface, which allows a sharp image to be focused on the retina. 

Additionally, since the comeal surface is avascular, it is highly dependent on the tear 

film for its nutrition. Oxygen from the ambient air dissolves in the tear fluid and is 

transferred to the comeal epithelium. Furthermore, it provides a slight amount of 

nourishment to the comeal epithelium, although the glucose concentration is 

extremely low. Finally, the tear film is the first line of defence against ocular surface 

infection. This is achieved by the anti-bacterial activity of certain constituent proteins 

and enzymes, the principal one being lysozyme (Milder, 1987).

The thickness o f the human tear film is controversial, with widely different published 

results. Early estimates o f tear film thickness were based on invasive tests, such as 

placing glass fibres against the cornea (Mishima, 1965), measuring fluorescence after 

instilling fluorescein (Mishima, 1965; Benedetto et al., 1975), or applying absorbent 

paper to the ocular surface (Ehlers, 1965). These methods produced thickness
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estimates o f between 4pm (Benedetto et al., 1975) and 8pm (Ehlers, 1965). Later, 

using confocal microscopy and interferometry, greater values were reported o f 34- 

35pm (Prydal et al., 1992; Prydal et al., 1993) and 40pm (Prydal et al., 1992) in 

humans. It was proposed that this extra thickness was the result of previous under

estimation of the deeper, denser layers of mucous (Prydal et al., 1993). Using non- 

contact optical interferometry, (Danzo et al., 1994) gave values of 10.3 and 12.3pm . 

Slit-lamp measurements (Creech et al., 1998) gave a value of 10 pm, and examination 

of reflectance spectra (King-Smith et al., 2000) and optical coherence tomography 

(Wang et al., 2003) suggest that the human tear film is approximately 3pm thick. It 

seems quite clear that an agreed measurement of the tear film thickness is still lacking.

Although there is evidence that the tear film is uniform (Prydal et al., 1992, 1993; 

Dilly, 1994; Chen et al., 1997; Tran et al., 2003), this has not replaced the traditional 

concept o f the three-layer structure o f the tear film (Wolff, 1946; Holly and Lemp, 

1977). There is an assumption that tears have a substantial free-fluid layer, but this 

concept needs to be revised, following the observation of a homogenous, fine 

network-like structure throughout the tear film in rats (Chen et al, 1997) and mice 

(Tran et al, 2003) with electron microscopy, following in vivo cryofixation with 

freeze substitution. Additionally, Tran et al (2003) reported a uniform electrical 

potential throughout the thickness o f the murine tear film when sampled at a spatial 

resolution of 1pm, suggestive o f a single tear phase. In this study, the time from 

death to the end of recording was less than 15min, before the tear film destabilised, 

and in less time than the typical inter-blink period for the mouse observed in life. 

Similar results were found when the path of the micro-electrode was retracted, so it is
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likely that the tear film was minimally disturbed from its natural state during the 

procedure.

Superficial lipid layer — 0.1 /xm 
listing mainly of waxy and cholesterol 

esters an d  some polar lipids

Aqueous layer — 7 fim 
Containing in dissolved form inorganic 

salts, glucose, urea, surface-active 
iopolym ers, proteins, and  glycoproteins

1 fi m 

Microvilli

Mucus layer — 0 .02  — 0 .0 5  /xm 
H ydrated layer of mucoproteins 

rich in sialomucin

Fig 2.8: Composition and structure o f the tear film. (From Holly FJ, Lemp MA: Surv 

Ophthalmol 22:69-87, 1977)

2.6.1.1 Superficial Lipid Layer

The outermost lipid layer was demonstrated in human tears in 1972 (Brauninger et al., 

1972). It is produced by the Meibomian glands located in the tarsal plates of the 

upper and lower lids. A small portion may also be produced by the glands of Zeiss 

and Moll, located at the palpebral margin of the tarsus and at the roots of each eyelash 

respectively (Hurwitz and Stein, 1996; Holly and Lemp, 1977). The thickness of this 

layer can be estimated from its optical properties and it is usually no more than 0.1 pm 

thick (McDonald, 1968). Its thickness depends on the palpebral aperture width and
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this is demonstrated when the lipid layer is observed under a slit lamp. Any 

narrowing of the palpebral opening causes a thickening and compression of the oily 

layer, whilst when the eye is opened wider there is an appearance of a stretching event 

(Mishima, 1965).

The layer mainly consists o f lipids o f low polarity, such as waxy and cholesteryl 

esters (Andrews, 1970). High polarity lipids, such as triglicerides, free fatty acids and 

phospholipids are present in negligible amounts (Andrews, 1970; Nicolaides et al., 

1981). This layer has been demonstrated both by the observation of interference 

patterns and by direct testing of the tear film for lipid activity (McDonald, 1968).

Many studies on this layer have shown it to be a mixture of non-polar and polar lipids 

that each play a role in the structure of the layer (McCulley and Shine, 1997). They 

suggest that this layer should be considered as two phases. A relatively thick outer 

layer, containing non-polar lipids such as wax esters, sterol esters, hydrocarbons, and 

triglycerides; and a thin polar inner layer, predominantly consisting of phospholipids.

The main role of the lipid layer is to retard evaporation of the aqueous phase in the 

open eye, since the thinness o f the tear film would cause it to break-up if the lipid 

layer was absent especially under conditions of low humidity and turbulent airflow 

(Holly, 1981a). Mishima and Maurice (1961 a, b) and Mishima (1965) investigated 

the rate of evaporation o f the tear film in the presence and absence of the lipid layer in 

rabbits, and found a 10-20 fold increase in evaporation in the absence of the lipid 

layer surface. Craig and Tomlinson (1997) showed a four-fold increase in 

evaporation in humans. Additionally, the lipid layer forms a barrier which prevents
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tears from over-spilling onto the eyelid, prevents contamination of the tear film by the 

more polar lipids of the skin of the lids (McDonald, 1968), thickens and stabilizes the 

tear film through interaction with the underlying aqueous layer, and lubricates the 

action o f the lids over the cornea and conjunctival surfaces (Lemp and Wolfrey,

1992). Other possible functions o f tear lipids include anti-microbial activity and the 

production of pheromones (Tiffany, 1985).

The lipid layer is reformed by the actions o f blinking, whereby lipid is spread over the 

ocular surface, which will lower the tension of the tears, allowing fluid to be drawn 

into the tear film and thickening the aqueous phase (Wolff, 1946). Bron and Tiffany 

(1998) inferred from their studies that blinking aids the delivery of meibomian oil 

onto the lid margin.

2.6.1.2 Aqueous Layer or Fluid Layer

The aqueous layer is believed to be the major intermediate liquid phase of the tear 

film, according to the model o f W olff (1946). The aqueous layer is produced by the 

orbital and palpebral portions o f the main lacrimal glands and the accessory lacrimal 

glands of Krause, located in the upper conjunctival fornix, and Wolfring, located 

mainly in the supra-tarsal conjunctiva o f the upper lid (Milder, 1987). The thickness 

o f the aqueous fluid layer is said to range between 6 and 10pm (Mishima, 1965; 

Holly, 1987), and is claimed to account for over 90% of tear film thickness (Wolf, 

1946).
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The aqueous component of the tear film is not simply water that lubricates the ocular 

surface, but contains numerous electrolytes, proteins, peptide growth factors, 

vitamins, anti-microbials, cytokines, immunoglobulins, glucose, minerals, enzymes 

and hormones (Iwata, 1973; Franklin and Bang, 1980; Hugh et al., 1980; Prydal et al., 

1992; King-Smith et al., 2000, 2004). Some of these proteins include albumin, 

lactoferrin, lysozyme and immunoglobulins. The immunoglobulins come mainly 

from the conjunctiva and are predominantly IgA and IgG (Hurwitz and Stein, 1996). 

These constituents serve to nourish and protect the ocular surface, and pass messages 

between the structures the aqueous contacts. In addition the aqueous provides the 

corneal and conjunctival epithelial nutrition such as oxygen and glucose. It also 

blocks physical invasion by forming a uniform barrier, and buffers or destroys 

chemical intrusion by its buffer system, lysozyme, and immunoglobulins and 

components (Kwan et al., 1972; Yamamoto and Allansmith, 1979; Sen and Sarin, 

1980; Gillette et al., 1981).

95% of the aqueous layer is secreted by the orbital and palpebral portions of the main 

lacrimal gland, with the rest from the accessory glands of Krause and Wolfring. 

(Allansmith et al., 1976). The secretion is isotonic or slightly hypertonic and flows 

from the superior temporal fornix ductal openings of the main and accessory glands, 

across the exposed portions of the corneal and conjunctival surface. The flow is 

driven by the muscle action of the orbicularis muscle during blinking. When the tears 

reach the openings of the superior and inferior puncta, they are drained into the 

canaliculi during the relaxation phase o f the blink (Doane, 1981; Lemp and Weiler, 

1983). Some aqueous fluid is also lost by evaporation from the surface and by 

reabsorption through the conjuctival surface (Lutofsky and Maurice, 1986). Tear
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volume ranges between 6-8pl, and the basal tear secretion rate is approximately 

1.2pl/minute (Mishima et al., 1966). It has been suggested that all tear production is 

stimulus driven (Jordan and Baum, 1980), as tear production decreases during sleep 

and general anaesthesia (Cross and Krupin, 1977).

Normal human tears are slightly alkaline (pH 7.5±0.16) compared to serum (pH 7.35- 

7.45) (Abelson et al., 1981; Carney et al., 1989). The osmolarity ranges from 

303.6±13.0 to 310-334 mOsm/Kg (Gilbard et al., 1978; Benjamin and Hill, 1983; 

Craig and Tomlinson, 1995).

2.6.1.3 Mucous Layer

The mucous layer is the innermost layer and rests on the underlying corneal and 

conjunctival epithelium. It is secreted by the goblet cells, of which there are 

approximately 1.5 million distributed over the conjunctival surface, and spreads 

directly over the microplicae of the corneal epithelial cells (Kessing, 1968). The 

mucous layer contains high molecular weight proteins with a high carbohydrate-to- 

protein ratio, known as glycoproteins (Mishima, 1965). There has been a variation in 

the mucin layer thickness with measurements ranging from 1 pm over the cornea to 2- 

7pm over the conjunctiva (Nichols et al., 1985). These differences could be due to 

different types of mucins or that the processing for electron microscopy caused the 

loss of some unbound mucins at the surface.

Among the most important functions o f the mucous layer is lubrication, allowing the 

eyelid margins and palpebral conjunctiva to slide smoothly over one another with
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minimal friction during blinking and ocular rotational movements. The mucins are 

believed to serve as the foundations o f the tear film and are the source of the lacrimal 

surfactant present in the dissolved state in the aqueous layer (Holly, 1987). Although 

the factors that control secretion o f the tear mucins are not known, the tear mucins 

that coat the epithelial surface of the conjunctiva and cornea provide protection to the 

underlying epithelium from damage by helping it to heal rapidly and effectively (Bron 

et al., 1985). Tear mucins that are dissolved in aqueous tears provide high viscous 

characteristics to the mucous layer, and this assists in the protection against shear 

forces associated with blinking by providing lubrication on the front of the cornea 

(Dilly, 1994; Hodson and Earlam, 1994). The mucous layer also maintains the 

wettability o f the ocular surface for a sufficient amount of time and, with the lipid 

layer, removes unwanted material from the surface of the eye. Another function is 

protection against noxious and pathogenic agents. The structure of the layer allows 

the slow release o f immunoglobulins when the eye is open, lowering the susceptibility 

to airborne pathogens and antigens. Along with the immunoglobulins, the thick 

nature of the mucous is believed to reduce the ability o f some bacteria to adhere to the 

surface of the eye and penetrate the mucous layer. It acts to decrease surface tension 

so that the aqueous component o f the tears can spread over the epithelial surface. 

Abnormalities of the mucin layer or the epithelial surface will cause the tear film to 

break up rapidly into dry spots after a blink (Hurwitz and Stein, 1996).

The layer is complex and consists o f mucous glycoproteins associated with a mixture 

o f protein electrolytes and cellular material. Recent evidence suggests that the mucin 

component has a two-layer structure (Nichols et al., 1985). The innermost, tightly- 

bound component (glycocalyx), associated with the epithelial cell surface, is thought
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to be a secretion of the cells themselves. Just above this is a thicker layer referred to 

as a “mucous blanket”. This loosely attached outer mucin layer is thought to be the 

product of the goblet cells of the conjunctiva (Kessing, 1968). Nichols et al (1985) 

indicated that the glycocalyx layer has an overlapping distribution with the mucin 

layer, extending some 0.3 pm into the mucin layer. Dilly (1994) suggested that the 

function of the glycocalyx is to anchor the mucous layer to the cell surface and 

provide stability to the tear film. In disorders that affect the epithelial cells, the 

anchorage system is believed to be disrupted causing de-stabilisation of the tear film.

2.6.2 Tear Formation and Drainage

Blinking spreads the tear film over the cornea, and moves the tears toward the puncta 

with each blink. In addition, the temporal portion of the palpebral aperture closes 

more rapidly as the eyes close in blink. With each blink, the upper and lower eyelid 

approximate first in the lateral canthal area and then proceed toward the medial 

canthal area. These two physiological movements promote medial displacement of 

the tear film toward the lacrimal puncta (Lemp and Wolfrey, 1992). A schematic 

diagram of the drainage portions o f the lacrimal system is shown in the figure below. 

Approximately 25% of the secreted tears are lost by the process of evaporation, and 

the remaining 75% are pumped into the nasal cavity through the lacrimal drainage 

system. The tears secreted into the upper temporal fornix move to the lacrimal puncta 

in three steps (Lemp and Wollfley, 1992). 1) At the lateral canthus, the tears move 

downward, by gravity, to form the lower marginal strip. 2) The lower canaliculus is 

believed to collect four times as much of the tear flow as the upper canaliculus. 

Capillary attraction helps to conduct tears into the puncta and the vertical section of
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the canaliculus. 3) Finally, lid movement contributes to the transport of tears to the 

puncta by the act of blinking.

Lacrimal gland

Excretory ducts 

Plica Lacrimal sac
M edial
lake

Lateral
lake

Inferior lacrimal punctum 

Inferior lacrimal canaliculus

Valve’ of Hasner

Nasal
cavity

Figure 2.9: Schematic diagram of the secretory and drainage portions of the lacrimal 

system. The small arrows indicate the flow of tears (From Korb DR at al: The Tear 

Film: Structure, Function and Clinical Examination, Butterworth; Heinemann, 

Oxford, 2002).

2.6.3 Tear Film Formation and Rupture

The lid motion and spreading of the lipid layer of the tear film, together with the 

underlying hydrophilic mucous layer, control tear film formation following each 

blink.

When the eyelids close, they compress the superficial lipid layer and eliminate the 

tear film-air interface. Through the shear action across the thin aqueous layer 

between the moving lid and the ocular globe, the mucous layer is redistributed and the
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lipid-contaminated mucous is dragged into the lower and the upper fornix (Norn, 

1969; Wright, 1975).

When the eyelids open, they create a new tear-air interface of high surface tension, 

about 70 dyne/cm. The spreading of the excess lipids, together with the associated 

mucoproteins, follows this rapid spreading of the first single layer of lipid. The 

resulting superficial lipid layer is elastic and lowers the surface tension of the tear film 

to about 35 dyne/cm due to mucin-lipid interaction. The spreading of the lipids also 

thickens the aqueous part of the tear film, while the increasing negative pressure in the 

gradually thinning tear meniscus tends to limit the tear supply available for tear film 

formation (Holly, 1973, 1974). The appearance o f the “black” line adjacent to the 

meniscus (McDonald and Brubaker, 1971 indicates that the tear fluid in the meniscus, 

as well as in the fomices, has become unavailable for tear film formation. In time, the 

tear film gradually deteriorates and becomes unstable, due to lipid contamination of 

the mucin layer coating the corneal epithelium. The mucous becomes incapable of 

maintaining its hydrophobic properties and breaks-up forming the “dry spots”. This 

probably irritates the nerve endings in the epithelium and triggers the next blink.

58



■■■■■■■■■indiBi in

Hydrophobic lipid molecules 

Hydrophilic mucin molecules
Dryt

7 pm

Epithelium
Eye

opening
25 seconds 
post-blink

30 seconds 
post-blink

Fig 2.10: Schematic representation of the intact tear film observed at eye opening 

(left), followed by tear thinning at 25 seconds (middle) and tear break-up time at 30 

seconds (right). The top row illustrates this sequence as observed using a protected 

grid (non-invasive break-up time measurement). The bottom row illustrates how a 

dry spot forms (From: Efron N: Contact Lens Complications, Oxford; Boston: 

Butterworth-Heinemann: Optician, 1999).

2.6.4 Measurement of Tear Film Stability

The pre-ocular tear film (POTF) in humans does not remain stable for long periods of 

time (Holly, 1981a, 1981b). When blinking is prevented, the tear film ruptures within 

15-40 seconds and dry spots appear over the cornea (Lemp and Hamill, 1973). 

Observation of the rupture of the POTF before a subsequent blink is one of the most 

commonly used tests to examine tear film stability. This stability results from 

interactions between the three major components of the tear film: the mucous 

glycoproteins, the aqueous tears, and the superficial lipid layer.
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2.6.4.11nvasive Break-Up Time Measurement

Norn (1969) and Lemp and Holly (1970) suggested assessing tear film stability using 

sodium fluorescein (Norn, 1969; Lemp and Holly, 1970;). The fluorescein is instilled 

into the conjunctival sac and the cornea scanned with cobalt blue illumination, using 

the slit-lamp microscope, for the first sign of discontinuities in the film. These are 

seen as dark spots in the fluorescent film. The first appearance of the spots represents 

the rupture of the tear film. Further details of this method are given in the 

Instrumentation Chapter 3.3.1.

2.6.4.2 Non-lnvasive Break-Up Time Measurement (NIBUT)

There are at least seven instruments used to measure the non-invasive break-up time 

which can be classified into two categories: Those with a small measurement field and 

those with a wide measurement field.

The narrow field techniques are of limited use, since they involve a very small part of 

the cornea. In general, the smaller the field, the lower the correlation with the full 

field of measurements. The instruments that belong to this category are: slit lamp 

specular reflection, the Baush &Lomb keratometer, the hand-held keratoscope 

(Guillon et al., 1992), and the HIRCAL modified keratometer (Hirji et al., 1989). The 

wide field instruments are: the modified bowl perimeter (Lamble et al., 1976; 

Mengher et al., 1985), the external illuminator (Young and Efron, 1991), and the 

Tearscope (Guillon, 1986).
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The NIBUT instruments, both narrow and wide, also differ according to the nature of 

reflected mires. Some have a dark background with a bright grid (keratometer, hand

held karatoscope, HIRCAL modified keratometer, bowl perimeter), while others have 

a white background (slit lamp specular reflection, external illuminator, Tearscope).

The measurement techniques are divided into two categories, depending upon the type 

of target used. For the dark-field background instruments, the practitioner observes 

the appearance of any deformation of the target or grid. The time measured has been 

referred to as the non-invasive tear thinning time (TTT). This is the elapsed time 

recorded between a full blink and the appearance of any distortion of the target or 

grid. For the white background instrument and the slit lamp, the practitioner observes 

the appearance of any black spots within the tear pattern. The time measured in 

seconds between a full blink and the appearance of a black spot is the NIBUT.

The modified keratometer designed by Hirji and Callender, known as the HIRCAL 

modified keratometer, is the most useful of the narrow field instruments. It consists 

of a modified Bausch & Lomb keratometer where the mires have been replaced by a 

white grid on a black background. The image o f the grid is reflected by the tear film 

and the appearance of distortion in the reflected pattern reveals a break.

The values obtained by any practitioner are technique-dependent, but even for a given 

technique, there may be variations due to differences in environmental conditions in 

the consulting room, such as humidity and airflow. For this reason it is suggested 

that, whichever technique is used, records of the first 50 sec should be kept and the
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practitioner should stop measurements after 45 seconds of the eye opening, even if no 

break-up occurs, in order to avoid discomfort.

Mengher et al (1985), following an original design by Lamble et al (1976), developed 

a non-invasive method without the use of fluorescein. Their method is based on 

observing changes in the specular image o f a grid pattern projected to the eye. A 

distortion of the grid line represents local thinning and discontinuity represents a 

break in the tear film.

The Tearscope allows the measurement o f NIBUT by two techniques: a direct, non- 

invasive method of observing the break against the white background produced by the 

instrument; and indirectly by observing the deformation of rings or grid patterns 

inserted within the illuminated inner surface o f the instrument. Further details of this 

instrument are given in the Instrumentation Chapter 3.3.2.

2.7 Tear Evaporation from the Ocular Surface

The tear film is part of the visual system and determines much of the well being and 

efficient performance of the eye (Milder, 1987). It is a dynamic system, consisting of 

tear production by lacrimal glands, secreting aqueous tears and washing over the 

epithelial and conjunctival cells, tear drainage through the lacrimal duct, and water 

evaporating to the air. Aqueous tears are covered by tear lipid secreted by the 

meibomian glands that spread to form an oily layer of the preocular tear film. 

Meibomian gland secretion limits evaporative tear loss, provides lubrication during 

blinking, and maintains an optically smooth surface (Mishima and Maurice, 1961a, 

1961b; Holly, 1980; Tiffany, 1985; Rieger, 1992). The tear film is in a constant state
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of flux, continuously thinning when the eye is open, and refreshed with blinking 

(Holly, 1980).

Tear evaporation has been studied as a major factor in tear dynamics (Rolando and 

Refojo, 1983; Tsubota and Yamada, 1992; Mathers et al., 1993; Shimazaki et al., 

1995, 1998). Tear evaporation measurements in examinations for dry eye are 

recognised as an important technique for differentiating dry eye syndrome sub

categories, that is aqueous tear deficiency (ATD), lipid tear deficiency (LTD), and dry 

eye (also known as evaporative dry eye).

2.7.1 The Role of the Lipid Laver in Evaporation

The ocular surface is covered with a thin layer of lipids that functions like a 

monolayer to retard evaporation. The structure of the lipid layer and thus its anti- 

evaporative mechanisms remains poorly understood. A bipolar inner layer likely acts 

as a transition zone between the outside non-polar surface and the polar aqueous tear 

film. Phosphatidyl ethanolamines, sphingomyelin, and phosphatidyl choline are 

probably the key components o f this polar lipid layer. A description of how polar 

lipids organise and create the extremely effective nature of the lipid barrier was 

presented by McCulley and Shine in 2000. The lipid surface is highly effective, 

dramatically demonstrated by the 95% reduction in evaporation from the ocular 

surface (McCulley and Shine, 2000; Mathers, 2004).
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2.7.2 Measurement of Evaporation

Human tear evaporation rates have been reported, and differences between the results 

in normal subjects vary due to different measuring techniques. Hamano et al (1980) 

was the first who measured in vivo evaporation in the human. He found an

7 7 1evaporation rate o f 26.9 x 10 ' g cm' sec' . Rolando and Refojo (1983) reported a 

device consisted of a modified, tight-fitting goggle, with dry air pumped into its 

chamber, to measure tear evaporation rate. After 1 minute of evaporation, the air in 

the chamber was mixed with the air in the system and measured for temperature and 

humidity. The air temperature of this system was 23°C. They found an evaporation

7 7 1rate o f 4.07 x 10 * g cm’ sec’ . This device had the drawback that it could not 

evaluate evaporation at a precise temperature or relative humidity. To minimize the 

contribution of skin evaporation the exposed area was covered with petroleum jelly. 

They established the concept o f evaporation as a function of the inter-palpebral 

fissure, and created a chart describing the relationship between exposed area and 

inter-palpebral distance.

In 1990 Yamada and Tsubota described a device where they also used a chamber 

filled with dry air that was sealed and the relative humidity was measured over time. 

They reported a normal evaporation rate of 15.6 x 10 "7 g cm'2 sec'1 at 40% relative 

humidity. In their next publication in 1992 (Tsubota and Yamada, 1992) similar 

results were reported. It was also shown that the instillation of artificial tear eye drops 

increased evaporation. Tomlinson et al (1991) reported the development of a device 

called the ServoMed Evaporimeter that was attached to a modified swimming goggle. 

The instrument measured the relative temperature and humidity of two sensors placed 

above the ocular surface (further details on this instrument are given in the
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Instrumentation Chapter 3.5.1). The evaporation effect from the closed eye was 

subtracted and they found an evaporation rate of 20 x 10 '7 g cm'2 sec'1 in normal 

subjects.

Mathers and co-workers (1993) reported the development of a device for measuring 

evaporation. Using a small, closed chamber filled with dry air, the rise in humidity 

was plotted and the evaporation was calculated. The evaporation rate of the closed 

eye was subtracted to remove the effect of evaporation from the skin. Evaporation 

rate was found to be 14.7 x 10 '7 g cm'2 sec'1 at 30% relative humidity (Mathers et al., 

1993).

A recent report on evaporation rate by Goto et al (2003) used a device that streamed 

air o f known humidity across the ocular surface and the evaporation effect from the

7 7 Iclosed eye was subtracted. The rate was found to be 4.1 x 10 ' g cm' sec' at 30% 

relative humidity, and was much lower than had previously been found. The relative 

humidity of the incoming air, not reported for this result, was factored out of the final 

equation and these results may not be comparable to other reports.

2.7.3 Evaporation and Dry Eve

Hamano’s early studies suggested that evaporation rates in dry eye subjects were 

much lower than in normal subjects, and so did the studies of Yamada and Tsubota 

who found similar low evaporation rates in dry eye patients (Hamano et al., 1980; 

Yamada and Tsubota, 1990). However, Rolando’s results in dry eye patients or 

patients with ocular pathology, found evaporation rates to be twice than that found in 

normal subjects (Rolando et al, 1983).

65



Mathers et al (1993), following the development of their own device, showed that dry 

eye subjects had high evaporative rate, 47.6 x 10 '7 g cm'2 sec'1, compared with 

normal rate of 14.7 x 10 "7 g cm'2 sec'1. These results were confirmed with additional 

studies in 1996 that found a rate o f 25 x 10 ’7 g cm'2 sec'1 in dry eye patients 

compared to normal patients of 13 x 10 '7 g cm'2 sec'1 (Mathers and Daley, 1996). 

Craig and co-workers (2000), using a device based on steady state differential 

humidity within a chamber, examined both dry eye patients and healthy subjects, and 

found evaporation rates to be higher in the dry eye group than in the normal group.

2.7.4 Meibomian Gland Function and Evaporation

Meibomian gland dysfunction (MGD) appears to alter the composition of the lipid 

layer, causing an increase in the evaporation rate of the tear film. Mishima and 

Maurice (1961 a, b) described the protective effect and evaporative control of this 

layer. Rolando et al (1983) reported an increase in evaporation in patients with ocular 

surface disease, some o f whom had MGD. In 1993, Mathers et al demonstrated that 

MGD caused a meaningful increase in evaporation rate and their results correlated 

closely with gland dropout. Schimazaki et al (1995) also found an increased 

evaporation in patients with meibomian gland dropout. Craig and Tomlinson (1997) 

found an increased evaporation in subjects with thin lipid layer and in subjects with 

abnormal interference patterns, indicating meibomian gland. A recent paper by Goto 

et al (2003) confirmed that patients with obstructive MGD have elevated evaporative 

rates that increased proportionally with the severity of the meibomian gland 

obstruction.
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In conclusion, evaporation has been found to increase in patients with dry eye and 

with meibomian gland dysfunction. When dry eye disrupts the ocular surface it 

appears to alter the integrity o f the lipid layer in some way that raises evaporation. In 

obstructive MGD the lipid layer is also compromised, but the cause of this is not 

known (Mathers, 2004). The inconsistencies found in the published results are more 

due to subject selection, measurement techniques, and instrumentation used.

2.7.5 Contact Lenses and Evaporation

The use of contact lenses has also been shown to increase tear evaporation rates, by 

disrupting the superficial lipid layer (Tomlinson and Cedarstaff, 1982, 1992; 

Cedarstaff and Tomlinson, 1983). The increase in evaporation noted with different 

types of contact lenses was not found to be consistently related to the type of material 

from which the contact lens was made. These contact lenses included 38% and 70% 

hydrogels, silicone elastomers, PMMA, and modified PMMA hard lenses (Tomlinson 

and Cedarstaff, 1982). A similar investigation by Cedarstaff and Tomlinson (1983) 

considered the effect of soft contact lenses, ranging in initial water content from 38% 

to 70%, on the tear evaporation rate. All the types of soft lenses caused an increase in 

the evaporation rate, and this increase was not found to be related to the initial water 

content of the soft lens. Water loss by dehydration of the lens made only a minor 

contribution to the total increase in evaporation.

2.7.6 Artificial Tear Solutions. Saline and Evaporation

Instilling artificial tear solutions and saline causes the rate of evaporation to increase 

(Trees and Tomlinson, 1990). This suggests that tear film instability is produced by
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the instillation of these drops, which may be due to the increased fluid volume within 

the eye. Hence a disruption of the lipid layer of the tear film occurs, which is 

responsible for the inhibition of tear evaporation (Mishima and Maurice, 1961a, b). 

The results of Trees and Tomlinson (1990) suggest that the tear film evaporation rate 

after the instillation o f both artificial tear solutions may return to baseline faster than 

after the instillation o f saline. A similar increase in the rate of tear evaporation has 

been found after the instillation o f a single drop 0.5% proparacaine (Rolando and 

Refojo, 1983).

2.7.7 Diurnal Variation of Tear Evaporation

Human tear evaporation rate has been found to vary through the day (Tomlinson and 

Cedarstaff, 1992), indicating that evaporation is at its lowest immediately on awaking, 

rising rapidly within the first two hours, and remaining constant for the next twelve 

hours. The initial low tear evaporation on awaking may explained by two reasons. 

Firstly, tear production is low on awaking, and secondly, tear film stability is high on 

awaking because of a thick lipid layer (Mishima and Maurice, 1961 a, 1961 b; Baum, 

1986; Tomlinson and Cedarstaff, 1992).

2.7.8 Sex. Age and Tear Evaporation

Tear evaporation rate was correlated between the sexes and with increasing age 

(Rolando and Refojo, 1983; Tomlinson and Giesbrecht, 1993). Tomlinson and 

Giesbrecht (1993) reported a gender difference with a higher tear evaporation rate in 

females. This may be a factor in the greater predisposition to dry eye problems in 

females as they grow older (Lemp, 1980). This result is not supported by Rolando
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and Refojo (1983) who found no significant difference between the sexes. However, 

they had a relatively narrow age band of subjects, 28-71 years, and one-third of their 

52 subjects were females.

2.7.9 Conclusions

The evaporation from the ocular surface is dramatically reduced by the lipid layer 

covering it. With this layer intact, evaporation represents a small loss of water for 

which the lacrimal gland easily compensates. However the function of how the lipid 

layer accomplishes this reduction in evaporation is not well understood and is 

probably as complex as is the structure of the lipid layer itself (Mathers, 2004).

2.8 Ocular Thermography of the Anterior Eye

Temperature measurement of the anterior segment of the eye is of potential 

importance in a variety o f research applications, such as quantifying the precise 

thermal profile of the ocular surface for physiological modelling (Alio and Padron, 

1982b), studying environmental influences on the temperature of the eye (Schwartz, 

1965; Freeman and Fatt, 1973), monitoring corneal wound healing (Coles et al., 

1988), investigating injury (Kolstad and Opsahl, 1969; Mikesell, 1978) and disease 

process (Mapstone, 1968b; Horven, 1975), as well as modelling the effects of contact 

lens wear (Hill and Leighton, 1965a, 1965b; Fatt and Chaston, 1980; Martin and Fatt, 

1986). This measurement is also of importance in research (Yang and Yang, 1992) 

and in clinical situations including ocular physiology (Raflo et al., 1982; Craig et al., 

2000), pathology (Keeney and Guibor, 1970; Morgan et al., 1999), ocular
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inflammation (Efron et al., 1988), tear film and photorefractive surgery (Mapstone, 

1968c, 1970; Betney et al., 1997; Mori et al., 1997).

2.8.1 Development of Infrared Imaging in Medicine

One of the most important advances in temperature measurement over the past forty 

years has been in detecting radiated heat from the body surface. Radiated heat from 

the human body is not visible, but belongs to the infra-red region of the 

electromagnetic spectrum. It is radiation produced by motion of atoms and 

molecules. The hotter an object, the more the atoms move, and more radiation is 

produced. All objects with temperature above absolute zero emit infrared radiation 

from their surface (body).

lltraviolet
rays

shortwave
infrared radargamma

rays

102 io 4
Wavelength (meters)

Visible Light

400 500 600 700
Wavelength (nanometers)

Fig 2.11: The electromagnetic spectrum.

(From:http://images.google.co.uk/images?q=The+electromagnetic+spectrum&hl=en&

btnG=Search+Images).
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Scientists, using “black body principles”, tried to define the relationship between the 

temperature of an object and infrared radiation emitted by its surface: When a body at 

a given temperature radiates energy from its surface, the condition and the colour of 

the surface are of special importance. A black body radiates the maximum possible 

energy at a certain temperature -  a perfect radiator (and also a perfect absorber due to 

thermal equilibrium). In practical terms it consists of a cavity, in a form of a hollow 

sphere, the inside of which is matt black. All other surfaces are compared to this 

black body.

All bodies, including skin and the ocular surface, follow this ideal rule, and a 

correction factor is applied called the “emissivity” of the object/body. The emissivity 

is defined as the ratio of the radiation emitted by the object concerned, compared to 

the radiation from a perfect black body at the same temperature, and will always be 

less than 1.

The Stefan-Boltzmann law defines the relationship between radiated energy and 

temperature by stating that the total radiation emitted by an object is directly 

proportional to the object’s area and emissivity and the fourth power of its absolute 

temperature (Morgan and Tullo, 1996; Jones, 1998).

A typical infrared-measuring device consists of a system for collecting radiation from 

a well defined field of view and a detector that transducers the radiation into an 

electrical signal. The build-up o f a thermal picture is produced by the use of an 

optical scanning system and image processing to display the image on a monitor. 

There are two categories of detectors: thermal detectors (such as thermocouples) that
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are slower to respond, and photon detectors that respond more rapidly. Such 

materials can be cadmium mercury telluride and indium antomide, which detect by 

means o f a photoconductive and photovoltaic effect (Jones, 1988; Morgan et al,

1993). The imaging system has optical components such as a germanium lens and a 

scanning system, to transmit and focus the infrared radiation. For an infra-red 

detector a chopper device is essential to study an object of constant or slowly 

changing temperature, like the eye (Jones, 1998; Morgan et al., 1993).

2.8.2 Thermometry and the Eve

The developments in ocular thermometry have reflected the general advances in 

temperature measurement. It is possible to measure ocular temperature using both 

contact and non-contact methods.

2.8.2.1 Contact Methods of Ocular Thermometry

Contact methods of assessing eye temperature, which can include measurement with a 

thermistor or thermocouple (Rosenbluth and Fatt, 1977; Dixon and Blackwood, 

1991), have a number o f disadvantages. If patient discomfort is to be avoided, topical 

anaesthetics are required, probably producing an alteration of the ocular surface 

temperature. The “fin cooling effect” o f the probe increases the available surface area 

for heat conduction away from the eye, especially when the probe is used at minimal 

depth or when large gauge needles are used (Fatt and Forester, 1972; Rosenbluth and 

Fatt, 1977). Furthermore, the results taken with contact methods are not 

instantaneous, and only a small area is measured (Fatt and Forester, 1972; Morgan
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and Tullo, 1996). Also, the contact measurements of temperature can vary with the 

pressure of application of the probe (Mapstone, 1968b).

2.8.2.2 Non-Contact Methods of Ocular Thermometry

Non-contact methods alleviate these difficulties of direct techniques. Mapstone 

pioneered the application of infrared thermometry to the determination of ocular 

surface temperature in the late 1960s. He used a hand-held detector, a bolometer, 

which measured infrared radiation from a small area to study ocular temperature in a 

number o f different eye conditions (Mapstone, 1968a, 1968b, 1968c, 1968d). This 

technique involved the measurement of the infrared energy emitted by the cornea and 

equating this to the relationship between infra-red radiance and temperature for a 

black body. Infra-red thermometry has the major advantage of being non-contact and 

allowing virtually instantaneous measurement of temperature. There is no risk of 

trauma and contamination, topical anaesthesia is not necessary, and the possibility of 

variation in the temperature readings with pressure application is avoided (Mapstone, 

1968b; Morgan et al., 1995).
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Fig 2.12: Mastpone’s bolometer set-up (Mastpone, 1968b).

A more advanced non-contact measurement provides the examiner with a colour- 

coded image of the temperature of the eye, rather than a reading on a dial. This has 

the advantage of being entirely non-invasive and allowing the surface thermal pattern 

to be seen. Measurement and colour coded display of temperature is usually referred 

to as ocular thermography (Mapstone, 1970; Alio and Padron, 1982b; Efron et al., 

1989; Morgan et al., 1993; Morgan and Tullo, 1996).

Thermographic instrumentation exploits the inherent relationship between the 

temperature of a body (T), its emissivity (e), and the amount of electromagnetic 

energy which it emanates, expressed in terms of its radiant emittance (W). The 

equipment measures the radiant emmitance of an object by monitoring the 

conductivity of the semi-conductor detector onto which the radiation falls. If the 

emissivity of the object is known (it is assumed to be 0.97 for the ocular surface), then 

its temperature can be determined.
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More recently, ocular thermography has been used to study the orbit and lacrimal 

system than the eye itself (Rosenstock et al., 1983; Cennamo et al., 1990). Results 

from these studies have shown thermography to be a useful method of gaining 

additional information rather than being a diagnostic tool. In particular, Rosenstock et 

al (1983) found that thermography could be useful in the assessment of dacrocystitis 

and canaliculitis, and that is helpful in pre and post-operative management of lacrimal 

conditions.

2.8.3 What is Actually Being Measured by Infrared Thermometry?

Mapstone recognised that the tear film of the ocular surface area must play an 

important role in the measured temperature. He regarded the cornea and the tear film 

as one continuous water phase, both behaving as black bodies. Water is an effective 

absorber of infrared radiation (Lerman, 1980), and it is reasonable that the high water 

content of tears, cornea and lens will ensure high absorption characteristics.

It appears that the measured temperature is actually the tear temperature, and only 

when the tears are absent it can be said that the spectrum detected is that of the cornea 

itself (Hamano et al., 1969; Fatt and Chaston, 1980; Morgan et al., 1993). The tear 

film must play a fundamental role in the measurement of temperature by infrared 

thermometry. Since it is a dynamic structure, changes in its thickness, composition, 

and evaporation rate may alter the thermographic patterns recorded.
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2.8.4 Temperature Profile Across the Ocular Surface

There is a characteristic temperature profile across the cornea, noted by all studies in 

ocular thermography (Alio and Padron, 1982a; Efron et al., 1989) (Fig 2.12).

Fig 2.13: Typical ocular thermogram with latest infrared camera, NEC San-ei Thermo 

Tracer TH7102MX thermo-camera.

Efron et al (1989), used a wide-field, colour-coded, infrared imaging device to 

investigate the temperature profile across the ocular surface and the temporal stability 

of central corneal temperature. Temperature increased towards the periphery of the 

cornea with the limbus being 0.45°C warmer than the geometrical centre of the cornea 

(GCC). The temperature apex (the coldest point) of the cornea was slightly inferior to 

the assumed GCC, and the mean temperature of the GCC was 34.3°C is consistent 

with recent studies. A considerable decrease in cornea temperature was found 

following a blink, and a separate experiment was conducted to quantify this 

phenomenon, measuring the temperature at the GCC while the subject avoided 

blinking. The results suggests a decrease in temperature during the initial 15-20 sec
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after the blink, in all subjects, followed by stabilization of temperature in those 

subjects who were able to maintain eye opening for longer periods.

O f particular interest is the presence of ellipsoidal isotherms, with the major axis 

horizontal, concentric about a temperature apex which is slightly inferior to the GCC. 

Such a distribution in the temperature is not unexpected in view of the combined 

heating effects of the warmer vascular surrounding tissues on the avascular cornea, 

which is continually losing heat to the atmosphere. Specifically, the concentric nature 

of the pattern may be attributed to the circular shape of the cornea and diffusion of 

heat from the richly vascularized limbus. The shape of the palpebral aperture 

accounts for the slightly elliptical nature of the distribution, and the inferior 

displacement of the temperature apex can be explained in terms of the inferior 

position of the mid-point of the palpebral aperture relative to the GCC (Efron et al., 

1989).

Morgan et al (1993) investigated the ocular surface temperature in 95 healthy subjects 

and found a similar pattern to Efron et al (1989). Across the anterior eye, the 

isotherms were again elliptical in shape. Efron et al (1989) had postulated that this 

was due to the elliptical nature o f the palpebral aperture. In order to confirm this, 

Morgan et al took thermograms on a subject before and after the application of a pair 

of eyelid contractors. With the eyelids open in this manner, the isotherm patterns 

appeared less elliptical, reinforcing the hypothesis of Efron et al (1989).

The variation in temperature across both eyes of a normal population found the 

conjunctival locations to be warmer than the limbal positions, which in turn were

77



warmer than the center of the cornea. The temperatures measured at these locations 

seemed to be related to the differences in vasculature across the anterior eye, whereby 

anterior ocular temperatures increased with the density of vasculature (Morgan et al., 

1993).

2.9 Blinking

The maintenance of corneal integrity is dependent, in part, on the proper formation of 

the pre-comeal tear film. The formation and stability of this film is, in turn, partly 

dependent on the blinking action o f the eyelids (Holly and Lemp, 1977; Doane, 1980). 

Proper blinking is essential for maintaining ocular surface health, by stimulating tears 

and spreading the three-layer tear film (Tsubota and Nakamori, 1995; Holly, 1985; 

Tiffany, 1985) (Holly, 1985; Tiffany, 1985; Tsubota and Nakamori, 1995). Improper 

blinking is known to result in a defective tear film (Abelson and Holly, 1977).

Blinking is a universal mammalian phenomenon which occurs spontaneously, 

voluntarily or as a reflex. Blinking may be induced by such stimuli as bright lights or 

eye irritation. It is a complex phenomenon involving multiple cranial nerves, and 

must therefore be controlled centrally. Blinking serves a number of functions:

1) Tear film production and lubrication of the ocular surface

2) Assisting tear film in removing foreign bodies from the tear film

3) Protection of the eye from noxious threats

4) Assist tear film in producing smooth optical surface for the eye

5) Pauses in the act of reading

6) Regulation of processing visual sensory input to the brain.
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Published values of spontaneous blink rates in adults lie in the range of 12-25 blinks 

per minute (Zametkin et al., 1979; Carney and Hill, 1982a; Jancovic et al., 1982; 

Tsubota, 1998; Zaman et al., 1998). The normal spontaneous adult blink rate remains 

approximately constant. Each subject displays a characteristic pattern of blinking, 

mixing inter-blinking periods of shorter and longer durations in a regular fashion 

(Carney and Hill, 1982a; Ponder and Kennedy, 1928).

2.9.1 Blinking Action of the Eyelids

Eyelid movements can be classified as opening and closing movements. The levator 

palpebrae superioris (LPS) muscle, and the tarsal muscle of Muller (two smooth 

muscles, the superior and inferior tarsal muscles), are responsible for the opening of 

the eyelids, whereas the orbicularis oculi muscle (0 0 )  is responsible for the eyelid 

closure (Esteban et al., 2004). The levator palpebrae superioris is supplied by cranial 

nerve III. It originates with and travel parallel to the superior rectus but continues 

forward to insert into the upper lid. The levator holds the eyelid up when the eyes are 

open, and it functions in concert with the superior rectus, increasing the elevation of 

the lids when the eyes look up. The orbicularis oculi, supplied by the cranial nerve 

VII, closes the eyes by depressing the upper lid and elevating the lower lid. The tarsal 

muscles are small smooth muscles at the edge of the bony orbit. They are supplied by 

postganglionic sympathetic fibres and help keep the eyes open.
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Fig 2.14: Muscles responsible for the opening and closure of the eyelids (From 

Haines DE: Fundamental Neurosciences, Haines DE, Churchill-Livingstone, 1997).

Opening of the Eyelids: The contraction of the levator palpebrae superioris muscle 

elevates the upper eyelid. This muscle is innervated by the superior division of the 

oculomotor nerve, which also supplies the superior rectus muscle.

Innervation to the levator palpebrae superioris muscles follows Hering’s law (Becker 

and Fuchs, 1988; Schmidtke and Buttner-Ennever, 1992; Vander et al., 1997, 1998; 

Esteban et al., 2004). Synergistic extraocular muscles receive simultaneous and equal 

innervation. Motor neurons for the levator muscle arise from a single, unpaired, 

central, caudal nucleus of the oculomotor complex, and single motor neurons may 

innervate the levator muscle bilaterally. Hence any supranuclear input into the motor 

neuron nucleus influences both levator muscles.
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The inferior and superior muscle o f Muller, that is the minor retractor of the upper 

eyelid, is innervated by the sympathetic nervous system.

