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Abstract

A new generation of diode lasers is being developed using quantum dots as the gain 

generating medium. A detailed understanding of the carrier recombination 

mechanisms and optical gain generation is essential for optimisation of their 

performance. The aim of this work is to further understand the optical processes 

occurring in quantum dots. In particular, the effect of the localisation of the energy 

states in the dots on the recombination mechanisms and the gain/absorption is studied.

It is often assumed that the rates of nonradiative recombination via defects, radiative 

recombination and Auger recombination are proportional to linear, quadratic and 

cubic functions of the carrier number respectively. The derivation of these functional 

forms is possible in quantum well and bulk structures because the extended electronic 

states make it meaningful to talk of a global carrier population. In a quantum dot 

system the dependence of the recombination processes on the total number of 

electrons populating the dots is modified by the localisation of all the recombination 

processes. In this thesis a computer model has been developed in which the dots are 

occupied by integer numbers of electrons and holes, with electron and hole 

occupancies controlled by Fermi-Dirac statistics. The recombination processes have 

similar dependences on the electron number and there is no clear transition from one 

process to another as the injection level is increased. These dependences cannot be 

represented by simple power law functions of the carrier number. An alternative 

model, in which each dot is electrically neutral, has also been studied, and the two 

models show significant differences for the hole distribution as the injection is 

increased. It is found that analyses based on power law relations between 

recombination rates and carrier number, as used for extended state systems, cannot be 

applied to localised recombination in dots.
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“All o f  physics is either impossible or trivial. It is impossible until you understand it, 

and then it becomes trivial. ”

-  Ernest Rutherford

“A theory can be proved by experiment; but no path leads from experiment to the 

birth o f a theory. ”

- Albert Einstein
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1 Introduction and Thesis Rationale

1.1 Thesis Rationale

The work presented in this thesis has been carried out at Cardiff University, with the aim of 

further understanding the optical processes occurring in quantum dots. In particular, it is 

studied how the localisation of the energy states in the dots affects the recombination 

mechanisms and the gain/absorption.

A new generation of diode lasers is being developed using quantum dots as the gain 

generating medium. These devices have a number of attractive features including very low 

threshold current with low temperature sensitivity, a wide gain spectrum attractive for ultra- 

short pulse generation, and long wavelength emission from structures on GaAs substrates 

[1]. A detailed understanding of the carrier recombination mechanisms and optical gain 

generation within semiconductor lasers is essential for optimisation of their performance. In 

systems of finite dimensions with extended electronic states, carriers are free to move along 

the quantum wire or quantum well, or throughout the bulk crystal. This assists the carriers in 

achieving an internal equilibrium throughout the crystal. The extended states form a 

continuum in energy which is represented by a density of states function and treatments of 

recombination are based on the assumption that any electron in an extended state may 

recombine with any hole in an extended state, subject to the appropriate ^-selection rules. 

These ideas lead to the concept of the reduced density of states and a radiative recombination 

rate which is proportional to the product of the electron and hole densities in the extended 

state system [2]. In the absence of quantum mechanical coupling, the electronic states of a 

quantum dot are localised in all three directions; consequently, it is only possible for 

electrons and holes which are located within the same dot to recombine with each other. The 

maximum number of available electrons and holes within a single state is then equal to the 

spin degeneracy and at high injection this significantly reduces the radiative recombination 

rate relative to the quantum well or bulk case.

Experimentally the recombination processes are often investigated by measurement of the 

light versus current (L-I) characteristics in the spontaneous emission regime. This is done by 

consideration of the functional form of the data using assumed power law dependences on 

carrier density for the various recombination processes [3-5]. It is assumed that the rates of
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nonradiative recombination via defects, radiative recombination and Auger recombination 

are proportional to linear, quadratic and cubic functions of the carrier density respectively. 

The light-current curve is linear if radiative recombination is dominant, super-linear if 

nonradiative recombination is dominant and sub-linear if  Auger processes dominate. The 

derivation of these functional forms for the recombination mechanisms is possible in 

quantum well and bulk structures because the extended electronic states make it meaningful 

to talk of a global carrier population. In a quantum dot system it is still possible to talk of 

the total number o f electrons populating the dot states, but the behaviour of the 

recombination processes on this number may be modified by the localisation of all the 

recombination processes. Whether simple relationships can be found in quantum dot systems 

is not obvious from immediate inspection and will depend on the individual contributions of 

the many dots that make up the whole ensemble. Light-current curves measured on quantum 

dot LEDs show sub-linear and super-linear behaviour but, since the number of electrons 

cannot be measured directly, it is not known whether the power law components of such data 

are indicative o f specific recombination processes.

The aim of this work is to compute the recombination and gain characteristics of a quantum 

dot system to explore the consequences of carrier localisation on the behaviour of quantum 

dot light emitters. A feature of the model is that the number o f electrons in a given dot is a 

discrete integer, not a fractional probability. Real dot samples usually incorporate a quantum 

well, or wetting layer, which does have extended states and this has also been incorporated 

into the model. Some aspects o f localisation have been included in previous calculations [6, 

7]; however, the prime aim of this thesis is to use a computer model to explore the effect of 

localisation and discrete occupancy number on the measurable characteristics, such as the 

light output and device current, o f an ensemble o f a large number of dots. For example, in a 

system where radiative recombination is the only process, the light-current curve is linear, 

irrespective o f the relation between the radiative recombination rate and the number of 

carriers in the system: the radiative rate is the current. To focus on this it is assumed that the 

whole system is in thermal equilibrium so that comparisons can readily be made with non­

localised systems since the global occupation probabilities are specified analytically. A 

consequence o f this work is that it can be assessed whether methods of analysis of light- 

current data commonly used for bulk and quantum well systems can be transferred directly 

to the study of quantum dot emitters.

2
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1.2 Thesis Outline

This first chapter of the thesis gives an outline of the project and some background 

information. An introduction to quantum confinement is given, focusing on quantum dots. A 

brief introduction to lasers is also given.

Chapter 2 outlines some of the main concepts of semiconductor optoelectronics and the 

properties of semiconductor structures. Equations for some of the processes involved are 

derived, including the Einstein relations for quantum dots.

Chapter 3 gives details of the model derived in this thesis and describes how localised 

population statistics are used to calculate the discrete electron and hole occupancies of the 

dots. Equations for the electron and hole distributions are given. This model is referred to as 

the non-neutral model since each individual dot does not necessarily contain equal numbers 

of electrons and holes.

Chapter 4 details how the localised population statistics are used to calculate the processes 

occurring in the dots, including the radiative, nonradiative and Auger recombination, and the 

gain.

In chapter 5 an alternative model in described, in which localised population statistics are 

used for the electron distribution but the number of holes in each dot is set equal to the 

number of electrons. This is called the neutral model. The equations for the recombination 

processes and gain for these neutral dots are given.

Chapter 6 shows how the electron and hole populations evolve with increasing injection. 

Hole distributions for the neutral and non-neutral dots are described. It is discussed whether 

or not the hole distribution for the neutral dots can be described by Fermi-Dirac statistics.

Chapter 7 shows various light-current curves and describes how the recombination processes 

vary with electron number. Results for neutral and non-neutral dots are compared. The 

computed L-I curves are also compared with experimental data.

In chapter 8 spontaneous emission plots are presented. Plots of the spontaneous emission 

spectra at various injection levels are shown, and the spectra of the neutral and non-neutral 

dots are compared. It is investigated how appropriate it is to fit the spectra with Gaussian 

distributions.

3
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Chapter 9 gives gain/absorption spectra for different injection levels. The differences 

between the neutral and non-neutral dots are discussed, along with the absorption spectra for 

differing linewidths. The variation of the peak gain with electron quasi-Fermi level, electron 

number and radiative current is studied, with comparisons made between the neutral and 

non-neutral cases.

Chapter 10 brings the spontaneous emission and gain chapters together and shows gain- 

current plots for the neutral and non-neutral dots. The distribution function Pf is plotted for 

both cases.

Finally, the thesis is concluded with a summary o f the main concepts of the model and its 

conclusions, along with suggestions for future work.

An appendix is included, in which tables o f the notation and abbreviations used throughout 

this thesis are given.

1.3 Quantum Dots

1.3.1 Introduction -  Quantum Confinement

When the dimensionality of a semiconductor structure is decreased, quantum confinement 

effects begin to become noticeable. Quantum confinement is possible in one, two, or all 

three dimensions, to produce quantum wells, quantum wires or quantum dots respectively. 

Structures are named according to the number o f dimensions in which the electrons are free 

to move, which itself is determined by the number o f dimensions that are small: thin layers 

of material are called two-dimensional (2D), wires are one-dimensional (ID), and quantum 

dots are zero-dimensional (0D) since the electrons are confined in all three directions. 

(Structures in which no dimension is significantly small for observable quantum effects are 

called bulk structures.) The critical thickness at which quantum confinement effects become 

observable is that of the de-Broglie wavelength o f an electron, which is given by:

-y]3mckT

equation 1.1

Here, mc is the effective mass o f the electrons, k  is Boltzmann’s constant, and T  is the 

temperature. For electrons in semiconductors, the effective mass of an electron is much less
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than the free electron mass and the de-Broglie wavelength is of the order of tens of 

nanometres.

Reducing the number of dimensions of a semiconductor structure has the effect of altering 

the density of states, which significantly changes the optical properties of the crystal, such as 

the gain and recombination spectra. The density of states for structures of differing 

dimensions is discussed in more detail in section 2.2.3.

Quantum wells are used extensively in optoelectronic devices, particularly in laser diodes. A 

potential well is formed in a heterostructure, where a thin layer of narrow bandgap 

semiconductor material is sandwiched between two layers of wider bandgap material. 

Typical quantum well widths are about 5-10nm, which is sufficiently small such that the 

band bending is very small and the bands can be drawn as flat.

Quantum confined structures have many advantages over bulk material. The energy levels in 

a quantum well are quantised, with the electrons being free to move in the other two 

dimensions in the plane of the well. The energy levels can be calculated by solving 

Schrodinger’s equation and this results in a step-like density of states. This quantisation 

leads to an increased transition energy, well above that of bulk material. For a thin well the 

sub-bands are separated by an energy greater than the thermal energy kT, and so there is only 

a small thermal occupation of higher energy bands which reduces the threshold current 

density. By adjusting the thickness of the well, the transition energy can be altered and this 

in turn alters the wavelength of the device, which allows for semiconductor lasers of 

different wavelengths to be produced.

Quantum dots are formed by reducing the dimensionality of a structure in all three 

directions. The dots have a discrete energy level structure and the classical bandstructure 

model can no longer be applied. The dots have a theoretical delta-function density of states. 

The de-Broglie wavelength is now the critical measure for quantisation effects in all three 

dimensions and so typical sizes of dots are around lOnm. Some of the resulting properties of 

perfect quantum dots are atomic-like, although a quantum dot will contain 104 or more 

atoms.

There were several advantages proposed for the use of quantum dots over quantum wells in 

the active region of lasers. Because the energy level separation in quantum dots is greater 

than the thermal energy, it was predicted that there would be an improved temperature 

stability in the devices [8]. Due to the discrete energy spectrum exhibited by the dots, a
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narrow spectral linewidth was expected. Also, because there are fewer states available to 

populate than in quantum well lasers, population inversion can be more easily achieved and 

so lower threshold currents were predicted [9]. Finally, devices using quantum dots can 

incorporate materials with greater lattice mismatches than those using wells, and so a greater 

spectral range can be achieved.

1.3.2 Considerations for the use of Quantum Dots in Devices

If quantum dots are to be used in devices at room temperature the following considerations 

need to be taken into account [1]:

• The localisation potential needs to be sufficiently deep, and the quantum dot size 

sufficiently small, that zero-dimensional effects are observed.

• The quantum dot should ideally contain only one electron and hole energy level, 

more than a few kT  away from the wetting layer.

• High uniformity o f the quantum dots in the ensemble is needed. A large variation in 

size will result in an inhomogeneous broadening o f the spectra.

• For efficient device performance the material should be coherent and free from

defects such as dislocations.

A large size of quantum dot is undesirable for use in devices such as lasers due to the 

thermal occupation o f higher states, and this leads to the following condition [1]:

equation 1.2

In the above equation, Egr and Eex are the energy levels for the electrons in the ground and 

first excited state in the dot respectively. At room temperature this gives an upper limit for 

the size of InAs/AlGaAs dots of about 20nm. Different conditions will apply to the hole 

levels due to the small electron/hole mass ratio.

1.3.3 A History of Quantum Dots in Devices

In this section a brief history o f the use o f quantum dots in devices is given. The main

developments and advances are summarised here and full details can be found in the paper
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“Quantum-Dot Heterostructure Lasers” [10]. Other accounts can be found in references [11- 

13].

In 1976, Dingle and Henry introduced the idea to “exploit quantum effects in heterostructure 

semiconductor lasers to produce wavelength tunability” and achieve “lower lasing 

thresholds” via “the change in the density of states which results from reducing the number 

of translational degrees of freedom of the carriers” [14]. The ultimate example of size 

quantisation in solids is a quantum dot, which provides a practical application of atomic 

physics to the field of semiconductor devices. The major breakthrough in the field of 

semiconductor diode lasers [15-17] took place with the implementation of a double 

heterostructure as the active region of an injection laser to achieve efficient carrier 

confinement [18].

In 1986, Asada et al. [19, 20] theoretically considered gain in quantum wire and quantum dot 

lasers. They concluded that for the same homogeneous broadening of about 6meV the 

quantum dot devices would have increased material gain compared to the quantum wire 

case. However, in 1988 Vahala pointed out [20] that the inhomogeneity present in the dots 

would have an effect on the proposed advantages of these dots in devices, and the realisation 

of high gain operation would dictate that “quantum box fabrication tolerances are tightly 

controlled”.

