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ABSTRACT

Articular cartilage is a resilient and load bearing material that provides
diarthrodial joints with excellent friction, lubrication and wear characteristics required
for continuous motion. However, articular cartilage has a poor regenerative capacity
and its degeneration is a common cause of morbidity in terms of loss of joint function
and osteoarthritis, frequently resulting in the need for total knee replacement.

Articular cartilage has a distinct zonal architecture with biochemical and
cellular variations existing from the surface zone to the deeper calcified layers. Thus,
the development of the tissue must be stringently controlled, both spatially and
temporally in order for the complex structure to be established. Importantly, the
surface zone is believed to be responsible for the appositional growth of articular
cartilage during development and this growth is believed to be driven by a population
of slow cycling progenitor cells within the surface zone itself.

The focus of this thesis is the isolation and characterisation of articular
cartilage progenitor cells together with an exploration of the cells capabilities in
potential cartilage repair therapies. The cells were identified on the basis of
differential adhesion assays and colony forming ability. Subsequent experiments were
carried out to show the differential expression of various cell surface markers eg
Notch 1 receptors and the role of the onco-foetal form of fibronectin, known as
fibronectin-EDA on the modulation of cell behaviour. In terms of the potential of the
cells for use in tissue engineering, a promising feature of the cells is the discovery that
enriched populations of the cells can undergo extensive expansion in simple
monolayer cultures and yet retain their ability to undergo chondrogenic
differentiation. This property may enable the use of the cells in commercial cartilage
repair and/or tissue engineering strategies.
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Chapter 1: Introduction

1.1  ARTICULAR CARTILAGE STRUCTURE, FUNCTION AND
DEVELOPMENT

1.1.1 Introduction

Articular cartilage is a resilient and load-bearing material that provides diarthrodial
joints with excellent friction, lubrication and wear characteristics required for
continuous gliding motion and also acts as a shock absorber to distribute applied loads
over the subchondral bone (Mow et al., 1992; Mankin et al., 1994). Although articular
cartilage varies in thickness, cell density, matrix composition, and mechanical
properties within the same joint, among joints, among species and with age, in all
synovial joints it consists of the same components, the same general structure and
performs the same functions (Stockwell, 1971; Athanasiou et al, 1991). Despite
articular cartilage being in the order of only a few millimetres in thickness, its unique
structure and composition allow it to withstand considerable biomechanical forces
over many decades of walking, running and jumping (Buckwalter and Mankin, 1997,
Mow et al., 1992).

The uniqueness of articular cartilage arises from the tissue being primarily composed
of extracellular matrix with relatively few cells, known as chondrocytes. There is no
direct blood supply, relying on diffusion for nutrition. Articular cartilage lacks nerves
and a lymphatic system (Mankin et al., 1994). Although at first glance the tissue may
appear to be of a simple nature, detailed examination reveals it to possess a distinct,
highly ordered structure (Jeffery et al., 1991; Poole et al., 2001) that facilitates a
complex interaction between the extracellular matrix and the chondrocyte (Benjamin
et al., 1994; Buckwalter and Mankin, 1997) which serves to actively maintain the

tissue throughout the life of the organism.

Articular cartilage has a limited capacity for repair (Campbell, 1969), a consequence
of the unique properties described above. The chondrocytes have a low mitotic ability
and are restricted in their ability to migrate to the site of injury due to the cells being
individually enclosed in extracellular matrix. In addition, the lack of a blood supply
eliminates the prospect of a repair response initiated and orchestrated by the process

of inflammation (Newman, 1998). The lack of an effective reparative response means
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that limited damage to articular cartilage due to trauma or from degenerative diseases
will remain unhealed. Such lesions, over time, may progress to more severe and
progressive disabilities of the joint, culminating in total erosion of the articular
cartilage and loss of joint function. Total or partial joint replacement procedures are
routinely used to restore pain free motion as a last resort in the treatment of end-stage
degenerative joint disease (Buckwalter and Lohmander, 1994; Buckwalter and
Mankin, 1997a; Gilbert, 1988; Newman, 1998; Hunziker, 2001a).

This section presents an overview of the current understanding of articular cartilage
structure, function and development in order to provide a basis for understanding its
degeneration, current repair techniques and the prospects for more efficacious future

therapies.

1.1.2 The chondrocyte

Articular cartilage is composed of a single cell type known as the chondrocyte which
occupy around only 10% of the total tissue volume (Archer and Francis-West, 2003).
This figure varies highly, primarily depending upon factors such as age and species
(Buckwalter and Mankin, 1997). Chondrocytes differ in size, shape and metabolic
activity throughout the thickness of the tissue (Zanetti et al, 1985; Aydelotte and
Kuettner, 1988; Aydelotte et al., 1988; Archer et al., 1990) and these differences in
chondrocyte phenotype are responsible for subtle differences in matrix composition
throughout the depth of the tissue (Poole et al., 2001) (this aspect will be covered in
greater detail in section 1.1.3). The structure of articular cartilage is illustrated in
figure 1.1. Despite these location specific differences, chondrocytes share a number of
features which together distinguish them from other cell types. The chondrocytes are
metabolically active and are responsible for the synthesis and maintenance of a unique
and stable extracellular matrix with which the chondrocytes surround themselves
preventing the formation of cell-cell contacts. The chondrocytes are primarily
spherical in shape, synthesise type II collagen and aggrecan (a large aggregating
proteoglycan) (Buckwalter and Mankin, 1997) and various other minor collagens,
proteoglycans and non-collagenous proteins (Neame et al., 1999; Poole et al., 2001).
These matrix components are assembled by the chondrocyte into the complex

