
KNOWLEDGE MANAGEMENT USING MACHINE

LEARNING, NATURAL LANGUAGE PROCESSING

AND ONTOLOGY

A thesis

submitted to the

University of Wales

for the degree of

Doctor of Philosophy

by

Qiao Tang

Cardiff School of Engineering

University of Wales, Cardiff

February 2006

UMI Number: U584821

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584821
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

SUMMARY

This research developed a concept indexing framework which systematically

integrates machine learning, natural language processing and ontology technologies to

facilitate knowledge acquisition, extraction and organisation.

The research reported in this thesis focuses first on the conceptual model of concept

indexing, which represents knowledge as entities and concepts. Then the thesis

outlines its benefits and the system architecture using this conceptual model.

Next, the thesis presents a knowledge acquisition framework using machine learning

in focused crawling Web content to enable automatic knowledge acquisition.

Then, the thesis presents two language resources developed to enable ontology

tagging, which are: an ontology dictionary and an ontologically tagged corpus. The

ontologically tagged corpus is created using a heuristic algorithm developed in the

thesis.

Next, the ontology tagging algorithm is developed with the ontology dictionary and

the ontologically tagged corpus to enable ontology tagging.

Finally, the thesis presents the conceptual model, the system architecture, and the

prototype system using concept indexing developed to facilitate knowledge

acquisition, extraction and organisation.

The solutions proposed in the thesis are illustrated with examples based on a

prototype system developed in this thesis. This work was carried out in the Cardiff

University partially funded through the Seedcom Grant Scheme.

ACKNOWLEDGEMENTS

I would like to thank the supervisors of my studies, Dr Rossi Setchi and Professor

Stefan Dimov, for their invaluable guidance and support throughout my work.

Without their support I could not reach this far.

All members of the I2S group and Intelligent Systems Laboratory are thanked for

their friendships and help.

My deepest gratitude is to my family who has given continuous support and

encouragement to me.

TABLE OF CONTENTS

SUMMARY i

ACKNOWLEDGEMENTS ii

DECLARATION AND STATEMENTS iii

LIST OF FIGURES x

LIST OF TABLES xiii

ABBREVIATIONS xv

CHAPTER 1. INTRODUCTION 1

1.1 Motivation 1

1.2 Aims and Objectives 4

1.3 Outline 5

CHAPTER 2. REVIEW OF TECHNOLOGY APPROACHES TO 9

KNOWLEDGE MANAGEMENT

2.1 KNOWLEDGE MANAGEMENT 9

2.1.1 Knowledge 9

2.1.2 Knowledge Management 10

2.2 INFORMATION RETRIEVAL 11

2.2.1 Information Retrieval and Web Search 11

2.2.2 Crawling 13

2.2.3 Models for Information Retrieval 16

2.2.4 Indexing 19

2.2.5 Storage and Query 20

2.2.6 Applications of Information Retrieval 20

2.3 MACHINE LEARNING TECHNIQUES 21

2.3.1 Support Vector Machine 21

2.3.2 Rule-Based Learning 22

2.3.3 Memory-Based Learning 23

iv

2.4 NATURAL LANGUAGE PROCESSING 24

2.4.1 Part of Speech Tagging 24

2.4.2 Word Sense Disambiguation 25

2.4.3 Concordance and Collocations 25

2.4.4 Concept Indexing 26

2.4.5 Information Extraction 27

2.5 THE SEMANTIC WEB AND ONTOLOGY 28

2.5.1 Ontology Engineering 2 8

2.5.2 Information Extraction for the Semantic Web 29

2.6 DISCUSSION 30

2.7 SUMMARY 32

CHAPTER 3. FORMAL REPRESENTATION OF CONTENT USING 33

CONCEPT INDEXING

3.1 CONCEPT INDEXING 33

3.1.1 Conventional Models for Knowledge Representation 3 3

3.1.2 Requirements for Knowledge Representation of Explicit Knowledge 3 5

3.1.3 Definitions 39

3.1.4 Mathematical Model 42

3.1.5 Benefits of Adopting Concept Indexing 45

3.2 A FRAMEWORK FOR CONCEPT INDEXING 48

3.3 ILLUSTRATIVE EXAMPLE 51

3.4 A SYSTEM FOR CONCEPT INDEXING 54

3.4.1 System Architecture 54

3.4.2 Main Processes 55

3.5 SUMMARY 57

CHAPTER 4. AUTOMATIC INFORMATION ACQUISITION USING 59

MACHINE LEARNING

4.1 FINDING INFORMATION ON THE WEB 59

4.2 AN INFORMATION ACQUISITION FRAMEWORK 60

V

4.2.1 Structure of the Information Acquisition Framework 60

4.2.2 Information Acquisition Process 62

4.3 AN IMPROVED INFORMATION ACQUISITION FRAMEWORK 65

4.3.1 Using Support Vector Machine (SVM) for Information Retrieval 65

4.3.2 Machine Learning in the Improved Information Acquisition 67

Framework

4.3.3 Feature Selection for the Proposed Machine Learning Algorithm 70

4.3.4 Case Studies 73

General Approach 73

Case Study 1: Fishing 76

Case Study 2: Site Engineering 81

Discussion 84

4.4 SYSTEM DESIGN AND FUNCTION DESIGN 84

4.5 SUMMARY 88

CHAPTER 5. ONTOLOGY DICTIONARY AND CORPUS FOR 89

ONTOLOGY TAGGING

5.1 ONTOLOGY TAGGING 89

5.2 BUILDING AN ONTOLOGY DICTIONARY 92

5.2.1 Selecting Dictionaries 92

5.2.2 Dictionaries 93

WordNet 94

Roget’s Thesaurus 95

5.2.3 Comparisons between Roget’s Thesaurus and WordNet 97

5.2.4 Building an Ontology Dictionary from Roget’s Thesaurus 99

5.3 BUILDING AN ONTOLOGICALLY TAGGED CORPUS 103

5.3.1 Method of Building an Ontologically Tagged Corpus 103

5.3.2 Building a Machine Readable Dictionary from WordNet 104

5.3.3 A Heuristic Approach for Semantic Mapping Between eWord and 107

OntoRo

vi

General Approach 107

Testing of the Semantic Mapping Algorithm 118

Discussion 120

5.3.4 Converting the Semcor Corpus into an Ontologically Tagged Corpus 121

5.4 SUMMARY 124

CHAPTER 6. FULL TEXT ONTOLOGY TAGGING BASED ON 125

MACHINE LEARNING

6.1 ONTOLOGY TAGGING ALGORITHM 125

6.1.1 Statistical and Context Information 125

6.1.2 Variables 129

6.1.3 Statistical Rules and Context Rules 132

Statistical Rules 132

Context Rules 133

6.1.4 Training and Tagging with the Ontology Tagging Algorithm 134

Training 134

Tagging 136

6.2 CASE STUDIES 137

6.2.1 General Approach 137

6.2.2 Case Study 1 140

6.2.3 Case Study 2 141

6.2.4 Case Study 3 143

6.2.5 Discussion 147

6.3 SUMMARY 148

CHAPTER 7 KNOWLEDGE MANAGEMENT SYSTEM BASED ON 149

ENTITY AND CONCEPT INDEXING

7.1 ENTITY AND CONCEPT INDEXING 149

7.1.1 Conceptual Model 149

7.1.2 Entity Tagging 152

7.1.3 Benefits 153

vii

7.2 PROCESSING 154

7.3 IMPLEMENTATION AND TESTING 157

7.3.1 Indexing Tests 157

7.3.2 Testing of Entity and Concept Extraction 158

7.4 SEARCH SPEED COMPARISON WITH MYSQL 165

7.5 CASE STUDIES 168

7.5 DISCUSSIONS 188

7.6 SUMMARY 195

CHAPTER 8. CONTRIBUTIONS, CONCLUSIONS AND FUTURE 196

WORK

8.1 CONTRIBUTIONS 196

8.2 CONCLUSIONS 198

8.3 IMPLEMENTATION WORK 200

8.4 FUTURE WORK 204

APPENDIX A. MATERIALS AND RESULTS 206

A. 1 POSITIVE AND NEGATIVE EXAMPLES 206

A.2 TRAINING EXAMPLE 1: AN HTML WEB PAGE (FRAGMENT) 207

A.3 TRAINING EXAMPLE 1: AN HTML WEB PAGE STRIPPED TO 208

TEXT ONLY (FRAGMENT)

A.4 SMALL DICTIONARY 209

A.5 DATA FILE GENERATED BY SVM FROM THE TRAINING SET 211

(FRAGMENT)

A.6 TESTING RESULTS FOR CASE STUDY 1 212

A.7 TESTING RESULTS FOR CASE STUDY 2 214

APPENDIX B. SAMPLE SOURCE CODE FOR CHAPTER 4 216

APPENDIX C. SEMCOR, WORDNET AND ROGET’S 229

C. 1 TAGS USED IN SEMCOR 1.6 229

C.2 SEMCOR ANNOTATED TEXT SEMPLE 230

C.3 WORDNET AND ROGET’S ENTRY SAMPLES 231

viii

APPENDIX D. SAMPLE SOURCE CODE FOR CHAPTER 5 232

D. 1 SAMPLE CODE FOR SEMANTIC MAPPPING 232

D.2 SAMPLE CODE FOR SEMCOR ANNOTATED CORPUS PARSER 234

APPENDIX E. SAMPLE SOURCE CODE FOR CHAPTER 6 238

APPENDIX F. SAMPLE SOURCE CODE FOR CHAPTER 7 241

APPENDIX G DATA OF TESTING RESULTS USED IN CHAPTER 7 248

G. 1 INDEXING TESTS 248

G2 TESTING OF ENTITY AND CONCEPT EXTRACTION 250

G.3 RETRIEVAL SPEED TESTS 252

REFERENCES 253

ix

LIST OF FIGURES

Figure 1.1 The Organisation of Chapters 4-7 6

Figure 2.1 Information Retrieval Procedures of a Search Engine 12

Figure 3.1 Conceptual Model 41

Figure 3.2 Notations Used in the Mathematical Model 43

Figure 3.3 Concept Indexing Framework 49

Figure 3.4 General Architecture and Main Processes 56

Figure. 4.1 Information Acquisition Framework 61

Figure 4.2 Flow Chart of Agent Controller 63

Figure 4.3 Flow Chart of a Collection Agent 64

Figure 4.4 Improved Information Acquisition Framework 68

Figure 4.5 An Example HMTL File Annotated 72

Figure 4.6 UML Class Diagram of the Improved Information Acquisition 85

System

Figure 4.7 Screenshots of the Graphical User Interface 87

Figure 5.1 A Sample Entry in the Ontology Dictionary 102

Figure 5.2 The Entries Created in eWord from the Entry of the Verb 106

“ABANDON” in WordNet 1.6

Figure 5.3 Mapping between eWord and OntoRo Entries 108

Figure 5.4 Illustration of the Approach based on the “One Sense Per eWord 111

Entry” Hypothesis

X

Figure 5.5 An Algorithm for Mapping eWord and OntoRo Entries 114

Figure 5.6 Illustration of the Semantic Mapping Algorithm 117

Figure 5.7 A Converted Sentence with Ontology Tags 123

Figure 6.1 Zipf’s Law 131

Figure 6.2 Normalised Zipf’s Range 131

Figure 6.3 Flowcharts of the Ontology Tagging Algorithm (Training and 135

Tagging)

Figure 7.1. Conceptual Model of the Knowledge Management System 151

Figure 7.2. Processing 155

Figure 7.3 Total Processing Time for Entity Indexing 159

Figure 7.4 Total Processing Time for Concept Indexing 159

Figure 7.5 Total Processing Time for Merged Indexing 160

Figure 7.6 Total Processing Time for Entity Extraction 160

Figure 7.7 CPU Processing Time for Entity Extraction 161

Figure 7.8 Memory Usage for Entity Extraction 161

Figure 7.9 Disk Usage for Entity Extraction 162

Figure 7.10 Total Processing Time for Concept Extraction 162

Figure 7.11 CPU Processing Time for Concept Extraction 163

Figure 7.12 Memory Usage for Concept Extraction 163

Figure 7.13 Disk Usage for Concept Extraction 164

Figure 7.14 Retrieving Time Comparison with MySQL Using Text after 167

Merging of Entity and Concept Index

xi

Figure 7.15 The Composition of a Document Used in the Case Study 169

Figure 7.16 Result Output and Corresponding Original Documents for Task 1 172

Figure 7.17 Result Output and Corresponding Original Documents for Task 2 176

Figure 7.18 Result Output and Corresponding Original Documents for Task 3, 179

Step 3

Figure 7.19 Result Output and Corresponding Original Documents for Task 3, 184

Step 4

Figure 7.20 Result Output and Corresponding Original Documents for Task 4 186

Figure 7.21 Result Output and Corresponding Original Documents for Task 5 189

x ii

LIST OF TABLES

Table 3.1 Feature Comparisons of Knowledge Representation Languages And 38

Models

Table 3.2 A Simple Illustrative Example of Concept Indexing (a-k) 52

Table 4.1 Summary Results for Case Study 1 80

Table 4.2 Summary Results for Case Study 2 83

Table 5.1 Comparisons between Roget’s Thesaurus and WordNet 98

Table 6.1 Statistical and Context Information 127

Table 6.2 Summary of Tests Conducted 139

Table 6.3 Average Accuracy in Case Study 1: Experiments with Different Zipf’s 142

Table 6.4 Average Accuracy in Case Study 1: Experiments with Different 142

Window

Table 6.5 Average Accuracy in Case Study 2: Experiments with Different Ratio 144

Table 6.6 Average Accuracy in Case Study 2: Experiments with Different 144

Threshold Values

Table 6.7 Average Accuracy in Case Study 3: Experiments with Different Zipfs 146

Ranges

Table 6.8 Average Accuracy in Case Study 3: Experiments with Different 146

Window Widths and Ratios S

Table 7.1 Information Types Used 156

XUl

Table 7.2 Boolean Keyword Query Result

ABBREVIATIONS

KM Knowledge management

KMS Knowledge management system

IR Information retrieval

ML Machine learning

NLP Natural language processing

DNS Domain name system

IP Internet protocol

ADNS Asynchronous DNS

LSI Latent semantic indexing

SVD Singular value decomposition

SVM Support vector machine

SRM Structural risk minimisation

NP Non-deterministic polynomial-time

NE Named entity

POS Part of speech

MT Machine translation

WSD Word sense disambiguation

IE Information extraction

OE Ontology engineering

RDF Resource description framework

RDFS RDF Schema

KR Knowledge representation

AI Artificial intelligence

SW the Semantic Web

ER Entity relationship

DL Description logics

UML Unified modeling language

OWL Web ontology language

KB Knowledge base

HTML Hyper text markup language

DTD Document type definition

SD Small dictionary

BD Big dictionary

OT Ontology tagging

MRD Machine-readable dictionary

JDK Java development kit

MI Mutual information

UC Untagged corpus

UBC Untagged Brown Corpus

SQL Structured query language

URL Universal resource locator

CHAPTER 1. INTRODUCTION

1.1 MOTIVATION

In recent years, it has been recognised that an organisation’s success is more dependent

on its intellectual assets than on the value of its physical resources. Knowledge is now

the key battleground for competition [Davies, 2003]. As a result, the knowledge

management discipline has recently become a very active field of research. Knowledge

management (KM) is defined as the tools, techniques and processes for effective and

efficient management of an organisation’s intellectual assets [Davies, 2000]. KM is

concerned with the representation, organisation, acquisition, creation, use and

evolution of knowledge in its many forms [Jurisica et al., 2004]. The KM process is an

iterative process which has four stages, i.e., knowledge creation, acquisition,

knowledge organisation/storage, knowledge distribution and knowledge application

[Wiig, 1995]. Effective KM typically requires an appropriate combination of

organisational, social and managerial initiatives along with the deployment of

appropriate technologies [Marwick, 2001].

There are two forms of knowledge that are important for organisational effectiveness,

namely, tacit and explicit knowledge [Nonaka, 1994]. Tacit knowledge is rooted in

individual’s action, experience, commitment, ideals, values and emotions. Tacit

knowledge is hard to formalise because of its highly personal nature, while explicit

knowledge can be expressed using formal and systematic languages [Nonaka et al.,

2000]. Therefore, explicit knowledge can be transferred between humans without

human interaction. Explicit knowledge can be considered as information in the right

context, i.e. information which can lead to effective action [Davies, 2000]. These two

forms of knowledge are supported by technologies and tools such as collaborative

working environments, speech recognition techniques, and document management

systems [Marwick, 2001].

Although the concept of knowledge and knowledge management is not new,

knowledge management systems (KMSs), which involve the application of IT systems

and other organisational resources to manage knowledge strategically, are a relatively

recent phenomenon [Quaddus and Xu, 2005]. KMSs add value to KM by providing the

necessary infrastructure for organisations to implement the KM process [Dovey, 1997].

In the last two decades, advances have been made in various computing disciplines

such as information retrieval, machine learning, natural language processing and

ontology that set technology foundations for the further development of knowledge

management systems [Marwick, 2001; Kobayashi and Takeda, 2000; Sebastiani,

2002].

Current knowledge management systems, however, have weaknesses when dealing

with explicit knowledge contained in unstructured text documents, as the processes

involved are normally costly and lengthy [Broder and Ciccolo, 2004; Davies, 2003;

Mukherjee and Mao, 2004]. Therefore, there is a need for more efficient tools for

knowledge creation, acquisition, organisation, sharing and reuse. In particular:

1. Tools are needed to efficiently and automatically acquiring information from the

web to facilitate knowledge acquisition.

2. There is a need for methodologies and tools for representing knowledge in a way

that makes knowledge understandable by both humans and machines. The

availability of such methodologies and tools would facilitate knowledge

organisation, sharing and reuse.

3. Methodologies and tools are needed for extracting explicit knowledge from

unstructured text sources, especially when the information volume becomes very

large.

4. Tools for managing large volume of knowledge are also needed so that knowledge

can be utilised efficiently.

These weaknesses and needs have motivated research into providing KMSs with some

new capabilities. These capabilities include:

1. Automatic searching for information of interest which enables the acquisition of

new knowledge into the system;

2. Use of systematic schemes for knowledge representation so that both humans and

machines can understand the semantics of knowledge;

3. Automatic extraction of explicit knowledge from unstructured text information;

4. Efficient organisation of the ever-growing knowledge within the system to

facilitate knowledge sharing and reuse.

Therefore, the next generation of KMSs have to be automated and able to partially

/ understand natural languages. There are indications that information retrieval (IR),

machine learning (ML), natural language processing (NLP) and ontology techniques

can provide means for developing such enhanced capabilities.

1.2 AIMS AND OBJECTIVES

The scope of the research reported in this thesis is the management of explicit

knowledge from a technology perspective. The overall aim is to develop ML, NLP and

ontology-based techniques for knowledge management that can enable the automation

of knowledge acquisition, extraction and organisation. The individual objectives of this

research are:

1. To create formal models for content representation of unstructured text.

2. To develop a method for acquiring knowledge automatically from large collections

of Web documents.

3. To create necessary ontology-based resources to facilitate knowledge extraction.

4

4. To create a method for extracting knowledge from unstructured text.

5. To develop a conceptual model, a system architecture and a method for knowledge

management enabling efficient knowledge extraction and organisation.

1.3 OUTLINE

The main body of the thesis comprises Chapters 2 to 7. Chapter 2 is a review chapter.

Chapters 3-7 address the objectives listed above. The organisation of Chapters 4-7 is

shown in Figure 1.1. The final chapter, Chapter 8, summarises the contributions and

conclusions of the work and makes suggestions for further research.

Chapter 2 reviews the state of the art in IR, ML, NLP and ontological engineering, and

the use of these four technologies in relevant domains.

Chapter 3 addresses research objective (1). It starts with analysis of knowledge

representation and its role in the knowledge management process. Then a conceptual

model for knowledge representation is presented. The conceptual model is further

developed into a formal mathematical model. Then, the benefits of adopting this model

are outlined. Next, a framework using this model is presented with an illustrative

example. Finally, a system architecture to implement this framework and the system

processes are described.

Chapter 4 focuses on research objective (2). It starts with an analysis of the traditional

Web Content (Unstructured Text) — A

Focused Crawling (Chapter 4) -- B Training Examples — C

/
POS Tagging Ontology Tagging

(Modified) — D (Chapter 6) — E

Ontology Dictionary (Chapter 5)
— F

Ontologically Tagged Corpus as
Training Examples (Chapter 5) — G

Concept Indexing (Chapter 7) -- H

Entity and Concept Extraction (Chapter 7) — I

Entities — J Concepts — K

Knowledge Management System for Entity,
Concept and Keyword Searching (Chapter 7)

- L

Figure 1.1 The Organisation of Chapters 4-7

6

knowledge acquisition methods and their weakness. This analysis shows the needs for

automatic knowledge acquisition. Then, a basic method is described. The detail

knowledge acquisition process is described along with detailed flow chart. Then the

limitations of this basic method are analysed to highlight the improvements needed.

Following that, an improved knowledge acquisition method using a supervised

machine learning algorithm is described using a flow chart. Three feature selection

alternatives are presented and analysed. Then the improved knowledge acquisition

method for automatic knowledge acquisition based on intelligent focused crawling

architecture is described. Two case studies are conducted to show the feasibility of this

method in two different domains, and to test the optimisation of the machine learning

algorithm to achieve better acquisition accuracy.

Chapter 5 addresses research objective (3). It starts with a discussion on ontology

tagging and its benefits. Then, the resources available and those needed to achieve

ontology tagging are analysed. Next, a general purpose ontology dictionary, and the

developed method for semantic mapping between a lexicon and the ontology dictionary

are described. Then the ontologically tagged corpus for supervised ontology tagging is

developed. Tests are conducted to show the accuracy of the ontologically tagged corpus

generated.

Chapter 6 focuses on research objective (4). An algorithm for full text ontology tagging

using machine learning is proposed. The training and tagging processes of this

algorithm are described. In order to achieve better tagging accuracy, three case studies

are conducted and evaluated to choose the best design option. Finally, the

characteristics of the tagging algorithm and the factors affecting its accuracy are

analysed and discussed.

Chapter 7 focuses on research objective (5). It presents the conceptual model and the

system architecture for knowledge management, and the prototype system developed.

The system uses concept indexing, an existing part of speech tagging module, the

ontology tagging developed in this work to index and extract entity and concept

information, which are further used for entity, concept and keyword searching. Next,

two sets of tests are described. The first set of the tests is conducted on indexing of

entities and concepts. The purpose of the first set of tests is to examine how the

processing time, extraction time and the demand of computer resources change as the

volume of information/knowledge in the system grows. The second set of tests

examines the retrieval performance after the merging of the entity and concept indices.

The purpose of this set of tests is to evaluate the retrieving performance against an

existing state-of-the-art standard solution. Finally, five case studies are conducted to

illustrate the advantages of this knowledge management approach where traditional

searching fail to apply or has poor performance. All examples in Chapters 3-7 used to

illustrate the proposed solution are based on a prototype system developed for

knowledge management.

Chapter 8 summarises the contributions made and the conclusions reached, and

suggests possible directions for further investigations in this area.

CHAPTER 2. REVIEW OF TECHNOLOGY

APPROACHES TO KNOWLEDGE MANAGEMENT

This chapter reviews technology approaches to knowledge management. First,

knowledge management is introduced. Then knowledge management models are

„ described. Next, four technologies for knowledge management are reviewed, which are:

information retrieval, machine learning, natural language processing, the Semantic

Web and ontology.

2.1 KNOWLEDGE MANAGEMENT

Knowledge now is seen at the centre of global economic transformation [Bell, 1978],

and it is the most powerful engine of production organisations which are increasingly

focused on management [Marsh, 1965]. Knowledge management (KM) is currently

receiving considerable attention, from both academics and practitioners, and is being

addressed by a broad range of academic literature and popular press.

2.1.1 Knowledge

There are many interpretations on the definition of “knowledge”. Plato [1953] first

defined knowledge as “justified true belief’, which is that people believe and value on

the meaningful and organised accumulation of information (messages) through

experience, communication or inference [Dretske, 1981; Lave, 1988; Blacker, 1995].

The chain of knowledge flow is data-information-realisation-action/reflection-wisdom

[Kakabadse et al., 2003], where processing is conducted through each stage to

transform data into wisdom.

2.1.2 Knowledge Management

There are many definitions about knowledge management. For example, in [O’Dell and

Jackson, 1998], KM is defined as “conscious strategy of getting the right knowledge to

the right people at the right time and helping people share and put information into

action in ways that strive to improve organisational performance”; in [Beckman, 1997]

KM is defined as “formalization of, and access to, experience, knowledge and expertise

that create new capabilities, enable superior performance, encourage innovation and

enhance customer value”. However, fundamentally, these working definitions relate to

four elements: business processes, information technologies, knowledge repositories

and individual behaviors [Eschenfelder et al., 1998]. These four elements enable an

organisation to methodically acquire, store, access, maintain, and reuse knowledge

from different sources [Eschenfelder et al., 1998]. There are generally five models of

KM, viewing KM from different perspectives, which result in different approaches to

KM. These models are: philosophy-based model, cognitive model, network model,

community model, and quantum model [Kakabadse et al., 2003]. Cognitive model, in

particular, is receiving considerable attention [Swan and Newell, 2000]. It treats

knowledge as objectively defined and codified concepts and facts. It focuses on

knowledge capture and storage [Kakabadse et al., 2003]. The primary aim of this model

is to codify, capture and explore explicit knowledge and information, where technology

is considered as an important integrative mechanism [Kakabadse et al., 2003].

The author of this thesis supports the approach of cognitive model for KM. As the

cognitive model concentrates on the use of technologies as important means to achieve

KM, relevant technologies are reviewed in the following sections, which are

information retrieval, machine learning, natural language processing, the Semantic

Web and ontology.

2.2 INFORMATION RETRIEVAL

2.2.1 Information Retrieval and Web Search

Information retrieval (IR) studies the retrieval of information (not data) from collection

of written documents. A typical IR system prepares a certain index for the given text

collection and responds to queries with a list of documents ranked according to certain

criteria [Chakrabarti, 2002].

A search engine is an IR system that searches Web documents for specified queries and

returns a list of documents to match the queries. Typical IR procedures of a search

engine are shown in Figure 2.1. During the crawling procedure, specialised agents,

which are called crawlers, spiders, Web robots, or bots retrieve large quantity of Web

pages simultaneously, and store them for further processing [Chakrabarti, 2002].

Preprocessing is to unify various Web pages retrieved so that they are appropriate for

further processing, which normally includes Web page validation, format conversion,

WWW

Web Crawling

£ r
Tv

Preprecessing

Storing

Indexing Query
Processing

Ranking

Result Representation

Figure 2.1 Information Retrieval Procedures of a Search Engine

12

stripping of stop words1, stemming, etc. When re-formatted Web content is passed

through the preprocessing procedure, the content is analysed to create an index. When a

query is input to a search engine, the query is evaluated according to defined certain

criteria, then the analysed query is calculated using the index and document

information to rank the result set. When the ranking result is generated, it is represented

to the user to answer the query.

There are several measurement metrics for IR systems, such as precision and recall,

F-measure [van Rijsbergen, 1979] and mean average precision [Baeza-Yates and

Ribeiro-Neto, 1999]. However, the most used measure is precision and recall

[Kobayashi and Takeda, 2000]. Precision is defined as the proportion of relevant

documents to all the documents retrieved:

P = (number of relevant documents retrieved) / (number of documents retrieved);

and recall is defined as the proportion of relevant documents that are retrieved, out of

all relevant documents available:

R = (number of relevant documents retrieved) / (number of relevant documents)

2.2.2 Crawling

Effectively retrieving Web pages from the Web to a document collection is the first step

for a search engine. Crawlers start the retrieving process from some given Web pages

that have outbound links to other pages which have not been retrieved or refreshed.

1 Search engines normally filter extremely common words in order to save disk space or to speed up search results.

These filtered words are known as “stop words”.

13

New links from retrieved pages are normalised and queued for further processing. [Brin

and Page, 1998] provided a first known in-depth description of a large-scale crawler as

a part of early Google, being capable to process more than 24 million Web pages. A

Java based large-scale crawler, Mercator, was reported in detail in [Heydon and Najork,

1999], which concentrated on the issues of scalability and the extensibility. Mercator

used a specially designed data structure to handle tens of millions of Web pages with a

limited size of memory. The modular design of Mercator facilitates its extension of

functionalities when needed. Focused crawling was introduced in [Chakrabarti, 1999],

which means only those Web pages which are classified as relevant to given topics are

stored during crawling and the links in those pages are processed for future crawling.

This technique is useful in discovering Web resource of interest, Web structure analysis

and building high-quality collections of Web documents on specific topics [Chakrabarti,

2002].

Four factors of performance and reliability are considered important to build a large

scale crawler.

1. Domain Name System (DNS) resolution issues

Domain name systems associate many types of information with domain names, but

most importantly, it associates the Internet Protocol address (IP address) with a given

domain name. Address resolution is one of the major bottlenecks in enabling high

performance crawlers. A multithreading DNS resolver was used in [Heydon and Najork,

1999] to improve the performance of DNS resolving, and reduced the percentage of

elapsed time of each thread from 87% to 25%. The asynchronous DNS (ADNS) client

14

library [Jackson, 2006] was used in [Chakrabarti, 2002] to accelerate the Web address

resolving speed.

2. Concurrent retrieving and multithreading

Multithreading, concurrent process, non-blocking sockets with event handlers are three

typical approaches to enable concurrent Web page retrieval [Chakrabarti, 2002].

Non-blocking sockets with event handlers have advantages over the other two

approaches, because mutual exclusion for shared data structures and random

input-output access to disk interruptions, which often happen in the other two

approaches, do not occur in non-blocking sockets [Nichols et al., 1996].

3. Link extraction requirements

When hyperlinks are extracted during crawling, duplicated hyperlinks should be

avoided. In addition, prohibited links by host servers should not be crawled by

following the specification of Robots Exclusion Protocol . Malicious spider traps often

occur in the crawling process, and sometimes cause crawlers to crash. Some traps also

cause the crawler retrieve indefinite number of dummy pages, or similar pages with

different depth in terms of forward slashes in hyperlinks [Heydon and Najork, 1999].

Due to this reason, crawlers need to be designed to prioritise Web links to crawl [Cho et

al., 1998].

4. Refreshing of crawled pages

To keep Web pages crawled up to date, some assumptions need to be made for

2 For more information refers to: http://www.robotstxt.org/wc/robots.html

15

http://www.robotstxt.org/wc/robots.html

estimating update intervals on different websites. Algorithms for refreshing crawled

Web pages newer than a specified crawling period were proposed in [Brewington and

Cybenko, 2000]. Incremental crawling was described in [Cho and Garcia-Molina, 2000]

to refresh Web pages retrieved in a timely manner.

2.2.3 Models for Information Retrieval

An IR system needs to present documents relevant to the user’s need and rank the

documents retrieved in the order of predicated likelihood of relevance to the user.

Different IR models are proposed based on distinct sets of premises to achieve such

goals.

In general, an information retrieval model [Baeze-Yates and Riberiro-Neto, 1999] is

defined as a quadruple [D, Q, F, R(qi,dj)], where

D is a set composed of logical views (representations) for the documents in the

collection;

Q is a set composed of logical views (representation) for the user’s information needs

(queries);

F is a method for modelling document representations, queries, and their relations;

R(qi,dj) is a ranking function which associates a real number with a query qi e Q and a

document representation dj £ D. Such ranking defines an order among the documents

with regard to the query qi.

In addition, a model could be extended to include multiple sources of evidence with

both collaborative and content information [Griffith and O’Riordan, 2003]. Some

typical IR models are described as below:

1. Boolean Model

In Boolean model, documents are treated as a set of terms, and queries are expressed in

Boolean expressions. The relevance of query results is calculated using set theory and

Boolean algebra [Wartick, 1992]. Boolean model is the most common model in an IR

system, however, from the probability distribution point view, [Verhoeff et al., 1961]

proved that it is inefficient to for IR systems. Therefore, Boolean model was proposed

to be used in conjunction with other IR models. For example, relevance feedback was

introduced into a Boolean IR system to provide the precision of a Boolean search and

the advantages of a ranked output in [Radecki, 1982]. A Boolean model was also used

in an IR system to rank documents by exploiting term dependence information from a

thesaurus to achieve higher retrieval effectiveness than some of the previous methods

proposed [Lee et al., 1993].

2. Vector Model

Vector model was made popular by Salton and the SMART system [Salton and Lesk,

1968; Salton, 1971; Salton and Buckley, 1988]. Salton et al. [1982] introduced the

extended Boolean model to exploit benefits from both Boolean model and vector space

model, and tests indicated the system produced better results than either of the model

used alone. A sense-based vector space retrieval model was presented in [Stokoe et al.,

2003], which improved the precision by 45.9% relatively to traditional TF*IDF3 term

3 The tf-id f weight (term frequency-inverse document frequency) is a w eight often used in information retrieval

m odelling

17

weighting techniques. Latent Semantic Indexing (LSI) was proposed in [Furnas et al.,

1988] to reduce the dimensions of the vector space by using low-rank approximation

based on singular value decomposition (SVD). Karypis and Han [2000] proposed a fast

dimensionality reduction algorithm with lower computational requirements and the

ability in supervised learning, compared with LSI.

3. Probabilistic Model

Probabilistic model is an IR model based on a probabilistic interpretation of document

relevance to a given user query [Baeza-Yates and Ribeiro-Neto, 1999]. There are two

major types of probabilistic models: relevance models and logic inference models [Fuhr,

1992]. Generally, probabilistic models reveal better performance than Boolean models

[Crestani et al., 1998]. Cooper [1994] raised questions on using probabilistic ranking in

information retrieval, who stated that the cost of creating and trouble shooting

probabilistic IR theories is high.

4. Fuzzy Set Model

Radecki [1976] described using fuzzy set theory [Zadeh, 1965] in information retrieval

to enable different degrees of importance of particular terms in search patterns. In

[Miyamoto et al., 1983] fuzzy set theory was used to produce a pseudo-thesaurus for IR

to enable searching for different but related keywords in the documents. Wong and Yao

[Wong and Yao, 1995] proposed a unified framework of probability inference which

provided conceptual and mathematical basis for models such as fuzzy set.

5. Other Models

Neural network model was used in an IR system in [Wilkingson and Hingston, 1991],

18

and the test results showed that many standard search strategies are applicable in the

neural network model, such as cosine vector measure method. A probabilistic IR model

based on feed forward artificial neural network was implemented in [Kwok, 1995].

Turtle et. al. introduced inference networks for IR in [Turtle et al., 1990]. Belief

network model was introduced in [Ribeiro-Neto and Muntz, 1996] to generalise the

inference network model [Turtle et al., 1990] and other classical probability based

models to improve the retrieval performance.

2.2.4 Indexing

The purpose of indexing is to reduce the retrieval time in an IR system which contains

large document collections, and it is especially useful for large and slow growing text

collection [Baeze-Yates and Riberiro-Neto, 1999].

An inverted index is an index structure storing a mapping from words to their locations

in a document or a set of documents [Harman et al., 1992]. To improve the search speed,

inverted files need to be appropriately compressed and encoded [Witten et al., 1999].

Eleven indexing compression models were described and compared in [Witten et al.,

1999]. There are performance trade-offs between these eleven models, such as

compression rate, hard drive usage, and memory usage. Therefore, the appropriate

model chosen depends on various factors such as the user requirements and hardware

availability [Witten et al., 1999]. A hybrid approach of indexing, called two-level

searching, was developed in Glimpse system [Manber and Wu, 1993]. This approach

combined a small index and sequential search techniques to reduce the size of the

19

inverted index and to support approximate matching [Araujo et al., 1997].

2.2.5 Storage and Query

Text compression and pattern matching are also important in IR systems. Text needs to

be compressed to significantly reduce the storage size and improve the retrieving speed.

Huffman coding was first presented in [Huffman, 1952], which is an entropy encoding

algorithm for lossless data compression. An efficient compression and decompression

scheme for word-based Huffman encoded text file was described in [Moura et al.,

1998]. Huffman encoding was used in MG system for text compression due to this

method’s relatively fast encoding and decoding speed and random access ability

[Witten et al., 1999].

Pattern matching is widely used during the process of indexing and query. An algorithm

using bit-parallelism to support extended patterns allowing errors was presented in [Wu

and Manber, 1992] and an online searching tool, Agrep, based on this algorithm was

developed in [Wu and Manber, 1992]. The fastest bit-parallel approximate pattern

matching algorithm implemented in [Baeza-Yates and Navarro, 1999], was based on

simulating non-deterministic finite-state automata [Hopcroft et al., 2000].

2.2.6 Applications of Information Retrieval

Various applications for IR were reported in literature. WebGlimpse, a tool combining

searching and browsing through a neighbourhood search, was described in [Manber et

al., 1997]. An IR system that included the addition of concepts to facilitate the

20

identification of the correct word sense was presented in [Henstock et al., 2001]. A

filtering system SIFTER, which was based on a model using multiple adaptation

techniques to cope with uncertainties, demonstrated a good performance in filtering

documents in a realistic setting [Mostafa et al., 1997]. An IR system using semantic

annotation and semantic relations in medical domain was presented in [Vintar et al.,

2003]. In this system, discovery of new relation instances improved the retrieval

performance.

2.3 MACHINE LEARNING TECHNIQUES

Machine learning (ML) techniques such as neural networks, genetic algorithm,

simulate annealing [Pham and Karaboga, 2000; Pham and Xing, 1995] and fuzzy logic

[Zadeh, 1994] in the soft computing paradigm have been used in clustering, filtering,

information extraction, information personalisation, knowledge discovery and other

natural language processing applications [Mooney, 2003]. Those techniques are mainly

used to investigate three types of Web information, which are content, usage, and link

structure [Baeza-Yates, 2003]. Most ML methods concern the task of categorising

examples described by a set of features [Mooney, 2003]. In particular, three machine

learning techniques relevant to the scope of this thesis are reviewed below, which are

support vector machine, rule-based learning and memory-based learning techniques.

2.3.1 Support Vector Machine

Support Vector Machine (SVM) is a statistical, supervised learning method based on

21

structural risk minimisation (SRM) and kernel functions [Boser et al., 1992]. One major

advantage of SVM is the high classification accuracy given few training examples and

vague distinctive margin between different groups of examples, which was

theoretically proven in [Vapnik, 1999; Scholkopf and Smola, 2002]. In practice,

[Joachims, 1998] discussed algorithmic and computational costs for managing large

training tasks in the SVMllght, an SVM implementation in C programming language.

LIBSVM [Chang and Lin, 2002] was provided as an SVM library package by Chang et

al.

In application, Joachims [2001] proposed a learning model for text classification based

on SVM. In [Li and Liu, 2001], a Chinese web page classifier using SVM and

unsupervised clustering was implemented, which mitigated the high training cost using

an unsupervised clustering method. A method which combines evidence from a

document and citing documents by using SVM and entropy based feature extraction

was presented in [Glover et al., 2002] to improve the web page classification accuracy.

In [Chen and Dumais, 2000], a user interface which automatically categorising search

results using SVM text classification shows 50% improvement in finding information

in search results.

2.3.2 Rule-Based Learning

The learned knowledge in rule based learning is represented in a declarative, symbolic

form of logical rules as opposed to a numerical model obtained by using SVM. One

advantage of this method over statistical ML methods is that the acquired knowledge is

22

represented in a symbolic form that can be more easily interpreted, modified and

maintained by humans. Rules are normally induced from a set of training examples

using a variety of algorithms [Mitchell 1997, Langley 1996]. Although the optimal goal

is to construct the smallest rule set to consistently represent the training data, but

normally this is a non-deterministic polynomial-time hard (NP hard) problem, which

may take unacceptable long time to solve. Therefore, heuristic approaches are often
/

used to create the approximately optimal rule set.

Rule-based learning algorithms have been applied to many areas, such as named entity

(NE) recognition [Isozaki, 2001], language engineering4 [Bontcheva et al., 2004], and

knowledge management [Davies et al., 2005].

2.3.3 Memory-Based Learning

Different from rule-based learning methods, memory-based learning (also called

case-based or instance-based methods) do not generate abstract models from given

examples, but rather compare the similarity of the new input examples with existing

correct examples using some similarity comparison metrics. Some typical metrics are

Hamming distance and Euclidian distance [Mooney, 2003]. The advantage of this

method applied in NLP is that it does not discard valuable low frequency information,

which often occurs in natural language. Benchmark tasks in areas from phonetics to

semantics in natural language processing were conducted using memory-based

4 Language engineering is the creation o f natural language processing systems whose cost and outputs are

measurable and predictable.

23

learning methods with good results obtained, compared with other ML methods used

[Daelemans, 2005]. Tilburg Memory-Based Learner (TiMBL), a memory-based

learning software package, was implemented for language engineering purpose in

[Daelemans, 2004].

2.4 NATURAL LANGUAGE PROCESSING

Natural language processing (NLP) is a field of information science to research how to

enable computers to process and understand human languages. It has tight relation with

information retrieval and knowledge management. Five areas in natural language

processing where are related to this thesis are reviewed.

2.4.1 Part of Speech Tagging

Part of speech (POS) tagging, which is also called word-class tagging, or grammatical

tagging, is to assign parts of speech (such as noun, verb, adverb, adjective) to words in

a text. POS tagging is used in many other NLP areas such as machine translation (MT),

word sense disambiguation (WSD) and information extraction (IE) [Voutilainen, 2003].

Current POS taggers have high tagging accuracy (about 97%). A rule-based POS tagger

developed by Brill, achieved 97% tagging accuracy [Brill, 1992]. Its compact structure

has an advantage over statistical POS taggers. Second-order hidden Markov model for

POS tagging with the tagging accuracy (96.9%) was developed in [Thede and Harper,

1999]. Both probabilistic and rule-based tagging modules were used in tagger

CLAWS4 [Garside et al., 1997] to tag British National Corpus, with a tagging accuracy

97% across the whole corpus.

2.4.2 Word Sense Disambiguation

Word sense disambiguation (WSD) is the process of identifying the meaning of words

in context [Stevenson and Wilks, 2003]. WSD can be applied to machine translation

(MT), information extraction (IE), information retrieval (IR) etc. Dictionary-based and

machine learning are two main approaches to WSD [Stevenson, 2003], where

machine-readable dictionary (MRD) (such as WordNet [Fellbaum, 1998]),

semantically tagged corpora (such as Semcor package in WordNet software) and

thesaurus (such as Roget’s Thesaurus [Roget, 2003]) are three main knowledge sources

used in both approaches [Yarowsky, 1992].

Studies show that IR systems may substantially benefit from using WSD techniques.

As reported in [Stokeo et al., 2003], a disambiguation rate above 60% can improve the

precision and recall of information retrieval. A, WordNet [Fellbaum, 1998], was used

with a WSD algorithm to improve the precision and recall of a keyword-based IR

system [Mihalcea and Moldovan, 2000].

2.4.3 Concordance and Collocations

A concordance is a list showing all the occurrences and contexts of a given word or

phrase, which are found in a corpus; collocations are groups of words which frequently

appear in the same context. Concordance and collocations are useful tools for tasks

such as corpus annotation and WSD. For example, Yarowsky [1993] observed that,

sense is usually consistent in one discourse and nearby words provide strong and

consistent clues to the sense of the target word, which is called “One Sense per

Discourse”. Yarowsky [1993] also claimed “One Sense per Collocation” which states

that with a high probability an ambiguous word has only one sense in a given

collocation. These two claims were used in an unsupervised learning algorithm for

WSD purpose, which achieved the accuracy between 90% and 96%.

2.4.4 Concept Indexing

There are different definitions of “concept indexing” in different research areas. For

example, a fast dimensionality reduction algorithm called “concept indexing” [Karypis

and Han, 2000] uses a clustering technique based on mathematics in a vector space

model. While in [Voss et al., 1999] concept indexing refers to the process of marking

interconnected concepts to their occurrences in the text collection using hyperlinks.

The process is produced by a team of people to manually mark concepts in documents.

Similar term “semantic indexing” in [Chang and Schatz, 1999] refers to a statistical

similarity method to capture relationships between concepts and form a concept space

to suggest alternative terms semantically related to query terms. This approach requires

the use of a cluster of high performance computers. In [Mihalcea and Moldovan, 2000],

“semantic indexing” refers to the usage of word senses in the process of document

indexing, where word-based and sense-based indexing are combined to improve the

precision and recall of an IR system. Holub in a recent work [Holub, 2003] introduced

an iterative clustering method called “conceptual document indexing” which extracts

significant topical concepts from clustered documents and the hierarchical

relationships between them, such that documents are organised in a hierarchy for

browsing purpose.