The real breakthrough in using quantum dots in optoelectronic devices came with the 

development of the self-organised growth method which was capable of producing dense 

arrays of uniform dots with a great reduction in the number of defects compared to other 

growth methods [21, 22]. One of the advantages of this method is that it is cost effective and 

can be done without any significant changes needing to be made to the growth equipment. 

The presence of a wetting layer produced during the growth process was demonstrated first 

in 1985 for InAs grown on GaAs [23]. It was then in 1993 that photo-pumped lasing using 

quantum dot heterostructures was demonstrated [21, 22] both at low and room temperatures. 

Even these early examples of quantum dot lasers demonstrated good device characteristics at 

low temperature. However, the devices still remained worse than the best quantum well 

devices at room temperature. The reason for this was temperature-induced escape of carriers 

from the dots [24]. This problem was overcome by stacking vertically coupled quantum dots, 

making lasing at room temperatures possible [25].

7
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There are many potential applications for quantum dot lasers. In 2001/2002, telecoms 

accounted for 70% o f the total semiconductor laser market [26], and there is a need for cheap 

and reliable 1.3 jam quantum dot VCSEL lasers. With continued improvement in the 

fabrication and development, quantum dots could soon replace quantum wells in lasers.

1.3.4 Fabrication of Quantum Dots

There are several techniques available for quantum dot growth. The most common of these 

is the Stranski-Krastanow growth method [27-29] which is described here. Details of other 

growth methods can be found in reference [30]. In the Stranski-Krastanow growth process a 

layer o f semiconductor material, such as InGaAs, is grown on top o f another layer of 

different semiconductor material, such as GaAs. These materials are known as the deposited 

and substrate materials respectively. The lattice-mismatch between these two materials needs 

to be small, about 2% [31], with the substrate material having the smaller lattice constant. A 

two-dimensional layer o f uniform thickness begins to build up which is known as the 

wetting layer. This situation is not energetically favourable and so to reduce the strain in the 

lattice small islands o f material appear on top o f the wetting layer: these are the quantum 

dots. This process is said to be self-organising or self-assembled and takes the system into a 

more favourable energy state. Differences in the growth conditions result in a distribution in 

the dots in size, shape and material composition. This leads to an inhomogeneous broadening 

of the energy spectra, typically in the range 18-80meV. Typical dot densities are o f the order 

1010-  10u cm'2.

1.4 Lasers

1.4.1 Introduction

The aim of this thesis is to study the recombination mechanisms that occur in quantum dots 

for a better understanding of quantum dot lasers. Therefore in the following sections is a 

brief summary and history o f semiconductor lasers. A more detailed discussion o f the theory 

of semiconductors, and in particular quantum dots, is given in the next chapter; the purpose 

of these sections is to provide a brief introduction to the subject. For a more detailed account 

refer to books by Coldren and Corzine [30], Zory [32] or Casey and Panish [33].
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1.4.2 Principles of Semiconductor Lasers

The term ‘laser’ is an acronym for Light Amplification by the Stimulated Emission of 

Radiation. In general terms, a laser is an externally pumped self-sustained oscillator, which 

contains electrons in an excited state that emit photons when they fall from these higher 

states to lower energy states. The energy of the photon is dependent on the difference in 

energy of these lower and upper states; this difference is a property of the material system. 

These emitted photons are incoherent and random in phase and direction, and the process is 

known as spontaneous emission since it is randomly occurring. Another process is 

stimulated emission which happens when a photon stimulates an electron in an excited state 

to release its energy with the emission of another photon. This second induced photon has 

the same phase and direction as the incoming one and this is the principle of operation of a 

laser. To achieve lasing there must be a large density of carriers present and the rate of 

stimulated emission must exceed that of spontaneous emission; for this to occur population 

inversion is needed. This is the situation where there are more carriers in the upper state than 

in the lower state. For semiconductors this means that there must be a greater number of 

electrons in the conduction band than the valence band. Population inversion is achieved in 

semiconductor lasers by electrical pumping.

A semiconductor laser consists of a p-n junction and this is where the term diode laser 

comes from. The diode is forward biased and electrons from the «-doped region and holes 

from the j?-doped region are injected into the undoped active region. A double 

heterostructure (DH) design is usually used, which confines the carriers and the light within 

the gain generating region.

Cladding layers confine the carriers within the active region due to their lower refractive 

index compared to that of the active region. The optical mode is thus confined within this 

region, allowing maximum interaction of the electromagnetic field with the gain-producing 

region. Sufficient gain must be generated to overcome the optical losses: optical feedback is 

provided by the cleaved facets of the semiconductor gain medium which reflect back a 

percentage of the light so that further amplification can take place.

1.4.3 A Brief History of Semiconductor Lasers

Since they were first demonstrated in the 1960s, semiconductor lasers have been widely used 

in commercial devices and have been the subject of extensive research. They have many
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varied applications due to the wide range of light wavelengths they can offer: GaN lasers can 

produce light in the blue part o f the visible spectrum whilst the far infrared can be reached 

with quantum cascade lasers.

A thorough review o f the development o f the maser and laser is given by Bertolotti [33]. 

Townes first demonstrated stimulated emission from an inverted population using a maser (a 

laser operating at microwave wavelengths) in 1954. The first development of a true laser was 

in 1960 by Maiman, using a solid state ruby crystal. In 1957 Watanabe et a l filed a patent 

for the semiconductor maser which was published in 1960 [34]. Then in 1961 it was 

proposed by Basov et al. that a p-n  junction could be used to produce stimulated emission, 

which proved to be more successful than earlier methods used [35]. The first diode laser was 

produced in 1962 by Hall, emitting at 840nm and requiring a current density of around

100,000 Am’2 [36]. This GaAs based laser produced so much heat it could only be operated 

in a pulsed mode at a temperature of 77K. It was not until 1970 that the first room 

temperature operating device was created [37], after Kroemer suggested the double 

heterostructure in 1963 [18]. Mass production of LEDs began in 1972, with the first use of 

diode lasers in compact disk players happening in the 1980s. In 1995 this was followed by 

the DVD player with a laser emitting at 650nm. Recent advances involve the development of 

commercial lasers based on the nitride material system, emitting in blue/violet range.

1.5 Summary

In this chapter I have introduced the aims of the thesis, as well as a background to the field 

o f quantum dots. The main advantages of the use o f quantum dots over quantum wells in 

semiconductor lasers are given, along with a brief summary o f the main developments in the 

field o f lasers. The next chapter provides a theoretical description of quantum dots and their 

use in semiconductor lasers. The optical processes are discussed and the Einstein relations 

are given for quantum dots.
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2 Theoretical Background

2.1 Introduction

The theory of quantum dots can be found in various text books. A few examples of these are 

“Quantum Dot Heterostructures” by Bimberg [1] and “Optical Properties of Solids” by Fox

[2]. The aim of this thesis is to understand how the localisation of the energy states affects 

the optical processes occurring in quantum dots, for their use in semiconductor lasers and 

LEDs. This chapter therefore starts with a brief introduction to the theory of some of the 

processes involved in semiconductors, beginning with the theory of the electronic properties 

of semiconductors, including energy level and density of states calculations. The Einstein 

relations are then discussed, along with some of the optical processes in semiconductors, 

focussing on those of quantum dots. This includes the recombination mechanisms, as well as 

optical gain/absorption. Finally, the broadening mechanisms are discussed.

2.2 Electronic Properties of Semiconductors

2.2.1 Introduction

Detailed descriptions of the electronic properties of semiconductors can be found in many 

solid state text books, such as “Solid State Physics” by Hook and Hall [3], “Semiconductor 

Optoelectronics” by Singh [4] and “Introduction to Solid State Physics” by Kittel [5]. Here a 

brief summary of the main concepts is presented.

2.2.2 Bandstructure

To understand semiconductors the periodicity of the crystal needs to be understood. Without 

this periodicity semiconductor problems would be almost impossible to solve due to the 

extremely large densities of atoms present. However, electrons moving in semiconductors 

are not moving through a random distribution of ions; semiconductor structures are 

crystalline and ordered, and the electrons move through a well defined periodic distribution. 

This periodicity affects the electronic properties of a semiconductor and thus its optical 

properties.
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Methods are available to reduce the complexity of solving the electronic properties of 

semiconductors such as the orthogonalized plane wave method or the k-p perturbation 

method [4], which can be used to solve for the energy levels. To represent the electronic 

properties bandstructure is used, which defines the allowed electron energy states and gives 

the E-k relation.

Semiconductors comprise of energy bands: the conduction band and valence band. In a 

quantum confined structure the valence band splits into three separate bands due to spin- 

orbit coupling: the heavy-hole (HH), light-hole (LH) and split-off bands (SO). In this thesis, 

all calculations are performed using values for the heavy-hole band since this is the band 

from which most o f the light is produced in quantum dots. References to the valence band 

therefore relate to the heavy-hole band. Details of the other bands can be found in references 

[6-8]. A simplified bandstructure for a direct bandgap semiconductor is shown in Figure 2.1.

E

conduction

states

valence states

HH
LH

SO

Figure 2.1 - Bandstructure for a direct bandgap semiconductor.

Direct bandgap semiconductors are ones in which the bottom of the conduction band occurs 

at the same value of k  as for the bottom of the valence band, where k  is the magnitude of the 

wavevector. Examples of these are GaAs and InAs, and the quantum dots modelled in this 

thesis are made of InAs. Semiconductors in which the bottom of the conduction band occurs 

at a different value of k to that of the valence band are known as indirect bandgap materials. 

These materials, such are Si, AlAs etc., do not make good materials for optical devices due
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to their poor interaction with light. This is because of the need for momentum conservation 

which makes strong optical transitions in indirect semiconductors difficult.

Direct bandgap semiconductors are isotropic and the E-k relation is approximated to be 

parabolic, with constant energy surfaces that take the form of a sphere in space. The 

difference in energy between the minima of the conduction and valence bands is called the 

bandgap of the material, Eg. The electron energy Ec is measured from the conduction band 

edge and is positive into the conduction band, whilst the hole energy Ev is measured from the 

valence band edge and is positive into the valence band, as shown in Figure 2.1.

>  k

E c Efc

EV Ejy

Figure 2.2 - Conduction and valence band energy measurement.

The E-k relation for the energy of the electrons can be written as

h 2k 2Ec(k) =
2m,

equation 2.1

where mc is the effective mass of the electrons. Similarly, for the holes in the valence band, 

the equation for the energies is

E ,(k) =
2 7,2n lk

2m,

equation 2.2
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where mv is the effective mass of the holes. For conservation of momentum in a transition, 

the photon energy hu  must be equal to the difference in energy of the electron and hole 

states:

2 1.2r  n2k 2 n 2khu  = E n + ------- +
2m,. 2m,

A reduced electron-hole mass p  can be defined according to:

equation 2.3

From this equation 2.3 can be rewritten as:

1 1 1----
m„ m.

equation 2.4

2 1 .2

hu  = E„ +
h zk
2 p

equation 2.5

The wavevector k  is related to the momentum of an electron by:

p  = hk

equation 2.6

In semiconductor crystals the quantity hk is the equivalent of the momentum for the free 

space electrons, and is called the crystal momentum. It must be conserved during any 

transitions that occur. Since the photon has negligible momentum compared to that of the 

electrons and holes, radiative transitions occur between electrons and holes having the same 

value of wavevector.

The carrier concentration in a semiconductor is dependent on the temperature, the bandgap, 

the doping and the carrier mass. At a temperature of zero Kelvin the valence band is 

completely full with electrons and the conduction band is completely empty. As the 

temperature is increased to a finite value the carrier occupation numbers are controlled by 

the Fermi distribution function. The occupation probability of an electron or hole state with 

energy E  is given by

16
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/  =   ------------( e - e A
exp ------- — +1T k T  J

equation 2.7

where Ef is the Fermi energy. This distribution is discussed in more detail in section 2.4.2. At 

a temperature of zero Kelvin, the Fermi distribution function is a step function; as the 

temperature is raised it ‘smears’ out and carriers are emitted into the conduction band from 

the valence band.

As described in chapter 1, when one or more dimensions of a semiconductor are reduced 

quantum effects can become apparent, which alters the state distribution. To study the 

properties of electrons and holes, and obtain the energy levels, the time-independent 

Schrbdinger equation needs to be solved:

^ 0 ^  + ^ l E ~ u ( r ) M r )  = °

equation 2.8

U(r) is the background potential seen by the electrons and holes. The electron and hole 

wavefunctions in a periodic crystal satisfy Bloch’s theorem, which in 3D is given by:

v/J (r )= -F (r K ( r )

equation 2.9

Here F(r) is the envelope function and w*(r) is called the Bloch function and has the same 

periodicity as the crystal lattice R , i.e.

“*(r ) = “*(r + R )

equation 2.10

For a two-dimensional quantum well, in the limiting case of an infinitely deep potential, the 

energy levels in the confined directions are given by

* 2  (  \ 2 n nn
2mc,v \  L z J

equation 2.11
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where Lz is the width of the well and n is a positive integer. In the limit of Lz becoming large, 

a continuum of states is produced and the system no longer exhibits quantum effects.

2.2.3 Density of States

A system is described as low-dimensional when one or more of its dimensions is reduced in 

size such that its size becomes comparable with the de-Broglie wavelength (see section 1.4.1 

for more details). This alters the density of states (DOS) for the structure and thus its 

properties. The density of states is used in calculations of many semiconductor properties, 

such as absorption, and in the analysis of devices. The density of states for a two- 

dimensional quantum well, pm{E), is defined as the number of available electronic states for 

electrons of energy E  per unit energy per unit area. To derive the density of states the 

number of ^-states that lie in an annulus o f radius k  to k  + d£ are calculated, as shown in 

Figure 2.3 [9].

k y

Figure 2.3 - A-space in 2D. The density of states at an energy E  is the number of A-states per 

unit area contained within the annulus of radius A and thickness dA.

