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Summary

Summary
The aim o f  this project was to develop methods for conditional induction o f gene 

specific silencing in murine embryonic stem (mES) cells using RNA interference 

(RNAi). RNA interference (RNAi) is a process whereby double stranded (ds) RNA 

can reduce the expression o f a gene by selective mRNA degradation. This thesis 

describes the investigation o f several methods o f inducing RNAi in mES cells. These 

included design and transfection o f  chemically synthesised small interfering (si) 

RNAs; the transfection o f vectors expressing short hairpin (sh) RNAs and 

construction o f  a vector that expresses hairpin dsRNA under tetracycline control. A  

specific reduction in GFP expression was observed by the transfection o f siRNAs 

targeting either plasmid or endogenously expressed GFP. Transfections o f two out o f  

three Oct-4 siRNAs were shown to reduce the expression o f Oct-4. mES cell lines 

were made that stably express shRNAs targeting Rex-1 and Laminin B l .  Analysis o f  

gene expression by semi-quantitative RT-PCR showed knockdown o f the target genes 

in some cell lines. Transfection o f another vector expressing Oct-4 shRNA was shown 

to induce differentiation o f  mES cells as measured by an increase in cell size. 

Methods were developed for the cloning o f  an inverted-repeat o f target genes (Oct-4, 

LMNA) into a tetracycline-inducible vector. The system was tested in a HEK 293 cell 

line expressing the tet-responsive transactivator protein. The hairpin dsRNA was 

shown to be expressed when doxycycline was added to the cells but no knockdown o f  

LMNA was observed. The use o f  siRNAs and shRNAs to induce gene specific 

silencing in ES cells was shown. Although fast and efficient methods for the assaying 

o f RNAi induced knockdown in cells were not demonstrated. Therefore the potential 

o f RNAi as a high throughput system for establishing gene function in mES has yet to 

be realised.
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Abbreviations and Conventions

Abbreviations and Conventions
The following were used throughout the text.

A Adenosine

A(x) Absorbance at x nm

ADP Adenosine Di-Phosphate

ATP Adenosine Tri-Phosphate

Blast Basic local Alignment search Tool

bp Nucleotide base pairs

BSA Bovine serum albumin

C Cytosine

cDNA Complementary DNA

CMV Cytomegalovirus

dATP Dexoyadenosine triphosphate

dCTP Deoxycytidine triphosphate

dGTP Deoxyguanosine triphosphate

dTTP Deoxythymidine triphosphate

DMSO Dimethyl sulphoxide

DNA Deoxyribonucleic Acid

ds Double-stranded

dsRBM DsRNA binding motif

DTT Dithiothreitol

EC Embryonal carcinoma cells

EDTA Ethylene diamine tetracetic acid

EGFP Enhanced green fluorescent protein

ES Embryonic stem cells

EST Expressed sequence tag

FCS Foetal calf serum

g Gravity

G Guanine

gDNA Genomic DNA

GFP Green fluorescent protein

h Hour
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Abbreviations and Conventions

HEK Human embryonal kidney cells

HEPES (N-[2-HydroxyEthyl]-Piperazine-N’-[2-EthaneSulphonic acid]

hES Human ES cells

hp Hairpin

IR Inverted repeat

kb Nucleotide kilobase pairs

LB Luria Broth (Luria Bertani media)

LIF Leukaemia Inhibitory Factor

M Molar concentration

m milli 10'3

MCS Multiple cloning site

mES Mouse ES cells

miRNA Micro RNA

min Minute

MmGFP Modified form o f GFP

MMLV Moloney-Murine Leukaemia Virus

mRNA Messenger RNA

NBS Newborn calf serum

nm Nanometres

nt Nucleotide

OD Optical density

oligo Oligonucleotide

o/n Over night

PBS Phosphate buffered saline

PCR Polymerase chain reaction

RISC RNA-induced silencing complex

RNA Ribonucleic acid

RNAi RNA interference

rpm Revolutions per minute

RT-PCR Reverse-transcription-polymerase chain reaction

SDS Sodium dodecyl sulphate

secs Seconds

shRNA Short hairpin RNA

siRNA Small interfering RNA
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Abbreviations and Conventions

ss Single stranded

T Thymine

TAE Tris Acetate-EDTA buffer

TE Tris-EDTA buffer

Tet Tetracycline

Tris N-Tris[HydroxyMethyl]methylglycine;N-[2-Hydroxy-1,1-

bis(hydroxymethy)-ethyl]glycine 

U Uracil

UTR Untranslated region

UV Ultraviolet

w/v Weight by volume

All laboratory materials employed are detailed according to their commercial name 

given in the appropriate manufacturer’s catalogue.
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Glossary o f RNAi Terms

Glossary of RNAi terms
Dicer RNase III nuclease, cleaves dsRNAs and pre-miRNAs to siRNAs 

and miRNAs respectively.

dsRNA Long double-stranded RNA molecules.

hpRNA Longer dsRNA expressed from a vector that contains an inverted 

repeat o f part o f the cDNA sequence o f a gene o f interest separated 

by a spacer sequence. This is transcribed to form a hairpin RNA.

Interferon Response to dsRNA resulting in non-specific mRNA degradation

Response and inhibition o f protein synthesis.

miRNA MicroRNAs are naturally occurring small non-coding RNA 

sequences, (~21 nucleotides) many involved in regulating 

development.

O ff target A decrease in gene expression o f genes other than the target gene

effects induced by dsRNA or siRNA transfection.

Pri-miRNA Long primary transcripts that are subsequently cleaved by an enzyme

called Drosha to shorter 70 nucleotide stem loop precursors called 

pre-miRNAs.

Pre-miRNA See above. These are processed by Dicer to mature miRNAs.

RISC RNA induced silencing complex. A single strand o f siRNA or 

miRNA is incorporated into RISC. The RISC:miRNA/siRNA 

complex then binds to its target sequence resulting in mRNA 

cleavage or translational repression.
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Glossary of RNAi Terms

RNAi

shRNA

siRNA

RNA interference is a process whereby dsRNA can reduce the 

expression o f a gene by selective mRNA degradation [term coined 

by Fire et al. (Fire, Xu et al. 1998)].

Short hairpin RNA contains a sense and antisense strand o f the target 

mRNA sequences (~21 nucleotides) separated by a short spacer 

region. The shRNA is usually expressed in mammalian cells from a 

vector containing a polymerase III promoter.

Short interfering RNAs are short (~21 nucleotide) duplexes with 2 

nucleotide 3' overhanging ends. They are produced by Dicer or can 

be chemically synthesised.
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Chapter 1: General Introduction

1. Introduction
The first draft sequences o f the human genome were published in 2001 (Lander et al., 

2001; Venter et al., 2001). The conversion o f draft data into a highly accurate 

sequence covering -99% of the euchromatic genome was published 3 years later 

(2004). This information has been utilised for the identification o f potential gene 

coding regions, [the number predicted to be between 20,000-25,000 (2004)], studies 

o f the chromosomal structure and organisation and also the distribution o f  

polymorphisms. Comparisons between human and mouse genomes have allowed 

evolutionarily conserved genes to be identified (Waterston et al., 2002). Although 

bioinformatics have been used to identify the position and number o f genes, the 

function o f many o f these genes has yet to be determined.

Determining the function o f the large number o f uncharacterised genes remains the 

challenge o f our era. Progress has been made via the use o f high throughput 

techniques, such as microarrays and proteomic technologies. To date, however the 

‘gold standard’ for determination o f gene function remains the generation o f knockout 

and transgenic mice [for review see (Houdebine, 2002)]. Despite the success o f mouse 

models for determining gene function in vivo, their production remains expensive, 

time consuming and labour intensive. Antisense nucleic acid derivatives including 

ribozymes and antisense oligonucleotides have been investigated as potentially faster, 

simpler and cheaper alternatives for determining gene function (Lebedeva and Stein,

2001).

Introduction o f an antisense oligonucleotide downregulates the expression o f the gene 

whose mRNA is complementary to the oligonucleotide sequence. Fire and colleagues 

investigated the requirements o f the RNA delivered in Caenorhabditis elegans and 

discovered that double stranded RNA (dsRNA) was 10 fold more effective at 

silencing than either sense or antisense single stranded RNAs (Fire et al., 1998). This 

process was named RNA interference (RNAi). This was similar to a gene silencing 

effect that been previously observed in plants, named cosuppression (Napoli et al., 

1990; van der Krol et al., 1990). Overexpression o f chalcone synthase, an enzyme 

involved in the synthesis o f the pigment o f petunias, was predicted to enhance floral 

colouration. The results were very different, the flowers were actually found to be
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Chapter 1: General Introduction

totally white or variegated. This gene silencing phenomenon was also observed in 

fungi and termed quelling (Romano and Macino, 1992). During attempts to increase 

the amount o f orange pigment in Neurospora crassa a wildtype strain was 

transformed with extra copies o f a gene involved in making carotenoid pigment 

(albino-1 and albino-3). The presence o f these extra copies was shown to suppress the 

expression o f the endogenous al-1 or al-3 genes with up to 36% of transformants 

showing an albino phenotype.

1.1. RNAi Interference
RNAi is a process whereby double-stranded (ds) RNA reduces (or ‘knocks-down’) the 

expression o f a gene by selective mRNA degradation. RNAi has been shown to occur 

in many organisms including C. elegans (Fire et a l , 1998; Ketting and Plasterk,

2000), Drosophila (Kennerdell and Carthew, 2000), and mice (McCaffrey et a l , 

2002; Svoboda et a l , 2000; Svoboda et a l , 2001; Wianny and Zemicka-Goetz, 2000) 

and also in plants (Voinnet et a l , 1998; Waterhouse et a l , 1998). RNAi is thought to 

protect an organism from viral infections and mobile genetic elements (Plasterk,

2002).

The potential o f  RNAi for large scale functional genomics has been shown with the 

development o f RNAi libraries that were used for screening and discovering the 

function o f many genes in C. elegans (Fraser et a l , 2000). Also more recently several 

studies have shown its potential use in treatment o f heart disease (Soutschek et a l , 

2004), viruses (Capodici et a l , 2002) and also cancer therapy (Yague et a l , 2004). 

These will be discussed later in this chapter.

1.1.1. M echanism o f  R N A i

Double-stranded RNA (dsRNA) introduced into cells is first processed to shorter 

RNA duplexes o f about 22 nucleotides (nt) by an RNase III nuclease named Dicer 

(Bernstein et al., 2001) (Figure 1.1). These short RNA duplexes were named small 

interfering (si) RNAs (Elbashir et a l , 2001b). The RNase III nuclease activity o f 

Dicer cleaves both stands o f the dsRNA to give siRNA duplexes with 2 nt 3' 

overhanging ends (Elbashir et a l , 2001b). It was suggested that the use o f thymidine
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Chapter 1: General Introduction

overhang at the 3' end helps prevent degradation of the siRNA by exonucleases 

(Elbashir et al., 2001c).

The siRNAs then act in conjunction with a multimeric protein complex named the 

RNA-induced silencing complex (RISC) (Hammond et a l , 2000). Interaction with 

RISC results in cleavage o f target RNA in the centre o f the region that is homologous 

to the siRNA between residues 10 and 11 as counted from the 5' end (Elbashir et a l , 

2001b). This cleavage does not require ATP (Nykanen et a l , 2001). Cleaved target 

RNA is degraded quickly due to loss o f either the stabilising cap or poly(A) tail 

(Elbashir et a l 2001c).

Mammalian cells also exhibit an interferon response (Stark et a l , 1998) when dsRNA 

of greater than 30 base pairs (bp) are introduced (Figure 1.1). Two enzymes are 

activated that are normally induced by interferon. The first is the dsRNA-dependent 

protein kinase (PKR) that phosphorylates translation initiation factor eIF2a, inhibiting 

protein synthesis. PKR is not activated by dsRNA of less than 30 bp (Manche et a l , 

1992). The second enzyme activated is 2' 5' oligoadenylate synthetase that synthesises 

2' 5' oligoadenylate. 2' 5' oligoadenylate binds to and activates RNaseL, resulting in 

non-specific mRNA degradation (Stark et a l , 1998). This interferon response is 

present to protect the host genome from invading viruses. It was thought that specific 

RNAi can be achieved in mammalian cells containing the interferon response by the 

use o f siRNAs (Elbashir et a l , 2001a). These shorter 21-22 nt duplex RNA sequences 

should not activate the interferon response.

Subsequent studies have shown that the interferon response can be still triggered 

when using siRNAs. Sledz and colleagues studied the non-specific effects o f  

transfection o f siRNAs into cells (Sledz et a l , 2003). siRNAs targeting Lamin A/C 

and GAPDH were transfected into a human glioblastoma line. They observed a 

siRNA dose-dependent decrease in the target gene (as expected) but there was also an 

increase in the expression o f interferon-stimulated genes. Their studies showed that 

the actual RNAi mechanism is independent o f the interferon system.

The processing o f long dsRNA into siRNA by Dicer and the unwinding o f the siRNA 

duplexes in RISC to form an active complex has been shown to require ATP in

4



Chapter 1: General Introduction

Drosophila embryo lysates (Bernstein et al., 2001; Nykanen et al., 2001). Only 

siRNA with a 5' phosphate can cause RNAi in Drosophila, the addition o f phosphate 

to the 5' end requires ATP (Nykanen et al., 2001). ATP was not required for Dicer 

activity in mouse EC cells (Billy et al., 2001) or by recombinant human Dicer 

(Provost et al., 2002; Zhang et al., 2002). ATP has since been shown not to be 

required for mRNA cleavage but in Drosophila RISC is ‘turned over’ more rapidly in 

its presence. Therefore ATP either allows quicker product release or promotes a 

conformational change in RISC which allows it to bind to other mRNA molecules 

(Haley and Zamore, 2004).
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Long dsRNA >30bp

Dicer (RNase 
like enzyme)

siRNAs
(19bp)

RISC

dsRNA-
dependent

2 \  5 ’
oligoadenylate

proteinkinase synt^ tase
(PKR)

PKR-Pi 
(Active form)

2 \  5 ’
oligoadenylate

Phosphorylates
elF2a

Activates
RNaseL

M -  M -

ADP + Pi

Target mRNA

RISC seek s  out Cleaved mRNA 
other mRNA degraded by

molecules exo nucleases
Non-specific effects RNAi sequence-specific effects

Inhibition of 
protein synthesis

C leaves all 
mRNA

Figure 1.1. Overview of the mechanism of RNA interference. DsRNA (>30bp) 
when introduced into mammalian cells can follow two pathways. 1) Specific 
pathway- DsRNA is cleaved into smaller ~21 nucleotide fragments (siRNAs) by an 
RNase III enzyme Dicer. siRNA duplexes then act in conjunction with another 
endonuclease enzyme complex, the RNA-induced silencing complex (RISC) resulting 
in specific cleavage of the target RNA sequence. 2) Non-specific pathway- dsRNA 
(>30bp) activates two enzymes: PKR which phosphorylates translation initiation 
factor eIF2a, inhibiting protein synthesis; 2' 5' oligoadenylate synthetase synthesises a 
molecule that activates RNaseL, which targets all mRNAs for degradation.
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Chapter 1: General Introduction

1.1. l.a. miRNAs

Dicer does not only function as part o f the RNAi pathway, it is also involved in the 

production o f micro RNAs (miRNAs) (Figure 1.2, Table 1.1). These are ~21 nt RNAs 

that regulate gene expression (Hutvagner et al., 2001; Ketting et al., 2001). The main 

difference in the way siRNAs and miRNAs regulate their specific gene targets in 

metazoans is that introduction o f siRNAs results in the cleavage o f the target mRNA 

whereas most miRNAs inhibit RNA translation (Hutvagner et al., 2001; Ketting et a l , 

2001).

The homology o f a miRNA/siRNA to its target sequence determines its mode o f gene 

silencing, let-7 and lin-4 are two miRNAs discovered in C. elegans that are involved 

in regulating development. The let-7 miRNA does not completely match its target 

mRNA, preventing RISC cleavage o f the mRNA (Ketting et al., 2001) and instead 

inhibits let-7 by preventing mRNA translation. It was shown that the presence o f  

mismatches between lin-4 and its target RNA are essential for proper regulation (Ha 

et al., 1996).

In the case o f miRNAs that are exact matches to their target mRNA, siRNA-like 

cleavage occurs. A group o f miRNAs, the miR-196, found conserved in fish, frog and 

humans, are complementary to the 3'UTR o f the H O X  genes. Pairing between mi

ll 196a and the HOXB8 3' UTR is perfect (except for one G:U pairing) resulting in 

cleavage o f the HOXB8 mRNA in the presence mi-R196a (Yekta et a l , 2004).

miRNAs that may be involved in regulating early mammalian development have been 

discovered in mouse embryonic stem cells (mES) (Houbaviy et a l , 2003). Six 

miRNAs were found in mES cells cultured with and without feeders in presence of 

LIF but not in embryoid bodies formed from mES cells cultured for 14 days in 

suspension. Therefore it is predicted these miRNAs have a role in maintaining the 

pluripotency o f stem cells.

It has been estimated using, computer analysis, that there are 200-250 human 

miRNAs (Lim et a l , 2003a). Lu and colleagues looked at the expression patterns o f  

miRNAs and found the expression levels o f most miRNAs are reduced in human 

tumours when compared to normal tissue (Lu et a l , 2005). Also the pattern o f

7



Chapter 1: General Introduction

miRNA expression in tumours was shown to be related to the severity and origin of 

the tumour. Therefore the study showed the potential o f miRNA profiles for 

classification o f human cancers.

miRNAs siRNAs

-22  nucleotide (nt) RNAs

Can induce transcriptional silencing by DNA methylation

In mammalian cells and C. elegans are processed by a single Dicer

Synthesised from endogenous ~70nt 
transcripts that form hairpin structures.

Formed from dsRNA.

In Drosophila produced by Dcr-1 In Drosophila produced by Dcr-2

After processing miRNA is made up of 
two strands, one from each arm of the 
hairpin RNA.

Processing of dsRNA results in 
production of siRNAs of different 
sequences.

miRNA sequence usually only partially 
complementary to target RNA, often 
targets the 3' UTR.

siRNAs are normally homologous to the 
target mRNA sequence to which they 
bind.

Sequences o f miRNAs are generally 
conserved between species.

siRNAs show less conservation of 
sequence.

Most regulate gene expression by 
inhibiting mRNA translation.

Reduces gene expression of target gene 
by degradation o f mRNA.

Table 1.1. Comparison of the structures of miRNAs and siRNAs [Information 
taken from (He and Hannon, 2004; Hutvagner and Zamore, 2002; Lee et al., 2004; 
Lim et al., 2003b; Tomari and Zamore, 2005)].

miRNAs are transcribed as long primary transcripts (pri-miRNAs) which are then 

cleaved to shorter 70 nt stem loop precursors (pre-miRNAs) in the nucleus by RNase 

III enzyme Drosha in humans (Lee et al., 2003) (Figure 1.2). This process is thought 

to be conserved in animals as Drosha homologues have been found in C. elegans, D. 

melanogaster and mice (Filippov et al., 2000; Fortin et al., 2002). These pre-miRNAs 

are transported out o f the nucleus by Exportin 5 (Lund et al., 2004) and subsequently 

cleaved by a second RNase III, Dicer, in the cytoplasm into mature miRNAs (Lee et 

al., 2002).

8
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miRNA Gene

Transcription

Drosha

Pre-miRNAPri-miRNA 

Nucleus

Cytoplasm

dsRNA

miRNA duplex llllljjll 111 siRNA duplex

TRimr"1
 . J

RISC

T J lT r  ] Target 
mRNA

Translational repression mRNA cleavage

Figure 1.2. Mechanism by which miRNAs and siRNAs suppress gene expression.
miRNAs are transcribed as long primary transcripts (pri-miRNAs) that are 
subsequently cleaved by RNase III enzyme Drosha to 70 nt stem loop precursors (pre- 
miRNAs). Exportin 5 transports the pre-miRNAs to the cytoplasm where they are 
cleaved by a second RNase III enzyme Dicer into mature miRNAs. siRNA duplexes 
are formed from dsRNA by cleavage with Dicer. A single strand of the miRNA or 
siRNA is incorporated into RISC. The RISC:miRNA/siRNA complex then binds to its 
target sequence resulting in mRNA cleavage or translational repression. [Figure 
adapted from (He and Hannon, 2004).]
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Chapter 1: General Introduction

1.1.Lb. Dicer

Both pre-miRNAs and dsRNAs are processed by the RNase III enzyme Dicer into 

miRNAs and siRNA respectively. Dicer is a multidomain protein that contains an N- 

terminal DExH-box RNA helicase domain (exception Drosophila Dcr-1), a PAZ 

domain (exception Drosophila Dcr-2), two RNase III domains, one or two dsRNA 

binding domains (dsRBD) and a domain o f unknown function (Carmell and Hannon, 

2004). The PAZ (pinwheel-argonaute-zwille) domain is an RNA binding molecule 

and is also found in Argonaute proteins (see below).

There are two Dicers in Drosophila called Dicer-1 (Dcr-1) and Dicer-2 (Dcr-2) (Lee 

et al., 2004). Dcr-1 is involved in the cleavage o f pre-miRNAs and Dcr-2 for 

processing dsRNAs, although both are required in the RISC for siRNA mediated 

mRNA cleavage. The two Dicers have distinct roles in the formation o f siRNA:RISC. 

Dcr-2 and another protein R2D2 bind to the siRNA (Liu et al., 2003) forming the 

initiator complex (Figure 1.3). siRNA induced gene silencing cannot occur in the 

absence o f R2D2 as it is required for loading o f the siRNA:Dcr2 onto RISC. Dicer 

binds to the less stable end o f siRNA and R2D2 binds to the more stable siRNA end 

(Tomari et al., 2004). The binding o f R2D2 also requires the presence o f a 5' 

phosphate.

Alternatively Dcr-1 is not required for formation o f the initiator complex but helps 

form a stable intermediate o f the RISC assembly. Only Dcr-1 has a DExH domain and 

only Dcr-2 has a PAZ domain. Only the one Dicer (Dcr-1) is required for miRNA 

silencing. Dcr-1 associates with Loquacious (Loqs), a paralog o f R2D2; mutation of 

Loqs in Drosophila prevents the normal processing o f pre-miRNAs (Forstemann et 

al., 2005).

There are only single forms o f Dicer found in C. elegans, mice and humans. In C. 

elegans mutations in dcr-1 show that it has an important role in germ-line 

development (Knight and Bass, 2001). Ketting and colleagues showed that the 

phenotype seen in loss o f function mutations o f the dcr-1 gene in C. elegans was the 

same as that seen in knock-down o f the let-7 gene (Ketting et al., 2001). 

Subsequently they showed that Dcr-1 is involved in the processing o f ds let-7 RNA
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into the 21 nt active siRNA. RDE-4 protein interacts with Dcr-1 as well as members 

o f RISC including RDE-1. It has two copies o f the dsRNA binding motif (dsRBM) 

and functions to present the dsRNA for Dicer processing (Tabara et al., 2002). RDE-1 

does not appear to be involved in miRNA induced gene silencing.

It has been shown that Dicer is needed for normal development and stem cell 

maintenance in the mouse embryo (Bernstein et al., 2003). Dcr-1 deficient mice are 

not viable, embryos examined at embryonic day 7.5 failed to express the primitive 

streak marker, Brachyury and were morphologically abnormal (Bernstein et al.,

2003). A DCR-1 deficient mES cell line was produced by conditional gene targeting 

(Kanellopoulou et al., 2005). The cells were viable even though they were unable to 

process miRNAs or perform RNAi. The DCR-1 deficient mES cells formed embryoid 

bodies but did not show the normal expression patterns o f mES cell genes observed 

upon differentiation. For example levels o f Oct-4 were found to remain constant on 

the formation o f EB whereas normally Oct-4 is downregulated upon differentiation.

1.1.I.e. RISC

The RNA-induced silencing complex (RISC) is a multimeric protein that complexes 

with Dicer produced siRNAs/miRNAs and targets mRNA, resulting in cleavage o f the 

mRNA or inhibition o f translation. RISC contains Argonaute proteins and it was 

proposed that the presence o f different Argonaute proteins in RISC assist in 

specifying by which mechanism the siRNAs or miRNAs execute gene silencing 

(Okamura et al., 2004).

Argonaute proteins are a highly conserved family o f ~100kD proteins that have an N- 

terminal PAZ domain and a C-terminal PIWI domain (Carmell et al., 2002; Cerutti et 

al., 2000) (Table 1.2). The PAZ domain is an RNA binding module that recognises 

the 2 nt 3' overhangs characteristic o f siRNAs (Lingel et al., 2004). Part o f the human 

PIWI domain has been shown to be involved in protein-protein interactions between 

Argonaute and Dicer (Doi et al., 2003) possibly for enhanced siRNA transfer in 

RISC. The PIWI domain has structural homology with the endoribonuclease RNase 

H, RNase H cleaves the RNA strand o f a DNA-RNA hybrid (Parker et al., 2004). 

PIWI domains o f Argonaute proteins have been proposed to be the endonuclease
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subunit o f RISC sometimes referred to as ‘sheer’ (Liu et al., 2004; Parker et al.,

2004).

There are four characterised Argonaute proteins in Drosophila including Argonaute 1 

(A gol) and Argonaute 2 (Ago2) (Carmell et a l , 2002). Agol was shown to be 

specific for processing o f miRNA and is not required for siRNA induced gene 

silencing. Conversely Ago2 mutants are defective in siRNA silencing but process 

miRNAs as normal (Okamura et a l , 2004).

Other proteins found to be associated with Drosophila RISC include the vasa intronic 

gene (VIG) protein and the Drosophila homolog o f the fragile-X mental-retardation 

protein called dFXR (Ishizuka et a l , 2002) (also known as dFMRl). They both have 

RNA-binding domains but their function in RISC are undetermined (Caudy et a l , 

2002). Drosophila RISC has also been shown to contain tudor-staphylococcal 

nuclease (TSN).

In C. elegans the members o f the Argonaute family involved in gene silencing are 

RDE-1 (Tabara et a l , 1999), PPW-1, (Tijsterman et a l , 2002) Alg-1 and Alg-2 

(Grishok et a l , 2001). RDE-1 is required for siRNA induced gene silencing (Grishok 

et a l ,  2000) with Alg-1 and Alg-2 required for the production o f mature miRNAs 

(Grishok et a l,  2001).

Argonaute proteins in humans and mice include eIF2Cl (AGOl), eIF2C2 (AG02), 

eIF2C3 and eIF2C4 and were shown to interact with Dicer but only eIF2Cl was 

found to be essential for siRNA processing (Doi et a l ,  2003; Liu et a l ,  2004).

In order for an siRNA to induce RNAi it must have a 5' phosphate (Schwarz et a l ,  

2002). It was also predicted that a single strand o f siRNA duplex is incorporated into 

RISC. Transfection o f antisense strands o f siRNA of same sequence results in gene 

specific knock-down using the same pathway as RNAi, although this was shown to be 

> 10-fold less effective than using siRNA duplexes. Khvorova and colleagues looked 

at the internal stability o f siRNAs and miRNA and suggested that this is critical in 

deciding whether the sense or the antisense strand is retained by RISC (Khvorova et 

a l ,  2003). They found that functional siRNAs and miRNAs had enhanced flexibility
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at the antisense 5' terminus and an internal stability profile that is generally low but 

especially within 9-14 bp region (starting from 5' antisense end) o f the miRNA/siRNA 

duplex. The authors suggest the low stability in the centre o f the region homologous 

to the target mRNA may allow release o f the cleaved mRNA quickly from the RISC 

complex. This allows the active RISC to seek new mRNA target or it may enable 

RISC to function properly by allowing the correct conformation o f the complex to 

form.

Schwarz and colleagues also predicted that only one strand o f the siRNA duplex is 

incorporated into RISC and the other strand is degraded (Schwarz et al., 2003). The 

strand remaining part o f the active RISC is the strand with the lowest binding energy 

to its complement at its 5' end. They concluded that when designing shRNAs a 

mismatch or G:U base pair should be placed at the 5' o f the antisense strand. 

Promoting retention o f the correct strand in the active RISC and it also reduces the 

chance o f non-sequence specific off-target effects to the shRNA.

In human cells RNAi occurs in the cytoplasm but not in the nucleus although, during 

the process o f mRNA export, RNAi can occur (Zeng and Cullen, 2002). Subsequently 

Argonaute 2/RISC complexes were found to be localised to cytoplasmic bodies in 

human embryonal kidney 293 cells (Sen and Blau, 2005). These cytoplasmic bodies 

had previously been shown to be the site o f mRNA decay, containing exonucleases 

and decapping enzymes (Cougot et al., 2004). Therefore localisation o f the 

AG02/RISC to these cytoplasmic bodies should allow rapid degradation o f mRNAs 

that have been cleaved by RISC. AGOl was also shown to be localised to the 

cytoplasmic body.
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RISC LOADING 
COMPLEX (RLC)

Dcr-2 R2D2
Binding of R2D requires 
a 5‘ phosphate and it 
binds the more stable 
end of siRNA Dcr-2 
binds the less stable 
end.

Dcr-2:R2D: :siRNA 

complex associates with 
Ago2 in holo-RISCII Ago2

holo-RISC

siRNA duplex unwinds 
from the Dcr-2 end and 
is transferred from Dcr- 
2:R2D2 to Ago2

siRNA passenger strand 
is destroyed

Dcr-2: remains
associated with RISC. 
This complex binds to 
and cleaves target 
mRNA

Figure 1.3. Assembly of siRNAs into RISC in Drosophila. siRNA is bound by 
R2D2 at its more stable end and Dcr-2 at its less stable end. The Dcr-2:R2D2:siRNA 
complex associates with other proteins to form the RISC loading complex. This 
complex includes the vasa intronic gene (VIG) protein, Drosophila homolog of the 
fragile-X mental-retardation protein called dFXR (also know as dFMRl) and TSN 
(tudor-staphylococcal nuclease) whose functions are unknown. The siRNA unwinds 
in an ATP-dependent process and one strand associates with the PAZ domain o f Ago- 
2. The other strand is destroyed. The Dcr:R2D2 remains associated with the RISC 
complex that is now ready to cleave its target mRNA. [Figure adapted from Tomari 
and Zamore (Tomari and Zamore, 2005)].
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Organism miRNA processing Dicer RISC Loading complex Argonaute proteins

Drosophila Drosha - cleaves pri- 
miRNA to pre-miRNA in 
nucleus.
Pasha - assists Drosha 
and is a dsRNA binding 
protein (dsRBD) (Denli
et al., 2004).

Dcr-1 - 
cleaves pre- 
miRNAs to 
miRNAs 
Dcr-2 - 
cleaves 
dsRNA to 
siRNAs (Lee 
etal., 2004)

>2 - associates with Dcr-2 and 
siRNA for loading onto RISC (Liu et
al, 2003).
- without R2D2 Dicer produced siRNAs 
are not loaded onto RISC.

(Loqs) - associates with
Dcr-1.
- required for normal pre-miRNA 
processing (Forstemann et al., 2005).

Argonautel (Agol) - involved in miRNAs biognesis, 
(Okamura et al., 2004).
Argonaute 2 (Ago2) - required for siRNA induced 
gene silencing (Okamura et al., 2004).
Aubergine (Aub) (Kennerdell etal., 2002) and Piwi 
are also involved in RNA silencing (Carmell et al., 
2002).

C. elegans Drosha (DRSH-1) 
Pasha (Pashl) (Denli et
al., 2004).

Dcr-1 - only required for siRNA 
processing
- interacts with dsRNA, Dcr-1, DExH- 
box helicase (DRH-1) and RDE-1 
(Tabara et al., 2002).

RDE-1 - initiates RNAi in response to dsRNAs 
(Grishok et al., 2000).
PPW-1 (= homolog of RDE-1) - required for efficient 
RNAi in the germline (Tijsterman et al., 2002).
Alg-1 and Alg-2 (=homologs of RDE-1) - required for 
the accumulation of mature miRNAs (Grishok et al., 
2001).

Mice Drosha (Fortin et al., 
2002).

Dcr-1
(Bernstein et 
al., 2003)

eIF2Cl, eIF2C2, eIF2C3, elF2C4 (AGO 1-4) all 
associate with Dicer although only eIF2Cl was found 
to be essential for siRNA mediated gene silencing 
(Doi etal., 2003).
AG02 - must be present for mRNA cleavage by RISC 
(Liu etal, 2004).

Humans Drosha (Lee et al., 
2003).
DGCR8 -  is a homolog 
of pasha (Gregory et al., 
2004; Han et al., 2004).

Dicer
(Hutvagner et 
al., 2001)

eIF2Cl/AG01 (Martinez et al., 2002) 
eIF2C2/AG02 (Meister et al., 2004) 
eIF2C3, eIF2C4 (Doi et al., 2003)
All 4 proteins associate with RISC. The presence of 
AG02 was shown to be essential for RNAi induced 
mRNA cleavage (Liu et al., 2004).

—  I - -  ■  ■ ~  — I    ■ — —  -  ■ " - - 1 ■■ I — —  B  . . = = ^ = = u

Table 1.2. Proteins involved in pri-miRNA and dsRNA processing to miRNAs and siRNAs respectively and proteins known to associate with RISC in 
C. elegans, Drosophila, mice and humans.
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1,1.2. Previous Studies

Since RNAi was discovered in C. elegans (Fire et al., 1998) it has been utilised to 

study gene expression in many different species including Drosophila, mouse and 

human cells using dsRNA, shRNAs and siRNAs produced in different ways (Table 

1.3). Transfection o f siRNA duplexes or dsRNA only allows transient knock-down of 

gene expression (Holen et al., 2002; Kennerdell and Carthew, 2000; Yang et al.,

2001). Stable expression o f dsRNA hairpins in cells enables expression o f the gene of 

interest to be suppressed for longer. Several vectors have been designed that either 

express hairpin dsRNAs or hairpin siRNAs (shRNA).

RNAi inducer Method of production Reference
dsRNA T7 polymerase produced. (Yang et al., 2001)

Vectors expressing sense and 
antisense RNA under tetracycline 
control.

(Wang et al., 2003)

Bacteria expressing dsRNA fed to 
C. elegans.

(Kamath et al., 2001) 
(Timmons et al., 2001)

siRNAs Chemically synthesised. (Harborth et al., 2001) (Hay et 
al., 2004)

T7 polymerase produced. (Donze and Picard, 2002)
Recombinant Dicer produced 
pools from dsRNA.

