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Abstract

In this study the complete transcriptome of groups of cells at specific 
successive stages of the complete corneal stem cell hierarchy was revealed.

The cornea presents a linear differential distribution of each type of cell of this 
hierarchy, with stem cells, transient amplifying cells and mature cells residing 
predominantly in the basal limbal, peripheral and central corneal epithelium 
respectively.

In order to realise the complete set of genes that are up or down regulated at 
each stage of the corneal stem cell lineage, a Laser Micro-dissection and 
pressure Catapulting method was optimised, that allows for isolation of the 
desired type of cell from the specific areas they predominate, in a manner that 
would not challenge the integrity of their mRNA, as determined by 3’-5’ 
relative ratios, estimated by semi-quantitative RT-PCR.

To analyse the relative abundance of every gene in each of the cell types that 
were isolated, a linear amplification of mRNA method had to be optimised, as 
determined by comparing the relative abundances of specific endogenous 
and exogenous gene transcripts before and after the amplification reaction, 
using high density oligonucleotide arrays.

In order to amplify the mRNA in such a manner and to such a degree that it 
could be analysed by high density oligonucleotide arrays an in-vitro 
transcription based amplification method was employed and optimised. The 
method entailed the generation of double stranded cDNA reverse transcripts 
carrying the T7 RNA polymerase promoter and subsequent in-vitro 
transcription that yielded large amounts of linearly amplified mRNA (aRNA)

The midfield of data that was produced was analysed by appropriate 
mathematical methods such as Robust Multiarray Analysis and in order to 
obtain a set of genes that are up or down regulated specifically in each cell 
type.

Principal Component analysis confirmed the validity of the hypothesis that the 
variance in gene expression arose from the fact that different types of cells 
were analysed

The results were validated by semi-quantitative RT-PCR analysis, which 
confirmed the sensitivity of the arrays.

Additionally several protein targets that were indicated by the array analysis 
were studied by immunohistochemical methods.



The putative differential mechanisms regulating corneal epithelial stem and 
well as transient amplifying cell fate and corneal homeostasis are discussed.

The results of this study are likely to augment the efforts of understanding 
corneal epithelial stem cells and possibly other adult stem cells and thereby 
assist in future research and therapeutic interventions involving stem cells.
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Chapter 1 
    ■   ■ ■    ■" —■ •

Introduction



This is detailed documentation of some aspects that involve the study of the 

limbal-corneal epithelial relationship with respect to corneal epithelial stem 

cells under the scope of paradigms from stem cells of other tissues as well. 

Initially a detailed description of the ocular anatomical regions of interest is 

given and then the introduction proceeds to understand the given knowledge 

about stem cells. Then it describes the technologies that facilitated the 

transcriptional study of stem cells, transient amplifying cells and differentiated 

cells of the cornea.

1.1 Ocular Surface Anatomy

The term ocular surface was coined by Thoft and Friend in 1977 and covered 

all of the components of the lids, conjunctiva and globe as well as their 

dynamic interaction which contributes to the maintenance of the normal local 

environment. The notion of this degree of interaction justifies the need to 

consider the limbus and the conjunctiva, together with the tear film, as 

essential when setting off to describe the corneal anatomy, structure and 

function.
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1.1.1 The Cornea.

The cornea is a non-vascularised, very specialized tissue that is composed of 

an anterior stratified squamous non-keratinized epithelium, an inner 

connective tissue stroma and a posterior low cuboidal endothelium.

It is located on the front portion of the eye that functions to maintain 

transparency to admit and refract light. Being transparent only l% of incident 

light is reflected. The refractive index of the cornea is 1.376, although that 

changes with ageing. In conjunction with the power of the crystalline lens, the 

cornea actually reconfigures light rays to bring these rays into focus on the 

retina.

The cornea measures approximately 12 mm in the horizontal plane and 11 

mm in the vertical plane. The thickness of the cornea is approximately 520pm 

at the apex and thickens to around 670pm in the periphery. Peripherally the 

cornea borders with the sclera at the region called the corneal sulcus. The 

central 4-5 mm zone of the cornea has more curvature than the peripheral 

zone which is more flattened. It is the shape of the cornea, convex externally 

and concave on its internal curve which creates its refractive power, the 

external curve is a convex (plus) lens with the power of approximately +48.8 

dioptres and the internal curve is a negative, concave lens with a power of - 

5.8 dioptres yielding a net power of 43 dioptres of light bending power.



The cornea is comprised of five discretely differentiated layers:

Epithelium (EP)

Bowman’s layer (BL)

Stroma (referred to as subcutanea propria)

Descemet’s membrane 

Endothelium

Figure 1. 1 A cross-section of human corneal epithelium, depicting the epithelial layer 

(EP), Bowman’s layer (BL), stromal-substantia propria-(SP), Descemet’s membrane 

(DM) and endothelium (En).

A  detailed description of each layer is given in the following paragraphs.
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1.1.1.1 Epithelium

The epithelium is located in the anterior of the corneal structure and it is the 

most external structure of it, only followed by the tear film. It consists of 5-6 

layers of cells, with three cell types present (Hogan et al. 1971; Kenyon 1979) 

namely, the squamous cells, the wing cells, the basal cells.

The squamous cells: compose the two superficial layers of flattened polygonal 

epithelial cells. These are the most differentiated cells of the corneal 

epithelium. The have relatively low metabolic rate and proliferative activity. 

These cells have microvilli, tiny projections on their surface that are intruding 

the mucin glycocalyx of the tear film contributing to the stability of the latter.

The wing cells form two or three layers of compact, interdigitating polygonal 

cells located posterior to the squamous cell layers. They are less flattened 

than the squamous epithelial cells, a characteristic that is being lost in cells as 

we proceed towards the basal lamina. The nuclei of these cells, as well as 

those of the squamous epithelial cells, are oval instead of spherical shaped, 

which is a characteristic of the nuclei found in the underlying basal cells. In 

general as we proceed above the basal cell layer a greater degree of 

squamous, epithelial, differentiation is phenotypically observed.

The basal cells form a single layer in between the basement membrane (basal 

lamina) and the wing cell layers. They are cuboidal or cylindrical in form with 

varying heights, around 15pm, and rounded heads facing the wing cells, of 

10pm diameter (Saude, T., 1993, Ocular anatomy and physiology, Blackwell
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Publishing, Oxford). Basal cells have a higher metabolic, synthetic and 

proliferative activity. They adhere to the underlying basal membrane.

Basal cell and the Basal Membrane (adhesion of the epithelium to the 

stroma).

The adhesion of the epithelial cells on their basement membrane (BM) is not 

only interesting structurally. There is a function-based relationship of the 

basement cells and their membrane to a higher level than simple anchorage. 

BM composition influences cell behaviour and one of the components of the 

induced behaviour is, in turn, the development of a secretory pattern aimed at 

preserving the composition of the inducing BM (Wolosin et al.,2000). This 

implies that the BM could act as an active differentiation reference to the cells 

that travel on it, created by the cells that exist there already.

Basal cells attach themselves on the basement membrane and the stroma by 

employing the adhesion complex. Hemidesmosomes (HD) occupy 28% of the 

basement membrane in the central cornea (Gipson 1989). The 

hemidesmosome acts as a cell to substrate adhesion junction. On the outside 

of the cell membrane, opposite the electron dense cytoplasmic plaque of a 

hemidesmosome runs another thin electron dense line parallel to the cell 

membrane. From it fine anchoring filaments intrude the lamina lucida and 

insert in the electron dense zone of the BM and surpass the BM (Gipson, 

Spurr-Michaud & Tisdale 1987). These anchoring fibrils are cross banded and 

have type VII collagen as a component (Sakai et al. 1986). The helical 

domains of type VII collagen molecules associate to form the cross-banded



"arm" of the fibril where the globular domain of these molecules associate in 

the BM at the hemidesmosome and also some of them at areas in the anterior 

1-2pm of Bowman’s layer, termed anchoring plaques. So collagen type VII 

helical domains build a network that surrounds collagen type I fibres, holding 

the epithelium and the basement membrane bound to the stroma (Smolin & 

Thoft 1987).

Desmosomes, Gap junctions, and tight junctions in the corneal 

epithelium.

Desmosomes are present in the squamous epithelial layers as well as 

throughout all the epithelial layers of the cornea, especially in the 

interdigitating cell borders of the wing cells (Gipson & Sugrue1994). Gap 

junctions are also present all over the corneal epithelium. However different 

connexins are present in different layers. More specifically Cx43 (connexin of 

43kD) is only found in basal cells where Cx50 is present in all cell types (Dong 

et al. 1994). Tight junctions are also present in the lateral membranes of the 

apical cells (i.e. mainly squamous, and some wing cells, Gipson and 

Sugrue1994).

1.1.1.2. Bowman’s layer.

It is a modified region of the anterior stroma also called anterior limiting 

lamina. It is an acellular zone that is composed of randomly interplexed 

collagen fibrils and proteoglycans. The layer is 12pm thick and it is associated



with the basal membrane in the fashion described above. Collagen type VII 

fibrils which extend from the anchoring filaments of the hemidesmosome are 

interwoven with the type I collagen fibres.

1.1.1.3. Substantia propria or corneal stroma.

The corneal stroma is a dense connective tissue of remarkable regularity. It 

makes up the vast majority of the cornea and consists predominantly of: 2pm 

thick flattened collagenous lamellae (200-250 layers) orientated parallel to the 

corneal surface and continuous with the sclera at the limbus. Between the 

lamellae lie extremely flattened, modified fibroblasts known as keratocytes. 

These cells are stellate in shape with thin cytoplasmic extensions containing 

few distinctive organelles. The collagenous lamellae form a highly organised 

orthogonal ply, adjacent lamellae being orientated at right angles, with the 

exception of the anterior third in which the lamellae display a more oblique 

orientation.

The collagen fibrils are predominantly of Type I (30nm diameter, 64-70nm 

banding) with some type III, V and VI. The transparency of the cornea is 

highly dependent upon the regular spacing of the collagen fibres (interfibrillary 

distance) which in turn is regulated by glucosaminoglycans (GAG) and 

proteoglycans forming bridges between the collagen fibrils. The GAGs in the 

human cornea are predominantly keratan sulphate and chondroitin (dermatan) 

sulphates. The corneal stroma normally contains no blood or lymphatic
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vessels but sensory nerve fibres are present in the anterior layers 'en route' to 

the epithelium.

1.1.1.4. Descemet's Membrane.

This is a thin, homogenous, discrete, PAS-positive layer between the posterior 

stroma and the endothelium, from which it can become detached. It is 8-12pm 

in thickness and represents the modified basement membrane of the corneal 

endothelium. It consists of two parts, an anterior third which is banded and a 

homogenous or non-banded posterior two-thirds.

It is rich in basement membrane glycoproteins, laminin and type IV collagen. 

The anterior banded region is reported to contain type VIII collagen. Types V 

and VI collagen may be involved in maintaining adherence at the interface of 

Descemet's membrane with the most posterior lamellae of the stroma. 

Descemet's membrane is continuous peripherally with the cortical zone of the 

trabeculae in the trabecular meshwork.

Microscopic wart-like protuberances (Hassal-Henle bodies or peripheral 

guttatae) containing 'long banded (100nm)' deposits of unknown nature 

appear in the periphery of Descemet's membrane with age. It is frequently 

thickened at its peripheral termination (Schwalbe's line at the anterior limit of 

the trabecular meshwork). If disrupted Descemet's membrane tends to curl 

inwards towards the anterior chamber.
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1.1.1.5 Corneal Endothelium.

Fluid is constantly being lost via evaporation at the ocular surface, a fact 

illustrated by increased corneal thickness after a night of lid closure and if an 

impermeable lens is placed over the epithelium.

The corneal endothelium, a simple squamous epithelium on the posterior 

surface of the cornea, has a critical role in maintaining corneal hydration and 

thus transparency. The endothelial cells rest upon Descemet's membrane and 

form regular an uninterrupted polygonal or hexagonal array or mosaic which 

can be clearly seen in vivo with the aid of specular microscopy, which is also 

used to assess cell density (see below). The cells are 5-6pm in height and 18- 

20pm in diameter (250pm surface area). Their lateral surfaces are highly 

interdigitated and possess apical junctional complexes which together with the 

cytoplasmic organelles, such as very large numbers of mitochondria, are 

indicative of their crucial role in active fluid transport.

The endothelium in the normal human cornea has low regenerative capacity 

and lost cells are quickly replaced by spreading of adjacent cells. There are 

approximately 350,000 cells per cornea (approximately 3-4000 cells/mm2 at 

birth, falling to 2,500/mm2 in mid-age and 2000/mm2 in old age. 

Consequently, with age the dense regular hexagonal arrangement typical of 

young corneas is replaced by fewer cells of more heterogeneous sizes and 

shapes. An endothelial cell density of below 800/mm2 induces oedema 

(swelling) of the stroma, with resultant loss of transparency and general
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corneal damage. A density of below 1500/mm2 is considered too low for 

consideration for corneal transplantation.

1.1.1.6. The nerve supply of the cornea.

The cornea is richly supplied by sensory fibres derived from the ophthalmic 

division of the trigeminal nerve, mainly via the long ciliary nerves. Branches 

radiate into the anterior corneal stroma from an annular plexus near the 

limbus, whereupon they lose their myelin sheaths and form a sub epithelial 

plexus from which fine axons, devoid of Schwann cells, pierce Bowman's 

layer to form a terminal intraepithelial plexus. (Muller, 96-97) There are 

apparently no specialised end-organs associated with these terminal axons 

which are sensitive to pain and temperature.
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1.2 Stem Cells

Firstly it has to be clarified that the theory of stem cells is under development. 

Several definitions of stem cells exist. Pinpointing though to a single property 

that is the minimum essential to characterise a cell as a stem cell opinions 

deviate from each other.

It is therefore very important to carefully consider stem cell characteristics 

under the notion that a complete stem cell law has not been understood yet. 

There are fundamental questions that remain to be answered as it will be 

discussed in this section. As a result stem cells are defined by their abilities 

functional characteristics. This by itself is posing as a difficulty because some 

of those functional attributes cannot be clearly assigned unless the cell gets 

experimentally manipulated, something that potentially changes the very 

same characteristics and/or b) the fact that it is not clear for many tissues if 

there is a single or multiple sources of stem cells.

As it arises by the body of research on this field, stem cells were defined, by 

Potten and Loeffler in 1990, as undifferentiated cells capable of,

(a) proliferation,

(b) self-maintenance,

(c) the production of a large number of differentiated, functional progeny,

(d) regenerating the tissue after injury, and

(e) a flexibility in the use of these options (see, Lajtha, 1967, 1979a, b, c; 

Steel, 1977; Potten and Lajtha, 1982; Potten 1983a, Wright and Alison, 1984; 

Potten and Morris, 1988; Hall and Watt, 1989; Potten and Loeffler, 1990).
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Generally stem cell theory was generated by the need to explain in which way 

a single cell manages to produce a complete multicellular mechanism that 

organises in a complex set of tissues and organs that in addition would need 

to be self-renewing. It was later understood that in renewing tissues there are 

very few cells that posses the ability to produce large amounts of cells which 

then in turn would differentiate to the desired cell types required to maintain 

tissue homeostasis upon a physiological state and in wound healing.

Early studies in the 50s by histologists such as Leblond inferred the existence 

of pluripotent progenitor cells, or stem cells (Leblond et al. 1956). In normal 

bone marrow transplantation experiments in irradiated mice, it was observed 

that there were spleen colony forming cell that were derived from bone 

marrow cells and one cell was creating each colony (Till and McCulloch 

1961). Siminovitch, McCulloch and Till (1963) assayed the capacity of 

individulal spleen colonies to form new colonies and suggested the defining 

property of stem cells is the capacity to self-renew upon division and produce 

a stem cell and a cell that would differentiate and enter a series of divisions 

leading to a terminal one.

In the epithelium, fundamental studies on tissue architecture and mitosis from 

1970 by Mackenzie were showing that cell division does not occur randomly in 

the basal layers of squames but occurs mainly at the base of the junctional 

region of the overlying squames. This has then opened the question of why 

such an order was there. The work of Christophers (1970, 1971a, b, c) had
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shown that the basal cells directly beneath the column produce the superficial 

cells forming that column.

These findings finally led to the concept of the epidermal proliferation unit 

(EPU) (Potten, 1974; Allen and Potten, 1974; Mackenzie, 1975) wherein a 

single stem cell and its progeny amplifying cells and differentiated cells 

formed a distinct spatial unit in murine epidermis. This concept was 

fundamental in establishing a system of thought about epithelial stem cell that 

together with the earlier findings of Till and McCulloch (1963) led to the 

definition of a stem cell by Lajtha in 1979 (Lajtha 1979) that was revised by 

Barrandon (2003) as well as Potten’s in his revised theory of cellular 

hierarchies (Potten and Booth 2002).

It is not completely understood today, how an adult organism ends up having 

such a hierarchy. At present there is intensive research on the way the 

differentiation options open to cells derived from embryonic stem cells are 

modulated during development through to the adult (Potten and Booth 2002). 

Although stem cells of various tissues must employ different capabilities to 

maintain a tissue self-maintenance or self-renewal remains the defining 

propery of a stem cell.

The following section introduces studies on adult or somatic stem cells and 

the characteristic properties they assume in order to fulfil the task of 

maintaining a tissue.
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1.2.1 Adult stem cell characteristics and implications to the cornea.

1.2.1.1 Very Large division potential.

It remains unclear whether stem cells have a limited or unlimited division 

potential or whether their numbers and functional competence in replenishing 

tissues deteriorates (Potten & Booth 2002). One characteristic that is 

necessary for adult stem cells though would by definition to have the potential 

to divide at least as many times as needed for replenishing particular tissue 

for the life span of an animal.

In the lympho-hematopoietic system the number of HSC increases several 

fold with old age as measured by flow-cytometric phenotype (Morrison et al. 

1996; Sudo et al. 2000) as well as cobblestone area forming cell assay (de 

Haan & Van Zant 1999). However their capacity to home in new bone marrow 

in transplantation experiments decreases with age (Morrison et al 1996). 

Additionally prolonged challenging of the hematopoietic system with 

hydroxyurea shows no decline in HSC regenerative capacity (Ross, Andreson 

and Micklem 1982). Therefore we can suggest that in the hematopoietic 

system the capacity of stem cells to self renew is not affected by age but the 

quality of their progeny is deteriorating.

Stem cells in the epidermal proliferative unit divide about 140 times in the life 

of a mouse (revised by Potten 2004) whereas those in the gut can divide 

probably about 1000 times in mice and 5000-6000 times in humans



(Marshman et al 1988). In the cornea it is not yet clear how many times a 

label retaining cell of the basal limbus divides. Labelling studies were 

performed on SENCAR mice show a cycling time of label retaining cells is 4-8 

weeks (Cotsarelis et al. 1989; Lehrer et al.1998). This would indicate that they 

would need to divide from around 10-21 times for a SENCAR mouse that lives 

for 85 weeks. Probably in order to overcome the hurdle that long periods of 

treatment with radiolabelled (tritiated thymidine) or teratogenic (Brdu) DNA 

derivatives could potentially kill mice researchers chosen a model that is 

hyperproliferative in epithelial cells (SENCAR mouse) so that the results could 

be visualised before mice die. The problem is that SENCAR (sensitive for 

carcinogenesis) are prone to skin tumours (source National Cancer Institutes 

at Federic). Retinoic acid has been shown to affect their tumorigenicity in skin 

epithelium of SENCAR mice from as early as 1989 (De Luca et al 1989). 

Retinoic acid has been also shown to be one of the potential modulators of 

proliferative activity and differentiation of corneal epithelial stem cells (Kruse 

and Tseng 1994). Additionally it has been shown for keratinocyte stem cells 

(Popova et al. 2004) as well as for hematopoietic (Haan et al. 1997) and liver 

stem cells (Kolesnichenko and Popova. 1979) that genetically distinct mouse 

strains have difference in the frequency of clonogenic stem cells and that this 

is associated with the strain life span. SENCAR mice have lower life span 

than other strains like C57BL/6 (Storer 1966; Goodrick 1975; Festing & 

Blackmore 1971) although it has to be considered that those studies are 

based on clonogenic ability and not label retaining.
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Therefore labelling studies on SENCAR mice although might not reflect 

completely on the reality of cycling times (or strategies) of other mice or 

extrapolated to humans and other species they provide the fundamental 

evidence that in the cornea there are ancestral cells that do not divide from 4- 

8 weeks after birth (Cotsarelis et al. 1989; Lehrer et al. 1998). The studies are 

discussed in detail bellow.

What is interesting is that if the property of self renewal does not decline with 

the number of total generations of stem cells, given that corneal epithelial 

stem cells divide only a few times compared to epithelial stem cells in other 

locations than they could have less accumulated damage, might be more 

closely related to their embryonic ancestoral cells, while being able to produce 

a large number of progeny, making them attractive for clinical use.

1.2.1.2 Label Retaining Studies on stem cells in perspective.

Insights of the location of stem cells in tissues have come from label retaining 

and cell kinetic studies. Label retaining studies are based upon empirical 

observation that DNA precursors such as tritiated thymidine (H3-T) and 

Bromodeoxyuridine (Brdu) which are incorporated in cells during development 

persist in DNA of a few adult cells. It was assumed therefore that the label 

retaining cells because they haven’t divided many times they have a closer
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relationship with ancestral cells of the developing organism. Studies like these 

on interfolicullar epidermis stem cells (Bickenbach 1981; Morris et al. 1985; 

Bickenbach et al. 1986) agreed with cell kinetic studies on the location of stem 

cells (Potten et al. 1982; Morris et al. 1985; Morris and Potten 1994).

In the cornea there is strong evidence that cells in the basal limbus of 5-6 

week old mice can retain label for 4-8 weeks. It has been demonstrated that, 

in wild-type mice, development of the corneal epithelium, with activation of 

LSCs and centripetal streaming of their progeny into the cornea, is not 

completed before the 10th postnatal week in a study using LacT- LacZ 

mouse chimeras (Collison 2002). Therefore there are indications that, in the 

cornea, there could be epithelial cells of a developmentally primitive character 

that home in the basal limbus only and they then divide very infrequently for 9- 

14 weeks postnatally. Therefore for a minimum of 4 weeks after the complete 

maturation of developmental events for the corneal epithelium in physiological 

conditions, there are label retaining cells. Therefore it can be hypothesised 

with some caution that those cells are indeed label retaining cells that were 

there before the maturation of developmental events.

It was also observed in those label retaining studies that 50% of those label- 

retaining stem cells are recruited to proliferate in the case of central corneal 

wounding (Lehrer et al. 1998)

Since usually the cycle times of stem cells is longer than the cycle time of 

more mature cells, it is often stated that most of epithelial adult stem cells are
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thought to be in a G0 phase (Potten and Booth 2002). On the other hand, 

when researchers induce wounding conditions in the cornea this cycle time is 

reduced from 4 weeks or more to 24 hours (Lehrer et al. 1998). Moreover 

50% of those slow cycling cells are induced to incorporate the second dye in 

24h (Lehrer et al. 1998). Starting with a label retaining quantity of 1 in the end 

of 24h post central wounding this quantity was 1.5. This indicates that only 

half of the label retaining cells responded to the wound. This might entail that 

there are two qualitative different states of stem cells in the limbus one being 

more responsive to immediate crisis than the other. It is not known what the 

destiny of the double labelled cells was. More specifically, one could ask, do 

some of them or all of them revert to a slow cycling mode? Perhaps some 

answer can be deduced if we consider the corneal epithelium as a hierarchical 

and dynamic system.

There is no experimental evidence in the case of the cornea that it is the LRC 

only that is kept undifferentiated and has the capacity of very large division 

potential. The situation is being further perplexed by the lack of a 

reconstitution assay due to model limitations. If anything research is showing 

that nearly all the basal layer cells are undifferentiated as defined by 

differentiation markers (Schermer et al. 1986; Kurpakus et al. 1990; Kiritoshi 

et al. 1991; Liu et al. 1993; Kurpakus et al. 1994; Matic et al. 1997).

So far it has not been shown that long term reconstitution or clonogenicity is 

ascribed uniquely to the single cell entity which is slow cycling and label 

retaining. Studies by Claudinot (2005) show that epithelial stem cells from the
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whisker follicle of rats there are many more stem cells than could be 

anticipated from label-retaining experiments. These stem cells were showing 

clonogenic ability and could reconstitute the complete follicle after more than 

140 doublings in culture. The study calculated that there are more stem cells 

than previously anticipated by label retaining experiments. In particular that 

there are enough stem cells in a single rat whisker to maintain the follicle for 

more than 50 years. Why there are so many stem cells is still a matter of 

research, but this demonstrates further that there is a bimodal state of stem 

cells, with a few cells being the label retaining ones.

In the corneal label retaining experiments it was impossible to see if the 

double labelled and single labelled cells in the limbus have the same 

clonogenicity or capacity to reconstitute the corneal epithelium, due to the 

model limitations. It would be however possible to see if the double labelled 

cells of the limbus revert back to slow cycling and long term reconstitute the 

lineage leading to tissue formation if some corneas were chased for more 

weeks.

The last consideration for label retaining studies comes from the Cairns 

selective DNA strand segregation hypothesis suggested for stem cells (Cairns 

1975; Potten et al. 1978). Simply if we take the case of interfolicullar 

epidermis stem cells which are thought to have an average cycling time of 8 

days (Potten and Booth 2002) as an example, then in label retaining studies 

on 8 week old or 11 week old mice (Potten et al. 1982; Morris et al. 1985; 

Morris and Potten 1994) the stem cells are expected to have divided at least 8
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times. Dilution by division though is normally expected to have the dye diluted 

to sub-threshold levels after 5 divisions. Then why are there any label 

retaining cells there? The selective DNA strand hypothesis explains this by 

stating that slow cycling stem cells keep their original strand of DNA after 

each replication. So far there it was demonstrated that label retaining cells in 

the crypt of the small intestine do indeed retain their template DNA (3HTdR) 

and pass the newly synthesized strands marked with 5-bromo-deoxyuridine 

(5BrdU) to their progeny (Potten et al. 2002). Additionally a very recent study 

demonstrated that in the mouse mammary gland, label-retaining epithelial 

cells divide asymmetrically and retain their template DNA strands (Smith 

2005)

1.2.1.3 Non-label-retaining cells could be stem cells.

What is very intriguing is that those label retaining as well as studies on 

retaining of radiolabelled carcinogens show that slow cycling LRCs retain the 

carcinogens used as labels. If label LRCs are the sole master copies of a 

particular tissue, this indicate a very insufficient mechanism to build an 

organism. How can a Go quiescent cell be correcting itself continuously since 

we detect carcinogens for months in the slow cycling cells especially if it 

keeps the original DNA strand? All of these facts pinpoint again to the 

possibility that loss of stem cell functional capability (or differentiation) does 

not occur at the level of the division of the slow cycling stem cell, but it could 

be gradual. If this is true there might be a gradual loss of “sternness” as we go
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down the lineage, diluting factors all the time making a cell down the lineage 

non-clonogenic (i.e. a TA cell)

Studies by Balpain in 2004 have shown that two subpopulations of cells exist 

within the hair follicle stem cell niche. Despite expressing differentiation 

markers, clonal populations of suprabasal bulge region cells can regenerate 

skin and hair follicles as well as a new stem cell niche (Balpain et al. 2004). 

The findings suggest that early lineage commitments of epithelial cells in the 

hair follicle may be reversible or that the first generations of cells coming from 

the ancestral slow-cycling stem cell might not really be TA cells but indeed 

stem cells as well.

This kind of strategy would fit well in reducing the chances of accumulated 

damage in the early lineage cells that would reconstitute a self-renewing 

tissue. This is because if a slow cycling cell out of the stem cell pool is 

damaged then its progeny will have to compete with not only the first ancestral 

slow cycling pool stem cells but also with stem cells of their first or second 

generation.

More evidence of such a strategy comes from closely inspecting the 

proliferation rates of slow cycling- label retaining ancestral stem cells to those 

of TA cells. Studying the situation in the limbus the following thought 

experiment can be devised:
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Rate of proliferations a /2 

No of cells = 1

•  •

Rate of proliferations A 

No of cells s g

o 
•  •

WOUNDING

No of cells = 1x 8 x A/2 = 4A No of cells s 9 x 2 x A s 18A 12h

Figure 1. 2 Thought experiment based on today’s research on the basal limbus. The 

ratio of progeny of the ancestral slow cycling stem cell to those of a TA cell in the 

limbus (1/9) doubles 12 hours post-central cornea wounding).

Considering that:

• label retaining stem cells residing in the limbus increase their rate of 

proliferation by an eight- to nine fold compared to a twofold increase in 

TA cells 12h post central epithelial injury(Cotsarelis et al., 1989)

• 50% of those label-retaining stem cells are recruited to proliferate in the

case of central corneal wounding (Lehrer et al. 1998)
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• stem cells are believed to have half the proliferation rate of TA cells 

(skin and gut stem cells have half of the proliferation rate of their TA 

counterparts) (Potten and Booth 2002),

• Slow cycling limbal basal stem cells are about 10% of the total limbal 

basal cells. (Cotsarelis, 1989; Lavker et al., 1991)

• TA cell of the peripheral cornea increase their number and double the 

rate of cell divisions.

Then the following conclusions arise:

The ratio of the progeny of limbal stem cells to this of the TA cells doubles 

after wounding (see figure from 1/9 it goes to 2/9). Indeed in stochastic terms 

this is only possible if one of the two types of cells does not divide. But the 

question is if both of these types of cells are stem cells. Perhaps this can be 

explained by clonal analysis assays.

In proliferative potential clonogenic assays in the limbus (Pellegrini et.al. 

1999), where the Barrandon & Green holoclones-meroclone-paraclone assay 

(1987) was employed to evaluate the stem cell content of the cornea, it was 

observed that clonogenic cell were only present in the limbus, and that from 

the 58 limbal clones that were investigated 11 were holoclones 39 Meroclones 

and 8 paraclones. These findings indicate that the percentage of stem cells



(almost 20%) in the basal limbus is a much higher than it was anticipated by 

label retaining studies (10%) (Cotsarelis, 1989; Lavker et al. 1991). The ratio 

of stem cell content evaluated by the two methods is very close to 2. 

However, it must be stated that clonogenic studies were conducted in humans 

whereas label retaining in mice. This offers more to the argument that there 

are two qualitative different sets of stem cells since one has the property to 

retain label and the other does not.

It remains unclear if these two sets reflect two different states of stem cells 

and if those states are reversible.This remains a fundamental question in stem 

cell biology today.

1.2.1.4 Ability to long term reconstitute a tissue.

The ability of stem cells to long term reconstitute a tissue is perhaps their 

fundamental property since we do not much about stem cell hierarchies or 

control mechanisms. Hematopoietic stem cell transplantation has been now 

established as a standard clinical procedure to treat hematological disorders 

as well as sustain blood cell levels to a point that allows for chemotherapy 

(reviewed by Weissman 2001). Studies on human keratinocytes that have 

been genetically altered by adding the b-galactosidase gene reconstituted 

long term the epidermis of athymic mice (Mackenzie 1997; Kolodka et al. 

1998). Newborn mouse keratinocytes can generate epidermis, hair, 

sebaceous glands if first combined with newborn dermal fibroblasts and then 

grafted to the back of a nude mouse, lacking hair because of a matrix
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transcription factor is knocked out (Nehls et al. 1994; Segre et al. 1995), at a 

site where the skin has been surgically removed (Lichti et al. 1993; Weinberg 

et al. 1993). Both stem cell populations distinguished in the hair follicle were 

able to reconstitute the epidermis, hair, sebaceous glands in such mice 

(Balpain et al. 2004). However the contribution of these two populations in the 

maintenance of the epithelial proliferative unit (EPU) is under debate 

(Gambardella and Barrandon 2003), since gene tagged interfolicullar stem 

cells have been shown to be able by themselves to maintain the EPU and 

self-renew for months without any contribution from the follicle.

In the cornea there is also a great amount of evidence that stem cells that 

reside in the limbus are able to reconstitute the tissue long term. Autologous 

or homologous transplantation of limbal tissue is required to regenerate a 

viable cornea and restore visual function (Kenyon and Tseng 1989; Kruse and 

Reinhard 2001). Additionally ex-vivo expanded stem cells for the purposes of 

transplantation on amniotic membranes and other substrates have been 

developed (Lindberg et al. 1993; Pellegrini et al. 1997; Schwab et al. 2000; 

Koizumi et al, 2001; Tseng et al. 2002) Grueterish et al. 2002). Further 

evidence that corneal stem cells are responsible for the long term 

maintenance of a functional cornea comes from cases of limbal stem cell 

deficiency whether iatrogenic or pathogenic, which are characterised by 

constitution of the cornea by conjunctival epithelium, chronic inflammation, 

recurrent erosions and persistent ulcer, destruction of the basement 

membrane and fibrous tissue ingrowth leading to severe functional impairment 

(Puangsricharern and Tseng 1995; Holland and Schwartz 1996). Abnormal



corneal epithelial wound healing after removal of the limbal epithelium (Chen 

and Tseng 1990, 1991; Huang and Tseng 1991) also gives further proof that 

the corneal epithelium is maintained throughout life from cells of the limbal 

epithelium.

Caution must be given though to the fact that the cellular hierarchy that stem 

cells adopt has not been resolved yet for the cornea and there are no markers 

that would distinguish between cells at different stages of that hierarchy. Thus 

we cannot claim if the slow cycling cells of the basal limbus are the only cells 

that are responsible for that maintenance.

1.2.1.5 Poor Differentiation

Sternness does not include further differentiation as a necessary property. 

The cytoplasm of SC is primitive with few or no differentiation products. Limbal 

stem cells appear phenotypically more primitive being small and round 

(Lavker et al. 1991)

In the cornea, cytokeratin 3 (CK3) was observed in all layers of the corneal 

epithelium, but only the suprabasal layers of the limbus (Schermer et al. 

1986). Then further evidence of a population of least differentiated cells in the 

corneal basal limbus came from the cornea specific cytokeratin 12 which was 

also shown to be expressed throughout the corneal and limbal epithelium 

except the basal limbus (Chaloin-Dufau et al. 1990; Kurpakus et al. 1990; Wu 

et al. 1994).
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1.2.1.6 Clonogenicity of corneal epithelial stem cells.

One characteristic that is often attributed to stem cells due to their great 

division potential is clonogenicity. Limbal basal cells exhibit a higher 

proliferative potential in culture than central corneal epithelial cells (Friend and 

Thoft 1987, 1988). Pellegrini isolated limbal basal cells that formed 

holoclones that could produce more holoclones (Pellegrini et al. 2001), 

indicative of stem cell self renewal according to Barrandon and Green 

(1987)..

1.2.2 The differentiation pattern of the cornea and the lack of specific 
molecular markers for limbal stem cells

1.2.2.1 Cytoskeletal proteins

Cytokeratins or keratins are a group of cytoskeletal proteins that form 

intermediate filaments in epithelial cells and are expressed in distinct patterns 

during epithelial development and differentiation (Schlotzer-Schrehardt and 

Kruse 2005)

The subfamily comprises at least 20 different polypeptides, which are 

expressed in paired combinations of acidic and basic molecules according to 

the type of epithelium and its state of differentiation (Sun et al., 1984). Among 

numerous other keratins which are also present in a variety of other cell types,
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keratins (K) 3 and 12 are specifically expressed in corneal epithelial cells and 

are regarded as markers of corneal epithelial differentiation (Rodrigues et al., 

1987; Kasper et al., 1988; Liu et al., 1993).

As briefly discussed earlier, immunohistochemistry studies of the cornea show 

that epithelial cells in the basal layer of the limbus are devoid of these two 

corneal specific keratins, emphasising their undifferentiated nature (Schermer 

et al. 1986; Kurpakus et al. 1990, 1994; Wiley et al. 1991; Wu et al. 1994; 

Zhao et al. 2002; Chen et al. 2004).

Additionally monoclonal antibody Mab AE1, which recognizes several acidic 

keratins, was complementary, reacts with the basal limbal layers of the 

limbus, but not those of peripheral or central epithelium (Wiley et al., 1991). 

The appearance of the K3/K12 keratin pair during migration from the limbal to 

the corneal stroma has been interpreted as differentiation of SC into TAC 

(Grueterich et al., 2003).

Epidermal stem cells express K14 as shown by Bickenbach (in Turksen K, 

editor. Epidermal cells methods and protocols. Ontario: Humana Press; 2004, 

p97-102). Most of the undifferentiated cells in stratified epithelia amongst 

them basal cells of both corneal and limbal epithelia have been shown to 

express the keratin pair K5/K14 in humans (Kurpakus et al. 1994; Barnard et 

al. 2001; Hsueh et al. 2004). In rabbits though K14 positive cells exist in the 

basal and suprabasal layers of the limbal epithelium and not in the peripheral 

and central corneal epithelium (Wang et al., 2003).
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The expression pattern of K14 in the mouse cornea has not been determined 

yet. What would be expected for K14 is that it would be expressed both by 

stem cells and TA cells, as understood from all the other studies to now.

Components of intermediate cell filaments like Keratin 19 and vimentin have 

been localized to the human and murine basal limbal epithelium (Kasper et 

al., 1988, 1992; Lauweryns et al., 1993b). K 19 is regarded as a marker of 

proliferating keratinocytes in the skin and has been used to localize epidermal 

SC in hair follicles (Michel et al., 1996). Cells expressing both of these 

intermediate cell filament components (K19 and vimentin) have been found to 

be identical with label-retaining cells (Kasper, 1992).

In humans, immunohistochemistry of corneoscleral rims, shows K14 and K19 

to be localized in basal limbal cells and K14 reactivity was stronger than K19 

(Barnard et al. 2001) showed strong immunoreactivity for,

In another study however, although K19 was more expressed more in basal 

limbal epithelial cells than in the suprabasal cells it was also observed to be 

expressed in most corneal epithelial cells (Chen et al., 2004).

Other keratins that were expressed in the limbal epithelium of guinea pig and 

mouse eyes include K4 and K13, whereas K17 was not detected (Kasper, 

1992).
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Further studies from Schlotzer-Schrehardt and. Kruse (2005) confirm that 

human limbal basal cells express K5/K14, K19, and vimentin and do not 

express K3/K12. The staining pattern though appeared in clusters of 

unstained limbal basal cells. K19 and vimentin stained cells co-localised more 

intensely in basal cells of limbal-peripheral margin. With respect to the K5/K14 

pair they also found it expressed in some suprabasal cells of the limbal 

epithelium, in all basal cells of the conjunctival epithelium and occasionally in 

individual basal cells of the peripheral cornea.

These findings suggest that in humans the K5/14 pair and K19 are not specific 

for limbal stem cells, whereas vimentin seemed to localize specifically to TC 

along the corneal limbal borderline.

1.2.2.2. Cytosolic proteins

Cell-cycle associated proteins, such as cyclins D, E, and A, have been 

identified as shown to preferentially localized to human basal limbal epithelial 

cells (Joyce et al., 1996). In the same study, nearly all limbal basal cells 

showed positive cytoplasmic rather than the nuclear staining characteristic of 

actively cycling cells whereas Ki67 (a marker for actively cycling cells), was 

only observed in few basal cells at the limbus. It has to be noted that these 

findings contradict the notion that a quiescent Go population is the true stem 

cell population only. This notion is further questioned by the findings of
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Bickenbach (2004) which shown that while the majority of epithelial SC reside 

in the G1 phase of the cell cycle, they are not held out of the cell cycle, and 

that that they express proliferating genes and the mitotic cyclin B1 protein.

Cytosolic proteins that are highly expressed in basal limbal cells include 

Cytochrome oxidase (Hayashi and Kenyon, 1988), Na/K-ATPase (Lutjen- 

Drecoll et al. 1982), and carbonic anhydrase (Steuhl & Thiel, 1987), indicating 

increased metabolic activity. Apparently both aldehyde dehydrogenase 

(ALDH) and transketolase are expressed in the peripheral and central corneal 

epithelium but aldehyde dehydrogenase is absent and transketolase is 

expressed (TKT) in low levels in the murine limbus (Guo et al. 1997; Kays & 

Piatigorsky 1997).