The area of the annulus is given by 2 ;r|k |dk , and the area that one state occupies in &-space 
• 2is ( 2 ,  where Lz is the width o f the well. The number of states is then the area of the 

annulus divided by the area of one state, which gives
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/ x 2;r|k|dk L 2 , |
p(k)dk = 2 x - — —-  = — |k|dk

' i n /  \  n
A J

equation 2.12

where the multiplication factor of two has been included to take account of the spin 

degenerate states. Dividing by the area Lz gives the density of states as:

p 2D (k)dk = — dk 
n

equation 2.13

This equation can be re-written in terms of energy using the parabolic relation, given in 

equation 2.1, which rearranging gives an equation for k  as:

k  =
'im E V 2
. n2 J

equation 2.14

Differentiating this with respect to energy gives

2mEf  Vi
dk =

v n 2 j
m
n2

dE

equation 2.15

and substituting into equation 2.13 gives:

n  n \  n )  \  n
m m—t-qE  = — -d E
h ‘ 7ih‘

equation 2.16

Therefore the density of states for a 2D system, for one sub-band in terms of energy, is given 

by

P lD  (E ') ~
m

7th2

equation 2.17

9 1and has dimensions of [L]" [E]' . (The density of states for a quantum well is often written, 

incorrectly, in units of per unit energy per unit volume, and an Lz appears in the denominator
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of equation 2.17. The correct definition of the density of states for a quantum well is 

independent of the well width and has units of per unit energy per unit area.)

Ec
A Energy

i i.

AEc

r

▲

AEv

Density of states

Figure 2.4 - Density of states for a two-dimensional quantum well.

Due to the quantisation effects, a quantum well exhibits a step-like density of states function. 

If the well is sufficiently thin then the sub-band separation is much greater than kT  at room 

temperature, and so only a small thermal population of higher energy states will exist. This is 

the main reason for the improvement of semiconductor lasers using quantum wells in the 

active region instead of bulk. Figure 2.5 shows the difference between the density of states 

for a quantum well and for bulk material.
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Bulk

Quantum

Well

Figure 2.5 - Density of states for an infinite-barrier quantum well and for bulk material.

If all three dimensions of the structure are reduced, the result is quantum dots. The energy 

states are now quantised in all three directions and the dots are often said to have a 

theoretical delta-function density of states. However, a density of states for a zero­

dimensional system has no physical meaning and it is more appropriate to refer to the 

number of states. For a quantum dot the parabolic E-k relation for electrons is written as

E = ^ — (kx2 + k 7 + k *)
2mc

equation 2.18

It has been seen from experimental investigation that quantum dots often take the shape of 

flat discs or pyramids [10, 11]. Throughout this thesis the shape of a quantum dot is 

modelled as a flat box, as shown in Figure 2.6, in which the x-y directions are taken to be the 

same
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Figure 2.6 - Geometry of quantum dot.

Because of the relatively large dimensions in the x,y directions, the kx and ky wavevectors 

have a much smaller value than kz. Therefore the energy levels in these directions are very 

closely spaced, and so it is the z-direction that determines the energy levels in the dot, as 

shown in Figure 2.7.

A Energy

x,y states very 
^ closely spaced

”  (0,0,3)
t

t

t

(0,0,2)

(0,0,1)

(0,0,0)

Figure 2.7 - Energy levels for a quantum dot. The states in the x<y directions are very

closely spaced.

2.2.4 Atomic Levels to Bands

To understand the bandstructure of semiconductors it is useful to look at the isolated atom. 

The following notes are adapted from Singh [4]. The energy spectra of a typically isolated 

atom is made up o f two regions, which are shown in Figure 2.8 [4].
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11

Electrons are "bound" 
in the material

\ 1t k

E

--------------------------------------   2s, 2p

--------------------------------------------------------------------------------  la

Crystal Isolated atoms
(Allowed bands) (Atomic levels)

Spacing between atoms ^

Spacing- 1 - 2  A Spacing -1 0  A

Figure 2.8 - Schematic of how allowed and forbidden bands form.

In one region are bound states in which the electron is bound to the nucleus by the 

Coulombic interactions; in the other region are free states in which the electron is free to 

move. These two regions are separated by the vacuum energy, and this is chosen as the zero 

of energy. The bound state electron energies are negative with respect to the vacuum level 

energy. A region of ‘forbidden gap’ separates each of the allowed energies, which are 

discrete. When a crystal is formed and the atoms are brought together an electron in a given 

atom begins to ‘see’ the nuclei of a nearby atom, i.e. the wavefunctions begin to overlap. The 

result is bands of allowed energy levels, as shown in Figure 2.8. These energy levels are now 

not continuous in energy as for the free electron case: there are now regions where there are 

no allowed energy values. In other words, an electron in the semiconductor cannot exist in 

these ‘gaps’. Deep core levels are relatively unaffected and it is the outer most electrons of 

the atoms that form these bands because they are so loosely bound to the nucleus. Optical 

transitions from the conduction band to the valence band are from s-type states to p-type 

states.
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2.3 Consequences of the Wetting Layer: Thermal or Non-Thermal 

Distribution

When dots are grown using the Stranski-Krastanow method (as described in the previous 

chapter) a thin layer o f material is left over from the growth process. This thin layer is 

known as the wetting layer and is treated as a two-dimensional quantum well. It is an 

unavoidable consequence of the Stranski-Krastanow growth process, and therefore the dots 

cannot be regarded as an isolated system and the wetting layer must be included in all 

analysis of quantum dots lasers.

The wetting layer acts as a thermal reservoir o f electrons for the dots and exchange of 

carriers takes place between the two. Carriers can escape from the dots due to the finite 

localisation energies, i.e. the difference in energy between the confined dot levels and the 

wetting layer, which have typical values of the order o f 200meV. This process becomes 

more significant when the temperature is increased and the localisation energy decreased. 

One of the determining factors in whether a quantum dot distribution can be described by 

thermal statistics is the ratio of the rate of escape o f carriers to the recombination rates.

If the escape time is small compared to the recombination time then a thermal equilibrium 

can be established between the dots and the carriers. Carriers can be emitted and recaptured 

into the dot ensemble before they recombine, and they can thus reallocate themselves 

amongst the dots. The probability of this occurring is dependent on the localisation energy: 

larger dots, which have higher localisation, will be more highly populated than smaller dots 

and this enhances the probability of escape. For this situation Fermi-Dirac statistics can be 

applied to the distribution, with electron and hole quasi-Fermi levels for the whole system.

On the other hand, if the recombination of carriers is happening on a faster timescale than 

the thermal emission of carriers then a non-equilibrium condition will occur. In this situation 

the population will not depend on the electron and hole energies, and dots of different sizes 

will have the same occupation. The dots are therefore uncoupled and are not controlled by 

thermal statistics; the distribution functions do not depend on the electron and hole energies 

and represent non-equilibrium populations. In this case it is not appropriate to apply Fermi- 

Dirac statistics.

If the situation is somewhere in between the two extreme cases described above, the 

situation is further complicated. It should also be remembered that the electron and hole
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states have different localisation energies and the presence of excited states can influence the 

rate of thermal emission of carriers. It has been shown [12] that thermal equilibrium can be 

maintained down to temperatures of about 100K and Fermi-Dirac statistics can be used to 

describe these distributions, but for temperatures below this there is a breakdown of 

thermodynamic equilibrium. In this project it is assumed that the recombination occurs on a 

similar timescale to the escape of carriers and that Fermi-Dirac statistics can be applied to 

model the population. An alternative model for neutral dots, in which Fermi-Dirac statistics 

cannot be applied to both the electron and hole distributions, is also investigated.

2.4 Radiative Recombination and the Einstein Relations

2.4.1 Introduction

Generally, recombination mechanisms can be classified into two groups: radiative and 

nonradiative. Radiative recombination occurs when a photon is emitted when an electron in 

the conduction band recombines with a hole in the valence band. There are three optical 

processes associated with electron-hole pairs: spontaneous emission, absorption/gain, and 

stimulated emission. These can be described by the Einstein relations [13], which are 

discussed in the following section. Nonradiative recombination is the recombination of an 

electron-hole pair without the emission of a photon and is discussed further in section 2.6.

2.4.2 The Einstein Relations

To study the optical properties of semiconductors the transitions of electrons between the 

quantum mechanical energy levels are often studied. To describe these processes the 

Einstein relations are used [13], which describe the interaction of electrons with photons for 

a system in thermal equilibrium consisting of two discrete energy levels. These equations 

were first derived to explain the transitions between two discrete energy levels in an atom 

which is analogous to the quantum dot problem solved in this thesis. However, they can also 

be used to describe the recombination between states in a continuous energy band, such as 

for a quantum well [14].

Radiative recombination occurs when an electron in the conduction band recombines with a 

hole in the valence band producing a photon; in other words, it is a transition of an electron 

in the conduction band to an empty state (a hole) in the valence band. The processes 

associated with electron-hole pairs are spontaneous emission, absorption/gain and stimulated
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emission. The transition rates are proportional to the probability of the initial state being 

occupied and the final state not being occupied (i.e. an empty state).

At a given temperature T  the available electrons and holes in a semiconductor are distributed 

over a range of energies. The occupation probability, f  o f a carrier with energy E  is 

described by Fermi-Dirac statistics./is called the Fermi function and is given by:

1

exp
kT j

+ 1

equation 2.19

Ef is the Fermi level and k  is Boltzmann’s constant. When the system is not in thermal 

equilibrium, and carriers are being injected continuously, the term quasi-Fermi level is used. 

It is assumed that the electrons in the conduction band are in thermal equilibrium with each 

other, and correspondingly the holes in the valence band are in thermal equilibrium with 

each other. The quasi-Fermi levels o f the conduction and valence bands are then referred to. 

The occupation probabilities of an electron in the conduction band and a hole in the valence 

band are calculated separately, each depending on the energy of the electron or hole, and the 

appropriate quasi-Fermi level.

The occupation probability of an electron in the conduction band with energy Ec, denoted by 

/ c, is given by

1
( E  - E  '

exp
kT

f c

j
+ 1

equation 2.20

and similarly, the occupation probability o f a hole in the valence band with energy Ev, 

denoted by/ ,  is given by

1
/v ' E  - E  '

exp
kT

fv

J
+ 1

equation 2.21

Here, Efc and Efv are the conduction and valence band quasi-Fermi levels respectively. It 

should be noted that throughout this thesis f v is used to represent the occupation probability
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of a hole in the valence band and not of an electron. In the equations, Ec and E/c are 

measured from the conduction band edge and are positive into the conduction band and in 

the same way, Ev and Ejv are measured from the valence band edge and are positive into the 

valence band. This is shown in Figure 2.2.

As described in section 2.2, the energy levels are given by the parabolic band approximation 

(equation 2.1 and equation 2.2) as:

£ ,(* )=

£ ,(* ) =

2 mc

h 2k 2 
2 m„

For a large density of states the Fermi function is equivalent to the fraction of occupied states 

at energy E. When E=Ef the distribution function takes a value of a half. When the energy E 

is a few kT below the Fermi level, the function approaches unity, and alternately when the 

energy is a few kT  above the Fermi level it approaches zero. The Fermi function becomes a 

step function at T= OK, stepping from zero to unity at E  = Ej.

The three types of possible optical transitions are described here for Ndots identical quantum 

dots having spin degenerate electron and hole energy levels. In these equations, the valence 

state is labelled as state 1 and has energy E], and the conduction state as state 2 with energy 

E2 . The dimensions of each of the rates are [T]'1. The probability of an electron in a 

conduction state is f c and the probability of a hole in a valence state is f v.

• Stimulated Emission occurs when a photon induces an electron in a higher state 2 to 

fall to a lower state 7, emitting a photon which has the same energy, phase and 

direction as the incident photon. The transition rate for Ndots identical dots is given 

by:

* 2. = 2NdolsB2lP (h v)fcf v

equation 2.22

Here, B21 is the transition probability and is a measure of the strength of the 

interaction between the electron and photon, and has dimensions of [E][L]3[T]_1. B21 

is for one transition only and so a factor of two is included in the equation to account 

for the two possible transitions between the spin degenerate states. P(hu) is the 

photon density at energy hu = E2 - Ej, and has dimensions of [L]'3[E]'’. f V)C are the
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Fermi probability functions given in equation 2.21 and equation 2.20, describing the 

occupancy of states 1 and 2 with a hole and electron respectively. The rate is 

dependent on the lower level being empty (a hole) and the upper level being 

occupied.

• Absorption is when a photon is absorbed, promoting an electron from a valence state 

to a conduction state, with a transition rate given by:

Rn = 2 N douBu P { h v \ \ - f ^ ~ f c )

equation 2.23

Again, B2i is the transition probability and is for one transition, and P(hv) is the 

photon density. The rate is dependent on the lower level being occupied and the 

upper level being empty.

• Spontaneous Emission occurs when an electron spontaneously falls from a higher 

state to a state of lower energy, with the emission of a photon. The incident photon in 

this case is called a virtual photon and the emitted photon has a random phase and 

direction and so does not contribute to the coherent optical field. The transition rate is 

given by:

spon 2 N  dots ^ 2 1  - f  c f v

equation 2.24

Here, A2i is the probability of the transition occurring and again is for one transition 

only. Because this process is a spontaneous one it is independent of the photon 

density, P(hv), and dependent only on the relative occupancies of the two levels. It 

can be thought o f as stimulated emission instigated by the zero-point fluctuations of 

the electromagnetic field. Spontaneous emission is the major radiative mechanism in 

light-emitting diodes (LEDs) since optical feedback is not usually present.
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Figure 2.9 shows the possible optical transitions for a simple two level system. Open circles 

represent empty states (holes) and filled circles represent occupied states (electrons).