(Kawasaki et al., 2003)

Vectors expressing single sense 
and antisense siRNAs each using a 
U6 promoter.

(Miyagishi and Taira, 2002)

shRNA RNA III polymerase promoter 
(H1/U6) containing vectors.

(Brummelkamp et al., 2002; 
Paul et al., 2002; Sui et al., 
2002; Velkey and O'Shea, 
2003)

RNA II polymerase promoter of 
U 1 snRNA containing vector.

(Denti et al., 2004)

human 7S K promoter (also a 
RNA polymerase III promoter) 
containing vector.

(Koper-Emde et al., 2004)

retroviral vectors. (Barton and Medzhitov, 2002; 
Devroe and Silver, 2002)

lentiviral-based vectors. (An et al., 2003; Rubinson et 
al., 2003; Zaehres et al., 
2005).

Table 1.3. Different methods used to induce RNAi in cells and organisms.
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1.1.2.a. RNAi in non-mammalian cells

The discovery o f RNAi in metazoans was made during a study by Fire and colleagues 

(Fire et al., 1998). They noted that introduction o f dsRNA (between 300 and 1,030 

base pairs) into C. elegans reduced the expression o f genes more effectively than 

either o f the sense or antisense strand o f RNA. It was later found that these dsRNAs 

were processed to shorter RNA duplexes o f about 25 nt in Drosophila (Hammond et 

al., 2000). Elbashir and colleagues showed that chemically synthesised 21 and 22 nt 

siRNA duplexes reduced gene expression specifically in Drosophila lysate (Elbashir 

e ta l ,  2001b).

siRNA duplexes were designed to be 21 nt long as studies on processing o f dsRNA 

into siRNA duplexes in Drosophila found 21 nt siRNAs to be the most common 

(45%), with the next most abundant were 22 nt long (28%) (Elbashir et al., 2001b). 

siRNA duplexes have also been shown to specifically knock-down gene expression in 

C. elegans (Caplen et al., 2001) and mammalian cells (Elbashir et al., 2001a; 

Harborth et al., 2001).

In Drosophila, integration o f a construct that transcribed a hairpin-looped dsRNA 

resulted in specific gene silencing (Piccin et al., 2001). This construct contained two 

inverted repeats o f part o f the target gene sequence separated by a 330bp spacer 

sequence. The spacer was included to increase the efficiency o f cloning in 

Escherichia coli. Spacers up to a third o f the inverted repeat length increased cloning 

efficiency in E. coli and did not reduce the capacity o f the dsRNA to perform RNAi.

Paddison and colleagues looked at RNAi induced gene silencing in Drosophila S2 

cells using short hairpin RNAs (shRNAs) (Paddison et al., 2002). They found using 

different loop sizes (from 4 to 23 bases) did not affect the silencing efficiency o f the 

target gene. They also showed these shRNAs could knock-down gene expression in 

human embryonic kidney cells. They used 29 nt shRNA duplexes although it was 

noted that duplexes o f 25 nt could be used with little loss o f RNAi. T7 RNA 

polymerase was used to synthesise shRNAs in vitro.

Fraser and colleagues used RNAi to study the function o f uncharacterised genes in C. 

elegans chromosome I by feeding worms bacteria expressing dsRNA, each targeting a
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single gene (Fraser et a l ,  2000). From their study they were able to determine the 

function o f 13.9% o f the genes investigated.

A larger library was subsequently constructed that knocked down -86% of C. 

elegans’ 19,427 predicted genes (Kamath and Ahringer, 2003). These bacteria were 

fed to C. elegans and phenotypes o f the nematodes were studied. 1,722 dsRNAs that 

caused sterility, embryonic or larval death, slow growth or defects by RNAi gene 

silencing were identified. Confirmation o f the effectiveness o f this RNAi screen was 

shown by comparing the RNAi produced phenotypes to known loss o f function 

models and finding that they corresponded in 92% of cases.

Other studies utilising the same library identified genes that protect C. elegans from 

mutations (Pothof et a l,  2003) or genes involved in apoptosis (Lettre et al., 2004). 

The first o f the aforementioned studies identified 61 genes that were predicted to have 

roles in control o f cell cycle, DNA repair, replication and chromatin organisation. 

82% of the genes identified have human orthologs and it was suggested that some o f  

these genes are new oncogene candidates. In the second study 21 genes were 

identified that, when knocked down by RNAi, increased germ cell death.

1.1.2.b. RNAi in mammalian cells

The use o f RNAi in mammalian cells was originally thought to be limited to 

undifferentiated embryonic stem (ES) cells, embryonal carcinoma (EC) cells, early 

embryos and oocytes that do not have an interferon response (Billy et al., 2001; 

Caplen et al., 2000; Svoboda et al., 2000; Wianny and Zemicka-Goetz, 2000). 

Specific reduction in gene expression was observed when dsRNA targeting Mos and 

the tissue plasminogen activator (tPA) was injected into mouse ooctyes (Svoboda et 

al., 2000). In another study injection o f dsRNA reduced the expression o f a 

constitutively expressed green fluorescent protein (MmGFP) in mouse embryos 

(Wianny and Zemicka-Goetz, 2000). After injection o f MmGFP dsRNA into 

transgenic blastocysts a reduction in GFP was observed that remained up until 6.5 

days postimplantation.

In later studies hairpin dsRNA or hairpin RNA expressing constructs were injected 

into mouse oocytes and preimplantation embryos and were shown to be as effective at
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induction o f RNAi as dsRNA (Svoboda et al., 2001). The vector constructed 

contained an inverted repeat o f 535 bp o f the target gene with a spacer sequence. 

Inclusion o f the short spacer (20-50 bp) between the repeat greatly increased inverted- 

repeat cloning efficiency.

Induction o f RNAi in mouse embryonal carcinoma cell lines and mES cells grown in 

culture using dsRNA has also been shown. Billy and colleagues saw a reduction 

(between 60-90%) in expression o f reporter genes encoding GFP and P-galactosidase 

by transfection o f 700bp dsRNA (Billy et al., 2001). Also a specific reduction in 

expression o f the target gene using hairpin dsRNA has been observed in mES cells 

(Yang et al., 2001). GFP was targeted and a vector was constructed expressing an 

inverted repeat o f the GFP gene (547 nt). Then either the hairpin dsRNA expressing 

vector or dsRNA was transfected into mES cells. A specific reduction in GFP was 

observed in transfected cells but was found to decrease over time. This was probably 

due to increase in mES cell number and subsequent reduction in the amount of 

dsRNA per cell.

Transfection o f dsRNA into somatic mammalian cells was shown to result in non

specific mRNA degradation or no response at all (Caplen et al., 2000). Discovery of 

siRNAs as intermediates in RNAi mechanism (Elbashir et al., 2001a; Elbashir et al., 

2001b) that do not trigger an interferon response led to the development o f RNAi 

techniques for gene expression studies in mammalian cell culture (Brummelkamp et 

al., 2002; Caplen et al., 2001; Devroe and Silver, 2002; Leirdal and Sioud, 2002; Yu 

et al., 2002).

The reduction in gene expression by transfection o f siRNA duplexes in mammalian 

cell lines including human HeLa cells, SV40-transformed rat fibroblasts and mouse 

3T3 cells were studied (Harborth et al., 2001). Many genes were used as targets for 

RNAi including seven that had been previously characterised using other methods. 

Reduction in gene expression using RNAi confirmed the findings o f previous studies 

with regard to the function o f these genes.

Vectors that express short hairpin (sh) RNA duplexes targeted to a gene o f interest in 

mammalian cells have been constructed, many utilising the polymerase III promoters
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HI, U6 small nuclear RNA (snRNA) and 7S K RNA gene promoter (Brummelkamp 

et al., 2002; Koper-Emde et a l , 2004; Sui et a l , 2002; Tang et al., 2004). This type of 

promoter was chosen because the RNA it synthesises has no polyadenosine tail, a 

definite start site and termination signal o f transcription consisting o f four or five 

consecutive thymidines. Also the cleavage o f this RNA occurs after the second 

uridine when reaching the termination site resulting in the production o f shRNAs that 

have the characteristic overhanging ends as observed in siRNAs (Elbashir et a l , 

2001b). Brummelkamp and colleagues successfully knocked-down the expression o f  

more than ten genes by electroporation o f such a vector into MCF-7 cells (human 

breast cancer cell line) (Brummelkamp et a l , 2002). shRNAs were produced from an 

inverted repeat o f 19 nt o f target gene transcript separated by a ‘spacer’ sequence (5-9 

nt) that forms the hairpin loop under the control o f the HI RNA polymerase III 

promoter. The knockdown observed by transfection o f the construct expressing 

shRNA was comparable to that o f the corresponding chemically synthesised siRNA.

The mouse RNA polymerase III U6 promoter was used to knockdown the reporter 

gene GFP as well as the endogenously expressed Lamin A/C (.LMNA) and cyclin 

dependent kinase 2 (CDK2) in 4 cell lines (HeLa, HI299, C-33A, U-2 OS) (Sui et a l ,  

2002). An inverted repeat matching 21 nt o f the target gene with a 6 nt spacer was 

cloned into a vector containing the U6 promoter. Transfection o f the vectors resulted 

in knockdown o f the target proteins. LMNA and CDK-2 negative cells made up 

between 0.2% and 5.2% o f the control cells compared to between 86.9 and 95.2% in 

shRNA plasmid transfected cells.

Different siRNAs/shRNAs targeting the same gene have been shown to have different 

efficiencies at knocking down the target gene (Harborth et a l ,  2001; Hemann et a l ,  

2003; Holen et a l ,  2002). This could possibly be due to the accessibility o f target site 

within the mRNA to allow base pairing with the siRNA (Scherr et a l ,  2003) or due to 

the ‘wrong strand’ (sense strand) being loaded into RISC. It was found that the 

internal stability o f siRNAs and miRNA is critical in deciding whether the sense or 

the antisense strand is retained by RISC (Khvorova et a l ,  2003).

Targeting o f the Trp53 tumour suppressor gene encoding p53 in hematopoietic stem 

cells using three different shRNAs resulted in distinct in vivo phenotypes when these
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cells were transplanted into lethal irradiated recipient mice (Hemann et al., 2003). The 

level and severity o f the tumour correlated with the amount o f p53 knockdown 

produced by the individual shRNA by RNAi. The amount o f knockdown also 

correlated with the previously identified levels in vitro.

Retroviral vectors allow the delivery o f  shRNA expression cassettes into cells that are 

difficult to transfect, such as primary cells. Also, as the retrovirus integrates into the 

host genome, it allows stable cell lines expressing the shRNA of interest to be 

produced. Studies have demonstrated the potential o f retroviral-based delivery o f  

shRNA. In one study a retroviral vector was designed to express shRNA from the 

human HI promoter. The shRNA targeted p53 and was used to infect HEK 293T cells 

and primary human fibroblasts inducing specific knockdown of p53 (Barton and 

Medzhitov, 2002). In a second study a retroviral vector was constructed this time with 

the expression cassette containing U6 promoter and the shRNA (Devroe and Silver,

2002). This vector was also shown to induce sequence specific knockdown by RNAi.

Lentiviral vectors have also been designed to express shRNA. The advantage o f these 

vectors is that they infect cells at high efficiency and will also infect non-dividing 

cells. An and colleagues cloned the human U6 polymerase III transcriptional unit into 

a self-inactivating lentiviral vector that expresses GFP (An et al., 2003). They cloned 

shRNA to the humanized firefly luciferase to test the vector by cotransfecting it 

together with a vector expressing the Luciferase into human 293T cells. Their vector 

was found to reduce the firefly Luciferase 10-fold as compared to the control cells.

Zaehres and colleagues knocked down a GFP transgene and the endogenous genes of 

Nanog and Oct-4 using a lentiviral vector in hES cells (Zaehres et al., 2005). RNAi 

induced knockdown of Nanog resulted in a reduction in the expression o f Oct-4. 

Likewise there was a reduction in Nanog when Oct-4 was knocked down. This 

suggested Nanog and Oct-4 are co-regulated in hES cells.

1.1.3. Present and potential applications of RNAi

Advantages o f using RNAi over current techniques for gene silencing are that it is 

more reliable, works more often and reduces the level o f gene expression of the target
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to lower levels than seen with antisense techniques, (Caplen et al., 2001). RNAi has 

been used for genome-wide study o f gene function (Fraser et a l,  2000), identifying 

cancer related genes (Williams et a l ,  2003) and for the production o f transgenic mice 

(Carmell et a l ,  2003). The potential o f RNAi to treat viral infection (Capodici et a l,  

2002; Gitlin et a l,  2002; McCaffrey et a l,  2003), heart disease (Soutschek et a l,  

2004) and improve cancer therapy (Yague et a l ,  2004) has also been shown.

1.1.3.a. RNAi Libraries

The development o f siRNA and shRNA expression libraries has allowed large scale 

gene specific silencing to determine the functions o f genes. There are three types of 

screening procedures used with RNAi libraries at present (Silva et al., 2004). The first 

is transfection o f siRNAs or shRNA expressing plasmids into cells seeded in 

multiwell plates. Each well is transfected with one siRNA/shRNAs targeting a single 

mRNA. Plates are screened for cells increasing or decreasing the expression o f a 

reporter gene, for example GFP, by observing cells or conducting biochemical assays 

on the cells. The second way that RNAi libraries may be used is that pools o f vectors 

expressing dsRNA may be transfected into cells followed by isolation of individual 

colonies. The phenotypes o f these colonies can be scored, for example for a change in 

morphology. Alternatively ‘reverse transfections’ can be performed. Cells are seeded 

onto a glass slide and then transfection mix containing different siRNAs/shRNAs are 

spotted onto the cells in defined places. Selection is applied to the cells and the 

resulting colonies are scored. The third screening procedure used with RNAi libraries 

is transfection o f the whole library into cells and selection o f the cells. Each shRNA 

transfected contains a unique DNA barcode that can be ‘read’ by hybridising the pool 

o f isolated shRNAs after screening to an oligonucleotide microarray that has all o f the 

unique sequences spotted on it. The profile o f the shRNAs abundance can be 

compared to controls to identify genes involved in a particular pathway or process. 

Examples o f the way in which these different libraries have been used will be 

described below.

A library was constructed that contained bacteria expressing dsRNAs that target 

~86% of C. elegans ’ 19,427 predicted genes (Kamath and Ahringer, 2003). These 

bacteria were fed to C. elegans and phenotypes o f the nematodes were studied. 1,722 

dsRNAs that caused sterility, embryonic or larval death, slow growth or defects by
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RNAi gene silencing were identified. Confirmation o f the effectiveness o f this RNAi 

screen was shown by comparing the RNAi produced phenotypes to known loss of 

function models and finding that they corresponded in 92% of cases.

Paddison and colleagues generated a shRNA expression library targeting 9,610 human 

and 5,563 mouse genes (Paddison et al., 2004). Vector hairpin design included a 27 nt 

U6 leader sequence followed by 29bp o f dsRNA with a 4 nt loop. The library can 

either be used by genetic selection or for screening. Selections conferring growth 

advantage on cells can be performed after transfection o f pooled shRNAs. Genetic 

screening, for example for cell death, is labour intensive and time consuming, as the 

cells are seeded into 96-well plates, with each well transfected with an individual 

construct. Therefore a ‘DNA bar coding strategy’ was used. A unique 60 nt sequence 

was included in each shRNA vector. The relative levels o f shRNAs were determined 

by hybridisation to a microarray containing 60 nt oligonucleotides each 

complementary to an individual shRNA vector.

In another study a shRNA retroviral vector library was constructed targeting 7,914 

different human genes with 3 different shRNAs for each gene (Bems et a l , 2004). 

The library included shRNAs against genes involved in regulation o f transcription, 

cell cycle signalling as well as those genes predicted to be involved in disease. The 

library was used to study the p53 pathway and identified five genes whose 

suppression resulted in resistance o f cells to p53 arrest.

In this study a temperature-sensitive human BJ fibroblast cell line was constructed 

that proliferated at 32°C but upon shift to 39°C cells stopped dividing. This was due 

to the inactivation o f a temperature-sensitive SV40 large T antigen so that it could not 

bind and repress p53 and retinoblastoma protein. It was established that this 

proliferation arrest was due to p53. This cell line was then used to identify 

components o f the p53 pathway as cell lines that continue to proliferate after the 

temperature shift must have reduced expression o f p53. Cells cultured at 32°C were 

infected with the retroviral shRNA library and then after two days cells were shifted 

to 39°C. Proliferating colonies were picked and the shRNA insert in each was 

identified by PCR o f genomic DNA extracted from cells followed by sequencing. Six 

genes were identified that prevent p53- dependent growth arrest, including p53, using
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this method. In the paper a ‘siRNA bar-code screen’ is also described, as a quicker 

method o f screening shRNA vector libraries. This method uses the unique 19 nt target 

sequence that is present in each hairpin as a ‘molecular bar code’ to measure the 

relative abundances o f shRNAs in two population o f shRNA infected cells using 

microarray analysis.

1.1.3.b. Generation o f  mouse models

Studies have shown that RNAi technology can be used to generate transgenic mice 

and that RNAi can be transmitted through the mouse germline. In one example a 

vector was constructed that expresses hairpin dsRNA targeting the N eill, which is 

involved in DNA repair (Carmell et al., 2003). The vector was electroporated into 

mES cells and absence o f the N eill protein in stable cells was then confirmed by 

Western Blotting. Two o f these cell lines were injected into blastocysts to produce 

chimeras. Then these were out-crossed and silencing of Neill was confirmed by 

studying RNA and protein levels. The study concluded that germline transgenic mice 

can be produced from stable integration o f a shRNA expressing vector into mES cells. 

In another study a lentivirus based vector expressing shRNAs was used to make 

transgenic and chimeric mice (Rubinson et a l ,  2003).

In another study a vector expressing shRNA from a HI polymerase promoter 

targeting RasGAP was electropored into mES cells (Kunath et al., 2003). The vector 

also had neomycin resistance and 12 drug resistant ES cell lines were established. 

Protein levels, analysed by Western blotting, showed a significant reduction in 

RasGAP in 11 cell lines and only a slight reduction in the other cell line. Embryos 

were produced from 4 o f these ES cell lines, including the line with only a slight 

reduction in RasGAP, using the tetraploid aggregation method. Embryos were 

dissected at embryonic day 9.5. It was found that embryos derived from the ES cell 

line with only a slight decrease in RasGAP expression were the same as the wildtype. 

Embryos produced from the three ES cell lines that had significantly reduced RasGAP 

had phenotypes similar to that o f the null phenotype.

1J.3.C.  Treatment o f  diseases and viral infections

In the future it may be possible to use RNAi for treatment o f human diseases in vivo 

by knock-down o f gene expression o f a mutated gene that produces a disease causing
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gene product (Pomerantz, 2002). RNAi may also be used for treatment o f viral 

infections. Capodici and colleagues used siRNA duplexes to inhibit HIV-1 infection, 

and found RNAi can target two points in the viral life cycle (Capodici et al., 2002). 

These preliminary results show that RNAi has the potential for investigating and 

discovering new treatments for HIV-1 infection.

The use o f RNAi for treatment o f the hepatitis B virus was shown in mice (McCaffrey 

et a l , 2003). A vector expressing shRNAs targeting hepatitis B mRNAs was 

transfected into immunocompetent and immunodeficient mice. A reduction in 

hepatitis B viral RNA and DNA was seen in the hepatitis B infected mice in the 

presence o f the shRNA.

The potential o f using cholesterol conjugated siRNAs for the treatment o f coronary 

artery disease was demonstrated (Soutschek et al., 2004). Apolipoprotein B (ApoB), a 

protein required for the formation o f low density lipoproteins (LDL) in metabolism of 

cholesterol was targeted. High levels o f ApoB, LDL and cholesterol result in an 

increased risk o f coronary artery disease (CAD). Patients with familial 

hypercholesterolaemia (FH) were shown to have an increase in atherosclerosis and 

risk o f cardiac mortality due to increased levels o f LDL and cholesterol. Soutschek et 

al. identified five siRNAs from a screen o f 84 that reduced mRNA and protein levels 

o f ApoB by greater than 70%. These chemically synthesised siRNAs contained a 

partial phosphorothioate backbone and 2'-0-methyl sugar modifications on the sense 

and antisense strands. The modified siRNAs were shown to be more resistant to 

exonucleases and endonucleases. Cholesterol was conjugated to the 3' end o f the sense 

strand that was shown to increase the inhibition o f the siRNA. There was found to be 

a reduction in ApoB mRNA levels by 50% in the liver and by 70% in the jejunum 

(part o f the small intestine) when the ApoB siRNAs were injected into mice. This led 

to a reduction in the levels o f cholesterol in the blood and the reduction seen was 

comparable to levels observed in ApoB knockout mice. Cholesterol containing 

siRNAs were shown to be more stable that non-conjugated siRNAs and were 

biologically active in vivo unlike unconjugated siRNAs. Therefore the potential of  

apoB siRNAs for the treatment o f CAD was demonstrated.

25



Chapter 1: General Introduction

1.1.3.d. Cancer Theravv

The possibility o f using RNAi to make multi-drug resistant cancer cells sensitive to 

chemotherapy again was investigated (Yague et al., 2004). The mdrl gene expresses 

P-glycoprotein that is an active transporter and acts to efflux drugs from cells. 

Overexpression o f P-protein in cancer cells therefore reduces the toxicity o f the 

cancer drugs such as doxorubicin. In this study a shRNA expressing plasmid targeting 

mdrl was stably integrated into doxorubicin-resistant leukaemia cells. They found 

that knockdown o f MDR1 by RNAi restored the sensitivity o f these cells to 

doxorubicin.

Knockdown of c-Myc in MCF-7 cells (breast cancer cell line) by transfection o f myc 

shRNA expression vectors, decreased the growth rate o f cells (Wang et al., 2005). 

MCF-7 cells that had been transfected with either c-myc shRNA or control vectors 

were injected into nude mice. The mice were studied for the presence o f tumours. A 

reduction in c-myc by RNAi resulted in a significant reduction in tumours compared 

to control mice. Therefore c-Myc was highlighted as a therapeutic target for the 

treatment o f breast cancer.

1.2. Murine Embryonic Stem ceils
A stem cell is defined as a cell that has the ability for self-renewal in an 

undifferentiated state and can also differentiate into one or more cell types. There are 

three types o f stem cells that are derived from early mouse embryos; embryonic stem 

(ES) cells (Evans and Kaufman, 1981; Martin, 1981), trophoblast stem cells (Tanaka 

et al., 1998) and extraembryonic endoderm cells (Kunath et al., 2005).

Mouse ES (mES) cells are obtained from developing explanted blastocysts (Evans and 

Kaufman, 1981; Martin, 1981). Brook and Gardner (Brook and Gardner, 1997) found 

the primitive ectoderm or epiblast to be the only source o f ES progenitor cells in the 

late blastocyst. When cultured on feeder layers o f mitomycin C treated mouse 

embryonic or STO fibroblast cells or in the presence o f leukaemia inhibitory factor 

(LIF) (Nichols et al., 1990) mES cells remain pluripotent and retain the ability to 

proliferate indefinitely without differentiation (Keller, 1995), maintaining a diploid 

karyotype. This process is called self-renewal and happens via symmetrical cell
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division (Chambers and Smith, 2004). When mES cells are cultured in suspension in 

the absence o f feeder layers and LIF they aggregate to form embryoid bodies which 

subsequently differentiate, forming endoderm, mesoderm and ectoderm. The 

differentiation o f these mES cells has been shown to follow similar patterns of 

development in vitro to development in vivo (Desbaillets et a l , 2000). 

Undifferentiated mES cells retain their developmental identity and can be introduced 

into a host blastocyst and contribute to the germline o f the resultant animals resulting 

in the production o f chimeric animals (Bradley et a l , 1984).

Therefore mES cells are ideal for studying gene expression in early mouse 

development. Increased understanding o f the pathways involved in the differentiation 

of ES down different lineages allows for the production of specialised cells from mES 

cells. These cells can be used for research purposes to understand the role o f genes in 

development and disease. Also dissection o f the differentiation pathways may 

eventually allow production o f an unlimited supply o f cells for use in medicine.

1.2.1. mES cell self-renewal

Pluripotency o f mES cells is maintained by three pathways the effectors being the 

leukaemia inhibitory factor (LIF), bone morphogenetic proteins (BMPs) and Wnt 

(Figure 1.4). LIF is a cytokine which acts by binding to the LIF receptor (LIFR), a 

transmembrane receptor. LIFR dimerises with gpl30, a signal transducing receptor. 

This leads to the phosphorylation o f the Janus-associated tyrosine kinases (JAK) and 

activation o f signal transducer and activator o f transcription 3 (STAT3) (Humphrey et 

al., 2004). STAT3 proteins upon phosphorylation form dimers that then translocate to 

the nucleus leading to the repression o f genes that commit cells to mesodermal and 

endodermal lineages (Niwa et a l , 1998; Ying et a l , 2003). Myc has recently been 

shown to be one o f the targets o f STAT3 involved in maintaining mES pluripotency 

(Cartwright et a l , 2005). Upon differentiation o f mES cells Myc mRNA levels were 

shown to decrease. The activation o f STAT3 maintains the pluripotency o f mES cells 

but self-renewal o f hES cells is not LIF/STAT3 dependent (Humphrey et al., 2004).

Sato and colleagues suggested that Wnt activation is involved in maintaining the 

pluripotency o f mES cells (Sato et al., 2004). This pathway is followed when Wnt 

protein binds to the cell surface Frizzled receptor. The downstream signalling results
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in inactivation o f glycogen synthase kinase 3 (GSK3) leading to the accumulation of  

nuclear P-catenin that in turn induces transcription o f Wnt target genes. The 

expression levels o f Nanog are maintained by the Wnt pathway. Aubert and 

colleagues studied the genes involved in neural differentiation o f mES cells (Aubert et 

a l , 2002). They found the Wnt antagonist secreted ffizzled-related protein-2 (Sfrp2) 

to be a positive modulator o f neural differentiation. Inhibition o f Wnt signalling 

results in mES cell differentiation down the neural lineage.

BMPs signal via the Smad transcription factors, receptor regulated SMADs 1, 5 and 8 

are phosphorylated by the BMP receptor complex and then interact with SMAD4 

resulting in translocation o f the complex to the nucleus. A major target o f the 

SMADs are the inhibitor o f differentiation (Id) genes (Ying et al., 2003). Id 

expression was shown to prevent differentiation to neural lineages. Smad4 expression 

promotes mesoderm formation and represses the formation o f neuroectoderm (Zhao,

2003). Carpenter and Zemicka-Goetz showed that knockdown o f Smad4 in EC cells 

by RNAi resulted in their differentiation down the neuroectoderm lineage (Carpenter 

and Zemicka-Goetz, 2004). In order for self-renewal LIF is required together with 

BMP, when only BMP is present cells differentiate to non-neuronal cell lineages 

(Ying et al., 2003). When only LIF is present cells differentiate down neuronal cell 

lineages. BMP ‘ES cell self-renewal signalling’ is mediated by inhibition o f  

extracellular receptor kinase (ERK) and p38 mitogen-activated protein kinases 

(MAPK) pathways (Qi et al., 2004).

Paling and colleagues found that LIF induces phosphoinositide 3-kinase (PI3K) and 

that it is also involved in self-renewal o f mES cells (Paling et al., 2004). Inhibition o f  

PI3K led to a decrease in the number o f undifferentiated colonies in the presence o f  

LIF as shown by alkaline phosphatase staining. The expression levels o f ERKs were 

found to be increased by inhibition o f PI3K whereas there was no observed difference 

in expression o f Oct-4 or St at3. Inhibition o f ERK reverses the effect o f PI3K 

inhibitor on mES cell self-renewal confirming that it also has a role in self-renewal o f  

mES cells.
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LIF

I
Binds to LIFR that then 
dimerises with gp130

I
Activates JAK that 
phosphorylates STAT3

I
STAT3 dimerises and 
translocates to the nucleus

BMP

I
SMADs 1 , 5 & 8 a r e  
phosphorylated

I
Interact with SMAD4 
results in translocation 
of the complex to the 
nucleus

I
SMAD targets Id genes

WNT

I
Binds to Frizzled 
receptor

I
Leads to inactivation of 
GSK3 resulting in 
accumulation of nuclear 
p-catenin

I
Induces transcription 
of Wnt target genes

I H I
Represses genes that Prevents differentiation Prevents differentiation
commit cells to mesodermal down neuronal lineages down neuronal lineages
& endodermal lineages

Figure 1.4. Overview of the pathways of the extrinsic regulators of mES cell self 
renewal. Leukaemia inhibitory factor (LIF) is a cytokine that binds to LIFR that 
subsequently recruits gpl30 to form a trimeric complex. This activates Jak family 
non-receptor tyrosine kinases that phosphorylate LIFR and gpl30. STAT3 then is 
bound by the complex and is also phsophorylated leading to its dimerisation and 
translocation to the nucleus. Here it represses genes that commit cells to mesodermal 
and endodermal lineages. Bone morphogenic protein 4 (BMP4) signal via the 
SMADs, BMP phosphorylates SMADs 1,5 and 8 that then interact with SMAD4 
resulting in translocation o f the complex to the nucleus. The Inhibitor of 
differentiation (Id) genes are targeted by SMADs. Id expression has been shown to 
prevent differentiation to neuronal lineages. WNT signalling induces transcription o f 
WNT target genes that prevent differentiation down neuronal lineages.
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1.2.2. Genes known to be involved in self-renewal of mES cells

1.2.2. a. Oct-4

Oct-4 (also called Pou5fl) is a member o f the POU transcription factor family that is 

expressed in undifferentiated pluripotent cells o f the early mouse embryo and in germ 

cells (Rosner et al., 1990). Oct-4 is encoded by the gene Pou5fl and its expression is 

required for the formation o f the inner cell mass (ICM) in vivo (Nichols et al., 1998). 

The levels o f Oct-4 in mES cells were shown to be down regulated upon cell 

differentiation, when LIF is withdrawn from the culture medium (Palmieri et al., 

1994).

The level o f Oct-4 expression must be maintained within a certain range for mES cell 

self-renewal (Niwa et al., 1998). An increase in the level o f Oct-4 expression (>50%) 

above normal levels in mES cells was shown to lead to differentiation down 

endoderm and mesoderm lineages. A decrease in Oct-4 levels (>50% of normal 

levels) resulted in differentiation o f mES cells to trophectoderm. Oct-4 negatively 

regulates Cdx-2 and Hand-1 expressed in trophectoderm cells (Niwa et al., 2000).

1.2.2.b. Nanoz

Nanog is another gene involved in maintaining the pluripotency o f stem cells 

independently o f the LIF/STAT3 pathway (Mitsui et al., 2003). Over expression of 

Nanog in mES cells prevents their differentiation in the absence o f LIF (Chambers et 

al., 2003). Nanog prevents differentiation o f the mES cells to primitive endoderm and 

Nanog is thought to repress transcription o f genes involved in differentiation such as 

Gata4 and Gata6. These genes were shown to be upregulated in cells not expressing 

Nanog. The levels o f Nanog are reduced in mES cells upon differentiation.

Lin and colleagues found that p53 binds to the promoter o f Nanog and prevents its 

expression following DNA damage (Lin et al., 2005). Oct-4 expression levels 

remained constant showing that the reduction in Nanog observed was not due to 

differentiation o f the cells. They proposed that p53 reduces Nanog expression in 

response to DNA damage leading to differentiation o f the cells to allow p53- 

dependent cell cycle arrest and apoptosis. These processes are inefficient in mES cells 

after certain types o f DNA damage. The regulatory region upstream o f the
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transcription start site of Nanog was found to contain Octamer and Sox elements to 

which Oct-4 and Sox-2 can bind to respectively.

J.2.2.C. Sox-2

Sox-2 has similar patterns o f expression as Oct-4 and is expressed in the inner cell 

mass (ICM), epiblast and germ cells (Avilion et al., 2003). Oct-4 and Sox-2 act 

together for transcriptional activation o f Fgf4 in F9 carcinoma cells. Oct-4 and Sox-2 

can act synergistically to control expression o f Fgf4 by binding at adjacent sites 

within it’s the enhancer region (Ambrosetti et al., 2000). Sox-2 and Oct-4 also act 

cooperatively together at the promoter regions o f Utfl, Sox-2 and Fbxl5  to control 

their transcription (Ambrosetti et al., 2000; Nichols et al., 1998; Nishimoto et al., 

1999; Tokuzawa et al., 2003; Tomioka et al., 2002; Yuan et al., 1995).

Mesoderm/
Endoderm

STAT3 SMAD4

Neuroectoderm

Trophectoderm 
Primitive Endoderm

Figure 1.5. Intrinsic and extrinsic factors involved in mES cell self-renewal. LIF
activates STAT3 and represses genes that commit cells to non-neural lineages. BMP 
interacts with SMADs leading to induction o f the Id  genes that prevent differentiation 
down the neuronal lineage. Nanog and Oct-4 are intrinsic transcriptional regulators of 
ES self-renewal. Reduction in Oct-4 results in the differentiation o f cells to 
trophectoderm whereas Nanog expression prevents differentiation of mES cells to 
primitive endoderm. [Figure adapted from (Chambers and Smith, 2004)].
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1.3. Aims of the Project
RNAi has been shown to be a less time consuming method for studying gene 

expression in cells and organisms as compared to traditional methods such as 

antisense technology and production o f knockouts by homologous recombination. The 

aim o f the project was to establish RNAi as a tool for studying gene expression in 

mES cells. Several methods o f inducing RNAi in mES cells were investigated 

including transfection o f chemically synthesised siRNAs, the transfection o f vectors 

expressing short hairpin (sh) RNAs and construction o f a vector that expressed hairpin 

dsRNA under tetracycline control.

In preliminary experiments chemically synthesised siRNAs were designed to target 

endogenously and exogenously expressed genes. Target knockdown o f  gene 

expression was assessed visually by microscopy and also by semi-quantitative RT- 

PCR. The knockdown affect by siRNAs is only transient, therefore vectors were also 

designed for stable knockdown of genes.