The glycolytic enzyme a-enolase (Pancholi, 2001) was expressed by both 

basal and suprabasal epithelial cells at the limbus and occasionally by basal 

peripheral epithelial cells (Chen et al., 2004), as well as in the conjunctival 

epithelium. The above study confirmed earlier data that indicated alpha- 

enolase was expressed preferentially from human, rat and rabbit limbal basal 

cells as determined by immunohistochemistry and was a suggested marker of 

limbal SC (Zieske et al. 1992 a, b, Zieske 1994; Zhao et al. 2002). Finally, it 

seems that the enzyme is over-expressed when cells migrate from limbal 

basal to peripheral compartment after non-penetrative wounding (Chung et al. 

1995).

Therefore evidence remains controversial as to whether a-enolase can be 

used as a stem cell marker because the expression of the enzyme is very
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dynamic rendering difficult the use of it to segregate cells at the early steps of 

the corneal epithelial lineage.

Protein kinase C (PKC) is a very important family of enzymes in asymmetric 

cell division because of its role in positioning Numa-Dynactin and LGN-Par3- 

Inscrutable crescents on the apical side of the membrane of dividing basal 

epithelial cells and therefore in proliferative to differentiation state transition 

(Lechler and Fuchs 2005). Members of this family, like PKC-gamma and 

alpha are expressed in proliferative basal cells of human limbus but not the 

cornea., (Tseng and Li 1996). Differential expression of the atypical members 

of the PKC family can offer insight into potentialy different mechanisms of 

asymmetric cell division of the limbal and peripheral corneal epithelium.

Metallothioneins, which are cysteine-rich metal-binding intracellular proteins, 

have been linked to cell proliferation and have been shown to be strongly 

expressed by basal limbal cells of human corneas (Lauweryns et al., 1993b, 

Schlotzer-Schrehardt and Kruse 2005), but some researchers found it 

immunolocalising to suprabasal epithelial cells at the limbus in a mosaic-like 

pattern and to basal cells in the peripheral corneal epithelium and usually 

superficial cells labeled more strongly (Schlotzer-Schrehardt & Kruse 2005).

This kind of pattern could be indicative of the asymmetric localization of 

mRNA species during asymmetric cell division, with earlier cells excluding that 

RNA to later ones. The pattern although interesting because if asymmetric
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localization of its mRNA is true it will be a cell fate determinant, it is more likely 

that it will participate maybe in lineages from TA cell onwards.

Protein S100A12, which is involved in Ca+2 dependent signal transduction 

processes in differentiated cells as well as the calcium-linked protein (CLED), 

associated with early epithelial differentiation, are both expressed in corneal 

epithelial basal cells but not in limbal basal cells (Sun et al., 2000; Lavker et 

al., 2004). This does not in any way mean that Ca+2 dependent mechanisms 

are not there in stem cells since embryonic, neural and hematopoietic stem 

cells express other S100A proteins (Ivanova et al. 2002; Ramalho-Santos 

2002)

1.2.2.3 Nuclear proteins

There is a big controversy surrounding the transcription factor p63. This factor 

is a p53 homologue and it is known to be involved in tumour suppression and 

morphogenesis. It is expressed in basal cells of stratified epithelia and it is 

essential for the epithelial development and differentiation (Yang et al 1998; 

Yang et al 2000).

Studies in the cornea led to the proposition that p63 is as a nuclear stem cell 

marker (Pellegrini et al., 2001). In that study P63-positive cells were 

interspersed with patches of p63-negative cells at the basal limbus. In vitro



experiments in the same study showed elevated expression in holoclones 

than in paraclones which did not contain detectable p63 as determined by 

Western Blotting.

In the same study most cells expressing p63 in the limbal basal layer were 

proliferative as determined by presence of nuclear antigen (PCNA), a specific 

marker of proliferating cells. Some PCNA expressing cells did not produce 

p63 and these cells were almost always located next to p63-positive cells.

Another study has shown predominant nuclear immunolocalisation of p63 in 

the nuclei of the limbal epithelial basal cells interspersed with patches of p63- 

negative cells (Chen et al. 2004).

The presence of p63 not only in the limbal region but also among most of the 

basal cells of the peripheral and central corneal epithelium was indicated in 

human frozen and formalin-fixed specimens (Dua et al. 2003).

In Brd-U pulse labeling studies in murine corneas p63 expression was 

observed throughout the corneal epithelium with highest levels in near-central 

proliferative cells (Moore et al. 2002).

Aging animals have higher levels of p63 in the basal epithelial cells in the 

peripheral cornea than in the limbus (Hsueh et al. 2004).

Before explaining the potential meaning of those findings it has to be noted 

that most of these studies use the 4A4 clone of monoclonal antibody which
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does not discriminate between isoforms. The dependence of p63 staining on 

the technical procedure has also been suggested by Hsueh et al. (2004) when 

by using an antigen retrieval method demonstrated an elevated 

immunoreactivity of p63-positive cells.

Firstly even if p63 was a marker of epithelial stem cells the significance of it in 

selecting for those cells would be perhaps not very great considering that it is 

a transcription factor. Any intervention in the tissue could potentially change 

the levels of that factor. Fluorescent constructs can be a potential solution, but 

they have to be used in a way that will not affect the behavior of that 

transcription factor.

However it is more important to look at p63 for what it really is and what it 

does rather than a marker. P63 selective inducible knockout with the cre-lox 

system, which circumvents the problem of epithelial defects and lethality in 

development (Yang et al 1998), fail to divide their epithelial cells 

asymmetrically (Lechrer & Fuchs 2005). Perhaps this explains the lethality of 

knockout mice since asymmetric cell division is needed to create cells of 

different lineages during embryonic development. The role in asymmetric cell 

division is also supported by studies on holoclones and paraclones (Pellegrini 

et al. 2001). Of course asymmetric cell division dictates that the cell must be 

dividing, thus it is not surprising that it is co-expressed with markers of 

proliferation. Maybe the evidence that p63 has a decisive role in asymmetric 

cell division is more important than the fact that it is not a marker for stem
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cells. Since it is likely to be a key factor in the asymmetric cell division of 

epithelial cells it would be very interesting to study p63 in that context.

Rambhatla L, Bohn SA and Stadler (2001) recently proposed that a major 

barrier to the growth of adult stem cells in culture is their intrinsic asymmetric 

cell kinetics. Given the significance of p53 in the regulation of asymmetric cell 

kinetics (Sherley et al. 1995 a & b) the significance of p63 as a potential 

regulator of such kinetics in-vitro overshadows the fact that it is not a stem cell 

marker because by modulating p63 activity in culture we might be able to 

expand those cells.

1.2.2.4 Transporters.

Stem cells from bone marrow, skeletal muscle, and other tissues can be 

isolated based on their ability to exclude the vital dye Hoechst 33342 (bis- 

benzimide), which defines a ‘side-population (SP)’ phenotype (Goodell et al. 

2004).

This exclusion phenomenon is mediated by several ATP binding cassette 

(ABC) class of transporters in general like ABCB1, also called MDR1, 

multidrug resistant 1. ABCB1 has been proposed as a neural stem/progenitor 

cells marker (Islam et al. 2005). ABCG2, also called breast cancer resistant 

protein 1 (BCRP1) is also a member of the ATP binding cassette (ABC) 

transporters. Both of these transporters are members of the MDR/TAP 

subfamily (as stated in Entrez gene database) whose members share a lot of
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homology and are involved in resistance to certain toxic drugs, hence their 

name “multidrug resistant” like verapamil.

Identifying the SP phenotype depends on the use of the negative control 

(usually verapamil or a monoclonal antibody) in the fluorescence-activated cell 

sorting (FACS) experiment. However other ATP binding cassette (ABC) 

transporters are capable to transport verapamil out of the cells and hence give 

the SP phenotype. It has not been shown that the antibodies that have been 

used in SP phenotype specification in the cornea at least are blocking 

specifically only ABCG2. Additionally intra-assay variation of verapamil efflux 

is common Due to technique limitations.

FACS sorting for negative Hoechst 33342 dye staining in the corneal 

epithelium has identified the SP phenotype in 0.3-0.5% of the sorted cells 

from limbal but not central corneal epithelial cells. (Watanabe et al. 2004; 

Wolosin et al. 2004).

In another study, flow cytometry with ABCG2 monoclonal antibody showed 

that 2.5-3% of the total limbal cell population were ABCG2-positive (De Paiva 

et al., 2005) and that these ABCG2-positive cells were had higher colony- 

forming efficiency, in vitro, suggesting that ABCG2 is enriching for corneal 

limbal stem cells.

Immunolocalisation experiments consistently localised ABCG2 in the plasma 

membrane of positive cells in the basal (De Paiva et al., 2005) and also in the
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suprabasal layers of the limbal epithelium (Chen et al., 2004; Watanabe et al., 

2004; Wolosin et al., 2004), whereas no positive staining was observed in the 

corneal epithelium.

These studies suggest that ABCG2 definitely enriches for stem cells in the 

corneal epithelium.

1.2.3. Regulation of corneal stem and TA cells

1.2.3.1 Cytokines as regulators of corneal stem and TA cells

Consistently, before trying to understand possible regulators it needs to be 

underlined that one should discriminate between limbal basal cells and stem 

cells since the basal limbus contains early transient amplifying cells as well 

(Cotsarelis et a. 1989), adding to the problem, it is not know to what the stem 

cell- TA cell transition.is reversible in vivo and in vitro.

There are four patterns of interactions with respect to cytokines and their 

receptors in the human corneal-limbal epithelium to fibroblast communication 

(Kruse, Scheffer and Tseng 1992; Li and Tseng 1995; Li, Scheffer and Tseng 

1995; Joyce and Zieske 1997; Li, Lee and Tseng 1999). These are:
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• Type I cytokines: These are TGF-a, IL-ip, PDGF-BB, which are 

expressed only by epithelial cells, but their receptors are predominantly 

(EGFR and IL-1R) or exclusively (PDGFR-b) produced by fibroblasts.

• Type II cytokines: These are IGF-I, TGF-p1, TGF-p2, TGF-P3, LIF and 

bFGF, which are expressed in epithelial cells and fibroblasts while their 

receptors are expressed there too.

• Type III cytokines: Like KGF and HGF, expressed only by fibroblasts. 

Their receptors (KGFR and HGFR/c-met respectively) are expressed 

only by epithelial cells.

• Type IV cytokines: These are M-CSF and IL-8 which are expressed on 

epithelial cells and fibroblasts. Their receptors are expressed on 

immune and inflammatory cells.

Before looking at which growth factor influences what and how, the following 

should first be considered.

All the known signals fibroblasts will receive from epithelial cells in the cornea 

are TGF-a, IL-1 b , PDGFBB, IGF1, TGF-p1, 2 and 3, LIF and bFGF. All the 

possible signals epithelial cells can receive from fibroblasts are IGFI, TGFp 1, 

2 and 3, LIF, bFGF, KGF and HGF (Li and Tseng
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Under that context, Li and Tseng (1999) show that EGF upregulated LIF, 

HGF, downregulated KGF and M-CSF. TGFb upregulated EGFR, PDGFR-b, 

bFGF and TGFpi, suggesting epithelium produced TGFb will activate 

fibroblasts more effectively than tear-derived EGF, which is logical considering 

the location and the short half-life of growth factors. PDGF-BB upregulated 

EGFR, PDGFR-b, bFGF and TGFbl, as well as IL-8. IL-1 b upregulate KGF 

expression (in limbal fibroblasts more than in corneal fibroblasts), IL8 and M- 

CSF, while they downregulate PDGFR-b.

It seems that all these factors would have a devastating effect on 

undifferentiated stem cells or early progenitors. Nevertheless those cells 

manage to remain undifferentiated.

Limbal fibroblasts definitely send messages to the limbal basal area, but it is 

not clear which cells are influenced by them, the stem cells, or corneal 

epithelial early progenitor cells. There is evidence on cultured rabbit corneal 

epithelium that EGF, bFGF and NGF stimulate the proliferation of limbal and 

corneal epithelial cells. TGF-beta inhibits proliferation on these cells (Kruse, 

Scheffer & Tseng 1992; Li, Lee & Tseng 1999). This fact is in agreement with 

the later establishment of the idea of all TGF-beta and receptors for all three 

isoforms are present in the limbal epithelium. It appears therefore that a 

balance between proliferative and antiproliferative signals exists in the limbus 

but not in the periphery or centre. It is important to indicate once more that the 

assay used by Kruse, Scheffer and Tseng lacks specific activation of limbal



stem cells so it is not known what cells of the basal limbus receive which

messages.

1.2.3.2 Retinoic acid
Retinoic acid is one of the factors in the serum that are thought to be 

responsible for the differentiation of limbal stem cells. It is an important 

modulator of epithelial

proliferation and differentiation (Fuchs 1981; Hashimoto 1985; Kruse 1994). 

High concentrations of retinoic acid (more than 10-6M) concentrations inhibits 

the formation of colonies both in peripheral corneal cultures and in limbal 

cultures, low concentrations (10-8 -10-7M) will increase the colony formation 

only in limbal stem cell cultures (Kruse and Tseng 1993). In the same study, it 

was observed that in low concentration retinoic acid treated cultures, one of 

the morphologically distinct colony types arising , was a special subpopulation 

of progenitor cells in the limbal epithelium which was very similar (it could 

even be) stem cells. However it is very unlikely that this was not achieved by 

synergistic action of other factors.

Other serum factors might influence limbal cells. Addition of FBS in corneal 

cell cultures results in drop of colony formation and proliferation as 

concentrations of FBS rose. This has the opposite effect in limbal epithelial 

cells though. Formation of limbal colonies and their proliferation are 

stimulated. It is not known if the specific subpopulations of cells that are 

stimulated are stem cells. (Kruse1994). It is more probable that TA cells were 

the ones stimulated.



1.2.3.3 Extracellular matrix as a regulator.

Extracellular matrix (ECM) cell interactions are a major regulating factor in 

corneal epithelium. The composition of the matrix influences half life of growth 

factors, projects attachment sites to the cells above the basal lamina. These 

interactions are not just for anchorage. There is a chain of events involving the 

differentiation and migration of these cells (direct paradigm is CAM’s which 

are so well studied in cancer and developmental biology). There is much 

evidence that the control of these interactions sets the standard in penetrating 

wound healing (because small scale epithelial wound healing circumvents the 

ECM-cell communications since they are not needed). It is not known if the 

extracellular matrix is regulating the stem cells, but the same patterns of 

control exist for the corneal TAC and the early progenitors on the basal limbal 

epithelium. Since the niche formation is true for the limbus, we can 

characterise that as a contribution of ECM to stem cell control either due to 

structure composition or due to different diffusivity the limbal ECM will offer to 

GFs. But it is not known if the ECM contacting the stem cells will employ other 

regulatory mechanisms than that contacting the TACs.

Significant heterogeneity exists among the basement membranes of different 

body sites, but within tissues too (Potten CS, editor. Stem cells. London: 

Academic Press; 1996), in terms of laminin and type IV collagen. In AE27
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antigen immunohistological studies by Kolega et al. (1989), the antigen 

appear in patches in the limbus when it is uniformly distributed in corneal 

tissue. Its presence appears to be related with K3 expression. The nature of 

this antigen is not known though so we cannot subtract biochemical 

information.

Laminin, entactin, heparin sulphate proteoglycan KF-1 (Kolega 1989) and 

bullous pemphigoid antigen (Ben-Zvi et al. 1986) are uniformly distributed 

throughout corneal conjunctival and limbal epithelia (as cited in Potten: Stem 

cells).

Cell to matrix interactions involve integrins. Integrins are considered cellular 

receptors of ECM. They do play an important role in migration maturation and 

differentiation in the TA cell population in the cornea in normal conditions and 

more importantly during wound healing, This study is sought to gain an insight 

into the mechanisms by which cell contacts could be controlling cell fate 

decisions of stem cells

1.2.4 Asymmetric cell division.

Since progeny of stem cells are not able to self maintain a tissue and do not 

have the capacity to avoid differentiation or to produce a large amount of their 

own progeny it is imperative that at some point stem cells undergo 

asymmetric cell division that results in two daughter cells of different 

qualitative traits; one that is a stem cell and one that is not. As far as logic is
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concerned this is the only imperative ability of a stem cell is asymmetric 

division that leads to self renewal

A central question in developmental biology is how a single cell can divide to 

produce two progeny cells that adopt distinct fates (Ho 2004).

1.2.4.1 Asymmetric division in mammalian stem cells

In the developing nervous system of mouse models, proteins that segregate 

asymmetrically during mitosis have been identified. Asymmetric localization of 

Numb and Notch homologues has been observed in mammalian neural stem 

cells (Chenn et al. 1995; Wakamatsu et al.1999; Zhong et al 2000; Cayouette 

et al. 2002). Neural progenitor cells in the cortex divided asymmetrically to 

produce different lineages (Qian et al. 1998) as determined by video time- 

lapse microscopy.

Great insight into how a cell division becomes asymmetric comes from studies 

in the ventricular zone of the developing mammalian cortex as well as studies 

in drosophila neural system development (Chenn et al. 1995; Hirate et al. 

1995). Using the ferret model, neural precursors were seen to divide and 

daughter cells either stayed in this zone and continue to undergo self- 

renewing divisions, or migrated distally to differentiate (Chenn et al. 1995). 

Furthermore those daughter cells showed unequal inheritance of Notchl 

immunoreactivity. Intriguing results from the same study indicated that 

cleavage orientation during neural precursor cell division coincided with that



asymmetry (Chenn et al. 1995). Specifically, the asymmetry was observed to 

arise only by divisions with a vertical orientation to the ventricular surface of 

the neural tube. Similar asymmetry with respect to the distribution of the 

homeodomain protein Prospero after neural precursor cell division was 

observed during drosophila (Hirate et al 1995). Additionally, proteins 

implicated in cell fate determination such as Notch, Numb, and Minibrain were 

shown to be distributed asymmetrically during mitosis of neural precursors of 

the developing cortex (Zhong 1996, 2000)

Therefore it seems that at least in the developing neural system, asymmetric 

cell division leads to the formation of cells with unequal fates and coincides 

with asymmetric localisation of several proteins during cell division. This 

asymmetry is believed to be related with the orientation of cell division plane.

1.2.4.2 Asymmetric divisions in mouse epithelial cells.

.Asymmetric cell division is arising as the mechanism to explain stratification 

of epithelia. There are several examples in drosophila and C. Elegans studies 

of how asymmetric cell division and mitotic spindle orientation are interelated 

(Betschinger & Knoblich 2004; Cowan & Hyman 2004) A first line of evidence 

in mammals of such relation , comes from a recent study of epithelial 

stratification by Lechler and Fuchs (2005). Dividing, basal epithelial cells of 

the mouse tongue and epidermis, localize two crescents at their apical side, 

namely the LGN-mlnsc-Par3 complex and the NuMA-dynactin complex in 

order to align their spindles perpendicularly to the basement membrane. This 

division generates a suprabasal cell committed to differentiation and a 

proliferative basal cell. The apical localization of the two crescents is directed
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by atypical protein kinase C (PKCz in case of the epidermal epithelium in 

mouse). In the same study it was shown, by the use of knock out mice for 

integrin b1, catenin-a and p63, that the ability to localise those components to 

the apical side of the basal cell depends on functional integrin b1, catenin-a 

and p-63 molecules. If any of these components is absent basal epithelial 

cells of tongue and epidermis loose their ability to localize the crescents to 

their apical side and therefore to align their spindle perpendicularly to the 

basement membrane as well as divide asymmetrically. Thus it can be 

suggested that as far as our knowledge allows an epithelial cell is controlling 

its asymmetrical cell division at least in part by attaching to the basement 

membrane and to its neighbors.

What would be interesting is to determine if the asymmetry in terms of 

daughter cell fate in this case arises due to the fact that one cell remains 

attached to the basement membrane and one is displaced to the suprabasal 

layer, or if there is also a qualitative difference in the two daughter cells due to 

asymmetric localisation of components of the parental cell.

However, it is not known if this type of mechanism is true for the asymmetry of 

stem cell division with respect to self maintenance. It remains to be seen if this 

mechanism controls asymmetry of stem cell division in vivo. Also it will provide 

a new perspective into the results of in vitro studies

The implications of such a mechanism in the cornea could be important since 

p63 is expressed by both basal cells of the limbus and the periphery 

(Pellegrini et al) and as it will be discussed in the general discussion some
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factors that affect components of that control system were found to be up

regulated in the basal limbus.

1.2.4.3 Asymmetric cell kinetics

The first demonstration that mammalian cells could divide with determined 

asymmetric cell kinetics in adult derived murine mammary epithelium cells in 

culture also identified p53 tumor suppressor as the first candidate for an 

intrinsic asymmetric cell kinetics control gene. (Sherley et al 1995 a&b). In the 

same studies it was observed that when p53 was upregulated by less than 

50% above the endogenous wild type basal expression levels in these cells it 

induced a switch from symmetric cell kinetics, which produce two dividing 

daughters (underlying the exponential kinetics that typify established cell 

lines), to asymmetric cell kinetics. The asymmetric cell kinetics were 

characterized by divisions producing one continuously dividing daughter and 

one viable daughter arrested in G1/S of the cell cycle (Sherley et al 1995 b).

Given the fact that p63 is a p53 homologue (Yang et al. 1998, 2000) it 

becomes very interesting to investigate if p63 is modulating the levels of p53 

activity in stem cells turning the kinetics to asymmetric.

1.2.4.4 Asymmetry and wound healing

With respect to asymmetry and wound healing in the cornea some older 

studies on PKC molecules could give some insight. When Hirakata and co

workers (1992) studied the effect of PKC (protein kinase C) inhibitors and



activators on corneal re-epithelialisation in the rat, they found that the 

inhibitors of PKC substantially downregulated the rate of re-epithelialisation 

after wound healing, whereas PKC activators did not affect that rate at all. 

What is interesting about this investigation is that they used the Gibson 

organotypic culture model to culture 3mm diameter epithelial abrasions taken 

from the central cornea areas. Therefore these cultures did not contain any 

stem cell population. Nevertheless the study implied a significance of this 

control in proliferative basal epithelial cells. Scheffer, Tseng & Li (1996) then 

made a comparison of PKC expression between normal and aniridic human 

ocular surfaces including the limbus and the cornea. They indicated that 

normal limbal basal epithelium is characterized by simultaneous expression of 

PKCa and PKCg from all the other ocular epithelia. In aniridic mice, limbal 

epithelia have different PKC distributions between basal, suprabasal and 

superficial limbal cells. These results seen through the light of the emerging 

role of aPCK in asymmetric cell division of proliferating cells (Lechler and 

Fuchs 2005) are creating questions about the existence of similar asymmetric 

cell divisions in the corneal epithelial basal cells. It also remains to be seen if 

such mechanisms are playing a role in asymmetric stem cell division in the 

corneal epithelium.
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1.2.5 Chromatin remodelling and switching between Active and Inactive 
gene programs.

Different cells have different properties and those properties are regulated by 

proteins and therefore genes. One process that needs to be regulated in order 

to end up with cells that are different is to switch gene programs on or off. 

Mechanisms that regulate the switch between transcriptionally active or 

inactive genes are discussed in this section due to the indications that such 

mechanisms are in action in stem cell lineage determination both in 

development and in adults (Roioff and Nuber 2005)

Eukaryotic genomes are described as transcriptionally active (euchromatin) or 

transcriptionally silent (heterochromatin). Heterochromatin is defined as the 

fraction of the genome that remains visibly condensed during interphase.

More recently, heterochromatin has been defined as genomic regions that are 

gene poor, contain large blocks of repetitive DNA, are inaccessible to DNA- 

modifying reagents and replicate late in the cell cycle (Elgin 1996; Henning 

1999). Heterochromatin is characterized by increased methylation of the 

cytosines in CpG islands of the DNA , decreased acetylation of histones and 

increased methylation of lysine-9 in histone H3, which now provides a binding 

site for heterochromatin protein 1 (HP1), which blocks access by the 

transcription factors needed for gene transcription (reviewed in Rice and Allis 

2001).
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In contrast the genes in euchromatin are active and thus show decreased 

methylation of the cytosines in CpG islands of the DNA increased acetylation 

of histones and decreased methylation of lysine-9 in histone H3. (Rice and 

Allis 2001)

An originally transcriptionally becomes and remains inactivated when 

displaced from its normal euchromatic position to the vicinity of 

heterochromatin (Reuter and Spierer 1992; Karpen 1994). It is extremely 

interesting that epigenetic inheritance of this inactivated state is propagated 

during mitosis and through the germ-line during meiosis (Grewal et al. 1996; 

Cavalli and Paro 1998). This epigenetic phenomenon, known as position 

effect variegation (PEV), provides an attractive model of molecular imprinting 

that specifies the transcriptional state of genes in stem cells. It is logical that a 

stem cell in order to remain one need to have the same areas shut down 

before and after mitosis. In fact maintenance of cellular memory through 

epigenetic chromatin modifications is characteristic of neural (Molofsky et al. 

2003) and hematopoietic (Iwma et al. 2004) stem cells. Interchange between 

states of activation of genes would be the switch between stem cell identity 

and TA cell identity although it is not known whether this process is reversible.

Chromosomes undergo significant changes in structure twice during the cell 

cycle. First, at the G2 /M transition, the chromosomes condense to form 

individual compact structures. Second, at the M/G1 transition, the 

chromosomes return to their de-compacted interphase state. These structural 

transformations are believed to be essential for complete segregation of 

genomes into daughter cells during mitosis and to provide differential access
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for soluble factors to active genetic loci while keeping inactive ones in the 

silent compact state.

The high level of compactness is achieved by ordered folding of DNA through 

its interaction with chromosomal proteins. Interaction of DNA with histones 

gives rise to nucleosomes and a 30 nm chromatin fibre ( Wigler and Axel 

1976). The mode of DNA folding at higher levels of compaction and molecular 

mechanisms involved in formation and maintaining of higher order chromatin 

structures remain largely elusive.

Histones are subject to a wide range of post-translational modifications 

throughout the cell cycle including phosphorylation, acetylation, and 

methylation (Cheung et al. 2000)

Histone acetylation emerges as a central switch that allows interconversion 

between permissive and repressive chromatin structures and domains 

(Eberharter & Becker 2002) .These principles are not only at the heart of 

transcriptional regulation but are also likely to govern other processes 

involving chromatin substrates, including replication, site-specific 

recombination and DNA repair (Wolffe and Hayes, 1999; Roth et al., 2001).

Methylation of H3 at lys 9 has been shown to ectopically silence genes in 

cancer cells (Nguyen et al. 2002). Methylation and acetylation of H3 Lys 9 are 

antagonistic and it has also been shown that H3 Ser10 phosphorylation 

antagonises H3 Lys9 methylation (Cheng et al. 2000; Rea et al. 2000)
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Phosphorylation of chromosomal proteins has been implicated in controlling 

the formation of mitotic chromosomes (Heck et al. 1989; Guo et al.1995; Ajiro 

et al. 1996; Kimura et al.1998; Wei et al. 1999). We do not yet know the full 

list of histone modifications that occur in mitosis, but it likely will include 

changes in ubiquitination and phosphorylation on other histones (Bradbury 

1992; Hsu et al. 2000).

Histone H3 phosphorylation was first identified in mitotic cells and has since 

been recognized as a ubiquitous mitotic modification (Gurley et al, 1973; 

Gurley et al. 1978; Hendzel et al. 1997). However, phosphorylation of H3 

Ser10 also occurs in more discrete chromatin regions during activation of 

transcription and coincides with histone H3 acetylation on the same 

nucleosomes (Mahadevan et al. 1991; Barratt et al.1994 Clayton et al.2000). 

This kind of specific combinatorial modification has been proposed to form a 

“histone code” that would form a marked chromatin surface that could recruit 

chromatin remodeling and modification activities or factors mediating higher 

order chromatin structures (Strahl et al. 2000).

Phosphatase 1 (PP1) can directly inhibit Aurora kinase b mediated 

phosphorylation of Histone 3 during interphase (Murnion et al. 2001). Histone 

H3 Ser10 and the linker histone B4 are phosphorylated in mitotic 

chromosomes, whereas histones H2A and H4 are phosphorylated in 

interphase chromatin (Murnion et al. 2001).



Eluates of isolated mitotic chromosomes contain the mitotic histone H3 

kinase, and this activity is associated with the X aurora-B kinase. The X 

aurora-B-associated activity is inactivated by treatment with phosphatase, 

showing that it requires phosphorylation for its activity. Furthermore, the X 

aurora-B-associated activity exists in interphase chromatin but is inactive. This 

form is activated by inhibition of PP1 and incubation in ATP, showing that PP1 

activity directly inhibits X aurora-B in interphase chromatin.

One complete component of the switch between active (euchromatin) and 

inactive (heterochromatin) genome as it can be derived from current studies 

that have been discussed involves:

Histone H3 de-acetylation of Lys9 possibly mediated by phosphorylation of 

Ser10 and subsequent methylation of Lys9 and tethering of a heterochromatin 

protein (HP) to this site which results in condensation and/or inability of 

transcription factors to reach the heterochromatin as well as neighboring 

regions. The mechanism is illustrated in figure 1.2.
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Figure 1. 3 Temporal pathway leading to the establishment of transcriptionally silent 

heterochromatic regions with regard to the covalent modifications in the histone H3 tail. The 

acetyl group on H3 Lys9, a modification often associated with transcriptionally active regions, 

is removed by an Histone deacetylase prior to methylation by a histone methylase after 

phosphorylation of Ser10. Then a HP (heterochromatin protein) selectively recognizes and 

binds to the H3 Lys9-methyl modification resulting in the self-assembly and propagation of 

heterochromatin and transcriptional silencing.
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Another protein involved in gene-program switching is special AT-rich 

sequence binding protein 1 (SATB1). It is mentioned here because it will 

become important in the general discussion section (Chapter 7).

SATB1 had been proposed as a new type of gene regulator with a novel 

nuclear architecture, providing sites for tissue-specific organization of DNA 

sequences and regulating region-specific histone modification (Cai et al. 

2003)

SATB1 protein has been shown so far to orchestrate temporal and spatial 

expression of multiple genes during T-cell development (Alvarez et al. 2000), 

although the phenomenon of transcriptional control by histone acetylation- 

deacetylation and methylation is believed to be present in all types of somatic 

and germ line cells.

SATB1 is a cell-type specific nuclear protein that recruits chromatin- 

remodelling factors and regulates numerous genes during thymocyte 

differentiation. It was found that in thymocyte nuclei, SATB1 is distributed in a 

cage-like 'network', circumscribing heterochromatin and selectively tethering 

specialized DNA sequences onto its network (Alvarez et al. 2000). Many gene 

loci are anchored by the SATB1 network at specific genomic sites, and this 

phenomenon is precisely correlated with proper regulation of distant genes.
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In Satbl-wild type T-cells the binding site of SATB1 is marked by acetylation 

of histone H3 at Lys9 and Lys 14 peaks and extends over a region of roughly

10 kb covering genes regulated by SATB1. By contrast, in Satbl-null 

thymocytes, this site is marked by methylation at H3 Lys9.

1.3. Principles and applications of gene arrays.

1.3.1 General Concept

Gene arrays are a continuously developing technology that has recently been 

established. Microarray technology can be useful for making estimates of the 

abundance of particular messages relative to a designated source of mRNA 

that serves as a reference library. In the last 4 years a plethora of microarray 

types has emerged. Expression studies today can adapt many strategies. The 

main three types of expression studies that can be performed with the use of 

array technology are high density oligonucleotide arrays, low density-custom 

made microarrays from specific BAC clones of cDNA and a third one that is 

being under development is the Chlp-Chip array which is using a genomic 

DNA array to hybridise fragments of DNA immunoprecipitated by an RNA poly

11 antibody and specific transcription factors of interest to locate the genes that 

are being inhibited or enhanced by specific growth factors.

There are three fundamental stages in a microarray experiment.

73



The first involves the microarray fabrication itself. This step requires a cDNA 

bacterial clone inventory. Collecting an inventory of cDNA bacterial clones that 

represent the genes whose message abundance we wish to survey is 

followed by deposition of them on the microarray chip (usually a glass chip, 

but this is going to be analysed further later). High density oligonucleotide 

arrays utilise fabrication techniques like photolithography and ink-jet printing 

make direct DNA synthesis on the chip of short sequence DNA.

In the second step RNA is extracted from the cell samples to be examined, 

purified, and used as the substrate for reverse transcription and often in-vitro 

translation in the presence of fluor-derivatized nucleotides, in order to label 

them and use them as probes in the microarray experiment. This procedure 

provides the tagged representations of the mRNA pools of the samples that 

will be hybridized to the gene-specific cDNA detectors immobilized on the 

microarray.

The third step the actual hybridization procedure takes place. Then the data 

are ready to be extracted. At this stage fluor-labeled cDNAs hybridize to their 

complements on the microarray, and the resulting localized concentrations of 

fluorescent molecules are detected and quantified.
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1.3.2 Microarray Fabrication

This first step involves the extraction of cDNA fragments from a cDNA 

bacterial clone inventory. This is either achieved either by DNA purification 

and subsequent PCR amplification of the desired cDNA reference fragment, 

or by direct PCR to the vector clone by using vector specific primers. After the 

collection of an inventory of cDNA bacterial clones, that represent the genes 

whose message abundance is to be surveyed, the fragments will be deposited 

on the microarray chip (usually a glass chip, but this is going to be analysed 

further later). There are three main techniques for cDNA deposition on the 

chip photolithography, ink jetting (piezoelectric technology), mechanical 

microspotting and derivatives thereof.

1.3.2.1 Deposition Techniques 

Photolithography

Photolithography uses semiconductor fabrication technology. Photomasks 

direct spatially defined, solid face DNA synthesis through the use of light 

which is allowed on the surface at a desired spot (the one non-masked). Light 

activates modified phosphoramidite versions of the four DNA bases for DNA 

synthesis (Fodor 1991). Each coupling step of the reaction, results in the 

addition of a single base to the growing single DNA chains at thousands of 

defined locations (Fodot 1991). In this way high density oligonucleotide arrays 

achieve an unparalleled homogeneity between arrays.
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Ink-Jetting (piezoelectric technology)

The piezoelectric technology is identical to the ink-jet system used in desktop 

printers. Micro-delivery jets provide cDNA fragments at specific locations on 

the biochip in a non-contact fashion directing sub-nanolitre volumes of 

negatively charged DNA with the use of electric fields. The jets are navigated 

above the biochip surface by an X, Y, Z, motion control system.

Microspotting

Unlike ink-jet technology, microspotting utilizes a print head containing 

microspotting pins, capillaries or tweezers to deliver the pre-made cDNA or 

other molecules from reagent trays on the biochip surface. Microspotting 

again uses a similar X, Y, Z navigation system for accurate deposition.

All of these technologies have evolved to the stage that they print in such a 

density, that a considerable amount of genes can be represented on a single 

biochip. High density oligonucleotide arrays though have reached the capacity 

to include the entire human and mouse genome. The requirements of the 

experiment with respect to throughput, density, cost, quality and flexibility, 

determines which of the printing techniques will be used to fabricate the array.
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1.3.3 Data extraction and analysis.

After the fluorescent samples have been left to hybridise to the microarray, 

any unbound DNA fragments are washed away and the remaining bound 

cDNA fragments are located on the spatially addressed spots of the 

microarray. Every spot is referenced to a corresponding already known DNA 

fragment coming from either the cDNA clones or synthesised fragments. In 

this way when the fluorescence of every spot is detected and filed, an 

estimate of the level of expression of the particular gene from can be drawn. 

How accurate this estimate will be is a question of many parameters.

For the detection of the bound fluorescent sample molecules throughout the 

surface of the biochip, confocal scanning devices and CCD cameras have 

been used.

Excitation, of the sample in order to emit light that will be detected. Excitation 

is provided by using lasers, arc or filament lamps, or LEDs. Any way the 

excitation light is produced, it must limit its wavelength in a way that it will not 

overlap the emission. Lamps and LEDs require filters to select the appropriate 

spectrum of excitation. Lasers are able to produce light at a single, well-known 

wavelength (except diode lasers).

Multiple excitation can result either by using lamps and LEDs with an 

adjustable wavelength tuner employing a series of filters, or by using multiple 

lasers. The excitation light whatever origin it might have is directed on the 

microarray. There are two ways. Flood illumination is one way and it is the
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one applied to CCD camera scanners. The other way is used in the confocal 

scanners where the light is directed to a very small part of the sample each 

time.

What is absolutely essential to consider, in describing detection systems and 

microarrays in general, is that they are meant to detect the area concentration 

of fluorescent dye. Related factors, that determine if the area concentration is 

proportional to the actual expression level of a gene, are i) the quality of the 

RNA extraction and/or amplification protocols, ii) the quality of the deposition 

procedure of the microarray itself and iii) the quality of the detector.

In confocal scanning devices (scanners), a laser beam excites small regions 

(around 100mm) on the substrate sequentially by moving the substrate and/or 

the confocal lens, such that all of the substrate has been scanned in two 

dimensions, in a particular depth of focus. When the laser beam excites these 

small areas of the substrate, molecules on its light path will emit light. This 

emitted light will be a result of the fluorescent cDNA target dye molecules, 

background fluorescence, due to other molecules present and glass of the 

biochip, laser light refraction (which is a reflection of the image of the sample). 

In order to separate all of the unwanted light from the one coming from the 

labelled molecules, a series of mirrors, filters and lenses are used. These will 

be the first measure for correcting the light output. Other measures apply as 

well as will be discussed later.
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Following the emitted light collection, the light is then converted to an 

electrical signal usually with a photomultiplier tube (PMT). Then digital signal 

processors of the machine will convert the electrical signal into a digital signal 

which is ready to be handled by algorithms of the software. The speed of data 

collection in microarrays is far greater than that of other hybridisation based 

assays used (1-5 minutes compared to 1-10 days respectively) and with far 

more genes questioned with each experiment.

Most DNA arrays will have samples that are labelled with multiple fluorescent 

probes, usually from two to four. If differential gene expression is to be 

considered in terms of microarrays, one probe can be used for each sample 

preparation. Complications may arise if more than two samples are to be 

tested in the same array, because the emitted wavelength of each probe 

needs to be considerably away (50nm) if cross-talk problems need to be 

solved. The sample will be scanned at the two or more wavelengths and the 

ratios of these fluorescence emissions will represent the differential gene 

expression. The fact that ratios are the ones that are important in differential 

gene expression analysis reduces the need for absolute calibration of the 

sample preparation process.

The efficiency of the detection of fluorescence and therefore of the data 

extraction is dictated by many things. What happens during data harvesting is 

that fluorescent intensity of each dot to be analysed is compared to the ones 

of the local background intensities.
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Cross talk problems are eliminated in high density oligonucleotide arrays 

since each sample is hybridised to a single array.

1.3.3.4 Detectivity

Detectivity is defined as the minimum dot fluorescent brightness that can be 

distinguished from the background when the sensitivity is set so that the 

brightness element of the sample produces an intensity level at the full scale. 

Detectivity can be measured with special pre-made microarrays that 

incorporate dilution series. The detectivity is then addressed by the dimmest 

dot that can be detected. Detectivity is also dependent on the characteristics 

of a sample preparation.

1.3.3.5 Sensitivity

Is the conversion efficiency of light power to a digital value at a particular 

wavelength? Sensitivity influenced only by the hardware’s capabilities and not 

the quality of the sample. Sensitivity can reduce detectivity when both the 

excitation and the detector are adjusted at their maximum values (if a very dim 

scan data are processed). Adjusting excitation to the maximum results in 

saturated data values should be questioned. A balance between those two 

must be decided.
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1.3.3.6 Cross-talk

When multiple dyes are used in order to label our samples, interference of the 

excitation wavelengths of each dye can occur. In an analysis such as 

differential gene expression this would influence the expression ratio between 

the two compared channels. Cross talk can be greatly reduced with 

appropriate selection of dyes and excitation laser wavelengths. As a rule of 

thumb these wavelengths must be approximately 50nm apart, in order to allow 

proper filtering. In addition to that measure, narrow band emission filters on 

the dye peaks, with good attenuation of out-of-band wavelengths can be 

used. Cross-talk is not an issue when high density oligonucleotide arrays are 

used.