A /V / W
A /V

■ o

AA* A /V

■o-

e 2

E i

R21 Rl2 Rspon

Figure 2.9 - Possible optical transitions between two levels, E1 and E2, of a simple system, 

described by the Einstein relations. Open circles represent empty states (holes) and filled 

circles represent occupied states (electrons).

Energy and momentum must be conserved in these transitions. Thus the energy of the 

emitted or absorbed photon must be equal to the energy difference between E\ and E2 . The 

momentum of the photon is small, and equation 2.6 gives the relation of the momentum to 

the wavevector k as:

p - f i k

For a typical wavelength of lOOOnm the wavevector k  takes a value of about 106 m’1. Typical
o 0 1

k values of electrons and holes are of the order of 10 to 10 m' , which means the photon 

momentum is negligible and so the electron momentum must equal the hole momentum. 

This means that vertical transitions occur, between levels of similar wavevector k\ this is 

known as the k-selection rule.

In thermal equilibrium the number of photons does not change and the absorption and 

emission are balanced, i.e. the total upward rate is equal to the total downward rate:

^ 1 2  =  R n  +  R  sport

equation 2.25

Substituting for equation 2.22, equation 2.23 and equation 2.24 into equation 2.25 and 

rearranging gives
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P (hv) =

equation 2.26

or using equation 2.19 and equation 2.21 for the occupation probabilities of states 2 and 1 

respectively gives:

A,P (h v ) - 21

Bu exp( E 2 - E x

kT
- B 21

equation 2.27

From Planck’s law of blackbody radiation the photon density is given by:

P (hv) = V* v y(hoy
exp

h v
IcT

-1

equation 2.28

From comparison with equation 2.27 it can be seen that for both equations to hold for all 

temperatures,

^12 — ^21

equation 2.29

and

_  8 7m

21 “ T v
{ h v f B  2,

equation 2.30

The constants A 2n B21 and B21 are known as the Einstein A and B  coefficients and their 

relation is given above in equation 2.29 and equation 2.30.

It can be seen from equation 2.29 and equation 2.30 that there is a fundamental link between 

spontaneous emission and stimulated emission. This means that the system can be analysed 

under thermal equilibrium using just one independent constant B  (or A). The reciprocal of 

the A coefficient is equivalent to the spontaneous lifetime for one transition and has units of 

reciprocal seconds:
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1

equation 2.31

In this context the reciprocal of A does not represent the band-to-band spontaneous lifetime, 

but is associated with the transitions between the two level system.

2.5 Spontaneous Emission and Gain

2.5.1 Introduction

In this thesis the spontaneous emission and gain are studied. The spontaneous emission is 

independent of the photon density P(hv) in a semiconductor device and thus can provide 

many of the details about the physics of the device, such as information about carrier 

distributions and energy spectra. Spontaneous emission is related to the gain through the 

Einstein relations, and thus by studying the spontaneous emission a detailed picture of the 

optical characteristics can be built up. In the following sections the main physics of 

spontaneous emission and gain is summarised. The discrete energy states present in dots 

fundamentally changes their emission and absorption spectra, compared to those of quantum 

wells. Since the main focus of this thesis is quantum dots, the relations for the dots are 

described in most detail. The model also incorporates a quantum well wetting layer and so 

equations for the gain and spontaneous emission in wells are also given. Full details can be 

found in references [6, 8, 12].

2.5.2 Spontaneous Emission and Gain for Quantum Dots

The Einstein A and B coefficients can be related to the spontaneous emission rate and the 

optical cross section. As shown in the section 2.4.2 the stimulated emission and absorption 

rates for Ndots identical dots with a degeneracy of two are given in equation 2.22 and 

equation 2.23 respectively:

* 2. = 2NlkoBP(hv)fcf 1,

Rl2 = 2 N douB P ( h o X l - f J \ - f c)
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Here, B21 and B 12 have been replaced by B , which has dimensions of [E]3[L]3[T]‘1, and again 

is for a single transition. Similarly, the spontaneous emission rate for Ndots identical dots is 

given in equation 2.24 as

RsPo n = ™ dotsA f J v

where A has dimensions of [T]'1 and is for recombination between a single pair of spin 

states. This equation can be written in terms of the B  coefficient using equation 2.30 as:

R  sport  ̂̂ d o ts { h o f  Bfcf v

equation 2.32

The spontaneous recombination current can be obtained by summing the spontaneous 

recombination over all dots and multiplying by the electronic charge:

J,p„r, =(lY u R-.pAE )

equation 2.33

The maximum radiative current is achieved when the dots are fully inverted, i.e. f v= 1 and 

f c= 1. For the ground state of an ensemble of Ndots identical dots with a degeneracy of two in 

the upper and lower states, the maximum radiative current density is given by:

r max _
^  spon

2qNdo,s 
area x r spon

2qNdolsA
area

equation 2.34

The factor of two is included since A refers to a single transition and there are two possible 

radiative transitions between the spin-degenerate dot states.

To calculate the gain it is necessary to calculate the net induced rate between the conduction 

and valence states of the dots:

Rnet = R± ~ R\
— R2X Rn

equation 2.35
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Substituting for the rates gives the net induced rate in dimensions of [T]"1 as:

Rntl=2NdolsBP(f>Afc+LA
equation 2.36

Optical gain is the fractional change in photon number per unit distance. The total number of 

photons in the cavity per unit energy is simply the photon density, equation 2.28, multiplied 

by the volume of the cavity, V cav  The number of photons created per unit time by net 

stimulated processes at energy hv  is Rnet. The Lorentzian broadening function L(hu) also 

needs to be included. L(hv) is known as the homogeneous broadening term and is discussed 

in more detail in section 2.8. It has dimensions of [E]'1 and arises because the transitions are 

not delta-functions but are broadened. The optical gain therefore is the number of induced 

photons divided by the total number of photons in the cavity, where the factor (n/c) converts 

to per unit distance:

K e A h o )G(hv)= ( - ) Rr ‘Lf U’ dho  
’ \c ) P { h o ) V ca,

equation 2.37

Substituting for Rneh equation 2.36, gives the gain at h v  for an ensemble of Ndots identical 

dots as

G(hv) = j M 2^ M (/e + /v  _ l )dhv
\ e )  Vca,

equation 2.38

where the photon density has cancelled out.

Considering a waveguide of width w  and length Z, this is equivalent to a cavity volume Vcav 

where Vcav=wmodwL. An effective mode width wmod is defined which describes the coupling 

of the mode to the dot:

A 2
" w  = jA 2(z)dz

equation 2.39

A  dot is the value of the vector potential at the location of the layer of dots and is assumed to 

be constant over the layers. The gain for an ensemble of quantum dots can then be written as:
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G(hu) =
areaxw mod “ cneQ(hv) v2 m0 j

M 2[\FXr)Fc{ r ) d r } L { h v ) N X /e + / ,  - l )

equation 2.40

where M  is the momentum matrix element and Fv and Fc are the envelope functions of the 

holes and electrons respectively. M  is obtained from the overlap integral of the initial and 

final states of the transition, and determines the strength of the interaction between the two 

wavefunctions involved. An optical cross section can be defined [15] which gives the 

absorption strength of the transition. Including the spin degeneracy, the expression for the 

optical cross section is given by:

2x 4/zft
cns, (h v ) \ 2mo j

A/2[fF,(r)Fc(r)*]!

equation 2.41

The modal absorption/gain due to Ndots dots is obtained by summing the contributions from 

all of the individual dots over the width and length of the guide (7V̂ otewL). So the modal 

absorption/gain for an ensemble of Ndots dots, including the inhomogeneous broadening, can 

be written as

G,ot {hv) = £  c70 (£, )L{hv)P{Et X /c + / ,  -1 )
2 wmod i

= T L - T ^ { E , ) L { h v ) N lhlX E , \ f c + / ,  -1 )  
2 w.mod i

equation 2.42

Here, P(Ei) is the inhomogeneous broadening factor, and has been replaced in the second 

part of the expression with the number of dots with energy Eu given by Ndots(Ei)=NdotsxP(El) . 

Comparing equation 2.38,

G (hv) = f
\C J

2N dolsBL{hv)
v : i f c  + / v  - 1  ) d h v

with equation 2.42 gives an expression for the Einstein coefficient as:

B  =  -  
2
1 ( c ^

\ n J

equation 2.43
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2.5.3 Gain Relations

It was through the relations given in section 2.4.2 that Einstein first proposed the existence 

of stimulated emission. The process of stimulated emission allows a coherent optical field to 

build up in an optical cavity. Initially, when electron-hole pairs are first injected into the 

device, the process of absorption dominates. As more carriers are injected into a device, the 

quasi-Fermi levels move toward the conduction and valence band edges and the rate of 

spontaneous emission increases, which also increases the stimulated emission rate. When the 

stimulated absorption and emission rates are equal, a condition known as transparency is 

attained. Transparency occurs in dots when a particular state in the dot is half full e.g. there 

is one electron in the ground upper state and one hole in the ground lower state. At high 

currents gain saturation occurs in quantum dot lasers because the quasi-Fermi levels enter 

the wetting layer, which begins to become populated.

Comparing equation 2.22, stimulated emission, with equation 2.23, stimulated absorption, 

leads to the Bernard and Duraffourg condition [16]. This states that, when the system is in 

quasi-thermal equilibrium, the rate of stimulated emission will exceed that of stimulated 

absorption in a semiconductor when:

AEf  > E 2 -  E l > E g

equation 2.44

In other words, for optical gain to occur in a semiconductor laser, the quasi-Fermi level 

separation AEf must be greater than the energy of the photon, which means the minimum 

separation is that of the bandgap of the material, Eg. This is known as population inversion 

and an external source is needed to excite carriers into the higher state so that there are 

continuously more carriers in the higher state than in the lower. When the carrier density 

reaches a sufficient value such that the condition in equation 2.44 is satisfied optical gain 

occurs (for the specific transition energy). However, lasing will not occur at this point due to 

the absorption losses associated with the optical cavity and the mirrors. For lasing to occur, 

the value of the gain needs to be such that it also overcomes the losses of the cavity. This 

condition can be described by the following equation and is known as the threshold gain:

G* = <*, t - f l n / T 1
c

equation 2.45
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Here, a l is the internal loss of the cavity per unit length, Lc is the cavity length, and R is the

reflectivity of the facet, where the reflectivity of both facets is assumed to be equal in this 

case. The second term on the right hand side of the equation thus represents the mirror 

losses. Gth represents the threshold modal gain. To get the threshold local (or material) gain 

the confinement factor T must be known; this describes the degree of coupling of the optical 

mode to the active region, and the two are related by:

Gth = ^Sth

equation 2.46

The confinement factor is defined as the ratio of the light intensity within the gain material to 

the total intensity in the propagating mode. It arises because only a fraction of the power in 

the mode is coupled to the active gain material of the laser. The confinement factor is related 

to the mode width by

r  wmod= L z

equation 2.47

where Lz is the thickness o f the layer of dots. It is not meaningful to speak about the local 

gain of an ensemble o f quantum dots, and the gain is characterised by the modal gain for an 

ensemble of dots in a specific waveguide.

It can be seen from equation 2.38 that the gain will take a maximum value when the factor (fc 

+ f v -1) takes a value o f unity. In other words, when the conduction band is filled with 

electrons and the valence band is filled with holes (population inversion). Likewise, 

maximum absorption will be achieved when the factor (fc + fv -1) is equal to minus one. The 

value of this factor is determined from the Fermi-Dirac distribution functions, for a given 

temperature, and is dependent on the injected current.

2.6 Nonradiative Recombination

2.6.1 Introduction

Nonradiative recombination involves the recombination of an electron-hole pair without the 

emission of a photon. The nonradiative processes that can be present in semiconductor lasers 

are nonradiative recombination via defects (often called Shockley-Read-Hall or SRH), 

surface recombination and Auger recombination. Surface recombination is not discussed
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here but a description is given in the book by Coldren and Corzine [6]. Because of the 

absence of an emitted photon, nonradiative recombination is very hard to detect 

experimentally. One way to identify a particular nonradiative process is by measuring the 

variation of quantities such as carrier lifetime and internal quantum efficiency with 

parameters such as temperature and carrier concentration. Nonradiative recombination has 

the effect that it increases the threshold current in lasers and so is an undesirable effect which 

is ideally minimised in a laser device.

2.6.2 Nonradiative recombination via defects

In a perfect semiconductor there would be no defects present but this does not happen in 

reality. Defects in a semiconductor can create local disturbances in the crystal structure, 

which have new electronic states called defect states associated with them. If these new 

states are produced in regions of allowed bands (i.e. the conduction or valence bands) then 

their effects are minimal. However, if these defects appear in the forbidden bandgap region, 

as shown below in Figure 2.10, they will alter the optical and electronic properties of the 

semiconductor.

defect state

Figure 2.10 - Nonradiative recombination via defects.

The capture of electrons and holes onto the defect sites are independent events and so the 

overall capture rate is dependent on the slowest of these two capture processes; this is often 

referred to as the rate-limiting step. If it is taken to be electron capture then the nonradiative 

recombination rate, in dimensions of [T]'1, can be written as

equation 2.48
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where znr is the nonradiative lifetime for carriers in the defect state and n is the electron 

number. The nonradiative rate can also be written as:

K  = K n

equation 2.49

Anr is the inverse of the nonradiative lifetime, and is given by

Am = ovN,

equation 2.50

where cr is the capture cross-section for the defects, v is the velocity of the electrons or holes, 

and Nt is the density o f defects.