2.4.5 Information Extraction

Information extraction (IE) refers to the automatic identification of selected types of

entities, relations, or events in free text [Grishman, 2003]. There are many potential

application areas for IE: situations where information is being extracted manually, but

at a very high cost and low speed; situations where unstructured information needs to

be structured; situations where business, political, military events on particular subjects

need to be monitored etc. The general approach for IE is through machine learning

techniques to generate extraction rules or statistical models automatically from

annotated text corpora [Grishman, 2003].

A rule-based entity recognition system, MACE, was developed in [Maynard et al., 2003]

to extract named entities, which achieves comparative performance with other systems

based on statistics. ANNIE [The University of Sheffield, 2006] is an Information

Extraction system developed using GATE, and it can extract entities, such as person,

location, organization, date, and address from Web pages. A knowledge management

system using information extraction techniques for automobile manufacturing

intellectual properties was developed in [Hou et al., 2005] to save the labour cost of

knowledge engineers and domain experts.

The state-of-art entity recognition methods have achieved relatively good results, but

27

for tasks such as event extraction, relation extraction results are still far from

satisfaction [Stevenson, M., 2004]. Furthermore, it is time-consuming to produce rules

for rule-based systems and large volumes of annotated training text is still needed for

statistics-based IE systems [Maynard et al., 2003].

2.5 THE SEMANTIC WEB AND ONTOLOGY

The Semantic Web [Bemers-Lee et al., 2001] is an ongoing initiative to extend the

current Web structure, and standardise the descriptions of available resources on the

Web, so that the information is understandable by machines, which could make the

information processing more automated and less intervened by humans.

2.5.1 Ontology Engineering

Ontology engineering (OE) is a key enabling technology for the Semantic Web [Davies

et al., 2005], which allows explicitly specifying concepts and their relationships in a

domain in a formal way [Corcho and Gomez-Perez, 2000]. As there are many different

language specifications for OE, such as DAML+OIL [Horrocks et al., 2002], SHOE

[Luke et al., 1997], RDF Schema [Brickley and Guha, 2004], OE tools are needed to

allow users to concentrate on modelling at conceptual level while separating from

low-level syntax and specifications of different languages for the Semantic Web

[Corcho et al., 2003]. Protege is such a graphical tool commonly used for ontology

editing and knowledge acquisition [Noy et al., 2001].

Currently OE tools and methodologies have been applied to applications to mitigate the

difficulties in knowledge acquisition. Maedche et al. proposed a general OE framework

for semi-automatic acquisition of both taxonomy and non-taxonomy conceptual

relation discovery [Maedche and Staab, 2000]. In this framework, an algorithm based

on generalised association rule was used to detect relations and to determine the

appropriate level of abstraction to define relations. [Gottgtroy et al., 2003] described an

OE approach to discover knowledge from data in evolving domains such as biological

sciences, medical sciences, and social sciences.

2.5.2 Information Extraction for the Semantic Web

Stevenson et al. [Stevenson and Ciravegna, 2003] pointed out the existing gaps between

current Web and the Semantic Web, and practical adoption problems for the Semantic

Web. The extension from current Web to the Semantic Web requires high cost effort,

which hinders the likeness of this dramatic change in the real world in the immediate

future [Fensel, 2002; Avello et al., 2002]. By using information extraction, this gap

could be closed [Stevenson and Ciravegna, 2003].

A formal information extraction framework for today’s non-semantic web to extract

knowledge was presented in [Arjona et al., 2003]. It associates semantics with the

information extracted by developing knowledge channels. Information extraction has

been effectively applied in some restricted domains. Jacobs and Rau, developed

SCISOR, a prototype system that extracts information from financial news to find and

summarize corporate merger stories [Jacobs and Rau, 1990]. Amilcare, a system for

adaptive information extraction for the Semantic Web in the hope to automate or

semi-automate the information annotation process was described in [Ciravegna and

Wilks, 2003]. KIM, a platform for semantic indexing, annotation and retrieval, was

developed towards information extraction for the Semantic Web [Popov et al., 2003].

This platform is built based on GATE, a general architecture for text language

engineering [Cunningham et al., 2002] and Semantic Web compliant knowledge

representation and management.

2.6 DISCUSSION

The review of four technologies for knowledge management shows that the trend

moving from information-centred society towards knowledge-centred society is

emerging. These four technologies are now moving closer to support and complement

each other to facilitate process of transforming data into knowledge in the chain of

knowledge flow.

Section 2.2 has reviewed the area of IR. Despite of the progress made in IR research,

users are still unsatisfied with the performance of the current IR systems, due to the

reasons such as the slow retrieval speed, communication delays, and poor quality of

retrieved results [Kobayashi and Takeda, 2000]. On one hand, users are suffering from

information overload, and on the other hand, users still cannot efficiently find the

information they want. Researchers in IR field found that the ambiguity in natural

languages hinders the performance improvement in IR systems. This is one of the main

reasons why IR community has increasing interest in the research of natural language

processing, such that by using NLP techniques could improve the current performance

of IR system [Stokeo et al., 2003]. Furthermore, due to the “knowledge acquisition

bottleneck” [Boicu, 2001], more efficient automated methods to acquire high quality

information are needed to assist knowledge management. In this case, the expertise

from IR field for exploring vast amount of online information can contribute to this

growing need, where new techniques such as focused crawling, concept indexing

emerge.

Section 2.3 has reviewed three ML techniques which could be potentially used in IR,

NLP and KM. The research field of IR has a long history using ML techniques. NLP

needs the assistance from ML to automate its processes due to vast text-based data

involved. ML is being adopted in IE for building the Semantic Web to reduce the high

building cost involved. Therefore, there is a trend towards combining ML into

improved formal models of IR, NLP and KM [Kobayashi and Takeda, 2000; Allan et al.,

2003; Baeza-Yates, 2003].

Section 2.4 has reviewed five aspects of natural language processing. Tagging

techniques and semantic analysis have received increasing attention in the KM, Web

mining and text mining research areas. However, there is no one system has addressed

the use of concept-based tagging techniques in KM in a systematical way. Therefore,

there is a potential opportunity for exploring the combination of these techniques

further into a KM system.

Section 2.5 has reviewed techniques and tools for ontology building, and the building

of the Semantic Web. For building the Semantic Web, processes need to be automated

because of the vast Web content information involved. Also due to the fact that most

online information is based on natural languages, NLP is therefore a key technology to

enable the transformation from current Web structure to the Semantic Web.

Therefore, research opportunities are open to combine these four technologies in a

systematical way to streamline the knowledge flow for embracing the trend towards

knowledge-centred societies. In particular, techniques such as focused crawling,

machine learning, concept indexing and ontology are worth being exploited

systematically in Chapters 3-7 for knowledge management.

2.7 SUMMARY

This chapter has outlined the research that addresses knowledge management, and its

four enabling technologies, which are information retrieval, machine learning, natural

language processing, the Semantic Web and ontology. Important trends within the

scope of this work have been discussed and summarised to provide starting points for

the research presented in Chapters 3-7.

32

CHAPTER 3. FORMAL REPRESENTATION OF

CONTENT USING CONCEPT INDEXING

This chapter addresses the first objective of this research. It introduces the idea of

concept indexing and presents the two models developed: conceptual and mathematical.

A concept indexing framework is then introduced. The technical approach proposed is

clarified using an illustrative example. Finally, the chapter describes the system

architecture developed for this framework.

3.1 CONCEPT INDEXING

An analysis of the conventional approaches to knowledge representation is a starting

point in the development of a new knowledge representation scheme, which uses

concept indexing.

3.1.1 Conventional Models for Knowledge Representation

Knowledge representation (KR) is the study of how knowledge about the world can be

represented and how reasoning can be conducted based on this knowledge. In artificial

intelligence (AI), KR can play five roles: “a surrogate, a set of ontological commitment,

a fragmentary theory of intelligent reasoning, medium for efficient computation and

medium of human expression” [Davis et al., 1993]. In the management of explicit

knowledge, KR is tightly related to other processes in knowledge management as KR

can affect the way knowledge is processed and utilised [Davis, 1993]. There are a

number of modelling languages and formalisms for (KR) developed in different

domains, ranging from databases to the Semantic Web (SW). Examples of such include

semantic networks [Quillian, 1968], frame-based knowledge modelling [Minsky, 1975],

Entity-Relationship (ER) modelling [Chen, 1976], description logics (DL) [Brachman

and Schmolze, 1985], UML [Booch et al, 1998], RDF and RDFS [Klyne and Carroll,

2004], and OWL [McGuinness and van Harmelen, 2004].

1. Semantic networks. A semantic network is a model for representing knowledge in

patterns of interconnected nodes and arcs.

2. Frame-based knowledge modelling. In frame-based knowledge modelling,

collections of related frames are linked together into frame systems to represent

knowledge, where the frame is a data structure for representing stereotyped

situation knowledge.

3. Entity-relationship (ER) modelling. ER is a data model for multilevel

descriptions of views of data. ER is typically used to design the data organisation

within databases or information systems. An entity is an object or concept where

data is stored. A relationship is the connection through which data is shared between

entities.

4. Description logics. Description logics are knowledge representation languages

tailored for expressing knowledge about concepts and concept hierarchies, which

are sub-languages of predicate logic to provide reasoning support.

34

5. UML. Unified Modelling Language (UML) is a non-proprietary, third generation

modelling and specification language, which has been applied into different areas

such as software engineering, designing complex engineering systems, business

process, and organisational structures.

6. RDF and RDFS. Resource Description Framework (RDF) is a modelling language

to describe resources on the web in a domain-independent way. Users can define

their own terminology in a scheme language called RDF Schema (RDFS).

7. OWL. The Web Ontology Language (OWL), which is built to enhance RDF, is an

ontology language for writing explicit, formal conceptualisations of domain

models.

The existing KR languages and formalisms will be analysed using the requirements

defined below to decide whether these languages and formalisms are suitable for KM.

3.1.2 Requirements for Knowledge Representation of

Explicit Knowledge

The requirements for representing explicit knowledge for the needs of knowledge

management are summarised below.

1. Automatic extraction of knowledge from unstructured text. Automating

knowledge extraction can dramatically reduce the labour cost as opposed to

extracting knowledge manually. Therefore, automatic knowledge extraction is an

essential feature in knowledge representation.

2. Support for efficient reasoning. One of the reasons for developing more advanced

knowledge representation schemes is the need for reasoning support. Knowledge

representation is needed to support several reasoning capabilities such as reasoning

on class membership, equivalence and classification reasoning [Antoniou and van

Harmelen, 2004].

3. Rich lexical and semantic representation. Explicit knowledge is normally

expressed in unstructured text-based documents. Examples of this are emails, web

pages, electronic documents, and minutes of meetings. Documents differ from data,

in that data does not have lexical or semantic information, whereas documents

contain both lexical and semantic information. The support for syntactical and

semantic representation of such documents is an important requirement. Necessary

syntactical and semantic information should be efficiently extracted and

maintained.

4. Good scalability to large document collections. One of the problems with

knowledge management systems of organisations is the ever growing size of their

text-based documents. The large size of these documents sometimes increases the

processing time considerably, which results in delayed delivery of the knowledge

required.. Therefore, good scalability is required for large document collections.

36

5. Flexible ways of making queries. Flexible ways mean that users can input queries

for information and knowledge at different levels of abstraction. In other words,

users may use concrete instances o f concepts (i.e. entities) or only input concepts,

when they do not have concrete realisations of those concepts or when they do not

need instantiations of any concepts to make queries [Chakrabarti, 2002]. For

example, when a user is sure about what he/she wants to find out about a “Volvo”

car, then he/she will probably input “Volvo” as a key query term for the

information. If the user wants only information/knowledge at a more abstract level

i.e. car industry, he/she will probably input “car” instead of many different car

brands at the same time. At this time, the user treats “car” as a concept with a more

abstract level than “Volvo”. Therefore, there is a need for more flexibility in

making queries.

The knowledge representation languages and formalisms outlined in this section are

further analysed through an extended literature review including [Quillian, 1968;

Minsky, 1975; Chen, 1976; Brachman and Schmolze, 1985; Booch et al, 1998; Klyne

and Carroll, 2004; McGuinness and van Harmelen, 2004], to investigate how and to

what degree they support these five requirements. In Table 3.1, “good”, “fair”, “poor”

and “difficult” indicate different levels of support for each requirement. “Unknown” is

used when there is no information available for the corresponding requirement.

37

Table 3.1 Feature Comparisons of Knowledge Representation Languages And Models

Modelling languages
and formalisms for
knowledge
represenation

Requirements

Automatic
extraction of
knowledge from
unstructured text

Support for efficient
reasoning

Rich lexical and
semantic
representation

Good scalability to
large document
collections

Flexible ways of
making queries

Semantic Networks Not easy Poor Fair Good Poor

Frame-Based
Knowledge Modelling

Not easy Fair Fair Poor Poor

Entity-Relationship
(ER) Modelling

Difficult Poor Poor Good Poor

Description Logics Difficult Fair Poor Poor Good, but unintuitive

UML Difficult Unknown Poor Poor Difficult

RDF And RDFS Difficult Good Poor Good Fair, but unintuitive

OWL Difficult Fair Poor Good Good, but unintuitive

38

As Table 3.1 shows, there is still a lack of support for automated extraction of

knowledge from unstructured text. Also, there is a lack of support for syntactic and

semantic information representation. Moreover, current modelling languages and

formalisms are not suitable for making queries, because their representation schemes

are rigid, complicated and not intuitive. Also, because of the trade-off between the

expressiveness of KR and the effectiveness of logic reasoning [Antoniou, 2004], a

proper level of expressiveness of KR to support reasonable speed of reasoning is

needed. To meet these requirements, the idea of concept indexing is introduced, defined

and formalised using a concept indexing framework

3.1.3 Definitions

In the context of this thesis, an entity is an identifiable and discrete instance existing in

a text document. A concept is the abstract or physical information about entities or the

relationships between them. An index is “the systematic guide to items contained in a

collection of concepts” [ANSI, 1984]. Concept index is a machine understandable

index of entities and concepts in document collections. In the context of knowledge

management, concept indexing could be defined as the analytic process of identifying

the entities and relationships which represent the knowledge conveyed in a document in

the form of a concept index.

An assumption made here is that the information conveyed in a text can be analysed

separately in terms of the entities and concepts contained. This work suggests to extract

entities from unstructured text-based content using a language knowledge base (KB),

and to identity concepts with the help of a concept KB. Once entities and concepts are

isolated, they can be used to build a concept index.

The conceptual model of concept indexing is illustrated in Figure 3.1. As the figure

shows, the knowledge from unstructured text-based content is analysed and structured

using entities and concepts with the help of two knowledge bases, the language KB and

the concept KB.

The Language KB contains the lexical and grammar knowledge. Lexical knowledge

provides a background for part of speech (POS) analysis and further language analysis.

Grammar knowledge is used to determine whether the compositions will be treated as

entities or concepts in this language analysis.

The Concept KB contains ontology knowledge for a large vocabulary of words and

phrases, so that the system can “understand” the meaning of the text. For example, if

the words “cars” and “vehicles” are frequently used in a text, then the system “knows”

that the text contains some information about “transportation”, which is a more abstract

concept than “cars” and “vehicles”.

Furthermore, the knowledge organised in the form of entities and concepts is stored

using a concept index. The concept index is essential because, as the knowledge base in

the system grows larger, finding entities and concepts efficiently from the knowledge

base will be increasingly difficult. With no efficient methods for processing, storing and

retrieving, the knowledge base will finally become unmanageable and of not much

value.

40

Language KB

Unstructured Text-based Content
b,

t t

Docl Doc2 Doc3

u C l
03 Of

C
0-1

C
O

U

Document Entity ID
Docl Entity 1
Docl Entity 2
Docl Entity3

Doc3 Entity 1
Doc3 Entity3
Doc3 Entity 4

Concept Index

Structured Knowledge with
Entities and Concepts

Concept KB

Document ConceptID
Docl Concept 1
Docl Concept2
Docl Concept4

Doc20 Concept2
Doc20 Concept3
Doc20 Concept7

Figure 3.1 Conceptual Model

3.1.4 Mathematical Model

The concept indexing model proposed is further developed using a mathematical model.

The notations used are illustrated in Figure 3.2.

Given a text W from a text collection 2 , the knowledge in this text is defined as 3 ,

which can be decomposed into entity knowledge set T and concept knowledge set E .

Entity knowledge in 2 is defined as M, and concept knowledge is defined as N . All

knowledge in 2 is defined as K . An element of the entity knowledge set r is defined

as (p, and an element of the concept knowledge set E is defined as s . i and j are used

as subscription indexes to differentiate different elements in the entity knowledge set

and concept knowledge set. The mathematical model is defined as follows.

IF

T c M (3.1)
AND

E c N (3.2)

AND

E = r (jE (3.3)

AND

k = m u n (3.4)

THEN

r = <z r , v ^ c= r,<pi * q>j
n

U (pi = r ,<pin (pi = 0 , 3 S k a (pi}
/=i

(3.5)

AND

n

E = { s i , £ j | [J Si =E, Si * s j }
(3.6)

1=1

42

Entity K nowledge M in
Text Collection £

Concept K nowledge N
in Text Collection —

lP i - Entity K nowledge
Elements

Entity Knowledge E in
Text Collection tfJ

c / - Concept
K nowledge Elements

Concept Knowledge E
in Text Collection T

Text Collection X

Text T from Text
Collection 1'

- Text Collection Text

- Knowledge - K nowledge Element

Figure 3.2 Notations Used in the Mathematical Model

(3.1) Assumes that entity knowledge r in a text W is a subset of the entity knowledge

M in the text collection £ .

(3.2) Assumes that concept k n o w led g e E in a text ^ is a subset of the concept

knowledge N in the text collection £ .

(3.3) Assumes that information 3 in a section of text V is the union of entity

knowledge set r and concept knowledge set E in the text W.

(3.4) Assumes that information in the text collection 2 is the union of entity

knowledge set M and concept knowledge set N .

(3.5) When (3. l)-(3.4) are satisfied, then entity knowledge r from textW is a union of

entity knowledge elements (p, and entity knowledge elements do not have intersections

with each other, and there exists a concept knowledge element s which is a subset of

an entity knowledge element, but not always.

(3.6) When (3. l)-(3.4) are satisfied, the concept knowledge r from text1̂ is a union of

concept knowledge elements s . They may have intersections.

This approach to defining knowledge contained in a text collection has some substantial

benefits. First of all, entities, which are normally easy to express using keywords, can

be separated from concepts, which are normally difficult to express with keywords. For

example, it is easy to specify entities about a specific company, but it is difficult to

specify information about a product of a specific company which may introduce

negative effects on people unless the user knows the specific name of the negative

44

effect such as “cancer”, and this is because information related to a specific entity is

easier to express then an abstract concept conveyed by this information. From (3.5) and

(3.6), the information S in text W from text collection 2 is formed as a union entity

information elements (p and concept information elements s . This separation of

information, which is normally processed as keywords in an IR system, makes the

knowledge representation clearer when considering different levels of abstraction of

the information contained in a knowledge management system. It also facilitates the

queries for information from the knowledge management system. In this sense, concept

information is expressed in a more appropriate way as the high level queries are not

“overfitted” by unnecessarily detailed keywords, as using keywords to express abstract

concepts tends to add more information than the information that the concepts really

carry.

3.1.5 Benefits of Adopting Concept Indexing

The benefits of adopting concept indexing are discussed in this section in relation to the

requirements defined in section 3.1.2.

First of all, concept indexing enables automatic knowledge extraction. There are two

types of knowledge extracted from the text content, fact knowledge and abstract

semantic knowledge. The fact knowledge is expressed by using entities and concepts

whereas the semantic knowledge is expressed using POS and concepts tags. For

example, given a sentence “The Fulton County Grand Jury said Friday an investigation

of Atlanta’s recent primary election produced no evidence that any irregularities took

45

place”, “The Fulton County Grand Jury” as an entity, “law” is an abstract concept for

“jury”, and “election” will be treated as fact knowledge.

Secondly, this approach enables efficient reasoning using membership, equivalence

and classification. As concepts tags are attached to all meaningful words/phrases in the

text, the membership reasoning can be deduced according to the concept hierarchy in

the concept KB. Equivalence can be conducted at different abstraction levels, as well as

the instance level as exact term matching. With the help of the current state-of-art

keyword-based indexing technique, classifications and equivalence reasoning will be

fast; the ability to perform reasoning in batch mode also improves the efficiency.

Thirdly, concept indexing enables rich lexical and semantic representation, and the

use of other sets of symbols in the future, if needed. Concept index enables rich

semantic representation, in that POS information and ontology information are treated

as two distinct sets of symbols, similar to the way the keyword-based models treat

words and phrases. Therefore, as long as the meanings of the symbols are defined, the

same indexing mechanism can be applied to these sets of symbols, no matter how many

sets of different symbols are employed in the system. For example, if in the future,

phonetic information is needed, a set of phonetic symbols can be defined and added into

the system. Therefore, this structure gives more expressive power than previous models,

which do not have lexical and semantic representation capabilities.

Next, this approach can be applied to large document collections. Because the concept

indexing model is built using existing keyword-based indexing technologies, large

46

document collections will not be a problem, as current keyword-based indexing tools

have been proven to handle large volumes of data efficiently.

Furthermore, this framework enables more flexible ways of conducting queries

compared to knowledge base systems that use traditional keyword-based queries. The

availability of lexical and semantic information, POS symbols, ontology symbols and

keyword symbols, which can be input to the system as queries at the same time, gives

more flexibility over the existing solutions. For example, the user may want to query

“vehicles” instead of individual sub-types of vehicles such as “cars”, “lorries”, etc.

She/he can also query vehicles produced by a specific brand, no matter if it is a car or a

lorry. This gives more flexibility than previous query methods, as this gives users more

control over the ways of searching for information.

In addition to all requirements defined in section 3.1.2 which have been addressed,

there is an extra benefit of using concept indexing for automatic content

categorisation. The benefit is that different viewpoints, aspects or levels of

specification of a domain can be expressed. This benefit is similar to that of using

faceted systems [Priss, 2000]. In faceted systems, facets are relational structures

consisting of units and relationships that are selected for a certain purpose. Compared

with faceted systems, concept indexing has advantages. For example, user can choose

abstract concept query terms to form a query, which means that concepts from different

levels can be mixed to form a new “facet” which is impossible in faceted systems. Also,

in contrast to automatic content categorisation, no information is removed from the

original information in the content. This preserves all information necessary to view a

document from multiple viewpoints. As a result, knowledge is better reused compared

with conventional text clustering and automatic text categorisation methods. The

purpose of concept indexing is to preserve the main knowledge of documents’ views, so

that different facets of a document could be used for different information needs. Using

a simple analogy, one can expect that many different questions could be asked against a

single sentence, each question focusing on different aspects of the knowledge

expressed in this sentence. This issue has not been addressed in previous studies, where

documents are normally categorised into static categories, although the static

catalogues are generated automatically. In concept indexing, once essential entities and

concepts in a text are captured (e.g. agent, place, reason, time, event, status, etc.), the

extracted information could be organised in a concept index for more efficient

knowledge management.

3.2 A FRAMEWORK FOR CONCEPT INDEXING

In this section an abstract framework for concept indexing is described. The framework

is illustrated in Figure 3.3.

There are 11 processes in the framework. The purpose of web content retrieval is to

collect targeted web pages for further processing. Since vast amount of existing web

pages are on the Web, the raw content should be collected in a targeted way. Only web

pages of interest will come through to further processing. Irrelevant web pages will not

— f

Grammar
Learning

Morphological
Analysis

Entity Parsing Concept Parsing

Concept
Learning

Syntactic
Analysis

W eb Content
Retrieval

Preprocessing

Indexing

Merging

Storage < ■

a - Raw Web Content e - Indexed Text for Entity
Parsing

i - Parsed Entity
Information for Indexing

b - Preprocessed Web
Content

f - Indexed Text for Concept
Parsing

j - Parsed Concept
Information for Indexing

c - Syntactic Information g - Grammar Knowledge k - Merged Entity and
Concept Information for
Indexing

d - Morphological
Information

h - Concept Knowledge 1 - Indexed Merged Entity
and Concept Information
for Storage

Figure 3.3 Concept Indexing Framework

49

be stored in the system, thus saving space and processing time and improving the

quality of the knowledge extracted by disregarding irrelevant content.

The web pages retrieved from the web are first preprocessed, so that all input text

material is normalised to one format. Through syntactic analysis, lexical information is

extracted and syntactic tags [Francis and Kucera, 1979] are added to the free text. The

preprocessed text is also used for morphological analysis.

Language grammar knowledge and concept knowledge in the framework is provided to

conduct grammar learning and concept learning. These two processes employ

supervised machine learning. After training, new knowledge is acquired and stored for

further use. Here an assumption is made that knowledge contained in the text used for

training and that in the text to be processed are similar. This means that similar patterns

are expected from the text to be processed, so that the previously learned knowledge is

applicable and could be reused. To give an example, if the training involves material

from the engineering field, then the system would unlikely be able to produce accurate

results when processing texts from chemistry.

From the syntactic and morphological analysis, text information from both sources is

indexed to accelerate the further processing. The processed text with syntactic and

morphological information after indexing is input to the subsequent entity parsing and

concept parsing to extract entities and concepts. Then, the entity and concept

information is merged and indexed into a structured concept index that is then stored for

queries.

50

3.3 ILLUSTRATIVE EXAMPLE

A simplified example illustrating the process of concept indexing is shown in Table 3.2.

The notations used in Table 3.2 (for example, ‘a’ for raw web content, ‘b’ for

preprocessed web content, etc.) are the same as those employed in Figure 3.3.

(a) The raw material used in this example is obtained by crawling relevant web sites by

targeted web spiders and saved to local hard drive. This material will be used in all

subsequent processes. In the example, HTML tags such as “<html>”, “<head>”,

“<title>” have special meanings to web browsers such as Netscape navigators and

Internet explorers. For instance, “<title>this is the title</title>” indicates that the

sentence “this is the title” would appear in the title bar in the windows GUI, while

anything between the tag “<body>” and “</body>” will show in the windows, but not

in the title bar. These tags are normally interpreted by web browsers but not shown

directly to the users.

(b) In the second step, the HTML tags are removed from the raw data (a), and a

document reference number is assigned to each document for later use. For example, in

Table 3.2, the format of document reference number uses “docnum” followed by 6

digits.

(c) Next, lexical analysis is conducted, and a forward slash “/” and tags indicating

lexical ingredients are added after each word. The tags used are the same as those

employed in the Brown Corpus [Minnen et al., 2001]. For example, “NP” means proper

Table 3.2 A Simple Illustrative Example of Concept Indexing (a-k)

Content Data

Raw Web

Content (a)

<html><head><title>... </title></head>
<body>The Fulton County Grand Jury said Friday an
investigation of Atlanta's recent primary election produced no
evidence that any irregularities took place.</body></html>

Preprocessed

Web Content (b)

The Fulton County Grand Jury said Friday an investigation of
Atlanta's recent primary election produced no evidence that
any irregularities took place.
docnumOOOOOl

Lexical

Information (c)

the/AT Fulton/NP County/NN Grand/JJ Jury/NN said/VBD
Friday/NR an/AT investigation/NN of/IN Atlanta's/NP$
recent/JJ primary/NN election/NN produced/VBD no/AT
evidence/NN that/C S any/DTI irregularities/NNS took/VBD
place/NN./.
docnumOOOOOl

Morphological

Information (d)

the Fulton County Grand Jury say Friday an investigation of
one’s recent primary election produce no evidence that any
irregularities take place .
docnumOOOOOl

Entity

Information (i)

Fulton/NP Country/NN, Jury/NN, Friday/NR,
investigation/NN, primary/NN election/NN, evidence/NN,
irregularities/NNS, place/NN
docnumOOOOOl

Concept

Information (j)

grand/s586 jury/s272 said/s312 friday/s579 investigation/s26
recent/s 19 primary/s362 election/s444 produced/s306
evidence/s306 irregularities/s 10
docnumOOOOOl

Merged Entity

and Concept

Information (k)

Fulton/NP Country/NN, Jury/NN, Friday/NR,
investigation/NN, primary/NN election/NN, evidence/NN,
irregularities/NNS, place/NN
grand/s586 jury/s272 said/s312 friday/s579 investigation^6
recent/s 19 primary/s362 election/s444 produced/s306
evidence/s306 irregularities/s 10
docnumOOOOOl

52

noun or part of name phrase, while “AT” indicates an article.

(d) Then, inflected forms of verbs in conjugation are primed as in the example. For

instance, “said” in (b) “The Fulton County Grand Jury said...” is primed to the original

verb form “say”, and so are the others verbs. In addition, possessive and inflected

nominal compositions are converted to singular possessive pronouns. For example,

“Atlanta's” is primed to “one’s”.

(i) Next, entities are extracted from the indexed content according to the lexical

information provided in step (c).

(j) Concept category information is added to the words and phrases in the indexed

content. For example, concept category, s586 contained in the concept KB relates to the

concept ‘grand’.

(k) In this step, entity information (i) and concept information (j) is combined in a

concept index. One word/phrase can show as an entity and a concept at the same time.

For example, “Jury” is treated as “singular or mass noun” in the context of entity

information, but at the same time, in the context of concept information, “Jury” carries

the meaning of concept category “s272”, which is law related. There are some

words/phrases which do not appear in (k) as they carry little information. For example,

although the word “the” in (c) is treated as an “article”, due to the frequent use of

articles in texts, any word with an “article” tag is excluded from (k).

The remaining notions used in Figure 3.3 are implementation-specific, (e) and (f) are

53

specially structured text facilitating fast entity and concept parsing, respectively, (g)

provides grammar knowledge to assist syntactic analysis, and (h) is used to extract

concept knowledge from processed Web content. All these specifics will be explained

and illustrated in a greater detail in Chapters 5 and 6.

3.4 A SYSTEM FOR CONCEPT INDEXING

3.4.1 System Architecture

The proposed concept indexing system is based on the use of information agents, NLP

and indexing techniques. The architecture of the system is shown in Figure 3.3. Web

content is retrieved from the web into the system by web spiders. The user queries and

the query results are input into and output from indexing and query sub-system. The

web spiders retrieve web pages from the Web to the internal indexing and query

subsystem. The language processor is used for text preprocessing, parsing syntactic,

morphological, entity and concept information contained in the text using language KB

and concept KB. The indexing and query subsystem provides three functions to the

system, namely, indexing, query and storage functions. It indexes and stores the raw

web content, preprocessed, syntactically analysed, conceptually analysed, and merged

syntactic and concept information. Syntax and concept information is analysed by the

language processor. The concept KB contains concept knowledge organised in rules

and knowledge objects. The language KB consists of systematised morphological and

syntactic knowledge of English language represented in tagging rules. The concept

learning and syntax learning modules provide learning ability to the system, so that

new concept and grammar knowledge can be obtained by using these two modules.

3.4.2 MAIN PROCESSES

Three processes, a, b and c (see Figure 3.4), are described in this section. The first

process (a) relates to retrieving, indexing and storing web content into the system. The

second process (b) describes the steps for the system to learn the grammar and concept

knowledge needed for processes (a) and (c). The third process (c) concerns the user’s

interaction with the systems, and involves retrieving relevant knowledge according to

the users’ queries.

a. Retrieval Process (a). This process begins when the web spiders start retrieving web

content. This content is stored in the indexing and query subsystem's repository. Before

any type of parsing is performed (e.g. syntactic, morphological, entity or concept

parsing, as shown in Figure 3.4), text data is preprocessed by the language processor to

make them normalised for later use. Indexing is carried out to make the processing of

the language processor faster. Thereafter, the content is analysed by the language

processor as illustrated in Table 3.2. Entity and concept parsing is performed using

information from the language KB and concept KB when text data from the web spiders

is preprocessed by the language processor and indexed by the indexing and query

subsystem. After entity and concept information is extracted, it is indexed and added to

the concept index for queries. Chapter 4 describes the retrieval process in detail.

ResultQueries Web Content on the Internet

■ a — i

Concept KB

- b

Language KB

Web Spiders
Concept Learning

Module

Syntax Learning
Module

Language
Processor

Indexing and Query
Subsystem

Retrieval
Process

Resource

Knowledge
Base o

Learning
Process

Input/
Output

Module

Indexing and
Query Process

Figure 3.4 General Architecture and Main Processes

56

b. Learning Process (b). The language processor uses knowledge learned in this

process to perform the retrieval, indexing and query processes. This process gives the

system the ability to automatically acquire new knowledge without building manually

the knowledge base. Several machine learning techniques are used in this process

which will be explained in more detail in Chapter 5.

c. Indexing and Query Process (c). Users query the system using entities and/or

concepts. The indexing is conducted by the indexing and query subsystem. The query is

passed to this subsystem, which compares it with the entities and concepts contained in

the concept index. If the information requested is available, the indexing and query

subsystem retrieves it from its repositories, and forwards the output to the concept

representation module for displaying the document set or prompting an error message.

Chapter 6 describes the indexing and query process enabling the efficient retrieving of

entity and concept information.

3.5 SUMMARY

This chapter has highlighted the problems in the conventional knowledge

representation methods and proposed concept indexing, which involves identifying the

concepts indicating documents’ content, and representing them using a concept index.

Entities are extracted from unstructured text-based content using a language knowledge

base, and concepts are identified with the help of a concept knowledge base. The

entities and concepts isolated are used to build a concept index. The concept indexing

procedure includes the following steps: preprocessing, lexical parsing, morphological

parsing, entity parsing, concept parsing and indexing. To illustrate the use of the

proposed technique, a concept indexing framework is presented. A system architecture

is also developed to illustrate the concept indexing procedures. The proposed approach

to knowledge representation will be utilised in Chapters 4-6 with the aim to improve

x knowledge management.

58

CHAPTER 4. AUTOMATIC INFORMATION

ACQUISITION USING MACHINE LEARNING

In this chapter, the problems associated with finding information on the web are

highlighted and a new framework is proposed to address these problems. The

framework is based on using intelligent information agents for targeted information

retrieval. Next, a machine-learning method is employed to improve the efficiency and

accuracy of the retrieval process. Several feature selection options are proposed and

evaluated through two case studies from different domains. Finally, tests are conducted

to show the applicability of the framework, and the findings are analysed.

4.1 FINDING INFORMATION ON THE WEB

There is a wealth of information on the Web. By 2005, more than eight billion Web

pages have been indexed by Google. However, due to the characteristics of the Internet,

finding efficiently useful information for knowledge acquisition continues to be a

major problem, as the irrelevant Web pages retrieved often waste storage space and

computing resources.

Finding useful information on the web is a non-trivial task. This process involves three

steps: discovery, retrieval and analysis of the information obtained.

Traditionally, knowledge management uses manual methods for finding, retrieving and

verifying the relevance of the information gathered [Wiig, 1995]. Manual analysis is

one of the largest bottlenecks in knowledge management [Antoniou and van Harmelen,

2004]. Therefore, new methods for automatic information acquisition are required,

which will substantially reduce the cost of the information acquisition process.

4.2 AN INFORMATION ACQUISITION FRAMEWORK

4.2.1 Structure of the Information Acquisition Framework

The information acquisition framework for collecting relevant information from the

Web (Figure 4.1) is composed of four modules: collection agents, agent controller,

storage, and web link pool.

The task of the collection agents is to discover and retrieve relevant information. The

collection agents communicate with the Web using TCP/IP network protocol, and

adhere to the web robot exclusion protocol to ensure that the Web pages are

downloaded properly. The agent controller manages the coordination between the

collection agents, ensuring that different agents are assigned different downloading

jobs. It also processes the returned web links and stores them in a web link pool. In

addition, the agent controller cancels the tasks finished and assigns new tasks to the

agents available. Once a collection of Web pages is returned, the agent controller

transfers them to the storage, which is linked to the module of the indexing and query

* subsystem shown in Figure 3.4.

The data flow shown in Figure 4.1 involves: (a) communication between the collection

agents and the web, (b) storing the retrieved Web pages into the storage', (c) commands

sent by the agent controller to the collection agents, and control feedback information;

Web Content on the Internet

Data Flow

Resource

Input

Storage

Module

a Network communications

b Retrieved Web pages into the storage

c Control commands and control feedback information

d Web pages returned

e Web links

f Configuration information

Figure. 4.1 Information Acquisition Framework

Storage

Web Link Pool Agent Controller

Collection Agents

■a,b...etc.-

C ~ >

61

(d) Web pages returned by the collection agents; (e) storing newly parsed web links

and checking previous stored web links in the web link pool by the agent controller; and

(f) configuration information loaded during the initialisation process.

4.2.2 Information Acquisition Process

The flow charts of the agent controller (Figure 4.2) and the collection agents (Figure

4.3) illustrate the information acquisition process.

The process begins when the system initialises itself by loading the configuration

information from the configuration file. Some web links need to be provided at this

stage as ‘seed’ web addresses. After initialisation, the agent controller stores these web

addresses into the web link pool. The agent controller then generates collection agents,

and assigns them a set of Web links which they have to explore. When an agent finishes

its task, the agent controller stores the Web pages and links returned by the agent into

the Web link pool, and assigns the agent a new task (a new Web link to explore from the

web link pool). The process finishes when certain termination conditions (such as

number of Web pages retrieved or retrieval time) are reached.

In this framework, the relevance of the documents retrieved depends on the keywords

supplied in the configuration file, which is used during the initialisation process. The

agents determine the relevance of the retrieved Web pages based on whether these

keywords appear in them. If more than one keyword is set in the configuration file,

Start

No

Any Agent Returned?

Yes

No

Enough Pages Returned?

Yes

End

Store the Web Links and Web Pages
Returned

Waiting for a Time Interval

Send Termination Commands to All
Live Collection Agents

Loading Configuration Information

Assign New Tasks to Agents Returned

Assign Tasks to Agents

Generate Agents

Figure 4.2 Flow Chart of Agent Controller

63

Start

No

Yes

Retrieve a Web Page

Parse Web Links in the Retrieved
Web Page No

No

Yes

No
Yes

Command from the Agent
Controller to Terminate?

my Task Assigned by Agem
Controller? .

[s Retrieved Web P<
. Useful?

Contenl

r inished Retrieving the Webv
[age or Waiting Time Expired^.

Return Web Page and Web
Links in it to Agent Controller

Return Web Links in it to
Agent Controller

Initialisation

Waiting for a Time Interval

Yes

(t)

Figure 4.3 Flow Chart of a Collection Agent

64

then the user has the choice whether the agent should return pages containing either one

of the keywords or only those that have every keyword. If the retrieved Web page does

not contain the keywords, then only the web links contained in it will be returned and

stored in the web link pool for later use.

4.3 AN IMPROVED INFORMATION ACQUISITION

FRAMEWORK

4.3.1 Using Support Vector Machine (SVM) for Information

Retrieval

The information acquisition process depicted in section 4.2 is dependent on the

keywords provided. The problem associated with this approach is that both relevant and

irrelevant Web pages may contain the same keywords. Therefore, some irrelevant Web

pages will still pass through the agents, and be stored into the system. Obviously, this

would reduce the system performance in terms of precision.

For example, suppose a user would like to build a knowledge base about ‘fishing’, and

he/she is interested in fishing as a hobby. However, not all Web pages which contain the

keyword “fishing” would be relevant. Some of them may refer to ‘fishing industry’ and

‘fishing product sales”. If such Web pages are stored into the system, the quality of the

fishing knowledge base would be substantially reduced.

It is proposed to use a data classification method, Support Vector Machine (SVM), to

improve the precision of the retrieval process and enable the building of knowledge

bases automatically from the Web.

To understand the main approach of SVM, the concept of hyperplane needs to be

introduced. In n-dimensional Enclidean Space Rn’, the set S is called a hyperplane,

when S satisfies the condition in (4.1) [Weisstein, 2005].

set S = { X = [xi,x2,...,xn] 1 | a iX i+ a 2x 2+ . . .+ a nXn = 0} (4.1)

where

ai,a2,...,an are scalars which is not all equal to 0, X is a vector.

The purpose of SVM is to find a hyperplane that leaves the largest possible fraction of

vectors of a same class on the same side, and maximises the distance of both classes

from the hyperplane. When data is not separable in the original input vector space using

a hyperplane, it needs to be transformed from the input vector space into a higher

dimensional space, which is called a feature space. The transformation function is

called a kernel function. If the kernel function is a linear function, then the SVM uses a

linear kernel, if a non-linear function such as sigmoid or radial basis function is used,

the SVM uses a non-linear kernel [Scholkopf and Smola, 2002].

As stated by [Joachims, 1998] and [Dumais, 1998], SVMs with linear kernels

outperform many traditional text classifiers. In addition, it has been reported that

nonlinear SVMs (e.g. those using high dimension polynomial and radial basis kernels)

are much more complex and provide insignificant improvement in classification

accuracy compared to those using linear kernels. Therefore, SVM with a linear kernel is

proposed as the machine learning technique employed to improve precision.

When the hyperplane is determined by training, and the data instances that need to be

classified are expressed as vectors, the classification can be performed by calculating

the parameter C that is determined through (4.2). If C is a non-negative value, then the

instance is classified as an instance of a positive class, otherwise it is considered as

belonging to a negative class.

C = x, • w + b (4.2)

where

C is a real number;

Xj is the instance to be classified, expressed as a vector;

w and b are parameters describing the hyperplane that are determined during the

training.

4.3.2 Machine Learning in the Improved Information

Acquisition Framework

The improved information acquisition framework, which uses SVM is shown in Figure

4.4. Note the learning module added to the system which provides the system with

learning ability. During its training, the module is supplied with relevant and irrelevant

HTML pages which serve as positive and negative examples for training. Each HTML

pages is represented as a vector, with elements called features. The SVM obtains the

Web Content on the Internet

a,b...etc.

Storage

Learning Module

Web Link Pool

Collection Agents

Agent Controller

Data Flow

Resource

Input

Storage

Configuration Information J Module

a Network communications

b Retrieved Web pages into the storage

c Control commands and control feedback information

d Web pages returned

e Web links

f Configuration information

g Knowledge obtained to help filter Web pages returned

Figure 4.4 Improved Information Acquisition Framework

68

statistics from those vectors in the training examples, and then transfers this

information to the collection agents module, so that the agents can use it to determine

the relevance of the Web pages they retrieve. Compared to the basic framework which

uses a keyword matching method, this framework is expected to be much more

effective in situations when both the relevant and irrelevant Web pages contain the

same keywords, in which case, the basic framework will wrongly consider all these

Web pages relevant.

The machine learning process used in this chapter includes:

1. Obtaining examples. First, training examples with known output results are

provided as prior knowledge so that the knowledge obtained in the training process can

be later applied to unseen instances.

2. Selection of appropriate features. In SVM, the characteristics of the training

examples are represented as features. Therefore, the question is what features best

represent discriminative knowledge so that the highest classification rate possible is

achieved.

3. Generating data sets for training and testing purposes. In this step, the

examples selected in step 1 are converted according to the features selected in step 2

into data sets. This step involves preprocessing procedures needed to convert the

training examples into a format suitable for a specific implementation of the machine

learning algorithm. The values included in the training sets depend on the features

selected in step 2; different features would generate different training sets, even if the

69

same training examples are used.

4. Training. The training data sets created in step 3 are used as input to the machine

learning algorithm which determines discriminative patterns during the training

process.

5. Applying knowledge to unseen instances. This step uses the patterns obtained in

step 4 to classify unseen instances.

Obviously, the feature selection step is critical in achieving high classification accuracy.

The next section discusses how to select appropriate features to represent Web pages, so

that they can be accurately classified.

4.3.3 Feature Selection for the Proposed Machine Learning

Algorithm

In this section, three options for feature selection are discussed. These are using (i)

HTML element attributes, (ii) a small or bigger general dictionary, and/or (iii) words

lemmatisation.

1. Using HTML element attributes as features.

In general, an HTML document is a sequence of characters organised physically into a

set of entities, and logically as a hierarchy of elements. In an HTML document, an

element refers to a component of the hierarchical structure defined by a document type

definition (DTD); it is identified in a document instance by descriptive markup, usually

a start-tag and end-tag. In a start-tag, white space and attributes are allowed between the

element name and the closing delimiter. An attribute specification typically consists of

an attribute name, an equal sign, and a value, though some attribute specifications may

be just a name token.

A simple HTML file (Figure 4.5) is used to illustrate this. In line 5 of this fragment, the

HTML element is “<meta http-equiv=”keywords” content=”Fitting Jobs”>”, and its

name is “meta”. The element contains two HTML attributes, named “http-equiv” and

“content”, and their attribute values are “keywords” and “Fitting Jobs”. The advantage

of employing element attributes is the expected improved accuracy as very often the

HTML element attributes contain meaningful words. However, some HTML attributes

are too frequently used, and this may lead to wasting storage space and computing

resources, and reducing the speed of the retrieval.

2. Using words from a purpose-built small dictionary or a general dictionary with a

relatively large vocabulary.

