KNOWLEDGE MANAGEMENT USING MACHINE
LEARNING, NATURAL LANGUAGE PROCESSING
AND ONTOLOGY

A thesis
submitted to the
University of Wales
for the degree of
Doctor of Philosophy
by

Qiao Tang

Cardiff School of Engineering

University of Wales, Cardiff

February 2006

UMI Number: U584821

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U584821
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

SUMMARY

This research developed a concept indexing framework which systematically
integrates machine learning, natural language processing and ontology technologies to
facilitate knowledge acquisition, extraction and organisation.

The research reported in this thesis focuses first on the conceptual model of concept
indexing, which represents knowledge as entities and concepts. Then the thesis
outlines its benefits and the system architecture using this conceptual model.

Next, the thesis presents a knowledge acquisition framework using machine learning
in focused crawling Web content to enable automatic knowledge acquisition.

Then, the thesis presents two language resources developed to enable ontology
tagging, which are: an ontology dictionary and an ontologically tagged corpus. The
ontologically tagged corpus is created using a heuristic algorithm developed in the
thesis.

Next, the ontology tagging algorithm is developed with the ontology dictionary and
the ontologically tagged corpus to enable ontology tagging.

Finally, the thesis presents the conceptual model, the system architecture, and the
prototype system using concept indexing developed to facilitate knowledge
acquisition, extraction and organisation.

The solutions proposed in the thesis are illustrated with examples based on a
prototype system developed in this thesis. This work was carried out in the Cardiff

University partially funded through the Seedcorn Grant Scheme.

ACKNOWLEDGEMENTS

I would like to thank the supervisors of my studies, Dr Rossi Setchi and Professor
Stefan Dimov, for their invaluable guidance and support throughout my work.

Without their support I could not reach this far.

All members of the I12S group and Intelligent Systems Laboratory are thanked for

their friendships and help.

My deepest gratitude is to my family who has given continuous support and

encouragement to me.

TABLE OF CONTENTS

SUMMARY i
ACKNOWLEDGEMENTS ii
DECLARATION AND STATEMENTS iii
LIST OF FIGURES X
LIST OF TABLES xiii
ABBREVIATIONS XV
CHAPTER 1. INTRODUCTION 1
1.1 Motivation 1
1.2 Aims and Objectives 4
1.3 Outline 5
CHAPTER 2. REVIEW OF TECHNOLOGY APPROACHES TO 9
KNOWLEDGE MANAGEMENT
2.1 KNOWLEDGE MANAGEMENT 9
2.1.1 Knowledge 9
2.1.2 Knowledge Management 10
2.2 INFORMATION RETRIEVAL 11
2.2.1 Information Retrieval and Web Search 11
2.2.2 Crawling 13
2.2.3 Models for Information Retrieval 16
2.2.4 Indexing 19
2.2.5 Storage and Query 20
2.2.6 Applications of Information Retrieval 20
2.3 MACHINE LEARNING TECHNIQUES 21
2.3.1 Support Vector Machine 21
2.3.2 Rule-Based Learning 22

2.3.3 Memory-Based Learning 23

iv

2.4 NATURAL LANGUAGE PROCESSING
2.4.1 Part of Speech Tagging
2.4.2 Word Sense Disambiguation
2.4.3 Concordance and Collocations
2.4.4 Concept Indexing
2.4.5 Information Extraction
2.5 THE SEMANTIC WEB AND ONTOLOGY
2.5.1 Ontology Engineering
2.5.2 Information Extraction for the Semantic Web
2.6 DISCUSSION
2.7 SUMMARY
CHAPTER 3. FORMAL REPRESENTATION OF CONTENT USING
CONCEPT INDEXING
3.1 CONCEPT INDEXING
3.1.1 Conventional Models for Knowledge Representation
3.1.2 Requirements for Knowledge Representation of Explicit Knowledge
3.1.3 Definitions
3.1.4 Mathematical Model
3.1.5 Benefits of Adopting Concept Indexing
3.2 AFRAMEWORK FOR CONCEPT INDEXING
3.3 ILLUSTRATIVE EXAMPLE
3.4 ASYSTEM FOR CONCEPT INDEXING
3.4.1 System Architecture
3.4.2 Main Processes
3.5 SUMMARY
CHAPTER 4. AUTOMATIC INFORMATION ACQUISITION USING
MACHINE LEARNING
4.1 FINDING INFORMATION ON THE WEB
4.2 AN INFORMATION ACQUISITION FRAMEWORK

24
24
25
25
26
27
28
28
29
30
32
33

33
33
35
39
42
45
48
51
54
54
55
57
59

59
60

4.2.1 Structure of the Information Acquisition Framework
4.2.2 Information Acquisition Process
4.3 AN IMPROVED INFORMATION ACQUISITION FRAMEWORK
4.3.1 Using Support Vector Machine (SVM) for Information Retrieval
4.3.2 Machine Learning in the Improved Information Acquisition
Framework
4.3.3 Feature Selection for the Proposed Machine Learning Algorithm
4.3.4 Case Studies
General Approach
Case Study 1: Fishing
Case Study 2: Site Engineering
Discussion
4.4 SYSTEM DESIGN AND FUNCTION DESIGN
4.5 SUMMARY
CHAPTER 5. ONTOLOGY DICTIONARY AND CORPUS FOR
ONTOLOGY TAGGING
5.1 ONTOLOGY TAGGING
5.2 BUILDING AN ONTOLOGY DICTIONARY
5.2.1 Selecting Dictionaries
5.2.2 Dictionaries
WordNet
Roget’s Thesaurus
5.2.3 Comparisons between Roget’s Thesaurus and WordNet
5.2.4 Building an Ontology Dictionary from Roget’s Thesaurus
5.3 BUILDING AN ONTOLOGICALLY TAGGED CORPUS
5.3.1 Method of Building an Ontologically Tagged Corpus
5.3.2 Building a Machine Readable Dictionary from WordNet
5.3.3 A Heuristic Approach for Semantic Mapping Between eWord and
OntoRo

vi

60
62
65
65
67

70
73
73
76
81
84
84
88
89

89
92
92
93
94
95
97
99
103
103
104
107

General Approach
Testing of the Semantic Mapping Algorithm
Discussion
5.3.4 Converting the Semcor Corpus into an Ontologically Tagged Corpus
5.4 SUMMARY
CHAPTER 6. FULL TEXT ONTOLOGY TAGGING BASED ON
MACHINE LEARNING
6.1 ONTOLOGY TAGGING ALGORITHM
6.1.1 Statistical and Context Information
6.1.2 Variables
6.1.3 Statistical Rules and Context Rules
Statistical Rules
Context Rules
6.1.4 Training and Tagging with the Ontology Tagging Algorithm
Training
Tagging
6.2 CASE STUDIES
6.2.1 General Approach
6.2.2 Case Study 1
6.2.3 Case Study 2
6.2.4 Case Study 3
6.2.5 Discussion
6.3 SUMMARY
CHAPTER 7 KNOWLEDGE MANAGEMENT SYSTEM BASED ON
ENTITY AND CONCEPT INDEXING
7.1 ENTITY AND CONCEPT INDEXING
7.1.1 Conceptual Model
7.1.2 Entity Tagging
7.1.3 Benefits

vii

107
118
120
121
124
125

125
125
129
132
132
133
134
134
136
137
137
140
141
143
147
148
149

149
149
152
153

7.2 PROCESSING
7.3 IMPLEMENTATION AND TESTING
7.3.1 Indexing Tests
7.3.2 Testing of Entity and Concept Extraction

7.4 SEARCH SPEED COMPARISON WITH MYSQL

7.5 CASE STUDIES

7.5 DISCUSSIONS

7.6 SUMMARY
CHAPTER 8. CONTRIBUTIONS, CONCLUSIONS AND FUTURE
WORK

8.1 CONTRIBUTIONS

8.2 CONCLUSIONS

8.3 IMPLEMENTATION WORK

8.4 FUTURE WORK
APPENDIX A. MATERIALS AND RESULTS

A.1 POSITIVE AND NEGATIVE EXAMPLES

A.2 TRAINING EXAMPLE 1: AN HTML WEB PAGE (FRAGMENT)

A.3 TRAINING EXAMPLE 1: AN HTML WEB PAGE STRIPPED TO

TEXT ONLY (FRAGMENT)

A.4 SMALL DICTIONARY

A.5 DATA FILE GENERATED BY SVM FROM THE TRAINING SET

(FRAGMENT)

A.6 TESTING RESULTS FOR CASE STUDY 1

A.7 TESTING RESULTS FOR CASE STUDY 2
APPENDIX B. SAMPLE SOURCE CODE FOR CHAPTER 4
APPENDIX C. SEMCOR, WORDNET AND ROGET’S

C.1 TAGS USED IN SEMCOR 1.6

C.2 SEMCOR ANNOTATED TEXT SEMPLE

C.3 WORDNET AND ROGET’S ENTRY SAMPLES

viii

154
157
157
158
165
168
188
195
196

196
198
200
204
206
206
207
208

209
211

212
214
216
229
229
230
231

APPENDIX D. SAMPLE SOURCE CODE FOR CHAPTER 5

D.1 SAMPLE CODE FOR SEMANTIC MAPPPING

D.2 SAMPLE CODE FOR SEMCOR ANNOTATED CORPUS PARSER
APPENDIX E. SAMPLE SOURCE CODE FOR CHAPTER 6
APPENDIX F. SAMPLE SOURCE CODE FOR CHAPTER 7
APPENDIX G. DATA OF TESTING RESULTS USED IN CHAPTER 7

G.1 INDEXING TESTS

G.2 TESTING OF ENTITY AND CONCEPT EXTRACTION

G.3 RETRIEVAL SPEED TESTS
REFERENCES

ix

232
232
234
238
241
248
248
250
252
253

LIST OF FIGURES

Figure 1.1 The Organisation of Chapters 4-7

Figure 2.1 Information Retrieval Procedures of a Search Engine

Figure 3.1 Conceptual Model

Figure 3.2 Notations Used in the Mathematical Model

Figure 3.3 Concept Indexing Framework

Figure 3.4 General Architecture and Main Processes

Figure. 4.1 Information Acquisition Framework

Figure 4.2 Flow Chart of Agent Controller

Figure 4.3 Flow Chart of a Collection Agent

Figure 4.4 Improved Information Acquisition Framework

Figure 4.5 An Example HMTL File Annotated

Figure 4.6 UML Class Diagram of the Improved Information Acquisition
System

Figure 4.7 Screenshots of the Graphical User Interface

Figure 5.1 A Sample Entry in the Ontology Dictionary

Figure 5.2 The Entries Created in eWord from the Entry of the Verb
“ABANDON” in WordNet 1.6

Figure 5.3 Mapping between eWord and OntoRo Entries

Figure 5.4 Illustration of the Approach based on the “One Sense Per eWord

Entry” Hypothesis

12

41

43

49

56

61

63

64

68

72

87

102

106

108

111

Figure 5.5 An Algorithm for Mapping eWord and OntoRo Entries
Figure 5.6 Illustration of the Semantic Mapping Algorithm

Figure 5.7 A Converted Sentence with Ontology Tags

Figure 6.1 Zipf’s Law

Figure 6.2 Normalised Zipf’s Range

Figure 6.3 Flowcharts of the Ontology Tagging Algorithm (Training and
Tagging)

Figure 7.1. Conceptual Model of the Knowledge Management System
Figure 7.2. Processing

Figure 7.3 Total Processing Time for Entity Indexing

Figure 7.4 Total Processing Time for Concept Indexing

Figure 7.5 Total Processing Time for Merged Indexing

Figure 7.6 Total Processing Time for Entity Extraction

Figure 7.7 CPU Processing Time for Entity Extraction

Figure 7.8 Memory Usage for Entity Extraction

Figure 7.9 Disk Usage for Entity Extraction

Figure 7.10 Total Processing Time for Concept Extraction

Figure 7.11 CPU Processing Time for Concept Extraction

Figure 7.12 Memory Usage for Concept Extraction

Figure 7.13 Disk Usage for Concept Extraction

Figure 7.14 Retrieving Time Comparison with MySQL Using Text after

Merging of Entity and Concept Index

xi

114

117

123

131

131

135

151

155

159

159

160

160

161

161

162

162

163

163

164

167

Figure 7.15 The Composition of a Document Used in the Case Study

Figure 7.16 Result Output and Corresponding Original Documents for Task 1
Figure 7.17 Result Output and Corresponding Original Documents for Task 2
Figure 7.18 Result Output and Corresponding Original Documents for Task 3,
Step 3

Figure 7.19 Result Output and Corresponding Original Documents for Task 3,
Step 4

Figure 7.20 Result Output and Corresponding Original Documents for Task 4

Figure 7.21 Result Output and Corresponding Original Documents for Task 5

Xii

169

172

176

179

184

186

189

LIST OF TABLES

Table 3.1 Feature Comparisons of Knowledge Representation Languages And 38

Models

Table 3.2 A Simple Illustrative Example of Concept Indexing (a-k) 52
Table 4.1 Summary Results for Case Study 1 80
Table 4.2 Summary Results for Case Study 2 83
Table 5.1 Comparisons between Roget’s Thesaurus and WordNet 98
Table 6.1 Statistical and Context Information 127
Table 6.2 Summary of Tests Conducted 139

Table 6.3 Average Accuracy in Case Study 1: Experiments with Different Zipf’s 142
Table 6.4 Average Accuracy in Case Study 1: Experiments with Different 142
Window

Table 6.5 Average Accuracy in Case Study 2: Experiments with Different Ratio 144
S

Table 6.6 Average Accuracy in Case Study 2: Experiments with Different 144
Threshold Values

Table 6.7 Average Accuracy in Case Study 3: Experiments with Different Zipf’s 146
Ranges

Table 6.8 Average Accuracy in Case Study 3: Experiments with Different 146
Window Widths and Ratios S

Table 7.1 Information Types Used 156

Xiii

Table 7.2 Boolean Keyword Query Result 171

Xiv

ABBREVIATIONS

KM Knowledge management

KMS Knowledge management system
IR Information retrieval

ML Machine learning

NLP Natural language processing
DNS Domain name system

IP Internet protocol

ADNS Asynchronous DNS

LSI Latent semantic indexing

SVD Singular value decomposition
SVM Support vector machine

SRM Structural risk minimisation

NP Non-deterministic polynomial-time
NE Named entity

POS Part of speech

MT Machine translation

WSD Word sense disambiguation

IE Information extraction

OE Ontology engineering

RDF Resource description framework

XV

RDFS

Al
SwW
ER
DL
UML

OWL

HTML
DTD
SD
BD
oT
MRD
JDK
MI
uC
UBC
SQL

URL

RDF Schema

Knowledge representation
Artificial intelligence

the Semantic Web

Entity relationship
Description logics

Unified modeling language
Web ontology language
Knowledge base

Hyper text markup language
Document type definition
Small dictionary

Big dictionary

Ontology tagging
Machine-readable dictionary
Java development kit
Mutual information
Untagged corpus

Untagged Brown Corpus
Structured query language

Universal resource locator

Xvi

CHAPTER 1. INTRODUCTION

1.1 MOTIVATION

In recent years, it has been recognised that an organisation’s success is more dependent
on its intellectual assets than on the value of its physical resources. Knowledge is now
the key battleground for competition [Davies, 2003]. As a result, the knowledge
management discipline has recently become a very active field of research. Knowledge
management (KM) is defined as the tools, techniques and processes for effective and
efficient management of an organisation’s intellectual assets [Davies, 2000]. KM is
concerned with the representation, organisation, acquisition, creation, use and
evolution of knowledge in its many forms [Jurisica et al., 2004]. The KM process is an
iterative process which has four stages, i.e., knowledge creation, acquisition,
knowledge organisation/storage, knowledge distribution and knowledge application
[Wiig, 1995]. Effective KM typically requires an appropriate combination of
organisational, social and managerial initiatives along with the deployment of

appropriate technologies [Marwick, 2001].