2.6.3 Auger recombination

Auger processes are essentially unimportant in semiconductors which have a bandgap 

greater than 1.4eV [4], such as GaAs, AlGaAs. However, in smaller bandgap materials, such 

as InAs, Auger recombination becomes more significant and this can have an effect on the 

development of long wavelength lasers. There are several processes for Auger recombination 

and these are explained in detail in the referenced books. For simplicity only one process is 

described here, which is shown schematically in Figure 2.11. An electron in a conduction 

state (1) recombines with a hole in a valence state (2), and the energy released in this process 

promotes another electron (3) to a much higher conduction state (4), which then dissipates its 

energy by the release o f a phonon. For the case o f quantum dots, this higher energy state is 

one in the wetting layer.
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>

Figure 2.11 - Auger recombination.

The Auger rate for this process can be written as

RauKCr = Cn2p

equation 2.51

where n and p  are the electron and hole carrier densities, and C is the Auger coefficient. 

Auger recombination has a very strong dependence on carrier number.

2.7 Recombination in Quantum Wells

In systems with extended states such as quantum wells, all electrons in a given band can 

recombine with all holes in a given band, subject to ^-selection. Boltzmann statistics can be 

approximated which leads to the result that the radiative recombination rate in a well is 

proportional to the product of the electron and hole densities, N  and P respectively, in each
1 7band. In dimensions of [T]‘ [L]‘ , this is written as

= B wlN P

equation 2.52

where Bwi is the radiative recombination coefficient. When the system is electrically neutral 

N=P and the radiative rate becomes:
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C "  = b wIn 2

equation 2.53

In a similar way to the radiative rate in a well being approximated to be proportional to a 

quadratic function of the carrier density, it is assumed that the rates of nonradiative 

recombination via defects and Auger recombination in a quantum well are proportional to 

linear and cubic functions of the carrier density. The nonradiative rate for quantum wells, in
1 9dimensions of [T]' [L]' , can be written as

r ™“ = a n

N
_ wellTnr

equation 2.54

where A is the nonradiative recombination coefficient, and is the reciprocal of the 

nonradiative lifetime. (Note that this is not the same A as the Einstein A coefficient described 

in section 2.4.2.)

2.8 Broadening in Quantum Dots

2.8.1 Introduction

The theoretical density o f states function for a quantum dot is a delta-function (^-function) 

and so it might be expected that the absorption and emission spectra also be delta-functions. 

In reality the delta-function is always broadened. The result is that the radiation emitted is 

not perfectly monochromatic and the shape o f the emission line is described by a spectral 

line shape function. There are two classes or broadening:

• Homogeneous broadening affects all the individual dots in the ensemble in the same 

way. The same emission spectrum is produced by each dot.

• Inhomogeneous broadening affects individual dots in different ways and arises due to 

the different sizes of dots present in the ensemble or imperfections in the sample.

A more detailed discussion of the two broadening processes is given in the following 

sections.
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2.8.2 Homogeneous Broadening

A system will experience homogeneous broadening, which arises from the probability of a 

transition occurring before the system undergoes a dephasing event. This is because the 

energy of the electron is only well-defined after a long period of time and for some finite 

time there is a probability that the electron energy will not be exactly equal to that of the 

quantum state. This broadening is normally expressed in terms of a Lorentzian function 

centred on the transition energy En:

L ( h u ) = - ~ . --------^ -------
n ( h v - E n) + A

equation 2.55

A is the linewidth (A is equal to hy where y is the number of dephasing events per second), 

and L(hv) has units of reciprocal energy and is normalised such that:

J° L(hv)dho  = 1

equation 2.56

The peak value of the function, which occurs when hv=En, decreases with increasing 

linewidth and is given by:

L{ho = En) = \
7TA

equation 2.57

Typical values of homogeneous broadening in quantum dots are of the order of tens of meV

[17].

2.8.3 Inhomogeneous Broadening

In a single quantum dot, the possible optical transitions consist of a series of homogeneously 

broadened delta-function lines, with the energy positions dependent on the energy of the 

confined levels. In a real quantum dot ensemble, typical surface densities are around 3x1010 

cm' . This results in a typical number of dots in a laser chip of around one million, and these 

dots have a distribution in size, strain etc. The energy spectrum thus varies from dot to dot, 

and an inhomogeneous broadening of the spectra is observed.
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Inhomogeneous broadening may be due to fluctuations in the radius of the quantum dot, or 

due to a variation in the bandgap Eg as a result of fluctuations in the composition. For the 

case of broadening due to bandgap fluctuations, the ground and excited states are both 

described by the same standard deviation. Consider the energy levels En (in the z-direction 

only) of a three-dimensional harmonic oscillator:

/
E n = E S +

1n + — \hu n = 0,1,2,...
v 2  J

equation 2.58

A fluctuation in the standard deviation of Eg is irrespective o f n, and simply shifts the entire 

energy spectrum up and down. Conversely, an inhomogeneous broadening due to 

fluctuations in the width leads to a standard deviation which is not linearly proportional to n, 

and this results in a non symmetrical distribution of the energy levels.

The method adopted in this thesis is to use an inhomogeneous distribution in dot sizes. 

Inhomogeneous broadening is usually modelled with a Gaussian function, which has the 

form:

g(w) = -? = = —exp 
V2n  cr

( w - w ) 2
2cr2

equation 2.59

Here, g(w) is the probability per unit width of a quantum dot having a width w, w is the 

mean width o f the dots, and o is the standard deviation. In other words g(w) is the fraction of 

dots which have a width w for an inhomogeneous distribution centred on w . A Gaussian 

distribution is normalised such that:

'jj
^g(w)dw  = 1

equation 2.60

An important parameter is the full width at half maximum (FWHM), which describes the 

width of the spectral line (called the linewidth) and is equal to twice the standard deviation. 

For self-assembled dots grown by the Stranski-Krastanow method, inhomogeneous 

broadening is the dominant broadening mechanism [18].
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2.8.4 Combined Effects of Broadening

Figure 2.12 summarises the broadening in quantum dots, for the case where the 

inhomogeneous broadening is larger than the homogeneous broadening.

Emission

Photon energy hv

Figure 2.12 - Schematic of broadening in quantum dot lasers for the case when the 

inhomogeneous broadening is larger than the homogeneous broadening.

Optical transitions at each energy are broadened by the homogeneous linewidth. This means 

that more than one size of dot contributes to the transitions at any one photon energy, and so 

to calculate the gain/absorption or emission at a fixed value of photon energy it is necessary 

to sum over all the dots of different transition energies that make a contribution at that 

specific photon energy. The magnitude of the contribution that each dot makes depends on 

the relative magnitude of the homogeneous linewidth and the difference between the energy 

of the dot and the photon energy. Ordinarily, only those dots with transition energies within 

a few multiples of the linewidth from the photon energy of interest contribute to the gain.

2.9 Summary

In this chapter I have discussed the basis principles of semiconductors. A description of the 

bandstructure has been given along with equations for the density of states. This was 

followed by the Einstein relations, including equations for gain and spontaneous emission in 

dots. Finally, I discussed broadening in quantum dots. In the following chapter the model 

derived for calculating the localised population is described.
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3 Model for Localised Population 

Statistics

3.1 Introduction

The aim of this work is to explore the consequences of carrier localisation on the behaviour 

of quantum dot light emitters. This is done by computing the recombination and gain 

characteristics of a quantum dot system. As with real dot samples, the model incorporates a 

two-dimensional wetting layer which does have extended states. The main features of the 

model are that the number of electrons in a given dot is a discrete integer, not a fractional 

probability, and that recombination is localised in each dot. It is assumed that the whole 

system is in thermal equilibrium; therefore comparisons can be made with non-localised 

systems since the global occupation probabilities are specified analytically. A thermal 

distribution of carriers amongst the different energy levels of the inhomogeneous dot 

distribution and the wetting layer is assumed, with global Fermi functions for electrons and 

holes; this has been shown to be appropriate for some dots systems at room temperature [1], 

and is discussed in more detail in section 3.5.1. The main principle of the model is the way 

in which the occupation probability is interpreted. It is usually taken to mean the fractional 

occupancy of each state. In this model, to take explicit account of the localised and discrete 

nature of the dot carrier populations, the occupation probability is taken to be the fraction of 

dot states with full occupancy. This approach maintains the paradigm of thermal equilibrium 

statistics whilst introducing the realistic assumption of discrete dot states with integer 

occupancy numbers. Consequently, for the case where both the electron and hole 

occupancies are controlled by their respective quasi-Fermi level, referred to as the non­

neutral case, each dot may not necessarily contain equal numbers of electrons and holes, 

although the total numbers of electrons and holes in the system are equal. From these 

occupations a set of dot microstates are modelled, from which the spontaneous emission and 

gain characteristics can be calculated.

This chapter describes in detail how the electron and hole occupancies of each of the dots are 

calculated using Fermi-Dirac statistics. The implementation of the inhomogeneous 

broadening is described, along with an explanation of how the energy levels are calculated
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for each size of dot. The calculation of the population of the wetting layer is also described. 

A full list of the notation used throughout this thesis to model the distribution is given in the 

appendices to the thesis.

For comparison, an alternative model, the neutral case in which dots are forced to contain 

equal numbers of electrons and holes, has also been developed. In this case, Fermi-Dirac 

statistics cannot be applied to both the electron and hole distributions and this model is 

described in chapter 5.

3.2 The System Modelled

The system modelled is an ensemble o f one million quantum dots which, if  taken to be
in oequivalent to a single layer of dots of density 3x10 cm' , gives the area of the sample as 

3.33 X1 O'7 cm2. This is equivalent to a chip of about 6jum squared. The dots are assumed to be 

self-assembled and such dots, grown by the Stranski-Krastanow method [2, 3], incorporate a 

two-dimensional quantum well, called a wetting layer, and this is also included in the model. 

Figure 3.1 shows the energy diagram of the conduction band for the wetting layer and the 

dots.

Energy

wetting layer 
states

•  • •  •

I QD states

Figure 3.1 - Energy diagram of the conduction band, comprising of a wetting layer and 

quantum dots. Electrons can be captured into the dot states from the wetting layer.

The following sections describe the modelling of the dots and the wetting layer in more 

detail, including how the energy levels are calculated.
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3.3 The Quantum Dots

3.3.1 Introduction

The ensemble of dots has an inhomogeneously broadened size distribution, and 

homogeneous broadening is also included. The quantum dots modelled are made of InAs 

with electron and hole effective masses of 0.027mo and 0.34mo respectively [4], where mo is 

the free electron mass. The energy levels in each size of dot are calculated using a simple 

harmonic oscillator (SHO) potential and this is described in detail in section 3.4. In each dot, 

ground and first excited states for electrons and holes are considered; the ground state can 

accommodate up to two electrons/holes of opposite spin, whilst the excited state can contain 

up to four electrons/holes, as shown in Figure 3.2. (Previous work has considered only a 

single electron and hole levels i.e. a ground state [5, 6].) The excited state can accommodate 

four electrons/holes since there are two degenerate quantum states corresponding to the first 

excited state due to the dot having equal dimensions in the x,y directions. The dots are 

modelled on 1pm emitting dots, and the dot material has a bandgap of leV with mean 

ground and excited state transition energies of 1.084eV and 1.249eV respectively. (However, 

in chapter 7 results from the model are compared with experimental data measured on 1.3 pm 

emitting dots and for this comparison the parameters in the model are changed accordingly.)

The electron and hole quasi-Fermi levels are defined such that the overall system, 

comprising of the dots plus the wetting layer, is electrically neutral. In other words, global 

charge neutrality is assumed over the whole system, but it is not assumed locally; i.e. it is not 

assumed that each individual dot is occupied by an equal number of electrons and holes. (An 

alternative model in which each dot is charge neutral is explored in chapter 5.) Table 3.1 

gives the values used for the parameters throughout this thesis:

Electrons

^ H o l e s

Figure 3.2 - Ground and excited state occupancies of the dots.
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Parameter Symbol Value

Electron effective mass mc 0.027mo

Hole effective mass mv 0.34/wo

Dot density Pdots 3 x l0 10cm'2

Area area 3.33x1 O'7 cm2

Number of dots nQD lxlO 6

Bandgap of dot material Eg leV

Bandgap of wetting layer Eg'-wl 1.4eV

Gaussian standard deviation O 1.5nm

Mean width of dots w lOnm

Dot radiative lifetime Tsp Ins

Dot nonradiative lifetime Tnr 3 OOps

Dot Auger lifetime T-aug 3 OOps

Wetting layer recombination coefficient Bwi 3.5 xlO"7 s_1m2

Wetting layer nonradiative lifetime n̂rwl 3 OOps

Homogeneous linewidth A lOmeV

Mode width W mod 0.28pm

Wetting layer electron confined energy 

(relative to the conduction band edge)
Ew[c 250meV

Wetting layer hole confined energy 

(relative to the valence band edge)
Eyvlv 150meV
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Refractive index n 3.5

Table 3.1 - Values used for the parameters in the model.

3.3.2 Inhomogeneous Broadening

Quantum dots grown by the Stranski-Krastanow method have a distribution in size and other 

properties such as composition; this broadens the energy spectra and is known as 

inhomogeneous broadening. In this thesis the inhomogeneous broadening is modelled using 

a Gaussian distribution in the dot sizes rather than directly as an energy broadening, and this 

gives rise to a non-symmetrical distribution of energy levels in the dots.

Real quantum dots often take the shape of flat discs or pyramids [7, 8]. In this thesis the dots 

are modelled as flat squares having the same size in two dimensions. This is shown in Figure

3.3. In the x and y  directions the dots have dimensions of lOOnm. The z-dimension (which is 

the smallest dimension of the dots and therefore the most sensitive to size) is subjected to an 

inhomogeneous broadening about a mean width of lOnm.

z

lOOnm

y

lOOnm

Figure 3.3 - Dimensions of the quantum dots. The dots are flat squares and the z-direction

is inhomogeneously broadened.