Closure of the Eyelids: The main muscle responsible for eyelid closure is the 

orbicularis oculi muscle (OO). The OO muscle fibres (myofibres) receive their 

innervation from the intermediate zone o f the facial nucleus (Becker and Fuchs, 1988; 

Schmidtke and Buttner-Ennever, 1992; Vander et al., 1997; Vander et al., 1998). 

Anatomically the OO muscle is divided into three parts: pre-tarsal, pre-septal, and 

orbital. Deep and superficial heads of the pre-tarsal orbicularis muscle contribute to 

the lacrimal pump mechanism.

Variable LPS tonic activation, with the OO inactive, occurs in maintaining the ocular 

opening, the gentle closing and opening of the eyes, and the lid adjustment to the 

vertical globe positions. LPS inhibition, with OO activation produces all types of 

blinking and firm closure of the eyelids (Gordon, 1951; Bjork, 1954; Loeffler et al., 

1966; Esteban and Salinero, 1979).

Normal blinking consists o f two components. One is the inhibition of the sustained 

activity of the LPS muscles that keep the eyes open and the other is the brief, 

concurrent activation o f the OO muscles. Once a blink stops, normal tonic activity of 

LPS is immediately resumed, while the OO returns to a resting position (Gordon, 

1951; Bjork and Kugelberg, 1953; Esteban and Salinero, 1979). Reflex blinks show a 

duration of around 200ms (Bour et al., 2000) which is shorter than for voluntary or 

spontaneous ones (Evinger et al., 1991). The lowering of the eyelid occurs during the 

down-phase, and is directly related to a brief contraction of the OO. Their respective
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durations show a linear relationship (Evinger at al, 1991). The closing tendon- 

aponeurotic forces, released immediately prior LPS inhibition, help promote ultimate 

closure. The following up-phase depends entirely on the resumption of LPS activity, 

which may exhibit an initial reinforcement over the level previous to the blink, a 

facilitation post-inhibition (Bjork and Kugelberg, 1953; Holder et al., 1987), or it may 

simply resume the same basal level of its tonic activity with the eyes open. The 

former pattern results in a shorter up-phase (Evinger at al, 1991).

Co-ordinated opening and closing movements of the eyelids make up the act of 

blinking. Blinking has a fundamental function in corneal wetting and eye protection 

(especially spontaneous and reflex blinking), but also is involved in visual 

information processing. A complete blink may be defined as a movement of both 

eyelids which begins in the normal open position, reaches a halfway point when the 

upper and lower lid ciliary margins oppose each other, and ends when the upper and 

lower lid return to the starting open position.

2.9.2 Blinking and Tear Drainage

As the eyelids close, tears enter the lacrimal puncta and are pumped through the 

canaliculi into the lacrimal sac by the blinking movements. Each canaliculus has a 

short 2mm vertical segment that joins a longer horizontal segment of 8 mm. At the 

junction of the horizontal and vertical segment, the canaliculus opens out into an 

ampulla. Orbicularis fibres are in close contact with the puncta and the canaliculus, 

so that when this muscle contracts in blinking, the puncta is drawn nasally, the 

ampulla is compressed, and the horizontal limb of the canaliculus is shortened, 

forcing tears into the lacrimal sac.
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In blinking, the contraction of the orbicularis compresses the lateral wall of the sac. 

This creates a negative pressure within the lacrimal sac that draws the tears along the 

canaliculus, by the same orbicularis contraction, into the lacrimal sac. When the 

orbicularis relaxes after the blink, the sac collapses and this forces the accumulated 

tears into the naso-lacrimal duct. The figure below illustrates the sequences of events 

in the blink-driven tear drainage process.

(1) Start of Wink open, system  fitted with fluid

P uncta

lid closure squeezes  
canaliculi. and sac

canaliculi squeezed  maximum 
amount, all fluid expelled

(3) C om plete c losure

release  of p ressure  on canalicuH 
puncta still occluded

puncta now open, fluid drawn into 
canaliculi from tear menisci

Lacrimal
sac

Canaliculi

Fig 2.15: Doane’s model relating blinking and tear drainage (From Korb DR at al: 

The Tear Film: Structure, Function and Clinical Examination, Butterworth- 

Heinemann, Oxford, 2002).
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When the blink starts (1), the canaliculi contain tear fluid drawn in immediately 

following the previous blinking. When the lids are half-closed (2), the puncta is 

occluded by the abutting lid margins and the canaliculi and sac start to be compressed. 

When the lids have reached their maximum point of lid closure (3), the canaliculi are 

compressed forcing the contained fluid, into and through, the sac. When the lids are 

opened halfway (4), the pressure on the canaliculi and sac is reduced and the punctal 

openings are still occluded by the lid margins. Finally, when the lids are fully open, 

the canaliculi and sac expand to their normal configuration, and tear fluid is drawn via 

the punctal openings into the canaliculi. This flow lasts typically 1-2 seconds, by 

which time the tear fluid in each meniscus is drawn down to its normal level (Doane, 

1981; Lemp and Wolfrey, 1992).

The naso-lacrimal duct plays little or no role in the active transport of tears, but the 

variable folds and valves (including that of Hasner) in the duct form a baffle which 

prevents air currents within the nose from being drawn up into the drainage system.

2.9.3 Types of Blinking

2.9.3.1 Voluntary

Voluntary blinking is the closure and reopening of each eyelid as a willed act, 

dependent on the individual. Cortical areas close to those of the frontal eye-fields 

probably mediate these movements (Bruce et al., 1985). Voluntary sustained closure 

of the eyes can be achieved either by inhibition of the steady tonic activity of LPS 

without OO activation, leading to soft eyelid closure, or by LPS inhibition plus 

sustained OO contraction, causing forced closing of the eyes. In both cases, LPS
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inhibition is a relevant feature by being the unique factor in the gentle closing and by 

preceding the appearance of the OO activity in the forceful closing (Bjork and 

Kugelberg, 1953; Bjork, 1954; Esteban et al., 1978; Esteban and Salinero, 1979).

2.9.3.2 Involuntary

Involuntary blinking is divided into spontaneous and reflex blinking.

2.9.3.2.1 Spontaneous Blinking

Spontaneous blinking is a continuous, almost periodic and symmetrical brief 

movement of closing and opening o f the eyelids which occurs in the absence of an 

obvious external stimulus or voluntary effort. Its primarily purpose is to reform and 

distribute the precorneal tear film. It is the most common form of eyelid movements.

True blinking movements are undeveloped during the neonatal period and early 

infancy. The rate of periodic blinking is much lower than in adults. Zametkin and co

workers (1979) found a steady increase in blink rate from infancy to adolescence, 

stabilising in adulthood. In the adult, bilateral blinking movements occur periodically 

at regular intervals during waking hours. In elderly people, blink rates exhibit no 

substantial changes, while blink kinematics show a decrease in amplitude and velocity 

(Sun et al., 1997). In a recent study o f Petrikovsky et al (2003), the blinking activity 

in healthy human fetuses was investigated and detected in 89% of the cases, with a 

mean frequency of 6.2 movements per 60 minute observation period. Vibro-acoustic 

stimulation was also used, which was associated with increased fetal blinking. They 

concluded that blinking is a normal fetal activity and the increased frequency of
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blinking activity associated with vibro-acoustic stimulation may be considered a part 

of the normal startle reflex.

The relative importance of sensory input from the ocular surface, tear stability and 

centrally mediated factors in the determination of spontaneous blinking in neonates 

and infants is unclear. Although dopaminergic neurones appear early in human 

development, there are postnatal changes in the organisation of the basal ganglia 

which are associated with altered levels of endogenous dopamine (Meng et al., 1999; 

Herlenius and Lagercrantz, 2001). The low rate of spontaneous blinking at birth may 

therefore be explained by the relative immaturity of the dopaminergic system.

In a normal blink, no appreciable upward rotation of the globe is observed (Doane, 

1980; Riggs et al., 1987), although this was reported by the clinical literature by 

Moses (1975). The confusion arises because of the differences between normal, 

unforced blinks, and those that are voluntary or where the eyelid is restrained from its 

normal motion. A forced blink or a restraint of motion of the upper eyelid results in a 

significant demonstration o f Bell’s phenomenon-upward gaze with lid closure. In a 

normal blink, the globe moves posteriorly by 1 to 6mm as the upper eyelid descends, 

probably caused by eyelid pressure during the closing phase of the blink (Doane, 

1980). In recent findings, it has been found that each eye rotates with an amplitude 

and in a direction that is strongly influenced by initial conditions of direction of gaze 

and lid position (Riggs et al, 1987).

Although the exact mechanism of spontaneous blinking is debatable, studies have 

shown that the preliminary changes occurring in a spontaneous blink involve
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contraction of the orbicularis rather than relaxation of the levator palpebrae superioris 

(Kessler et al., 1995). Lid closure occurs from the lateral canthus to the medial 

canthus, forming an integral part of the lacrimal pump mechanism.

The rate of spontaneous blinking is influenced by a variety of factors, physiological, 

psychological, pharmacological and environmental. Thus anxiety (King and Michels, 

1957) and attention (Patel et al., 1991a; Acosta et al., 1999) reduce the rate of 

blinking. The rate of blinking may be taken as an index of the degree of mental 

tension or stress experienced by the subject and, to a certain extent, may be taken as 

an index to differentiate between phlegmatic and highly-strung individuals.

The factors involved in the control o f spontaneous blinking are not well understood, 

although spontaneous blinks are likely to be initiated by both central and peripheral 

triggers. Recent evidence that the central nervous system plays a role in the control of 

blinking comes from several sources. Blink frequency is highly dependent on 

attention and cognitive states (Schmidtke and Buttner-Ennever, 1992) and 

spontaneous blink rates are significantly influenced by dopaminergic activity in the 

basal ganglia (Taylor et al., 1999). Furthermore, changes in the rate of blinking occur 

following the administration o f dopamine receptor agonists and antagonists (Elsworth 

et al., 1991). Recent work has determined that the control of spontaneous blinking is 

also determined from sensory stimuli arising from the exposed ocular surface 

(Tsubota, 1998). Support of this hypothesis includes the observation that the blink 

rate is significantly lower following the instillation of a topical anaesthetic (Collins et 

al., 1989) and that blink rates are higher under conditions which favour tear 

evaporation (Tsubota, 1998).
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2.9.3.2.2 Reflex Blinking

Reflex movement o f eyelids occur when it is elicited by sensory stimulation, such as a 

cutaneous touch, auditory signals, bright visual stimuli, and corneal or ocular 

irritation. It is also associated synergistically with facial movements in yawning, 

sneezing, eating, and vomiting. Its most important role is as a protective mechanism 

for the eye on the stimulation o f the ophthalmic division of the fifth Vth Cranial 

(Trigeminal) nerve. Reflex blinking operates at high speeds and is manifestated by 

simple neural circuits. The neural pathway of reflex blinking consists of the 

trigeminal nerve as the afferent nerve, and the facial nerve via the polysynaptic 

connection in the brainstem, as the efferent nerve (Esteban, 1999; Esteban et al, 

2004).

Involuntary blinking is also sub-divided into: a twitch blink, consisting, of a small 

movement o f the upper lid; an incomplete blink, where the descending upper lid 

covers less than two-thirds o f the cornea; or a complete blink, where the descending 

upper lid covers more than two-thirds o f the cornea (Abelson and Holly, 1977; Collins 

et al., 1989). Reflex Blinking is a rapid closure movement of short duration that is 

elicited by a variety o f external stimuli.

2.9.4 Factors Affecting Blink Rate

2.9.4.1 Cortical Factors

The factors involved in the control o f spontaneous blinking are not well understood, 

but it is believed to involve central and peripheral triggers. From studies of
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spontaneous eye-blink activity, it has been concluded that its control is primarily 

determined by central (CNS) mechanisms and not on the state of the cornea and 

conjunctiva (Ponder and Kennedy, 1928; Stem et al., 1984; Karson, 1988). Blink 

activity is under cortical control and thus is correlated with certain mental activities 

and cognitive state variables (Ponder and Kennedy, 1928; Holland and Tarlow, 1972; 

Stem et al., 1984).

There is ample evidence that various mental activities including reading, memory use, 

or emotions modify blink rate, and this has been presented as a strong argument for 

central determinants o f spontaneous eye-blink activity (Stem et al, 1984; Karson, 

1988). The performance of simple behavioural tasks such as listening, talking, 

arithmetical exercises or silent rehearsal, significantly increase basal blink rate 

(Karson et al., 1981b; Tanaka and Yamaoka, 1993). Conversely, tasks that require 

visual information processing like reading reduce basal spontaneous blinking (Karson 

et al., 1981b; Goldstein et al., 1992). York et al (1971) found the blink rate declined 

from 15 blinks/ min to 4 blinks/ min when the visual task changed from watching a 

film to underlining every letter a on a page of text. The data suggest that blink 

frequency depends on the type and difficulty o f the task and on the degree of attention 

and fatigue (Stem et al., 1994). In a recent study by Cho et al (2000) it was found that 

the blink rate was affected by the position of gaze and not by the level of task 

difficulty. The mean blink rates were significantly lower when performing the tasks 

at down gaze (reading normal English words and reading mirror-image English 

words) than when performing the tasks at primary gaze.
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While working with computers, blink rate falls below resting conditions. Patel et al 

(1991) investigated the effect of visual display unit (VDU) on the blink rate and 

stability of the pre-comeal tear film in sixteen normal healthy subjects. They found 

an average 5-fold drop in blink rate (18.4 blinks/ min before VDU to 3.6 blinks/ min 

during VDU use) but tear film stability appeared to be unaffected. Acosta et al (1999) 

found a significantly reduced blink rate in about 40% of normal young subjects, 

during the performance of an attentive computer task that required strong visual 

attention. While working with computers, blink rates fall below the resting 

conditions, and other investigations showed a similar effect (Yaginuma et al., 1990; 

Tsubota and Nakamori, 1993; Dumery and Toi, 1997). This is usually combined with 

an increase o f the exposed ocular surface, due to the opening of the eye to watch the 

video display unit. Both circumstances increase tear evaporation (Tsubota and 

Nakamori, 1995). The ensuing dryness o f the ocular surface has been proposed as the 

origin o f the ocular discomfort signs reported by computer users (Rolando et al., 

1983; Tsubota and Nakamori, 1993). These include burning or itching, foreign body 

sensation, lacrimation, photophobia, ocular or orbital pain and headache. The 

influence of visual attention on blinking has been interpreted as the result of a cortical 

influence on the pontine reticular formation neurons that elicit spontaneous blinking 

(Karson, 1989).

A close relationship between blink rate and dopaminergic level transmission is 

supported, based on the variations observed in a series of diseases with impairment of 

this neurotransmitter. Variation of blinking rate has been observed in a number of 

neurological diseases, related to alteration o f the dopaminergic activity. Patients with 

Schizophrenia and Parkinsonism tend to have increased and decreased blink rates,
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respectively. The mean blink rate in patients with schizophrenia was significantly 

greater than that o f the normal control subjects. During neuroleptic treatment, the 

mean blink rate was reduced only in drug-naive patients, but not in the previously 

neuroleptic treated schizophrenics (Stevens, 1978;; Karson et al., 1981a, 1984, 1986; 

Kleinman et al., 1984; Mackert et al., 1988, 1990; Mackert et al., 1991; Chen et al.,

1996). Parkinson’s disease is associated with reduced dopaminergic function and 

reduced blink rate. People who suffer from this disease experience low blink rates 

which increase after levodopa, a precursor of dopamine which is converted to 

dopamine in the brain and is currently the treatment for Parkinsonism (Karson et al., 

1982, 1984; Deuschl and Goddemeier, 1998; Nakayama et al., 1998; Kimber and 

Thompson, 2000). Prolonged blinks are observed due to a delay in the levator 

resuming activity after the end o f the orbicularis twitch (Loeffler et al., 1966).

Infrequent blinking in Parkinson’s disease provides important evidence that one 

determinant that affects blinking is central dopamine activity. Since nigrostriatal cell 

loss (Fomo, 1981) and reduction o f striatal dopamine content (Homykiewicz, 1981) 

are critical pathophysiologic changes in Parkinson’s disease, the reduced blinking in 

this disorder probably indicates the influence of the nigrostriatal dopamine system on 

blink rate (Stevens, 1978).

In Progressive Supranuclear Palsy (PSP) (an under-recognized brain disorder, where 

gradual loss of certain brain cells causes slowing of movement and reduced control of 

walking, balance, swallowing, speaking and eye movement), blink rate is extremely 

reduced, around three blinks per minute and slow blinks have also been described 

(Golbe et al., 1989). In Blepharospasm (BSP) which is a disease where there are



repeated involuntary contractions of the orbicularis oculi muscles, ranging from a 

mere increase in the rate of spontaneous blinking to a state in which the eyelids are 

clamped tightly shut for long periods, the blink frequency is significantly increased, 

especially during the onset phase of the disease (Jancovic et al., 1982; Dening, 1987; 

Grandas et al., 1988; Elston et al., 1989).

Spontaneous blink rates are significant influenced by dopaminergic activity in the 

basal ganglia (Taylor et al., 1999). Altered blink rates are observed in several 

neuropsychiatric disorders that are known to affect dopaminergic neurotransmission 

(Taylor et al, 1999). Alterations in the rate of blinking occur following the 

administration o f dopamine receptor agonists and antagonists (Elsworth et al., 1991).

One report (Helms and Godwin, 1985) describes a decreased blink rate in patients 

with major depression, while another found an increased blink rate (Mackintosh et al., 

1983) which fell to normal levels during treatment. The effect of blink rate was found 

to be independent of medication, but was related to the degree of improvement in the 

patient’s condition.

It has also been suggested that the blink rate reflects ease of seeing (Luckiesh and 

Moss, 1939; Bitterman, 1945; Tsubota et al., 1996), although others have found that 

the blink rate is independent o f text readability or illumination (Tinker, 1948, 1949).
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2.9.4.2 Ocular Surface Factors

Ocular surface factors also have been associated with blinking. Gilbard and Farris 

(1983) reported that ocular surface damage significantly increases the blink rate. For 

example, contact lenses, may disrupt the tear film (Sharma and Ruckenstein, 1985), 

thereby increasing the blink rate (Tada and Iwasaki, 1984). Contact lens wearers have 

been shown to blink less and to exhibit a higher proportion of incomplete blinks than 

non-contact lens wearers (Holly, 1981b). Blinking at frequent intervals is necessary 

for keeping moist the front surface of the lens, and the peripheral portions of the 

cornea not covered by the lens. Pointer et al (1985) noted that soft contact lens 

wearers adopt a sub-conscious blinking strategy to suppress blinking during critical 

tasks. On the other hand, it has been shown that the blink rate during contact lens 

wear increases significantly both with soft and hard lenses, with the subjects 

exhibiting a more regular blinking pattern and an increased number of complete 

blinks (Carney and Hill, 1984; Hill and Carney, 1984).

Blinking also appeared to be determined by local ocular surface conditions. Collins et 

al (1989), testing the hypothesis that corneal sensitivity influences the normal rate of 

involuntary blinks, anaesthetised the cornea using proxymetacaine hydrochloride. 

They found a significant reduction in the blink rate, with the blink rate before 

instillation at 24.8 blinks/ min and after instillation at 17.2 blinks/ min. This 

significant decrease in the blink rate supports the hypothesis that corneal sensitivity is 

at least partly involved in the mechanism controlling normal involuntary blinks.

The effect of corneal anaesthesia on blink rate was evaluated by Moore and Kardon 

(1997). Using proparacaine HCL 0.5% and anaesthetizing the cornea unilaterally and
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bilaterally, they found a significant reduction in blink rate with either unilateral or 

bilateral corneal anaesthesia, and that the effect appeared to be additive between the 

two eyes. They hypothesised that blink rate is primarily determined by the total 

amount of trigeminal sensory input between the two eyes, but this is modulated by 

central processing.

Prause and Norn (1987) hypothesised that there might be a relationship between the 

tear film break up time (TBUT) and blink rate. Their investigation showed a 

significant but low negative correlation (r = -0.33), indicating that there is an 

association between TBUT and blink frequency. Thus the periodic blink is dependent 

not only on central stimuli, but also on the stability of the pre-comeal tear film.

A possible correlation between TBUT and blink frequency was investigated in a 

group of 41 Chinese subjects by Yap (1991). A stronger correlation (r = -0.69) was 

found, supporting the hypothesis of Prause and Norn that the break-up of the tear 

layer may be a stimulus for normal involuntary blinking.

Al-Abdulmunem (1999) made a similar investigation of the relationship between 

blink rate and TBUT using 159 healthy young females. A strong and significant 

correlation was found (r = -0.74) between the two parameters, which agrees with the 

study of Yap (1991).

Himebaugh et al (2001) investigated the relationship between blink rate and TBUT 

with four different visual tasks in both normal and dry eye subjects. Average blink 

rates were 12 blinks/ min while looking ahead, 10 blinks/ min while watching a
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movie, 7 blinks/ min during a letter task (identifying rapidly changing letters) and 5 

blinks/ min while playing a computer game, showing a gradual decrease in blink rate 

while difficulty of the visual task is increasing. Normal subjects showed areas of tear 

thinning or occasional inferior break up during the computer and letter tasks. Dry eye 

subjects showed tear break-up between blinks for all visual tasks, especially during 

the letter task and the computer game, where extensive tear break-up reflex tearing 

occurred.

Yolton et al (1994), in a study investigating the effects of gender and birth control pill 

on spontaneous blink rates, showed that a relationship might exist between blink rate 

and tear stability. However only an extremely weak correlation was found, showing 

that TBUT test is not a good predictor o f blink rates.

Other investigations o f blink rate and tear film stability showed either low or no 

correlation (Goldstein et al., 1985; Patel et al., 1991a).

2.9.4.3 External Environment

Hata et al (1994) reported the effect o f corneal temperature change on blink rate. 

Recruiting eight normal subjects, they measured their central corneal temperature and 

inter blinking interval (IBI) in 20°C and -4°C rooms. As central corneal temperature 

decreased significantly from 34.72±1.45°C in the 20°C room to 31.9±1.6°C in the - 

4°C room, so too did the IBI, i.e. in cooling conditions the blink rate increased. 

Corneal temperature change may be the key factor for blinking, since subtle corneal



temperature change, due to tear evaporation in each blink, could be the initiator for 

blinking.

A second investigation by Hata et al (1995), reported that change of temperature and 

humidity has an influence on blinking. Central corneal temperature and inter blinking 

interval (IBI) were measured in four normal subjects in a 50°C (humidity 20% and 

80%) room, 20°C (humidity 20% and 80%) room, and 0°C room (humidity 80%). 

When increasing the humidity o f the room from 20% to 80% in the 20°C room, 

central corneal temperature increased from 34.8±0.8 to 35.9±1.1°C. IBI increased 

from 3.43±1.67 to 6.62±2.10 seconds in the 20°C room. When increasing the room 

temperature from 20°C to 50°C in 20% humidity, central comeal temperature 

increased from 34.8±0.8 to 36.2±0.6°C. They concluded that in cool conditions and 

low humidity, both comeal temperature and blink rate increased. They also found that 

as tear evaporation began on opening of the eye lids, the comeal temperature began to 

decrease after blinking.

Studies of inter-blink interval (IBI) in different humidity environments (Ponder and 

Kennedy, 1928) showed that the evaporation of tears from the ocular surface was not 

a major determinant o f eye-blink rate. Increased evaporation might be expected in 

those individuals with a wider palpebral aperture, and thus with a greater exposure of 

the ocular surface area (Rolando and Refojo, 1983; Sotoyama et al., 1995). Changes 

in spontaneous eye-blink frequency have been noted when the palpebral aperture is 

deliberately changed by asking the individuals to maintain a normal straight-ahead, 

superiorly, or inferiorly directed gaze (Tsubota and Nakamori, 1995; Nakamori et al.,

1997). Such tasks or alteration in eye positions have been noted to change the normal
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blink rate (Ponder and Kennedy, 1928; Stem et al., 1984; Karson, 1988). However, 

most recent investigations have shown that as the exposed ocular surface increases, 

the eye-blink frequency increases (Nakamori et al., 1997).

Nakamori et al (1997) investigated the relation between blinking and ocular surface 

conditions, concentrating on the local control of blinking. This study demonstrated an 

important association among the blink rate, maximum blink interval, and ocular 

surface conditions. Significant changes in the blink rate and the maximum blink 

interval were induced by factors that directly or indirectly affect the ocular surface: 

exposed ocular surface, topical anaesthesia, wind and video display terminal use.

A similar attempt was made by Tsubota et al (1996) to confirm the theory that local 

conditions affect patterns o f blinking. They found that the pattern of blinking in 

normal subjects was stable and regular, with relatively low variation. In contrast, the 

pattern of blinking in patients with dry eyes was more frequent and erratic. The fact 

that the dry group blinked more often under windy condition and less often when they 

were wearing protective spectacles or using artificial tears, indicated that their 

frequency of blinking was primarily determined by the need to maintain the moistness 

of the ocular surface. The relationship between the habitual palpebral aperture, the 

exposed ocular surface, and spontaneous eyeblink activity was assessed by Zaman et 

al (1998) in elderly individuals. No correlation was found between spontaneous eye 

blink frequency, inter-blink interval, maximum inter-blink interval, and the palpebral 

aperture or the exposed ocular surface. These results suggest that the exposed ocular 

surface itself does not appear to be an important determinant of spontaneous eyeblink 

activity in elderly individuals.
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3. Instrumentation

3.1 Measurement of Corneal Sensitivity

3.1.1 The Non-Contact Corneal Aesthesiometer (NCCA)

The Non-Contact Comeal Aesthesiometer (NCCA) assesses corneal nerve function by

using a controlled pulse of air, directed at the comeal surface. Technically, it is

composed of:

1) A means of generating and maintaining a flow of air.

2) A reservoir for storing and pressurising that air-flow.

3) A valve for controlling the air-flow, and thus the stimulus intensity.

4) A pressure sensor and display to allow monitoring and setting of the stimulus 

intensity.

5) A mechanism for controlling the duration of the air-pulse stimulus.

6) A means of delivering the air-pulse stimulus to the eye.

Atmospheric air is pumped, using a simple air pump, into an air reservoir. This 

reservoir acts to dampen the pressure pulses created in the air flow by the pump itself 

and allows the air to be slightly pressurized to ensure a steady supply. The pressure 

of the air is monitored using an electronic pressure sensor, which displays its readings 

digitally in millibars (mbars) above atmospheric pressure. The air outflow, and thus 

pressure, of the reservoir is regulated using a manually controlled valve. Two 

electronically controlled two-way switch valves direct the flow of the air either to an 

exhaust jet or, when a stimulus is to be applied to the eye, via the stimulus jet. The 

stimulus jets are 35mm in length and 6mm in diameter. They each have a bore of
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0.5mm diameter through the centre, lengthways, through which passes the air 

stimulus. The time duration of the stimulus can be varied by electronic control of the 

switch valves to deliver an air pulse of 0.5, 0.9, or 1.5 seconds duration. The various 

components of the device are connected using nylon tubing. The reservoir, valves, 

pressure sensor and its display, and the connecting tubing are all placed within a self- 

contained polycarbonate sealed box. The figure below illustrates the layout and 

connections (Murphy et al., 1996).

Figure 3.1: Diagram of the technical components of the Non Contact Corneal 

Aesthesiometer (NCCA) (From Murphy PJ et al: Ophthal Physiol Opt 16: 101-107, 

1996).

3.1.1.1 Method of Use

The stimulus jet is positioned close to the eye by means of a slit-lamp attachment, 

which allows accurate alignment o f the jet. This air-jet mounting attachment consists 

of a vertical metal bar, which is placed in the hole found at the top of the slit-lamp’s 

rotational pivot. It is 17 cm tall, from the bottom of the plate to the air-jet, which is 

mounted in a holder. Holes bored in a plastic mount allow fibric-optic fixation targets 

to be positioned to aid in controlling a subject’s fixation temporally, medially, or
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superiorly, allowing repeatable stimulation of the medial, temporal and inferior 

corneal regions, respectively. The testing distance of 10mm is set by using a clear, 

plastic centimetre ruler attached to the side of the plastic mount, and extending 

towards the eye, similar to the scale on an exophthalmometer. Alignment of the air- 

jet with the centre of the cornea is carried out visually (Murphy et al., 1996).

The sensation felt by the subject is described in a variety of ways, the most common 

being as a “cold” sensation. It is also described as feeling like a breeze on the eye, or 

as a pressure type sensation. However, it is not an unpleasant sensation. Subjects, 

report the stimulus as being quite difficult to describe, especially when close to 

threshold.

Fig 3.2: Positioning the stimulus air-jet close to the eye.

Each subject is positioned at the slit-lamp, so that the tip of the stimulus air-jet is 

positioned 10mm away from the corneal apex. At this distance the area of stimulation 

is known to be 0.8mm2 and is considerably lower than the overall surface area of the 

cornea which is approximately 95 mm2 (Murphy et al, 1996). The subject fixates on a 

distant target, to help keep the corneal apex or eyelid aligned with the air-jet. The
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stimulus is presented using the method of limits, sometimes known as the double 

staircase technique. In this method, the stimuli are presented in either an ascending or 

descending order. The first stimulus is one of higher pressure than the threshold of 

the subject to demonstrate the sensation felt. Then, the stimulus pressure is gradually 

decreased until it is below the threshold of the subject, and the pressure at which the 

stimulus was last felt is noted. The pressure is then gradually raised again until the 

subject can detect the stimulus, and the pressure at which the stimulus was first felt is 

recorded. This process is repeated until the threshold is consistently located (Murphy 

et al., 1996).

3.1.1.2 Mode of Stimulation

The air-pulse stimulus of the NCCA has been described by subjects as a cool 

sensation or as a breeze against the eye. As the cornea is not touched by any type of 

stimulus probe, there is no direct mechanical stimulation, suggesting that it is the C 

fibres rather than the A5 fibres that respond to the NCCA stimulation. Murphy et al 

(1999b) investigated whether corneal surface temperature change was the component 

in the mode of stimulation o f the NCCA. Using a thermal camera to observe corneal 

surface changes for a stimulus pressure of 1.0 mbars over a stimulus duration of 0.9 

seconds, a detectable temperature change was produced on the anterior surface of the 

eye. The cooling of the tear film was proposed to be related to the process of 

evaporation. As the air-flow strikes the cornea it increases the rate of evaporation 

from the tear film by altering the humidity equilibrium of the air above the cornea and 

by removing any evaporated water molecules from the vicinity. This evaporation 

removes energy from the tear film at the stimulus location and the temperature of the 

tear film drops. This temperature change is transferred to the cornea by conduction,
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and the nerve endings in the comeal epithelium detect this change in the temperature 

(Murphy et al., 1999b).

3.1.2 Cochet-Bonnet Aesthesiometer

The Cochet-Bonnet Aesthesiometer (Cochet and Bonnet, 1960) is based on the 

instrument devised by Boberg-Ans (1955, 1956). The instrument uses a nylon thread 

of diameter 0.12mm to directly stimulate the mechanically sensitive comeal nerves. 

With this thread stimulus intensities of 11 -200mg/mm2 are possible. A second thread 

of 0.08mm diameter is also available that can give lower intensity stimuli (2-90 

mg/mm2). In practice the thinner thread is rarely used and is no longer commercially 

available.

Fig 3.3: The Cochet-Bonnet Aesthesiometer attached to a slit-lamp holder.

The instrument consists of a small pen (the body of the instrument) containing the 

nylon monofilament thread. The constant diameter of the nylon monofilament 

enables a pressure to be exerted on the comeal surface that is dependent on its length. 

To measure comeal sensitivity, the tip of the nylon thread filament is gently pressed 

against the cornea. Sufficient pressure is put on the filament in order to bend it and a
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response from the subject indicates whether the filament has been felt. As the 

filament can be extended to different lengths, various levels of pressure can be 

obtained: the longer the monofilament used, the lower the pressure required to bend it, 

and the shorter the monofilament used the higher the pressure required to bend it. So 

the pressure exerted is inversely proportional to the monofilament length. The length 

of the filament at which the subject detects the stimulus can be converted to pressure 

using a calibrated scale (Draeger, 1984).

3.1.2.1 Method of Use

The aesthesiometer is mounted in a holder attached to slit-lamp, allowing movement 

in the three cardinal directions. The nylon monofilament must touch the cornea at 

right angles to its surface to produce the correct stimulus pressure, and this point is 

reached when the thread is observed to just bend. The humidity in the room should 

not exceed 60%, because the nylon thread will be affected and give a false reading 

(Cochet and Bonnet, 1960).

Fig 3.4: Nylon monofilament of the Cochet-Bonnet aesthesiometer moving towards to 

the eye.
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The touch threshold of the cornea is determined using the method of constant stimuli. 

Beginning with the lowest pressure, four to eight presentations are made at each 

length of the nylon thread, and the patient is asked to indicate when the probe is felt 

by giving a hand signal. A few blank measurements are also made (the nylon thread 

is brought close to the cornea without touching it) to test the reliability of the patient. 

If the stimulus is not felt with the lowest intensity, the length o f the monofilament is 

then decreased (in 5mm steps) until the threshold is obtained. The CTT is defined as 

the length of the nylon thread at which the subject responds to 50% of the number of 

stimulations. This length is converted into the stimulus pressure using the table given 

with the aesthesiometer. Corneal sensitivity is defined as the reciprocal of the CTT 

(Cochet and Bonnet, 1960).

3.1.2.2 Mode o f Stimulation

The nylon thread of this aesthesiometer stimulates the comeal nerves directly by 

pressing against the eye to produce a comeal deformation (Cochet and Bonnet, 1960; 

Lawrenson and Ruskell, 1993). By varying the length of the thread, a range of 

stimulus pressures can be applied by producing different amounts of comeal 

deformation. It is this deformation that causes the sensation of touch. The A5 fibres, 

running parallel to the comeal surface, respond exclusively to mechanical forces 

(Maclver and Tanelian, 1993; Belmonte and Gallar, 1996; Muller et al., 1996, 2003), 

and we can assume that the predominant nerve fibres types, stimulated by the Cochet- 

Bonnet aesthesiometer, are the mechanical stimulation-specific A8 fibres.
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3.2 Measurement of Corneal Thickness

3.2.1 The Haaq-Streit Optical Pachometer

The comeal thickness was measured using the Haag-Streit Pachometer (Mishima and 

Hedbys, 1968) mounted on a slit-lamp. The pachometer is based on the optical 

principle, originally described by Jaeger (1952) and consists of two glass plates in 

front of the right eye microscope. The lower plate is fixed and the upper plate is 

rotatable around a vertical axis. The incident light comes through a vertical aperture 

in a thin metal diaphragm extending from the attachment, which maintains an angle of 

40° between the incident light beam and the axis of the right microscope. The right 

eyepiece is replaced by a special slit that divides the visual field into lower and upper 

halves. The light passing through the upper rotatable and the lower fixed glass plates, 

is seen in the upper and the lower visual field, respsectively (Mishima and Hedbys, 

1968).

3.2.1.1 Method of Use

The measurement assesses the apparent thickness o f the comeal optical section, when 

the slit-beam passes through the tissue perpendicularly to its surface (Jaeger, 1952). 

The setting of the doubled device moves a scale relative to a pointer, which permits 

the apparent comeal thickness to be recorded. To get a good comeal section, the 

thinnest possible slit beam is used with a short bright slit. The slit beam should be 

accurately focused throughout the measurement, and, to assist with this, the maximum 

objective magnification is used. (Mishima and Hedbys, 1968).
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Fig 3.5 : The Haag-Streit Pachometer attached to a slit-lamp for the measurement of 

corneal thickness.

The patient is asked to look at a target that can be adjusted by the observer to any 

position, depending on which part of the cornea the measurement will be taken. The 

optical section of the cornea is then placed at the centre of the visual field of the 

microscope and the slit positioned perpendicularly to the corneal surface. With the 

slit beam in focus, the sector-shaped disc at the top of the pachometer is rotated, so 

that the corneal endothelium of the upper field is in line with the corneal epithelium of 

the lower field. The scale reading on the disc gives the comeal thickness in changing 

millimetres.

The actual comeal thickness corresponding to the scale reading varies, depending 

upon the comeal curvature. For the same radius of comeal curvature, some correction 

is necessary for the scale reading, depending on the range of the thickness values. 

This is because the scale divided the angle into equal segments, but the relationship 

between the comeal thickness and the rotated angle of the glass plate is not linear. 

Within the normal range of the human central comeal thickness (0.45 to 0.57mm), 

practically no correction is necessary (Mishima and Hedbys, 1968).
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3.3 Measurement of Tear Film Stability

3.3.1 Invasive Tear Break-Up Time (TBUT)- Fluorescein

Traditionally, tear break-up time has been measured by staining the tears with 

fluorescein. The fluorescein is instilled into the conjunctival sac and the cornea is 

scanned with cobalt blue illumination, using the slit-lamp microscope, for the first 

sign of any discontinuity. The dye is usually applied by wetting a fluorescein- 

impregnated strip with saline. In the experiments conducted in this thesis, 0.7 pi of 

2% fluorescein was instilled using a P I00 micropipette (Wolf Laboratories, UK) to 

ensure a measured doze was instilled in each subject. The fluorescein was expelled 

from a sterile, single-doze Minim (Chauvin Pharmaceuticals, Essex, UK) into a sterile 

Eppendorf dry tube (Fisher Scientific, Loughborough, UK, Ltd), from which it was 

extracted by the micropipette. A new sterile pipette tip was used on each instillation. 

Subjects were asked to tilt their head back and look down. The upper eyelid was then 

held open and the fluorescein was instilled into the conjunctival sac. A wide beam 

(full aperture) was used, so that the whole cornea was illuminated and viewed with 

10X magnification, using moderate illumination. A yellow filter (Baush & Lomb) 

was used to improve contrast. Any discontinuities in the tear film were seen as dark 

spots in the fluorescent film. The first appearance of a spot represented rupture of the 

tear film. This “fluorescein” break up-time has been defined as: the time interval 

between a complete blink and the appearance o f the first randomly distributed dry 

spot; and the period is usually greater than the time interval between two consecutive 

blinks. Normal values range from 15 to 35 seconds, and values less than 10 seconds 

are suggested to be abnormal (Norn, 1969; Lemp and Holly, 1970; Rengstorff, 1974).
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Three measurements of the tear film break-up time were taken to provide an average 

TBUT.

3.3.2 Non Invasive Break-Up Time (NIBUT): Tearscope Plus

The Tearscope Plus (Keeler, UK, Ltd) is a hand-held instrument that it is used in 

conjunction with a slit-lamp biomicroscope. The Tearscope, developed by Guillon 

(1986) is specifically designed to prevent any artificial drying of the tear film during 

the examination. It is based on an illuminated, translucent, tubular design which acts 

as support for inserts and add-ons. With the patient’s head positioned on the slit-lamp 

chin rest, the slit-lamp source was positioned nasally and switched off, since 

illumination is provided by the Tearscope Plus itself. The Tearscope was mounted on 

the slit-lamp between the microscope and the subject. This allowed the instrument to 

be held close to the eye and positioned to allow observation through the observation 

hole via one of the biomicroscope objectives. Close position of the Tearscope to the 

eye maximizes the area illuminated. A translucent grid pattern was inserted within 

the illuminated inner surface o f the instrument to project a regular grid pattern on to 

the tear film surface. A deformation in the pattern reveals the imminent rupture of the 

tear film. Initially a low magnification was used although this was increased to 20- 

40x to examine the interference patterns in detail (Guillon and Guillon, 1988; Veys, 

2002).
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Picture 3.6: Set-up of the Tearscope for the measurement of the tear-film break-up 

time non-invasively.

3.4 Measurement o f Ocular Surface Temperature

3.4.1 Themo-Camera for Ocular Thermography

To measure dynamic temperature measurements of the ocular surface area, an infrared 

radiation thermography instrument was used. This is the NEC San-ei Thermo Tracer 

TH7102MX thermo-camera. This instrument was provided on-loan by Dr James 

Wolfson, Department of Vision Sciences, Aston University.
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Fig 3.7: The TH7102MX thermo camera for measuring ocular surface temperature.

Modem infrared temperature measurement usually employs a scanning system to 

provide information of the surface temperature across a large area. The data can be 

transformed into a colour-coded image which is displayed on a monitor and can be 

interpreted easily. Measurement and colour-coded display is referred to as 

thermography (Morgan et al., 1993).

The camera has the following features:

1) It uses an uncooled focal plane array for the detector (Silicone) which makes it a 

truly portable device; LCD colour view-finder.

2) Self calibrating: no need for black body device.

3) The detector is sensitive to 8- 14pm, which is suitable for the emission spectrum of 

the anterior eye.

4) It has three frame speeds (7.5, 30, 60Hz), as well as a static facility.

5) Temperature resolution of 0.08°C at 30Hz, 0.16°C at 60Hz.

6) Accuracy of ±2% (over widest range).
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7) Addition of a close-up lens allows close focus at 60mm, with a spatial resolution of 

100pm.

8) Pixel size o f image 320(H) x 240(V).

9) Colour/ monochrome facility.

10) Run/ freeze facility.

3.4.1.1 Collection and Analysis o f Data

The processing within the camera allows up to ten point or five box settings for 

measuring temperature, but to permit greater flexibility, purpose-written software has 

been developed by Dr James Wolffsohn (Aston University) using Labview® 

(National Instruments, USA). This program run on a PC computer connected to the 

camera. Data is collected from the dynamic thermal profile and, with the image in 

monochrome, the software program enables interpretation of the tones of grey as 

temperature, given a set range for the 256 gradations. The sensitivity of the camera 

can be altered to extend detecting range as required. Emissivity is set at 0.98.

The program collects dynamic information from 21 points on the cornea, allowing the 

continuous monitoring o f the temperature of the anterior eye and the development of 

dynamic thermal profiles. For these studies, a customised program was used to 

collect dynamic information from 5 points on the cornea (centre, superior cornea, 

inferior cornea, nasal sclera, temporal sclera).
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Fig 3.8: Output display screen of monochrome image analysis software.

At a viewing distance of 60mm, the camera’s field of view is 34.5mm (horizontal) x 

26.0mm (vertical), represented by 520x247 pixels on the computer screen. This means 

that for most subjects, the whole anterior eye surface is visible.

K

E A I

M

Fig 3.9 : The five data points: A= Centre of the Cornea, K= superior cornea, M= 

inferior cornea, E= temporal sclera, and 1= nasal sclera.

3.4.1.2 Method of Use: Set Up of the Camera

The camera was set-up in a dedicated area of the laboratory, which provided control 

over environmental temperature and humidity. Background radiation was reduced by 

the use of a black thick curtain, and by maintaining a short distance from the radiation 

source to the detector with a close-up lens. The lens cap (coated with blackbody
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paint) was used to calibrate the camera before each experiment. This allows a 

correction factor to be calculated by the camera to take into account any reflection of 

the environmental temperature from the eye.

The camera has a special slit-lamp attachment which allows good control of camera 

alignment. The close-up lens focuses the camera at 60mm from the camera objective, 

and the slit-lamp is moved to bring the image of the eye into focus. The distance 

between eye and lens is checked by placing a rule of length 60mm between the lens 

and the closed lid.

Fig 2.10: Camera set-up for the measurement of the ocular surface temperature.

Measuring the temperature of the right eye only, the patient was asked to stabilise 

their head on the slit lamp chin-rest and look straight ahead into the camera, blinking 

normally. Proper alignment was achieved, when the center of the cornea was 

positioned at the central point A, the superior and inferior cornea at the data points K 

and M, and the nasal and temporal sclera at the data points E and I. A clear image at 

the computer could then be seen as shown in Figure 11. The subject was asked to
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make a good blink (eye-closure) for 2-3 seconds and then to avoid blinking for 8 

seconds, always looking into the camera. During the 8 seconds without blinking, the 

camera recorded the dynamic temperature change. Five measurements were recorded 

for each subject and the average of these measurements was the dynamic thermal 

profile for each subject.

3.5 Measurement of Evaporation from the Ocular Surface Area

3.5.1 Evaporimeter

Tear film evaporation rate measurements were made with a modified ServoMed EP-3 

Evaporimeter (ServoMed, Kinna, Sweden). This instrument was provided on-loan by 

Dr Ian Pearce, Department o f Vision Sciences, Glasgow Caledonian University. The 

instrument is based on the theoretical principal that, in the absence of forced 

convection, a linear relation exists between the vapour pressure (product of relative 

humidity) and the distance from an evaporative surface (Nilsson, 1977). The 

ServoMed Evaporimeter calculates the difference in vapour pressure recorded by two 

sensors placed above the evaporative ocular surface (Trees and Tomlinson, 1990; 

Craig and Tomlinson, 1997). The sensors measure relative humidity and temperature 

at two heights and, from knowing the vapour pressure at these two points, and the 

distance between them, the evaporation rate can be calculated (Trees and Tomlinson, 

1990).