There are two forms of knowledge that are important for organisational effectiveness,
namely, tacit and explicit knowledge [Nonaka, 1994]. Tacit knowledge is rooted in
individual’s action, experience, commitment, ideals, values and emotions. Tacit

knowledge is hard to formalise because of its highly personal nature, while explicit

knowledge can be expressed using formal and systematic languages [Nonaka et al.,
2000]. Therefore, explicit knowledge can be transferred between humans without
human interaction. Explicit knowledge can be considered as information in the right
context, i.e. information which can lead to effective action [Davies, 2000]. These two
forms of knowledge are supported by technologies and tools such as collaborative
working environments, speech recognition techniques, and document management

systems [Marwick, 2001].

Although the concept of knowledge and knowledge management is not new,
knowledge management systems (KMSs), which involve the application of IT systems
and other organisational resources to manage knowledge strategically, are a relatively
recent phenomenon [Quaddus and Xu, 2005]. KMSs add value to KM by providing the
necessary infrastructure for organisations to implement the KM process [Dovey, 1997].
In the last two decades, advances have been made in various computing disciplines
such as information retrieval, machine learning, natural language processing and
ontology that set technology foundations for the further development of knowledge
management systems [Marwick, 2001; Kobayashi and Takeda, 2000; Sebastiani,

2002].

Current knowledge management systems, however, have weaknesses when dealing
with explicit knowledge contained in unstructured text documents, as the processes
involved are normally costly and lengthy [Broder and Ciccolo, 2004; Davies, 2003;

Mukherjee and Mao, 2004]. Therefore, there is a need for more efficient tools for

2

knowledge creation, acquisition, organisation, sharing and reuse. In particular:

1. Tools are needed to efficiently and automatically acquiring information from the

web to facilitate knowledge acquisition.

2. There is a need for methodologies and tools for representing knowledge in a way
that makes knowledge understandable by both humans and machines. The
availability of such methodologies and tools would facilitate knowledge

organisation, sharing and reuse.

3. Methodologies and tools are needed for extracting explicit knowledge from
unstructured text sources, especially when the information volume becomes very

large.

4. Tools for managing large volume of knowledge are also needed so that knowledge

can be utilised efficiently.

These weaknesses and needs have motivated research into providing KMSs with some

new capabilities. These capabilities include:

1. Automatic searching for information of interest which enables the acquisition of

new knowledge into the system;

2. Use of systematic schemes for knowledge representation so that both humans and

machines can understand the semantics of knowledge;

3. Automatic extraction of explicit knowledge from unstructured text information;

4. Efficient organisation of the ever-growing knowledge within the system to

facilitate knowledge sharing and reuse.

Therefore, the next generation of KMSs have to be automated and able to partially
understand natural languages. There are indications that information retrieval (IR),
machine learning (ML), natural language processing (NLP) and ontology techniques

can provide means for developing such enhanced capabilities.

1.2 AIMS AND OBJECTIVES

The scope of the research reported in this thesis is the management of explicit
knowledge from a technology perspective. The overall aim is to develop ML, NLP and
ontology-based techniques for knowledge management that can enable the automation
of knowledge acquisition, extraction and organisation. The individual objectives of this

research are:

1. To create formal models for content representation of unstructured text.

2. To develop a method for acquiring knowledge automatically from large collections

of Web documents.

3. To create necessary ontology-based resources to facilitate knowledge extraction.

4. To create a method for extracting knowledge from unstructured text.

5. To develop a conceptual model, a system architecture and a method for knowledge

management enabling efficient knowledge extraction and organisation.

1.3 OUTLINE

The main body of the thesis comprises Chapters 2 to 7. Chapter 2 is a review chapter.
Chapters 3-7 address the objectives listed above. The organisation of Chapters 4-7 is
shown in Figure 1.1. The final chapter, Chapter 8, summarises the contributions and

conclusions of the work and makes suggestions for further research.

Chapter 2 reviews the state of the art in IR, ML, NLP and ontological engineering, and

the use of these four technologies in relevant domains.

Chapter 3 addresses research objective (1). It starts with analysis of knowledge
representation and its role in the knowledge management process. Then a conceptual
model for knowledge representation is presented. The conceptual model is further
developed into a formal mathematical model. Then, the benefits of adopting this model
are outlined. Next, a framework using this model is presented with an illustrative
example. Finally, a system architecture to implement this framework and the system

processes are described.

Chapter 4 focuses on research objective (2). It starts with an analysis of the traditional

Web Content (Unstructured Text) -- A

.

Focused Crawling (Chapter 4) -- B K Training Examples -- C

{} }\ /[Ontology Dictionary (Chapter 5)

—F

POS Tagging Ontology Tagging

(Modified) -- D (Chapter 6) --E

Ontologically Tagged Corpus as

{} Training Examples (Chapter 5) -- G

Concept Indexing (Chapter 7) -- H

%

Entity and Concept Extraction (Chapter 7) --

SR

Entities -- J Concepts -- K

NV

Knowledge Management System for Entity,
Concept and Keyword Searching (Chapter 7)
-L

Figure 1.1 The Organisation of Chapters 4-7

knowledge acquisition methods and their weakness. This analysis shows the needs for
automatic knowledge acquisition. Then, a basic method is described. The detail
knowledge acquisition process is described along with detailed flow chart. Then the
limitations of this basic method are analysed to highlight the improvements needed.
Following that, an improved knowledge acquisition method using a supervised
machine learning algorithm is described using a flow chart. Three feature selection
alternatives are presented and analysed. Then the improved knowledge acquisition
method for automatic knowledge acquisition based on intelligent focused crawling
architecture is described. Two case studies are conducted to show the feasibility of this
method in two different domains, and to test the optimisation of the machine learning

algorithm to achieve better acquisition accuracy.

Chapter 5 addresses research objective (3). It starts with a discussion on ontology
tagging and its benefits. Then, the resources available and those needed to achieve
ontology tagging are analysed. Next, a general purpose ontology dictionary, and the
developed method for semantic mapping between a lexicon and the ontology dictionary
are described. Then the ontologically tagged corpus for supervised ontology tagging is
developed. Tests are conducted to show the accuracy of the ontologically tagged corpus

generated.

Chapter 6 focuses on research objective (4). An algorithm for full text ontology tagging
using machine learning is proposed. The training and tagging processes of this

algorithm are described. In order to achieve better tagging accuracy, three case studies

7

are conducted and evaluated to choose the best design option. Finally, the
characteristics of the tagging algorithm and the factors affecting its accuracy are

analysed and discussed.

Chapter 7 focuses on research objective (5). It presents the conceptual model and the
system architecture for knowledge management, and the prototype system developed.
The system uses concept indexing, an existing part of speech tagging module, the
ontology tagging developed in this work to index and extract entity and concept
information, which are further used for entity, concept and keyword searching. Next,
two sets of tests are described. The first set of the tests is conducted on indexing of
entities and concepts. The purpose of the first set of tests is to examine how the
processing time, extraction time and the demand of computer resources change as the
volume of information/knowledge in the system grows. The second set of tests
examines the retrieval performance after the merging of the entity and concept indices.
The purpose of this set of tests is to evaluate the retrieving performance against an
existing state-of-the-art standard solution. Finally, five case studies are conducted to
illustrate the advantages of this knowledge management approach where traditional
searching fail to apply or has poor performance. All examples in Chapters 3-7 used to
illustrate the proposed solution are based on a prototype system developed for

knowledge management.

Chapter 8 summarises the contributions made and the conclusions reached, and

suggests possible directions for further investigations in this area.

8

CHAPTER 2. REVIEW OF TECHNOLOGY
APPROACHES TO KNOWLEDGE MANAGEMENT

This chapter reviews technology approaches to knowledge management. First,
knowledge management is introduced. Then knowledge management models are
described. Next, four technologies for knowledge management are reviewed, which are:
information retrieval, machine learning, natural language processing, the Semantic

Web and ontology.

2.1 KNOWLEDGE MANAGEMENT

Knowledge now is seen at the centre of global economic transformation [Bell, 1978],
and it is the most powerful engine of production organisations which are increasingly
focused on management [Marsh, 1965]. Knowledge management (KM) is currently
receiving considerable attention, from both academics and practitioners, and is being

addressed by a broad range of academic literature and popular press.

2.1.1 Knowledge

There are many interpretations on the definition of “knowledge”. Plato [1953] first
defined knowledge as “justified true belief”, which is that people believe and value on
the meaningful and organised accumulation of information (messages) through
experience, communication or inference [Dretske, 1981; Lave, 1988; Blacker, 1995].

The chain of knowledge flow is data-information-realisation-action/reflection-wisdom

[Kakabadse et al., 2003], where processing is conducted through each stage to

transform data into wisdom.

2.1.2 Knowledge Management

There are many definitions about knowledge management. For example, in [O’Dell and
Jackson, 1998], KM is defined as “conscious strategy of getting the right knowledge to
the right people at the right time and helping people share and put information into
action in ways that strive to improve organisational performance”; in [Beckman, 1997]
KM is defined as “formalization of, and access to, experience, knowledge and expertise
that create new capabilities, enable superior performance, encourage innovation and
enhance customer value”. However, fundamentally, these working definitions relate to
four elements: business processes, information technologies, knowledge repositories
and individual behaviors [Eschenfelder et al., 1998]. These four elements enable an
organisation to methodically acquire, store, access, maintain, and reuse knowledge
from different sources [Eschenfelder et al., 1998]. There are generally five models of
KM, viewing KM from different perspectives, which result in different approaches to
KM. These models are: philosophy-based model, cognitive model, network model,
community model, and quantum model [Kakabadse et al., 2003]. Cognitive model, in
particular, is receiving considerable attention [Swan and Newell, 2000]. It treats
knowledge as objectively defined and codified concepts and facts. It focuses on
knowledge capture and storage [Kakabadse et al., 2003]. The primary aim of this model

is to codify, capture and explore explicit knowledge and information, where technology

is considered as an important integrative mechanism [Kakabadse et al., 2003].

The author of this thesis supports the approach of cognitive model for KM. As the
cognitive model concentrates on the use of technologies as important means to achieve
KM, relevant technologies are reviewed in the following sections, which are
information retrieval, machine learning, natural language processing, the Semantic

Web and ontology.

2.2 INFORMATION RETRIEVAL

2.2.1 Information Retrieval and Web Search

Information retrieval (IR) studies the retrieval of information (not data) from collection
of written documents. A typical IR system prepares a certain index for the given text
collection and responds to queries with a list of documents ranked according to certain
criteria [Chakrabarti, 2002].

A search engine is an IR system that searches Web documents for specified queries and
returns a list of documents to match the queries. Typical IR procedures of a search
engine are shown in Figure 2.1. During the crawling procedure, specialised agents,
which are called crawlers, spiders, Web robots, or bots retrieve large quantity of Web
pages simultaneously, and store them for further processing [Chakrabarti, 2002].
Preprocessing is to unify various Web pages retrieved so that they are appropriate for

further processing, which normally includes Web page validation, format conversion,

11

5 . | f Query
‘ Indexing 3 . Processing
i |
‘ |
Y Y
4 N
‘ Ranking 1
|
1
4 °)
v |
L Result Representation |

Figure 2.1 Information Retrieval Procedures of a Search Engine

stripping of stop words!, stemming, etc. When re-formatted Web content is passed
through the preprocessing procedure, the content is analysed to create an index. When a
query is input to a search engine, the query is evaluated according to defined certain
criteria, then the analysed query is calculated using the index and document
information to rank the result set. When the ranking result is generated, it is represented
to the user to answer the query.

There are several measurement metrics for IR systems, such as precision and recall,
F-measure [van Rijsbergen, 1979] and mean average precision [Baeza-Yates and
Ribeiro-Neto, 1999]. However, the most used measure is precision and recall
[Kobayashi and Takeda, 2000]. Precision is defined as the proportion of relevant
documents to all the documents retrieved:

P = (number of relevant documents retrieved) / (number of documents retrieved);

and recall is defined as the proportion of relevant documents that are retrieved, out of
ail relevant documents available:

R = (number of relevant documents retrieved) / (number of relevant documents)

2.2.2 Crawling

Effectively retrieving Web pages from the Web to a document collection is the first step
for a search engine. Crawlers start the retrieving process from some given Web pages

that have outbound links to other pages which have not been retrieved or refreshed.

! Search engines normally filter extremely common words in order to save disk space or to speed up search results.

These filtered words are known as “stop words”.

13

New links from retrieved pages are normalised and queued for further processing. [Brin
and Page, 1998] provided a first known in-depth description of a large-scale crawler as
a part of early Google, being capable to process more than 24 million Web pages. A
Java based large-scale crawler, Mercator, was reported in detail in [Heydon and Najork,
1999], which concentrated on the issues of scalability and the extensibility. Mercator
used a specially designed data structure to handle tens of millions of Web pages with a
limited size of memory. The modular design of Mercator facilitates its extension of
functionalities when needed. Focused crawling was introduced in [Chakrabarti, 1999],
which means only those Web pages which are classified as relevant to given topics are
stored during crawling and the links in those pages are processed for future crawling.
This technique is useful in discovering Web resource of interest, Web structure analysis
and building high-quality collections of Web documents on specific topics [Chakrabarti,
2002].

Féur factors of performance and reliability are considered important to build a large
scale crawler.

1. Domain Name System (DNS) resolution issues

Domain name systems associate many types of information with domain names, but
most importantly, it associates the Internet Protocol address (IP address) with a given
domain name. Address resolution is one of the major bottlenecks in enabling high
performance crawlers. A multithreading DNS resolver was used in [Heydon and Najork,
1999] to improve the performance of DNS resolving, and reduced the percentage of

elapsed time of each thread from 87% to 25%. The asynchronous DNS (ADNS) client

14

library [Jackson, 2006] was used in [Chakrabarti, 2002] to accelerate the Web address
resolving speed.