structure that gives articular cartilage its characteristic properties. This complex
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structure needs to be constantly maintained by the cell, involving replacement of
degraded matrix components and alterations in the macromolecular composition and
framework in response to loading of the joint during use (Buckwalter and Mankin,
1997). Thus the cells must sense these changes in the extracellular matrix composition
due to degradation and loading and respond accordingly (Buschmann et al., 1995;
Quinn et al., 1998; Durrant et al., 1999; Salter et al., 2001; Smith et al., 2004).

In the adult organism articular cartilage is avascular, thus chondrocytes derive most of
their nutrition from the synovial fluid. The nature of this system results in a low
oxygen concentration in the tissue relative to other tissues as nutrients must first
diffuse through the synovial fluid and then through the cartilage matrix which is also
restrictive with respect to molecular size and charge. Therefore, the chondrocyte

depends primarily on glycolytic metabolism (Buckwalter and Mankin, 1997).

Chondrocyte activity and density within articular cartilage differs significantly
between the phase of skeletal growth during foetal development and in the early
stages of life and the phase when skeletal growth has ceased in the adult (Mankin et
al., 1994). Cartilage is formed from undifferentiated mesenchymal condensations in
the foetus (Archer et al., 1994; Archer and Francis-West, 2003) and subsequent matrix
synthesis leads to the separation of cells which assume a spherical morphology. At
these early stages in the growth of articular cartilage the cell density and metabolic
activity is high as the chondrocytes proliferate rapidly and synthesise large quantities
of matrix, thus driving growth. With skeletal maturity, metabolic activity, matrix
synthesis and cell division declines and hence cell density declines (Stockwell, 1967,
Leutert, 1980; Buckwalter and Mankin 1997). In the mature skeleton, articular
chondrocytes rarely undergo mitosis under normal physiological conditions, although
still synthesise collagens, proteoglycans and other matrix components in an ongoing
maintenance of the macromolecular framework. With ageing, the capacity of the cells
to synthesise certain components of the matrix (Thonar et al., 1986; Bolton et al.,
1999) and respond to stimuli, such as growth factors, decreases (Guerne et al., 1995;
Loeser et al., 2000), thus limiting the ability of the cell to maintain the tissue. These
age-related changes may ultimately contribute to the development of degenerative

joint disease (Roughley, 2001).
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1.1.3 Extracellular matrix

The extracellular matrix (ECM) of articular cartilage is composed of tissue fluid and a
complex framework of structural macromolecules. As the chondrocytes comprise only
a small proportion of the total volume, the chemical nature of this complex molecular
framework dictates the mechanical properties of the tissue. The stiffness and
resilience of the articular cartilage is provided by the interaction of the tissue fluid

with the macromolecular framework.

1.1.3.1 Tissue fluid

Water is the most abundant component of articular cartilage, contributing 80%
of the wet weight. The interaction of water with the matrix macromolecules
strongly influences the mechanical properties of the tissue (Maroudas and
Schneiderman, 1987). The fluid contains dissolved gases, small proteins,
metabolites and a high concentration of cations to balance the abundance of
poly-anionic proteoglycans. A portion of the water is able to move freely in
and out of the tissue. The volume, concentration and behaviour of the water
within the tissue depends primarily on its interaction with the structural
macromolecules, in particular the large aggregating proteoglycans that help
maintain the fluid within the matrix and the concentration of electrolytes in the
fluid (Buckwalter and Mankin, 1997). The abundance of poly-anionic
carboxylate and sulphate groups of the proteoglycans attracts cations such as
Na+. This increase in the osmolarity of the tissue is known as the Donnan
effect. The increase in Donnan osmotic pressure caused by the cations
associated with the proteoglycans is resisted by the collagen network. Thus,
there is a balance of swelling pressure (hydration) and constraining forces

(collagen network) leading to the formation of a cohesive and strong solid gel.
1.1.3.2 Structural macromolecules
Collagens, proteoglycans and non-collagenous proteins comprise the structural

macromolecules of the tissue. Collagens contribute about 60% of the dry

weight; proteoglycans 25-35%; non-collagenous proteins and glycoproteins
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15-20%. Collagens are distributed evenly throughout the thickness of the
cartilage (except for the collagen rich superficial zone) and the collagen
fibrillar network provides the tensile strength. Proteoglycans bind to the
collagenous meshwork or become mechanically entrapped within it. The
framework is organised and stabilised by non-collagenous proteins
(Buckwalter and Mankin, 1997).