The Evaporimeter is connected to a PC computer that allows control of data collection 

and analysis. The software program requires the ambient temperature and humidity
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recorded at the time of the evaporation measurements during the conversion analysis, 

and these are measured for the Laboratory while taking measurements.

3.5.1.1. Method o f Use

The ServoMed Evaporimeter is attached to a modified swimming goggle mounted on 

a slit-lamp. The swimming goggle is used to keep the probe from coming in contact 

with the subject’s eye and to isolate the eye from the outside environment (Trees and 

Tomlinson, 1990). This goggle arrangement allows the subject to blink normally.

The evaporation rate measured by the goggle-mounted probe is a combination of the 

evaporation rates of the pre-ocular tear film and the facial and lid skin within the 

probe. The evaporation rate o f the pre-ocular tear film is measured with the subject’s 

eye open, whereas the skin evaporation rate is measured with the subject’s eye closed.

Although the swimming goggle is usually mounted on the slit-lamp and the subject’s 

head is supported by a chin and head rest while the modified goggle surrounds the 

eye, in our experiment the subject was asked to hold the goggle mount with their left 

hand, and to apply light pressure on the goggle to maintain a close fit with the skin 

around the eye.
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Fig 3.12: The swimming goggle of the evaporimeter attached to the eye for the 

measurement of the tear film evaporation from the ocular surface.

The evaporation rate was measured on the right eye only. Each measurement of 

evaporation rate was composed of two measurements of evaporation rate for each eye. 

Firstly with the eyes closed, and then with the eyes open. The closed eye evaporation 

readings were used to factor out the contribution to evaporation from the skin of the 

face within the goggle. It is necessary for calculations of ocular surface evaporation 

rates to know the exposed ocular surface area within the goggle. A photograph of the 

subject’s eye, with a reference scale, was taken and the area of the eye calculated with 

the NIH Image II computer program.

The evaporation rates were recorded twice for each subject, for two minutes. Only 

the measurements recorded in the second minute (stored every 5 Hz) were used in the 

calculation, to allow the environment within the goggle to stabilise during the first 

minute.
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3.6 Iris Colour C lassification System

The subjects are classified according to their iris colour using the Iris Color 

Classification System by Seddon et al (1990). This system is based on four standard 

photographs (Fig 3.13). Categories of iris colour are distinguished based on the 

predominant colour: blue, grey, green, light brown, and brown, and the amount of 

brown or yellow pigment in the iris, into five groups. The system uses photographs of 

four standard iris colours to grade any individual’s iris.

r "r*~

Fig 13 (b): Standard BFig 13 (a): Standard A

Fig 13 (c): Standard C Fig 13 (d): Standard D

Fig 3.13: Iris Color Classification System: Photographs of the four standard iris 

colours, used to grade an individuals iris (From Seddon et al: Invest Ophthalmol Vis 

Sci 31: 1592-1598, 1990).
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Grade 1: Blue or grey iris with brown or yellow specks equal to (in approximate

percentage of total iris area) or less than in standard A (Fig 3.13 a).

Grade 2: Blue, grey or green iris with brown or yellow specks equal to or less than in

standard B (Fig 3.13 b) but greater than in standard A.

Grade 3: Green or brown iris with brown or yellow specks equal to or less than in 

standard C (Fig 3.13c) but greater than in standard B.

Grade 4: Brown iris with colour equal to or less than in standard D (Fig 3.13 d), but 

greater than in standard C.

Grade 5: Brown iris darker than standard D.

Blue or grey irides: are classified as grades 1 or 2. These grades are distinguished by 

assessing the proportion o f total iris area with brown or yellow pigment, compared 

with standard photographs A and B.

Green iris: are classified as grades 2 or 3. These grades depend on the extent of 

brown or yellow pigment in the iris.

Brown iris: are classified as grades 3, 4, or 5. These grades depend on the intensity 

of the yellow -  brown pigment compared with standard photographs C and D.
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3.7 Photography o f the Eye

3.7.1 Canon Digital Camera

A Canon Power Shot G2 Digital Camera (Canon UK Ltd) was used for photography 

of each subject’s eye and adnexa. These photographs were later used for iris colour 

classification, and the calculation of the exposed ocular surface area.

Fig 3.14: Digital Canon Camera Power Shot G2, attached to a close-up lens Canon 

(250D, 58mm), through a conversion lens adapter.

For optimum results a close-up lens (Canon 250D, 58mm) was required, and this was 

used with a conversion lens adapter (Canon, LA-DC58). A software program (Canon 

Digital Camera Solutions V8.0) was provided with the camera to download the 

images taken onto the computer.
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Fig 3.15: Photograph of an eye taken with the Canon Camera, using a Canon close-up 

lens.

3.8 Recording o f B link Rate

3.8.1 Video Camera Recorder

A Sony DCR-TRV27E Digital Handycam (Sony UK Ltd, Berkshire) was used to 

record the blinking pattern of the subjects. A digital video format was chosen since it 

allowed easier transfer and storage of recorded sequences. The camera was hidden, in 

order the recording of the blink rate of the subjects to be done without their 

knowledge, as blink rate could be affected (Doane, 1980; Yap, 1991).

Fig 3.16: Sony Digital Video Camera Recorder.
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Each subjects sequence was first recorded onto digital video tape using the camera’s 

own recorder. Each tape was then downloaded onto an E Mac computer (E Mac G4, 

1.25 MHz) using the iMovie software program (iMovie 4.01, Apple Computer. Inc). 

Each subject’s sequence could then be identified for analysis.

Since blink rate can be affected by the psychological status of the subject, the 

recording was done without the subject’s knowledge, while they were watching an 

educational film. Once the data collection was completed, all the subjects were made 

aware of the video recording. The subjects were then asked to sign a second consent 

form, which explained the purposes o f the study and why the subject was only made 

aware of the camera after the completion o f the experiment and not before. If the 

subject did not agree, the recording was deleted in the presence of the subject and the 

subject’s data removed from the study. There were only two subjects who disagreed 

with the procedure of the experiment, and the recording data were deleted.
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4. An Investigation of the Diurnal Variation in Corneal 
Sensitivity and Thickness

4.1 Introduction-Purpose

The diurnal variation o f corneal sensitivity in humans has been studied in two 

previous works. Millodot (l 972) measured the diurnal variation of central corneal 

sensitivity to touch using the Cochet-Bonnet Aesthesiometer over a 12-hour period. 

He found that sensitivity was lowest in the morning, with a slow improvement during 

the day. du Toit et al (2003) investigated the diurnal variation of both corneal 

sensitivity and thickness over a 24-hour period and found a 35% variation in 

sensitivity over this cycle. Central corneal sensitivity was measured using a non- 

contact pneumatic aesthesiometer (Vega et al., 1999), a device based on the 

pneumatic aesthesiometer developed by Murphy et al (1996).

This reduction of corneal sensitivity in the morning has been attributed to eyelid 

closure and to reduced oxygen tension at the anterior ocular surface caused by lid 

closure (Millodot and O'Leary, 1979). This is accompanied by swelling of the 

epithelial cells which stimulates the corneal nerve endings and induces neural 

adaptation (Millodot, 1972).

Diurnal variation of corneal thickness in humans has been monitored over periods 

ranging from 12 to 48 hours, and using optical or ultrasonic pachymetry (Kiely et al., 

1982; Holden et al., 1983; Harper et al., 1996; du Toit et al., 2003). Other studies 

have measured overnight swelling and diurnal variation of corneal thickness for less
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than 12 hours (Mandell and Fatt, 1965; Mertz, 1980; Feng et al., 2001). All of these 

studies showed that the cornea is thickest immediately after eye opening in the 

morning, regardless o f the instrumentation used or the time points when 

measurements were taken. However, there was a disparity in the time point at which 

the thinnest measurement o f the cornea was taken, of between 5-10 hours after eye 

opening.

Corneal thickness measurements are indicative of the metabolic status of the cornea, 

since they provide information on the corneal hydration status (Mishima et al., 1966). 

Such measurements give valuable information on the physiological state of the 

cornea. Evaluation o f corneal thickness is important in a wide range of disorders, 

such as ocular disease (Insler and Baumann, 1986; Mandell et al., 1989; Weston et al., 

1995; Larsson et al., 1996; Saini and Mittal, 1996; Auffarth et al., 2000), glaucoma 

(Copt et al., 1999; Shah et al., 1999; 2000), contact lens related complications (Huff, 

1991; Solomon, 1996; Liu and Pflugfelder, 2000), dry eye (Pole and Batzer, 1985; 

Liu and Pflugfelder, 1999), trauma (Cheng et al., 1988), and hypoxia (Klyce, 1981; 

Johnson et al., 1985).

Comeal thickness measurement can provide a reference parameter for experimental 

and clinical research. However, it is important to understand how comeal 

physiological factors, such as hypoxia, evaporation and intraocular pressure, affect 

comeal hydration. Hypoxia and lack o f tear evaporation combine to produce 

overnight comeal thickness changes (Mandell and Fatt, 1965; Mertz, 1980; Holden et 

al., 1983; Tomlinson and Cedarstaff, 1992; Harper et al., 1996; Feng et al., 2001; du 

Toit et al., 2003). The healthy human cornea experiences hypoxia beneath the closed
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eyelid during sleep (Holden et al., 1983; Efron and Carney, 1979). Beneath the closed 

eyelid, there is a reduction in oxygen levels and an absence of evaporation from the 

tear film, which are thought to induce corneal anaerobic metabolism and hypotonicity 

of the tear film, respectively. The anaerobic metabolism causes an accumulation of 

lactate within the stroma, which produces an osmotic influx of water and a reduction 

of water in the epithelium (Klyce, 1981). Clinically, an injured epithelium has been 

shown to result in increased epithelial oedema in the morning, after lid closure during 

the night and a subsequent reduction of evaporation from the ocular surface 

(Dohlman, 1987; Feng et al., 2001). Other factors that could influence corneal 

hydration include intraocular pressure, which increases rapidly after awaking 

(Frampton et al., 1987; Harper et al., 1996), and the temperature of the body, which 

decreases during night time sleep and increases again after sleep and throughout the 

day (Wright, 1992; Harper et al., 1996).

Since corneal sensitivity is known to vary during the day, it is important, for 

experimental design, that the effect o f this diurnal change does not influence the 

results. Although it is known that corneal sensitivity is lowest immediately after 

eyelid opening, it has not been clearly established when corneal sensitivity change 

stabilises. To improve the quality o f the results for corneal sensitivity in later studies, 

it was felt important to establish the diurnal change pattern. The amount of corneal 

thickness has been included as a control to show that the physiological status of the 

cornea has changed.

In this study, the pattern of change in corneal sensitivity was assessed using both the 

Non-Contact Corneal Aesthesiometer (NCCA) and the Cochet-Bonnet
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Aesthesiometer. This will allow the assessment of different groups of nerve 

receptors, both cold and mechanical sensors in the corneal epithelium. In addition, 

the diurnal variation of corneal thickness measurement will allow an assessment of 

how corneal sensitivity and thickness inter-correlate during the day.

4.2 Methods

Twenty Caucasian subjects (7 males, 13 females; mean age, 23.7±3.18 years; range, 

19-30) were recruited from the student population of Cardiff University. Subjects 

were excluded if they were contact lens wearers (Ntola and Murphy, 2002), or if they 

had any ocular or systemic pathology known to affect corneal sensitivity, e.g. ocular 

surgery, ocular diseases, diabetes, corneal dystrophy (Bimdorf and Ginsberg, 1972; 

Ishikawa et al., 1994; Lyne, 1977; Rosenberg et al., 2000; Schwartz, 1974). Also, 

pregnant women or women during the premenstruum, menstruation, or ovulating 

period were excluded, as corneal sensitivity is depressed and corneal thickness 

increased (Kiely et al., 1983; Martin and Safran, 1988; Millodot, 1984, 1994). 

Individuals were asked to not consume alcohol for the 24 hours prior to the start of the 

study, because of the effects o f alcohol consumption on corneal thickness (Shiono et 

al., 1987). Ethical approval was obtained from the School of Optometry and Vision 

Sciences Research Ethics Committee. After explanation of the purpose of the study, 

subjects were asked to sign a consent form prior to participating. Subjects were also 

reminded that they could withdraw from the study at anytime.

Subjects were asked to put a patch on the right eye, to prevent opening of the eye, 

from the previous night at 11pm, and not to remove it before attending our laboratory 

the following morning. This was to avoid any changes in corneal sensation and
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thickness before measurements and to create a standard starting point for all subjects. 

The patch was removed five minutes before measurements began. Participants were 

asked to attend at intervals between 08.00 and 22.00. Measurements of comeal 

sensitivity and thickness were assessed over a 15 hour period, taking hourly 

measurements from 08.00 to 12.00, and then every 2 hours until 22.00. All 

measurements were taken on the right eye only. The order of measurements was 

randomised at each time period, apart from the first visit at 08.00, where comeal 

thickness was assessed firstly. Each visit lasted fifteen minutes approximately. 

Subjects were not allowed to sleep during the experiment.

To assess whether measurement o f comeal sensitivity with the NCCA has any 

learning effect for the subjects, the experiment was repeated on a second day (test/re

test group) for the first seven subjects who participated in the study (7 females; mean 

age, 22.7 ±3.2 years; range, 20-26).

Comeal sensitivity was assessed at the central area of the cornea using both the Non- 

Contact Comeal Aesthesiometer (NCCA) and the Cochet-Bonnet Aesthesiometer 

following the experimental procedure described in section 3.1.1 and 3.1.2.

Comeal thickness was measured using the optical Haag-Streit Pachometer, following 

the experimental procedure described in section 3.2.
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4.3 Results

The distributions o f the corneal sensitivity and corneal thickness measurements were 

assessed for normality (Shapiro-Wilk), using the SPSS 11 Statistical Software 

Program (Lead Tools, Lead Technologies, Inc). The data of corneal sensitivity using 

both the NCCA and the C-B Aesthesiometer were found to be not normally 

distributed. The data was log transformed but was found to remain not normally 

distributed. As a result, non-parametric tests have been used to analyse the raw data. 

Corneal thickness measurements were found to be normally distributed, allowing the 

use of parametric statistical tests.

T ab le  4.1: Median/interquartile range (IR) and mean (± standard deviation) of 

central corneal sensitivity thresholds and corneal thickness measurements taken over 

the daily 15 hour period.

Non-Contact Comeal Aesthesiometer (mbars)

08.00 09.00 10.00 11.00 12.00

Median /IR 0.40/ 0.35-0.6 0.35/0.27-0.57 0.32/0.25-0.5 0.30/0.225-0.45 0.25/ 0.17-0.42

Mean ± SD 0.48±0.17 0.42±0.17 0.37±0.15 0.34±0.15 0.29±0.15

14. 00 16.00 18.00 20.00 22.00

Median /IR 0.20/0.15-0.45 0.20/0.15-0.42 0.22/ 0.15-0.4 0.22/0.15-0.4 0.20/ 0.15-0.37

Mean ± SD 0.30±0.15 0.29±0.15 0.28±0.15 0.28±0.15 0.26±0.15
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Cochet-Bonnet Aesthesiometer (gr/mm )

08.00 09.00 10.00 11.00 12.00

Median /IR 0.40/ 0.4-0.4 0.40/ 0.4-0.4 0.40/ 0.4-0.4 0.40/ 0.4-0.4 0.40/ 0.4-0.4

Mean ± SD 0.41±
0.036635

0.41±
0.030779

0.40±
4.83E-09

0.40±
4.83E-09

0.40±
4.83E-09

14. 00 16.00 18.00 20.00 22.00

Median /IR 0.40/ 0.4-0.4 0.40/ 0.4-0.4 0.40/ 0.4-0.4 0.40/ 0.4-0.4 0.40/ 0.4-0.4

Mean ± SD 0.40±
4.83E-09

0.40±
4.83E-09

0.40±
4.83E-09

0.40±
4.83E-09

0.40±
4.83E-09

Haag Streit Pachometer (mm)

08.00 09.00 10.00 11.00 12.00

Median /IR 0.50/0.5-0.56 0.52/0.48-0.54 0.49/ 0.47-0.54 0.50/ 0.46-0.54 0.50/0.44-0.52

Mean ± SD 0.53±0.05 0.51±0.05 0.50±0.05 0.5±0.05 0.49±0.04

14. 00 16.00 18.00 20.00 22.00

Median /IR 0.48/0.46-0.51 0.48/ 0.46-0.54 0.49/ 0.45-0.52 0.50/ 0.46-0.53 0.50/0.46-0.53

Mean ± SD 0.49±0.04 0.50±0.05 0.49±0.05 0.50±0.05 0.50±0.04
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4.3.1 Corneal Sensitivity - NCCA Aesthesiometer

A significant improvement in C-fibre sensitivity was found during the day, with the 

sensitivity being lowest in the morning, and gradually increasing towards evening 

(Kruskal-Wallis test, p = 0.0001) (Fig 4.1).
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Fig 4.1 : Box and whisker plot (median, interquartile range) measurements of C-fibre 

central comeal thresholds measured every hour from 08.00-12.00, and every 2 hours 

from 14.00-22.00. A box and whiskers plot shows range and quartiles. The box 

extends from the 25th percentile to the 75th percentile, with a line at the median (the 

50th percentile). The whiskers extend above and below the box to show the highest 

and lowest values.

Sensitivity continued to increase from 08.00 to 12.00 (Kruskal-Wallis test, p = 0.003), 

but there was no continuation of this improvement from 14.00-22.00 (Kmskal-Wallis 

test, p = 0.935). A significant difference was found between the thresholds at 08.00
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and 22.00 (Wilcoxon matched pairs test, p<0.0001), and the comeal sensitivity 

increased by 45.8% over the study time period.

4.3.2 Corneal Sensitivity - Cochet-Bonnet Aesthesiometer

No significant change was found in A5 fibre sensitivity recorded over the 

experimental time period (Kruskal-Wallis test, p = 0.0603) (Fig 4.2).
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Fig 4.2 : Box and whisker plot (median, interquartile range) A8 fibre central comeal 

thresholds every hour from 08.00-12.00, and then every 2 hours from 14.00-22.00.

All of the subjects were able to feel the stimulus at the lowest pressure exerted by the 

longest length of the nylon monofilament thread at the first measurement time. Only 

two subjects showed a slightly variation in the sensitivity between 08.00-22.00, hence 

the graph has taken this pattern.
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4.3.3 Corneal Thickness

Using the Haag-Streit Pachometer to determine the diurnal variation of corneal 

thickness, a significant change was found from 08.00 to 12.00 (one-way ANOVA, p = 

0.04). Fig 4.3 shows the corneal thickness as a function of time.

Diurnal Variation of Corneal 
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Fig 4.3: Mean (± standard deviation) central thickness measured every hour from

08.00-12.00, and then every 2 hours from 14.00-22.00.

No significant change was found between the 14.00-22.00 measurements (one-way 

ANOVA, p = 0.969). There was no statistical difference over all day time (one-way 

ANOVA, p = 0.123). The corneal thickness decreased during the day by 5.7%.
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4.3.4 Correlation between Corneal Sensitivity and Thickness

The relationship between C-fibre corneal sensitivity and thickness was examined over 

time. An almost significant relationship was found for corneal sensitivity and 

thickness (Spearman, r = 0.616, p = 0.067), demonstrating a trend that as corneal 

sensitivity increases, corneal thickness decreases (Fig 4.4).
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Fig 4.4 : Correlation of comeal sensitivity (NCCA) and thickness for all time points 

between 08.00 and 22.00.

However, the previous analysis of comeal sensitivity and thickness has indicated there 

are two phases of diurnal variation for both factors: 08.00-12.00, and 14.00-22.00. If 

the relationship between comeal sensitivity (measured with the NCCA) and thickness 

is examined between 08.00-12.00, a significant strong correlation is found (Spearman, 

r = 0.986, p = 0.002) (Fig 4.5). However, when the measurements between 14.00-
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22.00 are considered, no significant correlation is found (Spearman, r = 0.35, p = 

0.517) (Fig 4.6).
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Fig 4.5: Correlation of comeal sensitivity (NCCA) and thickness for each time point 

between 08.00 and 12.00.
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Fig 4.6: Correlation of comeal sensitivity (NCCA) and thickness for each time point 

between 14.00 and 22.00.
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4.3.5 Patient Training with the NCCA

To assess the effect o f learning on the measured corneal sensitivity threshold for the 

NCCA, the corneal sensitivity thresholds, at each time point, were repeated for seven 

subjects on a second day. A correlation of the mean threshold for each time points 

between Day 1 (test) and Day 2 (re-test) found a significant relationship between the 

two sets of measurements (r =0.966, p<0.0001) (Fig 4.7).
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Fig 4.7 : Correlation of measured sensitivity threshold for Day 1 and Day 2, using the 

NCCA.

Another way of comparing the test/re-test reliability of the NCCA is to use a Bland 

and Altman plot. This assesses the repeatability of a technique by comparing repeated 

measurements on a series of subjects. The graph produced can be used to check 

whether the variability or precision of a method is related to the subjects being



measured or to the technique. The Bland and Altman plot for the test/re-test group is 

shown in Fig 4.8. Two outcomes can be noted from the graph. Firstly, the results 

show a strong correlation between the measurements taken on Day 1 and on Day 2, as 

the points are plotted tightly together within a small standard deviation. Secondly, all 

the measurements of the second day are slightly lower than those of the first day, 

indicating that the measurements o f corneal sensitivity using the NCCA have a small, 

but consistent learning component.
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Fig 4.8 : Bland and Altman plot of the threshold differences plotted against the 

average of the two measurements. The horizontal lines represent the mean difference, 

and the mean difference plus/minus two standard deviations of the mean.
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4.4 Discussion

In this study, the diurnal variation o f both the comeal sensitivity and thickness were 

measured, over a period o f 15 hours. Assessing comeal sensitivity with the NCCA, a 

significant change in sensitivity was found over time. This change was characterized 

by a lower sensitivity in the morning and a progressive increase in sensitivity towards 

the evening. Central corneal sensitivity was significantly improved one hour after eye 

opening. This improvement continued, on average, for the next 5 hours up to 12.00, 

after which no significant change occurred over the rest of the day. This pattern of 

diurnal change in sensitivity is in accordance with previous investigations (Millodot, 

1972; du Toit et al., 2003).

Measuring comeal sensitivity using the Cochet Bonnet Aesthesiometer, no variation 

was found across the day. There were only two subjects, who experienced a small 

variation between 08.00 and 10.00, and for this reason the graph (Fig 4.2) has taken 

this pattern. These results contradict Millodot (1972) who found a variation through 

the day using the same aesthesiometer. It is known that this instrument has a number 

of deficiencies in its design that limit the usefulness o f its results: it has a truncated 

stimulus intensity range that prevents measuring of the true sensation baseline and 

change at high sensitivities; it alters the threshold o f the subject by increasing their 

apprehension; it damages the comeal epithelium by the use of an invasive stimulus; 

and finally, the nylon monofilament thread is affected by sterilization methods and 

environmental conditions (Larson, 1970; Murphy et al., 1998).

The diurnal variation of sensitivity may be influenced by factors such as hypoxia, as a 

result of a prolonged eye closure (Millodot, 1972; Mindel and Mittag, 1978; Millodot
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and O'Leary, 1979, 1980; Pesin and Candia, 1982; Tanelian et al., 1982; du Toit et al., 

2003). During sleep, the comeal epithelium is exposed to a partial pressure of oxygen 

of 55 mmHg, whereas when the eyes are open, the epithelium is exposed to a partial 

pressure of oxygen o f 155 mmHg (Heald and Langham, 1956; Hill and Fatt, 1963, 

1964; Takahashi and Fatt, 1965; Farris et al., 1965; Poise and Mandell, 1970). 

Millodot and O’Leary (1979) showed in their study that eyelid closure gives rise to a 

considerable and progressive loss o f comeal sensitivity, whilst comeal thickness 

increases by a small amount. They attributed this overnight comeal sensitivity 

decline to a lower oxygen pressure at the comeal surface, and not to the mechanical 

pressure exerted by the eyelid. They supported this hypothesis with a second 

experiment where the cornea was exposed to a reduced partial pressure of 

atmospheric oxygen (Millodot and O'Leary, 1980). They exposed the cornea to two 

different air mixtures containing 2.1% and 3.15 % oxygen (normal atmospheric 

oxygen contains 10% oxygen). They found a strong relationship between the time of 

exposure to a reduced pressure o f atmospheric oxygen and a reduced comeal 

sensitivity. They also found a time delay between the start of the experiment and the 

reduction in sensitivity. With the 2.1% and 3.15 % oxygen pressures, it took 3 and 4 

hours respectively to produce a measurable change in sensitivity.

From these two experiments, it can be concluded that a prime reason for comeal 

sensitivity reduction must be the change in the oxygen supply to the cornea. 

However, the mechanism by which the comeal nerves are affected by a reduced 

oxygen pressure is not clear. There is some evidence that acetylcholine is involved in 

comeal sensitivity. The comeal epithelium has the highest concentration of 

acetylcholine in the body. Tanelian et al (1982) showed that when acetylcholine is
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instilled into the eye it increases the action potential in the long ciliary nerves of the 

rabbit cornea. Pesin and Candia (1982) proposed that acetylcholine in the comeal 

epithelium plays a role in the regulation of Na+ and Cl' transport, both of which are 

necessary in the production o f nerve impulses. If this theory is correct, we can 

explain the changes in sensitivity associated with lid closure, as being due to 

interference in the synthesis of acetylcholine (perhaps through acetyltransferase, an 

enzyme used to synthesize acetylcholine) (Mindel and Mittag, 1978, 1979). Since 

such a situation occurs with lid closure, this may be one o f the mediators for a reduced 

comeal nerve function.

Apart from comeal sensitivity, it was of interest to investigate the diurnal pattern of 

comeal thickness and how comeal thickness correlates with comeal sensitivity over 

time. Comeal thickness was found to vary during the day, with central comeal 

thickness decreasing significantly during the first 5 hours after eye opening. Beyond 

this time, and for the rest of the day, the thickness did not show any statistically 

significant change, although slight fluctuations were recorded.

The diurnal variation o f comeal thickness may be influenced by factors such as 

hypoxia, and tonicity changes in the tears (tear hypo-osmolarity) due to the loss of 

tear evaporation during closed-eye conditions (Harris and Mandell, 1969; Mandell 

and Poise, 1970; Terry and Hill, 1978; Mertz, 1980). Under the closed eyelid the 

decreased oxygen pressure mainly affects the endothelial pump function. The 

endothelial pump function is a major mechanism for removing water from the comeal 

stroma. Thus under the closed lid the osmotic pressure and the whole hydration are 

altered (Chan and Mandell, 1975), resulting in stromal lactate accumulation that
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causes a movement o f water into the stroma (Klyce, 1981). There is also an alteration 

in the normal tonicity o f the pre-comeal tear film, due to the loss of tear evaporation, 

which causes water movement into the cornea, and is accompanied by swelling of the 

comeal thickness (Mishima, 1965; Mandell and Fatt, 1965; Hedbys and Mishima, 

1966; Mandell and Harris, 1968; Poise and Mandell, 1970). Conversely, when the 

eyes are open, there is a normal evaporation from the surface of the tears and it is 

believed that the cornea becomes thinner by about 4%. Evaporation results in a 

hypertonic tear film, producing an osmotic flow of water from the cornea into the 

tears and decreasing epithelial oedema (Mishima and Maurice, 1961a, 1961b; Terry 

and Hill, 1978). Clinically, hypertonic agents are used to treat epithelial oedema 

(Madigan et al., 1987). Therefore, it is possible that the loss of tear evaporation 

causes epithelial oedema, whereas the hypoxia mainly affects the stroma, causing 

stromal oedema.

The measurement of comeal thickness was used to indicate the metabolical and 

physiological status of the cornea, as it provides an indication of comeal hydration. 

Transparency of the cornea is maintained with a consistent water hydration of 78%, 

based on the lattice theory proposed by Maurice (1984). Swelling pressure, a function 

of stromal hydration that tends to bring water into the cornea, is counter-balanced by 

two mechanisms, one passive and one active. The maintenance of normal hydration 

requires the integrity of the barrier function of both the epithelium and endothelium 

and the constant interaction o f these two homeostatic mechanisms against the 

swelling pressure of the stroma. The epithelium and the endothelium act as barriers to 

the flow of water into the stroma from either the tears or aqueous humour (Cogan and 

Kinsey, 1942). The endothelium act as a pump that removes fluid that leaks into the
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stroma (Harris and Nordquist, 1955). The loss of the corneal endothelial barrier will 

result in a much greater increase in thickness than the loss of the epithelial barrier 

(Cristol et al., 1992). The passive mechanism consists of normal evaporation from the 

surface of the tears, when the eye is open.

A significant finding from this study is that the diurnal variations of both comeal 

sensitivity and thickness are influenced by the same effect, which is the prolonged 

eyelid closure during sleep, although the mechanisms that cause this effect for comeal 

sensitivity and comeal thickness are different. Both comeal sensitivity and thickness 

changed significantly for the same time period between 08.00 and 12.00. Comeal 

sensitivity increased and comeal thickness decreased significantly, having an inverse 

relationship, indicating that as comeal sensitivity increases, comeal thickness 

decreases. This high correlation between the two variables implies that diurnal 

variation in comeal sensitivity and thickness may be physiologically regulated by the 

hypoxic conditions, causing a reduction in the sensitivity and a comeal swelling. 

Beyond this time and until 22.00, which was the last measurement, no significant 

change and correlation was found for these two parameters.

This result is in contrast to Douthwaite and Kaye (1980), who suggested an inverse 

relationship between corneal sensitivity and comeal thickness. This study found only 

a trend for thicker corneas to exhibit higher comeal sensitivities (r = 0.35, p= 0.517) 

(Fig 4.6). Douthwaite and Kaye took measurements at only one time of the day for 

each subject, in the afternoon. They suggested that people with thick corneas may 

possess a relatively low comeal sensitivity, and vice versa, proposing that it would be 

possible to predict comeal sensitivity by measuring comeal thickness, or alternatively,
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comeal thickness from sensitivity measurements. However, there are three things that 

should be mentioned. Firstly, they took measurements at only one time of the day, 

without considering diurnal changes; secondly, their correlation coefficient, which 

was calculated to be -0.665, was placed at the 0.1 per cent level of significant and not 

at 0.05 as it is usually used; thirdly, they used the Cochet-Bonnet Aesthesiometer, 

which has been demonstrated to have limitations in its ability to measure the 

sensitivity threshold.

When comparing our results with the results of du Toit et al (2003), a similar pattern 

in the change of both comeal sensitivity and thickness during the day was found. 

Their work differs by the fact that they also measured sensitivity and thickness on the 

previous night of the experiment, as a baseline measurement. The recovery time for 

sensitivity and thickness was taken as the time point at which there was no significant 

difference from the level o f the previous night’s measurements. They found 

significant changes of sensitivity and thickness from 07.00 up to 14.00, and then no 

significant variation for the rest o f the day. In contrast, the results from our study 

suggest that baseline measurements for these parameters can be taken 5 hours after the 

eye opening. One possible explanation may be the different points of the two 

experiments. We took measurements from 8am after nine hours of lid closure and 

they commenced one hour earlier. They also found a high correlation between 

sensitivity and thickness over the 24 hour period. However, this analysis included the 

morning measurements when the effects o f overnight eyelid closure are still affecting 

the results.
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When comparing our results of comeal thickness with previous investigations, the 

thinnest comeal measurements were found between 4 and 12 hours after eye opening. 

In these studies the diurnal variation of thickness was monitored over periods ranging 

from 12 to 48 hours (Kiely et al., 1982; Holden et al., 1983; Harper et al., 1996) or for 

periods less than 12 hours (Mandell and Fatt, 1965; Mertz, 1980; Feng et al., 2001). 

We should also take into account that there are differences in the instmmentation used 

to measure comeal thickness, and the measurements were not conducted at similar 

intervals or with the same frequency.

The aim of this study was to gain a better understanding of the diurnal effect on 

comeal sensitivity and comeal thickness and whether there is an inverse relationship 

between these two parameters, as previously suggested by Douthwaite and Kaye 

(1980). For clinical and experimental purposes, our results are very useful as they 

provide the diurnal time points for the highest sensitivity and thinnest cornea. If the 

diurnal pattern of a parameter is known, the relevance of taking measurements at 

certain time points can be assessed. For all subsequent studies in this thesis, where 

comeal sensitivity will be measured using the NCCA, it was important to establish the 

point at which baseline measurements can be taken. This study suggests that baseline 

comeal sensitivity and thickness may be measured five hours after eye opening or 

thereafter.
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5. An Investigation of the Anaesthetic Effect of 0.5% 

Proxymetacaine Hydrochloride (Proparacaine) on 

Corneal Sensation

5.1 1ntroduction-Purpose

Topical ophthalmic anaesthetic agents are among the commonest eye drops used for 

diagnostic purposes, as well as for selected surgical procedures, in therapeutic 

ophthalmology. Topical anaesthesia is used during contact or applanation tonometry, 

gonioscopy, contact lens fitting, foreign body removal and some methods of refractive 

and cataract surgery (Jose et al., 1983; Vale and Cox, 1985; Brady et al., 1994; Craig, 

1994; Shahinian et al., 1997; Hamilton and Claoue, 1998; Bennett et al., 1998).

In ocular topical anaesthesia, the anaesthetic drug (cocaine, tetracaine, benoxinate, 

proparacaine, bupivacaine) is applied to a mucous membrane, such as the cornea or 

the conjunctiva, to prevent the generation and conduction of nerve impulses. Their 

main site of action seems to be the cell membrane, where they block the transient 

increase in membrane permeability to sodium ions that normally occurs with 

depolarisation of the membrane (Bryant, 1969; Stoelting, 1991; Catteral and Mackie, 

1995). The blockade of sodium transport occurs through binding of the local 

anaesthetic to a specific binding site located within a voltage-gated sodium channel 

present in the cell membrane (Catteral and Mackie, 1995). The sodium channel is 

formed by a large heterotrimeric protein, which contains numerous trans-membrane 

segments. The greater the hydrophobicity of a local anaesthetic, the greater the 

affinity for binding (Ragsdale et al., 1994). After instillation, anaesthetics diffuse 

across the cell membrane in the uncharged (lipid soluble) amine form, but at the site
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of action, the charged, substituted ammonium cation interacts with the receptor that is 

only accessible from the inner membrane surface (Catteral and Mackie, 1995).

The duration o f action o f local anaesthetics is proportional to the time they are in 

contact with the nerve tissue (Catteral and Mackie, 1995). Consequently, any agent or 

procedure that keeps the anaesthetic at its site of action will prolong the period of 

anaesthesia.

The clinical advantage o f local anaesthetics is that their function is reversible. Nerve 

function recovers completely with no structural damage to nerve fibres or cells and 

the loss of sensation occurs without loss o f consciousness (Covino and Vassalo, 1976; 

Catteral and Mackie, 1995).

Although most of the commonly used topical anaesthetics are similar in onset, 

duration, and depth o f anaesthesia, several important differences exist. Thus selecting 

the appropriate topical anaesthetic for individual clinical procedures helps in 

maximising its effectiveness while minimizing undesirable side effects. The desirable 

properties of an ideal local anaesthetic are: rapid onset of action, profound depth of 

anaesthesia, adequate duration for the purpose required, no pain at site of 

administration, no pain effect after the anaesthetic has worn off, no hypersensitivity or 

allergic reactions, and no local toxicity (Bryant, 1969; Vale and Cox, 1985).

Proxymetacaine Hydrochloride (proparacaine) is an ester of meta-aminobenzoic acid, 

and is available in a 0.5% solution, both with and without sodium fluorescein 0.25%. 

It produces little discomfort or irritation in instillation and is readily accepted by most
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patients. Boozan and Cohen (1953) reported that one drop of 0.5% proxymetacaine 

was less painful in instillation than one drop of 0.5% tetracaine. Bartfield et al (1994) 

compared 0.5% proparacaine directly with 0.5% tetracaine, and 86% of the patients 

reported that proparacaine caused less pain on administration. Hamilton and Claoue 

(1998) compared the use o f 0.5% proxymetacaine and 1% tetracaine during small 

incision phacoemulsification cataract surgery, and found that patients receiving 

proxymetacaine felt significantly less discomfort during its administration than those 

receiving tetracaine. Shafi and Koay (1998) in a randomised, masked, double-blind 

study assessed the duration o f the stinging sensation and degree o f discomfort (using 

descriptive and linear analogue methods) caused by the instillation of each anaesthetic 

in each eye. The study indicated that proxymetacaine is more comfortable on 

instillation than tetracaine. The pH o f anaesthetic agents affects the degree of comfort 

on instillation. Tetracaine has a pH of 4.54 and proxymetacaine a pH of 4.64 

(Bartfield et al, 1994). This probably explains why tetracaine (being more acidic) 

stings more than proxymetacaine. Although tears can dilute and buffer topical 

anaesthetic agents, this effect is not sufficient to cope with the immediate, relatively 

large, volume of the anaesthetic instilled (Shafi and Koay, 1998).

Proparacaine has few side effects. These include:

1) Localised allergic hypersensitivity may develop, but less frequently than with 

tetracaine (Johnston et al., 1998).

2) Allergic reactions may be characterised by conjuctival hyperaemia and oedema, 

oedematous eyelids, and lacrimation (Householder and Harris, 1969).

145



3) Development o f a hypersensitivity reaction may result in exacerbation of an 

existing case o f Stevens-Johnson Syndrome (Ward et al., 1978; Dannaker et al., 

2001).

4) Allergic contact dermatitis on the fingertips (Liesegang and Pemiciaro, 1999).

5) Seizure after ocular instillation o f 0.5% proxymetacaine hydrochloride for an 

existing case of corneal abrasion (Cydulka and Betzelos, 1990).

6) Decreased rate of corneal epithelial desquamation (cell sloughing) (Fullard and 

Wilson, 1986; Wilson and Fullard, 1988).

Previous researchers have considered the efficacy, duration, and extent of recovery of 

0.5% proxymetacaine hydrochloride and found that it provides sufficient anaesthesia 

to allow the measurement o f contact tonometry or foreign body removal. Boozan and 

Cohen (1953) reported that the onset o f anaesthesia, with one drop of 0.5% 

proxymetacaine hydrochloride, occurred after 6 to 20 seconds with an average of 12.9 

seconds, with a duration o f action between 6-24 minutes, with an average of 15.2 

minutes. Linn and Vey (1955) compared proxymetacaine with benoxinate, tetracaine 

and sympocaine and found each to have similar anaesthetic qualities. However they 

did not supply any analysis of their findings. They assessed corneal sensitivity using 

a series of calibrated aesthesiometers similar to von Frey’s Hairs. Poise et al (1978) 

compared different concentrations o f proxymetacaine (0.125, 0.25, and 0.5%) with 

different concentrations of benoxinate (0.1, 0.2, and 0.4%) using the Cochet-Bonnet 

Aesthesiometer. They found that the stronger the concentration of both anaesthetics, 

the longer the durations o f action. The onset o f anaesthesia for all doses was within 

the first 2 minutes of instillation and lasted 20 to 60 minutes. 0.4% benoxinate had an 

average recovery time o f 52 minutes, whereas 0.5% proxymetacaine had an average
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recovery time o f 45 minutes. Draeger et al (1984a) also found that the duration of 

anaesthesia produced by proxymetacaine hydrochloride was dependent on the 

concentration used. Recovery of sensitivity to the baseline level occurred after 7 

minutes for 0.1%, after 17 minutes for 0.5%, and after 24 minutes for 1% 

proxymetacaine. Weiss and Goren (1991) assessed the duration of action of 0.5% 

proxymetacaine in both eyes in 7 subjects with documented unilateral corneal 

hypoesthesia associated with inactive herpetic disease, using the Cochet-Bonnet 

Aesthesiometer. The duration o f maximal effect of proparacaine in control eyes 

averaged 11.71 minutes compared to 18 minutes found for hypoesthetic corneas 

(corneas that normally have a decreased sensitivity to touch and pain, due to a disease 

usually, e.g. herpetic keratitis). The complete recovery time for the control eyes 

averaged 34.86 minutes compared to 45.43 minutes for the hypoesthetic eyes. 

Lawrenson et al (1993) examined the efficacy and duration of action of different 

concentrations of topically applied proxymetacaine delivered using a novel 

ophthalmic delivery system (NODS), by measuring corneal sensitivity using the 

Cochet-Bonnet Aesthesiometer. This method applies the drug by incorporating it into 

a polyvinyl flag attached to a carrier. When applied to the eye, the flag detaches and 

gradually dissolves, releasing the drug. They found that by using this modality, even 

the lowest concentration NODS (44pg) produced longer lasting anaesthesia than the 

35pl drop (175pg) o f 0.5% proxymetacaine. Higher doses of NODS produced a 

correspondingly greater increase in anaesthetic duration. The onset of anaesthesia 

produced by the 35pl o f 0.5% proxymetacaine was achieved within 1 minute after 

instillation, with a duration of 20 minutes.
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The Cochet-Bonnet Aesthesiometer has been the standard clinical method for 

assessing and monitoring the duration of local ocular anaesthesia. However it suffers 

from several deficiencies in its design, as it has a restricted stimulus intensity range 

that limits its usefulness (Bonnet and Millodot, 1966; Millodot and Larson, 1967; 

Millodot and O'Leary, 1981; Millodot, 1984). These drawbacks are reflected in its 

ability to establish true baseline threshold levels. This is important when considering 

the recovery time o f corneal sensitivity after an ocular topical anaesthetic has been 

instilled into the eye. Later measurements of sensitivity taken over a period of time 

after instillation, and compared to a preliminary baseline, can result in the deduction 

that sensitivity has returned to normal levels earlier than it actually has.

In view of the conflicting results found by previous studies on the duration, depth, and 

recovery time of the anaesthesia produced using 0.5% proxymetacaine hydrochloride, 

and in response to the availability o f a more subtle method of measuring corneal 

sensitivity, this study aimed to: 1) assess the onset, duration, depth, and recovery time 

of corneal anaesthesia produced by the instillation of 20pl of 0.5% proxymetacaine 

hydrochloride, using the NCCA; 2) establish whether there is any effect in the 

contralateral control eye, with anaesthetic instillation in the other eye, and; 3) to 

investigate whether iris colour has any effect on the anaesthetic action of 

proxymetacaine hydrochloride (Millodot, 1975a).

The results of this study will be useful in the later studies on the blink mechanism. 

One of the suggested mechanisms for the blink stimulus is a localised change in the 

tear film stability before a full break-up occurs. This tear thinning is associated with 

an increased tear evaporation, which produces a localised cooling of the tear film.
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This change of the tear film temperature can be detected by the temperature sensitive 

corneal nerves, and trigger a blink before full break up occurs. Anaesthesia will 

block that stimulus and may produce an altered blink rate. If any loss in corneal 

sensation leads to any tear film mediated “trigger to blink” going undetected, then 

subjects will have a reduced blink rate. Following on from the results of this study, 

and knowing the maximum depth of the anaesthesia produced by proxymetacaine 

measured with the NCCA, we will assess whether the loss of comeal sensitivity will 

alter the blink rate.

5.2 Methods

Seventeen Caucasian subjects (2 males, 15 females; mean age, 26±3.6 years; range, 

23-39) were recruited from the student population o f Cardiff University. Subjects 

were excluded if they were contact lens wearers (Ntola and Murphy, 2002), or if they 

had any ocular or systemic pathology known to affect comeal sensitivity, e.g. ocular 

surgery, ocular diseases, diabetes, comeal dystrophy (Bimdorf and Ginsberg, 1972; 

Schwartz, 1974; Lyne, 1977; Ishikawa et al., 1994; Ruben, 1994; Murphy et al., 

1999a; Rosenberg et al., 2000). Also, pregnant women or women during the 

premenstruum, menstruation, or ovulating period, were excluded, as comeal 

sensitivity is depressed (Millodot, 1984, 1994; Martin and Safran, 1988). Subjects 

were further classified, using the Seddon Iris Color Classification System (Seddon et 

al, 1990), into two iris colour groups: Group 1 (blue, grey, and green), and Group 2 

(Brown or dark brown iris) (Group 1 = 8, Group 2 = 9). Ethical approval was 

obtained from the School o f Optometry and Vision Sciences Research Ethics 

Committee. After explanation o f the purpose of the study, subjects were asked to sign
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a consent form prior to participating. Subjects were also reminded that they could 

withdraw from the study at anytime.

Corneal sensitivity was assessed at the central area of the cornea using the Non- 

Contact Corneal Aesthesiometer (NCCA) using the procedure described in section 

3.1.1.