There were two types o f vectors used. The first expressed shRNA and the second 

expressed hairpin dsRNA under a ‘tetracycline switch’. The presence o f the 

tetracycline switch allows hairpin dsRNA gene expression to be ‘switched on’ at 

specific time points. This is particularly useful when studying genes involved in 

embryonic development that when knocked out are embryonic lethal.

Once RNAi techniques have been established they can be used to study genes 

involved in maintaining the pluripotency o f stem cells. A greater understanding o f  

how mES cells self-renew and the signals involved in their differentiation down 

particular cell lineages should allow the large scale production of different cell types 

for the use in research and medicine.
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2. Materials and Methods
2.1. Materials
For all procedures, solutions were made to the standard required for molecular 

biology using molecular biology grade and/or “tissue-culture-tested” reagents. All 

solutions were made using sterile double-distilled water and where appropriate 

autoclaved or filter sterilised. All tissue culture plates and plasticware was supplied by 

Nunc, Fisher Scientific, Leicestershire, UK.

The sources o f specialised reagents used are listed in Table 2.1. Reagents were of 

molecular biology grade, unless otherwise stated.

Reagent Supplier
DNA-Free™ kit, Nuclease free water. Ambion, Huntingdon, UK.
Sephaglas™ Bandprep Kit. Amersham Pharmacia Biotech, 

Buckinghamshire, UK.
Hygromycin B, psiRNA-hHlzeo kit, 
Zeocin™.

Autogen Bioclear UK Ltd., Wiltshire, 
UK.

0.4cm gap cuvettes Bio-Rad Laboratories Ltd., Hemel 
Hempstead, UK.

pBI-EGFP, pTet-On, 293 Tet-On cell line. BD Biosciences, Oxford, UK.
Custom sythesised siRNA 
oligonucleotides, siRNA annealing buffer,

Dharmacon Research Inc., Lafayette, 
CO.

Ethanol, glycerol, isopropanol,. Fisher Scientific, Leicestershire, UK.
Disposable sterile Universal tubes Greiner, Stonehouse, UK.
Agarose, DH5a chemically competent E. 
coli, 1 kilobase plus DNA ladder, 
Lipofectamine™ 2000 Reagent, OPTI- 
MEM I reduced serum medium, PBS, 5Ox 
TAE, trypsin-EDTA.

Invitrogen Ltd., Paisley, UK.

Ampicillin Melford Laboratories Ltd, Ipswich, UK.
0.22fiM and 0.45pM Nucleopore™ filters Millipore U.K. Ltd., Watford, 

Hertfordshire, U.K.
Custom synthesised primers MWG Biotech, Milton Keynes, UK
Restriction enzymes New England BioLabs, Hertfordshire, 

UK.
ABI Prism™ Dye Terminator Cycle 
Sequencing Reaction Ready Kit Version 
3.1.

Perkin Elmer Applied Biosystems, 
Warrington, UK.

Table 2.1. Biological Reagents
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Reagent Supplier
Agarose, dNTPs (dATP, dCTP, dGTP, 
dTTP), 100 bp ladder marker, magnesium 
chloride (25mM), MMLV reverse 
transcriptase, oligo (dT)i5 primer, Pfu DNA 
polymerase, pGEM®-T Vector System, 
Recombinant RNasin Inhibitor, Taq DNA 
Polymerase, T4 DNA Ligase, Wizard® 
Plus SV Miniprep DNA purification 
systems.

Promega Ltd., Southampton, UK.

Plasmid Maxi Kit, QIAquick gel extraction 
kit, RNeasy® Midi Kit, DyeEX 2.0 Spin 
Kit.

Qiagen Ltd., West Sussex, UK.

P-mercaptoethanol, BSA, doxycycline, 
ethidium bromide, LB agar tablets, LB 
broth, mineral oil, sodium chloride.

Sigma-Aldrich, Dorset, UK.

Gelatin (0.1%). Stem Cell Technologies Inc., London, 
UK.

Table 2.1. Biological Reagents (continued)

2.1.1. Autoclaving Conditions

Equipment used when handling DNA or RNA was sterilised by autoclaving 120°C at 

15psi for 20 minutes.

2.1.2. Medium preparation

2.1.2.a. For maintainin2 mammalian cells

Medium Recipe
ES cell 
medium

Modified Eagles Medium (MEM) Alpha medium without 
ribonucleosides and deoxyribonucleosides (Invitrogen Ltd., 
Paisley, UK).
10% heated inactivated (56°C, 20min) newborn calf serum (NBS) 
(PAA Laboratories, Yeovil, UK).
10% heat inactivated foetal calf serum (FCS) (PAA Laboratories). 
2mM L-glutamine (Invitrogen).
0.1 mM p-mercaptoethanol (PME) (Sigma-Alrich, Dorset, UK). 
Leukaemia Inhibitory Factor (103 Uml"1) (Chemicon, Hampshire, 
UK).

293 Tet-On 
cell medium

Modified Eagles Medium (MEM) Alpha medium without 
ribonucleosides and deoxyribonucleosides (Invitrogen)
10% heat inactivated FCS (PAA Laboratories)
2mM L-glutamine (Invitrogen) 
lOOpg/ml G418 (Invitrogen)

Freezing Mix 10% DMSO (Invitrogen)
90% FCS (PAA Laboratories)

Table 2.2. Cell culture medium composition.
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Cell Line Origin Supplier
CCB Mouse ES cell line Martin Evans, Cardiff 

University, UK.
ME2 Mouse ES cell line Martin Evans, Cardiff 

University, UK.
293 Tet-On™ Cell 
Line

Human transformed primary kidney 
(HEK) -  derived cell line 
expressing the reverse tetracycline- 
controlled transactivator (rtTA).

BD Biosciences, Oxford, 
UK.

Table 2.3. Cell Lines

2.1.2.b. For bacterial culture

LB-broth and LB-agar (Table 2.4) were prepared as described by the manufacturer, by 

addition of the designated pellets to water. Following autoclaving, the medium was 

left to cool to below 50°C and where required antibiotic was added.

FastMedia™ Zeo Xgal (Autogen Bioclear UK Ltd., Wiltshire, UK) was made up as 

instructed by the manufacturer. Contents o f one pouch were added to 200ml dFLO 

and heated in microwave until medium was completely dissolved.

Medium Recipe

FastMedia™ Zeo Xgal Agar LB Agar (see below) supplemented with 
Zeocin™ antibiotic, X-Gal and IPTG.

LB Agar lOg casein enzymatic digest, 5g yeast 
extract, 5g NaCl, 0.6g Inert binder, 12g 
agar in 1 litre of ionised water.

LB broth lOg casein enzymatic digest, 5g yeast 
extract, 5g NaCl, 0.6g Inert binder in 1 
litre of ionised water.

SOC medium 20M tryptone, 5M yeast extract, 0.5M 
NaCl, ImM MgCl2 , ImM MgS0 4 , 20mM 
glucose solution.

TY broth Bacto-tryptone (20g), bacto-yeast extract 
(5g), sodium chloride (6g) made up in 1 
litre water. pH 7.0 adjusted with NaOH.

Table 2.4. Bacteria culture medium
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Bacterial Cell Strain Supplier
E. coli DH5a™ Invitrogen Ltd., Paisley, UK.
E. coli GT116 Autogen Bioclear UK Ltd., Wiltshire, UK.
E. coli GM2163 New England Biolabs, Hertfordshire, UK.
Table 2.5. Bacterial strains

2.1.3. Antibiotics

Stock solution o f ampicillin (lOOmg/ml) made in sterile df^O  were passed through a 

0.22 pM Nucleopore™ filter (Millipore UK Ltd., Herts, UK) and stored at -20°C. 

Zeocin™ and Hygromycin B, were supplied by manufacturer (Autogen Bioclear UK 

Ltd., Wiltshire, UK) as a lOOmg/ml solutions. Puromycin (Autogen Bioclear UK Ltd., 

Wiltshire, UK) was supplied as a 1 Omg/ml solution.

2.1.4. DNA Markers

The DNA markers used were 100 bp ladder and 1 kb Plus DNA Ladder™. The 

fragment sizes o f these markers (bp) are given in Table 2.6.

DNA Marker Fragment Sizes (bp) Supplier
lOObp DNA 
ladder

1500, 1000, 900, 800, 700, 600, 500, 400, 
300, 200, 100

Promega Ltd., 
Southampton, UK.

lkb Plus DNA 
Ladder™

12000, 11000, 10000, 9000, 8000, 7000, 
6000, 5000, 4000, 3000, 2000, 1650, 
1000, 850, 650,500, 400, 300, 200, 100

Invitrogen Ltd., 
Paisley, UK.

Table 2.6 DNA marker fragment sizes (bp) and their respective suppliers.

2.1.5. Oligonucleotide primers

Lyophilised oligonucleotides were resuspended in sterile dH20 to a workable 

concentration as specified in the text and stored (-20°C) until required. The sequences 

o f all the primers used are listed in Table 2.7.

In order to minimise mispriming, primers were designed using the OLIGO®1991 

Primer Analysis Software (Version 4.0, Wojcieck Rychiick, National Biosciences, 

Plymouth, MN, USA). Primers selected for optimal Tm (melting temperature) at the 

given primer length were stringently assessed for possible sites of self

complementarity and complementarity to the second primer (especially 3'
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complementarity), mainly to reduce the risk o f the formation of primer-dimer 

products.

Name Sequence (5f to 3*) Annealing temp (°C)
Actb_F G C T G T A T T C C C C T C C A T C G T G

60
Actb_R C T G A G A G G G A A A T C G T G C G T G

Cdx2_F T T T G T C A G T C C T C C G C A G T A

56
Cdx2_R G C T G C T G C T T C T T C T T G A T T

E G F P F T C G T T G G G G T C T T T G C T C A G

59
E G F P R C A A G G A C G A C G G C A A C T A C A

GFP F 
(for MmGFP)

A G T G G A G A G G G T G A A G G T G A

59
GFP R 
(for MmGFP)

C G T G T C T T G T A G T T C C C G T C

H A ctb F  
(Raff et a l . , 

1997)

C C T C G C C T T T G C C G A T C C 60

H A c t b R G G A T C T T C A T G A G G T A G T C A G T C

Hand I F T C A T C A C C A T C A T C A C C A C T

55
H a n d l R C C A T C C G T C T T T T T G A G T T C

Lamb I F C C A G A A A G G A A G A C C C G A A G A

60
L a m b l R C C A T T T T C C G A T T G C C A C C A G

L M N A F C C G A G T C T G A A G A G G T G G T C

60L M N A R A G G T C A C C C T C C T T C T T G G T

LMNA hp_F T G A G A T G C T G C G G C G G G T

58
LMNA hp_R A G T A T G A G A T G C T G C G G C

LMNA IR_F G G C C A C T A G T A T G A G A T G C T G C G G C

68
LMNA IR_R G G C C T T C G A A C T C A C G C T G C T T C C C

Table 2.7. Sequences of primers used in PCR reactions or for sequencing (All 
primers were purchased from MWG Biotech, Milton Keynes, UK).
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Name Sequence (5f to 3*) Annealing temp (°C)
LinkerF G G A C C A T T G C A C T C G A G C

58
LinkerR G C T C G A G T G C A A T G G T C C

M m G F P F A G A C A C G T G C T G A A G T C A A G

63
M m G F P R C C A T G C C A T G T G T A A T C C C A

Oct-4_F T G C C G T G A A G T T G G A G A A G G T

60
Oct-4_R G C T G A T T G G C G A T G T G A G T G A

Oct-4 IR_F G G C C A C T A G T A T G G A A C A G T T T G C C

64Oct-4 IR_R G G C C T T C G A A C T T C G G G C A C T T

OL381 C C C T A A C T G A C A C A C A T T C C 57

pBI-MCS_F A C G C T G T T T T G A C C T C C A T A G

56pBI-MCS_R A G A A A G A A C A A T C A A G G G T C C

p s iR N A F C A C T G G T A A C A G G A T T A G C A G

58p s iR N A R A G G C C C T G C A G G T T A A T T A A G

R e x - I F G C C A G T C C A G A A T A C C A G A G T

60Rex-1_R C T T T G C G T G G G T T A G G A T G T G

r t T A F A C C A T A C T C A C T T T T G C C C T T

56r t T A R G T A A A C A T C T G C T C A A A C T C G

Table 2.7. Sequences of primers used in PCR reactions or for sequencing
(continued) (All primers were purchased from MWG Biotech, Milton Keynes, UK).

2.1.6. Reagents and Buffers

All routine laboratory solutions were prepared using dH20 . Sterilisation was achieved 

by autoclaving 120°C at 15psi for 20 minutes where required. Heat sensitive 

components were passed through 0.22pm Nucleopore™ filters (Millipore UK Ltd., 

Herts, UK) and added separately following autoclaving.
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Procedure Solution Components
Agarose gel 

electrophoresis 
(Section 2.2.1)

Electrophoresis loading dye 0.25% bromophenol blue, 
0.25% xylene cyanol FF, 15% 
Ficoll (Type 400; Pharmacia) 

in water
TAE (lx) Tris-acetate (40mM), EDTA 

(ImM)
RNA preparation 

using Qiagen 
RNeasy midi kit 
(Section 2.2.2)

Buffer RLN 50mM Tris.Cl, pH 8.0 
140mM NaCl 
1.5mM MgCl2 

0.5% (v/v) Nonidet® P-40 
(1.06g/ml)

Buffer RLT Protected recipe

Buffer RW1 Protected recipe

Buffer RPE Protected recipe

Mini Preparation of 
DNA using 

Promega Wizard® 
SV Miniprep DNA 
Purification System 

(Promega Ltd., 
Southampton, UK) 

(Section 2.2.6a)

Cell Resuspension Solution 50mM Tris-HCl (pH 7.5) 
lOmM EDTA 

1 OOpg/ml RNase A
Cell Lysis Solution 0.2M NaOH 

1 % SDS
Neutralisation Solution 4.09M guanidine 

hydrochloride 
0.759M potassium acetate 
2.12M glacial acetic acid 

Final pH is approximately 4.2.
Column Wash Solution 60mM potassium acetate 

8.3mM Tris-HCl (pH 7.5) 
0.04mM EDTA (pH 8.0) 

60% ethanol
Maxi Preparation of 
DNA Using Qiagen 

Maxi Kit 
(Section 2.2.6b)

Buffer PI 50mM Tris.Cl, pH 8.0 
lOmM EDTA, lOOpg/ml 

RNase A
Buffer P2 200mM NaOH, 1%SDS
Buffer P3 3.0M potassium acetate, pH 

5.5
Buffer QC 1.0M NaCl, 

50mM MOPS, pH 7.0, 
15% Isopropanol

Buffer QBT 750mM NaCl, 50mM MOPS 
pH 7.0, 15% Isopropanol, 

0.15% Triton® X-100
Buffer QF 1.25M NaCl 

50mM Tris.Cl, pH 8.5 
15% Isopropanol

Table 2.8. Solutions and reagents
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Procedure Solution Components
Extraction o f DNA 
from agarose gels 

using the 
Sephaglas™ 
Bandprep Kit 
(Amersham 

Pharmacia Biotech, 
Buckinghamshire, 

UK) 
(Section 2.2.11)

Sephaglas BP 20% (w/v) Sephaglas BP 
suspended in distilled water 
containing 0.15% Kathon® 
CG/ICP Biocide.

Gel Solubiliser Buffered solution containing 
Nal.

Wash Buffer 20mM Tris-HCl (pH 8.0), 
ImM EDTA and 0.1 mM NaCl 
solution to which 18ml of 
absolute ethanol must be 
added before use.

Elution Buffer lOmM Tris-HCl (pH 8.0), 
ImM EDTA.

Ligation o f inserts 
to digested plasmid 

DNA 
(Section 2.2.13)

T4 DNA ligase buffer 300mM Tris-HCl (pH 7.8) 
lOOmM MgCl2 
lOOmM DTT 
lOmM ATP

Preparation o f 
Chemically 

Competent Cells 
(Section 2.2.14)

TFB1 Solution Potassium acetate (30mM), 
magnesium chloride (50mM), 
potassium chloride (lOOmM), 
calcium chloride (lOmM). pH 

5.8.
TFB2 Solution Sodium-MOPS pH 7.0 

(lOmM), 
calcium chloride (75mM), 

potassium chloride (lOmM), 
20% glycerol.

Table 2.8. Solutions and reagents (continued)
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2.2 Tissue Culture 
2.2.1 Maintenance of cells

Mouse ES (mES) cells were cultured on tissue-culture grade plastic-ware pre-coated 

with 0.1% gelatin (StemCell Technologies Inc., London, UK) in mES cell medium 

(Table 2.2) in a humidifed incubator at 37°C with 5% CO2. For optimum growth of 

mES cells, plates o f cells were not seeded too sparsely or allowed to become too 

confluent. Less favourable conditions result in the selection o f abnormal cells, 

containing chromosome rearrangements.

293 Tet-On cells were also cultured on tissue-culture grade plastic-ware pre-coated 

with 0.1% gelatin (StemCell Technologies Inc. London, UK) in medium (Table 2.2).

2.2.1. a. Thawinz cells

A vial o f cells taken from liquid nitrogen was thawed quickly by incubating in a 37°C 

waterbath. The cells were transferred to a 15ml Falcon tube and medium (10ml) was 

added to the cells. Cell suspension was transferred to a 100mm dish pre-coated with 

0.1% gelatin (StemCell Technologies Inc., London, UK). Medium was changed on 

the cells the next day and cells were ready for splitting approximately 48h after 

thawing.

2.2.1.b. Passaging o f  cells

ES cells were routinely split between 1:3 and 1:6 every 2-3 days when cells reached 

70% confluency to maintain exponential growth. Medium was aspirated, cells were 

washed with PBS (Invitrogen Ltd., Paisley, UK) and then trypsin-EDTA (Invitrogen 

Ltd., Paisley, UK) (1ml for a 100mm dish) was added. When cells were rounded and 

detached from the bottom of the dish, trypsin was inactivated by the addition of 

growth medium (9ml). Cells were pelleted (1500 x g  for 5min) and the supernatant 

was removed. Pellet was resuspended in medium (10ml). Cells were counted using a 

haemocytometer and calculating the number o f cells per ml. The appropriate numbers 

of cells were seeded into pre-gelatinised plates for passage/transfection.
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2.2. I.e. Freezing down cells for stora2e in liquid nitrosen

Cells were removed from the bottom o f the dish as described in Section 2.1.1 .b. 

Pelleted cells were resuspended in freezing mix (Table 2.2) with between 5 x 106 and 

1 x 107 cells per ml. Cell suspension was transferred 1ml per cryovial. Cells were 

frozen slowly by placing them in an insulated box at -80°C for at least 2 days before 

transferring them to liquid nitrogen.

2.2.2. Transfection methods

2.2.2.a. Lipofectamine™ 2000 transfection

This transfection method was used for transient transfection o f siRNAs and plasmid 

DNA into cells that had been seeded into either 24-well (6x l0 4 cells per well) or 6 - 

well plates (2 x 105 cells per well) 24h prior to transfection.

On the day o f transfection the following were mixed in 1.5ml microcentrifuge tubes 

(see Table 2.9 for volumes):

1) Plasmid DNA/siRNA duplex and OPTI-MEM I reduced serum medium (Invitrogen 

Ltd., Paisley, UK).

2) Lipofectamine™ 2000 Reagent (Invitrogen) and OPTI-MEM I reduced serum 

medium (Invitrogen).

Control transfections were also set up containing the transfection mix only.

Culture plate Volume of plating 
medium (ml)

DNA/siRNA (pg) in 
OPTI-MEM® vol 
(Hi)

Lipofectamine™ 
2000 (\i\) in OPTI- 
MEM® vol (nl)

24-well 0.5 up to 0.8pg in 50pl 2.0pl in 50pl

6 -well 2 up to 4.0pg in 250 pi 4.0pl in 250pl

Table 2.9. Volume of reagents used when performing Lipofectamine™ 2000 
transfections

After incubation for 5min at room temperature the two solutions were combined, 

mixed gently and incubated for 20min (room temperature) to allow DNA-Liposome 

complexes to form. The complexes were then added to each well o f cells. 

Transfection mix was removed from the cells and replaced with fresh medium 24h 

later.
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2.2.2.b. Calcium phosphate transfection

This method was used for the cotransfection o f CCB cells with psiOct-4/psi and pTP6  

(Chapter 4) and also for the generation o f  the cell lines METP6  (Chapter 3) and 293 

Tet-On LMNAIR (Chapter 5).

The following reagents were used:

- 2X HEPES-buffered saline (HBS), (280mM NaCl, lOmM KC1, 1.5mM Na2HP04 

2H20 , 12mM dextrose, 50mM HEPES). The pH was adjusted to 7.05 with 0.5 N 

NaOH and then the volume was made up to 100ml with distilled H20 . The HBS 

solution was sterilised by passing it through a 0.22pm Nucleopore™ filter (Millipore 

UK Ltd., Herts, UK). It was stored in 5ml aliquots at -20°C until required.

- 2M CaCl2 The solution was sterilised by passing it through a 0.22pm Nucleopore™ 

filter (Millipore UK Ltd., Herts, UK).

Cells were seeded with 5 x 105 cells in 60mm plates in normal growth medium 24h 

before transfection. For each transfection up to 6 pg DNA was made to 219pl with 

ddH20  and mixed with 31 pi 2M calcium chloride in a 15ml Falcon tube (Fisher 

Scientific, Leicestershire, UK) HBS (2x) (250pl) was added to the calcium chloride 

mixture slowly dropwise whilst bubbling air through the mixture with a 5ml pipette. 

The transfection mix was incubated at room temperature for 20-30 min. During this 

time cells were washed once with serum free medium and 4.5ml OPTI-MEM I 

reduced serum medium (Invitrogen Ltd., Paisley, UK) was added to each dish. The 

calcium phosphate-DNA suspension (500pl) was added dropwise to the cells. Cells 

were incubated with transfection mix for 5h at 37°C in 5% C 0 2 incubator. 

Transfection mix was then removed and replaced with 5ml normal cell medium.

2.2.2.C  Electroporation o f  cells

To generate cell lines that were stably transfected with the plasmids psiRNA_Rex-l, 

psiRNA_Lambl, and pTet-On, CCB cells were electroporated with linearised plasmid 

DNA. Plasmid DNA was prepared by linearising with either Clal (psiRNA_Rex-l, 

psiRNA_Lambl) or Seal (pTet-On) (Section 2.3.10.b). Plasmid DNA was gel purified 

(Section 2.2.11) and ethanol precipitated (Section 2.2.12).
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Medium was changed on the ES cells 3h prior to electroporation. Cells were harvested 

by trypsinisation and washed once with PBS. They were then counted and 107 cells 

were pelleted and resuspended in PBS (500pl). Linearised construct (20pg) was added 

to the suspension and incubated on ice (5min). Suspension was transferred to a 0.4cm 

gap cuvette (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK) and electroporated at 

200V, capacitance 960pF in a Bio-Rad Gene Pulser™ electroporator. Cuvette was 

then incubated on ice (20min). Cell suspension was added to 9.5ml normal ES cells 

medium and used to seed ten 1 0 0mm gelatin-coated plates.

2.2.3. Determining the optimum concentration o f  selection reagent 

Cells (2xl05) seems were seeded into 100mm dishes containing 10ml of the 

appropriate culture medium plus varying amounts (0, 50, 100, 200, 400, 800pg/ml) of 

Hygromycin B, Zeocin™ (Autogen Bioclear UK Ltd., Wiltshire, UK) and G418 

(Invitrogen Ltd., Paisley, UK). Cells were incubated (37°C, 5% CO2) for 10-14 days, 

replacing the selective medium every 4 days. Dishes were examined for viable cells 

every two days. For selecting stable transformants, the lowest concentration that 

begins to give massive cell death in ~5 days and kills all the cells within 2 weeks was 

used.

Antibiotic Concentration used in selction medium 
ftig/ml)

Neomycin 2 0 0

Zeocin™ 5
Puromycin 3
Hygromycin B 2 0 0

Table 2.10 Concentrations of antibiotics used for selection of stably transformed 
cell lines.

2.2.4. Picking E S  cell colonies o f  stably transformed cells

Post-transfection (48h), fresh medium containing antibiotic at appropriate 

concentration (Table 2.10) was added to transfected cells. Antibiotic containing 

medium was replaced every 3-4 days. The formation o f cell colonies was seen after 7 

days o f selection and individual colonies were picked after 14 days as surviving 

colonies should contain a functional antibiotic resistance gene. All cells on control 

plates (cells not transfected) had died by this time.
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A flat bottomed 96-well plates was coated with gelatin then growth medium 

containing the selection reagent was added to each well (lOOpl). A sterile round 

bottomed 96-well plate with aliquots o f 20pl trypsin-EDTA (Invitrogen Ltd., Paisley, 

UK) was also prepared.

Medium was aspirated from the plates containing the colonies. Cells were washed 

with PBS (Invitrogen Ltd., Paisley, UK) and then covered with 10ml o f PBS. Using a 

dissecting microscope colonies were picked using a 200pl pipette set at 5 pi and each 

were transferred to a well in the round-bottomed 96-well plate containing trypsin- 

EDTA. Cells were resuspended by pipetting up and down to break up the colony into 

single cells then 80pl growth medium was added to each well using an 8 -way pipette. 

Cell suspension (100pi) was transferred into a well o f the flat bottomed multi-well 

plate. Cells were incubated in 37°C, 5% CO2 incubator. Medium was changed on the 

cells the next day and when a healthy culture was established (3-4 days). Cells were 

passaged to expand cells for RNA/DNA extraction and for freezing down.

2.2,5, Culturing resistant cell clones

When the cells had become confluent in the 96-well plate they were moved 

individually to 6 -well plates, using antibiotic selection containing medium. All o f the 

clones grew at different rates and therefore were examined individually on a daily 

basis. A vial o f each cell line was frozen down for future use and cells were harvested 

and DNA/RNA extracted from them for analysis.

2.3. Molecular Biology
2.3.1. Agarose Gels

DNA/RNA samples were resolved by gel electrophoresis. Agarose gels were prepared 

by melting the required amount o f agarose (1-2% w/v) (Electrophoresis Grade, 

Invitrogen Ltd., Paisley, UK) dissolved in 1 x TAE. When the gel mix was below 

50°C, ethidium bromide was added to a final concentration o f 0.5pg/ml. The 

appropriate DNA/RNA was mixed with loading dye and loaded onto the gel. For 

DNA gels the appropriate molecular weight marker was also loaded (Table 2.6) to 

ascertain size o f PCR products. Electrophoresis was performed at the required voltage
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in a gel tank in 1 x TAE buffer. Nucleic bands were then visualised under UV light 

and a photograph was taken.

2.3.2. Preparation of cytoplasmic RNA

Cytoplasmic RNA was isolated from cells using either the RNeasy® Mini Kit (Qiagen 

Ltd., West Sussex, UK). Cells (between 4 x 105 and 1 x 107 that had been trypsinised 

and resuspended in medium (Section 2.2.l.b) were pelleted (1500 x g, 5min) and 

supernatant was discarded. The pelleted cells were resuspended in cold (4°C) Buffer 

RLN (175pl) that lyses the cell membrane and incubated on ice for 5min. The lysate 

was centrifuged at 4°C (300 x g, 2min). The supernatant containing the cytoplasmic 

extract was transferred to a new microcentrifuge tube. Buffer RLT (600pl) was added 

to the sample and mixed thoroughly by vortexing. Ethanol (430pl) was then added 

and mixed by pipetting and the sample was applied to an RNeasy mini column placed 

in a 2ml collection tube. This was centrifuged at 8000 x g  for 15secs and the flow 

through was discarded. Buffer RW1 (700pl) was added and the tube was centrifuged 

(8000 x g, 15secs) to wash the column. RNeasy column was transferred to a new 2ml 

collection tube and Buffer RPE (500pl) was added and centrifuged (8000 x g, 15secs), 

flow-through was discarded. This wash step was repeated. The column was 

transferred to a new sterile 1.5ml microcentrifuge tube and RNA was eluted from the 

column by the addition o f RNase-free water (50pl) directly to the spin-column 

membrane. Then after standing for lmin the tube was centrifuged (8000 x g , lmin). 

RNA was stored at -70°C until required.

2.3.3. DNase treatment o f RNA

Contaminating DNA was removed from RNA preparations before reverse- 

transcription and PCR analysis was performed using the DNA-free™ kit (Ambion, 

Huntington, UK). RNA (30pl) that had been extracted from cells (Section 2.3.2) was 

combined with 10 x DNase I Buffer (3 pi) and DNase I (lpl). Solution was mixed 

gently and incubated at 37°C for 30min. DNase inactivation reagent was resuspended 

by vortexing the tube then added (5 pi) to each DNase treated RNA sample. The tubes 

were incubated at room temperature for 2 min during this time tube was flicked once 

to re-disperse the DNase Inactivation Reagent. The tube was then centrifuged (10,000 

x g, lmin) and RNA solution was transferred to a clean microcentrifuge tube.
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2.3.4. Reverse Transcription

DNase-treated RNA (lpg) was added to sterile H2O to a total volume o f 26.5pl. 

Sample was heated to 70°C for 5 min to denature the RNA. Reverse transcription 

reaction components were then added [ImM dNTPs, 125ng Oligo (dT)is primer, 1 x 

MMLV Reaction Buffer, lOOmM Dithiothreitol (2.5pl), 20U o f Recombinant RNasin 

Ribonuclease Inhibitor, 400U MMLV Reverse Transcriptase (Promega Ltd., 

Southampton, UK) made up to 23.5pi with sterile water] as a cocktail. Reactions were 

incubated at 37°C for 1.5h. Heating to 95 °C for 5 min terminated the reaction.

Synthesised cDNA was stored -20°C prior to downstream applications such as PCR 

amplification.

2.3.5. PCR Amplification

PCR reaction were performed using a reaction mixture containing the target DNA, lx  

Taq buffer, 2.5mM magnesium chloride, 0.2mM dNTPs, 0.4pM of each primer (Table 

2.7), 0.05units/pi Taq polymerase and nuclease-free water to make up the final 

volume. Preparative mixtures were contained in 500pl thin walled PCR tubes and 

overlaid with mineral oil. Dentauring, annealing and chain extensions were performed 

in a Biometra® UNO-Thermoblock™ (Biometra, Thistle Scientific, Glasgow, UK) 

programmed according to the required conditions. Following amplification, the 

aqueous layer was transferred to a fresh tube for analysis.

In PCR amplification o f DNA for cloning Pfu DNA polymerase (0.03U/pl) was also 

added to the reaction mix. This enzyme was included as it exhibits 3' to 5' 

exonuclease (proofreading) activity. It was used for polymerase reactions requiring 

high fidelity synthesis such as in cloning.

In semi-quantitative PCRs amplification was limited to the least number o f cycles for 

visualisation using the Gel Doc (Bio-Rad Laboratories Ltd., Hemel Hempstead, UK). 

This was to measure varying levels o f expression between different samples when 

cDNA had been normalised against the housekeeping gene, beta actin (Actb). PCR 

reactions were performed in parallel at least twice to ensure consistent and 

reproducible results.
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2.3.6. Plasmid DNA preparation

2.3.6. a. Small scale preparation o f  plasmid DNA

Plasmid DNA was prepared using the Promega Wizard® PlusSV Minipreps Kit 

(Promega Ltd., Southampton, UK) according to the manufacturer’s instructions. A 

single bacterial colony was inoculated into 5ml o f LB medium containing the 

appropriate antibiotic selection. The culture was incubated with constant agitation 

(37°C overnight at 250rpm). A proportion o f the cells (1.5ml) were pelleted by 

centrifugation (10000 x g  for lOmin) and the supernatant was removed. The cells 

were resuspended in 250pl resuspension solution (50mM Tris-HCl (pH 7.5), lOmM 

EDTA, lOOpg ml' 1 RNase A) and transferred to a sterile microcentrifuge tube.

This suspension was lysed by the addition o f 250pl lysis solution (200mM NaOH, 1% 

(w/v) SDS) and all endonucleases removed by incubating the cells in the presence o f  

lOpl alkaline protease solution (5min). Neutralising solution (350pl) (4.09M 

guanidine hyrochloride, 0.759M potassium acetate, 2.12M glacial acetic acid) was 

subsequently added and all cell debris was pelleted by centrifugation ( 1 0 0 0 0  x g, 

lOmin). The supernatant containing the plasmid DNA was placed in a Wizard® plus 

SV spin column and centrifuged (10000 x g, lmin). The resin bound plasmid DNA 

was washed twice with 1ml o f column wash solution (60% (v/v) ethanol, lOmM Tris- 

HCl (pH 7.5), 60mM potassium acetate) by centrifugation (10000 x g, lmin). Sterile 

dH2 0  (30pl) was then added and the plasmid DNA eluted into a clean microfuge tube 

by centrifugation (10000 x g, lmin). The DNA was stored at -20°C until required.

2.3.6.b. Lar2e scale preparation o f  plasmid DNA

DNA was isolated using Qiagen Plasmid Maxi Prep Kit as described in the 

manufacturers protocol (Qiagen Ltd., West Sussex, UK). A single colony was picked 

from a freshly streaked selective LB-Agar plate and inoculated in a starter culture o f  

5ml LB medium containing the appropriate selective antibiotic. Culture was incubated 

for 8 h at 37°C with shaking at 250rpm. The starter culture was diluted 1/500 into the 

selective LB medium then incubated at 37°C for 12-16h with shaking at 250rpm. 

Bacterial cells were harvested by centrifugation (6000 x g  for 15min at 4°C). The 

bacterial pellet was resuspended in Buffer PI (10ml) and then Buffer P2 (10ml) was 

added. The suspension was mixed gently but thoroughly by inverting the tube 4-6
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times and then was incubated at room temperature for 5min. Chilled Buffer P3 (10ml) 

was added and mixed immediately but gently by inverting 4-6 times followed by 

incubation on ice for 20min. The solution was then centrifuged (20000 x g, 30min at 

4°C). The supernatant containing the plasmid DNA was removed promptly. The 

supernatant was centrifuged again (20000 x g, 15min at 4°C). The supernatant 

containing plasmid DNA was removed promptly. A QLAGEN-tip 500 was 

equilibrated by applying Buffer QBT (10ml) and the column was allowed to empty by 

gravity flow. The supernatant containing the plasmid DNA was applied to the 

QLAGEN-tip and allowed to enter the resin by gravity flow. The QLAGEN-tip was 

washed with 2 x 30ml Buffer QC. DNA was eluted with Buffer QF (15ml). DNA was 

precipitated by the addition room temperature isopropanol (10.5ml) to the eluted 

DNA. Solution was mixed and centrifuged immediately (15000 x g, 30min at 4°C). 