2. Concurrent retrieving and multithreading

Multithreading, concurrent process, non-blocking sockets with event handlers are three
typical approaches to enable concurrent Web page retrieval [Chakrabarti, 2002].
Non-blocking sockets with event handlers have advantages over the other two
approaches, because mutual exclusion for shared data structures and random
input-output access to disk interruptions, which often happen in the other two
approaches, do not occur in non-blocking sockets [Nichols et al., 1996].

3. Link extraction requirements

When hyperlinks are extracted during crawling, duplicated hyperlinks should be
avoided. In addition, prohibited links by host servers should not be crawled by
following the specification of Robots Exclusion Protocol’. Malicious spider traps often
occur in the crawling process, and sometimes cause crawlers to crash. Some traps also
cause the crawler retrieve indefinite number of dummy pages, or similar pages with
different depth in terms of forward slashes in hyperlinks [Heydon and Najork, 1999].
Due to this reason, crawlers need to be designed to prioritise Web links to crawl [Cho et
al., 1998].

4. Refreshing of crawled pages

To keep Web pages crawled up to date, some assumptions need to be made for

2 For more information refers to: http://www.robotstxt.org/wc/robots.html

15

http://www.robotstxt.org/wc/robots.html

estimating update intervals on different websites. Algorithms for refreshing crawled
Web pages newer than a specified crawling period were proposed in [Brewington and
Cybenko, 2000]. Incremental crawling was described in [Cho and Garcia-Molina, 2000]

to refresh Web pages retrieved in a timely manner.

2.2.3 Modaels for Information Retrieval

An IR system needs to present documents relevant to the user’s need and rank the
documents retrieved in the order of predicated likelihood of relevance to the user.
Different IR models are proposed based on distinct sets of premises to achieve such
goals.

In general, an information retrieval model [Baeze-Yates and Riberiro-Neto, 1999] is
defined as a quadruple [D, Q, F, R(qi,d})], where

D is a set composed of logical views (representations) for the documents in the
collection;

Q is a set composed of logical views (representation) for the user’s information needs
(queries);

F is a method for modelling document representations, queries, and their relations;
R(qi,dj) is a ranking function which associates a real number with a query qi€Q and a
document representation dj €D. Such ranking defines an order among the documents
with regard to the query qi.

In addition, a model could be extended to include multiple sources of evidence with

both collaborative and content information [Griffith and O’Riordan, 2003]. Some

16

typical IR models are described as below:

1. Boolean Model

In Boolean model, documents are treated as a set of terms, and queries are expressed in
Boolean expressions. The relevance of query results is calculated using set theory and
Boolean algebra [Wartick, 1992]. Boolean model is the most common model in an IR
system, however, from the probability distribution point view, [Verhoeff et al., 1961]
proved that it is inefficient to for IR systems. Therefore, Boolean model was proposed
to be used in conjunction with other IR models. For example, relevance feedback was
introduced into a Boolean IR system to provide the precision of a Boolean search and
the advantages of a ranked output in [Radecki, 1982]. A Boolean model was also used
in an IR system to rank documents by exploiting term dependence information from a
thesaurus to achieve higher retrieval effectiveness than some of the previous methods
proposed [Lee et al., 1993].

2. Vector Model

Vector model was made popular by Salton and the SMART system [Salton and Lesk,
1968; Salton, 1971; Salton and Buckley, 1988]. Salton et al. [1982] introduced the
extended Boolean model to exploit benefits from both Boolean model and vector space
model, and tests indicated the system produced better results than either of the model
used alone. A sense-based vector space retrieval model was presented in [Stokoe et al.,

2003], which improved the precision by 45.9% relatively to traditional TF*IDF? term

3 The tf-idf weight (term frequency—inverse document frequency) is a weight often used in information retrieval

modelling

17

weighting techniques. Latent Semantic Indexing (LSI) was proposed in [Furnas et al.,
1988] to reduce the dimensions of the vector space by using low-rank approximation
based on singular value decomposition (SVD). Karypis and Han [2000] proposed a fast
dimensionality reduction algorithm with lower computational requirements and the
ability in supervised learning, compared with LSI.

3. Probabilistic Model

Probabilistic model is an IR model based on a probabilistic interpretation of document
relevance to a given user query [Baeza-Yates and Ribeiro-Neto, 1999]. There are two
major types of probabilistic models: relevance models and logic inference models [Fuhr,
1992]. Generally, probabilistic models reveal better performance than Boolean models
[Crestani et al., 1998]. Cooper [1994] raised questions on using probabilistic ranking in
information retrieval, who stated that the cost of creating and trouble shooting
probabilistic IR theories is high.

4. Flfzzy Set Model

Radecki [1976] described using fuzzy set theory [Zadeh, 1965] in information retrieval
to enable different degrees of importance of particular terms in search patterns. In
[Miyamoto et al., 1983] fuzzy set theory was used to produce a pseudo-thesaurus for IR
to enable searching for different but related keywords in the documents. Wong and Yao
[Wong and Yao, 1995] proposed a unified framework of probability inference which
provided conceptual and mathematical basis for models such as fuzzy set.

5. Other Models

Neural network model was used in an IR system in [Wilkingson and Hingston, 1991],

18

and the test results showed that many standard search strategies are applicable in the
neural network model, such as cosine vector measure method. A probabilistic IR model
based on feed forward artificial neural network was implemented in [Kwok, 1995].
Turtle et. al. introduced inference networks for IR in [Turtle et al., 1990]. Belief
network model was introduced in [Ribeiro-Neto and Muntz, 1996] to generalise the
inference network model [Turtle et al., 1990] and other classical probability based

e

models to improve the retrieval performance.

2.2.4 Indexing

The purpose of indexing is to reduce the retrieval time in an IR system which contains
large document collections, and it is especially useful for large and slow growing text
collection [Baeze-Yates and Riberiro-Neto, 1999].

An inverted index is an index structure storing a mapping from words to their locations
in a document or a set of documents [Harman et al., 1992]. To improve the search speed,
inverted files need to be appropriately compressed and encoded [Witten et al., 1999].
Eleven indexing compression models were described and compared in [Witten et al.,
1999]. There are performance trade-offs between these eleven models, such as
compression rate, hard drive usage, and memory usage. Therefore, the appropriate
model chosen depends on various factors such as the user requirements and hardware
availability [Witten et al., 1999]. A hybrid approach of indexing, called two-level
searching, was developed in Glimpse system [Manber and Wu, 1993]. This approach

combined a small index and sequential search techniques to reduce the size of the

19

inverted index and to support approximate matching [Araujo et al., 1997].

2.2.5 Storage and Query

Text compression and pattern matching are also important in IR systems. Text needs to
be compressed to significantly reduce the storage size and improve the retrieving speed.
Huffman coding was first presented in [Huffman, 1952], which is an entropy encoding
algorithm for lossless data compression. An efficient compression and decompression
scheme for word-based Huffman encoded text file was described in [Moura et al.,
1998]. Huffman encoding was used in MG system for text compression due to this
method’s relatively fast encoding and decoding speed and random access ability
[Witten et al., 1999].

Pattern matching is widely used during the process of indexing and query. An algorithm
using bit-parallelism to support extended patterns allowing errors was presented in [Wu
and Manber, 1992] and an online searching tool, Agrep, based on this algorithm was
developed in [Wu and Manber, 1992]. The fastest bit-parallel approximate pattern
matching algorithm implemented in [Baeza-Yates and Navarro, 1999], was based on

simulating non-deterministic finite-state automata [Hopcroft et al., 2000].

2.2.6 Applications of Information Retrieval

Various applications for IR were reported in literature. WebGlimpse, a tool combining
searching and browsing through a neighbourhood search, was described in [Manber et

al.,, 1997]. An IR system that included the addition of concepts to facilitate the

20

identification of the correct word sense was presented in [Henstock et al., 2001]. A
filtering system SIFTER, which was based on a model using multiple adaptation
techniques to cope with uncertainties, demonstrated a good performance in filtering
documents in a realistic setting [Mostafa et al., 1997]. An IR system using semantic
annotation and semantic relations in medical domain was presented in [Vintar et al.,
2003]. In this system, discovery of new relation instances improved the retrieval

performance.

2.3 MACHINE LEARNING TECHNIQUES

Machine learning (ML) techniques such as neural networks, genetic algorithm,
simulate annealing [Pham and Karaboga, 2000; Pham and Xing, 1995] and fuzzy logic
[Zadeh, 1994] in the soft computing paradigm have been used in clustering, filtering,
information extraction, information personalisation, knowledge discovery and other
natural language processing applications [Mooney, 2003]. Those techniques are mainly
used to investigate three types of Web information, which are content, usage, and link
structure [Baeza-Yates, 2003]. Most ML methods concern the task of categorising
examples described by a set of features [Mooney, 2003]. In particular, three machine
learning techniques relevant to the scope of this thesis are reviewed below, which are

support vector machine, rule-based learning and memory-based learning techniques.

2.3.1 Support Vector Machine

Support Vector Machine (SVM) is a statistical, supervised learning method based on

21

structural risk minimisation (SRM) and kernel functions [Boser et al., 1992]. One major
advantage of SVM is the high classification accuracy given few training examples and
vague distinctive margin between different groups of examples, which was
theoretically proven in [Vapnik, 1999; Scholkopf and Smola, 2002]. In practice,
[Joachims, 1998] discussed algorithmic and computational costs for managing large
training tasks in the SVM"#™ an SVM implementation in C programming language.
LIBSVM [Chang and Lin, 2002] was provided as an SVM library package by Chang et
al.

In application, Joachims [2001] proposed a learning model for text classification based
on SVM. In [Li and Liu, 2001], a Chinese web page classifier using SVM and
unsupervised clustering was implemented, which mitigated the high training cost using
an unsupervised clustering method. A method which combines evidence from a
document and citing documents by using SVM and entropy based feature extraction
was presented in [Glover et al., 2002] to improve the web page classification accuracy.
In [Chen and Dumais, 2000], a user interface which automatically categorising search
results using SVM text classification shows 50% improvement in finding information

in search results.

2.3.2 Rule-Based Learning

The learned knowledge in rule based learning is represented in a declarative, symbolic
form of logical rules as opposed to a numerical model obtained by using SVM. One

advantage of this method over statistical ML methods is that the acquired knowledge is

22

represented in a symbolic form that can be more easily interpreted, modified and
maintained by humans. Rules are normally indug:ed from a set of training examples
using a variety of algorithms [Mitchell 1997, Langley 1996]. Although the optimal goal
is to construct the smallest rule set to consistently represent the training data, but
normally this is a non-deterministic polynomial-time hard (NP hard) problem, which
may take unacceptable long time to solve. Therefore, heuristic approaches are often
used to create the approximately optimal rule set.

Rule-based learning algorithms have been applied to many areas, such as named entity

(NE) recognition [Isozaki, 2001], language engineering? [Bontcheva et al., 2004], and

knowledge management [Davies et al., 2005].

2.3.3 Memory-Based Learning

Different from rule-based learning methods, memory-based learning (also called
case-based or instance-based methods) do not generate abstract models from given
examples, but rather compare the similarity of the new input examples with existing
correct examples using some similarity comparison metrics. Some typical metrics are
Hamming distance and Euclidian distance [Mooney, 2003]. The advantage of this
method applied in NLP is that it does not discard valuable low frequency information,
which often occurs in natural language. Benchmark tasks in areas from phonetics to

semantics in natural language processing were conducted using memory-based

4 Language engineering is the creation of natural language processing systems whose cost and outputs are

measurable and predictable.

23

learning methods with good results obtained, compared with other ML methods used
[Daelemans, 2005]. Tilburg Memory-Based Learner (TiMBL), a memory-based
learning software package, was implemented for language engineering purpose in

[Daelemans, 2004].

2.4 NATURAL LANGUAGE PROCESSING

Natural language processing (NLP) is a field of information science to research how to
enable computers to process and understand human languages. It has tight relation with
information retrieval and knowledge management. Five areas in natural language

processing where are related to this thesis are reviewed.

2.4.1 Part of Speech Tagging

Part of speech (POS) tagging, which is also called word-class tagging, or grammatical
tagging, is to assign parts of speech (such as noun, verb, adverb, adjective) to words in
a text. POS tagging is used in many other NLP areas such as machine translation (MT),
word sense disambiguation (WSD) and information extraction (IE) [Voutilainen, 2003].
Current POS taggers have high tagging accuracy (about 97%). A rule-based POS tagger
developed by Brill, achieved 97% tagging accuracy [Brill, 1992]. Its compact structure
has an advantage over statistical POS taggers. Second-order hidden Markov model for
POS tagging V\{ith the tagging accuracy (96.9%) was developed in [Thede and Harper,
1999]. Both probabilistic and rule-based tagging modules were used in tagger

CLAWS4 [Garside et al., 1997] to tag British National Corpus, with a tagging accuracy

24

97% across the whole corpus.

2.4.2 Word Sense Disambiguation

Word sense disambiguation (WSD) is the process of identifying the meaning of words
in context [Stevenson and Wilks, 2003]. WSD can be applied to machine translation
(MT), information extraction (IE), information retrieval (IR) etc. Dictionary-based and
machine learning are two main approaches to WSD [Stevenson, 2003], where
machine-readable dictionary (MRD) (such as WordNet [Fellbaum, 1998]),
semantically tagged corpora (such as Semcor package in WordNet software) and
thesaurus (such as Roget’s Thesaurus [Roget, 2003]) are three main knowledge sources
used in both approaches [Yarowsky, 1992].

Studies show that IR systems may substantially benefit from using WSD techniques.
As reported in [Stokeo et al., 2003], a disambiguation rate above 60% can improve the
precision and recall of information retrieval. A, WordNet [Fellbaum, 1998], was used
with a WSD algorithm to improve the precision and recall of a keyword-based IR

system [Mihalcea and Moldovan, 2000].

2.4.3 Concordance and Collocations

A concordance is a list showing all the occurrences and contexts of a given word or
phrase, which are found in a corpus; collocations are groups of words which frequently
appear in the same context. Concordance and collocations are useful tools for tasks

such as corpus annotation and WSD. For example, Yarowsky [1993] observed that,

25

sense is usually consistent in one discourse and nearby words provide strong and
consistent clues to the sense of the target word, which is called “One Sense per
Discourse”. Yarowsky [1993] also claimed “One Sense per Collocation” which states
that with a high probability an ambiguous word has only one sense in a given
collocation. These two claims were used in an unsupervised learning algorithm for

WSD purpose, which achieved the accuracy between 90% and 96%.