The user could choose to compose a dictionary that only contains specialist terms such

as “fish”, “tide”, “fisher”, “salmon” etc. As the dictionary is normally small, dedicated,

and containing only relevant words, the processing speed would be very high.

However, the user may add less important words and at the same time miss some

essential ones, which will inevitably affect the classification accuracy.

<html>

<!—Last Updated: April 2002—>

<head>

<metahttp-equiv="Content-Type" content-'text/html; charset=iso-8859-l">

Element Name

< met* http-equi\ -'keywords' content=' Fitting Jobs'> HTML Element

Attribute Values

Attribute Names

<Title>Fitting Jobs</Title>

</head>

<body bgcolor="#FCF5AD" text="#000066">

<p> Where service cannot be provided to the customer premises on the appointment day
you must complete all internal and all necessary external work (unless the customer
requests you not to). ...

<p>If you are completing a previous fitting job, ensure that the service is tested
accordingly and that the customer is informed.

</body>

</html>

Figure 4.5 An Example HMTL File Annotated

72

3. Using words lemmatisation1

The words in the HTML pages are often different from their lemmas2, especially when

nouns and verbs are concerned. For instance, the lemma of “running” and “gave”,

respectively, are ‘run’ and “give”. The use of lemmatisation allows otherwise ignored

words to be utilised in building the feature space. However, the use of lemmatisation

may lead to including incorrect features in the feature space. For example, after

lemmatisation, “Warner Brothers” changes to “Warner Brother” which loses its original

meaning. As a result, that HMTL page might be wrongly classified.

4.3.4 Case Studies

General Approach

Two case studies are conducted to compare the three options considered in terms of

their classification accuracy which is measured using precision and recall. In addition,

the processing time is also recorded, as it is an important measure of performance when

classification algorithms are compared. The first case study is on a popular subject

(fishing), while the second one is chosen from the domain of engineering. The

procedure explained below follows the machine learning process outlined in section

4.3.2. The procedure is illustrated through examples included in Appendix A.

1 Lemmatisation refers to the process o f grouping the inflected forms o f a word together under a base form, or o f
recovering the base form from an inflected form, e.g. grouping the inflected forms ‘run’, ‘runs’, ‘running’, ‘ran’
under the base form ‘run’ [Mitkov, 2003].

2 Lemma refers to the canonical form o f a word, usually the base form, taken as being representative o f all the
various forms o f a morphological paradigm [Mitkov, 2003].

73

First, a number of Web pages are retrieved by the framework described in section 4.2.

These pages are marked by a human expert as positive and negative examples,

according to different criteria used in each case study. Example pages related to case

study 1 are shown in Appendix A. 1.

Then, the retrieved web pages are pre-processed according to the features selected in

each test. For example, when HTML element attributes are used as features, the Web

page marked as a positive example in A. 1 of Appendix A is retrieved and saved in the

format shown in A.2. If the option is not to use HTML element attributes as features,

then the saved Web page in A.2 undergoes additional processing where the HTML tags

are stripped from the text, as shown in A. 3.

Next, the Web pages in their original HTML form (as in A.2) or after pre-processing

(see A.3), depending on the option chosen, are converted into a training data set. For

example, the text in A.3 is converted to a vector of features as shown in (4.3). The

format of a feature employed in this thesis is adopted from the implementation of

SVMlight [Joachims, 2002],

+1 2:0.0080 7:0.0080 36:0.0080 59:0.04 62:0.048 111:0.0080 146:0.0080 # (4.3)

Each feature (4.4) is characterised by its “feature ID” and “feature value”. “Feature ID”

is a unique integer number which identifies each feature.

(Feature ID):(Feature Value) (4.4)

“Feature Value” (4.5) is a real number, which is defined as the ratio of the word

74

frequency and the number of words in a processed Web page. A colon is used to

separate the feature number and the feature value.

Feature Value = (m)/(n)

where,

m is the word frequency (i.e. the number of times a particular word appears in a given

text),

n is the total number of unique words in a processed Web page.

In the vector shown in (4.3), “+1”3 indicates a positive training example which is

considered relevant. “2:0.0080” suggests that the 2nd feature has a feature value of

“0.0080”, while “62:0.048” indicates that the 62nd feature has a feature value of “0.048”.

A feature with zero value does not show in the training sets to save storage space, but it

is still counted in the training process as having a zero value. For example, features 3-6

between 2 and 7 have zero feature values and are represented as “4:0.0”, “5:0.0” and so

on. In all files produced by SVMllght, data or characters after “#” are ignored as

comments.

The following example illustrates how feature values are calculated. The word “alive”

appears in the small dictionary (Appendix A.4) used in the first case study at 2nd place,

which determines its feature ID as ‘2’. It appears once in the processed Web page

(Appendix A.3), which includes unique 125 words. Therefore, the feature value for

3 In the case o f a negative example, “-1” is used instead o f “+1” but the format o f the rest remains the same.

75

feature number 2 is 1/125 = 0.008. In the training set, records like (4.6) below are added

for each feature used.

2:0.0080

However, if a word appears in the processed Web page, but not in the dictionary, then it

is not considered as a feature. For example, the word “museum” in the retrieved Web

page (Appendix A.3) is not used as a feature, as it is not contained in the small

dictionary (Appendix A.4).

After the processing, the training data is input to the SVMllght [Joachims, 2002] to

generate a data file as illustrated in Appendix A.5. The file generated contains

information, which is further used to calculate the value of C as in (4.2) for each

instance in the testing data set where the value is used to classify whether the testing

instance is relevant or not. If the float value calculated is a non-negative one, then the

corresponding testing instance is classified as relevant, and otherwise it is considered

irrelevant. Finally, the results generated from the testing data set are examined to

measure the classification performance in terms of precision, recall and processing

speed.

All tests were conducted on a Pentium III 700MHz 384MB memory computer with

Java Virtual Machine version 1.4.2 with default settings.

Case Study 1: Fishing

A popular subject, “fishing”, was chosen as one of training scenarios examined with the

help of a domain expert. 100 Web pages retrieved by the system described in section 4.2,

were used as materials for training and testing. These pages, containing at least once the

keyword “fishing”, were analysed by the domain expert using the following criteria: (1)

The main content of the Web page must be relevant to “fishing” as a hobby; (2) It must

not describe product sales for fishing; (3) It must not be concerned with the fishing

industry; (4) It must predominantly contain text, not images; (5) It must not be

generated by a search engine. This ensures that the content is retrieved from actual web

sites, and does not contain mainly pointers to web sites generated by a search engine.

The 100 Web pages were manually classified as positive and negative examples, and

split into a training set and a testing set. The training set consists of 62 examples, which

are numbered from 1 to 62, and the testing set has 38 examples, from number 63 to 100.

The training set includes randomly chosen 32 positive and 30 negative examples while

the testing set contains the remaining 14 positive and 24 negative examples.

183 keywords for fishing were selected by a domain expert to build a domain specific

dictionary, e.g. a small dictionary (SD) (A.4). The words selected in SD are chosen

from the 46 positive examples included in the 100 Web pages retrieved. In addition, a

big dictionary (BD) was built which includes 9947 words from a TOEFL4 vocabulary

dictionary as a general keyword dictionary.

Five tests were conducted to investigate the effect of the options discussed in section

4.3.3, as follows:

4 TOEFL stands for “Test o f English as a Foreign Language”.

77

• TEST1. Use of HTML element attributes and SD

• TEST2. Use of HTML element attributes and BD

• TEST3. Use of SD without using HTML element attributes

• TEST4. Use of BD without using HTML element attributes

• TEST5. Use of BD and lemmatisation without using HTML element attributes

For TESTS 3-5, the same HTML pages used in TESTS 1 and 2 had their HTML

attributes removed from both the training and testing sets. TEST 4 required

morphological analysis to be first conducted after which the words were transformed to

their lemma forms.

The experimental results are shown in Table A.2 of Appendix A.6. The table contains C

values calculated by SVMllght for each Web page included in the testing set (from

number 63 to 100). These values are used to differentiate between relevant and

irrelevant pages. Anon-negative value (such as 0.3395136 or 0.25341148) indicates a

relevant page while a negative value (e.g. -0.66350608 or -0.75570562) suggests that

the corresponding Web page might be irrelevant. These values do no represent the

degree of relevance or irrelevance; they are just used to classify the Web pages in two

categories. Table A.3 (Appendix A.6) contains the same results as Table A.2, with the

non-negative values replaced by P (positive), and the negative values substituted by N

(negative). In addition, table A.3 indicates the opinion of an expert about each of these

pages, which is further used to measure whether a particular page has been classified

78

correctly by the system. As stated previously, precision and recall are used to measure

the classification accuracy of the system for the purpose of information retrieval. For

example, the precision in TEST 1 (Table A.3) is 50%. It is calculated as the ratio of the

number of documents, which are correctly classified as relevant (2 instances), and the

number of all documents retrieved (4 instances). The recall in TEST 1 (14.29%) is

calculated as the ratio of the number of correctly identified documents (2 instances) and

the number of all relevant documents as classified by the domain expert (14 instances).

The results are summarised in Table 4.1. Among all five tests conducted, the lowest

precision (50%) and recall (14.29%) is in TEST 1 when HTML element attributes and a

SD are used. In TEST 5, the use of a BD and lemmatisation (without using HTML

element attributes) provides the highest precision (77.78%), while the use of HTML

element attributes and a BD in TEST 2 reveals the highest recall (78.57%).

The comparison of the results in TEST 1 and TEST 2 shows higher precision (61.11%)

and higher recall (78.57%) when a BD is employed. A similar comparison between

TEST 3 and TEST 4 results reveals some decrease in precision (from 71.43% to

66.67%) and increase in recall (from 35.71% to 42.86%).

Fastest processing speed (2 seconds) was recorded in TEST 1 when using HTML

element attributes and a SD. The most time consuming test was TEST 5 (205 seconds)

involving a BD and lemmatisation, and no HTML element attributes. For obvious

reasons, the processing is faster when using SD dictionary instead of BD, with all other

conditions remaining the same.

79

Table 4.1 Summary Results for Case Study 1

Test Test Conditions Precision (%) Recall (%) Processing
Time
(seconds)

TEST 1 Use of HTML element
attributes and SD

50 14.29 2

TEST 2 Use of HTML element
attributes and BD

61.11 78.57 13

TEST 3 Use of SD without
using HTML element
attributes

71.43 35.71 191

TEST 4 Use of BD without
using HTML element
attributes

66.67 42.86 196

TEST 5 Use of BD and
lemmatisation without
using HTML element
attributes

77.78 50 205

80

Case study 1 shows that the use of a specially designed SD or general BD influences

precision and recall. Using a general BD can improve recall while the use of a SD could

make the processing faster although it would take time for a domain expert to build a

dictionary. In addition, there is always a possibility of omitting some important words

from the dictionary which means that not all significant features would be considered

during the training. Compared to SD, the use of a BD allows more features to be

included in the training set, which reduces the demand on the quality of the custom

made dictionary. This analysis indicates that the use of a general BD may be a good

option in terms of saving development time and producing good results. However,

more tests are needed to ensure that this conclusion is applicable to other domains and

valid for larger data sets.

With regard to lemmatisation, the results of TEST 5 in comparison with TEST 4 show

that both precision and recall are improved by 11.11% and 7.14% respectively. The

positive effect on the precision and recall is due to the use of additional lemmatised

words, which have been originally excluded, “visible” to the SVM.

In general, the results of TEST 2, 4 and 5 are more promising that those of TEST 6 and

7. This is attributed to the use of a BD which will be further investigated throughout the

second case study.

Case Study 2: Site Engineering

In this case study, Web pages are retrieved from a LAN web directory, which contains

81

information for field engineering, electronic maintenance, general processes, health

and safety, vehicle and engineering product support information. These Web pages are

maintained by domain experts. Two categories are chosen for case study 2: processes

and tasks. Processes here refer to procedures used in field service on site such as pole

testing, repair process and fitting jobs. There are 65 Web pages related to this category.

Tasks refer to information about products and services, such as network routing service

and wiring service. The collection contains 44 pages with information about tasks.

For the purpose of this experiment, all pages related to the first category (processes) are

considered as positive examples, and all pages from the second category (tasks) are

classified as negative examples. All these 109 Web pages are split into two sets: 89 Web

pages are used for training and the remaining 20 pages for testing.

Two more tests were conducted to further investigate the effect of the options discussed

in section 4.3.3. These are:

• TEST 6. Use of BD without using HTML element attributes

• TEST 7. Use of BD without using HTML element attributes and lemmatisation

The experimental results shown in Tables A.4 and A.5 of Appendix A are summarised

in Table 4.2. As shown, TEST 7 which investigates the effect of lemmatisation,

provides better precision and recall but is more time consuming. This means that when

lemmatisation is used, more useful features are introduced into the system. Although

this may lead to including some irrelevant features, it would not necessarily produce

Table 4.2 Summary Results for Case Study 2

Test Test Conditions Precision (%) Recall (%) Processing
Time
(seconds)

TEST 6 HTML element attributes
and BD

69.23 90 185

TEST 7 HTML element attributes
and BD and
lemmatisation

71.43 100 198

83

lower precision. The 100% recall rate in TEST 7 means that all “positive” Web pages

have been successfully identified. This result suggests that the use of lemmatisation

may lead to better precision and recall.

Discussion

Based on the two case studies conducted, the following recommendation are made for

the use of the SVM algorithm for information retrieval.

1. If the processing speed is a concern, then a carefully built customised dictionary

should be used.

2. If time and cost to build a special domain-specific dictionary is a concern, then a

general dictionary with large vocabulary could be a good choice.

3. Using a general dictionary and lemmatising the words in Web pages could be a good

option to achieve good precision and recall.

4.4 SYSTEM DESIGN AND FUNCTION DESIGN

The system is implemented in Java with the use of two external software components:

SVMllght [Joachims, 2002] and a lemmatiser [Minnen et al., 2001]. The UML class

diagram (Figure 4.6) shows the relationships between the classes used in the design of

the information retrieval system whose framework was presented in section 4.3.2.

These classes are designed to implement the functions of the modules shown in Figure

4.4.

84

Spider Main

configures

WebPageParser

calls to classify

parsed Web

page

Spider

1

calls to parse

Webpage

1

communicates

1. . .

Classifier
1 1

communicates

reads & record s

SpideiControl

calls to

validate

URLs

HtmlParser calls to

validate

URLs

URLs

1 1

calls to

validate

URLs

1
ParentedURL

calls to

parse http

calls to

validate

URLs

HttpParser

1
calls to

select

URLs in

domain

1

0...2

catches

DomainFilter

calls to

parse

HTML

structure

throws

URLList

calls to

validate

URLs

<C>

1. . . *

HtmlException HtmlTokenizer HtmlTag
>̂ 0...* 1

? ■
1...* *<

Figure 4.6 UML Class Diagram of the Improved Information Acquisition System

85

SpiderMain (Figure 4.6) serves as the main programme, which loads the configuration

function and controls the main workflow of the system. SpiderControl coordinates the

retrieving tasks of the spiders, ensuring that they work efficiently. URLList stores the

web links parsed from the Web pages processed so that SpiderControl can assign

unretrieved Web links to the spiders to explore. WebPageParser and Classifier are used

to determine whether a particular Web page is relevant or not. In addition, there are

classes, which provide useful functions to other classes. These are HtmlParser,

ParentedURL, HttpParser, DomainFilter, HtmlException, HtmlTokenizer and HtmlTag.

Their purpose is depicted through the annotated links in the UML diagram. A small part

of the source code developed is included in Appendix B.

The system function design is illustrated through the screenshots of the graphical user

interface shown in Figure 4.7. The user starts the information retrieval process after

providing the system with keywords (1), a storage location (2) and a starting URL (2).

If a retrieved Web page contains all keywords supplied through (1), it is stored in the

location given in (2). The starting URL (2) is used to retrieve the first Web page, after

which more URLs parsed from this and other Web pages are added to the URLList for

further use.

Furthermore, additional options are provided to “fine tune” the system using the

advanced configuration window (3). For example, the user can specify the number of

spiders working concurrently, the number of Web pages to be retrieved and the length

of time a spider should wait for to retrieve any Web page. The configuration settings

File Edit View Help

You a re looking f o r ...

Engineering

Main Window (1)

Crawling in process. Please be pati ill
t perfect.

» » » > » h ttp : //www. goo gl e. coin/ seaich?tU=en<Sdr*=&q=aigineenng< <
spider -1 retrieve getDoneSeai ch
in spiderNumberO going getFromToTag

<
Close Console}

Runtime Window (5)

xj
(General j Advanced

Save the retrieved p ag e s to

pse-SDK-3.1 M4-win)2'ieclipsetworkspacetspidertresuit

The particular W ebpage your sp iders start crawling from

http //www google com /8earch?hl=enSlr=«q=united»state

General Configuration Window (2)
X]

I (Note value should »= 2)

(Note: value should > = 1 0)

(Note: value should >= 1)

(Note, value should > = 1 0)

••M. i

Num ber of Spiders

Num ber of P ag es to Retrieve 10

Start P ag e Index

Time Out '21

Advanced Configuration Window (3)

vgj Number of spiders Is 1
° Number of pages to retrieve is: 10

Start page index is: 1
Timeout is 25 ^

Start URL Is: http://www.google.com/search?hi=en&li*4,Q=engineering

Retrieved pages are saved to. C teclipsetecllpse-SDK-3.1M4-wln32teclipsetwotkspace\spfdertresult

Do you want to continue?

fW)
Configuration Confirmation Dialogue Box (4)

Figure 4.7 Screenshots of the Graphical User Interface

87

http://www.google.com/search?hi=en&li*4,Q=engineering

provided to the system through windows (2) and (3) are confirmed in (4). In addition,

the system run time status is shown using (5).

Tests were performed to measure the average speed of retrieving Web pages when this

method of targeted crawling is employed. A Pentium III 700MHz 384MB memory

computer with Java 1.4.2 with default settings was utilised to conduct the tests on a

300K bandwidth network. Five experiments involving the retrieval of 100 Web pages

each were conducted. In each experiment, one keyword such as “seagull”, “fishing”,

and “engineering” was supplied to the system through the configuration window. The

average speed of retrieving recorded during these experiments was 2.64 page/second.

4.5 SUMMARY

In this chapter, an information acquisition framework based on using intelligent

focused crawling and machine learning is proposed. Several feature selection options

for the support vector machine employed are evaluated through two case studies from

different domains. Tests conducted show the practicability of this approach, which is in

the core of the information retrieval system designed.

88

CHAPTER 5. ONTOLOGY DICTIONARY AND CORPUS

FOR ONTOLOGY TAGGING

In this chapter, the problem of ontology tagging (OT) is discussed, its purpose and

importance are explained. The resources enabling ontology tagging are identified; these

are an ontology dictionary and an ontologically tagged corpus. First, the procedure to

build an ontology dictionary is described. Next, the steps to build an ontologically

tagged corpus are identified. To construct the corpus, first an electrical dictionary is

created, and then a heuristic approach, which generates a mapping between the entries

in this dictionary and the ontology dictionary, is developed and tested. Finally, a

well-known and widely used corpus is converted into a tagged ontology corpus by

utilising the mapping algorithm developed. The ontology dictionary and the

ontologically tagged corpus created will be further exploited for ontology tagging of

texts as described in Chapter 6.

5.1 ONTOLOGY TAGGING

In this research, a ‘tag’ refers to a label used for categorisation and discrimination,

which expresses the meaning of a piece of text. For example, the HTML tags contain

information used by Web browsers to render the content of the Web pages displayed,

e.g. any text between “” and “” is displayed in bold. “Tagging” refers to the

process of assigning tags to text so that it could be processed and “understood” by

machines. For example, part of speech1 (POS) tagging refers to the automatic

assignment of tags to grammatical classes of words, such as nouns and verbs. POS

tagging is used for various language processing tasks, linguistic studies, information

technology applications, and speech processing [Voutilainen, 2003].

Recent research indicates that the use of ontology could aid many applications related

to natural language processing (NLP), such as information retrieval, information

extraction, text summarisation, semantic similarity and word-sense disambiguation.

[Vossen, 2003]. In the context of this work, ontology tags are defined as a set of

systematically defined labels, which express ontology information; ontology tagging

(OT) is referred to the process of assigning ontology tags to words and phrases within a

text, for the purpose of exploiting the ontology information in various applications.

The benefits of employing OT are twofold. First, they allow text to be searched,

browsed and analysed at different abstraction levels. To give an example, a text about

Ferrari sports cars and FI cars can be viewed at different abstraction levels, starting

from “sports cars”, “cars”, “vehicles”, to more abstracted “transportation means”. This

is similar to browsing a digital map, where one can ‘zoom in’ for details or ‘zoom out’

for a general view.

The second benefit is associated with the automatic creation of RDF based data models

1 Part o f speech in linguistics refers to any o f the basic grammatical classes o f words, such as noun, verb, adjective,

and preposition [Mitkov, 2003].

90

for the Semantic Web by using existing text-based document collections. As indicated

by [Benjamins et al., 2002], creating a vast amount of new content and the potential risk

of excluding existing Web content from the Semantic Web are serious concerns that

challenge the Semantic Web. However, the use of automatic ontology tagging may help

to address these challenges, as the existing Web content can be automatically made

appropriate to be used on the Semantic Web by utilising OT. Thus, by reusing existing

Web content, the cost of creating new Semantic Web content could be substantially

reduced.

Despite its benefits, ontology tagging is currently considered impractical due to the

high cost associated with manual ontology tagging. Therefore, an automatic ontology

tagging method is needed which automatically acquires ontology knowledge from

training material by using machine learning (ML). Machine-readable dictionaries

(MRD)2 and corpora3 [Matsumoto, 2003] are typical training materials for NLP

purposes. Currently, there are no such training materials available for ontology tagging.

Therefore, there is a need for developing:

(i) An ontology dictionary with standardised ontology definitions of large quantity

of words and phrases, and

2 A machine-readable dictionary (MRD) is an electronic dictionary com piled for processing purposes by NLP

software, and containing information, which is normally not present in the conventional dictionaries for human

users.

3 A text corpus is a large and structured set o f texts used for linguistic analysis.

91

(ii) An ontologically tagged corpus with tags whose definitions are contained in

this ontology dictionary.

5.2 BUILDING AN ONTOLOGY DICTIONARY

5.2.1 Selecting Dictionaries

Three features are considered important when choosing a dictionary source for building

an ontology dictionary. These include: grouping by meaning, a good dictionary

structure and large number of word entries.

(1) Grouping by meaning

When building an ontology dictionary, words and phrases with similar meanings or

close connections should be grouped together, even if they are in different parts of

speech categories. For example, “resemblance” and “similar” should be grouped

together because they have similar meaning although “resemblance” is a noun, and

“similar” is an adjective. “Close connections” here means words and phrases that are

not similar in meaning, but could be associated with each other. For instance, “bank”

and “cashpoint” are not synonyms, but they should be grouped together as having a

close connection.

(2) A good dictionary structure

The structure of an ontology dictionary depends greatly on the structure of the

dictionary source used, and its structure also affects the scalability of the ontology

dictionary. A good dictionary structure can reduce the cost for building an ontology

dictionary and facilitate its expansion when more entries need to be added into it.

In particular, having leaf nodes with the same depth is important in terms of the

dictionary structure. The depth of a leaf node4 in a graph structure is defined as the path

from this leaf node to the root node [Devitt and Vogel, 2004]. Leaf nodes with different

depths cause a data storage problem when building an ontology dictionary, as the

memory space to store the dictionary data cannot be predetermined. This, in turn, may

affect the speed of processing data contained in this ontology dictionary.

(3) Large number of word/phrase entries

Obviously, more words and phrases in the dictionary source will increase the

vocabulary volume of the ontology dictionary.

5.2.2 Dictionaries

Based on the considerations discussed in 5.2.1, two dictionary sources are identified as

candidates for building an ontology dictionary. These are WordNet [Miller, 1990] and

Roget’s Thesaurus [Roget, 2003].

4 A leaf node in this work refers to words/phrases in a dictionary.

93

WordNet

WordNet developed by Princeton University is a generic lexical reference system for

the English language. Its design is inspired by current psycholinguistic theories of

human lexical memory [Fellbaum, 1998]. WordNet has an acyclic graph structure

allowing multiple inheritance. WordNet 1.6 contains 152,059 unique words and

203,145 word-sense5 pairs. WordNet is well studied and widely used: its official web

site [Princeton University, 2006] contains 387 papers referring to WordNet.

Semcor6 is a package of semantic concordance text annotated using information from

WordNet. A semantic concordance is a textual corpus and a dictionary combined in

such a way that every word/phrase in the text is linked with its appropriate sense in the

dictionary. Therefore, it can be viewed either as a corpus with syntactically and

semantically tagged words, or as a dictionary containing example sentences for many

different definitions [Fellbaum, 1998]. Semcor contains 352 text files selected from the

Brown Corpus7, which is widely used in the field of linguistics and computer science.

All words in Semcor are annotated in the same fashion, using tags with attribute - value

pairs. The tags used in Semcor are listed in Table C.l (Appendix C).

The following example illustrates the tagging in Semcor. The word “said” is tagged

5 ‘Sense’ refers to one o f the meanings o f a word or phrase.

6 The Semcor package used in this research was distributed with WordNet 1.6.

7 The Brown Corpus o f Standard American English (Brown Corpus) was com piled by Henry Kucera and W. Nelson

Francis at Brown University.

94

with five attributes (cmd, pos, lemma, wnsn, lxsn) and their corresponding values

(done, VB, say, 1, 2:32:00) as shown on line 8 of Figure C.l (Appendix C):

“<wf cmd=done pos=VB lemma=say wnsn=l lexsn=2:32:00::>said</wf>”

In the entry, “cmd=done” means that the word “said” has been properly tagged;

“pos=VB” indicates that it is a verb; “lemma=say” specifies its lemma; “wnsn=l”

shows that the sense refers to the first sense of “say” in WordNet, and “lexsn=2:32:00::”

contains the lexical sense number of the word “said” (“2:32:00”).

Roget’s Thesaurus

Rogef s Thesaurus (Roget’s) is a thesaurus mainly used to facilitate the expression of

ideas and assist in literacy composition. It has a tree structure that provides systematic

classification of its vocabulary. Rogef s tree structure contains eight levels as follows.

1. Top level classes. These are the most general classification categories for all

words/phrases in Roget’s. Examples of top level classes are “space”, “matter”,

“abstract relations”, etc.

2. Sections. These are more detailed categories under top level classes. Examples

include “existence”, “relation” and “quantity” which belong to the top level class

“abstract relations”.

3. Subsections. These are subcategories of sections. For example, section

“dimensions” is subdivided into three subsections: “general”, “linear” and

“centrical”.

4. Head groups. These are subcategories of subsections. For example, subsection

“results of action” contains five head groups: “completion and noncompletion”,

“success and failure”, “trophy”, “prosperity and adversity” and “averageness”.

5. Concepts. The latest edition of Rogef s Thesaurus contains more than 900 different

concepts, such as “action”, “attack”, and “book”.

6. Part o f speech (POS). POS categories (such as nouns, adjectives, verbs, adverbs,

and interjections) subdivide concept categories further. For example,

“resemblance” and “similar” are in the same concept category but in different part

of speech groups, where “resemblance” is in the group of nouns and “similar” is in

the group of adjectives.

1. Concept groups. The words and phrases within each POS category are subdivided

further into concept groups. Each concept group begins with a word known as its

headword. It indicates the meaning of the words/phrases included in the concept

group. For example, in the noun POS category of “giving”, there is a concept group

with a headword “giver”. Examples of other words in this group are “donor”,

“bestower” and “rewarder”.

8. Groups within concept groups. The words and phrases within each concept group

are subdivided according to their difference in meaning, context or level of usage

(i.e. colloquial or formal, etc.). For example, “giver”, “donor”, “bestower” are in

96

the same concept group with “rewarder”, “tipper” and “briber”, but in different

subgroups, because the former are more general, and the latter are specifically

related to money. In addition, some concept groups also contain cross-references to

other parts of the thesaurus.

5.2.3 Comparisons between Roget’s Thesaurus and WordNet

The three features identified and discussed in section 5.2.1 are used to compare

WordNet and Rogef s Thesaurus for the purpose of this study. The result is shown in

Table 5.1.

• RFirst, WordNet uses sensets to categorise words and phrases of same part of speech

category. Roget’s, on the other hand, maintains many well-structured interconnections

between different parts of speech. For example, “wind” is a noun and “windy” is an

adjective. In Roget’s they are included in the same concept “wind”, whereas “windy”

can be found in two adjective synsets in WordNet, but neither of them contains the

word “wind”.

Second, Roget’s uses over 900 concepts to organise the words and phrases contained in

it, while WordNet employs only 15 relationships (such as hypemyms and antonyms) to

express connections between words. For example, in Roget’s concept category

‘treasury, “bank” and “cashpoint” are in the same group although they are not

8 A senset refers to a set o f synonyms to identify a meaning in WordNet.

97

Table 5.1 Comparisons between Roget’s Thesaurus and WordNet

Features Required Roget’s Thesaurus WordNet

Grouping by meaning Many and well organised Very few

A good dictionary
structure

Well constructed
classification which uses
900-1,000 concept classes.
All words/phrases organised
in nodes with the same
depth. Suitable for
searching

15 basic classifications.
Words/phrases organised
in nodes with different
depths, sometimes more
than 9 levels [Devitt and
Vogel, 2004]

Large number of
word/phrase entries

250,000 [Roget, 2003] 200,000 (WordNet 1.6)
[Miller, 1990]

98

synonyms, whereas in WordNet, there are no means to describe such semantic

relationships. Also, the fact that only one relationship of a given word/phrase can be

used at a time to explore other words limits the usability of WordNet.

Furthermore, the equal depth for all the word/phrases in Roget’s facilitates the building

of an ontology dictionary.

Having a dictionary source with a large vocabulary is obviously an advantage in

building an ontology dictionary, because more words and phrases can be included in it.

This comparison shows why Roget’s Thesaurus is considered in this study a better

dictionary source for building the ontology dictionary: (i) the words/phrases in Roget’s

are grouped by meaning, (ii) it is better structured, and (iii) it has larger number of

words/phrases than WordNet. The process of building the ontology dictionary is

described in the next section.

5.2.4 Building an Ontology Dictionary from Roget’s

Thesaurus

Two practical considerations are taken into account when creating an ontology

dictionary from Roget’s Thesaurus.

1. No cross-references

The existing cross-references in Roget’s are not included in the ontology dictionary to

99

keep its structure simple.

2. No subgroups within concept groups

As discussed at the end of section 5.2.2, the words/phrases in a concept group are

further separated into groups due to the small difference in their meanings or usages.

Such dfifferences are ignored in this work in order to reduce the complexity of the

ontology dictionary.

The ontology dictionary, named “OntoRo”, is created using the electronic version of

Roget’s built in Project Gutenberg [Project Gutenberg, 2005], and the printed version of

Roget’s Thesaurus of English Words and Phrases [Roget, 2003]. The Gutenberg’s

edition was used as the main dictionary source, while the printed 2003 edition was

utilised to remove outdated word entries from Gutenberg edition, and add new entries

into the ontology dictionary. The ontology dictionary created contains 68,920 unique

words and 228,130 entries, which are classified into 990 concepts9, 610 head groups,

95 subsections, 39 sections, and 6 top level classes.

The entries in the ontology dictionary follow the format shown in (5.1).

word/phrase, concept, concept group, POS, head group, section, subsection,

top level

The fields in (5.1) are separated by commas. The first field contains the word/phrase

9 Called “heads” in some editions.

100

itself; the second field contains the concept number; the number in the third field

indicates the concept group number; the letters in the fourth field (“n”, “v”, “a”, “adv”)

represent parts of speech (noun, verb, adjective, and adverb respectively). Following

that are the numbers indicating the head group, section, subsection and top level class.

After the entries of the ontology dictionary are created, the format needs to be

converted into the (5.1) format by using regular expressions10. Two software tools,

AWK and VIM, are used during the conversion process. AWK is a general-purpose

computer language that is designed for processing text data, either in files or data

streams [FSF, 2006]. VIM is an open-source, multi-platform text editor [VIM, 2005].

Regular expressions were used in AWK scripts and VIM command lines to convert the

Roget’s entries into entries of the ontology dictionary.

The entry for “land” in Roget’s Thesaurus [PGLAF, 2006] is shown in Figure C.2

(Appendix C); the equivalent of the same entry in the ontology dictionary is shown in

Figure 5.1 (a).

The speed of retrieval is the most important factor because sequential search in such a

large ontology dictionary for relevant entries is lengthy and almost impractical. Thus, a

10 A regular expression is a string that describes or matches a set o f strings, according to certain syntax rules, whose

origin lies in automata theory and formal language theory used in theoretical computer science.

101

3 4 2 , r t . l , l an d , 199, 46,14, 3

3 4 2 , n , 2,high l a n d , 199, 46,14, 3

3 4 2 , n , 3 , ancon , 199, 46,14, 3

3 4 2 , n , 6, real e s t a t e , 199, 46,14, 3

3 4 2 , v , l , d e b a r k , 199, 46,14, 3

3 4 2 , a , l , r i p i c o l o u s , 19 9 , 4 6 , 14 , 3

3 4 3 , a d v , 1,on land, 199, 46,14, 3

(a)

O n t o R o
O n to lo gy

. p i c t i o n a r y

To p level
c lass 1

Top level
class 3

Sec t ion 14

S ubs cc t i on

ead g roup

C on c ep t
n u m b e r 342

adv

C o n c e p t
g r oup 1

C on c e p t
g r oup 2

C o n c e p t
g r oup 3

(b)

Figure 5.1 A Sample Entry in the Ontology Dictionary

102

hashing method with O(n) time complexity for searching [Witten et al., 1999] was used

to improve search speed by using Java JDK’s hash table function with uniform load

factor of 0.75 [Joy et al., 2005]. This section described the development of an ontology

dictionary based on the Roget’s Thesaurus. Next section outlines the development of

the second resource needed, which is the ontologically tagged corpus.

5.3 BUILDING AN ONTOLOGICALLY TAGGED

CORPUS

5.3.1 Method of Building an Ontologically Tagged Corpus

As discussed in section 5.2.3, although WordNet has disadvantages with regard to

building an ontology dictionary, it has a distinct advantage over Roget’s for being a

well-studied lexical resource. In addition, there are existing standard corpora based on

it (such as Semcor), which are used for semantic analysis. Since currently it is not

possible to manually build an ontologically tagged corpus, it would be a good choice in

terms of time and cost involved to generate one from Semcor with the help of the

ontology dictionary developed in this research.

The method for building an ontologically tagged corpus involves three steps:

Step 1. Extracting all word entries from WordNet and saving them into a

machine-readable dictionary.

103

Step 2. Building the mapping between the WordNet entries and those in the ontology

dictionary developed in section 5.2, so that each entry in WordNet is mapped to an entry

in the ontology dictionary with a similar meaning.

Step 3. Converting the Semcor corpus, which is originally tagged using WordNet

senses, to a corpus tagged using concepts from the ontology dictionary, by using the

mapping developed in step 2.

In reality, not all entries in WordNet can be appropriately mapped to the ontology

dictionary, but it is believed that inaccurate mapping entries are only a small proportion

of all mapping entries generated. A hypothesis is made in this research that most of the

entries in WordNet have appropriate matching entries in the ontology dictionary. The

experiments described later in this chapter are conducted with the aim to test this

hypothesis.

5.3.2 Building a Machine Readable Dictionary from

WordNet

This section outlines the building of a machine readable dictionary called e Word. As the

information in WordNet is stored in a specially designed database, all word/phrase

entries need to be retrieved to form a machine readable dictionary as described in step

1.

An entry retrieved from WordNet is shown in Figure C.3 (Appendix C.3). The

104

word/phrase at the beginning of an entry is called an entry word, like the word

“ABANDON” in Figure C.3 (Appendix C.3). The entry word “ABANDON” as a verb

(“v”) has five senses. The words and phrases in each sense entry are used to express the

meaning of that sense. For example, in sense 2, “abandon” and “give up” are grouped

together as “abandon, give up” to differentiate this sense from other senses. In addition,

each sense entry contains an explanation of its meaning and example sentences. For

instance, in sense 2, the phrase “Give up with the intent of never claiming again”

provides an explanation, which is followed by three example sentences.

Figure 5.2 shows the entries created in eWord from the entry of the verb “ABANDON”

in WordNet (Figure C.3, Appendix C.3). The process involves several processing tasks

as follows.

1. Transforming each WordNet sense into a single eWord entry. As shown in Figure C.3

(Appendix C.3), the five senses of the verb “ABANDON” in WordNet form five

separate entries in eWord. This improves the machine readability and simplifies the

format of eWord.

2. Deleting example sentences to improve the mapping accuracy. This will be discussed

later in this chapter.

3. Removing all linking words and phrases that give little information about the entry

senses. Examples include “or”, “o f’, “relating to”, “refers to”, “in regard to”, etc.

4. Replacing all possessive and personal pronouns with genders such as “he”, “his”,

abandonAvAl Aabandon,forsake,leave behind

abandonAvA2Aabandon,give up,give up,with,intent,never,claiming,again

abandonAvA3Avacate,empty,abandon,leave behind,empty,move out

abandonAvA4Aabandon,give up,give,stop,maintaining,insist on,ideas,claim

abandonAvA5Aabandon,forsake,desolate,desert,lurch,leave,one,needs,count on,leave in
the lurch

Figure 5.2 The Entries Created in eWord from the Entry of the Verb “ABANDON” in

WordNet 1.6

106

“she”, “her”, “hers”, etc. by gender-neutral, singular nominative pronouns such as

“one” and “one’s”. This makes the format more consistent, and improves the mapping

accuracy. eWord is built using 77,022 WordNet entries. WordNet JNI Java Native

Support (WNJN) 1.1 [Bou, 2005] and regular expressions were used to facilitate the

building process.

5.3.3 A Heuristic Approach for Semantic Mapping Between

eWord and OntoRo

General Approach

The second step in creating an ontologically tagged corpus is to find a proper mapping

for each entry in eWord to an entry in OntoRo by making use of the information in the

descriptions of the entries.

However, in many cases, the problem experienced is a many-to-many mapping

problem. In other words, more than one eWord entry could be mapped to an OntoRo

entry and vice versa. For instance, the entry word “ABANDON” in eWord has two

senses in noun form, five senses in verb form, while the same word has sixteen entries

in OntoRo. In addition, other entries in OntoRo could also match the meaning of

“ABANDON” in eWord. This many-to-many mapping problem is illustrated in Figure

5.3. Therefore, the problem to solve here is how to effectively find a suitable entry in

OntoRo that matches every entry in eWord using only information from both

\

Abandon (entry 1)
Abandon (entry 1) Abandon (entry 2)
Abandon (entry 2) > <rC _ Abandon (entry 3)
Abandon (entry 3) y / _____ Abandon (entry 4)
Abandon (entry 4)
Abandon (entry 5) . / ̂̂ ̂ Vocate (entry 1)
Abandon (entry 6)

/

Give up (entry 1)

z 1Desert (entry 1)

eWord Entries OntoRo Entries

Figure 5.3 Mapping between eWord and OntoRo Entries

Best Match

Potential Match

108

dictionaries. In this case, an effective mapping algorithm is needed.

The proposed mapping algorithm has three steps. The first step is to collect and

calculate information needed for the consecutive steps of the algorithm. The second

step is to assign an ontology tag from OntoRo to each word/phrase contained in the

description of a given eWord entry. The third step involves choosing one tag among

those assigned to the words/phrases in the description, which best represents the

meaning of the whole eWord entry, thus creating the mapping between a given eWord

entry and its corresponding OntoRo entry. The process continues until all entries in

eWord have been assigned a tag from OntoRo.

The problem in the first step is that every word/phrase in an eWord entry may have

several possible senses to choose from, although in context there may be only one most

suitable choice. Therefore, a method is required to choose an appropriate sense from all

possible senses of an eWord word/phrase. The hypothesis in (5.2) is used as a heuristic

to solve this problem.

For each word/phrase in a given eWord entry description, the candidate (5.2)
OntoRo sense for it is the most frequently used OntoRo sense among all
words/phrases in that description.

For the whole entry, the sense candidate for representing the entry word is
the most frequently used OntoRo sense among the senses assigned to
words/phrases in the description.

This hypothesis is based on the observation that the words/phrases in the description of

a given eWord entry often have very similar meanings. Thus, if ontology tags from

OntoRo are attached to them, they should reveal a certain degree of similarity.

109

This approach is illustrated in Figure 5.4. In an eWord entry description, the

words/phrases for the entry word E are A-D, and each of them has several possible

senses in OntoRo. According to (5.2), sense No.l for A, sense No.l for B, sense No.l

for C and sense No. 2 are first identified as sense candidates. Next, sense No.l is

selected to represent the sense of the entry word E, as it is the most frequently used

sense in this eWord entry.

This hypothesis is similar to Yarowsky’s hypothesis of “one sense per discourse” for

human languages, which states “with a high probability an ambiguous word has only

one sense in a given collocation” [Yarowsky, 1993]. However, there are two substantial

differences between these two hypotheses. First, the Yarowsky’s hypothesis concerns

general scenarios for free text, while hypothesis (5.2) is specific to eWord entry

descriptions. The second difference is that Yarowsky’s hypothesis applies to one word

in a given context, while hypothesis (5.2) addresses all words/phrases in a given eWord

entry.

As being a hypothesis, (5.2) does not guarantee that most of the words and phrases in

the entry use the same sense. Evaluations need to be conducted to prove this hypothesis.

The details of these tests are included later in this chapter.

In addition, composition structure and linking words are two aspects which need to be

considered when developing the algorithm based on this hypothesis. Both aspects are

related to the pre-processing of the eWord entries before conducting the mapping

\

Entry Word E in eWord Explained By ^

eWord Entry Description

f ^ r \ r \
Word/Phrase A Word/Phrase B Word/Phrase C Word/Phrase D

v J v J V J V. J

Possible Senses from
OntoRo

Possible Senses from
OntoRo

Possible Senses from
OntoRo

Possible Senses from
OntoRo

A Sense No. 1 A Sense No. 1 A Sense No. 1 A Sense No. 2
Sense No. 2 Sense No. 2 Sense No. 3 Sense No. 4
Sense No. 3 Sense No. 9 Sense No. 12 Sense No. 5
Sense No. 4 Sense No. 10 Sense No. 10
Sense No. 5 Sense No. 11
Sense No. 6
Sense No. 7

Selected Sense

Figure 5.4 Illustration of the Approach based on the “One Sense Per eWord Entry” Hypothesis

il l

procedure.

The first aspect of the pre-processing is the composition structure. Sometimes the entry

word is described through words/phrases with entirely opposite meaning. For example,

in the description of the entry word “abandon” in Figure C.3 (Appendix C.3), “give up

with the intent of never claiming again”, “claiming” is used with a negation word

“never” to express the meaning of “abandon”. Without being removed, these words

may cause the algorithm to produce a poor mapping result.

In addition, many words in the example sentences of the entry descriptions are not

directly related to the sense, but only describe the context of its use. For instance, in the

example sentence “Abandon your life to God” (Figure C.3 in Appendix C.3) for the

entry “abandon”, neither “your life” nor “God”, is directly related to the sense of

“abandon”. These irrelevant words could also cause a poor mapping result if hypothesis

(5.2) is used. Therefore, all example sentences are removed from the entry descriptions.

The second aspect of the pre-processing concerns the linking words. Normally, they do

not carry important information for the corresponding entry description. Typical

linking words are “with regard to”, “referring to”, “refers to”, “regarding”, “relating

to”, and “or”. These words and phrases are only meaningful when they are related to

“connected with” or “related with”, but the use frequency in this way is very low. For

instance, the word “concerning” appears in eWord 30 times in total, but only 3 times it

contributes to the entry description. Other words that are typically used as linking

words also have similar statistics. Therefore, to make use of the hypothesis (5.2) and

simplify the processing, words with typical linking word usage are all removed from

the eWord entries.

The mapping algorithm is shown in Figure 5.5. First, various types of information is

calculated and stored, then one sense is identified as the candidate for each word/phrase

in the entry, and finally one sense is selected from them as the final choice for the entire

entry.

In (a), the corresponding eWord and OntoRo files are opened, the data structures are

initialised and relevant memory resource is allocated. To facilitate the processing, the

parts of speech indicators in the OntoRo entries are replaced by numbers (l=noun,

2=adjective, 3=verb, 4=adverb). The general form of an OntoRo entry is a sequence of

numbers corresponding to: concept, concept group, POS, head group, section,

subsection, and top level.