The supernatant was carefully decanted and discarded. DNA pellet was washed with 

70% ethanol (5ml) and centrifuged (15000 x g, lOmin). The supernatant was decanted 

without disturbing the pellet. The pellet was air-dried for lOmin and the DNA was 

dissolved in a suitable volume o f buffer TE, pH 8.0. Purified plasmid was stored at - 

20°C until required.

2.3.7. Genomic DNA preparation from cells

A 100mm plate o f cells was trypsinised to remove cells from the bottom o f the plate 

as previously described (Section 2.2.l.b). Cell suspension was centrifuged (10000 x g, 

5 min). The pellet was resuspended in PBS (1ml), transferred to a microcentrifuge 

tube and centrifuged (10000 x g, lOmin). PBS was aspirated leaving a little behind to 

resuspend the pellet by flicking the tube. Proteinase K lysis buffer (200jil) and 

proteinase K to a final concentration o f 250pg/ml was added to the resuspended 

pellet. The tube was inverted gently and incubated at 55°C for at least 3-4h, with 

regular inversion. After this time 70% acetone / 5% DMF at -20°C (1ml) was added 

with a glass pipette. The tube was inverted vigorously to get DNA out o f solution then 

centrifuged (10000 x g, lOmin). The pellet was washed twice with 70% ethanol and 

then dried at room temperature. The precipitated DNA was dissolved in TE pH8.0 

(200pl) by heating to 70°C. DNA was stored at -20°C until needed.
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2.3.8. Quantification o f  nucleic acid concentrations

Nucleic acids absorb at a wavelength o f 260nm. Given that an optical density (OD) of 

1 unit is equivalent to 50pg ml'1 o f double-stranded DNA or 40pg ml'1 single-stranded 

DNA and RNA, it was possible to quantify DNA and RNA concentrations. 

Furthermore, determining absorbencies at 260nm and 280nm provides a means of 

examining sample purity. Pure preparations o f DNA and RNA will have an A260/A280 

ratio o f approximately 1.8 and 2.0 respectively. Any protein or phenol contaminants 

will lower these values. Likewise a A260/A280 ratio o f less than 2 is considered to be 

indicative o f ethanol or salt contamination (Sambrook et al., 1989). Optical density 

readings were performed on a UV-visible spectrophotometer [CamSpec M330 

(CamSpec, Cambridge, UK)] using a quartz cuvette.

2.3.9. Annealing o f  oligonucleotides

Sense (1.7pM) and antisense (1.7pM) oligonucleotides were combined together with 

sodium hydroxide (0.1M) made up to a total volume of 30pl with sterile water. They 

were then heated in a water bath (80°C, 10 min). Primers were allowed to cool slowly 

by leaving them in the water bath after it had been switched off.

Oligonucleotide Sequence (S’-S1)
pBI MCS S C G C G T C G G G A C T A G T C C C G A T C G A T G G A C C A T T G C A C T C G A

G C G G A C T T C G A A G C A T

pBI MCS AS C G C G C A T G C T T C G A A G T C C G C T C G A G T G C A A T G G T C C A T C G

A T C G G G A C T A G T C C C G

Table 2.11 Sequences of oligonucleotides that were annealed together and 
subsequently cloned into pBI-EGFP vector (Clontech, Oxford, UK). (Oligos were 
purchased from MWG, Biotech, Milton Keynes, UK).

2.3.10. Restriction Digests

2.3.10.a. Analytical

Analytical restriction digests were performed to confirm successful ligation o f the 

relevant insert using enzymes purchased from New England BioLabs (Hertfordshire, 

UK). For analytical digests 200-500ng o f plasmid DNA was set up in 50pl digest. The 

following components mixed together Xpl DNA, 5 pi of appropriate enzyme buffer, 

bovine serum albumin (100pg/ml, if  required), lpl restriction enzyme, sterile H2O to

51



Chapter 2: Materials and Methods

a final volume o f 50pl. Digests were incubate at the optimum temperature for about 2- 

3h.

2.3.10.b. Preparative Restriction P i2est

Restriction digest were formed on a larger scale when preparing linearised plasmid 

DNA for transfection or for cloning. Restriction enzyme nuclease digests o f 1-lOfig 

plasmid DNA, 4pl restriction enzyme, 5 pi enzyme buffer and bovine serum albumin 

(lOOpg/ml, if  required) were made up to 50pl with sterile water in microcentrifuge 

tubes. Digestions requiring two restriction endonucleases contained 2pi o f each 

enzyme and 1 x enzyme buffer compatible for the two enzymes made up to 50pl with 

sterile water in microcentrifuge tubes. Reactions were incubated 4-6h at the 

appropriate temperature.

2.3.11. Extraction of DNA from agarose gels

DNA was run on an agarose gel was made and run as described previously (Section 

2.3.1). The band containing the DNA o f interest (visualised using UV light) was 

excised using a scalpel and transferred to a preweighed 1.5ml microcentrifuge tube. 

The mass o f the gel slice was determined and DNA was extracted from agarose gel 

slice using either the Sephaglas™ Bandprep Kit (Amersham Pharmacia Biotech, 

Buckinghamshire, UK) for DNA fragments >200bp or the QIAquick gel extraction kit 

(Qiagen, West Sussex, UK) for fragments 70-200bp. Protocol were as provided by the 

manufacturers.

When using the Sephaglas™ Bandprep Kit with gel slices <250mg 250pl gel 

solubiliser was added, the sample vortexed and incubated at 60°C until the agarose 

slice was dissolved. The container o f Sephaglas BP was vortexed vigorously to form a 

uniform suspension Then Sephaglas BP (5 pi) was added to the dissolved gel slice and 

vortexed gently. The tube was pulsed for 30sec in a microcentrifuge and then 

supernatant was removed and discarded. The pulse spin was repeated and any residual 

liquid was removed, taking care not to disturb the pellet. The pellet was resuspended 

in wash buffer (80pl) by pipetting up and down several times. The sample was pulsed 

for 30secs and the supernatant was removed. This wash step was repeated twice more. 

The tube was tapped to disperse the pellet then left to air-dry for at least lOmin.
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Elution buffer (20pl) was added to the dried pellet and the microcentrifuge tube was 

vortexed gently to resuspend the pellet. After incubation at room temperature (5min) 

with periodic agitation the sample was centrifuged (lOOOrpm, lmin). The supernatant 

containing the purified DNA was transferred to a sterile microcentrifuge tube, taking 

care not to disturb the pellet. The eluted DNA was stored at -20°C until required. For 

gel slices >250mg the reagents added were scaled up as described in the provided 

protocol.

When using the QIAquick gel extraction kit 3 volumes o f Buffer QG was added to 1 

volume o f gel (lOOmg-lOOpl) and then incubated at 50°C until the gel slice had 

dissolved. 1 gel volume o f isopropanol was added to the sample and mixed and then 

the solution was applied to a QIAquick column that had been placed in a 2ml 

collection tube. The column was centrifuged (1 min), the flow-through was discarded 

and then Buffer QG (0.5ml) was added to the column and centrifuged again (lmin). 

The column was washed by the addition o f Buffer PE (0.75ml) to the column and 

centrifuging for 1 min. After the flow through had been discarded the column was 

centrifuged (17,900 x  g, lmin) to remove any residual ethanol. The column was 

placed into a clean 1.5ml microcentrifuge tube and DNA was eluted by the addition o f  

50pl o f sterile H2O and the column was centrifuged for lmin.

2.3.12. Purification o f  DNA

DNA that was to be transfected into cells was cleaned up by ethanol precipitation. 

DNA was precipitated by adding 2 volumes o f 100% ethanol and 0.1 volumes o f 3M 

sodium acetate (pH4.8) to the DNA solution and incubating at -80°C for 30min. The 

DNA was recovered by centrifugation (13000 x g  for lOmin). The supernatant was 

removed and the pellet was washed with 70% ethanol then the DNA was pelleted 

again (13000 x g  for lOmin) and the supernatant was discarded. The pellet was air 

dried then resuspended in sterile H2O.

2.3.13, Ligation o f  insert DNA into digested plasmid

PCR products and oligonucleotides were annealed to digested plasmid using T4 DNA 

ligase (Promega Ltd., Southampton, UK). Ligation mix was made up o f fragments to 

be annealed, T4 DNA ligase buffer (lp l), T4 DNA ligase (1 jxl), H2O (to make a final
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volume lOpl). A molar ratio o f 3:1 o f insert to plasmid was used in the ligations 

calculated as follows:

ng o f insert = ng o f vector x kb size o f insert x 3 
kb size o f vector 1

Ligation reactions were incubated at 4°C for 16h.

2.3.14. Preparation of chemically competent E. coli cells

A single colony was used to inoculate a 5ml TY broth (Table 2.4) and incubated at 

37°C in an shaking incubator (250rpm, 2h). Culture was added to TY broth (100ml) 

and incubated again (37°C, 250rpm) until absorbance at 600nm was equal to 0.5. 

Culture was centrifuged (2500rpm, 5min) and supernatant was removed. Cell pellet 

was resuspended in cold TFB1 solution (25ml) (Table 2.8) incubated on ice for lh. 

Cell suspension was centrifuged again (2000rpm, 5min at 4°C). Cell pellet was gently 

resuspended in cold TFB2 solution (4ml) (Table 2.8) and incubated on ice for lh. 

Cells were then aliquoted into sterile microtubes and stored at -70°C until needed.

2.3.15. Transformation of chemically competent E. coli bacteria

Newly ligated plasmids were transformed into chemically competent E. coli (Table 

2.5). Aliquots o f comptent cells were thawed on ice. The ligated sample (3pl) was 

added to the thawed 50pl competent cells and mixed then incubated on ice for 30min. 

Samples were heat-shocked at 37°C for 20secs and then placed on ice for a further 

2min. SOC medium (950pl) (Table 2.4) was added at room temperature and bacteria 

were incubated in an orbital incubator (37°C at 250rpm) for lh.. Transformation 

(150pl) was spread on an LB agar plate containing the appropriate antibiotic selection. 

Plates were inverted and incubated at 37°C overnight and colonies picked the next 

day.

2.3.16. PCR Screening of bacterial colonies

PCR screening is used to determine whether or not ligation into a vector has been 

successful by PCR amplification o f the relevant insert gene. Bacterial colonies were 

picked from plates spread 24h previously with transformed bacteria and used to 

inoculate 1.5ml broths containing the appropriate antibiotic selection agent. These 

were incubated with constant agitation (37°C for 5h at 250rpm). Culture (0.5ml) was
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pelleted (12000 x g, lOmin) in a sterile microcentrifuge tube. The supernatant was 

removed and pellet resuspended in 50pl o f sterile water. Cells were lysed (95°C for 10 

min), then debri was pelleted (12000 x g, 5min at room temperature). Supernatant 

containing the plasmid DNA was transferred to another microcentrifuge tube. PCR 

analysis o f plasmid DNA was performed with lOpl o f newly prepared plasmid DNA 

combined with lOpl PCR mix (1 x Taq polymerase buffer, 2.5mM MgCl2, 0.2mM 

dNTPs, 0.4pM each primer, 0.05units/pl Taq polymerase, sterile H2O). Samples were 

run with the following PCR program 95°C, 1.5min followed by 30 cycles o f 

denaturing (95°C, lmin) annealing (X°C, 1.5min) and chain extensions (72°C, lmin), 

where X is the annealing temperature o f the primers used. An agarose gel was run o f  

the PCR products and glycerol stocks were made o f the positives by adding glycerol 

(0.5ml) to culture (0.5ml). These were vortexed and then placed at -80°C for long 

term storage.

2.3,17. DNA Sequencing Using the A B I 3100 System

The DNA to be analysed (approximately 1 pg plasmid DNA) was combined with ABI 

BigDye® v3.1 (4pi), Buffer (200mM Tris pH9.0, 5mM MgCh) (4pl) (Web Scientific 

Ltd., Crewe, UK) and 3pM primer (2pi). A final volume o f 20pl was achieved by the 

addition o f sterile water. The reaction mix was placed in an Biometra® UNO- 

Thermoblock™ (Biometra, Glasgow, UK) using the programme of 96°C for lmin 

(initial denaturation), followed by 25 repeated cycles o f 96°C for 30sec 

(denaturation), X°C for 15sec (annealing) and 60°C for 4min (extension). Labelled 

sequencing products were cleaned up using the Qiagen DyeEx 2.0 spin kit (Qiagen 

Ltd., West Sussex, UK). The DyeEx 2 spin column was vortexed and then the end 

snapped off and the column was placed in a 2ml collection tube. Column was 

centrifuged (2800rpm, 3min) then the column was transferred to a clean 

microcentrifuge tube. The sequencing reaction (20pl) was added dropwise to the 

centre o f the gel bed in the column. After centrifugation (2800rpm, 3min) the column 

was discarded and the pelleted sample was dried in a vacuum centrifuge (60°C, 

15min).

Sequence analysis was performed by either Steve Turner (DNA Sequencing Core, 

Cardiff Univeristy, UK) or Joyce Hoy and Barrie Francis (Central Biotechnology 

Services, Cardiff University, UK).
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3. RNAi induced gene silencing using siRNAs
3.1. Introduction
Induction o f RNAi by double-stranded RNAs (dsRNAs) was found to produce small- 

interfering RNA (siRNA) duplexes as intermediates o f the process (Zamore et al., 

2000). These are ~21 nucleotide (nt) sequences o f RNA that have 2 nt 3' overhanging 

ends and are produced by the RNase III enzyme Dicer (Bernstein et al., 2001). It was 

shown that a single strand o f the siRNA duplex complexes with the RNA-induced 

silencing complex (RISC) resulting in the binding and cleavage o f the homologous 

mRNA (Hammond et al., 2000; Martinez et al., 2002). Cleavage o f the mRNA occurs 

in the centre o f the region targeted by the siRNA between residues 10 and 11 (as 

counted from the 5' end) (Elbashir et al., 2001b).

Transfections o f siRNAs into Drosophila S2 cells and mammalian cells were shown 

to induce RNAi in these cells (Elbashir et al., 2001a). This allowed the use o f RNAi 

for specific gene silencing in mammalian cells that were previously shown to have 

non-specific knock-down of gene expression upon transfection of dsRNA due to the 

interferon response. Studies have used either chemically synthesised siRNAs 

(Elbashir et al., 2001a; Harborth et al., 2001), those produced from recombinant Dicer 

(Carpenter and Zemicka-Goetz, 2004; Myers et al., 2003) or T7 RNA polymerase 

produced siRNAs (Donze and Picard, 2002) for RNAi induction.

Chemically synthesised siRNAs consist o f 19 bp with 2 nt 3' overhangs usually 

consisting o f dTdT. This structure was found to be the most effective at gene silencing 

(Elbashir et al., 2001c). The presence o f the overhang has been shown to be important 

in efficient gene silencing (Elbashir et al., 2001b) and has been proposed to help 

RISC recognition o f an siRNA (Lingel et al., 2004). Not all siRNAs induce gene 

silencing therefore several may need to be tested to induce specific gene silencing of 

the target mRNA.

An inexpensive and efficient method for producing siRNAs that target across the 

mRNA sequence is to use pools o f siRNAs produced from recombinant Dicer. They 

are made by incubation o f the dsRNA o f the target gene with recombinant Dicer. 

These pools o f siRNAs have been transfected into cells and shown to induce specific
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gene silencing with no off-target effects observed (Carpenter and Zemicka-Goetz, 

2004; Myers et al., 2003).

In another study sense and antisense strands o f siRNAs were transcribed from a T7 

RNA polymerase promoter and subsequently annealed together to form siRNA 

duplexes. These T7 siRNAs were also shown to be effective mediators o f RNAi 

induced gene silencing (Donze and Picard, 2002).

Here I report experiments designed to test the effectiveness o f siRNAs to selectively 

reduce gene expression o f both exogenously (MmGFP) and endogenously {Oct-4, 

MmGFP) expressed genes by means o f RNAi in mES cells lines. It was determined 

that mES cell gene expression can be reduced by the transfection o f siRNAs.

3.2. Experimental approach and results
siRNAs were designed against two target mRNAs, one encoding a modified form of 

green fluorescence protein (MmGFP) and the other Oct-4. MmGFP was targeted as it 

can be visualised by fluorescence microscopy and therefore its knockdown can be 

easily assessed. Oct-4 is a member o f the POU transcription factor family whose 

expression is downregulated in mES cells upon differentiation (Palmieri et al., 1994). 

The level o f Oct-4 must be maintained with a certain range for ES cell self-renewal 

(Niwa et al., 2000). A decrease in Oct-4, to less than 50% o f normal levels, resulted in 

differentiation o f mES cell to trophectoderm-like cells that express Cdx2 and Handl. 

These cells have distinct morphology as they ‘flatten’ out on the cell dish and 

therefore can be distinguished from undifferentiated mES cells. Therefore it was 

predicted that the transfection o f Oct-4 siRNAs would result in a reduction o f Oct-4 

that could be assessed by microscopy and RT-PCR analysis.

3,2.1, Sequencing of MmGFP

The sequence o f MmGFP has been reported (Siemering et al., 1996; Zemicka-Goetz 

et al., 1997) but it was important to verify the sequence in the pTP6 vector being used 

(Pratt et al., 2000) (Appendix 1). Therefore primers GFP_F and R and MmGFP_F and 

R (Table 2.7) (Section 2.1.5) and the Big Dye v3.1 sequencing kit (Perkin Elmer 

Applied Biosystems, Warrington, UK) were used to determine the sequence MmGFP
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in the pTP6 vector (Section 2.3.17). A siRNA duplex was designed to target this 

sequence from 321-341 nt (Figure 3.1) (see Section 3.2.2 for design criteria).

A T G A G T A A A G G A G A A G A A C T T T T C A C T G G A G T T G T C C C A A T T C T T G T T G A A T T A G A T

G G T G A T G T T A A T G G G C A C A A A T T T T C T G T C A G T G G A G A G G G T G A A G G T G A T G C A A C A

T A C G G A A A A C T T A C C C T T A A A T T T A T T T G C A C T A C T G G A A A A C T A C C T G T T C C A T G G

C C A A C C C T G G T C A C C A C C C T G A C C T A C G G C G T G C A G T G C T T C T C C C G T T A C C C T G A T

C A T A T G A A G C G G C A C G A C T T C T T C A A G A G C G C C A T G C C T G A G G G A T A C G T G C A G G A G
A G G A C C A T C T T C T T C A A G G A C G A C G G G A A C T A C A A G A C A C G T G C T G A A G T C A A G T T T

G A G G G A G A C A C C C T C G T C A A C A G G A T C G A G C T T A A G G G A A T C G A T T T C A A G G A G G A C

G G A A A C A T C C T C G G C C A C A A G T T G G A A T A C A A C T A C A A C T C C C A C A A C G T A T A C A T C

A T G G C C G A C A A G C A A A A G A A C G G C A T C A A A G C C A A C T T C A A G A C C C G C C A C A A C A T C

G A A G A C G G C G G C G T G C A A C T C G C T G A T C A T T A T C A A C A A A A T A C T C C A A T T G G C G A T

G G C C C T G T C C T T T T A C C A G A C A A C C A T T A C C T G T C C A C A C A A T C T G C C C T T T C G A A A

G A T C C C A A C G A A A A G A G A G A C C A C A T G G T C C T T C T T G A G T T T G T A A C A G C T G C T G G G
A T T A C A C A T G G C A T G G A T G A A C T A T A C A A A

Figure 3.1. Sequence of MmGFP in pTP6 plasmid High-lighted region shows 
sequence targeted by MmGFP siRNA duplexes (see Section 3.2.2 for design criteria).

3.2.2. siRNA Design

Chemically synthesised siRNA oligonucleotides were ordered from Dharmacon 

Research Inc. (Lafayette, CO) (Table 3.1). Primers were designed using the same 

method as previously reported (Harborth et al., 2001) (Figure 3.2). AA dimers were 

found starting >75 bases downstream from the start codon of the cDNA gene 

sequence to be targeted, the next 19 nt were recorded. If  the GC content o f this 

sequence was not between 50 and 70% another AA dimer was located and GC content 

calculated again. The 21-base sequence was subjected to a BLAST-search against 

EST libraries to make sure that only one gene had been targeted. 5' and 3' untranslated 

regions (UTRs) and regions close to the start site were not targeted as they contain 

regulatory protein binding sites. The presence of these proteins may interfere with the 

binding of the mRNA to RISC. The inclusion of overhanging 2 nt 3' ends has been 

shown to result in a more efficient reduction in target gene expression (Elbashir et al., 

2001b). About 50% of siRNAs designed in this way were functional (Elbashir et al., 

2002). Three siRNAs were designed for Oct-4 and one siRNA was designed targeting 

MmGFP. An additional siRNA was designed to target EGFP another GFP protein 

commonly used as a reporter. This siRNA was not homologous to the MmGFP 

sequence and was predicted not to target MmGFP for knockdown and therefore was 

used as a control.
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>75 bases cDNA target (5f to 3 )
M-------------►

A T G -------------------- A A  C T C  C C G  A G G  A G T  C C C  A G G  A

Blast-search se lec ted  siRNA seq u en ce  against 
EST library to ensure only on e g en e  is targeted

siRNA duplex

5 ' -  C U C  C C G  A G G  A G U  C C C  A G G  A  d T T  - 3 '
3 ' - d T d T  G A G  G G C  U C C  U C A  G G G  U C C  U - 5 f

Figure 3.2. Designing siRNA oligos Start 50 to 100 nt from start site of cDNA 
sequence of gene to be targeted. Find an AA dimer and record the next 19 nt. 
Sequences that are AA (N19), where N is any nucleotide, with approximately 50% 
GC content should ideally be used. The siRNA oligos were synthesised with 2 nt 3' 
ends as these were found to be more efficient in reducing target RNA expression than 
blunt ended oligos (Elbashir et a l., 2002). [Figure adapted from Dharmacon Research 
technical bulletin #003, 2001 (Dharmacon Research, Lafayette, CO, USA)].

Targeted gene Name of siRNA oligo Sequence of siRNA 
oligonucleotides (5'-3')

EGFP EGFP sense C C A C A U G A A G C A G C A C G A C d T d T

EGFP antisense G U C G U G C U G C U U C A U G U G G d T d T

MmGFP (Figure 
3.1) (321-341nt)

MmGFP sense G A C A C G U G C U G A A G U C A A G d T d T

MmGFP antisense C U U G A C U U C A G C A C G U G U C d T d T

Oct-4  M34381 
(374-392 nt)

Oct-4A sense C U C C C G A G G A G U C C C A G G A d T d T

Oct-4A antisense U C C U G G G A C U C C U C G G G A G d T d T

Oct-4
(621-639 nt)

Oct-4B sense U G A G A A C C U U C A G G A G A U A d T d T

Oct-4B antisense U A U C U C C U G A A G G U U C U C A d T d T

Oct-4
(507-525 nt)

Oct-4C sense A A A G G U G U U C A G C C A G A C C d T d T

Oct-4C antisense G G U C U G G C U G A A C A C C U U U d T d T

Table 3.1. List of siRNA oligos transfected into mES cells. Site of target within the 
gene is indicated as number of nucleotides from the start site in brackets.
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3.2.3, Annealing of siRNA oligos

RNase-free water (1ml) was added to each siRNA oligo (resulting concentration 

50pM). RNA sense (30pi) and antisense (30pi) oligos were combined with 1 x 

annealing buffer (20mM KC1, 6mM HEPES-KOH pH 7.5, 0.2mM MgCk). Solution 

was incubated (lmin, 90°C) centrifuged (15sec) and then incubated for lh  at 37°C. 

Annealed oligos were stored at -20°C.

3.2.4. Co-transfections of MmGFP siRNAs and MmGFP expressing plasmid

A  plasmid expressing MmGFP  (pTP6, Appendix 1) together with MmGFP siRNA 

duplexes were co-transfected into CCB mES cells using Lipofectamine™ 2000 

transfection reagent (Section 2.2.2a). Control cells were cotransfected with pTP6 and 

EGFP siRNA (does not target MmGFP), plasmid alone or just transfection mix. Cells 

were observed 72h after transfection using fluorescence microscopy and photographs 

were taken (Figure 3.3). RNA was also extracted from these cells (Section 2.3.2) and 

was DNase treated (Section 2.3.3) to eliminate any remaining genomic DNA. The 

RNA was then reverse transcribed to cDNA (Section 2.3.4). Semi-quantitative PCRs 

(Section 2.3.5) were performed to measure varying levels o f MmGFP expression 

between different samples when cDNA had been normalised against the housekeeping 

gene, beta-actin (Actb). The primers used were Actb F and R and MmGFP F and R 

(Table 2.7).

GFP was seen in the cells that had been co-transfected with the pTP6 and EGFP 

siRNA and the cells that had only been transfected with pTP6 (Figure 3.3). There was 

no GFP observed in cells that had been co-transfected with MmGFP siRNA duplex 

and the pTP6 and those transfected with the transfection mix only. These results were 

confirmed by semi-quantitative RT-PCR looking at MmGFP expression levels 

comparing them to the house-keeping gene Actb. MmGFP was observed in cells 

cotransfected with the pTP6 plasmid and EGFP siRNA. This shows that the reduction 

in MmGFP observed is not due to the siRNA inhibiting the transfection o f the pTP6 

plasmid into cells.
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Figure 3.3. siRNA induced gene silencing of MmGFP in CCB cells. Cells were 
transfected with: 1) lpg pTP6, lpg  MmGFP siRNA, 2) lpg pTP6 lpg EGFP siRNA, 
3) 2pg pTP6 4) lpg pTP6. 5) 2pg pTP6, lpg MmGFP siRNA 6) Transfection mix 
only. A) MmGFP expression was observed in control cells, that had been transfected 
with MmGFP expressing plasmid only (3 and 4) or cotransfected with the pTP6 
vector and EGFP siRNA (2) that is not homologous to the MmGFP target. MmGFP 
was not observed in cells cotransfected with pTP6 and MmGFP siRNA. B) Semi- 
quantitative PCR confirmed these observations. No RT- a control reverse transcription 
of RNA sample 1 was set up without reverse transcriptase. This was to check for 
genomic DNA contamination. No PCR product was observed therefore confirming 
the PCR products that were observed are representative of the mRNA transcribed.
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3,2.5. Knockdown of endogenously expressed MmGFP in mES cells 

A mES cell line was made that expresses MmGFP constitutively so knockdown of a 

chromosomally expressed gene could be assessed. The pTP6 vector was transfected 

into ME2 mES cells (Table 2.4) using calcium phosphate transfection (Section 

2.2.2b). Cells containing the vector were selected for by the addition of puromycin 

(3pg/pl). Individual colonies were picked and expression o f MmGFP in the cells was 

confirmed by fluorescence microscopy. The cell line produced that was constitutively 

expressing MmGFP was named METP6.

METP6 cells were transfected with MmGFP siRNA using Lipofectamine™ 2000 

transfection reagent (Section 2.2.2a). Cells were observed by fluorescence microscopy 

72h post-transfection. There was a reduction in GFP in some cells within wells that 

had been transfected with MmGFP siRNA (Figure 3.4). There was no observable 

reduction in GFP in METP6 cells transfected with the EGFP siRNA duplex or just 

transfection mix showing that the reduction in GFP is due to the presence of MmGFP 

siRNA duplexes.

The difference in the knockdown o f plasmid expressed MmGFP (Figure 3.3) and 

constitutively expressed MmGFP (Figure 3.4) was due to design o f the two 

experiments. Following cotransfections o f pTP6 and MmGFP siRNA into CCB cells 

(Figure 3.3) it is predicted cells transfected with the MmGFP expressing plasmid also 

contain the siRNA duplex. Therefore no MmGFP was observed as it was knocked 

down in all transfected cells. In the METP6 cells (Figure 3.4) all o f the cells express 

MmGFP but not all o f the cells were transfected with the MmGFP siRNA. Therefore 

fewer cells with MmGFP knockdown were seen.
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Control

3 4

MmGFP

Figure 3.4. METP6 ES cells transfected with MmGFP siRNAs A) Photographs of 
cells transfected with: 1) MmGFP siRNA (lpg)), 2) MmGFP siRNA (2pg), 3) EGFP 
(lpg), 4) EGFP (2pg), C Transfection medium only. The arrows indicate regions of 
cells with MmGFP knockdown. There was no reduction in MmGFP expression in the 
control experiments (3-5). B) A reduction in MmGFP in MmGFP siRNA transfected 
cells (1 & 2) was confirmed by semi-quantitative RT-PCR.
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3,2.6, Knockdown o f  Oct-4 in m E S  cells

Oct-4 siRNA duplexes (Table 3.1) were transfected into METP6 mES cells that had 

been seeded into 24-well plates using Lipofectamine™ 2000 transfection reagent 

(Section 2.2.2a). Controls included transfection o f MmGFP siRNAs, or just 

transfection mix. In my preliminary experiments cells were transfected once and RNA 

extracted for RT-PCR analysis 72h after the transfection. There was no knockdown of 

Oct-4 observed (results not shown). The effect o f siRNA induced gene silencing in 

mammalian cells was shown to be transient (McManus et al., 2002) therefore it was 

predicted that Oct-4 expression may be recovering by the time analysis was 

performed. ES cells divide every 12 to 20h whereas once trophectoderm cells are fully 

committed they do not divide at all. Therefore at the 72h time point cells that have 

differentiated due to Oct-4 knockdown will be out grown by the untransfected, and 

therefore undifferentiated ES cells.

In future experiments cells were transfected twice, the second transfection 24h after 

the first. Photographs o f the cells were taken and RNA extracted 72h after the first 

transfection. The presence o f flattened, differentiated cells was observed in cultures o f 

Oct-4A and Oct-4B siRNA transfected cells (Figure 3.5A). There was no change in 

morphology o f control cells (transfected with METP6 siRNA, transfection mix only) 

or Oct-4C siRNA transfected cells. The extracted RNA was DNase treated and then 

reverse-transcribed as described (Section 3.2.4). Semi-quantitative PCR was 

performed on the cDNA to study gene expression o f Actb  (house keeping gene, 

control), Oct-4 (gene o f interest), Cdx2 and H andl (markers o f trophectoderm) 

(Figure 3.5). The primers used were Actb_F and R, Oct-4_F and R, Handl_F and R 

and Cdx2_F and R as listed in Table 2.7.

It was expected that METP6 cells that had been transfected with any o f the Oct-4 

siRNA duplexes (Figure 3.5 #2, 3, 4, 5) would have a reduction in Oct-4 expression as 

compared to control cells (Figure 3.5 #1, 6). A small reduction in Oct-4 was seen by 

semi-quantitative PCR (Figure 3.5B) in cells transfected with Oct-4A and Oct-4B 

siRNAs but not in cells transfected with Oct-4C siRNA only. A reduction in Oct-4 

expression has been shown to induce differentiation o f mES cells to trophectoderm 

cells that express Cdx2 and H andl (Niwa et al., 2000).
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CDX2 was found to be present at day 3.5 o f mouse embryonic development in the 

trophectoderm but was absent from the inner cell mass (Beck et al., 1995). Handl 

(eHand) was also shown to be expressed at high levels in trophoblast cells (Cseijesi et 

al., 1995). Handl and Cdx2 were subsequently confirmed as markers of 

trophectoderm by studying their gene expression in trophoblast stem cells derived 

from differentiated ES cells (Niwa et a l 2000). Therefore the increase in expression 

of Cdx2 and Handl observed (Figure 3.5B) in Oct-4A and Oct-4B siRNA transfected 

cells shows their differentiation down the trophectoderm lineage.
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A

1 MmGFP siRNA 2 Oct-4C siRNA 3 Oct-4A siRNA

4 Oct-4B siRNA 5 Oct-4A, B and C 6 Control (Transfection mix only)

B 1 2 3 4 5 6 No RT

Actb

MmGFP

Oct-4

Cdx2

H andl

Figure 3.5 Oct-4 knockdown in METP6 
cells. A) Morphology of siRNA transfected 
cells. The arrows indicate examples of 
flattened differentiated cells. B There was 
a reduction in the expression of Oct-4 
compared to Actb in cells that been 
transfected with Oct-4 A and B (#3, 4, and 
5) duplexes. This corresponded to an 
increase in the expression of 
trophectoderm marker Cdx2 and Handl. 
There was no reduction of Oct-4 in Oct-4C 
siRNA transfected cells or increase in 
trophectoderm marker expression.
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3.3. Discussion
Since their discovery as intermediates in the processing o f dsRNA to cause RNAi, 

chemically or recombinant Dicer produced siRNAs and T7 polymerase produced 

siRNAs have been shown to be effective for gene silencing (Caplen et al., 2001; 

Carpenter and Zemicka-Goetz, 2004; Donze and Picard, 2002; Elbashir et al., 2001a; 

Harborth et al., 2001; Myers et al., 2003). Transfection o f siRNAs is preferential to 

dsRNA for induction o f RNAi in most mammalian cell lines as the interferon 

response is not initiated by these shorter RNA duplexes (Harborth et al., 2001).

In the study described here chemically synthesised siRNAs were used to establish 

whether gene specific silencing by RNAi could be induced in these cells. In the first 

set o f experiments knockdown of plasmid expressed MmGFP was assessed. In CCB 

mES cells that were cotransfected with the MmGFP expressing plasmid (pTP6) and 

MmGFP siRNA duplexes no GFP was observed 72h post transfection. In contrast to 

control cells that were only transfected with pTP6 (Figure 3.3). The reduction in GFP 

was shown not to be just due to the presence o f the siRNA as no reduction in GFP 

was observed in cells cotransfected with pTP6 and a siRNAs that is not homologous 

to MmGFP (EGFP siRNA). These experiments confirmed that the MmGFP siRNA 

designed reduces expression o f the plasmid expressed MmGFP. The next step was to 

investigate knockdown o f chromosomally integrated MmGFP.