2.4.4 Concept Indexing

There are different definitions of “concept indexing” in different research areas. For
example, a fast dimensionality reduction algorithm called “concept indexing” [Karypis
and Han, 2000] uses a clustering technique based on mathematics in a vector space
model. While in [Voss et al., 1999] concept indexing refers to the process of marking
interconnected concepts to their occurrences in the text collection using hyperlinks.
The process is produced by a team of people to manually mark concepts in documents.
Similar term “semantic indexing” in [Chang and Schatz, 1999] refers to a statistical
similarity method to capture relationships between concepts and form a concept space
to suggest alternative terms semantically related to query terms. This approach requires
the use of a cluster of high performance computers. In [Mihalcea and Moldovan, 2000],
“semantic indexing” refers to the usage of word senses in the process of document
indexing, where word-based and sense-based indexing are combined to improve the
precision and recall of an IR system. Holub in a recent work [Holub, 2003] introduced

an iterative clustering method called “conceptual document indexing” which extracts

26

significant topical concepts from clustered documents and the hierarchical
relationships between them, such that documents are organised in a hierarchy for

browsing purpose.

2.4.5 Information Extraction

Information extraction (IE) refers to the automatic identification of selected types of
entities, relations, or events in free text [Grishman, 2003]. There are many potential
application areas for IE: situations where information is being extracted manually, but
at a very high cost and low speed; situations where unstructured information needs to
be structured; situations where business, political, military events on particular subjects
need to be monitored etc. The general approach for IE is through machine learning
techniques to generate extraction rules or statistical models automatically from
annotated text corpora [Grishman, 2003].

Arule-based entity recognition system, MACE, was developed in [Maynard et al., 2003]
to extract named entities, which achieves comparative performance with other systems
based on statistics. ANNIE [The University of Sheffield, 2006] is an Information
Extraction system developed using GATE, and it can extract entities, such as person,
location, organization, date, and address from Web pages. A knowledge management
system using information extraction techniques for automobile manufacturing
intellectual properties was developed in [Hou et al., 2005] to save the labour cost of
knowledge engineers and domain experts.

The state-of-art entity recognition methods have achieved relatively good results, but

27

for tasks such as event extraction, relation extraction results are still far from
satisfaction [Stevenson, M., 2004]. Furthermore, it is time-consuming to produce rules
for rule-based systems and large volumes of annotated training text is still needed for

statistics-based IE systems [Maynard et al., 2003].

2.5 THE SEMANTIC WEB AND ONTOLOGY

The Semantic Web [Berners-Lee et al., 2001] is an ongoing initiative to extend the
current Web structure, and standardise the descriptions of available resources on the
Web, so that the information is understandable by machines, which could make the

information processing more automated and less intervened by humans.

2.5.1 Ontology Engineering

Ontology engineering (OE) is a key enabling technology for the Semantic Web [Davies
et al., 2005], which allows explicitly specifying concepts and their relationships in a
domain in a formal way [Corcho and Gomez-Perez, 2000]. As there are many different
language specifications for OE, such as DAML+OIL [Horrocks et al., 2002], SHOE
[Luke et al., 1997], RDF Schema [Brickley and Guha, 2004], OE tools are needed to
allow users to concentrate on modelling at conceptual level while separating from
low-level syntax and specifications of different languages for the Semantic Web
[Corcho et al., 2003]. Protégé is such a graphical tool commonly used for ontology
editing and knowledge acquisition [Noy et al., 2001].

Currently OE tools and methodologies have been applied to applications to mitigate the

28

difficulties in knowledge acquisition. Maedche et al. proposed a general OE framework
for semi-automatic acquisition of both taxonomy and non-taxonomy conceptual
relation discovery [Maedche and Staab, 2000]. In this framework, an algorithm based
on generalised association rule was used to detect relations and to determine the
appropriate level of abstraction to define relations. [Gottgtroy et al., 2003] described an
OE approach to discover knowledge from data in evolving domains such as biological

sciences, medical sciences, and social sciences.

2.5.2 Information Extraction for the Semantic Web

Stevenson et al. [Stevenson and Ciravegna, 2003] pointed out the existing gaps between
current Web and the Semantic Web, and practical adoption problems for the Semantic
Web. The extension from current Web to the Semantic Web requires high cost effort,
which hinders the likeness of this dramatic change in the real world in the immediate
future [Fensel, 2002; Avello et al., 2002]. By using information extraction, this gap
could be closed [Stevenson and Ciravegna, 2003].

A formal information extraction framework for today’s non-semantic web to extract
knowledge was presented in [Arjona et al., 2003]. It associates semantics with the
information extracted by developing knowledge channels. Information extraction has
been effectively applied in some restricted domains. Jacobs and Rau, developed
SCISOR, a prototype system that extracts information from financial news to find and
summarize corporate merger stories [Jacobs and Rau, 1990]. Amilcare, a system for

adaptive information extraction for the Semantic Web in the hope to automate or

29

semi-automate the information annotation process was described in [Ciravegna and
Wilks, 2003]. KIM, a platform for semantic indexing, annotation and retrieval, was
developed towards information extraction for the Semantic Web [Popov et al., 2003].
This platform is built based on GATE, a general architecture for text language
engineering [Cunningham et al., 2002] and Semantic Web compliant knowledge

representation and management.

2.6 DISCUSSION

The review of four technologies for knowledge management shows that the trend
moving from information-centred society towards knowledge-centred society is
emerging. These four technologies are now moving closer to support and complement
each other to facilitate process of transforming data into knowledge in the chain of
knowledge flow.

Section 2.2 has reviewed the area of IR. Despite of the progress made in IR research,
users are still unsatisfied with the performance of the current IR systems, due to the
reasons such as the slow retrieval speed, communication delays, and poor quality of
retrieved results [Kobayashi and Takeda, 2000]. On one hand, users are suffering from
information overload, and on the other hand, users still cannot efficiently find the
information they want. Researchers in IR field found that the ambiguity in natural
languages hinders the performance improvement in IR systems. This is one of the main

reasons why IR community has increasing interest in the research of natural language

30

processing, such that by using NLP techniques could improve the current performance
of IR system [Stokeo et al., 2003]. Furthermore, due to the “knowledge acquisition
bottleneck” [Boicu, 2001], more efficient automated methods to acquire high quality
information are needed to assist knowledge management. In this case, the expertise
from IR field for exploring vast amount of online information can contribute to this
growing need, where new techniques such as focused crawling, concept indexing
emerge.

Section 2.3 has reviewed three ML techniques which could be potentially used in IR,
NLP and KM. The research field of IR has a long history using ML techniques. NLP
needs the assistance from ML to automate its processes due to vast text-based data
involved. ML is being adopted in IE for building the Semantic Web to reduce the high
building cost involved. Therefore, there is a trend towards combining ML into
improved formal models of IR, NLP and KM [Kobayashi and Takeda, 2000;Allan et al.,
2003; Baeza-Yates, 2003].

Section 2.4 has reviewed five aspects of natural language processing. Tagging
techniques and semantic analysis have received increasing attention in the KM, Web
mining and text mining research areas. However, there is no one system has addressed
the use of concept-based tagging techniques in KM in a systematical way. Therefore,
there is a potential opportunity for exploring the combination of these techniques
further into a KM system.

Section 2.5 has reviewed techniques and tools for ontology building, and the building

of the Semantic Web. For building the Semantic Web, processes need to be automated

31

because of the vast Web content information involved. Also due to the fact that most
online information is based on natural languages, NLP is therefore a key technology to
enable the transformation from current Web structure to the Semantic Web.

Therefore, research opportunities are open to combine these four technologies in a
systematical way to streamline the knowledge flow for embracing the trend towards
knowledge-centred societies. In particular, techniques such as focused crawling,
machine learning, concept indexing and ontology are worth being exploited

systematically in Chapters 3-7 for knowledge management.

2.7 SUMMARY

This chapter has outlined the research that addresses knowledge management, and its
four enabling technologies, which are information retrieval, machine learning, natural
language processing, the Semantic Web and ontology. Important trends within the
scope of this work have been discussed and summarised to provide starting points for

the research presented in Chapters 3-7.

32

CHAPTER 3. FORMAL REPRESENTATION OF
CONTENT USING CONCEPT INDEXING

This chapter addresses the first objective of this research. It introduces the idea of
concept indexing and presents the two models developed: conceptual and mathematical.
A concept indexing framework is then introduced. The technical approach proposed is
clarified using an illustrative example. Finally, the chapter describes the system

architecture developed for this framework.

3.1 CONCEPT INDEXING

An analysis of the conventional approaches to knowledge representation is a starting
point in the development of a new knowledge representation scheme, which uses

concept indexing.

3.1.1 Conventional Models for Knowledge Representation

Knowledge representation (KR) is the study of how knowledge about the world can be
represented and how reasoning can be conducted based on this knowledge. In artificial
intelligence (AI), KR can play five roles: “a surrogate, a set of ontological commitment,
a fragmentary theory of intelligent reasoning, medium for efficient computation and
medium of human expression” [Davis et al., 1993]. In the management of explicit
knowledge, KR is tightly related to other processes in knowledge management as KR

can affect the way knowledge is processed and utilised [Davis, 1993]. There are a

33

number of modelling languages and formalisms for (KR) developed in different
domains, ranging from databases to the Semantic Web (SW). Examples of such include
semantic networks [Quillian, 1968], frame-based knowledge modelling [Minsky, 1975],
Entity-Relationship (ER) modelling [Chen, 1976], description logics (DL) [Brachman
and Schmolze, 1985], UML [Booch et al, 1998], RDF and RDFS [Klyne and Carroll,

2004], and OWL [McGuinness and van Harmelen, 2004].

1. Semantic networks. A semantic network is a model for representing knowledge in

patterns of interconnected nodes and arcs.

2. Frame-based knowledge modelling. In frame-based knowledge modelling,
collections of related frames are linked together into frame systems to represent
knowledge, where the frame is a data structure for representing stereotyped

situation knowledge.

3. Entity-relationship (ER) modelling. ER is a data model for multilevel
descriptions of views of data. ER is typically used to design the data organisation
within databases or information systems. An entity is an object or concept where
data is stored. A relationship is the connection through which data is shared between

entities.

4. Description logics. Description logics are knowledge representation languages
tailored for expressing knowledge about concepts and concept hierarchies, which

are sub-languages of predicate logic to provide reasoning support.

34

5. UML. Unified Modelling Language (UML) is a non-proprietary, third generation
modelling and specification language, which has been applied into different areas
such as software engineering, designing complex engineering systems, business

process, and organisational structures.

6. RDF and RDFS. Resource Description Framework (RDF) is a modelling language
to describe resources on the web in a domain-independent way. Users can define

their own terminology in a scheme language called RDF Schema (RDFS).

7. OWL. The Web Ontology Language (OWL), which is built to enhance RDF, is an
ontology language for writing explicit, formal conceptualisations of domain

models.

The existing KR languages and formalisms will be analysed using the requirements

defined below to decide whether these languages and formalisms are suitable for KM.

3.1.2 Requirements for Knowledge Representation of

Explicit Knowledge

The requirements for representing explicit knowledge for the needs of knowledge

management are summarised below.

1. Automatic extraction of knowledge from unstructured text. Automating

knowledge extraction can dramatically reduce the labour cost as opposed to

35

extracting knowledge manually. Therefore, automatic knowledge extraction is an

essential feature in knowledge representation.

Support for efficient reasoning. One of the reasons for developing more advanced
knowledge representation schemes is the need for reasoning support. Knowledge
representation is needed to support several reasoning capabilities such as reasoning
on class membership, equivalence and classification reasoning [Antoniou and van

Harmelen, 2004].

Rich lexical and semantic representation. Explicit knowledge is normally
expressed in unstructured text-based documents. Examples of this are emails, web
pages, electronic documents, and minutes of meetings. Documents differ from data,
in that data does not have lexical or semantic information, whereas documents
contain both lexical and semantic information. The support for syntactical and
semantic representation of such documents is an important requirement. Necessary
syntactical and semantic information should be efficiently extracted and

maintained.

Good scalability to large document collections. One of the problems with
knowledge management systems of organisations is the ever growing size of their
text-based documents. The large size of these documents sometimes increases the
processing time considerably, which results in delayed delivery of the knowledge

required.. Therefore, good scalability is required for large document collections.

36

5. Flexible ways of making queries. Flexible ways mean that users can input queries
for information and knowledge at different levels of abstraction. In other words,
users may use concrete instances of concepts (i.e. entities) or only input concepts,
when they do not have concrete realisations of those concepts or when they do not
need instantiations of any concepts to make queries [Chakrabarti, 2002]. For
example, when a user is sure about what he/she wants to find out about a “Volvo”
car, then he/she will probably input “Volvo” as a key query term for the
information. If the user wants only information/knowledge at a more abstract level
i.e. car industry, he/she will probably input “car” instead of many different car
brands at the same time. At this time, the user treats “car” as a concept with a more
abstract level than “Volvo”. Therefore, there is a need for more flexibility in

making queries.

The knowledge representation languages and formalisms outlined in this section are
further analysed through an extended literature review including [Quillian, 1968;
Minsky, 1975; Chen, 1976; Brachman and Schmolze, 1985; Booch et al, 1998; Klyne
and Carroll, 2004; McGuinness and van Harmelen, 2004], to investigate how and to
what degree they support these five requirements. In Table 3.1, “good”, “fair”, “poor”
and “difficult” indicate different levels of support for each requirement. “Unknown” is

used when there is no information available for the corresponding requirement.

37

N

Table 3.1 Feature Comparisons of Knowledge Representation Languages And Models

Modelling languages Requirements
iﬁd f(;rl‘lilahsms for Automatic Support for efficient | Rich lexical and Good scalability to Flexible ways of
owledge extraction of reasoning semantic large document making queries
represenation : :
knowledge from representation collections
unstructured text
Semantic Networks Not easy Poor Fair Good Poor
Frame-Based Not easy Fair Fair Poor Poor
Knowledge Modelling
Entity-Relationship Difficult Poor Poor Good Poor
(ER) Modelling
Description Logics Difficult Fair Poor Poor Good, but unintuitive
UML Difficult Unknown Poor Poor Difficult
RDF And RDFS Difficult Good Poor Good Fair, but unintuitive
OWL Difficult Fair Poor Good Good, but unintuitive

38

As Table 3.1 shows, there is still a lack of support for automated extraction of
knowledge from unstructured text. Also, there is a lack of support for syntactic and
semantic information representation. Moreover, current modelling languages and
formalisms are not suitable for making queries, because their representation schemes
are rigid, complicated and not intuitive. Also, because of the trade-off between the
expressiveness of KR and the effectiveness of logic reasoning [Antoniou, 2004], a
proper level of expressiveness of KR to support reasonable speed of reasoning is
needed. To meet these requirements, the idea of concept indexing is introduced, defined

and formalised using a concept indexing framework

3.1.3 Definitions

In the context of this thesis, an entity is an identifiable and discrete instance existing in
a text document. A concept is the abstract or physical information about entities or the
relationships between them. An index is “the systematic guide to items contained in a
collection of concepts” [ANSI, 1984]. Concept index is a machine understandable
index of entities and concepts in document collections. In the context of knowledge
management, concept indexing could be defined as the analytic process of identifying
the entities and relationships which represent the knowledge conveyed in a document in

the form of a concept index.