Measurements of the central corneal sensitivity were always taken for the right eye 

only, and a preliminary assessment was made to establish a baseline. All 

measurements were made from 12pm and ownwards to avoid any possible diurnal 

bias.

Subjects were asked to attend the laboratory on four different days and each visit 

lasted for one hour. Central corneal sensitivity was measured under four different 

conditions

1) proxymetacaine in both eyes (p-p)

2) proxymetacaine in the right eye and saline for the left eye (p-s)

3) saline in both eyes (s-s)

4) saline in the right eye and proxymetacaine in the left eye (s-p).

20pl of 0.5 % proxymetacaine hydrochloride (Minims, Chauvin Pharmaceuticals, Ltd, 

UK) or 20pl of unpreserved saline 2% (Minims, Chauvin Pharmaceuticals Ltd, UK) 

was then instilled in either the right, left, or both eyes at the superior palpebral 

conjuctiva. A P I00 micropipette (W olf Laboratories Ltd, York, UK) was used to 

instill a measured dose. The anaesthetic was expelled from a minim into a sterile
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Eppendorf tube, from which it was extracted by the micropipette. A new sterile 

pipette tip was used on each instillation. The 20pl volume was selected because other 

studies have shown that this is the maximum extra volume that the palpebral aperture 

can contain before tearing will occur (Ludwig and Van Ooteghem, 1986). By 

choosing a volume of 20pl, all o f the anaesthetic can be expected to remain on the eye 

surface for maximum absorption.

The subjects were then asked to tilt their head back and look down. The upper eyelid 

was held open, and the proxymetacaine instilled onto the superior, temporal palpebral 

conjunctiva. The subjects were asked to close their eyes for a few seconds for better 

absorption of the anaesthetic or the saline. Following the instillation, the central 

corneal sensitivity was measured at specific time intervals of: 2, 5, 10, 15, 20, 30, 45, 

and 60 minutes.

5.3 Results

The distributions o f the corneal sensitivity measurements for the four experimental 

conditions were assessed for normality (Shapiro-Wilk test), using the SPSS 11 

Statistical Software Program tests (Lead Tools, Lead Technologies, Inc). The results 

for conditions p-p, s-s, and s-p were normally distributed. However, the results for 

conditions p-s were found to be not normally distributed. The data was log 

transformed, but normality testing found the data to still be not normally distributed, 

consequently non-parametric statistical tests have been used for the analysis of the 

raw data (Prism: GraphPad Software Inc, San Diego).
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T able 5 . 1 : Median/ interquirtile range (IR) and Mean (± Standard Deviation) of

central corneal sensitivity thresholds (millibars) for each experimental condition, at 

each time period.

Prox-Prox

Prox-Prox Baseline 2 mins 5 mins 10 mins

Median/IR 0.90/ 0.77-1.25 1.75/ 1.07-2.65 2.2/ 1.87-3.42 2.8/2.12-4.15

MeaniSD 0.9610.37 1.8410.85 2.49±1.08 3.00±1.17

15 mins 20 mins 30 mins 45 mins 60 mins

2.95/2.22-4.47 2.7/1.8-3.67 1.90/ 1.55-2.92 1.70/1.15-2.02 1.55/1.0-1.72

3.24±1.27 2.72±1.20 2.21±1.05 1.64±0.69 1.38±0.51

Prox-Sal

Prox-Sal Baseline 2 mins 5 mins 10 mins

Median/IR 0.90/0.7-1.05 1.75/ 1.17-2.17 2.70/2.0-3.05 2.90/2.4-3.25

MeaniSD 0.90±0.35 1.9110.97 2.6611.12 3.1111.29

15 mins 20 mins 30 mins 45 mins 60 mins

3.2/2.72-3.65 2.55/2.15-3.2 1.90/ 1.57-2.65 1.55/ 1.25-1.82 1.25/ 1.05-1.57

3.4911.41 2.9011.53 2.2011.118 1.6310.97 1.3710.87

152



Sal-Sal

Sal-Sal Baseline 2 mins 5 mins 10 mins

Median/IR 0.95/0.75-1.07 1.05/ 0.77-1.17 0.95/0.75-1.07 0.95/ 0.75-1.1

MeaniSD 0.9310.32 1.0010.34 0.9410.33 0.9310.32

15 mins 20 mins 30 mins 45 mins 60 mins

0.9/ 0.75-1.07 0.95/0.77-1.07 0.95/0.75-1.1 0.95/ 0.75-1.07 0.90/0.72-1.1

0.92±0.33 0.9210.34 0.9410.35 0.9310.33 0.9H0.32

Sal-Prox

Sal-Prox Baseline 2 mins 5 mins 10 mins

Median/IR 0.90/0.77-1.15 1.30/0.82-1.47 1.45/0.87-1.72 1.4/0.92-1.72

MeaniSD 0.9310.34 1.1710.43 1.32+0.52 1.2910.51

15 mins 20 mins 30 mins 45 mins 60 mins

1.3/0.85-1.62 1.10/0.85-1.72 1.10/ 0.8-1.57 1.05/0.67-1.47 0.95/ 0.7-1.42

1.23±0.49 1.2010.52 1.1110.45 1.1010.48 1.0710.46
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5.3.1 Proxymetacaine-Proxvrrietacaine (p-p), Proxvmetacaine- 

Saline (p-s)

For both conditions, proxymetacaine-proxymetacaine (p-p) and proxymetacaine- 

saline (p-s), a significant variation for the reduction of corneal sensitivity was found 

over time (p-p: Kruskal-Wallis test, pO.OOOl; p-s: Kruskal-Wallis test, pO.OOOl) 

(Figs 5.1, 5.2).

Proxymetacaine Hydrochloride 
in Both Eyes (P-P)

Baseline 2 5 10 15 20 30 45 60
Time (mins)

Fig 5.1: Box and whisker plot (median, interquartile range) central corneal sensitivity 

threshold in the right eye after anaesthesia in both eyes.
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Proxymetacaine Hydrochloride 
in the Right Eye and Saline in the 

Left Eye (P-S)
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Fig 5.2: Box and whisker plot (median, interquartile range) central comeal sensitivity 

threshold in the right eye, after anaesthesia in the right eye only.

For both conditions, the onset of anaesthesia was observed at 2-min post-instillation 

(p-p, Wilcoxon matched pairs test, p = 0.0001; p-s, Wilcoxon matched pairs test, p = 

0.0003), with a maximum of anaesthesia reached at 15 min post-instillation (p-p: 

Wilcoxon matched pairs test, p = 0.0003; p-s: Wilcoxon matched pairs test, p = 

0.0003), after which sensitivity began to recover. Comeal sensitivity did not return to 

pre-instillation levels at 60 minutes post-instillation for both the conditions p-p 

(Wilcoxon matched pairs test, p = 0.0005), and p-s (Wilcoxon matched pairs test, p = 

0.013). Instillation of proxymetacaine hydrochloride in both eyes (p-p) did not show 

any significant difference in the depth of anaesthesia compared to the anaesthesia 

produced by the instillation of the anaesthetic in the right eye only (p-s) (Mann- 

Whitney test, p= 0.221).
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5.3.2 Saline-Saline (s-s) and Saline-Proxvmetacaine (s-p)

No change in comeal sensitivity was found in the right eye over the period of the trial 

for conditions saline-saline (s-s) and saline-proxymetacaine (s-p), (s-s, Kmskal-Wallis 

test, p = 0.928: s-p, Kruskal-Wallis test, p = 0.223) (Fig 5.3, 5.4).

Saline in Both Eyes (S-S)

2
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1  £
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0.00
Baseline 2 5 10 15 20 30 45 60

Time (mins)

Fig 5.3: Box and whisker plot (median, interquartile range) central comeal sensitivity 

threshold in the right eye after instillation of saline in both eyes.

For the condition saline-saline, a decrease in sensitivity occurred at 2 minutes 

(Wilcoxon matched pairs test, p = 0.004) returning to baseline levels for all 

subsequent measurements (Kruskal-Wallis test, p = 0.999).
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Saline in the Right Eye and 
proxymetacaine Hydrochloride in 

the Left Eye
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Fig 5.4 : Box and whisker plot (median, interquartile range) central comeal sensitivity 

threshold in the right eye, after instillation of saline in the right eye and 

proxymetacaine hydrochloride in the left eye.

5.3.3 Iris Colour and Anaesthetic Action

The data were re-analysed for the effect o f iris colour on the anaesthetic action of 

proxymetacaine hydrochloride, classifying the subjects into two groups: blue-grey- 

green iris and brown iris. No significant difference was found between blue-grey- 

green and brown eyes for the experimental conditions p-p, and p-s, suggesting that the 

iris colour of the subject has no effect on the action of this anaesthetic (Mann- 

Whitney test, p>0.05) (Figs 5.5, 5.6).
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Proxymetacaine in Both Eyes (P-P)

Blue Iris 
Brown Iris

B aselin e 45

Time (hours)

Fig 5.5 : Box and whisker plot (median, interquartile range) central corneal sensitivity

thresholds as a function of iris colour for the bilateral treatment (p-p).

Proxymetacaine in the Right Eye and Saline 
in the Left Eye
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Blue Iris 
Brown Iris

Fig 5.6: Box and whisker plot (median, interquartile range) central corneal threshold 

as a function of iris colour for the ipsilateral treatment (p-s).
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5.4 Discussion

The mode of action o f a topical anaesthetic is characterised by three important 

components: the time o f onset, the time of the maximum anaesthesia produced, and 

the duration o f anaesthesia. This study found that the onset of anaesthesia produced 

by the instillation o f 20pl o f 0.5% proxymetacaine hydrochloride occurs within 2 

minutes. This is comparable with the values of 15 seconds and 1 minute found in 

previous studies (Boozan and Cohen, 1953; Bryant, 1969; Lawrenson et al., 1993). If 

an earlier measurement in our experiment had been taken at 1 minute, we would 

expect to find that the anaesthetic had already begun its action. The maximum depth 

of anaesthesia occurs at 15 minutes post-instillation. This result compares with the 

more variable values of 1 minute and 15 minutes found by other researchers (Bryant, 

1969; Draeger, 1984a; Lawrenson et al, 1993). The findings on the duration of 

anaesthesia indicate that sensitivity is still below pre-instillation levels at 60 minutes 

after instillation. In contrast to our study, the findings on the duration of anaesthesia 

from previous studies found sensitivity to recover at 15, 20, 35 or 45 minutes (Boozan 

and Cohen, 1953; Poise et al., 1978; Draeger et al., 1984a; Weiss and Goren, 1991; 

Lawrenson et al., 1993).

This difference can be explained by considering two main factors: the instillation of a 

fixed/variable volume of anaesthetic, and the different modes of nerve stimulation.

All of the previously studies, apart from Lawrenson et al (1993), described the 

volume of the anaesthetic instilled as “a drop”. Although this may be a standard 

volume used frequently in clinical practice, for a controlled study of anaesthetic action 

it does not provide a repeatable instilled volume. A typical drop from a single dose
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preparation, such as a Minim, has a volume of 25-50 pi (Ludwig and Van Ooteghem, 

1986). Ludwig and Van Ooteghem showed that the maximum volume of extra fluid 

that the palpebral aperture can contain is 20pl. In this regard, even the 35pi of 0.5% 

proxymetacaine instilled by Lawrenson et al (1993) was too much for the palpebral 

aperture to contain, producing an overflow of tears. As a result, less of the anaesthetic 

will be available for absorption by the eye. The consequence of this reduced volume 

absorbed by the eye may be a restricted duration of action, as found in the previous 

studies.

This phenomenon may also explain the delayed maximum depth of anaesthesia (15 

minutes) found in this study. If less anaesthetic is available, the anaesthesia that is 

produced will be more rapidly broken down and an apparent peak in anaesthesia 

occurs earlier. This is particularly seen in those studies which found a short duration 

of action. Lawrenson et al (1993) found a peak in anaesthesia at 1 minute, but 

duration of action of only 20 minutes. Instilling the correct volume for absorption is 

vital for controlling the repeatability o f anaesthetic action.

The second possible factor that could be responsible for the disparities between this 

study and the previous published results is the mode of stimulation of the sensory 

comeal nerves. The NCCA uses a temperature change stimulus produced by a short 

duration, controlled intensity, air-pulse aimed at the anterior comeal surface, 

stimulating the C-fibres o f the comeal epithelium that are predominantly located in 

the superficial cell layer (Maclver and Tanelian, 1993a; Belmonte and Gallar, 1996; 

Muller et al., 1996, 2003). In contrast to this study, all of the previous works used a 

mechanical stimulus, such as the nylon monofilament thread of the Cochet-Bonnet
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Aesthesiometer (Cochet and Bonnet, 1960) or the thin metal wire of the Draeger 

electronic optic aesthesiometer (Draeger, 1984), to stimulate the A5 fibres found in 

the epithelial basal cell layer (Maclver and Tanelian, 1993; Belmonte and Gallar, 

1996; Muller et al., 1996, 2003). Thus two different populations of fine nerve endings 

were stimulated. Also the stimulus intensity range of the Cochet-Bonnet 

Aesthesiometer is restricted, particularly at lower stimulus intensities. This can lead 

to an incorrect baseline sensation which is supra-threshold, creating an apparently 

reduced sensitivity. For the recovery time from the anaesthesia, the sensitivity needs 

only to return to this raised baseline level, producing a shorter measured duration of 

action.

The extended duration o f anaesthesia found in this study was noted in a previous 

study that considered the anaesthetic action o f 0.4% benoxinate hydrochloride, using 

the NCCA (Murphy et al., 1997). The sensitivity after the instillation of a single drop 

of non-preserved 0.4% benoxinate hydrochloride recovered to baseline levels by 60 

minutes post-instillation. On that occasion, a similar explanation based on the 

different modes of stimulation and the design flaws of the Cochet-Bonnet was 

proposed. Although the volume o f instilled anaesthetic was not controlled, and while 

this may produce excess tearing and loss o f some of the instilled anaesthetic, there 

appeared to be no reduction in the depth or duration of anaesthesia produced. Since 

both the benoxinate study and the present study found long anaesthetic durations, the 

reduced volume of anaesthetic may only have a limited effect. It may also be possible 

that in the benoxinate study, although the tearing produced by the instillation caused a 

washout of the anaesthetic, the full intensity range o f the NCCA stimulus was able to 

detect even slight changes in corneal sensitivity.
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Furthermore, instillation of anaesthetic bilaterally was unable to produce any deeper 

anaesthesia in the right eye than produced by anaesthesia of the right eye alone.

This study also investigated the effect of iris colour on the anaesthetic action. 

Although no predictable pattern of iris colour effect on the duration or depth of 

anaesthesia was produced, a trend can be seen in the results, indicating that the brown 

eyes were less anaesthetised than the blue. It is likely that, if a greater sample size 

was used, a significant effect would be observed. The same trend was indicated in the 

study of Murphy et al (1997) where a greater anaesthetic effect on blue irises, only for 

the bilateral treatment (benoxinate hydrochloride in both eyes).

The unexpected finding o f this study was the contralateral effect of 0.5% 

proxymetacaine hydrochloride instillation in the non-tested eye. Although no 

statistically significant reduction in the corneal sensitivity of the measured (right) eye 

was found when 20pl o f the anaesthetic was instilled in the contralateral eye, the 

graph (Fig 5.4) suggests that a change in corneal sensitivity has occurred. These 

contralateral alterations may reflect a direct and sympathetic physiological response to 

the anaesthetic action of 0.5% proxymetacaine hydrochloride.

Similar contralateral effects have been found in previous investigations and have also 

been attributed to sympathetic responses. Harris and Mandell (1969) found a 

contralateral corneal swelling o f approximately 3% when a rigid contact lens was 

worn on the other eye. The response was presumed to be due to an osmolarity effect 

as a result of lacrimation. Fonn et al (1999a) found a swelling of the contralateral 

control eyes while wearing high Dk silicone hydrogel and low Dk hydrogel lenses on
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the other eye, attributing this phenomenon to sympathetic responses. Guzey et al 

(2002) found a corneal oedema on the contralateral control eyes while wearing high 

Dk silicone hydrogel and low Dk hydrogel lenses. Ladage et al (2003) examined the 

rabbit corneal epithelial cell proliferation rate after extended wear of disposable or 

silicone hydrogel contact lenses or eyelid closure. Although they found a suppression 

of the cell proliferation rate in corneal epithelium of the tested eyes, the contralateral 

eyes that served as controls also showed an increased proliferation when the other eye 

was wearing a high Dk soft or RGP lens, whereas the low and medium Dk lenses 

showed a reverse effect for the contralateral eyes. You et al (1993) observed electron 

dense deposits within the Descemet’s membrane of both the ablated and unablated 

eyes of the exposed rabbits, which was not present in animals not exposed to excimer 

radiation. He suggested that these contralateral alterations may reflect a direct and 

sympathetic response to the laser radiations or may be due to a systemic factor or 

hormonal change induced by surgery. Further support for a sympathetic effect has 

been shown by Dubraix et al (1997) in a study in which excimer laser photoablation 

induced an increase in the hyaluronan content o f treated and untreated contralateral 

rabbit corneas. Estil et al (2001) reported a similar cross-talk reaction during wound 

healing. Inducing a wound in one cornea caused an increase in cell proliferation in 

the contralateral control cornea. Dunhum et al (1994) showed a decrease in 

intraocular pressure of the contralateral eye after the instillation of timolol in the other 

eye. They suggested that this was due to systemic absorption.

In view of the different results o f this study to previous published studies, does it 

mean that the current clinical practice and advice given to patients should be 

modified? As was discussed in the introduction of this chapter, topical
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proxymetacaine is used for contact tonometry, foreign body removal and other minor 

ocular emergencies, as well as in some refractive surgery techniques. Since these 

procedures are very short, the instillation of 0.5% proxymetacaine hydrochloride is 

long enough to produce the necessary anaesthesia. Clinicians should be aware that 

the actual action o f the anaesthetic extends up to 60 minutes, longer than the 20 

minutes previously thought, and patients should be warned that the risk from an 

undetected foreign body after topical anaesthesia is present for longer than 20 

minutes. Patients should be asked to sit in the waiting room for at least 30 minutes 

before leaving, a sufficient time to avoid any accidental corneal damage due to an 

undetected foreign body.

In conclusion, the anaesthetic effect o f 20pl of 0.5% proxymetacaine hydrochloride 

peaks at 15 minutes, has not disappeared fully even 60 minutes after instillation, and 

is not affected by the subject’s iris colour. Our results indicate the need for a review 

of the anaesthetic action o f other ocular anaesthetics with more sensitive techniques, 

such as the NCCA.
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6. An Investigation of the Effect of Iris Colour and 

Ethnic Origin on Corneal and Skin Sensitivity and on 

Tear Film Stability and Blink Rate

6.1 Introduction-Purpose

The effect of iris colour on corneal sensitivity has been studied previously by 

Millodot (l 975a; 1976a), and Tota and La Marca (1982). In 1975, Millodot compared 

corneal sensitivity to touch, using the Cochet-Bonnet aesthesiometer, between 

Caucasians, Africans, Indians, and Chinese. The results indicated that Caucasians 

with blue eyes had more sensitive corneas than those with brown eyes, and 

Caucasians with dark brown irises had more sensitive corneas than non-Caucasians 

with dark irises. It was also found that the sensitivity diminishes further in non- 

Caucasians with increasing skin pigmentation. In 1976, Millodot investigated 

whether this phenomenon could be attributed either to some characteristic of the 

cornea (differences in thickness or nerve density), or to some central nervous system 

factor. Corneal sensitivity to touch was determined in people having the same 

(control) or different iris colour (heterochromia) in their two eyes. No difference in 

sensitivity was found between the two eyes o f each subject, both for the control group 

and the heterochromic group. This suggested that the variation in sensitivity found 

for different iris colours was not due to some inherent difference in the cornea, but 

rather to some higher mechanism of the sensory system.

Further evidence that iris pigmentation alone was not the important factor came from 

the study that found albinos to have a reduced touch sensitivity. Comeal sensitivity 

might be expected to be even higher in albinos than blue-eyed Caucasians since they
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have non-pigmented irises. However, Millodot (1978) found a reduced comeal 

sensitivity in albinos, suggesting an inherent deficiency in albinism.

A similar effect from ethnic origin was found with tear film stability, increasing from 

Chinese, to Africans, to Indians, to Caucasians (Patel et al., 1995). Tear film stability 

was also lower in Caucasians with brown eyes than those with blue eyes (Patel et al., 

1991b). According to Tota and La Marca (1982), subjects with blue eyes produce 

more tears than subjects with brown eyes, and this may partly explain the higher 

stability.

Using fluorescein break-up time as an indicator of pre-comeal tear film stability, 

average values o f 13.9 secs (Maudgil et al., 1989), 9.6 secs (Sukul et al., 1983) and 

7.8 secs (Chopra et al., 1985) have been reported for normal Indian brown eyes. For 

normal Chinese eyes, values o f approximately 7 secs have been reported (Cho et al., 

1992, 1993; Brown et al., 1993; Cho and Yap, 1993), whereas for Malays, assessment 

of tear film stability using non-invasive methods gave values of 15.8 secs (Mohidin et 

al., 2002). For Caucasian subjects, reported values range between 15-34 secs (Lemp 

and Hamill, 1973), 10-60 secs (Rengstorff, 1974), and 19.9 secs (Patel et al., 1995). 

Generally the average break-up time for non-Caucasian eyes is substantially below the 

break-up time reported for Caucasian eyes.

Other than genetic differences, several reasons can account for the differences in these 

studies, such as diet, age, ambient temperature, and humidity. Differences in tear film 

stability have been reported in age-matched Caucasian and Chinese subjects living in 

a common environment (Cho and Brown, 1993). Therefore temperature and humidity
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can be discounted as the causes for the differences between the two groups. Diet, 

however, may account for the differences observed. Vitamins A and C can influence 

tear film quality directly or indirectly (Sommer and Green, 1982; Sommer, 1983a, 

1983b; Ubels and MacRae, 1984; Paterson and O'Rourke, 1987; Patel et al., 1993), 

and a diet devoid of specific trace elements (e.g. zinc, magnesium) may depress tear 

film stability indirectly (Shreeve, 1982; Paterson and O'Rourke, 1987).

The basis for the variation o f corneal sensitivity and iris pigmentation is not clear, but 

the effect has remained one o f the principal physiological factors associated with 

corneal sensation variation. This study will therefore assess:

1) The effect of iris colour on corneal sensation by assessing a different group of 

nerve receptors than previously reported, the cold sensitive C-fibres. In addition, by 

assessing the skin thermal sensitivity to a cooling stimulus, the relationship between 

corneal sensitivity and skin sensitivity will be considered.

2) The effect of iris colour on tear break-up time by repeating the studies that found 

tear stability to be influenced by iris colour and ethnic origin (Patel et al, 1991, 1995).

3) The relationship between blink rate, corneal sensitivity and tear film stability 

among subjects of the same and different racial origins. One model proposed for 

normal blinking is that changes in the tear film prior to break-up are detected by the 

corneal nerves. If tear film stability triggers a blink and is influenced by iris colour, 

then investigating the relationship between blink rate, tear film stability, corneal
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sensitivity and iris colour may be useful in understanding the blink mechanism 

further.

6.2 Methods

Two hundred subjects were recruited from the student population of Cardiff 

University within the age range o f 20-40 years. The subjects were selected to produce 

four groups of different ethnic origin: I) 100 Caucasians (white) (38 males, 62 

females, mean age=23.3±3.6 years, range= 19-36) II) 40 Asians (Indian sub-continent) 

(12 males, 28 females, mean age=21.93±3.45 years, range=19-30) III) 40 Chinese (15 

males, 25 females, mean age=25.6±6.45 years, range= 19-40), and IV) 20 Black 

Africans (8 males, 12 females, mean age=25.2±4.43 years, range=19-35).

The unequal division o f subjects was naturally created by the variation of iris colour 

in each ethnic group. Caucasians have the widest range of iris colours from pale blue 

to brown. Both Indians and Chinese have either brown or dark brown irises, while 

black Africans typically have only dark brown irises. Consequently, to ensure that we 

have 20 subjects for each iris grade in each ethnic group, the numbers of subjects 

required were 100 Caucasian, 40 Asian, 40 Chinese, and 20 black African.

Subjects were excluded if they were contact lens wearers (Ntola and Murphy, 2002), 

or if they had any ocular or systemic pathology known to affect corneal sensitivity, 

e.g. ocular surgery, ocular diseases, diabetes, corneal dystrophy (Bimdorf and 

Ginsberg, 1972; Schwartz, 1974; Lyne, 1977; Ishikawa et al., 1994; Ruben, 1994; 

Murphy et al., 1999a; Rosenberg et al., 2000). Also, pregnant women or women 

during the pre-menstrual, menstruation, or ovulating period, were excluded, as comeal
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sensitivity is depressed (Millodot, 1984, 1994; Martin and Safran, 1988). Ethical 

approval was obtained from the School of Optometry and Vision Sciences Research 

Ethics Committee. After explanation of the purpose of the study, subjects were asked 

to sign a consent form prior to participating. Subjects were also reminded that they 

could withdraw from the study at anytime.

The blink rate of the subject was recorded over a five minute period using the digital 

video camera using the procedure described in section 3.8.1.

A photograph of each subject’s right eye was taken using the Canon Digital Camera, 

using the procedure described in section 3.7.1, and each photograph was later used for 

iris colour classification using the Iris Color Classification System by Seddon et al 

(1990), as described in section 3.6.

Central corneal sensitivity o f the right eye only was measured using the NCCA, as 

described in section 3.1.1. All measurements were made after 12pm to avoid any 

possible diurnal bias. The skin sensitivity o f the right eye was assessed at the upper 

closed eyelid using the NCCA. This area o f the skin was chosen because it can be 

easily positioned in front of the slit-lamp mounted NCCA, and should have a high 

level of sensitivity.
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Fig 6.1: Alignment of NCCA with the closed eyelid for the assessment of thermal 

skin sensitivity.

Tear film stability was assessed using the fluorescein break-up time, as described in 

section 3.3.1.

6.3 Results

The distributions of the measurements for corneal sensitivity, skin sensitivity, break

up time, and number of blinks were assessed for normality (Shapiro-Wilk test), using 

the SPSS 11 Statistical Software Program (Lead Tools, Lead Technologies, Inc). 

Normality test found all sets of data not to be normally distributed. The data were log 

transformed and normality test found all the data to be normally distributed, allowing 

the use of parametric statistical tests (Prism, GraphPad Software Inc, San Diego).
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T ab le  6 .1 : Median/ Interquartile Range (IR) and Mean (± Standard Deviation) o f measurements taken for all ethnic groups: 

CS: Corneal Sensitivity Threshold (mbars) SS: Skin Sensitivity Threshold (mbars) TBUT: Tear Break-Up Time (secs) 

BR: Blink rate: Blinks/min.

Caucasians 
Grade 1

Caucasians 
Grade 2

Caucasians 
Grade 3

Caucasians 
Grade 4

Caucasians 
Grade 5

CS (mbars) MeaniSD 0.66±0.16 0.71±0.22 0.85±0.31 1.01 ±0.31 1.11+0.34

Median/ IR 0.7/ 0.52-0.77 0.72/ 0.57-0.87 0.77/ 0.62-0.95 1.05/0.87-1.22 1.1/0.87-1.37

SS (mbars) Mean±SD 0.63±0.22 0.60±0.16 0.73±0.31 0.7510.40 0.7810.39

Median/ IR 0.65/ 0.5-0.67 0.52/ 0.45-0.62 0.7/ 0.45-0.85 0.7/ 0.55-0.92 0.8/ 0.6-1.0

TBUT (secs) Mean±SD 10.94±7.99 8.5613.34 11.90±6.0 10.4315.56 16.1718.58

Median/ IR 7.65/6.4-11.43 8.64/5.7-11.64 9.54/7.82-15.31 9.47/ 5.5/15.34 15.51/11.52-19.36

BR
(Blinks/min) MeaniSD 15.82±12.01 18.25±8.17 12.73±6.62 15.3919.10 9.07+6.52

Median/ IR 11.4/7.1-24.4 14.5/11.5-24.0 12.2/7.7-20.2 15.6/10.0-22.8 7.5/ 4.9-9.7



Asians 
Grade 4

Asians 
Grade 5

Chinese 
Grade 4

Chinese 
Grade 5

Africans 
Grade 5

CS (mbars) MeaniSD 0.85±0.28 0.94±0.30 0.71±0.30 1.02±0.54 1.2310.28

Median/ IR 0.82/ 0.7-0.87 0.85/ 0.77-1.07 0.70/ 0.52-0.82 0.85/0.55-1.35 1.17/1.0-1.5

SS (mbars) MeaniSD 0.88±0.35 0.76±0.39 0.74±0.44 0.6610.27 1.2110.67

Median/ IR 0.90/0.6-1.12 0.62/ 0.52-0.87 0.62/ 0.5-0.8 0.60/ 0.45-0.82 1.17/0.6-1.67

TBUT (secs) MeaniSD 11.43±6.78 14.09±7.12 9.25±5.25 10.42+5.48 14.10i8.08

Median/ IR 8.73/ 5.32-16.59 12.72/9.27-16.96 7.61/5.59-11.45 10.68/5.13-13.95 15.07/ 8.66-20.28

BR
(Blinks/min) MeaniSD 15.6419.20 16.02±10.46 16.11±11.79 15.03H 1.2 12.58i9.36

Median/ IR 14.20/10.4-19.5 12.80/8.8-22.5 10.65/7.5-23.0 10.60/5.5-22.0 8.00/ 5.3-17.7



6.3.1 Univariate Analysis of the Results

6.3.1.1 Corneal Sensitivity, Iris Pigmentation and Ethnic Group

Since 13 statistical tests were conducted, a Bonferroni correction was used, thus the 

statistical significance required was p<0.0035 (i.e. 0.05/13).

The graphs of corneal sensitivity have been illustrated using the actual corneal 

sensitivity threshold measurements and not the log transformed data of comeal 

sensitivity thresholds. This was done because some of the log-transformed data were 

negative, hence the graph would not be able to illustrate clearly how comeal 

sensitivity changes with increasing iris pigmentation. A significant difference in 

comeal sensitivity was found between the grades of all the ethnic groups (one-way 

ANOVA, pO.OOOl), suggesting that comeal sensitivity was affected by iris colour 

and ethnic origin (Fig 6.2). Table 6.2 shows the mean (standard deviation) of comeal 

sensitivity for each iris colour grade of each ethnic group.

Corneal Sensitivity Thresholds for each Iris 
Colour Grade of Each Ethnic Group
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Fig 6.2 : Mean (± standard deviation) central comeal sensitivity threshold for each iris 

colour grade and ethnic group.

Log Corneal Log Corneal

Sensitivity Threshold
[
! Sensitivity

(mbars)
!

Threshold (mbars)

Mean ± SD Mean ± SD

Cauc 1 0.65±0.16 As 4 T  0^84±0.28

Cauc 2 0.7±0.22 As 5 0 93±0.3

Cauc 3 0 86±0 31 Chin 4 0.7±0.3

Cauc 4 1.01±0.31 Chin 5 0.93±0.45

Cauc 5 1.11 ±0.3 4 Afr 5 1.26±0.33

Table 6.2: Mean (± standard deviation) central comeal sensitivity threshold of each 

iris colour grade for each ethnic group.

For the Caucasian group only, where there is the widest range of iris colours, a 

significant change in comeal sensitivity was found between the grades, with the 

sensitivity decreasing from grade 1 to grade 5. Thus as iris pigmentation increases, 

comeal sensitivity decreases (one-way ANOVA, pO.OOOl) (Fig 6.2).

Comparisons of comeal sensitivity between the iris colour grades of the Caucasian 

group are seen in Table 6.3. Lighter corneas are more sensitive than darker corneas.
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G rade 1 G rade 2 G rade 3 Grade 4 Grade 5

Grade 1

Grade 2 p>0.0035

Grade 3 p<0.0035 p>0.0035

Grade 4 p<0.0035 p<0.0035 p>0.0035

Grade 5 p<0.0035 p<0.0035 p>0.0035 p>0.0035

Table 6.3: Comparison o f corneal sensitivity between the five iris colour grades of 

the Caucasian group (unpaired t-tests).

The same pattern of change was shown for both the Asian and Chinese groups, where 

there are only two iris colours, brown (grade 4) and dark brown (grade 5). Although 

the difference in corneal sensitivity between the two grades is not significant, it can be 

generally seen from the graph that dark brown irises are less sensitive than brown 

irises (Asian: unpaired t-test, p = 0.342; Chinese: unpaired t-test, p = 0.368).

The African group, with only dark brown irises, are less sensitive than any other grade 

5 group. If corneal sensitivity decreases as the iris colour becomes darker, then the 

findings for the African group seem to be reasonable, as Africans have even more 

pigmented irises than the dark brown irises o f Caucasians, Asians and Chinese.

Comparing corneal sensitivity changes between the four ethnic groups, and taking 

into consideration the colour o f the iris, only the results for the grade 5 iris colour 

group can be compared (one-way ANOVA, p = 0.027) (Fig 6.3).
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Corneal Sensitivity of Iris Colour 
Grade 5 for each Ethnic Group

Asians Chinese Caucasians Africans

Ethnic Group

Fig 6.3: Mean (± standard deviation) central corneal sensitivity threshold for iris 

colour grade 5 between the four ethnic groups.

Summarising the findings, corneal sensitivity for a cooling stimulus was affected by 

iris colour. As iris pigmentation increased, corneal sensitivity decreased. A 

difference in corneal sensitivity was also found between ethnic groups, with 

sensitivity decreasing from Asians/ Chinese, to Caucasians, to Africans.

6.3.1.2 Skin Sensitivity, Iris Pigmentation and Ethnic Group

The graphs of skin sensitivity have been illustrated using the actual skin sensitivity 

threshold measurements and not the log transformed data of skin sensitivity 

thresholds. This was done because all the logged data were negative, hence the graph 

would not be able to illustrate clearly how skin sensitivity changes with increasing iris 

pigmentation.
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A significant difference in skin sensitivity was found between the subjects in each iris 

colour grade of each ethnic group (one-way ANOVA, p = 0.008) (Fig 6.4), but no 

clear pattern of change was associated with iris colour or ethnic group.
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Skin Sensitivity for all Iris Colour Grades and 
Ethnic Group
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«  1 . 0 -

.c 0.5-

Caul Cau2 Cau3 Cau4 Cau5 As4 As5 Chin4Chin5 Afr5 
Iris Colour Grade and Ethnic Group

Fig 6.4 : Mean (± standard deviation) skin sensitivity threshold for each iris colour 

grade and ethnic group.

For the Caucasian group, where there is the greatest variety of iris colour, there was a 

trend for decreasing skin sensitivity with increasing iris pigmentation. However, 

there was no significant change in skin sensitivity between the five grades (one-way 

ANOVA, p = 0.478). No difference in skin sensitivity was found between the two iris 

colour grades of the Asian and Chinese Groups (Asian: unpaired t-test, p = 0.286; 

Chinese: unpaired t-test, p = 0.559).

Since there was no difference in skin sensitivity with iris colour for each ethnic group, 

the results were combined and skin sensitivity was compared between the four ethnic
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groups. A significant difference between the groups was found (one-way ANOVA, p 

= 0.0004). The African group had the lowest sensitivity and was significantly 

different than the skin sensitivity for the Chinese, Caucasians and Asians (Chinese, 

unpaired t-test, p = 0.003; Caucasians, unpaired t-test, p<0.0001; Asians, unpaired t- 

test, p = 0.003).

Skin Sensitiv ity  for the Four Ethnic 
Groups

Chinese Caucasians Asians Africans 

Ethnic Group

Fig 6.5 : Mean (± standard deviation) skin sensitivity threshold for the four ethnic 

groups.

Summarising the results for skin sensitivity, although there was a significant 

difference between the iris colour grades for the ethnic groups, this pattern of change 

was not associated with iris colour. Skin sensitivity differed between the ethnic 

groups, decreasing from Caucasians, to Chinese, to Asians, to Africans.
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6.3.1.3 Correlation between Corneal and Skin Sensitivity

No significant correlation was found between comeal and skin sensitivity for each iris 

colour grade o f every ethnic group, apart from African group. Table 6.4 shows the 

correlation for all iris colour grades of each ethnic group. Only a weak significant 

correlation was found when the data for all subjects were compared (Pearson, r = 

0.294, p<0.0001) (Fig 6.6). These results indicate that skin sensitivity was not 

associated with comeal sensitivity.

Correlation CS-SS Correlation CS-SS

Cauc 1 r =0.123, p>0.05 As 4 r =-0.336, p>0.05

Cauc 2 r =0.071, p>0.05 As 5 r =0.316, p>0.05

Cauc 3 r =0.334, p>0.05 Chin 4 j r =0.337, p>0.05

Cauc 4 r =0.362, p>0.05 Chin 5 ! r =0.251, p>0.05

Cauc 5 i  r =0.205, p>0.05 A fr5  ! r =0.45, p  = 0.047

Table 6.4: Correlation o f comeal sensitivity and skin sensitivity for each iris colour 

grade and ethnic group (Pearson r correlations).

Considering only the Caucasian group, where there is a variety of iris colour, a 

significant but weak correlation was found, such that comeal sensitivity decreased, as 

skin sensitivity decreased (r = 0.278, p = 0.05) (Fig 6.7).
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Fig 6.6 : Correlation of corneal sensitivity and skin thermal sensitivity for all subjects.
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Fig 6.7: Correlation of comeal sensitivity and skin thermal sensitivity for all subjects 

of Caucasian group.
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6.3.1 A  Tear Break-Up Time, Iris Pigmentation and Ethnic Origin

Since 16 statistical tests were conducted, a Bonferroni correction was used, thus the 

statistical significance required was p<0.0031 (i.e. 0.05/16).

The graphs were illustrated using the logged transformed data, as all the values after 

log transformations were found to be positive. A significant difference in tear break

up time was found between the iris colour grades of all ethnic groups (one-way 

ANOVA, p = 0.005) (Fig 6.8). Table 6.5 provides the mean (± standard deviation) 

tear film stability for each iris colour grade and ethnic group.

TBUT for All Iris Colour Grades and Ethnic 
Groups

51 

o' 4-9</)

Caucl Cauc2 Cauc3 Cauc4 Cauc5 As4 As5 Ch4 Ch5 Afr5 
All groups of ethnic origins

Fig 6.8: Tear break-up time for each iris colour grade and ethnic origin.
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Log Tear Break-Up j Log Tear Break-Up |

Time (secs) Time (secs)

M eaniSD i
; j

M eaniSD

| Cauc 1i : 2.2±0.6 As 4 1
: i

I
2.25i0.63 j

1

Cauc 2 2.07±0.42 2.52±0.52

Cauc 3 2.33±0.53 Chin 4 2 0g±0 53

Cauc 4 2.19±0.57
i 1

Chin 5
! I

2.2±0.6 j

Cauc 5 2.67±0.49 ~
1

Afr 5 | 2.55±0.6 j

Table 6.5: Mean (± standard deviation) tear film break-up time for each iris colour 

grade and ethnic group.

Considering the Caucasian group only, although there was a significant change in tear 

film stability with different iris colour (one-way ANOVA, p = 0.007), there was no 

indication of a trend for increasing tear film stability with increasing iris 

pigmentation. Comparisons o f the tear film break-up times for the Caucasian iris 

grades is shown in Table 6.6.

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

Grade 1 i I

Grade 2 p>0.0031
i

-----------------

Grade 3 ; p>o.oo3i
I

p>0.0031

Grade 4 p>0.0031 p>0.0031 p>0.0031

Grade 5 | p>0.0031 p<0.0031 p>0.0031 p>0.0031
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Table 6.6: Comparison o f tear film break-up times between the five iris colour grades 

of the Caucasian group.

For the Asian and Chinese group, there was no significant difference in tear film 

stability between the grades 4 and 5 (Asian: unpaired t-test, p = 0.152; Chinese: 

unpaired t-test, p = 0.529).

In order to assess tear film stability between the four ethnic groups, the results for iris 

colour Grade 5 were compared. No significant change was found between the four 

ethnic groups (one-way ANOVA, p = 0.061) (Fig 6.9).

Tear Break-Up Time for Grade 5 
of Each Ethnic Origin Group

4 - i

Chinese Asians Africans Caucasians 
Ethnic Group

Fig 6.9: Mean (± standard deviation) tear film stability for iris colour grade 5 of the 

four ethnic groups.
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Patel et al (1995) found tear film stability to increase from Chinese, to Africans, to 

Indians, to Caucasians, without taking into account iris colour. When the results were 

compared by including all the subjects in each group, as Patel et al did, there was no 

significant difference between the four ethnic groups (one-way ANOVA, p = 0.056) 

(Fig 6.10).

Tear Break-Up Time for Grade 5 
of Each Ethnic Origin Group

4-i

Chinese Asians Africans Caucasians 
Ethnic Group

Fig 6.10: Mean (± standard deviation) tear film stability for all subjects in each ethnic 

group.

Summarising the findings, tear film stability was not influenced by iris pigmentation 

or ethnic origin, although eyes with dark irises tend to maintain a more stable tear film 

than eyes with lighter irises.
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6.3.1.5 Correlation between Corneal Sensitivity and Tear Film 

Break-Up Time

Comparing the data of all subjects, a significant but weak correlation was found 

between comeal sensitivity and tear film break-up time, suggesting that as comeal 

sensitivity decreases, tear film stability increases (Pearson, r = 0.303, p<0.0001) (Fig

6 . 11).

Correlation Between Corneal 
Sensitivity and TBUT for All 

Subjects

r=0.303

* V*
o ^  o j=

Tear Film Break-Up Time (secs)
-2J

Fig 6.11: Correlation of comeal sensitivity and tear film stability for all subjects.

The comparison was also repeated for each iris grade/ethnic group and the results are 

shown in Table 6.7
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Correlation CS-TBUT j Correlation CS-TBUT

Cauc 1 r =-0.004, p>0.05 As 4 r =0.067, p>0.05

Cauc 2 r =0.189, p>0.05 As 5 r =0.225, p>0.05

Cauc 3 r =-0.392, p>0.05 Chin 4 r =0.538, p  =0.014

Cauc 4 r = 0.459, p  = 0.041 Chin 5 r =0.178, p>0.05

Cauc 5 r= 0.784, p<0.0001 Afric 5 r =0.581, p  = 0.009

Table 6.7: Correlation between comeal sensitivity and tear film stability for each iris 

colour grade and ethnic group (Pearson r correlations).

It was therefore concluded that although there was not a clear pattern of the 

relationship between comeal sensitivity and tear film stability, there is evidence that 

there is indeed a correlation, with less sensitive corneas having a more stable tear 

film.

6.3.1.6 Blink Rate, Iris Pigmentation and Ethnic Origin

Since 14 statistical tests were conducted, a Bonferroni correction was used, thus the 

statistical significance required was p<0.0035 (i.e. 0.05/14).

The graphs were illustrated using the logged transformed data, as all the values after 

log transformations found to be positive. A difference in blink rate was found 

between the iris colour grades o f all ethnic groups (one-way ANOVA, p = 0.028) (Fig

6 . 12).
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Looking only at the Caucasian group, a significant change in blink rate was found 

with different iris colours (one-way ANOVA, p = 0.002), but, there was no pattern of 

change associated with iris pigmentation. Nevertheless, subjects with darker corneas 

tended to blink less compared to the other grades, and since these subjects also have a 

more stable tear film, it suggests a correlation might exist between tear film stability 

and blink rate (Prause and Norn, 1987; Yap, 1991). A comparison of the blink rates 

between the iris colour grades of Caucasians is shown in Table 6.8.

Blink Rate of Each Iris Grade and Ethnic Origin 
Group

4-,

£ 3h 
0 <M (0
a.:
*  2-j 
c
m

1-1

Caucl Cauc2 Cauc3 Cauc4 Cauc5 As4 As5 Ch4 Ch5 Afr5 
All groups of ethnic origin

Fig 6.12: Mean (± standard deviation) o f blink rate for each iris colour grade and 

ethnic group.
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G rade 1 G rade 2 G rade 3 Grade 4 Grade 5

G rade 1

G rade 2 p>0.0035
—  .. .

G rade 3 p>0.0035 p>0.0035

Grade 4 p>0.0035 p>0.0035 p>0.0035

Grade 5 p>0.0035 p<0.0035 p>0.0035 p>0.0035

Table 6.8: Comparison of blink rates between the five iris colour grades of the 

Caucasian group.

No significant difference was found in blink rate between iris colour grades 4 and 5 in 

the Asian and Chinese groups (unpaired t-test, p>0.0035).

In conclusion, it was found that the blink rate does not alter with iris pigmentation.