A mES cell line was made that constitutively expresses MmGFP  (named METP6 

cells) and then these cells were transfected with MmGFP siRNA oligos. There was a 

knockdown o f MmGFP in some cells (Figure 3.4) whereas there was no reduction in 

MmGFP in control cells (either transfected with just transfection mix or with EGFP 

siRNA). Not all o f the cells would have been transfected therefore it is possible the 

cells that have knockdown o f MmGFP have taken up the MmGFP siRNA and those 

with no knockdown were not transfected. Alternatively the MmGFP siRNA may not 

have induced gene silencing in these cells. This could be tested in future studies by 

the transfection o f labelled siRNAs so that a knockdown effect can be directly 

attributed to the presence o f the siRNA in the cell. These studies showed that the 

expression o f a chromosomally integrated gene can be reduced using siRNAs in these 

mES cells. The use o f labelled siRNAs may allow either the enrichment o f transfected
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cells by using fluorescence activated cell sorting (FACS) or allow cell by cell assay 

for studying a knockdown effect o f  a particular gene on the phenotype of the cell.

Oct-4 was chosen as a second gene for RNAi targeting. It is a transcription factor 

whose expression is important in maintaining the pluripotency o f mES cells (Palmieri 

et a l ,  1994). Reduction o f Oct-4 in ES cells results in their differentiation to 

trophectoderm (Niwa et a l ,  2000). Three siRNAs for Oct-4 were designed using the 

method as described by Harborth et a l  (Harborth et a l ,  2001) (Figure 3.1). These 

siRNA duplexes were transfected into METP6 ES cells and gene expression o f the 

cells was looked at. A reduction in Oct-4 was seen in cells transfected with Oct-4 

siRNAs A and B (Figure 3.4B) and also corresponded with an increase in expression 

o f the trophectoderm marker genes Cdx2 and H andl.

Since these experiments were performed a study has been published that compared 

the role o f Oct-4 in mES and human ES (hES) cells by transfection o f siRNAs (Hay et 

a l,  2004). Analysis o f gene expression at 24h, 48h and 72h post transfection showed 

Oct-4 to be reduced by 24h and cells were observed to ‘flatten’ after 24h and by 48h 

most colonies were seen to be composed o f ‘overtly differentiated cells’. Also as in 

my study an increase in Cdx2 expression was observed. The authors also noted an 

upregulation o f the endodermal marker genes Gata6 and a-fetoprotein. The 

expression o f these genes was not looked in my study but this could be confirmed by 

further PCR analysis o f my samples.

Transfection o f Oct-4C siRNA did not result in a reduction in Oct-4 expression or 

increase in Handl and Cdx2. This may be explained in the light o f information now 

known about the RNAi mechanism and the characteristics o f functional siRNAs. In 

siRNA induced silencing a single strand o f the siRNA is incorporated into the RNA- 

induced silencing complex (RISC) and the other strand is degraded (Martinez et a l, 

2002; Schwarz et a l,  2003). The activated RISC then binds the mRNA that is 

homologous to the incorporated siRNA resulting in it cleavage. The strand o f the 

siRNA duplex that is retained by RISC has been shown to be the strand with the 

lowest internal stability at its 5' end (Schwarz et a l ,  2003). This was supported by 

other studies into the features o f functional siRNAs all o f which showed that the 5' 

end o f the antisense strand should have a lower internal stability than the 5' end o f the
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sense strand (Khvorova et a l ,  2003; Reynolds et al., 2004; Schwarz et al., 2003; Ui- 

Tei et al., 2004). This is predicted to be because the lower internal stability aids 

unwinding of the siRNA duplex. In the study by Khvorova et a l it was also found that 

the region of 9-14bp (starting from the 5' antisense strand) had a low internal stability 

(Khvorova et a l, 2003). This region is around the site o f mRNA cleavage and the low 

internal stability is predicted to allow quick release o f the cleaved target mRNA. 

Therefore the RISC still complexed with the siRNA is able to go and seek new 

mRNAs. Contrary to this another study found no reduction in the absolute values of 

delta G° in the region 9-14 (Ui-Tei et al., 2004).

In another study (Reynolds et al., 2004) looked at the features that were present in 

functional siRNAs and absent from non-functional siRNAs. The efficiency o f 180 

siRNAs to reduce the expression o f two genes was examined. Eight characteristics 

were determined from the analyses which are important in order for a siRNA to be 

functional. An algorithm was constructed using these for designing functional siRNAs 

that can induce gene specific silencing (Table 3.2). They used this criteria for 

designing siRNAs and 29 out of 30 o f those tested induced more than 50% silencing 

which was a 3.5 fold improvement compared to using randomly selected siRNAs for 

the same genes.

Characteristic Points
G/C content (36-52%) 1
Presence o f A/U at positions 15-19 o f the sense 
strand

1 point for each A or U base present

No internal repeats (Tm value <20°C) 1
Presence o f A at position 19 of the sense strand 1
Presence o f A at position 3 o f the sense strand 1
Presence of U at position 10 o f the sense strand 1
Presence o f A or T at position 19 o f sense 
strand

-1

Presence o f C, A, or T at position 13 o f sense 
strand

-1

Table 3.2. Scoring system for determining functional siRNAs (Reynolds et a l, 
2004). Maximum score is 10 and a functional siRNA was defined as having a score of 
6 points or more.
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Software has been developed to assist in the designing o f functional siRNAs using the 

criteria discussed above. One such program Sfold, available on the internet 

(http://sfold.wadsworth.org) was used to determine whether Oct-4C siRNA inability 

to induce RNAi could be explained. The software calculates the stability o f siRNA 5' 

sense and antisense strands (end 4 base pairs) to allow the calculation of differential 

stability o f the siRNA duplex ends (DSSE) (Ding et al., 2004). In order for a siRNA 

duplex to be functional it must have a DSSE value greater than 0. The DSSE values 

for Oct-4 siRNAs were calculated to be 1.7, 2.1, and -4.4 kcal/mol for A, B and C 

respectively (Table 3.3). The sense strand o f the Oct-4C siRNA duplex has a lower 5' 

end stability than the 5' end o f the antisense strand. Therefore the sense strand of Oct- 

4C siRNA would have been loaded into RISC. The antisense strand that is 

homologous to the target sequence would be degraded. Hence, there was no reduction 

of Oct-4 expression by transfection o f this siRNA duplex (Figure 3.5).

The siRNA were designed using the available literature at the time (Elbashir et al., 

2001a; Elbashir et a l , 2002). It was recommended that the target sequence should 

begin with an AA, and ideally have the sequence 5'-AA(N19)UU (where N is any 

nucleotide) in the mRNA. The sequence should also have a GC content o f ideally o f 

50% (but <70% and >30%) and avoid highly rich GC regions. Sequences were Blast 

searched (http://www.ncbi.nlm.nih.gov/BLAST/) against mouse EST libraries to 

ensure only one gene is targeted. The information that is now known about functional 

siRNAs has resulted in more detailed criteria for designing siRNAs.

The total siRNA duplex score in Sfold is calculated from the sum of the target 

accessibility score, duplex feature score and duplex thermodynamics score and has a 

maximum value o f 20. A score o f 12 or greater predicts a functional siRNA. The 

target accessibility score is calculated from the RNA/RNA stacking energies in the 

antisense siRNA and target sequence hybrid (Ding and Lawrence, 2001; Ding and 

Lawrence, 2003) (scores between 0 and 8). Duplex feature score (range -2 to 10 

points) was calculated using the algorithm designed by Reynolds et a l  (Reynolds et 

a l , 2004) as described in Table 3.2. The duplex thermodynamics score was made up 

of 1 point if  DSSE was greater than 0 and 1 point if  the average of the internal 

stability values for positions 9-14 was greater than -8.6kcal/mol. Oct-4C gave a total 

siRNA duplex score o f 11 that is below the 12 points or more needed for a functional
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siRNA. Therefore using the rules determined by the Sfold software Oct-4C is 

predicted not to induce gene silencing as was shown in these experiments (Figure

3.5).

siRNA Target
accessibility
score

Duplex
Feature
score

5’ AS 
stability 
(AS) 
(kcal/mol)

5' sense 
stability 
(SS)
(kcal/mol)

DSSE
(AS-SS)
(kcal/mol)

AIS
(kcal/mol)

siRNA
duplex
score

Oct-4A 8 4 -10.0 -11.7 1.7 -10.6 13
Oct-4B 8 8 -7.0 -9.1 2.1 -8.3 18
Oct-4C 7 3 -11.2 -6.8 -4.4 -8.4 11
MmGFP 8 4 -8.1 -10.1 2.0 -9.4 13

Table 3.3. Calculation of the internal stability of the siRNAs using ‘Sfold’ (Ding 
et a l , 2004) (http://sfold.wadsworth.org) It has been shown that functional siRNA 
duplexes normally have lower stability at the 5' end o f the antisense strand than at the 
5' end of the sense strand (Khvorova et a l ,  2003; Schwarz et al., 2003). The 
differential stability o f the siRNA duplex ends (DSSE) was calculated and is a 
measure o f this. A functional siRNA duplex has a DSSE score o f greater than 0. The 
total duplex score is calculated from the target accessibility score, the duplex feature 
score and duplex thermodynamics score. A functional siRNA should have a total 
siRNA duplex score o f 12 or more.

Since these experiments were performed, an optimised method for transfection of 

siRNAs into mES cells using Lipofectamine™ 2000 was published (Takada et al., 

2005). In this method mES cells were removed from the bottom of the culture plate on 

the day of transfection. Lipofectamine 2000/siRNA mix was added to the cells in 

suspension. The study knocked down EGFP  and Oct-4. They observed greatest 

knockdown of Oct-4 expression at 24h post-transfection after which time the Oct-4 

began to return to normal levels. The expression o f H andl was observed from 48h 

post transfection. The use o f this transfection protocol may increase the number of 

mES cells transfected thereby allowing effects o f knockdown to be studied more 

easily. In future siRNA experiments gene expression analysis will be performed on 

RNA samples extracted over a time course. Therefore the time of maximum 

knockdown and any ‘recovery’ o f target gene expression can be observed.

Methods to generate several siRNAs targeting the same gene to increase the 

likelihood of knockdown by siRNAs have been developed. Yang and colleagues used 

an E.coli RNase III enzyme to cleave dsRNA into short siRNAs referred to as 

endoribonuclease-prepared siRNA (esiRNA) (Yang et al., 2002). The generation of
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pools o f esiRNAs allows the gene o f interest to be targeted more effectively as 

multiple sites within an mRNA are targeted simultaneously. In this study cross-target 

gene silencing was not observed.

Carpenter and Zemicka-Goetz used Dicer produced pools o f siRNAs (dsiRNAs) from 

dsRNA to knockdown Oct-4 in ES cells leading to their differentiation to 

trophectoderm (Carpenter and Zemicka-Goetz, 2004). DsRNA targeting Oct-4 was 

produced by in vitro transcripton o f cDNA then siRNAs were produced by digestion 

o f the dsRNA with the recombinant human ribonuclease III enzyme, Dicer. These 

diced siRNAs were transfected into cells using Lipofectamine™ 2000. Knockdown of 

Oct-4 led to differentiation o f ES cells to trophectoderm as shown by increase in 

expression o f Cdx2 and Handl assessed by RT-PCR 24h post-transfection. They 

observed 80% transfection efficiency when FITC labelled siRNAs were analysed by 

fluorescence activated cell sorting (FACS) analysis. Dicer produced pools o f siRNAs 

target across the mRNA therefore increasing the likelihood o f knockdown of the 

target mRNA as the pool would be expected to contain some functional siRNAs.

Transfection o f siRNAs into mES cells has been shown to induce gene specific 

silencing. Limitations for using this method for inducing RNAi include that not all 

siRNAs are effective at silencing and that their delivery is inefficient in mES cells. 

Increasing understanding o f the mechanism o f RNAi and the features present in 

functional siRNAs is resulting in improvements to the design o f functional siRNAs. 

Also improved transfection methods have been published that would be tested in 

future experiments (Takada et al., 2005). However, even overcoming these limitations 

the knockdown induced by transfected siRNAs is transient therefore long term effects 

of gene silencing cannot be studied. Vectors expressing short-hairpin RNA (shRNA) 

have been developed to overcome this problem. These vectors can result in stable 

gene silencing as the shRNA, that is the RNAi trigger, is continually expressed in cell 

lines stably transfected with the shRNA vector.
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4. RNAi induced gene silencing using vectors 
expressing shRNAs
4.1. Introduction
Vectors expressing short hairpin (sh) RNAs from RNA polymerase III promoters can 

be used for inducing stable knockdown o f gene expression by RNAi. Expressed 

shRNAs fold to produce RNAs with ~21bp stems that are joined by a 6-8nt loop. 

These shRNAs are processed by Dicer in vivo to mature siRNAs that can induce gene 

specific silencing (Paddison et al., 2002).

RNA polymerase III promoters that have been used for expression of shRNAs include 

the human HI RNA promoter (Brummelkamp et al., 2002; Kunath et al., 2003), 

mouse U6 promoter (Sui et al., 2002; Tang et al., 2004) and the human 7S K 

promoter (Koper-Emde et al., 2004). These are effective promoters for transcription 

o f shRNAs as they are small (100, 250 and 250bp respectively), the RNA these 

promoters transcribe has a definite start site and a termination o f transcription signal 

consisting o f 4 or 5 consecutive thymidines (Tuschl, 2002). The cleavage of the RNA 

occurs after the second uridine when reaching the termination site resulting in the 

production o f shRNAs that have the characteristic overhanging ends observed in 

siRNAs (Elbashir et al., 2001b).

In this study two vectors were used that contain the human HI polymerase promoter 

from which shRNAs are transcribed. The genes that were targeted for knockdown 

were Laminin B l, Rex-1 and Oct-4.

Rex-1 (Zfp-42) encodes an acidic zinc finger protein which is involved in regulating 

the transcription o f developmental genes. Rex-1 mRNA is found in undifferentiated 

mES and EC cells, in inner cell mass o f the blastocyst and in trophectoderm (Rogers 

et al., 1991). Rex-1 is downregulated upon differentiation o f the ICM into embryonic 

ectoderm and differentiation o f mES cells. It was predicted that Rex-1 knockdown 

would induce differentiation o f the mES cells as it is a transcription factor (Ben- 

Shushan et al., 1998) and its expression is down-regulated upon differentiation of 

mES cells (Rogers et al., 1991).
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Laminin B l (Lambl) is part o f  a basement specific glycoprotein laminin 1 (Sasaki et 

al., 1987). Laminin 1 is a expressed at the early stages o f embryogenesis and is made 

up o f the laminin chains a l , p i, y l (Colognato and Yurchenco, 2000). Lambl was 

chosen as a target as it was predicted the reduction in expression of this gene would 

not affect the viability o f the mES cells. Laminin B l knockout mice have been made 

using gene trapping (Mitchell et al., 2001) and function o f Lamb was studied in 

embryos (Miner et al., 2004). L am bl'1' embryos do not have basement membranes 

and only survive up to embryonic day 5.5.

4.2. Experimental Approach and Results
4,2.1. psiRN A-hH lzeo

The first vector used for shRNA induced gene silencing was the psiRNA-hHlzeo 

(psiRNA) vector that contains the human HI RNA polymerase III promoter (Autogen 

Bioclear, UK Ltd., Wiltshire, UK) (Figure 4.1). This vector was one of the first 

commercially available shRNA expressing vectors and contained Zeocin™ selection. 

A region o f each o f the target genes, Lam bl and Rex-1, was selected according to the 

instructions received with the vector. The targeted sequence had to begin with an A 

(start site o f HI promoter), and sequences containing 4 or 5 consecutive Ts (that acts 

as termination signal o f the polymerase III) were avoided. Oligonucleotides were 

designed to contain the target sequence as an inverted repeat separated by a 5 base 

spacer region that when annealed (Section 2.3.9) formed duplexes with Bbsl 

overhanging ends (Table 4.1; Figure 4.2) for cloning into the psiRNA vector.

The annealed oligos were ligated into the Bbsl digested vector (Section 2.3.13) and 

then transformed into E. coli GT116 bacterial strain (Section 2.3.15). This strain of 

bacteria is a sbcCD  deletion strain. SbcCD is a protein complex that recognises and 

cleaves hairpins (Connelly et al., 1998). Therefore this E. coli GT116 strain was used 

to increase the amount o f recombinant clones that contain the plasmid with the hairpin 

insert. Growth of bacteria on LB agar plates containing Zeocin™ allowed the 

selection o f bacteria that were transformed with the psiRNA plasmid. X-gal was also 

present in the agar and allowed distinction between bacteria containing the plasmid 

with the inserts (white colonies, as /?-galactosidase is no longer expressed) compared
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to those without the insert [blue colonies as /?-galactosidase is expressed and cleaves 

X-gal (5-bromo-4-chloro3-indolyl-/?-galactopyranoside) into glucose and a blue 

insoluble product]. Plasmid DNA was prepared from the ‘white’ colonies (Section 

2.3 .6a) and the presence o f the insert was confirmed by Ncol digest (Section 2.3.10a) 

(Figure 4.2) and then sequence verified using primer OL381 (Section 2.3.17) (Table 

2.7).

n
J11 1

Bbsl Bbsl Sh ble

Ncol

Figure 4.1. Main features of the psiRNA-hHlzeo. The vector contains the HI RNA
polymerase III promoter. Annealed oligos are cloned into the Bbsl sites o f the 
plasmid. Insertion of the oligos replaces lacZ. Therefore colonies containing the insert 
were identified as white colonies on LB agar plates containing X-gal. Presence of the 
insert was confirmed by Ncol restriction digest. Expression of Sh ble confers 
resistance to the antibiotic Zeocin™ allowing selection o f transfected cells containing 
the vector.

1 Oligonucleotide Sequence (5'-3’)
Lamb 1 si S T C C C A T  G A C  A T  C A T  C  T  G  T  G A C  T  C  T  C  C C A T  T G A G A G  T C A C  A G A T  

G A T G T C A T T T

Lamb 1 si AS C A A A A A A T  G A C  A T  C A T  C  T  G T  G A C  T  C T  C A A T  G G G A G A G  T  C A C  A G  

A T  G A T  G T  C A T

Rex-1 si S T C  C C A T  A G  A G  T  G A G  T  G T  G C  A G  T  G C A C  C A T  T T  G C A C  T G C A C  A C  T 
C A C T C T A T T T

Rex-1 si AS C A A A A A A T  A G  A G  T  G A G  T  G T  G C A G  T  G C A A A T  G G T G C A C  T  G C A C  A  

C T C A C T C T A T
- ■  -  L . . .  ‘I

Table 4.1. Sequences of oligonucleotides that were annealed together and 
subsequently cloned into psihHlzeoRNA vector (Autogen-Bioclear, Wiltshire, UK). 
Highlighted region corresponds to target region o f mRNA. (All oligos were purchased 
from MWG, Milton Keynes, UK).
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7 9 1... atgaagaaagtggatgacatcatctgtgactctcgatattctgacattgagccctcgacagaaggagaggtaatattt 

cgtgctttagat... Sequence of the coding region of Lam bl

Bbsl ‘overhang’

i
5' tcccatgacatcatctgtgactctcccattgagagtcacagatgatgtcattt 
3' tacgttagtagacactgagagggtaactctcagtgtctactacagtaaaaaac 5'

J.Bbsl ‘overhang’

Annealed oligos ligated to Bbsl digested psiRNA-hHlzeo and were transformed into 
chemically competent E. coli.

White colonies were picked

CL
Plasmid DNA was prepared and presence o f the insert was confirmed by digestion 
with Ncol and sequencing.

1 2 3 4 C Uncut

mmmm mmmm mmmm
1-4 = psiRNA Lambl plasmid 
DNA
C = psiRNA plasmid DNA

Figure 4.2. Process of cloning inverted repeat of gene of interest in psiRNA- 
hHlzeo. A 22 nt sequence from the coding region o f the target, Lam bl, was selected 
according to the instructions received with the vector (Autogen Bioclear, UK Ltd., 
Wiltshire, UK). The targeted sequence started with an A (start site of HI promoter), 
and avoided sequences containing 4 or 5 consecutive Ts (as acts as termination signal 
of the polymerase III). Oligonucleotides were designed to contain the target sequence 
as an inverted repeat separated by a 5 base spacer region and that when annealed 
formed duplexes with Bbsl overhanging ends. The annealed oligos were ligated into 
the Bbsl digested psiRNA-hHlzeo (psiRNA) vector (Autogen-Bioclear, Wiltshire, 
UK) and then transformed into E. coli GT116 cells. Growth of bacteria on LB agar 
plates containing Zeocin™ and X-gal allowed the selection of bacteria that contained 
the plasmid. White colonies were selected as lacZ is no longer expressed when an 
insert is present. Colonies were picked and cultured overnight and plasmid DNA 
extracted from the bacteria. The present of the insert was confirmed by Ncol, parental 
psiRNA-hHlzeo (C) results in the production o f two fragments whereas when the 
insert is present the plasmid is linearised (1-4).
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Once the sequence o f the vector inserts were confirmed, plasmid DNA for one 

psiRNA vector containing the L am bl insert (psiRNA_Lambl) and one psiRNA 

vector containing the Rex-1 insert (psiRNA_Rex-l) was prepared (Section 2.3.6.b). 

The vectors were linearised by restriction digest with Clal and run on a gel to confirm 

they were cut once. The linearised vector DNA was purified from the agarose gel 

(Section 2.3.11) and then 20pg o f the vector was electroporated (Section 2.2.2c) into 

CCB mES cells (Table 2.3).

Cells into which the psiRNA vectors had integrated were selected for by the addition 

of Zeocin™ (Autogen-Bioclear, Wiltshire) (5 jig/ml optimum concentration 

determined, Section 2.2.3) to the normal culture medium. Colonies of cells were 

picked after 10 days o f selection with Zeocin™ (Section 2.2.4) and were cultured 

until there were enough cells for analysis and for freezing down. There were no 

observable changes in cell morphology o f  the electroporated cells as compared to the 

control CCB cells that were electroporated with a GFP expressing vector (results not 

shown).

RNA was extracted from a 100mm dish o f each cell line that had been selected and 

expanded (Section 2.3.2). RNA was DNase treated (Section 2.3.3) to destroy any 

contaminating genomic DNA present, then RNA was reverse transcribed using 

MMLV Reverse Transcriptase (Section 2.3.4). The expression o f Actb (house keeping 

gene), Lambl and Rex-1 were analysed by semi-quantitative PCR (Section 2.3.5) 

(Figure 4.3) using primers Actb_F and R, Lamb I F and R and Rex-1_F and R 

respectively (Table 2.7).

There was only a reduction in Rex-1 expression in one o f the CCB psiRNA_Rex-l 

cell lines tested (#14) (Figure 4.3 A) whereas there was a reduction in Lambl in all the 

cell line tested compared to the control (cDNA extracted from untransfected CCBs) 

(Figure 4.3B). PCRs were performed from genomic DNA (gDNA) extracted from 

CCB psiRNA_Rex-l cell lines #14-18 using psiRNA primers (Table 2.7) specific for 

the psiRNA vector (Figure 4.4). This was to confirm integration o f the vector in cell 

line #14 and look for presence o f the vector in other cell lines. It was expected that 

there would be a PCR product in CCB psiRNA_Rex-l cell line #14 corresponding to 

the vector and that #15, 16 and 17 would give no PCR product as these plasmids did
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not demonstrate Rex-1 knockdown. PCR products were shown in cell lines #14 and 

#16 showing that the vector had integrated into these cells. The psiRNA vector in #16 

may have integrated into inactivated DNA and therefore was not expressing the Rex-1 

shRNA explaining why no knockdown o f Rex-1 was observed (Figure 4.3A). A 

reduction in Rex-1 is expected to interfere with the ES cell phenotype and may 

explain why less cell lines with Rex-1 knockdown were established. A reduction of 

Lam bl is not predicted to be critical to ES cell self renewal and so more cell lines 

with knockdown of Lam bl were established.
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A) CCB psiRNA_Rex-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 C

Actb

Rex-1

B) CCB psiRNA_Lamb1 

C 1 2 3 4 5 6 7

Actb 

Lambl

Figure 4.3. Results of PCRs of cDNA extracted from CCB mES cell lines that 
were transfected with either a vector expressing shRNA targeting Rex-1 
(psiRNA_Rex-l) or Lam bl (psiRNA Lambl). A) There was a reduction in Rex-1 
expression observed in CCB psiRNA-Rex-1 #14 cell line compared to the control (C= 
CCB cDNA). B) There was a reduction in Lambl expression in all 7 psiRNA Lamb 
cell lines compared to the control (C= CCB cDNA).

CCB psiRNA Rex-1
I “  CCB

Figure 4.4. PCRs of gDNA taken from four psiRNA_Rex-l CCB cell lines to look 
for integration of the psiRNA_Rex-l vector. It can be seen that the plasmid is 
present in cell lines #14 and #16 but not in #15 and #17. PCR of psiRNA vector DNA 
was included as a positive control and gave a PCR product of the correct size. There 
were no bands in CCB gDNA PCR and PCR mix containing no DNA (-veC) as 
expected.
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4.2.2. psi vector

The second vector used was the psi vector from Gerald Gish (Kunath et al., 2003). A 

derivative of this vector (psiOct-4) was made (by Lars Grotewold, Edinburgh 

University, UK) expressing shRNA targeting Oct-4 from the HI RNA polymerase 

promoter (Figure 4.5). This vector was shown to induce differentiation of mES cells 

(personal communication).

RNA pol 111 prom oter Hairpin

Neor
Oct4 sense

Aspl\%

Oct4 antisense
Xbal

gtaccAAGAGAAAGCGAACTAGCATTGAcaagagaTCAATGCTAGTTCGCTTTCTCTTTTTTTggaaat
TTCTCTTTCGCTTGATCGTAACTgttctctAGTTACGATCAAGCGAAAGAGAAAAAAAcctttagatc

c a
pppAAGAGAAAGCGAACUAGCAUUGA a

I I I I I I I I I I I I I I I I I I I I I I I <
UUCUCUUUCGCUUGAUCGUAACU a

a g
Figure 4.5. Main features of the psiOct-4 vector. Oct-4 shRNA expression is under 
the control of the Human HI RNA polymerase III promoter. The vector also has 
neomycin resistance, Aspl\%  and Xbal sites for cloning o f annealed oligos. Oligo for 
cloning had an inverted repeat o f target sequence (22mer) separated by a 7bp loop 
sequence that when transcribes forms shRNA. [Adapted from (Kunath et al., 2003).]

The aim was to use this vector to develop a system that could be used to study gene 

expression in mES cells involved in maintaining the self-renewal in mES cells whose 

knockdown would lead to differentiation o f the cells resulting in a change in cells 

size. A reduction o f Oct-4 has been shown to induce differentiation o f mES cells to 

trophectoderm cells (Niwa et al., 2000). This was observed by a change in cell 

morphology, as differentiated cells ‘flattened out’ over the culture surface and 

therefore were larger than mES cells expressing normal levels o f Oct-4. 

Cotransfections using calcium phosphate (Section 2.2.2b) were performed of the 

psiOct-4 (Figure 4.5) and pTP6 vector (MmGFP expressing vector) (Appendix 1) into 

CCB mES cells (experimental cells) or psi vector without the Oct-4 insert and pTP6
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(control cells). The plasmids were transfected into cells at a ratio o f 10:1, 

experimental cells with 6pg pTP6 and 600ng o f psiOct-4 and control cells with 6pg 

pTP6 and 600ng psi. This ratio was used to ensure that all cells transfected with pTP6 

would be transfected with the psiOct-4 or psi vector. Photographs were taken of 

transfected cells (control and experimental) identified as they express GFP (Figure

4.6). The size o f the cells was measured using ImageJ (http://rsb.info.nih.gov/ij/).
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Control cells

Experimental Cells

Figure 4.6. Morphology of CCB mES cells after Oct-4 RNAi. Photographs of CCB 
mES cells taken 48h post transfection with a GFP expressing plasmid (pTP6) and psi 
(Control cells) or pTP6 and a vector expressing shRNA targeting Oct-4 (Experimental 
cells). CCB mES Cells with Oct-4 knockdown have differentiated and are larger than 
control cells.
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The same experiment was repeated 3 times. It was observed that there was a 

difference in cell size between the experimental and control groups. To confirm the 

difference in cell size statistically, the number of cells measured to be equal to or less 

than 1000pm2 in area and the number of cells that were larger than 1000pm2 were 

compared using the chi-squared test. 1000pm2 was chosen as the cut off point as the 

majority of normal ES cells (control cells) fall within the range o f 0 to 1000pm . The 

value of chi-squared is calculated using the following equation.

x2 = S  (O-E)2 
E

O = observed value, E = expected value

Expected value for a cell = Row x Column total
Grand total

The expected and observed values for experiment 1 were calculated (Table 4.2).

Then the chi-squared value was calculated as follows:

v2= (60-4512 + (30-45I2 + (40-55)2 + (70-55)2
45 45 55 55

= 5 + 5 + 4.09 + 4.09
= 18.18

Values o f chi-squared were determined in the same way for Experiments 2 and 3 

(Table 4.3). The chi-squared values calculated were all larger than the p value at 0.001 

(= 10.83) with 1 degree of freedom. Therefore it was concluded there is significant 

difference in cell size between experimental and control cells.

Cell Size Number of control Number of Total
cells experimental cells

< or = 1000pm2 60 30 90
45 45

> 1000pm2 40 70 110
55 55

|| Total 100 100 200B— — '■ ■■' 1 —— ' I ■ ■■ I ~ — 1
Table 4.2 Observed and expected values for Experiment 1
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Chi-squared value Probability

Experiment 1 18.18 p<0.001

Experiment 2 93.08 p<0.001

Experiment 3 32.46 p<0.001

Table 4.3. Chi-squared values that show that the difference in cell size in 
experimental cells (transfected with psiOct-4 and pTP6) and control cells (psi 
and pTP6) is significant.

Experiment 1

70

40
□ Control 

■  Exp
2 30

Range of cell size (pm2)

Experiment 2

100
90

w
% 70
" 60 
°  50
.a 40 
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■  Exp
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Q oSP
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Figure 4.7. Change in CCB mES cell size 48h after Oct-4 RNAi. Size o f CCB mES
cells were measured 48h after transfection with a vector expressing shRNA targeting 
Oct-4 (Exp) or with the same vector without the shRNA (control). There was shown 
to be an increase in cell size upon knockdown of Oct-4.
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The number o f cells expressing GFP was very low in these experiments when 

transfected at a ratio o f 1:10. In order to increase the number o f cells seen to be 

transfected different ratios o f psiOct-4/pTP6 vector were tried, 1:1 and 1:3 to compare 

to 1:10 ratio. This was to increase the number o f cells transfected whilst ensuring that 

the cells analysed were transfected with both vectors. The experiment was conducted 

as previously described except for the amount o f plasmid DNA used (Figure 4.9).

The number o f cells expressing GFP was counted in 64 photos that were taken o f each 

experiment and control transfection (Table 4.4). It can be seen that the number o f GFP 

expressing cells was less at each ratio in the experimental compared to the control 

cells. This shows that cells that have Oct-4 knockdown are either dying or that cells 

that have a reduction in Oct-4 fail to divide. There were similar numbers o f GFP 

expressing cells counted in each o f the experimental transfections. It was expected 

that there would have been more GFP expressing cells in the cells transfected with 

3pg o f pTP6 DNA (Ratio 1:1) compared to 0.6pg o f pTP6 DNA (Ratio 1:10) as was 

observed in the control cell transfections. The photographs, from which the number o f  

GFP expressing cells was counted, were taken so as to always include at least one cell 

in the field o f view. In the experimental cells there were only between 1 and 6 cells in 

each photo. Therefore if  total cell counts o f GFP expressing cells were taken it is 

expected that there would be more GFP expressing cells when a 1:1 transfection ratio 

is used. This could be confirmed by flow cytometry.
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Control 1:10 Exp1:10

Control 1:3 Exp 1:3

Control 1:1 Exp 1:1

Figure 4.8. CCB mES cells with RNAi induced knockdown of Oct-4. Experimental 
cells were transfected with GFP expressing vector (pTP6) and vector expressing 
shRNA targeting Oct-4 (psiOct-4) at the ratios indicated. Control cells were 
transfected with pTP6 and the psi vector that does not contain a shRNA. Photographs 
indicate that there are more GFP expressing cells in the controls compared to the 
experimental.

Ratio of 
pTP6:psi/psiOct-4

Number of GFP expressing cells
Control transfections Experimental transfections

1:10 469 170
1:3 620 157
1:1 1417 188

Table 4.4. Number of GFP expressing CCB mES cells 48h after transfection.
Experimental cells were transfected with GFP expressing vector (pTP6) and vector 
expressing shRNA targeting Oct-4 (psiOct-4) at the ratios indicated. Control cells 
were transfected with pTP6 and psi vector not containing a shRNA. Photographs were 
taken such that GFP-expressing cells were in the field of view therefore as there are 
very few GFP expressing cells in cells transfected with psiOct-4 then similar number 
of cells were seen for all experimental studies.
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Figure 4.9. Change in CCB mES cell size 48h after Oct-4 knockdown by RNAi.
Different ratios of GFP expressing vector (pTP6) and Oct-4 shRNA expressing vector 
(psiOct-4) were transfected. This was to increase the number of cells that are available 
for analysis whilst still ensuring that cells were transfected with both plasmids.

Ratio of psiOct-4/psi:pTP6 
Transfected

Chi-squared value Probability

1:10 31.20 p<0.001
1:3 52.56 p<0.001
1:1 46.16 p<0.001
Table 4.5 Chi-squared values for CCB cells transfected with different amounts of 
pTP6 and psiOct-4/psi. Chi-squared values are all larger that the p value at 0.001

The chi-squared values were calculated and the resulting p values were all greater 

than the p value at 0.001 (= 10.38) with 1 degree of freedom (Table 4.5). Therefore it 

can be concluded there is significant difference in cell size between experimental and 

control cells in all o f the experiments. Therefore in future a ratio of shRN A vector to 

GFP expressing vector o f 1:1 will be used.
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4.3. Discussion
Gene specific silencing has been demonstrated in these CCB mES cells. Three genes 

have been specifically targeted by shRNA expressing vectors, Rex-1, Lambl and Oct- 

4. There was seen to be a reduction o f gene expression o f Rex-1 and Lambl as shown 

by semi-quantitative RT-PCR in some cell lines stably transfected with psiRNA_Rex- 

1 and psiRNA_Lambl respectively (Figure 4.3). In the CCB psiRNA_Rex-l cell lines 

only one cell line showed a reduction o f Rex-1. All cell lines had survived Zeocin™ 

selection suggesting all cells contained the vector although when PCRs o f genomic 

DNA from four cell lines was looked only two lines showed integration o f the vector.