From (b) to (i), the algorithm uses several loops until all eWord entries are processed. In

step (c), the algorithm scans for the longest word combination (phrase11) in a given

number of words in the description, that also appears in OntoRo. The word combination

found is called an element. After one element is identified, the scan continues from the

next word until all the words in the description are scanned. For example, in the eWord

11 One or more words.

113

Initialisation, such as opening eWord and OntoRo files, etc. (a)

For each entry in eWord (b)

{
Read the words from the beginning of each entry, sequentially identify the (c)
longest phrase combinations as elements, and store them for later use.

For each element in (c), find all possible senses, and store them for later use (d)

{
For each element count how many other elements in the same entry have
the same number for concept, head group, subsection, section, and top
level

{
Order the senses according to their semantic similarity based on the (f)
counts obtained in (e). The semantic similarity is computed for each
field in sequence: concept, head group, subsection, section, and top
level.

}

}
For each element in the entry, select the top ranked concept in (f) as the (g)
concept candidate according to the semantic similarity. Store all concept
candidates for later use.

For each element with the selected sense candidate in (g) (b)

{
Rank these elements according to their semantic similarity, choose the
highest ranked element, and output the corresponding entry in OntoRo.

If there is no such an element in (h), find the element with the lowest (i)
frequency of appearance in eWord from the first 5 elements in that entry.
Find the corresponding entry in OntoRo and output the result.

}

}
Close all files opened, free any memory allocated.

Figure 5.5 An Algorithm for Mapping eWord and OntoRo Entries

114

description “give up the career...”, both “give” and “give up” can be found in OntoRo.

However “give up” is selected as an element because it contains two words as apposed

to “give”. After choosing “give up”, the scan continues from the next word (“the”).

In (d), one element could appear in different entries of OntoRo with different meanings,

and they should all be stored as candidates.

Next, in (e), for each field (such as concept, head group, subsection, section, and top

level), the algorithm counts the number of instances when one element shares the same

value as another element. The statistics obtained in (e) is further used in (f) to calculate

the semantic similarity of all possible senses for each element.

Here, semantic similarity refers to the degree to which one sense is close to the meaning

of another. The semantic similarity is measured by pair-wise comparisons of the values

in the fields of the ontology entries, in the following order of priority: concept,

subsection, section and top level. The elements are compared on a lower priority level

only if the values in the field with a higher priority are the same. If two elements have

the same degree of semantic similarity, then the one that appears first in the candidate

list is selected.

In (f), for each element, the possible senses are ranked according to the semantic

similarity calculated in (e).

In (g) for each element, the top ranked sense in (f) is selected as a sense candidate for

115

that element.

In (h), the senses selected in (g) are ranked according to their semantic similarity. The

semantic similarity is calculated in a similar way as in (f). However, the similarity

measure in (h) is used to compare the senses, while in (f) it is applied in the comparison

of the possible senses for each element. Finally, the highest ranked OntoRo sense is

selected to represent the given eWord entry.

This approach cannot be applied in those cases when there are no fields with the same

values. In this case hypothesis (5.2) cannot be used to determine which sense should be

selected as the candidate to represent the eWord entry word. Such cases are addressed

in (i), where the element with the lowest occurrence in eWord is selected from the first

five words in the description of that entry. This approach is based on the observation

that words and phrases less frequently appearing in a text carry more information

[Shannon, 1948]. The selection is limited to the first five words only, because simple

tests reveal that the most appropriate sense for an entry word is often among the senses

assigned to the first five words.

Figure 5.6 illustrates this algorithm by depicting the possible sense entries in OntoRo of

the eWord entry shown in (5.3).

abandonAvA3Avacate,empty,abandon,leave behind,move out (5.3)

In Figure 5.6, “count” represents how many times the concept number of one element is

shared with the other elements. For example, the first entry of the element “abandon”,

116

Possible Sense Entries in OntoRo

vacate empty abandon leave behind move out
Count Entries Count Entries Count Entries Count Entries Count entries

1 190,13,112,9 ,33 ,2 0 325,1,2,189,14,45,3 2 621,1,3,371,27,62,5 1 41,2,3,23,3,11,1 2 621,1,3,371,27,62,5
0 752 ,13 ,455 ,31 ,70 ,5 0 774,2,2,471,34,73,5 0 944,1,1,577,38,89,6 0 306,1,3,178,12,43,2
1 190,23,112,9 ,33,2 0 477 ,1 ,2378 ,19 ,52 ,4 0 835,1,1,512,36,78,6 0 34,1,3,20,3,10,1
2 621 ,13 ,371 ,27 ,62 ,5 0 172,1,2,99,8,28,1 0 943,1,1,576,38,89,6 0 285,1,3,167,12,43,2
1 753 ,13 ,456 ,31 ,70 ,5 0 572 ,1 ,2339 ,25 ,58 ,4 0 678,2,1,408,28,65,5 0 277,3,3,163,12,41,2

0 877 ,1 ,2538 ,36 ,82 ,6 0 822,2,1,505,35,77,6 0 306,3,3,178,12,43,2
0 450 ,1 ,2361 ,16 ,49 ,4 0 833,2,1,511,36,78,6 0 506,1,3,294,21,54,4
0 859 ,3 ,2526 ,36 ,80 ,6 0 779,1,3,475,34,73,5
0 946 ,1 ,2579 ,38 ,89 ,6 0 603,1,3,360,26,59,5
0 679,1,2,408,28,65,5 1 753,1,3,456,31,70,5
0 636 ,2 ,2384 ,27 ,63 ,5 1 41,2,3,23,3,11,1
0 515 ,1 ,2301 ,23 ,56 ,4 0 57,2,3,32,3,12,1
0 190,2,2,112,9,33,2 0 918,1,3,563,38,86,6
0 541 ,2 ,2317 ,24 ,57 ,4 0 458,1,3,266,17,50,4
0 543 ,1 ,2319 ,24 ,57 ,4 0 779,1,3,475,34,73,5

The Sense Selected for Each Element

vacate empty abandon leave behind move out
621,1,3,371,27,62,5 325,1,2,189,14,45,3 621,1,3,371,27,62,5 41,2,3,23,3,11,1 621,1,3,371,27,62,5 |

___________1

vacate

,1,3.371.27,62,5

Candidate Element and its
- Sense for the Whole

Entry

Figure 5.6 Illustration of the Semantic Mapping Algorithm

117

which is “621,1,3,371,27,62,5”, shares the same concept number “621” twice with

other elements (“vacate” and “move out”), thus the number in the “count” field is 2.

The mapping algorithm selects one candidate sense for each element of the entry

description as shown in Figure 5.6. Finally, the candidate “vacate” for the entry word

“abandon” is selected according to the algorithm (h) to (i) in Figure 5.5, because the

concept number “621” appears three times and is the most frequently used sense in the

entry. Thus, the eWord entry word “abandon” in (5.3) is mapped to the sense entry

“621,1,3,371,27,62,5” of “vacate” in OntoRo.

Testins o f the Semantic Mappins Algorithm

The algorithm is implemented in C language using Microsoft Visual Studio 6.0. Sample

source code developed is included in Appendix D. The tests were conducted on a

Pentium III 700MHz 384MB memory computer. The total running time for mapping all

77.022 entries in eWord to 37301 OntoRo entries was 418 minutes.

In addition, tests were carried out to examine the mapping accuracy. 200 entries were

randomly selected from the 77,022 entries already mapped and were reviewed by an

expert. The entries are selected at a defined interval across the whole mapping result, so

that the observed error rate could be considered representative of the error rate of all

77.022 entries. The judgment criteria used by the expert are listed below.

Criterion 1 The word/phrase selected in OntoRo as a result of the mapping should
be close to the meaning of the eWord entry.

Criterion 2 If (1) cannot be satisfied, and the sense can only be expressed as a
combination of two or more entry words, then the result should be one
of them, or

If (1) cannot be satisfied, and the sense can be expressed as a
hypemyms12-hyponyms13 relation, then the hypernym should be
selected as a mapping word/phrase.

If the mapping result satisfies either of the two criteria, then the result is correct. If

criterion 1 is not satisfied, criterion 2 is used to determine the accuracy of the result.

Criterion 1 means that the mapping result should be as specific as the sense of that

eWord entry, and it should not be over specific, nor too generalised. Usually, a

synonym-like14 word/phrase is used to represent the meaning of that eWord entry.

According to the mapping algorithm, the mapping word/phrase is one of the

words/phrases in the eWord entry description. Sometimes, however, a synonym-like

word/phrase cannot be found in the eWord entry because its meaning is close to a

combination of several (usually two) words/phrases in that entry. In this case, the

correct result should be one of the words/phrases from this combination, because the

eWord entry can only be mapped to one OntoRo entry. Furthermore, when the correct

sense is a hypemym-hyponym relation, the correct result is the hypemym rather than

12 A hypernym is a word that is more generic than a given word.

13 A hyponym is a word that is more specific than a given word.

14 A synonym-like word/phrase is a word that is not necessarily a synonym, but is close enough to the meaning o f the

sense entry.

the hyponym.

To validate the algorithm developed, 200 samples from the mapping result were

analysed. 160 of them were found correct according to the expert involved. Therefore,

the mapping accuracy is 80%.

Discussion

An analysis of the errors found showed that they are approximately evenly distributed

within the test result. The possible causes of error are discussed and explained below.

1. No counter part entry in OntoRo. As the composition of WordNet and OntoRo is

different, it is sometimes impossible to find an appropriate mapping word/phrase in

OntoRo to suit the sense of WordNet. An example which is wrongly mapped is given

below.

eWord Entry DISSOLVEDAaAl.dissolved,(of solid matter)
reduced to a liquid form

(5.4)

The Corresponding
Entry in OntoRo

solid,2,11,37,143,1,243 (5.5)

In OntoRo, there is no such word as “dissolved”, therefore the algorithm skipped this

word, and chose “solid” as a resultant mapping entry. In this example, there is no

alternative word apart from “dissolved” that can explain the sense of the entry word

well. Due to the reason above, the mapping result is wrong.

2. Long entry description in eWord. A wrongly mapped example is shown below.

120

eWord Entry PARRICIDEAnAl. parricide,someone who kills
his or her parent

(5.6)

The Corresponding
Entry in OntoRo

parricideAnAl Aone,3,15,47,217,2,371 (5.7)

The eWord entry (5.6) contains several words/phrase for the sense of “somebody”:

“someone”, “who”, “his”, “her”, and “parent”. In this case, the mapping algorithm has

chosen “someone” as the mapping result, which is more related to “somebody” because

it is the most frequently used sense. Those entries with long entry descriptions, where

the context of usage is described not necessarily using words or phrases with similar

meaning, are likely to produce wrong mapping results, because more irrelevant words

or phrases are likely to be included, and some of them may cause the algorithm to

produce incorrect results.

5.3.4 Converting the Semcor Corpus into an Ontologically

Tagged Corpus

Once the semantic mapping from eWord to OntoRo is completed, the Semcor can be

converted into a corpus using tags from OntoRo (step 3, as outlined in section 5.3.1).

An ontologically tagged corpus (OntoCorp) thus can be created.

Three rules are applied during the conversion of the Semcor corpus. These are as

follow.

1. Words/phrases with little semantic information (such as “a”, “an” and “the”) or

121

without “lemma” 15 attribute in Semcor entries, as well as all proper nouns and

punctuation marks are all tagged as “IGNORE”.

2. All words/phrases that cannot be found in OntoRo are tagged as “UNKNOWN”.

3. The other words/phrases are tagged using the corresponding field number in the

hierarchy of OntoRo with a proceeding “S” as an ontology tag. For example, “vacate”

in Figure 5.6 is tagged at head group level as “SI 12”, and at concept level as “S I90”.

Atypical ontologically tagged sentence converted from Semcor is shown in Figure 5.7.

In the conversion output (Figure 5.7), every word is separated with “/” from its tag. The

conversion programme was implemented in Java. The Semcor corpus was converted

into a text o f20,138 lines using the approach outlined above. Regular expressions and a

software tool UltraEdit [IDMCS, 2006] were used to convert the Semcor text into an

XML formatted file, then the file was parsed to extract the information using: the SAX

Java library [ASF, 2006], the mapping file generated in section 5.3.3 and OntoRo

implemented in section 5.2.4. The ontologically tagged corpus OntoCorp contains

434,998 annotated words in total.

15 Lemma refers to the canonical form o f a word, usually the base form, taken as being representative o f all the

various forms o f a morphological paradigm [Mitkov, 2003].

122

<s snum="28">
<wf cmd="ignore" pos="PRP$">His</wf>
<wf cmd="done" pos="NN" lemma-'petition" wnsn="l"
lexsn=" 1:10:00:: ">petition</wf>
<wf cmd="done" pos="VB" lemma-'charge" w nsn-’6"
lexsn="2:32:00::">charged</w£>
<wf cm d-’done" pos="JJ" lemma="mental" w nsn-’2"
lexsn="3:01:00: :">mental</wf>
<wf cmd="done" pos="NN" lemma="cruelty" wnsn="2"
lexsn-' 1:12:00:: ">cruelty</w£>
<punc>.</punc>
</s>

His/IGNORE petition/S312 charged/S497 mental/S260 cruelty/S556 ./IGNORE

Figure 5.7 A Converted Sentence with Ontology Tags

123

5.4 SUMMARY

In this chapter, ontology tagging is proposed to enable text to be searched, browsed and

analysed at different abstraction levels, so that existing text-based document collections

can be used in Semantic Web applications. An ontology dictionary and an ontologically

tagged corpus are identified as two resources enabling automatic ontology tagging.

Then, an ontology dictionary OntoRo is created from Roget’s Thesaurus. Next, a

machine readable dictionary called eWord is built from WordNet using the semantic

mapping algorithm proposed. The tests conducted showed that the accuracy of this

algorithm is 80%. Furthermore, an ontologically tagged corpus OntoCorp is built using

eWord, OntoRo and Semcor, a package of semantic concordance text. The developed

OntoRo and OntoCorp will be used to annotate free text as described in Chapter 6.

124

CHAPTER 6. FULL TEXT ONTOLOGY TAGGING

BASED ON MACHINE LEARNING

In this chapter, a rule-based supervised machine learning algorithm for ontology

tagging is developed and tested. It obtains statistical and context information from the

ontologically tagged corpus (OntoCorp) and use it to produce statistical rules and

context rules. In the tagging process, these rules are applied to unknown text so that

an ontology tag is assigned to each word/phrase in the text. In addition, three case

studies are conducted in order to optimise the design of the algorithm. Finally, the

options to improve the tagging accuracy and the reasons that cause tagging errors are

analysed and discussed.

6.1 ONTOLOGY TAGGING ALGORITHM

6.1.1 Statistical and Context Information

Similar to other supervised learning algorithms, training material need to be provided

to the ontology tagging algorithm so that the knowledge from the material can be

applied in tagging unseen text input. Therefore, it is important to present the training

material in an appropriate way to the algorithm, so that the knowledge learned from

the training material could be used in a way guaranteeing high tagging accuracy. For

the algorithm discussed in this chapter, the training material is the ontologically

125

tagged corpus, and the knowledge refers to the statistical and context rules generated

during the training process.

Two types of information can be obtained from the ontologically tagged corpus.

These are statistical and context information, which can be expressed through eight

parameters as shown in Table 6.1.

1. Statistical information from words and phrases in the corpus

Statistics has been used in many study areas of natural language processing [Zipf,

1949, Samuelsson, 2003]. It is therefore expected that statistical information (such as

frequency of words, phrases and ontology tags) can benefit ontology tagging.

Four parameters, N, F (w), F(c) and O (w), are employed as statistical measures in this

study (Table 6.1). The total number of words/phrases in a given text (N) is normally

used in conjunction with the other parameters. F(w) refers to the number of instances

a certain word/phrase w appears in a given text. F(c) is the number of instances a

context word/phrase c appears in the context of the word/phrase w. 0(w) refers to the

total number of times that a given word/phrase w is annotated with an ontology tag.

2. Context information about words, phrases, ontology tags and their combinations

The remaining four parameters introduced, F(w,c), R(w,c), CO(w,t) and MI(w,c), are

based on using context information (Table 6.1).

A context o f a word refers to the part of a text that surrounds that word. Those words

126

Table 6.1 Statistical and Context Information

Symbol Parameters Description

£O

N Total number of words/phrases
in a given text

"5

<2a

F(w) Word frequency for a given
word/phrase w

►— i
13o

C f l
• ^

F(c) Word frequency for a given
context word/phrase c

TO
o o O (w) Ontology tag frequency for a

given word/phrase w

F(w,c) Word co-occurrence frequency
for a given word/phrase w with
a context word/phrase c in a
certain context window width

£_o
R(w,c) = F(w,c) / F(w) Ratio R(w,c)

2£
l - H

X<u
cao
U

CO(w,t) Ontology tag t co-occurrence
frequency with a given
word/phrase w in a certain
context window width

MI(w,c) = -
log(F(w, c)/(F(w) *F(c)))

Mutual information for a given
word/phrase w with one of its
context words/phrases c in a
given context window width

127

which appear within a certain distance from the word w are called context words of

word w. If a text is treated as a long input sequence of words (including paragraph

separators), then the context window of a given word comprises words on both sides

of this word. The width o f a context window of a word (abbr. as the window width) is

the total number of words in this context window.

Usually words have different meanings in different contexts; this especially applies to

polysemies1 and homonyms2 For example, “foot” in the context of (6.1) refers to the

lowest part of an object, while “foot” in the context of (6.2) means the bottom part of

the leg of a vertebrate.

The house is at the foot of the mountains. (6.1)

One of his shoes felt too tight for his foot. (6.2)

Therefore, it is expected that the information contained in the context can help

determine the meaning of a word in a given context.

For a given word w and its context word c, the parameter F(w,c) denotes the number

of instances both words appear in a given window width. R(w,c) measures how often a

given word w appears together with a context word c. CO(w,t) shows how often an

ontology tag t appears within a given window width of the given word w. MI(w,c) ,

which is derived from mutual information measurement [Samuelsson, 2003],

1 Polysemy refers a word having or being characterised by many meanings.
2 Homonyms refer to words that have the same sound and often the same spelling but differ in meaning and
origins.

128

measures to what degree one element is representative of another. In other words,

MI(w,c) is used to evaluate how related one word is to another. If the information

about the word c is known, the information about the word w is unknown and two

words are known to share a high MI(w,c) value, then the information about the word c

can be used to represent that of the word w.

6.1.2 Variables

Several variables that will be used later in this chapter are defined in this section. The

difference between parameters and variables is that the parameters are calculated from

the training material provided, while the variables can be adjusted.

1. The ratio S indicates, given a certain amount of material, how much of the

material is used for training and how much is used for testing the algorithm. The

ratio S is defined in (6.3).

S = (the number of sentences in the training sets) / (the number of sentences in (6.3)
the testing set)

This ratio could be used to evaluate the consequences of increasing the amount of

training material and decreasing the testing material (provided that the total amount is

sufficient for thorough testing).

2. The range based on Zipf s Law can be used as a criterion for filtering the context

words in a given window width. According to Zipfs Law [Zipf, 1949], the frequency

129

of the «th-most-frequently-used word is approximately inversely proportional to n.

Figure 6.1 illustrates this statement by showing an example involving a total of 100

unique words used in a text. In this example, the most frequently used word (position

100 on the horizontal axis) is mentioned 1000 times in the text. If another word is

known to be the third most frequently used word in this sample (position 998), then

according to the Zipf s law, it is used approximately 333 (1000/3) times in the text.

Figure 6.2 represents the same law, with the horizontal axis been normalised for

values between 0 and 1, with the most frequently used word placed at the end of the

horizontal axis. The Zipfs range refers to a range of X-axis values representing a

group of words ordered according to the frequency of their use, as shown in Figure

6.2. The range contains the words which are taken into consideration when extracting

context information from the context window. This variable will be used to find out

how the Zipfs law affects the ontology tagging accuracy.

3. The ratio 6 is defined by (6.4).

6 = e/C (£>0) (6.4)

where,

e is the frequency of a context word/phrase c occurring with a word/phrase a tagged

with an ontology tag b in a given window width, and C is the frequency of a context

word/phrase c occurring with the word/phrase a which is tagged with an ontology tag

other than b.

130

Fr
eq

ue
nc

y
F

re
qu

en
cy

1 2 0 0

1000

800

600

400

200

0

...T

i

I;

.

■: •

! 7 I "
...

| 1 run
/ :'V i 1 . ■ -

:
v - k - ;

■' [■ 1 :: 111 / !

M -
r v k : J

: J.' ::.;■! ' V: I
■ 8

' 1 -
b"' " . T l

/
i I

i
- I I- fr ■----;--- :------- — 3St —-- i I T

1 10 20 30 40 50 60 70 80 90 100

T he p o sitio n s o f words ordered according to their freq uency o f u se

Figure 6.1 Zipfs Law

1200

1000

Zipfs range

_ T — -

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Norm alised p o sitio n s o f words ordered according to their freq uency o f u se

Figure 6.2 Normalised Zipfs Range

131

Thus the problem to solve is how to effectively use these parameters and variables in

the design of the tagging algorithm, so that the highest possible tagging accuracy can

be achieved. The next section discusses the design of the tagging algorithm and

investigates how the use of these parameters and variables may affect the accuracy of

the algorithm.

6.1.3 Statistical Rules and Context Rules

Two types of rules are used in the ontology tagging algorithm developed.

Statistical Rules

An example of a statistical rule is given below.

book -> book/S589

where,

“book” is a word/phrase to be tagged by the algorithm, and

“S589” is a concept tag for “books and publications”.

The statistical rule in (6.5) denotes that every word “book” in a given text will be

assigned a concept tag “S589”, which is the concept related to books and publications.

As statistical rules do not use context information, such ontology tags will be attached

to the corresponding words regardless of whether the concepts fit the context or not.

132

Therefore, a statistical rule is more effective if a given word has a dominant meaning

which can be expressed through the corresponding ontology tag.

Context Rules

Two examples of context rules are shown below.

accounting, book/S589, context windows width = 4 -> book/S808 (6.6)

S586, book/S589, context window width = 4 -> book/S586 (6.7)

In addition to the concept tag “S589” mentioned above, these context rules use

“S808” for “accountancy and book-keeping”, and “S586” which is related to

“writing”.

Context rule (6.6) means that if the word “book” has an ontology tag “S589” attached,

and the word “accounting” appears within a context window of four words around

“book/S589”, then tag “S589” should be replaced by “S808”.

Context rule (6.7) means that if the word “book” has an ontology tag “S589”

assigned, and the ontology tag “S586” appears within a context window of four words

around “books/S589”, then tag “S589” should be changed to “S586”.

133

6.1.4 Training and Tagging with the Ontology Tagging

Algorithm

The tagging algorithm proposed makes use of the two types of information discussed

in section 6.1.1 in both the training and tagging processes. The flowcharts shown in

Figure 6.3 illustrate this algorithm.

Trainin2

In the training process, first statistical information and context information are

obtained from the ontologically tagged corpus (OntoCorp) discussed in Chapter 5. All

tags are removed from OntoCorp to create an untagged corpus (UC). This corpus is

used as a comparison text, so that when statistical and context rules are applied in

sequence to it, the tags generated can be compared with those in OntoCorp. The

percentage of correctly assigned tags will be used to estimate the accuracy of the

ontology algorithm.

The next step involves selecting the most frequently used ontology tag for each

unique word/phrase in OntoCorp and generating statistical rules. These rules are used

to tag the corresponding words/phrases in the UC. Then, the incorrectly tagged words

are identified by comparing the tagged UC with OntoCorp. Next, the corresponding

context information from OntoCorp for those wrongly tagged UC words/phrases is to

generate context rules. These context rules are then used to replace some of the

Training
Process

Tagging Process

Begin

End

Record incorrect tags

Create untagged corpus

Generate context rules

Generate statistical rules

Obtain statistical and context
information from OntoCorp

Load OntoCorp

Replace incorret tags and
assign new tags according to

context information

Tag the untagged corpus and
compare the tags with

OntoCorp

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

B egin

End

Load text for tagging

Apply context rules

Output tagging result

Apply statistical rules

Obtain statistical and context
information from the text for

tagging

Load statistical and context
rules generated during the

training process

A ssign default tags to words/
phrases that have not been

tagged

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

(a) (b)

Figure 6.3 Flowcharts of the Ontology Tagging Algorithm (Training and Tagging)

135

attached tags and assign tags to the words/phrases which have not been tagged.

When context rules are used to replace tags, which are previously assigned according

to the statistical rules, some of the correct tags may be replaced by wrong ones.

Therefore, the algorithm has to ensure that when applying context rules to the

partially tagged corpus, the context rules are effective enough in a sense that more

wrong tags are replaced by correct ones than correct tags replaced by wrong ones.

Due to this reason, the method of generating context rules has to be carefully designed

and evaluated.

Tassins

In the tagging process, the statistical and context rules generated during the training

are first loaded. Next, the text is processed and statistical information is obtained.

Then, the statistical rules are used to assign ontology tags to the words in the text.

After that, context rules are applied to replace some of the previously assigned tags or

to assign tags to those words/phrases which have not been tagged. Finally, those

words/phrases which neither statistical rules nor context rules have applied to, are

annotated with a default ontology tag.

There are three possible design options for generating context rules. These are using:

(i) word co-ocurrence frequency, (ii) ontology tag co-ocrrence freqency, and (iii)

mutual information for words in a context window. To evaluate these design options

136

three case studies are conducted. They are discussed in section 6.3.

6.2 CASE STUDIES

6.2.1 General Approach

As described in section 6.1.4, there are three design options for generating context

rules. These are based on using three types of context information: R(w,c), CO(w,t)

and MI(w,c) (Table 6.1). These design options are evaluated through case studies,

which investigate the co-relation between the tagging accuracy and the design

alternative chosen in the implementation of the algorithm.

In each case study, context rules are generated in a different way. This requires

modifications in both training and tagging processes. Generally, in the training

(Figure 6.3 a), different type of context information is collected to generate context

rules (step 3) and different methods are used to produce context rules (step 8). During

the tagging (Figure 6.3 b), different context rules are input to the algorithm (step 1),

and the information from the text for tagging is collected differently (step 3).

Therefore, steps 3 and 8 of the training process, and steps 3 and 1 (5 for case study 3)

of the tagging process are described in more detail in the individual case studies

(Sections 6.2.2-6.2.7).

In all three case studies, the training and testing sets are composed by randomly

137

selecting sentences from OntoCorp, which consists of 20,138 sentences with 434,998

words, and preserving a pre-defined ratio between the number of sentences in a

training set and that of the corresponding testing set. Five different ratio S are used in

the experiments (5:5, 6:4, 7:3, 8:2 and 9:1). For example, if the ratio S is “5:5”, then

the training set contains 50% of all entries, all randomly selected, and the remaining

50% entries are used in the testing set. The purpose of using different ratios is to test

the impact of the size of the training set upon the tagging accuracy . Next, all tags are

removed from the testing set to form a new set which is then processed by the tagging

algorithm. The tagging accuracy is calculated by comparing the tags for each word in

the new set with the tag assigned for the same word/phrase in the testing set.

The experiments conducted are summarised in Table 6.2. The 96 experiments

investigate the co-relation between four variables (ratio S, Z ipf s range, ratio 6 and

window width) and three different options based on different context information

(R(w,c), CO(w,t), MI(w,c)). Each experiment is repeated 6 times, and the average

accuracy obtained is shown in Tables 6.3-6.8. A tagging result is considered correct

if:

3 Note the assumption made that the number o f sentences in a testing set is sufficient for evaluating the tagging
accuracy.

Table 6.2 Summary of Tests Conducted

Variables

Case

Study

Context

Information

Used

Ratio S
Zipf s

Range
Ratio 6

Window

Width

Number of Experiments4 Conducted

1 R(w,c) 1 10 N/A 5

2 CO(w,t) 5 N/A 10 N/A

3 MI(w, c) 30 5 N/A 30

4 Each experiment is repeated 6 times.

139

(i) The tag in OntoCorp is not “unknown”5 and the tag produced by the ontology

tagging algorithm is the same as the tag in OntoCorp, or

(ii) The correct tag is “unknown”. In this case any tag assigned by the tagging

algorithm is marked as correct.

The case studies are implemented in Java. Sample source code developed is included

in Appendix E. Java hashing function is used to reduce the processing time of the

search procedures in the algorithms. As a result, the processing time for the whole

training and tagging cycle is reduced from about 4 hours when sequential search is

used to approximately 10 minutes. The tests are conducted on a computer with a

Pentium 4 2400MHz CPU and 1024MB RAM and a Java 1.4.2 runtime environment.

6.2.2 Case Study 1

The training procedure employed follows the flowchart shown in Figure 6.3 (a) with

modifications in step 3 and 8. Step 3 is as follows: for a given window width6, store all

context words/phrases c for a given word/phrase w; store F(w,c)\ for this word/phrase,

calculate the ratio R(w,c) with every context word/phrase c, and store all R(w,c). Step

8 is as follows: if R(w,c) exceeds a given value, then a context rule is generated based

on it.

5 “Unknown” tags are originally assigned by linguistic experts in the process o f corpus development to indicate
that there is no definite answer.
6 Here, the window width refers to the number o f words/phrases considered on each side o f the given word.

140

Tests are conducted to examine if the use of different Zipf’s ranges (such as 0.00-

0.10, 0.11-0.20, etc.) affects the tagging accuracy. In this case, constant window

width and ratio S are used. The results (Table 6.3) show very small variations in the

average accuracy, the highest (76.76%) recorded when only the words having

normalised positions between 0.11 and 0.20 (Figure 6.2) are employed to extract

context information.

Furthermore, with a given Zipfs range from 0.10 - 0.90 and Ratio S 6:4, tests are

conducted to investigate how different window widths affect the tagging accuracy.

The results (Table 6.4) show again very small variations, with better tagging accuracy

achieved when relatively small context windows are used. This result was expected as

normally context words/phrases close to a given word/phrase tend to have close

semantic relationships and can therefore provide more important information for

ontology tagging.

6.2.3 Case Study 2

In this case study, step 3 of the training process (Figure 6.3) is as follows: for a given

window width, store all context words/phrases c for a given word/phrase w, and store

CO(w,t). The corresponding context rules are generated in step 8.

Step 3 of the tagging process is as follows: collect CO(w,t) information for every

word/phrase w in text, and find all ontology tags t which (1) are in the word/phrase

141

Table 6.3 Average Accuracy in Case Study 1: Experiments with Different Zipf’s

Zipf s

Range

0.00 -

0.10

0.11-

0.20

0.21 -

0.30

0.31 -

0.40

0.41 -

0.50

0.51 -

0.60

0.61 -

0.70

0.71 -

0.80

0.81 -

0.90

0.91 -

1.00

Average

Accuracy,

%

76.51 76.76 76.75 76.74 76.74 76.74 76.74 76.74 76.74 76.74

Ranges in Context Window Width =12, Ratio S = 6:4

Table 6.4 Average Accuracy in Case Study 1: Experiments with Different Window

Window Width, words 10 8 6 4 2

Average Accuracy, % 76.77 76.78 76.79 76.80 76.80

Widths in 0.10 <Zipfs range <0.90, Ratio S=6:4

142

w’s context window; (2) appear in one of the context rules generated for the

word/phrase w; and (3) have CO(w,t) exceeding a certain threshold. If an ontology tag

t satisfies all these three conditions, then it needs to be replaced by a new tag as

defined by the context rule.

Experiments are conducted to test the effect of different ratios S and thesholds 0. The

result of the first set of experiments for case study 2 conducted with different training

ratios S is shown in Table 6.5. Clearly, the average accuracy increases from 76.40% to

77.50% as more training material is provided to the tagging algorithm. The second set

of experiments study the effect of the theshold 0 (Table 6.6) when the ratio S is

constant. Changing the value of 0 could affect the number of context rules employed

as a new rule is generated when 0 exceeds a certain threshold. Larger values of 0 may

improve the accuracy, as more incorrect tags would be replaced by correct tags. At the

same time, with large 0, fewer rules would be generated as fewer words/phrases

would exceed the threshold, which may have a negative effect on the accuracy. Thus,

the overall improvement could be insignificant, as not many incorrect tags would be

eventually changed. This hypothesis is confirmed by the results shown in Table 6.6.

6.2.4 Case Study 3

Step 3 of the training process is as follows: store F(w) for all words/phrases; for a

given window width, store all context words/phrases c for a given word/phrase w;

143

Table 6.5 Average Accuracy in Case Study 2: Experiments with Different Ratio S

0=2 .0, 8=20, 5=10

Ratio S 5:5 6:4 7:3 8:2 9:1

Average

Accuracy, %

76.40 76.83 77.17 77.33 77.50

Table 6.6 Average Accuracy in Case Study 2: Experiments with Different Threshold

Values

Ratio S=6:4

Threshold 0 2.0 2.5 3.0 3.5 4.0

Average Accuracy, % 76.83 76.83 76.83 76.84 76.84

144

store F (w,c), N, and calculate MI(w,c).

Step 5 of the tagging process is: for every word/phrase find out if there is a context

rule for it, and retrieve the corresponding MI(w,c); if the MI(w,c) exceeds a certain

value, replace the corresponding ontology tag according to the context rule.

Table 6.7 shows the experimental results when different Zipf ranges are used. The test

with the Zipfs range 0.12 - 0.80 produces the highest accuracy in this experiment

(76.79%). The average accuracy for all other ranges remains 76.74%. This shows that

Zipfs ranges 0.12-0.22 and 0.55-0.80 have effect on the tagging accuracy.

Table 6.8 shows an interesting trend in the tagging accuracy for a given fixed ratio S.

The average accuracy changes as the window width changes. However, large window

width does not guarantee high accuracy.

The practical implication of this result is that it is enough to process a relatively small

context window of 6-8 words and still achieve a relatively good accuracy. This is

because of the trade-off of large context windows, as when the context window width

increases, more useful as well as more irrelevant information is also included. For

example, the highest accuracy (78.91%) in case study 3, and indeed in all experiments

conducted, was achieved with window width 6 and ratio S' 9:1.

145

Table 6.7 Average Accuracy in Case Study 3: Experiments with Different Zipf’s

Ranges

Zipfs Range 0.12-0.80 0.22 - 0.70 0.30 - 0.70 0.40 - 0.60 0.45 - 0.55

Average

Accuracy, %

76.79 76.74 76.74 76.74 76.74

Table 6.8 Average Accuracy in Case Study 3: Experiments with Different Window

Widths and Ratios S

Ratio Window Width, words Average
Accuracy, %

2 4 6 8 10 12

5:5 78.65 78.67 78.72 78.74 78.72 78.67 78.69

6:4 78.75 78.79 78.83 78.85 78.82 78.74 78.80

7:3 78.66 78.69 78.75 78.77 78.75 78.67 78.71

8:2 78.65 78.67 78.72 78.74 78.72 78.67 78.81

9:1 78.83 78.86 78.91 78.90 78.81 78.68 78.83

146

6.2.5 Discussion

The experiments within the three case studies conducted show that the average

accuracy ranges from 76.40% to 78.91%, with highest accuracy achieved when

themutual information (Case Study 3) is employed. In addition, the experiments show

that the provision of more training material has a positive effect on the tagging

accuracy. The highest tagging accuracy achieved is 78.91% (Case Study 3), when

90% of the corpus is used for training and the context window contains 6 words.

The ontology tagging algorithm sequentially employs statistical and context rules to

assign appropriate tags to the words/phrases. The statistical rules are based on the

frequency of use of certain words/phrases, and their composition is more

straightforward. The context rules, however, may be created in several different ways.

This is in the centre of the three case studies conducted which all explore the

mechanism for generating context rules. The results show a variation of about 2.5% in

the tagging accuracy. The experiments also show that the statistical rules are very

important for the tagging process. Similar to Yarowsky’s “one sense per collocation”

[Yarowsky, 1993], this approach can be called “One Ontology per Collocation”. Thus

the ontology tagging problem can be redefined as how to compose the context rules to

be applied to the text after the tagging based on statistical rules is completed. Each

case study explores that use of different variables and their effect on the tagging

accuracy.

147

It should be noted that the accuracy is calculated using the corpus automatically

generated by mapping the eWord entries into OntoRo entries. It was shown in Chapter

5 section 5.5, that the mapping accuracy is 80%. This means that the training material

is not completely accurate, which brings tagging errors into the system. Therefore, the

tested tagging accuracy can only be considered as an indication of the tagging

accuracy. Currently, due to time constraints, it is not possible to conduct full manual

corrections in the mapping of the 77,022 eWord entries into OntoRo. Moreover, once

the corrections are made, all tests in this chapter should be conducted again. The

results are expected to show a certain degree of variance from the results reported in

this thesis. However, the results should not be very different, as nearly 80% of the

training corpus is correct.

6.3 SUMMARY

In this chapter, a rule-based supervised machine learning algorithm for ontology

tagging is developed and tested. Three case studies are conducted to compare the

options for generating context rules in terms of the tagging accuracy they provide.

The highest tagging accuracy achieved is 78.91%. The characteristics of the tagging

algorithm and the factors affecting its accuracy are analysed and discussed.

148

CHAPTER 7. KNOWLEDGE MANAGEMENT SYSTEM

BASED ON ENTITY AND CONCEPT INDEXING

In Chapter 3, the framework and methods for automatic analysis on entity and concept

information are introduced and implemented. However, the method to extract entity

and concept information has not been described. Furthermore, although concept

information is added into the text collection through ontology tagging as described in

Chapters 5 and 6, given a large text-based document collection, once entity and

concept information is added into the document collection, there is no existing way to

extract them from the document collection again. Therefore a method for extracting,

indexing and retrieving entity and concept information is needed.

In this chapter, a conceptual model of a knowledge management system is proposed,

and its system architecture for entity and concept-based knowledge management is

presented and implemented. Tests on retrieval speed and computer resource

consumption are conducted. Finally, the advantages of using this architecture for

knowledge management are discussed.

7.1 ENTITY AND CONCEPT INDEXING

7.1.1 Conceptual Model

For large text-based systems, the conventional approach to extract information or

knowledge from a system is first to index, then use the indexing information for

further processing. The indexing technology enables fast retrieval of pertinent

149

information from text collections. This is a very important factor to consider when

dealing with large text-based document collections. Without the indexing to support

fast search and retrieval, the application of information and knowledge extraction

system would not be possible in industrial practice. However, there is no existing

indexing system that is suitable for the knowledge extraction task defined in this

thesis.

Indexing methods based on keywords are well studied in the last decades as reviewed

in section 2.2.4 in Chapter 2. Therefore, keyword indexing techniques are used in

concept indexing to facilitate knowledge management in concept and entity extraction.

The system developed (Figure 7.1) has four layers: tagging layer, indexing layer,

extraction layer and merging layer. The task of the tagging layer is to add

grammatical and concept tags to the text documents, and mark the documents with

unique document numbers. The task of the indexing layer is to provide indexing

functions, so that special data structures are generated and data processing algorithms

are used to improve the retrieval speed, reduce the consumption of computing

resources and facilitate the extraction tasks of the next layer. Therefore, this layer is

the most important layer in the conceptual model. The task of the extraction layer is

to extract entity and concept information from a large text document collection that

has been indexed. The task of the merging layer is to merge entity and concept

information into a merged index so that entity and concept information is organised

using documents as units to facilitate the retrieval task.

The conceptual model shown in Figure 7.1 is based on the conceptual framework

(Figure 3.3) discussed in Chapter 3. Entity tagging, which will be discussed later in

150

Original Text-based
Documents

Concept TaggingEntity Tagging

Indexing

Concept ExtractionEntity Extraction

Entity Information Concept Information

II
Merging

Fully Indexed
Document

— Information Type

-- Process

> — Information Flow

Figure 7.1. Conceptual Model of the Knowledge Management System

151

this chapter, involves grammar learning and syntactic analysis. Concept tagging

includes concept learning and morphological analysis as outlined in Chapter 3.

Concept tagging is further elaborated as ontology tagging in Chapters 5 and 6. This

chapter will describe in more detail the entity tagging conducted at the tagging layer.

7.1.2 Entity Tagging

As described in section 3.1.3 of Chapter 3, an entity is an identifiable and discrete

instance existing in a text document. Grammatically speaking, an entity refers to a

word or a nominal composition of words in a sentence, and all words in this

composition should be nouns or pronouns, not separated by words with other parts of

speech. For example, in the phrase “paper cutter”, “paper”, “cutter” and “paper cutter”

can all be treated as nominal word/phrases, but only “paper cutter” is considered an

entity. On the other hand, words which are identified as entities can also convey

ontology information. For example, “paper” in the phrase “paper cutter” indicates the

concept “material”, and “cutter” relates to the concept “machine”. This type of

information can be expressed by attaching ontology tags to the words/phrases.

Therefore, the part of speech tagging, which assigns part of speech tags to words in

the text could help to identify entities. In this thesis, this type of tagging is called

entity tagging. The entity tagging is illustrated in the example below. The original

untagged sentence (7.1) is assigned parts of speech tags (7.2), and then entities are

extracted from the words that are tagged as proper noun or part of name phrase (NP),

singular or mass noun (NN) and plural noun (NNS) (7.3).

152

The September-October term jury had been charged by Fulton Superior

Court Judge Durwood Pye to investigate reports of possible irregularities

in the hard-fought primary which was won by Mayor-nominate Ivan Allen

Jr..

(7.1)

The/AT September-October/NP term/NN jury/NN had/HVD been/BEN

charged/VBN by/IN Fulton/NP Superior/JJ Court/NN Judge/NN

Durwood/NP Pye/NP to/TO investigate/VB reports/NNS of/IN possible/JJ

irregularities/NNS in/IN the/AT hard-fought/JJ primary/NN which/WDT

was/BEDZ won/VBN by/IN Mayor-nominate/NN Ivan/NP Allen/NP

Jr./NP./.

(7.2)

September-October term jury, Fulton, Court Judge Durwood Pye, reports,

irregularities, primary, Mayor-nominate Ivan Allen Jr.

(7.3)

7.1.3 Benefits

On the indexing layer (Figure 7.1), entities and concepts are treated as two specially

made sets of keywords to process: entities are treated as long nominal compositions in

groups, while concepts are considered as ontology tags attached to words.

This approach has three advantages.

1. Processing details are isolated between layers

This method is inspired by the TCP/IP network protocol [Stevens, 1994]. Similar to it,

this model ensures that the details on one layer are only internally visible. For

example, if the indexing algorithms or internal data structures are changed on the

indexing layer, this will not affect the entity and concept extraction as long as the

153

interfaces and corresponding data structures between these layers are not changed.

2. Reuse of indexing methods

The keyword-based indexing techniques are used three times: in entity indexing,

concept indexing and the indexing following their merging. This approach takes

advantage of the object-oriented programming paradigm [Eckel, 2000], where

software components are reused in different applications to reduce the development

time and cost. This makes this knowledge management system compact, easier to

update and maintain, and easier to adopt new indexing methods with little

redevelopment cost.

3. Ease of adding ontology knowledge into the system

Due to the separation of the tagging and indexing layers, it is not necessary to change

any part of the model if additional ontologically tagged text is included. This only

requires processing the text according to the procedures described in the next section.

7.2 PROCESSING

The processing is shown in Figure 7.2 and the detailed descriptions of the different

information types used in the figure are shown in Table 7.1.

The indexing process involves into two tasks. The first task is to create the stemmed

compression dictionary (.text.dict) and store the text into a compression format (.text)

to save storage space and more importantly, to improve the retrieval efficiency. The

second task is to build the inverted files (.invf) , the document weight file (.weight),

and inverted file index (.invf.idx), and to store them, so that the documents could be

154

Source Data

passses -T1

.text.stats passses -T2 passses -N1

.invf.dictcom pressiond ict .text.idx .invf.chunk.trans.invf.chunk

.text.dict.aux

.text.dict

.text .invf.dict.hash passses -N2
fast_compression_dict

.invf.paragrapk .invf.idx •invf.pattern

invf diet
.text.dict.fast

.invf.dict.blocked

.rc

.text.idx. wgt .wcight.approx .weight

O utput
Processing

— Inform ation Type — Indexing Layer Module — Extraction Layer Module — M erging Layer Module

Figure 7.2. Processing

155

Table 7.1 Information Types Used

Information
Name

Description

.text A compressed text source

.text, status Statistical information about the text source

.text.dict Terms in the text in a compressed format

.text.dict.fast A processed fast-to-load dictionary

.text.dict.aux New words found in the second pass of the text compression
process

.text.idx Mapping of document number to the start address of compressed
text documents

text.idx.wgt Merged text index and weight file information

.invf Inverted index of keywords and concepts

.invf. diet Compressed stemmed dictionary of keywords and concepts

.invf.dict.hash Keyword functions of the terms and concepts of .invf.diet

invf.dict.block Blocked version of the stemmed dictionary of keywords and
concepts, so it can be loaded faster from the hard disk

.invf.chunk.trans Stemmed terms of keywords and concepts from occurrence order
to lexical order

.invf. chunk Address information of source text broken up into chunks for
inversion pass

.invf.paragraph Information of paragraph address information

.invf.idx Mapping information of stemmed terms and concepts to the
inverted file addresses

.weight.approx Approximate weight information for ranking purpose

.weight Weight information

.pattern Finite automata pattern configuration file

.rc Initialisation parameters

156

retrieved when needed. These two tasks are performed in two steps. In the first step,

the subsystem indexes and compresses the text (.text), and in the second step it

generates the inverted file (.invf) and the inverted file dictionary (.invf.dict).