1.3.3.7 Resolution

The resolution of the scanner is the degree of spatial division capabilities 

during fluorescence reading. These equal fragments that the surface is 

divided to are called pixels. The size of the pixel can vary to 5, 10, and 20 mm 

depending on the device. The smaller the pixels are the better the resolution. 

The pixel dimensions need to be no larger than 1/8 to 1/10 of the diameter of 

the smallest dot in the microarray to be analysed. In this way, edge effects 

and other defects can be rejected at the quantification stage.
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1.3.3.8 Field Size

The greater the glass chip (slide) is the more dots it can accommodate. The 

general considerations here are that the 1-1.5mm at the edges of the slide 

cannot be used because it may be chipped or not flat which would result in 

background fluorescence interference and unequal amount deposition and 

unrelated reading from the confocal variation of depth of reading surface. A

1.5 cm area at the one end of the chip is used as a handle. Thus many 

scanners use a 60mm field in longitude. That means the minimum field is 

around 22mmX60mm with a maximum of 22mmX73mm.

1.3.3.9 Uniformity

Uniformity can be referred to as the measure of fluorescence emission and 

detection consistency. The problem of non-consistent fluorescence emission 

and detection can arise by either scanning motion deviating from the focal 

plane (important if we consider the depth of focus usually adjusted to a few 

tens of microns) or by irregularities of the surface itself.

Non-uniformity can be dealt with increasing the depth of focus by enlarging 

the confocal pin-hole, thereby decreasing the standard deviations of the 

"flatness" parameter. This of course will be done in the expense of image 

artefacts being created. So a balance between those two must be decided 

especially in the case of rescuing a microarray experiment. Most users seek ± 

10% scanner uniformity across the image field.



1.3.3.10 Image geometry

Because most quantification software after the data is retrieved applies a fixed 

grid to the image and expects to find dots in the centre of each box, the size of 

the image and pixel placement linearity matters. However, there are software 

programs that apply a dynamic grid model on the image produced by the 

microarray. This is a big consideration of the deposition procedure as well.

1.3.3.11 Throughput

After the resolution, the size and number of channels to be scanned on the 

microarray have been defined from the user, throughput specification can be 

addressed. The number of samples that can be scanned in a day depends on 

how accurate the result is desired to be. CCD cameras have high throughput 

but the detectivity falls dramatically (worse then first generation confocal 

scanners). When n many wavelengths (multichannel scanning) are scanned, 

data collection time increases. To increase the throughput in this case, colour 

separating beam-splitters are placed in the emission light path that will lead 

the light in multiple detectors, and subsequently to more signal processing 

modules, so that all the channels can be scanned at once. Generally a first 

generation scanner will spend 5-15 minutes for a 20mmX60mm field at 10m m 

pixel size resolution.
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1.3.4 Affymetrix technology in more detail.

GeneChip probe arrays are manufactured using technology that combines 

photolithography and combinatorial chemistry. 1.2 Up to 1.3 million different 

oligonucleotide probes are synthesized on each array. Each oligonucleotide is 

located in a specific area on the array called a probe cell. Each probe cell 

contains hundreds of thousands to millions of copies of a given 

oligonucleotide. Probe arrays are manufactured in a series of cycles. Initially, 

a glass substrate is coated with linkers containing photolabile protecting 

groups. Then, a mask is applied that exposes selected portions of the probe 

array to ultraviolet light. Illumination removes the photolabile protecting groups 

enabling selective nucleoside phosphoramidite addition only at the previously 

exposed sites. Next, a different mask is applied and the cycle of illumination 

and chemical coupling is performed again. By repeating this cycle, a specific 

set of oligonucleotide probes is synthesized with each probe type in a known 

location. The completed probe arrays are packaged into cartridges.

The system (Lockhart et a/., 1996) uses oligonucleotides with length of 25 

base pairs that are used to probe genes. Typically, each gene will be 

represented by 16-20 pairs of oligonucleotides referred to as probe sets. The 

first component of these pairs is referred to as a perfect match (PM) probe. 

Each PM probe is paired with a mismatch (MM) probe that is created by 

changing the middle (13th) base with the intention of measuring non-specific 

binding. The PM and MM are referred to as a probe pair (Affymetrix 

Expression manual).
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1.4. Laser capture micro-dissection.

Laser capture microdissection (LCM) has been identified as a quick and 

effective method of microdissecting complex tissue specimens for molecular 

analysis. Laser capture microdissection (LCM) was first described in 1996 

(Emmert-Buck 1996). The system has been subsequently commercialised 

and used in many laboratories. A thermoplastic ethylene vinyl acetate transfer 

film containing a near-infrared absorbing dye, attached to a 6 mm diameter 

rigid, flat cap, is placed in contact with a routinely prepared tissue section. The 

film over the cells of interest is precisely activated by a near-infrared laser 

pulse and bonds strongly to the selected cells. Although the laser transiently 

raises the temperature of the transfer film to 90C, its energy is absorbed by 

the film and is poorly absorbed by biological tissue (Sirivatanauksorn 1999). 

Nucleic acids and proteins recovered from these cells are therefore not 

degraded by heat conduction (Goldstein 1998). Removal of the cap from the 

tissue section effectively procures the targeted cells. The identity of the 

transferred cells attached to the film can then be recorded by image capture. 

The cap is fitted in a microfuge tube containing lysis buffer and DNA, RNA, 

and proteins can then be extracted for molecular analysis. Since no coverslip 

is used in LCM, the reduction in refractive index means that most light passing 

through the tissue is scattered, which can obscure cellular detail at high 

magnifications. The isolation of cells from immunohistochemical or (molecule- 

specific) fluorescent labelled section improves sample imaging and can help 

in obtaining specific cell populations more precisely.(Fend 1999)
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The Arcturus LCM system uses variable laser-transfer sizes from less than 

7-5 to 30 pm, and a cylinder-based LCM instrument and novel convex 

geometry for the ethylene vinyl acetate transfer film and it was developed in 

the last years (Suarez-Quian 1999). Selection, capture, and dissection on a 

single-cell can be achieved by this method. The capture zones of the Arcturus 

system are 200 times narrower than the original LCM system. Using a smaller 

beam and briefer pulses (less than 1 ms) limits the melting of the polymer to 

spots of 6pm, thus allowing the capture of single cells from different types of 

tissue sections (see results).

The optics of all microdissection systems are very poor because no coverslip 

can be used and the light that is passing through the tissue gets scattered. 

Haematoxylin and eosin staining, as well as immunostaining of frozen tissues 

and subsequent dissection of the cells of interest (Fend 1999) are possible 

and have been documented. There are also reagents that stain the tissue 

while stabilising the RNA (Arcturus). These methods can improve the optics 

but the degree of mRNA degradation need to be addressed.
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Aim of Study

Considering the vast amount of knowledge available regarding corneal 

epithelial cell homeostasis, regulatory mechanisms that control stem 

cell maintenance and differentiation are poorly understood. 

Nevertheless since the corneal epithelium exhibits a linear pattern of 

differentiation, the isolation and investigation of gene expression of the 

conjunctival epithelium, the basal limbus, basal periphery and basal 

central cornea is going to facilitate the understanding of the molecular 

mechanisms that are actively regulated at progressive stages of the 

corneal stem cell lineage and possibly identify specific corneal epithelial 

stem markers, thereby facilitate future basic science and clinical 

research on corneal epithelial stem cells.

The main hypothesis is that cells at different stages of the corneal stem 

cell lineage that reside in a linear basal limbo-corneal axis will indeed be 

differentially regulated at the transcriptional level. In other words, that 

the main component of variance in transcription arises from the type of 

cells being analysed. And that those differences can be realised at a 

global level by employing single cell laser capture techniques as well as 

mRNA amplification techniques to analyse their complete transcriptome 

by high density oligonucleotide arrays.
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The overall objective of the research was to identify target genes that 

could serve as markers of corneal epithelial stem cells as well as genes 

involved the regulation of corneal stem cell homeostasis.

Therefore, aims of this study are to:

• to develop a technique, by which, to isolate single/small numbers 

of cells from defined regions of the mouse cornea

• amplify RNA extracted from these cell populations in a linear 

fashion

• determine the differential gene expression profiles of epithelial 

cells isolated from central, peripheral, limbal corneal and 

conjunctival epithelium.

• test the experimental hypothesis.

• Identify target genes selectively expressed all along the 

progressive stages of the corneal epithelial cell lineage that are 

important in corneal epithelial stem cell homeostasis.

88



Chapter 2
-   ♦

General Methods



2.1. Molecular Biology

2.1.1. RNA stabilisation in tissues or cells

RNA was stabilised in tissues and cells, destined for RNA isolation, by 

preservation in RNA Later® (Ambion, UK). When tissue were stabilized they 

were first cut in fragments whose thickness did not exceed 0.5cm at least in 

one side, to facilitate penetration of the stabilizer and tissues and cells were 

completely submerged in RNA Later®. Tissues were kept at 4°C in this solution 

for up to a month or at -20°C or lower for archiving.

2.1.2. Trizol RNA isolation from tissue.

50mg of fresh or RNALater treated tissue were homogenized using a mortar 

and pestle and/or a Dounce homogenizer to homogenize frozen tissue. The 

procedure was scaled up for larger quantities. If tissue was snap frozen, it was 

pulverized, using a bead in a snap frozen TEFAL vial and stainless steal 

bearings, using a dismembrator shaking at full speed for 1 minute.

To every 50mg fresh, RNALater treated, or frozen pulverized tissue, 1 ml 

Trizol was added and the mixture was further homogenised at room 

temperature for up to 5 minutes to allow for nuclear protein complexes to 

degrade. Genomic DNA was sheared by two passes through a 26 gauge 

needle. For larger corneal tissue e.g. adult mice corneas, a 5 minute 

centrifugation step at 12 OOOg, 4°C in a Boeco centrifuge was added to pellet 

any insoluble debris.



To the supernatants or cell lysates 0.2 ml chloroform per 1ml initial Trizol 

reagent treatment was added. Lysates were shaken vigorously by hand for 

15 seconds and incubated further at room temperature for 2-15 minutes.

Samples were centrifuged at 12,000g for 15 minutes at 4°C. Following 

centrifugation, RNA was transferred to a new microcentrifuge tube by isolating 

the colorless upper aqueous phase. RNA was precipitated from the aqueous 

phase by mixing with 0.5ml isopropyl alcohol. Samples were incubated at 

room temperature for 10 minutes and then centrifuged at 12,000g for 10 

minutes at 4°C. Supernatants were discarded and RNA pellets ware washed 

with at least 1ml of 75% ethanol. Samples were vortexed briefly and 

centrifuged at 7,500g for 5 minutes at 4°C.

Supernatants were discarded and RNA pellets were partially dried for 5 

minutes.

RNA was either stored at -80°C or resuspended in nuclease free molecular 

biology grade water (Sigma).

2.1.3. RNA isolation and cleanup from laser microdissected cells or 
from tissue RNA preparations.

RNA was isolated and further cleaned up to remove DNA, salts or residual 

protein using RNeasy mini columns (Quiagen, UK) together with on-column 

DNAse treatment using the RNase-Free DNase Set (Quiagen, UK) according 

to manufacturers instructions.



Cells or RNA isolated by the Trizol method were treated with 350|jl Lysis 

Buffer, supplemented with p-mercaptoethanol (P-ME) (10pl p-ME per 1ml lysis 

buffer). Laser microdissected cells were left to lyse in the buffer at 42°C for 15 

min. Then 250pl ethanol (96-100%) was mixed into the samples (cell lysate 

or diluted RNA), before loading samples onto an RNeasy mini column inserted 

into a 2ml collection tube. Columns were centrifuged for 15 seconds at 8000g. 

Columns were washed with 350pl Buffer RW1 and centrifuged for 15 seconds 

at 8000g.

Columns were then loaded with 27 units of DNAse I in 80pl buffer RDD 

(supplied with the kit) and residual DNA was digested on the column at 30°C 

for 15 minutes. Columns were then washed with a further 350pl Buffer RW1, 

followed by another two washes with 500pl buffer RPE. The tube was closed 

gently and centrifuged for 15 seconds at 8000g to wash the column. The flow

through was discarded.

Pure total RNA was eluted with the desired volume of nuclease free molecular 

biology grade water (Sigma).

2.1.4. RNA agarose gel electrophoresis.

The same protocol was used for DNA as well. The integrity of 0.5-3pg total 

RNA was estimated by agarose gel electrophoresis. Total RNA was run on a 

1.2% agarose gel (molecular biology grade agarose) prepared with RNAse 

free TE buffer (10 mM Tris/HCI pH 7.5 and. 1 mM EDTA). The gel was
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prepared in a microwave oven and left to cool to 60°C. Ethidium bromide was 

added in a final concentration of 0.2pg/ml in the gel, as well as in the running 

buffer. Gels were cast and left to cool at room temperature. All chemicals 

were purchased from Sigma.

The gel was run on an RNAse free BioRAD gel electrophoresis apparatus at 5 

V/cm in TE buffer. Results were visualised by photographing the gel on a UV 

transilluminator.

2.1.5. RNA quantitative and qualitative analysis by 
spectrophotometry.

RNA sample absorption at 260 and 280nm was read using a bench top 

spectrophotometer. The concentration of RNA was estimated by measuring 

the absorbance at 260 nm (A260) in a spectrophotometer. Readings that were 

greater than 0.15 were taken under consideration due to spectrophotometry 

limitations (Maniatis et al., Molecular Cloning: A Laboratory Manual). All 

materials and reagents that were used were free of Rnases. For RNA analysis 

total RNA was dissolved in pure HPLC grade water (Fisher)

An absorbance of 1 unit at 260nm corresponds to 40pg of RNA per ml in pure 

water (Maniatis et al., Molecular Cloning: A Laboratory Manual). The 

concentration and yield of total RNA in a sample was calculated by using the 

following formula:

Concentration of RNA sample = 40 x A260 x dilution factor (pg/ml)

Total yield = concentration x volume of sample (ml)



Purity of RNA was estimated by calculating the ratio of the absorbance 

readings of a sample at 260nm and 280nm (A260/A280). High purity is often 

indicated by ratios of 1.8 and above, when RNA is diluted in pure water 

(Wilfinger 1997)

2.1.6. RNA quality and quantity analysis by capillary 
electrophoresis.

For the purposes of qualitative and quantitative analysis of low amounts of 

total RNA, the RNA 6000 Nano Assay kit was performed using the Agilent 

2100 Bioanalyzer. The limitations of quantitative range of the assay are 25- 

500ng/pl total RNA and 5-500ng/pl for qualitative range.

The reagents that were used for this assay were those in the RNA 6000 nano 

assay kit (Agilent) and the RNA 6000 ladder. (Ambion)

Gel-Dye Mix preparation

All gel-dye mix reagents were protected from light and stored at 4°C when 

not used. Firstly, 200pl gel matrix was filtered with a 0.2pm pore diameter filter 

column (provided with the kit) by centrifuging at 1500g for 10 minutes at room 

temperature.

Then 65pl filtered RNA gel matrix was mixed with 1pl RNA dye concentrate by 

vortexing into an RNAse free 1,5ml microcentrifuge tube. Tubes were then 

spun at 13000g for 10 minutes at room temperature.
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Sample preparation:

The ladder was heated at 100°C for 5 minutes to eliminate secondary 

structure formation. RNA samples were denatured at 70°C for 2 minutes prior 

to loading.

Capillary electrophoresis chip preparation

To prepare the chip, 9pl of gel-dye mix were dispensed into the appropriate 

wells using the provided plunger according to manufacturers instructions

Loading the RNA 6000 Nano Marker and Ladder

5pl RNA 6000 Nano Marker was pipetted into the ladder and sample wells, 

prior to the addition of 1pl RNA 6000 ladder into the well ladder.

Loading the Sample

1pl sample was loaded in each of the 12 sample wells prior to vortexing the 

chip with an IKA vortexer for 1 minute. Chips were then loaded and run in an 

Agilent Bioanalyzer 2100 and results were acquired and analysed by the 

integrated Agilent software.

2.1.7. Amplification control spike preparation

Two hundred ng of total RNA of each sample was used as this starting 

amount was found to perform more linearly (see section 3.2.5) In order to 

monitor the amplification and labelling process, four exogenous poly- 

adenylated prokaryotic controls were spiked directly into RNA samples just
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prior to amplification and labelling to be used as positive controls to monitor 

the entire GeneChip eukaryotic target labelling process.

The same amount of in vitro synthesised, polyadenylated transcripts for lys, 

phe, thr, and dap genes of B.subtilis were spiked in each sample in the 

following concentrations below in Table 2.1

Poly-A RNA controls Final concentration

lys 1:100000

phe 1:50000

thr 1:25000

dap 1:7500

Table 2.1 Concentrations of Poly aRNA control spikes in samples 

Poly-A RNA Controls Final Concentration
All reagents were provided in the GeneChip® Eukaryotic Poly-A RNA Control 

Kit (Affymetrix).

2.1.8. First round RNA amplification

Materials for the first round of amplification were provided in the RiboAmp^ 

OA 1 round RNA amplification kit (Arcturus).

First round first strand cDNA synthesis

Single strand cDNA was synthesised using an oligonucleotide that 

incorporated the T7 promoter at the 3’ end of mRNA of 10pl total RNA-controi 

spike mixture. 1ng (in 1pl volume) of the following primer was added: 

[AAACGACGGCCAGT GAATT GT AATACGACT CACT ATAGGCGC(T)24]



The mixture was heated at 65°C for 5 minutes to reduce secondary structure 

formation and the primer was left to anneal at 4°C for at least 1 minute.

Reverse transcriptase (buffer and reverse transcriptase premixes were 

included in the kit) reaction mixture was prepared and 9pl was added to the 

RNA template. RT-reaction at 42°C for 45 minutes was performed on a MJ 

Research thermal cycler. For amplification qualitative studies 2pl were 

removed. RNA was degraded by adding 2pl of provided RNAse mixture, 

incubating at 37°C for 20 minutes and terminating the reaction by 95°C 

treatment for 5 minutes.

First round Second strand synthesis

Second strand cDNA was synthesised by adding 1pl of random primers, 

incubating at 95°C for 2 minutes and chilling at 4°C for at least 2 minutes. 

Second strand reaction mixture provided, contained premixed Second-Strand 

Reaction Buffer, BSA (1 mg/ml), DNA Polymerase I, RNase H, E. coli DNA 

ligase and ATP. 30pl were added to first stand cDNA reaction and incubated 

at 25°C for 5 minutes, 37°C for 10 minutes and 70°C for 5 minutes. Double 

stranded cDNA was then purified by cDNA affinity column purification 

methods using the mini columns provided. Double stranded cDNA was eluted 

in 11pl of pure nuclease-free water (Sigma).

In vitro transcription (IVT)

IVT reaction components (T7 RNA polymerase IVT buffer containing RNase 

inhibitor and DTT) were provided in the kit. All reaction components, apart
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from T7 RNA polymerase, were brought to room temperature. T7 polymerase 

was added and 1.12pl reaction mixture were added to the double-stranded 

cDNA template and mixed. IVT was performed at 42°C for 3 hours in the MJ 

thermocycler, flicking and centrifuging tubes, once in the first half hour and 

then twice after one hour. Then reactions were brought to 4°C and left to react 

overnight. Remaining cDNA template was digested with 1pl DNAse I mix 

(provided in the kit) for 15 minutes at 37°C.

Amplified RNA (aRNA) generated from the IVT was purified using affinity 

column purification and eluted with 12pl nuclease free water (Sigma).

2.1.9. Second round amplification

For second round first strand cDNA synthesis the same method was used up 

to the purified double stranded cDNA stage (section 1.8) The modifications 

were that a) random primers primed the first strand synthesis and the T7-poly 

d (T) primer primed the second strand synthesis and that b) no nuclease 

digestion was performed at the end of the 1st strand synthesis. 2 pi pure 

double stranded cDNA were removed for semi quantitative RT-PCR studies 

for the purposes of validating array sensitivity.

IVT labeling reaction.

For second round amplification and labeling, the ENZO Bioarray™ High 

Yield™ RNA transcript Labelling kit was used. The following components
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were mixed with the double-stranded cDNA of the second round second 

strand synthesis (containing the T7 promoter). All the product of the first 

strand synthesis after removal of 2pl i.e. 10pl was used for the IVT labeling 

reaction:

10ul purified cDNA

12ul DEPCH20

4ul 10x Hy reaction Buffer

4ul 10x Biotin Labeled Ribonucleotides

4ul 10x DTT

4ul 10x RNase Inhibitor mix 

2ul 20x T7 RNA polymerase

IVT labeling reaction was performed on a wet bench-top tube heating block at 

37°C for 5 hours, flicking the tubes and briefly centrifuging, every half hour, to 

remix components.

cRNA generated from IVT labelling reaction was purified using RNeasy RNA 

Purification Mini kit (Qiagen) and using the RNA Cleanup Protocol according 

to manufacturer’s instructions. 1pl of pure cRNA was assayed for purity and 

quantity by nanodrop machine using electric conduction to supply 

concentration and 260/280 ratios. 1 pi was used for capillary electrophoresis to 

assay for cRNA integrity. All samples were diluted to a concentration of 1 pg/pl 

with nuclease free water prior to fragmentation. 20pg of cRNA were used for 

fragmentation. The rest were kept in -80°C.
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2.1.10. Fragmentation of cRNA.

Fragmentation was performed using the affymetrix fragmentation kit. The following 

components were mixed: 20pg in 20pl o f pure water, 20pg biotin labelled cRNA 

(final concentration 0.5 pg/pl), 8pl 5x fragmentation buffer (200mM Tris-Acetate, pH 

8.1, 500mM potassium acetate, 150mM magnesium acetate) and DEPC H 20 to 

make the final volume to 40pl. The reaction mixture was incubated at 94°C for 35 

minutes in an MJ bench top thermocycler. Reaction was terminated at 4°C.

2.1.11. GeneChip Hybridisation.

All components were provided by Affymetrix hybridisation kit. The following 

components were mixed to prepare the hybridisation cocktail, with DEPC H20 

added to a final volume of 300pl.
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Component Volume Final

concentration

Fragmented cRNA15jag, 30pl 0.05fag/^il

Control Biotin labelled oligo B2, 3nM, 5pl 50pM

20x Eukaryotic Hybridisation spike controls 15pl

bioB 1.5pM

bioC 5pM

BioD 25pM

Cre (Affymetrix) 100pM

Herring Sperm DNA (10mg/ml blocking reagent) 3pl 0.1 mg/ml

Acetylated BSA (50mg/ml blocking reagent) 3pl 0.5mg/ml

2x Hybridisation Buffer 150pl

Final 1X concentration of hybridisation buffer was 100mM MES {12X stock: 

70.4g MES free-acid monohydrate, 193.3g MES sodium Salt/L pH 6.6}, 1M 

[Na+], 20mM EDTA, 0.01% Tween 20.

The reaction mixture was denatured at 99°C for 5 minutes prior to applying to 

the GeneChip.

Hybridisation Conditions

Mouse 430_2 GeneChip (Affymetrix) was prehybridised using 200pl 1X 

hybridisation buffer (see above) at 45°C for 10 minutes at 60rpm. 200pl 

denatured Hybridisation cocktail was applied to the chip. The GeneChip was



hybridised for 16 hour at 45°C and 60rpm in a GeneChip Hybridisation Oven 

640.

Washing and Staining of the GeneChip

The following wash and staining steps were carried out using an automated 

process using the GeneChip Fluidics Station 400:

• Post Hybridisation wash #1:10 cycles of 2 mixes/ cycle with wash 

buffer A at 25°C - non-stringent (6xSSPE, 0.01% Tween 20)

• Post Hybridisation wash #2: 4 cycles of 15 mixes/ cycle with wash 

buffer B at 50°C -stringent (100mM MES, 0.1 M [Na+], 0.01% Tween 

20)

• 1st Stain: 10 minutes at 25°C (SAPE Stain: 300jal 2x MES stain buffer 

{41.7ml 12x MES, 92.5ml 5M NaCI, 2.5ml 10% Tween 20/ 250ml total 

volume in DEPC H20}, 24pl 50mg/ml acetylated BSA, 6pl 1 mg/ml 

Streptavidin-R-Phycoerythrin conjugate, 270pl DEPC H20, 600pl total 

volume.

• Post Stain Wash: 10 cycles of 4 mixes/cycle with wash buffer A at 25°C

• 2nd Stain: 10 minutes at 25°C (Antibody Stain: 300pl 2x MES stain 

buffer {see above}, 24pl 50 mg/ml acetylated BSA, 6pl 10mg/ml normal 

goat IgG, 3.6pl 0.5mg/ml biotinylated anti-streptavidin antibody, 266.4pl 

DEPC H20, 600|il total volume.

• 3rd Stain: 10 minutes at 25°C (SAPE stain: see above, 600pl total 

volume).
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• Final Wash: 15 cycles of 4 mixes/cycle with wash buffer A at 30°C.

The GeneChip was filled with wash buffer A ready for the scanning procedure. 

Scanning of GeneChips

GeneChips were scanned using an Affymetrix®. GeneChip®. Scanner 3000 

system.

• 2x scans were conducted using the following settings: pixel value = 3pm, 

wavelength = 570nm

• Absolute and comparison analysis were conducted using the following 

settings for scaling: All Probe Sets: Target Signal = 500, Normalisation: 

Scale Factor = 1

2.1.12. Reverse transcription.

Superscript™ III First-Strand Synthesis System (Invitrogen) was used with for 

reverse transcription of total RNA templates. All reaction components are 

included in the Superscript™ III First-Strand Synthesis System kit 

(Invitrogen). DNA thermal Cycler 9600 was used for all reactions.

First-Strand cDNA Synthesis

1pg-5pg total RNA was converted into first-strand cDNA. All reaction 

components were mixed and briefly centrifuged before use. The following 

components were combined in a 0.2 or 0.5-ml RNAse free tube: total RNA of
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up to 5 pg total RNA in a desired volume, 2.5 pM of oligo(dT)20, 1 pi of 

10mM dNTP mix and made up to a final volume of 10pl with DEPC-treated 

water. The mixture was incubated at 65°C for 5 minutes, and then placed on 

ice for at least 1 minute.

The following cDNA Synthesis Mix was prepared, adding each component per 

reaction in the indicated order: 2pl 10XRT buffer, 4pl 25mM MgCh, 2pl 0.1 M 

DTT, 1pl RNaseOUT. (40U/pl) and 1pl Superscript. Ill RT (200U/pl). Then 10 

pi cDNA Synthesis mix was added to each RNA/primer mixture

Reverse transcription reaction was incubated for 50 minutes at 50°C and 

terminated at 85°C for 5 minutes. Reaction tubes were then chilled on ice.

RNA was digested by adding 1pl RNase H (premixed) to each tube and 

incubating for 20 minutes at 37°C. First strand cDNA was stored at -20°C or 

used for PCR immediately.

2.1.13. Semiquantitative real time PCR.

Semiquantitative PCR (Q-PCR) reactions were carried out in 96 well optical 

reaction plates using cDNA that was generated from the same amount of total 

RNA, with the same RT protocol. 2pl of second round second strand double 

stranded cDNA (which at this stage has the T7 promoter incorporated) was 

used. The three repetitions of each SQ-RT PCR reaction came from the 3 

independent repetitions of the array, i.e. from 3 different 12week old C57BL6



male mice. Each of the 2pl was diluted 10, 100, 1000 and 10.000 times to 

create 5 respective samples.

For Q-PCR reactions, the SYBR Green JumpStart Taq ReadyMix was used. 

Reaction mixtures contained: 20mM Tris-HCI (pH 8.3), 100mM KCI, 7mM 

MgCI2, 0.4mM each dNTP (dATP, dCTP, dGTP, TTP), 0.05unit/pl Taq 

DNAPolymerase, JumpStart Taq antibody, and SYBR Green I. All reactions 

were performed in 50pl reaction volumes that contained 1XSYBR Green 

JumpStart Taq ReadyMix, 1X internal reference dye, 400nM each of plasmid- 

specific primers, and various concentrations of template DNA.

Amplification of GAPDH mRNA was performed as the internal control gene. 

Target and control GAPDH gene forward and reverse primers were designed 

to amplify a 365bp gene fragment and spanned introns. These are listed in 

appendix A.

The PCR was initiated with a 1-minute denaturation step at 95°C. Initial 

denaturation was followed by 40 cycles at 95°C for 15 seconds, 1-minute 

annealing at 60°C, and 1-minute extension at 72°C. Cycling was followed by a 

4°C hold. The PCR assay was performed using the ABI Prism 7700 

Sequence detector (Applied Biosystems) and ABI Prism 7700 software. The 

threshold cycles (Ct) were calculated using ABI Prism 7700 Software (Applied 

Biosystems). Normalisation was performed against GAPDH using the using 

the Comparative cycle threshold (Ct) Method, using the following equation:

Relative Expression = 2 ct (GAPDH)- ct (Tar9et)j where Ct is the cycle threshold.



While this method includes a correction for non-ideal amplification efficiencies 

(i.e., not 1; Reference 21), the amplification kinetics of the target gene and 

reference gene assays must be approximately the same. To validate that the 

amplification efficiencies were similar the slope of the plot of log cDNA dilution 

versus ACT was calculated and the reaction efficiencies were considered 

similar if the slope was less than 0.1 (Livak & Schmittgen, 2001).

Five pi of reaction end products were run on a 2% agarose gel to ensure 

reaction specificity.

2.2. Immunohistocytochemistry methods

2.2.1. Wax-embedding of corneal tissue.

Comeal excision

For all mammals, apart from rattus and mus muscuius species, the corneas 

were excised by scoring the sclera 2mm away from the cornea with a clean 

scalpel, two to three hours after the sacrificing. Eyes were transported on ice. 

For the rattus and mus species, the front half of the eye was dissected by 

scalpel under a dissection microscope, after it had been enucleated and 

directly transferred on chilled PBS pH 7.4 (phosphate buffered formalin). All 

corneas used were examined to ensure the absence of scars or wounds.

Fixation

Mouse, rat, porcine, bovine and rabbit eyes corneas were dissected, human 

corneas were donated from the National Eye Bank (Bristol) and also were



fixed in 10%NBF (neutral buffered saline) and embedded in paraffin wax. The 

corneas were dehydrated by immersion in 50% v/v ethanol/HLO for 30 

minutes, 70% ethanol for 60 minutes, 90% overnight and finally in 100% for 

60 minutes.

Paraffin Embedding

Samples were fixed in 50/50 alcohol-chloroform solution for 30 minutes, 100% 

chloroform for 30 minutes and 100% fresh warm chloroform 30 minutes. The 

samples were transferred to a bottle of molten paraffin wax (60°C) and placed 

in a 60°C incubator for one hour. Wax was refreshed and samples were 

incubated for a further 30 minutes. Then, by using a clean pair of forceps, the 

corneas were taken out of the wax bottles and placed in moulds half-filled with 

wax, topped up with more paraffin wax, and then left to start solidifying on a 

cold plate. After approximately 30 minutes, the blocks were placed in a 

refrigerator at 4°C.

Wax sectioning

Sections of 7pm were taken from all the wax embedded corneas and stored in 

paper trays. Adjacent sections were floated on cold water, then transferred to 

a 40-45°C water bath containing 1/50 v/v Mayers albumin. The straightened 

sections were laid side by side on Histobond0 RA positively charged glass 

slides (LAMB, UK). The slides were than placed on a hot plate at 60°C for 30 

minutes before they were transferred to a 60°C oven overnight, in order to 

allow the tissue to dry and adhere on the glass slide.
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2.2.2. Preparation of Frozen Sections

One human, two pig and two bovine fresh corneas and three albino rat eyes 

were cryo-fixed in a container of isopentane that was submerged in liquid 

nitrogen. Then the frozen corneas were placed in moulds that were filled with 

OCT embedding medium and the blocks were frozen in liquid nitrogen, and 

subsequently stored at - 20°C.

Sectioning of frozen corneas.

Eight pm thick sections were obtained by using a cryostat at -18°C. Sections 

were transferred to Superfrost Plus® glass slides (Mayer-Clase) and left to air 

dry for six hours. Then the slides were used for staining according to the 

following protocol. Sections were transferred to acetone (Sigma) for 10 

minutes. Sections were air-dried and, at room temperature, washed in 1xPBS 

for 5 minutes and placed in a humidified chamber.

2.2.3. Immunostaining Procedure

Antibodies that were used are listed in appendix D. Bis-benzimide (Hoechst) 

was used as a counter-stain. Negative controls were used for each antibody.

Wax sections were fixed in xylene (BDH) for 5minutes, transferred to fresh 

xylene for a further 5minutes, then transferred to two changes of 100% 

ethanol (BDH) for 1 minute, 1 minute in 90% ethanol (v/v), 1 minute in 70%
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ethanol (v/v) and 1 minute in 50% ethanol (v/v) before rinsing in running water 

for 10 minute. Finally sections were immersed in 1x PBS for 10 minutes. At 

this point the previously air-dried frozen sections were subjected to the same 

procedures as the wax sections.

Proteinase K (20pg/ml) digestion followed for 20 minutes. For intracellular 

protein immunoreactions sections were treated with 0.2% Triton-X 100 

(Sigma) for ten minutes followed by 3 washes of 1xPBS (3 minutes each) only 

in cases that no blocking was used. For blocking and background reduction, a 

solution of 5% normal serum (from secondary antibody host species) 5% BSA 

(bovine serum albumin) in PBS was applied for 30 minutes. Sections were 

then circled using a paraffin pen. Primary antibodies, diluted in PBS, were 

deposited on separate sections. Appendix B lists the antibodies and their 

concentrations that were used for this study. For control sections either 

1xPBS or the appropriate control IgG type was used. The antibodies were left 

to probe the tissue overnight in the hermetically closed humidity chamber. 

Then the sections were washed three times in 1xPBS for 3 minutes. The 

secondary FITC conjugated anti-mouse-Fc-fragment antibody or donkey anti

goat AlexaFluor 488 (Molecular Probes) was applied (after making sure that 

no droplets were left on the tissue from the previous PBS wash) on the 

sections at a 1/320 or 1 in 1000 dilution. Sections were incubated for 2 hours. 

The slides were washed three times in 1x PBS for 3 minutes in order to 

remove any unbound secondary antibody.
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Counter-staining and mounting

Bis-benzimide (Hoechst 33345) was diluted in water-soluble Hydromount 

(BDH) at 2pg/ml concentration. Sections were mounted in the Hydromount 

and wrapped in foil to prevent bleaching.

Imaging

Images of immunostained sections were acquired using a Leica DM RAZ 

microscope integrated with a Leica DC500 digital camera using Leica QFIuoro 

software. For all the sections images using a FITC (excitation wavelength 

590nm, emission wavelength 520nm) filter and a DAPI filter (excitation 

372nm, emission 456nm) were captured.

2.3 Tissue source of microarray and Semiquantitative RT-PCR studies.

Three male, C57BL6 mice that were kept in different cages under the same 

diet plan and the same light conditions for 3 weeks in the animal house were 

sacrificed at 12 weeks of age in order to obtain their corneas for Microarray 

analysis and subsequent semiquantitative RT-PCR studies.
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Chapter 3

Method Development:

Optimisation of laser-assisted cell microdissection 
and RNA linear amplification techniques.

I l l



3.1 In vivo Gene Expression analysis methods.

Defining genes differentially regulated in cell populations enriched either for 

stem, transient-amplifying or differentiated epithelial cells initially required a 

reliable method which permits accurate isolation of cells from histological 

sections whilst preserving RNA integrity. Additionally, selection of specific 

cells imposed limitations on the number of cells that were to be isolated. To 

overcome such limitations and acquire enough labelled cRNA for high density 

oligo-array analysis, a robust linear RNA amplification protocol was 

developed.

The development of methods related to the isolation of specific cells as well 

as the identification of linear amplification is presented in the “laser assisted 

microdissection methods” and “linear amplification” parts of this chapter.

3.1.2 Laser Assisted Microdissection Methods 

3.1.2.1 Aims

The aim was to identify the most appropriate method of isolating single cells 

from histological sections with high RNA recovery and minimal impact on RNA 

integrity.
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3.1.2.2. Introduction

There are several methods of isolating cells from a histological section. The 

criteria for the suitability of the method of selection were that:

a) It would not require preparatory sample treatments that are deleterious to 

RNA integrity and quantity or may contaminate RNA with chemicals 

affecting PCR and reverse transcription reactions,

b) The method itself would not inflict damage on the RNA molecules to the 

extent that would prevent RNA amplification,

c) The technique should isolate single cells or a small number of cells in order

to distinguish between epithelial layers with minimal to no contamination 

by unwanted cells

d) Since the method is intended for single cell isolation, the RNA damage 

needs to be assessed for single cell resolution

There are two microdissection methods that are suitable for functional 

microgenomic applications, both are laser-assisted: laser capture

microdissection (LCM) and laser microdissection and pressure catapulting 

(LMPC). This study compared the two methods with respect to the damage 

each technique inflicted on mRNA. As an indication of damage, a 3’-5’ RT- 

PCR assay was developed in which the ratio of 3’ to 5’ end of a selected gene 

was determined by semi-quantitative RT- PCR.
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The first demonstration of laser microdissection of cells for expression 

analysis came from studies of Eberwine on single microdissected neurons 

(Eberwine et al. 1992). Both methods have been used successfully in recent 

years (for LCM: Kobayashi et al. 2004; Glanzer and Eberwine 2004; Fukui et 

al. 2005 Barrier et al. 2005, for LMPC: Miyoshi et al 2005) bringing forward for 

the first time the possibility to focus gene expression profiling to the specific 

cell types of interest, opening the way for functional microgenomic analysis of 

cells. They allow researchers to shed light to the specific function of a cell type 

in a particular tissue and the signalling pathways used by cells to a single cell 

resolution. This gave a new and deeper understanding of how cells function 

and are organised into tissues as well as to the strategies of tissue 

homeostasis and repair (Luo et al. 1990) and gave a better understanding of 

cancer development (Leethankul et al. 2000; Alevizos et al. 2001; Luzzi et al. 

2001).

Both microdissection techniques utilise lasers. In order to use cells, that have 

been previously microdissected by laser, for gene expression analysis it is 

important to select a method that will impose minimal damage to the RNA 

inflicted by the lasers. Such a method should deliver minimal heat transfer to 

the RNA molecules either by utilising lasers at wavelengths that are not the 

absorbtion maxima of RNA or in some other way. There is a plethora of 

studies analysing the effect of lasers on cells. Figure 3.1 reviews and 

condenses all of the known effects of UV wavelengths on cells and 

macromolecules according to absorption maxima (a) or relative response per 

photon (b). The UV spans a large region of the spectrum. It is arbitrarily



divided into three regions, which are UV-C (200-290 nm), UV-B (290-320 nm) 

and UV-A (320-400 nm). Of these, only UV-C is known to cause mutations, as 

nucleic acids and proteins are maximally excited at the UV-C as we can see in 

Fig. 3.1a.
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Figure 3. 1a) Absorption maxima of nucleic acids and proteins within the 200-290 nm 

(UV-C) and b) the effects of wavelength on cells presented as relative response per 

photon (proportional to thermal energy absorbed by molecular bonds) note that at 

around 337nm the relative response per photon count is minimal levels 3, adapted from 

Lasers in Medicine, Ed.: R. W. Waynant, CRC Press, 2002

3.1.2.3. Laser Capture Microdissection

This method makes use of an inverted microscope, fitted with a near-infrared 

laser. Histological tissue sections are mounted on standard glass slides. A 

cap, fitted with a transparent, 100-pm-thick, ethylene-vinyl acetate film, is 

then placed over the section (see Figure 3.2). A very low energy guide beam
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is used to select a location on the tissue section. Then a laser is fired which 

provides enough energy to transiently melt the thermoplastic film in the 

selected location, binding it to the targeted cells.

Figure 3. 2 LCM process: a visible laser assists in targeting of the cell (a). A higher 

energy laser beam is fired for milliseconds (b) causing the ethylene vinyl acetate 

membrane to melt and curve at the site of firing (c), attaching to the cell(s) of interest

(d).

The laser diameter can be adjusted from 7.5 to 30pm so that individual cells 

or a cluster of cells can be selected. Although the plastic film absorbs most of 

the thermal energy and the pulse lasts for a fraction of a second, hence some 

damage to biological macromolecules is expected to occur.