It is possible that knockdown o f  Rex-1 affects cell growth and survival and that the 

cells with Rex-1 knockdown do not survive selection. This is consistent with a study 

where the genes cYes and Nanog were targeted for gene specific silencing using 

siRNAs in mouse and human ES cell lines (Anneren et al., 2004). cYes is a member 

o f the Src family o f non-receptor tyrosine kinases. These proteins have been shown to 

regulate processes such as cell division, differentiation and survival. Anneren and 

colleagues showed that cYes is highly expressed in mES and hES cells, is regulated by 

LIF and is downregulated when ES cells differentiate. In their experiments they were 

able to reduce the expression o f cYes transiently but could not establish stable clones. 

ES cells were transfected with cYes shRNA vector and pTP6 (that expresses MmGFP 

and has puromycin resistance) and then cells were puromycin-selected. There were 

found to be less colonies in cYes shRNA transfected cells compared to control cells 

only transfected with the puromycin vector. Also the colonies that were present did 

not have lower cYes levels. Similar results were found when targeting Nanog for 

knockdown. Two reasons for this were suggested, either that cells had impaired 

growth and survival due to Nanog/cYes knockdown or that differentiation o f the cells 

due to the knockdown o f these genes made them more sensitive to puromycin.

In demonstrating the knockdown o f  Rex-1 using my psiRNA-Rex-1 plasmid targeting 

the 5'UTR of the gene o f interest has been shown to be effective for shRNA induced 

gene silencing in these cells (Figure 4.3). Targeting the 5'UTR may result in the 

removal o f the stablising cap and degradation o f the mRNA or inhibition of 

translation in a similar way to miRNAs (Section 1.1.1 A). The 5'UTR of the hepatitis
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C virus (HVC) genome was targeted for RNAi induced gene silencing resulting in 

inhibition o f HVC replication (Yokota et al., 2003).

Gene specific silencing o f Oct-4 was shown to induce a change in phenotype of the 

cells as has been shown in other studies in mES cells (Carpenter and Zemicka-Goetz, 

2004; Takada et al., 2005; Velkey and O'Shea, 2003). Knockdown of Oct-4 was 

found to affect the growth o f cells as there were a lot less GFP expressing cells in 

those transfected with Oct-4 shRNA expressing vector compared to the control vector 

48h post transfection (Table 4.4). In a study by Matin and colleagues a reduction in 

growth rate o f cells was also observed after knockdown o f Oct-4 in hES cells (Matin 

et al., 2004).

It has been shown that the psi vector used in this study can be used to generate 

transgenic mice when stably transfected into mES cells (Kunath et al., 2003). The 

Rasal gene was targeted and it was found embryos derived from the shRNA 

expressing mES cells had the same phenotype as that seen in the Rasal null mutation 

that was previously described (Henkemeyer et al., 1995).

These experiments have highlighted the limitations o f shRNA based method for 

studying genes important in maintaining pluripotency o f stem cells. A reduction in 

expression o f these genes reduces cell growth and these cells are selected against. In 

the case o f the psiOct-4 transfection experiment, as not all cells were transfected it is 

difficult to get a large number o f cells for proper analysis. In order to study the 

function of Oct-4, Nanog, cYes and other genes involved in maintaining the 

pluripotency o f mES in vivo an inducible system is necessary. In such a system mES 

cells would be transfected with the RNAi vector. Then cell lines containing the vector 

would be established before induction o f gene silencing by switching on the 

expression o f the hairpin dsRNA.
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5. Inducible expression of hairpin dsRNA for 

gene specific silencing
5.1. Introduction
Inducible expression o f hairpin dsRNA for gene specific silencing at specific time 

points would be advantageous especially when studying genes that affect cell 

viability. A cell line that contains an RNAi vector can be established before the 

targeted gene is silenced by ‘switching on’ expression o f the hairpin RNA. In vivo 

inducible systems are particularly useful for studying embryonic lethal genes as their 

function can then be studied in adult animals.

One system that has been developed for efficiently regulating genes in eukaryotic 

cells utilises tetracycline controlled transactivators (Gossen and Bujard, 1995). The 

tetracycline responsive regulatory system (Tet system) consists o f two components, 

the tetracycline-responsive transcriptional activator protein (tTA) in case o f Tet-off 

system or the reverse tTA (rtTA) in the Tet-On system (Gossen et a l , 1995) and a 

gene expressed from a tetracycline regulated promoter (Ptet).

The tTA is made o f a fusion protein between the repressor (TetR) o f the TnlO  

tetracycline resistance operon o f E. coli and a transcriptional activation domain of the 

VP16 protein o f herpes simplex virus. rtTA is similar to tTA except that the TetR has 

four amino acids changes and is named rTetR. Ptet contains a minimal promoter (such 

as CMV that lacks the enhancer) and an array o f tet operator (tetO) sequences called 

the tet-responsive element (TRE) (Strathdee et al., 1999). In the ‘Tet-Off system the 

rTA fusion protein binds to the tetO  sequences inducing expression of the gene under 

the CMV minimal promoter. Presence o f tetracycline or doxycycline prevents binding 

of the rTA and therefore transcription is prevented.

In the ‘Tet-On’ system rtTA can only bind to the TRE in the presence o f doxycycline 

and then activates transcription from the Pcmv minimal promoter (Figure 5.1). 

Therefore expression o f the gene o f  interest is ‘switched on’ when doxycycline is 

added. The ‘Tet-On’ system was used in my study and the vector used, pBI-EGFP, 

contained a bi-directional promoter that has the TRE positioned between two identical
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minimal CMV promoters (PminCMv). One promoter controls the expression of green 

fluorescent protein (GFP) and the second promoter controls the expression of hairpin 

dsRNA that was cloned in. Therefore it was predicted that once cell lines had been 

established containing the two vectors addition o f doxycycline would induce gene 

specific silencing and also expression o f the reporter GFP (Figure 5.1).

It has been shown that hairpin dsRNA (hpRNA) induces specific gene silencing in 

undifferentiated ES cells (Yang et al., 2001) as they do not exhibit an interferon 

response as seen with other mammalian cells. ES cells were transfected with dsRNA 

of 547bp targeting EGFP sequence made by in vitro expression or with a plasmid 

expressing the same dsRNA as a hairpin. There was found to be a specific and dose 

dependent reduction in EGFP expression whilst the expression o f p-galactosidase did 

not change. This study demonstrated that transfection o f dsRNA or hpRNA is suitable 

for RNAi induced gene silencing in ES cells. The use o f dsRNA also overcomes the 

problem o f only certain siRNAs inducing gene silencing as the dsRNA is cleaved by 

Dicer to produce ‘pools’ o f siRNAs that target the gene in several places.
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pTet-On

rtetR VP16 hpRNACMV minCMV minCMV

Doxycycline

hpRNA hpRNAminCMV minCMV minCMV minCMV

T ranscription T ranscription

Figure 5.1. Tet-On system. The system consists o f two components, the pTet-On 
vector containing a strong immediate early promoter of cytomegalovirus ( P c m v )  from 
which the reverse tetracycline-responsive transcriptional activator protein, rtTA, is 
constitutively expressed. rtTA is made of a fusion protein between the repressor 
(rTetR) of the Tn JO tetracycline resistance operon of E. coli and a transcriptional 
activation domain o f the VP 16 protein o f herpes simplex virus. The second vector 
contains a bidirectional promoter that has the tetracycline response element (TRE) 
positioned between two identical minimal CMV promoters (PminCM v) One promoter 
controls the expression o f green fluorescence protein (GFP) and the second promoter 
controls the expression o f hairpin dsRNA (hpRNA) that had been cloned in. rtTA 
binds to the TRE when doxycycline is present and activates transcription of EGFP and 
the hairpin RNA (Gossen et al., 1995).
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5.2. Experimental Approach and Results
A vector expressing hairpin dsRNA from a tetracycline responsive bi-directional 

promoter was constructed for targeting Oct-4. During this time an attempt was made 

to make a mES cell line that stably expresses rtTA. The proposed plan was to 

transfect the vector expressing the Oct-4 hairpin dsRNA into the mES cells that were 

stably expressing rtTA. Addition o f doxycycline to the medium would result in the 

transcription o f the hp dsRNA and gene specific silencing o f Oct-4. It was not 

possible to establish a mES cell line expressing rtTA therefore the 293 Tet-On™ cell 

line was purchased (BD Biosciences, Oxford, UK). The 293 Tet-On cell line is a 

transformed human embryonic kidney cell line that expresses rtTA. This line was 

used to test inducible gene silencing using the aforementioned pBI-EGFP vector.

5.2.1. Construction of pBI-EGFP vector that expresses hairpin dsRNA

5.2.1.a. Modifications to the vBI-EGFP Vector

The pBI-EGFP vector (BD Biosciences, Oxford, UK) (Figure 5.1) contains a bi

directional promoter that expresses GFP and also the gene o f interest once it has been 

cloned into the multiple cloning site (MCS) o f the vector. In order to improve the ease 

o f cloning inverted repeats into this vector the multiple cloning site o f pBI-EGFP was 

modified to include new unique restriction sites including SpeI, Clal, and BstBl. 

These sites were chosen as, together with NheI already present in the MCS, pairs o f  

these enzymes produce compatible ends. Fragments digested with Spel can ligate to 

DNA cut with either Spe I or Nhel, likewise BstBl digested DNA can ligate to vectors 

cut with either BstBl or Clal (Figure 5.7). There was already a Spe I site present in the 

pBI-EGFP vector (position 5103) that was not in an expressed region o f the vector. 

Therefore this site was removed by digestion o f the pBI-EGFP vector with Spe I 

restriction enzyme (Section 2.3.10b) and ligation o f a linker sequence (‘Spel linker’) 

that removes the site (Figure 5.2). The modified plasmid (pBI-EGFP*) was 

transformed into DH5a cells (Section 2.3.15) and colonies were picked and cultured 

in LB broth containing ampicillin. Plasmid DNA was prepared from the cultures 

(Section 2.3.6) and absence o f the Spel site was confirmed by Spel restriction digest.
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5095 5115

 G G G A T C C A C T A G T T C T A G A G C   p B I - E G F P  s e q u e n c e

. . . . C C C T A G G C G A T C A A G A T C T C G    ( S p e l  s e q u e n c e )

 G G G A T C C A  C  T A G  T T  C  T A G A G C ______

 C C C T A G G C G A T C  A A G A T C T C G ______  S p e l  D i g e s t e d  p B I - E G F P

C T A G A T C C A C T T

T A G G T G A A G A T C  A n n e a l e d  S p e l  L i n k e r  O l i g o s

 G G G A T C C A C  T A G A T  C C A C  T  T  C  T A G  T  T  C  T  A G A ______

 C C C  T A G G C  G A T  C T  A G G  T G A A G A T  C  A A G A T  C  T   p B I - E G F P *

' S p e l  l i n k e r '  l i g a t e d  i n t o  S p e l  d i g e s t e d  p B I - E G F P  

a b o l i s h e s  S p e l  r e s t r i c t i o n  s i t e .

Figure 5.2. Removal of the Spel site in the original pBI-EGFP vector. The Spe I
site already present at position 5103 in the pBI-EGFP was removed by digestion with 
Spe I and annealing of a linker sequence.
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In order to clone the new restriction sites into the MCS of pBI-EGFP* a pair of oligos 

were designed that when annealed (Section 2.3.9) contained Spe I, Clal, and BstBl 

sites (respectively) (Table 2.11) and also had ‘overhanging’ Mlul ends. This allowed 

ligation, using T4 DNA ligase (Section 2.3.13), of the duplex into the Mlul site 

present in the MCS o f pBI-EGFP*. The new vector named pBI-EGFP*_MCS was 

transformed into DH5a cells (Section 2.3.15) and cultured on ampicillin LB agar 

plates. Colonies were picked and used in a PCR screen to determine the presence of 

the MCS insert (Section 2.3.16) using pBI-MCS primers (Table 2.7). Plasmids 

containing the insert can be identified by having a larger PCR product than the 

plasmids with no insert. In this case the difference was only 52bp so PCR products 

were run on a higher percentage agarose gel (2%) as this allows better separation of 

smaller PCR products (Figure 5.3).

Figure 5.3. Results of PCR Screen for presence of new MCS. PCR screen was 
performed on plasmid DNA extracted from eighteen different bacterial colonies to 
look for plasmids containing the insert. The presence of larger sized PCR product in 
#10 shows that the insert has ligated into this plasmid. This plasmid was named pBI- 
EGFP*MCS.

The plasmids that were found to contain the insert were confirmed by restriction 

digests (Figure 5.4). It was seen that the pBI-EGFP*MCS #10 plasmid was digested 

by Spe I, Nhel, and BstBl but not with Clal. In subsequent PCR screens several other 

plasmids were identified as containing the insert and were also found to linearise with 

Spe I, Nhel, and BstBl but not Clal. The plasmids were sequenced (Section 2.3.17) and 

found to contain the insert with a Clal site o f the correct sequence. After investigating 

reasons why the plasmid was not linearised by the Clal restriction enzyme it was 

discovered that this site can be methylated. Dam methylase is present in most E. coli 

including the DH5a strain that was used. This enzyme methylates the adenine
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residues in the sequence GATC. The sequence o f the Clal site is ATCGAT but the 

insert was also followed by a C. Therefore the Clal site was protected from cleavage 

due to the presence o f the methylated A base. Transformation of the pBI-EGFP*MCS 

plasmid into Dam' E.coli, GM2163 strain (Table 2.5) meant there was no methylation 

within the Clal restriction site and two plasmids were selected that were linearised 

once with BstBl, Clal, M lul, Spel and Xhol as expected (Figure 5.5). The plasmid 

inserts were sequenced and one o f the plasmids was shown to contain the insert in the 

correct orientation (pBI-EGFP*MCS#3). The plasmid was ready for the cloning in of 

inverted repeated DNA sequences o f genes o f  interest that when expressed would 

produce hairpin RNA.
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Uncut BstBl Clal Mlul Nhel Spel Xhol 
1 2 3  1 2 3  1 2 3  1 2 3  1 2 3 1 2 3  1 2 3

Figure 5.4. Restriction digest products of pBI-EGFP* MCS that had been 
transformed into DH5a E. coll After ligation of the new MCS into the pBI-EGFP 
vector the presence of the insert was confirmed by a number of restriction digests. 1 
and 2 were control vectors (pBI-EGFP original vector, and pBI-EGFP*) 3 was the test 
vector pBI-EGFP*MSC #10 from the PCR screen (Figure 5.3). The test vector was 
digested once (shown by the presence o f a single band) with BstBl, Mlul, Spel and 
Xhol. Clal should also have linearised the test vector.

Uncut BstBl Clal Mlul Nhel Spel Xhol 
1 2 3 4  1 2 3 4 1 2 3 4 1 2 3 4  1 2 3 4 1 2 3 4  1 2 3 4

Figure 5.5. Restriction digest products of pBI-EGFP*MCS vectors that had been 
transformed into Dam E. coll The presence o f the insert in the pBI-EGFP*MCS (3 
and 4) vectors were tested for by restriction digests. Control vectors were also 
digested. 1 is the original pBI-EGFP vector, 2 is the modified pBI-EGFP* vector 
without the Spel site. Both vectors (3 and 4) were shown to contain the insert as they 
were linearised with BstBl, Clal, Mlul, Spel and Xhol as expected.

>pBI-EGFP*MSC#3
AGTCAGCTGACGCGTCGGGACTAGTCCCGATCGATGGACCATTGCAC 
T C GAGC GGAC T T C GAAGCAT GCGCGTGC T AGC GC GC C C T AA

>pBI-EGFP*MSC#4
AGTCAGCTGACGCGCATGCTTCGAAGTCCGCTCGAGTGCAATGGTCC
ATCGATCGGGACTAGTCCCGACGCGTGCTAGCGCGA

Figure 5.6. Sequencing of pBI-EGFP*MCS Vectors. Restriction sites into which 
inverted repeat sequences will be clones are highlighted as follows TTCGAA = BstBl 
site, ATCGAT = Clal site, ACTAGT = Spel site, GCTAGC = Nhel site. The insert 
in pBI-EGFP*MCS#3 is o f the correct sequence and orientation and therefore was 
used for the next stage o f cloning. In pBI-EGFP*MCS#4 the insert has been ligated in 
the wrong way round.
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5.2. Lb. Cloning o f  the Oct-4 cDNA as an inverted reveat into pBI-EGFP*

The process o f cloning an inverted repeat o f a gene o f interest into pBI-EGFP*MCS 

involved amplifying a region from its cDNA by PCR. The sequence that was chosen 

did not contain BstBl, Nhel or Spel restriction sites as these sites were used for the 

cloning o f the insert. Primers that amplify the region were designed to add restriction 

enzyme sites (SpeI and BstBl) to the ends o f the PCR product. This same fragment is 

ligated twice into digested pBI-EGFP*MCS. In the first instance it was cloned into 

the Spel and Clal sites o f the vector then, once the presence o f this insert has been 

confirmed, into the BstBl and Nhel sites o f pBI-EGFP*MCS (Figure 5.7).

The first vector that was constructed was designed to knockdown Oct-4. A  section of 

Oct-4 was amplified by PCR from the pCMV-Oct-4 vector (Scholer et al., 1990) 

using the primers Oct-4 IR_F and Oct-4 IR_R (Table 2.7) (Appendix 2). Primers were 

designed to add the Spel restriction site to one end o f the fragment and the BstBl 

restriction site to the other end. The Oct-4 PCR fragment was gel purified (Section 

2.3.11) and digested first with Spel and then with BstBl and then the Oct-4 fragment 

was gel purified again. pBI-EGFP*MCS#3 was digested with Spel first then Clal 

(Section 2.3.10b) Ligations were set up between the digested Oct-4 fragment and 

digested pBI-EGFP*MCS#3 (Section 2.3.13) and then transformed into GM2163 

strain o f E. coli (Section 2.3.15). A PCR screen (Section 2.3.16) was performed o f  

transformed colonies that were picked from plates to identify those containing the 

insert (Figure 5.8).
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MCS

HI *
PCR product of Oct-4

Spel Clal BstBl Nhel Spel BstBl

1st digest with Spel and Clal &

annealing of Oct-4 insert

*+
2nd digest with BstBl and Nhel & 

annealing o f Oct-4 insert

Inverted repeat o f Oct-4

Figure 5.7. Cloning of inverted repeated into the multiple cloning site of pBI-
EGFP*MCS. Spel and BstBl restriction sites were added to the end o f fragment of 
the gene of interest (Oct-4) amplified by PCR. pBI-EGFP*MCS vector was digested 
with Spel and Clal and Oct-4 insert ligated into the vector in the ‘forward’ direction. 
Then vector was digested with BstBl and Nhel and Oct-4 ligated in opposite direction. 
The inverted repeat o f Oct-4 fragment forms hairpin RNA when it is transcribed.
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Vector seq

R

200bp product

Insert

R

500bp product

Figure 5.8. PCR Screen of pBI-EGFP*MCS with into which the Oct-4 insert had 
been ligated. #2, 6 and 15 contain the insert as they gave a larger PCR product of 
500bp.
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Cultures with positive colonies (pBI-EGFP*Oct-4) were inoculated and plasmid DNA 

was prepared from them (Section 2.3.6). The plasmid was digested with BstBl and 

Nhel and then gel purified. The Oct-4 fragment previously prepared was ligated to the 

digested pBI-EGFP*Oct-4. PCR screens were performed o f transformed E. coli. The 

PCR screens were performed as previously using a pair o f primers that anneal to 

plasmid sequence just outside the site o f the inverted repeat insert (pBI-MCS_F and 

R, Table 2.7) (Figure 5.9). The expected PCR product size was 800bp but there were 

only products o f c500bp found in two o f  the samples (plasmids 1 & 3). One reason 

for this could be due to the invert repeat annealing to itself after denaturing preventing 

the primers used in the PCR screen annealing (Figure 5.9). Therefore plasmids 1 and 

3 and gave a PCR product corresponding to the presence o f the first Oct-4 insert but 

do not contain the inverted repeat. It is predicted that all o f the other samples either 

contain the inverted repeat or have lost the insert altogether.

A new PCR screen was designed to investigate whether the inverted repeat is indeed 

present in all samples except 1 & 3. Two PCR reactions were performed for each 

sample. PCR #1 used primer pBI-MCS_F from the previous PCR screen that anneals 

within the plasmid sequence and a reverse primer, Oct-4 IR_R, that had previously 

been used to amplify the Oct-4 sequence and therefore anneals within the Oct-4 

sequence insert (Figure 5.10). This PCR gives a product o f c400bp that should be 

present in all o f the samples. PCR #2 uses the pBI-MCS_R primer that anneals within 

the vector sequence and the Oct-4 IR_F primer that was used to amplify the Oct-4 

sequence. A PCR product o f c400bp should be present, in PCR #2, when the inverted 

Oct-4 sequence was present. This was observed in all plasmids except #1 and #3 

therefore these vectors, unlike the others, do not contain the second Oct-4 insert as 

had been predicted from my original PCR screen.
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I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

pBI-MCS_R

Oct-4 Inverted repeat of Oct-4 

 «-----
pBI-MCS_F

Figure 5.9. PCR screen of pBI-EGFP*Oct-4FR plasmids. It was expected that there 
would be a PCR product c800bp using primers pBI-MCS_F and pBI-MCS R that 
anneal within the vector sequence just outside the site of cloning. There was no 
product o f this size seen but there was a product present in two of the samples (1 & 3) 
at c500bp. One reason for this could be due to the invert repeat annealing to itself 
after denaturing before the primers can anneal. Therefore it is predicted that plasmids 
1 and 3 and gave a PCR product corresponding to the present of first Oct-4 insert but 
do not contain the inverted repeat. It is predicted that all o f the other samples either 
contain the inverted repeat or have lost the insert.
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Oct-4 IR R pBI-MCS_R
—

/  V
Oct-4 seq Inverted repeat of Oct-4 seq

pBI-MCS_F Oct-4 IR F

PCR 1
(pBI-MCS F
and
Oct-4 IR R)

PCR 2
(Oct-4 IR F 
and
pBI-MCS R)

1 .............................  _  . ...

Figure 5.10. Modified PCR screening for the presence of the Oct-4 inverted 
repeat. Diagram shows the sites o f annealing o f the primers used for two PCR 
reactions designed to detect the presence o f the inverted repeat. Red lines represent 
the Oct-4 sequence and black lines the plasmid sequence. All plasmids analysed 
should have a PCR product o f c400bp in PCR#1 as the parent plasmid contains the 
first Oct-4 sequence. Presence o f a PCR product in PCR #2 shows that the second 
Oct-4 fragment has also been cloned in. Only plasmids 1 and 3 did not contain the 
inverted repeat as had been predicted from my original PCR screen. The control used 
was the original pBI-EGFP* Oct-4 plasmid and gave a slightly bigger product in PCR 
1 as it had not been digested for a second time.
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Plasmid DNA was prepared of plasmids (pBI-EGFP*0ct-4IR) 1 to 6 (1 and 3 were 

included as controls). Restriction digests of each plasmid were set up (Section 

2.3.10a) and also pBI-EGFP* (control) with Xhol. The restriction site for this enzyme 

is in the MCS o f the pBI-EGFP* vector and is positioned at the centre of the inverted 

repeat sequence in the case o f pBI-EGFP*Oct-4ER. Therefore all of the plasmids 

should linearise on digestion with Xhol. The digested plasmids were run on 0.8% 

agarose gel (Section 2.3.1) (Figure 5.11).

pBI-EGFP*Oct-4IR
I pBI-EGFP*

Figure 5.11. Confirmation of the presence of the second Oct-4 insert in pBI- 
EGFP*Oct-4IR by X h o l restriction digest. pBI-EGFP* Oct-4 plasmids that had 
been analysed by PCR screen (Figure 5.10) were linearised by digestion with Xhol. 
pBI-EGFP that does not contain either Oct-4 insert was included as a reference. The 
results were as expected. pBI-EGFP*Oct-4 1 and 3 were smaller than the rest o f the 
pBI-EGFP*Oct-4IR vectors but larger than pBI-EGFP*, as shown by the distance 
migrated on the gel. Therefore this shows that 2, 4, 5, 6 contain the Oct-4 inverted 
repeat.

Two sequencing reactions were set up for each pBI-EGFP*Oct-4ER plasmid (1-6) 

using either primers pBI-MCS_F or pBI-MCS_R (Table 2.7) using Big Dye v3.1™ 

(Web Scientific Ltd., Crewe, UK) (Section 2.3.17). Sequencing results were only 

obtained for plamids 1 and 3, the plasmids not containing the Oct-4 inverted repeat. It 

was predicted that the inverted repeat present in the other plasmids anneals to itself 

preventing successful sequencing. Therefore a tetracycline inducible vector was made 

that when transfected into cells should express both EGFP and hairpin dsRNA 

targeting Oct-4 in the presence o f doxycycline and rtTA. This vector was not able to
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be tested in cells as a mES Tet-On cell line was not available and attempts to make 

one were unsuccessful (Section 5.2.2).

5.2.2. Construction o f  an ES cell line expressing rtTA

During the development o f  methods for cloning inverted repeat sequences into pBI- 

EGFP, attempts were made to make a mES cell line that stably expresses the reverse 

tetracycline-responsive transcriptional activator protein, rtTA. The vector used was 

the pTet-On (BD Biosciences, Oxford, UK) (Appendix 1) and was originally called 

the pUH D17-lneo vector (Gossen et a l., 1995). This vector expresses the rtTA from 

the strong immediate early promoter o f  cytomegalovirus ( P c m v )  (Figure 5.1). rtTA is 

a fusion o f  a part o f  the tet repressor (TetR) that has four amino acid changes (rtetR) 

and the activation domain o f  the herpes simplex virus (HSV). The vector also contains 

neomycin resistance for selection o f  cells containing the vector.

CCB mES cells were electroporated (Section 2.2.2c) with Seal linearised pTet-On that 

had been gel purified (Section 2.3.11) 48h after transfection neomycin (200pg/ml) 

was added to the culture medium for selection o f  the cells that had been stably 

transfected with pTet-On. 13 days after selection 48 colonies (CCB Tet-On) were 

picked and seeded into a 96 well plate (Section 2.2.4). These cell lines were expanded 

and the seeded into 24-well plates to test for the expression o f  rtTA from pTet-On by 

transfecting cells with pBI-EGFP vector and culturing with and without doxycycline. 

It was expected that cell lines expressing rtTA  would express GFP from the pBI 

promoter when doxycycline was added to the culture medium. However, this was not 

observed in the 21 cell lines tested. Genomic DNA (gDNA) was extracted from the 

CCB Tet-On cell lines for analysis o f  integration o f  the Tet-On vector (Figure 5.12) 

using rtTA F and R primers (Table 2.7) that anneal with the expressed region o f  the 

vector.
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CCB Tet-On gDNA
pTet-On

B CCB Tet-On cDNA pTet-On

r
Actb

rtTA

Figure 5.12. Analysis of CCB Tet-On cell lines A) PCRs of gDNA extracted from 
CCB Tet-On cell lines were performed using primers that anneal within the pTet-On 
thereby confirming whether or not the vector has integrated. A PCR product was only 
seen in the plasmid only control. B) PCRs were also performed on cDNA reverse 
transcribed from RNA extracted from the same CCB Tet-On cell lines. Expression of 
Actb was seen in most cell lines whereas rtTA was not seen in any o f the cell lines. 
The presence o f a PCR product in the reaction set up with pTet-On vector confirms 
these PCR worked. (C is PCR mix only).
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5.2.3. Construction and transfection o f the pBI-EGFP expressing hpRNA targeting 

LaminA/C in 293 Tet-On cells

Due to the difficulty in constructing a pTet-On mES cell line the 293 Tet-On cell line 

was purchased (Clontech, Oxford, UK). The 293 Tet-On cell line is a transformed 

kidney cell line that expresses the reverse-tetracycline-controlled transactivator 

(rtTA). This cell line was used so that the system for inducible targeting o f  gene 

expression using the pBI-EGFP vector could be tested. The pBI-EGFP_Oct-4 vector 

could not be used in these cells as they are a human cell line. The target gene chosen 

was Lamin A/C (LM NA) as this gene had been targeted before for gene silencing 

(Elbashir et al., 2001a; Koper-Emde et al., 2004). A region o f  LMNA (155bp, 

Appendix 2) was amplified from cDNA that had been reverse-transcribed from RNA 

extracted from the 293 Tet-On cells (Section 2.3.4) using primers LMNA IR_F and R 

(Section 2.3.5) (Table 2.7).

The LMNA insert was cloned into the pBI-EGFP* vector as described for the Oct-4 

fragment (Section 5.2.1). The vector that contained the inverted repeat for LMNA was 

named pBI-EGFP*LMNAIR. The vector was prepared for transfection into cells by 

linearising it with A se I restriction enzyme (Section 2.3.10b). PGKHyg that expresses 

the hygromycin resistance gene from the mouse phosphoglycerate kinase (pkl) 

promoter was digested from the vector plox2PGKHyg using Ase  I. The linearised 

plasmids were gel purified (Section 2.3.11) then purified by ethanol precipitation 

(Section 2.3.12).

Then the digested and purified pBI-EGFP*LMNAIR and PGKHyg fragments were 

transfected into HEK 293 Tet-On cells using calcium phosphate transfection (Section 

2.2.2b). Control transfections were also performed: PGKHyg and the pBI-EGFP 

vector, pGKHyg vector only and pTP6 (GFP expressing plasmid) that confirmed 

transfection had worked (Table 5.1).

Selection medium containing Hygromycin (200pg/ml) was added to the cells 48h post 

transfection and also to control cells that had not been transfected. After 14 days 

selection all cells were dead on the control plates (cells not transfected with the 

PGKHyg) and colonies from the other plates were picked (Section 2.2.4). 21 colonies
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o f cells that had been transfected with pBI-EGFP*LM NAIR and PGKHyg were tested 

for tet inducible expression. Each cell line was seeded into 2 wells o f a 6-well plate (2 

x 105 cells per well) and doxycycline (1 pg/ml) was added to the medium in one o f the 

two wells. In the presence o f doxycycline GFP expression should be ‘switched on’. 

Therefore cells were looked at for expression o f GFP using fluorescence microscopy 

48h after doxycycline addition. Four o f the cell lines tested expressed GFP when 

doxycycline was added to their medium (293 Tet-On LMNAIR) (Figure 5.13). One o f  

these cell lines (1.2) also had low levels o f GFP expression when no doxycycline was 

present. Ten cell lines that had been transfected with pBI-EGFP and PGKHyg were 

also tested for GFP expression. Four o f  these cell lines were shown to have GFP 

expression in the presence o f doxycycline and were used as control cell lines for 

subsequent analysis. Four cell lines that had been transfected with just the PGKHyg 

were also used as controls. One reason why a large number o f the colonies picked did 

not express GFP could be due to the integration o f the pBI-EGFP vector into 

inactivated DNA. Alternatively these cells lines may contain PGKHyg but not the 

pBI-EGFP vector.

Transfection PGKHyg pBI-
EGFP*LMNAIR

pBI-EGFP pTP6

1 2gg — —

2 2gg — —

3 4gg — — —

r
----------- — — 4pg

Table 5.1. Plasmids transfected into HEK 293 Tet-On cells using the calcium 
phosphate method (Section 2.2.2b).

RNA was extracted from the four cell lines o f 293 Tet-On LMNAIR and the four lines 

o f each o f the control cells (293 Tet-On pBI-EGFP and 293 Tet-On PGKHyg) 

cultured with and without doxycycline (Section 2.3.2). RNA was DNase treated to 

remove any contam inating genomic DNA (Section 2.3.3) then reverse-transcribed to 

cDNA (Section 2.3.4). Semi-quantitative PCR analysis was performed on the cDNA 

using primers for human beta actin (ACTB) (control) (HActb F and R), GFP (reporter 

gene) (EGFP F and R) and LMNA (LMNA F and R) (Table 2.7) (Section 2.3.5). 

There was seen to be expression o f GFP in all cell lines that had been transfected with
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either the pBI-EGFP* LMNAIR or pBI-EGFP when doxycyline was present in the 

medium as expected and had been observed in the cells (Figure 5.13). There was also 

GFP  expression in cell line 1.2 cultured in the absence o f  doxycycline that had been 

seen when cells were photographed. This could have been due to the site o f  

integration o f  the vector in these cells. Insertion o f  the pBI-EGFP vector near an 

enhancer could lead to basal levels o f  EGFP expression even in the absence o f  

doxycycline as was observed. It was predicted that cell lines that contained the pBI- 

EGFP* LMNAIR cultured with doxycycline would have a reduction in LMNA 

compared to culturing the same cells without doxycycline. There may have been a 

slight reduction o f  in LMNA  in cell line 1.3 (Figure 5.13B). This could be confirmed 

using Real-Time PCR so that differences in the level o f  mRNA could be calculated. 

There was no observed reduction in LMNA  levels by semi-quantitative PCR in the 

other cell lines when the cells were cultured with doxycycline.