It would be impractical to model each individual dot in the ensemble since this would 

involve calculating, for example, energy levels for one million dots. A finite series of 

discrete widths is chosen and the Gaussian function is used to calculate the numbers of dots 

at each width, generating groups of dots of a particular size. A Gaussian distribution has the 

form
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(w -  w)2 
2cr2

equation 3.1

where g(w) is the probability per unit width of a quantum dot having a width w, w is the 

mean width of the dots and cr is the standard deviation of the distribution. The widths are 

chosen at equal intervals from a minimum width wmm to a maximum width wmax centred 

around the mean width w , and the difference between each width is Aw. If g(w) is the 

probability per unit width of a quantum dot having a width w, then g(w) multiplied by the 

width interval Aw gives the probability of a dot with a width in that interval. A standard 

Gaussian distribution is normalised such that

oo

Jg(w)dw = 1
- o o

equation 3.2

and extends to the range -oo to +oo. In this thesis, because a Gaussian function is used to 

approximate a series of discrete widths, the range o f widths in the distribution does not 

extend to ±oo, but has finite minimum and maximum values (just as in a real ensemble, there 

are minimum and maximum sizes of dots present, and infinitely large or small dots are 

unrealistic). To compensate for this the peak value of the Gaussian is modified such that the 

area under the truncated curve is equal to one:

wmax

JP(w)rfw = 1
wmin

equation 3.3

P(w) is the redefined value of the truncated Gaussian. The integral is approximated in the 

model by

"max
/  t P(w)Aw = 1

w min

equation 3.4

where the limits of the summation are from the minimum width of the dots to the maximum. 

The integrated area of the distribution with these re-defined limits is then equal to one. So 

the Gaussian curve is split up into a series of rectangles of equal widths Aw, where the area

g(w) =
1 1 

V S t cr
exp
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of the rectangle represents the probability of a dot having a width in the range w ±1/2 Aw. 

Fifty-one different widths of dot are modelled, with a mean width w equal to lOnm, and 

standard deviation o of 1.5nm. (An odd number of widths is chosen so that the distribution is 

symmetrical about the mean width.).

Multiplying P(w) by the total number of dots yiqd gives the number of dots per unit width,

N q £>(w ) :

NQD(w)=nQDxP(w)

equation 3.5

To calculate the distribution of carriers in the dots, the probability distribution is converted 

into a number of dots with a specific discrete width. P(w) x Aw is the probability of a dot 

having a width w (±1/2 Aw) and so to calculate how many dots there are with each discrete 

width, tiqd(w), this probability is multiplied by the total number of dots uqd'.

1 1
00 nQD x ~nc= exp<7

(w -  w)2 
2cr2

x Aw

equation 3.6

Figure 3.4 shows a plot of the number of dots with a width w. Summing these points gives 

the total number of dots, one million.
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Figure 3.4 - Number of dots with a width w around a mean width of lOnm.

The number o f dots with a width w, hqd(w), is converted into the number of dots with a 

transition energy E , yiqd(E). To convert from a width interval to an energy interval the SHO 

potential equations are used, which are described in section 3.4. The energy intervals are not 

equal since the energy does not scale linearly with the width of the dot and each energy 

interval is denoted as AE(w) since its value is dependent on the size of the dot. The number 

of dots in an energy interval AE(w) must be equal to the number o f dots in the equivalent 

width interval Aw, i.e.

n QD { E ) =  nQD{w)

= nQD x / >(w)x Aw

equation 3.7

But the number of dots in an energy interval must also be equal to

” ez>(£) = nQD x p (e ) x A£(w)

equation 3.8

i .------1------.-------1-----1--------1----1--------1----1-------1------1 r
7 8 9 10 11 12 13

Width of dot (nm)
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where p(E) is the probability per unit energy of a dot having an energy E. Rearranging these 

two equations gives

p(E) = P ( w ) x - ^ -  
AE(w)

equation 3.9

and so the probability distribution in width can be related to the probability distribution in 

energy. The resulting probability distribution in energy, p(E), is not a Gaussian distribution 

because the energy levels do not scale linearly with width and this gives rise to a non- 

symmetrical distribution of energy levels in the dots. The number of dots per unit energy 

interval N q d (E ) is given by

N aD(E) = nQDx p (E )

= X.P(w)x Aw
eD v r AE(w)

equation 3.10

These equations in energy can be applied to different energy variables so that the energy 

distribution can be described in a number of ways, for example in terms of the ground state 

energy levels or the transition energy. Figure 3.5 shows the energy distribution and is a plot 

of the number of dots with a particular transition energy E  as a function of the ground and 

excited state transition energies. Summing the points in each of the two curves gives the total 

number of dots.
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Figure 3.5 - Number of dots with each transition energy.

3.3.3 Homogeneous Broadening

The optical transitions of an ensemble of quantum dots consist of a series of broadened 

delta-function lines and because of this more than one size of dot contributes to transitions at 

any one photon energy. This is known as homogeneous broadening. To calculate the 

absorption or emission at a fixed value of photon energy it is necessary to sum over all the 

dots of different transition energies that make a contribution at that specific photon energy. 

The way in which the homogeneous broadening is implemented to calculate the broadened 

gain and emission spectra is described in chapter 4.

3.4 Energy Level Calculations

To calculate the distributions of electrons and holes in the dots it is necessary to know the 

state distribution. In this thesis the method used to calculate the energy levels of the dots is 

to consider the dots to be in an infinite simple harmonic oscillator (SHO) potential well [9, 

10]. The form of the confinement potential is

Ground State 
Excited State
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K r)  = ^ C r 2

which has associated with it a classical oscillator frequency for the electrons of

equation 3.11

V =
2L ~2n  V m„

equation 3.12

In the above equations r(x,y,z) is the electron position vector, mc is the effective mass of the 

electrons and C is a measure of the strength of the potential. The time-independent 

Schrodinger equation is solved to find the confined energy states. Schrodinger’s equation for

1 2
the electrons with the harmonic oscillator confinement potential V = —Cr is

dy/(r)2 2mc (  1 \ n
£ - 2 c r r r ) = o

equation 3.13

where E is the confined energy. The normalised wavefunctions corresponding to the lowest 

two energy states are:

=
1

exp
v 2 a 2 ,

equation 3.14

n ^ a /2
rexp

\  2Q j

equation 3.15

where a =
(Cmc)%

Figure 3.6 shows the first two normalised harmonic oscillator wavefunctions.
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Figure 3.6 - First two normalised simple harmonic oscillator wavefunctions.

An infinite potential is assumed. The real potential is finite and so the value of C in equation 

3.11 is set such that the value of the normalised wavefunction y/o at full width half maximum 

is equal to the width of the quantum dot, i.e. y/o = 0.5 y/max when r  = ± w/2. The width of the 

dot thus determines the value of C, and therefore the energy levels of the dot.

Solving Schrodingers equation gives the energy eigenvalues of the system, E„. These are 

quantised for a harmonic oscillator and are given by

En = (n + \/2)hv n = 0,1,2,3,...

equation 3.16

where v  is the electron frequency given by equation 3.12. Similar equations hold for the 

holes, with a hole effective mass mv.

The energy levels given in equation 3.16 are now applied to the quantum dots. In the model 

the dots have ground and first excited states, which can accommodate two and four 

electrons/holes respectively. The electrons and holes have different energy levels due to their 

different effective masses. As described in section 3.3.2, the dots are assumed to be flat 

squares having the same size in the x and y  dimensions, and the z-dimension is 

inhomogeneously broadened. In general, the energy levels in one direction for the ground 

and first excited states of the quantum dots, Egr and Eex respectively, are given by

equation 3.17
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equation 3.18

where u is given by equation 3.12 using the appropriate mass for electrons or holes. These 

equations are applied to all three dimensions of the dots.

Due to the comparatively large dimensions in the x,^-directions, the energy levels in the x,y- 

directions are very closely spaced relative to the z-direction, with only about 2meV 

difference in the ground and first excited state electron energies. The first excited state of the 

system is taken to be the Eooi state. The equations for the energies of the ground and first 

excited states are thus given by

where ux>y is the frequency of oscillation in the xy-directions and uz is the frequency in the z- 

direction. These energy levels apply to both the electron and hole states, E c and E vgrex, 

respectively and substituting in for u gives:

2

equation 3.19

equation 3.20

equation 3.21

equation 3.22
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E’ -A  & L + ±  £L
s' 2 7 r \m ..  4 n \m . .

equation 3.23

p  = A £1
2n  y mv 4;r y mv

equation 3.24

These equations give analytical solutions for the energy levels o f the dots, depending on the 

effective masses of the electrons and holes. The value of C is dependent on the size of the 

dot which results in different energy levels in dots of different sizes. The ground and excited 

state mean electron energies are 80meV and 237meV respectively. Similarly, the ground and 

excited state mean hole energies are 7meV and 19meV respectively. The hole energy levels 

are much smaller than those of the electrons due to the different effective masses. These 

energy levels are used to calculate the occupancies of the dots using the quasi-Fermi levels 

and this is described in the following section.

3.5 Applying Fermi-Dirac Statistics

3.5.1 Fermi-Dirac Statistics

To calculate the distributions of electrons and holes in the system Fermi-Dirac statistics are 

used, which are detailed in chapter 2. It is assumed that the dots and the wetting layer are in 

thermal equilibrium, specified by electron and hole quasi-Fermi levels. The quasi-Fermi 

levels are defined such that the whole system, comprising o f the dots and the wetting layer, 

is electrically neutral. The occupation probability of an electron or hole state is given by the 

Fermi function f C)V. This function is usually understood to be equal to the fractional 

occupancy of each state. However, to take into account the discrete nature of the states, here 

it is taken to be the fraction o f  dot states with fu ll occupancy, and so each state is occupied 

by integer numbers of electrons and holes. The fraction of occupied states for electrons is 

given by

1
f c  /  T-» T-' ^

' fcE c - E ,
exp — ----- — +1

kT

equation 3.25
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for an electron energy Ec, and electron quasi-Fermi level E/c. In this equation k is 

Boltzmann’s constant and T is the temperature. Similarly the fraction of occupied hole states 

is given

1
( E  - E  n

exp
kT j

+ 1

equation 3.26

for a hole energy Ev and hole quasi-Fermi level Ef,. The notation f v represents the fraction of 

occupied hole states in the valence band and not electron states, as is often the case. In the 

model f Cigr and f v>gr are used to represent the fraction of occupied ground states for electrons 

and holes respectively, whilst f c>ex and f v>ex represent the fraction of occupied excited states. 

The electron energies and electron quasi-Fermi level are measured from the conduction band 

edge and are positive into the conduction band and, similarly, the hole energies and hole 

quasi-Fermi level are measured from the valence band edge and are positive into the valence 

band.

3.5.2 Nomenclature

In this thesis the dot states are occupied by integer numbers of electrons and holes, and the 

recombination rates for each dot depend on these occupancies. The numbers of electrons and 

holes in each dot needs to be known which involves tracking a large number of dot states. 

The following notation is used to represent the different dot states.

The convention adopted throughout this thesis is that a lower case n is used to represent the 

number o f  dots with a particular electron distribution. Similarly a lower case p  is used to 

represent the number of dots with a certain hole distribution.

A set of dot microstates, n{ , are modelled for the electrons, where n is the number of dots

with i electrons in the ground state and j  in the excited state for a particular size of dot. The 

variable i has allowed values of 0, 1 and 2, whilst j  has allowed values of 0, 1, 2, 3 and 4. For 

example, n°2 represents the number of dots that have two electrons in the ground state and no 

electrons in the excited state. A similar quantity is computed for the holes, p ™, where / is the 

number of holes in the ground state and m is the number in the excited state. No assumption
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is made on the spin of the carriers at this point; the probability of different spins is included 

in the radiative rates.

Figure 3.7 shows some examples of different electron and hole distributions in a quantum 

dot and the corresponding notation used to describe them. A filled circle represents an 

electron whilst an empty circle represents a hole.

— e - e —  , — 9 - 0 —  p i
— o   P l o o o —

Figure 3.7 - Examples of distributions of electrons and holes in a quantum dot. The 

distribution on the left is denoted by n\ for the electrons and p \ for the holes. The

2 3distribution on the right is denoted by n2 and p 2 .

The probability of a dot having an electron distribution i,j is denoted by problj, and similarly 

the probability of a dot having a hole distribution l,m is probi m. The overall probability of a 

dot having an electron distribution i j  and a hole distribution l,m is denoted by probtjxm•

Each o f the million dots in the model is not treated individually; rather, each group of dots 

with the same width is treated collectively. The distribution is worked out for one dot of that 

size, and this is then summed over all the dots of the same size. The total distribution is 

found by summing the distributions over the different widths.

3.5.3 Electron Distribution

The electron distribution is calculated using the electron Fermi function f c for a particular 

value of electron quasi-Fermi level Efc. The fraction of occupied states is f c whilst alternately 

the fraction of unoccupied states (i.e. a hole in the conduction band) is (1 -fc). For the ground 

state, the probability of occupation by i electrons is

— - —  f  ' ( i  _  f  )2- '
i \ ( 2 - i Y c'gr V Jc’gr)

equation 3.27
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where the first term is the number of ways that two empty states can be filled with i  

electrons, and the other terms give the fraction of occupied states. Similarly, the probability 

of the excited state being occupied with j  electrons is

4!
f  7( l -  f  )J  c,ex \  J  c,ex )

14-7

equation 3.28

where in this case four empty states are being filled with j  electrons. To get the probability of 

the complete electron distribution i , j  these two equations are multiplied:

probU = a (2_  ^ f ' X fc -“ ^  ~ f ''

equation 3.29

For example, the probability of a dot having one electron in the ground state and one in the 

excited state is:

probu = 2 f cgr (l -  f cgr )x 4 f ca  (l -  f cex f

equation 3.30

Likewise, the probability of a dot having two electrons in the ground state and three in the 

excited state is:

P r 0 b 2,3 =  f c . g r 2 X  4 f c , J  -  f c .e x  )

equation 3.31

The sum of all the probabilities is equal to one:

Z M j  =1
i , j

equation 3.32

The probabilities of all possible combinations of i  and j  are shown in the following table:

Probability of a dot having a 

distribution i j
Expression for probability

Prohor
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prob ito

prob2,o

proboj (l - f c, j 4 f c j l - f cj

p ro b ij 2fc,sM - f c , gry f c A ' - f c j

prob2,i

p rob 0,2 (i

p rob lt2 ^ fc.gr (l “  fc.gr (l -  f  c,ex f

prob2<2 f c j ( > f c j { \ - f c , j

p rob0,3 { ' - f c j * f c j ^ - f c , a )

p ro b ij ^ f c . g M - f c . g r Y f c J ^ - f c . J

prob2t3 f c j ^ f c j ^ - f c , , )

proboj ( l -  f c . J  f c j

p r o b ij  ̂fc.gr 0 “  fc.gr )/c,e«4

prob2j f c j f c j

Table 3.2 - Occupation probabilities for the electrons.