7.3 IMPLEMENTATION AND TESTING

The knowledge indexing and retrieving system is built based on the information

retrieval system reported by Witten et al. (1999). The system is implemented in C, C

Shell and Java on Linux Mandrake 10. Sample source code developed is included in

Appendix F.

Tests are conducted on Pentium III M 700 MHz PC with 384MB RAM. Processing

speed and computer resource consumption are two main factors measured in the tests.

The tests of the indexing speed are divided into 3 parts to measure the speed of entity

indexing, concept indexing, and the indexing after merging of the entity and concept

indices. The testing data sets used are untagged Brown Corpus (UBC) with

approximately one million words. Each data set contains several copies of the UBC.

The tests start with the smallest data set, which contains 6 UBC copies (6 million

words), and then the size increases by one million words as an increment. The biggest

data set used contains 60 copies (60 million words).

7.3.1 Indexing Tests

First, part of speech tagging is conducted on the UBC so that part of speech tags are

attached to each word. Ontology tagging is also conducted separately on the UBC to

assign ontology tags to each word/phrase in it. Next, indexing of the entities and

157

concepts are conducted based on these two tagged UBCs. Finally, the information

extracted from the two UBCs is merged.

The speed of entity indexing, concept indexing and the indexing after the merging of

the former two is illustrated in Figure 7.3, 7.4 and 7.5 respectively. As shown in the

figures, the total time for processing over 60 million words using the three procedures

is less than 20 minutes.

As shown in those figures, the processing time in the testing sets is approximately

proportional to the size of the text data set. It can be expected that the same indexing

architecture can be applied to larger text data sets because the processing time only

increases proportionally to the size of the text data rather than increasing dramatically.

7.3.2 Testing of Entity and Concept Extraction

The purpose of the second set of tests is to evaluate the speed of retrieving all entities

or all concepts in the indexed text collection. Entities are extracted from the UBC

which is assigned part of speech tags. Then, the longest nominal word compositions

are extracted from each document as entities with a reference to the document itself

and output to a file. Next, similarly, all concept tags in each document are extracted

with a reference to the document itself, and output to a file.

In these tests, the processing time and computer resource consumptions (such as CPU

time, memory usage and disk usage) are monitored and recorded. Figures 7.6 - 7.9

show the testing results for entity extraction, while Figures 7.10 - 7.13 show the

corresponding results for concept extraction. These figures, based on the results

included in Appendix G, show that in entity and concept extraction, the extraction

158

3000
{/.)

1 2500o9
C/3
u 2000
6

g) 1500
"55t/)
§ 1000
cu

500

0 10 20 30 40 50 60 70

N um ber o f W ord s, M illion

Figure 7.3 Total Processing Time for Entity Indexing

700
C/3

H 6000
1 500
<u
• | 400
60

•I 300
co <L>| 200 cu

100

0
0 20 30 40 50 60 70

Num ber o f W ords, M illion

Figure 7.4 Total Processing Time for Concept Indexing

 —

. .

10 20 30 40 50 60 70

N um ber o f W ords, M illion

-o
c
ooV
1>
E
H 60
c

500

450

400

350

300

250

200
150

100

50

0
0

Figure 7.5 Total Processing Time for Merged Indexing

■ 'T : :,c3'

Num ber o f W ords, M illion

Figure 7.6 CPU Processing Time for Entity Extraction

1 6 0

.
600

CA ~0
I

500

P 400
oo

• I 300
C /D<D
8 200

10 20 30 40 50 60 70

Num ber o f W ords, M illion

Figure 7.7 Total Processing Time for Entity Extraction

20 30 40 50

Num ber o f W ords, M illion

Figure 7.8 Memory Usage for Entity Extraction

161

120000

100000

0Q
* 80000
T36
V)

D
g 60000
CTSD.GO

40000
S

20000

0 10 20 30 40 50 60 70

N um ber o f W o rd s, M illion

Figure 7.9 Disk Usage for Entity Extraction

0 10 20 30 40 50 60 70

Num ber o f W ords, M illion

Figure 7.10 CPU Processing Time for Concept Extraction

162

Num ber o f W ords, M illion

Figure 7.11 Total Processing Time for Concept Extraction

450

400

350
CQ
« 300

I 250
g' 200

| 150

100

50

0
0 10 20 30 40 50 60 70

Num ber o f W ords, M illion

E Z

Figure 7.12 Memory Usage for Concept Extraction

163

30000

25000

CQ
* 20000

g 15000CS
Cl

C / 3

t 10000
D

5000

0 10 20 30 40 50 60 70

Num ber o f W ords, M illion

Figure 7.13 Disk Usage for Concept Extraction

164

time, total processing time, CPU processing time, and disk usage are all

approximately linearly proportional to the size of the text data. This indicates that

when the size of the text to process increases, the processing time and the other

consumption of resources all increase in a steady pace. The benefit of this key

characteristic is that in real applications, the processing time and the consumption of

computing resources is not expected to increase so dramatically that to make the

approach impractical.

7.4 SEARCH SPEED COMPARISON WITH MYSQL

Search speed evaluation is important for a knowledge management system, therefore

a benchmark baseline system needs to be determined to compare the test results.

MySQL4.0 has been selected for this task as one of the industrial standardised

database solutions with full text search function. Therefore, speed tests are conducted

in comparison with MySQL4.0 to show the capability of the system developed in this

chapter.

Before conducting the tests, the length of a word/concept query needs to be

determined. An assumption is made here that the query pattern is expected to follow a

typical keyword search query which is 2 to 3 words in average [eTesting Labs Inc,

2000]. Therefore, the length of every query is three words.

Furthermore, there are four considerations related to MySQL which affect the tests to

be conducted.

1. Due to the limitation of the MySQL full text search, any word less than 3 letters

will not be indexed. Therefore, the word/concept query needs to be longer than 3

165

letters.

2. Another limitation is related to the use of Boolean queries in MySQL, when

sometimes no result is returned, which makes the comparison of query time

impossible. Therefore, only relevance ranking method is used in these tests. Similar to

the relevance ranking used in MySQL, approximate vector space cosine ranking is

used in the system developed in this chapter.

3. Next, as MySQL is running on Windows platform and the system in this chapter is

implemented under Linux, irrelevant factors which may affect test results, such as the

use of different operating systems should be excluded as much as possible. The query

time is recorded when a query is issued until all results are retrieved but have not been

output to display. As a result, the differences in the file structure and input/output

subsystems in these two different operating systems are eliminated.

4. Indexing of table columns in MySQL is useful as it improves the speed of retrieval.

Therefore, the table columns are indexed before the speed tests are conducted.

In the test text collection used, there are over one million words/concepts with

different frequencies of appearance. These words are first ordered according to this

frequency, and then they are divided into 10 sections. For each section, 15

words/concepts are randomly selected and divided into 5 groups with 3

words/concepts in each of them. The 3 words/concepts in each group are then sent out

to the systems as a query. Finally, the average retrieving time is obtained for these 5

groups as shown in Figure 7.14. Tests are conducted using MySQL 4.0.24 on

Windows 2000 Professional with the same configuration throughout the tests.

As shown in Figure 7.14, the query time ranges from 20 to 4053.5 milliseconds.

166

4500 ~7 ’ --

&
V* 1 I , f » *

■y'" ..
| 2500

H
2P 2000

B 1500

_ , - § ---------

— n g :., ■■ m___ v ..
Lm i i i— i

Test Number

H M ySQL ■ Concept Indexing System

Figure 7.14 Retrieving Time Comparison with MySQL Using Text after Merging of

Entity and Concept Indices

167

Queries with frequently used words tend to need longer time to complete (Test 1 in

Figure 7.14). The system developed in this chapter outperformed MySQL in all query

tests, and the query time in most cases was less than 50% of that of MySQL after

optimisation.

7.5 CASE STUDIES

In order to evaluate the effectiveness of the knowledge management system

developed and to show how the system deals with queries which combine keywords,

entities and concepts, five questions are described below.

The material used in the system is the Semcor corpus, which has been tagged with

POS tags and ontology tags. There are 20,138 lines of senses in Semcor, where each 5

sentences are grouped as one document. Therefore, there are 4,028 documents which

contain approximately 440,000 words. The senses in each document are tagged with

POS tags, which indicate their parts of speech, and ontology tags (Figure 7.15).

As shown in the figure, each document has three parts, the first part of the document

is 5 sentences tagged with part of speech tags; the second part of the document is the

same 5 sentences tagged with ontology tags; the last part of the document is the

document number. Words with little useful information are tagged with “IGNORE” in

a document. The POS tags used follow the format used in Brown Corpus [Francis,and

Kucera, 1979]. For example, “Fulton/NP” indicates the word “Fulton” is a proper

noun. The ontology tags used are defined in the ontology dictionary OntoRo

developed in this thesis. In the case studies, the documents are tagged with ontology

tags at Head group level from OntoRo (Figure 5.1). For example, “produced/S306”

168

The/IGNORE Fulton/NP County/NP G rand/N P Jury/N P said/VB Friday/NN an/IGNORE investigation/NN of/IGNORE Atlanta/NN *s/
IGNORE recen t/JJ primary/NN election/NN produced/VB '/IGNORE no/lGNORE evidence/NN '/IGNORE that/IGNORE any/IGNORE
irregularities/NN took/VB place/VB ./IGNORE
The/IGNORE jury/NN further/RB said/VB in/IGNORE term/NN end/NN presentm ents/N N that/IGNORE the/IGNORE City/NP
Executive/NP Com m ittee/NP ,/IGNORE which/IGNORE had/VB over-all/JJ charge/NN of/IGNORE the/IGNORE election/NN ,/
IGNORE /IGNORE deserves/V B the/IGNORE praise/NN and/IGNORE thanks/NN of/IGNORE the/IGNORE City/NP of/NP Atlanta/NP
'/IGNORE for/IGNORE the/IGNORE manner/NN in/IGNORE which/IGNORE the/IGNORE election/NN was/IGNORE conducted/VB ./
IGNORE

The/IGNORE Fulton/IGNORE County/IGNORE G rand/IGNORE Jury/IGNORE said/S334 Friday/S579 an/IGNORE investigation/S267
of/IGNORE Atlanta/IGNORE 's/IGNORE recent/S 74 primary/S362 election/S362 produced/S306 '/IGNORE no/IGNORE evidence/
S276 ’/IGNORE that/IGNORE any/IGNORE irregularities/S48 took/UNKNOWN place/UN KNOWN ./IGNORE
The/IGNORE jury/S272 further/UNKNOWN said /S334 in/IGNORE term /S65 end/S38 presentm ents/S561 that/IGNORE the/IGNORE
City/IGNORE Executive/IGNORE Comm ittee/IGNORE ,/IGNORE which/IGNORE had/S471 over-all/S45 charge/S455 of/IGNORE
the/IGNORE election/S444 ,/IGNORE '/IGNORE d eserves/S 562 the/IGNORE praise/S566 and/IGNORE thanks/S557 of/IGNORE
the/IGNORE City/IGNORE of/IGNORE Atlanta/IGNORE '/IGNORE for/IGNORE the/IGNORE m anner/S4 in/IGNORE which/IGNORE
the/IGNORE election/S444 w as/IGNORE conducted/S407 ./IGNORE

DOCNUM000001

Figure 7.15 The Composition of a Document Used in the Case Study

169

indicates that word “produced” is related to head group 306, which has the meaning

of “disclosure”, “discovery” and “revelation”.

Five test tasks are used to examine the performance of the system and a comparison

result is shown in Table 7.2.

Task 1: What aspects are important to choose a good place for water related leisure

entertainment?

Find documents which explain what aspects make a place suitable for water related

leisure activities should be considered relevant.

Query steps:

1. Use keyword “water”, as it must be in the document. There were 132 documents

retrieved.

2. Within the 132 documents obtained in step 1, use “S513”, which is the concept

number related to the concept of “entertainment, leisure and amusement”, there

were 16 documents left.

3. In the 16 documents obtained in step 2, use “S507” (interest)1, there were 4

documents left.

4. In the 4 document left in step 3, use “S91” (contribute to, determine, reason), there

were 2 documents left as shown in Figure 7.16.

Explanation:

One keyword “water” and three concepts “S513”, “S507”, “S91” were used as queries

to restrict documents obtained from 132 to 2 documents. The query can be interpreted

as “find documents which contain “water” as an “entertainment” (S513) with some

“contributing” factors (S91) to people’s “interest” (S507).

1 This means “S507” is the concept number related to the concept o f “interest”. The rest o f the case studies follow
the same style.

170

Table 7.2 Boolean Keyword Query Result

Task
Number

The Keywords the Retrieved Documents
Must Contain

Number of
Documents
Retrieved

Relevance
(Related/all
Retrieved)

w m w m B m N/A
m m m rn m m l i l f l l l i l l ! ! N/A

water, entertainment N/A
:v W W ^ m l l l l t e i i f i f t l w N/A

::l|iitel;;M M im im s S . N/A
N/A
0/1

1 water, contribute m sm m M M 0/2
i good, water, sports N/A
i water, because 4 1/4
2 bizarre, phenomena 0 N/A
2 strange, phenomena 0 N/A
2 strange, sea, lives 0 N/A
2 bizarre, sea, lives 0 N/A
2 weird, sea, lives 0 N/A
2 interesting, phenomena 0 N/A
2 interesting, sea 0 N/A
2 strange, sea, situation 0 N/A
2 strange, sea, case 0 N/A
2 strange, sea anomaly 0 N/A
3 money, genuine 0 N/A
3 money, useless 0 N/A
3 money, not, useful N/A

money, profit 3 0/3 '
3 money, fortune 0 N/A
3 money, fake, product 0 N/A

money, fake, service 0 N/A
fake, product 0 N/A

3 fake, service : 0 N/A
3 make, profit 2 0/2
4 buses 0 N/A
4 cars, economical 0 N/A
4 cars, economic 0 N/A
4 cars, alternative 0 N/A
4 cars, affect 0 N/A
4 transport 3 1/3
4 cars, expensive 0 N/A
4 trucks, expensive 0 N/A
4 trucks, inexpensive 0 N/A
4 trucks, cost 0 N/A
5 religion, modem 1/3
5 religion, belief 0/3
5 modem, Christianity 1/3

171

Table 7.2 Boolean “and” Keyword Query Result (Cont.)

5 religion, change N/A
i l i l K W B M B m B

5 N/A
5 Christianity, opinion W B s s is m . N/A

religion, people, opinion W Bm M W m N/A
5 religion, people, think N/A
5 religion, people, different 0/1

Result Output

A/IGNORE site/S 110 which/IGNORE overlooks/S259 a/IGNORE harbor/IGNORE or/IGNORE
river/S204 may/IGNORE offer/S382 interest/S507 in/IGNORE the/IGNORE activities/S372
of/IGNORE boating/S513 traffic/S157 ./IGNORE
An/IGNORE area/S 110 on/IGNORE the/IGNORE coast/S 199 may/IGNORE have/S32 relaxing/S410
views/S255 oFIGNORE the/IGNORE surFS204 rolling/S152 in/IGNORE on/IGNORE a/IGNORE
beach/S 19 ./IGNORE
A/IGNORE site/Sl 10 may/IGNORE also/S22 be/S335 attractive/S515 just/UNKNOWN
through/IGNORE the/IGNORE beauty/S507 of/IGNORE its/IGNORE trees/S214 and/IGNORE
shrubs/S214 ./IGNORE
Note/S260 extent/S 19 of/IGNORE these/IGNORE interests/S507 and/IGNORE how/IGNORE
available/S386 they/IGNORE will/IGNORE be/S335 for/IGNORE the/IGNORE public/S30
to/IGNORE enjoy/S506 ./IGNORE
Water/S 193 interest/S507 is/Sl one/S52 of/IGNORE the/IGNORE most/UNKNOWN valuab!e/S385
factors/S91 you/IGNORE can/IGNORE fmd/S92 for/IGNORE a/IGNORE recreation/S513
site/Sl 10 ./IGNORE
A/IGNORE site/NN which/IGNORE overlooks/VB a/IGNORE harbor/NN or/IGNORE river/NN
may/IGNORE offer/VB interest/NN in/IGNORE the/IGNORE activi/NN ties/NN of/IGNORE
boating/NN trafFic/NN ./IGNORE
An/IGNORE area/NN on/IGNORE the/IGNORE coast/NN may/IGNORE have/VB relaxing/JJ
views/NN of/IGNORE the/IGNORE surf/NN rolling/VB in/IGNORE on/IGNORE a/IGNORE
beach/NN ./IGNORE
A/IGNORE site/NN may/IGNORE also/RB be/VB attractive/JJ just/RB through/IGNORE
the/IGNORE beauty/NN of/IGNORE its/IGNORE trees/NN and/IGNORE shrubs/NN ./IGNORE
Note/VB extent/NN of/IGNORE these/IGNORE interests/NN and/IGNORE how/IGNORE available/JJ
they/IGNORE will/IGNORE be/VB for/IGNORE the/IGNORE public/NN to/IGNORE
enjoy/VB ./IGNORE
Water/NN interest/NN is/VB one/JJ of/IGNORE the/IGNORE most/RB valuable/JJ factors/NN
you/IGNORE can/IGNORE find/VB for/IGNORE a/IGNORE recreation/NN site/NN ./IGNORE
DOCNUM00371

Figure 7.16 Result Output and Corresponding Original Documents for Task 1

172

Determine/S282 how/IGNORE much/IGNORE topography/S 136 limits/S452 useful/S386 area/SllO
or/IGNORE what/IGNORE the/IGNORE costs/S22 of/IGNORE earth/S 158 moving/S38 or/IGNORE
grading/S 15 might/IGNORE be/IGNORE ./IGNORE
-/IGNORE In/IGNORE addition/IGNORE to/IGNORE its/IGNORE recreation/S513
interests/S507 ,/IGNORE water/S25 is/IGNORE needed/S376 for/IGNORE drinking/S 174 ,/IGNORE
sanitation/S392 ,/IGNORE and/IGNORE irrigation/S216 ./IGNORE
The/IGNORE quantity/S 15 and/IGNORE quality/S3 of/IGNORE water/S25 sources/S91 is/S335
often/UNKNOWN a/IGNORE big/S385 factor/S91 in/IGNORE site/Sl 10 selection/S362 ./IGNORE
The/IGNORE area/SllO may/IGNORE provide/S378 good/S571 springs/S173 or/IGNORE
opportunities/S92 for/IGNORE a/IGNORE well/S150 or/IGNORE be/S112 near/S117 to/IGNORE
municipal/S 108 water/S271 lines/S271 ./IGNORE
Figure/S295 the/IGNORE cost/S22 of/IGNORE providing/S378 water/S25 to/IGNORE the/IGNORE
use/S386 areas/S 110 ./IGNORE
Determine/VB how/IGNORE much/IGNORE topography/NN limits/VB usefiil/JJ area/NN
or/IGNORE what/IGNORE the/IGNORE costs/NN of/IGNORE earth/NN moving/VB or/IGNORE
grading/NN might/IGNORE be/IGNORE ./IGNORE
-/IGNORE In/IGNORE addition/IGNORE to/IGNORE its/IGNORE recreation/NN
interests/NN ,/IGNORE water/NN is/IGNORE needed/VB for/IGNORE drinking/NN ,/IGNORE
sanitation/NN ,/IGNORE and/IGNORE irrigation/NN ./IGNORE
The/IGNORE quantity/NN and/IGNORE quality/NN of/IGNORE water/NN sources/NN is/VB
often/RB a/IGNORE big/JJ factor/NN in/IGNORE site/NN selection/NN ./IGNORE
The/IGNORE area/NN may/IGNORE provide/VB good/JJ springs/NN or/IGNORE opportunities/NN
for/IGNORE a/IGNORE well/NN or/IGNORE be/VB near/JJ to/IGNORE municipal/JJ water/NN
lines/NN ./IGNORE
Figure/VB the/IGNORE cost/NN of/IGNORE providing/VB water/NN to/IGNORE the/IGNORE
use/NN areas/NN ./IGNORE
DOCNUM00381

Figure 7.16 Result Output and Corresponding Original Documents for Task 1 (Cont.)

173

Original Documents

A site which overlooks a harbor or river may offer interest in the activities of boating traffic .
An area on the coast may have relaxing views of the surf rolling in on a beach .
A site may also be attractive just through the beauty of its trees and shrubs .
Note extent of these interests and how available they will be for the public to enjoy .
Water interest is one of the most valuable factors you can find for a recreation site .
DOCNUM00371

Determine how much topography limits useful area or what the costs of earth moving or grading might
be .
- In addition to its recreation interests , water is needed for drinking , sanitation , and irrigation .
The quantity and quality of water sources is often a big factor in site selection .
The area may provide good springs or opportunities for a well or be near to municipal water lines .
Figure the cost of providing water to the use areas .
DOCNUM00381

Figure 7.16 Result Output and Corresponding Original Documents for Task 1 (Cont.)

174

Task 2: Are there any documents about bizarre phenomena about sea lives? What are

the reasons that caused these phenomena?

Find documents which contain the information of strange situations happened in sea

or other water bodies where animals lives in, with some explanations of causes of the

phenomena.

Query steps:

1. “S204” (sea, river, water etc.) is used as the concept for query, 136 documents

were returned.

2. In 136 documents returned, use “S90” (phenomenon) as the query, 43 documents

were returned.

3. Use “S91” (cause, reason) as the query, there were 11 documents returned.

4. Further, use “S210” (life, animal, plant) as the query, 2 documents were left.

5. User “S48” (strange, bizarre) as the query, one document was left (Figure 7.17).

Explanation:

Five concepts “S204”, “S90”, “S91”, “S210” and “S48” were used to restrict retrieval

results from 136 documents to 2 documents. The query can be interpreted as “find

documents which describe phenomena (“S90”) happened in sea (“S204”) about

animals (“S210”) living in it, and also with some explanation about the cause (“S91”).

Task 3: Why some useless goods or services can make money? Are there any

particular people names are mentioned in the documents?

Find any documents which explain why some useless or fake goods or services can

make profit.

175

Result Output

Scientists/S287 and/IGNORE fishermen/S370 have/IGNORE occasionally/UNKNOWN seen/S282
strange/S48 by-products/UNKNOWN of/IGNORE the/IGNORE phenomenon/S90 ./IGNORE
During/IGNORE a/IGNORE 1933/IGNORE tsunami/S204 in/IGNORE Japan/S203 the/IGNORE
sea/S 19 glowed/S222 brilliantly/S222 at/IGNORE night/S243 ./IGNORE
The/IGNORE luminosity/S243 of/IGNORE the/IGNORE water/S 193 is/IGNORE now/S72
believed/S265 to/IGNORE have/IGNORE been/IGNORE caused/S91 by /IGNORE the/IGNORE
stimulation/S 101 of/IGNORE vast/S 19 numbers/S49 of/IGNORE the/IGNORE luminescent/S243
organism/S210 Noctiluca/S210 miIiaris/S210 by/IGNORE the/IGNORE turbuIence/S505 of/IGNORE
the/IGNORE sea/S 19 ./IGNORE
Japanese/S 19 fishermen/S370 have/IGNORE sometimes/UNKNOWN observed/S282 that/IGNORE
sardines/S175 hauled/S168 up/IGNORE in/IGNORE their/IGNORE nets/S370 during/IGNORE
a/IGNORE tsunami/S204 have/S471 enormously/S19 swollen/S116 stomachs/S 114 ;/IGNORE
the/IGNORE fish/S214 have/IGNORE swallowed/S174 vast/S 19 numbers/S49 of/IGNORE
bottom/S124 living/Sl 13 diatoms/S113 ,/IGNORE raised/S180 to/IGNORE the/IGNORE surface/S130
by/IGNORE the/IGNORE disturbance/S35 ./IGNORE
The/IGNORE waves/S 122 of/IGNORE a/IGNORE 1923/IGNORE tsunami/S204 in/IGNORE
Sagami/IGNORE Bay/IGNORE brought/S22 to/IGNORE the/IGNORE surface/S 130 and/IGNORE
battered/S388 to/IGNORE death/S65 huge/S 19 numbers/S49 of/IGNORE fishes/S214 that/IGNORE
normally/IGNORE live/Sl 13 at/IGNORE a/IGNORE depth/S 130 of/IGNORE 3000/IGNORE
feet/S119 ./IGNORE
Scientists/NN and/IGNORE flshermen/NN have/IGNORE occasionally/RB seen/VB strange/JJ by-
products/NN of/IGNORE the/IGNORE phenomenon/NN ./IGNORE
During/IGNORE a/IGNORE 1933/IGNORE tsunami/NN in/IGNORE Japan/NN the/IGNORE sea/NN
glowed/VB brilliantly/RB at/IGNORE night/NN ./IGNORE
The/IGNORE luminosity/NN of/IGNORE the/IGNORE water/NN is/IGNORE now/RB believed/VB
to/IGNORE have/IGNORE been/IGNORE caused/VB by/IGNORE the/IGNORE stimulation/NN
ofTGNORE vast/JJ numbers/NN of/IGNORE the/IGNORE luminescent/JJ organism/NN
Noctiluca/NN miliaris/NN by/IGNORE the/IGNORE turbulence/NN of/IGNORE the/IGNORE
sea/NN ./IGNORE
Japanese/D fishermen/NN have/IGNORE sometimes/RB observed/VB that/IGNORE sardines/NN
hauled/VB up/IGNORE in/IGNORE their/IGNORE nets/NN during/IGNORE a/IGNORE tsunami/NN
have/VB enormously/RB swollen/JJ stomachs/NN ;/IGNORE the/IGNORE fish/NN have/IGNORE
swallowed/VB vast/JJ numbers/NN of/IGNORE bottom/NN living/JJ diatoms/NN ,/IGNORE
raised/VB to/IGNORE the/IGNORE surface/NN by/IGNORE the/IGNORE disturbance/NN ./IGNORE
The/IGNORE waves/NN of/IGNORE a/IGNORE 1923/IGNORE tsunami/NN in/IGNORE Sagami/NP
Bay/NP brought/VB to/IGNORE the/IGNORE surface/NN and/IGNORE battered/VB to/IGNORE
death/NN huge/JJ numbers/NN of/IGNORE fishes/NN that/IGNORE normally/RB live/VB
at/IGNORE a/IGNORE depth/NN of/IGNORE 3000/IGNORE feet/NN ./IGNORE
DOCNUM02551

Figure 7.17 Result Output and Corresponding Original Documents for Task 2

176

Original Documents

Scientists and fishermen have occasionally seen strange by-products of the phenomenon .
During a 1933 tsunami in Japan the sea glowed brilliantly at night.
The luminosity of the water is now believed to have been caused by the stimulation of vast numbers of
the luminescent organism Noctiluca miliaris by the turbulence of the sea .
Japanese fishermen have sometimes observed that sardines hauled up in their nets during a tsunami
have enormously swollen stomachs ; the fish have swallowed vast numbers of bottom living diatoms ,
raised to the surface by the disturbance .
The waves of a 1923 tsunami in Sagami Bay brought to the surface and battered to death huge numbers
of fishes that normally live at a depth of 3000 feet.
DOCNUM02551

Figure 7.17 Result Output and Corresponding Original Documents for Task 2 (Cont.)

177

Query steps:

1. Send keyword “money” as a query, 92 documents were returned.

2. In 92 documents returned, send “S91” (cause or reason) as a query, 16 documents

were left.

3. In 16 documents returned, send “S317” (fake, not genuine, and counterfeit) as a

query, 3 documents were left (Figure 7.18).

4. From the three documents returned, send a regular expression “([A-

Z][A]*V(NP)[]?)([A-Z][A]*V(NP)[]?)+” (pattern for recognizing name entities) as a

query, results are shown in Figure 7.19.

Explanation:

One keyword “money”, two concepts “S91” and “S317” were used to return 3

documents, and one pattern is to extract name entities from the 3 documents retrieved.

The query can be interpreted as “find documents which explain why (“S91”) fakes

(“S317”) can make “money”. In the documents retrieved, find any people names

which follow the pattern beginning with an upper case letter and having a “proper

noun” part of speech tag (“NP”).

Task 4: How commuting on road is compared with other commuting methods for a

business?

Find documents which contain information about the cost comparison between

traveling by road and other traveling methods and how it affects any business

involved.

2 A concise description o f a pattern to be matched during a string search. The pattern is written according to one o f
several small formal languages devised for this purpose, and may call for matching fixed strings, runs o f arbitrary

178

Result Output

But/IGNORE it/IGNORE is/IGNORE our/IGNORE health/S220 -/IGNORE more/S 15 precious/S544
than/IGNORE all/IGNORE the/IGNORE money/S489 in/IGNORE the/IGNORE world/S 187 -
/IGNORE that/IGNORE these/IGNORE modera/S72 witch/UNKNOWN doctors/UNKNOWN
with/IGNORE their/IGNORE fake/S317 therapeutic/S395 gadgets/S377 are/IGNORE gambling/S369
away/UNKNOWN ./IGNORE
By/IGNORE preying/S21 on/IGNORE the/IGNORE sick/S391 ,/IGNORE by/IGNORE playing/S32
callously/S32 on/IGNORE the/IGNORE hopes/S526 of/IGNORE the/IGNORE
desperate/S46 ,/IGNORE by/IGNORE causing/S91 the/IGNORE sufferer/S391 to/IGNORE delay/S74
proper/S387 medical/UNKNOWN care/UNKNOWN ,/IGNORE these/IGNORE medicaI/S395
ghouls/S30 create/S95 pain/S507 and/IGNORE misery/S506 by/IGNORE their/IGNORE very/S19
activity/S372 ./IGNORE
Typically/S372 ,/IGNORE Sarah/IGNORE Gross/IGNORE and/IGNORE Mr./IGNORE A/IGNORE
both/IGNORE lost/S301 more/S 15 than/IGNORE their/IGNORE money/S489 as/IGNORE
the/IGNORE result/S90 of/IGNORE their/IGNORE experiences/S90 with/IGNORE their/IGNORE
Cleveland/IGNORE quacks/S395 ./IGNORE
Sarah/IGNORE Gross/IGNORE found/S282 that/IGNORE the/IGNORE treatments/S395 given/S461
her/IGNORE for/IGNORE a/IGNORE nervous/S505 ailment/S391 by/IGNORE the/IGNORE
masseur/S 194 were/IGNORE not/UNKNOWN helping/S388 her/IGNORE ./IGNORE
As/IGNORE a/IGNORE result/S90 ,/IGNORE she/IGNORE consulted/S346 medical/S395
authorities/S395 and/IGNORE leamed/S302 that/IGNORE the/IGNORE devices/S377 her/IGNORE
quack/S286 '/IGNORE doctor/S395 ’/IGNORE was/IGNORE using/S405 were/S335
phony/S 12 ./IGNORE
But/IGNORE it/IGNORE is/IGNORE our/IGNORE health/NN -/IGNORE more/JJ precious/JJ
than/IGNORE all/IGNORE the/IGNORE money/NN in/IGNORE the/IGNORE world/NN -/IGNORE
that/IGNORE these/IGNORE modem/JJ witch/NN doctors/NN with/IGNORE their/IGNORE fake/JJ
therapeutic/JJ gadgets/NN are/IGNORE gambling/VB away/RB ./IGNORE
By/IGNORE preying/VB on/IGNORE the/IGNORE sick/JJ ,/IGNORE by/IGNORE playing/VB
callously/RB on/IGNORE the/IGNORE hopes/NN of/IGNORE the/IGNORE desperate/NN ,/IGNORE
by/IGNORE causing/VB the/IGNORE sufferer/NN to/IGNORE delay/VB proper/JJ medical/NN
care/NN ,/IGNORE these/IGNORE medical/JJ ghouls/NN create/VB pain/NN and/IGNORE
misery/NN by/IGNORE their/IGNORE very/JJ activity/NN ./IGNORE
Typically/RB ,/IGNORE Sarah/NP Gross/NP and/IGNORE Mr./NP A/NP both/IGNORE lost/VB
more/NN than/IGNORE their/IGNORE money/NN as/IGNORE the/IGNORE result/NN of/IGNORE
their/IGNORE experiences/NN with/IGNORE their/IGNORE Cleveland/NN quacks/NN ./IGNORE
Sarah/NP Gross/NP found/VB that/IGNORE the/IGNORE treatments/NN given/VB her/IGNORE
for/IGNORE a/IGNORE nervous/JJ ailment/NN by/IGNORE the/IGNORE masseur/NN
were/IGNORE not/RB helping/VB her/IGNORE ./IGNORE
As/IGNORE a/IGNORE result/NN ,/IGNORE she/IGNORE consulted/VB medical/JJ authorities/NN
and/IGNORE leamed/VB that/IGNORE the/IGNORE devices/NN her/IGNORE quack/JJ '/IGNORE
doctor/NN ’/IGNORE was/IGNORE using/VB were/VB phony/JJ ./IGNORE
DOCNUM00451

Figure 7.18 Result Output and Corresponding Original Documents for Task 3, Step 3

characters, characters selected from a set, alternate words, and other specifics.

179

Enthusiastically/IGNORE ,/IGNORE Americans/IGNORE have/IGNORE swept/UNKNOWN
subliterary/UNKNOWN and/IGNORE bogus/S317 materials/Sl like/IGNORE Paul/IGNORE
Bunyan/IGNORE tales/S351 ,/IGNORE Abe/S351 Lincoln/S351 anecdotes/S351 and/IGNORE
labor/IGNORE union/IGNORE songs/S240 up/IGNORE as/IGNORE true/S288 products/S95
of/IGNORE our/IGNORE American/IGNORE oral/S343 tradition/S95 ./IGNORE
Nor/IGNORE have/IGNORE we/IGNORE remembered/S265 that/IGNORE in/IGNORE the/IGNORE
melting/UNKNOWN pot/UNKNOWN of/IGNORE America/IGNORE the/IGNORE hundreds/S59
of/IGNORE isolated/S26 and/IGNORE semi/IGNORE isolated/S26 ethnic/S6 ,/IGNORE regional/S30
and/IGNORE occupational/S372 groups/IGNORE did/IGNORE not/UNKNOWN fuse/S25
into/IGNORE a/IGNORE homogeneous/S 11 national/S113 unit/S217 until/IGNORE
long/UNKNOWN after/IGNORE education/S286 and/IGNORE industrialization/S95 had/IGNORE
caused/S91 them/IGNORE to/IGNORE cast/IGNORE oral/S343 tradition/S95 aside/IGNORE
as/IGNORE a/IGNORE means/S378 of/IGNORE carrying/S301 culturally/S301 significant/S301
material/S 1 ./IGNORE
Naturally/UNKNOWN ,/IGNORE such/S44 scholarly/S314 facts/S90 are/S335 of/IGNORE little/S19
concem/S506 to/IGNORE the/IGNORE man/S 100 trying/S403 to/IGNORE make/S470 money/S489
or/IGNORE fan/S365 patriotism/S570 by/IGNORE means/S378 of/IGNORE folklore/S286 ./IGNORE
That/IGNORE much/S 19 of/IGNORE what/IGNORE he/IGNORE calls/S46 folklore/S286 is/S335
the/IGNORE result/S90 of/IGNORE beliefs/S276 carefiilly/S266 sown/S 134 among/IGNORE
the/IGNORE people/S217 with/IGNORE the/IGNORE conscious/S 186 aim/S369 of/IGNORE
producing/S97 a/IGNORE desired/S376 mass/S 19 emotional/S103 reaction/S91 to/IGNORE
a/IGNORE particular/S9 situation/S4 or/IGNORE set/S44 of/IGNORE situations/S4 is/S335
irrelevant/S5 ./IGNORE
As/IGNORE long/IGNORE as/IGNORE his/IGNORE material/S 1 is/S335 Americana/S335 ,/IGNORE
can/IGNORE in/S92 some/S92 way/S92 be/IGNORE ascribed/S92 to/IGNORE the/IGNORE
masses/S 19 and/IGNORE appears/S259 '/IGNORE democratic/S 16 '/IGNORE to/IGNORE
his/IGNORE audience/S309 ,/IGNORE he/IGNORE remains/S85 satisfied/S529 ./IGNORE
Enthusiastically/RB ,/IGNORE Americans/NN have/IGNORE swept/VB subliterary/JJ and/IGNORE
bogus/JJ materials/NN like/IGNORE Paul/NP Bunyan/NP tales/NN ,/IGNORE Abe/NN Lincoln/NN
anecdotes/NN and/IGNORE labor/NN union/NN songs/NN up/IGNORE as/IGNORE true/JJ
products/NN of/IGNORE our/IGNORE American/JJ oral/JJ traditionMN ./IGNORE
Nor/IGNORE have/IGNORE we/IGNORE remembered/VB that/IGNORE in/IGNORE the/IGNORE
melting/NN pot/NN of/IGNORE America/NN the/IGNORE hundreds/NN of/IGNORE isolated/JJ
and/IGNORE semi/JJ isolated/JJ ethnic/JJ ,/IGNORE regional/JJ and/IGNORE occupational/JJ
groups/NP did/IGNORE not/RB fuse/VB into/IGNORE a/IGNORE homogeneous/JJ national/JJ
unit/NN until/IGNORE long/RB after/IGNORE education/NN and/IGNORE industrialization/NN
had/IGNORE caused/VB them/IGNORE to/IGNORE cast/VB oral/JJ tradition/NN aside/IGNORE
as/IGNORE a/IGNORE means/NN of/IGNORE carrying/VB culturally/RB significant/JJ
material/NN ./IGNORE

Figure 7.18 Result Output and Corresponding Original Documents for Task 3, Step 3

(Cont.)

180

Naturally/RB ,/IGNORE such/JJ scholarly/JJ facts/NN are/VB of/IGNORE little/JJ concem/NN
to/IGNORE the/IGNORE man/NN trying/VB to/IGNORE make/VB money/NN or/IGNORE fan/VB
patriotism/NN by/IGNORE means/NN of/IGNORE folklore/NN ./IGNORE
That/IGNORE much/NN of/IGNORE what/IGNORE he/IGNORE calls/VB folklore/NN is/VB
the/IGNORE result/NN of/IGNORE beliefs/NN carefully/RB sown/VB among/IGNORE the/IGNORE
people/NN with/IGNORE the/IGNORE conscious/JJ aim/NN of/IGNORE producing/VB a/IGNORE
desired/JJ mass/JJ emotional/JJ reaction/NN to/IGNORE a/IGNORE particular/JJ situation/NN
or/IGNORE set/NN of/IGNORE situations/NN is/VB irrelevant/JJ ./IGNORE
As/IGNORE long/IGNORE as/IGNORE his/IGNORE material/NN is/VB Americana/NN ,/IGNORE
can/IGNORE in/RB some/RB way/RB be/IGNORE ascribed/VB to/IGNORE the/IGNORE masses/NN
and/IGNORE appears/VB '/IGNORE democratic/JJ ’/IGNORE to/IGNORE his/IGNORE
audience/NN ,/IGNORE he/IGNORE remains/VB satisfied/JJ ./IGNORE
DOCNUM00466

The/IGNORE collector/S46 enjoys/S506 the/IGNORE contact/S432 with/IGNORE rural/S216
life/S4 ;/IGNORE he/IGNORE hunts/S370 folklore/S286 for/IGNORE the/IGNORE very/S 19
'/IGNORE field/IGNORE and/IGNORE stream/IGNORE ’/IGNORE reasons/S91 that/IGNORE
many/S 19 persons/IGNORE hunt/S370 game/S370 ;/IGNORE and/IGNORE only/UNKNOWN
rarely /UNKNOWN is/S335 he/IGNORE acutely/S19 concemed/S19 with/IGNORE the/IGNORE
meaning/S301 ofTGNORE what/IGNORE he/IGNORE has/IGNORE located/S282 ./IGNORE
Fundamentally/UNKNOWN ,/IGNORE both/IGNORE these/IGNORE types/S46 ,/IGNORE
the/IGNORE amateur/S369 and/IGNORE the/IGNORE collector/S46 ,/IGNORE are/S335
uncritical/S385 and/IGNORE many/IGNORE of/IGNORE them/IGNORE do/IGNORE n’t/IGNORE
distinguish/S302 well/UNKNOWN between/IGNORE real/Sl folklore/S286 and/IGNORE bogus/S317
material/S 1 ./IGNORE
But/IGNORE there/IGNORE are/IGNORE also/S22 the/IGNORE commercial/S372
propagandists/S309 and/IGNORE the/IGNORE analysts/S292 -/IGNORE one/IGNORE
dominated/IGNORE by/IGNORE money/S489 ,/IGNORE the/IGNORE other/IGNORE by/IGNORE
nineteenth/IGNORE century/S66 German/S6 scholarship/S286 ./IGNORE
Both/IGNORE are/S335 primarily/UNKNOWN concemed/UNKNOWN with/IGNORE the/IGNORE
uses/S405 that/IGNORE can/IGNORE be/IGNORE made/S26 of/IGNORE the/IGNORE material/S 1
that/IGNORE the/IGNORE collector/S46 has/IGNORE found/S470 ./IGNORE
Both/IGNORE shudder/S 185 at/IGNORE the/IGNORE thought/S261 of/IGNORE proceeding/S 167
too/UNKNOWN far/UNKNOWN beyond/IGNORE the/IGNORE sewage/IGNORE system/IGNORE
and/IGNORE the/IGNORE electric/S93 light/S243 lines/S93 ./IGNORE

Figure 7.18 Result Output and Corresponding Original Documents for Task 3, Step 3

(Cont.)

181

The/IGNORE collector/NN enjoys/VB the/IGNORE contact/NN with/IGNORE rural/JJ
life/NN ;/IGNORE he/IGNORE hunts/VB folklore/NN for/IGNORE the/IGNORE very/JJ '/IGNORE
field/IGNORE and/IGNORE stream/IGNORE ’/IGNORE reasons/NN that/IGNORE many/JJ
persons/NP hunt/VB game/NN ;/IGNORE and/IGNORE only/RB rarely/RB is/VB he/IGNORE
acutely/RB concemed/JJ with/IGNORE the/IGNORE meaning/NN of/IGNORE what/IGNORE
he/IGNORE has/IGNORE located/VB ./IGNORE
Fundamentally/RB ,/IGNORE both/IGNORE these/IGNORE types/NN ,/IGNORE the/IGNORE
amateur/NN and/IGNORE the/IGNORE collector/NN ,/IGNORE are/VB uncritical/JJ and/IGNORE
many/IGNORE ofTGNORE them/IGNORE do/IGNORE n’t/RB distinguish/VB well/RB
between/IGNORE real/JJ folklore/NN and/IGNORE bogus/JJ material/NN ./IGNORE
But/IGNORE there/IGNORE are/IGNORE also/RB the/IGNORE commercial/JJ propagandists/NN
and/IGNORE the/IGNORE analysts/NN -/IGNORE one/IGNORE dominated/JJ by/JJ
money/NN ,/IGNORE the/IGNORE other/IGNORE by/IGNORE nineteenth/JJ century/NN German/JJ
scholarship/NN ./IGNORE
Both/IGNORE are/VB primarily/RB concemed/JJ with/IGNORE the/IGNORE uses/NN that/IGNORE
can/IGNORE be/IGNORE made/VB of/IGNORE the/IGNORE material/NN that/IGNORE
the/IGNORE collector/NN has/IGNORE found/VB ./IGNORE
Both/IGNORE shudder/VB at/IGNORE the/IGNORE thought/NN of/IGNORE proceeding/VB too/RB
far/RB beyond/IGNORE the/IGNORE sewage/NN system/NN and/IGNORE the/IGNORE electric/JJ
light/NN lines/NN ./IGNORE
DOCNUM00470

Figure 7.18 Result Output and Corresponding Original Documents for Task 3, Step 3

(Cont.)