The absence o f  LM NA  knockdown in some cell lines could have been due to the 

inverted repeat not being expressed. Therefore RT-PCR analysis was performed on 

RNA extracted from the 293 Tet-On cell lines cultured with doxycycline to look for 

presence o f  the hairpin transcript. RNA from two o f  the 293 Tet-On LMNAIR (1.1, 

1.4) and also two control cell lines (2.1 and 3.1) that had been DNase treated was 

reverse transcribed (Section 2.3.4). Instead o f  using oligo dT as the primer two 

oligonucleotides that anneal within the inverted repeat transcript were used Linker R 

and LMNA hp_R (Table 2.7). This was to specifically reverse transcribe the LMNA  

hairpin transcript. PCRs were then set up to amplify half o f  the inverted repeat 

transcript as attempts to PCR at either end o f  the inverted repeat had previously failed 

(Figure 5.9). One o f  the PCRs set up using primers LMNA hp_R and Linker F (Table 

2.7) gave PCR products o f  the correct size (Figure 5.14). These were present in the 

293 Tet-On LMNAIR cell lines (1.1 and 1.4) but not present in the control cell lines 

that contain the pBI-EGFP vector (2.1) or the PGKHyg vector only (3.1). Also the 

product was found to be present only in the 293 Tet-On LMNAIR 1.4 cells cultured 

with doxycycline thereby suggesting the LMNA IR repeat transcript is expressed only 

in the presence o f  doxycycline in this cell line. The PCR product from 1.4 (+ 

doxycyline) was sequenced confirming that it is specific for the LMNA IR sequence 

(Figure 5.15).
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A) 293 Tet-On LMNA IR Cell lines cultured with doxycycline

293 Tet-On LMNA IR Cell Lines cultured in normal medium (no doxycycline)

1.1 1.2 1.3 1.4

B)

pBI-EGFP*LMNAIR & Hyg pBI-EGFP & Hyg

ACTB

LMNA

+  -  +  -  +  -  +  -  +  -  +  - +  -  +  -  +  -  +  -  +  -  +  -

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

Figure 5.13. 293 Tet-On cells stably transfected with pBI-EGFP*LMNAIR 
cultured with (+) and without (-) doxycycline. A) Photographs of the cell lines. B) 
PCRs o f cDNA from the cell lines including controls, 2.1-2.4 transfected with 
unmodified pBI-EGFP and selection vector, 3.1-3.4 transfected with hygromycin 
selection vector only. GFP was observed in cell lines 1.1 to 2.4 cultured with 
doxycycline as expected. GFP expression was also observed in 1.2 cultured without 
doxycycline therefore this cell line was not used for subsequent analysis.
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Figure 5.14. Confirmation that the inverted repeat was expressed in the 293 Tet- 
On LMNAIR cell lines cultured with doxycycline as studied by RT-PCR analysis.
The primers used in this PCR reaction prime within the LMNA IR transcript. A PCR 
product o f  the expected size was observed in cell lines 1.1 and 1.4 cultured with 
doxycycline (+) with no expression seen in the control cell lines (2.1 and 3.1) that do 
not contain the pBI-EGFP*LMNA IR vector. There was also a PCR product in cell 
line 1.1 cultured in the absence o f doxycycline that suggested there is background 
expression o f the hpRNA transcript.

ACTAGTATGAGATGCTGCGGCGGGTGGATGCTGAGAACAGGCTGCAGACCATGAAG

GAGGAACTGGACTTCCAGAAGAACATCTACAGTGAGGAGCTGCGTGAGACCAAGCG

CCGTCATGAGACCCGACTGGTGGAGATTGACAATGGGAAGCAGCGTGAGTTCGATG

GACCAT TGCAC TCGAGC GGAC T TCGAAC TCACGC TGC T TCCCAT TGTCAATC TCCA

CCAGTCGGGTC TCATGACGGCGC TTGGTC TCACGCAGC TCC TCAC TGTAGATGT TC

TTC TGGAAGTCCAGT TCC TCC T TCATGGTC TGCAGCC TGT TC TCAGCATCCACCCG

CCGCAGCATCTCATACTAGC________________________________________________

Figure 5.15. LMNA IR as transcribed from pBI-EGFP vector. Red sequence is the 
sequence o f the LMNA inverted repeat with black sequence that o f plasmid DNA. 
The highlighted region is the sequence o f the PCR product from cell line 1.4 + 
doxycycline from Figure 5.14 and confirms that the IM NA  hairpin is transcribed in 
these cells

1.1 1.4 2.1 3.1 NoRT

+  - +  -  +  -  +  -
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5 3 . Discussion

A system for the efficient cloning o f  an inverted repeat o f  DNA into a tet inducible 

vector has been established. The pBI-EGFP vector was modified to include new 

unique restriction sites. The process o f  cloning in the inverted repeat involved 

amplifying part o f  the cDNA o f  the gene o f  interest by PCR using primers that add 

restriction sites on to the end o f  the fragment. Then the fragment is ligated into the 

pBI-EGFP* vector in two digestion and ligation steps that utilise restriction enzyme 

sites that have compatible cohesive end (Figure 5.7). The inverted repeat DNA cloned 

in is expressed as a hairpin dsRNA whose expression is under the control o f  a 

doxycycline inducible promoter. Two vectors were made that should express hairpin 

dsRNA one targeting mouse Oct-4 and the other targeting human LaminA/C (LMNA).

The ‘Tet-On’ system requires a cell line that constitutively expresses rtTA. rtTA 

induces gene expression in the presence o f  doxycycline from a promoter that consists 

o f  a minimal promoter fused downstream o f  the tetO sequences (Figure 5.1). ES cells 

lines have been established that utilise the ‘Tet-OfF system for transgene expression 

o f  Oct-4 (Niwa et al., 2000) and Bcr-abl (Era and Witte, 2000). The Tet-On system  

was chosen as doxycycline is only added to the cells when expression o f  the cloned 

gene is required. In this case addition o f  doxycycline would induce gene specific 

silencing at a defined time point.

It was not possible to make a mES cell line stably expressing rtTA and therefore the 

plasmid containing the inverted repeat for targeting Oct-4 could not be tested for its 

ability to knockdown Oct-4. mES cells were electroporated with linearised pTet-On 

vector then cells containing the vector were selected for by the addition o f neomycin. 

After 14 days selection cell lines were picked and expanded for analysis by 

transfection o f  pBI-EGFP that expresses GFP when rtTA and doxycycline are present. 

No GFP was observed in 21 mES cell lines tested. Cell lines were studied for rtTA 

expression by extraction o f  RNA and RT-PCR analysis. None o f  the cell lines tested 

were shown to be expressing rtTA (Figure 5.12). PCRs o f  genomic DNA that was 

extracted from the same cells confirmed that the pTet-On vector was not integrated in 

these cells (Figure 5.12).
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During the attempts to make an rtTA expressing mES cell line a study was published 

that described failed attempts to make an ES cell line stably expressing a modified 

rtTA (rtTA2s-S2) (Bryja et al., 2003). rtTA2s-S2 has a higher sensitivity to 

doxycycline therefore can be induced with lower levels o f  doxycycline than the 

original rtTA (Urlinger et al.y 2000). In the first o f  their experiments Bryja and 

colleagues used a vector expressing rtTA2s-S2 (pNeoS2) from a CMV promoter that 

also had neomycin resistance gene that was expressed from a SV40 promoter. ES 

cells were electroporated with pNeoS2 and 13 clones o f  G418-resistant cells were 

picked after 10 days selection. When they were tested by transfection o f  a vector 

containing a tetracycline inducible luciferase none o f  the cell lines showed luciferase 

activity after the addition o f  doxycycline. Further analysis o f  gDNA from the cell 

lines confirmed none contain the rtTA2s-S2. In a second experiment a new plasmid 

was made in which the expression o f  the neomycin resistance gene and the rtTA2s-S2 

were activated by the same promoter. No cells survived G418 selection unlike control 

cells only transfected with the vector containing the neomycin resistance gene. It was
r _____

concluded that the rtTA2 -S2 is toxic to mouse embryonic stem cells. Therefore in my 

study it was predicted that the cells that survived selection express the neomycin 

resistance gene but not the rtTA. This system is not suitable for inducible expression 

o f  hairpin dsRNA expression in mES cells at present.

Beyond the scope o f  this thesis it may be possible to test my vector using the Tet-Off 

system. This has been previously used in mES cells for the control o f  the expression 

o f  an Oct-4 transgene (Niwa et al., 2000) and for the inducible expression o f  Bcr- 

Abl, an activated tyrosine kinase oncogene (Era and Witte, 2000). In this case 

doxycycline would be added to the cells whilst establishing the mES Tet-Off cell line 

containing the pBI-EGFP*Oct-4IR. The withdrawal o f doxycycline should induce 

hairpin dsRNA expression and knockdown o f  Oct-4. This approach should be suitable 

for studying gene expression in mES cells but is less suitable for establishment o f  Tet- 

O ff inducible mice as the continued presence o f  doxycycline has been shown to be 

embryotoxic (Moutier et al., 2003).

One inducible system, for gene specific silencing in mES cells by RNAi, uses the Cre- 

LoxP system (Coumoul et a l., 2004). A vector was made containing a loxP flanked
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neomycin cassette inserted into the U6 RNA polymerase III promoter (pBS/U6-Neo). 

The presence o f  the neomycin cassette impairs U6 promoter activity. A pBS/U6-Neo 

vector was made that contains a shRNA targeting Fgfr2. This vector was transfected 

into a mouse ES cell line (D4) that was made that stably expresses the Cre 

recombinase Cre-ER72. Cre-ER72 is a fusion between Cre and the G521R mutant o f  

the human oestrogen receptor ligand binding domain (Feil et al., 1997). Treatment o f  

D4 ES cells with 40H-tamoxifen (4HT) induces the Cre recombinase that exercises 

the neo cassette from the U6 promoter. This results in the expression o f  the Fgfr2 

hpRNA. A knockdown o f  Fgfr2 was observed by RT-PCR analysis 24h after 

treatment o f  cells with 4HT with a large reduction (>90%) seen at 96h. This 

corresponded with a 30% decrease in growth o f  mES cells 120h after induction. Also 

the number and size o f  colonies was decreased Similar results were obtained for a 

second gene they targeted, Survivin, that inhibits apoptosis and is also involved in the 

regulation o f  cell division. Therefore it was concluded that system could be used for 

studying function o f  genes essential for cell growth and viability.

In order to test the tet-inducible system expressing hairpin dsRNA using pBI-EGFP* 

the 293 Tet-On (human embryonic kidney) cell line was purchased (Clontech, Oxford, 

UK) that stably expresses rtTA. According to published studies shorter double

stranded RNA does not induce an interferon response in these cells. In one study 

using 293 cells a non-specific response was only observed when 500bp dsRNA 

targeting a reporter gene (luciferase) was transfected and not when 50bp dsRNA was 

transfected (Elbashir et al., 2001a). Also in another study a plasmid expressing p- 

galactosidase and dsRNA targeting it were cotransfected. There was no observed 

reduction o f  p-galactosidase with the transfection o f  the dsRNA (Caplen et al., 2000). 

Therefore 293 Tet-On cells were chosen from the Tet-On cell lines that were available 

as it was predicted dsRNA would not induce an interferon response in these cells.

Lamin A1C (LMNA) was chosen as the target gene for knockdown as previous studies 

have successfully knocked down this gene (Elbashir et al., 2001a). The region o f  

LM NA  that was targeted (155bp) included a region that had been previously targeted 

for RNAi induced silencing using shRNAs (Elbashir et al., 2001a). The vector 

constructed containing the inverted repeat o f  LMNA  (pBI-EGFP*LMNAIR) was
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stably transfected into the 293 Tet-On cell line. GFP expression in cell lines cultured 

with doxycycline (Figure 5.12) suggests that the hairpin dsRNA is expressed as the 

GFP and hpRNA are expressed from a bidirectional tet inducible promoter (Figure 

5.1). The hpRNA LMNA  transcript was confirmed in the cell line 293 Tet-On 1.1 and 

1.4 (cultured with doxycycline), yet a reduction in LMNA  expression was not 

observed in these cell lines. This could have been because the LMNA hairpin was 

either not expressed properly or processed incorrectly. Alternatively the knockdown 

o f  LMNA  may not have been detected by semi-quantitative PCR analysis. Further 

analysis using Real Time PCR would allow quantification o f  mRNA levels so that 

differences in the level o f  mRNA could be calculated.
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6. General Discussion
The aim o f this project was to develop methods for inducing gene specific conditional 

silencing in mES cells using RNAi. At the beginning o f the project it was known that 

dsRNAs could be used as a fast and efficient method for inhibiting gene function in C. 

elegans (Fraser et al., 2000) and Drosophila (Misquitta and Paterson, 1999). Injection 

o f dsRNA into mouse oocytes resulted in specific suppression o f target genes 

(Wianny and Zemicka-Goetz, 2000). Also siRNAs had been shown as intermediates 

of the processing o f dsRNA in the RNAi process and the transfection o f these into 

mammalian cells (including human embryonic kidney 293 and HeLa cells) induced 

gene silencing (Elbashir et al., 2001a).

6.1. Use of siRNAs for elucidating gene function in mES cells

In the initial experiments o f this study the transfection o f siRNAs into mES cells was 

shown to induce gene silencing o f plasmid expressed MmGFP that was cotransfected 

with the MmGFP siRNA. The reduction o f MmGFP expression was shown to be 

specific as cotransfection o f the plasmid with a control siRNA duplex did not reduce 

GFP expression in the mES cells as observed by fluorescence microscopy and RT- 

PCR. Furthermore the MmGFP siRNA was also shown to specifically induce 

knockdown o f endogenously expressed MmGFP.

Subsequently three siRNAs targeting Oct-4 were designed using the then published 

methods (Harborth et al., 2001). Starting 75 bases down from the start codon o f the 

cDNA gene sequence to be targeted an AA dimer was found and the next 19nt were 

recorded. The GC content o f  the sequence was calculated and if  it was not between 50 

and 70% another AA dimer was located and GC content calculated again. The 

sequence was subject to a BLAST-search against EST libraries to ensure only one 

gene was targeted. The three siRNAs were transfected into mES cells and two were 

found to reduce Oct-4 expression and also induce differentiation o f the mES cells 

down the trophectoderm lineage as shown by the expression o f trophectoderm marker 

genes H andl and Cdx2. Since the design o f these siRNAs new design criteria have 

been established as more is known about the mechanism o f RNAi and the
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characteristics o f  functional siRNAs (Ding et al., 2004; Reynolds et a l ,  2004). These 

include having a GC content o f  36-52%, lower internal stability in 9-14bp region (as 

starting from the 5' end o f  the antisense strand) and also the 5' end o f the antisense 

strand should have a lower internal stability than the 5' end o f the sense strand. The 

Oct-4 siRNAs that had been designed using the original methods were assessed with 

the new criteria using software based on these criteria (http://sfold.wadsworth.org). It 

was found that one o f  the Oct-4 siRNAs was predicted to be non-functional and that it 

was the duplex that had been shown to be non-functional in the transfection 

experiments. Therefore in future experiments this software would be used to increase 

the likelihood o f designing functional siRNAs.

Transfection o f siRNAs was shown to induce gene silencing but as not all cells were 

transfected only a few showed a phenotype. Another limitation o f these experiments is 

that those cells taking up the siRNA resulting in a change in phenotype may be 

‘selected against’ as untransfected cells have a growth advantage. Therefore methods 

for identification or selection o f the cells transfected with the siRNAs are needed. The 

use o f labelled siRNAs would allow a change in cell phenotype to be directly 

attributed to the presence o f the siRNA in the cell. Also it may be possible to enrich 

for the labelled siRNA transfected cells by cell sorting using a fluorescence-activated 

cell sorter (FACS).

RNAi induction was shown to be possible in mES cells but reductions in gene 

expression are transient when using siRNAs. In order to look at long term silencing 

effects, the use o f  plasmids that stably express shRNAs was investigated.

6.2. Transfection of plasmids expressing shRNA into mES cells

Three genes were targeted using vectors expressing hpRNA. These were Rex-1, 

Laminin B1 (Lambl) and Oct-4. The vector used for cloning in invert repeat 

oligonucleotides for Rex-1 and Lam bl contain a Sh ble gene conferring Zeocin™ 

resistance. Therefore all o f the cells that survived selection should express the shRNA 

and therefore display knockdown o f the target gene. Lam bl expression was reduced in 

the stably psiRNA Lambl transfected cell lines as analysed by RT-PCR. In 

psiRNA_Rex-l cell lines that had survived selection only one cell line had a reduction
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in Rex-1. It was predicted that this is because a reduction in Rex-1 would have 

resulted in a change in phenotype o f  the cell that would have been selected against. 

The cell line that was selected may be expressing enough Rex-1 so that cells do not 

differentiate and can be maintained in culture.

In order to study the immediate knockdown effect o f the Rex-1 shRNA on ES cells 

the transfection experiment designed using the psiOct-4 vector could be performed. 

The psiRNA-Rex-1 vector would be cotransfected with a GFP expressing vector into 

mES cells. Photographs o f  transfected cells (GFP expressing) would be taken for 

analysis o f cell size 48h post transfection. In the control experiment the psiRNA- 

Lambl vector and GFP expressing vector would be cotransfected. It is predicted that a 

reduction in Rex-1 by shRNA expression would result in the differentiation o f cells 

and therefore an increase in cell size. The system for the psiOct-4 vector could be 

used to study other genes that may be involved in maintaining the pluripotency of 

mES cells. A reduction o f gene expression o f  these genes is predicted to result in the 

differentiation o f cells.

The CCB psiRNA_Rex-l cell line and CCB psiR N A Lam bl knockdown cell lines 

that were made could be investigated further. Studies o f gene expression o f other 

genes typically expressed in mES cells or markers o f differentiation could be studied. 

The CCB psiRNA_Rex-l cell line and CCB psiRNA Lambl could be differentiated 

and differences in phenotype and gene expression as compared to control cells 

studied.

The levels o f Lam bl and Rex-1 were reduced but there was still some RNA expressed 

that may be enough to make adequate protein. This is an intrinsic disadvantage o f the 

RNAi system despite the success in making stable expression cell lines. There was no 

phenotype observed in the CCB psiRNA_Rex-l cell line as was predicted this could 

be due to the levels o f Rex-1 present being sufficient to maintain pluripotency o f mES 

cells. Alternatively knockdown o f this gene may not induce a phenotypic effect and 

therefore there is no easy way o f  assessing the knockdown. Cell lines that had a 

greater knockdown o f Rex-1 and a resulting change in phenotype are likely to be 

selected against. The ability to induce silencing once a cell line was established that 

contains the hairpin RNA would be an advantage as it overcomes the problem of
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‘selecting against’ stably transfected cell lines. Therefore a tetracycline inducible 

system was investigated for inducible gene silencing.

6.3. Inducible systems for gene specific silencing by RNAi

A system was developed for efficient cloning o f an inverted repeat into a tetracycline- 

inducible vector. The advantage o f  using such a system is cells that contain the hairpin 

expression vector can be established before knocking down the target gene. In the 

case o f this study the Tet-On system was investigated whereby the expression o f the 

hairpin dsRNA is switched on when doxycycline is added to the medium. The tet- 

inducible plasmid also expresses GFP from the same tet inducible promoter allowing 

identification o f cells that contain the vector.

A vector was designed for the efficient cloning o f an inverted repeat o f the target 

gene. The original vector constructed, designed to target Oct-4 could not be tested as 

attempts to make a mES ‘Tet-On’ cell line expressing rtTA failed. A study published 

since has shown that the rtTA is toxic to mES cells and therefore it is not possible to 

establish cell lines stably expressing rtTA (Bryja et al., 2003). A second vector was 

made containing an inverted repeat o f  part o f the LaminA/C (LMNA) gene (pBI- 

EGFPJLMNAIR) whose expression was under the control o f the tetracycline 

responsive promoter. This vector was tested in the commercially available human 

embryonic kidney cell line (HEK 293) Tet-On. This cell line stably expresses rtTA. 

The pBI-EGFP_LMNAIR vector was transfected into these cells. The cell lines were 

shown to contain the vector by the expression o f GFP when doxycycline was added to 

the cells. There was no observable decrease in LMNA expression by semi-quantitative 

PCR analysis although the LMNAIR  transcript was shown to be expressed.

The hairpin dsRNA was designed to target a 155 nt region o f the LMNA coding region 

and also included a 21 nt sequence that had previously been targeted by a functional 

shRNA (Elbashir et al., 2001a; Koper-Emde et al., 2004). Recombinant human Dicer 

has been shown to cleave dsRNA into ~22 nt fragments progressively from their 

termini (Zhang et al., 2002). It was also shown that dsRNA as small as 30bp are 

efficiently cleaved by Dicer. Therefore it is predicted that at least six siRNAs would 

be produced from the LMNA hairpin dsRNA. It is possible that the Dicer produced
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fragments may not include the validated siRNA sequence or any functional siRNAs. 

The use o f  a longer hairpin RNA would generate more siRNAs against the target gene 

but may also induce non-specific effects due to an interferon response. In one study a 

non-specific response was observed by transfection o f 500bp dsRNA but not 50bp 

dsRNA into 293 cells (Elbashir et al., 2001a). Although transfection o f a 472bp 

dsRNA into HEK 293 cells was shown to induced gene specific silencing in another 

study (Morimoto et al., 2004). Alternatively the knockdown o f LMNA may not have 

been detected by semi-quantitative PCR analysis. Further analysis using Real Time 

PCR would allow quantification o f mRNA levels so that differences in the level of 

mRNA could be calculated.

The Tet-Off system has been previously used in mES cells for the control o f the 

expression o f an Oct-4 transgene (Niwa et al., 2000). A Tet-Off system was also 

established for the inducible expression o f  Bcr-Abl, an activated tyrosine kinase 

oncogene (Era and Witte, 2000). Therefore in the future establishment o f a Tet-Off 

cell line may enable the inducible hairpin dsRNA vector targeting Oct-4 to be tested. 

In this case doxycycline would be added to the cells whilst establishing a mES Tet- 

Off cell line containing the Oct-4 inverted repeated. Withdrawal o f doxycycline 

induces hairpin dsRNA expression. This approach should be suitable for studying 

gene expression in mES cells but is less suitable for establishment o f Tet-Off 

inducible mice as the continued presence o f doxycycline has been shown to be 

embryotoxic (Moutier et al., 2003).

Alternatively, use o f other inducible systems could also be considered in this context. 

The Cre-LoxP system has been used for inducible gene specific silencing in mES 

cells (Coumoul et al., 2004). A vector was made containing a loxP flanked neomycin 

cassette inserted into the U6 RNA polymerase III promoter (pBS/U6-Neo). The 

presence o f the neomycin cassette impairs U6 promoter activity. shRNA is expressed 

from the U6 promoter when Cre recombinase is induced and the neomycin cassette is 

excised from the promoter. Several shRNAs may need to be tested before a suitable 

one for inducing gene silencing is found.
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6.4. Current literature on the use of RNAi for studying gene function 

in mES cells and mouse models

From these experiments it can not be concluded that RNAi is ‘fast, efficient’ method 

for studying ES cell gene function. Transfection o f siRNAs into cells resulted in a 

inhomogeneous population o f  cells, only some with observable knockdown. Vectors 

stably expressing shRNA were tested to overcome this problem. Selected cell lines 

should contain the vector and therefore display knockdown. The problem o f using this 

method for studying genes involved in pluripotency is that cells containing 

knockdown o f a gene are likely to have a growth disadvantage and be selected 

against. The cotransfection o f  a vector expressing GFP with the shRNA expressing 

vector allows the effect o f the knockdown to be analysed on a cell by cell basis as 

demonstrated in the use o f the psiOct-4 vector. In this case 100 cells were measured 

from control and shRNA expressing cells but this is a time consuming process and 

would not be possible to perform on a large scale unless suitably automated. An 

efficient method for cloning an inverted repeat into the pBI-EGFP* vector has been 

demonstrated. The coexpression o f EGFP with the hairpin dsRNA would also act as a 

marker for transfected cells. This use o f this vector could not be demonstrated as rtTA 

has been shown to be toxic to mES cells (Bryja et al., 2003).

At present there are only 11 published papers describing the successful use o f RNAi 

for gene silencing in mES cells (Table 6.1). Only 5 o f these studies describe the 

knockdown o f  targets other that Oct-4 and GFP. Knockdown o f Oct-4 causes 

differentiation o f  cells and presence (or absence) o f GFP can be visualised by 

fluorescence microscopy. Some o f the other genes were also chosen as the function 

o f the gene was known in mES cells and therefore were used in order to test the 

particular system o f RNAi. R asal knockdown confirmed what had already been 

demonstrated in derived Rasal homozygous null mES cells (Kunath et al., 2003). 

Knockdown o f Dnmt in mES cells was compared to characteristics o f mES cells 

mutant for Dnmt had already been reported (Li et al., 1992; Ventura et a l , 2004). It 

was predicted that knockdown o f  Fgfr2 would reduce cell proliferation as had been 

shown in other cell types (Coumoul et al., 2004). Also they already had Fgfr2 

knockout mice to compare any phenotype produced by the presence o f shRNA in 

vivo. Therefore the studies to date have demonstrated that RNAi strategies are
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possible for gene specific silencing but the methods have yet to show their worth for 

determining the function o f  novel genes.

Traditional methods for controlling gene expression include the expression o f  

transgenes, gene knockout by homologous recombination, and the production o f  

dominant negative proteins (Houdebine, 2002). These methods can introduce 

dominant gain o f  function, complete loss o f function, or dominant loss o f function of  

the target protein. In RNAi gene expression is reduced but residual levels o f target 

gene expression and target protein remain (Carmell and Hannon, 2004). Using other 

methods low levels o f RNA may be observed but this RNA usually includes a 

resistance cassette or a mutation within the sequence and therefore any protein 

produced is non-functional. Conversely residual RNA expression that escapes RNAi 

is in no way disrupted and can produce protein, levels o f  which may be enough to 

rescue the phenotype.

126



Genes
Targeted

Method of inducing RNAi Notes Reference

GFP Transfection of dsRNAs or a 
vector expressing hairpin 
dsRNA (547bp).

GFP expression was decreased by up to 70% as measured by 
fluorescence o f cell lysate but had ‘recovered’ by day 5 after 
transfection.

(Yang et al., 2001)

GFP Transfection of shRNA 
expressed from an RNA 
polymerase II promoter.

Construct was transcribed does not have a polyA but it is likely a 
7MeG 5' cap is added. Transcript should have five unpaired 
residues at its 3' end and a 13 nt 5' overhang.

(Grabarek et al., 
2003)

Rasal
(RasGAP)

Electroporation of shRNA 
expressing vector from a HI 
RNA polymerase III promoter.

12 drug resistant ES cell lines were established. Protein levels, 
analysed by Western blotting, showed a significant reduction in 
RasGAP in 11 cell lines and only a slight reduction in the other 
cell line.

(Kunath et al., 2003)

CD8, p53, a 
neuron 
specific 
isoform of 
Mena

Lentiviral based vector that 
expresses shRNA from a U6 
RNA polymerase III promoter.

The vector also expresses EGFP as a reporter gene. GFP 
expressing mES cells were selected by cell sorting and injected 
into blastocysts.

(Rubinson et al., 
2003)

EGFP, Oct- 
4.

Transfected vector expressing 
shRNA from U6 or HI RNA 
polymerase III promoter

The vector also contained an independently expressed dsRed 
reporter gene. Cells were FACS sorted by dsRed expression on 
day 1.5 to enrich the population.

(Velkey and O'Shea, 
2003)

Oct-4 Transfection o f Dicer-produced 
pools of siRNAs.

Transfected cells differentiated to trophectoderm like cells. (Carpenter and
Zemicka-Goetz,
2004)

Fgfr2,
Survivin.

Transfection of vector that 
expresses shRNA under an 
inducible system that uses the 
Cre-LoxP system

The mouse U6 RNA polymerase III promoter has a loxP flanked 
neomycin cassette that prevents expression o f the shRNA. A 
tamoxifen inducible cre construct was used to remove the 
neomycin cassette allowing expression the shRNA.

(Coumoul et al., 
2004)

Table 6.1. Studies of gene expression in mouse embryonic stem cells using RNAi.
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Genes
Targeted

Method of Inducing RNAi Notes Reference

Oct-4 Transfection o f restriction 
enzyme generated siRNAs 
(REGS)

Six sense and antisense targeting Oct-4 by the REGS method. 
Three o f these sense strand sequences were shown to induce gene 
specific silencing of Oct-4.

(Sen et al., 2004)

GFP Transfection of plasmid 
expressing shRNA from a mouse 
U6 promoter

GFP expression study by flow cytometry. (Tang et al., 2004)

Dmntl Transfection of lentiviral based 
vector that expresses shRNA 
from U6 promoter.

Two vectors were constructed for conditional cre-lox regulated 
RNAi.

(Ventura et al., 2004)

EGFP, Oct-4 Transfection o f siRNAs FACS analysis showed GFP expression was reduced in 97% of 
transfected cells.

(Takada et al., 2005)

Table 6.1. Studies of gene expression in mouse embryonic stem cells using RNAi (continued).
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Non specific effects have been observed in the use o f shRNAs where gene expression 

o f genes other than the target is reduced. These off target effects may occur when 

shRNAs target an mRNA for degradation that is partly homologous to the shRNA. It 

has been shown that some mismatches between the target sequence and the shRNAs 

can be tolerated and still result in a reduction in gene expression. Off target effects 

have been shown to be induced by siRNAs with as few as 11 nt o f complementarity to 

mRNA (Jackson et al., 2003). It has also been shown that mismatches between the 

target mRNA and up to 4 nt residues at the 5' end or the 3' terminus o f the siRNA 

incorporated into RISC do not result in complete loss o f cleavage activity (Martinez 

and Tuschl, 2004). Therefore in order to demonstrate the phenotype observed in mES 

cells expressing shRNA is due to the reduction o f the target gene, at least two 

independent cell lines would need to be made each targeting a different region o f the 

gene.

Other o ff target effects include the induction o f an interferon response (Bridge et al., 

2003). Human lung fibroblasts were infected with the lentiviral vector containing a 

shRNA expression cassette that reduced target gene expression to 3% o f the normal 

level. Microarray analysis identified induction o f  interferon target genes as well as a 

reduction in gene expression o f  the targeted gene. Transfection o f siRNA 

corresponding to the lentiviral produced shRNA also triggered an interferon response 

showing that it was not due to the presence o f  the lentivirus. In another study Sledz 

and colleagues studied the non-specific effects o f siRNA transfection into cells (Sledz 

et al., 2003). siRNAs targeting Lamin A/C and GAPDH were transfected into a 

human glioblastoma line. A siRNA dose-dependent decrease in the target gene was 

observed as expected but there was also an increase in the expression o f interferon- 

stimulated genes. In the use o f mES cells expressing transgenes or dominant negative 

proteins the location o f the genetic modification is known and stable. Therefore any 

change in phenotype can be attributed to the presence o f the mutation.

The difficulties o f  establishing beyond doubt the phenotypic consequences o f RNAi 

have also been demonstrated in vivo. The generation o f transgenic RNAi mice using 

vectors expressing shRNAs has been shown by several groups (Table 6.2). One o f the 

limitations o f using shRNAs for the production o f transgenic mice is that shRNAs can
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cause different levels o f knockdown o f the target gene or no affect at all depending on 

the region o f  the mRNA targeted. Carmell and colleagues were unsuccessful in 

producing transgenic mice using shRNA expressing vectors targeting 7 different 

genes (Carmell et al., 2003). Three different shRNA constructs were designed for 

each gene and each was injected into the pronuclei to produce transgenic founder 

mice. The targeted genes were chosen as the expected phenotype was known. None of  

the animals produced showed distinct or reproducible phenotypes. In a different 

approach by the same group the ability o f  the expressed shRNA to induce gene 

specific gene silencing was assessed in mES cells (Carmell et al., 2003). A shRNA 

expressing vector targeting the 5' end o f  N eill coding region was electroporated into 

mES cells. The knockdown o f  the target gene and protein were confirmed. Two 

independent mES cell lines that had a -80%  reduction in N eill protein due to the 

presence o f the shRNA construct were injected into blastocysts. Chimeras were 

outcrossed and germline expression was observed. N eill levels measured in liver 

extracts were shown to be reduced by the same amount as in the ES cell lines from 

which the mice were made. Therefore in this case assessment o f the level of  

knockdown induced by an individual shRNA could be assessed in mES cells to ensure 

that the expression o f the target gene is reduced in transgenic mice produced using 

these cells; although this would limit targeting by RNAi to gene expressed in mES 

cells. Also in RNAi induced gene silencing the levels o f mRNA expression are 

reduced but some protein is still expressed. This could be enough to maintain the 

wildtype phenotype in vivo.

The aim o f  this thesis was to establish methods for studying gene function in mES 

cells using RNAi. The methods demonstrated in this thesis have not shown RNAi to 

live up to its promise o f ‘quick and efficient’ method for establishing gene function. 

At present most other mES cell studies (Table 6.1) have only confirmed what is 

already know about gene function. Establishing the function o f novel genes may be 

more difficult and the production o f knockout mice is still the best option particularly 

using facultative deletion e.g. cre or tamoxifen methods.
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Gene targeted Method Notes Ref
EGFP Injection o f a vector that 

expresses shRNA targeting GFP 
into the pronuclear stage o f 
fertilised mouse eggs, (vector also 
expresses red fluorescent protein)

GFP was measures in embryos by immunoblotting 
GFP expression was found to have been reduced to between 4 
and 24% of the control level in the embryos containing the 
GFP shRNA expressing vector as compared to the control. 
Looking at individual organs, ‘the silence affect was nearly 
complete’ in the heart and pancreas. The brain, liver, kidney 
and skin also had reduced fluorescence.

(Hasuwa et a l , 
2002)

Neill Electroporation of a vector 
expressing shRNA into mES 
cells. Stable cell lines selected 
then injected into blastocysts.

ES cell lines showed a -80%  reduction o f NEIL 1 protein. A 
similar level knockdown was observed in vivo.

(Carmell et al., 
2003)

Rasal
(RasGAP)

Electroporation of shRNA 
expressing vector from a HI RNA 
polymerase promoter. Embryos 
were produced using the 
tetraploid aggregation method.

Embryos were dissected at embryonic day 9.5. Embryos 
derived from the ES cell line with only a slight decrease in 
RasGAP expression were the same as the wildtype. Embryos 
produced from three ES cell lines that had significantly 
reduced RasGAP had phenotypes similar to that of the null 
phenotype.

(Kunath et al., 
2003)

CD8, CD25, 
p53 Mena+

Use o f lentiviral vector containing 
a shRNA expression cassette. 
mES cells stably expressing 
hpRNA targeting CD8 were 
injected into blastocyst. In the 
case of CD8, CD25, p53 and 
Mena+ transgenic animals were 
generated by direct lentiviral 
infection of single cell embryos.

The lentiviral vector also contained GFP expressed from an 
independent promoter. Chimeric mice were shown to have 
GFP and shRNA expression in all tissues tested.

(Rubinson et al., 
2003)

Table 6.2. Mouse models made using RNAi technology.
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Gene targeted Method Notes Reference
Ski
(transcriptional
corepressor)

Injection o f a vector that 
expresses long dsRNA (540bp) 
that lacks the 5'-cap structure and 
the 3'-poly(A) tail into fertilised 
mouse oocytes.