3.1.2.4. Laser Microdissection Pressure Catapulting.

This technique utilises an inverted microscope equipped with a guided 337nm 

nitrogen laser. A laser micro-beam precisely circumcises a selected area from 

1/100th to 100 pm diameter, spanning from chromosomes to large tissue 

areas with a clearly cut gap between selected and non-selected areas (Fig. 

3.3a and b. In addition, unwanted cells can be selectively destroyed with a few 

laser shots to achieve entirely homogeneous samples. The driving force of the 

catapulting of cells is the expansion of microplasma induced by the laser. The
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process is performed with a pulsed nitrogen laser and not an infrared laser, 

therefore heat formation during the ablation process is minimised and there is 

no heating of the selected sample or of the adjacent material. Hence, the 

biological information of the selected specimen and the neighbouring material 

remains unimpaired.

Figure 3. 3 a) The inverted microscope laser platformb) specimens are catapulted in 

microcentrifuge caps c) example of microplasma at the focal point of the LCM pulse 

picture taken by Dr. A. Vogel, Medical Laser Laboratory Lobeck, Germany.

3.1.2.5. Determination of the least destructive cell isolation technique

The two methods were evaluated with respect to the damage that each 

inflicted on mRNA. As an indication of the damage, a 3’-5’ RT-PCR assay was 

developed in which the ratio of 3’ to 5’ end of a selected gene was determined 

by semi-quantitative RT- PCR. The method is described in detail in section

3.1.3.3.

M l
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3.1.3. Materials and methods.

3.1.3.1. Tissue source and processing

Three mouse corneas were dissected from eyes of different 6-9 week old 

male C57BLC mice. Each cornea was treated with RNALater (Ambion) at 

4°C, overnight then snap-frozen and embedded in OCT (Lamb) and then 

stored at '80°C until sectioned. 7pm sections were collected on either 

Superfrost or plain glass slides (LAMB) at -20°C, using a Leica cryotome. 

Sections were then dehydrated in 70% ice cold ethanol for one minute and 

stored at -80°C until further use.

On the day of cell isolation, sections were transferred on dry ice or in liquid 

nitrogen and were only removed from the coolant when they were to be 

processed. On every occasion, sections were processed one at a time. To 

process, the tissues were removed from liquid nitrogen, placed in 70% ice- 

cold ethanol for 10 seconds then stained with 0.1% cresyl violet acetate (in 

50% ethanol) for another 30 seconds. Next sections were briefly dipped in 

nuclease free molecular biology grade water and dehydrated again in 50%, 

then 70% ethanol for 30 seconds each, followed by two one-minute washes in 

100% ethanol. They were left for one minute to dry before microdissection.

For LCM, an additional protocol was used in which an end step was added, 

which involved two more washes with 100% xylene, each lasting one minute, 

to make the tissue more brittle.



3.1.3.2. Laser Assisted Microdissection.

To address the effectiveness of both microdissection methods, a thousand 

cells were isolated as single cells or as 20 cell tissue fragments by LCM and 

LMPC. For LCM, the Arcturus PixCell lie LCM Instrument was used and 

“Laser Microdissection and Pressure Catapulting” was performed on a PALM 

microlaser platform. In both systems, there is a high resolution digital camera 

coupled and integrated with a software interface for capturing images.

3.1.3.2.i. Laser Capture Microdissection (LCM)

For this procedure only Superfrost slides were used to avoid undesirable 

tissue detachment. After the tissue was prepared, it was flattened gently using 

Arcturus strips so that there are no anomalies before the thermoplastic cap 

was placed on top. Histological slides were placed under the Arcturus 

microscope and the desired area was focussed. Then, the desired laser 

diameter, power (mW) and duration of the pulse were selected from the 

system interface. Under direct visualisation, a few test shots in an area of the



plastic that is not above the tissue section were fired in order to confirm that 

the desired surface area of the thermoplastic cover was activated with the 

minimal laser power and duration. This varied between sections depending on 

the shape of the section. The power and time of the laser beam pulse were 

usually set on 40mW and 30msec achieving a 15pm diameter indentation.

3.1.3.2.ii. Laser Pressure Catapulting (LMPC)

For this procedure only plain glass slides were used to facilitate cell 

catapulting with the minor laser power. Following tissue preparation, the slides 

were placed under the microscope of the PALM platform. First an area of no 

interest was located in the tissue. Using the setting called “close-cut” in the 

user interphase, the laser was programmed to cut a 0.1pm path at an 

indicated position. The laser focus and power were tested for cutting. Then, 

for the catapulting pulse, the laser focus and power was also tested and 

adjusted. Following testing, areas of interest were located and focussed. 

Using the user interface the areas of interest were highlighted and assigned a 

number. Then a standard 0.5ml PCR tube cap, which contained a 10pl droplet 

of PCR grade mineral oil (sigma) in the centre, was placed directly above the 

section by an automated arm. After laser activation, the desired area was 

isolated and the user was prompted to change the cap for the next area of 

interest, having to reactivate the laser. The laser settings for focus and power 

were given from the interface in a 1-100 scale bar. The focus varied between 

sections due to variations in slide thickness (even a 0.1pm deviation needed 

to be adjusted for). The power of the laser never exceeded 65% of the total 

laser power.



Directly after each laser session, isolation caps were placed on their 

corresponding tubes. Tubes were labeled and placed in liquid nitrogen and 

subsequently stored at -80°C for no more than a week, until they were 

subjected to RNA isolation.

3.1.3.2.iii. Image Capture

Pictures of the areas of the tissue before and after the cells were isolated 

were taken with a high resolution digital camera coupled with the inverted 

microscopes to document each cell sample. Successful and unsuccessful 

isolations were counted on the basis of acquired cells in the cap, in order to 

assess the success rate of each type and method of isolation.

3.1.3.3. RNA isolation and 375’ PCR amplification assay.

Control RNA from three fresh whole mouse corneas and total RNA from 

microdissected cells was isolated using the Rneasy mini kit (Qiagen). Total 

RNA samples from the three fresh corneas, as well as from three independent 

cell pools isolated by LCM and LPC, were reverse transcribed using 

recombinant reverse transcriptase Superscript III (Invitrogen) as described in 

section 2.1.3. and 2.1.12. The total volume of reaction was 50pl.

Then 1pl of each cDNA from each of the three control and each experimental 

samples was subjected to PCR amplification of the 3’ and the 5’ end of



GAPDH. In order to amplify a 150bp fragment of the 3’ and the 5’ end, the 

following respective primers sets were used:

3’end region 5’end region

Forward T CTCC ATTGGTGGT G AAG AC A GCCTCTCTTGCTCAGTGTCC 

Reverse ACTCCACTCACGGCAAATTC TGCG ACTT C AAC AGC AACT C

Table 1. GAPDH primers used for the 3’-5’ assay.

Control cDNA samples were diluted 104 times, prior to PCR, to prevent 

subsequent saturation of the gel bands after PCR. PCR products were run on 

a 1.2% agarose gel stained with 0.01 ethidium bromide and photographed 

under UV using a gel-doc system, as described in section 2.1.4. Gel band 

intensities were calculated by Image J software available from the NIH 

website, www.nih.aov. The relative degradation (%) of mRNA was calculated 

using the following equation:

3prime intensity of Positive Control 

5prime intensity of Positive Control

3prime intensity of Experimental 

5prime intensity of Experimental

= C

= E

% Degradation =
C-E

X 100
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3.1.4. Results

3.1.4.1. Minimum amount of cells that could be isolated by LCM 

were 5-10, w h ils t by LMPC single cells were reproducib ly isolated.

Pictures of the areas that cells were isolated from are presented in the 

following figure (Fig. 3.4) depicting a typical result of a cell isolation by each 

method.

Before After

/

Figure 3. 4 Corneal epithelial tissue sections before and after microdissection. Single 

cells isolated by LMPC (A). Tissue isolated by LCM: 5-10 cells (B) and 100 cells (C).
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LCM

It was observed that LCM success rate improved dramatically by the addition 

of the end step involving the xylene wash (Table 3.1). For sections that were 

not treated with xylene, usually the whole tissue section would detach when 

the LCM cap was removed. Even when xylene was used, single cells could 

not be isolated. The least amount of cells that could be isolated by LCM was 

5-10. As the success rate for LCM was very low, only samples of cells that 

were isolated 20 by 20 were used for RNA extraction.

LMPC

This technique had a 100% success rate in cell isolation independent of the 

number of cells to be isolated with a single laser pulse. (Table 3.1)

Table 3.2 summarises the success rate of each type and method of cell 

isolation

Number of cells % Success Rates for 100 isolations.

LCM no xylene LCM xylene LMPC

1 0 0 100

20 10 32 100

Table 3.2 Success rates of different cell isolation methods. Successful were counted as 

the isolations where only the desired cells were clearly isolated in the cap.
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3.1.4.2. LMPC microdissection imposes significantly less degradation 

than LCM as confirmed by 3’-5’ ratio analysis of GAPDH.

The percent (%) relative degradation of GAPDH mRNA transcripts, measured 

for each isolation was used in order to assess the order of damage to RNA by 

each technique. Using this measure, it can be observed that LCM imposed 

more than six times degradation on GAPDH mRNA transcripts than LMPC as 

seen in Fig. 3.5A (see red and yellow columns). When cells were isolated in 

tissue fragments containing 20 cells each (20 at a time) by both techniques 

only 2.2% more mRNA transcripts were not full length for cells isolated by 

LMPC in comparison with fresh cells. In the case of LCM % relative 

degradation was 13.8% (see Fig. 3.5A).

This means that in LCM degradation of RNA is higher than that inflicted by 

LMPC when a comparable surface area is isolated.
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As can be seen in Fig. 3.5a, even when single cells were isolated, 

approximately 3% of the mRNA is not full length transcript. That is not to say 

that from this 3% no information would be detectable by microarrays, since 

Affymetrix arrays calculate the signal from probe sets that correspond usually 

to 3’ end areas of transcripts.

percentage of relative degradation of mRNA 
imposed by laser microdissection

LPC 1 by 1

LPC 20 by 
20
LCM 20 by 
20

Control LPC 20 LPC 1 LCM 20 
cells cell cells

Figure 3. 5 a) Percentage of relative 5’ degradation compared to control total RNA. 

LPC allowed for isolation of cells with intact total RNA showing a 3.3% (± 0.4) relative 

degradation for single cells. This degradation was less then LCM, which demonstrated 

13.8% (± 0.9) for cells isolated 20 by 20, as confirmed by 375’ amplification, a) Gel 

electrophoresis of 3’-5’ GAPDH PCR following isolation of cells using different 

techniques.
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3.1.5. Discussion

3.1.5.1. The method prevented RNA degradation due to Rnases as well 

as chemical modification of RNA.

RNA degradation may occur due to Rnase digestion or by extreme local free 

energy that could arise with radiation or heat. External RNases were avoided 

by using solutions and apparatae that were Rnase free or that RNases have 

been blocked by treatment with di-ethyl pyro-carbonate (DEPC). As far as 

internal Rnases are concerned, the factors that would limit Rnase activity are 

temperature, presence of inhibitors and water. Internal RNases were 

controlled by using a Zn++- based fixative, reducing the time that the tissue is 

hydrated as well as keeping the temperature very low ideally throughout the 

complete processing time. When tissue is dehydrated Rnase activity is 

significantly limited. Also by reducing the free energy of the environment, the 

enzymatic reaction rates are reduced. RNases have extremely low activity at - 

80°C, although they do possess activity at temperatures above -50°C. 

Nevertheless reaction rates are so low that weeks are needed until RNA 

degradation is detectable. There are several Rnase inhibitors. In most of the 

cases they are not recommended when RNA is to be used in PCR-RT-PCR 

reactions because carryover amounts can be deleterious to such reactions. 

The best solution for blocking internal RNases is a Zn++ solution. The 

commercial name of such a solution is RNALatet® (Arcturus, UK) which 

protects RNA in the tissue for a week at room temperature and indefinitely at - 

20°C. When tissue is removed from the solution it is protected for a further 10 

minutes.



To avoid any degradation of RNA due to internal RNases, the staining and 

tissue preparation protocols were designed to keep the tissue dehydrated as 

much as possible. Some chemicals used as fixatives or dyes in traditional 

histology protocols have a devastating effect on the RNA due to chemical 

modification of RNA species. RT-PCR reactions can be impaired as a result of 

carryover formalin (Masuda 1999). It has been observed that RNA becomes 

resistant to extraction (Finke 1993) probably due to cross-linking with proteins 

(Park 1996). Thus traditional protocols were not recommended for use in 

microdissection with regards of gene expression profiling (in situ hybridisation 

can be performed with success using formalin fixed tissue). That does not 

come as a surprise, since during in situ hybridisation, the only reaction that 

takes place involving the tissue is the hybridisation itself. Degradation of 

mRNA in that case can also be beneficial since it can reduce mRNA 

secondary structure formation. In the protocol that was developed and used 

tissues were immersed in RNA later, then cryo-fixed, embedded and stored at 

-80°C to minimise RNA degradation.

Determining a suitable histological stain in order to easily isolate cells was 

also of concern. One could argue that haematoxylin/eosin staining does not 

interfere with DNA or RNA preparation and it is one of the most routinely used 

histological procedures. However for staining and distaining the tissue 

effectively from haematoxylin itself, more than one minute should be given in 

water or blueing solution, increasing the time that the tissue remains hydrated.
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On the other hand, cresyl violet acetate can be dissolved in ethanol and it is a 

basic dye that stains nucleic acids. The name is 9-Amino-5-imino-5H- 

benzo(a)phenoxazine acetate salt the molecular formula is:

Figure 3. 6 9-Amino-5-imino-5H-benzo(a)phenoxazine acetate salt (Cresyl violet 

acetate).

It is soluble in ethanol as well as water and therefore allows for tissue staining 

and distaining to be performed in 50%ethanol instead of pure water, thus 

maintaining tissue in dehydrated state. Staining and distaining takes less than 

30 seconds and therefore cresyl violet acetate was the preferred stain prior to 

microdissection of cells that were to be analysed for gene expression profiling.

3.1.5.2. LMPC proved ideal for expression profiling and had less an 

effect on RNA integrity than LCM

RNA degradation due to UV light was reduced greatly by using a Laser 

pressure catapult microdissection system.
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A microplasma is a state of matter consisting of free electrons, ions and other 

species created when molecular bonds are broken because the sum of 

photon energy is equal to or greater than the energy of molecular bonds. This 

becomes more probable in the focus of the laser beam because multiple 

photons interact with the molecular bonds of biomolecules providing energy to 

bonds exceeding 3.6 eV. Therefore the microplasma is created only in the 

focus of the laser beam which is far less then micrometers in diameter.

The plasma has a tremendously high expanding velocity and it is created, 

expanded and collapsed in nanoseconds. The plasma expansion is the 

driving force for the catapulting process. The time for heat transformation to 

the boundaries of the cutting path is much too short which eliminates any 

chances of heat transfer outside the area of the microplasma so any 

unwanted degradation of biomolecules is prevented. This was reflected in the 

results of 375’ ratios identified following cell isolation by the two methods.

LMPC imposed far less degradation on RNA then LCM. It was also observed 

that the size of the isolated region in LMPC had a very limited effect on the 

overall quality of the resulting RNA. Even when single cells were isolated, the 

effect of the laser had no significant catastrophic effect on RNA integrity. 

Moreover it facilitated a more accurate selection of cells because of the small 

thickness of the target beam.

The results suggest that mRNA from cells isolated by LMPC and LCM is 

highly suitable for Affymetrix array analysis, since the manufacturer
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recommends that a 375’ ratio of 1.5-2 (25-50%) is adequate. Nevertheless, 

because more downstream reaction steps such as amplification and labelling 

are going to impose their own effect on the final cRNA transcripts prior to 

fragmentation and loading, the less degraded the RNA is in the beginning, the 

better the quality and reliability of the array results will be. The results 

therefore indicated that LMPC is the “safest” choice when it comes to gene 

expression profiling

LMPC also eliminated the need for non-transfer controls which were essential 

for the LCM since the membrane is in direct contact with the tissue and can 

result in isolation of unwanted cells. As it is stated in the results section 

usually during LCM complete tissue section or large areas would be lifted with 

the LCM cap necessitates such controls.

3.1.5.3. Conclusion

LMPC has proved to be the most reliable method for laser microdissection of 

cells from histological sections, regarding the use of cells for gene expression 

analysis. It reproducibly and accurately selected for the desired cell without 

imposing RNA damage that would disable gene expression analysis by high 

density oligonucleotide arrays. There was no previous literature on the 

comparative effect of the two techniques on the RNA as well as their 

comparative advantages and disadvantages as far as microdissection for 

gene expression analysis is concerned.
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3.2. LINEAR RNA AMPLIFICATION

3.2.1. Aims

The aim of the experiment was to identify a method for amplifying small 

amounts of mRNA linearly in order to acquire adequate quantity for microarray 

analysis.

3.2.2. Introduction

The amount of labelled mRNA needed in order to perform gene expression 

analysis with Affymetrix arrays is about 25pg. The labelling process is an in 

vitro transcription (IVT) reaction using cDNA as a template to transcribe it to 

RNA called cRNA or aRNA and incorporates biotinylated nucleotides into the 

newly synthesised RNA. The amount of total RNA that is obtained from cells 

that were laser micro-dissected is several orders of magnitude lower to that 

required. Therefore to perform mRNA analysis with microarrays an RNA 

amplification process must be performed on the mRNA of the samples 

obtained from the laser microdissected cells.

The important prerequisite when performing RNA amplification for use in gene 

expression studies is that the process should not change the relative 

abundance of gene transcripts of the initial sample. In more detail, mRNA is a 

complex mixture of several copies of each gene transcript. Genes can be 

transcribed from one to tens of thousands of copies per cell. It is apparent that
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in a comparative gene expression analysis, it is essential that genes 

transcribed to any abundance should be amplified to the same degree.

PCR based amplification efficiency greatly depends on the sequence to be 

amplified. Additionally, several regions of one gene transcript could then serve 

as primers to other transcripts and the result would be a greatly distorted. It 

would be unfeasible to amplify RNA with a PCR based protocol linearly. 

Therefore the protocol selected to amplify the mRNA linearly was transcription 

based. In IVT, a T7, T3 or SP6 RNA polymerases are commonly used. The 

most commonly used mechanism for RNA amplification is a T7 based linear 

amplification method first developed by Van Gelder, Eberwine and coworkers 

(Van Gelder et al. 1990, Eberwine et al. 1992). This method utilises a 

synthetic oligo(dT) primer containing the phage T7 RNA polymerase promoter 

to prime the synthesis of first strand cDNA by reverse transcription of the 

poly(A)+ RNA component of total RNA. Second strand cDNA is synthesised 

by degrading the poly(A)+ RNA strand with Rnase H, followed by second 

strand synthesis with E. coli DNA polymerase I. Amplified antisense RNA 

(aRNA) is obtained from in vitro transcription of the double-stranded cDNA (ds 

cDNA) template using T7 RNA polymerase.

Several IVT and in particular T7 RNA polymerase based methods have been 

presented for the amplification and labeling of small quantities of total RNA, 

which is then suitable for high density oligonucleotide microarray analysis.5-7, 

as well as cDNA microarray analysis.8-10. However, the overall sensitivity 

and reproducibility of linear transcript amplification is still under-documented.
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In order to assess the linearity of RNA amplification, understand the limitations 

of the technique and also evaluate the amount of RNA to be used as the 

starting amount for linear amplification, an initial, small scale gene expression 

experiment was conducted using total RNA from human corneal epithelial 

cells from the 2.040 pRSV-T cell line as a gold standard. From that, 2pg, 

500ng, 50ng and 10ng were amplified, labeled and hybridised on high density 

oligo-arrays. In this way, any changes that RNA amplification imposed on 

gene transcripts would become evident and then quantified by comparative 

gene expression analysis of non-amplified vs. amplified samples.

3.2.3. Materials and methods

3.2.3.1. RNA isolation, quantitation & electrophoresis.

RNA was isolated using Trizol from 1.8 x105 cells of the human corneal 

epithelial 2.040 pRSV-T cell line as described in section 2.1.2. Cells were 

counted with a haemocytometer. RNA quantity and purity was estimated by 

spectrophotometry at 260, 280 nm using a Boeco bench-top

spectrophotometer. Twenty pg of total RNA was digested with 10 units of 

DNase I (Stratagene) in premixed DNAse I buffer provided, for 15 minutes, at 

37°C, then cleaned-up of any solvents and DNase with RNeasy columns as 

described in section 2.1.3. RNA integrity was assessed by gel electrophoresis. 

For gel electrophoresis 1.2pg was run on a 1.2% agarose gel in TE buffer, 

staining for nucleic acids with ethidium bromide as described in section 2.1.4. 

The RNA was processed immediately after cleanup.
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3.2.3.2. Amplification

Four samples of different amounts of the cleaned total RNA were amplified. 

The four samples represented the corresponding amount of RNA derived from 

2.4x10s, 6x104, 6000 and 1200 human corneal epithelial cells from the 2.040 

pRSV-T cell line as spectrophotometric quantitation indicated. The 

RiboAmp™ OA RNA Amplification (Arcturus) kit was used according to the 

manufacturer’s instructions. Briefly, the RNA was reverse transcribed to cDNA 

and T7 polymerase promoter was incorporated by using a poly d(T) 

T7promoter. Second strand synthesis followed using exogenous primers. The 

RNA strand was digested with Rnase H pre-diluted in appropriate buffer 

according to the kits manufacturer’s instructions. Then cDNA was cleaned 

with column purification. 2pl from each sample was removed and stored at - 

20°C.

In vitro transcription utilising T7 RNA polymerase yielded antisense RNA. The 

aRNA was then reverse transcribed to cDNA and double-stranded (ds) cDNA 

synthesis followed to generate ds cDNA which is compatible with the ENZO 

labelling kit for Affymetrix arrays. The IVT products as well as the initial RNA 

were analysed by the Agilent Bioanalyzer RNA pico chip. Then cRNA was 

fragmented and hybridised on Test3 Affymetrix arrays to reveal linearity of 

amplification.

3.2.3.3. Analysis

Probe sets were analysed with Affymetrix Microarray suit software. The 

software performed background subtraction. The three chips were normalised
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so that the trimmed mean of intensity values, excluding the top and bottom 

2% of intensities. A scatter plot of the log2 signal intensity was generated 

between non-amplified and each of the amplified samples.

]
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3.2.4. Results.

3.2.4.1 Total RNA starting amount, as little as 50ng, produced enough 

template for RNA labelling

Amplification by this protocol resulted in aRNA quantities of at least 1pg which 

is enough to use in labelling IVT reactions. The amplification (Amplifn) factor 

is an estimated value based on the fact that mammalian mRNA content of 

total RNA is about 1%. This is estimated firstly to acquire an idea of reaction 

performance (see Table 3.3).

IHHH
Ampl" Total RNA 

input
2pg 500ng 50ng NA

aRNA
output

23|ig 6.07|i
g

1.012)t
g

NA

Amplifn
factor

1100 1214 1012 NA

Labelling Input lug ing 12pg

Figure 3. 7 Amplification reaction performances in output of aRNA and labelling 

reaction inputs (estimated 1% of total RNA weight to be mRNA)

The amplification factor can also be used to depict that the resulting values of 

weight of aRNA output. Although every transcript has the added T7 promoter 

and usually some 5’ sequences are not included in the final aRNA transcripts, 

the amplification factor can be used as an estimate how many pg of total RNA 

would theoretically correspond to the given amount of aRNA. Since generally 

about 20pg total RNA is needed as an input for a labelling IVT reaction, 

according to Affymetrix recommendations, then 50ng (corresponding almost
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to 50[jg of theoretical total RNA) of starting total RNA in the amplification 

reaction would be enough for a complete array experiment.

3.2.4.2 Amplification IVT transcript lengths.

Reaction end product quality was assessed by means of end product 

transcript length. As we can see, reactions which started with 2 and 0.5pg 

gave end products the majority of which were between 200-2000. The 

reaction starting with 50ng of total RNA produced end products of larger 

molecular weight which is depicted at the smear in lane 3 of Fig. 3.8B and 

curve in Fig. 3.8C. This means that for that reaction the overall IVT procedure 

was more successful since it amplified more full-length transcripts than the 

other reactions.
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Figure 3. 8 Electropherogram of total RNA before amplification (A). Lanes B2, B3, B4 

and curves 1, 2 and 3 in panel C correspond to the product aRNA of the reactions 

starting with 2pg, 500ng and 50ng respectively. Lane B4 illustrates the 

electropherogram of non-amplified RNA (lane 2, 3, 4).
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3.2.4.3. Effect of total RNA starting amount on IVT amplification linearity.

Data analysis produced a signal intensity value for each probe set in non

amplified and each of the amplified samples (Fig. 3.9). In order to compare 

the linearity of the amplification reactions the scatter plot of the 

logio(normalised intensity values) between the non-amplified and each of the 

amplified samples was created. To test how good the non-amplified sample 

correlates with each of the amplified samples the R2 value for this correlation 

was calculated. This provides a measure to test which amplification reaction 

correlates best with the non-amplified sample and therefore understand which 

starting amount affects the linearity of amplification less.

Amplification Reaction R value

50ng 0.976

500ng 0.919

2pg 0.827

As it can be understood from those values all reactions performed fairly 

linearly. Clearly the amplification that started with a 50ng total RNA template 

performed more linearly than the others as indicated by the R2 value of 0.976. 

None of the studied transcripts show any scatter beyond the 2fold change in 

the 50ng reaction, and the majority of them seems to be between 1.5. This is 

true for low as well as high abundance gene transcripts. In contrast starting 

amounts of 500ng and 2pg had a higher impact on the relative transcript 

abundances after the amplification, we can observe in figure 3.9B and C 

some genes are either crossing or surpass the 2-fold change line
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The amplification reaction that started with 50ng of total RNA does no 

influence high abundance genes more than low abundance ones. All genes 

are linearly amplified, however for fold changes less than 1.5 we cannot be 

sure that the variation the amplification reaction is contributing is less than the 

biological variation. (Figure 3.9 is in the next page)
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Figure 3. 9 Scatter plot of the logi0 normalised intensity measurements between 

amplified and non-amplified samples of the normalised detection signals for the probe 

sets called present in all samples.
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3.2.5 Discussion

This study revealed the optimal conditions by which linear amplification of 

mRNA into aRNA can be achieved. It was essential to understand in the 

cornea how many cells and how much total RNA would be needed, as well as, 

what kinds of controls would be needed in order to design a study that would 

reveal the true gene expression profile of every type that was desired.

By assessing the reaction’s performance, the destiny of small medium and 

high abundance genes was revealed. As it was indicated by this preliminary 

experiment, transcript abundance does influence the efficiency of amplification 

of a particular mRNA transcript to a degree, the purpose was to identify how 

much and therefore use the optimal conditions to reduce input of non- 

biological variation in the experiment. The reaction starting with 50ng of total 

RNA presenting the least influence. This is confirmed by the fact that the 

reaction that starts with 50ng total RNA shows a high correlation with the non- 

amplified sample, R2=0.976, meaning that 97.6% of the variation between 

amplified and non-amplified sample is related and not induced by 

experimental procedures. Of course in an ideal reaction, theoretically the R2 

value would have been 1 and all the points in the scatter plot should appear 

as a straight line exactly in the middle of the two fold change lines (1 fold 

change=no change). This shows the limitations of the technique and it 

indicates that internal controls are needed in order to be able to visualise the 

linearity of amplification in the actual gene expression experiment. In optimal
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conditions, for fold changes less than two we cannot be sure that the variation 

the amplification reaction is contributing is less than the biological variation. 

However the 2 fold change difference alone cannot be used a selection 

criterion since it is likely that there will are some genes with less than two fold 

difference that are significantly differentially modulated.

As it was observed, the less total RNA that was being used the more linear 

the amplification reaction tended to be. The optimal total mRNA input in the 

reaction was found to be between 100 and 50ng. The availability of reaction 

components has to be optimal for a reaction to work. The amount of reactants 

will influence any biological reaction. This is because although 500ng of total 

RNA might seem a low amount to start a microarray experiment, in the end of 

the amplification reaction nearly 6pg of aRNA which corresponds to mRNA is 

produced. One could estimate that this resembles an experiment starting with 

500pg of total RNA when the recommended is from 10-50. It is therefore likely 

that the large amount of RNA that is being applied to the labelling reaction is 

depleting the reaction components very fast. This in turn would mean that the 

transcripts that have a better chance to utilise the reaction components and 

therefore be labelled would be the high abundance ones. Indeed the low 

abundance transcripts present a much larger scatter than the high ones in 

reactions that started with 500ng of total RNA and more. This effect is being 

limited by using less total RNA.

To be able to detect the true changes to any transcript abundance, in any 

reaction in any case and also be able to normalise for potential changes, the
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use of controls would be desirable. As a consideration for following 

experiments it was indicated by these experiments that internal reaction 

controls would be valuable. Bacterial mRNA transcripts at different 

abundances each were later used in every amplification reaction which 

confirmed linearity in subsequent experiments. These experiments also added 

another point of view that has to be considered. As is shown, different starting 

amounts of total RNA amplified with slightly different efficiency. The 

amplification factor, although at the same levels, was not identical. 

Considering the problems that could arise from this, since the only RNA 

species that participates in the IVT is the mRNA, if we start with the same total 

RNA of two different cell types, it is likely that those cell types would have the 

same percentage of mRNA in the total RNA pool. Although the reaction will 

amplify all transcripts to the same degree, this degree will be different 

between different cell types. Potentially this could interfere with our ability to 

detect changes in gene expression. Normalisation of results, according to a 

set of 100 house keeping genes proposed by Affymetrix or global 

normalisation of results correcting for the global amplification, would control 

for that change.

3.2.6 Conclusions

The experiments indicated that total RNA amounts of above 500ng do not 

amplify as linearly as lower amounts such as 50ng. It was also understood 

that even when low amounts of total RNA are amplified, amplification reaction 

controls are needed in order to be able to test for the linearity of amplification.



Chapter 4
♦

Validation of techniques



4.1 Aims

• To normalize intensity values for each probe set on the high density 

oligonucleotide array of each region for the three repetitive experiments 

and prepare the data for comparative analysis

• To validate the quality of the starting total RNA, the yield and quality of 

the resulting amplified aRNA and validate the quality of the cRNA 

before and after fragmentation.

• To test weather the hypothesis that those cells are differentially 

regulated at the transcriptional level.

• To validate the reproducibility of the hybridization experiments.

• To validate linearity of the amplification procedure
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4.2 Introduction

There was a need to use a method to analyse the vast amounts of data 

generated by high density oligonucleotide gene expression. To combine the 

16-20 probe pair intensities for a probe set and then all the probe sets 

interrogating a given gene transcript, that exist on Affymetrix microarray chips 

in order to define a measure of expression that represents the amount of the 

corresponding mRNA of each gene transcript, the robust multiarray average 

method was used.

One of the most widely accepted methods was model based analysis that was 

introduced in 2001, which can detect and exclude outliers in the data (Li et al 

.2001). A new method that is even more efficient than Li and Wong model 

based method is robust multiarray average method. RMA handles 

background-adjusted, normalized, and log-transformed PM values in order to 

produce an expression value that is exhibiting reduced bias and non 

experimental variance, and increases the sensitivity and specificity of the final 

measure of expression as determined by comparison to real-time quantitative 

gene expression analysis. (Bolstad 2002, Irizarry et al 2003).

The RMA analysis provided a measure of expression level for each of the 

gene transcripts present on the array (around 78% of the genome). In order 

to identify genes that are differentially regulated in each area, the limbus, 

peripheral central cornea and conjunctiva), pair wise comparisons were
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performed first for each of the areas against the other. The p-value of a 

Welch’s t-test was calculated for each comparison.

Identifying differentially expressed genes between the different experimental 

areas simply by selecting for a cut-off fold change does not necessarily mean 

that those differences reflect on true biological meaning. It needs to be 

identified whether the variance in gene expression can be attributed to the 

actual difference of the transcriptome of the cells that are being compared, or 

due to other external factors that increase variance. Additionally if the actual 

variance is little then it becomes a challenge to identify meaningful differences 

between gene expression profiles.

To test therefore the hypothesis that limbal, peripheral, central and 

conjunctival areas have distinctive expression profiles principal component 

analysis was employed. In this analysis the three principal components of 

gene expression variance were used to cluster the twelve individual 

experiments in a three dimensional graph. Additionally PCA plots of control 

probe sets were prepared to confirm luck of clustering as a negative control.
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4.3. Results

4.3.1 Total RNA integrity

Total RNA integrity was examined by capillary electrophoresis. All total RNA 

samples were found to have their RNA uncompromised as indicated in the gel 

electrophoresis figure reconstruction (figure 4.1). All total RNA samples 

exhibited the distinct double intensity of the 28S in relation to the 18S 

ribosomal RNA band, indicative of high quality, non-degraded RNA.

m n m m m m

C1 C2 C3 P1 P2 P3 L1 L2 L3 Co1 Co2 Co3

Figure 4. 1 Electropherogram of total RNA isolated by laser catapult from mouse central 

corneal epithelium (C), peripheral (P), limbal (L) and conjunctival (Co) epithelium.
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4.3.2 Total RNA purity and yield

Yield and purity measurements for all mRNA samples are listed in the 

following table. Samples were of high purity typically had a 260/280 ratio of 2 

and above.

Sample RNA yield (ng) 260/280

C1 504 1.86
C2 527 2.34
C3 486 2.56
L1 531 2.07
L2 562 2.31
L3 502 1.94
P1 935 2.22
P2 954 2.18
P3 925 2.03
Co1 378 3.40
Co2 344 1.80
Co3 392 1.99

Table 4. 1 List of total RNA yield in ng and calculated 260/280 absorbance ratios for 

mouse central corneal epithelium (C), peripheral (P) , limbal (L) and conjunctival (Co) 

epithelium.

Ideally a sample that is not contaminated with protein should have a 260/260 

absorbance ratio of above 1.82. The pH of the solution greatly influences the 

260/280 ratio. As pure water is non-buffered, this can influence the 260/280 

ratio. Some spectrophotometers often show 260/280 ratios of pure RNA to be 

above 2.3. In order to ensure the purity of RNA preparations the full 

absorption spectra of each sample were analysed for absorption at 

wavelengths spanning from 220 to 350 nm (fig. 4.2). In this was any additional 

peaks appearing apart from the expected at 260 would indicate some sort of 

contamination.
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Absorbance spectra of RNA preparations
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Figure 4. 2 Graph illustrating the curves of the absorbance of each RNA preparation at 

wavelengths spanning from 220-350nm. Note that there are no other peaks apart from 

the one expected at 260nm since the absorbance maximum for nucleic acids is at 

260nm. There is no peak at 280nm where the absorbance maximum of proteins is, 

indicating the absence of protein and high purity of the RNA preparation.

The actual reason for the high 260 /280  ratios is due to the software of the 

nanodrop spectrophotometer. The software algorithm calculates the 260 /280  

ratio by using the slope of the curve that the squared values of absorption 

spectrum present between 260 and 280nm . This line is not fitted optimally by 

the software resulting in slightly distorted 260 /280  ratios. To ensure that there  

is no degradation the RNA integrity was analysed with capillary 

electrophoresis, the results of which are presented in the next section.
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4.3.3 Amplified cRNA quality.

Amplification reaction and fragmentation was monitored for product cRNA  

quality. Amplification produced high molecular weight transcripts indicating 

long biotinylated cRNA transcripts w ere produced after amplification of m RNA  

(figure 4 .3  A) as indicated by capillary electrophoresis. Adequate  

Fragmentation was confirmed by capillary electrophoresis, prior to staining 

and hybridisation to array chips. Fragm ented RNA had a typical length of 

50bp as indicated in figure 3B.

6000

Figure 4. 3 Electropherogram of capillary electrophoresis of amplified cRNA (A) and 

fragmented cRNA from all experimental samples. C, P, L and Co corresponds to cRNA 

derived from mRNA of central, peripheral, limbal and conjunctival basal cells respectively.
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Additionally, after the chips w ere analysed, the Affymetrix M AS5 software 

permits to monitor the actual 375 ’ ratio of each gene in each array as a quality 

control m easure. The recommended ratios (xn) in order to m eet the 

manufacturer’s specifications are x < 3. As it can be seen in figure 4 .4  the 

slopes of the lines of the plotted intensities of probes spanning from 5 ’ to 3 ’ is 

the 375 ’ ratio for each of the experiments around and were found to be no 

more than 1.6, indicating high cRNA integrity.

RNA digestion plot

o _

0 2 104 6 8
5- <— > 3' 

Probe Number

Figure 4. 4 This is a graph of the normalised mean intensity values of each probe of all 

gene transcripts in the array for 10 probes that span the entire length of the gene 

transcript.
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4.3.4 Principal Component analysis confirms the experimental 
hypothesis.

PCA analysis confirmed that the variance of gene expression between 

different experimental cell types can be attributed to the area the mRNA was 

extracted from. Experimental sets from the same tissue are clustered together 

in distinct separate clusters (figure4.5).

penphetal cornea #2

tea*!1
periphwal

I Imbal cornea #2

10000
PCA 1

conjunctiva 83

■

Figure 4. 5 PCA analysis clusters each experimental area differentially. Conjunctival, 

limbai, peripheral and central mRNA profiles constitute distinctive clusters in a PCA 

plot, revealing that the major variation of gene expression arises from the differential 

location the mRNA profiles belonged to.
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Control probe sets belonging to transcripts of genes that are expressed at the 

same level in all cells, such as housekeeping genes, as well as microarray 

quality control spiked probes did not cluster individually, as expected, 

confirming the luck of variation between control probe sets (figure 4.6).
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Figure 4. 6 Principal component analysis of control genes did not reveal any clusters. 

The lack of clustering confirms the lack of variation of the expression of non- 

differentially expressed control probe sets between regions.
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In order to show that the experimentally induced variation was limited, al the 

principal components of variation were plotted in relation to the percentage of 

variation they are able to explain. If the % variation explained by succeeding 

principal components of variation tends to be linear it could serve as an 

indication that the variation that was induced due to experimental procedures 

exceeds the actual biological variation .which is the subject of the experiment 

and therefore would obscure the task of reaching meaningful biological 

conclusions from the data. In contrast what our experiments indicated is that 

this distribution was far from linear, with more than 55% of variation being 

explained by the first three principal components of variation.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Figure 4. 7 The figure illustrates the non-linear distribution of the % of variation that is 

being explained by the principal components (PC) contributing to the total of variation. 

57% of the variation is being explained by the first three components, indicating that 

the experimentally-induced variation was limited.



4.3.5 Result reproducibility.

The reproducibility of the results is underlined by the high correlation 

coefficients (r) of the replicate samples. These have a mean value of 0.96 and 

a range of 0.92 to 0.99. Figure 4.8 illustrates the correlation coefficients and 

the scatter plots of the experimental repetitions. It has to be noted that in order 

to have a clear view of the experimental reproducibility the raw intensity 

values were plotted instead of the RMA corrected ones, and both the ones 

that were called significant and non-significant by the analysis of variance are 

illustrated.

scatter plot of limbal sample 1 -2-3 scatter plot of conjunctiva samples 1-2-3

R = 0 9065
* » ♦  =0 9873

= 0 9732

120000

100000

80000

B

R =0.9916

R = 0

200 00

50000---------40000-------- 80000-------- 00000--------100000 20000 40000 60000 80000 100000 120000

scatter plot of central samples 1 -2-3

160000
R = 0  9789140000

♦ ^ R  0 9292120000
R. = 0.9706100000

BOOOO
60000
40000
20000

50000 100000 150000 200000

scatter plot of peripheral samples 1 -2-3

5.0-22422-
140000
120000

100000
R =0.9938

80000
60000
40000
20000

20000 Tnnm 40000 60000 80000 100000 120000

Figure 4. 8 Graphs A, B, C, D, represent the scatter plots of repetitions 1-2, 1-3 and 2-3 

of the conjunctival, limbal, peripheral and central corneal microarray experiments 

respectively. The Correlation coefficients (R) for each comparison is given for each set 

of data.
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The R2 values of each comparison are summarized in the next table. As the 

R2 values indicate, even the lowest correlation (R2 value of 0.86) shows that 

there is an 86% of the variance between these two experiments is related. 

This explains therefore that the results exhibit a high degree of reproducibility.