182

Original Documents

But it is our health - more precious than all the money in the world - that these modem witch doctors
with their fake therapeutic gadgets are gambling away .
By preying on the sick , by playing callously on the hopes of the desperate , by causing the sufferer to
delay proper medical care , these medical ghouls create pain and misery by their very activity .
Typically , Sarah Gross and Mr. A both lost more than their money as the result of their experiences
with their Cleveland quacks .
Sarah Gross found that the treatments given her for a nervous ailment by the masseur were not helping
her.
As a result , she consulted medical authorities and learned that the devices her quack ' doctor ' was
using were phony .
DOCNUM00451

Enthusiastically , Americans have swept subliterary and bogus materials like Paul Bunyan tales , Abe
Lincoln anecdoftes and labor union songs up as true products of our American oral tradition .
Nor have we remembered that in the melting pot of America the hundreds of isolated and semi isolated
ethnic , regional and occupational groups did not fuse into a homogeneous national unit until long after
education and industrialization had caused them to cast oral tradition aside as a means of carrying
culturally significant material.
Naturally , such scholarly facts are of little concern to the man trying to make money or fan patriotism
by means of folklore .
That much of what he calls folklore is the result of beliefs carefully sown among the people with the
conscious aim of producing a desired mass emotional reaction to a particular situation or set of
situations is irrelevant.
As long as his material is Americana , can in some way be ascribed to the masses and appears
democratic ' to his audience , he remains satisfied .
DOCNUM00466

The collector enjoys the contact with rural life ; he hunts folklore for the very ' field and stream '
reasons that many persons hunt game ; and only rarely is he acutely concerned with the meaning of
what he has located .
Fundamentally , both these types , the amateur and the collector, are uncritical and many of them do n't
distinguish well between real folklore and bogus material.
But there are also the commercial propagandists and the analysts - one dominated by money , the other
by nineteenth century German scholarship .
Both are primarily concerned with the uses that can be made of the material that the collector has
found.
Both shudder at the thought of proceeding too far beyond the sewage system and the electric light
lines .
DOCNUM00470

Figure 7.18 Result Output and Corresponding Original Documents for Task 3, Step 3

(Cont.)

183

Result Output

Sarah/NP Gross/NP ,Mr./NP A/NP ,Sarah/NP Gross/NP,
DOCNUM00451

Paul/NP Bunyan/NP,
DOCNUM00466

Original Documents

Sarah Gross, Mr. A, Sarah Gross
DOCNUM00451

Paul Bunyan,
DOCNUM00466

Figure 7.19 Result Output and Corresponding Original Documents for Task 3, Step 4

184

Query steps:

1. Send “SI57” (travel and traffic) as a query, 402 documents were returned.

2. From the 402 documents obtained in step 1, send “S372” (business) as a query, 65

documents were returned.

3. From 65 documents retrieved in step 2, send “S498” (cost, expense) as a query, 2

documents were retrieved.

4. From 2 documents obtained from step 3, “SI65” (road) was sent as query, one

document was left as the result (Figure 7.20)

Explanation:

Four concepts “S I57”, “S372”, “S498” and “SI65” were used in queries to restrict

documents from 402 documents to 1 document. The query can be interpreted as “find

documents which compare the cost (“S498”) of traveling (“S I57”) on the road

(“SI65”) or other methods for business “S372” purpose.

Task 5: How people think the religion nowadays?

Find documents related to people’s belief, religion, and philosophy, and possibly the

reasons that science affects people’s way of thinking.

Query steps:

1. Send “S261” (idealism) as the query, 266 documents were retrieved.

2. From the 266 documents obtained in step 1, send “S91” (cause, reason) as the

query, 81 documents were returned.

3. From the 81 documents obtained in step 2, send “S598” (religion) as the query, 11

documents were left.

4. Use the keywords “spirit”, “bible” or “science” as the query, so that the documents

returned must contain at least one keyword from these three keywords. There

185

Result Output

The/IGNORE railroad/IGNORE siding/IGNORE is/S335 still/UNKNOWN important/S385 -/IGNORE
it/IGNORE is/S335 usually/S335 ,/IGNORE though/IGNORE not/UNKNOWN
always/UNKNOWN ,/IGNORE true/S288 that/IGNORE long-haul/UNKNOWN shipment/S 160
by/IGNORE rail/S126 is/S335 cheaper/S498 than/IGNORE trucking/IGNORE ./IGNORE
But/IGNORE anybody/IGNORE who/IGNORE promises/S464 a/IGNORE substantial/S19
volume/S 19 of/IGNORE business/S372 can/IGNORE get/S91 a/IGNORE railroad/S374 to/IGNORE
run/S20 a/IGNORE short/S 19 spur/S374 to/IGNORE his/IGNORE plant/S413 these/IGNORE
days/S66 ,/IGNORE and/IGNORE many/S 19 businesses/S372 can/IGNORE live/S65
without/IGNORE the/IGNORE railroad/S374 ./IGNORE
And/IGNORE there/IGNORE are/S90 now/S72 many/S 19 millions/S59 of/IGNORE workers/S359
for/IGNORE whom/IGNORE the/IGNORE factory/S95 with/IGNORE the/IGNORE big/S 19
parking/UNKNOWN lot/UNKNOWN ,/IGNORE which/IGNORE can/IGNORE be/IGNORE
reached/S 172 by/IGNORE driving/S 157 across/IGNORE or/IGNORE against/IGNORE the/IGNORE
usual/S48 pattem/S374 of/IGNORE rush/UNKNOWN hour/UNKNOWN traffic/S 157 and/IGNORE
grille/S 155 route/S165 bus/S165 lines/S165 ,/IGNORE is/S335 actually/UNKNOWN
more/UNKNOWN convenient/S220 than/IGNORE the/IGNORE walk-to/IGNORE
factory/S95 ./IGNORE
Willow/IGNORE Run/IGNORE ,/IGNORE General/IGNORE Electric/IGNORE 's/IGNORE
enormous/S 19 installations/S477 at/IGNORE Louisville/IGNORE and/IGNORE
Syracuse/IGNORE ,/IGNORE the/IGNORE Pentagon/S 113 ,/IGNORE Boeing/IGNORE in/IGNORE
Seattle/IGNORE ,/IGNORE Douglas/IGNORE and/IGNORE Lockheed/IGNORE in/IGNORE
Los/IGNORE Angeles/IGNORE ,/IGNORE the/IGNORE new/S75 automobile/S161 assembly/S95
plants/S413 every where/UNKNOWN -/IGNORE none/IGNORE of/IGNORE these/IGNORE
is/IGNORE substantially/UNKNOWN served/S386 by/IGNORE any/IGNORE sort/S44 of/IGNORE
conventional/S48 mass/S48 rapid/S48 transit/S48 ./IGNORE
They/IGNORE are/S335 all/IGNORE suburban/S 134 plants/S413 ,/IGNORE relying/UNKNOWN
on/UNKNOWN the/IGNORE roads/S 165 to/IGNORE keep/S452 them/IGNORE supplied/S378
with/IGNORE workers/S359 ./IGNORE
The/IGNORE railroad/NN siding/NN is/VB still/RB important/JJ -/IGNORE it/IGNORE is/VB
usually/RB ,/IGNORE though/IGNORE not/RB always/RB ,/IGNORE true/JJ that/IGNORE long-
haul/NN shipment/NN by/IGNORE rail/NN is/VB cheaper/JJ than/IGNORE trucking/NN ./IGNORE
But/IGNORE anybody/IGNORE who/IGNORE promises/VB a/IGNORE substantial/JJ volume/NN
of/IGNORE business/NN can/IGNORE get/VB a/IGNORE railroad/NN to/IGNORE run/VB
a/IGNORE short/JJ spur/NN to/IGNORE his/IGNORE plant/NN these/IGNORE days/NN ,/IGNORE
and/IGNORE many/JJ businesses/NN can/IGNORE live/VB without/IGNORE the/IGNORE
railroad/NN ./IGNORE

Figure 7.20 Result Output and Corresponding Original Documents for Task 4

186

And/IGNORE there/IGNORE are/VB now/RB many/JJ millions/NN of/IGNORE workers/NN
for/IGNORE whom/IGNORE the/IGNORE factory/NN with/IGNORE the/IGNORE big/JJ
parking/NN lot/NN ,/IGNORE which/IGNORE can/IGNORE be/IGNORE reached/VB by/IGNORE
driving/VB across/IGNORE or/IGNORE against/IGNORE the/IGNORE usual/JJ pattem/NN
of/IGNORE rush/NN hour/NN trafFic/NN and/IGNORE grille/NN route/NN bus/NN
lines/NN ,/IGNORE is/VB actually/RB more/RB convenient/JJ than/IGNORE the/IGNORE walk-to/JJ
factory/NN ./IGNORE
Willow/NP Run/NP ,/IGNORE General/NP Electric/NP 's/IGNORE enormous/JJ installations/NN
at/IGNORE Louisville/NP and/IGNORE Syracuse/NP ,/IGNORE the/IGNORE
Pentagon/NN ,/IGNORE Boeing/NP in/IGNORE Seattle/NP ,/IGNORE Douglas/NP and/IGNORE
Lockheed/NP in/IGNORE Los/NN Angeles/NN ,/IGNORE the/IGNORE new/JJ automobile/NN
assembly/NN plants/NN everywhere/RB -/IGNORE none/IGNORE of/IGNORE these/IGNORE
is/IGNORE substantially/RB served/VB by/IGNORE any/IGNORE sort/NN of/IGNORE
conventional/JJ mass/NN rapid/NN transit/NN ./IGNORE
They/IGNORE are/VB all/IGNORE suburban/JJ plants/NN ,/IGNORE relying/VB on/VB
the/IGNORE roads/NN to/IGNORE keep/VB them/IGNORE supplied/VB with/IGNORE
workers/NN ./IGNORE
DOCNUMOO1088

Original Documents

The railroad siding is still important - it is usually , though not always , true that long-haul shipment by
rail is cheaper than trucking .
But anybody who promises a substantial volume of business can get a railroad to run a short spur to his
plant these days , and many businesses can live without the railroad .
And there are now many millions of workers for whom the factory with the big parking lo t, which can
be reached by driving across or against the usual pattern of rush hour traffic and grille route bus lines ,
is actually more convenient than the walk-to factory .
Willow Run , General Electric's enormous installations at Louisville and Syracuse , the Pentagon ,
Boeing in Seattle , Douglas and Lockheed in Los Angeles , the new automobile assembly plants
everywhere - none of these is substantially served by any sort of conventional mass rapid transit.
They are all suburban plants , relying on the roads to keep them supplied with workers .
DOCNUMOO 1088

Figure 7.20 Result Output and Corresponding Original Documents for Task 4 (Cont.)

187

were 3 documents returned (Figure 7.21).

Explanation:

Three concepts “S261”, “S91”, “S598” were used in the queries, and also there are

three optional keyword “spirit”, “bible” and “science” were used in the queries as well.

The query can be interpreted as “find documents which are related to religion (“S598”)

and idealism (“S261”) and explanation (“S91”), and also at least contains one

keyword out of “spirit”, “bible” or “science”.

7.6 DISCUSSIONS

This section discusses the benefits of the system.

The system implemented in this chapter performs automatic entity and concept

indexing, entity and concept extraction, and supports entity, concept, keyword queries.

This means that the system can have the advantages of keyword-based systems while

188

Result Output

In/IGNORE such/S44 a/IGNORE world/S90 the/IGNORE words/S 114 '/IGNORE matter/S 19
’/IGNORE and/IGNORE '/IGNORE spirit/S301 ’/IGNORE both/IGNORE referred/S5 to/IGNORE
directly/UNKNOWN known/S302 realities/S90 in/IGNORE the/IGNORE common/S427
experience/S286 of/IGNORE all/IGNORE ./IGNORE
In/IGNORE it/IGNORE important/S385 elements/S33 omGNORE Christianity/S598 and/IGNORE
of/IGNORE the/IGNORE Biblical/S599 view/S372 omGNORE reality/S90 in/S90
general/S90 ,/IGNORE which/IGNORE now/S72 cause/S91 us/IGNORE much/UNKNOWN
difficulty/S423 ,/IGNORE could/IGNORE be/IGNORE responded/S267 to/IGNORE
quite/UNKNOWN naturally/UNKNOWN and/IGNORE spontaneously/UNKNOWN ./IGNORE
The/IGNORE progress/S21 omGNORE science/S261 over/IGNORE these/IGNORE last/S74 few/S62
centuries/S66 and/IGNORE the/IGNORE gradual/S 15 replacement/S88 omGNORE Biblical/S599
by/IGNORE scientific/S301 categories/S44 omGNORE reality/S90 have/IGNORE to/IGNORE
a/IGNORE large/S19 extent/S 19 emptied/S 174 the/IGNORE spirimGNORE world/IGNORE
of/IGNORE the/IGNORE entities/S 1 which/IGNORE previously/S71 populated/S113
imGNORE ./IGNORE
In/IGNORE carrying/UNKNOWN out/UNKNOWN this/IGNORE program/S414 science/S261
has/IGNORE undoubtedly/S288 performed/S386 a/IGNORE very/S 19 considerable/S19 service/S46
for/IGNORE which/IGNORE imGNORE can/IGNORE claim/S474 due/S493 credit/S566 ./IGNORE
The/IGNORE objectification/S 11 of/IGNORE the/IGNORE world/S217 omGNORE spirit/S301
in/IGNORE popular/S444 superstition/S286 had/IGNORE certainly/UNKNOWN gone/S407
far/UNKNOWN beyond/UNKNOWN whamGNORE the/IGNORE experience/S286 of/IGNORE
spirit/S301 could/IGNORE justify/S272 or/IGNORE support/S272 ./IGNORE
In/IGNORE such/JJ a/IGNORE world/NN the/IGNORE words/NN '/IGNORE matter/NN ’/IGNORE
and/IGNORE '/IGNORE spirit/NN ’/IGNORE both/IGNORE referred/VB to/IGNORE directly/RB
known/JJ realities/NN in/IGNORE the/IGNORE common/JJ experience/NN of/IGNORE
all/IGNORE ./IGNORE
In/IGNORE imGNORE important/JJ elements/NN of/IGNORE Christianity/NN and/IGNORE
of/IGNORE the/IGNORE Biblical/JJ view/NN of/IGNORE reality/NN in/RB general/RB ,/IGNORE
which/IGNORE now/RB cause/VB us/IGNORE much/RB difficulty/NN ,/IGNORE could/IGNORE
be/IGNORE responded/VB to/IGNORE quite/RB naturally/RB and/IGNORE
spontaneously/RB ./IGNORE
The/IGNORE progress/NN omGNORE science/NN over/IGNORE these/IGNORE last/JJ few/JJ
centuries/NN and/IGNORE the/IGNORE gradual/JJ replacement/NN of/IGNORE Biblical/JJ
by/IGNORE scientific/JJ categories/NN of/IGNORE reality/NN have/IGNORE to/IGNORE
a/IGNORE large/JJ extent/NN emptied/VB the/IGNORE spirit/NN world/NN of/IGNORE
the/IGNORE entities/NN which/IGNORE previously/RB populated/VB it/IGNORE ./IGNORE

Figure 7.21 Result Output and Corresponding Original Documents for Task 5

189

In/IGNORE carrying/VB out/VB this/IGNORE program/NN science/NN has/IGNORE
undoubtedly/RB performed/VB a/IGNORE very/RB considerable/JJ service/NN for/IGNORE
which/IGNORE it/IGNORE can/IGNORE claim/VB due/JJ credit/NN ./IGNORE
The/IGNORE objectification/NN of/IGNORE the/IGNORE world/NN of/IGNORE spirit/NN
in/IGNORE popular/JJ superstition/NN had/IGNORE certainly/RB gone/VB far/RB beyond/RB
what/IGNORE the/IGNORE experience/NN of/IGNORE spirit/NN could/IGNORE justify/VB
or/IGNORE support/VB ./IGNORE
DOCNUM00247

In/IGNORE one/S46 debate/S277 he/IGNORE supported/S568 the/IGNORE ffeedom/S563
of/IGNORE judgment/S283 as/IGNORE opposed/IGNORE to/IGNORE dogma/S598 ,/IGNORE
in/IGNORE another/IGNORE he/IGNORE held/S399 that/IGNORE the/IGNORE practice/S374
of/IGNORE science/S261 was/S 1 in/UNKNOWN fact/UNKNOWN an/IGNORE act/S 100
of/IGNORE religious/S603 worship/S372 ./IGNORE
He/IGNORE continued/S85 as/IGNORE a/IGNORE popular/S531 lecturer/S343 ./IGNORE
He/IGNORE devised/S373 a/IGNORE detonating/IGNORE fuse/IGNORE in/IGNORE
which/IGNORE a/IGNORE short/S 19 wire/S 120 was/IGNORE caused/S91 to/IGNORE glow/S222
by/IGNORE an/IGNORE electric/S93 current/S93 ./IGNORE
In/IGNORE 1819/IGNORE under/IGNORE royal/S449 command/S446 he/IGNORE undertook/S407
a/IGNORE very/S 19 successful/S91 geological/S272 expedition/S 157 to/IGNORE
Bomholm/IGNORE ,/IGNORE one/S52 of/IGNORE the/IGNORE Danish/IGNORE
islands/S199 ,/IGNORE being/S 1 one/S52 of/IGNORE three/S52 scientists/S287 in/IGNORE
the/IGNORE expedition/S 157 ./IGNORE
It/IGNORE was/IGNORE with/IGNORE the/IGNORE assistance/S424 of/IGNORE one/S52
of/IGNORE the/IGNORE members/S33 of/IGNORE this/IGNORE expedition/S 157 ,/IGNORE
Lauritz/IGNORE Esmarch/IGNORE ,/IGNORE that/IGNORE Oersted/IGNORE succeeded/S 172
in/IGNORE producing/S95 light/S243 by/IGNORE creating/S95 an/IGNORE electric/IGNORE
discharge/IGNORE in/IGNORE mercury/S30 vapor/S30 through/IGNORE which/IGNORE
an/IGNORE electric/S93 current/S93 was/IGNORE made/S91 to/IGNORE flow/S156 ./IGNORE
In/IGNORE one/JJ debate/NN he/IGNORE supported/VB the/IGNORE ffeedom/NN of/IGNORE
judgment/NN as/IGNORE opposed/IGNORE to/IGNORE dogma/NN ,/IGNORE in/IGNORE
another/IGNORE he/IGNORE held/VB that/IGNORE the/IGNORE practice/NN of/IGNORE
science/NN was/VB in/RB fact/RB an/IGNORE act/NN of/IGNORE religious/JJ
worship/NN ./IGNORE
He/IGNORE continued/VB as/IGNORE a/IGNORE popular/JJ lecturer/NN ./IGNORE
He/IGNORE devised/VB a/IGNORE detonating/NN fuse/NN in/IGNORE which/IGNORE a/IGNORE
short/JJ wire/NN was/IGNORE caused/VB to/IGNORE glow/VB by/IGNORE an/IGNORE
electric/NN current/NN ./IGNORE
In/IGNORE 1819/IGNORE under/IGNORE royal/JJ command/NN he/IGNORE undertook/VB
a/IGNORE very/RB successful/JJ geological/JJ expedition/NN to/IGNORE Bornholm/NP ,/IGNORE
one/JJ omGNORE the/IGNORE Danish/JJ islands/NN ,/IGNORE being/VB one/JJ of/IGNORE
three/JJ scientists/NN in/IGNORE the/IGNORE expedition/NN ./IGNORE

Figure 7.21 Result Output and Corresponding Original Documents for Task 5 (Cont.)

190

It/IGNORE was/IGNORE with/IGNORE the/IGNORE assistance/NN omGNORE one/JJ of/IGNORE
the/IGNORE members/NN omGNORE this/IGNORE expedition/NN ,/IGNORE Lauritz/NP
Esmarch/NP ,/IGNORE that/IGNORE Oersted/NP succeeded/VB in/IGNORE producing/VB light/NN
by/IGNORE creating/VB an/IGNORE electric/NN discharge/NN in/IGNORE mercury/NN vapor/NN
through/IGNORE which/IGNORE an/IGNORE electric/NN current/NN was/IGNORE made/VB
to/IGNORE flow/VB ./IGNORE
DOCNUM02300

Certainly/UNKNOWN one/IGNORE omGNORE the/IGNORE most/UNKNOWN important/S385
comments/S305 thamGNORE can/IGNORE be/IGNORE made/IGNORE upon/IGNORE the/IGNORE
spiritual/S598 and/IGNORE cultural/S541 life/S4 omGNORE any/IGNORE period/S65 of/IGNORE
Westem/S351 civilization/S217 during/IGNORE the/IGNORE past/S74 sixteen/S74 or/IGNORE
seventeen/IGNORE centuries/S66 has/S378 to/IGNORE do/S302 with/IGNORE the/IGNORE way/S4
in/IGNORE which/IGNORE its/IGNORE leaders/IGNORE have/IGNORE read/S305 and/IGNORE
interpreted/S305 the/IGNORE Bible/S599 ./IGNORE
This/IGNORE reading/S286 and/IGNORE the/IGNORE comments/S305 thamGNORE it/IGNORE
evoked/S504 constitute/S32 the/IGNORE influence/S91 ./IGNORE
A/IGNORE contrast/S269 of/IGNORE the/IGNORE scripture/S599 reading/S286
omGNORE ,/IGNORE lemGNORE us/IGNORE say/IGNORE ,/IGNORE St./IGNORE
Augustine/IGNORE ,/IGNORE John/IGNORE Bunyan/IGN ORE ,/IGNORE and/IGNORE
Thomas/IGNORE Jefferson/IGNORE ,/IGNORE all/IGNORE three/S55 of/IGNORE whom/IGNORE
found/S282 in/IGNORE such/S44 study/S261 a/IGNORE real/S12 source/S91 omGNORE
enlightenment/S286 ,/IGNORE can/IGNORE tell/S308 us/IGNORE a/IGNORE great/S 19 deal/S19
about/IGNORE these/IGNORE three/S52 men/S79 and/IGNORE the/IGNORE age/S66 thamGNORE
each/IGNORE represented/S322 and/IGNORE helped/S386 bring/S90 to/IGNORE conscious/S219
expression/S312 ./IGNORE
In/IGNORE much/UNKNOWN the/IGNORE same/S 16 way/S4 ,/IGNORE we/IGNORE
recognize/S286 the/IGNORE importance/S531 omGNORE Shakespeare/IGNORE 's/IGNORE
familarity/S286 with/IGNORE Plutarch/IGNORE and/IGNORE Montaigne/IGNORE ,/IGNORE
of/IGNORE Shelley/IGNORE 's/IGNORE study/S351 of/IGNORE Plato/IGNORE ’s/IGNORE
dialogues/S346 , /IGNORE and/IGNORE omGNORE Coleridge/IGNORE 's/IGNORE
enthusiastic/S504 plundering/IGNORE of/IGNORE the/IGNORE writings/S350 omGNORE
many/S 19 philosophers/S287 and/IGNORE theologians/S598 ffom/IGNORE Plato/IGNORE
to/IGNORE Schelling/IGNORE and/IGNORE William/IGNORE Godwin/IGNORE ,/IGNORE
through/IGNORE which/IGNORE so/UNKNOWN many/S 19 abstract/S325 ideas/S261 were/IGNORE
brought/S22 to/IGNORE the/IGNORE attention/S265 of/IGNORE English/S305 men/UNKNOWN
of/UNKNOWN letters/UNKNOWN ./IGNORE
We/IGNORE may/IGNORE also/S22 recognize/S286 cases/S48 in/IGNORE which/IGNORE
the/IGNORE poets/S354 have/IGNORE influenced/SlOO the/IGNORE philosophers/S287
and/IGNORE even/UNKNOWN indirectly/UNKNOWN the/IGNORE scientists/S287 ./IGNORE

Figure 7.21 Result Output and Corresponding Original Documents for Task 5 (Cont.)

191

Certainly/RB one/IGNORE of/IGNORE the/IGNORE most/RB important/JJ comments/NN
that/IGNORE can/IGNORE be/IGNORE made/IGNORE upon/IGNORE the/IGNORE spiritual/JJ
and/IGNORE cultural/JJ life/NN of/IGNORE any/IGNORE period/NN of/IGNORE Westem/JJ
civilization/NN during/IGNORE the/IGNORE past/JJ sixteen/JJ or/IGNORE seventeen/JJ
centuries/NN has/VB to/IGNORE do/VB with/IGNORE the/IGNORE way/NN in/IGNORE
which/IGNORE its/IGNORE leaders/NN have/IGNORE read/VB and/IGNORE interpreted/VB
the/IGNORE Bible/NN ./IGNORE

This/IGNORE reading/NN and/IGNORE the/IGNORE comments/NN that/IGNORE it/IGNORE
evoked/VB constitute/VB the/IGNORE influence/NN ./IGNORE
A/IGNORE contrast/NN of/IGNORE the/IGNORE scripture/NN reading/NN of/IGNORE ,/IGNORE
let/IGNORE us/IGNORE say/IGNORE ,/IGNORE St./NP Augustine/NP ,/IGNORE John/NP
Bunyan/NP ,/IGNORE and/IGNORE Thomas/NP Jefferson/NP ,/IGNORE all/IGNORE three/NN
of/IGNORE whom/IGNORE found/VB in/IGNORE such/JJ study/NN a/IGNORE real/JJ source/NN
of/IGNORE enlightenment/NN ,/IGNORE can/IGNORE tell/VB us/IGNORE a/IGNORE great/NN
deal/NN about/IGNORE these/IGNORE three/JJ men/NN and/IGNORE the/IGNORE age/NN
that/IGNORE each/IGNORE represented/VB and/IGNORE helped/VB bring/VB to/IGNORE
conscious/JJ expression/NN ./IGNORE
In/IGNORE much/RB the/IGNORE same/JJ way/NN ,/IGNORE we/IGNORE recognize/VB
the/IGNORE importance/NN of/IGNORE Shakespeare/NN 's/IGNORE familarity/NN with/IGNORE
Plutarch/NP and/IGNORE Montaigne/NP ,/IGNORE omGNORE Shelley/NP 's/IGNORE study/NN
omGNORE Plato/NN 's/IGNORE dialogues/NN ,/IGNORE and/IGNORE of/IGNORE Coleridge/NN
's/IGNORE enthusiastic/JJ plundering/IGNORE omGNORE the/IGNORE writings/NN omGNORE
many/JJ philosophers/NN and/IGNORE theologians/NN ffom/IGNORE Plato/NN to/IGNORE
Schelling/NP and/IGNORE William/NP Godwin/NP ,/IGNORE through/IGNORE which/IGNORE
so/RB many/JJ abstract/JJ ideas/NN were/IGNORE brought/VB to/IGNORE the/IGNORE
attention/NN omGNORE English/JJ men/NN of/NN letters/NN ./IGNORE
We/IGNORE may/IGNORE also/RB recognize/VB cases/NN in/IGNORE which/IGNORE
the/IGNORE poets/NN have/IGNORE influenced/VB the/IGNORE philosophers/NN and/IGNORE
even/RB indirectly/RB the/IGNORE scientists/NN ./IGNORE
DOCNUM02943

Figure 7.21 Result Output and Corresponding Original Documents for Task 5 (Cont.)

192

Original Documents

In such a world the words ' matter 1 and ' spirit 1 both referred to directly known realities in the
common experience of a ll.
In it important elements of Christianity and of the Biblical view of reality in general, which now cause
us much difficulty , could be responded to quite naturally and spontaneously .
The progress of science over these last few centuries and the gradual replacement of Biblical by
scientific categories of reality have to a large extent emptied the spirit world of the entities which
previously populated i t .
In carrying out this program science has undoubtedly performed a very considerable service for which
it can claim due credit.
The objectification of the world of spirit in popular superstition had certainly gone far beyond what the
experience of spirit could justify or support.
DOCNUM00247

In one debate he supported the freedom of judgment as opposed to dogma , in another he held that the
practice of science was in fact an act of religious worship .
He continued as a popular lecturer .
He devised a detonating fuse in which a short wire was caused to glow by an electric current.
In 1819 under royal command he undertook a very successful geological expedition to Bornholm , one
of the Danish islands , being one of three scientists in the expedition .
It was with the assistance of one of the members of this expedition , Lauritz Esmarch , that Oersted
succeeded in producing light by creating an electric discharge in mercury vapor through which an
electric current was made to flow .
DOCNUM02300

Certainly one of the most important comments that can be made upon the spiritual and cultural life of
any period of Western civilization during the past sixteen or seventeen centuries has to do with the way
in which its leaders have read and interpreted the Bible .
This reading and the comments that it evoked constitute the influence .
A contrast of the scripture reading o f , let us say , St. Augustine , John Bunyan , and Thomas Jefferson ,
all three of whom found in such study a real source of enlightenment , can tell us a great deal about
these three men and the age that each represented and helped bring to conscious expression .
In much the same way , we recognize the importance of Shakespeare's familarity with Plutarch and
Montaigne , of Shelley's study of Plato's dialogues , and of Coleridge's enthusiastic plundering of the
writings of many philosophers and theologians from Plato to Schelling and William Godwin , through
which so many abstract ideas were brought to the attention of English men of letters .
We may also recognize cases in which the poets have influenced the philosophers and even indirectly
the scientists.
DOCNUM02943

Figure 7.21 Result Output and Corresponding Original Documents for Task 5 (Cont.)

193

making use of entities and concepts when the user has query needs that are not easy to

describe with keywords only. Examples include finding abstract concepts or

discovering relations.

As shown in the Table 7.2 and the five tasks conducted, sometimes keywords can not

be used effectively when queries are “vague” and can not be expressly easily only

using keywords. In this case, queries which contain both keywords and concepts can

help finding documents which “conceptually” correspond to the queries raised. For

instance, in the first question, “What aspects are important to choose a good place for

water sports (water related leisure activities)?”, the only keyword which can be easily

pointed out is “water”, while the concepts of “aspects”, “good”, “factors”, “water

sports”, “leisure activities” can not be easily used to generate relevant keywords for

querying the system. There are many cases where users ask “how”, “for what reason”,

“why” questions rather than simple “what” questions. Even when users want to ask

“what” questions, sometimes they do not know the “exact” terms which should be

used. A common case is that when people want to know a specific term for a certain

thing. For example, it will be difficult for people who want to find out the

terminology of “at an equal rate or pace”, which implies fairness and impartiality,

whereby creditors are repaid proportionally according to their original investment,

which is “pari passu” (a term used in banking). In these cases, combined queries with

keywords, entities and concepts could be the solution as shown in 5 query tasks

described above.

Indexing techniques are used in this system to make it faster, but at the same time, this

also provides ways to make the system more flexible. In the entity and concept

extraction process, once the index is constructed, there is no need to rebuild it again if

different types of entity or concept patterns are used to extract different entity or

194

concept knowledge. This gives certain advantage in terms of system maintenance and

redeployment as it eliminates the need for reprocessing previously processed

information.

This system extracts the knowledge and codifies the knowledge into entities and

concepts. This is very closed to the view of Kakabadse, who stated that knowledge

can be represented as objectively defined and codified concepts and facts [Kakabadse

et al., 2003]. The system’s simple structure of entities and concepts enables it to

organise the codified knowledge in a more dynamic way than previous methods of

static and hierarchical concept indexing methods such as [Holub, 2003].

7.7 SUMMARY

In this chapter, a conceptual model and a system architecture for entity and concept-

based knowledge management are proposed and implemented. Tests on speed and

computer resource consumption are conducted. A comparison with an industrial

database solution is made to show the speed improvement. The advantages of using

this architecture for knowledge management are also discussed.

195

CHAPTER 8. CONTRIBUTIONS, CONCLUSIONS AND

FUTURE WORK

This chapter summarises the contributions made and conclusions reached and

suggests possible directions for further research.

8.1 CONTRIBUTIONS

The main contribution of this research is the development of techniques of ontology,

natural language processing and machine learning for knowledge management. These

techniques have enabled the automation of knowledge acquisition from unstructured

Web documents and facilitated knowledge extraction, organisation and reuse. The

specific contributions are summarised below.

1. Formal representation of text-based content through entities and concepts

A conceptual model for knowledge representation of text-based content is developed

which describes the content using concepts and entities. In the context of this thesis,

an entity is an identifiable and discrete instance existing in a text document, and a

concept is the abstract or generalised idea about entities and the relations between

them. The conceptual model is further developed into a mathematic model, which

formally introduces the assumptions and constrains used and formalises the way

knowledge is represented. The use of entities and concepts and the mathematical

model developed facilitate ontology tagging, knowledge extraction, and knowledge

reuse.

196

2. Method for automatic knowledge acquisition based on intelligent focused

crawling

This method employs a supervised machine learning algorithm, the Support Vector

Machine, to the document finding process, so that only relevant documents are

retrieved and analysed. This enables the automation of the knowledge acquisition

process for large and unstructured text-based content collections such as those on the

Web.

3. General purpose ontology dictionary

This ontology dictionary is based on a systematically studied ontological structure.

The dictionary has several features including ontological structure with fixed depth,

unification of words/phrases that have the same semantic meaning regardless of their

different parts of speech, and the use of implicit semantic relations. This dictionary

facilities the measuring of the semantic similarity between words/phrases, and

provides new opportunities for introducing more and much richer semantic relations

than those currently in use.

4. Method for ontology mapping between a lexicon and an ontology dictionary

This method uses a heuristic measure to find the one-to-one mapping between the

entries in the lexicon and the ontology dictionary. The method generates the mapping

without any supervised training or the use of other lexicon resources. The mapping

together with a lexicon and a semantic concordance corpus provide means to produce

an ontologically tagged corpus for automatic ontology tagging.

5. Algorithm for automatic text ontology tagging

197

The algorithm is a supervised machine learning algorithm which assigns ontology

tags to words/phrases in a free text collection. First, training is performed to obtain

two types of information from the ontologically tagged training set, i.e. statistical and

word/phrase mutual information. Then the algorithm uses the information obtained to

automatically assign ontology tags to the text. The algorithm enables the automation

of knowledge extraction using the ontology information produced in the tagging

process.

6. Method for knowledge extraction and organisation

This method includes three phases: extraction, indexing, and merging. First, entities

and concepts are extracted; they are then indexed; and finally, in the merging phase,

the entity and concept indices are merged. This method enables efficient knowledge

extraction, and the organisation of a large knowledge base where knowledge is

represented using entities and concepts.

8.2 CONCLUSIONS

1. There is a growing trend moving from information-centred society towards

knowledge-centred society. Four technologies (information retrieval, machine

learning, natural language processing, the Semantic Web and the ontology) are now

moving closer to support and complement each other to facilitate process of

transforming data into knowledge in the chain of knowledge flow.

198

2. The provision of knowledge management needs four technologies (information

retrieval, machine learning, natural language processing, the Semantic Web and the

ontology) to be integrated in a systematical way to facilitate the knowledge flow.

3. Conventional knowledge representation models have deficiencies for knowledge

management and a new knowledge representation model to facilitate knowledge

management is needed.

4. The model of concept indexing meets the requirements of knowledge

management.

5. The use of machine learning and focused crawling enables automatic knowledge

acquisition.

6. Ontology tagging enables text to be searched, browsed and analysed at different

abstraction levels, so that existing text-based document collections can be reused in

knowledge management applications.

7. An ontology dictionary and an ontologically tagged corpus are two resources

enabling automatic ontology tagging.

8. A rule-based supervised machine learning algorithm can be exploited for

ontology tagging with an ontology dictionary and an ontologically tagged corpus

developed.

9. The system using concept indexing can provide effective knowledge extraction,

organisation and management.

199

8.3 IMPLEMENTATION WORK

The implementation work conducted in this research is summarised as below.

1. An HTML to plain text converter in Flex language

The purpose of this converter is to remove HTML tags and their values from the Web

documents retrieved. This converter is used in several places in the prototype system

where the conversion from HTML Web pages to plain text is needed. This converter

is used in A and C in Figure 1.1.

2. A focused Web crawling system with graphical user interface implemented in

Java

This crawling system enables simultaneous Web document retrieval with the speed of

1000 Web pages per hour in test environment. Various configurations could be set in

the graphical user interface with message logging function. This system is located in

B in Figure 1.1.

3. A support vector machine training data converter implemented in Java

In this implementation, Web document are converted into a special format required by

support vector machine, a supervised machine learning algorithm for training and

document classification purpose. The implementation has 5 versions which

correspond to 5 options used in two case studies in Chapter 4. This converter is used

in C for building training examples in C in Figure 1.1.

200

4. A modified morphology analyser implemented in Flex1 language

This implementation is modified based on the morphology analyser in [Minnen et al.,

2001], where the original one conducts morphology analysis. In the modified

implementation, morphology analyser can not only analyse both words with part of

speech tags, but also can analyse words with ontology tags. Input and output formats

have been changed to conform to the format of Semcor corpus. Also, nominal

possessive pronouns and possessive pronouns are now morphologised to their

standard forms. This analyser is used for conducting morphological analysis in C and

E.

5. OntoRo, an ontology dictionary

This dictionary contains 228,571 word and phrase entries which are extracted from

Roget’s Thesaurus [Roget, 2003], a well known thesaurus to serve the purpose in this

research work. This dictionary is located in F in Figure 1.1.

6. eWord, a machine readable dictionary

This dictionary contains 77,022 entries extracted from WordNet [Fellbaum, 1998], a

widely used lexical database to serve the purpose in this research work. This

dictionary is used in G in Figure 1.1.

7. A WordNet entry extractor implemented in Java language

1 Flex is a fast lexical analyser generator language which is com piled and translated to C to generate the lexical
analyser.

201

The purpose of this implementation is to extract WordNet entries from its specially

formed database, so that eWord could be built. This extractor is used in G in Figure

I.1 for building eWord.

8. OntoCorp, an ontologically tagged corpus

This corpus contains 20,138 sentences which are created automatically from a widely

used part of speech tagging corpus to serve the purpose in this research work. This

corpus is used in G in Figure 1.1.

9. A semantic mapping algorithm implemented in C language

This algorithm implementation maps every entry in eWord to OntoRo for the research

conducted in this thesis. This algorithm is used in G in Figure 1.1.

10. A Semcor entry converter implemented in Java language

The purpose of this implementation is to convert the specially formatted Semcor

tagged entries to ontologically tagged corpus for training purpose. This converter

makes use of the eWord, OntoRo and Semcor as input to generate the OntoCorp. This

implementation is used in building ontologically tagged corpus shown in G in Figure

1. 1.

II. An ontology tagging algorithm implemented in Java language

202

This ontology tagging algorithm uses eWord, OntoRo and OntoCorp to learn ontology

tagging rules, and uses these rules to tag unseen text. The algorithm implementation

has three different versions which correspond to three case studies conducted in

Chapter 6. This algorithm is used in E in Figure 1.1.

12. A modified part of speech tagger

In this modified version of Brill’s part of speech tagger [Brill, 1992], input and output

formats have been changed to conform the description format of Semcor [Fellbaum,

1998], a semantically tagged corpus. Obsolete functions are discarded and the whole

package is recompiled. This tagger is userd in D in Figure 1.1.

13. A knowledge management system capable of concept indexing and entity, concept

and keyword combined search implemented in C language

This system is built based on a demo system used in [Witten et al., 1999], where

entity indexing, concept indexing, entity extraction, concept extraction capabilities are

added. In addition, the combined query using entities, concepts and keywords are

implemented and added to the system so that queries can contain entities, concepts

and keywords at the same time. Besides all the function improvements, obsolete

functions are removed to improve the system compatibility with the current Linux

operating systems. This system is used in H, I and L in Figure 1.1.

203

8.4 FUTURE WORK

As the current prototype system developed in this work contains many modules,

which are command line based, an integrated graphic user interface could be

constructed to integrate the interactions between different modules which are

previously linked by manually typing commands and running batch command scripts,

so that the whole knowledge management process in this system could be streamlined

and more accessible.

An open sourced architecture based on the prototype system developed in this thesis

could be designed, so that more researchers could benefit from this system and a

community of both academia and industry could contribute to the improvement of this

system.

The current focused crawling module was evaluated through relatively small scale

case studies, therefore larger scale case studies are needed to evaluate its effectiveness

in a more realistic environment for practical applications.

Currently, the crawling module only retrieves text document from the Web, in the

future it could be extended for crawling other materials from the Web, such as

multimedia content.

The ontologically tagged corpus for ontology tagging purpose is automatically

converted using a heuristic approach, therefore the corpus is not completely accurate,

which could introduce errors when this corpus is used by the ontology tagging

algorithm developed to tag unseen text or Web documents. Due to this reason, another

task in the future is to calibrate this automatically generated training corpus by using

204

manual, semi-automatic or full automatic method to correct tagging errors. After the

calibration, the tagging benchmarking tests need to be conducted again to investigate

whether the tagging accuracy after the correction of the training corpus has improved.

Currently, the ontology tagging method produces tagging accuracy approximately

78%, there is space left to improve the tagging accuracy by using other information in

the ontologically tagged corpus, or use the information in different ways. Moreover,

other machine learning algorithms could be used to improve the tagging accuracy.

The ontology dictionary and ontology tagging developed in this work could be made

available as web services so that those users who want the ontology definitions and

ontology tagging functions could integrate those functionalities seamlessly into their

applications without deploying the same modules again.

Furthermore, a possible research opportunity is to investigate the applicability of this

system into other engineering areas, such as conceptual design and technical trouble

shooting, where vast technology knowledge needs to be searched and exploited in an

efficient way.

Another research direction is the applications related to the Semantic Web, which has

received increased attention. For example, there is an ample space to be explored for

effectively transforming the existing Web content smoothly into the content on the

Semantic Web by transforming the ontologically tagged text content to RDF or OWL

based content, which is compatible with the Semantic Web specifications.

205

T« l AM E R I C A N M U S E U M O K

APPENDIX A. MATERIALS AND RESULTS

A.l POSITIVE AND NEGATIVE EXAMPLES

Figure A.l Training Example 1 (a Positive Example)

W elcome...
to o u r ex tra o rd in a ry o n lin e w o r ld o f f l y
angling in fo rm a tion , a r t a n d a rtifa c ts

t h e A m e r i c a n M u s e u m o r F ly F i s h i n g , h o m e t o t h e
w o r t d ’ s l a r g e s t c o l l e c t i o n o f a n g l i n g a r t a n a a n g l i n g -
r e l a t e d i t e m s , b r i n g s t h e h i s t o r y o f t ty t l s h i n g a l i v e f o r
a n g l e r s a n d o t h e r s . O u r r e n o v a t e d a n d c u s t o m - b u i l t
M u s e u m , l o c a t e d l u s t s o u t h o f t h e O r r i s F l a g s h i p
S t o r e o n H i s t o r i c R o u t e 7 A , h o u s e s a n i m p r e s s i v e
e x h ib i t g a l l e r y s p a c e , a l i b r a r y a n d r e a d i n g r o o m , a
M u s e u m s t a r e , a n d o t h e r r e s o u r c e s

H e r e o n o u r w e b s i t e , y o u m a y m e a n d e r t h r o u g h
p h o t o h i g h l i g h t s o f M u s e u m e x h i b i t s a n d o f f e r in g s .

_ S o o n . y o u ’ it b e a b l e t o s l r o l t t h r o u g h o u r o n l i n e
I M u s e u m s t o r e t o b r o w s e a u n i q u e s e l e c t i o n o f
(p o s t e r s , p r i n t s , j e w e l r y , g i l t s a n d M u s e u m e x c l u s i v e s .
S W h e t h e r y o u r v i s i t t o t h e M u s e u m i s i n - p e r s o n o r
£ o n l i n e , w e h o p e o u r c o l l e c t i o n o f t a c t s a n d a r t i f a c t s

t r a n s p o r t s y o u t o y o u r m o s t t r e a s u r e d a n g l i n g
d e s t i n a t i o n — p e r h a p s a s e c r e t s t r e a m y o u ’ v e
k n o w n s m c e c h i l d h o o d , a f a v o r i t e R o d & R e e l t a r b , o r
t h e w e i l - w o m p a g e s o f a f a v o r i t e f l y f i s h i n g
n o v e l .

h v x . - e r 'n . i oar
. Sir-Mind

jo *

fui&n

- . ■ • . ..• • .