6.3.7.7 Correlation between Corneal Sensitivity and Blink Rate

Comparing corneal sensitivity and blink rate, a significant, but weak correlation was 

found (Pearson, r = -0.36, p<0.0001) (Fig 6.13), suggesting that as corneal sensitivity 

decreases, the blink rate also decreases.
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Correlation of Corneal Sensitivity
and Blink Rate

2-i

~  (/> 
> cc

</> 2
ro .co> (/)
E 2O -C
O H

1 -

0-

- 1 -

1 - : - .4

r=-0.36

-2J Blink Rate (blinks/min)

Fig 6.13: Correlation o f corneal sensitivity and blink rate for all subjects.

Further analysis of the correlation can be made if the subjects de divided into two 

groups: Group 1, subjects with corneal sensitivity thresholds less than the mean 

comeal sensitivity threshold of all subjects; and Group 2, subjects with comeal 

sensitivity more than the mean comeal sensitivity threshold of all subjects (i.e. Group 

1 = more sensitive, Group 2 = less sensitive). The difference between the mean of 

comeal sensitivity thresholds for the two groups was statistically significant (unpaired 

t-test, p = 0.002) (Fig 6.14), indicating that people having more sensitive corneas 

blink more than those having less sensitive corneas.
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Blink Rate for Subjects with 
Above and Below Average 

Corneal Sensitivity Threshold
4-1

C S Threshold<M ean

C S Threshold>M ean

Mean C S Threshold=-0.167

Group 1 Group 2

More Sensitive Less Sensitive

Fig 6.14: Comparison of blink rate for subjects with corneal sensitivity threshold 

above and below the mean corneal sensitivity threshold.

The correlations between corneal sensitivity thresholds and blink rate for all iris 

colour grades of each ethnic group are shown in Table 6.9. A significant relationship 

exists only for grade 5 of the Caucasian and African groups, as well as for grade 4 of 

the Asian Group.
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Correlation CS-Blink Rate j Correlation CS-Blink Rate

Cauc 1 r =-0.177, p>0.05 As 4 r =-0.477, p  = 0.033

Cauc 2 r = -0.176, p>0.05 As 5 r=-0.317, p>0.05

Cauc 3 r = 0.094, p>0.05 Chin 4 r =-0.357, p>0.05

Cauc 4 r = -0 118, p>0 05 Chin 5 r =-0.246, p>0.05

Cauc 5 r =-0.656,p  = 0.002 Afr 5 r =-0.636, p  =0.003

Table 6.9: Correlations of comeal sensitivity threshold and blink rate for each iris 

colour grade and ethnic group (Pearson r correlations).

The findings suggest that comeal sensitivity is involved in the blink mechanism and 

may control normal involuntary blinking. This is observed when a decreased comeal 

sensitivity produces a decreased blink rate.

6.3.1.8 Correlation between Tear film Break-Up Time and Blink 

Rate

The relationship between blink rate and tear film stability was considered for all the 

subjects to investigate whether tear film stability is a factor in the blink mechanism. 

A significant correlation was found (Pearson, r =-0.536, p<0.0001) (Fig 6.15), 

indicating that as tear film stability increases, the blink rate decreases. The correlation 

was found to be significant, but not strong, due to inter-subject variability. To reduce 

the variability from iris colour and ethnic origin, only the correlations for Caucasians 

(grade 5) and Africans (grade 5) were considered (Figs 6.16, 6.17).
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Correlation Between Tear Film 
Break-Up Time and Blink Rate

r=-0.536
4 -

•  •

Tear Film Break-Up Time (secs)

Fig 6.15: Correlation of tear film break-up time and blink rate for all subjects.

Correlation Between Tear Film 
Break-Up Time and Blink Rate for 

Caucasians Grade 5

4-1

r=-0.738

Tear Film Break-Up Time (secs)

Fig 6.16: Correlation of tear film break-up time and blink rate for Caucasian grade 5 

subjects.
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Correlation Between Tear Film 
Break-Up Time and Blink Rate for 

Africans Grade 5
4 - i

r=-0.862

Tear Film Break-Up Time (secs)

Fig 6.17: Correlation of tear film stability and blink rate for African grade 5 subjects.

Table 6.10 shows the results for correlations of tear film stability and blink rate for all 

iris colour grades of each ethnic group.

Correlation TBUT-BR Correlation TBUT-BR

Cauc 1 r =-0.546, p=0.013 As 4 r =-0.486, p=0 .039

Cauc 2 r =-0.581, p=0.007 As 5 r =-0.468, p=0.04

Cauc 3 r =-0.618, p=0.004 Chin 4 r =-0.527, p=0.017

Cauc 4 r =-0,6 p= 0 .005 Chin 5 r =-0.495, p=0.026

Cauc 5 r=-0.738, p = 0 .0002 Afr 5 r =-0.862, p<0.0001

Table 6.10: Correlation of tear film stability and blink rate for each iris colour grade 

and ethnic group (Pearson r correlations).
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A significant correlation was found for all the grades, indicating that tear film stability 

influences involuntary blink rate. People with a more stable tear film tend to blink 

less compared to those with lower values of tear film stability. This finding can be 

shown clearly if the subjects divided into two groups according to the mean TBUT: 

Group 1, subjects with TBUT less than the mean of TBUT of all subjects; and Group 

2, subjects with TBUT higher than the mean TBUT of all subjects (i.e. Group 1 = less 

stable tear film, Group 2 = more stable tear film). The difference between the mean 

TBUT of the two groups was statistically significant (unpaired t-test, p<0.0001) (Fig 

6.18). The mean and standard deviation of the blink rates exhibited by these groups 

was 2.81 blinks/min±0.57 for Group 1 and 2.01 blinks/min ±0.56 for Group 2.

Blink Rate for Subjects with 
Above and Below Average Tear 

Break-Up Time
4 - i

c
£

1 H  BUT<Mean 
■  BUT>Mean

0

Mean TBUT=2.31 s e c s

Group 1 

Less Stable

Group 2 

More Stable

Fig 6.18: Comparison of blink rate for subjects with tear break-up time lower and 

higher than the mean BUT.



Summarising the results, it was found that tear film stability was closely related to the 

blink rate, with higher values of tear film stability producing lower blink rates. The 

findings are reasonable, as a less stable tear film will cause a more frequent eyelid 

activity to reform the tear film layer, in order to provide a smooth optical sharp image, 

protect the exposed comeal epithelium from the environment, and moisten and 

lubricate the ocular surface.

6.3.2 Multivariate Analysis of the Results

The results were also analysed using multivariate analysis for each ethnic group, as 

well as taking into consideration all the subjects participating in the study. The 

factors studied using multivariate analysis were blink rate, tear film break-up time, 

and comeal sensitivity.

6.3.2.1 Caucasian Group

A multiple linear regression was conducted, with the Loge blink rate (BR) as the 

dependent variable and Loge tear film break-up time (TBUT) and Loge comeal 

sensitivity (CS) as predictor variables.

The model was found to be significant (F (2.96) = 45.49, p< 0.001), and explained 

48.7% of the variance (R2 = 0.487, adjusted R2 = 0.476). The model was the 

following:

Dependent Variable = A (IVi) + B (IV2) + C 

Loge BR = -0.212 (Loge CS) -  0.763 (Loge TBUT) + 4.173
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(where Loge BR, Loge CS and Loge TBUT are the log transformed values of BR, CS 

and TBUT).

The beta coefficients for TBUT was significant (t = -0.847, p< 0.001), but the beta 

coefficients for CS was not found to be significant (t = -1.521, p = 0.131). Thus 

TBUT was found to be a unique predictor for BR. The semi partial correlation 

between TBUT and BR removing the linear effects of CS on TBUT was -0.62. 

Corneal Sensitivity did not explain any unique variance.

A 3-D cluster graph can illustrate the relationship between BR, TBUT and CS. BR is 

strongly related to TBUT, indicating that as the TBUT increases, the BR decreases. A 

relationship can also be seen between CS and BR, indicating that as CS decreases, the 

BR decreases (Fig 6.19).
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Fig 6.19: 3-D cluster graph illustrating the relationships between blink rate, tear film 

break-up time and corneal sensitivity for the Caucasian Group.

All the independent correlations between BR, TBUT and CS for the Caucasian group 

were also investigated using a matrix scatter plot. A significant strong correlation was 

found between BR and TBUT, suggesting that as the TBUT increases the blink rate 

decreases (Pearson, r = -0.689, p< 0.001). A significant correlation was also found 

between BR and CS (Pearson, r = -0.32, p< 0.001), indicating that as corneal 

sensitivity decreases the blink rate is also decreasing, as well as between CS and 

TBUT (Pearson, r = -0.31, p< 0.001) indicating that as CS decreases the TBUT 

increases (Fig 6.20).
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Fig 6.20: Correlation between blink rate, tear film break-up time and corneal 

sensitivity for the Caucasian Group.
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A stepwise multiple regression procedure was also conducted and it only included 

TBUT in the model as a predictor for blink rate. The adjusted R2 was 0.469 which is 

comparable to the linear multiple regression analysis that included TBUT and CS (R2 

= 0.476).

Summarising the results for the Caucasian group, it was found that the blink rate was 

significantly correlated with comeal sensitivity and tear film break-up time. Linear 

multiple regression found that the tear film break-up time can be a unique predictor 

for the blink rate.

6.3.2.2 Asian Group

A multiple linear regression was conducted, with the Loge blink rate (BR) as the 

dependent variable and Loge tear film break-up time (TBUT) and Loge comeal 

sensitivity (CS) as predictor variables.

The model was found to be significant (F (2.37) = 14.68, p = 0.000), and explained 

44.2% of the variance (R2 = 0.442, adjusted R2 = 0.412). The model was the 

following:

Dependent Variable = A (IVi) + B (IV2) + C 

Loge BR = 0.465 (Loge CS) -  0.691 (Loge TBUT) + 4.309

The beta coefficient for TBUT was significant (t = -5.312, p<0.001), and the beta 

coefficient for CS was found to be not significant (t = 1.85, p = 0.072). TBUT was 

found to be a unique predictor for BR. The semi-partial correlation between TBUT
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and BR removing the linear effects of CS on TBUT was -0.652. Corneal sensitivity 

did not explain any unique variance.

A 3-D cluster graph illustrated the relationship between BR, TBUT and CS. Only the 

BR was strongly related to TBUT, indicating that as TBUT increases, the BR 

decreases. No relationship could be seen between CS and BR (Fig 6.21).
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Fig 6.21: 3-D cluster graph illustrating the relationships between blink rate, tear film 

break-up time and corneal sensitivity for the Asian Group.

All the independent correlations between BR, TBUT and CS for the Caucasian group 

were also investigated using a matrix scatter plot. A significant strong correlation was 

found between BR and TBUT (Pearson, r = -0.625, p< 0.001), but no correlation was 

found between BR and CS (Pearson, r = -0.131, p = 0.209), and between CS and 

TBUT (Pearson, r = 0.15, p = 0.178) (Fig 6.22).
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Fig 6.22: Correlation between blink rate, tear film break-up time and corneal 

sensitivity for the Asian Group.

A stepwise multiple regression procedure was also conducted and it only included 

TBUT in the model as a predictor for blink rate. The adjusted R was 0.39 which is 

very similar to the linear multiple regression analysis that included TBUT and CS (R2 

= 0.412).

Summarising the results for the Asian group, it was found that the blink rate was 

significantly correlated only with tear film break-up time. Linear multiple regression 

found that the tear film break-up time can be a unique predictor for the blink rate.
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6.3.2.3 Chinese Group

A multiple linear regression was conducted, with the Loge blink rate (BR) as the 

dependent variable and Loge tear film break-up time (TBUT) and Loge comeal 

sensitivity (CS) as predictor variables.

The model was found to be significant (F (2.37) = 6.96, p = 0.003), and explained 

27.3% of the variance (R2 = 0.273, adjusted R2 = 0.234). The model was the 

following:

Dependent Variable = A (IVi) + B (IV2) + C 

Loge BR = -0.207 (Loge CS) -  0.681 (Loge TBUT) + 3.854

The beta coefficients for TBUT was significant (t = -3.19, p = 0.003), but the beta 

coefficients for CS was not found to be significant (t = -0.92, p = 0.363). TBUT was 

found to be a unique predictor for BR. The semi-partial correlation between TBUT 

and BR removing the linear effects o f CS on TBUT was -0.447. Comeal sensitivity 

did not explain any unique variance in the model.

A 3-D cluster graph illustrated the relationship between BR, TBUT and CS. BR was 

related to TBUT, indicating a decrease in the BR as the TBUT increases. Also BR 

and TBUT was correlated to CS (Fig 6.23), suggesting that as CS decreases the BR 

decreases and the TBUT increases.
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Fig 6.23: 3-D cluster graph illustrating the relationships between blink rate, tear film 

break-up time and corneal sensitivity for the Chinese Group.

All the independent correlations between BR, TBUT and CS for the Chinese group 

were also investigated using a matrix scatter plot. A significant strong correlation was 

found between BR and TBUT, suggesting that as the TBUT increases the blink rate 

decreases (Pearson, r = -0.507, p< 0.001). A significant but weak correlation was 

found between BR and CS (Pearson, r = -0.271, p = 0.045), indicating that as corneal 

sensitivity decreases the blink rate is also decreasing, as well as between CS and 

TBUT (Pearson, r = -0.291, p = 0.000) indicating that as CS decreases the TBUT 

increases (Fig 6.24).
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Fig 6.24: Correlation between blink rate, tear film break-up time and comeal 

sensitivity for the Caucasian Group.

A stepwise multiple regression procedure was also conducted and it only included 

TBUT in the model as a predictor for blink rate. The adjusted R was 0.237 which is 

comparable to the linear multiple regression analysis that included TBUT and CS (R2 

= 0.234).

Summarising the results for the Chinese group, it was found that the blink rate was 

strongly correlated with tear film break-up time and less strongly with comeal 

sensitivity. Linear multiple regression found that the tear film break-up time can be a 

unique predictor for the blink rate.
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6.3.2.4 African Group

A multiple linear regression was conducted, with the Loge blink rate (BR) as the 

dependent variable and Loge tear film break-up time (TBUT) and Loge comeal 

sensitivity (CS) as predictor variables.

The model was found to be significant (F (2.17) = 30.69, p = 0.000), and explained 

78.3% of the variance (R2 = 0.783, adjusted R2 = 0.758). The model was the 

following:

Dependent Variable = A (IVi) + B (IV2) + C 

Loge BR = -0.707 (Loge CS) -  0.826 (Loge TBUT) + 4.49

The beta coefficients for TBUT was significant (t = -5.1, p<0.001), and the beta 

coefficients for CS was found to be not significant (t = -1.79, p = 0.091). TBUT was 

found to be a unique predictor for BR. The semi-partial correlation between TBUT 

and BR removing the linear effects o f CS on TBUT was -0.576. Comeal sensitivity 

did not explain any unique variance in the model.

A 3-D cluster graph illustrates the relationship between BR, TBUT and CS. Strong 

relationships can be seen between BR and TBUT, BR and CS, as well as between 

TBUT and CS (Fig 6.25).
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Fig 6.25: 3-D cluster graph illustrating the relationships between blink rate, tear film 

break-up time and corneal sensitivity for the Chinese Group.

All the independent correlations between BR, TBUT and CS for the Chinese group 

were also investigated using a matrix scatter plot. A significant strong correlation was 

found between BR and TBUT (Pearson, r = -0.861, p< 0.001), as well as between BR 

and CS (Pearson, r = -0.672, p = 0.001), indicating that as corneal sensitivity 

decreases the blink rate is also decreasing. A strong correlation was also found 

between CS and TBUT (Pearson, r = -0.59, p = 0.003) (Fig 6.26).
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Fig 6.26: Correlation between blink rate, tear film break-up time and comeal 

sensitivity for the African Group.

A stepwise multiple regression procedure was also conducted and it only included 

TBUT in the model as a predictor for blink rate. The adjusted R2 was 0.728 which is 

comparable to the linear multiple regression analysis that included TBUT and CS (R2 

= 0.758).

Interestingly, although a significant correlation was found between comeal sensitivity 

and blink rate in the matrix scatter plot, comeal sensitivity was removed in the 

stepwise multiple regression. This suggests that this relationship is not an important 

factor and it does not affect the model, although the unstandardised beta coefficient of 

comeal sensitivity in the model was found to be very strong. This finding indicates 

that comeal sensitivity is strongly correlated to blink rate, only when the linear effects 

of tear film break-up time on comeal sensitivity are considered. When the linear
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effects of tear film break-up time on comeal sensitivity are removed, then the 

relationship between comeal sensitivity and blink rate is not significant in the model.

Summarising the results for the African group, it was found that the blink rate was 

strongly correlated both with tear film break-up time and comeal sensitivity. 

However, linear multiple regression found that the tear film break-up time is the only 

unique predictor for the blink rate.

6.3.2.5 AH Ethnic Groups

A multiple linear regression was conducted, with the Loge blink rate (BR) as the 

dependent variable and Loge tear film break-up time (TBUT) and Loge comeal 

sensitivity (CS) as predictor variables.

The model was found to be significant (F (2.196) = 68.67, p = 0.000), and explained 

41.2% of the variance (R2 = 0.412, adjusted R2 = 0.406). The model was the 

following:

Dependent Variable = A  (IV i) + B (IV 2) + C 

Loge BR = -0.122 (Loge CS) -  0.733 (Loge TBUT) + 4.134

The beta coefficients for TBUT was significant (t = -10.62, p< 0.001), but the beta 

coefficients for CS was not significant (t = -1.23, p = 0.218). TBUT was found to be 

a unique predictor for BR. The semi-partial correlation between TBUT and BR 

removing the linear effects of CS on TBUT was -0.576. Comeal sensitivity did not 

explain any unique variance in the model.
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A 3-D cluster graph illustrates the relationship between BR, TBUT and CS. Strong 

relationships can be seen between BR and TBUT, BR and CS, as well as between 

TBUT and CS (Fig 6.27).
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Fig 6.27: 3-D cluster graph illustrating the relationships between blink rate, tear film 

break-up time and corneal sensitivity for all the Ethnic Groups.

All the independent correlations between BR, TBUT and CS for all the ethnic groups 

were also investigated using a matrix scatter plot. A significant strong correlation was 

found between BR and TBUT (Pearson, r = -0.638, p< 0.001), as well as a less strong 

correlation between BR and CS (Pearson, r = -0.271, p = 0.000), and CS and TBUT 

(Pearson, r = -0.324, p = 0.000) (Fig 6.28).
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Fig 6.28: Correlation between blink rate, tear film break-up time and corneal 

sensitivity for all the Ethic Groups.

A stepwise multiple regression procedure was also conducted and it only included 

TBUT in the model as a predictor for blink rate. The adjusted R2 was 0.404 which is 

comparable to the linear multiple regression analysis that included TBUT and CS (R" 

= 0.406).

Summarising the results for all the ethnic groups, it was found that the blink rate was 

correlated both with tear film break-up time and corneal sensitivity. Corneal 

sensitivity was significantly correlated to tear film break-up time. However, linear 

multiple regression found that the tear film break-up time is the only unique predictor 

for the blink rate.
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6.4 Discussion

The aim of this study was to consider the effect of iris colour and ethnic origin on 

corneal sensitivity, tear film stability, and blink rate, and to find out any possible 

relationships between blink rate, tear film stability and corneal sensitivity. The results 

provide strong evidence that corneal sensitivity is influenced by iris colour, 

suggesting that as iris pigmentation increases, comeal sensitivity decreases. This 

phenomenon is seen well illustrated in the Caucasian group, where there is a variety 

of iris colour.

The results from this study are in accordance with Millodot (1975a, 1976a) and Tota 

and La Marca (1982), who found that people with blue eyes have more sensitive 

corneas than those with brown eyes. For these earlier studies, comeal sensitivity was 

measured using the Cochet-Bonnet Aesthesiometer, which stimulates the mechanical 

nerve receptors of the comeal epithelium. The fact that the same variation in comeal 

sensitivity with different iris pigmentation was found for both the mechanical and 

cold sensors of the comeal epithelium is a good indicator that the different nerve 

receptor types in the comeal epithelium are affected by the same factors.

A variation in comeal sensitivity was also found between different ethnic groups, with 

comeal sensitivity decreasing from Asians and Chinese, to Caucasians and then 

Africans (Fig 6.3). These results are reasonable, since the dark brown eyes of 

Africans are more pigmented in comparison to the dark brown eyes of Chinese, 

Asians, and Caucasians. The results also partially agree with the findings of Millodot 

(1975a) who reported that sensitivity diminishes further in non-whites with darker 

pigmented eyes.
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These differences between the previous studies and the current study might be due to 

the different methods used to assess corneal sensitivity, as well as to the different 

ways of classifying iris colour. In this study the Non-Contact Corneal Aesthesiometer 

was used to assess corneal sensitivity and the Iris Color Classification System 

(Seddon et al., 1990) was used to classify each subject’s iris colour. In contrast, the 

previous studies (Millodot 1975a, 1976a; Tota and La Marca, 1982) used the Cochet- 

Bonnet Aesthesiometer and separated the subjects into different iris colour group 

according to their own subjective criteria.

The reduction in corneal sensitivity with darker pigmentation is not easily explained. 

It has been suggested that melanin in the iris might be correlated to the amount of 

neuro-melanin in areas of the central nervous system (Hale et al., 1980; Martin and 

Safran, 1988). It may therefore be conceivable that differences in corneal sensitivity 

between light and dark-eyed subjects arise from differences in central nervous system 

function.

To assess whether skin sensitivity was also affected by a similar neuro-melanin 

influence on the central nervous system, and whether this is responsible for the 

variation in comeal sensitivity associated with iris pigmentation, measurements of 

skin thermal sensitivity were assessed. No variation in skin sensitivity was found 

with increasing iris pigmentation, indicating that skin sensitivity is not involved in the 

comeal sensitivity variation, but skin sensitivity was found to be influenced by ethnic 

origin, with skin sensitivity decreasing from Caucasians, to Chinese, to Asians, to
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Africans. This pattern appears to follow an apparent progression of increasing skin 

pigmentation.

The study also found that tear film stability was not influenced by different iris 

pigmentation, except for eyes with dark irises which tended to maintain a more stable 

tear film. The results contradict Patel et al (1991) who also investigated the effect of 

iris colour on tear film stability. They found that people with blue eyes have a more 

stable tear film than those with brown eyes. This difference in result may be due to 

the small number of subjects (20 subjects) who participated in the Patel study, or to 

the different instrumentation (Baush and Lomb keratometer) used to assess tear film 

stability.

The results from this study, that there is no relationship between iris colour and tear 

film stability, are more likely to be correct than those from Patel et al since there is no 

obvious explanation for any relationship to actually occur. However, there may be 

biochemical or biophysical differences in the tears between eyes with light or dark 

irises. In particular, dark eyes may have a thicker lipid layer, which produces a lower 

evaporation from the tear film and higher tear film stability (Patel et al., 1995).

Tear film stability was influenced by ethnic origin, but the change did not follow the 

results of Patel et al (1995), who found the tear thinning time to be increasing from 

Chinese, to Africans, to Indians, to Caucasians. However, the difference is only in 

swapping the African and Asian group around in the order. The common finding of 

both sets of results was that tear stability was lowest in Chinese eyes and highest in
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Caucasians eyes. This is supported by the results of other researchers (Cho et al., 

1992, 1993; Brown et al., 1993; Cho and Yap, 1993).

The morphological uniqueness of the Chinese palpebrae may influence the way in 

which the pre-comeal tear film is established during and after a blink, thus producing 

a physically different pre-comeal tear film in terms of relative organization and 

structure, thus producing a lower tear film stability. Also, the reported large 

differences in the biochemistry of Meibomian gland secretions between Caucasians 

may be account for the higher values of tear film stability found for this group 

(Tiffany, 1978; Nicolaides et al., 1981). These differences, in conjunction with the 

quality and secretory rates of the major tear components, may be the key factors for 

differences between the ethnic groups.

Turning now to the blink rate, no effect from ethnic origin was found on the rate of 

blinking, although subjects with dark brown irises had a tendency to blink less than 

those with lighter coloured irises. Since subjects with dark brown irises also have a 

more stable tear film, this suggests that there is a relationship between the two factors.

Indeed, a strong and significant correlation between TBUT and blink rate was found 

for every iris colour grade of each ethnic group. This significant negative correlation 

between the two variables suggests that people with low tear film stability blink more 

frequently. Multiple linear regression showed that tear film stability is a unique 

predictor for blink frequency. Taking this hypothesis one step factor, it suggests that 

periodic blinking is dependent not only on central control, but also on the stability of 

the pre-comeal tear film. It may be that blink frequency is adjusted by tear stability to
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promote reformation of the tear film layer, in order to provide a sharp optical image, 

protect the exposed corneal epithelium, and moisten the ocular surface.

These findings agree with the results of Yap (1991) and Abdulmunem (2001) who 

found a strong relationship between TBUT and blink frequency. However, other 

investigations (Prause and Norn, 1987; Collins et al., 1989; Patel et al., 1991b; Yolton 

et al., 1994) found a weak correlation between TBUT and blink rate. The different 

results for these studies may be due to the experimental method used to record the 

blink rates. The psychological and perceptual factors that affect blinking were 

minimised in the present study. Blink rate was measured while subjects watched a 

film. Although performing such a task has the potential to alter a subject’s attention 

state and thus their blink rate (Goldstein et al., 1985), the subject matter chosen 

limited this effect. In any case, by asking all subjects to undergo the same viewing 

conditions, the test could be standardised.

Blink rate was also correlated with corneal sensitivity to determine whether corneal 

sensitivity is a factor in physiological blinking. It has been suggested previously that 

tear thinning during the inter-blinking interval produces a localised cooling of the tear 

film which can be detected by the temperature sensitive corneal nerves before a full 

break-up occurs. Using univariate analysis, a significant, but weak correlation was 

found between corneal sensitivity and blink rate, suggesting that corneal sensitivity is 

involved in the blink mechanism. Previous studies anaesthetised the cornea and 

found a reduced blink rate (Collins et al., 1989; Moore and Kardon, 1997). It was 

proposed that blink frequency is primarily determined by the total sensory input of the 

two eyes, which is then modulated by central processing. In this study the strongest
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• 2  2 correlations were found only for Caucasian (R = 0.476) and Africans (R = 0.533)

subjects with iris colour grade 5, and they illustrate the pattern that subjects with

higher corneal sensitivity blink more often. This function supports the hypothesis that

the corneal nerves are detecting early changes in the tear film triggering an early

blink. More sensitive eyes are better able to detect these changes, and so trigger more

blinks.

Indeed, using multivariate analysis, it was found that corneal sensitivity was strongly 

correlated with blink frequency in the Caucasian, Chinese and African Group, but it 

was not found to be the unique predictor for blink frequency in the linear regression 

model. These findings are important and indicate that the role of corneal sensitivity in 

blinking is dependent on the effects of tear film stability. A very good example can 

be seen in the African group, who experience low sensitivity and stable tear film. 

Both of these factors found to be significant in the linear regression model, but 

stepwise regression removed the relationship between corneal sensitivity and blink 

frequency. When the linear effects of tear film stability on corneal sensitivity are 

taken into account in the model, the correlation between corneal sensitivity and blink 

frequency is significant in the model. However, when the linear effects o f tear film 

stability on corneal sensitivity are removed, the correlation between comeal 

sensitivity and blink frequency is not significant, hence stepwise regression removes 

comeal sensitivity from the model. These findings assist in the hypothesis that 

comeal nerves are detecting early changes in the tear film.

In conclusion this study found comeal sensitivity to be influenced by iris colour and 

ethnic origin. As iris pigmentation gradually increases, comeal sensitivity gradually
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decreases. Skin sensitivity was not found to account for these variations, suggesting 

that variation in corneal sensitivity arises from differences in the central nervous 

system and not from skin sensitivity variations. Tear film stability was not found to 

be influenced by iris colour. Dark eyes appeared to maintain a more stable tear film, 

producing lower blink rates. Statistical correlations found that stability o f the tear 

film is a key factor in the blink stimulus. Corneal sensitivity is involved in the 

mechanism controlling normal involuntary blinks, by detecting changes in the tear 

when it destabilises between blinks.
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7. An Investigation of the Ocular Surface Sensory 

Trigger for Blinking

7.1 Introduction-Purpose

The pre-ocular tear film is a dynamic structure that is inherently unstable. Frequent 

blinking is necessary to prevent drying of the ocular surface. Although blinking plays 

an important role in the maintenance of the integrity of the ocular surface, by 

contributing to the maintenance of eye surface humidity, drainage of tears, expression 

of lipids from Meibomian glands, and spreading of tear lipids across the pre-comeal 

tear film (Holly, 1980, 1985; Doane, 1981; Tiffany, 1985; Korb et al., 1994), the 

factors involved in the control of spontaneous blinking are not well understood, 

although it is likely to involve central and peripheral triggers.

There have been many investigations of blinking and the different factors that 

influence it, as discussed in the Introduction. Stem et al (1984) reported that blink 

activity is under cortical control and thus is affected by psychological and perceptual 

factors such as attention, level of concentration, stress and anxiety. In addition to the 

cortical control, physiological factors have also been associated with blinking. Prause 

and Nom (1987) found a significant but low negative correlation (r =-0.33) between 

blink rate and tear film break-up time. Yap (1991) found a stronger negative 

correlation (r =-0.69) between blink rate and TBUT supporting the hypothesis that 

tear film break-up is a stimulus for normal involuntary blinking. Collins et al (1989) 

suggested that comeal sensitivity must play an important role in the mechanism 

mediating normal involuntary blinks by demonstrating a reduction in blink rate when 

comeal sensation was blocked using a local anaesthetic. Holly (1973) suggested that
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dry spot formation triggers an involuntary blink because it irritates the nerve endings, 

but the mechanism for this association was not clarified. Mori et al (1997) also 

suggested that evaporation-mediated cooling, which occurs during the process of tear 

break-up, may be detected by thermo-sensitive corneal afferents and provide the 

signal for a blink to reform the tear film.

To investigate the hypothesis that changes in the local tear film stability trigger a 

blink, this study will focus at several ocular surface conditions and their relationships 

with blink frequency.

1) Tear Film Stability: To assess the relationship between tear break-up time and 

blink rate. The hypothesis being tested is that, if a breakdown in the tear-film is the 

“trigger to blink”, then subjects with a lower tear-break-up time will have a higher 

blink-rate.

2) Corneal Sensitivity: To assess the relationship between corneal sensitivity and 

blink rate. The first hypothesis being tested is that, if any changes in the tear film 

prior to break-up are detected by the sensory nerve endings in the cornea, then 

subjects with a higher corneal sensitivity will have a higher blink rate. The second 

hypothesis being tested is that, if any loss in corneal sensitivity (produced by local 

anaesthetics) leads to any tear-film mediated “trigger to blink” going undetected, 

subjects will have a reduced blink rate.

3) Temperature of the Anterior Ocular Surface: Using the thermal imaging camera, 

analysis of the change in ocular surface temperature in the inter-blink period will be
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made. As the tear-film gradually destabilises following a blink, the ocular surface 

temperature also decreases. The hypothesis being tested is that subjects with a greater 

reduction in ocular surface temperature will have a higher blink-rate, if a localised 

temperature change is the “trigger to blink”.

4) Evaporation of the Anterior Ocular Surface: To assess the relationship between 

blink rate and ocular surface evaporation rate. The hypothesis being tested is that, if 

early evaporative tear loss is the “trigger to blink”, then subjects with a higher 

evaporation rate will have a higher blink rate.

7.2 Methods

Twenty Caucasian subjects (9 males, 11 females; mean age, 22.85±2.21 years; range, 

19-28) were recruited from the student population of Cardiff University. The age 

range was between 20-40 years, as corneal sensitivity (Millodot, 1977a, 1984; 

Murphy et al., 2004), corneal temperature (Alio and Padron, 1982a; Girardin et al., 

1999; Horven, 1975; Morgan et al., 1999), and tear film stability (Patel et al, 1989) 

have been found to decrease with age. Subjects were excluded if they were contact 

lens wearers, pregnant women or women during the premenstruum, menstruation, or 

ovulating period, as corneal sensitivity is depressed in these situations. Subjects with 

any ocular or systemic pathology known to affect comeal sensitivity were also 

excluded. Ethical approval was obtained from the School of Optometry and Vision 

Sciences Research Ethics Committee. After explanation of the purpose of the study, 

subjects were asked to sign a consent form prior to participating. Subjects were also 

reminded that they could withdraw from the study at anytime.
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All the subjects taking part in this study had a minimum tear film break-up time of 8 

seconds, for comfort purposes, as the assessment of dynamic temperature change 

across the ocular surface area required 8 seconds without the subject blinking.

Subjects were asked to attend the laboratory on two different days and each visit 

lasted for one hour. All measurements were made after 12pm to avoid any possible 

diurnal bias in corneal sensitivity (Millodot, 1972; du Toit et al., 2003; Chapter 4), 

tear film stability (Patel et al., 1988), corneal temperature (du Toit et al, 1998), or tear 

evaporation rate (Tomlinson and Cedarstaff, 1992). Humidity and room temperature 

were maintained at stable levels during the experiment (room temperature 24.42°C ± 

1.21; room humidity 31.93% ± 4.01%), since humidity will affect tear evaporation 

from the ocular surface and, in turn, the ocular surface temperature (Schwartz, 1965; 

Mapstone, 1968b; Kolstad, 1970; Freeman and Fatt, 1973; Horven, 1975; Hata et al., 

1994, 1995).

All ocular measurements were made on the right eye only. An initial baseline set of 

measurements was made at the first visit: blink rate, corneal sensitivity, ocular surface 

temperature, tear evaporation rate, and tear film stability using sodium fluorescein. 

Tear evaporation and ocular surface temperature were then re-measured to consider 

the effect of fluorescein on tear film stability.

At the second visit measurements of corneal sensitivity, ocular surface temperature, 

and tear evaporation rate were taken to create baseline levels for the second visit. 

20pl of 0.5% proxymetacaine hydrochloride (Minims, Chauvin Pharmaceuticals Ltd, 

UK) was then instilled in both eyes. Two minutes-after instillation ocular surface
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temperature and evaporation rate were re-measured to consider the effect of 

proxymetacaine hydrochloride instillation. At 20 minutes post-instillation, the ocular 

surface temperature and tear evaporation rate were re-measured for third time.

7.3 Results

The distributions o f the measurements of blink rate, inter-blink interval, corneal 

sensitivity, tear film break-up time, ocular surface temperature, and tear evaporation 

rate were assessed for normality (Shapiro-Wilk test), using the SPSS 11 Statistical 

Software Program (Lead Tools, Lead Technologies, Inc). Normality testing found 

data both normally and not normally distributed for both visits. The data was log 

transformed, but normality testing again found data to be not normally distributed, 

and so non-parametric statistical tests were used for statistical analysis (Prism: 

GraphPad Software Inc, San Diego).
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T ab le  7.1: Median/ Interquartile Range (IR) and Mean (± Standard Deviation) of all the measurements taken both Visit 1 and Visit 2.

Visit 1

CS (mbars) TBUT (secs) Baseline Evap (g/m2/h) Evap after Fluor 
(g/m2/h) BaselineTemp (°C) Baseline Temp 

Fluor (°C)

Median/ IR 0.52/ 0.37-0.75 15.17/9.49-19.24 69.47/ 50.72- 87.66 85.42/ 65.25-92.83 35.15/ 34.80-36.00 35.45/ 34.94-36.15

MeaniSD 0.61±0.32 15.96±7.31 76.21±33.37 85.93±27.3 35.46±0.91 35.55±0.7

Temp Cooling 
after 8 se cs  

(°C)

Temp Cooling 
after 8 s e c s  
Fluor (°C)

Temp Change 
(1/2 life) Fluor 
(secs) after 8 

se c s

Temp Change 
(1/2 life) (secs) 

after 8 se cs
Blinks/min IBI (secs)

0.81/0.5-1.02 0.69/ 0.49-0.8 0.82/ 0.69-1.44 0.95/ 0.68-1.31 14.7/6.3-18.9 4.11/3.16-9.51

0.83±0.41 0.75±0.49 0.98±0.5 0.99±0.39 14.05±7.64 6.06±3.9



Visit 2

CS (mbars) Baseline Evap 
(g/m2/h)

Evap 2min Anaes 
(g/m2/h)

Evap 20 min 
Anaes (g/m2/h)

Baseline Temp 
<°C)

Temp 2 min 
Anaes (°C)

Temp 20 min 
Anaes (°C)

Median/ IR 0.45/ 0.35-0.67 60.43/ 38.43-78.11 69.63/ 56.97-90.95 73.49/ 65.45-98.08 36.18/ 35.61-36.59 36.04/ 35.63-36.83 35.89/ 35.43-36.44

MeanlSD 0.56±0.29 61.01±28.81 74.01 ±22.1 85.35±28.24 35.97±0.87 36.02±0.95 35.81±0.9

Temp Cooling after 
8 se cs  (°C) Temp Cooling 2 min 

Anaes (°C)

Temp Cooling 20 
min Proxy (°C)

Temp Change 
(1/2 life) (secs) after 

8 secs

Temp Change 
(1/2 life) (secs) 2min 
Anaes after 8 se cs

Temp Change 
(1/2 life) (secs) 20 min 

Anaes after 8 se cs
0.67/ 0.56-0.72 0.69/ 0.63-0.96 0.80/0.61-0.9 0.88/ 0.5-1.17 1.12/ 0.57-1.34 0.84/ 0.76-0.96

0.7310.32 0.8110.36 0.8510.34 0.9410.49 1.0410.43 0.8810.28

Blinks/Min 15 min Anaes IBI (secs)
6.90/4.36-8.4 9.35/7.16-13.71

6.8913.55 11.6716.93



7.3.1 Visit 1

7.3.1.1 Blink R ate or Inter-Blink Interval

Blink frequency can be analysed in two ways:

1) Blink Rate (BR) -  the average number of blinks per minute.

2) Inter-Blink Interval (IBI) -  the average time between blinks.

It follows that a subject with a high blink rate will have a low inter-blink interval. In 

contrast to the data in the previous chapter, blink frequency for this study was 

analysed in both formats.
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Fig 7.1: Median and interquartile range (IR) for blink rate (a) and inter-blink interval

(b).

The median/ interquartile range (IR) for the BR was 14.7/ 6.3-18.9 blinks/min, and for 

the IBI was 4.11/ 3.16-9.51 secs. Both analysis methods provide a measure of the 

blink frequency. However, while the BR may appear a more intuitive measure, it is 

affected by the time taken to collect the data. For this study, the BR was measured 

over five minutes, which effectively reduces the number of measurement, for

224



calculating the average BR, to five. In contrast, the IBI measurement has an average 

of 14 measurements per minute, or 70 minutes in total (for the full 5 minute 

measurement time). This sampling error difference is demonstrated in the size of the 

interquartile range, where the BR interquartile range is 14.7/ 6.3-18.9 blinks/min and 

the IBI interquartile range is 4.11/ 3.16-9.51.

The improved quality of the IBI data over the BR data can also be illustrated when 

comparing blink frequency and tear stability. The strong correlation between blink 

frequency and tear film stability was shown in the previous study (6.3.8). For this 

study, the same correlation was found between tear break-up time and blink rate, 

although with a stronger correlation this time (Spearman, r = = 0.82, p<0.0001) (Fig 

7.2).

Correlation Between Blink Rate 
and TBUT

40-i
r=0.82

10 -

TBUT (secs)

Fig 7.2: Correlation between the tear film break-up time (TBUT) and blink rate (BR). 

The blue line represents the line that matches blink rate with tear film break-up time, 

indicating that blinking occurs before a fill break-up time.
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However, if tear film break-up time is correlated with the IBI, a stronger relationship 

is found (Spearman, r = 0.926, pO.OOOl) (Fig 7.3).

Correlation between Tear 
Break-Up Time and Inter-Blink 

Interval

20-.
r=0.926

15-
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Fig 7.3 : Correlation between tear film break-up time and inter-blink interval.

The closer correlation found with inter-blink interval rather than blink rate is due to 

the lower variability o f the inter-blink interval and supports the analysis of blink 

frequency by inter-blink interval and not blink rate.

An advantage of measuring blink frequency by using the IBI may be that it reduces 

the time required for recording a subject blinking. It also gives measure of variability 

and thus accuracy that the blink rate does not do it, as well as providing the number of 

blinks per minute indirectly.

Before leaving this section it is important to note the finding that subjects with a more 

stable tear film blink less frequently than those subjects with a less stable tear film,
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emphasising that periodic blinking is associated with tear film stability. Another way 

of expressing this relationship is to divide the subjects into two groups according to 

the mean tear film break-up time. Group 1: values <Median TBUT (less stable) and 

Group 2: values >Median TBUT (more stable).
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Fig 7.4: Comparison of inter-blink interval for subjects grouped according to the 

median tear film break-up time. Group 1: values lower than the median TBUT; 

Group 2: values higher than the median TBUT.

The difference between the mean TBUT of the two groups was statistically significant 

(Mann-Whitney-test, p<0.0001), but the correlation between TBUT and IBI was 

maintained for both group 1 (Spearman, r = 0.712) and Group 2 (Spearman, r = 

0.794).

7.3.1.2 Correlation between Corneal Sensitivity and Blink Rate

The strong correlation between blink frequency and tear film stability suggests that 

the changes in the tear film prior to break-up may have a role in triggering the next
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involuntary blink. If these changes in the tear film are detected by the sensory nerve 

endings in the cornea, then subjects with a higher corneal sensitivity will have a 

higher blink frequency. However no such relationship was found between corneal 

sensitivity and IBI (Spearman, r = 0.236, p = 0.315) (Fig 7.5).
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Fig 7.5 : Correlation between corneal sensitivity threshold and inter-blink interval.

Further investigation o f the potential role for corneal sensory nerves in detecting 

changes in tear film stability prior to break-up was considered by correlating TBUT 

with the IBI, taking into consideration the corneal sensitivity of each subject. Using 

the two corneal sensitivity threshold groups described earlier, a graph was produced 

(Fig 7.6) but no effect from corneal sensitivity was determined.
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Fig 7.6 : Correlation between tear film break-up time and inter-blink interval, taking 

into consideration the corneal sensitivity threshold.

However, when the subjects were again divided into two groups, this time according 

to the median value o f comeal sensitivity threshold, Group 1: values <Median comeal 

sensitivity threshold (more sensitive) and Group 2: values >Median comeal 

sensitivity threshold (less sensitive), a difference in IBI was found (Fig 7.7).
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Fig 7.7: Division of subjects into two groups according to the median corneal 

sensitivity threshold. Group 1: values lower than the median corneal sensitivity; 

Group 2: values higher than the median corneal sensitivity.

The median/interquartile range IBI for Group 1 was 3.38/ 2.79-5.09 secs and for 

Group 2 was 9.7/ 6.13-11.03, which was statistically different (Mann-Whitney test, p= 

0.009), demonstrating that subjects with more sensitive corneas have a shorter IBI. 

Correlation between corneal sensitivity and IBI for Group 1 (r = -0.45, p = 0.111) and 

Group 2 (r = 0.429, p = 0.419) was not significant.

The lack of statistical significance may be due to the small number of subjects (6 

subjects) in Group 2 or to the low media corneal sensitivity threshold of the 20 

subjects who participated (0.58/ 0.37-0.75 mbars).

From these results the role o f corneal sensitivity, as a factor in the blink mechanism, 

appears to be revealed best in those subjects with less sensitive corneas. Subjects
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with more sensitive corneas blink more often, perhaps because they are better able to 

detect the early changes in tear film thinning, while subjects with less sensitive 

corneas blink less because they are not detecting the early tear film changes.

7.3.1.3 Multivariate Analysis

The results of inter-blink interval (IBI), tear film break-up time (TBUT) and corneal 

sensitivity (CS) were also analysed using multivariate analysis, with the IBI as the 

dependent variable and tear TBUT and CS as predictor variables. The data of IBI, 

TBUT and CS was log transformed and normality testing found data to be normally 

distributed, allowing the use o f linear multiple regression.

The model was found to be significant (F (2.17) = 37.08, p<0.001), and explained 

81.4% of the variance (R2 = 0.814, adjusted R2 = 0.792). The model was the 

following:

Dependent Variable = A (IVi) + B (IV2) + C 

Loge (BR) = 0.067 (Loge CS) -+1.34 (Loge TBUT) -1.95

The beta coefficients for TBUT was significant (t = 8.61, p<0.001), but the beta 

coefficients for CS was not found to be significant (t = 0.484, p = 0.634). TBUT was 

found to be a unique predictor for BR. The semi partial correlation between TBUT 

and BR removing the linear effects o f CS on TBUT was 0.902. Corneal Sensitivity 

did not explain any unique variance.
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A 3-D cluster graph can illustrate the relationship between IBI, TBUT and CS. BR is 

strongly related to TBUT, indicating that as the TBUT increases, the BR decreases. A 

relationship can also be seen between CS and BR, indicating that as CS decreases, the 

BR decreases (Fig 6.20).
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Fig 6.20: A 3-D cluster graph illustrating the relationships between inter-blink 

interval, tear film break-up time and comeal sensitivity.