Histological analysis. Mice embryos that expressed the hairpin 
dsRNA targeting Ski had phenotypes that were similar to those 
of ̂ /-deficien t embryos.

(Shinagawa and 
Ishii, 2003)

EGFP Transduction of lentiviral vector 
expressing shRNA from HI 
promoter into blastocysts.

A reduction in GFP was seen in blastocysts and the resulting 
progeny also showed knockdown o f GFP.

(Tiscomia et al., 
2003)

CD8, p53 Used a cre-lox conditional vector 
that expresses shRNA to infect 
mES cells. Three ES cell lines 
were used for generating 
conditional knockdown mice.

Transmission of the vector was observed in progeny for two of 
the ES cell clones used.

(Ventura et al 
2004)

Table 6.2. Mouse models made using RNAi technology (Continued)
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6.5. Conclusion

Since the discovery o f RNAi in C. elegans 7 years ago there have been many 

advances in the understanding o f  the mechanism by which dsRNA induces gene 

specific silencing (Fire et al., 1998). Injection o f dsRNAs into mouse oocytes and 

preimplantation embryos and transfection o f dsRNA into mES cells were all 

demonstrated to induce specific gene silencing (Svoboda et al., 2000; Wianny and 

Zemicka-Goetz, 2000; Yang et al., 2001). The transfection o f dsRNAs into 

mammalian somatic cell lines did not induce potent and specific gene silencing 

(Caplen et al., 2000; Ui-Tei et al., 2000). The interferon response present in these cell 

lines led to non-specific mRNA degradation and inhibition o f protein synthesis. The 

discovery o f siRNAs as intermediates in the processing o f the dsRNA allowed the 

development o f methods for RNAi induction in mammalian cell lines as these do not 

trigger an interferon response (Elbashir et al., 2001a).

RNAi has shown to be an invaluable tool for determining gene function in C. elegans 

and Drosophila. RNAi libraries targeting all o f the predicted genes in mouse, rat and 

human cells combined with the use o f  a large number o f cell based assays allows high 

throughput screening o f gene function in cell lines (Cullen and Arndt, 2005). These 

RNAi libraries have been used to identify genes various cell pathways including the 

p53 pathway (Bems et al., 2004) in human fibroblast cells and those involved in 

proteasome function in protein degradation (Paddison et al., 2004) in HEK 293T 

cells.

The use o f RNAi has been more successful for studying gene function in lower 

organisms such as Drosophila and C. elegans. This is because dsRNA can be used for 

inducing gene silencing in these organisms whereas dsRNA induces an interferon 

response in mammalian cell lines. The use o f siRNAs has overcome this to some 

extent, but not all are functional unlike dsRNA that targets across the mRNA. Also in 

the case o f C. elegans there is amplification o f the RNAi silencing effect through the 

action o f an RNA-dependent RNA polymerase (RdRP) (Sijen et al., 2001). The RdRP 

converts the target mRNA into dsRNA that can be cleaved by Dicer. This produces 

new pools o f  siRNA that silence the expression o f the target gene. This amplification 

o f RNAi has not been shown in mammalian cells. The induction o f RNAi in C.
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elegans using dsRNA is relatively easy. For example worms can be soaked in dsRNA 

solution (Tabara et al., 1998) or fed dsRNA expressing bacteria (Maeda et al., 2001). 

Delivery systems for siRNAs into mammalian cells present more o f a challenge. The 

affect o f RNAi induced knockdown o f gene expression in C. elegans can easily be 

scored by observations o f embryonic lethality, morphological defects and retarded 

growth using a dissecting microscope. Conversely, scoring mammalian cells 

phenotypically presents more o f  a challenge.

In this study the objective was to develop methods for studying gene function in mES 

cells utilising RNAi. The methods demonstrated in this thesis have shown RNAi 

induced silencing o f 3 genes expressed in mES cells. Improvements to the design and 

delivery o f effective siRNAs and the development o f conditional systems for the 

expression o f shRNAs will improve the efficiency o f RNAi in mES cells. In the future 

the use o f RNAi libraries has the potential to increase the throughput o f RNAi for 

studying mES cell gene function with the use o f  suitable reporter systems.
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A l. l .  pBI-EGFP

minCMV minCMV

SV40 poly A p-globin poly A

Col E1 ori

Asel Asel

Modified MCS
600 Spe I Clal
A G T C A G C T G A C G C G T C G G G A C T A G T C C C G A T C G A T G G A C C A T T

645 X ho l B s tB I  N heI
G C A C T C G A G C G G A C T T C G A A G C A T G C G C G T G C T A G C G C G C C C T

Figure A l.l  pBI-EGFP (BD Biosciences, Oxford, UK). This vector was used for 

cloning the inverted repeats o f part o f the Oct-4 and Lamin A/C cDNA (Chapter 5). 

The MCS site was modified for ease of cloning. The plasmid has a bidirectional 

promoter that has the tetracycline response element (TRE) positioned between two 

identical minimal CMV promoters (Pm inCM v). One promoter controls the expression of 

green fluorescence protein (GFP) and the second promoter controls the expression of 

hairpin dsRNA (hpRNA) that had been cloned in. Bacteria containing the vector can 

be selected for using ampicillin. The vector was digested with AseI restriction 

enzymes and then gel purified before transfection into cells.
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A 1.2. psiRNA-hHlzeo

Bbs\ Bbs\ 
Nco I

r H1 RNA poly III promoter

pMB1 Ori SV40 enhancer

hEF1-HTLV promoter

p-globin poly A Nco|

Figure A1.2. psiRNA-hHlzeo (Autogen Bioclear UK Ltd., Wiltshire, UK.). This 

vector was used for expression o f shRNA targeting Laminin B l and Rex-1 (Chapter 

4). Annealed oligos are cloned into the Bbsl sites o f the plasmid. Insertion o f the 

oligos replaces lacZ allowing identification o f bacteria transformed with vector 

containing the insert. Presence o f the insert was confirmed by Ncol restriction digest. 

Expression o f Sh ble confers resistance to the antibiotic Zeocin™ allowing selection 

o f transfected cells containing the vector. The shRNA is transcribed from the HI 

RNA polymerase III promoter.
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A 1.3. psiOct-4

H1 RNA poly III promoter ^  Oct-4 IR

Asp718 Xba I

SV40 polyA

pUC orl

SV40

Figure A1.3. psiOct-4 [Modified psi vector from Gerald Gish (Kunath et al., 2003). 

A derivative of this vector (psiOct4) was made (by Lars Grotewold, Edinburgh 

University, UK).] Expression of the shRNA targeting oct-4 is under the control o f the 

Human HI RNA polymerase III promoter. The vector also has neomycin resistance 

for selection o f stably transfected cell lines. Aspl\%  and Xbal sites can be used for 

cloning of other inverted repeat sequences.
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A1.4. pTet-On

rtTA
“ I SV40 poly A

VP16rtetRCMV

SV40

(̂ 5 3 ^—[
Seal

Col E1 orl

Figure A1.4. pTet-On (BD Biosciences, Oxford, UK) The pTet-On vector contains a 

strong immediate early promoter o f cytomegalovirus ( P c m v )  from which the reverse 

tetracycline-responsive transcriptional activator protein, rtTA, is expressed. rtTA is 

made of a fusion protein between the repressor (rTetR) o f the Tn 10 tetracycline 

resistance operon of E. coli and a transcriptional activation domain of the VP 16 

protein o f herpes simplex virus. Cell lines stably transfected with the vector can be 

selected with neomycin.
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A1.5. pTP6

HCMVIEE CBA promoter

 L  ^  Tau-MmGFP IRES

bGH poly A

Col E1 orl

Figure A1.5. pTP6 (Pratt et al., 2000) The vector expresses a tau-MmGFP fusion 

transgene that can be observed by fluorescence microscopy when transfected into 

cells. The tau-MmGFP is linked to the puromycin resistance gene by an internal 

ribosome entry site (IRES) thereby allowing selection o f cells stably expressing the 

vector. The expression of both the tau-MmGFP and the puromycin is driven by a 

human cytomegalovirus immediate enhancer (HCMVIEE) coupled to a chicken p- 

actin promoter.
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A2.1. Oct-4 (M34381)

GTGAGCCGTCTTTCCACCAGGCCCCCGGCTCGGGGTGCCCACCTTCCCCATGGCTGG
ACACCTGGCTTCAGACTTCGCCTCCTCACCCCCACCAGGTGGGGGTGATGGGTCAGC
AGGGCTGGAGCCGGGCTGGGTGGATTCTCGAACCTGGCTAAGCTTCCAAGGGCCTCC
AGGTGGGCCTGGAATCGGACCAGGCTCAGAGGTATTGGGGATCTCCCCATGTCCGCC
CGCATACGAGTTCTGCGGAGGGATGGCATACTGTGGACCTCAGGTTGGACTGGGCCT
AGTCCCCCAAGTTGGCGTGGAGACTTTGCAGCCTGAGGGCCAGGCAGGAGCACGAGT
GGAAAGCAACTCAGAGGGAACCTCCTCTGAGCCCTGTGCCGACCGCCCCAATGCCGT
g a a g t t g g a g a a g g t g g a a c c a a c t c c c g a g g a g t c c c a g g a c a t g a a a g c c c t g c a

G AAGG AG C T AG AAC AGT T T G C C AAGCT G CT GAAG CAGAAGAGGAT CAC C T T GGGGT A 
CACCCAGGCCGACGTGGGGCTCACCCTGGGCGTTCTCTTT G AAAGGTGTTCAGCCA 
GACCACCATCTGTCGCTTCGAGGCCTTGCAGCTCAGCCTTAAGAACATGTGTAAGCT 
GCGGCCCCTGCTGGAGAAGTGGGTGGAGGAAGCCGACAAC^HHHH|HB
B H TGCAAATCGGAGACCCTGGTGCAGGCCCGGHBBBi^BBHH*TTGA
GAACCGTGTGAGGTGGAGTCTGGAGACCATGTTTCTGAAGTGCCCGAAGCCCTCCCT 
ACAGC AGAT CACT CACAT CGC CAAT CAGCTTGGGCT AGAGAAGGAT GTGGT T CGAGT 
ATGGTTCTGTAACCGGCGCCAGAAGGGCAAAAGATCAAGTATTGAGTATTCCCAACG 
AGAAGAGTATGAGGCTACAGGACACCTTTCCCAGGGGGGGCTGTATCCTTTCCTCTG 
CCCCCAGGTCCCCACTTTGGCACCCCAGGCTATGGAAGCCCCCACTTCACCACACTC 
TACTCAGTCCCTTTTCCTGAGGGCGAGGCCTTTCCCTCTGTTCCCGTCACTGCTCTG 
GGCTCTCCCATGCATTCAAACTGAGGCACCAGCCCTCCCTGGGGATGCTGTGAGCCA 
AGGCAAGGGAGGTAGACAAGAGAACCTGGAGCTTTGGGGTTAAATTCTTTTACTGAG 
GAGGGATTAAAAGCACAACAGGGGTGGGGGGTGGGATGGGGAAAGAAGCTCAGTGAT 
GCTGTTGATCAGGAGCCTGGCCTGTCTGTCACTCATCATTTTGTTCTTAAATAAAGA 
CT GGACACACAGT

Oct-4A siRNA Oct-4B siRNA, Oct-4 C siRNA, psiOct4
O c t- 4  IR _F  GGCCACTAGTATGGAACAGTTTGCC 
O c t -4  IR_R GGCCTTCGAACTTCGGGCACTT

A2.1 Sequence of Oct-4. The regions highlighted are the regions that were targeted 

by siRNAs (Chapter 3) or the psiOct4 vector (Chapter 4). The red sequence is the 

fragment cloned into the pBI-EGFP* vector as an inverted repeat that was amplified 

using the primers Oct-4 IR_F and Oct-4 IR_R (Chapter 5). These primers were 

designed so as to add SpeI and BstBl restriction sites onto the end of the PCR product 

that could subsequently be used for cloning it.
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A2.2. Rex-1 (NM_009556)

c t c c t a g c c g c c t a g a t t t c c a c t g t g g c t c t g g g t a c g a g t g g c a g t t t c t t c t t g

g g a t t t c a g a a a g g a a a c c a a g g a g g a a a t a g a g c g c a c c g c a t c g c t g t g g g c a t t

a g g t a a g t c c t a g a a a t g g a c t a a g a g c t g g g a c a c g t g g c a a a a g a a g a t a g t c t t
c t t c t c t c a a t a g a g t g a g t g t g c a g t g c a g c c a g c a g c t c c t g c a c a c a g a a g a a a
g c a g g a t c g c c t c a c t g t g c t g c c t c c a a g t g t t g t c c c c a a a t a c c a c t g a c c a a a

a a g c a g g t g t t t g c g g a t c a g t g c c c c c t g g a a g t g a g t c a t a g g c a t t g t t c a a g a

a g g a a g c a g c t a a g a c a a c a t g a a t g a a c a a a a a a t g a a t g a a c a a a t g a a g a a a a c

g g c a a a g a c a a g t g g c c a g a a a g g g c c g g g c g g a a g a g c c c t c g a c a g a c t g a c c c t

a a a g c a a g a c g a g g c a a g g c c a g t c c a g a a t a c c a g a g t g g a a g c t c c c c g t g t a a c

a t a c a c c a t c c g g g a t g a a a g t g a g a t t a g c c c c g a g a c t g a g g a a g a t g g c t t c c c

t g a c g g a t a c c t a g a g t g c a t c a t a c g a g g t g a g t t t t c c g a a c c c a t t c t g g a a g a

g g a t t t c c t t t t t a a a t c c t t c g a a a g c t t g g a g g a a g t g g a g c a a a a c c t t t c t c g

c c a g g t t c t g g a a g c g a g t t c c c t t c t c g a g t c t t c t t t g g a g t a c a t g a c a a a g g g

g a c g a a g c a a g a g a a g a c a g a g g t c a c g c a a g a g a c c c c t c c g c t g a g g g t t g g g g c

g a g c t c a t t a c t t g c a g g c g g c c c t g c a g a g a a g c c a g a g g g c g g t g t g t a c t g t g g

t g t c t t a t c g a t g c t g g a g t g t c c t c a a g c c g g g t g c a a g a a g a a g c t g a g g g g t a a

a a c c g c c c t g a g g a a g c a c a t g c t t g t c c a c g g g c c c c g g c g g c a c g t g t g t g c a g a

g t g t g g c a a a g c c t t c a c g g a g a g c t c g a a a c t a a a g c g a c a t t t t c t g g t g c a c a c

c g g a g a g a a g c c g t a t c a g t g c a c g t t c g a a g g c t g t g g g a a g c g t t t c t c c c t g g a

t t t c a a c t t g c g c a c c c a c a t c c g c a t c c a c a c c g g g g a g a g g c g c t t t g t g t g t c c

t t t t g a t g g c t g c g a g a a g a g c t t t a t t c a g t c a a a t a a c c a g a a g a t t c a c a t c c t

a a c c c a c g c a a a g g c a g g g a a g a a a t g c t g a a g g t g g a g a c a g a t t g t c c t c a g g c t

g g g t a g t c t t a a t g a c a g a g g c a c t g g g g a t a c a c g c a t t a t g t a c a g a t t g t t a t t

t g t a g g g a t a g a t t c t a t g g c t a a a a t a a t t t t g c a a c t c t t c a t t a t a c a g t t t t a

a g g c c t c t t t t g g t a t t c c a t g g c a t a g t t c c a a c a g g a a a g t g a a t g g t g a a a g c a

t a a t c c t t a c t a t a t g t g c t a t t g a a g g g g a t g g g g a c t t t t g c a t a c g g c a g a a a a

t c a g t t a t t t t t a a c t a t g c a g t t c c t a a t t g c c t a g c t t t t a c c t t t a g a a a t a t g

c t t c a t g g t a a a t t t g a t a a t c c t a a a g a a t g g c c a a c t t t g g c a g t a g t c a a c a a a

t g a a t a c a t a t t t c t a a a t t t t a t g t t t t g a t t t t t g t t t t t c t c a t t g t a c c a a a c

t a t a t t a a t c a t a g t t a a a t g t g a a t a g t t a c a a a a a a g t t g a t c c a t c t g a a g a t t

t t a g a t g t t t c a a a a t a a a a g g a a a t a a a a c

A2.2 Rex-1 The region targeted by the psiRNA_Rex-l vector (Chapter 4) is 

highlighted.
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Appendix 2: Sequences of regions targeted for RNAi

A2.3 Laminin B1 (Lambl) (NM 008482)

a t g g a a g g g c c c c t c t c c t c t c t c c c a a c a t t t g c c t t t t c t c c c c g c t a c c t c t c c

a g a a a g g a a g a c c c g a a g a a a a g a c a g g c a g c t t g c c t g c t g c g t c c t c c t t c c c g t

g c c g c g t c c c c t c g t c t g c g a g g a c t g g a c a t g g g g c t g c t c c a g g t g t t c g c c t t t

g g t g t c c t a g c c c t a t g g g g c a c c c g a g t g t g c g c t c a g g a a c c g g a g t t c a g c t a t

g g c t g c g c a g a a g g c a g c t g c t a c c c t g c c a c t g g c g a c c t t c t c a t c g g c c g a g c g

c a a a a g c t c t c c g t g a c t t c g a c a t g t g g a c t g c a c a a a c c a g a g c c c t a c t g t a t t

g t t a g c c a c c t g c a g g a g g a c a a g a a a t g c t t c a t a t g t g a c t c c c g a g a c c c t t a t

c a c g a g a c c c t c a a c c c c g a c a g c c a t c t c a t t g a g a a c g t g g t c a c c a c a t t t g c t

c c a a a c c g c c t t a a g a t c t g g t g g c a a t c g g a a a a t g g t g t g g a g a a c g t g a c c a t c
c a a c t g g a c c t g g a a g c a g a a t t c c a t t t c a c t c a t c t c a t c a t g a c c t t c a a g a c a

t t c c g c c c a g c c g c c a t g c t g a t c g a g c g g t c t t c t g a c t t t g g g a a g a c t t g g g g c

g t g t a c a g a t a c t t c g c c t a c g a c t g t g a g a g c t c g t t c c c a g g c a t t t c a a c t g g a

c c c a t g a a g a a a g t g g a t g a c a t c a t c t g t g a c t c t c g a t a t t c t g a c a t t g a g c c c

t c g a c a g a a g g a g a g g t a a t a t t t c g t g c t t t a g a t c c t g c t t t c a a a a t t g a a g a c

c c t t a t a g t c c a a g g a t a c a g a a t c t a t t a a a a a t c a c c a a c t t g a g a a t c a a g t t t

g t g a a a c t g c a c a c c t t g g g g g a t a a c c t t t t g g a c t c c a g a a t g g a a a t c c g a g a g

a a g t a c t a t t a c g c t g t t t a t g a t a t g g t g g t t c g a g g g a a c t g c t t c t g c t a t g g c

c a c g c c a g t g a a t g c g c c c c t g t g g a t g g a g t c a a t g a a g a a g t g g a a g g a a t g g t t

c a c g g g c a c t g c a t g t g c a g a c a c a a c a c c a a a g g c c t g a a c t g t g a g c t g t g c a t g

g a t t t c t a c c a c g a t t t g c c g t g g a g a c c t g c t g a a g g c c g g a a c a g c a a c g c c t g c

a a a a a a t g t a a c t g c a a t g a a c a t t c c a g c t c g t g t c a c t t t g a c a t g g c a g t c t t c

c t g g c t a c t g g c a a c g t c a g c g g g g g a g t g t g t g a t a a c t g t c a g c a c a a c a c c a t g

g g g c g c a a c t g t g a a c a g t g c a a a c c g t t c t a c t t c c a g c a c c c t g a g a g g g a c a t c

c g g g a c c c c a a t c t c t g t g a a c c a t g t a c c t g t g a c c c a g c t g g t t c t g a g a a t g g c

g g g a t c t g t g a t g g g t a c a c t g a t t t t t c t g t g g g t c t c a t t g c t g g t c a g t g t c g g

A2.3 Part of the sequence of the coding sequence of Laminin B1 (Lam bl). The

region targeted by the psiRNALam bl vector (Chapter 4) is highlighted. (Regions 

shown 1-1425 nt, actual coding region from 1- 5504 nt).
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Appendix 2: Sequences of regions targeted for RNAi

A2.4 LaminA/C (LMNA) (X03444)
a t g g a g a c c c c g t c c c a g c g g c g c g c c a c c c g c a g c g g g g c g c a g g c c a g c t c c a c t

c c g c t g t c g c c c a c c c g c a t c a c c c g g c t g c a g g a g a a g g a g g a c c t g c a g g a g c t c

a a t g a t c g c t t g g c g g t c t a c a t c g a c c g t g t g c g c t c g c t g g a a a c g g a g a a c g c a

g g g c t g c g c c t t c g c a t c a c c g a g t c t g a a g a g g t g g t c a g c c g c g a g g t g t c c g g c

a t c a a g g c c g c c t a c g a g g c c g a g c t c g g g g a t g c c c g c a a g a c c c t t g a c t c a g t a

g c c a a g g a g c g c g c c c g c c t g c a g c t g g a g c t g a g c a a a g t g c g t g a g g a g t t t a a g

g a g c t g a a a g c g c g c a a t a c c a a g a a g g a g g g t g a c c t g a t a g c t g c t c a g g c t c g g

c t g a a g g a c c t g g a g g c t c t g c t g a a c t c c a a g g a g g c c g c a c t g a g c a c t g c t c t c
a g t g a g a a g c g c a c g c t g g a g g g c g a g c t g c a t g a t c t g c g g g g c c a g g t g g c c a a g

c t t g a g g c a g c c c t a g g t g a g g c c a a g a a g c a a c t t c a g g a t g a g a t g c t g c g g c g g

g t g g a t g c t g a g a a c a g g c t g c a g a c c a t g a a g g a g g a a c t g g a c t t c c a g a a g a a c

a t c t a c a g t g a g g a g c t g c g t g a g a c c a a g c g c c g t c a t g a g a c c c g a c t g g t g g a g

a t t g a c a a t g g g a a g c a g c g t g a g t t t g a g a g c c g g c t g g c g g a t g c g c t g c a g g a a

c t g c g g g c c c a g c a t g a g g a c c a g g t g g a g c a g t a t a a g a a g g a g c t g g a g a a g a c t

t a t t c t g c c a a g c t g g a c a a t g c c a g g c a g t c t g c t g a g a g g a a c a g c a a c c t g g t g

g g g g c t g c c c a c g a g g a g c t g c a g c a g t c g c g c a t c c g c a t c g a c a g c c t c t c t g c c

c a g c t c a g c c a g c t c c a g a a g c a g c t g g c a g c c a a g g a g g c g a a g c t t c g a g a c c t g

g a g g a c t c a c t g g c c c g t g a g c g g g a c a c c a g c c g g c g g c t g c t g g c g g a a a a g g a g

c g g g a g a t g g c c g a g a t g c g g g c a a g g a t g c a g c a g c a g c t g g a c g a g t a c c a g g a g

c t t c t g g a c a t c a a g c t g g c c c t g g a c a t g g a g a t c c a c g c c t a c c g c a a g c t c t t g

g a g g g c g a g g a g g a g a g g c t a c g c c t g t c c c c c a g c c c t a c c t c g c a g c g c a g c c g t

g g c c g t g c t t c c t c t c a c t c a t c c c a g a c a c a g g g t g g g g g c a g c g t c a c c a a a a a g

c g c a a a c t g g a g t c c a c t g a g a g c c g c a g c a g c t t c t c a c a g c a c g c a c g c a c t a g c

g g g c g c g t g g c c g t g g a g g a g g t g g a t g a g g a g g g c a a g t t t g t c c g g c t g c g c a a c

a a g t c c a a t g a g g a c c a g t c c a t g g g c a a t t g g c a g a t c a a g c g c c a g a a t g g a g a t

g a t c c c t t g c t g a c t t a c c g g t t c c c a c c a a a g t t c a c c c t g a a g g c t g g g c a g g t g

g t g a c g a t c t g g g c t g c a g g a g c t g g g g c c a c c c a c a g c c c c c c t a c c g a c c t g g t g

t g g a a g g c a c a g a a c a c c t g g g g c t g c g g g a a c a g c c t g c g t a c g g c t c t c a t c a a c

t c c a c t g g g g a a g a a g t g g c c a t g c g c a a g c t g g t g c g c t c a g t g a c t g t g g t t g a g

g a c g a c g a g g a t g a g g a t g g a g a t g a c c t g c t c c a t c a c c a c c a c g g c t c c c a c t g c

a g c a g c t c g g g g g a c c c c g c t g a g t a c a a c c t g c g c c t c g c g c a c c g t g c t g t g c g g

g a c c t g c g g g c a g c c t g c c g a c a a g g c a t c t g c c a g c g g c t c a g g a g c c c a g g t g g g

c g g a c c c a t c t c c t c t g g c t c t t c t g c c t c c a g t g t c a c g g t c a c t c g c a g c t a c c g

c a g t g t g g g g g g c a g t g g g g g t g g c a g c t t c g g g g a c a a t c t g g t c a c c c g c t c c t a

c c t c c t g g g c a a c t c c a g c c c c c g a a c c c a g a g c c c c c a g a a c t g c a g c a t c a t g t a

a t c t g g g a c c t g c c a g g c a g g g g t g g g g g t g g a g g c t t c c t g c g t c c t c c t c a c c t c

a t g c c c a c c c c c t g c c c t g c a c g t c a t g g g a g g g g g c t t g a a g c c a a a g a a a a a t a a

LMNA IR _F  GGCCACTAGTATGAGATGCTGCGGC 
LMNA IR_R GGCCTTCGAACTCACGCTGCTTCCC

A2.4 Sequence of the human Lamin A/C coding region (LMNA). The region 

highlighted is the fragment cloned into the pBI-EGFP* vector as an inverted repeat 

that was amplified using the primers LMNA IR_F and LMNA IR_R (Chapter 5). 

These primers were designed so as to add SpeI and BstB\ restriction sites onto the end 

of the PCR product that could subsequently be used for cloning it.
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Appendix 3: Cell Area Measurements

Area of Experiment cells (pm*) Area of Control cells (pm2)

173 941 1562 2558 161 389 754 1711
199 960 1594 2633 175 389 766 1752
278 972 1610 2657 182 391 794 1766
326 989 1627 2873 194 406 826 1783
372 991 1642 2899 211 430 852 1798
382 1008 1726 3106 214 439 886 1850
396 1049 1752 3221 235 470 895 1894
442 1073 1769 3245 238 485 905 2023
478 1092 1776 3262 240 490 922 2095
538 1157 1855 3329 242 583 926 2179
540 1224 1874 3389 245 600 1027 2249
571 1248 1913 3466 262 605 1032 2338
617 1253 2042 3511 271 614 1032 2678
631 1310 2052 3571 276 617 1056 2798
634 1358 2057 3732 290 638 1068 2842
636 1361 2100 4296 295 667 1123 2957
646 1375 2170 4399 302 670 1169 3398
660 1380 2174 4447 305 689 1205 3670
703 1390 2189 4447 307 694 1250 3842
715 1416 2215 4769 312 715 1387 5189
720 1426 2266 4834 314 715 1394 5534
797 1445 2393 5148 322 718 1462 5558
833 1450 2429 5249 346 739 1507 7416
898 1481 2486 5422 362 742 1627 7589
898 1481 2534 13174 370 754 1699 9816

Table A3.1 Cell measurements for Experiment 1 (Chapter 4)

169



Appendix 3: Cell Area Measurements

Area of Experiment cells (pm2) Area of Control cells (pm2)

286 1268 2659 4295 123 245 286 409
368 1309 2699 4335 123 245 286 409
368 1350 2699 4908 123 245 327 450
409 1350 2822 4908 164 245 327 450
450 1391 2863 5235 164 245 327 450
450 1513 2863 5440 164 245 327 450
532 1636 2904 5522 164 245 327 491
573 1677 2986 5726 164 245 327 491
573 1718 3108 5726 164 245 327 532
573 1759 3149 5767 205 245 327 532
614 1800 3231 6299 205 245 327 654
695 1881 3313 6544 205 245 327 695
736 1922 3354 6585 205 245 368 736
111 1922 3354 6626 205 286 368 1023
818 1963 3436 7198 205 286 368 1186
859 2086 3558 8139 205 286 368 1227
900 2127 3640 8712 205 286 368 1432
982 2168 3681 9489 205 286 368 1677
982 2209 3763 9939 205 286 409 1718
982 2209 3886 10961 205 286 409 3436
1145 2495 3926 11288 245 286 409 4254
1145 2536 4049 11370 245 286 409 4540
1186 2536 4049 12229 245 286 409 4622
1186 2618 4049 15256 245 286 409 5072
1227 2659 4172 22086 245 286 409 6340

Table A3.2. Cell measurements for Experiment 2 (Chapter 4)
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Appendix 3: Cell Area Measurements

Area of Experiment cells (pm2) .............. ' ~ ..... ' "" J
Area of Control cells (pm )

286 1104 1800 3149 164 286 450 1391
368 1145 1800 3272 164 286 450 1432
368 1145 1963 3477 164 327 450 1472
409 1268 2004 3517 164 327 450 1513
450 1309 2045 3640 164 327 491 1595
450 1309 2045 3763 205 327 532 1636
450 1309 2086 3886 205 327 573 1636
450 1309 2127 4008 205 327 573 1677
450 1350 2168 4008 205 327 654 1677
450 1350 2209 4254 205 327 654 1759
532 1391 2209 4458 205 327 736 2045
532 1432 2250 4663 205 327 859 2209
573 1472 2290 5194 205 327 982 2290
614 1472 2331 5194 245 327 982 2331
736 1554 2372 5235 245 368 1023 2699
736 1554 2413 5481 245 368 1063 3722
736 1636 2454 6135 245 368 1063 3804
859 1636 2495 6135 245 368 1145 4008
900 1636 2618 6258 245 368 1145 4008
900 1636 2659 7076 245 368 1145 4335
900 1636 2659 7158 286 368 1186 4622
941 1677 2740 7403 286 368 1227 7935
941 1759 2863 7403 286 409 1268 8712
982 1759 2945 8221 286 409 1309 11616
1023 1759 3027 13906 286 409 1309 11657

Table A3.3 Cell measurements for Experiment 3 (Chapter 4)
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Appendix 3: Cell Area Measurements

Area of Experiment cells (pm2) Area of Control cells (pm2)

164 491 1063 1963 123 245 327 614
205 491 1104 2127 123 245 327 654
205 532 1104 2290 164 245 327 654
245 532 1145 2413 164 245 327 654
245 532 1186 2413 164 245 327 654
286 573 1186 2495 164 245 327 654
286 573 1268 2659 164 245 368 736
286 573 1309 2659 164 245 368 736
327 573 1309 2659 164 245 368 111
327 614 1513 2740 205 245 409 818
327 614 1513 2863 205 245 409 982
368 654 1554 3231 205 245 450 1104
368 654 1554 3395 205 286 450 1104
409 654 1636 3477 205 286 450 \221
409 695 1636 3640 205 286 450 1309
409 736 1718 3926 205 286 450 1391
409 736 1718 4295 205 286 491 1432
450 111 1759 4376 205 286 491 1800
450 111 1800 5440 205 286 491 1841
450 111 1800 6626 205 286 532 2127
450 818 1841 8262 205 286 532 3354
450 900 1881 8425 245 286 614 3926
450 941 1881 8712 245 286 614 4213
450 941 1881 9448 245 327 614 6012
450 1063 1922 9980 245 327 614 15215

Table A3.4 Cell measurements for 1:10 Transfection (Chapter 4)
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Appendix 3: Cell Area Measurements

Area of Experiment cells (pm2) Area of Control cells (pm2)

123 614 1922 3845 123 205 327 654
123 614 1963 3886 164 205 327 654
123 654 2004 3926 164 205 327 654
164 736 2250 4049 164 205 327 695
205 736 2290 4090 164 245 327 695
205 111 2331 4131 164 245 327 111
245 859 2413 4213 164 245 327 111
245 859 2495 4295 164 245 327 818
245 900 2536 4295 164 245 327 859
245 982 2577 4499 164 245 327 859
245 982 2577 4704 164 245 327 900
245 1023 2822 4744 164 245 327 1063
245 1023 2822 4785 205 245 368 1268
286 1063 2986 4867 205 245 368 1268
286 1145 3027 4867 205 245 368 1432
286 1554 3027 5153 205 245 368 1595
327 1595 3068 5317 205 286 368 1800
409 1595 3149 5358 205 286 368 1841
409 1636 3149 5522 205 286 368 2168
450 1677 3272 6176 205 286 368 3068
450 1718 3395 6340 205 286 409 4049
491 1800 3436 7198 205 286 409 4049
573 1881 3517 10879 205 286 532 5031
573 1922 3558 11697 205 286 573 5481

| 614 1922 3640 11902 205 286 573 6544

Table A3.5 Cell measurements for 1:3 Transfection (Chapter 4).
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Appendix 3: Cell Area Measurements

Area of Experiment cells (pm2) Area of Control cells (pm2)

205 900 1595 3395 164 286 409 982
205 941 1595 3436 164 286 450 1023
245 941 1636 3517 164 286 450 1104
327 1023 1636 3517 205 286 450 1595
368 1023 1677 3558 205 286 450 1677
368 1023 1759 3558 205 286 491 1677
368 1023 1759 3599 205 286 491 1677
409 1063 1759 3599 205 286 532 1718
409 1063 1800 3681 205 286 532 1759
409 1063 1800 4008 205 327 532 1841
450 1063 2127 4090 205 327 532 2127
450 1104 2209 4744 205 327 532 2331
491 1145 2372 4867 205 327 573 2863
532 1145 2413 4867 205 327 573 2986
614 1186 2536 5031 205 327 573 3068
614 1186 2577 5153 205 368 614 3763
654 1227 2618 5358 245 368 654 4090
695 1268 2659 5890 245 368 654 4335
695 1309 2740 6380 245 368 654 4335
695 1309 2822 6544 245 368 736 4458
695 1350 2863 6912 245 368 736 4785
736 1554 2986 6953 245 368 111 4867
736 1554 3190 7198 245 409 111 6217
777 1554 3231 7280 245 409 818 7035
777 1554 3354 10511 245 409 941 L 15378

Table A3.6 Cell measurements for 1:1 Transfection (Chapter 4)
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