Experiments 1-2 
R2

Experiments 1-3 
R2

Experiments 2-3 
R2

Conjunctival samples 0.983374 0.978619 0.991202

Limbal samples 0.947252 0.974774 0.973267

Peripheral samples 0.989433 0.984626 0.987815

Central samples 0.958352 0.863475 0.942191

Table 4. 2 summarises the squared values of the correlation coefficients between 

different experimental repetitions. Variation was highly related as explained by the high 

proximity of R2 values to 1, indicating result reproducibility.

4.3.6 Linearity of Amplification

As mentioned in chapter 3 four exogenous poly-adenylated * prokaryotic 

controls were spiked directly into RNA samples just prior to amplification and 

labelling to be used as positive controls to monitor the entire GeneChip 

eukaryotic target labelling process in the way described in section 2.1.7

The mean values of the raw signal intensities of these control transcripts were 

plotted in a scatter plot in order to see how good they correlate with their 

predetermined relative abundance ratios. The R2 value for this correlation was 

0.9897, indicating that 98.97% of the variance in those ratios of those 

transcripts before and after amplification is related, confirming lack of
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experim entally induced variance, i.e. confirming that the reaction did not 

change those ratios. The graph is represented in figure 4 .9

Control Spike raw signal intensities correlation with 
predetermined ratios

3500 

£  3000 

S 2500 

|  2000 

S  1500

I 1000 

5. 500 

0
0 0.00002 0 00004 0.00006 0.00008 0.0001 0.00012 0.00014

Relative ratio

Figure 4. 9 The linear outcome of the amplification reaction is illustrated since the raw 

intensity values of control spikes correlate with predetermined abundance ratios (R2= 

0.9897)

4.3.7 Distribution of P-values for pair wise comparisons between 

regions.

The distribution of p-values that w ere  generated  from a two way, t-test for two 

sam ples of unequal variance is presented in the figure below (Figures 4 .10  A, 

B and C ) and dem onstrates the occurrence of each p-value in the complete  

set of genes for each pair wise com parison betw een the regions that were  

studied. The occurrence of p-values gives an im age of the specificity that can 

be expected in the comparison of each a rea  against another. Due to the fact 

that multiple hypotheses (45101 hypotheses, one for each probe set) that are  

being tested in this experiment, a 0 .05  p -value limit of the t-test will result in 

type I error, i.e. in the increase of false positives. To  correct for that a false
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discovery rate correction on the p-values can be performed using the 

Benjamini and Hochberg (1995) method. The following figures, 4.10-4.12, use 

the distribution of raw p-values (next page).
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Figure 4. 10 illustrates the distribution of p-values that resulted from a two way t-test 

for two samples of unequal variance, comparing the expression of each gene between 

two areas, (i) Corresponds to limbus versus central cornea, (ii) limbus versus 

peripheral cornea.
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Figure 4. 11 illustrates the distribution of p-values that resulted from a two way t-test 

for two samples of unequal variance, comparing the expression of each gene between 

two areas, (i) Corresponds to limbus versus conjunctiva, (ii) peripheral versus central 

cornea.
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Figure 4. 12 illustrates the distribution of p-values that resulted from a two way t-test 

for two samples of unequal variance, comparing the expression of each gene between 

two areas, (i) Corresponds to peripheral cornea versus conjunctiva, (ii) central cornea 

versus conjunctiva.
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4.4 Conclusions

• Starting total RNA and resulting amplified biotinylated cRNA was 

validated to be of high quality.

• Experimental results were found to be of high quality and highly 

reproducible.

• Robust multiarray average analysis showed that experimental variance 

could be explained from the differential gene expression between the 

different areas of basal epithelium, indicating that differences in gene 

expression were genuine, not arising by factors external to the 

experimental hypothesis.

• Gene expression results can be therefore trusted with a high degree 

of confidence.
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CHAPTER 5
♦

Gene expression profiles of corneal epithelial cells 

of successive hierarchical positions in the corneal 

lineage.
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5.1 Aims.

• To reveal the gene expression profile of basal cells of the limbus, 

peripheral and central corneal epithelium.

• To use these profiles in order to identify strong candidates for stem cell 

markers from the genes which are specifically up-regulated in the 

corneal stem cell compartment, the limbus.

• To identify the main biological functions, and the genes that control 

them, that are selectively up or down modulated in the corneal 

epithelial stem cell niche (limbus), as well as in the periphery (enriched 

in transient-amplifying cells) and the central cornea (enriched in 

differentiating cells).

5.2 Introduction

In order to make sense of stem, TA and differentiated cell biology and the 

genes that possibly dictate cell phenotype from microarray data, genes that 

are selectively upregulated or downregulated in each region were filtered out 

from calculating the mean robust multiarray average values (RMA values) of 

expression value difference of each gene for each region in relation to the 

other regions. The RMA expression measure was used because it was proven 

that it is better than the measure that MAS 5 provides as well as performs 

better than the Li and Wong model-based expression index (Irizarry et al. 

2003). It was observed that expression is better measured using log-



transformed perfect-mach (PM) values (given as an output of the Affymetrix 

system) that are then adjusted for global background and across array 

normalisation,. The researchers, after evaluating all available expression 

summary measures using spike-in and dilution study data, assessing their 

behavior in terms of bias, variance, the ability to detect known differential 

expression levels, proven that RMA offers the greatest sensitivity and 

Specificity in detection of differential expression using high density 

oligonucleotide array platforms (Irizarry et al.2003

High density oligonucleotide arrays produce a vast amount of data. In order to 

reduce complexity of data, most researchers use clustering mathematics 

techniques. At the moment the field is trying to identify several methods to 

reduce need for the involvement of a researcher to make sense of the data 

due to their large number.

Clustering in mathematics is a way of reducing complexity of a sum of values. 

Usually clustering mathematical methods are employed when trying to reduce 

the level of complexity by gradually segregating a large sum of values to 

progressively smaller clusters according to a desired criterion.

There are several ways to achieve this and several methods of clustering, 

such as hierarchical clustering, k-means clustering, and functional clustering. 

All of these clustering methods are very powerful tools in analyzing gene 

expression data because they can be used (amongst other things) to find 

cluster of genes that are co-regulated between two different data sets by
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clustering according to some criterion of co-variance. The value of these kinds 

of clustering though is great when a set of experimental conditions that can be 

defined by the researchers can be selectively changed. For example cell 

cultured cells or tissues that are treated can be compared with non-treated 

and then observe the clusters of genes that are co-regulated by a selective 

definable input. In studies comparing different tissues though the regulation of 

genes is multifactorial, hence there are high chances that clusters of co- 

regulated genes that result from such methods of clustering can be 

circumstantial, due to the many factors which govern that co-variance. 

Therefore, for the purpose of this study the data were clustered according to 

gene ontology.

Correlation between genetic co-regulation and affiliation to a common 

biological process is not necessarily the case when numerical cluster 

algorithms are applied to gene expression data. Clustering the data according 

to gene ontology uses the tree of the Gene Ontology database as a 

framework for numerical clustering, and thus allowing a comprehensible and 

robust visualisation of gene expression data at various levels of the ontology 

tree (Adryan and Schuh 2004). Gene Ontology (GO) is the most widely 

accepted unified and structured vocabulary for the description of genes and 

their products in any organism, performed in most of the current genome 

projects (Henning et al. 2003).

In gene ontology clustering, as the ontological tree progresses from general to 

very specialised description of gene ontology the clusters fit progressively 

better. Branches of that tree can cross when the gene or genes have

168



ontologies that belong to both branches. Therefore the ontologies that would 

have the maximum probability value are the most indicative of the specific 

processes that are being actively regulated amongst genes.

5.3 Materials and methods

The specific methods are described in detail in Chapter 2. In this section 

methods are briefly described mentioning any additional information.

5.3.1 Isolated areas, RNA isolation and pre-data acquisition 
procedures

Three independently isolated replicates were used for each area from three 

respective adult 12 week old male C57BL6 mice. The regions of interest, 

namely the basal layer of the limbal, peripheral corneal and central corneal 

epithelium as well as basal and suprabasal conjunctival layers, depicted in 

Fig. 5.1, were isolated by Laser Microdissection and Pressure Catapulting 

(LMPC) method described in detail in section 3.1.3.2.ii. Briefly, cells were 

isolated from tissues pre-treated with RNAIater® (Ambion, UK) that were 

frozen and embedded in OCT (Lamb) and sectioned with a cryotome on plain 

glass slides. LMPC was performed using a PALM Microlaser platform (PALM, 

Germany)
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C o n ju n c tiv a L im b u s

Figure 5. 1A schematic representation of the areas that were isolated by Laser 

Microdissection and Pressure catapulting method

RNA was extracted using Rneasy mini columns (QUIAGEN) as described in 

section 2.1.3. RNA was linearly amplified and labeled by in-vitro transcription 

as in sections 2.1.8 and 2.1.9. The procedure was optimised as in section 

3.2.3.2

Then labeled cRNA was fragmented and hybridised on GeneChip® Mouse 

Genome 430 2.0 arrays as described in sections 2.1.10-2.1.12. Using these 

arrays the expression level of over 39,000 transcripts and variants from over 

34,000 well characterized mouse genes as well as 6000 EST (expressed 

sequence tag) sequences was analyzed.
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5.3.2Microarray Data Analysis

5.3.2.1 Selection of probes that show significant change across the 
data set.

Affymetrix MAS 4.0 Software was used to obtain Presence/Absence (P/A) 

calls, Signal values for each replicate (SReplicate). Mean robust multiarray 

average values between replicates were calculated for each array using 

Bioconductor software release 1.6. The RMA analysis normalizes all samples 

so that the median of intensity of all the perfect mach probes is the same 

among all experiments. The end value of expression is a log2  transformed 

value.

To define a set of genes that is differentially expressed in each area of the 

ocular tissue the expression of that gene was compared pair wise between all 

possible combinations of pair wise comparisons. A multiple comparison 

approach was avoided because for the purposes of this study it was important 

to be able to see which genes are differentially modulated in a step wise 

fashion going from the stem cell enriched area (limbus) to the first generation 

TA enriched area (periphery) or to the later generation enriched area (centre).

For each comparison a two-tailed, type 3 test was used, also called a Welch’s 

t -  test. A two tail test was used because in the pair wise comparison a gene 

in one area (e.g. limbus) can have an expression that is lower or higher than 

the other (e.g. periphery). The test assumed that the two samples have 

unequal variance, because it is safer to assume that the variance of 

expression between the two tissues that are being compared is the same,
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although some potentially differentially expressed genes are lost this way to 

the expense of rejecting false positives.

Since the comparisons were pair wise for the purpose of this study, in each 

analysis there is only one null hypothesis that states: Gene A is not 

differentially expressed between area one and area two. Selecting for genes 

that have a p-value equal or lower than 0.05, we selected the genes that 

would have less than 95% chance of one gene appearing differentially 

expressed by chance between two regions. If we needed to compare gene A 

with all the other regions at once that the argument of the null hypothesis 

would be different. Multiple hypothesis testing methods would have been 

needed because we would have as many null hypotheses as the tissues we 

compare against.

However in each sample there are 45101 probe sets, all of which generate a 

p- value for the null hypothesis, and there are 45101 null hypotheses 

generated. When there are multiple hypotheses being tested the use of a 0.05 

p-value limit is going to result in cumulative type I error, meaning that there is 

a much greater chance for false positives to appear in the data. To control for 

this type of error, a false discovery rate approach was used for each of the 

pair wise comparisons. For false discovery rate correction of the p-value the 

Benjamini and Hochberg method can be used, but it is not included in the 

selection criteria because although it reduces the false discovery rate it 

increases the False Negative rate. In this study it was preferred to minimise 

false positives at the expense of identifying false negative results.



Fold changes C were calculated individually for each data set against the 

other. Fold changes of 1.5 or more were specifically and sensitively detected 

by analysing results based on RMA values (Irizarry et al. 2003). Individual 

replicates of each sample were averaged, and mean SSample, logFCSample, 

Reference and standard deviation (SDSample) of S and FC were calculated 

for each probe. The following equation was used:

FCsample= 2(l092Sample -)°92Reference)

All logarithmic transformations were done to base 2. The average P/A call for 

the sample was calculated as follows:

P/A value = ( P*2 +M ) / Number of replicates,

where:

P = number of replicates called “Present”

M = number of replicates called “Marginal”

The probe was called “Present” in a given sample, if P/A value >1.0, it was 

called “A” otherwise.

5.3.2.2 Gene ontology clustering.

Gene ontology clustering was performed using the Netaffx analysis centre 

(Affymetrix) which uses the GO-Cluster software algorithm developed by Boris 

Adryan and Reinhard Schuh at Max-Planck-lnstitute, Gottingen, Germany 

(Adryan and Schuh 2004) This software is integrated in the Affymetrix NetAffix 

Analysis centre. The probability that a gene or an EST belonged to a given

cluster, better than any other gene or EST in the data set, was calculated
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automatically and the results were visualised as single vectorial graphs using 

the Affymetrix gene ontology mining tool and customising for node color 

selection. Red indicated maximum probability and blue, minimum probability. 

The end points of those ontological trees that exhibited the highest probability 

were the clusters that were selected as an indication of the specialised 

processes up or down regulated in the cells of interest.

Files of the probe set identities were uploaded in the Netaffx analysis centre 

and the gene ontology reference numbers of each probe-set was returned in 

CSV (comma separated value) format. After clusters were visualised the gene 

ontology reference number depicted at each point on the ontological tree in 

the vectorial graphs was searched in the CSV database to find the Affymetrix 

Probe set ID’s that belonged to each cluster. The gene name and symbol was 

then searched in the annotated gene list in Microsoft Excel format using the 

probe set ID’s.

NOTE: Throughout the Chapter figures of these vectorial graphs 

depicting the gene ontology trees are illustrated. Some-times those 

graphs are too large to fit in a printable format in the thesis. Whenever it 

is not feasible to fit them the Gene list with the probe number is given 

under the gene ontology reference name that constitutes the cluster. 5.4 

Results
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5.4.1 Corneal limbal basal cell gene expression profile

5.4.1.1 Genes enriched in limbal basal cells.

One hundred and fifty genes and forty ESTs were found to be specifically 

upregulated in the corneal limbal basal cells, in relation to expression values 

of those genes in cells isolated from the conjunctiva, peripheral or central 

regions of the cornea. The reason the conjunctival dataset was also 

subtracted was to end up with corneal lineage specific genes. The selection 

criteria stated that probes should have an Absent-Present (A-P, see section 

5.3.1.1) value of at least 1.00 in the corneal limbal basal cell arrays and that 

their fold change should be equal or greater than 1.5. Moreover the probe sets 

should exhibit an ANOVA two-tail t-test value of equal or less than 0.05.

The list of all the genes is presented at tables C.1 a-e in Appendix C. The 

tables contain the gene symbols and names, chromosomal location, as well 

as UNIGENE database reference numbers and fold changes. Genes and 

ESTs found to be specifically up or down regulated in each region belonging 

to this list were used to identify clusters of biological and molecular function 

specifically upregulated in the corneal limbal basal epithelium by gene 

ontology clustering.
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5.4.1.2 Gene ontology clusters of genes specifically up-regulated 
in limbal basal epithelial cells.

The gene ontology clusters that display the highest probability of existence 

amongst all other possible gene ontologies as well as the genes that 

constitute the ontological cluster are presented in the form of tables in the 

following sections. Additionally the cluster tree-view diagrams are presented 

whenever the size allows it. To facilitate the presentation each general 

ontological category that displayed clusters is presented separately.

5.4.1.2.1 Cell cycle-related gene clusters.

Fifteen probe sets that have cell cycle related gene ontology were found to be 

upregulated in the basal limbus. These corresponded to 7 genes and an EST 

and clustered in a) meiosis recombination (Fig. 5.2), DNA repair (Fig. 5.2), b) 

mitotic spindle orientation and sister chromatid segregation (Fig. 5.2) or c) 

traversing start control point of G1 (Fig. 5.2), d) Chromosome 

segregation.(Fig. 5.3)

The genes and names of the ontological cluster they belonged are listed in 

Table 5.1. The ontological tree view of the cell cycle related gene clusters 

created by the Netaffix Analysis centre integrated software is illustrated in 

Figures. 5.2 and 5.3
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Figure 5.2: Tree view of Cell cycle gene ontology related clusters of genes found up-regulated in corneal limbal basal cells with specific gene 

ontology term public database reference number. Min-Max node colour specification refers to the probability of the genes with the given ontology 

to form an individual cluster.



Figure 5.3: Tree view of chromosome condensation gene ontology related clusters of genes found upregulated in corneal limbal basal 

cells. The specific gene ontology database reference number is designated. Min-Max node colour specification refers to the probability 

of the genes with the given ontology to form an individual cluster.



Table 5.1 lists the genes that formed the above clusters.

Meiosis recombination, DNA Repair

1452241_at topoisomerase (DNA) II beta binding protein Topbpl

Mitotic spindle orientation and sister chromatid segregation
1416309_at nucleolar and spindle associated protein 1 Nusapl

1448635_at SMC2 structural maintenance of chromosomes 2-like 1 

(yeast)

Smc2l1

1427275_at SMC4 structural maintenance of chromosomes 4-like 1 

(yeast)

Smc4l1

1416309_at nucleolar and spindle associated protein 1 Nusapl

1415849_s_at stathmin 1 Stmnl

Chromosome Segregation
1435005_at centromere protein E Cenpe

Traversing start control point of G1
1418334_at expressed sequence AA545217 AA545217

Table 5. 1 Genes belonging to gene ontology clusters related to cell cycle

Upregulated gene transcripts were:

• Topbpl is required for DNA replication and that it interacts with DNA 

polymerase £. In S phase TopBPI co localizes with Brcal at focal points there 

is no ongoing DNA replication. Inhibition of DNA synthesis leads to 

delocalisation of TopBPI together with Brcal to replication forks, suggesting a 

role in rescue of stalled forks (Makiniemi et al. 2001)
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• Smc 2 and 4 are proteins involved in transport, cell cycle, chromosome 

segregation , mitotic chromosome condensation and organisation (Uzbekov et 

al 2002; Freeman, Aragon-Alcaide and Strunnikov 2005)

• Nusapl is a recently discovered protein involved in establishment of 

mitotic spindle localisation and positive regulation of mitosis by mitotic sister 

chromatid segregation after the end of mitosis (Raemaekers et. al 2003).

• Stathmin 1 has been shown to be involved in spindle organisation and 

inhibition of microtubule polymerisation during mitosis. Moreover it is involved 

in axonogenesis (Liu et al. 2005)

• Cenpe, centromere protein E, was identified as a separate cluster of 

chromosome segregation related ontology by itself. Centrosome-associated 

protein E is a kinesin-like motor protein that accumulates in the G2 phase of 

the cell cycle. (Yen et al. 1991; Yen et al. 1992). Unlike other centrosome- 

associated proteins, it is not present during interphase and first appears at the 

centromere region of chromosomes during prometaphase (Tanudji et al. 

2004). CENPE is proposed to be one of the motors responsible for 

mammalian chromosome movement and/or spindle elongation (Liu et al. 

2003).

• The expressed sequence AA545217 that has an ontology related to 

traversing the start control point of G1 is of great interest since Bickenbach 

(2004) very recently shown that while the majority of epithelial SCs reside in 

the G1 phase of the cell cycle, they are not held out of the cell cycle. It would
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be interesting to further investigate if this EST belongs to a gene and maybe 

clone the gene to further investigate its function in epithelial stem cells.

5.4.1.2.2 Transcription-related gene clusters.

The genes that constituted these clusters are listed in the Table 5.4 below. 

The relevant clusters are illustrated in Figure 5.4. Seven genes were found to 

be upregulated in the corneal limbal basal cells in transcription-related 

clusters. These were grouped into those that regulate transcription, six of 

them had a Dna dependent and one a polymerase II promoter dependent 

transcription gene ontology, as shown in Table 5.2 and Fig. 5.4.

Table 5. 2 Genes that belong to the gene ontology clusters related to regulation of 

transcription

Regulation of transcription DNA dependent
1450008_a_at catenin (cadherin associated protein), beta 1 Ctnnbl

1437313_x_at high mobility group box 2 Hmgb2

1433742_at ankyrin repeat domain 15 Ankrd15

1433575_at SRY-box containing gene 4 Sox4

1428890_at fem-1 homolog c (C.elegans) Femlc

1419555_at E74-like factor 5 Elf 5

Regulation of transcription from polymerase II promoter
1417719_at sin3 associated polypeptide Sap30
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Figure 5.4: Tree view transcription related gene ontology related clusters of genes found upregulated in corneal limbal basal cells with 

designated specific gene ontology database reference numbers. Min-Max node colour specification refers to the probability of the 

genes with the given ontology to form an individual cluster.



5.4.1.2.3 Post-transcriptional mRNA modification cluster.

Only Apolipoprotein B (apobecl) was the gene forming five sub clusters of the 

RNA modification ontology. Specific end-point sub-cluster of these was 

cytidine to uridine editing (Fig 5.5).

Apobecl, apolipoprotein B editing complex 1, was identified as a single 

cluster with a nucleotide metabolism gene ontology. Apobec is involved in 

mRNA processing (Chester et al. 2003), specifically in cytidine to uridine, it 

exhibits cytidine deaminase activity (Mukhopadhyay et al. 2002). It is 

hydrolysing carbon-nitrogen (but not peptide) bonds, in cyclic amidines. 

Additionally it contains a nuclear localisation domain (Blanc 2003).
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Figure 5.5: Tree view of mRNA processing related gene ontology related clusters of genes found upregulated in corneal limbal basal cells with 

designated specific gene ontology database reference numbers. Min-Max node colour specification refers to the probability of the genes with 

the given ontology to form an individual cluster.



5.4.1.2.4. Vitamin metabolism related cluster of genes upregulated

Two probe-sets were found to have a water soluble vitamin metabolism 

ontology. These were representing two genes namely Pyridoxal kinase (Pdxk) 

and Riboflavin kinase (Rfk) were found to be upregulated in the corneal limbal 

basal cells that formed the vitamin metabolism related gene clusters. Pdxk 

was found to form a pyridoxine metabolism sub cluster and Rfk a riboflavin 

biosynthesis sub cluster (Fig. 5.6)

Pyridoxal (pyridoxine, vitamin B6) kinase Pdxk, is a major protein of 

pyridoxine metabolism (Hanna et al.1997), It exhibits nucleotide binding, ATP 

binding, metal ion binding activity and converts vitamin B6 to pyridoxal-5- 

phosphate (PLP), an essential cofactor in the intermediate metabolism of 

amino acids and neurotransmitters. The expression of PDXK shows circadian 

oscillations and it is regulated in the mouse liver and brain by the 3 PAR bZIP 

transcription factors, Dbp, Hlf, and Tef, which also show circadian oscillations 

in expression (Gachon et al. 2004).

Riboflavin kinase Rfk is involved in riboflavin biosynthesis. It localises to the 

mitochondria and is involved in FAD production. It exhibits riboflavin kinase, 

transferase and magnesium ion binding activity. (Karthikeyan et al 2003). The 

upregulation of RFk in the basal limbus is indicative of increased levels of 

FAD production in the mitochondria of limbal epithelial cells.



42816 vitamin B6 metabolism (1) _  8614 pyridoxine metaboism (1)

42726 riboflavin and derivative 
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42727 riboflavin and derivative
biosynthesis (1) ^

6771 riboflavin metabolism (1)
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Figure 5.6: Tree view of vitamin metabolism related gene ontology related clusters of genes found upregulated in corneal limbal basal cells 

with specific gene ontology t database reference numbers. Min-Max node colour specification refers to the probability of the genes with the 

given ontology to form an individual cluster.



5.4.1.2.5 Stress response gene clusters.

Twelve probe-sets were found to be upregulated in the corneal limbal basal 

cells in the stress response gene clusters. There were four sub clusters 

exhibiting high probability which were formed by three genes. The clusters 

were of wounding, fear response, heat, DNA damage, and oxidative stress 

gene ontology and are shown in Fig. 5.7.

All genes that belonged to stress response related clusters were:

• Caspase 1, (Caspl) is a mediator of the response to hypoxia 

proteolysis and peptidolysis and induction of apoptosis.

• Peroxiredoxin 1, (Prdxl) exhibits peroxidase activity, and it is involved 

in regulation of NF-kappaB-nucleus import in response to oxidative 

stress activity.

• DnaJ (Hsp40) homolog, subfamily A, member 1. Dnajal is a heat 

shock protein and acts as in protein repair, possibly folding proteins in 

a metal ion dependent mechanism.
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Figure 5.7: Tree view of stress response related gene ontology related clusters of genes found up-regulated in corneal limbal basal cells 

with designated specific gene ontology database reference numbers. Min-Max node colour specification refers to the probability of the 

genes with the given ontology to form an individual cluster.



5.4.1.2.6 Pattern specification gene onto logy cluster upregulated in 
the corneal stem cell niche.

Beta-catenin (C tn n b l) also clusters individually in pattern specification and 

axis formation gene ontology as shown in Fig. 5.8.

9954 proximal/distal pattern 
formation (1)

7389 pattern specification (1)

9953 dorsal/ventral pattern 
formation (1)

9798 axis specification (1)

9880 embryonic pattern specification (1)

9950 dorsal/ventral axis specification (1) 

1569 patterning of blood vessels (1)

Figure 5. 8 Tree view of pattern specification related gene ontology related clusters of 

genes found upregulated in corneal limbal basal cells with designated specific gene 

ontology database reference numbers. Min-Max node colour specification refers to the 

probability of the genes with the given ontology to form an individual cluster.

189



5.4.1.2.7 Cell signalling clusters

As mentioned earlier, the limbal basal data set was compared to those of all 

other regions in order to identify limbal specific genes and EST’s and these 

genes and ESTs were clustered with respect to gene ontology. In that case 

genes did not cluster at all in clusters of cell signalling related ontology. In 

order to overcome this problem the limbal basal set was compared with only 

the ones of corneal origin and not conjunctiva. When this dataset was used, 

clusters of cell signalling related ontologies appeared (Fig. 5.9) indicating that 

those genes were masked by the comparison to the conjunctival data set. The 

genes of those clusters although are not going to be limbal specific with 

respect to the conjunctiva they are likely to be up-regulated in the basal 

limbus in relation to the basal periphery and centre.

Forty probe sets that correspond to 27 genes were found to be forming the 

clusters of a cell signalling related ontology. All probe sets together with their 

respective gene name and sub-cluster they belonged are listed in Table 5.3a- 

b. Figure 5.8 is included solely to depict the clusters that were formed. The 

treeview was too large in order to fit even in an appendix.
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Figure 5.9 Tree view of cell signalling related gene ontology related clusters of genes 

found up-regulated in corneal basal cells with specific gene ontology term public 

database reference number. Min-Max node colour specification refers to the probability 

of the genes with the given ontology to form an individual cluster.
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Table 5.3 a: Genes, with designated Affymetrix probe identities, belonging to cell 

signalling clusters of genes up-regulated in the limbus.* (indicates genes that were 

only identified after the comparison of gene expression excluded the conjunctival data 

set).

Integrin mediated signalling pathway

1428187_at CD47 antigen (Rh-related antigen, integrin-associated signal transducer) Cd47

1419554_at CD47 antigen (Rh-related antigen, integrin-associated signal transducer) Cd47

1454966_at integrin alpha 8 Itga8

1425039_at integrin, beta-like 1 ItgbM*

1460427_a_at a disintegrin and metalloprotease domain 28 Adam28*

1422561_at a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 

motif, 5 (aggrecanase-2)

AdamtsS*

1456404_at a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 

motif, 5 (aggrecanase-2)

Adamts5

1417122_at vav 3 oncogene Vav3

1448600_s_at vav 3 oncogene Vav3

1447541_s_at integrin, alpha E, epithelial-associated Itgae*

1416953_at connective tissue growth factor Ctgf*

Smoothened signalling pathway

1427049_s_at smoothened homolog (Drosophila) Smo*

1428853_at patched homolog 1 Ptchl*

Noch Signalling pathway

1437303_at interleukin 6 signal transducer Il6st*

192



Table 5.3b: Genes, with designated Affymetrix probe identities, belonging to cell signalling 

clusters.* (indicates genes that were only identified after the comparison of gene expression 

excluded the conjunctival data set).

Wnt receptor signalling pathway

1422751_at transducin-like enhancer of split 1, homolog of Drosophila E(spl) Tle1*

1450008_a_at catenin (cadherin associated protein), beta 1, 88kDa Ctnnbl

1448593_at WNT 1 inducible signaling pathway protein 1 Wispl*

1448594_at WNT 1 inducible signaling pathway protein 1 Wispl

1449340_at sderostin domain containing 1 Sostdcl*

1455214_at microphthalmia-associated transcription factor Mitf*

1418534_at frizzled homolog 2 (Drosophila) Fzd2*

1437284_at frizzled homolog 1 (Drosophila) Fzd1*

1450044_at frizzled homolog 7 (Drosophila) Fzd7*

1422602_a_at wingless-related MMTV integration site 5B Wnt5b*

1439373_x_at wingless-related MMTV integration site 5B Wnt5b

1448201_at secreted frizzled-related sequence protein 2 Sfrp2*
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Table 5.3c: Genes, with designated Affymetrix probe identities, belonging to cell 

signalling clusters.* (indicates genes that were only identified after the comparison of 

gene expression excluded the conjunctival data set).

Serine threonine kinase signalling

BMP signalling

1423635_at bone morphogenetic protein 2 Bmp2*

1448208_at MAD homolog 1 (Drosophila) SMAD1*

1459843_s_at MAD homolog 1 (Drosophila) SMAD1*

TGF-BETA signalling

1423635_at bone morphogenetic protein 2 Bmp2*

SMAD heterodimerisation

1448208_at MAD homolog 1 (Drosophila) SMAD1*

1459843_s_at MAD homolog 1 (Drosophila) SMAD1*

Common partner of SMAD phosphorylation

I4i9256_at spectrin beta 2

Negative regulation of G-protein coupled receptor signalling

1444409_at Rabphilin 3A-like (without C2 domains) Rph3al*

Negative regulation of insulin receptor signalling pathway

1455899_x_at suppressor of cytokine signalling 3 Socs3*

Insulin like growth factor receptor signalling

1425458_a_at growth factor receptor bound protein 10 Grb10*

PDGF receptor signalling pathway

1419123_a_at platelet-derived growth factor, C polypeptide Pdgfc*

1449351_s_at platelet-derived growth factor, C polypeptide Pdgfc*
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5.4.1.3 Genes downregulated in corneal limbal basal epithelial
cells.

Genes specifically downregulated in the corneal limbal basal epithelium were 

identified by RMA analysis. Criteria were that the probes should have an A-P 

value of at least 1.00 in central and limbal basal epithelium and that their fold 

change should be equal or less than 1.5. Additionally the probe sets should 

exhibit an ANOVA 2 tail t test value of equal or less than 0.05.

The gene list together with gene symbols and names, chromosomal location, 

as well as UNIGENE database reference numbers and fold changes is 

presented at Table C.2 in appendix C. Clusters of biological and molecular 

functions specifically downregulated in the corneal limbal basal epithelium 

were identified by gene ontology clustering.
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5.4.1.3.1 Ontological clusters of genes downregulated in limbal 
basal epithelial cells.

There were three genes on that cluster category. The ontological cluster and 

sub-clusters that were formed are illustrated in figures 5.10 and 5.11

Necdin (Ndn) was the gene that constituted to the calcium homeostasis gene 

ontology cluster (see fig. 5.10 A) as well as the Regulation of cell growth gene 

ontology cluster (see figure 5.10 B). Ectopic expression of necdin induces 

differentiation of mouse neuroblastoma (Kobayashi, Taniura, and Kazuaki 

Yoshikawa 2002). The protein binds to and represses the activity of cell-cycle- 

promoting proteins such as SV40 large T, adenovirus E1A, and the 

transcription factor E2F. Necdin also interacts with p53 and works in an 

additive manner to inhibit cell growth (reviewed by Forslund and Nordqvist 

2001). This result agrees with the results from the specifically up-regulated 

genes in the basal limbus which show that those cells might not be held out of 

the cell cycle. Additionally E2F5 was found to be specifically up-regulated in 

basal limbal cells but it did not fulfil the Presence-Absence criteria.

Special AT-rich sequence binding protein 1 (Satbl) was the gene that 

constituted the cluster of histone methylation gene ontology (see fig. 5.11 A, 

B and C). SATB1 is a cell-type specific nuclear protein that recruits chromatin- 

remodelling factors and orchestrates temporal and spatial expression of 

multiple genes during thymocyte differentiation (Alvarez et al. 2000). This is 

could be indicative of a suppressive mechanism of a gene program switch
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towards differentiation, active in corneal epithelial stem cells or early-lineage 

cell of the basal limbus.

ST8 alpha-N-acetyl-neuraminide alpha-2, 8-sialyltransferase 4 (St8sia4) was 

the gene in the protein glycosylation gene ontology cluster (See figure 5.10 

A). This agrees with the findings of Wolosin and Wang (1995) in the rabbit 

cornea which show that alpha-2,3 sialylation differentiate the limbal and 

corneal epithelial cell phenotypes (Wolosin and Wang 1995). The results 

indicate that a similar mechanism exists in mice and suggests that the 

transcriptional repression of sialyltransferases might be the actual 

mechanism.
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Figure 5.10: Tree view of homeostasis (A), development (B) related gene ontology clusters of genes found down-regulated in corneal 

basal cells with designated specific gene ontology database reference numbers. Min-Max node color specification refers to the 

probability of the genes with the given ontology to form an individual cluster.
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Figure 5.11: Tree view of metabolism-related gene ontology clusters of genes found downregulated in corneal basal cells with 

designated specific gene ontology database reference number. Min-Max node colour specification refers to the probability of the 

genes with the given ontology to form an individual cluster. A, B and C are consecutive fragments of the picture that illustrated the 

tree.



5.4.2 Peripheral basal cell gene expression profile.

5.4.2.1 Genes upregulated in the peripheral corneal basal cells.

Two hundred and eighty probe sets of which 172 belonged to genes and 108 

to ESTs were found to be specifically up-regulated in the peripheral corneal 

basal cells in relation to the basal limbal and basal central epithelium. The 

criteria that were applied were that probes should have an A-P value of at 

least 1.00 in the peripheral corneal basal arrays and that their fold change 

should be equal or greater than 1.5. Additionally the probe sets should exhibit 

an ANOVA 2 tail t test value of equal or less than 0.05.

The gene list is presented at Table C.3 in appendix C. The table contains the 

gene symbols and names, chromosomal location, as well as UNIGENE 

database reference numbers and fold changes. The genes were used for 

gene ontology clustering in order to identify clusters of biological and 

molecular function specifically up-regulated in the peripheral corneal basal 

epithelium.
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5.4.2.1.1 Gene ontology clusters of genes upregulated in the 
peripheral corneal basal cells.

The following table (Table 5.4 a-c) lists the gene ontology clusters with their 

respective genes that were identified as up-regulated in peripheral corneal 

basal cells.

Table 5.4 a: The table lists the genes that belong to the gene ontology clusters 

identified as up-regulated in peripheral basal cells

Circadian rhythm

1421087_at period homolog 3 (Drosophila) Per3

1425099_a_at aryl hydrocarbon receptor nuclear translocator-like Arntl

Nitrix oxide biosynthesis
1454995_at dimethylarginine dimethylaminohydrolase 1 Ddahl

Nuclear mRNA splicing via spliceosome

1447447_s_at serine/arginine repetitive matrix 1 Srrml

Xenobiotic metabolism

1422438_at epoxide hydrolase 1, microsomal Ephxl
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Table 5.4b: The table lists the genes that belong to the gene ontology clusters identified as

up-regulated in peripheral basal cells

Aromatic compound catabolism

1422438_at neurotrophic tyrosine kinase, receptor, type 2 Ntrk2

Peptidyl threonine phosphorylation
1451478_at cDNA clone MGC:32448 IMAGE:5043159

Transcription

1455154_at GLI-Kruppel family member GLI3 GII3

1450093_s_at zinc finger and BTB domain containing 7 Zbtb7

Actin cortical patch assembly

1449660_s_at coronin, actin binding protein 1C Corolc

Regulation of G-protein coupled receptor

1418189_s_at receptor (calcitonin) activity modifying protein 2 Ramp2

1418188_a_at receptor (calcitonin) activity modifying protein 2 Ramp2

G-protein signalling coupled to IP3 second messenger (PLC activating)

1417500_a_at transglutaminase 2, C polypeptide Tgm2

JNK cascade

1436791_at wingless-related MMTV integration site 5A Wnt5a

202



Table 5.4c: The table lists the genes that belong to the gene ontology clusters identified as

up-regulated in peripheral basal cells

Wnt signalling cascade

1436791_at wingless-related MMTV integration site 5A Wnt5a

1450772_at wingless-related MMTV integration site 11 Wnt11

Rho protein signal transduction

1416511_a_at CDC42 effector protein (Rho GTPase binding) 4 Cdc42ep4

Cellular morphogenesis/ photoreceptor cell development

1417904_at DNA cross-link repair 1A, PS02 homolog (S. cerevisiae) Dclrela

Mechanoreceptor

1420838_at neurotrophic tyrosine kinase, receptor, type 2 Ntrk2
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5.4.2.2 Genes downregulated in the periphery

Thirty seven genes and four EST’s were specifically down-regulated in the 

periphery were as identified by RMA analysis. The criteria that were used 

were that probes should have an A-P value of at least one in all the regions 

apart from the periphery and that their fold change should be equal or less 

than 1.5. Additionally the probe sets should exhibit an ANOVA 2 tail t test 

value of equal or less than 0.05.

The gene list is presented at Table C.4 in appendix C. The table contains the 

gene symbols and names, chromosomal location, as well as UNIGENE 

database reference numbers and fold changes. The genes were used for 

gene ontology clustering in order to identify clusters of biological and 

molecular function specifically down-regulated in the peripheral corneal basal 

epithelium.

5.4.2.2.1 Gene ontology clusters of genes down-regulated in basal 
peripheral epithelial cells.

The only clusters that were seen were formed by caveolin 1 (Cav1). Caveolin, 

caveolae protein 1 (Cav1), forms a “negative regulation of Mapk activity” as 

well as a “negative regulation of nitric oxide biosynthesis” ontological cluster 

within down-regulated genes in peripheral corneal basal epithelial cells. (Fig 

5.12).
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Figure 5.12. Tree view of negative regulation of MAPK activity (A) and negative regulation of nitric oxide synthesis (B) gene ontology related 

gene ontology related clusters of genes found down-regulated in corneal basal cells with designated specific gene ontology database reference 

numbers. Min-Max node color specification refers to the probability of the genes with the given ontology to form an individual cluster.



5.4.3 Central Corneal Basal Cell gene expression profile.

5.4.3.1 Genes Up-regulated in Central corneal epithelial basal cells.

78 genes and 18 ESTs were found to be up-regulated in the corneal basal 

epithelial cells in relation to the ones in basal peripheral and the limbal cells. 

The genes are listed in table 5.9. The criteria that were applied were that 

probes should have an A-P value of at least 1.00 in the peripheral corneal 

basal arrays and that their fold change should be equal or greater than 1.5. 

Additionally the probe sets should exhibit an ANOVA 2 tail t test value of equal 

or less than 0.05.

The gene list is presented at Table C.5 in appendix C. The table contains the 

gene symbols and names, chromosomal location, as well as UNIGENE 

database reference numbers and fold changes. The genes were used for 

gene ontology clustering in order to identify clusters of biological and 

molecular function specifically up-regulated in the peripheral corneal basal 

epithelium.
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5.4.3.1.1 Gene ontology clusters of gene upregulated in central
basal epithelium.

Seven genes of the ones found in upregulated specifically in the central 

corneal basal cells in relation to those in basal peripheral and limbal cells 

were involved in eight gene ontology clusters with a high probability. The 

genes are listed in Tables 5.5 a & b.