An assumption made here is that the information conveyed in a text can be analysed
separately in terms of the entities and concepts contained. This work suggests to extract

entities from unstructured text-based content using a language knowledge base (KB),

39

and to identify concepts with the help of a concept KB. Once entities and concepts are
isolated, they can be used to build a concept index.

The conceptual model of concept indexing is illustrated in Figure 3.1. As the figure
shows, the knowledge from unstructured text-based content is analysed and structured
using entities and concepts with the help of two knowledge bases, the language KB and
the concept KB.

The Language KB contains the lexical and grammar knowledge. Lexical knowledge
provides a background for part of speech (POS) analysis and further language analysis.
Grammar knowledge is used to determine whether the compositions will be treated as

entities or concepts in this language analysis.

The Concept KB contains ontology knowledge for a large vocabulary of words and
phrases, so that the system can “understand” the meaning of the text. For example, if
the words “cars” and “vehicles” are frequently used in a text, then the system “knows”
that the text contains some information about “transportation”, which is a more abstract
concept than “cars” and “vehicles”.

Furthermore, the knowledge organised in the form of entities and concepts is stored
using a cdncept index. The concept index is essential because, as the knowledge base in
the system grows larger, finding entities and concepts efficiently from the knowledge
base will be increasingly difficult. With no efficient methods for processing, storing and
retrieving, the knowledge base will finally become unmanageable and of not much

value.

40

Unstructured Text-based Content
] || N

Concept KB

Entities
Concepts

Language KB

Document EntityID Document | ConceptiD
Docl Entity1 Docl Conceptl
Docl Entity2 Docl Concept2
Docl Entity3 Docl Concept4
Doc3 Entity1 Doc20 Concept2
Doc3 Entity3 Doc20 Concept3
Doc3 Entity4 Doc20 Concept7

Concept Index

Structured Knowledge with
Entities and Concepts

Figure 3.1 Conceptual Model

41

3.1.4 Mathematical Model

The concept indexing model proposed is further developed using a mathematical model.

The notations used are illustrated in Figure 3.2.

Given a text W from a text collection X, the knowledge in this text is defined as &,
which can be decomposed into entity knowledge set I" and concept knowledge set E.
Entity knowledge in = is defined as M, and concept knowledge is defined as N. All
knowledge in X is defined as K. An element of the entity knowledge set I" is defined
as ¢, and an element of the concept knowledge set E is defined as ¢. i and j are used
as subscription indexes to differentiate different elements in the entity knowledge set

and concept knowledge set. The mathematical model is defined as follows.

IF

'eM 3.D
AND

EcN (3.2)
AND

E=T'UE (3.3)
AND

K=MUN (3.4)

THEN

I'={Vp.cT.Vo,cL,pi# 0] Lnch =T, p:N;=B,3ec < @i})

i=1
AND
(3.6)

E ={8i,6‘j|U8i =E,&i # &}

i=1

42

Entity Knowledge M in [%B] [
Text Collection X I I
| , @

Text Collection =

Knowledge Kin Text =

Concept Knowledge N
in Text Collection £

I ¥...

l

i - Entity Knowledge

S Elements

= ’

(>}

= Entity Knowledge " in

= Text Collection W

1

el | .. @

g I

=

b3 £ i - Concept

= Knowledge Elements Text U from Text
8 Collection &
N Concept Knowledge 13

in Text Collection W

- Text Collection - Text

- Knowledge - Knowledge Element

Figure 3.2 Notations Used in the Mathematical Model

43

(3.1) Assumes that entity knowledge I" inatext W is a subset of the entity knowledge

M in the text collection .

(3.2) Assumes that concept knowledge E in a text W is a subset of the concept

knowledge N in the text collection X.

(3.3) Assumes that information E in a section of text W is the union of entity

knowledge set I" and concept knowledge set Ein the text W.

(3.4) Assumes that information in the text collection X is the union of entity

knowledge set M and concept knowledge set N.

(3.5) When (3.1)-(3.4) are satisfied, then entity knowledge I from textW is a union of
entity knowledge elements ¢, and entity knowledge elements do not have intersections
with each other, and there exists a concept knowledge element £ which is a subset of

an entity knowledge element, but not always.

(3.6) When (3.1)-(3.4) are satisfied, the concept knowledge I from textW is a union of

concept knowledge elements ¢ . They may have intersections.

This approach to defining knowledge contained in a text collection has some substantial
benefits. First of all, entities, which are normally easy to express using keywords, can
be separated from concepts, which are normally difficult to express with keywords. For
example, it is easy to specify entities about a specific company, but it is difficult to
specify information about a product of a specific company which may introduce

negative effects on people unless the user knows the specific name of the negative

44

effect such as “cancer”, and this is because information related to a specific entity is
easier to express then an abstract concept conveyed by this information. From (3.5) and
(3.6), the information E in text W from text collection Z is formed as a union entity
information elements ¢ and concept information elements & . This separation of
information, which is normally processed as keywords in an IR system, makes the
knowledge representation clearer when considering different levels of abstraction of
the information contained in a knowledge management system. It also facilitates the
queries for information from the knowledge management system. In this sense, concept
information is expressed in a more appropriate way as the high level queries are not
“overfitted” by unnecessarily detailed keywords, as using keywords to express abstract
concepts tends to add more information than the information that the concepts really

carry.

3.1.5 Benefits of Adopting Concept Indexing

The benefits of adopting concept indexing are discussed in this section in relation to the

requirements defined in section 3.1.2.

First of all, concept indexing enables automatic knowledge extraction. There are two
types of knowledge extracted from the text content, fact knowledge and abstract
semantic knowledge. The fact knowledge is expressed by using entities and concepts
whereas the semantic knowledge is expressed using POS and concepts tags. For
example, given a sentence “The Fulton County Grand Jury said Friday an investigation

of Atlanta’s recent primary election produced no evidence that any irregularities took

45

place”, “The Fulton County Grand Jury” as an entity, “law” is an abstract concept for

“jury”, and “election” will be treated as fact knowledge.

Secondly, this approach enables efficient reasoning using membership, equivalence
and classification. As concepts tags are attached to all meaningful words/phrases in the
text, the membership reasoning can be deduced according to the concept hierarchy in
the concept KB. Equivalence can be conducted at different abstraction levels, as well as
the instance level as exact term matching. With the help of the current state-of-art
keyword-based indexing technique, classifications and equivalence reasoning will be

fast; the ability to perform reasoning in batch mode also improves the efficiency.

Thirdly, concept indexing enables rich lexical and semantic representation, and the
use of other sets of symbols in the future, if needed. Concept index enables rich
semantic representation, in that POS information and ontology information are treated
as two distinct sets of symbols, similar to the way the keyword-based models treat
words and phrases. Therefore, as long as the meanings of the symbols are defined, the
same indexing mechanism can be applied to these sets of symbols, no matter how many
sets of different symbols are employed in the system. For example, if in the future,
phonetic information is needed, a set of phonetic symbols can be defined and added into
the system. Therefore, this structure gives more expressive power than previous models,

which do not have lexical and semantic representation capabilities.

Next, this approach can be applied to large document collections. Because the concept

indexing model is built using existing keyword-based indexing technologies, large

46

document collections will not be a problem, as current keyword-based indexing tools

have been proven to handle large volumes of data efficiently.

Furthermore, this framework enables more flexible ways of conducting queries
compared to knowledge base systems that use traditional keyword-based queries. The
availability of lexical and semantic information, POS symbols, ontology symbols and
keyword symbols, which can be input to the system as queries at the same time, gives
more flexibility over the existing solutions. For example, the user may want to query
“vehicles” instead of individual sub-types of vehicles such as “cars”, “lorries”, etc.
She/he can also query vehicles produced by a specific brand, no matter if itisa caror a
lorry. This gives more flexibility than previous query methods, as this gives users more

control over the ways of searching for information.

In addition to all requirements defined in section 3.1.2 which have been addressed,
there is an extra benefit of using concept indexing for automatic content
categorisation. The benefit is that different viewpoints, aspects or levels of
specification of a domain can be expressed. This benefit is similar to that of using
faceted systems [Priss, 2000]. In faceted systems, facets are relational structures
consisting of units and relationships that are selected for a certain purpose. Compared
with faceted systems, concept indexing has advantages. For example, user can choose
abstract concept query terms to form a query, which means that concepts from different
levels can be mixed to form a new “facet” which is impossible in faceted systems. Also,

in contrast to automatic content categorisation, no information is removed from the

47

original information in the content. This preserves all information necessary to view a
document from multiple viewpoints. As a result, knowledge is better reused compared
with conventional text clustering and automatic text categorisation methods. The
purpose of concept indexing is to preserve the main knowledge of documents’ views, so
that different facets of a document could be used for different information needs. Using
a simple analogy, one can expect that many different questions could be asked against a
single sentence, each question focusing on different aspects of the knowledge
expressed in this sentence. This issue has not been addressed in previous studies, where
documents are normally categorised into static categories, although the static
catalogues are generated automatically. In concept indexing, once essential entities and
concepts in a text are captured (e.g. agent, place, reason, time, event, status, etc.), the
extracted information could be organised in a concept index for more efficient

knowledge management.

3.2 AFRAMEWORK FOR CONCEPT INDEXING

In this section an abstract framework for concept indexing is described. The framework

is illustrated in Figure 3.3.

There are 11 processes in the framework. The purpose of web content retrieval is to
collect targeted web pages for further processing. Since vast amount of existing web
pages are on the Web, the raw content should be collected in a targeted way. Only web

pages of interest will come through to further processing. Irrelevant web pages will not

48

Grammar Web Content Concept
Learning Retrieval Learning
a
g Preprocessing h
Y
Syntactic b b Morphological
Analysis Analysis
c d
Y Y
Entity Parsing [«—e Indexing —f—>| Concept Parsing
k
|
| !
i > Merging < J
Storage <

a - Raw Web Content

e - Indexed Text for Entity
Parsing

i - Parsed Entity
Information for Indexing

b - Preprocessed Web
Content

f - Indexed Text for Concept
Parsing

j - Parsed Concept
Information for Indexing

¢ - Syntactic Information

g - Grammar Knowledge

k - Merged Entity and
Concept Information for
Indexing

d - Morphological
Information

h - Concept Knowledge

1 - Indexed Merged Entity
and Concept Information
for Storage

Figure 3.3 Concept Indexing Framework

49

be stored in the system, thus saving space and processing time and improving the

quality of the knowledge extracted by disregarding irrelevant content.

The web pages retrieved from the web are first preprocessed, so that all input text
material is normalised to one format. Through syntactic analysis, lexical information is
extracted and syntactic tags [Francis and Kucera, 1979] are added to the free text. The

preprocessed text is also used for morphological analysis.

Language grammar knowledge and concept knowledge in the framework is provided to
conduct grammar learning and concept learning. These two processes employ
supervised machine learning. After training, new knowledge is acquired and stored for
further use. Here an assumption is made that knowledge contained in the text used for
training and that in the text to be processed are similar. This means that similar patterns
are expected from the text to be processed, so that the previously learned knowledge is
applicable and could be reused. To give an example, if the training involves material
from the engineering field, then the system would unlikely be able to produce accurate

results when processing texts from chemistry.

From the syntactic and morphological analysis, text information from both sources is
indexed to accelerate the further processing. The processed text with syntactic and
morphological information after indexing is input to the subsequent entity parsing and
concept parsing to extract entities and concepts. Then, the entity and concept
information is merged and indexed into a structured concept index that is then stored for

queries.

50

3.3 ILLUSTRATIVE EXAMPLE

A simplified example illustrating the process of concept indexing is shown in Table 3.2.
The notations used in Table 3.2 (for example, ‘a’ for raw web content, ‘b’ for

preprocessed web content, etc.) are the same as those employed in Figure 3.3.

(@) The raw material used in this example is obtained by crawling relevant web sites by
targeted web spiders and saved to local hard drive. This material will be used in all
subsequent processes. In the example, HTML tags such as “<html>”, “<head>”,
“<title>” have special meanings to web browsers such as Netscape navigators and
Internet explorers. For instance, “<title>this is the title</title>" indicates that the
sentence “this is the title” would appear in the title bar in the windows GUI, while
anything between the tag “<body>" and “</body>" will show in the windows, but not
in the title bar. These tags are normally interpreted by web browsers but not shown

directly to the users.

(b) In the second step, the HTML tags are removed from the raw data (a), and a
document reference number is assigned to each document for later use. For example, in
Table 3.2, the format of document reference number uses “docnum” followed by 6

digits.

(c) Next, lexical analysis is conducted, and a forward slash “/” and tags indicating
lexical ingredients are added after each word. The tags used are the same as those

employed in the Brown Corpus [Minnen et al., 2001]. For example, “NP” means proper

51

Table 3.2 A Simple Illustrative Example of Concept Indexing (a-k)

Content Data
Raw Web <html><head><title>...</title></head>
<body>The Fulton County Grand Jury said Friday an
Content (a) investigation of Atlanta's recent primary election produced no
evidence that any irregularities took place.</body></htmI>
Preprocessed The Fulton County Grand Jury said Friday an investigation of
Atlanta's recent primary election produced no evidence that
Web Content (b) | any irregularities took place.
docnum000001
Lexical the/AT Fulton/NP County/NN Grand/JJ Jury/NN said/VBD

Information (c)

Friday/NR an/AT investigation/NN of/IN Atlanta's/NP$
recent/]J primary/NN election/NN produced/VBD no/AT
evidence/NN that/CS any/DTI irregularities/NNS took/VBD
place/NN ./.

docnum000001

Morphological

Information (d)

the Fulton County Grand Jury say Friday an investigation of
one’s recent primary election produce no evidence that any
irregularities take place .

docnum000001

Entity

Information (i)

Fulton/NP Country/NN, Jury/NN, Friday/NR,
investigation/NN, primary/NN election/NN, evidence/NN,
irregularities/NNS, place/NN

docnum000001

Concept

Information (j)

grand/s586 jury/s272 said/s312 friday/s579 investigation/s26
recent/s19 primary/s362 election/s444 produced/s306
evidence/s306 irregularities/s10

docnum000001

Merged Entity
and Concept

Information (k)

Fulton/NP Country/NN, Jury/NN, Friday/NR,
investigation/NN, primary/NN election/NN, evidence/NN,
irregularities/NNS, place/NN

grand/s586 jury/s272 said/s312 friday/s579 investigation/s26
recent/s19 primary/s362 election/s444 produced/s306
evidence/s306 irregularities/s10

docnum000001

52

noun or part of name phrase, while “AT” indicates an article.