All the independent correlations between BR, TBUT and were also studied using a 

matrix scatter plot. A significant strong correlation was found between IBI and 

TBUT, suggesting that as the TBUT increases the inter-blink interval increases 

(Pearson, r = 0.901, p = 0.000). There was no significant correlation found between 

IBI and CS (Pearson, r = 0.016, p = 0.474), and CS and TBUT (Pearson, r = -0.039, p 

= 0.435) (Fig 6.21).
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Fig 6.21: Correlation between inter-blink interval, tear film break-up time and corneal 

sensitivity.

A stepwise multiple regression procedure was also conducted and it only included 

TBUT in the model as a predictor for blink rate. The adjusted R was 0.8 which is 

comparable to the linear multiple regression analysis that included TBUT and CS (R 

= 0.792).

Summarising the results, it was found that the blink rate was significantly correlated 

only with tear film break-up time. Linear multiple regression found that the tear film 

break-up time can be a unique predictor for the blink rate.
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7.3.1.4 Evaporation Rate

The hypothesis was tested that subjects with a higher tear evaporation rate will have a 

less stable tear film and a higher blink rate. No significant correlation was found 

between tear film evaporation rate (TER) and TBUT, although a trend of decreasing 

tear film stability with increasing evaporation rate was seen (r = -0.38, p = 0.1) (Fig 

7.8).
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Fig 7.8 : Correlation of tear film break-up time and tear film evaporation rate.

No significant correlation was found between TER and IBI (r = -0.272, p = 0.246) 

(Fig 7.9).
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Fig 7.9 : Correlation between tear film evaporation rate and inter-blink interval.

Instillation of 0.7pl of 2% unpreserved fluorescein into the eye produced a significant 

change in the evaporation rate (Wilcoxon matched pairs test, p = 0.037) (Fig 7.10).

Tear Film Evaporation Rate Before 
and After Fluorescein Instillation
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Fig 7.10: Median/ interquartile range evaporation rate from the ocular surface before 

and after the instillation of 0.7pl o f 2% sodium fluorescein.
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7.3.1.5 Anterior Ocular Surface Temperature (OST)

As the tear-film gradually destabilises following a blink, the ocular surface 

temperature also decreases (Efron et al, 1989; Fujishima et al., 1996). In this study, 

although a statistical difference was not found between the baseline OST and the OST 

after 8 seconds of eye opening, there was a decrease in the OST during the 8 seconds 

of eye opening (Wilcoxon matched pairs test, p = 0.17). The median/ interquartile 

range of the baseline OST was 35.15/ 34.8-35.99 °C, and for the OST after 8 seconds 

of eye opening was 35.07/ 34.45-35.59 °C.

This study considered the hypothesis that subjects having a higher temperature 

change during the IBI will have a less stable tear film and a higher blink rate. No 

significant correlation was found between the post-blink cooling and tear break-up 

time (Spearman, r = 0.241, p = 0.307) (Fig 7.11).
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Fig 7.11: Correlation between post-blink cooling and tear film break-up time.
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There was no relationship found between either the IBI and post-blink cooling (r = -

0.017, p = 0.945) or the IBI and the rate of temperature change (rate of temperature 

change is described as the time taken to reach half of the overall temperature change, 

also called the temperature half-life time) (Spearman, r =-0.038, p = 0.874). The 

results suggest that subjects with a greater, or more rapid reduction, in the ocular 

temperature do not have a shorter IBI than those experiencing a lower, or less rapid, 

reduction.

To test whether people with a greater change in post-blink cooling also have a higher 

evaporation rate, the correlation between post-blink cooling and evaporation rate was 

considered. No significant correlation was found (Spearman, r =0.007, p = 0.975) 

(Fig 7.12).
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Fig 7.12: Correlation between post-blink cooling and evaporation rate.

Instillation of 0.7pl of 2% fluorescein into the eye did not alter either the baseline 

temperature of the OST (Wilcoxon matched pairs test, p = 0.133) (Fig 7.13), or the
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rate of temperature change (Wilcoxon matched pairs test, p = 0.716). It may be 

expected that instillation o f the fluorescein will cause an initial decrease in 

temperature, as it is a cooler fluid going into the eye. The lack of change may be due 

to the slight amount o f fluorescein instilled into the eye, which was quickly mixed 

with the tear film, or because the temperature measurement was not made 

immediately after the instillation, but rather after the assessment of tear film stability,

i.e. blinking had already restored the “normal” OST.
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Fig 7.13: Post-blink cooling before and after the instillation of fluorescein.
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7 .3 .2  Visit 2

7.3.2.1 Inter-Blink Interval after Anaesthesia

Comparing the baseline IBI o f subjects taken at the first visit with the IBI after 

anaesthesia, a significant increase in the IBI after anaesthesia was found (Wilcoxon 

matched pairs test, pO.OOOl). The median/ interquartile range baseline IBI was 4.11/ 

3.16-9.51 secs, and for IBI after anaesthesia was 9.35/ 7.16-13.71 secs.
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Fig 7.14: Median/ interquartile range inter-blink interval of subjects before and after 

anaesthesia.

7.3.2.2 Tear Film Evaporation R ate after Anaesthesia

Measurements of tear film evaporation rates were made before anaesthetic instillation 

and after 2 and 20 minutes o f anaesthesia. A significant difference in the evaporation 

rate was found between baseline, 2 minutes and 20 minutes post-instillation (Kruskal-
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Wallis, p = 0.029) (Fig 7.15). There was a significant difference in evaporation rates 

between baseline and 2 minutes post-instillation (Wilcoxon matched pairs test, p = 

0.018), baseline and 20 minutes post-instillation (Wilcoxon matched pairs test, p = 

0.003) and among 2 and 20 minutes post-instillation (Wilcoxon matched pairs test, p 

=  0 .002).
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Fig 7.15: Evaporation rate at baseline and 2 and 20 minutes post-instillation of 

proxymetacaine hydrochloride.

It is proposed that the increase in evaporation rate exhibited 2 minutes after 

instillation arises from the instability in the tear film, produced by disturbance of the 

lipid layer (Lemp and Hamill, 1973; Trees and Tomlinson, 1990; Craig and 

Tomlinson, 1997; Greiner et al., 2002).

The evaporation rate at 20 minutes post-instillation was greater again than the 

baseline and 2 minutes measurements. Assuming that the tear film layer lipid layer
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has stabilised, it can be proposed that the anaesthetic has reduced corneal sensitivity, 

producing longer inter-blink intervals, thereby delaying reformation of the tear film 

after break-up and causing increased evaporation.

7.3.2.3 Anterior Ocular Surface Temperature after Anaesthesia

Measurement of the ocular surface temperature (OST) was made before and after 2 

and 20 minutes of anaesthesia, to test any changes produced by instillation of the 

anaesthetic. No significant change occurred either for the baseline OST (Kruskal- 

Wallis, p = 0.717), for the rate of temperature change ( Kruskal-Wallis, p = 0.169) or 

for the post-blink cooling ( Kruskal-Wallis, p = 0.224) (Fig 7.16).
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Fig 7.16: Post-blink cooling before and after 2 and 20 minutes o f anaesthesia.
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7.4 Discussion

This study assessed the hypothesis that a localised cooling in the tear film produced 

by tear thinning prior to tear break up, allows increased evaporation, which is detected 

by the corneal nerves, thereby initiating a blink.

The results showed a close and strong relationship between tear film stability and 

blink frequency, where blink rate increased as tear film stability decreased. This 

repeats the findings o f our previous study (Chapter 6). The crucial question is 

whether the blink is triggered by break-up o f the tear film or by some other change in 

the tear film before break-up occurs. From Fig 7.2 it can be seen that all of the 

subjects blinked before a full break-up occurred, indicating that the blink rate is 

adjusted to maintain tear stability and prevent dry spot formation. Thus early changes 

in the tear film, possibly perceived by the sensitive C cold nerve fibres of the corneal 

epithelium, are sufficient to stimulate a new blink.

Turning to the corneal sensitivity results, no significant correlation was found 

between corneal sensitivity and blink frequency, but this may be due to the good 

corneal sensitivity found for this subject cohort. However, the graphs (Fig 7.5 and 

7.7) suggest a trend for low corneal sensitivities to produce a lower blink frequency. 

The results support the hypothesis that the corneal nerves can detect changes in the 

tear film only when they are sufficiently sensitive, but when sensitivity starts to drop, 

early changes in the tear film are not detected, and the subject blinks less frequently.

To verify the involvement of the corneal nerves in the blink mechanism, corneal 

sensitivity was blocked by anaesthesia and a significant increase in the inter-blink
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interval was recorded, producing lower blink rates, suggesting that the tear film 

changes between blinks were not detected. Previous investigations which have 

considered the effect of blocking corneal sensation on the blink rate (Collins et al., 

1989; Moore and Kardon, 1997; Nakamori et al., 1997) also found a significant 

decrease in the blink rate.

Localised tear film cooling, produced by tear film evaporation during the process of 

tear film thinning and break-up, may be detected by the thermo-sensitive corneal 

afferents, and this process is considered as a possible signal for a blink. However, no 

significant correlation was found between tear film evaporation rate and inter-blink 

interval, or between the tear film evaporation rate and the tear film break-up time. 

Similar results were found by Craig and Tomlinson (1997), and Craig et al (1997, 

2000). They found that the lipid layer thickness controls both the evaporation from 

the ocular surface area and the stability of the tear film, and they attributed the lack of 

correlation between the stability o f the tear film and the evaporation rate to the fact 

that the evaporation measurement took into account the whole of the exposed ocular 

surface area, whereas tear film break-up is only assessed over the central corneal area.

The significant increase in evaporation rate after the instillation of fluorescein was the 

result of disturbance in the tear film lipid layer by the fluorescein. A recent study by 

Greiner et al (2002) found that the instillation of fluorescein causes changes in the 

lipid layer, thus increasing the rate o f evaporation. The greater the volume added, the 

greater the lipid layer alteration and the longer the recovery time. Instillation of 10pl 

of fluorescein had a 100% incidence o f lipid layer alteration and a mean of recovery 

time 2.43±1.71 minutes. Instillation of lp l of fluorescein had a 75% incidence of
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lipid layer alteration and a mean recovery time of 1.24±1.04 minutes. The fact that 

only 0.7pl of fluorescein were added in the current study will have caused less lipid 

layer alteration and this may be the reason for observing only a small increase in the 

evaporation rate.

Increased evaporation might be expected in those individuals with a wider palpebral 

aperture and thus a greater exposed ocular surface area (Rolando and Refojo, 1983; 

Sotoyama et al., 1995). Changes in spontaneous eye-blink frequency have been noted 

when the palpebral aperture is deliberately changed by asking subjects to maintain a 

normal straight-ahead gaze or a superiorly or inferiorly-directed gaze (Stem et al., 

1984; Karson, 1988; Tsubota and Nakamori, 1995; Nakamori et al., 1997). A 

significant increase in the blink rate was found as the exposed ocular surface area was 

increased, and vice versa. Increasing the exposed ocular surface spreads the tear film 

further, causing earlier break-up. The increased blink rate is due to either more rapid 

tear thinning producing greater evaporation and thus temperature change, or to more 

rapid full break-up. In either case the tear film changes are detected by the comeal 

and conjunctival nerves.

To compare the results of tear evaporation rate for normal subjects found in the 

current study with previous results published in the literature, it was important to

2 7 2convert the units used in the current study, gr/ m / hr, to the units of xlO' g/cm /sec,

• 7 *7as most researchers reported values of evaporation rates in xlO’ g/cm /sec. This 

difference in units may be resolved if the value of evaporation rate found in this study, 

61.01 gr/ m2/ hr, is rendered to the same units (x 10'7g/cm2/sec) by diving this value in

7 7 7gr/ m / hr by a factor of 3.6. A value of 16.94 xlO' g/cm /sec was found, which is
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equivalent to 61.01 gr/ m2/ hr. This finding of evaporation rate is comparable to the 

values reported in the literature for normal subjects, but is much higher from the 

results of Goto et al (2003) who found a rate of 4.1 x l0 '7g/cm2/sec. This difference 

may be due to the different instrumentation used to assess tear evaporation rate, as 

they used microbalance technology to allow “continuous readings” of tear film 

evaporation.

This was the first time in the literature where the blink rate of a subject was correlated 

with the temperature change that occurs after a blink to test whether corneal 

temperature change during the inter-blink interval was the initiator for blinking. 

Previous studies have only reported the influence o f environmental temperature 

change and humidity on blinking (Hata et al, 1994, 1995), demonstrating an increased 

blink rate in cooling conditions o f room temperature and low humidity, as a result of 

increased tear evaporation.

There is increasing evidence that sensory stimuli arising from the exposed ocular 

surface area, and environmental factors that affect the ocular surface, are also 

determinants o f blink rates (Tsubota, 1998). Higher blink rates have been recorded 

during conditions that favour evaporation (Nakamori et al., 1997; Tsubota and 

Nakamori, 1995).

In conclusion, the aim o f the current study was to investigate the role of peripheral 

factors on the blink mechanism. Taking into account only the ocular surface area, 

and without affecting its properties, it was found that the stability of the tear film was 

the key determinant for the next blink. Following anaesthesia, the blink rate was
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found to decrease substantially, supporting the hypothesis that the corneal nerves are 

able to detect early cooling changes of the tear film while it destabilises. Corneal 

sensitivity itself is another factor in normal blinking, whose role is better revealed in 

less sensitive subjects that cannot perceive early changes in the tear film and who 

subsequently blink less. The size and rate of temperature change that occurs 

following a blink, due to evaporation, was not a factor in blink rate. A faster or 

greater loss of temperature was not found to be an initiator for the next blink. Finally, 

no relationship was found between blink frequency and tear film evaporation rate, 

suggesting that early evaporative tear loss was not the trigger for blinking.
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8. An Investigation of the Tear Film and Blinking in 

Contact Lens Wear Discomfort

8.1 Introduction-Purpose

When a contact lens is placed into the eye, the pre-comeal tear film is divided into 

two separate layers: the pre-lens tear film on the front surface of the contact lens and 

the post-lens tear films, which lies between the back surface of the lens and the 

comeal epithelium (Faber et al., 1991). These new tear layers must perform the 

normal functions of the pre-comeal tear film, as well as any new tear film functions 

arising from contact lens wear.

A stable pre-lens tear film is desirable for a number of reasons: it lubricates the 

surface of the lens, minimising the mechanical irritation of the tarsal conjunctiva and 

enhancing lens comfort; it creates an optically smooth surface to provide a sharp 

image quality; it maintains the bactericidal activity of tears to prevent surface 

contamination; it prevents lens dehydration, it facilitates lens rehydration and resists 

deposit formation (Andrasko and Schoessler, 1980; Efron et al., 1987; Fatt, 1990; 

Myers et al., 1991; Young and Efron, 1991; Jones, 1992; Little and Bruce, 1994). 

Irregularity of the pre-lens tear film may produce scattering of incident light, along 

with a reduction in the quality of vision (Timberlake et al., 1992). In addition, 

comfort may be reduced by pre-lens lipid layer instability, and associated lens surface 

drying (Caffery and Josephson, 1990; Forst, 1990; McMonnies, 1990).

The functions of the post-lens tear film are less clearly established than those of the 

pre-lens tear film. Nevertheless a few potential roles of the post-lens tear film have
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been proposed. Post-lens tear film viscosity has been proposed as a determinant of 

the force required for lens movement (Bibby and Tomlinson, 1983). Coloured or 

patterned appearances o f the post-lens tear film observed in specular reflection have 

been associated with minimal lens movement and implicated in the mechanism of 

hydrogel lens binding (Bruce and Brennan, 1988, 1992; Little and Bruce, 1994). 

However, the results o f these studies cannot be considered conclusive, as only a small 

number of subjects participated. A few authors have also speculated that more 

efficient post-lens tear exchange may increase expulsion of debris and reduce 

metabolic epithelial insult (Golding et al., 1990; Stapleton, 1992).

Ocular discomfort in contact lens wear is a frequent patient complaint and the main 

cause o f dissatisfaction and patient dropout from contact lens wear. Discomfort is 

often derived from ocular irritation and pain, dryness and lens deposits in silicone 

hydrogels lens wear (Fonn et al., 2000) . The aetiology of these symptoms has been 

attributed to the effect o f contact lens wear on the tear film. This is due to the 

increased evaporation rates o f the tear film when wearing contact lenses (Cedarstaff 

and Tomlinson, 1983). In addition, the tear break-up time on the corneal surface 

decreases significantly after wearing contact lenses (Faber et al., 1991; Young and 

Efron, 1991), and for prospective lens wearers the practitioner should make sure that 

the stability o f the tear film is sufficient to allow successful contact lens wear. 

Another feature that is common during soft lenses wear, and especially o f high water 

content lenses, is that they dehydrate. Some authors have suggested that lens 

dehydration, as a result o f tear evaporation, is the cause of discomfort and dryness 

symptoms (Efron and Brennan, 1988; Lebow and Bridgewater, 1998; Young et al., 

1995, 1997a, 1997b; Lemp et al., 1999), whereas other studies have shown no
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correlation between the symptoms of dryness and lens dehydration (Pritchard and 

Fonn, 1995; Fonn et al., 1999a). It can therefore be concluded that the symptom may 

not have a solely tear film-related aetiology, but may be secondary to hyperaemia 

and/or mechanical stimulation o f the conjunctiva as a result of friction from the lens 

surface or edge (Fonn et al., 2000).

When a contact lens is placed on the eye, blinking assumes additional functions. 

Normal blinking patterns remove debris from beneath the lens, re-oxygenate the tears 

beneath the lens, hydrate the lens, and clean the lens surface (Fatt and Hill, 1970; 

Collins et al., 1987; Efron and Carney, 1983).

The role o f blinking during the wearing of rigid contact lenses has been well- 

documented. During rigid contact lens wear, the importance of blinking is enhanced 

through its contribution to the maintainance of normal comeal function through the 

tear exchange mechanism (Fatt and Hill, 1970). Even with the introduction of gas 

permeable rigid contact lens materials, adequate tear exchange, and hence blinking 

action, is still necessary (Hill, 1977). During soft contact lens wear, blinking and 

reformation o f the tear film are important in maintaining contact lens hydration.

Rigid contact lens wear has been found to cause both an increased (Hill and Camey, 

1984) and decreased blink rate (Brown et al., 1973) in neophyte subjects. Hill and 

Carney (1984) found that, even after comfortable wear was achieved, the blink rate 

was increased from 15.5 blinks/min to 23.2 blinks/min. They also found a change in 

the blinking pattern during contact lens wear, with all subjects exhibiting a more 

regular blinking pattern. In contrast, Brown et al (1973) found an altered blink action
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and a decrease in the blink rate, from 15.8 blinks/min to 9.75 blinks/min, after the 

insertion o f  rigid lenses.

Blinking behaviour has been found to increase during soft lens wear. York et al 

(1971) reported an elevation in the blink rate in the early stages of contact lens wear, 

which they suggested was due to mechanical irritation of the ocular tissues. Brown et 

al (1973) found a small but not significant effect on blink rate after the insertion of 

soft lenses (Soflens1M, Bausch & Lomb), which they proposed was due to the lens’s 

superior comfort and diminished lid irritation. Camey and Hill (1984) reported an 

increase in blink rate from 12.1 blinks/min to 20.3 blinks/min. Similarly, Hill (1984) 

found an increase in the blink rate o f seven new soft lens wearers from 12 blinks/min, 

before lens fitting to 20 blinks/min, once adapted to the lenses.

Incomplete blinking during contact lens wear, or an excessive proportion of 

incomplete blinks, can cause a variety o f problems for both rigid and soft contact lens 

wearers. Inadequate tear exchange beneath the lens can lead to comeal oxygen 

deprivation, particularly in rigid lens wearers (Fatt and Hill, 1970). It can also lead to 

the accumulation of debris beneath the lens that may be responsible for sub-epithelial 

infiltration in extended lens wear (Zantos and Holden, 1978). It is associated with 3 

and 9 o ’clock comeal staining and increased lens surface deposits in rigid lens 

wearers. In soft lens wearers it may lead to lens dehydration, increased lens surface 

deposits, and inferior punctuate comeal staining (Kline and DeLuca, 1977).

This study will consider the role o f the tear film in contact lens wear discomfort and 

how blinking behaviour alters in relation to the discomfort symptoms. Comeal
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sensitivity will also be assessed to ascertain whether subjects with more sensitive 

corneas are more prone to discomfort. Thus, in an experienced group of contact lens 

wearers who both experience comfort and discomfort during contact lens wear, the 

relationship between blink-rate, tear film stability and corneal sensitivity will be 

examined.

8.2 Methods

Thirty experienced contact lens-wearing Caucasian subjects (8 males, 22 females; 

mean age, 20.45±1.98 years; range, 19-27) were recruited from the student population 

of Cardiff University. Subjects were excluded if they had any ocular or systemic 

pathology known to affect corneal sensitivity, e.g. ocular surgery, ocular diseases, 

diabetes, corneal dystrophy (Bim dorf and Ginsberg, 1972; Schwartz, 1974; Lyne, 

1977; Ishikawa et al., 1994; Ruben, 1994; Murphy et al., 1999a; Rosenberg et al., 

2000). Also, pregnant women or women during the premenstruum, menstruation, or 

ovulating period, were excluded, as corneal sensitivity is depressed (Millodot, 1984, 

1994; Martin and Safran, 1988). Ethical approval was obtained from the School of 

Optometry and Vision Sciences Research Ethics Committee. After explanation of the 

purpose of the study, subjects were asked to sign a consent form prior to participating 

and advised that they could withdraw from the experiment at any time.

Subjects were divided into two groups according to the subjective comfort levels of 

contact lens wear. Comfort Group (3 males, 12 females; mean age, 20.2±1.74 years) 

experiencing comfortable contact lens wear throughout the day; Discomfort Group (5 

males, 10 females; mean age, 20.7±2.22 years) experiencing discomfort after five to 

seven hours of contact lens wear.
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All the subjects wore soft, medium water content lenses (55-70%) on a daily basis. 

They were experienced wearers, having worn lenses for between 1.5 and 7 years 

(3.61±1.5 years).

Subjects were asked to attend the laboratory on two different days and each visit 

lasted for approximately forty-five minutes. All measurements were made after 12pm 

and onwards to avoid any possible diurnal bias in corneal sensitivity (Chapter 4), or 

tear film stability (Patel et al, 1988). At Visit 1, the subjects attended the laboratory 

without wearing the contact lenses on that day and at Visit 2 the subjects attended the 

laboratory wearing the contact lenses. The appointments for each subject were set at 

the same time for Visit 1 and 2, and the order o f visits was randomised. For the group 

of subjects feeling discomfort, the appointments were set to coincide with onset of 

discomfort, which was on average after 5.7±0.88 hours wear. All ocular 

measurements were made on the right eye only.

At Visit 1 the blink rate of each subject was recorded using the digital video camera. 

Central comeal sensitivity was measured using the NCCA. Tear film stability was 

assessed first non-invasively using the Tearscope (NIBUT), and second invasively 

using the fluorescein tear film break-up time (TBUT).

At Visit 2 the blink rate was recorded while wearing contact lenses, and then the 

subject’s comfort was assessed subjectively using the vertical analog comfort scale 

(Morgan and Efron, 2002; Morgan et al., 2003) (Fig 8.1). This scale uses sub

divisions of comfort and discomfort, whereby 0 represents pain and 100 represents 

excellent comfort. Then the measurement of the pre-lens tear film stability during
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contact lens wear was was taken using the Tearscope. One minute after lens removal, 

the post-lens tear film stability was assessed using the Tearscope and then 

immediately after using the fluorescein break-up time. Corneal sensitivity was 

assessed last using the Non-Contact Corneal Aesthesiometer.
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Fig 8.1 : Vertical Analog Comfort scale

8.3 Results

The distributions for all measurements were assessed for normality (Shapiro-Wilk), 

using the SPSS11 (Lead Tools, Lead Technologies, Inc). The data was both normally 

and not normally distributed for both visits. Data were log transformed, and 

normality testing showed again most of the data to be not normally distributed, and so 

non-parametric statistical tests were used for statistical analysis, (Prism: GraphPad 

Software Inc, San Diego).
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Table 8.1: Median/ Interquartile Range (IR) and Mean (± Standard Deviation) of all the measurement taken Visit 1 and Visit 2.

Visit 1

CS (m bars) Blinks/min IBI (secs) TBUT (secs) NIBUT (secs)

Comfort MeaniSD 0.80±0.46 16.55±6.35 4.47±2.74 11.95±7.16 13.37±7.64

Median/ IR 0.95/0.32-1.3 17.2/ 12.95-22.13 3.51/2.82-5.72 9.30/ 7.27-16.47 9.83/8.43-18.5

Discomfort MeaniSD 0.88±0.49 21.24±11.92 3.63±1.68 9.90±5.50 10.70±5.41

Median/ IR 0.75/0.5-1.32 18.2/12.5-29.9 3.29/2.18-4.94 10.42/4.84-15.73 12.43/5.5-16.5



Visit 2

CS after CL 
Removal 
(mbars)

Blinks/min IBI (secs) NIBUT During 
CL (secs)

NIBUT CL 
Removal 

(secs)

TBUT CL 
Removal 

(secs)

Comfort
Response

Comfort MeaniSD 0.82±0.46 20.49±7.28 3.44±7.28 3.28±1.22 6.71 ±1.38 6.10±1.38 81±13.26

Median/ IR 0.75/0.471.27 20.00/ 15.7-27 2.99/2.27-5.12 2.66/2.29-4.73 7.06/ 5.3-7.93 6.33/4.82-7.15 80.00/ 72.5-95

Discomfort MeaniSD 0.91±0.50 33.67±9.62 1.93±0.60 1.60±0.64 4.37±0.64 3.85±1.84 32.67±4.17

Median/ IR 0.65/ 0.5-1.42 32.4/ 28.7-44.6 1.85/ 1.49-2.45 1.43/1.11-2.13 4.06/3.09-5.63 3.48/2.96-5.23 30.00/ 25-35



8.3.1 Visit 1

8.3.1.1 Blink Frequency

The blink frequency o f the subjects was recorded and analysis of the blink rate (BR) 

and the inter-blink interval (IBI) was made. The Comfort Group exhibited a lower 

BR than the Discomfort Group but this difference was not statistically significant 

(Mann-Whitney test, p = 0.494) (Comfort: 17.21/ 12.95-22.30 blinks/min; 

Discomfort: 18.2/ 12.5-29.9 blinks/min) (Fig 8.2). A longer IBI with a greater 

variation was noted for the Comfort Group (Mann-Whitney test, p = 0.494) (Comfort: 

3.51/ 2.82-5.72 secs; Discomfort: 3.29/ 2.18-4.94 secs) (Fig 8.3)

50-,

E 40- 
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|  30-
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(U 
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Blink Rate of Comfort and Discomfort 
Groups

Comfort Discomfort

Fig 8.2 : Median and interquartile range (IR) baseline blink rates for Comfort and 

Discomfort Groups.
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Inter-Blink Interval of Comfort and 
Discomfort Groups

Q> 1 2 -

cb 10 -

Comfort Discomfort

Fig 8.3: Median/ Interquartile Range (IR) inter-blink interval for the Comfort and 

Discomfort Groups.

The subjects with greater discomfort also had a reduced tear film stability compared 

to those experiencing comfort, but this difference was not significantly different 

(TBUT: Mann-Whitney test, p = 0.534; Comfort Group: 10.42/ 4.84-15.73 secs; 

Discomfort Group: 9.3/ 7.27-16.47 secs; NIBUT: Mann-Whitney test, p = 0.678; 

Comfort Group: 12.43/ 5.5-16.5 secs; Discomfort Group: 9.83/ 8.43-18.5 secs). This 

suggests that comfort in contact lens wear may be related to tear film stability.

Tear film stability was assessed for its relationship with blink frequency. For the 

Comfort Group, assessing tear film stability both invasively and non-invasively, 

strong correlations were seen, with IBI increasing as tear film stability increased 

(TBUT: Spearman, r = 0.800, p = 0.0003; Tearscope (NIBUT): Spearman r = 0.859, 

p<0.0001) (Figs 8.4, 8.5).
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Correlation of TBUT and 
Inter-Blink Interval Comfort 

Group
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Fig 8.4: Correlation of tear film break-up time and inter-blink interval for the Comfort 

Group, measured with fluorescein.
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Fig 8.5 : Correlation o f non-invasive tear film break-up time and inter-blink interval 

for the Comfort Group, measured with Tearscope.
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The same strong correlation was seen for the Discomfort Group, where the IBI 

increased as the tear film stability increased (TBUT: Spearman, r = 0.914, p<0.0001; 

NIBUT: Spearman, r = 0.843, pO.OOOl) (Figs 8.6, 8.7).

Correlation between TBUT and 
Inter-Blink Interval Discomfort 
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Fig 8.6 : Correlation of tear film break-up time and inter-blink interval for the 

Discomfort Group, measured with fluorescein.
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Group
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Fig 8.7: Correlation between non invasive tear film break-up time and inter-blink 

interval for the Discomfort Group, measured with Tearscope.

8.3.1.2 Tear Film Stability

Tear film stability measured with fluorescein and the Tearscope for both the Comfort 

and Discomfort Groups, gave comparable results (Comfort Group, Mann-Whitney 

test, p = 0.454; Discomfort Group, M ann-W hitney test, p = 0.689) (Fig 8.8).
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Fig 8.8: Assessment o f tear film stability for the Comfort and Discomfort Group.

8.3.1.3 Corneal Sensitivity

The median/ interquartile range o f corneal sensitivity for the Comfort Group was 

0.95/ 0.32-1.3 mbars, and for the Discomfort Group was 0.75/ 0.5-1.32 mbars. No 

significant difference was found for corneal sensitivity between the Comfort and 

Discomfort Groups (Mann-Whitney test, p = 0.561). Interestingly, for the Comfort 

Group no correlation was found between comeal sensitivity and IBI (Spearman, r =- 

0.054, p = 0.849), but a significant correlation was found for the Discomfort Group 

(Spearman, r =0.665, p =0.007) (Figs 8.9, 8.10).
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Fig 8.9: Correlation between corneal sensitivity and inter-blink interval: Comfort 

Group.
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Fig 8.10: Correlation between corneal sensitivity and inter-blink interval: Discomfort 

Group.
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8 .3 .2  Visit 2

8.3.2.1 Blink Frequency

The blink rate and inter-blink interval during contact lens wear were assessed for both 

groups. For the Comfort Group there was a significant increase in the number of 

blinks during contact lens wear (Wilcoxon matched pairs test, p = 0.007) with the 

median blink rate increasing from 17.2 blinks/min to 20 blinks/min (Fig 8.11). For 

the Discomfort Group, there was a further significant increase in the blink rate during 

contact lens wear (Wilcoxon matched pairs test, p<0.0001). The median blink rate 

increased from 18.2 blinks/minute to 32.4 blinks/minute (Fig 8.11). Comparing the 

blink rate for both groups while wearing contact lenses, a significant difference was 

found, indicating that the increase for the Discomfort Group was much greater than 

that in the Comfort Group (Mann-Whitney test, p = 0.001).
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Fig 8.11: Median/ Interquartile Range blink rate of Comfort and Discomfort Group 

before and during contact lens wear.
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In order to find out the blinking pattern exhibited before and during contact lens wear, 

the inter-blink interval was determined for both groups. For the Comfort Group, the 

median/ interquartile range (IR) IBI before contact lens wear was 3.51/ 2.82-5.72 secs 

and during contact lens wear was 2.99/ 2.27-5.12 secs, which was significantly 

different (Wilcoxon matched pairs test, p = 0.035). For the Discomfort Group, the 

median/ interquartile range (IR) before contact lens wear was 33.29/ 2.18-4.94 secs 

and during contact lens wear was 1.85/ 1.49-2.45 secs, being statistically different 

(Wilcoxon matched pairs test, p<0.0001). The IBIs of the Discomfort Group were 

much shorter than that of the Comfort Group and differed significantly during contact 

lens wear (Mann-Whitney test, p = 0.0001) (Fig 8.12).
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Fig 8.12: Median/ Interquartile Range (IR) inter-blink interval of Comfort and 

Discomfort Groups before and during contact lens wear.
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8.3.2.2 Tear Film Stability

The pre-lens tear film stability was compared to the baseline data for both groups. 

For the Comfort Group, a significant difference was found between the pre-comeal 

and pre-lens tear film stability (Wilcoxon matched pairs test, p<0.0001), indicating 

the greater stability of the pre-comeal tear film. The median/ interquartile range (IR) 

NIBUT before and during contact lens wear was 9.83/ 8.43-18.5 secs and 2.66/ 2.29- 

4.73 secs, respectively. For the Discomfort Group, a similar significant difference 

was found (Wilcoxon matched pairs test, pO.OOOl). The median/ interquartile range 

(IR) NIBUT before and during contact lens wear was 12.43/ 5.55-16.5 secs and 1.43/ 

1.11-2.13 secs, respectively (Fig 8.13).
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Fig 8.13: Median/ Interquartile Range (IR) NIBUT before and during contact lens 

wear, for both Comfort and Discomfort Groups.
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The pre-lens tear film stability was less for the Discomfort Group compared to the 

Comfort Group (Mann-Whitney test, p = 0.002; Comfort: 2.66/ 2.29-4.73; 

Discomfort: 1.43/ 1.11-2.13).

For the Comfort Group, the results indicate a significant correlation between IBI and 

pre-lens tear film stability (Spearman, r = 0.519, p =0.003). This suggests either that 

the stability of the pre-lens tear film influences the blink rate during contact lens wear 

or that the underlying blink rate found without lens wear is unaffected by the altered 

ocular surface conditions (Fig 8.14). For the Discomfort Group, a similar significant 

relationship was found between the blink rate of the subjects and their pre-lens tear 

film stability (Spearman, r = 0.596, p = 0.019) (Fig 8.14). The weaker correlation 

implies that the blink rate is not entirely influenced by the stability of the pre-lens tear 

film, but that it increases in order to prevent further discomfort symptoms and blurry 

vision.
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Fig 8.16: Correlation between pre-lens tear film stability (NIBUT) and inter-blink 

interval for both Comfort and Discomfort Group.

266



Post-wear pre-comeal tear film stability was assessed for both groups. For the 

Comfort Group, a significant reduction in the post-lens tear film stability was found 

compared to the pre-corneal tear film stability. The median/ interquartile range (IR) 

tear film stability (TBUT) before and after lens removal was 9.31/7.27-16.47 secs and 

6.33/ 4.82-7.15 secs, respectively (TBUT, Wilcoxon matched pairs test, pO.OOOl) 

(Fig 8.17). The same effect was found when tear film stability was assessed non- 

invasively using the Tearscope (NIBUT, Wilcoxon matched pairs test, pO.OOOl), 

indicating that the baseline measurements were much greater than the pre-wear levels. 

The median/ interquartile range (IR) tear film stability (NIBUT) before and after lens 

removal was 9.83/ 8.43-18.5 secs and 7.06/ 5.3-7.93 secs, respectively (Fig 8.17).
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Fig 8.17: Pre-comeal tear film break-up time and tear film break-up time after contact

lens removal for the Comfort Group.
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Similar reductions in post-lens tear film stability were also found for the Discomfort 

Group. Assessing tear film stability with fluorescein, a significant drop in the tear 

film stability was found compared to the baseline data (TBUT, Wilcoxon matched 

pairs test, p = 0.001). The median/ interquartile range (IR) pre-comeal tear film 

stability (TBUT) was 10.42/ 4.81-15.73 secs and of the post-lens tear film stability 

was 3.48/ 2.96-5.23 secs (Fig 8.18). The same pattern was seen when post-lens tear 

film stability was assessed using the Tearscope (NIBUT, Wilcoxon matched pairs 

test, p = 0.001). The median/ interquartile range (IR) pre-comeal and post-lens tear 

film stability (NIBUT) was 12.43/ 5.55-16.5 secs and 4.06/ 3.09-5.6 secs, respectively 

(Fig 8.18).
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Fig 8.18: Pre-comeal tear film break-up time and tear film break-up time after contact

lens removal for the Discomfort Group.

268



However, the subjects experiencing greater discomfort were found to have much 

lower post-lens tear film stability than those with comfort (TBUT: Mann-Whitney 

test, p = 0.001; NIBUT: Mann-Whitney test p = 0.001).

No significant change between the two methods of assessing post-lens tear film 

stability was found for the Comfort Group (Mann-Whitney test, p = 0.147) (Fig 8.19) 

and the Discomfort Group (Mann-Whitney test, p = 0.362) (Fig 8.19). Non-invasive 

assessment of post-lens tear film stability was always slightly higher than with 

fluorescein break-up time.
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Fig 8.19: Comparison of tear film break-up time after contact lens removal for

Comfort-Discomfort Group.
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8.3.2.3 Corneal Sensitivity

For Comfort and Discomfort Groups no significant difference in corneal sensitivity 

was found between baseline and after lens removal (Comfort: Wilcoxon matched 

pairs test, p = 0.791; Discomfort: Wilcoxon matched pairs test, p = 0.626). Thus, 

despite a reduced oxygen supply to the cornea caused by contact lens wear, a further 

reduction in corneal sensitivity is not obtained after a few hours of lens wear.

8.3.2.4 Comfort Scores

The comfort scores were recorded for both groups and the relationship between 

comfort and the number o f blinks considered. For the Comfort and Discomfort 

Groups the comfort scores were 80/ 71.5-95 and 30/ 25-35, respectively. For the 

Comfort Group, it was also noted that subjects with excellent comfort blinked less 

than those with lower comfort (Fig 8.20). For the Discomfort Group, subjects with 

lower scores also have a higher blink rate (Mann-Whitney test, p = 0.001) (Fig 8.21). 

These results suggest that as discomfort increases, the blink rate also increases. The 

same pattern was found for the inter-blink interval and the degree of comfort (Figs 

8.22, 8.23).
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Fig 8.20: Median/ Minimun-Maximun blink rate and vertical analog comfort scale:

Comfort Group.
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Fig 8.21: Blink rate and vertical analog comfort scale: Discomfort Group.
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Fig 8.22: Inter-blink interval and vertical analog comfort scale: Comfort Group.
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Fig 8.23: Blink rate and vertical analog comfort scale: Discomfort Group.
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8.4 Discussion

This study aimed to assess the role of the tear film in contact lens wear discomfort and 

the alterations of blinking behaviour in relation to the symptoms of discomfort. 

Interestingly, the results suggest that lens wear discomfort increases with decreasing 

tear film stability, producing an increased blink rate. Subjects experiencing 

discomfort have a less stable tear-film, both with and without contact lens wear, and 

have an elevated blink-rate in comparison to subjects who have comfortable lens 

wear. This significant increase is reasonable, as discomfort causes ocular irritation, 

dryness and pain. In order to avoid these symptoms, the eyelid activity becomes more 

rapid to maintain contact lens hydration in order to minimise the mechanical irritation 

of the tarsal conjunctiva.

Specifically for the Comfort Group, despite the absence of any subjective discomfort, 

there was still a significant increase in the number of blinks during contact lens wear. 

The comfortable fit and lack o f lid irritation caused by these lenses suggests that the 

blink rate would be unaffected. However, there was a significant change in the blink 

rate of the subjects, which may be due to the alteration of the tear film caused once 

the contact lens is in the eye. This was seen in the lower stability of the pre-lens tear 

film compared to the higher stability o f the pre-comeal tear film. Interestingly it was 

found that subjects experiencing excellent comfort during contact lens wear had 

greater pre-corneal tear film stability than those experiencing less comfort, and 

blinked less during contact lens wear.

The same pattern was seen for the Discomfort Group, which exhibited a significant 

increase in the blink rate during contact lens wear. Subjective discomfort had a
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greater effect on the number of blinks with the blink rate increasing as the level of 

discomfort increased. Subjects with increased discomfort had significantly decreased 

pre-comeal tear film stability, indicating that lens wear discomfort increases with 

decreasing tear film stability, producing an increased blink rate. While more frequent 

blinking takes place in the Discomfort Group in order to reform the tear film, it is 

reasonable to think that blinking more will also increase the discomfort due to the 

friction of the contact lens surface.

For the Comfort Group there was also a change in the regularity of the blinking action 

during contact lens wear. Before contact lens wear, most subjects showed irregularly 

occurring longer inter-blink intervals. Assessment of the inter-blink intervals during 

contact lens wear indicated that the blinking action became more regular and the long 

durations between blinks became less common. The increase in the blink rate is thus 

due to a reduction in the irregularity o f the inter-blink interval, and not to a consistent 

shortening of the inter-blink interval itself. The blinking action remained normal with 

no significant change in the number of complete and incomplete blinks.

For the Discomfort Group there was a greater change in the regularity of the blinking 

action during contact lens wear. Before contact lens wear there was a considerable 

variability between subjects in their frequency distributions. During lens wear the 

nature of this pattern changed, with all subjects exhibiting a more regular and frequent 

blinking pattern. The increased blink rate was achieved by a reduction in the range of 

inter-blink intervals exhibited, with the irregularly between blinks effectively being 

eliminated. The occurrence o f complete or incomplete blinks did not alter during 

contact lens wear.
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layer over the hydrogel contact lens (Young and Efron, 1991; Craig, 2002). As a 

result, the stability o f the tear film is affected in contact lens wear (Guillon, 1986; 

Guillon and Guillon, 1988, 1993; Young and Efron, 1991). For a stable tear film to 

be formed on the ocular surface, the contact lens would be required to be entirely 

biocompatible with the tear fluid and surrounding tissues, allowing a continuous film, 

complete with lipid layer, to be formed over the surface. The relatively hydrophobic 

nature of contact lens materials, especially rigid lens materials, does not allow the 

formation of such a film (Guillon and Guillon, 1993; Craig, 2002).

Pre-lens tear film stability values found in this study were lower than previously 

reported. Patel (1987) reported pre-lens tear thinning times of 6.1±0.7 secs for 

experienced contact lens wearers using Igel 67% contact lenses. Bourassa and 

Benjamin (1989) measured break-up times of 6.3±0.08 secs for rigid gas permeable 

lenses. Golding et al (1990) reported values of 6-7 secs for symptomatic experienced 

soft HEM A lens wearers. Young and Efron (1991) measured break-up times of 

7.3±0.7 secs for a variety of hydrophilic lenses. Faber et al (1991) reported values of 

6.1±1.1 secs for two types o f low and high water content material (Optima 38%, Igel, 

67%). Higher break-up times o f 15.2 secs (7.6-25 secs) have been reported for Igel 

“Prima” and Bausch & Lomb “Series 70” contact lenses using the Tearscope (Guillon 

and Guillon, 1988).

The lower values o f pre-lens tear film stability found in this study may be due to 

lower baseline pre-comeal tear film stability, different water content o f contact lenses, 

different instrumentation used, or that the lenses used in this study were previously 

worn. Most o f the previous studies used unworn lenses that presumably had a
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smoother anterior surface without scratches and depositions, thus increasing the 

stability o f the pre-lens tear film. Young and Efron (1991) found a trend for high 

water contact lenses to support a more stable tear film, and this is consistent with the 

greater surface hydrophilicity o f high water content materials. However, high water 

materials collect more surface deposition, which may result in a reversal of this trend. 

The mean water content used in the study was 61.3%, which is lower in comparison 

to most previously reported results. Perhaps this lower percentage, in conjunction 

with lens deposits, is the key factor for the lower values of pre-lens tear film stability 

found in this study.

Tear film stability was lower immediately after lens removal compared to pre-wear 

levels for both the Comfort and Discomfort Group, with a substantial decrease for the 

latter group. A number o f mechanisms can be proposed to explain this drop. On 

insertion of the lens, the lipid layer is trapped under the lens and may contaminate the 

mucous layer, rendering it hydrophobic and poorly wettable (Holly, 1986). Further 

disruption of the mucous layer is likely to continue from the mechanical presence of 

the contact lens. This occlusive effect o f the lens would exacerbate the effect by 

preventing resurfacing o f the layer with blinking. A number of other studies have 

suggested that there is a minimal aqueous layer beneath a hydrophilic lens (Poise, 

1979; Fatt and DiMartino, 1985; Bruce and Brennan, 1988; Faber et al., 1991). This 

may arise from deficiency o f the lipid layer of the pre-lens tear film compared to the 

normal pre-comeal lipid layer, leading to an increased evaporation, lens dehydration, 

and subsequent evaporation o f the post-lens aqueous layer (Fatt, 1989). This 

reduction of post-lens tear film aqueous, combined with a disturbance o f the pre

corneal mucous layer, provides a possible explanation for the observed loss of tear
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film stability found in our study after a few hours contact lens wear. The further 

reduction of the post-lens tear film stability found in the Discomfort Group probably 

arises from the reduction o f post-lens tear film aqueous. The measurement of break

up time after lens removal can provide useful information for estimating the extent to 

which the tear film under a soft contact lens is disturbed (Kline and DeLuca, 1975; 

Hamano, 1981; Faber et al., 1991).