Table 5.5 a: Lists the gene ontology clusters and their respective genes, found to be 

up-regulated in central corneal epithelial basal cells.

nitric oxide mediated signal transduction

1422557_s_at metallothionein 1 Mt1

G-protein signaling, adenylate cyclase inhibiting pathway

1419449_a_at guanine nucleotide binding protein, alpha inhibiting 2 Gnai2

apoptotic mitochondrial changes release of cytochrome c from

mitochondria

1455456_a_at translocase of inner mitochondrial membrane 50 homolog Timm50

(yeast)

zinc ion homeostasis

1422557_s_at metallothionein 1 Mt1

negative regulation of translational initiatiation

1434976_x_at eukaryotic translation initiation factor 4E binding protein 1 Eif4ebp1

pyrimidine deoxyribonucleotide diphosphate biosynthesis

1450484_a_at thymidylate kinase family LPS-inducible member Tyki
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Table 5.5b lists the gene ontology clusters and their respective genes, found to be up

regulated in central corneal epithelial basal cells.

S-adenosylmethionine biosynthesis

1438386_x_at methionine adenosyltransferase II, alpha Mat2a

1438630_x_at methionine adenosyltransferase II, alpha Mat2a

1438976_x_at methionine adenosyltransferase II, alpha Mat2a

1456702_x_at methionine adenosyltransferase II, alpha Mat2a

anterior-posterior compartment specification

1447640_s_at pre B-cell leukemia transcription factor 3 Pbx3

The study confirms earlier data that exclude metallothioneins as limbal stem 

cell markers. These cysteine-rich metal-binding intracellular proteins have 

been linked to cell proliferation and have been shown to be strongly 

expressed by basal limbal cells of human corneas (Lauweryns et al. 1993b). It 

also was immunolocalised in the same study to suprabasal epithelial cells at 

the limbus in a mosaic-like pattern, to clusters of TC in the superior cornea, 

and to basal cells in the corneal epithelium. Studies from Schlotzer- 

Schrehardt and. Kruse described weak immunoreactivity in basal cells of the 

limbal epithelium, but stronger in superficial cells of all ocular surface 

epithelia.
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5.4.3.2 Genes downregulated in the central cornea.

Twelve genes and four ESTs were found to be specifically downregulated in 

central corneal basal cells in relation to the basal peripheral and limbal cells 

The criteria that were used were that probes should have an A-P value of at 

least one in all the regions apart from the periphery and that their fold change 

should be equal or less than 1.5. Additionally the probe sets should exhibit an 

ANOVA 2 tail t test value of equal or less than 0.05.

The gene list is presented at Table C.6 in appendix C. The table contains the 

gene symbols and names, chromosomal location, as well as UNIGENE 

database reference numbers and fold changes. The genes were used for 

gene ontology clustering in order to identify clusters of biological and 

molecular function specifically down-regulated in the peripheral corneal basal 

epithelium
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5.4.3.2.1 Gene ontology clusters of genes downregulated
specifically in basal cells of the central corneal epithelium.

The ontological clusters of genes down regulated in basal cells of the central 

corneal epithelium are listed in Table 5.6

Regulation of cell growth_________________
Igfbp4_______ insulin-like growth factor binding protein 4

Transcription___________________
Atf2_________ activating transcription factor 2

Ubiquitin dependent catabolism_____
Ube2h_______ ubiquitin-conjugating enzyme E2H

Proteolysis______________________________
Pcolce_______ procollagen C-proteinase enhancer protein

Dephoshorylation, Transmembrane receptor tyrosine phosphatase 
signalling__________________________________________________
Ptprk________ protein tyrosine phosphatase, receptor type,_K_____________________

Transport_________________________________________________
Slc13a2 solute carrier family 13 (sodium-dependent dicarboxylate transporter),
_____________ member 2____________________________________________________
Nsf__________N-ethylmaleimide sensitive fusion protein____________________ 1

Table 5.6: Ontological clusters of genes down regulated in basal cells of the central 

corneal epithelium
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5.5 Discussion
The gene expression profile of basal cells of the limbus, peripheral, and 

central cornea was revealed in this study. These expression profiles can be 

used as an atlas of gene expression for a variety of further studies. For the 

purposes of this thesis, emphasis was given on the mechanisms that are 

relevant to the cells of the corneal stem cell niche.

As it was discussed in the introduction, the basal limbus consists of stem cells 

and transient amplifying cells, whereas the peripheral basal epithelium is 

enriched in transient amplifying cells of several generations and does not 

contain stem cells. The basal epithelium of the central cornea is enriched with 

more differentiated cells and does not contain stem cells. Therefore by 

selecting genes that were exclusively upregulated in each region would 

possibly identify some genes that are controlling basic biological functions that 

prevail in each region. Although it is thought that the percentage of stem cells 

among the limbal basal cells in mice is between 10-20% this number is below 

1% in the periphery. Therefore stem cells are 10 to 20 times enriched in the 

basal limbus in relation to the periphery and even more in relation to the 

centre. Some of the genes that are up-regulated in the basal limbus in relation 

to all other regions are likely to be involved in processes and pathways that 

are uniquely ongoing in the basal limbus. Knowing that the defining property 

that differentiates stem cells from transient amplifying cells is asymmetric 

division leading to stem cell self-renewal, one would expect that genes that 

would be controlling these unique properties to be indicated as up-regulated



in the basal limbus when compared with basal epithelia that are barren o stem 

cells.

One can expect that many of the genes that appear upregulated in the 

corneal stem cell niche (i.e. the basal limbus) will be controlling mechanisms 

and processes that are unique or up-regulated in early transient amplifying 

cells, as compared to later transient amplifying cells.

Thus, the genes indicated to be up and down regulated in the basal limbus 

are expected to provide a valuable starting point for studying the differential 

molecular machinery and properties of stem cells and transient amplifying 

cells and allow us to focus and gain a further insight into stem cell biology

5.5.1 Selection of several targets for further analysis
In order to confirm protein expression and test array sensitivity, selected

targets were carefully chosen for further RT-PCR analysis and 

immunohistochemistry. It would be virtually impossible to confirm all the 

targets that the array indicated, since this would maybe require many new 

time consuming studies that would be far greater then the time given for that 

of a Ph.D. study. Instead, several targets were chosen that were identified 

from RMA analysis, as well as transcripts that were identified as upregulated 

according to RMA analysis but did not fulfil the presence/absence criteria in 

order to confirm at least the results of the array to a satisfactory degree.
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In order to do that, the targets that were chosen spanned from very low to 

very high raw intensity values (the ones given as an output from the 

GeneChip Scanner). Additionally, targets that were included, spanned a 

variety of roles such as receptors, nuclear factors, enzymes and structural 

proteins, which at the same time, have the potential to participate in important 

mechanisms in stem cells. These targets are listed in Table 5.7 together with 

their raw mean intensity values.

Table 5.7 List of selected targets with their respective selection criteria for the 

purposes of confirmation of array sensitivity

Raw intensity value Target gene Presence-Absence
Fulfilled

150 Col4abp3 N

150 PTGER4 N

200 E2F5 N (marginal)

220 TLR3 Y

550 Areg Y

550 SMC2 Y

1000 Rbp1 Y

1200 SMC4 Y

1200 NEK2 1st prb Y2nd prb N

5000 K14 Y

10000 Nmp1 Y

15000 Aldh6a Y

>20000 Catnbl Y
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Alcohol dehydrogenase 6 a (Adh6a) and cellular retinol binding protein 

1(Rbp1) were found exclusively upregulated in the corneal epithelial stem cell 

compartment. Alcohol dehydrogenases and Rbp1 have been shown to be 

involved in the control of intracellular levels of retinoic acid (Molotkov et al.

2004). Retinoic acid has been shown to affect the proliferation of corneal 

epithelial stem cells both in vitro and in vivo (Tseng et al. 1988; Kruse et al. 

1994)

In addition, nuclear receptors for retinoic acid and thyroid hormone regulate 

transcription of keratin genes (Tomic et al. 1990), including Keratin 14, which 

was found to be enriched in the corneal stem cell compartment of the mouse 

in this study. The regulation of keratin gene expression by RAR and T3R 

occurs through direct binding of these receptors to the receptor response 

elements of the keratin gene promoters (Tomic et al. 1996). Thus confirmation 

of K14 target by RT-PCR and immunohistochemistry could prove beneficial 

for further studies as a determinant of differential cell type (stem or TA). 

Further supporting the need for the confirmation of K14 is the availability of 

transgenic mice with K14 promoter targeted expression cassettes using the 

K14 promoter (Vaezi et al. 2002) that are publicly available by the Jackson 

Lab.

There is only one study so far that identified a protein of the Toll like receptor 

family in corneal epithelial cells (Song et al. 2001). TLR4 was found to be 

expressed in the corneal epithelium and it is thought that it might play the role 

of bacterial pathogen lipopolysaccharide receptor (Song et al. 2001). It was 

therefore decided that it would be interesting to investigate the expression of
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toll like receptor 3 since these mediators of innate immunity may be of 

importance in an immunologically privileged organ as the eye.

Nuclear p-catenin/TCF signalling pathway is essential for the maintenance of 

epithelial stem cells in the small intestine as well as the hair follicle. The 

proliferative compartment of the gut was depleted of stem cells in TCF4 

double knock-outs, which die shortly after birth (Korinek 1998). There was a 

75% reduction in stem cells in the hair follicle in mice with targeted mutations 

of downstream targets of nuclear p-catenin/TCF complex. (Waikel et al 2001).

Nucleophosmin, also known as NPM, B23, N038, is a nucleolar protein 

directly implicated in cancer pathogenesis. The NPM1 gene is found mutated 

and rearranged in a number of haematological disorders (Morris et al. 1994; 

Redner et al. 1996; Yoneda et al. 1996; Falini et al. 2005; Grisendi et al.

2005). The region of chromosome 5 to which NPM1 maps is deleted in a 

proportion of de novo human myelodysplastic syndromes (MDS) (Van den 

Berghe et al. 1997; Westbrook et al. 2000; Giagounidis et al. 2004; List et al. 

2004) and loss of chromosome 5 is extremely frequent in therapy-related 

MDS (Olney et al. 2002; List et al. 2004). NPM’s role in oncogenesis is 

controversial as it has been attributed with both oncogenic and tumour 

suppressive functions (Kondo et al. 1997; Colombo et al. 2002; Bertwistle et 

al. 2004; Kurki et al. 2004).

This line of evidence suggests a possible role of nucleophosmin in lineage 

decisions for the hematopoietic system.
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Since corneal neoplasias are an extremely rare event and they only have 

been associated with limbal epithelium (Kruse et al. 2000) and nucleophosmin 

has not been identified before in the corneal epithelium, this was an 

interesting target to further investigate, firstly to confirm its presence, and also 

in expression studies.

5.5.2 Conclusions

• The gene expression profile of basal cells of the limbal, peripheral and 

central cornea was realised.

• Mechanisms that potentially may regulate important biological functions 

of cells in the stem, TA and mature cell compartment were identified in 

order to direct further experiments assigning the genes in stem, early 

and late transient amplifying cells.

• Gene targets of interest were selected for further experiments to 

validate the microarray data and also confirm protein expression in the 

corneal epithelium
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Chapter 6
—   ♦

Confirmation and molecular characterization of 
Microarray targets.



6.1 A im s

• To test for array sensitivity and confirm the levels of selected mRNA 

transcripts indicated as upregulated in the corneal stem cell niche from 

the microarray data.

• To confirm protein expression of selected targets from the microarray 

data in corneal epithelial cells.

6.2 Introduction

To test for the sensitivity of the microarray experiments and confirm the levels 

of mRNA transcripts, several targets that were found to be up-regulated in the 

corneal stem cell compartment were chosen according to the following 

criteria:

To include targets that will not fulfil Presence/Absence criteria but will be 

designated as up-regulated by RMA analysis.

To include target genes that their raw intensity values as given by MAS5 

output software would scan from the lowest (150) to highest values (20000) 

and thus confirm array sensitivity.
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To test target genes that would be partners on potential fundamental control 

mechanisms of stem cells and/or could serve as stem cell markers.

The targets as well as details on their raw expression intensity value their P/A 

status and the test applied are designated in the following table:

150 Col4abp3 N R

150 PTGER4 N R & P

200 E2F5 N (marginal) R

220 TLR3 Y R & P

550 Areg Y P

550 SMC2 Y R&P

1000 Rbp1 Y R & P

1200 SMC4 Y R

1200 NEK2 1st prb Y2nd prb N R

5000 K14 Y P

10000 Nmp1 Y R&P*

15000 Aldh6a Y R

>20000 Catnbi Y P

Table 6.1 Lists the target genes selected for confirmation of array sensitivity purposes, 

their raw detection values, Presence-Absence criterion fulfilment and the tests that 

were applied to confirm expression.
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6.3 M aterials and m ethods

The methods used were Semiquantitative real time RT-PCR and 

Immunohistocytochemistry and are explained in detail in sections 2.1.12 and 

2.1.13.

The primers were designed by acquiring the mRNA sequence for the specific 

transcripts from NCBI’s public nucleotide sequence database available online 

at www.ncbi.nlm.nih.gov/entrez. Primer 3 software was used to design the 

primers publicly available online at http://frodo.wi.mit.edu/cgi- 

bin/primer3/primer3_www.cgi. The primer sequences together with detailed 

information and specifications are listed in Table A.1 in appendix A.

For immunohistochemistry experiments the antibodies and specific details 

are included in Table B.1 in appendix B. Eyes from three 12-week-old C57BL6 

male mice, which were different from the ones used for microarray analysis 

and RT-PCR studies. Nevertheless mice were kept on the same diet and diet 

plan as well as light conditions as the ones used for microarray and RT-PCR 

studies.
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6.4 Results.

6.4.1 Semiquantitative RT-PCR confirms up-regulated target 
expression in the corneal stem cell compartment.

6.4.1.1 Alcohol dehydrogenase 6 a mRNA is up regulated in the basal 
limbus
Semiquantitative analysis shown that the alcohol dehydrogenase 6 a 

transcript (Aldh6a) is up regulated in limbal epithelial basal cells in relation to 

peripheral and central corneal epithelial cells and basal and suprabasal cells 

of the conjunctiva. The fold change differences between the basal limbus and 

the rest of the areas as estimated by RT-PCR as well as by microarray 

analysis are listed in Table 6.2 . Figure 6.1 illustrates the relative expression 

of Aldh6a between regions as determined by semiquantitative RT-PCR using 

GAPDH as an internal control.

Areas
Limbus-Periphery

Limbus-Centre

Limbus-

Conjunctiva

Fold Difference as determined by: 

SQ-RT-PCR Microarray
3.29 2.77 (present)

4.98 4.76 (present)

4.84 3.97 (present)

Table 6.2 Lists the fold difference in abundance of Aldh6a transcripts between the 

basal limbus (Limbus) and the basal periphery (Periphery) and both basal and 

suprabasal conjunctiva (Conjunctiva). Present indicates the presence of the gene in 

the limbal arrays according to selection criteria.
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Figure 6.1. Semiquantitative real time RT-PCR of Aldh6a gene transcript expression 

confirms up-regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM 

Limbus ±1598, Periphery ± 810, Conjunctiva ± 654, Centre ±829.
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6.4.1.2 E2F transcription factor 5 (E2F5), p130-binding mRNA is up
regulated in the basal limbus

Semiquantitative analysis shown that the E2F transcription factor 5 (E2F5), 

p130-binding transcript (E2F5) is only expressed to a detectable level in limbal 

epithelial basal cells and undetectable in peripheral and central corneal 

epithelial cells and basal and suprabasal cells of the conjunctiva. This is 

showing that the specific probe set printed on the array might need 

redesigning since E2F5 was detected as marginally present from the array 

according to our criteria. In more detail it was MMA for limbus and conjunctiva 

and AAA for periphery and AAM for centre according to RMA analysis (where 

M is marginal, A is absent and P is present). Thus it was not included in the 

gene list since it had a 0.66 (<1) Presence absence criterion. Note that the 

fold difference indicated by the microarray when the actual gene of interest is 

called absent in the arrays that analyses the desired samples in not indicative 

of the actual abundance ratio, as expected.

The fold change differences between the basal limbus and the rest of the 

areas as estimated by RT-PCR as well as by microarray analysis is listed in 

Table 6.3

Figure 6.2 illustrates the relative expression of E2F5 between regions as 

determined by semiquantitative RT-PCR using GAPDH as an internal control.
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Fold Difference as determined by:

Areas

Limbus-Periphery

Limbus-Centre

Limbus-

Conjunctiva

SQ-RT-PCR

323.67

1922.42

1448.40

Microarray

2.56 (m.absent) 

3.79 (m.absent) 

3.02 (m.absent)

Table 6.3 Lists the fold difference in abundance of E2F5 transcripts between the basal 

limbus (Limbus) and the basal periphery (Periphery) and both basal and suprabasal 

conjunctiva (Conjunctiva). M.absent indicates the marginal absence (0.66) of the gene 

in the limbal arrays according to selection criteria.
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Figure 6. 1. Semiquantitative real time RT-PCR of E2F5 gene expression confirms up- 

regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM Limbus ±21.9 

Periphery ± 0.05, Conjunctiva ± 0.07, Centre ±0.05.
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6.4.1.3 Collagen, Type IV, alpha-3 binding protein (COL4A3BP) mRNA is
up regulated in the basal limbus

Semiquantitative analysis shown that the Collagen, Type IV, alpha-3 binding 

protein (COL4A3BP) transcript is only expressed to a detectable level in 

limbal epithelial basal cells and undetectable in peripheral and central corneal 

epithelial cells and basal and suprabasal cells of the conjunctiva.

The fold change differences between the basal limbus and the rest of the 

areas as estimated by RT-PCR as well as by microarray analysis is listed in 

Table 6.4

COL4A3BP was AAA (A indicates absent) in conjunctiva, basal periphery and 

centre and was called PAA in the basal limbal samples as determined by 

RMA analysis. Thus it was not included in the gene list since it had a 0.66 

Presence-Absence criterion. It has to be noted that although in that case the 

criteria were not fulfilled and although COL4A3BP has a very low raw 

detection intensity value, its mRNA was indeed found reproducibly (n=3) 

present only in the limbal basal cells.
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Fold Difference as determined by:

Areas
Limbus-Periphery

Limbus-Centre

Limbus-

Conjunctiva

SQ-RT-PCR
3491.71 

12040 

70.5 x 103

Microarray

5.81 (m.absent)

1.92 (m.absent)

23.15 (m.absent)

Table 6.4 Lists the fold difference in abundance of COL4A3BP transcripts between the 

basal limbus (Limbus) and the basal periphery (Periphery) and both basal and 

suprabasal conjunctiva (Conjunctiva). M.absent indicates the marginal absence (0.66) 

of the gene in the limbal arrays according to selection criteria.

226



Figure 6.3 illustrates the relative expression of COL4A3BP between regions 

as determined by semiquantitative RT-PCR using GAPDH as an internal 

control.

Col4abp3Q RT-PCR
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□  Limbus

□  Periphery

■  Conjunctiva

■  Centre

Area

Figure 6. 2 Semiquantitative real time RT-PCR of Col4abp3 gene expression confirms 

up-regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM Limbus ± 

2340.36, Periphery ± 0.68, Conjunctiva ± 0.02, Centre ±0.17.

*
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6.4.1.4 Prostaglandin E receptor 4 mRNA is up regulated in the basal 
limbus

Semiquantitative analysis shown that the Prostaglandin E receptor 4 (Ptger4) 

transcript is only expressed to a detectable level in limbal epithelial basal cells 

and undetectable in peripheral and central corneal epithelial cells and basal 

and suprabasal cells of the conjunctiva.

The fold change differences between the basal limbus and the rest of the 

areas as estimated by RT-PCR as well as by microarray analysis is listed in 

Table 6.5

Ptger4 was AAA (A indicates absent) in conjunctiva and basal periphery, MAA 

in the centre and was called MMA in the basal limbal samples as determined 

by RMA analysis. Thus it was not included in the gene list since it had a 0.66 

(<1) Presence-Absence criterion value. It has to be noted that like COL4A3BP 

, Ptger4 did not fulfil the Presence-Absence criteria and although it also has a 

very low raw detection intensity value, its mRNA was indeed found 

reproducibly (n=3) present only in the limbal basal cells.
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Fold Difference as determined by:

Areas
Limbus-Periphery

Limbus-Centre

Limbus-conj

SQ-RT-PCR
3491.71 

12040 

70.5 x103

Microarray

5.81 (m.absent)

1.92 (m.absent)

23.15 (m.absent)

Table 6.5 Lists the fold difference in abundance of Ptger4 transcripts between the basal 

limbus (Limbus) and the basal periphery (Periphery) and both basal and suprabasal 

conjunctiva (Conjunctiva). M absent indicates that the probe was called marginally 

absent by RMA analysis.
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Figure 6. 3. Semiquantitative real time RT-PCR of PTGER4 gene expression confirms 

up-regulation in the limbus.Ct refers to the cycle threshold (Ct) number. M Limbus ± 

737
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6.4.1.5 Retinol-binding protein I, cellular (RBP1) mRNA is up regulated in 
the basal limbus
Semiquantitative analysis shown that the retinol-binding protein I, cellular 

(RBP1) transcript is upregulated in limbal epithelial basal cells in relation to 

peripheral and central corneal basal epithelial cells and basal and suprabasal 

cells of the conjunctiva.

Figure 6.5 illustrates the relative expression of Aldh6a between regions as 

determined by semiquantitative RT-PCR using GAPDH as an internal control. 

The fold change differences between the basal limbus and the rest of the 

areas as estimated by RT-PCR as well as by microarray analysis is listed in 

Table 6.6

Fold Difference as determined by:

Areas SQ-RT-PCR Microarray

Limbus-Periphery 2.88 3.27 (Present)

Limbus-Centre 1.50 3.23(Present)

Limbus- 1.92 2.43(Present)

Conjunctiva

Table 6.6 Lists the fold difference in abundance of Rbp1 transcripts between the basal 

limbus (Limbus) and the basal periphery (Periphery) and both basal and suprabasal 

conjunctiva (Conjunctiva).
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RBP1 Q RT-PCR
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Figure 6. 5 Semiquantitative real time RT-PCR of Rbp1 gene expression confirms up- 

regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM Limbus ± 

374, Periphery ±113, Conjunctiva ± 334, Centre ±490.
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6.4.1.6 SMC2 structural maintenance of chromosomes 2-like 1 (yeast) 
mRNA is up regulated in the basal limbus

SMC2 structural maintenance of chromosomes 2-like 1 (yeast) is also called 

SMC2 (SMC2). The official name indicates that this gene is the homologue of 

the yeast SMC2, also called SMC2 in humans and mice.

Semiquantitative analysis shown that the SMC2 gene transcript is up- 

regulated in limbal epithelial basal cells in relation to peripheral, central, 

corneal basal epithelial cells as well as in basal and suprabasal cells of the 

conjunctiva. It was undetectable by RT-PCR in the basal periphery and 

conjunctiva. As it is obvious in fig. 6.6, central basal cells the standard 

deviation is larger than the mean. This is because the relative expression 

value of only one experiment was 3217.15241 but the other two repetitions were 

564 and 560 respectively bringing the standard deviation at a value of 1532 

whereas the mean was 1447.60981. That inconsistency is discussed in this 

chapter’s discussion.

Figure 6.6 illustrates the relative expression of SMC2 between regions as 

determined by semiquantitative RT-PCR using GAPDH as an internal control. 

The fold change differences between the basal limbus and the rest of the 

areas as estimated by RT-PCR as well as by microarray analysis is listed in 

Table 6.6
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Fold Difference as determined by:

Areas

Limbus-Periphery

Lim bus-Centre

Limbus-

Conjunctiva

SQ-RT-PCR

646.11

718 .82

4.82

Microarray 

2.11 (Absent)

1.67 (Absent) 

2.89 (Present)

Table 6.7 Lists the fold difference in the abundance of SMC2 transcripts between the 

basal limbus (Limbus) and the basal periphery (Periphery) and both basal and 

suprabasal conjunctiva (Conjunctiva). Absent ad Present refer to the presence 

absence call of the array.

SMC2Q RT-PCR

□ Limbus

□  Periphery

■  Conjunctiva

■  Centre

Figure 6. 4. Semiquantitative real time RT-PCR of SMC2 gene expression confirms up-

regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SD Limbus 230,

centre 1532

ouuu
Limbus

7000

5000

2000

Periphery Conjunctiva

Areas
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6.4.1.7 SMC4 structural maintenance of chromosomes 4-like 1 (yeast)
mRNA is up regulated in the basal limbus

SMC4 structural maintenance of chromosomes 2-like 1 (yeast) is also called 

SMC4 (SMC4). The official name indicates that this gene is the homologue of 

the yeast SMC4, also called SMC4 in humans and mice.

Semiquantitative analysis shown that the SMC4 transcript is upregulated in 

limbal epithelial basal cells in relation to peripheral and central corneal basal 

epithelial cells and basal and suprabasal cells of the conjunctiva.

Figure 6.7 illustrates the relative expression of SMC4 between regions as 

determined by semiquantitative RT-PCR using GAPDH as an internal control. 

The fold change differences between the basal limbus and the rest of the 

areas as estimated by RT-PCR as well as by microarray analysis is listed in 

Table 6.8
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Areas

Limbus-Periphery

Lim bus-Centre

Limbus-Conjunc.

Fold Difference as determined by: 

SQ-RT-PCR Microarray

1.74 1.73 (Present)

4 .1 3  1.80 (Present)

2.61 2.17 (Present)

Table 6.8 Lists the fold difference in abundance of SMC4 transcripts between the basal 

limbus (Limbus) and the basal periphery (Periphery) and both basal and suprabasal 

conjunctiva (Conjunctiva).

SMC4 Q RT-PCR

Limbus

25000

20000

15000

10000 II pi 1ciy
Conjunctive nn

1

Area

■ Limbus
□ Periphery

■ Conjunctiva
■ Centre

Figure 6. 5 Semiquantitative real time RT-PCR of SMC4 gene expression confirms up-

regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM Limbus ±

1365, Periphery ± 784, Conjunctiva ± 330, Centre ±522.
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6.4.1.8 Toll-like Receptor 3 mRNA is up regulated in the basal limbus

Semiquantitative analysis shown that the Toll-like Receptor 3 transcript (Tlr3) 

is only expressed, to a detectable level, in limbal epithelial basal cells and is 

undetectable in peripheral and central corneal epithelial cells and basal as 

well as in suprabasal cells of the conjunctiva. The transcript was found to be 

PMM in the basal limbal, PPM in the conjunctiva and MMA and AAA in 

peripheral and central basal corneal samples respectively. It did fulfill the 

Presence-Absence criteria and therefore was included in the gene list. As it 

can be seen in figure 6.8 it was absent in all other samples apart from the 

limbal one. It is surprising that there was consistently (n=3) no detection in the 

conjunctiva sample in SQ RT-PCR experiment. The raw detection level was 

low, however this is not enough to explain the controversy since for example 

COL4A3BP which has comparable raw detection levels on the array was 

called PAA according to RMA analysis. This might be indicative of a probe set 

that does not exhibit optimal performance in low abundances of transcripts. 

Nevertheless due to our selection criteria robustness the gene was included in 

the final list. The criteria are not only robust but also very strict as indicated by 

the COL4A3BP confirmation study.
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Toll like receptor 3 Q RT-PCR
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□  Limbus
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□  Periphery

■  Conjunctiva
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1

Areas

Figure 6. 6. Semiquantitative real time RT-PCR of TLR3 gene expression confirms up- 

regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM Limbus ±162, 

Periphery ± 0.3, Conjunctiva ±0.2, Centre ±0.8.

Conjunctiva

Table 6.9 Lists the fold difference in abundance of Tlr3 transcripts between the basal 

limbus (Limbus) and the basal periphery (Periphery) and both basal and suprabasal 

conjunctiva (Conjunctiva). Present indicated the fulfilment of Presence-Absence 

criterion for the basal limbal samples as determined by RMA analysis.

Areas

Limbus-Periphery

Limbus-Centre

Fold Difference as determined by: 

SQ-RT-PCR Microarray

Limbus-

1673.75  3 .16  (Present)

1835.86  2 .58  (Present)

1193.72  1.93 (Present)
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6.4.1.9 NIMA (never in mitosis gene a)-related expressed kinase 2 (Nek2)
mRNA is up regulated in the basal limbus

Semiquantitative analysis shown that the NIMA (never in mitosis gene a)- 

related expressed kinase 2 (Nek2) transcript is upregulated in limbal epithelial 

basal cells in relation to peripheral and central corneal basal epithelial cells 

and basal and suprabasal cells of the conjunctiva. The transcript was 

represented by two probe-sets on the arrays. It was consistently and strongly 

present in only one of the two probe-sets on the arrays and was reproducibly 

shown as up-regulated in the limbus by both arrays (only one probe set) and 

SQ RT-PCR (n=3). This inconsistency between the two probe sets was the 

reason it was not included in the gene list. It is a rather large transcript (3121 

nucleotides long). It was impossible unfortunately to obtain probe design 

information in order to be able to explain why the specific probe set was called 

absent in all samples.

Figure 6.9 illustrates the relative expression of Nek2 between regions as 

determined by semiquantitative RT-PCR using GAPDH as an internal control. 

The fold change differences between the basal limbus and the rest of the 

areas as estimated by RT-PCR as well as by microarray analysis are listed in 

Table 6.10. Note that for these calculations only value from the present probe 

set were used.
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Fold Difference as determined by:

Areas SQ-RT-PCR Microarray

Limbus-Periphery 2.88 3.23 (Present)

Limbus-Centre 1.50 3.27(Present)

Limbus- 1.92 2.43(Present)

Conjunctiva

Table 6.10 Lists the fold difference in abundance of Nek2 transcripts between the basal 

limbus (Limbus) and the basal periphery (Periphery) and both basal and suprabasal 

conjunctiva (Conjunctiva). Present indicated the fulfilment of Presence-Absence 

criterion for the basal limbal samples as determined by RMA analysis.
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Figure 6. 7 Semiquantitative real time RT-PCR of Nek2 gene expression confirms up-

regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM Limbus ±640,

Periphery ±239, Conjunctiva ±521, Centre ±423.
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6.4.1.10 Nucleophosmin 1 (Nmp1) mRNA is up regulated in the basal
limbus

Semiquantitative analysis shown that Nucleophosmin 1 (Nmp1) transcript is 

upregulated in limbal epithelial basal cells in relation to peripheral and central 

corneal basal epithelial cells and basal and suprabasal cells of the 

conjunctiva. It was shown to be strongly present in all samples and 

repetitions.

Areas
Limbus-Periphery

Limbus-Centre

Limbus-

Conjunctiva

Fold Difference as determined by: 

SQ-RT-PCR Microarray

3.78 3.76 (Present)

2.36 4.06 (Present)

2.16 3.29 (Present)

Table 6.11 Lists the fold difference in abundance of Nmp1 transcripts between the 

basal limbus (Limbus) and the basal periphery (Periphery) and both basal and 

suprabasal conjunctiva (Conjunctiva). Present indicated the fulfilment of Presence- 

Absence criterion for the basal limbal samples as determined by RMA analysis.

241



Nucleophosmin Q RT-PCR

o  ^

CM %
II W  
c ro 
O K

'</>
</> ( j

l i
*2 Q
•1 <  ro O 
o> '—'a:

250000

200000

150000

100000

50000

0

Limbus

Periphery

I

Conjunctiva QeI tre

1

Area

□  Limbus

□  Periphery

■  Conjunctiva

■  Centre

Figure 6.8. Semiquantitative real time RT-PCR of Nucleophosmin 1 gene expression 

confirms up-regulation in the limbus.Ct refers to the cycle threshold (Ct) number. SEM 

Limbus ±4778, Periphery ±1407, Conjunctiva ±3998, Centre ±34300.
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6.4.2 Protein expression as assessed by immunohistochemistry studies 
on selected targets.
The immunohistochemistry results are presented in figures 6.11-6.13in

The results are summarized in table 6.12 bellow

Protein Limbus Periphery Centre reactive? Specificity

K14 S - s- S- Y ++

B +++ B- B++

Areg S++ S++ S++ Y ++

B++ B++ B++

Beta NA NA NA Y -

Catenin

Rbp1 NA NA NA Y -

SMC2 - - - Y -

TLR3 + + NA Y -

Nmp1 ++ + + Y -

PTGER4 ++ ++ + Y +

Localisation

cytoplasm

nuclear

membrane

NR 

NR

membrane 

Apical memb

Table 6.12 Summary of immunohistochemisrty results. S and B refers to suprabasal 

and basal respectively, NR refers to not relevant (since unspecific). + refers, to weakly 

positive immunoreactivity or weak specificity. ++ and +++ means strong and stronger 

respective immunoreactivity or specificity. Y indicates that the antibody was reactive 

for the experimental and negative for the control samples.
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Figure 6.9. Immunohistochemical localisation of Keratin 14 (A&B), Amphiregulin (C&D), 

p-catenin (E&F) in the central cornea, designated as ‘Ce’ (A,C,E) peripheral cornea 

designated an ‘Pe’ ( B,D,F) and limbus, designated as ‘Li’ (B,D,F). Calibration bar ( A-F) 

= 100pm



H

H oechst33345 
Nmp1

Hoechst 33345 
SMC2

Figure 6. 10. Immunohistochemical localisation of Retinol binding protein 1 (A&B), 

nucleophosmin 1 (C&D), and SMC2 (E&F) in the central cornea, designated as ‘Ce’ 

(A,C,E) peripheral cornea designated an ‘Pe’ ( B,D,F) and limbus, designated as ‘Li’ 

(B,D,F). Calibration bar ( A-F) = 100pm
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Hoechst 33345 
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Figure 6. 11. Immunohistochemical localisation of Toll like receptor 3 (A), 

Prostaglandin E receptor 4 (B), p-catenin (E&F) in the central cornea, designated as 

‘Ce’ (A,C,E) peripheral cornea designated an ‘Pe’ ( B,D,F) and limbus, designated as ‘Li’ 

(B,D,F). Calibration bar ( A>F) = 100pm
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Although the results were positive, since the antibody immunoreacted only 

with experimental samples and not the negative control, the lack of positive 

control is evidently inhibiting the declaration of a positive statement that the 

proteins are indeed expressed, with the exception perhaps of Keratin 14 and 

amphiregulin. As mentioned earlier, due to the enormity of the data that was 

acquired with high density oligonucleotide array analysis of the basal epithelia 

of essentially the complete cornea and the restriction of time for the 

completion of this Ph.D. research much of the protein expression studies were 

impossible to finish thoroughly. For this reason the study was more focussed 

towards the confirmation of the array sensitivity which was indeed found to be 

reproducibly sensitive for nearly all the target genes that were cross-studied 

by semiquantitative RT-PCR.

Further studies on these and other targets will involve a thorough 

immunohistochemical investigation of protein localisation in the cornea and 

will be coupled with western-blot analysis. Localisation of mRNA transcripts 

will be facilitated in future studies with RNA in-situ hybridization studies.

Conclusions:

The quantitation of expression using high density oligonucleotide arrays 

and performing RMA analysis and filtering by this study’s selection 

criteria was able to deliver target genes that reflected true differences in 

mRNA levels between basal cells of the epithelia that were studied.
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Chapter 7
-  —  -  +

General Discussion



7.0 General Discussion

7.1 Summary of results

This study’s main hypothesis was that cells at different levels of the corneal 

stem cell hierarchy, which exist in different regions of the cornea, were 

differentially regulated at the transcriptional level, and that those differences 

can be revealed by employing single cell laser capture as well as mRNA 

amplification to analyse their complete transcriptome by high density 

oligonucleotide arrays.

By isolating single cells from the basal layers of the limbus, peripheral and 

central cornea, and conjunctiva, the global gene expression profile of cells at 

consecutive stages of the corneal stem cell hierarchy were revealed.

Firstly, techniques that allowed the isolation of single cells from histological 

sections in a manner that would not compromise the quality of RNA were 

developed. Laser catapult microdissection was found to be the optimal 

method, since it could yield total RNA of high purity and integrity.

Then a method for RNA amplification which ensured that all genes 

represented in the same proportions, as before amplification, was developed 

so that the data of differential gene expression obtained from microarrays was 

accurate. Thus a linear amplification method, which amplified all the mRNA 

transcripts of a given sample, derived from pools of single cells, to a degree 

that could be analysed by high density oligonucleotide arrays, was optimised.
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This included the use of control exogenous mRNA transcripts to monitor and 

ensure linear amplification of experimental transcripts.

The performance of microarrays to analyse differential gene expression in 

basal cells of the corneal limbus, periphery and centre and conjunctiva 

generated a huge amount of data. In order to analyse such overwhelming 

amount of data, appropriate mathematical methods were identified and 

employed. These included the use of Robust Multiarray Average method. The 

list of genes that were specifically and reproducibly up-regulated in each of 

the stages of the corneal stem cell hierarchy was obtained as a result. 

Clustering probabilistic methods that assign gene clusters according to gene 

ontology were used to reduce data complexity and be able to visualise 

complete clusters of biological activity, cellular components or that are up or 

down regulated in each cell population. Array sensitivity was confirmed by 

semiquantitative RT-PCR.

The specificity of gene expression is subject to further investigation however. 

This is because although the study compared a stem cell enriched population 

of cells with populations containing no stem cells, it is more likely that not all 

biological variation between populations is due to this difference in population 

identity (i.e. stem cell or TA cell) but could for example be arising due to the 

microenvironment each population was isolated from. Therefore in order to 

specify further, the target genes can be studied using loss of function and over 

expression methods in clonal assays.
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These genes require further investigation in order to understand what really 

governs stem cell regulation, as well as the regulation of transient amplifying 

cells of different stages of the lineage and mature cells in the cornea. Thus the 

results of this study will facilitate future research into understanding such 

mechanisms and may be exploited for therapeutic purposes, either by 

identifying pathological mechanisms and/or by culturing corneal limbal stem 

cells for transplantation.

Probing into putative mechanisms, the following discussion attempts to offer 

initial observations as to the importance of some of the differentially 

expressed genes, identified in this thesis, in the regulation of corneal epithelial 

cell homeostasis.

7.2. Putative regulatory mechanisms of corneal stem cells, as well as 

cells in early and late stages of the corneal stem cell hierarchy.

7.2.1 Chromatin remodeling and histone modification mechanisms in the 

corneal stem cell compartment

It was observed in this study that genes that are responsible for histone 

modifications and chromatin remodeling were differentially regulated between 

the corneal epithelial stem cell compartment and the rest of the corneal 

epithelium. Namely, genes coding for structural maintenance of chromosomes 

proteins 2 and 4 as well as for, protein phosphatase 1, catalytic subunit, beta 

isoform (Ppplcb), were up-regulated in the basal limbus. In contrast, special
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AT-rich sequence binding protein 1 (SATB1) was downregulated. The 

possible significance of those findings is discussed below.

As was detailed in the introduction, the main way to switch complete gene 

programs on and off is provided by histone modifications. Histone H3 de- 

acetylation of Lys9 is possibly mediated by phosphorylation of Ser10 (by 

mitotic kinases e.g. aurora kinase b) and subsequent methylation of Lys9 and 

tethering of a heterochromatin protein (HP) to this site which results in 

condensation and/or inability of transcription factors to reach the 

heterochromatin as well as neighbouring regions.

There are indications arising from this study that histone H3 Ser10 

phosphorylation might be inhibited and methylation of Iys9 might be induced in 

cells of the cornel stem cell niche, since they over-express both SATB1 and 

Ppplcb and express Aurora kinase b at basal levels.

Phosphatase 1 (PP1) is known to directly inhibit Aurora kinase b mediated 

phosphorylation of Histone 3 during interphase (Murnion et al. 2001). Since 

limbal basal epithelial cells over express protein phosphatase 1, catalytic 

subunit, beta isoform (Ppplcb) and are also expressing aurora kinase b, 

although at basal levels as revealed by this microarray study, this kind of 

inhibition could be active in cells of the corneal stem cell compartment. Note 

that the low levels of Aurora kinase B are perhaps not surprising since this is a 

mitotic kinase and only 10% of cells in the basal limbus of mice were shown to

252



be dividing at any given time as determined by label retaining studies 

(Cotsarelis et al. 1989)

A gene program switching system can be proposed in which Aurora kinase B 

activity, which would normally phosphorylated Ser 10 of H3 coinciding with 

acetylation of Lys 9 and therefore formation of euchromatin and transcriptional 

activation of specific genes, is hindered by Ppplcd activity (see figure 8.1 b). 