(d) Then, inflected forms of verbs in conjugation are primed as in the example. For
instance, “said” in (b) “The Fulton County Grand Jury said...” is primed to the original
verb form “say”, and so are the others verbs. In addition, possessive and inflected
nominal compositions are converted to singular possessive pronouns. For example,

“Atlanta's” is primed to “one’s”.

(i) Next, entities are extracted from the indexed content according to the lexical

information provided in step (c).

() Concept category information is added to the words and phrases in the indexed
content. For example, concept category, s586 contained in the concept KB relates to the

concept ‘grand’.

(k) In this step, entity information (i) and concept information (j) is combined in a
concept index. One word/phrase can show as an entity and a concept at the same time.
For example, “Jury” is treated as “singular or mass noun” in the context of entity
information, but at the same time, in the context of concept information, “Jury” carries
the meaning of concept category “s272”, which is law related. There are some
words/phrases which do not appear in (k) as they carry little information. For exarhple,
although the word “the” in (c) is treated as an “article”, due to the frequent use of

articles in texts, any word with an “article” tag is excluded from (k).

The remaining notions used in Figure 3.3 are implementation-specific. (¢) and (f) are

53

specially structured text facilitating fast entity and concept parsing, respectively. (g)
provides grammar knowledge to assist syntactic analysis, and (h) is used to extract
concept knowledge from processed Web content. All these specifics will be explained

and illustrated in a greater detail in Chapters 5 and 6.

3.4 A SYSTEM FOR CONCEPT INDEXING

3.4.1 System Architecture

The proposed concept indexing system is based on the use of information agents, NLP
and indexing techniques. The architecture of the system is shown in Figure 3.3. Web
content is retrieved from the web into the system by web spiders. The user queries and
the query results are input into and output from indexing and query sub-system. The
web spiders retrieve web pages from the Web to the internal indexing and query
subsystem. The language processor is used for text preprocessing, parsing syntactic,
morphological, entity and concept information contained in the text using language KB
and concept KB. The indexing and query subsystem provides three functions to the
system, namely, indexing, query and storage functions. It indexes and stores the raw
web content, preprocessed, syntactically analysed, conceptually analysed, and merged
syntactic and concept information. Syntax and concept information is analysed by the
language processor. The concept KB contains concept knowledge organised in rules
and knowledge objects. The language KB consists of systematised morphological and

syntactic knowledge of English language represented in tagging rules. The concept

54

learning and syntax learning modules provide learning ability to the system, so that

new concept and grammar knowledge can be obtained by using these two modules.

3.4.2 MAIN PROCESSES

Three processes, a, b and ¢ (see Figure 3.4), are described in this section. The first
process (a) relates to retrieving, indexing and storing web content into the system. The
second process (b) describes the steps for the system to learn the grammar and concept
knowledge needed for processes (a) and (c). The third process (c) concerns the user’s
interaction with the systems, and involves retrieving relevant knowledge according to

the users’ queries.

a. Retrieval Process (a). This process begins when the web spiders start retrieving web
content. This content is stored in the indexing and query subsystem’s repository. Before
any type of parsing is performed (e.g. syntactic, morphological, entity or concept
parsing, as shown in Figure 3.4), text data is preprocessed by the language processor to
make them normalised for later use. Indexing is carried out to make the processing of
the language processor faster. Thereafter, the content is analysed by the language
processor as illustrated in Table 3.2. Entity and concept parsing is performed using
information from the language KB and concept KB when text data from the web spiders
is preprocessed by the language processor and indexed by the indexing and query
subsystem. After entity and concept information is extracted, it is indexed and added to

the concept index for queries. Chapter 4 describes the retrieval process in detail.

55

Queries Web Content on the Internet

Concept Learning

! Web Spiders Module

]

Concept KB

IS ——

Indexing and Query
Subsystem

Language
. » Processor

VS
(Y]

f

a

Syntax Learning —

Module Language KB

Retrieval Learning
a Process b=

7
\.
bt |

i Indexing and
Process ¢ Query Process

O oo C O v
Knowledge

Figure 3.4 General Architecture and Main Processes

56

b. Learning Process (b). The language processor uses knowledge learned in this
process to perform the retrieval, indexing and query processes. This process gives the
systerﬁ the ability to automatically acquire new knowledge without building manually
the knowledge base. Several machine learning techniques are used in this process

which will be explained in more detail in Chapter 5.

¢. Indexing and Query Process (c). Users query the system using entities and/or
concepts. The indexing is conducted by the indexing and query subsystem. The query is
passed to this subsystem, which compares it with the entities and concepts contained in
the concept index. If the information requested is available, the indexing and query
subsystem retrieves it from its repositories, and forwards the output to the concept
representation module for displaying the document set or prompting an error message.
Chapter 6 describes the indexing and query process enabling the efficient retrieving of

entity and concept information.

3.5 SUMMARY

This chapter has highlighted the problems in the conventional knowledge
representation methods and proposed concept indexing, which involves identifying the
concepts indicating documents’ content, and representing them using a concept index.
Entities are extracted from unstructured text-based content using a language knowledge
base, and concepts are identified with the help of a concept knowledge base. The

entities and concepts isolated are used to build a concept index. The concept indexing

57

procedure includes the following steps: preprocessing, lexical parsing, morphological
parsing, entity parsing, concept parsing and indexing. To illustrate the use of the
proposed technique, a concept indexing framework is presented. A system architecture
is also developed to illustrate the concept indexing procedures. The proposed approach
to knowledge representation will be utilised in Chapters 4-6 with the aim to improve

knowledge management.

58

CHAPTER 4. AUTOMATIC INFORMATION
ACQUISITION USING MACHINE LEARNING

In this chapter, the problems associated with finding information on the web are
highlighted and a new framework is proposed to address these problems. The
framework is based on using intelligent information agents for targeted information
retrieval. Next, a machine-learning method is employed to improve the efficiency and
accuracy of the retrieval process. Several feature selection options are proposed and
evaluated through two case studies from different domains. Finally, tests are conducted

to show the applicability of the framework, and the findings are analysed.

4.1 FINDING INFORMATION ON THE WEB

There is a wealth of information on the Web. By 2005, more than eight billion Web
pages have been indexed by Google. However, due to the characteristics of the Internet,
finding efficiently useful information for knowledge acquisition continues to be a
major problem, as the irrelevant Web pages retrieved often waste storage space and

computing resources.

Finding useful information on the web is a non-trivial task. This process involves three

steps: discovery, retrieval and analysis of the information obtained.

Traditionally, knowledge management uses manual methods for finding, retrieving and
verifying the relevance of the information gathered [Wiig, 1995]. Manual analysis is

one of the largest bottlenecks in knowledge management [Antoniou and van Harmelen,

59

2004]. Therefore, new methods for automatic information acquisition are required,

which will substantially reduce the cost of the information acquisition process.

4.2 AN INFORMATION ACQUISITION FRAMEWORK

4.2.1 Structure of the Information Acquisition Framework

The information acquisition framework for collecting relevant information from the
Web (Figure 4.1) is composed of four modules: collection agents, agent controller,

storage, and web link pool.

The task of the collection agents is to discover and retrieve relevant information. The
collection agents communicate with the Web using TCP/IP network protocol, and
adhere to the web robot exclusion protocol to ensure that the Web pages are
downloaded properly. The agent controller manages the coordination between the
collection agents, ensuring that different agents are assigned different downloading
jobs. It also processes the returned web links and stores them in a web link pool. In
addition, the agent controller cancels the tasks finished and assigns new tasks to the
agents available. Once a collection of Web pages is returned, the agent controller
transfers them to the storage, which is linked to the module of the indexing and query

subsystem shown in Figure 3.4.

The data flow shown in Figure 4.1 involves: (a) communication between the collection
agents and the web, (b) storing the retrieved Web pages into the storage; (c) commands
sent by the agent controller to the collection agents, and control feedback information;

60

Web Content on the Internet

- a,b...etc. =) Data Flow
b Collection Agents
Storage
Resource

1 | A
¢ d ¢
h 4 Y 1
) f Input
—e—-
Web Link Pool Agent Controller
8 Storage
Module
Configuration Information

a | Network communications

b | Retrieved Web pages into the storage

¢ | Control commands and control feedback information

d | Web pages returned

e | Web links

f | Configuration information

Figure. 4.1 Information Acquisition Framework

61

(d) Web pages returned by the collection agents; (e) storing newly parsed web links
and checking previous stored web links in the web link pool by the agent controller; and

(f) configuration information loaded during the initialisation process.

4.2.2 Information Acquisition Process

The flow charts of the agent controller (Figure 4.2) and the collection agents (Figure

4.3) illustrate the information acquisition process.

The process begins when the system initialises itself by loading the configuration
information from the configuration file. Some web links need to be provided at this
stage as ‘seed’ web addresses. After initialisation, the agent controller stores these web
addresses into the web link pool. The agent controller then generates collection agents,
and assigns them a set of Web links which they have to explore. When an agent finishes
its task, the agent controller stores the Web pages and links returned by the agent into
the Web link pool, and assigns the agent a new task (a new Web link to explore from the
web link pool). The process finishes when certain termination conditions (such as

number of Web pages retrieved or retrieval time) are reached.

In this framework, the relevance of the documents retrieved depends on the keywords
supplied in the configuration file, which is used during the initialisation process. The
agents determine the relevance of the retrieved Web pages based on whether these

keywords appear in them. If more than one keyword is set in the configuration file,

62

=
v

Loading Configuration Information

v

Generate Agents

v

Assign Tasks to Agents

v

Waiting for a Time Interval

<
I

Any Agent Returned?

Yes

X

Store the Web Links and Web Pages
Returned

Assign New Tasks to Agents Returned

Enough Pages Returned?

Yes
\ A

Send Termination Commands to All
Live Collection Agents

v
=

No

=)

Figure 4.2 Flow Chart of Agent Controller

63

=
v

Initialisation

v

Waiting for a Time Interval <

Any Task Assigned by Agen
Controller?

Yes
A 4

Retrieve a Web Page e—

v

Parse Web Links in the Retrieved (
No

Web Page

inished Retrieving the Web
age or Waiting Time Expired

S Retrieved Web Page Conten
Useful?

No

rYes r

Return Web Page and Web Return Web Links in it to
Links in it to Agent Controller Agent Controller

Command from the Agent
Controller to Terminate?

Yes

=

Figure 4.3 Flow Chart of a Collection Agent

64

then the user has the choice whether the agent should return pages containing either one
of the keywords or only those that have every keyword. If the retrieved Web page does
not contain the keywords, then only the web links contained in it will be returned and

stored in the web link pool for later use.

4.3 AN IMPROVED INFORMATION ACQUISITION
FRAMEWORK

4.3.1 Using Support Vector Machine (SVM) for Information

Retrieval

The information acquisition process depicted in section 4.2 is dependent on the
keywords provided. The problem associated with this approach is that both relevant and
irrelevant Web pages may contain the same keywords. Therefore, some irrelevant Web
pages will still pass through the agents, and be stored into the system. Obviously, this

would reduce the system performance in terms of precision.

For example, suppose a user would like to build a knowledge base about ‘fishing’, and
he/she is interested in fishing as a hobby. However, not all Web pages which contain the
keyword “fishing” would be relevant. Some of them may refer to ‘fishing industry’ and
‘fishing product sales”. If such Web pages are stored into the system, the quality of the

fishing knowledge base would be substantially reduced.

It is proposed to use a data classification method, Support Vector Machine (SVM), to
improve the precision of the retrieval process and enable the building of knowledge

65

bases automatically from the Web.

To understand the main approach of SVM, the concept of Ayperplane needs to be
introduced. In n-dimensional Enclidean Space R™, the set S is called a hyperplane,

when S satisfies the condition in (4.1) [Weisstein, 2005].

set S = { X = [X1,X2,....Xn] = | a1X1+apXp+...+anX, = 0} 4.1)

where

a,ay,...,a, are scalars which is not all equal to 0, X is a vector.

The purpose of SVM is to find a hyperplane that leaves the largest possible fraction of
vectors of a same class on the same side, and maximises the distance of both classes
from the hyperplane. When data is not separable in the original input vector space using
a hyperplane, it needs to be transformed from the input vector space into a higher
dimensional space, which is called a feature space. The transformation function is
called a kernel function. If the kernel function is a linear function, then the SVM uses a
linear kernel, if a non-linear function such as sigmoid or radial basis function is used,

the SVM uses a non-linear kernel [Schélkopf and Smola, 2002].

As stated by [Joachims, 1998] and [Dumais, 1998], SVMs with linear kernels
outperform many traditional text classifiers. In addition, it has been reported that
nonlinear SVMs (e.g. those using high dimension polynomial and radial basis kernels)
are much more complex and provide insignificant improvement in classification

accuracy compared to those using linear kernels. Therefore, SVM with a linear kernel is

66

proposed as the machine learning technique employed to improve precision.

When the hyperplane is determined by training, and the data instances that need to be
classified are expressed as vectors, the classification can be performed by calculating
the parameter C that is determined through (4.2). If C is a non-negative value, then the
instance is classified as an instance of a positive class, otherwise it is considered as

belonging to a negative class.

C=x;*w+b 42)

where
C is a real number;
Xj is the instance to be classified, expressed as a vector;

w and b are parameters describing the hyperplane that are determined during the

training.

4.3.2 Machine Learning in the Improved Information

Acquisition Framework

The improved information acquisition framework, which uses SVM is shown in Figure
4.4. Note the learning module added to the system which provides the system with
learning ability. During its training, the module is supplied with relevant and irrelevant
HTML pages which serve as positive and negative examples for training. Each HTML

pages is represented as a vector, with elements called features. The SVM obtains the

67

Web Content on the Internet

Learning Module

g
L a a
Yy ¥ |
- a,b...etc. == Data Flow
b Collection Agents
Storage
. C\/:\/D Resource
| | A
c d [
i 4 * 1
j (" Input
—e—
Web Link Pool Agent Controller
J ¢ _ Storage
A
f

Configuration Information

a | Network communications

b | Retrieved Web pages into the storage

¢ | Control commands and control feedback information

d | Web pages returned

e | Web links

f | Configuration information

g | Knowledge obtained to help filter Web pages returned

Figure 4.4 Improved Information Acquisition Framework

68

statistics from those vectors in the training examples, and then transfers this
information to the collection agents module, so that the agents can use it to determine
the relevance of the Web pages they retrieve. Compared to the basic framework which
uses a keyword matching method, this framework is expected to be much more
effective in situations when both the relevant and irrelevant Web pages contain the
same keywords, in which case, the basic framework will wrongly consider all these

Web pages relevant.

The machine learning process used in this chapter includes:

1. Obtaining examples. First, training examples with known output results are
provided as prior knowledge so that the knowledge obtained in the training process can

be later applied to unseen instances.