This study was the first to consider the effect of hydrogel contact lenses on blinking 

behaviour in a group o f  experienced lens wearers and to take into consideration the 

ocular comfort response o f the subjects. Previous studies considered only the effect 

of soft lenses on blink rate, in naive subjects (Brown et al., 1973; Carney and Hill, 

1984; Pointer, 1988). All o f these studies recorded an increased blink rate during the 

first weeks o f soft contact lens wear, apart from Brown et al (1973) who found that 

the blink rate was essentially unaffected by the initial wear of soft lenses.

In conclusion, this study has shown that lens wear discomfort increases with 

decreasing tear-film stability, producing an increased blink-rate. There is a significant 

increase in the blink rate in soft lens wear, and the degree of change is dependent on 

the comfort level o f  the subject. Discomfort causes an elevated blink rate in order to 

provide a sharp image. Assessment o f tear film stability before contact lens wear was 

strongly correlated to the blink rate o f the subjects, repeating the previous finding that 

changes in tear film stability, occurring during the inter-blink intervals, are detected 

by the comeal nerves. Tear film stability during contact lens wear was also correlated 

with the blink rate o f the subjects, and the blink rate was found to be quick enough to 

avoid full tear film break-up time. This was sufficient to maintain complete wetting
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of the lens surface throughout the inter-blink interval, in order to lubricate the surface 

of the lens and enhance lens comfort. The findings of this study are useful to 

practitioners, since discomfort during contact lens wear is closely related to the tear 

film stability. Measurements o f tear film stability should always be considered before 

contact lens fitting, since it was found to be responsible for the initial and ongoing 

comfort.
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9. Final Discussion

Why is blinking so interesting? Everybody blinks regularly everyday, and we do so 

for a number o f reasons, including for: protection of the eye from external noxious 

threats - physical or imagined, mechanical or chemical; shielding of the eye from 

bright sunshine; assisting the tear film in removing foreign bodies; helping form the 

tear film and allowing the tear film to complete its functions, and it can even be used 

for communication by winking!

However, these actions are affected by various conditions. There is evidence that 

various mental activities including reading, visual task activities, memory use or 

emotions modify blink rate (Stem et al., 1984; Karson, 1988). The performance of 

simple behavioural tasks such as listening, talking or arithmetical exercises 

significantly increases the blink rate (Karson et al., 1981; Tanaka and Yamaoka, 

1993). The use of video display terminals that require strong visual attention has been 

reported to decrease blink rate (Patel et al., 1991; Tsubota and Nakamori, 1993; Acosta 

et al., 1999). These findings suggest that blink frequency depends on the type and 

difficulty of the task, as well as on the degree of attention (Stem, 1994). Significantly 

altered blink frequencies are observed in several neuro-psychiatric disorders that are 

known to affect dopaminergic neuro-transmission (Taylor et al., 1999; Kimber and 

Thompson; 2000) and blink activity can be influenced by experimental manipulation 

of dopaminergic circuits in the basal ganglia. . Blinking is also influenced by sensory 

stimuli arising from the exposed ocular surface, and consequently by the 

environmental factors that favour tear evaporation (Nakamori et al., 1987). It can
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therefore be seen that the factors involved in the control of spontaneous blinking are 

likely to involve central and peripheral triggers.

The blinking action is also interesting because it is a regular action. Excluding 

blinking that occurs in response to external threats, sunshine or under voluntary 

control, involuntary blinking takes place during our waking hours without us actually 

being aware of it occurring. The next question that arises is, why do we blink without 

thinking? Is there an unconscious metronome in our brain that triggers a blink every 

x seconds, or do we blink in response to stimuli?

The reports of cortical control of blinking suggest a “blink-trigger” centre in the brain 

whose action is modified by other areas o f the brain. Similar autonomic control is 

used for other physical activities such as heart rate or breathing. There are certain 

advantages of such a regular unconscious mechanism in maintaining the function that 

the action serves. For example, in blinking the important function of tear film volume 

renewal and remove of foreign bodies would be maintained, even without any ocular 

surface stimulus.

However, just as other brain areas can influence this “blink-trigger” centre ocular 

surface conditions, can also be involved in modifying the blink frequency. This thesis 

assessed the role of the tear film and corneal nerves in the normal blink mechanism, 

based on the hypothesis that localised cooling in the tear film, produced by tear 

thinning prior to tear break up, is detected by the comeal nerves, thereby triggering a 

blink.
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From the series o f observations that were conducted, it was found that the blink 

frequency was strongly correlated with tear film break-up time: the more stable the 

tear film, the less frequent the blinks. Therefore, it seems conceivable that 

temperature change and thinning of the tear film, during eye opening, act as stimuli 

for the corneal sensory nerves and trigger a blink before full break-up occurs. More 

sensitive eyes are better able to detect these changes than less sensitive eyes, and 

trigger more blinks. On the other hand, less sensitive corneas are not able to detect 

the early changes, thus producing a lower blink frequency.

The next question then is, what stimuli are the corneal nerves detecting? Since blink 

rate is initiated before full break-up, and cooling o f the ocular surface occurs during 

the inter-blink interval, the hypothesis was made that the size or rate of temperature 

change during the inter-blink interval could be the trigger for normal blinking. 

However, no such relationship was found, but this may be because the measurements 

of temperature change were taken only at the centre o f the cornea and not across the 

ocular surface. The overall temperature change produced by tear thinning during the 

inter-blink interval would be a better measurement for correlation with the blink 

frequency. Since tear film thinning and break-up occurs randomly across the ocular 

surface, it is highly unlikely that tear thinning will occur at the same location as 

temperature measurement. In any case, if  we consider the corneal nerve architecture, 

the large overlapping receptive fields promote summation of temperature change 

across the surface, rather than localisation at a particular corneal location. By 

measuring total ocular surface temperature change a better understanding of the 

temperature change stimuli to the corneal nerves would be obtained. In addition, if 

the thermal camera was modified to assess tear film thinning and break-up
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simultaneously with thermography (perhaps by using fluorescein or incorporating a 

Mengher grid) the actual effect o f tear thinning on tear film temperature at specific 

corneal locations could be determined.

Since temperature change is moderated, to some extent, by tear film evaporation, and 

tear film thinning may produce increased evaporation, measuring tear evaporation rate 

was considered as an alternative way of assessing the blink trigger. However, 

evaporative tear loss during the inter-blink interval was not found to be correlated 

with the blink frequency. This was not unexpected since the Servo-Med 

Evaporimeter measures across the full ocular surface and is unable to assess local 

variation in evaporation rate. Similarly, the temperature change was not related to 

evaporation rate due to these disparities in measurement techniques.

We can therefore conclude that blinking is affected by changes in the tear film that are 

detected by corneal nerves, provoking a blink. However, the mechanism is not clear, 

other than a change in the ocular surface temperature, but the amount of change in 

temperature required was not determined in these studies.

Considering these interactions between corneal sensitivity, tear film break-up time 

and blink rate, a circular interacting model can therefore be proposed (Fig 9.1).

283



Initiates

Blink
Rate

Comeal
Sensitivity

Reforms

/
Thinning
Stimulus

Tear Film 
Break-Up

Fig 9.1: Circular interacting model between comeal sensitivity, tear film break-up 

time and blink rate.

When this model is functioning correctly, ocular surface health is maintained. We can 

also deduce that:

1) High comeal sensitivity detects early changes in the tear film producing a 

higher blink rate.

2) More frequent blinking improves tear film stability by increasing tear film 

aqueous and lipid production.

3) Good tear film stability promotes comeal epithelial health preserving comeal 

nerve function.

However, if any of the three parameters of the model are altered, dry eye may be 

produced (Fig 9.2).
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Fig 9.2: Altered circular interacting model between comeal sensitivity, tear film 

break-up time and blink rate.

From this altered model it can be seen that various factors can influence the normal 

function of each parameter. Although each parameter has some capacity to 

accomodate to these influences, there is a limit to the adjustments that can be made. 

The ultimate consequence is the production of the signs and symptoms of dry eye.

An example of a break down in this model was observed in the contact lens 

discomfort study reported in Chapter 8. For all contact lens wearers, tear film 

stability was reduced, promoting an increased blink rate in response to the more 

frequent detection of tear film changes by the comeal nerves.
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Fig 9.3: Circular interacting model between comeal sensitivity, tear film break-up 

time and blink rate during contact lens wear.

The patients with discomfort had a lower tear film stability than the patients without 

discomfort, indicating the development of Contact Lens Induced Dry Eye (CLIDE). 

This condition is not as severe as pathological dry eye, although the signs and 

symptoms are often similar. Resolution of the condition is easily made by ceasing 

contact lens wear. However, the rapid tear film break-up with contact lens wear leads 

to exposure of the comeal surface, stimulating the nerves and leading to discomfort. 

This was the situation observed in our patients.

Apart from the studies considering the role of ocular surface conditions in the blink 

mechanism, significant results were found in the three preliminary studies.
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The study on diumal variation in corneal sensitivity and thickness established the 

diurnal change pattern for both parameters, and found the time points for the highest 

sensitivity and thinnest cornea. The findings emphasise the importance of measuring 

corneal sensitivity or corneal thickness at the correct time during the day.

The anaesthetic study with Proxymetacaine Hydrochloride established the useful 

information that the time required for maximum anaesthesia was 15 minutes, although 

onset was much more rapid, and that the recovery time post-instillation was greately 

prolonged to at least 60 minutes.

This study also suggested a weak anaesthetic effect in the tested eye from 

contralateral anaesthesia. Such an unusual finding has not been detected previously 

for an anaesthetic, although sympathetic swelling in the fellow cornea of an eye with a 

low Dk soft lens has been noted (Fonn et al., 1999). Further work on this 

contralateral effect is proposed in order to determine the possible mechanism of 

action. By increasing the anaesthetic dose or duration of anaesthesia it could be 

proved whether systemic absorption is causing the effect.

The iris colour study found that as iris pigmentation increases, comeal sensitivity 

decreases. The findings were in accordance with previous results that assessed 

mechanical comeal sensitivity. The fact that the same variation in comeal sensitivity 

was found for both the mechanical and cold sensors of the comeal epithelium is a 

good indicator that the different nerve receptor types are affected by the same factors. 

The reason for this variation has been attributed to the correlation that might exist 

between the melanin in the iris and the amount o f neuro-melanin in areas of the

287



central nervous system. It would therefore been interesting for future work to 

consider how the neuro-melanin may affect the architecture and fine nerve endings of 

the comeal nerves.

In conclusion, this series o f  studies on comeal sensitivity, tear film and blinking has 

been able to assess their interaction and help in the understanding of a possible model 

explaining their relationship. Further work is now necessary to test the model’s 

usefulness for clinical practice.
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Appendix: 1. RAW DATA
An Investigation of the Diurnal Variation of Corneal Sensitivity and Thickness

Non Contact Corneal Aesthesiometer Measurements (NCCA) (mbars)

Subject 08.00 09.00 10.00 11.00 12.00 14.00 16.00 18.00 20.00 22.00
1 0.35 0.25 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.05
2 0.75 0.7 0.6 0.65 0.55 0.65 0.6 0.4 0.4 0.4
3 0.55 0.4 0.35 0.25 0.2 0.2 0.2 0.2 0.2 0.15
4 0.4 0.35 0.4 0.35 0.2 0.45 0.35 0.35 0.35 0.2
5 0.35 0.25 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.15
6 0.4 0.3 0.25 0.25 0.2 0.15 0.15 0.15 0.15 0.15
7 0.4 0.35 0.3 0.3 0.25 0.25 0.25 0.25 0.25 0.25
8 0.35 0.25 0.2 0.2 0.15 0.15 0.15 0.15 0.15 0.15
9 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.2 0.15 0.15
10 0.4 0.35 0.3 0.3 0.25 0.2 0.2 0.3 0.25 0.2
11 0.55 0.4 0.35 0.35 0.25 0.2 0.2 0.2 0.2 0.2
12 0.6 0.55 0.5 0.45 0.4 0.4 0.4 0.4 0.4 0.35
13 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
14 0.7 0.65 0.55 0.5 0.45 0.45 0.45 0.4 0.4 0.4
15 0.55 0.55 0.45 0.4 0.35 0.35 0.35 0.35 0.35 0.35
16 0.25 0.25 0.2 0.2 0.15 0.15 0.15 0.15 0.15 0.15
17 0.35 0.3 0.3 0.25 0.2 0.2 0.2 0.2 0.2 0.2
18 0.8 0.75 0.65 0.65 0.6 0.6 0.55 0.6 0.6 0.6
19 0.6 0.6 0.5 0.45 0.45 0.45 0.45 0.45 0.5 0.45
20 0.7 0.6 0.6 0.55 0.5 0.5 0.5 0.5 0.55 0.5

Mean 0.483 0.418 0.370 0.345 0.293 0.300 0.290 0.283 0.283 0.260
SD 0.17 0.17 0.15 0.15 0.15 0.17 0.15 0.14 0.15 0.15



Cochet-Bonnet Aesthesiometer Measurements (gr/mm2)

Subject 08.00 09.00 10.00 11.00 12.00 14.00 16.00 18.00 20.00 22.00
1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
2 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
7 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
9 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
10 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
11 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
12 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
13 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
14 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
15 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
16 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
17 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
18 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
19 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
20 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Mean 0.415 0.410 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400
SD 0.036635 0.030779 4.83E-09 4.83E-09 4.83E-09 4.83E-09 4.83E-09 4.83E-09 4.83E-09 4.83E-09



Haag-Streit Pachometer Measurements (mm)

Subject 08.00 09.00 10.00 11.00 12.00 14.00 16.00 18.00 20.00 22.00
1 0.59 0.58 0.59 0.58 0.56 0.58 0.6 0.57 0.56 0.54
2 0.6 0.58 0.54 0.56 0.55 0.53 0.49 0.49 0.47 0.47
3 0.6 0.59 0.57 0.54 0.52 0.56 0.58 0.52 0.54 0.53
4 0.56 0.54 0.52 0.51 0.5 0.5 0.52 0.52 0.52 0.5
5 0.54 0.54 0.54 0.52 0.52 0.5 0.54 0.58 0.56 0.56
6 0.54 0.52 0.54 0.53 0.51 0.51 0.52 0.57 0.56 0.54
7 0.5 0.46 0.48 0.46 0.44 0.48 0.46 0.44 0.46 0.46
8 0.56 0.54 0.5 0.5 0.5 0.46 0.49 0.48 0.5 0.48
9 0.57 0.55 0.54 0.54 0.54 0.54 0.54 0.53 0.53 0.53
10 0.56 0.54 0.53 0.54 0.52 0.52 0.54 0.54 0.53 0.52
11 0.52 0.49 0.48 0.47 0.48 0.48 0.47 0.48 0.5 0.48
12 0.44 0.42 0.42 0.43 0.42 0.42 0.44 0.42 0.45 0.43
13 0.5 0.47 0.44 0.43 0.44 0.46 0.45 0.44 0.44 0.45
14 0.54 0.52 0.48 0.54 0.5 0.5 0.54 0.5 0.5 0.51
15 0.51 0.48 0.46 0.48 0.44 0.46 0.48 0.48 0.5 0.5
16 0.58 0.56 0.54 0.5 0.46 0.46 0.46 0.46 0.44 0.44
17 0.5 0.48 0.48 0.46 0.5 0.48 0.46 0.44 0.5 0.5
18 0.48 0.48 0.46 0.46 0.45 0.46 0.45 0.49 0.48 0.48
19 0.52 0.51 0.48 0.48 0.51 0.48 0.48 0.52 0.54 0.56
20 0.44 0.42 0.42 0.4 0.42 0.41 0.41 0.42 0.4 0.43

Mean 0.53 0.51 0.50 0.50 0.49 0.49 0.50 0.49 0.50 0.50
SD 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.04



Patient Training with the NCCA (test/re-test of NCCA)
Day 1

Subject 08.00 09.00 10.00 11.00 12.00 14.00 16.00 18.00 20.00 22.00
1 0.35 0.25 0.2 0.2 0.15 0.15 0.15 0.1 0.1 0.05
2 0.75 0.7 0.6 0.65 0.55 0.65 0.6 0.4 0.4 0.4
3 0.55 0.4 0.35 0.25 0.2 0.2 0.2 0.2 0.2 0.15
4 0.35 0.25 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.15
5 0.4 0.3 0.25 0.25 0.2 0.15 0.15 0.15 0.15 0.15
6 0.4 0.35 0.3 0.3 0.25 0.25 0.25 0.25 0.25 0.25
7 0.35 0.25 0.2 0.2 0.15 0.15 0.15 0.15 0.15 0.15

Mean 0.45 0.36 0.31 0.29 0.24 0.18 0.17 0.10 0.10 0.11
SD 0.15 0.16 0.14 0.16 0.14 0.18 0.17 0.10 0.10 0.11

Day 2

Subject 08.00 09.00 10.00 11.00 12.00 14.00 16.00 18.00 20.00 22.00
1 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.15 0.1 0.15
2 0.50 0.5 0.45 0.45 0.4 0.35 0.4 0.3 0.25 0.3
3 0.5 0.4 0.3 0.2 0.2 0.2 0.15 0.15 0.15 0.1
4 0.3 0.3 0.25 0.25 0.2 0.15 0.15 0.15 0.15 0.15
5 0.25 0.2 0.2 0.15 0.1 0.15 0.15 0.15 0.15 0.1
6 0.35 0.3 0.3 0.25 0.25 0.2 0.2 0.25 0.25 0.2
7 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Mean 0.34 0.30 0.26 0.23 0.21 0.19 0.19 0.19 0.17 0.16
SD 0.11 0.12 0.11 0.11 0.10 0.07 0.09 0.06 0.06 0.07



An Investigation of the Anaesthetic Effect of 0.5% Proxvmetacaine Hydrochloride (Proparacaine) on Corneal
Sensation

Instillation of Proxymetacaine-Proxymetacaine

Corneal Sensitivity Threshold (mbars)

| Subject Baseline 2 min 5 min 10 min 15 min 20 min 30 min 45 min 60 min Iris Colour
1 0.70 1.00 1.15 1.90 2.25 2.15 1.95 0.85 0.80 Brown
2 1.20 2.80 4.30 4.70 5.00 5.10 4.85 2.70 1.70 Blue
3 0.90 1.50 2.05 2.35 2.45 1.85 1.70 1.70 1.60 Brown
4 1.70 2.15 2.20 2.35 2.45 1.85 1.75 1.70 1.70 Blue
5 1.30 1.85 2.05 2.80 2.95 1.70 1.60 1.55 1.40 Brown
6 0.85 3.15 3.25 3.45 3.80 3.70 3.20 2.30 2.05 Blue
7 0.90 1.65 2.00 2.60 2.85 4.30 2.30 1.95 1.95 Brown
8 0.70 2.90 3.00 2.40 2.20 1.80 1.50 1.40 1.05 Brown
9 1.45 1.75 2.90 3.35 3.95 3.85 3.75 3.00 2.00 Brown
10 0.95 2.45 3.90 4.00 4.40 2.70 1.90 1.70 1.55 Blue
11 1.15 2.50 4.00 4.90 5.20 3.60 2.75 1.30 1.20 Brown
12 0.85 0.90 1.85 1.85 2.10 1.65 1.40 1.00 0.90 Blue
13 1.30 2.95 3.60 4.30 4.55 3.30 2.30 1.90 1.75 Blue
14 0.85 1.30 2.35 4.50 4.80 3.65 3.10 2.10 1.65 Brown
15 0.10 0.30 0.50 0.95 0.70 0.50 0.40 0.20 0.15 Brown
16 0.85 1.05 1.25 1.65 2.05 1.80 1.35 1.00 0.95 Blue
17 0.60 1.10 1.90 2.95 3.30 2.70 1.85 1.45 1.05 Blue

Mean 0.96 1.84 2.49 3.00 3.24 2.72 2.21 1.64 1.38
SO 0.37 0.85 1.08 1.17 1.27 1.20 1.05 0.69 0.51



Instillation of Proxymetacaine-Saline

| Subject Baseline 2 min 5 min 10 min 15 min 20 min 30 min 45 min 60 min Iris Colour
1 0.65 1.80 2.50 2.70 3.05 2.70 1.65 1.30 1.20 Brown
2 1.10 3.75 3.95 4.75 5.10 5.45 4.00 2.35 1.80 Blue
3 1.00 1.20 1.30 3.15 3.20 2.70 2.00 1.40 1.25 Brown
4 1.65 2.15 2.75 2.90 3.20 2.50 2.20 1.80 1.80 Blue
5 0.90 1.05 2.70 3.05 3.70 3.45 2.60 1.55 1.45 Brown
6 0.90 1.15 2.85 3.15 3.30 2.70 1.80 1.40 1.20 Blue
7 0.75 1.65 2.05 2.35 2.65 1.60 1.20 1.05 1.00 Brown
8 0.65 1.40 1.90 2.05 2.20 1.45 0.75 0.55 0.50 Brown
9 1.40 1.75 3.00 3.10 3.50 2.45 1.70 1.60 1.25 Brown
10 0.80 2.20 2.70 2.70 3.60 2.55 2.15 1.65 1.25 Blue
11 0.80 3.15 3.40 4.45 6.05 5.70 3.85 1.85 1.10 Brown
12 0.80 1.15 2.15 2.45 2.80 2.45 1.90 1.80 1.70 Blue
13 1.35 4.25 5.90 6.85 6.95 6.10 5.10 4.80 4.30 Blue
14 0.90 2.10 3.10 3.35 3.55 2.95 2.70 1.90 1.40 Brown
15 0.10 0.75 0.85 0.95 1.05 0.30 0.45 0.10 0.10 Brown
16 0.90 1.75 1.95 2.30 2.45 1.85 1.50 1.40 1.10 Blue
17 0.65 1.30 2.20 2.55 3.05 2.45 1.90 1.20 0.90 Blue

Mean 0.90 1.91 2.66 3.11 3.49 2.90 2.20 1.63 1.37
SD 0.35 0.97 1.12 1.29 1.41 1.53 1.18 0.97 0.87



Instillation of Saline-Saline

Subject Baseline 2 min 5 min 10 min 15 min 20 min 30 min 45 min 60 min Iris Colour
1 0.6 0.65 0.55 0.6 0.55 0.55 0.5 0.55 0.6 Brown
2 1.05 1.1 1.05 1.1 1.05 1 1 1.05 1.05 Blue
3 1 1.05 1 0.95 0.95 0.9 0.95 1 0.8 Brown
4 1.5 1.55 1.55 1.5 1.45 1.55 1.6 1.5 1.5 Blue
5 0.9 0.95 0.9 0.85 0.9 0.9 0.95 0.9 0.9 Brown
6 0.95 1.05 0.95 0.9 0.9 1 0.95 0.95 0.9 Blue
7 0.95 1.15 1.05 1 1 0.95 1 0.95 0.9 Brown
8 0.85 0.95 0.9 0.85 0.85 0.8 0.85 0.9 0.85 Brown
9 1.35 1.45 1.35 1.3 1.35 1.35 1.4 1.3 1.3 Brown
10 0.95 0.9 0.95 0.95 0.9 1 1 1 1 Blue
11 0.75 0.8 0.75 0.75 0.75 0.75 0.75 0.75 0.75 Brown
12 1.05 1.15 1.05 1.1 1.1 1.05 1.1 1.05 1 Blue
13 1.35 1.55 1.35 1.3 1.35 1.35 1.4 1.3 1.3 Blue
14 1.1 1.05 1.1 1.1 1.05 1.1 1.1 1.1 1.15 Brown
15 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Brown
16 0.75 0.75 0.75 0.75 0.75 0.8 0.75 0.75 0.7 Blue
17 0.65 0.75 0.65 0.65 0.6 0.55 0.65 0.65 0.6 Blue

Mean 0.93 1.00 0.94 0.93 0.92 0.92 0.94 0.93 0.91
SD 0.32 0.34 0.33 0.32 0.33 0.34 0.35 0.32 0.32



Instillation of Saline-Proxymetacaine

Subject Baseline 2 min 5 min 10 min 15 min 20 min 30 min 45 min 60 min Iris Colour
1 0.60 0.75 0.80 0.75 0.75 0.75 0.60 0.65 0.70 Brown
2 1.10 1.75 2.20 1.95 1.85 1.75 1.60 1.55 1.50 Blue
3 1.00 1.35 1.55 1.45 1.30 1.30 1.25 1.35 1.25 Brown
4 1.60 1.75 1.75 1.90 1.80 1.75 1.65 1.65 1.60 Blue
5 0.90 1.35 1.45 1.20 1.20 1.05 1.05 1.00 0.90 Brown
6 0.95 1.10 1.15 1.10 1.10 1.10 0.95 0.95 0.95 Blue
7 0.90 1.30 1.35 1.25 1.10 1.10 1.00 1.00 0.90 Brown
8 0.75 0.80 0.95 1.20 0.95 0.95 0.85 0.60 0.60 Brown
9 1.20 1.45 1.55 1.75 1.95 2.20 1.70 2.00 1.95 Brown
10 0.95 0.90 1.75 1.60 1.30 1.00 1.10 1.20 1.35 Blue
11 0.85 1.50 1.90 1.70 1.40 1.20 1.10 1.05 0.90 Brown
12 0.85 0.90 1.15 1.40 1.60 1.75 1.55 1.40 1.35 Blue
13 1.20 1.40 1.55 1.50 1.45 1.35 1.35 1.30 1.25 Blue
14 1.45 1.75 1.70 1.75 1.65 1.70 1.60 1.55 1.50 Brown
15 0.10 0.20 0.15 0.10 0.10 0.10 0.10 0.10 0.10 Brown
16 0.80 0.75 0.75 0.70 0.70 0.70 0.60 0.60 0.70 Blue
17 0.65 0.85 0.75 0.65 0.65 0.70 0.75 0.70 0.65 Blue

Mean 0.93 1.17 1.32 1.29 1.23 1.20 1.11 1.10 1.07
SD 0.34 0.43 0.52 0.51 0.49 0.52 0.45 0.48 0.46



An Investigation of the Effect of Iris Colour and Ethnic Origin on Corneal and Skin Sensitivity and on Tear Film 
Stability and Blink Rate

Caucasians

CS: Corneal Sensitivity Threshold SS: Skin Sensitivity Threshold, TBUT: Tear Break-Up Time Blinks/min: Blink Rate

Grade 1

Subject CS (mbars) SS (mbars) TBUT (sec) Blinks/min

1 0.7 0.6 29.47 5.6
2 0.45 0.6 6.79 3.4
3 0.75 0.45 15.42 7
4 0.7 0.65 11.55 16.4
5 0.55 0.5 6.01 25
6 0.7 0.65 4.02 11.6
7 0.55 0.65 5.46 21
8 0.5 1.3 11.3 16.8
9 0.65 0.5 5.87 51.6
10 0.65 0.65 8.95 11.2
11 0.85 0.7 7.03 8
12 0.8 0.65 9.3 7.2
13 0.75 0.25 7.29 30.2
14 0.7 0.65 7.99 26.8
15 0.9 0.6 9.35 7.4
16 0.8 0.85 25.4 3.8
17 0.85 0.85 6.84 7.8
18 0.35 0.3 29.97 6.8
19 0.5 0.45 3.33 24.2



20 0.4 0.85 7.36 24.6
Mean 0.66 0.64 10.94 15.82

SD 0.16 0.22 7.99 12.01

Grade 2

Subject CS (mbars) SS (mbars) TBUT (sec) Blinks/min

1 0.75 0.55 9.3 19
2 0.65 0.6 6 24.4
3 0.95 0.85 8.56 11.4
4 0.85 0.55 3.63 23.6
5 0.9 0.5 12.87 14.2
6 1 0.85 9.17 11.6
7 0.55 0.65 5.56 11.4
8 0.9 0.9 9.14 14.8
9 0.85 0.75 13.11 31.6
10 0.7 0.75 12.38 13.6
11 0.85 0.45 3.63 34.6
12 0.55 0.55 8 11
13 0.85 0.4 4.99 28.4
14 0.55 0.75 5.03 21.4
15 0.1 0.6 10.89 13.4
16 0.6 0.45 5.93 20
17 0.9 0.4 13.69 7.6
18 0.35 0.5 6.98 30.6
19 0.6 0.55 8.73 13.6
20 0.65 0.45 13.63 8.8

Mean 0.71 0.60 8.56 18.25
SD 0.22 0.16 3.34 8.17



Grade 3

Subject CS (mbars) SS (mbars) TBUT (sec) Blinks/min

1 0.9 0.85 8.42 12.2
2 0.9 0.55 8.98 21.8
3 0.8 1.15 10.11 7.8
4 1.3 1.15 6.27 7.2
5 0.95 0.55 13.22 8
6 0.9 0.85 8.4 10.4
7 1.4 1.5 8.46 13.2
8 0.6 0.7 10.89 18.6
9 0.6 0.65 12.49 24.2
10 0.55 0.75 24.12 4.4
11 0.65 0.35 19.91 6.4
12 0.6 0.7 2.96 23.2
13 0.65 0.3 21.2 7.2
14 0.65 0.45 7.28 15
15 0.95 0.45 5.04 22
16 1.75 0.7 6.47 12.2
17 0.6 1 14.87 7.6
18 0.75 0.85 21.22 12.4
19 0.65 0.35 15.75 8
20 1 0.4 8.36 23.6

Mean 0.85 0.73 11.90 12.73
SD 0.31 0.31 6.00 6.62



Grade 4

Subject CS (mbars) SS (mbars) TBUT (sec) Blinks/min

1 0.75 0.4 5.37 16
2 1.25 0.95 15.9 9
3 0.9 0.3 5.1 8
4 0.95 0.8 8.42 21.6
5 1.4 0.6 12.47 12.8
6 1.35 0.8 5.65 18
7 1.2 0.85 5.84 31.2
8 1.45 2.15 4.98 37.6
9 1.05 1.2 6.39 15.2
10 1.05 0.8 22.92 9.2
11 1.1 0.6 15.37 4
12 0.85 0.35 10.53 10.8
13 1.45 0.55 15.3 11
14 0.95 0.6 15.21 5.4
15 1.05 0.55 15.58 11
16 0.4 0.45 4.39 26.4
17 0.95 1 17.51 3
18 0.35 0.7 3.02 24
19 0.7 0.7 11.3 17.2
20 1.05 0.7 7.35 16.4

Mean 1.01 0.75 10.43 15.39
SD 0.31 0.40 5.56 9.10



Grade 5

Subject CS (mbars) SS (mbars) TBUT (sec) Blinks/min

1 1.05 0.6 12.38 9.4
2 1.3 0.45 15.6 5.2
3 1.7 0.75 45.9 2
4 1 0.8 7.64 19.4
5 1.4 0.45 19.27 7
6 0.85 0.6 10.65 29
7 1.1 0.6 15.37 4
8 1.05 0.8 22.92 9.2
9 1.65 1.8 20.45 3
10 0.9 0.35 19.64 4.6
11 0.55 0.80 7.04 8.00
12 1.15 0.85 14.73 6.6
13 1.1 1.05 17.28 6.3
14 1.45 1.8 14.85 8.33
15 0.8 0.65 16.35 10
16 1.35 0.4 19.45 5.6
17 0.65 0.55 6.56 12.6
18 0.5 0.8 5.36 18.6
19 1.5 0.85 16.6 4.6
20 1.15 0.6 15.4 8

Mean 1.11 0.78 16.17 9.07
SD 0.34 0.39 8.58 6.52



Assians

Grade 4

Subject CS (mbars) SS (mbars) TBUT (sec) Blinks/min

1 0.9 0.65 16.7 10.8
2 0.85 0.35 14.07 4.8
3 0.85 0.65 6.64 41.8
4 0.8 0.45 25.89 10.6
5 0.8 0.9 4.36 26.8
6 0.85 1.3 14.6 15.6
7 1.8 0.6 8.73 21.2
8 0.9 1.15 16.57 6
9 1.3 0.6 5.48 21
10 0.45 1.2 3.36 14.4
11 0.65 1.05 5.17 14
12 0.85 1.1 8.73 10.2
13 0.85 0.55 4.57 13.6
14 0.65 1.7 7.63 15.2
15 0.75 1.05 7.49 18
16 0.6 0.5 16.6 8.6
17 0.75 1.35 4.24 30.4
18 0.9 0.9 15.18 15.18
19 0.7 0.9 22.65 3.4
20 0.7 0.7 19.84 11.2

Mean 0.85 0.88 | 11.43 15.64
SD 0.28 0.35 6.78 9.20



Grade 5

Subject CS (mars) SS (mbars) TBUT (sec) Blinks/min

1 0.8 0.9 17.22 10.6
2 0.85 0.75 16.38 11.6
3 0.7 0.55 15.94 15.6
4 1 0.55 10.33 9
5 1.7 0.55 9.13 31.6
6 0.6 0.45 5.96 19
7 0.6 0.55 12.02 4.6
8 0.75 0.8 26.5 4.4
9 1 0.65 29.54 14.6
10 0.8 0.45 9.42 42.2
11 0.95 0.4 16.44 8.6
12 0.85 0.85 26.2 11
13 1.2 1.65 7.02 30.6
14 1 1.1 5.22 26
15 0.85 1.85 16.7 6
16 0.8 0.5 10.75 14
17 1.3 0.85 9.64 14
18 1.15 0.6 13.41 9.4
19 0.4 0.4 5.11 29.2
20 1.4 0.75 18.81 8.4

Mean 0.94 0.76 14.09 16.02
SD 0.30 0.39 7.12 10.46



Chinese

Grade 4

Subject CS (mbars) I SS (mbars) TBUT (sec) Blinks/min

1 0.7 2.35 4.06 22
2 1.2 0.6 10.95 16.6
3 1.55 1.25 11.95 1.8
4 0.9 0.9 5.8 24
5 1 0.85 21.34 4.6
6 0.6 0.4 7.3 39.6
7 0.55 0.55 7.93 31.8
8 0.35 0.65 3.33 40
9 0.75 0.45 14.69 16.2
10 0.8 0.6 13.46 8
11 0.75 0.5 9.65 10
12 0.5 1.05 6.44 7
13 0.7 0.75 9.38 10
14 0.85 0.5 6.67 5.2
15 0.3 0.35 4.09 10
16 0.55 0.45 4.39 33.3
17 0.7 0.65 21.59 6.4
18 0.3 0.6 5.39 9.33
19 0.6 0.65 10.15 11.3
20 0.5 0.75 6.45 15

Mean 0.71 0.74 9.25 16.11
SD 0.30 0.44 5.25 11.79



Grade 5

Subject CS (mbars) SS (mbars) TBUT (sec) Blinks/min

1 1.2 1.05 4.83 21.6
2 0.95 0.4 3.68 38.8
3 1.7 0.6 12.88 6.4
4 0.55 0.45 11.16 10.2
5 2.3 0.6 17.98 5.3
6 1.6 0.45 13.49 13.8
7 1.5 1 15.33 10.2
8 1 0.9 5.43 29.6
9 1.35 0.45 3.52 26
10 1.35 0.65 6.34 22
11 0.95 0.65 14.41 9.2
12 0.55 0.5 20.67 2.8
13 0.75 0.9 12.3 5.8
14 0.5 0.75 8.04 11
15 1.55 0.6 10.2 4
16 0.25 0.25 3.91 36
17 0.55 1.4 12.77 22
18 0.65 0.45 7.53 4
19 0.3 0.6 19.52 18.8
20 0.75 0.6 4.31 3

Mean 1.02 0.66 10.42 15.03
SD 0.54 0.27 5.48 11.20



Africans

Grade 5

Subject CS (mbars) I SS (mbars) TBUT (sec) Blinks/min

1 1.75 1.5 17.95 4
2 1.20 1.3 29.84 5
3 1.65 2.4 23.78 6.4
4 1 0.25 10.93 9.6
5 1.4 1.05 10.34 7
6 0.95 0.4 10.64 17.2
7 1.05 1.45 7.35 j 18.2
8 1.05 0.4 4.02 28
9 1.15 1.9 9.97 14.2
10 1 0.95 5.25 33.3
11 1.6 0.6 23.6 8
12 0.85 0.6 4.34 19.2
13 0.95 1.85 7.32 28
14 0.95 0.9 19.72 8
15 1.2 1.3 26.43 4.4
16 1.4 0.6 20.83 4
17 1.6 2.1 18.77 8
18 1.4 2.15 15.85 4
19 2.05 1.35 16.03 5.6
20 1.05 0.55 14.29 8.33

Mean 1.23 1.21 14.10 12.58
SD 0.28 0.67 8.08 9.36



An Investigation of the Ocular Surface Sensory Trigger for Blinking

Visit 1

Subject CS
(mbars)

Evap
Baseline
(g/m2/h)

Evap after 
Fluor 

(g/m2/h)

Baseline 
Temp (°C)

Temp after 
Fluor (°C)

Besline Temp 
Diff at 8 s e c s  

(°C)

Temp Diff at 
8 se c  after 
Fluor (°C)

1 0.3 62.59 44.30 36.16 35.92 0.88 0.44
2 0.55 80.11 85.92 35.81 35.78 0.43 0.55
3 1.4 74.62 88.94 35.54 35.63 0.92 0.70
4 0.4 89.16 76.62 37.44 36.47 0.49 0.69
5 0.6 86.16 75.74 34.45 34.67 0.38 0.48
6 0.35 44.54 53.47 34.42 34.66 0.54 0.93
7 1.15 64.80 84.92 37.62 37.01 1.02 0.66
8 0.55 100.34 101.05 35.22 35.27 0.51 0.31
9 0.25 158.39 156.10 36.15 36.38 0.63 0.49
10 0.3 41.85 65.70 34.83 35.79 0.74 0.53
11 0.5 41.97 63.62 36.16 36.86 0.47 0.41
12 0.6 69.21 64.79 34.77 34.54 0.48 0.50
13 1.1 36.98 59.80 35.84 36.42 0.68 0.43
14 0.45 147.70 106.60 34.50 34.54 0.91 0.94
15 0.45 57.70 84.42 35.64 35.66 0.89 0.71
16 0.3 84.16 88.59 34.67 34.91 2.15 0.72
17 0.9 44.62 89.71 35.08 35.21 1.02 0.66
18 0.95 69.72 95.95 34.93 34.97 1.09 0.70
19 0.45 112.82 144.84 35.06 35.16 1.27 0.71
20 0.6 56.81 87.88 34.96 35.06 1.21 0.75

Mean 0.61 76.21 85.95 35.46 35.55 0.84 0.61
SD 0.32 33.37 27.34 0.91 0.77 0.41 0.17



Subject

Baseline 
Temp Change 
(1/2 life) at 8 
se c s  (secs)

Temp Change 
(1/2 life) at 8 

s e c s  after Fluor 
(secs)

TBUT
(sec) Blinks/min IBI (secs) Complete

Blinks
Incomplete

Blinks

Room
Temp
(°C)

Room
Humidity

(%)

1 0.75 1.61 38 3.6 16.74 18 0 23.8 37
2 1.58 1.62 8.2 22 2.71 110 1 24.3 26
3 0.61 0.80 15.3 10.8 5.57 54 0 24.2 30
4 1.06 0.66 15.04 15.6 3.86 78 0 23.8 33
5 1.26 0.81 18.21 6.6 9.10 29 4 25.5 28
6 1.38 1.86 8.24 18.8 3.18 94 0 26.5 27
7 1.59 0.92 19.36 9 6.69 45 0 25 33
8 0.41 1.29 9.77 17.2 3.49 85 1 24.5 35
9 0.36 0.43 12.74 15.8 3.81 78 1 22.5 32
10 1.72 1.99 25.21 6 9.93 30 0 22.6 39
11 0.94 0.93 16.48 13.8 4.37 69 0 24.4 34
12 1.01 0.30 8.3 28.4 2.11 134 8 26.6 26
13 0.57 0.43 19.12 5.2 11.33 19 7 24.3 34
14 1.42 1.59 9.21 18.4 3.27 92 0 25.7 27
15 0.59 0.47 12.23 20.8 2.88 104 0 25 30
16 0.96 0.83 8.26 28.6 2.12 142 1 26.2 27
17 0.91 0.72 22.3 5.6 10.30 28 0 23 35
18 0.89 0.81 21.33 5.6 10.72 28 0 23.7 36
19 0.95 0.88 16.97 10.2 5.82 50 1 24.2 30
20 0.86 0.74 14.97 19 3.15 94 1 23.4 31

Mean 0.99 0.98 15.96 14.05 6.06 69.05 1.25 24.46 31.45
SD 0.40 0.50 7.31 7.64 3.99 37.98 2.34 1.20 3.84



Visit 2

Subject CS
(mbars)

Baseline
Evap

(g/m2/h)

Evap 2min 
Anaes 

(g/m2/h)

Evap 20 min 
Anaes 

(g/m2/h)

Initial Temp 
Basel (°C)

Temp 2 min 
Anaes 

(°C)

Temp 20 min 
Anaes (°C)

Baseline 
Temp Cooling 

at 8 s e c s  
(°C)

Temp 
Cooling at 8 

sec  2 min 
Anaes (°C)

1 0.25 13.02 47.01 62.35 36.23 36.77 35.24 0.698 0.726
2 0.55 29.19 101.49 73.14 35.99 37.78 36.27 0.679 0.866
3 1.3 67.76 84.79 93.48 36.75 36.88 35.81 0.928 1.055
4 0.4 46.34 57.70 97.68 36.69 37.06 36.92 0.558 0.578
5 0.55 30.05 77.19 87.25 35.72 36.39 36.99 0.316 0.459
6 0.45 48.72 63.61 68.54 37.00 36.93 36.56 0.503 0.674
7 1.05 83.26 111.75 109.21 35.84 35.80 37.15 1.574 1.659
8 0.45 141.18 76.19 73.84 35.50 35.80 35.39 1.541 1.659
9 0.25 73.56 53.72 62.11 34.26 34.76 34.85 0.416 1.289
10 0.25 78.99 62.26 70.99 35.45 35.77 34.20 0.649 0.680
11 0.45 46.74 62.16 62.32 36.16 34.66 35.74 0.466 0.616
12 0.65 38.44 56.24 66.93 34.88 35.19 34.50 0.931 0.706
13 1.1 65.02 62.89 69.51 33.80 33.81 35.47 0.596 0.269
14 0.4 84.51 104.90 128.58 36.31 36.31 33.97 0.643 1.050
15 0.5 36.99 38.84 50.88 36.86 37.12 36.32 0.565 0.568
16 0.3 77.24 97.10 108.22 37.12 35.64 36.74 0.730 0.654
17 0.85 38.41 54.23 63.97 35.79 35.61 35.65 0.693 0.649
18 0.85 55.84 75.65 98.49 36.19 35.97 35.63 0.712 0.725
19 0.45 89.79 113.61 170.00 36.49 36.10 35.96 0.674 0.665
20 0.6 75.07 78.82 90.26 36.46 36.13 36.01 0.669 0.729

Mean 0.58 61.01 74.01 85.39 35.97 36.02 35.81 0.73 0.81
SD 0.30 28.81 22.07 28.24 0.87 0.95 0.91 0.32 0.36



Subject

Temp 
Cooling at 8 
s e c s  20 min 
Anaes (°C)

Baseline 
Temp 

Change 
(1/2 life) 
(secs)

Temp Rate 
Change 

(1/2 life) 2 mins 
Anaes (secs)

Temp 
Change(1/2 
life) 20 mins 
Anaes (secs)

Blinks/min 
15 min 
Anaes

IBI
(secs)

Complete
Blinks

Incomplete
Blinks

Room
Temp

Room
Humidity

1 0.52 0.71 1.32 1.32 3 20.23 15 0 24.4 30
2 0.81 0.39 0.45 0.45 8.2 7.34 39 2 25.5 29
3 1.50 0.50 0.42 0.42 6.2 9.58 31 0 26 28
4 0.56 0.72 1.05 1.05 5.4 11.04 27 0 23.1 33
5 0.52 1.60 1.81 1.81 2.2 28.72 11 0 22.8 34
6 0.85 1.47 1.46 1.46 7.6 8.08 38 0 25.6 32
7 1.07 1.22 0.69 0.69 8.6 6.99 43 0 23.8 33
8 0.79 1.13 0.69 0.69 9.8 6.05 49 0 24.5 35
9 1.92 0.75 0.62 0.62 12.4 4.99 62 0 23.2 30
10 0.93 1.72 1.36 1.36 2.4 25.40 10 2 21.7 41
11 0.43 0.47 2.04 2.04 4.33 14.11 13 0 24.4 32
12 0.88 0.33 0.73 0.73 6.6 9.13 12 21 25.3 29
13 0.54 0.41 1.09 1.09 4.4 13.30 17 5 24.7 44
14 1.00 2.12 1.50 1.50 8 7.48 40 0 25.7 27
15 0.66 1.00 0.96 0.96 16.6 3.55 83 0 24.8 30
16 0.80 0.51 1.26 1.26 10.2 5.87 48 3 25.6 33
17 0.78 0.87 1.11 1.11 3.8 20.28 14 0 22 35
18 0.82 0.98 1.18 1.18 4.6 12.80 23 0 25.1 33
19 0.78 1.10 1.20 1.20 7.8 7.64 39 0 25.4 29
20 0.81 0.89 1.14 1.14 5.6 10.76 19 9 23.9 30