This would indicate that gene programs are being switched off and others are 

switched on as the cell progresses down the differentiation pathway.

The hypothesis is further supported by the fact that the gene that constituted 

the downregulated cluster of histone methylation ontology was SATB1. The 

down regulation of SATB1, specifically in the corneal basal limbus, implies 

that stem cells of the corneal limbus silence some of their genes which are 

being
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Figure 7.1 Putative model of gene switching upon consecutive early lineage steps in the 
corneal stem cell compartment. Sets of active genes in the earlier cell (grey) are 
switching to later lineage gene programs (red). Thin regions of chromosomes indicate 
euchromatin and thick heterochromatin. Ppplcd could hinder acetylation of Lys9 and 
therefore activation of chromosomal regions mediated by phosphorylation of Ser10 by 
Aurora kinase b and keeps the TA genes off. Then acetylation of Lys9 and activation of 
those regions could be enhanced in TA cells which would not have Pppclb there to 
safeguard the methylation of Lys9 further enhanced by the presence of SATB1.
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histone methylation-acetylation to switch gene programs off or on depending 

on stem or TA identity respectively. Recapitulating, specific transcriptional 

repression of SATB1 in basal limbal cells indicates the significance of this 

repression in preserving the memory-switch to the stem cell position i.e. 

sternness genes on others off (see figure 8.1).

It would be interesting to further study the state of histone methylation and 

acetylation in the context of corneal stem and TA cells. However, there is a 

lack in specific antibodies, as well as mutants for methylated or acetylated 

histones, making such a task more difficult. Additionally, such mutants in 

higher mammals are likely to be lethal. The best way maybe to study these 

mechanisms would be in transgenic animals with targeted (tissue-specific) 

conditionally inducible cassettes for the genes of interest for either over

expression of wild type or mutant proteins. Of importance, is that Keratin 14 

was shown to be over expressed in the basal limbus. The K14 gene promoter 

might serve as a good candidate for the generation of such mice.

7.2.2 Retinoic acid metabolism mechanism in corneal stem cells

Both alcohol dehydrogenase 6 and cellular retinol binding protein 1 gene 

transcripts were found exclusively upregulated in the corneal epithelial stem 

cell compartment. The cellular transport and biological activity of retinoids may 

be mediated by their specific cytoplasmic binding proteins namely cellular 

retinol binding protein (CRBP) and the cellular retinoic acid binding protein 

(CRABP) which may function as shuttles, targeting retinoic acid (RA) to 

nucleosol fraction and/or as a regulator of the cellular concentration of RA
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(Comic et al. 1992). All-trans retinoic acid is known to induce cellular retinol- 

binding protein in human skin in vivo (Fisher et al. 1995).

Hard evidence of a mechanism that controls intracellular levels of retinoic acid 

came from a study that has shown that the opposing actions of cellular retinol- 

binding protein and alcohol dehydrogenase control the balance between 

retinol storage and degradation (Molotkov et al. 2004).

For cells that express CRBP1, most intracellular retinol is bound non- 

covalently to CRBP1, leaving very little free retinol (Ross et al. 1993, Napoli et 

al. 1999). The small fraction of free retinol always remains and is oxidised by 

alcohol dehydrogenases, forming retinaldehyde which is then converted to 

retinoic acid by oxidation (Molotkov et al. 2004)

In corneal epithelial cells, in vivo studies indicate that a retinoic acid mediated 

control plays an important role on corneal stem cell proliferation. All-trans 

retinoic acid reverses conjunctivalisation of the cornea after epithelial 

denudation, four months post injury. This could imply that retinoic acid induces 

proliferation of corneal epithelial stem cells. Long term reconstitution cannot 

be assumed since corneas were followed for 32 days (Tseng et al. 1988).

In vitro studies on corneal epithelial cells show a dose-dependent manner of 

retinoic acid control of stem cell proliferation and differentiation (Kruse et al. 

1994). Low concentrations of retinoic acid (10‘9 to 10'7 M) stimulated the 

colony forming efficiency of limbal cultures but did not change that of
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peripheral corneal cultures. In the latter, a concentration of 10'8 M induced the 

emergence of two new types of colonies, one of which exhibited clues of self 

renewal. Retinoic acid concentrations above 10'8 M stimulated normal 

differentiation of both limbal and peripheral corneal epithelial cells (Kruse et al. 

1994).

The conclusion that arises from the above studies is that it seems that corneal 

epithelial stem cells have a specific up-take threshold of retinoic acid. If that 

threshold is saturated than several differentiation mechanisms start taking 

place.

As this study indicates, corneal epithelial stem cells possibly control their 

intracellular level of retinoic acid by CRBP1 and Adh6a. A possible 

mechanism could involve both of these proteins, in controlling the levels of 

available retinoic acid inside the cell. In such mechanism, CRBP1 would work 

as a buffer of retinoic acid by storing retinol which is needed for retinoic acid 

production. In turn ADH6, being also expressed, could be converting the 

remaining retinol to retinaldehyde, making it available for oxidation and 

retinoic acid production. The balance of these two factors therefore could 

serve a mechanism of retinoic acid availability, which in turn has been 

recognised as a major mechanism controlling stem cell proliferation and/or 

differentiation. To verify that, further experiments that will include clonal 

analysis of cells under the influence of different concentrations of retinol, 

conducted on wild type cells and cells in which the target genes are altered 

using loss of function and overexpression methods can be used
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7.2.3 Insight into asymmetric cell division of basal cells of the 

corneal stem cell compartment.

7.2.3.1 Possible roles of p-catenin related mechanisms in the corneal 

stem cell niche.

It was obvious that P-catenin was upregulated at the transcriptional level in 

the corneal stem cell niche. Although confirmation of protein expression and 

intracellular localisation of the p-catenin protein was not possible, because b- 

catenin activation and subsequent translocation to the nucleus is transient, the 

role of p-catenin in corneal stem cells can be possibly explained by carefully 

observing the literature on p-catenin and related molecules in other stem 

cells.

Transient activation of p-catenin signaling by nuclear localisation in adult 

mouse epidermis is sufficient to induce new hair follicles and continuous 

activation induces hyperproliferation of those cells (Lo Celso et al. 2004). This 

is indicative that catenin acts, in part, in a concentration dependent manner
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pinpointing that the level and localisation of expression of p-catenin is a very 

important determinant of cell fate for adult mouse epidermis stem cells.

Further evidence of dose dependent inhibition of embryonic stem 

differentiation has been previously reported in experiments where increased 

doses of nuclear p-catenin by specific APC mutations abolished the ability 

and sensitivity of ES cells to differentiate into the three germ layers (Kielman 

et al. 2003)

The significance of p-catenin related mechanisms in epithelial stem cells

The nuclear p-catenin/TCF signalling pathway is essential for the 

maintenance of epithelial stem cells in the small intestine. The proliferative 

compartment was depleted of stem cells in TCF4 double knock-outs, which 

die shortly after birth. (Korinek 1998).

Follicular epithelial stem cells show a 75% reduction in number as determined 

by label retaining experiments, when targeted expression of c-Myc oncogene 

which is a downstream target of the of p-catenin/TCF complex, is directed to 

basal cells of the follicular epithelial stem cell compartment using the K14 

promoter (Waikel et al 2001).

How could p-catenin participate in asymmetric or symmetric cell division in 

stem cells? Are there any other possible factors that are likely to be acting 

together with p-catenin in such decisions?
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Other factors which are likely to be involved in such mechanisms

The position of the mitotic spindle plays a key role in the spatial control of cell 

division. Polarity cues in combination with the control of spindle orientation 

ensure the correct segregation of cell-fate determinants during development 

(Gonczy et al. 2002). The correct spindle position is achieved through 

interactions between spindle, astral MT and cortical actin. Interestingly, in the 

Drosophila embryo, the p-catenin homolog Armadillo is required to tether the 

spindle to cortical actin (McCartney et al. 2001). This complex contains a- 

catenin, p-catenin and a protein related to APC, and it is likely to interact with 

a protein of the EB1 family which localises to the plus end of growing MT (Su 

et al 1995). The same type of complex might allow cadherin/catenin to 

regulate MT dynamics in interphasic cells.

Asymmetrically distributed DE-cadherin is essential to determine the mitotic 

spindle orientation (Borgne et al. 2002). The small GTPase Cdc42, acting 

through a Par6 - atypical protein kinase C (aPKC) complex, is also required to 

establish asymmetric cell division. Whether Cdc42 regulates glycogen 

synthase kinase-3p and APC in the context of asymmetric cell division 

remains to be determined (Etienne-Manneville et. al.2003) CDC42, a small 

Rho GTPase, regulates the formation of F-actin-containing structures through 

its interaction with the downstream effecter proteins.
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Possible involvement of Cdc42ep3 in the regulation of asymmetric 

division of corneal stem cells.

This thesis demonstrated that corneal limbal basal cells have upregulated 

Cdc42ep3 transcripts (Cdc42 effecter protein, Rho GTPase binding, 3). 

Cdc42ep3 is a member of the Borg family and contains a CRIB (Cdc42/Rac 

interactive-binding) domain. CRIB domain containing proteins bind to, and 

negatively regulate the function of, CDC42. Cdc42ep3 can interact with 

CDC42, as well as with the ras homolog gene family, member Q 

(ARHQ/TC10). Keeping that fact under consideration the discussion is 

continued in order to show why that would be of importance.

It has been previously reported that disruption of F-actin causes a loss of 

cortical association of LGN31. Thus basal limbal cells which over express 

cdc42ep3 are likely to have disrupted F-actin. Cortical association of LGN 

protein is essential for the formation of a LGN-mlnsc-Par3 complex at the 

apical side of the dividing basal epithelial cells in the epidermis (Lechler et al. 

2005).

The apical LGN-mlnsc-Par3 crescent, as well as, the apical localisation of 

NuMA-dynactin complex is dictated by the apical localisation of atypical 

protein kinase C (PKCz in epidermal cells).

Those two crescents are composed of proteins whose drosophila, yeast or c- 

elegance homologues are involved in the polarisation of differentiation 

determinants such as Ash1 as well as in specification of maternal type



switching in yeast by the HO endonuclease dependent definition of 

attenuation of maternal cell.

So far PKCz has been shown to always localise at the apical side of a basal 

cell in an integrin p1 or catenin-a manner. It can therefore be proposed that 

apical localisation of atypical protein kinase C and therefore of the LGN- 

mlnsc-Par3 and NuMA-dynactin crescents is dependent both on adhesion to 

the basal membrane through integrins and adherens junction dependent 

adhesion of a stable F-actin-cadherin link through a stable b-catenin/a-catenin 

complex in epithelial cells of the epidermis in mice. Therefore the apical 

localisation of those two crescents could serve as a molecular centre for the 

association of key cell commitment or differentiation factors, just as the 

basally oriented integrins are known to form a localisation site for growth- 

promoting factors. Thus an epithelial cell, by attaching to the basement 

membrane and to its neighbors, can form a vertical axis of cell* division by 

asymmetric distribution of key components.

Basal epithelial of tongue and epidermal epithelial cells of p63 knockouts mice 

have been shown that loose their ability to asymmetrically localise those 

components and divide symmetrically in a perpendicular axis.

262



Figure 7.1. The apical localisation of the LGN- mlnsc-Par3 and Numa-Dynactin 

crescents in a PKCZ dependent manner is illustrated. This localisation has been 

shown to be controlled at least in part by Cdc42 protein. Cdc42ep3 negatively 

regulates Cdc42 through its CRIB domain. The possible role(s) of cdc42ep3 in this 

mechanism is illustrated.
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Since Cdc42efector protein is indeed expressed by corneal stem cells, it 

would be valuable to determine whether it acts on disrupting F-actin 

association with the p-catenin/a-catenin complex and if that disruption leads to 

symmetric cell division which in the case of a stem cell would mean self 

renewal.

As discussed in the introduction, corneal stem cells in order to maintain 

homeostasis of the corneal epithelium, especially in the case of an injury, can 

modulate their self renewal frequency. They therefore could possibly modulate 

their perpendicular or vertical cell division with a resulting symmetric or 

asymmetric distribution of cell fate determinants respectively. Thus Cdc42 

effector protein, as well as p63, although likely to be in the core of a stem cell 

fate control mechanism for corneal stem cells, further investigation is needed 

into what kind of other interactions would govern the dynamics of such 

decisions in stem cells.

Also, apical localisation of those crescents is not enough to explain how cells 

can control in what direction to divide. Additionally it needs to be specified 

which specific cells in the hierarchy and more specifically in the stem cell 

compartment express the proteins so that we can understand if we are likely 

to have successive asymmetries resulting in a TA cell or self renewal through 

just one asymmetrical cell division at the stem cell level.
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Nevertheless, the study sets a promising frame for further studies into such 

dynamics. A good candidate strategy of controlling the directionality of such 

decisions could be changes in membrane potential that pass from cell to cell 

through gap junctions. Taking under consideration the fact that corneal basal 

limbal cells lack connexins 43 and 50, together with the fact that corneal stem 

cells self renew to a higher rate, even immediately after a central corneal 

wound, pinpoints towards a role for gap junctions in altering tissue dynamics. 

Messages of altered tissue dynamics may travel through gap junctions to the 

basal limbal transient amplifying (TA) cells, changing the local dynamics of the 

basal limbus and thus, changing the self renewal frequency of stem cells. 

When the message reaches TA cells, they start dividing thereby loosing their 

adherence junction connection to stem cells. This could in turn be the key 

message for stem cell fate decision mechanisms. A possible mechanism that 

could alter the dynamics up to the transitional zone between the limbus and 

the periphery is discussed in the next section.
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7.2.4 Putative role of a Calcium-Nitric oxide dependent mechanism 

in corneal epithelial homeostasis

The role of regulation of the levels of nitric oxide in corneal epithelium 

homeostasis remains unknown. However there are reports of upregulated 

nitric oxide synthase (NOS) under inflammation (Sennlaub et. al. 1999; Kim et 

al. 2002). It has to be noted that the cornea is a tissue under constant contact 

with oxygen.

NOS catalyses the formation of nitric oxide from arginine and O2 . Once 

formed, nitric oxide diffuses only locally through tissues and is highly labile 

since it is a free radical allowing for quick interactions. It plays an important 

role in mediating many local cellular interactions. For example, release of 

acetylcholine from adjacent tissues promotes influx of Ca2+ into endothelial 

cells lining blood vessels. After Ca2+ binds to calmodulin, the resulting 

complex stimulates the activity of NO synthase (Sato and Murota 1995). The 

nitric oxide that is formed diffuses from the endothelial cell and into 

neighbouring smooth muscle cells where it binds to and activates soluble 

guanylate cyclase resulting in increased cGMP levels (Sato and Murota 

1995).

Potential factors involved in NO related mechanisms of homeostatic 

control of the corneal epithelium

Both calcium/calmodulin-dependent protein kinase Camkld and 

dimethylarginine dimethylaminohydrolase 1 Ddahl were upregulated at the 

transcriptional level in the basal periphery. DDAH1 is an enzyme that
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metabolises methylated arginine to citrulline and methylamine, thus working to 

produce nitric oxide (NO) (Mishima 2004). Camkld has recently been 

identified as a Ca (++)/calmodulin-dependent kinase (Verploegen et al. 2000). 

Additionally caveolin, caveolae protein 1 (Cav1), a negative regulator of nitric 

oxide synthesis (Sato et al. 2004) is depleted in the peripheral cornea.

These findings suggest that the nitric oxide regulatory mechanism involving 

calcium is active in the peripheral corneal epithelium. This could serve as a 

regulatory mechanism of homeostasis. If the calcium balance changes an NO 

signal could quickly diffuse in neighbouring epithelial or stromal cells and 

signal for the change in local tissue dynamics in less then 30 seconds.

It could be that NO levels and intracellular calcium mobilisation are co

regulated in peripheral corneal epithelial cells. Transglutaminase 2 activity can 

be inhibited by nitrosylation of up to 15 of the 18 of its cysteine residues in a 

Ca+2 dependent manner (Lai et al. 2001). This is intriguing since 

Transglutaminase 2 (TG2) is a protein involved in a variety of mechanisms. 

Membrane bound TG2 can act as a signalling mechanism from seven 

transmembrane helix receptors to phospholipase C (lismaa et al. 2000). 

Phospholipase C is activated when relieved of its inhibition by GDP-TG2 

upon TG2 binding to GTP (Murthy et al 1999).

TG2 activated by Ca2+ interacts with and modifies major components of the 

cytoskeleton. It has been shown that upon retinoic acid treatment, 

transamidation of RhoA in a TG2-dependent manner induces the binding of 

RhoA GTPase to ROCK-2 protein kinase, subsequent autophosphorylation of
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ROCK-2 and phosphorylation of vimentin which can lead to the formation of 

stress fibres and increased cell adhesion (Singh et al. 2001). These events 

are prevented by TG2 inhibition. Therefore inhibiting the activity of 

transglutanminase 2 by nitrosylation of the cysteine residues could serve as a 

constant “proliferate and migrate” signal on TA cells of the periphery.

It was observed in previous studies that clusters of 5-10 basally located cells 

termed “transitional cells” situated in the peripheral corneal epithelium in areas 

near the transitional zone of the periphery to the limbus exits in vimentin 

positive foci (Lauweryns et al. 1993). The nitric oxide-calcium mechanisms 

could potentially act through transglutaminase 2 in transitional cells; signal 

them to proliferate upon damage in the centre or the periphery, therefore 

contributing to homeostasis of the corneal epithelium. If this mechanism is 

indeed active, its influence on decisions in the limbal epithelium need to 

determined. It would be interesting to further investigate this control, although 

if so, it would be essential to address those mechanisms both under 

physiological conditions and upon wounding.

7.2.5 COL4A3BP and ceramide metabolism in limbal basal 

epithelial cells might give an indication of G-protein coupled 

receptor inhibition

Raya et al. (1999) identified a HeLa cell cDNA encoding a deduced 624- 

amino acid protein, designated COL4A3BP. Raya et al. (1999) termed the 

protein GPBP (Goodpasture antigen-binding protein). GPBP was initially 

identified as a protein that could bind a carboxy-terminal non-collagenous
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region of human collagen alpha3 (IV) chain in a cell-free system (Raya et al. 

1999). Immunohistochemistry showed diffuse, predominantly cytosolic 

staining of specific cell types in numerous tissues.

COL4A3BP was found to have a phosphatidylinositol-4-monophosphate 

(PIP4) -binding activity in experiments on ceramide intracellular transport 

studies. Ceramide is synthesised at the endoplasmic reticulum and 

translocated to the Golgi compartment for conversion to sphingomyelin. The 

main pathway of ceramide transport to the Golgi is genetically impaired in a 

mammalian mutant cell line, LY-A, expressing a splicing variant of the GPBP 

(GPBP-delta26) that was 26 amino acids shorter than COL4A3BP (Hanada et 

al. 2003). This was due to impaired PIP4 binding activity.

These results suggest that some cells in the basal limbus have an 

upregulation of ceramide conversion to sphingomyelin. It cannot be certain 

which cells of the early lineage are likely to express the protein but it is likely 

that calcium homeostasis is going to be interplexed with ceramide metabolism 

in a mechanism involving COL4A3BP.

PIP3-G-protein coupled receptor activity is inhibited in the basal limbus.

When the limbal data set was not compared to the conjunctival one, then 

rabphilin 3A-like (without C2 domains) (Rph3al) was seen to form a cluster of 

negative regulation of G protein coupled receptor activity. In contrast, basal 

peripheral cells were shown to have upregulation of transglutaminase 2
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mRNA transcription which as discussed earlier has a G-protein signalling 

coupled to IP3 second messenger (PLC activating) ontology. This could 

suggest that in some cells of the basal limbus there might be an inhibition of 

PIP3-G-protein coupled receptor activity. This inhibition might be relieved in 

TA cells of the basal periphery since if they over express transglutaminase 2 

protein and do not over express Rph3al.

It would be very interesting to further study this system in the context of which 

cells in the lineage express the said proteins and then further study the 

biochemistry of such a mechanism.

7.1.6 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 

transcriptional repression might be the reason limbal and corneal 

epithelial cell phenotype are distinguished by sialylation of cell 

surface molecules in mice

As described in section 5.4.1.3.1, ST8 alpha-N-acetyl-neuraminide alpha-2,8- 

sialyltransferase 4 (St8sia4) was specifically downregulated at the 

transcriptional level in the basal limbus. Wolosin and Wang (1995) 

demonstrated that rabbit limbal epithelial cells expressed unsialylated 

galactose residues that are recognized by peanut lectin (PNA) and that lack 

any sialic acid bound through □ -2,3 bonds on their cell surface molecules. 

Cells in the periphery and centre had a-2,3 sialic acid residues appearing on 

their cell surface instead, leading the researchers to propose that
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differentiation correlated with sialylation of surface molecules by the 

expression or activation of a-2,3-sialyltransferase (Wolosin and Wang, 1995). 

These results underline the undifferentiated state of the limbal basal cells that 

were analysed in this study and agree with these previous findings, indicating 

that a similar phenomenon is true in the mouse. Additionally, they indicate that 

the selective transcriptional repression of St8sia4 might be the mechanism 

which explains this phenomenon.

7.2 Conclusion and future directions.
The cornea presents a linear spatial pattern of differentiation and that cells of 

different stages of the stem cell lineage hierarchy reside in distinct anatomical 

locations of the cornea. This allowed for the development of methods for the 

analysis of the complete transcriptome of these cells, so that the relative 

abundances of each gene transcript in successive stages of hierarchy in-vivo 

could be determined. Additionally, the protein expression of several target 

genes from the vast array of targets that were revealed was also investigated.

This study has produced a very substantial amount of data that requires 

further exploration to ascertain exact roles and functions of differentially 

expressed genes and/or their proteins in corneal epithelial cell 

homeostasis. Such realisations are likely to greatly augment our 

understanding of epithelial stem cell biology.
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Future Work

Future work on selective genes and regulatory mechanisms will involve:

• Cellular localisation of gene transcripts of interest by RNA in situ 

hybridisation

• The confirmation of protein expression of genes and post translational 

modifications on the proteins of interest by western blotting, additional 

immunohistochemistry experiments on tissues both in steady state 

homeostasis and during wound healing, as well as pathological tissues.

• The study of those mechanisms in-vitro

• The targeted inducible knock-out of genes of interest using the cre-lox 

system, under the control of promoters of genes that are found to be 

reproducibly expressed in the cells of interest.
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APPENDIX A. Primers
Table A. 1a Oligonucleotide Primer sequences used throughout this 
study

Gene transcript 

GAPDH

Primer sequence (5’-3’)

gtgttcctacccccaatgtg

gggatagggcctctctcttg

nucleotides Tm

20

20

60.09

60.17

Aldh6a F 

Aldh6a R

atcattcaggaaaagccatcc 21

acctcgtttcaggagaacagc 21

55.9

59.8

Col4abp3 F 

Col4abp3 R

agacgagtggaggaagcgta 20

ctccagatggcaatgatgtg 20

59.4

57.3

Nek2 F 

Nek2 R

ggtctgcaaatggatgtgtg 20

tctctgagccctccaggtta 20

57.3

59.4

Rbp1 F 

Rbp1 R

cgctttctgtccagtgcata 20

caggtttgctagcgtcatca 20

57.3

57.3

SMC4I1 F 

SMC4I1 R

tgagattgatgcagctctgg 20

ttgttttgggttcactgcaa 20

57.3

53.2

Nmp1 F 

Nmp1 R

agatctctggcagtggagga 20

ggtggagttccatccttgaa 20

59.4

57.3
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Table A.1 b Oligonucleotide Primer sequences used in this study
Gene transcript Primer sequence (5’-3’) nucleotides Tm

E2F5 F atgacctcacacagccttcc 20 59.4

E2F5 R catctgctggggtaggagaa 20 59.4

Ptger4 F 

Ptger4 R

gaagggctgtcttcatctgg 20

cgtagcttctgccatcttcc 20

59.4

59.4

SMC2I1 F 

SMC2I1 R

cgtgctgacagaagctgaag 20

caccaggcaaaagggtagaa 20

59.4

57.3

Tlr3 F 

Tlr3 R

atatgcgcttcaatcgcttc 20

caggagcatactggtgctga 20

55.3

59.4



Appendix B. Antibodies

Antibodies for Cytokeratin 14, TLR3, SMC2, RBP1, Areg (amphiregulin), and 

Npm1 were all purchased from Santa Cruz Biotechnology, Inc (USA). The 

antibody for p-catenin was purchased from BD Biosciences (UK). PtgER4 

antibody was purchased from Abeam (UK). For all other target 

immunoreactions apart from p-catenin and Ptger4, Alexa Fluor 488 donkey 

antigoat secondary was used. For the last two, Alexa Alexa Fluor 594 goat 

antirabbit and Alexa Fluor 488 donkey antimouse were used for Ptger 4 and 

P-catenin targets respectively.
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Table B.2 The following table list the antibodies, information about the antibodies that 

were used, as well as the specific details of each experiment. C or N -ter refers to C or 

N terminus. m,r,h,d,s refer to mouse, rat, human, dog and sheep respectively. Mono or 

poly refer to monoclonal or polyclonal nature of the primary antibody.

Target CK14 TLR3 SMC2 RBP1 Areg Npm1 Catnbl

Clone/R Poly/ Poly/ Poly/ Poly/ Poly / Poly/ Mono/

ef. name C-14 T-17 A-16 N-17 C-13 C-19 14

Isotype igG IgG IgG IgG IgG IgG lgG1

Raised goat goat goat goat goat goat mouse

in

Reacts m,r,h m,r,h m,h,r m,h,r m,h,r m,h,r M,h,r,d,

with

Epitope C-t,h Extrc.

dom

N-t,h C-t,h C-t,h C-t,h C-t

m(200r

Concent 1:50 1:50 1:50 1:50 1:50 1:50 . 1:50

ration

Time 4h 4h 4h 4h 4h 4h 4h

Catalogue

No

sc-
17104
Santa

Cruz

sc-

23323

Santa

sc-

10709

Santa

sc-5796
Santa

Cruz

sc-6013

Santa

Cruz

Cruz Cruz

Tempera 23 23 23 23 23 23 23

ture °C

PtgE

R4

Poly/

igG

Rabit

M,h,r

Unkn/

n

1:100

o/n
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APPENDIX C. Gene lists
Table C.1 a-e: Genes upregulated in the corneal limbal basal cells. 

Official gene names and symbols as well as Unigene reference numbers 

and chromosomal location (ChroLocn) of each gene is designated.

Gene Gene name Fold change to Unigene ChroLocn Welch's p-value
Symbol

Periphery Centre
ID

L-P L-C
Acsl3 acyl-CoA synthetase long- 

chain family member 3
2.5 2.66 _ 1 C4|1 24.1 

cM
0.0073 0.0677

Acta2 actin, alpha 2 8.88 7.06 213025 19 C3 0.0091 0.0036

Adh6a alcohol dehydrogenase 6A 
(class V)

2.77 4.76 46265 3 G3 0.0504 0.0418

AI265725 Expressed sequence 
AI265725

2.73 1.68 355195 10 0.0041 0.0110

Apobecl apolipoprotein B editing 
complex 1

5.82 5.74 3333 6 F2|6 54.5 
cM

0.0231 0.0287

Areg amphiregulin 3.29 3.16 8039 5 E2|5 51.0 
cM

0.0050 0.0191

Arhgap18 Rho GTPase activating 
protein 18

1.69 2.04 356496 10 A4 0.0462 0.0295

Arhgdib Rho, GDP dissociation 
inhibitor (GDI) beta

3.43 5.13 2241 6G1 0.0117 0.0028

Atp5f1 ATP synthase, H+ 
transporting, mitochondrial 
FO complex, subunit b, 
isoform 1

2.2 1.85 251152 3 F2.2|3 57.0 
cM

0.0228 0.0808

B2m beta-2 microglobulin 7.01 4.41 163 2 F1-F3|2 
69.0 cM

0.0428 0.0414

Calm2 calmodulin 2 2.45 1.95 329243 17 E4 0.0089 0.0063

Calmbpl calmodulin binding protein 1 1.88 1.82 168523 1 F 0.0311 0.0249

Carl 3 carbonic anhydrase 13 7.84 8.17 158776 3 A2 0.0044 0.0060

Caspl caspase 1 7.67 6.5 1051 9 A1|9 1.0 
cM

0.0205 0.0229

Cast calpastatin 1.8 2.08 29163 13 C1 0.0111 0.0133
Catnb catenin beta 1.65 2.06 291928 9 F4|9 72.0 

cM
0.0710 0.0209
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Table C.1b: Genes upregulated in the corneal limbal basal cells

Gene Gene name Fold change to Unigene ChroLocn Welch's p-value
Symbol ID

Periphery Centre L-P L-C
Ccrn4i CCR4 carbon catabolite 1.96 2.28 86541 3 B-D 0.0005 0.0029

repression 4-like (S. 
cerevisiae)

Cd47 CD47 antigen (Rh- 3.32 1.92 31752 16 B5 0.0003 0.0006
related antigen, integrin- 
associated signal 
transducer)

Cdc42ep3 CDC42 effector protein 3.61 3.05 140601 17 E3 0.0089 0.0196
(Rho GTPase binding) 3

Ceacaml CEA-related cell 4 3.58 322502 7 A2|7 5.5 cM 0.0004 0.1144
adhesion molecule 1

Ceptl choline/ethanolaminepho 2.53 2.04 14816 3 F2.3 0.0002 0.0572
sphotransferase 1

Chst9 carbohydrate (N- 
acetylgalactosamine 4-0) 
sulfotransferase 9

3.25 2.16 329304 18 A1 0.00982 0.03970

Clcn3 chloride channel 3 1.68 1.75 259751 8 B3.118 
32.2 cM

0.00178 0.00348

Cldnl claudin 1 4.44 4.47 289441 16 B1 0.00153 0.00029
Cldn23 claudin 23 1.93 1.78 37817 8B1.1 0.01471 0.00645
Cmah cytidine monophospho- 

N-acetylneuraminic acid 
hydroxylase

3.05 8.75 8396 13 A3.2 0.00096 0.00012

Defbi defensin beta 1 2.68 2.93 5341 8 A4|8 9.0 0.00177 0.00079
cM

Dsg2 desmoglein 2 2.04 2.51 345891 18 A2|18 0.00002 0.01073
7.05 cM
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Table C.1c: Genes upregulated in the corneal limbal basal cells

Ect2 ect2 oncogene 2.41 2.27 261453 3 B 0.02395 0.05717

Elf 5 E74-like factor 5 3.07 1.78 20888 2 E3 0.00165 0.00523

Elovl5 ELOVL family member 5, 3.07 2.33 19130 9 E1 0.02162 0.05513
elongation of long chain 
fatty acids (yeast)

Enpp3 ectonucleotide 2.51
pyrophosphatase/phosph 
odiesterase 3

6.73 194888 10 A4 0.00363 0.00315

Ereg epiregulin 2.33 2.3 4791 5 E2 0.07863 0.12172
Expi extracellular proteinase 12.47 10.48 1650 11 C 0.06946 0.06827

inhibitor

F5 Coagulation factor V 3.07 3.14 12900 0.00268 0.00592

Flrt2 Fibronectin leucine rich
transmembrane protein 2

Gbp2 guanylate nucleotide 
binding protein 2

Ggh gamma-glutamyl
hydrolase

Grp58 glucose regulated protein

H2-Q7 Histocompatibility 2, Q 
region locus 6

Hnrpal heterogeneous nuclear 
ribonucleoprotein A1

111 r2 interleukin 1 receptor,
type II

3.51 3.39 341948

2.2 1.84 24038

3.97 5.9 20461

2.04 2.28 263177

7.67 7.84 34421

1.64 1.8 299367

4.23 3.94 1349 1

12 D3 0.00000 0.00002

3 H1|3 67.4 0.03750 0.10331
cM

4 A3-A5 0.00050 0.00031

2 E5|2 69.0 0.00113 0.07734
cM

0.05171 0.04555

15 F3|15 0.01089 0.02327
61.7 cM

B|1 19.5 0.00807 0.00170
cM
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Table C.1d: Genes upregulated in the corneal limbal basal cells

Gene Gene name Fold change to Unigene ChroLocn 
Symbol ID Welch's

J p-value
Periphery Centre L-P

111m interleukin 1 receptor 3.71 2.87 882 2A3|2 10.0 0.00966
antagonist cM

Impal inositol (myo)-1 (or
4)-
monophosphatase
1

1.82 1.65 183042 3 A1 0.00140

Itga8 

Krt1 -13

integrin alpha 8 3.84 5.9 329997 0.00282

keratin complex 1, 1.78 38.32 4646 11 D|11 0.00337
acidic, gene 13 58.49 cM

Krt1-14 keratin complex 1, 3.01 2.13 6974
acidic, gene 14

11 0.00009

Krt1 -17 keratin complex 1, 11.88 11.16 14046 11 D|11 58.7 0.01048
acidic, gene 17 cM

Krt1-23 keratin complex 1,
acidic, gene 23

4.29 3.14 290657 11 D 0.02538

Lamp2 lysosomal 
membrane 
glycoprotein 2

2.41 1.78 486 X A3.1|X 
13.0 cM

0.00027

LOC434341 similar to
nucleotide-binding 
oligomerization 
domains 27

2.28 1.97 8C5

Ltf

Manea

lactotransferrin

mannosidase,
endo-alpha

16.22 8.28 282359 9 F|9 70.2 0.04708
cM

2 2.04 245602 4

Mat2b methionine
adenosyltransferase 
II, beta

1.68 1.89 293771 11 A5 0.00182

Melk maternal embryonic 2.1
leucine zipper 
kinase

MGI:2143217 X transporter 3.89
protein 3 similar 1 
gene

2.04 268668 4B1|4 26.7 0.03755
cM

3.12 27208 9 F|9 71.0
cM

L-C
0.00574

0.05611

0.00004

0.00002

0.00069

0.01194

0.02048

0.05380

0.05363

0.21747

0.03005
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Table C.1e: Genes upregulated in the corneal limbal basal cells

Moxdl monooxygenase, 
DBH-like 1

8.63 10.34 285934 10 A3 0.00313 0.00296

Mylk myosin, light 
polypeptide kinase

2.38 1.92 33360 16 B3 0.00062 0.00173

Nap1l1 nucleosome 
assembly protein 1- 
like 1

2.23 2.95 290407 10 D1|10 
60.0 cM

0.01692 0.01266

Npm1 nucleophosmin 1 3.76 4.06 6343 11 A4 0.00026 0.03009

Nt5e 5' nucleotidase, 
ecto

9.58 49.18 244235 9E3.2 0.00121 0.00211

Nusapl nucleolar and 
spindle associated 
protein 1

2.2 2 290015 2 E5 0.02325 0.02958

Oit1 oncoprotein 
induced transcript 1

3.05 4.32 25351 14 A1 0.00683 0.00271

Palmd palmdelphin 3.29 3.56 253736 3 G1|3 52.0 
cM

0.03238 0.03300

PdcdIO programmed cell 
death 10

1.8 1.68 316473 3E3 0.03044 0.03814

Pdxk pyridoxal
(pyridoxine, vitamin 
B6) kinase

1.68 2.23 206159 10 C1|10 
42.1 cM

0.02492 0.00056

Penkl preproenkephalin 1 6.82 9.92 2899 4 A1|4 0.8 
cM

7 A3

0.03881 0.03549

Pik3cb phosphatidylinositol 
3-kinase, catalytic, 
beta polypeptide

1.78 2.01 213128 9E4 0.00032 0.00016

Plac8 placenta-specific 8 2.38 1.96 34609 5 E3|5 54.0 
cM

0.06210 0.14124

Pon3 paraoxonase 3 3.2 3.68 9122 6 A1|6 0.5 
cM

0.01133 0.00016

Popdc3 popeye domain 
containing 3

2.01 2.75 24748 10 B2| 10 
29.0 cM

0.03896 0.02658



Table C.1f: Genes upregulated in the corneal limbal basal cells

Gene nameGene
Symbol

Ppplcb

Prdxl

Prel3

protein
phosphatase 1, 
catalytic subunit, 
beta isoform

peroxiredoxin 1

preimplantation 
protein 3

Fold change to Unigene ChroLocn Welch's p-value 
ID

Periphery Centre L-P L-C
2.06 1.69 241931 5 B1 0.01618 0.02740

2.45

1.73

1.64

1.61

241931

30929

291037

4 D1|4 47.0 
cM

1 C1

0.00318

0.00810

0.04486

0.31862

Ptn pleiotrophin 3.14 5.13 279690

Raplb RAS related protein 2.53 1.69 233009
1b

6 B1|6 13.5 
cM

10 D2

0.03428

0.01467

0.02006

0.06129

Rasa2 RAS p21 protein 
activator 2

1.6 1.65 124502 9 0.02500 0.05961

Rbp1 retinol binding 
protein 1, cellular

3.27 3.23 279741 9 E3.3|9 
52.0 cM

0.01575 0.02244

Rein reelin 4.92 4.35 3057 5 A3-B115 
8.0 CM

0.04263 0.05514

Rfk riboflavin kinase 2.04 1.79 7013 19 B 0.01561 0.02612

S100a3 S100 calcium 
binding protein A3

2.85 3.43 703 3 F1-F2|3 
43.6 cM

0.04072 0.03991

Samhdl SAM domain and 
HD domain, 1

2.35 2.16 248478 2 H2 0.00003 0.00692

Sap30 sin3 associated 
polypeptide

5.86 6.41 118 8 B2|8 31.0 
cM

0.00022 0.00119

Sat1 spermidine/spermine 
N1-acetyl 
transferase 1

2.01 2.04 2734 X F3-F4|X 
65.2 cM

0.00440 0.13115

Serpinbla serine (or cysteine) 
proteinase inhibitor,

2.31 4.66 20144 13 A4|13 
12.0 cM

0.00953 0.00056

clade B, member 1a
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Table C.1g: Genes upregulated in the corneal limbal basal cells

Gene Gene name Fold change to Unigene ChroLocn Welch's p-value
Symbol ID
Serpinb2 serine (or cysteine) 7.46 7.31 271870 1 E2.1|1 61.1 0.00919 0.00879

proteinase inhibitor, cM
clade B, member 2

Serpinb3a serine (or cysteine) 11.31 8.57 283677 1 E2.1 0.00645 0.06521
proteinase inhibitor, 
clade B (ovalbumin), 
member 3A

Serpinb3b serine (or cysteine) 4.47 4.17 337362 1 E2.1 0.00301 0.00642
proteinase inhibitor, 
clade B (ovalbumin), 
member 3B

Sfrs7 splicing factor, 2.07 1.83 292016 17 E3 0.03928 0.04042
arginine/serine-rich 7

Slc35a1 solute carrier family 2.36 2.48 281885 4 A5 0.00038 0.02181
35 (CMP-sialic acid 
transporter), member 
1

Slc5a8 solute carrier family 5 2.46 3.39 77381 10 C1 0.01098 0.01646
(iodide transporter), 
member 8
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Table C.1h: Genes upregulated in the corneal limbal basal cells

Gene Gene name Fold change to Unigene ChroLocn Welch's p-value
Symbol ID
Slc5a9 solute carrier family 5 3.53 3.81 26630 4 D1 0.00038 0.02181

(sodium/glucose 
cotransporter), 
member 9

Slc6a14 solute carrier family 6 2.75 3.03 253984 X A2 0.04159 0.05000
(neurotransmitter 
transporter), member 
14

Smc2l1 SMC2 structural 
maintenance of 
chromosomes 2-like 
1 (yeast)

2.11 1.67 2999 4 B3|4 18.5 
cM

0.00297

Smc4l1 SMC4 structural 
maintenance of 
chromosomes 4-like 
1 (yeast)

1.73 1.8 206841 3 E2 0.02410

Sox4 SRY-box containing 
gene 4

5.78 5.58 240627 — 0.00107

Sprr2f small proline-rich 
protein 2F

3.39 2.2 10692 3 F1|3 45.2 
cM

0.0,0104

Ssr4 signal sequence 
receptor, delta

1.79 1.97 831 X A7.2|X 
29.5 cM

0.04156

Stk17b serine/threonine 
kinase 17b 
(apoptosis-inducing)

1.71 3.23 25559 1 C1.1 0.05331

Stmnl stathmin 1 1.67 1.8 271947 4 D3|4 65.7 
cM

0.00556

Syt14l synaptotagmin 14- 
like

2.16 3.63 311393 12 C3 0.02656

Tcfcp2l3 transcription factor 
CP2-like 3

1.82 1.93 244612 15 C 0.02807

0.06686

0.09437
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Table C.1i: Genes upregulated in the corneal limbal basal cells

Gene
Symbol

Tgtp

Tlr3

TnfsflO

Topbpl

Upp1

Utx

Vav3

Zic1

Gene name Fold change to Unigene ChroLocn Welch's p-value
ID

T-cell specific 
GTPase

toll-like receptor 
3
tumor necrosis 
factor (ligand) 
superfamily, 
member 10

topoisomerase 
(DNA) II beta 
binding protein

uridine
phosphorylase
1

ubiquitously 
transcribed 
tetratri copeptide 
repeat gene, X 
chromosome

vav 3 oncogene

zinc finger 
protein of the 
cerebellum 1

285

Periphery Centre
9.71 7.84 15793

3.16 2.58 33874

3.07 2.93 1062

1.73 1.74 259893

5.06 5.86 4610

2.55 1.62 257498

2.57 3.2 282257

2.28 2.11 335350

L-P L-C
11B1.2 0.00364 0.03741

8B2 0.00188 0.00997

3 A3 0.03006 0.02401

9F1 0.01893 0.00973

0.01322 0.00684

A1.2|X 5.5 0.01164 0.09342
cM

3 G1 0.00278 0.00253

9 E3.2|9 0.03657 0.04911
61.0 cM



Table C.2a&b Genes specifically downregulated in corneal limbal basal 

epithelial cells. Gene names and symbols as well as fold change ratios 

and Welch’s t-test p-values are listed for each gene. Additionally 

Unigene database reference ID and chromosomal location (ChroLocn) is 

given for every gene.