2. Selection of appropriate features. In SVM, the characteristics of the training
examples are represented as features. Therefore, the question is what features best
represent discriminative knowledge so that the highest classification rate possible is

achieved.

3. Generating data sets for training and testing purposes. In this step, the
examples selected in step 1 are converted according to the features selected in step 2
into data sets. This step involves preprocessing procedures needed to convert the
training examples into a format suitable for a specific implementation of the machine
learning algorithm. The values included in the training sets depend on the features

selected in step 2; different features would generate different training sets, even if the

69

same training examples are used.

4. Training. The training data sets created in step 3 are used as input to the machine
learning algorithm which determines discriminative patterns during the training

Process.

5. Applying knowledge to unseen instances. This step uses the patterns obtained in

step 4 to classify unseen instances.

Obviously, the feature selection step is critical in achieving high classification accuracy.
The next section discusses how to select appropriate features to represent Web pages, so

that they can be accurately classified.

4.3.3 Feature Selection for the Proposed Machine Learning

Algorithm

In this section, three options for feature selection are discussed. These are using (i)
HTML element attributes, (ii) a small or bigger general dictionary, and/or (iii) words

lemmatisation.
1. Using HTML element attributes as features.

In general, an HTML document is a sequence of characters organised physically into a
set of entities, and logically as a hierarchy of elements. In an HTML document, an
element refers to a component of the hierarchical structure defined by a document type

definition (DTD); it is identified in a document instance by descriptive markup, usually

70

a start-tag and end-tag. In a start-tag, white space and attributes are allowed between the
element name and the closing delimiter. An attribute specification typically consists of
an attribute name, an equal sign, and a value, though some attribute specifications may

be just a name token.

A simple HTML file (Figure 4.5) is used to illustrate this. In line 5 of this fragment, the
HTML element is “<meta http-equiv="keywords” content="Fitting Jobs”>”, and its
name is “meta”. The element contains two HTML attributes, named “http-equiv” and
“content”, and their attribute values are “keywords” and “Fitting Jobs”. The advantage
of employing element attributes is the expected improved accuracy as very often the
HTML element attributes contain meaningful words. However, some HTML attributes
are too frequently used, and this may lead to wasting storage space and computing

resources, and reducing the speed of the retrieval.

2. Using words from a purpose-built small dictionary or a general dictionary with a

relatively large vocabulary.

The user could choose to compose a dictionary that only contains specialist terms such
as “fish”, “tide”, “fisher”, “salmon” etc. As the dictionary is normally small, dedicated,
and containing only relevant words, the processing speed would be very high.
However, the user may add less important words and at the same time miss some

essential ones, which will inevitably affect the classification accuracy.

71

<html>
<!--Last Updated: April 2002-->
<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

Element Name

<meta http-equiv="keywords" content="|Fitting Jobg

> HTML Element

A A A

Attribute Values

Attribute Names

<Title>Fitting Jobs</Title>
</head>

<body bgcolor="#FCF5AD" text="#000066">

<p>Where service cannot be provided to the customer premises on the appointment day
you must complete all internal and all necessary external work (unless the customer
requests you not to). ...

<p>If you are completing a previous fitting job, ensure that the service is tested
accordingly and that the customer is informed.

</body>

</htm]>

Figure 4.5 An Example HMTL File Annotated

72

3. Using words lemmatisation’

The words in the HTML pages are often different from their lemmas®, especially when
nouns and verbs are concerned. For instance, the lemma of “running” and “gave”,
respectively, are ‘run’ and “give”. The use of lemmatisation allows otherwise ignored
words to be utilised in building the feature space. However, the use of lemmatisation
may lead to including incorrect features in the feature space. For example, after
lemmatisation, “Warner Brothers” changes to “Warner Brother” which loses its original

meaning. As a result, that HMTL page might be wrongly classified.

4.3.4 Case Studies

General Approach

Two case studies are conducted to compare the three options considered in terms of
their classification accuracy which is measured using precision and recall. In addition,
the processing time is also recorded, as it is an important measure of performance when
classification algorithms are compared. The first case study is on a popular subject
(fishing), while the second one is chosen from the domain of engineering. The
procedure explained below follows the machine learning process outlined in section

4.3.2. The procedure is illustrated through examples included in Appendix A.

! Lemmatisation refers to the process of grouping the inflected forms of a word together under a base form, or of
recovering the base form from an inflected form, e.g. grouping the inflected forms ‘run’, ‘runs’, ‘running’, ‘ran’
under the base form ‘run’ [Mitkov, 2003].

? Lemma refers to the canonical form of a word, usually the base form, taken as being representative of all the
various forms of a morphological paradigm [Mitkov, 2003].

73

First, a number of Web pages are retrieved by the framework described in section 4.2.
These pages are marked by a human expert as positive and negative examples,
according to different criteria used in each case study. Example pages related to case

study 1 are shown in Appendix A.1.

Then, the retrieved web pages are pre-processed according to the features selected in
each test. For example, when HTML element attributes are used as features, the Web
page marked as a positive example in A.1 of Appendix A is retrieved and saved in the
format shown in A.2. If the option is not to use HTML element attributes as features,
then the saved Web page in A.2 undergoes additional processing where the HTML tags

are stripped from the text, as shown in A.3.

Next, the Web pages in their original HTML form (as in A.2) or after pre-processing
(see A.3), depending on the option chosen, are converted into a training data set. For
example, the text in A.3 is converted to a vector of features as shown in (4.3). The
format of a feature employed in this thesis is adopted from the implementation of

SVM'&" [Joachims, 2002].

+1 2:0.0080 7:0.0080 36:0.0080 59:0.04 62:0.048 111:0.0080 146:0.0080 # (4.3)

Each feature (4.4) is characterised by its “feature ID” and “feature value”. “Feature ID”

is a unique integer number which identifies each feature.

(Feature ID):(Feature Value) 4.4

“Feature Value” (4.5) is a real number, which is defined as the ratio of the word

74

6,9

frequency and the number of words in a processed Web page. A colon “:” is used to

separate the feature number and the feature value.

Feature Value = (m)/(n) 4.5)

where,

m is the word frequency (i.e. the number of times a particular word appears in a given

text),

n is the total number of unique words in a processed Web page.

In the vector shown in (4.3), “+1” indicates a positive training example which is
considered relevant. “2:0.0080” suggests that the 2" feature has a feature value of
“0.0080”, while “62:0.048” indicates that the 62™ feature has a feature value of “0.048”.
A feature with zero value does not show in the training sets to save storage space, but it
is still counted in the training process as having a zero value. For example, features 3-6
between 2 and 7 have zero feature values and are represented as “4:0.0”, “5:0.0” and so
on. In all files produced by SVM"8" data or characters after “#” are ignored as

comments.

The following example illustrates how feature values are calculated. The word “alive”
appears in the small dictionary (Appendix A.4) used in the first case study at nd place,
which determines its feature ID as ‘2°. It appears once in the processed Web page

(Appendix A.3), which includes unique 125 words. Therefore, the feature value for

* In the case of a negative example, “-1” is used instead of “+1” but the format of the rest remains the same.

75

feature number 2 is 1/125 = 0.008. In the training set, records like (4.6) below are added

for each feature used.

2:0.0080 (4.6)

However, if a word appears in the processed Web page, but not in the dictionary, then it
is not considered as a feature. For example, the word “museum” in the retrieved Web
page (Appendix A.3) is not used as a feature, as it is not contained in the small

dictionary (Appendix A .4).

After the processing, the training data is input to the SvM'eht [Joachims, 2002] to
generate a data file as illustrated in Appendix A.5. The file generated contains
information, which is further used to calculate the value of C as in (4.2) for each
instance in the testing data set where the value is used to classify whether the testing
instance is relevant or not. If the float value calculated is a non-negative one, then the
corresponding testing instance is classified as relevant, and otherwise it is considered
irrelevant. Finally, the results generated from the testing data set are examined to
measure the classification performance in terms of precision, recall and processing

speed.

All tests were conducted on a Pentium III 700MHz 384MB memory computer with

Java Virtual Machine version 1.4.2 with default settings.

Case Study 1: Fishing

A popular subject, “fishing”, was chosen as one of training scenarios examined with the

76

help of a domain expert. 100 Web pages retrieved by the system described in section 4.2,
were used as materials for training and testing. These pages, containing at least once the
keyword “fishing”, were analysed by the domain expert using the following criteria: (1)
The main content of the Web page must be relevant to “fishing” as a hobby; (2) It must
not describe product sales for fishing; (3) It must not be concerned with the fishing
industry; (4) It must predominantly contain text, not images; (5) It must not be
generated by a search engine. This ensures that the content is retrieved from actual web

sites, and does not contain mainly pointers to web sites generated by a search engine.

The 100 Web pages were manually classified as positive and negative examples, and
split into a training set and a testing set. The training set consists of 62 examples, which
are numbered from 1 to 62, and the testing set has 38 examples, from number 63 to 100.
The training set includes randomly chosen 32 positive and 30 negative examples while

the testing set contains the remaining 14 positive and 24 negative examples.

183 keywords for fishing were selected by a domain expert to build a domain specific
dictionary, e.g. a small dictionary (SD) (A.4). The words selected in SD are chosen
from the 46 positive examples included in the 100 Web pages retrieved. In addition, a
big dictionary (BD) was built which includes 9947 words from a TOEFL* vocabulary

dictionary as a general keyword dictionary.

Five tests were conducted to investigate the effect of the options discussed in section

4.3.3, as follows:

* TOEFL stands for “Test of English as a Foreign Language”.

77

e TESTI1. Use of HTML element attributes and SD

e TEST?2. Use of HTML element attributes and BD

e TEST3. Use of SD without using HTML element attributes

e TEST4. Use of BD without using HTML element attributes

e TESTS. Use of BD and lemmatisation without using HTML element attributes

For TESTS 3-5, the same HTML pages used in TESTS 1 and 2 had their HTML
attributes removed from both the training and testing sets. TEST 4 required
morphological analysis to be first conducted after which the words were transformed to

their lemma forms.

The experimental results are shown in Table A.2 of Appendix A.6. The table contains C
values calculated by SVM"8" for each Web page included in the testing set (from
number 63 to 100). These values are used to differentiate between relevant and
irrelevant pages. A non-negative value (such as 0.3395136 or 0.25341148) indicates a
relevant page while a negative value (e.g. -0.66350608 or -0.75570562) suggests that
the corresponding Web page might be irrelevant. These values do no represent the
degree of relevance or irrelevance; they are just used to classify the Web pages in two
categories. Table A.3 (Appendix A.6) contains the same results as Table A.2, with the
non-negative values replaced by P (positive), and the negative values substituted by N
(negative). In addition, table A.3 indicates the opinion of an expert about each of these

pages, which is further used to measure whether a particular page has been classified

78

correctly by the system. As stated previously, precision and recall are used to measure
the classification accuracy of the system for the purpose of information retrieval. For
exampie, the precision in TEST 1 (Table A.3) is 50%. It is calculated as the ratio of the
number of documents, which are correctly classified as relevant (2 instances), and the
number of all documents retrieved (4 instances). The recall in TEST 1 (14.29%) is
calculated as the ratio of the number of correctly identified documents (2 instances) and

the number of all relevant documents as classified by the domain expert (14 instances).

The results are summarised in Table 4.1. Among all five tests conducted, the lowest
precision (50%) and recall (14.29%) is in TEST 1 when HTML element attributes and a
SD are used. In TEST 5, the use of a BD and lemmatisation (without using HTML
element attributes) provides the highest precision (77.78%), while the use of HTML

element attributes and a BD in TEST 2 reveals the highest recall (78.57%).

The comparison of the results in TEST 1 and TEST 2 shows higher precision (61.11%)
and higher recall (78.57%) when a BD is employed. A similar comparison between

TEST 3 and TEST 4 results reveals some decrease in precision (from 71.43% to

66.67%) and increase in recall (from 35.71% to 42.86%).

Fastest processing speed (2 seconds) was recorded in TEST 1 when using HTML
element attributes and a SD. The most time consuming test was TEST 5 (205 seconds)
involving a BD and lemmatisation, and no HTML element attributes. For obvious
reasons, the processing is faster when using SD dictionary instead of BD, with all other

conditions remaining the same.

79

Table 4.1 Summary Results for Case Study 1

Test Test Conditions Precision (%) | Recall (%) | Processing
Time
(seconds)
TEST 1 | Use of HTML element | 50 14.29 2
attributes and SD
TEST 2 | Use of HTML element | 61.11 78.57 13
attributes and BD
TEST 3 | Use of SD without 71.43 35.71 191
using HTML element
attributes
TEST 4 | Use of BD without 66.67 42.86 196
using HTML element
attributes
TEST 5 | Use of BD and 77.78 50 205
lemmatisation without
using HTML element

attributes

80

Case study 1 shows that the use of a specially designed SD or general BD influences
precision and recall. Using a general BD can improve recall while the use of a SD could
make the processing faster although it would take time for a domain expert to build a
dictionary. In addition, there is always a possibility of omitting some important words
from the dictionary which means that not all significant features would be considered
during the training. Compared to SD, the use of a BD allows more features to be
included in the training set, which reduces the demand on the quality of the custom
made dictionary. This analysis indicates that the use of a general BD may be a good
option in terms of saving development time and producing good results. However,
more tests are needed to ensure that this conclusion is applicable to other domains and

valid for larger data sets.

With regard to lemmatisation, the results of TEST 5 in comparison with TEST 4 show
that both precision and recall are improved by 11.11% and 7.14% respectively. The
positive effect on the precision and recall is due to the use of additional lemmatised

words, which have been originally excluded, “visible” to the SVM.

In general, the results of TEST 2, 4 and 5 are more promising that those of TEST 6 and
7. This is attributed to the use of a BD which will be further investigated throughout the

second case study.

Case Study 2: Site Engineering

In this case study, Web pages are retrieved from a LAN web directory, which contains

81

information for field engineering, electronic maintenance, general processes, health
and safety, vehicle and engineering product support information. These Web pages are
maintained by domain experts. Two categories are chosen for case study 2: processes
and tasks. Processes here refer to procedures used in field service on site such as pole
testing, repair process and fitting jobs. There are 65 Web pages related to this category.
Tasks refer to information about products and services, such as network routing service

and wiring service. The collection contains 44 pages with information about fasks.

For the purpose of this experiment, all pages related to the first category (processes) are
considered as positive examples, and all pages from the second category (fasks) are
classified as negative examples. All these 109 Web pages are split into two sets: 89 Web

pages are used for training and the remaining 20 pages for testing.