1.1.3.3 Collagens

More than 20 different collagen types have been identified so far (Gelse et al.,
2003), with types II, VI, IX, X and XI being present in articular cartilage
(Mankin et al., 1994). Collagens contain a characteristic triple-helical structure
composed of three polypeptide a-chains. The a-chains of collagen types II
and XI aggregate together to form cross-banded fibrils that can be seen with
electron microscopy. The fibrils are organised into a tight meshwork,
providing tensile stiffness and mechanically entraps large proteoglycans
(figure 1.2). Collagen types VI, IX and X do not form fibrils and are termed

non-fibrillar collagens.

The major cartilage collagen which represents 90-95% of the total, is type II
(Mankin et al.,, 1994; Buckwalter and Mankin, 1997). Type IX collagen
molecules bind to the surfaces of the type II fibrils and project into the matrix
and may also bind covalently to other collagen type IX molecules. Type XI
collagen molecules bind covalently to type II collagen molecules and may
form part of the interior structure of the cross-banded fibrils. Although the
precise function of type IX and XI is uncertain, they probably help in the
formation and stabilisation of the fibrils and stabilise both the collagenous
meshwork and the collagen-proteoglycan interaction (Bruckner et al., 1988;
Mankin et al., 1994). Type VI collagen forms an important part of the matrix
immediately surrounding the chondrocyte and may be involved with matrix
stabilisation and chondrocyte attachment to the matrix (Marcelino and
McDevitt, 1995; Keene et al., 1988). Type X collagen is located only in the

calcified cartilage zone at the junction of the articular cartilage with the
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subchondral bone, suggesting a role in mineralisation (Schmid and

Linsenmayer, 1985).

1.1.3.4 Proteoglycans

Proteoglycans are complex macromolecules that consist of a protein core to
which are linked extend glycosaminoglycan (GAG) chains. Approximately
80-90% of all proteoglycans in articular cartilage are of the large aggregating
type called aggrecan (Mankin et al., 1994; Hardingham and Fosang, 1995) the
structure of which is illustrated in figure 1.3. These proteoglycans consist of a
large extended protein core to which are attached up to 100 chondroitin
sulphate (CS) and 50 keratan sulphate (KS) glycosaminoglycans chains. The
protein core is large and complex with several distinct globular and extended
domains. One extended domain contains the majority of KS GAG chains
which is adjacent to a large extended domain rich in attached CS GAG chains.
A G1 globular domain at the N-terminal end of the protein core functions to
non-covalently bind the proteoglycan to hyaluronate, and this binding is
stabilised by link protein. As the GAG hyaluronate chain may be long and
unbranching, many proteoglycans chains (up to 300) may bind, forming a
large proteoglycan aggregate (Hardingham and Fosang, 1995). The formation
of the large aggregates helps anchor the proteoglycans within the matrix
preventing their displacement during deformation of the tissue. Versican is
another hyaluronate binding proteoglycan from the same family as aggrecan,
that also includes neurocan and brevican (Margolis and Margolis, 1994).
Versican is present in articular cartilage to a lesser extent than aggrecan and
may function (together with aggrecan) to stabilise the ECM and cell-matrix
interactions (Chen et al., 2003).

Besides the large aggregating proteoglycans in cartilage there are small,
leucine-rich proteoglycans including decorin, biglycan, fibromodulin, perlecan
and lumican (Roughly and Lee, 1994; Poole et al., 1996a and 2001). Type IX
collagen is also considered a proteoglycan as it contains a CS chain (Mankin
et al., 1994). Decorin has one dermatan sulphate chain, biglycan has two

dermatan sulphate chains and fibromodulin has several KS chains. Perlecan
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contains heparan sulphate whereas lumican contains KS. These small non-
aggregating proteoglycans have shorter protein cores than do aggrecan
molecules and do not fill a large volume of the tissue or contribute directly to
the mechanical behaviour. Instead these proteoglycans may bind to other
macromolecules and/or influence cell behaviour. Decorin and fibromodulin
bind type II collagen and may be involved with fibrillogenesis, organising and
stabilising the type II meshwork (Hedbom and Heinegard, 1993; Mankin et al.,
1994; Roughly and Lee, 1994; Poole et al., 2001). Biglycan is localised in the
pericellular matrix and may interact with type VI collagen (Roughly and Lee,
1994).

1.1.3.5 Non-collagenous and non-proteoglycan components

Other matrix components include anchorin CII (a collagen binding
chondrocyte surface protein involved in anchoring the chondrocyte to the
collagen fibrils of the matrix), COMP (cartilage oligomeric protein), matrillin-
I, CILP (cartilage intermediate layer protein), fibronectin and tenascin. The
functions of the components is not clearly understood but may be involved in
organisation and maintenance of the macromolecular structure of the matrix
and cell-matrix interactions (Mollenhauer et al., 1984; Hedbom et al., 1992;
DiCesare et al., 1994; Chevalier et al., 1994 and 1996; Lorenzo et al., 1998;
Neame et al., 1999; Poole et al., 2001).














































































































































































































































































































































































































































































































































































































































































































































