Table C.2a Genes specifically downregulated in corneal limbal basal 
epithelial cells.

Gene Gene name Fold change to Unigene ChroLocn Welch's p-value
Symbol ID

Periphery Centre L-P L-C
Satbl special AT-rich 

sequence binding 
protein 1

1.77 1.98 311655 17 C 0.00190 0.03862

Rps6ka2 ribosomal protein S6 
kinase, polypeptide 2

3.92 2.2 259901 17 F4| 17 0.01223 0.01431

EST RIKEN cDNA 
1300013J15 gene

2.22 1.63 100741 11 B2 0.01513 0.00608

St8sia4 ST8 alpha-N-acetyl- 
neuraminide alpha-2,8- 
sialyltransferase 4

2.2 2.69 306228 1 D 0.01679 0.00501

Procr protein C receptor, 
endothelial

3.76 2.08 3243 2 H1-3 0.02997 0.05638

Map4k4 mitogen-activated 
protein kinase kinase 
kinase kinase 4

2.28 2.5 . . . — 0.00103 0.05167

Ankrd24 ankyrin repeat domain 
24

1.88 1.72 304382 10 C1|10 0.04100 0.04410

EST similar to
ENSANGP00000013261

2.13 2.01 29659 11 D 0.05042 0.05770

EST RIKEN cDNA 
B230208H17 gene

1.54 1.62 29600 2 A3 0.00500 0.06447

EST expressed sequence 
AI842788

2.87 2.48 329657 19 A

Prss25 protease, serine, 25 1.85 1.67 21880 6 C3|6 0.02344 0.32120
34.75 cM
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Navi

CDNA clone 
IMAGE: 1328649

neuron navigator 1

2.65

2.26

2.27

1.62

178550

34977 1 E4 0.03717 0.24231

Table C.2b Genes specifically downregulated in corneal limbal basal 
epithelial cells.

Gene
Symbol

Ndn

Dbp

Gene name

necdin

D site albumin 
promoter binding 
protein

Fold Unigene ChroLocn Welch's
change

to
Periphery

1.73

1.83

ID

Centre
2.2

3.01

250919

3459

p-value

7 C|7 
28.0 cM 
7 B2|7

L-P

0.05970
0.00125

L-C

0.05437
0.08296

L it c 2 0 ATPase, H+ 
transporting, 
lysosomal 
accessory protein 
2

1.93 25148
23.0 cM 
X A1.1 0.00077 0.00733

EST RIKEN cDNA 
1500016010 
gene

24.79 5.19 207814 7 F3 0.03907 0.11275

Car7

Transcribed locus

carbonic 
anhydrase 7

2.75

2.09

2.52

2.77

22950 — 0.04311 0.05141

129265 8 D1 0.00310 0.02291

Mapre2

Transcribed locus

microtubule- 
associated 
protein, RP/EB 
family, member 2

2.65

1.71

3.28

1.8

156172 — 0.00561 0.04281

132237 18A2 0.0Q185 0.00743

EST RIKEN cDNA 2.27 4.15
1810057P16 gene

64962 11 E2 0.00040 0.00168

EST

EST

expressed
sequence
AU044698

RIKEN cDNA 
1700110N18 
gene

2.62

2.68
1.63

1.92

1.69
1.65

0.00125 0.05415

25670 16C1.3 0.01250 0.00349

Sdf4 stromal cell 
derived factor 4

2.14 1.45 293517 4 E2 0.04831 0.03818
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Table C.3 a-m: Genes upregulated in the peripheral corneal epithelial 
basal cells. Official gene names and symbols, fold change ratios and 
Welch’s t-test p-values as well as Unigene reference numbers and 
chromosomal location (ChroLocn) of each gene is designated.

Table C.3 a: Genes upregulated in the peripheral corneal epithelial basal 
cells

Gene Gene name 
Symbol

Fold change to Unigene Chromosomal Welch's p-value 
ID location

A2m alpha-2-
macroglobulin

Limbus Centre
3.14 2 30151 6 F1|6 61.7 cM

P-L P-C
0.00164 0.00162

A430031N04 hypothetical 
protein 
A430031N04

3.73 1.99 259328 16 B2 0.00586 0.04524

Abca8a

Abtbl

Agpat4

Ak2

Ap3b1

ATP-binding 
cassette, sub
family A (ABC1), 
member 8a

ankyrin repeat 
and BTB(POZ) 
domain 
containing 1
1 -acylglycerol-3- 
phosphate O- 
acyttransferase 1 
(lysophosphatidic 
acid
acyltransferase,
delta)

adenylate kinase
2
adaptor-related 
protein complex 
3, beta 1 subunit

1.82

1.71

1.8

2.1

1.67

2.73

1.88

2.08

1.72

1.84

344148 11 E1

166858 6D1

258300 17A2

0.05807 0.01096

0.01260 0.01518

0.04920 0.00020

29460 4 D2.2|4 61.0 cM 0.00015 0.03044

21185 13 D1|13 47.0cM 0.11103 0.03337

Aqp1

Arhgap24

aquaporin 1

Rho GTPase 
activating protein 
24

2.99

1.71

2.85

2.17

18625 6 B3|6 27.0 cM 0.06674 0.84868

233880 5 E4 0.00300 0.00155

Arntl aryl hydrocarbon 
receptor nuclear 
translocator-like

2.14 1.78 12177 7 F2-F3|7 52.0 cM 0.01370 0.04193

288



Table C.3 b: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbol

Bckdhb

Bcl2

Bsg

Cct7

Cd9

Cdc2l2

Cdc42ep4

Cdyl

Cdyl

Centg3

Ces3

Cgn

Chst5

Clk2

Gene name Fold change to Unigene Chromosomal Welch's p-value
ID location

branched chain 2.23 1.92 12819 9 E2-E3.1 0.00606 0.04463
ketoacid
dehydrogenase E1, 
beta polypeptide

B-cell
leukemia/lymphoma
2

Basigin

chaperonin subunit 
7 (eta)

CD9 antigen

cell division cycle 2 
homolog (S. 
pombe)-like 2

2.17

1.82

1.71

1.93

1.79

1.77

1.85

2.22

1.83

2.22

257460 1 E2.1|1 59.8 cM 0.01012 0.07843

726 10 C1110 42.4 cM 0.00477 0.04259

289900 6 D1 0.05086 0.00067

210676 6 F3|6 58.0 cM 0.05080 0.15770

267410 4 E2|4 79.4 cM 0.02011 0.00051

CDC42 effector 
protein (Rho 
GTPase binding) 4

2.23 1.65 293378 11 E2 0.00006 0.03061

chromodomain 
protein, Y 
chromosome-like

2.16 2.41 29002 13 A3.3|13 17.0
cM

0.00050 0.01046

chromodomain 
protein, Y 
chromosome-like

1.83 1.88 29002 13 A3.3|13 17.0
cM

0.00071 0.03214

centaurin, gamma 3 1.93 2.58

carboxylesterase 3 2.64 2.93

Cingulin 1.89 1.75

carbohydrate (N- 3.48 2.66
acetylglucosamine
6- 0 )
sulfotransferase 5

250703 5 A3 0.04924 0.01228

292803 8C5 0.00218 0.01038

87634 3 F2.1|3 43.3 cM 0.01372 0.00848

25646 — 0.00332 0.00879

CDC-like kinase 2 1.69 1.84 288098 3 F1 0.01343 0.01077
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Table C.3 c: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Col5a1

Gene name

procollagen, type V, 
alpha 1

Fold change to Unigen Chromos Welch's p-value 
e ID omal 

location
Limbus Centre

2.93 5.74
P-L P-C

7281 2 A2-B|2 18.0 0.02066 0.02882
cM

Col5a2 procollagen, type V, 
alpha 2

1.91 2.97 10299 1 C1 0.05804 0.00164

Col6a1 procollagen, type VI, 
alpha 1

2.22 5.5 2509 10 41.1 cM 0.02773 0.00002

Col6a2 procollagen, type VI, 
alpha 2

2.6 5.58 1949 10 41.1 cM 0.03435 0.00630

Col6a3 procollagen, type VI, 
alpha 3

2.66 3.05 7562 1 D|1 53.9 0.02364 0.02863
cM

Corolc coronin, actin binding 
protein 1C

1.83 1.78 260158 0.00870 0.03559

Corolc coronin, actin binding 
protein 1C

2.01 2.2 260158 0.00301 0.00589

Csk c-src tyrosine kinase 1.64 1.61 21974 9 B|9 32.0 0.14598 0.06129
cM

Cyp3a13 cytochrome P450,
family 3, subfamily a, 
polypeptide 13

2.77 1.99 289886 5 G2|5 78.0 » 0.00053 0.00357
cM

Cyr61 cysteine rich protein 2.13 1.61 1231 3 H2|3 72.9 0.03325 0.04278
61 cM

D10Wsu52e DNA segment, Chr 10, 1.61 2.04 9257 10 C1|10 0.01603 0.00642
Wayne State 46.0 cM
University 52, 
expressed

D630048P19Rik RIKEN cDNA 1.82 1.72 239583 7 A1 0.01917 0.01274
D630048P19 gene
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Table C.3 d: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Gene name Fold 
chan 
ge to

Unig
ene
ID

Chr
om
oso
mal
loc
atio

Welc 
h's p- 
value

6 G3|6 74.0 
cM

0.02023 0.02423

Limbus Centre
n

P-L P-C

Dclrela DNA cross-link repair 
1A, PS02 homolog (S. 
cerevisiae)

1.97 1.88 2805 19 D2 0.01970 0.04729

Ddahl dimethylarginine 
dimethylaminohydrolas 
e 1

2.01 1.6 234247 3H3 0.00531 0.04917

Ddx27 DEAD (Asp-Glu-Ala- 
Asp) box polypeptide 
27

1.72 2.48 295031 2H3 0.03024 0.00211

Ddx47 DEAD (Asp-Glu-Ala- 
Asp) box polypeptide 
47

1.93 2.38 166524 6G1 0.05468 0.01079

Def6 differentially expressed 
in FDCP 6

1.8 1.96 204731 17 A3.3 * 0.00853 0.00992

Dkk2 dickkopf homolog 2 
(Xenopus laevis)

2.08 3.18 103593 3 H2 0.04138 0.00319

Dpt dermatopontin 2.06 3.34 28935 1 H2 0.06293 0.00038

Dyt1 dystonia 1 1.68 1.67 154994 2 B 0.04437 0.04230
E4f1 E4F transcription 

factor 1
1.97 1.8 163132 17 A3.3|17 

12.0 cM
0.03028 0.01463

Egln3 EGL nine homolog 3 
(C. elegans)

3.56 1.64 133037 12 C1 0.00288 0.03798



Entpd8 ectonucleoside 1.78 2.11 177551 11 E2|11 0.01098 0.00331
triphosphate 75.0 cM
diphosphohydrolase 6

Table C.3 e: Genes upregulated in the peripheral corneal epithelial basal 
cells

Gene
Symbl.

Gene name Fold Unig
change ene 

to ID

Limbus Centr
e

Conj

Chromos Welch' 
ome s p-

value

P-L P-C

Erdrl erythroid 
differentiation 
regulator 1

2.1 2.04 288693 0.06120 0.02499

Erp29 endoplasmic
reticulum protein 29

1.84 2.06 154570 5 F 0.04056 0.05950

Fads2 fatty acid desaturase 
2

2.31 38901 19 B 0.01888 0.01642

Fgf1 fibroblast growth 
factor 1

2.01 1.8 241282 18 B3| 18
19.0 cM

0.00099 0.02666

Galkl galactokinase 1 1.61 2.36

Galnt2 UDP-N-acetyl-alpha- 2.06 1.72
D-
galactosamine:polyp 
eptide N-
acetylgalactosaminyl 
transferase 2

Gdi1 guanosine 1.62 2.11
diphosphate 
(GDP) 
dissociation 
inhibitor 1

2820 11 E2|11
78.0 cM

33808 8 E2

205830 X B- 
C1|X 
29.83 cM

0.02575

0.01404

0.02644

0.16190

0.01766 0.01274

Gga2 golgi associated, 
gamma adaptin 
ear containing, 
ARF binding 
protein 2

1.8 1.61 29619 7F3 0.07037 0.00533

Glb1 galactosidase, 1.65 2.97 290516 — 0.02490 0.00715
beta 1

Gli3 GLI-Kruppel family 1.6 1.83 5098 13A2|13 0.01413 0.02509
member GLI3 14.0 cM

Gmppa GDP-mannose 1.92 1.83 23951 1 C3 0.00723 0.09048
pyrophosphorylase 
A
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Gtl2 GTL2, imprinted 1.75 4.96 289645 12 F1112 0.05404 0.00272
maternally 54.0 cM
expressed 
untranslated 
mRNA

Table C.3 f: Genes upregulated in the peripheral corneal epithelial basal 
cells

Gene Gene name 
Symbl.

Fold Unig
change ene 

to ID

Limbus Centr Conj 
e

Chromos
ome

Welch' 
s P- 

value

P-L P-C

Hcph hemopoietic cell 
phosphatase

1.62 1.89 271799 6 F2|6
60.22 
cM

0.00884 0.01125

Hlf hepatic leukemia factor 2.23 1.87

Ifld2 induced in fatty liver
dystrophy 2

2.71 2.62

158903 11 C- 0.00185 0.07293
D| 11 
52.0 cM

276018 2 G3 0.00472 0.00382

Igfbp2 insulin-like growth
factor binding protein 2

1.72 3.01 141936 1 C3|1 0.00684 0.00247
36.1 cM

Irx3 Iroquois related 
homeobox 3 
(Drosophila)

2.58 2.87 238044 8 C5|8 0.00259 0.00017
42.1 cM

Itgb5

Jag2

integrin beta 5 

jagged 2

Kctd15 potassium channel
tetramerisation domain 
containing 15

1.6 1.75

2.36 2.58

2.41 1.91

6424 16 B3

186146 12
F1112 
57.9 cM 

214380 7 B1

0.02990 0.02649

0.00092 0.00212

0.00181 0.00753

Kif13a kinesin family member 
13A

2.16 1.72 342703 13 B1 0.00291 0.01526

Krt2-6a keratin complex 2, 
basic, gene 6a

1.93 2.2 302399 15
F2| 15 
58.77 
cM

0.01375 0.00133
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Limk2 LIM motif-containing 2.03 2.16 124176 11 D 0.02778 0.01682
protein kinase 2

Lmnbl lamin B1 2.07 1.82 4105

Table C.3 g: Genes upregulated in the peripheral corneal epithelial basal 
cells

Gene
Symbl.

Gene name Fold
change

to

Unig
ene
ID

Chromos Welch' 
ome s p- 

value

Limbus Centr
e

Conj P-L P-l

Lrigl leucine-rich repeats 
and immunoglobulin
like domains 1

2.33 2.6 245210 6 D2|6 
39.0 cM

0.06881 0.01146

Lrp1 low density lipoprotein 
receptor-related protein 
1

3.51 2.35 271854 10 B2- 
D1

0.00718 0.05642

Lrp4 low density lipoprotein 
receptor-related protein 
4

2.48 2.79 275149 2 E1 0.04177 0.04051

Lrpapl low density lipoprotein 
receptor-related protein 
associated protein 1

1.79 2.11 277661 5 B2|5 
20.0 cM

0.04747 0.00534

Lrpapl

Ltb4dh

low density lipoprotein 
receptor-related protein 
associated protein 1 
leukotriene B4 12- 
hydroxydehydrogenase

1.92

2.07

2.35

1.69

277661

34497

5 B2|5 
20.0 cM

4C1

0.00722

0.00085

0.00009

0.05947

Lynxl Ly6/neurotoxin 1 5.03 2.11 257067 15 D3 0.00000 0.01593

Madd

Mamdc2

MAP-kinase activating 
death domain 
MAM domain 
containing 2

1.77

5.1

1.82

3.07

36410

50841

2 E1 

19 B

0.04257

0.01180

0.01844

0.03064

Matn4 matrilin 4 1.72 3.1 29428 2 H3|2 
94.0 cM

0.56677 0.06096

Mgea5 meningioma expressed 
antigen 5 
(hyaluronidase)

1.77 1.6 122725 19 D1 0.00190 0.03292
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Table C.3 h: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Gene name Fold change to Unigene
ID

Chrom.
Loc.

Welch's p-value

Limbus Centre P-L P-C
Mkrnl makorin, ring finger 

protein, 1
1.73 1.71 270484 6 B1 0.00227 0.09438

Mrc2 mannose receptor, C type 
2

1.95 2.53 235616 11 E1 0.05943 0.00050

Mta3 metastasis associated 3 1.83 2.07 277668 17 E4 0.05079 0.06846

Mthfdl methylenetetrahydrofolate 
dehydrogenase (NADP+ 
dependent),
methenyltetrahydrofolate
cyclohydrolase,
formyltetrahydrofolate
synthase

2.03 2.25 29584 0.00404 0.01077

Nap1l4 nucleosome assembly 
protein 1-like 4

1.89 2.27 294625 7 F5|7 
69.55 cM

0.01328 0.00942

natural killer tumor 
recognition sequence

1.64 1.73 32842 9 F4|9 
71.0 cM

Nktr 0.44447 0.00600
Npnt nephronectin 2.66 1.97 279310 3G3 0.00031 0.07437

Nr1d1 nuclear receptor 
subfamily 1, group D, 
member 1

2.62 3.41 289490 11 D 0.00944 0.00892

Ntrk2 neurotrophic tyrosine 
kinase, receptor, type 2

2.62 3.27 130054 13 B2| 13 
36.0 cM

0.02012 0.00717

Olfml3 olfactomedin-like 3 2.11 2.04 211535 3 F2.2 0.02569 0.05041

Oplah 5-oxoprolinase (ATP- 
hydrolysing)

1.74 1.75 322738 15 D3 0.01914 0.00135

Pabpcl poly A binding protein, 
cytoplasmic 1

1.6 2.07 371570 15 C 0.00571 0.10380

Pank3 pantothenate kinase 3 1.88 1.62 255044 11 A4

Pdcd11 programmed cell death 1.77 1.88 41166 19 D2 0.01844 0.01389
protein 11
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Table C.3 i: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Per3

Phf15

Pias3

Pja1

Pkm2

Ppp2r5e

Prpf8

Prss22

Psmd4

Pvrl4

Gene name Fold Unigen Chromo 
change e ID somal

to location

Welch's p- 
value

Limbus Centre P-L

period homolog 3 3.23 2.51 7952 — 0.02086
(Drosophila)

PHD finger protein 15 1.64 1.85 12136 4 E2 0.04754
1

protein inhibitor of 1.74 1.74 25999 11 B1.3 0.01688
activated STAT 3 6

prajal, RING-H2 motif 2.6 1.8 1635 3 F2.1 0.02473
containing

pyruvate kinase, muscle 1.99 1.6 8211 X C3|X 0.00827
36.6 cM

protein phosphatase 2, 1.8 1.6 28399 5 G2 0.00223
regulatory subunit B 
(B56), epsilon isoform

pre-mRNA processing 1.74 1.97 25962 — 0.02528
factor 8 6

protease, serine, 22 1.83 2.13 3757 11 B5|11 0.02142
45.0 cM

proteasome (prosome, 1.71 1.88 15735 17 0.00485
macropain) 26S subunit, 1 A3.3|17
non-ATPase, 4 10.7 cM

poliovirus receptor-related 1.91 2.14 26341 — 0.00107
4 4

P-C

0.03804

0.00856

0.03466

0.03488

0.06524

0.05075

0.01168

0.07068

0.00886

0.00020
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Table C.3 j: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Qscn6l1

Rab2l

Ramp2

Rapgef3

Rin1

Rpl22

Rps6kb1

Sdbcag84

Sdc1

Secisbp2

Sema4c

Sf3a3

Sfrs8

Gene name

quiescin Q6-like 1

Fold change to Unigene ID

Limbus
1.99

Centre
1.68

Chromo 
somal 

location

116769 2 A3

Welch's p-value

P-L P-C
0.03340 0.00576

RAB2, member RAS 
oncogene family-like

receptor (calcitonin) 
activity modifying 
protein 2

Rap guanine nucleotide 
exchange factor (GEF) 
3

Ras and Rab interactor 
1

ribosomal protein L22

ribosomal protein S6 
kinase, polypeptide 1

1.72 1.6

2.04 2.23

1.92 1.65

2.1 1.71

1.71 1.66

2.04 1.77

43777 17 B2

298256 11 D|11
61.5 cM

24028 15 F1

271922 19 A

307846 4 E2 

374825 11 C

0.01710 0.00779

0.00522 0.02424

0.00259 0.10837

0.01809 0.05580

0.01637 0.04438

0.03281 0.05138

serologically defined 1.6 1.61 141276 2 H2|2 92.0 0.02418 0.01426
breast cancer antigen cM
84

syndecan 1 1.74 1.64 2580 12A1.1|12 0.00587 0.01266
1.0 cM

SECIS binding protein 2 1.89 2.19 275981 13 B1 0.00717 0.02904

sema domain, 1.71 2.3 29558 1 B 0.01619 0.00529
immunoglobulin domain
(Ig), transmembrane
domain (TM) and short
cytoplasmic domain,
(semaphorin) 4C

splicing factor 3a, 1.68 2.23 25779 4 D1 0.04660 0.05862
subunit 3

splicing factor, 1.88 1.6 288714 5G1.3 0.00609 0.00979
arginine/serine-rich 8
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Table C.3 k: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Siat9

Slc26a7

Slc30a6

Slc4a4

Sphk2

Spon2

Srrml

Gene name

sialyltransferase 9 
(CMP- 
NeuAc:lactosylceramide 
alpha-2,3- 
sialyltransferase)

solute carrier family 26, 2.1 2.62 245210 6 D2|6 39.0 0.04876
member 7 cM

solute carrier family 30 2.1 2.2 296006 4 A1 0.01362
(zinc transporter), 
member 6

Fold Unigene ID Chromos Welch's
change omal p-value

to location
Limbus Centre p_|_

2.08 1.88 121485 6 35.59 cM 0.01320

solute carrier family 4 2.43 2.41 243943 17 E2 0.03089
(anion exchanger), 
member 4

sphingosine kinase 2 1.68 1.72

spondin 2, extracellular 2.89 1.92
matrix protein

149776 14 C3|14 0.03715
30.5 cM

24222 7 B3 0.00670

serine/arginine 
repetitive matrix 1

1.73 1.64 45044 17 B3 0.03620

P-C
0.00587

0.01290

0.00483

0.03519

0.04194

0.01617

0.00757
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Table C.3 I: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Gene name Fold change to Unigene
ID

Chromosomal
location

Welch's p-value

Limbus Centre P-L P-C
Stk24 serine/threonine 

kinase 24 
(STE20
homolog, yeast)

1.73 1.64 369092 14 E5|14 62.0 cM 0.00025 0.00101

Tcfap2b transcription 
factor AP-2 beta

1.8 2.43 137021 1 A2-A4 0.01030 0.00175

Tcfe2a transcription 
factor E2a

1.71 2.04 3406 10 C1110 43.0 cM 0.04405 0.02985

Tef thyrotroph 
embryonic factor

2.13 1.85 270278 15 E1|15 46.7 cM 0.00254 0.01025

Tgm2 transglutaminase 
2, C polypeptide

2.5 1.85 330731 2 H1|2 89.0 cM

Thoc3 THO complex 3 1.6 1.67 292487 13 B2 0.00254 0.02098

Tmpo thymopoietin 1.85 1.85 159684 10 C2|10 49.0 cM 0.02130 0.03576

Ttll1 tubulin tyrosine 
ligase-like 1

2.17 2 235007 15E1-E2 0.05531 0.08755

Ube2g2 ubiquitin- 
conjugating 
enzyme E2G 2

1.78 2.43 307906 10 C1110 41.6 cM 0.00486 0.00264

Usp7 ubiquitin specific 2.13 1.65 295330 16 A1 0.00056 0.00250
protease 7
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Table C.3 m: Genes upregulated in the peripheral corneal epithelial basal
cells

Gene
Symbl.

Vamp3

Wnt11

Wnt5a

Yy1

Zbtb7

Zdhhc14

Zdhhc14

Gene
name

Fold change to Unigene Chromosomal Welch's p-value
ID location

vesicle- 
associated 
membrane 
protein 3

wingless- 
related 
MMTV 
integration 
site 11

Limbus Centre
1.75 1.6

2.04 2.01

273930 4 E1
P-L P-C

0.00222 0.01319

22182 7 E1|7 48.0 cM 0.04936 0.04640

wingless- 
related 
MMTV 
integration 
site 5A

2.53 2.87 287544 14 A3|14 7.8 cM 0.02035 0.00574

YY1
transcription
factor

zinc finger 
and BTB 
domain 
containing 7

1.62 1.87

2.41 1.87

3868 12 F1|12 53.0 cM 0.04906 0.01953

20920 10B5.3 0.00289 0.14181

zinc finger, 2.41 1.77 328751 17 A1 0.01608 0.00731
DHHC
domain
containing
14

zinc finger, 2.41 1.77 328751 17 A1 0.01608 0.00731
DHHC
domain
containing
14

300



Table C.4 a&b : Genes specifically downregulated in corneal peripheral 

basal epithelial cells. The table includes gene symbols, names, fold 

changes, unigene ID and chromosomal location of each gene.

Table C.4a : Genes specifically downregulated in corneal peripheral 
basal epithelial cells.

Gene
Symbol

Gene name Fold change to 

Limbus Centre

Unigen
ID

Chrom.
location

Welch's p-value 

P-L P-C
Atf3 activating

transcription factor 3
2.51 1.83 2706 1 H6 0.00571 0.07722

Bnip3 BCL2/adenovirus 
E1B 19kDa- 
interacting protein 1, 
NIP3

1.89 4.5 2159 7F5 0.04952 0.00948

C1galt1 core 1 UDP- 
galactose.N- 
acetylgalactosamine- 
alpha-R beta 1,3- 
galactosyltransferase

2.6 1.73 102752 6A1 0.01725 0.00828

Cd47 CD47 antigen (Rh- 
related antigen, 
integrin-associated 
signal transducer)

3.32 1.73 31752 16 B5 0.0003 0.01089

Cfl2 Cofilin 2, muscle 1.92 1.69 276826 12 C1 0.00002 0.04226

Chi3l1 chitinase 3-like 1 41.07 4.89 38274 1 E4|1 
72.3 cM

0.00279 0.04776

Cxcl16 chemokine (C-X-C 
motif) ligand 16

2.46 1.78 358690 11 B4 0.00438 0.25464

Ddit4 DNA-damage- 
inducible transcript 4

1.87 1.84 21697 10 B3 0.04056 0.04238

Ecm1 extracellular matrix 
protein 1

2.5 2.16 3433 3 F2.113 
45.4 cM

0.04750 0.52472

Ednrb endothelin receptor 
type B

2.36 2.1 229532 14 
E2.3|14 
51.0 cM

0.00347 0.07704

Fhl1 four and a half LIM 
domains 1

3.12 1.78 3126 X A6-A7.1 0.02616 0.05545

Hist2h2bb histone 2, H2bb 5.7 2.1 5220 — 0.02600 0.05152

Ifi203 interferon activated 
gene 203

2.77 1.88 261270 1 H3|1 
95.31 cM

0.01996 0.02959

Lcn2 lipocalin 2 2.57 2.38 9537 2 A3|2 
27.0 cM

0.00105 0.01223

Lgalsl lectin, galactose 
binding, soluble 1

2.6 2.04 43831 15 E| 15 
44.9 cM

0.02677 0.19873
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Table C.4a : Genes specifically downregulated in corneal peripheral
basal epithelial cells.

Gene
Symbol

Gene name Fold change to 

Limbus Centre

Unigen
ID

Chrom.
location

Welch's

P-L

p-value

P-C
Ltf lactotransferrin 16.22 1.96 282359 9 F|9 70.2 

cM
0.04708 0.04007

Lzp-s P lysozyme structural 11.96 1.85 177539 10 D2 0.04707 0.05603

Mania mannosidase 1, 
alpha

4.63 2 117294 10 B3 0.03084 0.00699

Mmp3 matrix
metalloproteinase 3

40.5 1.99 4993 9 A1|9 1.0 
cM

0.00059 0.05746

Pfkp phosphofructokinase,
platelet

2.13 1.75 273874 13 A1 0.07378 0.02425

Pglyrpl peptidoglycan 
recognition protein 1

9.25 4.03 21855 7 A3 0.00036 0.02711

Soatl sterol O- 
acyltransferase 1

3.12 1.84 28099 1 G3|1 
81.6 cM

0.01627 0.04024

Sulf2 sulfatase 2 3.97 1.8 280459 2 H3 0.00116 0.04912
Sytl2 synaptotagmin-like 2 4.2 1.8 26751 7D3 0.02904 0.10955

Trp53inp1 transformation 
related protein 53 
inducible nuclear 
protein 1

2.33 2.1 28708 4 A1-A2 0.05777 0.11913

Ttr transthyretin 11.24 2.6 2108 18 A2|18 0.02253 0.05035
7.0 cM

Tubb6 tubulin, beta 6 4.08 1.75 181860 18 E1 0.03445 0.05252
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Table C.5 a-e: Genes upregulated in the central corneal epithelial basal 

cells. Official gene names and symbols, fold change rations, Welch’s t- 

test p-values as well as Unigene reference numbers and chromosomal 

location (ChroLocn) of each gene is designated.

Table C.5 a Genes upregulated in the central corneal epithelial basal 
cells

Gene
Symbol

Acpp

Angptl4

Ankrd29

Gene name Fold change to Unigene Chro. Welch's p-value

acid
phosphatase,
prostate

angiopoietin-like
4
ankyrin repeat 
domain 29

ID
Limbus Periph

2.85 2.5

3.97

2.08 2.07

Lctn. C-L

19941 9F1

1.64 196189 17 B1

53865 18 A1

0.04749

C-P

0.06168

0.05307 0.12021

0.04145 0.05105

Asns

BC040823

asparagine
synthetase
cDNA sequence 
BC040823

5.06 4.41 2942 6A1 0.00152 0.00570

1.91 2.13 21577 2 H4 0.05555 0.04912

Bnip3

Bnip3l

Cxcli

D10Ertd438e

Dnajdl

Eif4ebp1

BCL2/adenovirus 
E1B 19kDa- 
interacting 
protein 1, NIP3

BCL2/adenovirus 
E1B 19kDa- 
interacting 
protein 3-like

chemokine (C-X- 
C motif) ligand 1

DNA segment, 
Chr 10, ERATO 
Doi 438, 
expressed

DnaJ (Hsp40) 
homolog, 
subfamily D, 
member 1

eukaryotic 
translation 
initiation factor 
4E binding 
protein 1

2.38 4.5

2.16 1.65

3.43 2.99

1.71 1.83

3.32 1.99

2159 7 F5

29820 14
D1|14 
28.0 cM

21013 5 E-F|5
51.0 cM

199964 10
B3| 10
29.0 cM

0.00765 0.00948

1.69 2.03 248046 14 D3

6700 8 A4-
B1|8 
8.0 cM

0.00383

0.03216

0.04866

0.02178

0.03590

0.06201

0.04856 0.10675

303



Table C.5 b Genes upregulated in the central corneal epithelial basal
cells

Gene Gene name 
Symbol

Fgfbpl fibroblast growth 
factor binding 
protein 1

Fold change to

Limbus Periph

1.73 1.68

Unigene Chro. Welch's p-value 
ID Lctn. C-L C-P

46053 5 B3 0.06210 0.06513

Fos FBJ osteosarcoma
oncogene

Fscnl fascin homolog 1,
actin bundling 
protein
(Strongylocentrotus)
purpuratus)

1.72 1.68 246513 12 0.04344 0.00238
D2|12
40.0 cM

7.01 4.5 289707 5 G2|5 0.02690 0.03140
86.0 cM

Galm galactose 2.06 1.83 29098 17 E3 0.02571 0.06628
mutarotase

Gas5 growth arrest 2.41 1.93 270065 1 H2.1 0.06324 0.17022
specific 5

Gatad2a GATA zinc finger 1.84 1.69 270044 8 B3.3 0.07058 0.23185
domain containing 
2A

Ghr growth hormone 2.93 1.61 3986 15 0.00193 0.01875
receptor A1115

4.6 cM

Gnai2 guanine nucleotide 1.74 1.88 196464 9F1|9 0.05495 0.03023
binding protein, 59.0 cM
alpha inhibiting 2

Ifit3 interferon-induced 1.87 2.06 271850 19C3 0.00517 0.00137
protein with 
tetratri copeptide 
repeats 3

Kalrn kalirin, RhoGEF 2.48 2.55 101990 16 B3
kinase

Lmnbl lamin B1 1.8 1.64 4105 18 0.54110 0.01146
D3| 18
29.0 cM
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Table C.5 c Genes upregulated in the central corneal epithelial basal
cells.

Gene
Symbol

Lss

Lxn

Mat2a

Mt1

Nargl

Ndrl

Odz4

Pigf

Prkcbl

Psmc3ip

Pvrl2 

Rail 4

Gene name Fold change to Unigene Chro. Welch's p-value
ID Lctn. C-L C-P

Limbus Periph

lanosterol synthase

Latexin

methionine 
adenosyltransferase 
II, alpha

2.43

3.05

2.1

2.03

1.6

2.08

55075 10
C1|10 
41.1 cM 

2632 3 E1|3
31.6 cM

29815 6C1

0.01810 0.02695

0.03850

0.03713

0.09999

0.25324

metallothionein 1

NMDA receptor- 
regulated gene 1

2.46 1.71 192991 8 C5|8
45.0 cM

1.65 1.64 275281 3 D

0.00854 0.02543

0.04707 0.03790

N-myc downstream 
reguiated-like

2.19 2.1 — 15 D2 0.00644 0.00910

odd Oz/ten-m 
homolog 4 
(Drosophila)

2.46 1.89 254610 7E1|7 0.04254
47.7 cM

0.04757

phosphatidylinositol 
glycan, class F

2.22 1.68 219685 17 E4- 0.00096 0.00240
E5| 17 
54.3 cM

protein kinase C, 
beta 1

4.44 5.13 207496 7 F2|7
60.0 cM

proteasome 
(prosome, 
macropain) 26S 
subunit, ATPase 3, 
interacting protein

poliovirus receptor- 
related 2

1.75 1.64 18344 11 D 0.05377 0.00426

1.95 1.68 4341 7 A2|7 0.00612 0.01282
9.0 cM

retinoic acid 
induced 14

1.78 1.89 212395 15A2 0.00026 0.00170
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Table C.5 d Genes upregulated in the central corneal epithelial basal
cells.

Gene Gene name Fold change to Unigene Chro. Welch's p-value 
Symbol ID Lctn. C-L C-P

Limbus Periph

Ralb

Rapgef5

Rgs2

Scd1

v-ral simian 
leukemia viral 
oncogene 
homolog B (ras 
related)

Rap guanine 
nucleotide 
exchange factor 
(GEF) 5

regulator of G- 
protein 
signaling 2

stearoyl- 
Coenzyme A 
desaturase 1

2.11

3.05

1.66

1.69

1.68

1.73

1.77

1.95

27832 1 E2

227642 12 F2 0.00566 0.02173

28262 1 F|1
78.0 
cM

267377 19
C3|19
43.0 
cM

0.00312 0.00130

0.00892 0.00017

Serpinb5 serine (or 
cysteine) 
proteinase 
inhibitor, clade 
B, member 5

2.11 1.71 268618 1 E2.1 0.00509 0.00691

Slc19a2 solute carrier 
family 19 
(thiamine 
transporter), 
member 2

4.32 1.67 35444 1
H2.2|1
87.0
cM

0.02422 0.05690

Slc35e4 solute carrier 
family 35, 
member E4

1.72 1.64 171514 11 A1 0.00039 0.00026

St8sia4 ST8 alpha-N- 7.67 3.76 306228 1 D 0.00192 0.01005
acetyl- 
neuraminide 
alpha-2,8- 
sialyltransferase 
4

Thumpdl THUMP domain 2.28 3.01 26392 7 F1 0.03671 0.02700
containing 1



Table C.5 e Genes upregulated in the central corneal epithelial basal
cells.

Gene
Symbol

Timm50

Tor3a

Tpm2

Tyki

Usp18

Vldlr

Yaf2

Zfp313

Timm44

Gene Fold change to Unigene Chro. Welch's p-value
name ID Lctn. c -l c -p

Limbus Periph

translocase 
of inner 
mitochondrial 
membrane 
50 homolog 
(yeast)

2.43 1.72 167913 7 A3 0.01505 0.00348

torsin family 
3, member A

2.62 1.6 206737 1 G3 0.03991 0.05762

tropomyosin 
2, beta
thymidylate 
kinase family 
LPS- 
inducible 
member

ubiquitin 
specific 
protease 18

2.16

3.46

1.64

1.82

4.2

2.2

646 4 B1

271839 12
A1.3|12 
6.0 cM

0.02405 0.03611

0.00531 0.00724

326911 6 F|6 0.37210 0.00091
56.0 cM

very low 2.25 1.68 4141 19 C1119 0.00828 0.01941
density 20.0 cM
lipoprotein
receptor

YY1
associated 
factor 2

zinc finger 
protein 313
translocator 
of inner 
mitochondrial 
membrane 
44

1.72

2.19

1.68

1.69

2

1.61

4714 15 F1

22225

0.00416 0I00280

0.02578 0.02390

195249 8 A1.1|8 0.03327 0.02299
2.5 cM



Table C.6 Genes specifically downregulated in corneal peripheral basal 

epithelial cells. The table includes gene symbols, names, fold changes, 

Welch’s t-test p-values, unigene ID and chromosomal location of each 

gene.

Gene Gene 
Symbol name

Slc13a2 solute carrier
family 13
(sodium-
dependent
dicarboxylate
transporter),
member 2

Fold change to Unigene ChroLocn Welch's p-value 
ID

Limbus Periphery

-3.12 -1.5 20500 11 B5|11 
45.03 cM

C-L C-P

0.01925 0.01000

Col1a2

Igfbp4

procollagen, 
type I, alpha 
2

insulin-like 
growth factor 
binding 
protein 4

-2.69

-3.75

-2.92

-2.55

12843

16010

6 A1|6 0.68 
cM

11 D

0.04138 0.05391

0.01599 0.00887

Pcolce procollagen
C-proteinase
enhancer
protein

- 2.11 -1.56 18542 5 G2|5 78.0 0.01507 0.01 955
cM
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