Two more tests were conducted to further investigate the effect of the options discussed

in section 4.3.3. These are:

e TEST 6. Use of BD without using HTML element attributes

e TEST 7. Use of BD without using HTML element attributes and lemmatisation

The experimental results shown in Tables A.4 and A.5 of Appendix A are summarised
in Table 4.2. As shown, TEST 7 which investigates the effect of lemmatisation,
provides better precision and recall but is more time consuming. This means that when
lemmatisation is used, more useful features are introduced into the system. Although

this may lead to including some irrelevant features, it would not necessarily produce

82

Table 4.2 Summary Results for Case Study 2

Test Test Conditions Precision (%) | Recall (%) | Processing
‘ Time
(seconds)

TEST 6 | HTML element attributes | 69.23 90 185

and BD
TEST 7 | HTML element attributes | 71.43 100 198

and BD and

lemmatisation

83

lower precision. The 100% recall rate in TEST 7 means that all “positive” Web pages
have been successfully identified. This result suggests that the use of lemmatisation

may lead to better precision and recall.

Discussion

Based on the two case studies conducted, the following recommendation are made for

the use of the SVM algorithm for information retrieval.

1. If the processing speed is a concern, then a carefully built customised dictionary

should be used.

2. If time and cost to build a special domain-specific dictionary is a concern, then a

general dictionary with large vocabulary could be a good choice.

3. Using a general dictionary and lemmatising the words in Web pages could be a good

option to achieve good precision and recall.

4.4 SYSTEM DESIGN AND FUNCTION DESIGN

The system is implemented in Java with the use of two external software components:
SVM"#" [Joachims, 2002] and a lemmatiser [Minnen et al., 2001]. The UML class
diagram (Figure 4.6) shows the relationships between the classes used in the design of
the information retrieval system whose framework was presented in section 4.3.2.
These classes are designed to implement the functions of the modules shown in Figure

4.4.

84

calls to classify

parsed Web
. . page .
Spider Main WebPageParser Classifier
1 1
1 1
configures communicates
. 1 1 reads & record s
communicates
Spider | * : SpiderControl . : URI List
1 1 calls o 1 1
calls ah(jat callsto callsto
" :” vancae validate validate
€0 page URLs URLs
1 1 1
A 1 1 1
HtmlParser calls to ParentedURL [€
| validate ; A
URLs callsto
validate
calls to 1 URLs
parse http 1
q HttpParser
calls to
calls to
select catches I
. HTML
URLs in
. 0...2 structure 1...*%
domain y
. HtmlException HtmlTokenizer HtmlTag
A A
Lo 0...x 1 <ﬁ1 1...*¥
DomainFilter

throws

Figure 4.6 UML Class Diagram of the Improved Information Acquisition System

85

SpiderMain (Figure 4.6) serves as the main programme, which loads the configuration
function and controls the main workflow of the system. SpiderControl coordinates the
retrieving tasks of the spiders, ensuring that they work efficiently. URLList stores the
web links parsed from the Web pages processed so that SpiderControl can assign
unretrieved Web links to the spiders to explore. WebPageParser and Classifier are used
to determine whether a particular Web page is relevant or not. In addition, there are
classes, which provide useful functions to other classes. These are HtmlParser,
ParentedURL, HttpParser, DomainFilter, HtmlException, HtmlTokenizer and HtmlTag.
Their purpose is depicted through the annotated links in the UML diagram. A small part

of the source code developed is included in Appendix B.

The system function design is illustrated through the screenshots of the graphical user
interface shown in Figure 4.7. The user starts the information retrieval process after
providing the system with keywords (1), a storage location (2) and a starting URL (2).
If a retrieved Web page contains all keywords supplied through (1), it is stored in the
location given in (2). The starting URL (2) is used to retrieve the first Web page, after
which more URLSs parsed from this and other Web pages are added to the URLList for

further use.

Furthermore, additional options are provided to “fine tune” the system using the
advanced configuration window (3). For example, the user can specify the number of
spiders working concurrently, the number of Web pages to be retrieved and the length

of time a spider should wait for to retrieve any Web page. The configuration settings

86

File Edit View Help (General j Advanced

Save the retrieved pages to

pse-SDK-3.1M4-win)2'ieclipsetworkspacetspidertresuit
You are looking for...

The particular Webpage your spiders start crawling from

Engineering
hitp //'www google com/8earch?hl=enSIr=«q=united»state

General Configuration Window (2)

X]
M. i
Number of Spiders 1 (Note value should »=2)
NumberofPages to Retrieve 10 (Note: value should >=10)
Maln W Ilndow (1) Start Page Index (Note: value should >= 1)
Time Out 21 (Note, value should >=10)

Crawling in process. Please be pati 1
t perfect.

Advanced Configuration Window (3)

» » » >»http//www.google.coin/seaich?tU=en<Sdr*=&q=aigineenng<<

. . . vegj Number of spiders Is 1

spider -1 retrieve getDoneSeai ch —
Number of pages to retrieve is: 10

in spiderNumberO going getFromToTag Start page index is: 1
Timeoutis 25 ~
< Start URL Is: http://www.google.com/search?hi=en&li*4,Q=engineering

Retrieved pages are saved to. C teclipsetecllpse-SDK-3.1M4-win32teclipsetwotkspace\spfdertresult
Close Console}

Runtime Window (5) Do you want to continue?

fW)

Configuration Confirmation Dialogue Box (4)

Figure 4.7 Screenshots of the Graphical User Interface

87

http://www.google.com/search?hi=en&li*4,Q=engineering

provided to the system through windows (2) and (3) are confirmed in (4). In addition,

the system run time status is shown using (5).

Tests were performed to measure the average speed of retrieving Web pages when this
method of targeted crawling is employed. A Pentium III 700MHz 384MB memory
computer with Java 1.4.2 with default settings was utilised to conduct the tests on a
300K bandwidth network. Five experiments involving the retrieval of 100 Web pages
each were conducted. In each experiment, one keyword such as “seagull”, “fishing”,
and “engineering” was supplied to the system through the configuration window. The

average speed of retrieving recorded during these experiments was 2.64 page/second.

4.5 SUMMARY

In this chapter, an information acquisition framework based on using intelligent
focused crawling and machine learning is proposed. Several feature selection options
for the support vector machine employed are evaluated through two case studies from
different domains. Tests conducted show the practicability of this approach, which is in

the core of the information retrieval system designed.

88

CHAPTER 5. ONTOLOGY DICTIONARY AND CORPUS
FOR ONTOLOGY TAGGING

In this chapter, the problem of ontology tagging (OT) is discussed, its purpose and
importance are explained. The resources enabling ontology tagging are identified; these
are an ontology dictionary and an ontologically tagged corpus. First, the procedure to
build an ontology dictionary is described. Next, the steps to build an ontologically
tagged corpus are identified. To construct the corpus, first an electrical dictionary is
created, and then a heuristic approach, which generates a mapping between the entries
in this dictionary and the ontology dictionary, is developed and tested. Finally, a
well-known and widely used corpus is converted into a tagged ontology corpus by
utilising the mapping algorithm developed. The ontology dictionary and the
ontologically tagged corpus created will be further exploited for ontology tagging of

texts as described in Chapter 6.

S.1ONTOLOGY TAGGING

In this research, a ‘tag’ refers to a label used for categorisation and discrimination,
which expresses the meaning of a piece of text. For example, the HTML tags contain
information used by Web browsers to render the content of the Web pages displayed,
e.g. any text between “" and “” is displayed in bold. “Tagging” refers to the

process of assigning tags to text so that it could be processed and “understood” by

89

machines. For example, part of speech' (POS) tagging refers to the automatic
assignment of tags to grammatical classes of words, such as nouns and verbs. POS
tagging is used for various language processing tasks, linguistic studies, information

technology applications, and speech processing [Voutilainen, 2003].

Recent research indicates that the use of ontology could aid many applications related
to natural language processing (NLP), such as information retrieval, information
extraction, text summarisation, semantic similarity and word-sense disambiguation.
[Vossen, 2003]. In the context of this work, ontology tags are defined as a set of
systematically defined labels, which express ontology information; ontology tagging
(OT) is referred to the process of assigning ontology tags to words and phrases within a

text, for the purpose of exploiting the ontology information in various applications.

The benefits of employing OT are twofold. First, they allow text to be searched,
browsed and analysed at different abstraction levels. To give an example, a text about
Ferrari sports cars and F1 cars can be viewed at different abstraction levels, starting
from “sports cars”, “cars”, “vehicles”, to more abstracted “transportation means”. This

is similar to browsing a digital map, where one can ‘zoom in’ for details or ‘zoom out’

for a general view.

The second benefit is associated with the automatic creation of RDF based data models

! Part of speech in linguistics refers to any of the basic grammatical classes of words, such as noun, verb, adjective,

and preposition [Mitkov, 2003].
90

for the Semantic Web by using existing text-based document collections. As indicated
by [Benjamins et al., 2002], creating a vast amount of new content and the potential risk
of excluding existing Web content from the Semantic Web are serious concerns that
challenge the Semantic Web. However, the use of automatic ontology tagging may help
to address these challenges, as the existing Web content can be automatically made
appropriate to be used on the Semantic Web by utilising OT. Thus, by reusing existing
Web content, the cost of creating new Semantic Web content could be substantially

reduced.

Despite its benefits, ontology tagging is currently considered impractical due to the
high cost associated with manual ontology tagging. Therefore, an automatic ontology
tagging method is needed which automatically acquires ontology knowledge from
training material by using machine learning (ML). Machine-readable dictionaries
(MRD)? and corpora3 [Matsumoto, 2003] are typical training materials for NLP
purposes. Currently, there are no such training materials available for ontology tagging.

Therefore, there is a need for developing:

(1) An ontology dictionary with standardised ontology definitions of large quantity

of words and phrases, and

2 A machine-readable dictionary (MRD) is an electronic dictionary compiled for processing purposes by NLP
software, and containing information, which is normally not present in the conventional dictionaries for human
users.

* Atext corpus is a large and structured set of texts used for linguistic analysis.

91

(i) An ontologically tagged corpus with tags whose definitions are contained in

this ontology dictionary.

5.2 BUILDING AN ONTOLOGY DICTIONARY

5.2.1 Selecting Dictionaries

Three features are considered important when choosing a dictionary source for building
an ontology dictionary. These include: grouping by meaning, a good dictionary

structure and large number of word entries.
(1) Grouping by meaning

When building an ontology dictionary, words and phrases with similar meanings or
close connections should be grouped together, even if they are in different parts of
speech categories. For example, “resemblance” and “similar” should be grouped
together because they have similar meaning although “resemblance” is a noun, and
“similar” is an adjective. “Close connections” here means words and phrases that are
not similar in meaning, but could be associated with each other. For instance, “bank”
and “cashpoint” are not synonyms, but they should be grouped together as having a

close connection.
(2) A good dictionary structure

The structure of an ontology dictionary depends greatly on the structure of the

92

dictionary source used, and its structure also affects the scalability of the ontology
dictionary. A good dictionary structure can reduce the cost for building an ontology

dictionary and facilitate its expansion when more entries need to be added into it.

In particular, having leaf nodes with the same depth is important in terms of the
dictionary structure. The depth of a leaf node* in a graph structure is defined as the path
from this leaf node to the root node [Devitt and Vogel, 2004]. Leaf nodes with different
depths cause a data storage problem when building an ontology dictionary, as the
memory space to store the dictionary data cannot be predetermined. This, in turn, may

affect the speed of processing data contained in this ontology dictionary.

(3) Large number of word/phrase entries

Obviously, more words and phrases in the dictionary source will increase the

vocabulary volume of the ontology dictionary.

5.2.2 Dictionaries

Based on the considerations discussed in 5.2.1, two dictionary sources are identified as
candidates for building an ontology dictionary. These are WordNet [Miller, 1990] and

Roget’s Thesaurus [Roget, 2003].

* A leaf node in this work refers to words/phrases in a dictionary.

93

WordNet

WordNet developed by Princeton University is a generic lexical reference system for
the English language. Its design is inspired by current psycholinguistic theories of
human lexical memory [Fellbaum, 1998]. WordNet has an acyclic graph structure
allowing multiple inheritance. WordNet 1.6 contains 152,059 unique words and
203,145 word-sense’ pairs. WordNet is well studied and widely used: its official web

site [Princeton University, 2006] contains 387 papers referring to WordNet.

Semcor® is a package of semantic concordance text annotated using information from
WordNet. A semantic concordance is a textual corpus and a dictionary combined in
such a way that every word/phrase in the text is linked with its appropriate sense in the
dictionary. Therefore, it can be viewed either as a corpus with syntactically and
semantically tagged words, or as a dictionary containing example sentences for many
different definitions [Fellbaum, 1998]. Semcor contains 352 text files selected from the
Brown Corpus’, which is widely used in the field of linguistics and computer science.
All words in Semcor are annotated in the same fashion, using tags with attribute - value

pairs. The tags used in Semcor are listed in Table C.1 (Appendix C).

The following example illustrates the tagging in Semcor. The word “said” is tagged

> ‘Sense’ refers to one of the meanings of a word or phrase.
® The Semcor package used in this research was distributed with WordNet 1.6.
7 The Brown Corpus of Standard American English (Brown Corpus) was compiled by Henry Kucera and W. Nelson

Francis at Brown University.

94

with five attributes (cmd, pos, lemma, wnsn, Ixsn) and their corresponding values

(done, VB, say, 1, 2:32:00) as shown on line 8 of Figure C.1 (Appendix C):

“<wf cmd=done pos=VB lemma=say wnsn=1 lexsn=2:32:00::>said</wf>"

In the entry, “cmd=done” means that the word “said” has been properly tagged;
“pos=VB” indicates that it is a verb; “lemma=say” specifies its lemma; “wnsn=1"
shows that the sense refers to the first sense of “say” in WordNet, and “lexsn=2:32:00::”

contains the lexical sense number of the word “said” (“2:32:00”).

Roget’s Thesaurus

Roget’s Thesaurus (Roget’s) is a thesaurus mainly used to facilitate the expression of
ideas and assist in literacy composition. It has a tree structure that provides systematic

classification of its vocabulary. Roget’s tree structure contains eight levels as follows.

1. Top level classes. These are the most general classification categories for all
words/phrases in Roget’s. Examples of top level classes are “space”, “matter”,

“abstract relations”, etc.

2. Sections. These are more detailed categories under top level classes. Examples

include “existence”, “relation” and “quantity” which belong to the top level class

“abstract relations”.

3. Subsections. These are subcategories of sections. For example, section
“dimensions” is subdivided into three subsections: ‘“general”, “linear” and

95

“centrical”.

Head groups. These are subcategories of subsections. For example, subsection
“results of action” contains five head groups: “completion and noncompletion”,

¥ &L Y &L

“success and failure”, “trophy”, “prosperity and adversity” and “averageness”.

Concepts. The latest edition of Roget’s Thesaurus contains more than 900 different

concepts, such as “action”, “attack”, and “book”.

Part of speech (POS). POS categories (such as nouns, adjectives, verbs, adverbs,
and interjections) subdivide concept -categories further. For example,
“resemblance” and “similar” are in the same concept category but in different part
of speech groups, where “resemblance” is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>