A feature of the model is that all combinations of i and j  are possible. However, some will be 

more favourable than others. The Fermi occupation function is dependent on temperature 

and so at low temperatures most of the electrons are found in the ground state of the dots. 

For example, at a temperature of 10K the probability o f the distribution n] is very unlikely
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as it would be expected that the ground state be full before significant occupancy of the 

excited state is observed. Although this probability will increase at room temperature, at low 

injection the majority of the electrons will still be found in the lower state.

Now that the probabilities of each occupancy have been calculated, the number of dots with 

occupancy i,j can be computed. To get the number of dots for each distribution i,j the 

probability of the distribution, probij, is multiplied by the number of dots, uqd\

n i  =  n QD X Pr0b,,

=  n *  — f  ' (1 -  f  i 2-' x  — f  J (i -  f  V- -'
i\ (2 — if. c,8r c,8r y ! (4 -y )  c-a ’

equation 3.33

Because the number of quantum dots is large (one million), the numbers of dots with each 

occupancy i j  are integer numbers.

The full set of equations for the number of dots with each occupation is shown in the 

following table:

Number of dots with an 

electron distribution ij: n{
Expression

n\ «Qd(1- f c .g r }  Z ^ )4

*i° nQ̂ f c A ~ f c A l - f c J

n\

"0 n QD (l -  fc,gr J  b fc,ex 0 ~ fc fx  J

n\ n Q D l f ' J l - f j b f j l - f j t

n\ r‘QDf c J b f c , e x ^ - f c ,< J

"0 n QD (l -  fc.gr ¥  4  f c . J  (l -  fc .„  f
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n QD 2  f c . g r  ( l  -  f c . g r  W c . J  (> “  f c . e r  ) 2

n\ «2D/c ,g /4/ c,ra2( l - / c ,„ ) 2

n\ n QD  ( l  -  f c . g r  f  6 f c . J  (*  -  f e e ,  )

n ] n QD 2  f c . g r  0  -  f c . g r  ) f i f c j  0  ~  f c . e r  )

n\ n QD f c . g r 2 ( > f c J ^ - f c . e x )

K n Q D ^  - f c j j  f c j

n } n QD 2  f c , g ,  ( j  -  f c . g r  ) / c , « 4

« 2 n f  2 f  4Q D J c .g r  J  c,ex

Table 3.3 - Number of dots with an electron distribution i j .

The total number of dots from all the different combinations is equal to the total number of 

dots hqd:

£ » /  = n QD
‘J

equation 3.34

These equations are the general equations that describe the number of dots with occupancy 

i j ,  for a particular value of the electron quasi-Fermi level. In the quantum dot ensemble there 

are one million dots and these dots are of varying sizes due to the growth method, known as 

inhomogeneous broadening. As well as the quasi-Fermi level, the Fermi function is also 

dependent on the energy of the state, which itself depends on the size of the dot. Small dots 

have energy level separations greater than those of larger dots. Thus dots of different sizes 

have different values of Fermi function and therefore different occupancies, for fixed values 

of the quasi-Fermi level and temperature. Thus dots of different sizes need to be represented 

separately so that the occupations of the whole ensemble can be tracked. To do this arrays 

are used to represent dots of different sizes. As described in section 3.3.2, the one million
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dots are split into groups comprising of dots of the same size, and this is done using a 

Gaussian function. In each group of dots of the same size, all the dots have the same 

occupation i j  since they have the same energy levels and hence the same value of the Fermi 

function. The symbol nj (w) is used to represent the number of dots of size w with 

occupation numbers ij. The number of dots of a particular size w, determined by the 

Gaussian function, is nQD(w), and is given by equation 3.6. Applying this notation, the

equation for the occupancy of dots of size w becomes

n{ M = nQD (w)x \fc#  Ml [l -  f c#  Mf" x [fc# Ml t1 “  f c #  ML

equation 3.35

where f(w) is the Fermi function for dots of width w.

Including all the dots of different sizes in the summations gives the following equations

E"/M = «eoM
i, j

equation 3.36

£ "(2 dM = % >
W

equation 3.37

where uqD is the total number of quantum dots. The total number of electrons in the ground 

state, Ngr(w), for dots of size w, is

N gr M ~ n \ (W) +  n \ W + n\ (w) + n \ (w) + (w)
+ 2n\ (w) + 2n\ (w) + 2n\ (w) + 2n\ (w) + 2n\ (w)

equation 3.38

Similarly, the total number of electrons in the excited state, Nex(w), for a dots of size w, is

Nex W  =  n l  M  +  n \ M  +  n \  W +  2 « o  M  +  2 n i M  +  2 ^ 2  W

+ 3«q (w)+ 3n\ (w)+3«2 (w)+ (w)+ ^n\ iw ) + ^ n 2 (w)

equation 3.39

Substituting in the equations for nj (w) gives the common equations which are often used to 

describe systems with extended states:
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N gr{w) = 2nQD{w)fcsr(w)

equation 3.40

N ex(w) = 4nQD(w )fcex(w)

equation 3.41

These equations show that the model is consistent with other models used to describe the 

occupation statistics of a system, and that this approach maintains the paradigm of thermal 

equilibrium statistics whilst introducing the realistic assumption of discrete dot states with 

integer occupancy numbers.

The total numbers o f electrons in the ground and excited states, N ^ t  and Nextot respectively, 

are found by summing over all the different widths:

= H n M
w

_ y  n\ M + n \ M + n\ M + n\ M + n t  M
w + 2n\ (w) + 2n\ (w) + 2nl (w) + 2n\ (w) + 2n\ (w)

equation 3.42

= 5 > . »
W

^  n\ (w) + n\ (w ) + n\ (w) + 2 n\ (w) + 2 n\ (w) + 2n22 (w) 

w + 3«q iw) + ̂>n\ iw) + 2n\ (w )  + 4 (w )  + An\ (w )  + An\ (w)

equation 3.43

3.5.4 Hole Distribution

The hole distribution is calculated in the same way as the electron distribution, using the hole 

quasi-Fermi level. To calculate the hole occupancies for the ground state the ground state 

hole Fermi function, f Vtgr, is used and similarly for the excited state, f v>ex. The probability of a 

dot having / holes in the ground state and m holes in the excited state is given by

Pr° b,m = /!(2- / ) ^ ' gr ^ ^   ̂ ^  “  ^ v'“  ^

equation 3.44

and the number of dots with I holes in the ground state and m holes in the excited state is p™, 

given by:
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P "  = nQD*P™hl,m

equation 3.45

Again, the sum of all the hole probabilities is equal to one:

X  Pr° hl.n, =1
l,m

equation 3.46

The equations for the number of dots with a hole distribution l,m are shown in the following 

table:

Number of dots with a hole 

distribution l,m: p f
Expression

Po

Pi »QD 2 / » , g r  I1 -  / , ,  X 1 -  It

Pi "QDfv^r2^ -

P\ nQD ( '  -  L.gr y  6 f , „  ( l  -  /„,« y

P\ nQD ̂  fv.gr (l ~ fv.gr X/v,c» (l _ fv.ex y

P\ ^QD fv,gr  ̂fv.ex fv.ex )

p I «eD(l-/v ,8.)24 /v,c/ (

Pi nQD 2  fv.gr ( l  -  f,.g r Y f v J  ( l  -  fv.ex ) 2

Pi nQ D f* J  fv,e*y

„ 3
Po n QD (i -  f „  y  (i -  / „ , « )
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Pi n QD 2 f v , g r  I1 -  f v . g r  W v J  I 1 -  f v , e x  )

p \ ^ Q o f v , g r  ^  f  v,ex f  v,ex )

Po n Q D ^ ~  f v j f  f v j

p \ ^ Q D  2 f v , g r  O’ f v , g r } f v , e x

P i n f  2 f  4Q D J  v,gr J v,ex

Table 3.4 - Number of dots with a hole distribution l,m.

Again, groups of dots of different sizes are represented by p™ (w ). The total number of holes 

in the ground and excited states for dots of size w, Pgr(w) and P ex(w) respectively, are:

Pgr M  = Pi (w) + Pi M  + Pi M  + Pi (w) + Pi W
+ 2 p \  (w)+  2 p \ (w)+ 2 p \  (w)+ 2 p \  (w)+ 2 p \  (w)

equation 3.47

p a  M = p'o W + p \  iw ) + p \  W + 2 p I M + 2 p f  M + 2 p \  W
+ 3 p l  (w ) + T>pl (w) ■+ 3 p l  (w) + 4 p i  (w) ■+ 4 p f  (w) ■+ A p \  (w)

equation 3.48

The total numbers of holes in the ground and excited states, Pgrtot and P extot respectively, are 

obtained by summing over all the different widths:

equation 3.49

p a  =
w

equation 3.50

3.5.5 Total Distribution

Now that the hole and electron distributions have been computed, the next step is to calculate 

the total occupancy of each dot: the number of electrons and the number of holes in each dot
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needs to be known. In other words, the number of dots that have an electron distribution i,j 

and a hole distribution l,m need to be calculated. Because the quasi-Fermi levels are defined 

such that the whole system, the dots and the wetting layer, is electrically neutral, in any 

particular dot the number of electrons is necessarily equal to the number of holes.

The probability of a dot having electron and hole distributions i,j and l,m is given by

P r ° b <JJ,m =  P r 0 b .,J  *  P r 0 h m

equation 3.51

or substituting in equation 3.29 and equation 3.44 gives:

P r o b , ^  = - - - _ . y f c,gr% - f c,gry~‘ x

equation 3.52

Since the dot must have one of the distributions, it follows that:

H P r0bi,j,l,m =1

equation 3.53

The number of dots with distribution i,j,l,m, given the symbol nj p is obtained by 

multiplying equation 3.52 by the number of dots:

"iP? = nQD x probI JJ m

=  n QD  X  t 1 "  S ' *  X  ( l  -  f c *  J ~ J

X/ ! ( 2 - / ) / w  Xw! (4 - m ) /v-“

equation 3.54

Including the size dependence in this equation gives:

n‘P7 W  = nQD (w) X  [fc.gr (W)I t  -  fc.gr W f '  X \fc* (W)I I1 “ fc*  W L

X Z!^bi) ̂  ^ “ /,Jr ̂  X  ̂“ /v’“

equation 3.55



Chapter 3: Model for Localised Population Statistics

3.6 The Wetting Layer

The wetting layer is a thin layer of material left over from the Stranski-Krastanow growth 

process. In this thesis it is treated as an infinite quantum well with extended states, having a 

step density of states function with electron and hole occupations in equilibrium with the dot 

states. The wetting layer is an unavoidable consequence of the Stranski-Krastanow growth 

process, and as so must be included in all analysis of quantum dots lasers: the dots cannot be 

regarded as an isolated system.

Throughout this thesis it is assumed that a thermal equilibrium exists between the dots and 

the wetting layer and thus the complete system can be described using Fermi-Dirac statistics. 

The wetting layer effective masses are also based on InAs with values of 0.021 mo and

0.34mo for the electrons and holes respectively. The wetting layer has a bandgap of 1.4eV.

The wetting layer is treated as a two-dimensional quantum well and so its carrier population 

is described in terms of a density of states per unit area given by:

m
7th2

equation 3.56

The number of electrons per sub-band per unit area, Nwi, is given by

oo

= \ p > M U i dE
Ewlc

equation 3.57

where E  is the energy of the sub-band, and f c,wi is the Fermi-Dirac distribution function for 

the electrons in the wetting layer. Similarly, the number of holes per sub-band per unit area, 

Pwh is given by

oo

Pwl = \PlD (E)fv,wl^E
Ewlv

equation 3.58

where f v>wi is the Fermi-Dirac distribution function for the holes in the wetting layer.

For the model it is not necessary to know all the possible electronic levels in the wetting 

layer so Schrodinger’s equation does not need to be solved. To work out the densities of 

electrons and holes it is only necessary to know the wetting layer confined energies, which
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are denoted by Ewic for the electrons and Ewiv for the holes. Figure 3.8 shows the energy 

diagram for the wetting layer confined states. Values chosen for the confinement energies of 

the wetting layer are based on llOOnm emitting structures: Ewic=250eV and £ w/v=150eV, 

relative to the quantum dot conduction and valence band edges.

electron dot 
states

leV

hole dot 
states

electron wetting 
layer states

250meV

150meV

hole wetting 
layer states

Figure 3.8 - Wetting layer confined states.

Integrating equation 3.57 analytically gives the density of electrons in the wetting layer as

N wl = -^y(fcr)ln-jl + exp Ewic Efc ^
kT

equation 3.59

where E/c is the quasi-Fermi level for the electrons. Similarly, the density of holes in the 

wetting layer is

(  Yl
Pw‘ = ^ r ( A:7’) ln'|1 + exP

'wlv fv

~kT

equation 3.60
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where is the quasi-Fermi level for the holes.