Mean 0.85 0.94 1.10 0.88 6.89 11.67 31.65 2.10 24.38 32.35
SD 0.34 0.49 0.43 0.28 3.56 6.93 19.42 5.00 1.26 4.18



An Investigation of the Role of Tear Film and Blinking in Contact Lens Wear Discomfort

Comfort Group -  Visit 1

Subject CS
(mbars) Blinks/min IBI

(secs)
Complete

Blinks
Incomplete

Blinks
TBUT
(secs)

NIBUT
(secs) Type of Lenses % Water Months of 

Wear
1 0.35 21.4 2.81 105 2 4.67 6.13 Soflens B&L 66 32
2 0.3 4.8 12.36 24 0 32 34.8 Freshcare Advance 55 32
3 1.15 7.2 8.36 43 3 19.4 21.86 Easy Vision 69 60
4 1.05 19.6 3.07 98 0 7.77 8.93 Cooper Vision Tories 55 25
5 0.25 23.2 2.56 116 0 6.78 7.93 Cooper Vision Proclear 62 28
6 1.35 20.6 2.83 103 0 11.64 12.3 Survue J&J 58 58
7 0.3 13.5 4.46 54 0 13.56 14.78 Easy Vision Specsavers 62 60
8 0.55 17.2 3.51 86 0 8.97 9.42 Cooper Vision Tories 55 36
9 0.25 15.8 3.84 79 0 12.54 13.68 Survue J&J 58 54
10 1.35 18 3.34 89 1 8.99 9.38 Soflens Toric B&L 66 22
11 0.95 26.6 2.26 133 0 9.3 9.83 Acuvue J&J 58 58
12 1.25 12.4 4.79 61 1 14.57 16.27 Standard Lens 55 24
13 0.5 9 6.66 43 2 18.36 20.72 Soflens B&L 59 28
14 1.45 16.2 3.72 79 2 6.15 7.71 Sauflon UV 55 40
15 0.95 24.2 2.49 119 2 4.56 6.87 Cooper Vision Proclear 62 34

Mean 0.80 16.65 4.47 82.13 0.87 11.95 13.37 59.67 39.40
SD 0.46 6.35 2.74 31.70 1.06 7.16 7.64 4.64 14.42



Comfort Group -  Visit 2

Subject Blinks/min 
during CL

IBI during 
CL 

(secs)

Complete
Blinks

Incomplete
Blinks

NIBUT 
during CL 

(secs)

NIBUT after 
CL Removal 

(secs)

BUT after 
CL Removal 

(secs)

CS after CL 
Removal 
(mbars)

Comfort
Response

1 20 2.99 99 1 2.53 5.13 4.59 0.35 100
2 11 5.4 55 0 5.53 7.06 6.63 0.25 80
3 10.4 5.76 52 0 4.9 5.8 5.47 1.4 90
4 20.4 2.93 102 0 2.63 8.26 7.45 0.9 75
5 26.4 2.27 132 0 2.26 5.28 4.97 0.75 70
6 34.6 1.73 171 0 1.73 7.56 6.79 1.15 60
7 15.2 5.93 76 0 3.5 8.63 7.98 0.45 85
8 19.2 3.11 93 1 2.16 5.03 4.67 0.5 85
9 12.4 4.84 62 0 4.8 7.13 6.33 0.35 75
10 20.4 2.95 101 1 2.23 6.86 6.22 0.7 95
11 26.4 2.27 132 0 3.1 7.36 6.85 0.95 60
12 16.2 3.7 81 1 4.66 7.6 6.59 1.7 95
13 16.6 3.63 81 2 4.15 8.83 8.49 0.5 100
14 30.6 1.96 153 0 2.33 4.83 4.48 1.6 70
15 27.6 2.17 138 0 2.66 5.33 3.98 0.75 75

Mean 20.49 3.44 101.87 0.40 3.28 6.71 6.10 0.82 81.00
SD 7.28 1.41 36.27 0.63 1.22 1.38 1.36 0.46 13.26



Discomfort Group -  Visit 1

Subject CS
(mbars) Blinks/min IBI

(secs)
Complete

Blinks
Incomplete

Blinks
TBUT
(secs)

NIBUT
(secs) Type of Lenses % Water Months 

of Wear
Comfort

Response
1 1.15 18.8 3.18 91 3 7.32 8.16 Dollond&Aichison 55 50 100
2 1.2 13 4.65 65 0 12.49 13.1 Acuvue 2 J&J 58 72 80
3 1.45 9.8 6.14 47 2 17.5 18.53 Focus Dailies 69 35 90
4 0.6 12.6 4.78 63 0 13.54 13.13 EasyVision Specsavers 69 66 75
5 0.9 47 1.28 235 0 2.28 2.97 Acuvue 2 J&J 58 84 70
6 0.4 25.6 2.33 128 0 5.81 6.56 Focus Dailies 69 58 60
7 1.8 12.4 4.71 62 0 11.56 12.48 Cooper Vision Proclear 62 32 85
8 0.4 29.4 2.04 146 1 3.87 4.4 Cooper Vision Proclear 62 20 85
9 1.75 9.6 6.38 43 5 15.22 16.36 Cooper Vision Proclear 62 62 75
10 0.3 23.6 2.56 118 0 10.42 11.13 Soflens B&L 66 56 95
11 0.55 18.2 3.29 91 0 10.08 12.43 EasyVision 69 18 60
12 0.45 43.4 1.39 217 0 2.01 2.96 Focus Monthlies 55 21 95
13 1 11.8 5.11 57 2 16.24 16.63 Survue J&J 58 64 100
14 0.55 30.4 1.98 151 1 3.21 4.54 EasyVision Specsavers 62 45 70
15 0.75 13 4.62 65 0 16.92 17.16 Soflens B&L 66 29 75

Mean 0.88 21.24 3.63 105.27 0.93 9.90 10.70 62.67 47.47 81.00

SD 0.49 11.92 1.68 60.15 1.49 5.50 5.41 5.12 20.74 13.26



Discomfort Group -  Visit 2

Subject Blinks/min 
during CL

IBI during CL 
(secs)

Complete
Blinks

Incomplete
Blinks

NIBUT during 
CL (secs)

NIBUT after 
CL Removal 

(secs)

BUT after 
CL Removal 

(secs)

CS after CL 
Removal 
(mbars)

Comfort
Response

1 29.2 2.05 146 0 1.86 3.03 2.63 1.2 30
2 19.2 3.01 94 2 1.43 5.23 3.7 0.65 35
3 34 1.7 168 2 1.13 4.6 3.65 1.4 35
4 30.6 1.95 153 0 1.65 4.36 3.29 0.45 30
5 48 1.26 236 4 0.9 3.79 2.28 1.2 30
6 37.6 1.59 188 0 2 3.16 3.5 0.5 30
7 32.4 1.85 161 1 1.76 4.06 4.38 1.9 30
8 48.4 1.24 241 1 0.85 2.56 3.48 0.5 30
9 21.6 2.78 108 0 1.1 3.56 3.42 1.55 35
10 43 1.4 215 0 1.23 4.1 3.31 0.4 25
11 34.8 1.72 174 0 2.26 6.03 6.09 0.45 40
12 46.2 1.3 231 0 0.96 1.73 1.13 0.55 30
13 19.8 3.03 97 2 2.73 8.13 6.78 1.45 35
14 32 1.88 160 0 1.26 2.66 2.07 0.55 35
15 28.2 2.12 141 0 2.87 8.5 8.1 0.85 40

Mean 33.67 1.93 167.53 0.80 1.60 4.37 3.85 0.91 32.67
SD 9.62 0.60 47.98 1.21 0.64 1.93 1.84 0.50 4.17



Appendix: 2. Related Publications

353



1505-M.OF./Review MINERVA OFTALMOL 2000:42:000-000

The effect of contact lens wear on corneal sensation

A. M. NTOLA, P. J. MURPHY

The corneal  ner ves  play an im p o r t a n t  ro l e  in 
the  pro tec t i on  and  m a i n t e n a n c e  o f  c o r n e a l  
hea l th ,  and the  c o r n e a l  e p i t h e l i u m  h a s  the  
highes t  dens i ty  o f  free n er v e  e n d i n g s  in the  
body.  Contact  l e n se s  are in c re a s in g ly  u sed  to 
correct  refract ive error or for c o s m e t i c  p u r 
pose s .  It is the re fore  i m p o r ta n t  to s tudy the  
re l a t i on sh ip  b e t w e e n  t h e s e  fac t or s .  S tud ie s  
have reveal ed that con tac t  l e n s  wear  can p r o 
duce a reduct ion in co r ne a l  s ens i t i v i ty ,  w i th  
the exten t  o f  s ensa t ion  l os s  re lat ed to the type  
o f  contact  l ens ,  the mater ial  it is m a d e  f ro m ,  
and the  f requ enc y  and  dur a t i on  o f  w ear .  In 
summary ,  as the t ime o f  wear  in c r e a s e s ,  bo th  
in the  sh or t - t er m (d ay s )  a n d  l o n g - t e r m  (- 
m o n t h s ) ,  the  greater  the  l o s s  o f  s e n s a t i o n .  
Recovery to n orm al  l eve ls ,  w i th  the  ce s s a t i on  
o f  l ens  wear,  is also p r o l o n g e d  w ith  e x t e n d e d  
durations of  contact  l ens  wear.  Newer  l ens  m a 
terials that have i m p ro ve d  o x y g e n  p e r m e a b i l 
ity have  less  o f  an ef f ect .  The  tw o  p r i n c i p l e  
m e c h a n i sm s  by w h ic h  the c or n ea l  n e r v e s  are  
affected are the m ec h a n i c a l  ac ti on o f  the  l e n s  
and interf erence  with the  m e t a b o l i c  func t ion  
o f the cornea,  as a result o f  the reduced oxy ge n  
supply.  The impaired m etab o l i c  func t ion  p r o 
duces  an increase  in ac idos is  and  a c h a n g e  in 
cornea l  p H  as a resul t  o f  h y p e r c a p n i a .  Both  
o f  these  can alter ner ve  fu n c t io n ,  and  so r e 
duce cornea l  sensit ivi ty.
Key words: Contact l ense s  - Cornea ,  p h y s i o lo gy  
-Cornea ,  metabo l i sm.
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C ontact lenses have become one of the prin
cipal methods for correcting refractive er

ror over the last 30 years. The development of 
the soft contact lens by Wichterle etaD  creat
ed a safe and comfortable method for patients 
to change from spectacle wear. New develop
ments in lens materials led to the introduction 
of rigid gas permeable (RGP) lenses and, more 
recently, to silicone-hydrogel lenses. Indeed, 
the silicone hydrogel lens holds the promise 
of the first successful continuous wear lens.2

The clinical care of contact lens wear has 
revealed a wide number of unwanted ad
verse reactions, e.g. corneal oedema, neo- 
vascularisation, papillary conjunctivitis, dry 
eye, marginal ulcers.3 However, each reac
tion has encouraged the development of new 
lens designs and materials to avoid/over
come the problem.

One of the more unusual side effects of 
contact lens wear is a reduction in corneal 
sensation. For PMMA (poly-methylmethac- 
rylate) and RGP lens wear, the practitioner is 
actively encouraging a reduction in sensitiv
ity, but this improved comfort also brings the 
risk of undetected foreign bodies or pathol
ogy. It is this paradoxical situation that we will 
review in this paper.
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Corneal n erve supp ly

The cornea has the highest density of free 
nerve endings in the body, and these pro
duce an exquisite level of sensitivity to nox
ious stimulation.4 They play a vital role in 
the detection and prevention of damage to 
the cornea and anterior ocular surface. The 
cornea performs several important roles in 
the eye -  transmission of light to the retina, 
refraction of the light as part of focussing the 
image, maintaining the intraocular pressure 
and protection of the internal eye. The tears, 
corneal nerves and eyelids all perform roles 
in the defence of these functions. The nerves 
also play a role in the maintenance and health 
of the corneal epithelium. Research on rab
bits has shown that a total lack of corneal 
nerve supply will result in impaired wound 
healing, decreased corneal metabolism and 
reduced epithelial cell adhesion.5 The m an
ner in which this influence is exerted is un
known, but may be due to axonally trans
ported substances, such as proteins.6

The corneal nerves are derived from the 
Nasociliary nerve, a branch of the Ophthalmic 
nerve, a division of the Vth Cranial Nerve 
(Trigeminal). The nerves supplying the cor
nea pass along the long ciliary nerve branch 
of the nasociliary nerve. They penetrate the 
posterior of the eye and pass between the 
sclera and choroid, coursing anteriorly to 
supply the cornea, iris and the sensory fibres 
of the ciliary body, trabecular meshwork and 
sclera.

Upon reaching the cornea, 70-80 nerve ax
ons (in man) enter the corneal stroma in a ra
dial fashion from various sites around the 
corneal limbal circumference. The nerves en
ter in the middle third of the stroma and run 
towards the centre of the cornea, giving rise 
to branches that innervate the anterior and 
mid stroma. As the axons pass towards the 
epithelium, they ramify and divide to form a 
poorly characterised nerve plexus beneath 
Bowman’s Layer in the superficial stroma.4 7 
9 The nerves then penetrate Bowman s Layer 
at an estimated 400 sites to enter the basal 
epithelial layer.10 As they do so, the nerve 
bundles lose their remaining Schwann cell 
coverings. These nerves then combine with

nerves that enter the basal epithelium from 
the limbus to form the basal epithelial plex
us.11

The nerve fibres continue to divide and 
ramify anteriorly within the corneal epithelium 
to distribute free nerve endings across the 
whole of the cornea anterior surface. The 
nerve fibres innervating the cornea are of sev
eral different types, each responding to a dif
ferent set of stimuli. These different nerve 
types are also arranged within the corneal epi
thelium according to their type -  myelinated 
A3 fibres that respond to mechanical stimuli 
run parallel to the corneal surface within the 
basal cell layer, unmyelinated C fibres that re
spond to thermal and mechanical stimuli turn 
upwards from the epithelial plexus towards the 
surface.12 These two nerve types are the prin
cipal moderators of the corneal nerve response 
to the current corneal aesthesiometers used 
to assess corneal sensitivity.

Corneal sensation  m easurem en t

The two principal methods used to assess 
corneal nerve function in this review are the 
Cochet-Bonnet Aesthesiometer and the Non- 
Contact Corneal Aesthesiometer (NCCA). The 
Cochet-Bonnet instrument uses a thin nylon 
thread that is pressed against the corneal sur
face.13 This produces a mechanical deforma
tion in the anterior corneal surface that stim
ulates the A3 fibres. A variation in the inten
sity of the stimulus is achieved by varying 
the length of the nylon thread, which in turn 
alters the force that must be applied to pro
duce a bend in the thread. By this indirect 
method the stimulus intensity can be deter
mined.14 In contrast, the NCCA uses a con
trolled pulse of air, of a predetermined in
tensity and duration, to produce a localised 
cooling of the pre-corneal tear film.15 This 
cooling stimulus is transferred to the corneal 
epithelium and detected by the C fibres.16’17 
For both instruments, the patient is asked to 
respond verbally as to whether they felt the 
stimulus or not -  for the Cochet-Bonnet 
Aesthesiometer the subject feels a touch on 
the eye, and for the NCCA the subject feels a 
gentle cooling of the eye.
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Pattern o f  cornea l sensitiv ity  loss  
and recovery

The extent of corneal sensitivity loss and re
covery with contact lens wear depends on 
the contact lens type, the oxygen permeabil
ity of the material, the number of hours of dai
ly lens wear, the number of years of wear, and 
the length of any recovery period. For this re
view, we shall consider the pattern of sensi
tivity loss and recovery, of hard and soft con
tact lenses, over both short-term and long
term wear.

Short term effects
Hard/PMMA contact lenses.—As mentioned 

earlier, Hard/PMMA lenses actually require 
a reduction in corneal sensitivity to improve 
their comfort and allow long-term wear. This 
is most clearly seen when a lens is inserted in 
the eye of a naive wearer. An immediate lac
rimal response occurs, which gradually re
duces with neural adaptation. A further more 
significant reduction in corneal sensitivity oc
curs over a full days wear.

A large number of studies have investigat
ed this effect.13 18 33 The most interesting se
ries of studies were completed by Millodot. 
He found a reduction in corneal sensitivity of 
about 110% over a 12-hour wear period. His 
subjects had worn their lenses for at least 3 
months and he assessed their corneal sen
sation prior to insertion, after 4 hours, 8 hours 
and 12 hours of continuous uninterrupted 
wear. He found that sensitivity diminishes 
progressively with the length of wear to a 
maximum after the 12-hour wear period. He 
also found a high correlation between central 
and peripheral corneal sensitivity, although 
the loss was less in the centre than in the pe
riphery.34 This effect presumably relates to 
the increased mechanical effect of the edge 
of the lens. It is reasonable to assume that if 
the lenses are worn for more hours without 
removal, the loss will continue to some un
known maximum level.

The recovery of sensitivity after short-term 
PMMA contact lens wear is rapid. When lens
es are removed after 8 hours of wear, a sta
tistically significant recovery occurs within 1 
hour, although complete recovery takes long

er and is related to the number of hours of 
contact lens wear.29 34

Soft contact lenses.—Soft contact lenses do 
not require any reduction in corneal sensitiv
ity to improve their ease of wear because of 
the flexibility of the material. At the same 
time, investigations have shown that soft con
tact lenses still produce a progressive decline 
of corneal sensitivity, but to a much lesser 
degree than hard contact lenses.

A number of studies have considered this 
effect,27 30 37 39 although the most interesting 
studies were com pleted by Millodot and 
Velasco et al. Millodot measured the corneal 
sensitivity in 15 subjects before and after 4 
hours, 8 hours and 12 hours of uninterrupt
ed HEMA soft lens wear. He observed a small, 
but significant, decrease in corneal sensitiv
ity after 8 hours of wear, and this loss in
creased with continuing wear.

Velasco et al. found a significantly greater 
decrease in corneal sensitivity with 38% water 
content hydrogel lenses than with 55% water 
content lenses. This reflects the influence of 
lens water content on the oxygen concentra
tion at the corneal surface - more hydrated 
lenses produce a higher corneal surface oxy
gen tension. Similar investigations found that 
high water content soft lenses produce prac
tically no change in corneal sensitivity over a 
12-hour period, although different lenses and 
fits cause slightly different results.35 42-43

The recovery of sensitivity after soft contact 
lens wear is usually more rapid than that 
found with hard contact lenses and depends 
on the nature and duration of wear. Recovery 
usually occurs within one hour of lens re
moval.40 41

Long term effects
Hard/PMMA contact lenses.—Most reports 

of sensitivity reduction have paid attention to 
short term wear of contact lenses. However, 
a number of investigations have considered 
the effects of longer periods of wear.13 19' 25
2 7 . 3 0 . 3 3 . 4 4 . 45

The most interesting studies were com
pleted by Millodot who assessed the effect of 
long-term PMMA lens wear. He found a 
marked decline in sensitivity after the first
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few years of wear. In one study, the subjects 
were divided betw een an experim ental 
group, who had worn hard contact lenses 
for 1-22 years, and a control group who had 
never worn lenses. Subjects who had worn 
lenses for only 1-2 years had no significant 
difference in corneal sensitivity w hen com 
pared to those subjects in the control daily 
group. This indicates that the recovery which 
occurs after removal of the lens is sufficient 
to return sensitivity to norm al levels. 
However, the effect of prolonged wear is 
easily seen after 5-7 years. Subjects in the ex
perimental group have a significant decrease 
in corneal sensitivity in comparison with the 
control group. If we describe corneal sensi
tivity in terms of its inverse, the corneal touch 
threshold (CTT), then 5-7 years wear p ro
duces a 100% increase in CTT and after 17-22 
years wear a 200% increase in CTT.

A similar study has been com pleted by 
Sanaty and Tenel who found the same pattern 
of sensitivity loss. They also found a greater 
loss of sensitivity in the periphery, which 
presumably again relates to the increased 
mechanical edge effect of the lens.

The recovery of corneal sensitivity after 
long-term wear can take many months and 
depends on the length of time the subject 
has worn PMMA lenses. For example, with a 
subject who has worn lenses for 10 years, 
recovery to normal levels can occur within 1 
month, but for a subject who has worn lens
es for 15 years, recovery takes 4 months. The 
main point is that the longer the initial wear, 
the longer it takes to recover.29' 46

Soft contact lenses.—A number of studies 
have considered the effect of long-term dai
ly wear of soft contact lenses on corneal sen
sitivity. Two studies considered the effect of 
high water content extended wear lenses. 
Larke and Hirji followed patients who were 
wearing Sauflon 85 lenses and Millodot exam
ined people who were wearing X-Ten lens
es. In both studies, corneal sensitivity re 
duced progressively over the weeks of wear, 
with approximately a 50% increase in CTT 
by the end of 3 months with the X-Ten lens
es. From these results it is evident that, even 
with lenses of high oxygen perm eability, 
some loss of corneal sensitivity occurs.

A more recent study by Murphy et al. as
sessed the long-term effects of daily-wear 
soft contact lenses and rigid gas permeable 
(RGP) contact lenses on corneal sensitivity 
using the non-invasive air-pulse stimulus (- 
NCCA). Interestingly, while both lens reduced 
corneal sensitivity from normal levels, no sig
nificant difference was found between the 
results of each contact lens types: soft and 
RGP. A similar pattern of significance was 
found when the results for the peripheral test 
locations were compared, suggesting that 
there is no topographical variation in the ef
fect of the two lens types. RGP lenses gener
ally have a higher oxygen permeability than 
soft lenses and so should produce less of an 
effect on corneal sensitivity as a result of an 
impaired metabolic function. However, RGP 
lenses also produce a mechanical adaptation 
effect in the corneal nerves and this adds to 
the effect from the reduced metabolic func
tion. In contrast, soft lenses do not have a 
mechanical action. When the metabolic and 
mechanical effects are combined for each 
lens type, they appear to produce a similar to
tal effect on corneal sensitivity.

The second significant finding was that the 
duration of lens wear for both soft and RGP 
lenses doesn’t affect the extent of sensitivity 
loss. It appears that with adaptation to the 
metabolic change and mechanical action of 
lens wear, a new balance between the meta
bolic requirements of the corneal nerves and 
their oxygen supply produces an altered cor
neal touch threshold.

The last important finding was the lack of 
topographical variation across the cornea in 
corneal sensitivity change. For negative pow
er lenses, we might expect to find greater 
sensitivity loss in the periphery due to the 
increased lens thickness. However, the pe
riphery should also receive more oxygen dis
solved in the tears, via tear exchange under 
the lens, and so these effects may cancel each 
other out. In contrast, RGP lenses do not cov
er the corneal periphery, but have an in
creased mechanical action from the edges of 
the lens during blinking that may cause the 
corneal sensitivity loss in the periphery.

There have been no published studies that 
have considered the recovery of sensitivity af
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ter long-term soft lens wear. Nevertheless, 
we can expect a similar pattern of recovery 
to occur as with long-term PMMA lens wear. 
The only main speculation might be the 
length of time required to recover to normal 
levels. However, since soft lenses generally 
produce less of an effect on corneal sensitiv
ity, a more rapid recovery should occur.

Possible m e c h a n ism s  
o f  corneal sensitiv ity  loss

There are two main answers to the ques
tion of what causes the sensitivity loss with 
contact lens wear - metabolic impairment of 
the cornea or mechanical pressure on the 
cornea.

Poise passed 100% nitrogen gas over a 
subject’s eye via a modified swimming gog
gle. After 2 hours wear, corneal sensitivity 
was unaltered, although corneal swelling was 
present. In a second experiment, he fitted 
subjects with PMMA lenses and this produced 
a loss of sensitivity, but no swelling. Poise 
concluded that it was not the oedem a which 
induced the changes in corneal sensitivity, 
but rather the effect from mechanical stimu
lation.

Although there is some anectodal evidence 
that lenses which produce less mechanical 
stimulation give rise to a smaller decrease in 
corneal sensitivity, the mechanical action of 
a lens on the corneal nerves cannot be the 
only mechanism for corneal sensitivity loss. 
This is evident in a number of ways. Firstly, 
soft lenses still produce a reduction in corneal 
sensitivity. Secondly, w hen the eyes are 
closed overnight, corneal sensitivity declines 
as a result of a lower oxygen pressure at the 
corneal surface and not as a result of m e
chanical stimulation.48 Thirdly, when the cor
nea is exposed to a reduced partial pressure 
of atmospheric oxygen, a reduction in sensi
tivity occurs.49 In an experiment by Millodot 
and O’Leary (1980), the cornea was exposed 
to two different gas mixtures containing 2.1% 
oxygen and 3.15% oxygen, (normal atmos
pheric oxygen contains 10% oxygen). They 
found a strong relationship between the time 
of exposure to a reduced pressure of atmos

pheric oxygen and a reduced corneal sensi
tivity. They also found a time delay between 
the start of the experiment and the reduc
tion in corneal sensitivity. With the 2.1 and 
3.15% oxygen pressures, it took 3 and 4 hours 
respectively to produce a measurable change 
sensitivity. In the study by Poise described 
earlier, no change in corneal sensitivity oc
curred with a 100% nitrogen atmosphere, but 
the measurement was taken after only 2 hours 
and a longer period may be needed before 
any change can be detected.

The comparative impact between the me
chanical action and the corneal oxygen sup
ply can be demonstrated by considering the 
differing effects of PMMA and RGP lens wear 
on corneal sensitivity. In one experiment, 
subjects were fitted with a PMMA lens in one 
eye and a RGP (CAB) lens in the other. After 
3 months of wear, a reduction in sensitivity 
was measured in the PMMA wearing eye, 
while practically no change occured in the 
RGP wearing eye.36 Another experiment com
pared the effect of three RGP lenses, each 
with a different oxygen permeability, and 
found a relationship between the epithelial 
oxygen availability and changes in corneal 
sensitivity.50 Bergenske and Poise also found 
that patients who are refitted with RGP lens
es after having worn PMMA lenses often re
gain lens awareness.

From this series of experiments we can 
conclude that corneal sensitivity reduction is 
mediated by a change in the oxygen supply 
to the cornea and not simply by any mechan
ical stimulation. However, the mechanism by 
which the corneal nerves are affected by a re
duced oxygen pressure is not clear. There is 
some evidence that acetylcholine is involved 
in corneal sensitivity. The corneal epitheli
um has the highest concentration of acetyl
choline in the body. Tanelian et al. showed 
that acetylcholine instilled into the eye in
creases the action potential in the long ciliary 
nerves of the rabbit cornea. Pesin and Candia 
proposed that acetylcholine in the corneal 
epithelium plays a role in the regulation of so
dium positive and chloride negative trans
port, both of which are necessary in the pro
duction of nerve impulses. The synthesis of 
choline acetyltransferase, the enzyme that
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synthesises acetylcholine, is interfered with 
when the oxygen supply is reduced.54 55 Since 
such a situation occurs in contact lens wear, 
this may be one pathway for a reduced cor
neal nerve function.

Lastly, the reduction in corneal sensation 
may be due to corneal acidosis during con
tact lens wear. The pH of the body is careful
ly regulated to 7.4 and even a change of 0.05 
can produce severe complications. Metabolic 
acidosis, and specifically lactic acidosis, can 
lead to depression of neural activity ranging 
from weakness and lethargy through to coma, 
depression of vital functions and ultimately 
death. Respiratory acidosis, due to hypercap- 
nia (the accumulation of carbon dioxide), 
can lead to depression of neural function as 
well. The stromal pH is usually maintained at 
7.54,56 which is higher than that of the body, 
but closed eye wear of a PMMA lens can lead 
to a decrease of pH to 7.1.57 Such a change 
would cause severe depression of neural 
function elsewhere in the body. Since both 
lactate accumulation and carbon dioxide are 
evident during contact lens wear, their in
creased concentration may be responsible 
for corneal hypoesthesia.

C onclusions

This review of the different studies has re
vealed the gradual effect of improved lens 
design on corneal sensitivity changes with 
contact lens wear. Early contact lenses, par
ticularly PMMA but also soft lenses, had a 
greater impact on corneal physiology than 
more recent designs. These improvements 
have largely resulted from an improved oxy
gen supply to the anterior cornea. However, 
this continuing improvement in contact lens 
design may produce an interesting complica
tion for silicone-hydrogel contact lens w ear
ers. The high oxygen permeability of these 
lenses has encouraged their use in extended 
wear. However, the improved oxygen supply 
may also ensure that a higher level of corneal 
sensitivity is maintained, thereby reducing 
corneal comfort with the lens. Such a situa
tion has not been reported anecdotally and 
there have been no published studies re

porting on corneal sensation with silicone- 
hydrogel lenses, but this area still merits at
tention. Other areas of contact lens wear that 
require investigation are the influence of 
new generation, high oxygen perm eable 
RGP lenses, and the recovery of corneal sen
sitivity after ceasing long-term daily soft lens 
wear.

This review has demonstrated the useful
ness of assessing corneal sensitivity as a meas
ure of corneal health with contact lens wear. 
Unfortunately, using the corneal sensitivity 
measurement as a predictor for contact lens 
wear success is not as useful. There are too 
many other variables, such as patient motiva
tion and ambient environmental conditions, 
which can also have a significant impact.

Riassunto

L e n t i  a  c o n ta t to  e  s e n s ib i l i ta  c o r n e a /e

Le fibre nervose corneali svolgono un ruolo im- 
portante nei meccanism i di protezione e di omeo- 
stasi della cornea e nell’epitelio corneale si osserva il 
m aggior num ero di fibre nervose libere dell’intero 
organismo. Le lenti a contatto vengono utilizzate sem- 
pre piu spesso per correggere difetti di rifrazione o ai 
fini cosmetici. Di conseguenza, e im portante studia- 
re i rapporti fra uso delle lenti a contatto e innerva- 
zione corneale. Le indagini finora condotte hanno 
rilevato che l’im piego di lenti a contatto e in grado di 
causare una riduzione della sensibilita corneale di 
entita correlata al tipo e al materiale di costruzione del
le lenti nonche alia frequenza e durata del loro im- 
piego. Nel complesso, aum entando il periodo di tem
po in cui le lenti vengono usate, sia in termini di 
giorni che di mesi, aum enta la perdita della sensibi
lita. Protraendo l'uso delle lenti, inoltre, si eleva il 
tem po necessario per riacquistare la sensibilita cor
neale originaria una volta sospeso l’uso delle lenti 
stesse. I materiali di costruzione di recente introdu- 
zione, caratterizzati da una maggiore permeabilita al- 
l’ossigeno, esercitano minori effetti sulla cornea. I 
sue meccanismi patogenetici principali alia base del- 
l'alterazione della sensibilita corneale sono costituiti 
dall'irritazione meccanica da parte delle lenti e del- 
l’interferenza con le funzioni m etaboliche della cor
nea, secondarie al ridotto apporto di ossigeno. La ri- 
dotta funzione metabolica porta a un aum ento del- 
1’acidosi e a un'alterazione del pH corneale in con
seguenza dell’ipercapnia. Entrambi questi fattori pos- 
sono alterare la funzione delle fibre nervose e quin- 
di ridurre la sensibilita corneale.
Parole chiave: Lenti a contatto - Cornea, fisiologia - 
Cornea, metabolismo.
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m ore objective c rite ria  o f  ad eq u a te  fixation  d u rin g  evoked  po ten tia l 
recording.

Colour specificity o f the motion after-effect
E. Laviers and D. McKeefry
D ep ar tm en t  o f  O p to m e try ,  U n ivers i ty  o f  B rad fo rd ,  
R ichm ond  R oad ,  B radfo rd  B D 7 1DP, U K
Purpose: It has been d em o n stra ted  th a t a m o tio n  afte r-e ffec t (M A E ) 
can be bo th  induced and  nulled using iso lu m in an t c h ro m a tic  stim uli 
(C avanagh  and  Favreau , 1985; D e rrin g to n  a n d  B adcock , 1985; M ullen 
and Baker, 1985). It has a lso been suggested  th a t, a t low  velocities a t 
least, the m otion-processing  p a thw ay  is sensitive  to  the  c h ro m a tic ity  o f  
m otion  stim uli (H aw kcn et al., 1994, G c g cn fu rtn c r an d  H aw k cn , 1995, 
1996; B urr et al., 1998; M cK eefry, 2001). T h e re fo re , it w ou ld  follow  
th a t the M A E  w ould d isplay som e degree o f  co lo u r  selectivity . T o  
investigate the co lour selectivity o f  the M A E , we used a 2 A F C  m o tio n - 
nulling paradigm  to m easure the stren g th  o f  the  M A E  induced  using 
iso lum inant adap ting  stim uli m o d u la ted  a lo n g  the  c a rd in a l c h ro m a tic  
axes in M B D K L  co lour space and  iso lu m in an t test s tim uli m o d u la te d  
a long a num ber o f  d ifferent ch ro m atic  axes. W e hyp o th esised  th a t the 
M A E  w ould be greatest when the ad ap tin g  and  test s tim u lu s  were 
m odulated  a long the sam e axis, and  w eakest w hen test an d  ad ap tin g  
stim uli were m odulated  a long o rth o g o n a l axes.

Methods: Subjects adap ted  to  a s inuso ida l g ra tin g  d rif tin g  to  the  left 
at 2 deg s_l and  subsequently  viewed a test g ra tin g  o f  va riab le  velocity  
and  d irection  (i.e. left o r righ tw ard  m o tio n ) then  m ade  a cho ice  as to  
w hether the test g rating  drifted  tow ards  the  left o r  the  righ t. T h e  test 
velocity at which the M A E  was nulled w as reco rded  as the  M A E  
strength . All stimuli were p resented  a t eq u al m u ltip les o f  c o n tra s t 
detection  threshold.

Results: T he M A E  was s trongest w hen the  test s tim u lu s  w as 
m odulated  a long the sam e ch rom atic  axis as the  ad ap tin g  s tim u lu s  and  
M A E  strength  showed the general trend  o f  decreasin g  w ith  increasing  
deviation  o f the test axis from  th a t o f  the  ad ap tin g  stim ulus.

Conclusion: The results confirm  o u r h ypo thesis  th a t the  M A E  is 
co lour selective, for these conditions.
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Repeatability o f the Complete Ophthalmic A nalysis 
System (COAS®) on determining higher order 
aberrations on model eyes
A. Cervino, S. L. Masking, S. A. Naroa  
and M. C. M. Dunne
Neurosciences Research Ins titu te ,  A s to n  U nivers ity ,  
B irm ingham  B4 7ET, U K

Purpose: E valuating  the repeatab ility  o f  the C om plete O phthalm ic 
A nalysis System  (C O A S® , W aveF ron t Sciences, A lbuquerque, N M , 
USA ) on the dete rm ina tion  o f h igher o rder a berra tions  o f m odel eyes.

Method: Twelve m odel eyes were exam ined w ith the COAS. Tw o 
sessions o f  10 m easurem ents each, as well as an o th e r session o f 10 
m ore m easurem ents w ithou t refocusing, were perform ed. Values 
o b ta ined  were analysed to  assess repeatab ility  o f  the instrum ent, 
varia tions  on the intrasession and intersession repeatability , as well as 
those induced by hum an  m an ipu la tion  du ring  the focusing procedure.

Results: R oo t m ean square  (R M S) o f  the confidence interval (C l) 
o b ta ined  for the w hole sam ple was reduced to  1.10% o f the m ean value. 
High co rre la tion  was ob ta ined  betw een the repeatab ility  obta ined  from 
tw o m easurem ents and  tha t ob ta ined  from  ten consecutive m easure
m ents (r  =  0.950; p < 0.001; 95%  C l for r  =  0.7755 to 0.9898) with the 
values no t being significantly d ifferent (m ean difference: 0.0258, S.D.: 
0 .1005 ,95%  C l: -0 .0 5 1 4  t o 0.1031,/? =  0.4628; paired M est), suggesting 
a high perfo rm ance  o f the instrum ent. W hen refocusing, up to four 
m easurem ents are  needed to  get a co rre la tion  above 0.500 (r  =  0.5715, 
p — 0.1080; 95%  C l for r  =  -0 .1 4 9 3  to  0.8957) and  for the values not to 
be significantly  d ifferent (m ean difference: -0 .0175 , S.D .: 0.0499, 95%  
C l: -0 .0 5 5 8  to  0.0209, p — 0.3246; paired M est), suggesting th a t a t least 
fo u r m easurem ents are needed to  get a reliable value. C om parison  o f 
values o b ta in ed  in tw o sessions (refocusing for each m easurem ent) 
show s variab le  co rre la tio n  for the d ifferen t eyes, suggesting a n on 
co n sta n t h u m an  fac to r in the m an ip u la tio n  o f  the instrum ent.

Conclusions: T he C O A S w avefront sensor shows good perform ance 
w ith  high repeatab ility . H ow ever, the com parab ility  o f  results dim in
ishes significantly  due to hum an  m an ipu la tion  o f  the instrum ent, and 
there  is va riab ility  betw een sessions. This suggests a need for 
im prov ing  the  reference for focusing, so th a t the w hole im age capture  
p roced u re  is less clin ic ian-dependent.

Diurnal variation o f corneal sensitivity and thickness
A. M. Ntola and P. J. Murphy
School o f  O p to m e try  an d  Vision Sciences, Card if f  
Univers ity ,  C a rd if f  C F 1 0  3NB, U K
Aim: T o  assess the d iu rna l p a tte rn  o f  change in corneal sensitivity (CS) 
an d  corneal thickness (CT).

Methods: Tw enty  C aucasian  subjects were recru ited  (m ales =  7, 
fem ales =  13, age =  23.7 ±  3.18 years). Subjects w ith any ocular 
co n d itio n  know n to  affect CS were excluded. E th ical app roval was 
o b ta in ed  and  subjects were asked to  sign a consen t form  p rio r to 
p a rtic ip a tin g . C en tra l CS w as assessed using the non -con tac t corneal 
aes thesiom ete r (N C C A ) and  C ochet-B onnet aesthesiom eter (C-BA). 
T h e  N C C A  stim ulates the cold C  fibres, while the C-BA  stim ulates the 
A8 m echano-sensors. C T  was m easured  using the H aag-S treit optical 
pachom ete r. All m easurem ents were taken  on the left eye, which was 
pa tch ed  overn igh t. T he pa tch  was rem oved 5 m in before m easure
m ents began , to  c reate  a s tan d a rd  po in t fo r all subjects. M easurem ents 
were taken  every h o u r from  8 a m  to  12 p m , and  then every 2 h from  
2 p m  to  10 p m . T he o rd e r o f  m easurem ents was random ised  a t each 
tim e period . T o  assess pa tien t tra in ing  w ith the N C C A , seven subjects 
w ere re-m easured  on  a second day.

Results: A significant d iu rna l change in CS was found  w ith the 
N C C A , w ith sensitivity  being low er in the m orn ing  and  h igher in the 
evening  ( a n o v a , p =  0.0285). N o significant change was found using 
the  C -B A  ( a n o v a , p  =  0.0545). W ith  C T , a significant change was 
found  from  8 a m  to  12 p m  ( a n o v a , p =  0.0401), b u t no significant 
change  was found  from  2 p m  to  10 p m  ( a n o v a , p =  0.9693). A 
significant co rre la tio n  betw een the first and  second m easurem ents, for 
the re-test subg roup  o f  N C C A  was found  ( r “  — 0.9637).

Conclusions: T he N C C A  was able to  detect the d iu rnal varia tion  in 
sensitivity  o f  the C-fibrcs. T he C-BA was unable to  detect any 
va ria tion , because o f  its tru n ca ted  stim ulus range. C T  decreased 
th ro u g h  the  day, having an inverse re la tionsh ip  w ith CS ( r 2 =  0.6910). 
M easurem ent o f  corneal sensitivity  w ith the N C C A  has only a small 
learn ing com ponen t.
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Purpose: To a ssess the duration, depth and recovery time of anaesthesia produced by the 
topical instillation of 0.5% proxymetacaine hydrochloride using the Non-Contact Corneal 
Aesthesiometer (NCCA).
Methods: Seventeen Caucasian subjects were recruited (m=2, f=15, age=26±3.6). Subjects 
with any ocular condition known to affect corneal sensitivity (CS) were excluded. Ethical 
approval was obtained and subjects were asked to sign a consent form prior to participating. 
CS was assessed using the NCCA which stimulates the cold sensitive C fibres. All 
measurements were made on the right eye only. 20pl of 0.5% proxymetacaine hydrochloride 
or 20pl of saline was then instilled in either the right or left eye. Central CS was measured 
under four conditions: (P-P) proxymetacaine in both eyes, (P-S) proxymetacaine in the right 
eye and saline in the left eye, (S-S) saline in both eyes and, (S-P) saline in the right eye and 
proxymetacaine in the left eye. CS was measured before instillation and at 2, 5, 10, 15, 20, 
30, 45, and 60 minutes post instillation. Subjects were further classified according to iris 
colour into two groups: brown or blue.
Results: (1) For conditions P-P and P-S onset of anaesthesia was observed at 2 min post
instillation (P-P, t-test p=0.001; P-S, t-test p=0.002), with a maximum depth of anaesthesia 
at 15 min post-instillation (P-P, t-test p<0.001; P-S, t-test p<0.001), after which sensitivity 
began to recover. CS did not return to baseline levels at 60 min post-instillation (P-P, t-test 
p=0.0003; P-S, t-test p=0.0133). No significant difference in depth of anaesthesia was noted 
between p-p and p-s. (2) No change in CS was found in the right eye over the period of the 
trial, for conditions s-s and s-p. (3) No significant difference was found between the brown 
and blue iris colour sub-groups, at 2, 15, and 60 min (P-P, P-S, t-test p>0.05). Conclusions: 
(1) The anaesthetic effect of 0.5% proxymetacaine hydrochloride is more prolonged than the 
20 minutes previously thought. (2) The maximum anaesthetic effect does not occur until 15 
minutes after instillation. (3) The results suggest that 0.5% proxymetacaine affects AS and C 
nerve fibres in different ways. (4) The iris colour of the subject has no effect on the 
anaesthetic action of 0.5% proxymetacaine hydrochloride.
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Purpose: To assess the effect of iris pigmentation and ethnic origin on corneal sensitivity 
(CS), skin sensitivity (SS), tear film break-up (BUT) and blink rate.
Methods: Subjects (n=172) were recruited for the study and allocated to four ethnic groups: 
1) 86 Caucasian (m=28, f=58, age=23.5±3.7), 2) 40 Asian (m=5, f=35, age=21.9±3.5), 3) 30 
Chinese (m=10, f=20, age=24.3±5.6), and 4) 16 Black African (m=6, f=10, age=24.2±3.9). 
Ethical approval was obtained and subjects were asked to sign a consent form prior to 
participating. Subjects were also classified according to the Iris Color Classification System. 
All measurements were made on the right eye only and after 12 noon to avoid any diurnal 
bias. Central CS was measured using the Non-Contact Corneal Aesthesiometer (NCCA), 
which stimulates the cold sensitive C fibres. SS was assessed  at the upper closed eyelid 
using the NCCA. Tear film break-up time was assessed  following the instillation of 0.7pl of 
fluorescein. The blink rate was recorded for 5 minutes without the subject's knowledge. 
Results: 1) Caucasians had a progressive decrease in sensitivity with increasing iris 
pigmentation (R2=0.97). 2) No difference in CS was found between ethnic groups (ANOVA, 
p>0.05) except for Asian/African groups, with Africans being less sensitive than Asians (t- 
test, p=0.02). 3) A significant difference in SS was found only between the Chinese and 
Africans groups (t-test, p<0.05). 5) No significant correlation was found for CS and SS 
between each ethnic group. 6) A weak but significant correlation was found between blink 
rate and BUT for all ethnic groups, with blink rate decreasing as BUT increases (R2=0.28). 
Conclusions: 1) Iris pigmentation influences CS; as iris pigmentation increases, CS 
decreases. 2) No significant difference was found in CS, SS, BUT and blink rate between 
the ethnic groups. 3) BUT and blink rate are weakly correlated; as blink rate increases, BUT 
decreases.
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