C a r p F i s h i n g
| F o r A H C+tp F i s h i n g T e c k l e
i O n l i n e M a s s i v e S a v i n g s & C o n s u m e r R a t e d S t o r e s B e f o r e A c c e s s o r i e s e n d C l o t h i n g ,

Y o u B o y . Arf. . . . r . - - - - - -W e i g h t s , K n i v e s & R i g s .

mmwsm

There are 4062 links for you to choose from!
Internet Explorer Users: Click here to add this page to your list of favorites

•ta?.tam e.»tistn (4 2 9) m s *
curare

Bait Suppliers f9 2)fjaa.yK
% r . B v t j

S ta te (1 4 2) C rO

CVti

MUsstesssts (165)
G ifts

Webiinss te n UK
WeSrtnga UK
VVebyitf Awyrj-,

sm
S to tL iSiS»A fj^«ak.S#8» (9 8)

Looking for something in particular'?
| Saarchl [

MBa.afeeslL»fe!a

tam
s M e g a F i s h i n g T a c k l e
i S t o o k « x L e l h s m s
j D i s c o u n t F i s h i n g S t o r e

I f i s h in g « g ufc,'

Isskte
j C w r y i a r e p n e e s f r o m
{ U K M o r e s S e g i t t e i t o

Figure A.2 Training Example 2 (a Negative Example)

2 0 6

A.2 TRAINING EXAMPLE 1: AN HTML WEB PAGE

(FRAGMENT)
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”
“http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>
<link re l-’Shortcut Icon” href-’images/favicon.ico”>
<metahttp-equiv-’Content-Type” content=”text/html; charset=iso-8859-l”>
<title>Welcome to The American Museum of Fly Fishing | Manchester, Vermont</title>

<style type=”text/css”>
< ! —

@import url(“mg_members_only.htm”);
body {

margin-left: Opx;
margin-top: Opx;
margin-right: Opx;
margin-bottom: Opx;
background-image: url(images/img_l02.gif);

}
.style 19 {

font-family: Arial, Helvetica, sans-serif;
font-size: 9px;
line-height: 12px;
font-weight: normal;
font-style: italic;
text-transform: none;
font-variant: normal;
text-decoration: none;
color: #A1A582;

}

— >

</style>
<script language-’JavaScript”>
<!—

/ / - ->

</script>
<scriptlanguage-’JavaScript 1.2” src=’’images/popup_menu/mm_menu.js”></script>
</head>
<body ...>

207

http://www.w3.org/TR/html4/loose.dtd%e2%80%9d

Welcome...

to our extraordinary online world of fly angling information, art and

artifacts
<p>The American Museum of Fly Fishing, home to the
world’s largest collection of angling art and angling-related items, brings the history of fly fishing
alive for anglers and others. Our renovated and custom-built Museum, located just south of the Orvis
Flagship Store on Historic Route 7A, houses an impressive exhibit gallery space, a library and reading
room, a Museum store, and other resources.</p>

<p>Here on our web site, you may meander through photo highlights of Museum

exhibits and offerings. Soon, you’ll be able to stroll through our online Museum store to browse a
unique selection of posters, prints, jewelry, gifts and Museum exclusives. Whether your visit to the
Museum is in-person or online, we hope our collection of facts and artifacts transports you to your most
treasured angling destination…perhaps a secret stream you’ve known since childhood, a
favorite Rod & Reel club, or the well-worn pages of a favorite fly fishing novel.</p>
<p>~ Bill Bullock, Executive Director</p>
The American Museum of Fly Fishing is an educational and non-profit
institution. 501©3 • Copyright
2005 • Site designed by LMW Design, Inc. ...
</table>
</body>
</html>

A.3 TRAINING EXAMPLE 1: AN HTML WEB PAGE

STRIPPED TO TEXT ONLY (FRAGMENT)
Welcome to The American Museum of Fly Fishing | Manchester, Vermont

Welcome...

to our extraordinary online world of fly angling information, art and artifacts
The American Museum of Fly Fishing, home to the world’s largest collection of angling art

and angling-related items, brings the history of fly fishing alive for anglers and others. Our renovated and
custom-built Museum, located just south of the Orvis Flagship Store on Historic Route 7A, houses an
impressive exhibit gallery space, a library and reading room, a Museum store, and other resources.

Here on our web site, you may meander through photo highlights of Museum exhibits and offerings.
Soon, you’ll be able to stroll through our online Museum store to browse a unique selection of
posters, prints, jeweliy, gifts and Museum exclusives. Whether your visit to the Museum is in-person or
online, we hope our collection of facts and artifacts transports you to your most treasured angling

destination…perhaps a secret stream you’ve known since childhood, a favorite Rod & Reel
club, or the well-worn pages of a favorite fly fishing novel.

~ Bill Bullock, Executive Director

The American Museum of Fly Fishing is an educational and non-profit institution. 501©3 •
Copyright 2005 • Site designed by LMW Design, Inc.

208

http://www.lmwdesign.com%e2%80%9d

A.4 SMALL DICTIONARY
Table A. 1 Small Dictionary

W ord# Word W ord# Word W ord# Word

1 advance 62 floats 123 scale

2 alive 63 fly 124 sea

3 anchor 64 flyfishing 125 searchlight

4 anchorage 65 fresh 126 service

5 anchored 66 freshwater 127 services

6 angler 67 froth 128 set

7 anglers 68 gear 129 ship

8 attach 69 gears 130 shipping

9 attached 70 gill 131 shore
10 attaches 71 gut 132 sink

11 attaching 72 guts 133 sinker
12 backwater 73 harpoon 134 sinkers
13 bait 74 head 135 sinks
14 baits 75 hollow 136 slice
15 bamboo 76 hook 137 smoked

16 bass 77 hooks 138 smolt
17 beach 78 ice 139 spear
18 boat 79 immerse 140 spearfishing
19 boating 80 immerses 141 sport
20 bow 81 jetty 142 sports
21 bowfish 82 lake 143 steelhead
22 bowfishing 83 land 144 stem
23 box 84 landing 145 stocks
24 brailer 85 leatherworker 146 storm
25 buoy 86 line 147 stream
26 cabin 87 lure 148 streams
27 camp 88 lures 149 surround
28 carfish 89 marine 150 swim
29 carp 90 mason 151 swim s
30 cast 91 mast 152 tackle
31 catch 92 metal 153 tackles
32 catfishing 93 net 154 tactics
33 caught 94 oar 155 tail
34 chop 95 ocean 156 tanner
35 choppy 96 outdoor 157 team

209

Table A. 1 Small Dictionary (Cont.)

Word# Word Word # Word Word # Word
36 chops 97 outdoors 158 teams
37 club 98 paddle 159 throw
38 clubs 99 pier 160 throwing
39 cobbler 100 pole 161 throws
40 competition 101 pond 162 tide
41 competitions 102 pull 163 tour
42 conversation 103 pulley 164 tournament
43 cords 104 pulling 165 tournaments
44 dale 105 pulls 166 tours
45 dip 106 punt 167 tow
46 dips 107 punts 168 trap
47 dogfish 108 pushing 169 trip
48 dried 109 recreation 170 trout
49 drown 110 release 171 tuna
50 dry 111 river 172 vans
51 entertainment 112 rod 173 vessel
52 fermented 113 rods 174 water
53 fin 114 roll 175 wave
54 fish 115 rope 176 weave
55 fisher 116 ropes 177 weaves
56 fisherman 117 row 178 weaving
57 fishermen 118 safaris 179 weight
58 fishers 119 sail 180 weights
59 fishery 120 salmon 181 woodworker
60 fishing 121 salt 182 worker
61 float 122 saltwater 183 woven

210

A.5 DATA FILE GENERATED BY SVM FROM THE

TRAINING SET (FRAGMENT)
SVM-light Version V6.01 (1)
0 # kernel type (2)
3 # kernel parameter -d (3)
1 # kernel parameter -g (4)
1 # kernel parameter -s (5)
1 # kernel parameter -r (6)
empty# kernel parameter -u (7)
180# highest feature index (8)
62 # number of training documents (9)
60 # number of support vectors plus 1 (10)
1.0279189 # threshold b, each following line is a SV (starting with alpha*y) (11)
-46.429974748172633 17:0.010810811 54:0.021621622 60:0.21891892
63:0.013513514 74:0.0054054055 93:0.010810811 127:0.0027027028
141:0.0081081083 179:0.0054054055 #

(12)

(13)
-46.429974748172633 13:0.0090702949 30:0.0045351475 60:0.013605442
74:0.0022675737 76:0.0022675737 86:0.0022675737 102:0.0022675737
123:0.0068027209 160:0.0022675737 179:0.0022675737#

(14)

(1) SVMllght Version Information.
(2) Type of kernel function:

0: Linear (a’*b)

1: Polynomial (gamma*a’*b+c)Ad
2: Radial basis function exp(-gamma ||a-b||A2)
3: Sigmoid tanh(gamma*a’*b + c)
4: User defined kernel from kemel.h.
A linear kernel is used in this example.

(3) Parameter d in polynomial kernel, float type.
(4) Parameter gamma in rbf kernel, float type.
(5) Parameter s in sigmoid/poly kernel, float type.
(6) Parameter c in sigmoid/poly kernel, float type.
(7) Parameter of a user defined kernel, not used in this work, and therefore having no value.
(8) Number of features in the training examples. In this case, the total number of features used is 180.
(9) Number of training documents. In this particular example, this number is 62.
(10) In this example, there are 59 support vectors generated from the training material.
(11) The value of threshold b is generated from the training examples (see p. 8 of [Burges, 1998]). In this
particular case, the value of b is 1.0279189.

(12) The first support vector generated. The first float number in it, -46.429974748172633, corresponds
to alpha* yi. The other float numbers in the support vector represent the features with non-zero values
(see p. 9 of [Burges, 1998]).
(13) Support vectors (from no. 2 to no. 58).
(14) The last support vector generated (no. 59).

211

A.6 TESTING RESULTS FOR CASE STUDY 1
Table A.2 Original Output Data for Case Study 1

Web
Page
No.

Parameter C

TEST 1 TEST 2 TEST 3 TEST 4 TEST 5
63 -0.66350608 -1.1105612 -0.22711511 -0.41152923 -0.5549386
64 -0.6146509 0.4459478 -0.39356143 -0.3087938 -0.5100132
65 -0.75570562 0.13587011 -0.16377212 0.43424979 0.1229487
66 -0.88476223 0.84267464 -0.25979615 -0.17344767 -0.30268244
67 -0.34361965 0.3395136 0.37963826 0.26133312 0.08231844
68 -0.56028165 0.25341148 -0.17184326 -0.15879136 -0.30393591
69 -0.68203153 0.39206489 -0.17627651 0.58182842 -0.10495329
70 -0.64461215 0.044579624 -0.2555542 0.49053718 0.43450604
71 -0.64136793 -0.75563246 0.024245796 -0.24476195 -0.3837859
72 -0.54516251 -0.37603521 -0.63321543 -0.47638657 -0.63409591
73 -0.94807185 -0.61509729 -0.30822737 -0.1670702 -0.43065785
74 -0.86712238 -0.82567021 -0.8322616 -0.62191389 -0.82738891
75 -0.49105626 -0.87245945 -1.020695 -0.76788384 -0.91989471
76 -0.32167472 -0.84650577 -0.44705311 -0.41928664 -0.53069734
77 -0.71434127 -1.2372981 -0.84575343 -0.75068516 -0.75233001
78 -0.58281349 0.86997262 0.2573205 0.68869009 0.13287862
79 -0.26227152 -0.8999278 -0.48396026 -0.98610134 -1.0893885
80 -0.99724958 -0.7140855 -0.61744471 -0.083098426 -0.040043575
81 -0.69301305 -0.97425816 -0.38949823 -0.37589321 -0.51615454
82 -0.96153848 -0.66426467 -0.68750708 -0.22055245 -0.3796952
83 -0.31106542 -0.52663721 -0.084070847 -0.27619621 -0.37704757
84 -0.82314397 -1.0738563 -0.86472826 -0.93613782 -1.0947777
85 0.13344999 0.09906655 -0.84001762 -0.4383296 -0.71111582
86 -0.49464464 -0.56461097 -0.83911905 -0.79470071 -0.89706521
87 -0.57294458 0.57409149 0.23848707 0.95828904 0.17370597
88 -0.5877441 -0.95713128 -0.22081858 -0.19962712 -0.37811065
89 -0.51090754 -0.20023979 -0.77293411 -0.43017622 -0.55511599
90 1.1215027 1.0341855 -0.85851624 -0.44146514 -0.64543929
91 -0.33607222 0.36449767 0.4148 0.28420392 0.10584316
92 -0.75609593 -0.71717848 -0.35962196 -0.35179253 -0.45745312
93 -0.85503626 2.2094595 -0.57210336 -0.38393924 -0.63283484
94 -0.24206331 -0.02227671 1.1268569 0.27624868 0.16026111
95 -0.56628238 0.26727248 -0.17108221 -0.15644031 -0.2934512
96 1.6647492 0.6369537 1.6104216 0.43590085 0.27484654
97 1.0599881 0.80805321 -0.35893782 -0.26931719 -0.37922634
98 -0.91812616 0.44091055 -0.77983612 -0.12685412 -0.74833035
99 -0.30795662 0.76551499 -0.26128924 -0.13658279 0.017834511
100 -0.67033637 -0.67957041 -0.037781904 -0.27729066 -0.41272463

Note: Incorrect results are shown in italic.

212

Table A.3 Processed Results for Case Study 1

Web
Page
No.

Expert
Opinion TEST 1 TEST 2 TEST 3 TEST 4 TEST 5

63 N N N N N N
64 N N P N N N
65 N N P N P P
66 N N P N N N
67 P N P P P P
68 P N P N N N
69 N N P N P N
70 P N P N P P
71 N N N P N N
72 N N N N N N
73 N N N N N N
74 N N N N N N
75 N N N N N N
76 P N N N N N
77 N N N N N N
78 P N P P P P
79 P N N N N N
80 N N N N N N
81 N N N N N N
82 N N N N N N
83 P N N N N N
84 N N N N N N
85 N P P N N N
86 N N N N N N
87 P N P P P P
88 N N N N N N
89 N N N N N N
90 N P P N N N
91 P N P P P P
92 N N N N N N
93 P N P N N N
94 N N N P P P
95 P N P N N N
96 P P P P P P
97 P P P N N N
98 N N P N N N
99 P N P N N P
100 N N N N N N

Precision 2/4=50% 11/18=61.11% 5/7=71.43% 6/9=66.67% 7/9=77.78%
Recall 2/14=14.29% 11/14=78.57% 5/14=35.71% 6/14=42.86% 7/14=50%

P - Positive example (relevant page); N -Negative example (irrelevant page)

213

A.7 TESTING RESULTS FOR CASE STUDY 2
Table A.4 Original Output Data for Case Study 2

Web
Page No

Parameter C
TEST 6 TEST 7

66 1.5100221 1.6717624
67 0.89297345 1.1144098
68 0.96766661 0.95193049
69 0.15582952 0.017538369
70 -0.012009365 0.073008036
71 -0.33279524 -0.059684461
72 1.6243047 1.9726233
73 -1.0936211 -1.5834467
74 0.44163406 0.56587452
75 0.58372624 0.58503654
76 0.8684108 1.0327643
77 -0.25363558 -0.34682231
78 1.1061295 1.1100589
79 -0.2883241 -0.40268144
80 0.58302483 0.7986205
81 1.1890082 1.0013537
82 0.28390861 0.11923657
83 -9.8969456 -8.9035788
84 1.384341 1.2928913
85 -0.33279833 -0.51938434

Note: Incorrect results are shown in italic.

214

Table A. 5 Processed Results for Case Study 2

Web Page
No Expert Opinion TEST 6 TEST 7

66 P P P
67 N P P
68 P P P
69 N P P
70 P N P
71 N N N
72 P P P
73 N N N
74 P P P
75 N P P
76 P P P
77 N N N
78 P P P
79 N N N
80 P P P
81 N P P
82 P P P
83 N N N
84 P P P
85 N N N

Precision 9/13=69.23% 10/14=71.43%
Recall 9/10=90% 10/10=100%

P - Positive example (relevant page); N -Negative example (irrelevant page)
Note: Incorrect results are shown in italic.

215

APPENDIX B. SAMPLE SOURCE CODE

FOR CHAPTER 4

The sample source code below illustrates a spider multithreading control class written
in Java programming language.

Comments are included either
1. Between “/*” and “*/, or
2. After “//”

import java.util. Vector;
import java.util.Hashtable;
import java.util.Enumeration;
import java.net.MalformedURLException;
import java.net.URL;
import java.io.*;
/* *

* Given urls from the SpiderMain class, the SpiderControl class will
* insert and use the urls through the URLList queue and send a spider out on each
* url to fetch and validate the webpage. If a Webpage is valid, it will write the
* page to a file
*/

public class SpiderControl implements Runnable

{
/**

* number of spiders running for spider control
*/

public static int numOfSpiders;
private ThreadGroup threadGroup = new ThreadGroup("spiderControl");
private Thread currentThread = null;
/**

* the first urls the spiders will be searching on
*/

private URLList urlList = new URLList();
/**

* keywords the spider is looking for in each webpage
*/

private static Vector keywords;
/**

216

* the number of urls the spiders are to return

*/

private int numberUrls;
/**

* time spider has to obtain page till it is shut off
*/

private long timeOut;
/**

*the file path where the retrieved pages are saved to

*/
private String outputPath;
/**

* array of spiders, each has a different thread

*/
private Spider[] spider Array = new Spider[numOfSpiders];
Thread[] threadArray - new Thread[numOfSpiders];
private boolean[] activeArray = new boolean[numOfSpiders];
private long[] spiderRunTime = new long[numOfSpiders];
/**

* determine the and/or choice of user
*/

private boolean or;
/**

* determines if searchbutton is done
*/

private boolean doneSearch = false;
/**

* number of pages retrieved with keywords
*/

private volatile int pagesRetrieved = 0;

* the index of the first page retrieved
*/

private int startPagelndex = 0;
/**

* total number of pages retrieved with or without keywords
*/

private volatile int totalPagesRetrieved = 0;
/**

* the SpiderMain class
*/

public SpiderMain spiderMain = null;
private long startTime = 0;
//forjudging whether the target page is within the result page from searchbutton engines

217

private static Vector engineHosts = new Vector();
//for outputing the information to console
private LogDialog logdialog = null;
//for confirm whether the console is absent
private boolean showlog = false;
//for control the modal dialog shown when the spiders are crawling
public CrawlingDialog crawlingDialog = null;
//for make the main interface editable
public RequestKeywordsPane rKeywords = null;
/**

* constructor - places the urls in the URLList, creates spiders, and starts thread.
* Also constructs the directory structure that will hold all the urls collected
*/

public SpiderControl(SpiderMain parent, Vector urls, Vector keywords,
int numberUrls, int startPagelndex, int timeOut, boolean or, LogDialog smlogD,
boolean showlog, String outputPath, CrawlingDialog crawlingDialog,RequestKeywordsPane

rKeywords)

{
this.spiderMain = parent;
this.numberUrls = numberUrls;
this. startPagelndex = startPagelndex;
this.timeOut = (long)(timeOut * 1000);
this.or = or;

this.keywords = keywords;
this.logdialog = smlogD;
this.showlog = showlog;
this.outputPath = outputPath;
this.crawlingDialog = crawlingDialog;
this.rKeywords = rKeywords;
//add initial urls to the URLList
this.addURLs(urls); '
this.addEngineHosts (urls);
//run from this object's run() method
this.currentThread = new Thread(this);
this.currentThread.start();
startTime = System.currentTimeMillis();

}
private void addEngineHosts (Vector initUrls)

{
Enumeration e = null;
if (initUrls instanceof Vector)

{
e = ((Vector)initUrls).elements();

}

218

while (e.hasMoreElements())

{
Object element = e.nextElement();
if (element instanceof String)

{
try

{
URL tempURL = new URL((String)element);

engineHosts.add(tempURL.getHost());
System.out.println("addEngineHosts: "+tempURL.getHost());

if(showlog)
logdialog.println("addEngineHosts :"+tempURL.getHost());

}
catch (MalformedURLException ex) {} // end catch Malformed

}
} //end for while (e.hasMoreElements())

}
public synchronized void addURLs(Object urls)

{
if (getDoneSearch())

{
return;

}
// add urls to the URLList
Enumeration e = null;
//get it from configuration file
if (urls instanceof Vector)

{
e = ((Vector)urls).elements();

}
//get it from the spider after analysing the pages for more links
else if (urls instanceof Hashtable)

{
e = ((Hashtable)urls).elements();

}
else

{
return;

}
while (e.hasMoreElements())

{
Object element = e.nextElement();
if (element instanceof String)

{

219

try

{
this.urlList.add(new ParentedURL((String)element));

}
catch (MalformedURLException ex) {} // end catch Malformed

}
else if (element instanceof ParentedURL)

{
this.urlList.add((ParentedURL)element);

}
} //end for while (e.hasMoreElements())

}
/**

RUNO
loops until searchbutton is done. Checks urllist for new urls and if so, sends
a spider out with one.
*/

public void run()

{
for (int i = 0; i < this.numOfSpiders; i++)

{
this.spiderArray[i] = new Spider(this,

this.keywords,
this.timeOut,
this.or,
this.engineHosts,
this.logdialog,
this.showlog);

this.spiderArray[i].setSpiderNumber(i);

this.spiderRunTime[i] = System.currentTimeMillis();
deActiveArray(i);
//this.threadArray[i] = new Thread(this.threadGroup, this.spiderArray[i]);
this.threadArray[i] = (Thread)this.spiderArray [i];
this.threadArray [i] .start();

} // end for
ParentedURL url = this.getNextUrl();
synchronized(this)

{
System.out.println("in SpiderControl run() setURL(url) "+0 +" with "+url.getURL());
if(showlog)
logdialog.println("in SpiderControl run() setURL(url) "+0 +" with "+url.getURL());
this. spider Array [0]. setURL(url);
//move the below statement to the Spider thread

220

//this.activeArray[inactiveThread] = true;

}
while (true)

{
//just wait for some time to let spiders' situation changed

this.sleep(lOOO);
//get one spider is free
int inactiveThread = this.getInactiveThread();
// no inactive threads were found
if (inactiveThread == -1)

{
continue;

}
url = this.getNextUrl();
if (!this.checkDone()){

if (url == null){
continue;

}
}
else{

System.out.println("checkDone! spidercontrol while break");
if(showlog)
logdialog.println("checkDone! spidercontrol while break");
break;

}
synchronized(this)

{
System.out.println("in SpiderControl run() setURL(url) "+inactiveThread +" with

"+url.getURL());
if(showlog)
logdialog.println("in SpiderControl run() setURL(url) "+inactiveThread +" with

"+url.getURL());

this, spider Array [inactiveThread]. setURL(url);

}
}//end while (true)
//doneSearch already
this.sleep(500);
//reset activeArray all to false
for (int i = 0; i < this.numOfSpiders; i++)

{
System.out.println("threadArray "+i+" is "+threadArray[i].isAlive());
if(showlog)
logdialog.println("threadArray "+i+" is "+threadArray[i].isAlive());
deActiveArray(i);

221

} // end for
boolean active - true;
//wait until no one in the activeArray is active

while (active)

{
active = false;
for (int i = 0; i < this.numOfSpiders; i++)

{
synchronized(this)

{
if (this.activeArray[i])

{
active - true;

}

}
} // end for

if (! active)

{
break;

}
}
//make all the thread stopped
for (int i = 0; i < this.numOfSpiders; i++)

{
if (this.threadArray[i].isAlive())

{
System.out.println("thread "+i+" still alive");
if(showlog)
logdialog.println("thread "+i+" still alive");

}
} // end for
if (this.spiderMain != null)

{
this.spiderMain = null;

} // endif
System.out.println("SpiderControl does the job in

"+(System.currentTimeMillis()-startTime)/1000+" seconds");
if(showlog)

logdialog.println("SpiderControl does the job in
"+(System.currentTimeMillis()-startTime)/1000+" seconds");

keywords.removeAllElements();
crawlingDialog.closeDialog();
crawlingDialog.summaryDialog();
rKeywords. enableEdit();

222

}
public synchronized Thread ActiveArray(int number)

{
System.out.println("in SpiderConntrol ActiveArray() thread "+number);
if(showlog)
logdialog.println("in SpiderConntrol ActiveArray() thread "+number);
this.activeArray[number] = true;
retum(this.threadArray[number]);

}
public synchronized Thread deActiveArray(int number)

{
System.out.println("deActiveArray thread "+number);
if(showlog)
logdialog.println("deActiveArray thread "+number);
this.activeArray[number] = false;
retum(this.threadArray[number]);

}
public synchronized void yieldThread(int number)

{
this.threadArray [number] .yield();

}
//this function can't be synchronized method
public void sleepThread(int number, int miliseconds)

{
System.out.print("in SpiderControl sleepThread "+number+"\n");
if(showlog)
logdialog.println("in SpiderControl sleepThread "+number+"\n");
try

{
this.threadArray[number].sleep(miliseconds);
this.threadArray [number] .y ield();

}
catch (InterruptedException e) {}

}
private void sleep(int miliseconds)

{
try

{
this.currentThread.sleep(miliseconds);
this.currentThread.yield();

}
catch (InterruptedException e) {}

}
private int getlnactiveThreadQ

223

{
for (int i = 0; i < this.numOfSpiders; i++)

{
//make it maybe a better performance than enclosing
//all the method call into a synchronized method

synchronized(this)

{
if (!this.activeArray[i])

{
retum(i);

}
}

} // end for
retum(-l);

}
private ParentedURL getNextUrl()

{
if (getDoneSearch())

{
retum(null);

}
else

{
retum(this.urlList.remove());

}
}
private synchronized boolean checkDone()

{
boolean active = false;
for (int i = 0; i < this.numOfSpiders; i++)

{
System.out.println("in checkDone() thread "+i+" is "+threadArray[i].isAlive());
if(showlog)

logdialog.println("in checkDone() thread "+i+" is "+threadArray[i].isAlive());
if (this.activeArray[i])

{
active = true;

System.out.println("in checkDone,activeArray "+i+" is still active");
if(showlog)
logdialog.println("in checkDone,activeArray "+i+" is still active");
//break;

}
}
System.out.printLn("//////////////////////////////////// / // //////");

224

if(showlog)
logdialog. pr int In (" ///");

if (this.urlList.size() = 0 && ! active)

{
System.out.println("in checkDone (this.urlList.size() == 0 && [active)");
if(showlog)
logdialog.println("in checkDone (this.urlList.size() == 0 && [active)");

setDoneSearch();
retum(true);

}
//we can't guarantee uriList is empty
//this can be improved
else if (getDoneSearch() && [active){

System.out.println("in checkDone getDoneSearch()"+
"urlList.size() "+urlList.size());

if(showlog)
logdialog.println("in checkDone getDoneSearch()"+

"uriList.size() "+urlList.size());
return (true);

}
retum(false);

} // end boolean checkDone()
/**
sets doneSearch to true, stopping the searchbutton
boolean value is atomized so it doesn't need sychronized
*/

public void setDoneSearch()

{
this.doneSearch = true;

}
/**
goodHTMLPage(String, int)
This method accepts the homepages, adds to the webpage count, returns
the spider and currently write the string to a file

*/
//synchronized
public void goodHTMLPage(int spidemumber,String webpage, String location,

String keywords, String title,
String page, ParentedURL parent)

{
if (getDoneSearch() || webpage.length() == 0)

{

225

System.out.println("getDoneSearch() return in goodHTMLPage, location

is :"+parent.getParentURL().getURL());
if(showlog)
logdialog.println("getDoneSearch() return in goodHTMLPage, location

is :"+parent.getParentURL().getURL());
return;

}
//like this: http://www.dmoz.org/
String parLoc = null;
if (parent.getParentURL() != null)

{
URL url = parent.getParentURL().getURL();
parLoc = url.toString();
System.out.println("thread "+spidemumber+" in goodHTMLPage, location

is :"+location+" host is: "+url.getHost());
if(showlog)
logdialog.println("thread "+spidemumber+" in goodHTMLPage, location

is :"+location+" host is: "+url.getHost());

} // end if(parent.getParentURL())
else {

System.out.println("thread "+spidemumber+" no ParentedURL, length==null!,return");
if(showlog)
logdialog.println("thread "+spidemumber+" no ParentedURL, length==null!,return");
return;

}
// write the webpages to files
//this synchronized method causes problems
// if you want the output to write to a different directory,
// set directory to something like "dataWhtmlW"
String directory = outputPath + "\\";

//this has to be synchronized to make all the pages recorded down
synchronized (this){

try {
File webpageFile = new File(directory +

(this.pagesRetrieved+this.startPagelndex-l) + ".html");
OutputStream out = new FileOutputStream(webpageFile);
out.flush();
String outstr = new String(location + "\n" +

"spidemumber: "+spidemumber+"\n"+webpage);
out.write(outstr.getBytes());
out.close();

} catch (IOException e) {
System.err.print("Error in writing webpages to file "+location);
e.printStackTraceQ;

226

http://www.dmoz.org/

} 11 end catch io
catch (Exception e){

System.out.print(e);
//logdialog.println(e);

}
if (location != null){

System.out.println(" spider "+spidemumber+" "+location+" "
+ (this.pagesRetrieved+this.startPagelndex-1)

+".html written to disk");
if(showlog)
logdialog.println(" spider "+spidemumber+" "+location+" "

+ (this.pagesRetrieved+this.startPagelndex-1)
+".html written to disk");

}

//volatile keyword in win2k doesn't take effect here
//the recommendation from java core2 Advanced stated this clearly
//at 53rd page volume II-advanced features gary comell
++this.pagesRetrieved;
++this.totalPagesRetrieved;

}//synchronized (this)
if (this.pagesRetrieved >= this.numberUrls){

System.out.print("setDoneSearch();spiderNumber:"
+spidemumber+
"totalPagesRetrieved:"+totalPagesRetrieved

+"pagesRetrieved "+pagesRetrieved);
if(showlog)
logdialog.println("setDoneSearch();spiderNumber

+spidemumber+
"totalPagesRetrieved:"+totalPagesRetrieved
+"pagesRetrieved "+pagesRetrieved);

setDoneSearch();

>
} // end goodHTMLPage(String, int)
//synchronized
public void badHTMLPage(String location, String keywords,

String title, String page,
ParentedURL parent)

{
if (getDoneSearch())

{
System.out.println("getDoneSearch() return in badHTMLPage, location

is :"+parent.getParentURL().getURL());
if(showlog)

227

logdialog.println("getDoneSearch() return in badHTMLPage, location

is :"+parent.getParentURL().getURL());
return;

}
if (location != null && location.length() > 10)

{
String parLoc = null;
if (parent.getParentURL() != null)

{
URL url = parent.getParentURL().getURL();
parLoc = url.toString();
System.out.println("in badHTMLPage, location is :"+parLoc);

if(showlog)
logdialog.println("in badHTMLPage, location is :"+parLoc);

} // end if(parent.getParentURL())
++this.totalPagesRetrieved;

} // end if(this.spiderMain != null)
} // end badHTMLPage

public int getPagesRetrieved()

{
return pagesRetrieved;

} // end INT getPagesRetrievedQ

public int getTotalPagesRetrieved()
{ return totalPagesRetrieved;
} // end int getTotalPagesRetrieved

// boolean value is atomized so it doesn't need sychronized
public boolean getDoneSearch()

{
return getDoneSearch(-l);

} // end getDoneSearch()
public boolean getDoneSearch(int number)
{ if (number >0)

System.out.println("spider "+number+" retrieve getDoneSearch");
if(showlog)
logdialog.println("spider "+number+" retrieve getDoneSearch");

retum(this.doneSearch);
} // end getDoneSearch()
public SpiderMain getspiderMain()

{
retum(this. spiderMain);

} // end getspiderMain()
} // end SpiderControl

2 28

APPENDIX C. SEMCOR, WORDNET AND ROGET’S

C.l TAGS USED IN SEMCOR 1.6

Table C.l Tags Used in Semcor 1.6

Tag Name Descriptions

contextfile Name of the semantic concordance file

context Name of the original corpora file

P Paragraph number in context1

S Sentence number in context

wf Syntactic and semantic information stored as attribute/value pairs

cmd Status of the w f element

pos Part of speech (noun, verb, adjective and adverb)

lemma Root form of a word

wnsn Word sense number in WordNet

lexsn Lexical sense (used for indexing)

rdf The word is redefined to something else. This is mainly used to define
discontinuous collocations2, correct typographical errors in the text, or
enter a string instead of a word to search WordNet.

dc Indicates that a word is part of a discontinuous collocation.

sep Separator string

tagnote Note of problems encountered during the development of Semcor

ot Note of reasons why a tag cannot be assigned to a word

note Additional information used in the development of Semcor

1 “Context” is used in Semcor as a tag name.
2 Discontinuous collocation is a term used in linguistics to indicate an arrangement of words which
often appear at the same time but are not next to each other.

229

C.2 SEMCOR ANNOTATED TEXT SEMPLE

<contextfile concordance=brown>
<context filename=br-a01 paras=yes>
<p pnum=l>
<s snum=l>
<wf cmd=ignore pos=DT>The</wf>
<wf cmd=done rdf=group pos=NNP lemma=group wnsn=l lexsn=l:03:00::
pn=group>Fulton_County_Grand_Jury</wT>

<wf cmd=done pos=VB lemma=say wnsn= 1 lexsn=2:32:00::>said</w£>

<wf cmd=done pos=NN lemma=friday wnsn=l lexsn=l :28:00::>Friday</wf>
<wf cmd=ignore pos=DT>an</wf>
<wf cmd=done pos=NN lemma=investigation wnsn=l
lexsn=1:09:00: :>investigation</w£>
<wf cmd=ignore pos=IN>of</wf>
<wf cmd=done pos=NN lemma=atlanta wnsn=l lexsn=l: 15:00::>Atlanta</wf>
<wf cmd=ignore pos=POS>'s</wf>
<wf cmd=done pos=JJ lemma=recent wnsn=2 lexsn=5:00:00:past: 00>recent</wf>
<wf cmd=done pos=NN lemma=primary_election wnsn=l
lexsn=l :04:00::>primary_election</wf>
<wf cmd=done pos=VB lemma=produce wnsn=4 lexsn=2:39:01::>produced</wf>
<punc>'' </punc>
<wf cmd=ignore pos=DT>no</wf>
<wf cmd=done pos=NN lemma=evidence wnsn=l lexsn=l:09:00::>evidence</wf>
<punc>"</punc>
<wf cmd=ignore pos=IN>that</w£>
<wf cmd=ignore pos=DT>any</wf>
<wf cmd=done pos=NN lemma=irregularity wnsn= 1 lexsn=l:04:00::>irregularities</wf>
<wf cmd=done pos=VB lemma=take_place wnsn=l lexsn=2:30:00::>took_place</wf>
<punc>.</punc>
</s>
</p>...
</context>
</contextfile>

Figure C.l Annotated Text in Semcor (a Fragment)

230

C.3 WORDNET AND ROGET’S ENTRY SAMPLES

342 Land.
N. land, earth, ground, dry land, terra firma.
continent, mainland, peninsula, chersonese[Fr], delta; tongue of land, neck of land;
isthmus, oasis; promontory (see projection 250); highland (see height 206).
coast, shore, scar, strand, beach; playa; bank, lea; seaboard, seaside, seacoast; ironbound
coast; loom of the land; derelict; innings; alluvium , alluvion[obs3]; ancon.
riverbank, river bank, levee.
soil, glebe, clay, loam, marl, chalk, gravel, mold, subsoil, clod, clot; rock, crag,
acres; real estate (see property 780).
V. land, come to land, set foot on the soil, set foot on dry land; come ashore, go ashore,
debark.
Adj. earthy, continental, midland, coastal, littoral, riparian; alluvial; terrene (see world
318); landed, territorial; rigidulous.
Adv. ashore; on shore, on land. _______

Figure C.2 The Entry for the Word “Land” in the Gutenberg’s Edition of the Roget’s
Thesaurus

ABANDONA
v,
1. abandon -- (forsake, leave behind; "We abandoned the old car in the empty parking
lot")
2. abandon, give up — (give up with the intent of never claiming again; "Abandon
your life to God"; "She gave up her children to her ex-husband when she moved to
Tahiti"; "We gave the drowning victim up for dead")
3. vacate, empty, abandon -- (leave behind empty; move out of; "You must vacate
your office by tonight")
4. abandon, give up, give — (stop maintaining or insisting on; of ideas, claims, etc.;
"He abandoned the thought of asking for her hand in marriage"; "Both sides have to
give in these negotiations")
5. abandon, forsake, desolate, desert, lurch -- (leave someone who needs or counts on
you; leave in the lurch; "The mother deserted her children")______________________

Figure C.3 The Entry for the Verb “Abandon” in WordNet 1.6

231

APPENDIX D. SAMPLE SOURCE CODE

FOR CHAPTER 5

D .l SAMPLE CODE FOR SEMANTIC MAPPPING

The sample source code below illustrates one function in the semantic mapping
programme, which is used to generate the mapping between eWord entries and
OntoRo entries. The programme is written in C programming language.

Comments are included either
1. Between “/*” and “*/, or
2. After “//”

int fmdsimilarity(FILE * outputfp, conElement* conceptArray[],int conceptlen, struct wnlistitem*
wnArray[], int wnlen, struct frequencyObj * ffeqlist[],int freqcount)

{
int countl,count2;
int ffeeCnt=0;//for freeing memory counter

int currentBest =0;//current position when adding to the best points
int listlen;//the length of the concept list for a word in wn
int conlistNo =0; // how many conceptlist in the concept list found for a given wn list

conElement ** conList=NULL;//for one word in wn list
conElement* conCandidates [SEMANTICLENTH];//holding conElement candidates of best

points, first stage, choose the best one for each word in a list
conElement ** best;//concept list for all the members in wn for a list item,second stage, find the

best one from the best ones from the first stage

semPoint ** semPointList = malloc(sizeof(semPoint*)*SEMANTICLENTH);//assume there are
35 wordlist for a concept array using MACRO

iniCandiates (conCandidates, SEMANTICLENTH);
best = malloc(sizeof(conElement*)*wnlen);//array for holding all best corresponding wordnet

sense points

for (count l=0;countl<wnlen;countl++)//for each wn list item, find a corresponding concept line,
store the result in wnResult

{

232

if (countl%100==0)

{
printf("&&&&&&&&&&&&&&&&& fmdsimilarity wordnet line %d

&&&&&&&&&&&&&&&&&\n",countl);

}
for(count2=0;count2<(wnArray[countl]->expressionNo);count2++)

{
conList = retrieveConList(conceptArray, conceptlen,

wnArray[countl]->wnitemlist[count2]->wnstring, &listlen);
if(conList && listlen && (conlistNo<SEMANTICLENTH))//conList !=NULL and

listlen !=0

{
semPointList[conlistNo]=addPoint(conList,listlen);
conlistNo++;//conlistNo should smaller than expressionNo, as some of them could

not be found in concept file
}//how many found in concept list

}//end for(count2=0;count2<(wnArray[count 1]->expressionNo);count2++)

if(conlistNo>l)

{
findbestpoints(conCandidates,semPointList,conlistNo);//fill the conCandidates list with

pointers to the conElements
findbestpoint(conlistNo,count 1 ,¤tBest,best, conCandidates,ffeqlist,freqcount);//

}
//here for one wn item,
//only found a word that has corresponding concept string list, difficult to judge which sense

should pick for that wn item
else

{
//if there is only one word, then
printfC***************** »>wam ing only one corresponding word,difficult to

judge!\n,%s",semPointList[0]->list[0]->expression);
//only choose the first one
currentBest = 0;

best[countl] = semPointList[0]->list[0];

//that's the best
p r i n t f (" » » » » » » b e s t » » » » > % s , is

%d,%d,%d,%d,%d,%d\n\n",best[countl]->expression,

best[count 1]->tople vel,
best[count 1]->section,
best[countl]->subsection,
best[countl]->headgroup,

233

best[countl]->conceptgroup,
best[count 1]->conceptno);

fprintf(outputfp,"%s,%d,%d,%d,%d,%d,%d\n",best[countl]->expression,

best[countl]->toplevel,
best[countl]->section,
best[countl]->subsection,

best[count 1]->headgroup,
best[count 1]->conceptgroup,
best[count 1]->conceptno);

//free semPointList

for(freeCnt=0;freeCnt<((conlistNo<SEMANTICLENTH)?conlistNo:SEMANTICLENTH);freeC

nt++)

{
free(semPointList[freeCnt]);

}
free(conList);
conList = NULL;
conlistNo =0;//reset the counter

}//end for

/////////////////free memory

free(best);
free(semPointList);
return 0;

}

D.2 SAMPLE CODE FOR SEMCOR ANNOTATED

CORPUS PARSER

The sample source code below illustrates one function in the Semcor corpus XML
format parser. This parser is used to parse Semcor corpus and convert it to OntoCorp,
an ontologically tagged corpus. This programme is used after the semantic mapping
between eWord and OntoRo is generated. The programme is written in Java
programming language.

Comments are included either
1. Between “/*” and “*/, or
2. After “//”

public void startElement(String namespaceURI,

234

String IName, // local name
String qName, // qualified name

Attributes attrs)
throws SAXException

{
semcorNo++;

indentLevel++;
String eName = IName; //element
if ("".equals(eName))

{
eName = qName; // namespaceAware = false //name here is<wf //should always here
//System.out.println("++++++++++startElement++++++++++>"+eName+" "+lineno);
//System.out.println(eName);
currentElement = eName;

}
else {System.out.println("+++++++ t ++++++++++++++++>l,+eName+" "+lineno);}

if (eName.length()>0 && attrs != null && eName.equalsIgnoreCase("wf')) {
//for everything line, lemma should be found,otherwise, the tag should be "IGNORE"

boolean foundLemma = false;
String keyString = new String();
String lemmaStr = new String();
String posStr = new StringO;
int senseNo = 0;
for (int i = 0; i < attrs.getLength(); i++) {

String aName = attrs.getLocalName(i); // Attr name like lemma=

if ("".equals(aName))

{
aName = attrs.getQName(i);
//System.out.println("-------------- >"+aName+" "+lineno);

}
//process all the attributes here, should be only one lemma string per line for :

"<wf'
//some precaution should be taken to guarantee there's only one per line
if(aName.equalsIgnoreCase("lemma") &&

!attrs.getValue(i).equals("group") &&
! attrs.getValue(i).equals("location") &&
! attrs.getValue(i).equals("person")) {

String temp[] = attrs.getValue(i).split(lemmaSplitSymbol);
lemmaStr = new String(temp[0]);
for (int j= 1 ;j<temp.lengthj++){

lemmaStr +=" "+temp[j];

}
lemmaStr = lemmaStr.trim();
foundLemma = true;

235

}//if

else if(aName.equalsIgnoreCase("pos")) {
posStr = attrs.getValue(i);

attribute

//need to change the wn file senses to the n,v,a etc

if(posStr.equalsIgnoreCase("NN")||
posStr.equalsIgnoreCase("NNP")||
posStr.equalsIgnoreCase("NNPS")| |

posStr.equalsIgnoreCase("NNS")||
posStr.equalsIgnoreCase("NP")||
posStr.equalsIgnoreCase("NPS")){

posStr = "n";

}
else if(posStr. equalsIgnoreCase("JJ")) {

posStr = "a";

}
else if(posStr.equalsIgnoreCase("VB")){

posStr = "v";

}
}
else if(aName.equalsIgnoreCase("wnsn")){

String temp = attrs.getValue(i).split(senseSplit)[0];
senseNo = new Integer(temp).intValue();

}
/*ni();
emit(" ATTR: ");
emit(aName);
emit("\t\"");
emit(attrs.getValue(i));
emit("\"");*/

}//for
//make sure that lemmaStr,posStr,senseNo are all there if the wf has a recognised lemma

if(foundLemma && lemmaStr.length()>0 && posStr.length()>0 && senseNo>0){
keyString = lemmaStr+"A"+posStr+"A"+senseNo;

//System .out.println("»»»>"+keyString+"««<«<");
//assign the tag

for (int i=0;i<attrs.getLength();i++){
//now got the linked lemma string, try to find it in the similarityFile expression

if(similarityMap!=null
&& similarityMap.size()>0

&& conceptMap !=null
&& conceptMap.size()>0

){

236

if(conceptMap.containsKey(lemmaStr)){
Vector testVector = (Vector)conceptMap.get(lemmaStr);

if(testVector.size()==l) {
SimObj simObjTemp = (SimObj)testVector.elementAt(O);
currentTag = "S"+String.valueOf(simObjTemp.headgroup);
//currentTag = "***";

}
//can't find the best from the concept map
else if(similarityMap.containsKey(keyString)) {

SimObj simObjTemp =
(SimObj)similarityMap.get(keyString);

//now use headgroup as the tag to be mark for all the
words.

currentTag
"S" - String. valueOf(simObj Temp.headgroup);

}
else {currentTag = "UNKNOWN";}

}

}
else {

System.out.println("similarityMap error in 'startElement' exiting...");
System.exit(l);

}
}//for

}
else if(foundLemma){

System.out.println("****No all posStr, senseNo, lemmaStr are filled,exiting...");
System.exit(l);

}
//here should be the ignore tag now if no 'lemma' attribute found

else{
currentTag = "IGNORE";

}//end else
}//end if
//should have a return now for each sentence;
else if(eName.length()>0 && eName.equalsIgnoreCase("s")){
//System.out.print("in startElement 's'\n");
sentenceCnt++;
System.out.print("\n");

//ni();

}
//if (attrs.getLengthO > 0) nl();
//emit(">");

}

237

APPENDIX E. SAMPLE SOURCE CODE

FOR CHAPTER 6

The sample source code below illustrates one loop in the training process of the
ontology tagging programme, which is used to add surrounding word counts for each
word in the context of a given sense number. The programme is written in Java
programming language.

Comments are included either
1. Between “/*” and “*/, or
2. After “//”

for (int i = 0; i < temp.length; i++) {
// build an entry for this concept/senseTag, with its
// surrounding word occurence

if (temp[i].length() != 0) {
String temp2[] = temp[i].split(splitSlash);
//ensure there are only two elements
if (temp2.1ength != 2) {

System.out.println("word/Sense pair is not complete»"+
temp2[0]

+ "o"+ temp2[l] + "oline"+
separatedlineNo+ "»"+ temp2. length

+ "«exiting...");
System.exit(l);

}
//if ((!temp[i].equalsIgnoreCase(ignoreTag))
if ((!temp2[l].equalsIgnoreCase(ignoreTag))

&&!contextMap.containsKey(temp[i].toLowerCase())) {
Vector entry = new Vector(30);
for (int j = 0; j != i && j < temp.length; j++) {

//the contextMap doesn't contain the word itself, has to be
different words

if(!temp[j].equalsIgnoreCase(temp[i])){
String wordtemp[] -

temp[j].toLowerCase().split(splitSlash);

// guarantee that there're only 2 elements after

// spliting, 'word' and 'senseTag',otherwise quit
if (wordtemp.length != 2) {

238

System.out.println("Error in

temp[i].toLowerCase().split(splitSlash), exiting...");
System.exit(l);

}
int pos = -1;

// have an existing entry and not an ignore tag,

// even for a single line, may have duplicated
// words
// only consider 'word' attribute, not other

// 'sense' etc other attributess
if (entry. size()>0){

//if(! temp[j] .equalsIgnoreCase(ignoreTag) &&

(pos = findPosition(entry, wordtemp[0])) >= 0) {
if(!wordtemp[l].equalsIgnoreCase(ignoreTag)

&& (pos = fmdPosition(entry, wordtemp[0])) >= 0) {
((Sense) entry.elementAt(pos)).frequency++;
//entry.add(senseTemp);

}
}
// a new entry and not an ignore tag
//else if (!temp[j].equalsIgnoreCase(ignoreTag)) {
else if (!wordtemp[l].equalsIgnoreCase(ignoreTag))

{
Sense senseTemp = new Sense();

senseTemp.word - wordtemp[0];
senseTemp.ffequency = 1;
// senseTemp.senseNo = wordtemp[l];
// temp variable
/*

* int d; senseTemp.distance = ((d =
* j-i)>=0)?d:(-l)*d; //absolute value of
* distance if >=0
*/

entry.add(senseTemp);
}// end else

} //if(! temp[j] .equalsIgnoreCase(temp [i]))
//contains same word/sense in one line

else{
System. out. p r i n t l n (" » » » » » » » » » » > —");

}
}// end for
contextMap.put(temp[i].toLowerCase(), entry);

}// end if

239

// add to existing keys
else if((! temp2 [1] .equalsIgnoreCase(ignoreTag))) {

Vector entry = (Vector)
contextMap.get(temp[i].toLowerCase());

for (int j = 0; j != i && j < temp.length; j++) {
String wordtemp[] =

temp(j].toLowerCase().split(splitSlash);
// guarantee that there're only 2 elements after

// spliting, 'word' and 'senseTag',otherwise quit
if (wordtemp.length != 2) {

System.out
.println("Error in

temp[i].toLowerCase().split(splitSlash), exiting...");
System.exit(l);

}
int pos=-l;

//if (!temp[j].equalsIgnoreCase(ignoreTag)
if (! wordtemp[1].equalsIgnoreCase(ignoreTag)

&& (pos = flndPosition(entry,wordtemp[0])) >=

0) {
((Sense) entry.elementAt(pos)).ffequency++;

}
//didn't find wordtemp[0] in the Vector

//else if(!temp[j].equalsIgnoreCase(ignoreTag)){

else if(!wordtemp[l].equalsIgnoreCase(ignoreTag)){
Sense senseTemp = new Sense();
senseTemp.word - wordtemp[0];
// senseTemp.senseNo = wordtemp[l];
senseTemp.ffequency = 1;
entry.add(senseTemp);

}//end else
}// end for

}// else
}//end if (temp[i].length() != 0)
//finished adding surrounding word frequencies to the vector list for all

the words

240

APPENDIX F. SAMPLE SOURCE CODE

FOR CHAPTER 7

The sample source code below illustrates one function in the query process of the
concept indexing programme, which is used to do post processing (including
sequential scanning using regular expressions) according to different options supplied
within queries. The query process is used to output the retrieval results from queries
containing keywords, entities and concepts. The programme is written in C
programming language.

Comments are included either
1. Between “/*” and “*/, or
2. After “//”

static int
ProcessDocs (querydata * qd, int num, int verbatim,

char OutputType, FILE * Output)

{
int m axbuf = 0;
int DocCount = 0;
char *doc_sepstr = NULL;
char *para_sepstr = NULL;
char *para_start = NULL;

int heads_length = atoi (GetDefEnv ("heads length", "50"));
char QueiyType = getquerytype ();
int needjext = (OutputType == OUTPUTTEXT || OutputType == OUTPUTHILITE ||

OutputType = OUTPUTHEADERS || OutputType == OUTPUT SILENT
OutputType == OUTPUT_DOCNUMS||
post_proc);

if (OutputType = OUTPUT_TEXT || OutputType = OUTPUT HILITE)

{
if (QueiyType = QUERYAPPROX || Query Type = QUERYRANKED)

{
doc sepstr = de escape string (

Xstrdup (GetDefEnv ("ranked doc sepstr",
"------------------------------------ %n %w\\n")));

}
else

241

{
docsepstr = deescapestring (

Xstrdup (GetDefEnv ("doc sepstr",
••----------------------------------- %n\\n")));

}
parasepstr = deescapestring (

Xstrdup (GetDefEnv ("para sepstr",
"\\n ######## PARAGRAPH %n ########\\n")));

parastart = deescapestring (
Xstrdup (GetDefEnv ("para start",

"***** Weight = %w *****\\n")));

}
if (needtext)

{
m axb u f= atoi (GetDefEnv ("buffer", "1048576"));

}
do

{
u char *UDoc = NULL;
unsigned long ULen;
if (need text)

{
/* load the compressed text */
if (LoadCompressedText (qd, max buf))

{
Message ("Unable to load compressed text.");
FatalError (1, "This is probably due to lack of memory.");

}

/* uncompress the loaded text */
UDoc = GetDocText (qd, &ULen);
if (UDoc == NULL)

FatalError (1, "UDoc is unexpectedly NULL");

}
//if uncompress the text successfully and we have PostProc string in post_proc

if (!UDoc || PostProc ((char *) UDoc, verbatim))

{
fprintf(Output 'Vn")'

switch (OutputType)

{
case OUTPUT COUNT:
case OUTPUT_SILENT:

break;

242

case OUTPUT DOCNUMS: /* This prints out the docnums string */

if (PagerRunning)

{
#if defined(PARADOCNUM) || defined(NZDL)

int docnum = GetDocNum(qd);
if (qd->paragraph)

{
if (qd->id->ifh.InvfLevel == 3 &&
(Query Type == 'R' || Query Type = 'A'))

{
/* Print weights for each paragraph in document */

int truedocnum = GetDocNumFromParaNum(qd, doc num);

/* Get number of paragraphs in this document */

int num_paragraphs =
qd->paragraph[true_doc_num]-qd->paragraph[true_doc_num-1];

int init_para = FetchInitialParagraph(qd->td,
docnum);

DocEntry *de, *doc_chain = GetDocChain(qd);
int i;

for (i = 0; i < num_paragraphs; i++)

{
if ((de = in_chain(i, init_para, doc chain)))

PrintDocNum(Output, Query Type,
true doc num, init_para+i,
de->Weight);

}

}
else

PrintDocNum(Output, Query Type,
GetDocNumFromParaNum(qd, GetDocNum(qd)),
GetDocNum(qd),
GetDocWeight(qd));

}
else

{
PrintDocNum(Output, Query Type,

doc num, doc num, GetDocWeight(qd));

}
#else

243

fprintf(Output," ***************\n");

//output only the document number
fprintf (Output, "%7d %6.4f %71u\n", GetDocNum (qd),

GetDocWeight (qd), GetDocCompLength (qd));

#endif

}
break;

case OUTPUTHEADERS: /* This prints out the headers of the documents */

if (PagerRunning)
fprintf (Output, "%d ", GetDocNum (qd));

HeaderOut (Output, UDoc, ULen, heads length);

if (PagerRunning)
fputc ('\n', Output);

break;
#if TRECMODE

case OUTPUT_EXTRAS:/* This prints out the docnums string */
if (PagerRunning && trec ids)

{
long DN, PN = GetDocNum (qd) - 1;
if (trec_paras)

DN = trec_paras[PN];
else

DN = PN;
fprintf (Output, "%-14.14s %81d %10.5f\n",

&trec_ids[DN * 14], PN + 1, GetDoc Weight (qd));

}
break;

#endif
case OUTPUTTEXT:
case OUTPUT HILITE:

{
int j, para = -1, curr_para = 0;
int init_para = -1;
DocEntry *de, *doc_chain = NULL;
register char ch = ";
register char lch = '\n';

#if defmed(PARADOCNUM) || defmed(NZDL)
if (qd->id->ifh.InvfLevel = 3)

{
init_para = FetchInitialParagraph(qd->td, GetDocNum(qd));

StringOut(Output, para sepstr,
1, init_para+currjpara,

0, 0);

244

}
else

StringOut(Output, doc sepstr,
1, GetDocNum(qd),
Query Type == 'A' || Query Type == 'R',
GetDoc Weight(qd));

#else
int p_on = 0;

if (PagerRunning)

{
StringOut (Output, doc sepstr,

1, GetDocNum (qd),
QueiyType = 'A' || Query Type == 'R1,
GetDoc Weight (qd));

}
if (qd->id->ifh.InvfLevel == 3)

{
init_para = FetchlnitialParagraph (qd->td, GetDocNum (qd));
docchain = GetDocChain (qd);
para = GetDocNum (qd) - init_para;
StringOut (Output, para sepstr,

1, curr_para + 1,

0 , 0);

if ((de = in chain (0, init_para, doc chain)))
StringOut (Output, para start,

0, 0,

1, de->Weight);
if (doc_chain->DocNum - init_para = 0)

p_on =1;

}
#endif

for (j = 0; j < ULen; j++)

{
ch = UDoc[j];
switch (ch)

{
case '\02':

break;
case *\01

ch = '\n';
case '\03':

#if defmed(PARADOCNUM) || defmed(NZDL)
/* print paragraph numbers only if this is

245

a level 3 index */
if (qd->id->ifh.InvfLevel == 3)

{
curr_para++;
StringOut(Output, para sepstr,

1, init_para+curr_para,

0, 0);

}
#else

p_on = 0;
curr_para++;
StringOut (Output, para sepstr,

1, curr__para + 1,

0, 0);
lch = *(strchr (para sepstr, '\0') - 1);
if ((de = in chain (curr_para, init_para, doc chain)))

StringOut (Output, para start,

0, 0,

1, de->Weight);
if (doc chain &&

doc_chain->DocNum - init_para = curr_para)
p_on = 1;

#endif
break;

default:

{
if (PagerRunning)

{
fputc (ch, Output);

#if !defmed(PARADOCNUM) && !defmed(NZDL)

if (p_on && isprint (ch))

{
fputc C\b', Output);
fputc ('_', Output);

}
#endif

}

lch = ch;

}
}

}
if (PagerRunning && lch != '\n')

fputc C\n', Output);

246

i f ! defined(PARADOCNUM) && !defmed(NZDL)
p_on = 0;

#endif

}
}

if (PagerRunning)
fflush (Output);

DocCount++; }

}

while (NextDoc (qd) && PagerRunning && (!Ctrl_C));
//removing previously allocated re* pointer resource

if(re!=NULL)

{
regffee(re);
ffee(re);
re = NULL;

}
if (need text)

{
FreeTextBuffer (qd);

if (OutputType == OUTPUT TEXT || OutputType = OUTPUT_HILITE)

{
Xffee (docsepstr);
Xfree (para sepstr);
Xfree (para start);

}
return (DocCount);

}

247

APPENDIX G. DATA OF TESTING RESULTS USED IN

CHAPTER 7

G.l INDEXING TESTS

Table G. 1 Total Processing Time for Entity Indexing

Total Processing Time,
Words, million

secs
229 6
499 12
664 18
870 24

2140 30
2448 36
1688 42
2983 48
2065 54
2252 60

248

Table G.2 Total Processing Time for Concept Indexing

Total Processing Time,
secs

Words, million

71 6
142 12
209 18
279 24
354 30
431 36
487 42
559 48
625 54
701 60

Table G.3 Total Processing Time for Merged Indexing

Total Processing Time,
secs

Words, million

52 6
84 12
132 18
220 24
268 30
336 36
384 42
417 48
390 54
429 60

249

G.2 TESTING OF ENTITY AND CONCEPT EXTRACTION

Table G.4 Tests of Entity Extraction

CPU Processing
Time, secs

Total Processing
Time, secs

Disk Usage, KB Memory Usage, KB Words, million

72.5 76 11373.1 737.1 6
144.7 149 22739 772.4 12
218 224 34110.8 805.8 18

289.4 291 45490.6 838.7 24
362 369 56861.9 870.9 30

433.9 474 68233.5 907.1 36
502.2 507 79604.6 939.7 42
573.8 581 90984.8 972.9 48
645.6 653 102356.8 1003.8 54
716.7 724 113728.5 1034.6 60

250

Table G.5 Tests of Concept Extraction

CPU Processing
Time, secs

Total Processing
Time, secs

Disk Usage, KB Memory Usage, KB Words, million

11.5 13 2838.6 351.4 6
22.7 22.7 5650.9 359 12
34.3 37 8466.3 367.3 18
45.8 47 11281.6 375.8 24
56.9 70 14097 383.7 30
68.9 74 16912.3 393.3 36
79.6 83 19727.8 401.3 42
91 95 22543.2 409.6 48
103 110 25358.6 417.7 54

114.4 122 28173.9 426.2 60

251

G.3 RETRIEVAL SPEED TESTS

Table G.6 Retrieval Speed Tests between MySQL and the Developed System

Test Number Retrieving Time of MySQL, ms Retrieving Time of the
Developed System, ms

1 4053.5 82.5
2 555 196
3 156.2 78
4 120.2 56
5 66 38
6 116.2 30
7 52.4 34
8 66 30
9 47.5 20
10 45 25

252

REFERENCES

Allan, J., Aslam J., Belkin, N., Buckley, C., Callan, J., Croft, B., Dumais, S., Fuhr, N.,

Harman, D., Harper, D. J., Hiemstra D., Hofmann, T., Hovy, E., Kraaij, W., Lafferty,

J., Lavrenko, V., Lewis, D., Liddy, L., Manmatha, R., McCallum, A., Ponte, J., Prager,

J., Radev, D., Resnik, P., Robertson, S., Rosenfeld, R., Roukos, S., Sanderson, M.,

Schwartz, R., Singhal, A., Smeaton, A., Turtle, H., Voorhees, E., Weischedel, R., Xu, J.

and Zhai, C. (2003). Challenges in Information Retrieval and Language Modelling:

Report of A Workshop Held at The Centre for Intelligent Information Retrieval, The

ACM SIGIR Forum, 37(1), pp. 31-47.

American National Standards Institute (ANSI), (1984). American National Standard

for Library and Information Sciences and Related Publishing Practices - Basic

Criteria for Indexes (Z39.4-1984), American National Standards Institute, USA.

Antoniou, G. and van Harmelen, F. (2004). A Semantic Web Primer, The MIT Press,

UK.

Araujo, M., Navarro, G. and Ziviani, N. (1997). Large Text Searching Allowing Errors,

in Proc. of WSP'97, Valparaiso, Chile, pp. 2-20.

Aijona, J. L., Corchuelo, R. and Toro, M. (2003). A Knowledge Extraction Process

Specification for Today's Non-Semantic Web, in Proc. of IEEE/WIC International

Conference on Web Intelligence (W I2003), Halifax, Canada, pp. 61-67.

253

Avello, D. G., Gutirrez, D. I. and Lovelle, J. M. C. (2002). A Concept-Based Retrieval

Tool: The Cooperative Web, in Proc. of IADIS International Conference

WWW/Internet (ICWI2002), Lisbon, Portugal, pp. 712-715.

Baeza-Yates, R. (2003). Information Retrieval in the Web: Beyond Current Search

Engines, International Journal of Approximate Reasoning, 34(2), pp. 97-104.

Baeza-Yates, R. and Navarro, G. (1999). Faster Approximate String Matching,

Algorithmica, 23(2), pp. 127-158.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modem Information Retrieval, Addison

Wesley, USA.

Beckman, T. (1997). A Methodology for Knowledge Management, International

Association of Science and Technology For Development (IASTFD) AI and Soft

Computing Conference, Banff, Canada.

Benjamins, V. R., Contreras, J. and Gomez-Perez, A. (2002). Six Challenges for the

Semantic Web. in Proc. of the Eighth International Conference on Principles of

Knowledge Representation and Reasoning (KR2002), Semantic Web Workshop,

Toulouse, France.

Bemers-Lee, T., Hendler, J. and Lassila, O. (2001). The Semantic Web. Scientific

American, 28, pp. 34-43.

Blacker, F. (1995). Knowledge, Knowledge Work and Organizations: an Overview

and Interpretation, Organization Studies, 15(6), pp. 1021-1046.

Boicu, M., Tecuci, G., Stanescu, B., Balan, G. C. and Popovici, E. (2001). Ontologies

and the Knowledge Acquisition Bottleneck, in Proc. of IJCAI 2001, Workshop on

Ontologies and Information Sharing, pp. 9-18. Seattle, USA.

Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H. (2004). Evolving GATE to

Meet New Challenges in Language Engineering, Natural Language Engineering, 10

(3/4), pp. 349-373.

Booch, G., Jacobson, I., and Rumbaugh, J. (1998). The Unified Modeling Language

User Guide, Addison-Wesley, USA

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A Training Algorithm for

Optimal Margin Classifiers, in Proc. of 5th Annual ACM Workshop on COLT,

Haussler D.(Ed.), Pittsburgh, USA, pp. 144-152.

Bou, B. (2005). http://wnjn.sourceforge.net, [Accessed on 16 Jan, 2006].

Brachman, R. J. and Schmolze, J. (1985). An Overview of the KL-ONE Knowledge

Representation System, Cognitive Science, 9(2), pp. 171-216.

Brewington, B. E. and Cybenko, G. (2000). Keeping Up with the Changing Web,

IEEE Computer, 33(5), pp. 52-58.

Brickley, D. and Guha, R.V. (2004). Resource Description Framework Schema

255

http://wnjn.sourceforge.net

Specification 1.0, Technical Report, The World Wide Web Consortium (W3C), USA.

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, [Accessed on 19 Feb,

2006].

Brill, E. (1992). A Simple Rule-Based Part of Speech Tagger, in Proc. of 3rd

Conference on Applied Natural Language Processing (ANLP92'), Trento, Italy,

pp. 152-155.

Broder, A. Z. and Ciccolo, A. C. (2004). Towards the Next Generation of Enterprise

Search Technology, IBM Systems Journal, 43(3), pp. 451-454.

Browne, G. M. (2003). Automatic Categorisation. Part 1: Principles of Classification,

Online Currents, 18(1), pp. 17-22.

Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, 2(2), pp. 121-167.

Chakrabarti, S. (2002). Mining the Web: Discovering Knowledge from Hypertext

Data, Morgan Kaufinann, USA.

Chakrabarti, S., van den Berg, M., and Dom, B. (1999). Focused Crawling: A New

Approach to Topic-Specific Web Resource Discovery, Computer Networks, 31(11-16),

pp. 1623-1640.

Chang, C. C. and Lin, C. J. (2002). Training Nu-Support Vector Regression: Theory

and Algorithms, Neural Computation, 14, pp. 1959-1977.

256

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Chang, C. T. K. and Schatz, B. R. (1999). Performance and Implications of Semantic

Indexing in a Distributed Environment, in Proc. of the 8th International Conference

on Information and Knowledge Management, Kansas City, USA, pp. 391-398.

Chen, H. and Dumais, S. (2000). Bringing Order to the Web: Automatically

Categorizing Search Results, in Proc. of the SIGCHI Conference on Human Factors in

Computing Systems, The Hague, Netherlands, pp. 145-152.

Chen, P. P. (1976). The Entity-Relationship Model - Toward a Unified View of Data,

ACM Transactions on Database Systems (TODS), 1(1), pp. 9-36.

Cho, J. and Garcia-Molina, H. (2000). The Evolution of the Web and Implications for

an Incremental Crawler, in Proc. of 26th International Conference on Very Large

Databases (VLDB 2000), Cairo, Egypt.

Cho, J., Garcia-Molina, H. and Page, L. (1998). Efficient Crawling Through URL

Ordering, in Proc. of 7th World Wide Web Conference (WWW7), Brisbane, Australia.

Ciravegna, F. and Wilks, Y. (2003). Adaptive Information Extraction for the Semantic

Web in Amilcare, in Annotation for the Semantic Web, Handschuh, S. and Staab, S.

(Eds.), IOS Press, Netherlands.

Cooper, W. S. (1994). The Formalism of Probability Theory in IR: A foundation or An

Encumbrance? in Proc. of the 17th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, Dublin, Ireland, pp. 242-247.

257

Corcho, O. and Gomez-Perez, A. (2000). A Road Map to Ontology Specification

Languages, in Proc. of the 12th International Conference on Knowledge Acquisition,

Modeling and Management, Juan-les-Pins, France, pp. 80-96.

Corcho, O., Femandez-Lopez, M. and Gomez-Perez, A. (2003). Methodologies, Tools

and Languages for Building Ontologies: Where is Their Meeting Point? Data

Knowledge Engineering. 46(1), pp. 41-64.

Crestani, F., Laimas, M., van Rijsbergen, C. J., and Campbell, I. (1998). Is This

Document Relevant?? - Probably: a Survey of Probabilistic Models in Information

Retrieval, ACM Computing Surveys (CSUR), 30(4), pp. 528-552.

Cunningham, H., Maynard, D., Bontcheva, K. and Tablan, V. (2002). GATE: A

Framework and Graphical Development Environment for Robust NLP Tools and

Applications, in Proc. of the 40th Anniversary Meeting of the Association for

Computational Linguistics, Philadelphia, USA.

Daelemans, W. and van den Bosch, A, (2005). Memory-Based Language Processing,

Cambridge University Press, UK.

Daelemans, W., Zavrel, J., van der Sloot, K., and van den Bosch, A. (2004). TiMBL:

Tilburg Memory Based Learner, version 5.1, Reference Guide, ILK Research Group

Technical Report Series No. 04-02, 2004. ILK Pub: ILK-0402, Tilburg University,

Netherlands.

258

Davies, J., Duke, A., Kings, N., Mladenic, D., Bontcheva, K., Grcar, M., Benjamins,

R., Contreras, J., Civico, M. B., Glover, T. (2005). Next Generation Knowledge

Access, Journal of Knowledge Management, 9(5), pp. 64-84.

Davies, J., Studer, R., Sure, Y. and Warren, R (2005). Next Generation Knowledge

Management, BT Technology Journal 23 (3), pp. 175-190.

Davies, N. J. (2000). Knowledge Management, BT Technology Journal, 18(1), pp.

62-63.

Davies, N. J. (2003). Towards the Semantic Web, John Wiley & Sons Ltd., UK.

Davis, R., Shrobe, H. and P. Szolovits. (1993). What is a Knowledge Representation,

AI Magazine, 14(1), pp. 17-33.

Devitt, A. and Vogel, C. (2004). The Topology of WordNet: Some Metrics. In Proc. of

the Second Global WordNet Conference, Brno, Czech Republic, pp. 106-111.

Dovey, K. (1997). The Learning Organisation and Organisation of Learning - Power,

Transformation and the Search for Form in Learning Organisations, Management

Learning, 28(3), pp. 331-349.

Dretske, F.I. (1981). Knowledge and the Flow of Information, MIT Press, USA.

Dumais, S. (1998). Using SVMs for Text Categorisation, IEEE Intelligent Systems,

13(4), pp. 21-23

259

Eckel, B. (2000). Thinking in C++ (2nd Ed.), Prentice Hall, USA.

Eschenfelder, E., Heckman, R. and Sawyer, S. (1998). The Distribution of Computing:

the Knowledge Markets of Distributed Technical Support Specialists, Information

Technology and People, 11(2), pp. 84-103.

Fellbaum, C. (Ed.), (1998). WordNet: An Electronic Lexical Database. The MIT Press,

USA.

Fensel, D. (Ed.), (2002). Spinning the Semantic Web: Bring the World Wide Web to

Its Full Potential, The MIT Press, USA.

Francis, W. and Kucera, H. (1979). Brown Corpus Manual, Department of Linguistics,

Brown University, USA.

Free Software Foundation, Inc. (FSF), (2006). http://www.gnu.org/software/gawk,

[Accessed on 16 Jan, 2006].

Fuhr, N. (1992). Probabilistic Models in Information Retrieval. The Computer Journal,

35(3), pp. 243-255.

Fumas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R.A.,

Streeter, L. A. and Lochbaum, K. E. (1988). Information Retrieval Using a Singular

Value Decomposition Model of Latent Semantic Structure, in Proc. of the 11th Annual

International ACM SIGIR Conference on Research and Development in Information

Retrieval, Grenoble, France, pp. 465-480.

260

http://www.gnu.org/software/gawk

Garside, R., Leech, G. and McEnery, A. (1997). Corpus Annotation: Linguistic

Information from Computer Text Corpora, Addison Wesley, UK.

Glover, E. J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D. M. and Flake, G. W.

(2002). Using Web Structure For Classifying And Describing Web Pages, in Proc. of

the 11th International Conference on World Wide Web (WWW2002), Honolulu, USA,

pp. 562-569.

Gottgtroy, P., Kasabov, N. and Macdonell, S. (2003). An Ontology Engineering

Approach for Knowledge Discovery from Data in Evolving Domains, in Proc. of Data

Mining 2003, Rio de Janeiro, Brazil.

Griffith, J. and O'Riordan, C. (2003). A Formal Framework for Combining Evidence

in an Information Retrieval Domain, in Knowledge-Based Intelligent Information and

Engineering Systems, Palade, V., Howlett, R. J. and Jain, L. (Eds.), Lecture Notes in

AI, 2773, pp. 864-871.

Grishman, R. (2003). Information Extraction, in The Oxford Handbook of

Computational Linguistics, Mitkov, R. (Ed.), Oxford University Press, Oxford, UK,

pp. 545-559.

Harman, D., Fox, E., Baeza-Yates, R. and Lee, W. (1992). Inverted Files, in

Information Retrieval: Algorithms and Data Structures, Frakes, W. and Baeza-Yates,

R. (Eds.), pp. 28-43. Prentice Hall, USA.

261

Henstock, P. V., Pack, D. J., Lee, Y. and Weinstein, C. J. (2001). Toward an Improved

Concept-Based Information Retrieval System, in Proc. of 24th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval,

New Orleans, USA.

Heydon A. and Najork, M. (1999). Mercator: A Scalable, Extensible Web Crawler, in

Proc. of the 8th World Wide Web Conference (WWW8), 2(4), pp. 219-229.

Holub, M. (2003). A New Approach to Conceptual Document Indexing: Building a

Hierarchical System of Concepts Based on Document Clusters, in Proc. of the 1st

International Symposium on Information and Communication Technologies, Dublin,

Ireland., pp. 310-315.

Hopcroft, J. E., Motwani, R. and Ullman, J. D. (1992). Introduction to Automata

Theory, Languages, and Computation, (2nd Ed.) Addison-Wesley, USA.

Horrocks, I., Patel-Schneider, P. and Harmelen., F. (2002). Reviewing the Design of

DAML+OIL: An Ontology Language for the Semantic Web. Technical Report,

Defense Advanced Research Projects Agency.

Hou, J. L., Sun, M. T. and Chuo, H. C. (2005). An Intelligent Knowledge

Management Model for Construction And Reuse of Automobile Manufacturing

Intellectual Properties, International Journal of Advanced Manufacturing Technology,

pp. 169-182.

262

Huffman, D. (1952). A Method for the Construction of Minimum-Redundancy Codes,

in Proc. of the I.R.E., 40(9), pp. 1090-1101.

IDM Computer Solutions, Inc. (IDMCS), (2005). http://www.ultraedit.com,

[Accessed on 16 Jan, 2006].

Isozaki, H. (2001). Japanese Named Entity Recognition Based on a Simple Rule

Generator and Decision Tree Learning. ACL 2001, pp. 306-313.

Jackson, I. (2006). http://www.chiark.greenend.org.uk/~ian/adns/, [Accessed on 20

Feb, 2006].

Jacobs, P. S. andRau, L. (1990). SCISOR: Extracting information from On-Line

News. Communications of the ACM, 33(11), pp. 88-97.

Joachims, T. (1998). Making Large-Scale SVM Learning Practical, MIT Press, USA.

Joachims, T. (1998). Text Categorisation with Support Vector Machines: Learning

with Many Relevant Features. LS-8 Report 23, University of Dortmund, Computer

Science Department, Germany.

Joachims, T. (2001). A Statistical Learning Model of Text Classification for Support

Vector Machines. SIGIR Forum, pp. 128-136.

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines:

Methods, Theory and Algorithms, Springer, Germany.

http://www.ultraedit.com
http://www.chiark.greenend.org.uk/~ian/adns/

Joy, B., Steele, G. Bracha, G and Gosling, G. (2005). The Java Language Sepcification,

Addison Wesley, USA.

Jurisica, I., Mylopoulos, J. and Yu, E. (2004). Ontologies for Knowledge Management:

An Information Systems Perspective, Knowledge and Information Systems, 6(4), pp.

380-401.

Kakabadse, N. K., Kakabadse, A. and Kouzmin A. (2003). Reviewing the Knowledge

Management Literature: Towards a Taxonomy, Journal of Knowledge Management,

7(4), pp. 75-91.

Karypis, G. and Han, E. H. (2000). Concept Indexing: A Fast Dimensionality

Reduction Algorithm with Applications to Document Retrieval and Categorization, in

Proc. of 9th International Conference on Information and Knowledge Management

(CIKM 2000), Washington, USA. pp. 12-19.

Klyne, G. and Carroll, J. (Eds.) (2004). Resource Description Framework (RDF):

Concepts and Abstract Syntax, http://www.w3.org/TR/rdf-concepts

Kobayashi, M. and K. Takeda, Information Retrieval on the Web, ACM Computing

Surveys 32(2), pp. 144 - 173.

Kwok, K. L. (1995). A Network Approach To Probabilistic Information Retrieval.

ACM Transactions on Information Systems. 13(3), pp. 324-353.

Lave, J. (1988). Cognition in Practice, Cambridge University Press, USA.

264

http://www.w3.org/TR/rdf-concepts

Lee, J. H., Kim, W. Y. and Lee, Y. H. (1993). Ranking Documents in Thesaurus-based

Boolean Retrieval Systems. Information Processing & Management, 30(1), pp. 79-91

Li, X. L. and Liu, J. M. (2001). Chinese Web Page Classifier Based on Support Vector

Machine and Unsupervised Clustering, Jisuanji Xuebao, Chinese Journal of

Computers 24(1). pp. 62-68.

Luke, S., Spector, L., Rager, D. and Hendler, J. (1997). Ontology-based Web Agents,

in Proc. of the First International Conference on Autonomous Agents (Agents'97),

Johnson W. and Hayes-Roth, B. (Eds.), Marina del Rey, USA, pp. 59-68.

Maedche, A. and Staab, S. (2000). Discovering Conceptual Relations from Text, in

Proc. of the 14th European Conference on Artificial Intelligence (ECAI 2000), Berlin,

Germany.

Manber, U. and Wu, S. Glimpse: A tool to Search Through Entire File Systems. Tech.

Report 93-34, Department of Computer Science, University of Arizona.

Manber, U., Smith, M. and Gopal, B. (1997). WebGlimpse - Combining Browsing

and Searching, Usenix Technical Conference, Anaheim, USA.

Marwick, A. D. (2001). Knowledge Management Technology, IBM System Journal,

40(4), pp. 814-830.

Matsumoto, Y. (2003). Lexical Knowledge Acquisition, in The Oxford Handbook of

Computational Linguistics, Mitkov, R. (Ed.), Oxford University Press, Oxford, UK,

265

pp 395-413.

Maynard, D., Bontcheva, K. and Cunningham, H. (2003). Towards a Semantic

Extraction of Named Entities, in Proc. of Recent Advances in Natural Language

Processing, Borovets, Bulgaria.

McGuinness, D. L. and van Harmelen, F. (Eds.) (2004). OWL Web Ontology

Language, http://www.w3.org/TR/owl-features/

Mihalcea, R. and Moldovan, D. (2000). Semantic Indexing Using WordNet Senses, in

Proc. of 38th Annual Meeting of the Association for Computational Linguistics (ACL

2000), Workshop on Recent Advances in NLP and IR, Hong Kong, China.

Miller, G A. (1990). WORDNET: An On-Line Lexical Database, International

Journal of Lexicography, 3(4), pp. 235-312.

Minnen, G., Carroll, J. and Pearce, D. (2001). Applied Morphological Processing of

English, Natural Language Engineering, 7(3), pp. 207-223.

Minsky, M. (1975). A Framework for Representing Knowledge, in the Psychology of

Computer Vision, Winston, P. (Ed.), McGraw-Hill, pp. 211-277, USA

Mitkov, R. (Ed.), (2003). The Oxford Handbook of Computational Linguistics,

Oxford University Press, Oxford, UK.

Miyamoto, S., Miyake, T. and Nakayama, K. (1983). Generation of a Pseudothesaurus

266

http://www.w3.org/TR/owl-features/

for Information Retrieval Based on Co-occurrences and Fuzzy Set Operations, IEEE

Transactions on Systems and Man Cybernetics, 13(1), pp. 62-70.

Moolenaar, B. (2005). http://www.vim.org, [Accessed on 16 Jan, 2006].

Mooney, R. J. (2003). Machine Learning, in The Oxford Handbook of Computational

Linguistics, Mitkov, R. (Ed.), Oxford University Press, Oxford, UK, pp. 545-559.

Mostafa, J., Mukhopadhyay, S., Lam, W. and Palakal, M. (1997). A Multilevel

Approach to Intelligent Information Filtering: Model, System and Evaluation, ACM

Transactions on Information Systems, pp. 368-369.

Moura, E., Navarro, G., Ziviani, N. and Baeza-Yates, R. (1998). Fast Searching on

Compressed Text Allowing Errors, in Proc. of SIGIR'98, pp. 298-306.

Mukheijee, R. and Mao, J. (2004). Enterprise Search: Tough Stuff, Queue, 2(2), pp.

36-46.

Nichols, B., Buttlar, D. and Farrell, J. P. (1996). Pthreads Programming, O'Reilly and

Associates, USA.

Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation,

Organization Science, 5(1), pp. 14-37.

Nonaka, I., Toyama, R. and Konno, N. (2000). SECI, Ba and Leadership: A Unified

Model of Dynamic Knowledge Creation, Long Range Planning, 33, pp. 5-34.

267

http://www.vim.org

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W. and Musen, M. A.

(2001). Creating Semantic Web Contents with Protege-2000. IEEE Intelligent

Systems 16(2), pp. 60-71.

O'Dell, C. and Jackson, C. (1998). If Only We Know What We Know: The Transfer of

Internal Knowledge and Best Practice, Free Press, USA

Pham, D. T. and Karaboga, D. (2000). Intelligent Optimisation Techniques: Genetic

Algorithms, Tabu Search, Simulated Annealing and Neural Networks, Springer, UK.

Pham, D. T. and Xing, L. (1995). Neural Networks for Identification, Prediction, and

Control, Springer-Verlag, UK.

Plato. (1953). Phaedo, in Plato I, Gowler, H.N. (Ed. and Trans.), Harvard University

Press USA, pp. 117-24.

Popov, B., Kiryakov, A., Manov, D., Kirilov, A., OgnyanofF, D. and Goranov, M.

(2003). Towards Semantic Web Information Extraction, in Proc. of 7th IEEE

International Symposium on Wearable Computers (ISWC'03) Workshop on Human

Language Technology for the Semantic Web and Web Services, New York, USA.

Princeton University. (2006). http://wordnet.princeton.edu/papers.shtml, [Accessed on

16 Jan, 2006].

Priss, U. (2000). Faceted Information Representation, Electronic Transactions on

Artificial Intelligence, 4, pp. 21-33.

268

http://wordnet.princeton.edu/papers.shtml

Project Gutenberg Literary Archive Foundation, (PGLAF). (2005).

http://www.gutenberg.org, [Accessed on 16 Jan, 2006].

Quaddus, M. and Xu, J. (2005). Adoption and Diffusion of Knowledge Management

Systems: Field Studies of Factors and Variables, Knowledge-Based Systems, 18, pp.

107-115.

Quillian, M. R. (1968). Semantic Memory, in Semantic Information Processing,

Minsky, M. (Ed.), pp. 216-270, MIT Press, USA.

Radecki, T. (1976). Mathematical Model of Information Retrieval System Based on

the Concept of Fuzzy Thesaurus. Information Processing & Management, 12, pp.

313-318.

Radecki, T. (1982). Incorporation of Relevance Feedback into Boolean Retrieval

Systems, SIGIR 1982, West Berlin, Germany, pp. 133-150.

Ribeiro-Neto, B. A. and Muntz, R. A Belief Network Model for IR, in Proc. of the

19th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, Zurich, Switzerland, pp. 253-260.

Roget, P. (2003). Roget's Thesaurus of English Words and Phrases. Davidson, G. (Ed.),

Penguin Books Ltd, UK.

S. Brin and L. Page. (1998). The Anatomy of a Large-Scale Hypertextual Web Search

Engine, in Proc. of the 7th World Wide Web Conference (WWW7), Brisbane,

http://www.gutenberg.org

Australia.

Salton, G. (1971). The SMART Retrieval System - Experiments in Automatic

Document Processing, Prentice Hall, USA.

Salton, G and Buckley, C. (1988). Term - Weighting Approaches in Automatic

Retrieval, Information Processing and Management, 24(5), pp. 513-523.

Salton, G. and Lesk, M. E. (1968). Computer Evaluation of Indexing and Text

Processing, Journal of the ACM, 15(1), pp. 8-36.

Salton, G., Fox, E. A. and Wu, H. (1982). Extended Boolean Information Retrieval,

Communications of the ACM, 26(11), pp. 1022-1036.

Samuelsson, C. (2003). Statistical Methods, in The Oxford Handbook of

Computational Linguistics, Mitkov, R. (Ed.), Oxford University Press, Oxford, UK,

pp 358-375.

Scholkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond, MIT Press, USA.

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization, ACM

Computing Surveys (CSUR), 34(1), pp. 1-47.

Shannon, C. E. (1948). A Mathematical Theory of Communication, Bell System

Technical Journal, 27, pp. 379-423.

270

Stevens, W. R. (1994). TCP/IP Illustrated: The Protocols v. 1 (APC), Addison Wesley,

UK.

Stevenson, M. (2004). Information Extraction from Single and Multiple Sentences, in

Proc. of the 20th International Conference on Computational Linguistics (COLING

2004), Geneva, Switzerland, pp. 875-881.

Stevenson, M. and Ciravegna, F. (2003). Information Extraction as a Semantic Web

Technology: Requirements and Promises. Adaptive Text Extraction and Mining

Workshop at the 14th European Conference on Machine Learning (ECML 2003),

Cavtat-Dubrovnik, Croatia.

Stevenson, M. and Wilks, Y, (2003). Word-Sense Disambiguation, in The Oxford

Handbook of Computational Linguistics, Mitkov, R. (Ed.), Oxford University Press,

UK.

Stokeo, C., Oakes, M. and Tait, J. (2003). Word Sense Disambiguation in Information

Retrieval Revisited, in Proc. of the 26th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, Toronto, Canada.

Stokoe, C., Oakes, M. P. and Tait, J. (2003). Word Sense Disambiguation in

Information Retrieval Revisited, in Proc. of the 26th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, Toronto,

Canada, pp. 159-166.

271

The Apache Software Foundation, (ASF). (2005). http://xml.apache.org, [Accessed on

16 Jan, 2006].

The University of Sheffield, (2006). http://gate.ac.uk/annie/index.jsp, [Accessed on 19

Feb, 2006].

Thede, S. M. and Harper, M. P. (1999). A Second-Order Hidden Markov Model for

Part-of-Speech Tagging, in Proc. of the 37th Annual Meeting of the Association for

Computational Linguistics (ACL99'), pp. 175-182.

Tudhope, D. (2004). A Case Study of a Faceted Approach to Knowledge Organisation

and Retrieval in the Cultural Heritage Sector, Digicult Thematic Issue - Resource

Discovery Technologies for the Heritage Sector, 6, pp. 28-33.

Turtle, H. and Croft, W. B. (1990). Inference Networks for Document Retrieval, in

Proc. of the 13th Annual Int. ACM SIGIR Conference on Research and Development

in Information Retrieval, Brussels, Belgium, pp. 1-24.

Vapnik, V. N. (1999). The Nature of Statistical Learning Theory (2nd Ed.),

Springer-Verlag, Germany.

Verhoeff, J., GofFmann, W. and Belzer, J. (1961). Inefficiency of the Use of Boolean

Functions for Information Retrieval Systems, Communications of the ACM, 4(12), pp.

557-558, 594.

Vintar, S., Buitelaar, P. and Volk, M. (2003). Semantic Relations in Concept-Based

272

http://xml.apache.org
http://gate.ac.uk/annie/index.jsp

Cross-Language Medical Information Retrieval, in Proc. of International Workshop

on Adaptive Text Extraction and Mining, Catvat-Dubrovnik, Croatia, pp. 83-91.

Voss, A., Nakata, K., Juhnke, M. (1999). Concept Indexing, in Proc. of the

International Conference on Supporting Group Work (SIGGROUP 1999), Phoenix,

USA, pp. 1-10.

Vossen, P. (2003). Ontologies, in The Oxford Handbook of Computational Linguistics,

Mitkov, R. (Ed.), Oxford University Press, Oxford, UK, pp 464-482.

Voutilainen, A. (2003). Part-of-Speech Tagging, in The Oxford Handbook of

Computational Linguistics, Mitkov, R. (Ed.), Oxford University Press, Oxford, UK,

pp. 219-232.

Wartick, S. (1992). Boolean Operations, in Information Retrieval: Data Structures

and Algorithms, Frakes, W. B. and Baeza-Yates, R. (Eds.), Prentice Hall, USA, pp.

264-292.

Weisstein, E. W. (2005). http://mathworld.wolfram.com/Hyperplane.html, [Accessed

on 16 Jan, 2006].

Wiig, K. M. (1995). Knowledge Management Foundations: Thinking About Thinking

- How People and Organisations Create, Represent and Use Knowledge, Schema

Press Ltd., USA.

Wilkingson, R. and Hingston, P. (1991). Using The Cosine Measure in a Neural

http://mathworld.wolfram.com/Hyperplane.html

Network For Document Retrieval, in Proc. of ACM SIGIR Conference on Research

and Development in Information Retrieval, Chicago, USA, pp. 202-210.

Witten, I. H., Moffat, A. and Bell, T. C. (1999). Managing Gigabytes: Compressing

and Indexing Documents and Images (2nd Ed.), Morgan Kaufmann, USA.

Wong, S. K. M. and Yao, Y. Y. (1995). On Modelling Information Retrieval With

Probabilistic Inference, in Proc. of ACM Transaction on Information Systems (TOIS),

13(1), pp. 38-68.

Wu, S. and Manber, U. (1992). Agrep - A Fast Approximate Pattern-matching Tool, in

Proc. of USENIX Technical Conference, Francisco, USA, pp. 153-162.

Wu, S. and Manber, U. (1992). Fast Text Searching Allowing Errors, Communications

of the ACM, 35(10), pp. 83-91.

Yang, C. C., Chen, H. and Hong, K. K., Visualisation Tools for Self-Organizing Maps,

in Proc. of the 4th ACM Conference on Digital Libraries, Berkeley, USA, pp.

258-259.

Yarowsky, D. (1992). Word-Sense Disambiguation Using Statistical Models of

Roget's Categories Trained on Large Corpora, in Proc. of COLING'92, Nantes, France,

pp. 454-460.

Yarowsky, D. (1993). One Sense Per Collocation, in Proc. of the 5th ARPA Human

Language Technology Workshop, Princeton, USA, pp. 266-271.

274

Zadeh, L. A. (1965). Fuzzy Sets, Information Control, 8, pp. 338-353.

Zadeh, L. A. (1994). Fuzzy Logic, Neural Networks And Soft Computing,

Communication of ACM 37 (3), pp. 77-84.

Zipf, G. K. (1949). Human Behaviour and the Principle of Least-Effort,

Addison-Wesley, USA.

eTesting Labs Inc. (2000). Google Web Search Evaluation, eTesting Labs Inc, USA.

van Rijsbergen, C. J. (1979). Information Retrieval (2nd Ed.), Butterworths, UK.

275