3.7 Implementing Computer Algorithms

To calculate the distribution of electrons and holes in the system, a computer program has 

been written in Fortran 90. The program first calculates the distribution of sizes in the dots 

using the Gaussian function. Next, the energy levels of the dots are calculated, which are 

dependent on the size of the dot. A value of electron quasi-Fermi level Efc is inputted and 

then from this the distribution of electrons in the dots is computed using the equations in 

Table 3.3. To work out the distribution of the holes in the dots the program sets the condition 

that the total number of holes in the dots and the wetting layer must equal the total number of 

electrons. To do this the program first calculates the distribution of electrons and holes in the 

wetting layer using equation 3.59 and equation 3.60 for the value of Efc inputted. Initially the 

hole quasi-Fermi level is set equal to the electron quasi-Fermi level. The hole distribution in 

the dots is then computed using the equations in Table 3.4. The total number of electrons and 

holes in the dots and the wetting layer are then summed. This procedure is repeated with the 

hole quasi-Fermi level being decreased in small increments until the total number of holes 

becomes equal to the total number of electrons. (The hole quasi-Fermi level is decreased 

since the holes have energy levels which are more closely spaced than those of the electrons 

and so a smaller value of hole quasi-Fermi level is needed to achieve a hole population equal 

to that of the electrons.) Once the electron and hole populations have been calculated, the 

recombination processes can be computed, which are described in the next chapter. The 

above procedure is summarised in a flow diagram in Figure 3.9.

The model has been thoroughly checked to ensure that it is calculating quantities as 

expected. For example, integrating the spontaneous emission spectra gives a value equal to 

the summed radiative rates, as expected. This is shown in more detail in chapter 8. The 

distributions of the electrons and holes have also been summed manually, over the dots and 

the wetting layer, at various injection levels to ensure that the charge neutrality condition is 

obeyed. The code has also been investigated at intermediate stages, to check that lines of 

code give reasonable and expected outputs.

72



Chapter 3: Model for Localised Population Statistics

NO YES

Decrease
Does Ntot = PtoP.

Calculate
recombination

Set electron quasi-Fermi level

Set hole quasi-Fermi level Ef, 
equal to Efc

Calculate electron population in 
the dots and wetting layer. 
Calculate total number of 

electrons Ntot

Calculate hole population in the 
dots and wetting layer. 

Calculate total number of holes
P tot

Figure 3.9 - Flow diagram showing how the computer algorithms are implemented.

3.8 Summary

In this chapter I have presented a model based on Fermi-Dirac statistics for calculating 

localised population statistics for an ensemble of quantum dots, for given electron and hole 

quasi-Fermi levels. I have described how the energy levels are calculated and how a
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Gaussian distribution is used to represent the spread of different dot sizes in the ensemble.

The calculation of the occupancy of the wetting layer has also been described. In the

following chapter calculations of the recombination mechanisms are shown, including the

spontaneous emission and gain spectra.
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4 Recombination Calculations

4.1 Introduction

A detailed understanding of carrier recombination mechanisms and optical gain 

generation within semiconductor lasers is essential for optimisation of their 

performance. The aim of this work is to use a computer model to explore the effect of 

carrier localisation and discrete occupancy number on the measurable characteristics, 

such as the recombination and gain characteristics and device current, of an ensemble 

of a large number of dots. Because the electronic states of a quantum dot are localised 

in all three directions it is only possible for electrons and holes which are located 

within the same dot to recombine with each other. The maximum number of available 

electrons and holes within a single state is equal to the spin degeneracy and at high 

injection this significantly reduces the radiative recombination rate in dots relative to 

the quantum well or bulk case.

In the previous chapter the method used for calculating the localised population 

statistics for an ensemble of dots is described, as well as the distribution of carriers in 

the wetting layer. This chapter explains how the recombination processes in the 

system (radiative, nonradiative via defects and Auger) are calculated. Other models 

often assume excitonic recombination in the dots and thus a radiative recombination 

rate that is dependent on only one type of carrier [1, 2]. Here, the radiative rate is 

dependent on both the electron and hole occupancies in each dot. This has been done 

previously [3], but this work differs to the work presented here in that recombination 

is not calculated in individual dots and the dots do not have integer occupancies.

In this chapter it is also described how the homogeneous broadening function is 

implemented to calculate the spontaneous emission and gain spectra. Finally, 

equations for the current flowing in the systems are derived.

4.2 Radiative Recombination: Total Spontaneous Emission Rate

The optical processes associated with electron-hole pairs are spontaneous emission, 

absorption/gain and stimulated emission. These processes can be described by the 

Einstein relations, which are discussed in detail in chapter 2 and are summarised in
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Figure 4.1. Open circles represent empty states (holes) and filled circles represent 

occupied states (electrons).

   Q ---------   • ---- e 2

/ W
/ W
/ W

/ W / W

O ---------  Ei

Stimulated Absorption Spontaneous
Emission Emission

Figure 4.1 - Possible optical transitions between two levels, Ei and E2, of a simple 

system, described by the Einstein relations. Open circles represent empty states 

(holes) and filled circles represent occupied states (electrons).

The rates are proportional to the probability of occupancy of the states, which are 

given by Fermi-Dirac statistics. The Einstein relations give the equation for the rate of 

spontaneous emission for the ground state of an ensemble of Ndots identical dots as:

Rspo» = 2 N ^ A f J ,

equation 4.1

Here, A is the probability of the transition occurring and is known as the Einstein A 

coefficient. The Fermi functions f c and f v give the probability of occupancy for the 

conduction and valence states with electrons and holes respectively. The rate has 

dimensions of [T]'1, and the Einstein A coefficient can be written in terms of a 

spontaneous lifetime xsp for a single transition as:

^ = - L
T sp

equation 4.2

In the model it is assumed that ground state electrons can only recombine with ground 

state holes, and similarly for excited states, and that ground and excited states have 

the same spontaneous lifetime. It is also assumed that electrons can only recombine 

with holes of the same spin. This is because experimentally only TE polarised light is 

observed and this originates from transitions between carriers of the same spin.
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Using the notation introduced in the previous chapter, the radiative rate for the ground 

state of one dot, in dimensions of [T]'1, can be written as

R r J d o t)= 2 A \^

=  2 -

1

sp

2y
V />  

2

equation 4.3

where i is the number of electrons in the ground state of the dot, and similarly I is the 

number of holes in the ground state. The factor of two is included to take account of 

the two possible transitions between electrons and holes of the same spin in the fully 

occupied ground state, as shown in Figure 4.2. It can be seen that when the ground 

state is fully occupied the rate is equal to 2A.

■ f - t

v  v

Ground state electrons

Ground state holes

Figure 4.2 - Possible radiative transitions for the ground state of one dot containing 

two electrons and two holes of opposite spin. Electrons can only recombine with

holes of the same spin.

The radiative rate for the excited state of one dot, where j  is the number of electrons in 

the excited state and m is the number of holes, is given by:

RZd(dot) = 8AP I
f

U J l ~ 4 ,

=  8 —

m
v4 /

equation 4.4

There is now a multiplication factor of eight because when the excited state is fully 

occupied there are eight possible transitions between the four electrons and four holes,
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as shown in Figure 4.3. For fully occupied dots, this gives an excited state radiative 

rate that is four times as big as that for the ground state.

Excited state electrons 

Excited state holes

Figure 4.3 - Possible radiative transitions for the excited state of one dot containing 

four electrons and four holes. Electrons can only recombine with holes of the same

spin.

The radiative rate must be calculated for all the different distributions of electrons and 

holes in the ground and excited states. As explained in chapter 3, the number of dots 

with a ground state electron and hole occupancy i,l is calculated by multiplying the 

probability of having / electrons and / holes by the number of dots. So for a particular 

combination of i,l the total ground state radiative rate for an ensemble of uqd dots is 

given by

RZd ('> l)= n QD* ~ —  X Z  Pr0b>., * Pr0bt.m X 2 —area j,m sp

f f )
r n

v 2 J a)
equation 4.5

where the area has now been included in the calculation to give the rate in dimensions
i ^

of [T]" [L]' . The sum over j  and m is included because, although the ground state 

radiative rate does not depend on the excited state occupation, all excited state 

combinations for the ground state occupation i,l need to be included. So for example, 

the total ground state radiative rate for dots with two electrons and one hole in the 

ground state is given by:
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nRfad (2,1) = nQD x - i -  X £  prob2 x probX m x 2 — f^ Y - 
area  ~  r spi,2A .

= nQD x   ̂ x \prob2 0 + prob21 + prob2 2 + prob2 3 + prob2 4 ]
area*T,n ’bp

x [pro&j o +  x +  probx 2 + probl 2> + probl4 ]

equation 4.6

The total radiative rate for the ground state of all the hqd dots is obtained by summing 

over all the possible combinations of i,j,l,m, and is given by:

1 1 f  i V /
= "do x x J] probKj x probtm x 2-

area sp

equation 4.7

Dots of different sizes are now accounted for, and the rates are converted into rates 

per unit transition energy by dividing by the energy intervals AE(w), which are 

dependent on the size of the dot. The energy intervals are calculated by converting the 

widths to energies as described in chapter 3. The total ground and excited state
•  ♦ 1 9  1radiative rates for all dots of size w, in dimensions of [T]' [L]' [E]' , are respectively 

given by:

RZd{™)= a J!QD}Ŵ—x Z probu (w)xproblm(w)x2 —AE(w) x area Tsp 12.

equation 4.8

AE(w) x area t~ix X p rob,,Aw) x p robi A w) x 8 ^ - [ 4
sp 4 j  

equation 4.9

The total radiative rate for the ground states of all the hqD dots is given by summing
1 9  1over all the different sizes of dots and in dimensions of [T]' [L]' [E]‘ is given by:

R Z d { to ta l)= ^ nQDM x ^  prob,^wjxprob,m(w)x2 1 ( i Y I
spAE(w) x area

equation 4.10

Similarly, the total radiative rate for the excited states of all the dots of different sizes

is:
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K d  (total ) = Y jT x X„ AE(w)xarea sp

/  * \  
I  

v 4 ,
m
~4

equation 4.11

Figure 4.4 shows the ground and excited state radiative rates per unit transition energy 

for each group of dots of the same size, in dimensions of [TJ'^LJ^fE]'1. They are 

plotted as a function of ground/excited state transition energy for the case of fully 

occupied dots. The excited state rate is larger than that of the ground state rate due to 

there being four times as many possible transitions per dot in the excited state.
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Figure 4.4 - Ground and excited state radiative rates per unit transition energy for 

each group of dots for the case of fully occupied dots. The excited state rate is larger

than the ground state rate.

4.3 Nonradiative Recom bination via Deep States

Nonradiative recombination is the recombination of an electron-hole pair without the 

emission of a photon and so it does not contribute to the light emission. Nonradiative 

recombination in semiconductor lasers can occur via defects (often called Shockley-
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Read-Hall recombination or SRH) and Auger recombination. In this section 

nonradiative recombination via defects is discussed; Auger recombination is described 

in section 4.4.

Nonradiative recombination via deep states is treated locally in each dot. The capture 

of electrons and holes onto the defect sites are independent events and so the overall 

capture rate is dependent on the slowest of these two capture processes. This is often 

referred to as the rate-limiting step. Here, the rate limiting step is assumed to be 

electron capture onto the defect state, and it is also assumed that both electron and 

hole states can be refilled on a timescale which is faster than the recombination time. 

The worst case scenario is assumed, where there is a defect present in every dot. The 

nonradiative rate in each dot is proportional to the number of electrons provided there 

is a hole present in the same dot to enable the recombination process to be completed,

i.e. />0 for the ground state and m>0 for the excited state. Ground (excited) state 

electrons can only recombine nonradiatively with ground (excited) state holes.

The nonradiative rates of a single dot, in dimensions of [T]'1, for the ground and 

excited states respectively are

R%(dot) = —  1> 0
Tnr

equation 4.12

RZ(dot) = ^ ~  m>  0
7 nr

equation 4.13

where i is the number of electrons in the ground state and j  is the number of electrons 

in the excited state. The nonradiative lifetime, xnr, is assumed to be the same for both 

states and has a value of 300ps.

The total nonradiative rates for the ground and excited states of dots of size w are 

calculated by multiplying equation 4.12 and equation 4.13 by the number of dots with 

the corresponding occupation (equal to the probability that a dot has an electron 

occupation i j  and a hole occupation l,m, multiplied by the number of dots), on the 

condition that there is at least one hole present in the dot. The total rates over all the 

dots are calculated by summing over all the different sizes of dots. Including the area
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in the calculation, the total nonradiative rates for the ground and excited states, in 

dimensions of [T]'![L]'2, are therefore given by:

i x probij(w)x problm (w)
x area

equation 4.14

W ,  , V  M  V  J X P r ob i j ( W) X P r 0 K m ( W)R„r(total)=2^nQD(w) ^     :------
i J J % >0 *n r  X  a r e a

equation 4.15

Figure 4.5 is a plot of the total nonradiative rates for the ground and excited states, as 

a function of the total current in the dots and the wetting layer.
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Figure 4.5 - Total nonradiative rates for the ground (red line) and excited (blue line) 

states, as a function of the total current in the dots and the wetting layer.

The excited state rate is much larger than the ground state rate due to its increased 

occupancy number compared to that of the ground state as the current is increased.
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4.4 Auger Recombination

Auger recombination is also a nonradiative process since the energy released in the 

transition is transferred to another carrier which then dissipates its energy by the 

release of phonons and not a photon. There are several processes for Auger 

recombination but, for simplicity, only one process is modelled in this thesis. This 

process is shown schematically in Figure 4.6. It is assumed that a conduction electron 

(1) recombines with a valence hole (2). The energy released in this process promotes 

another electron (3) to the wetting layer (4), which then dissipates its energy by the 

release of a phonon.

Wetting 
layer states

Dot states

Figure 4.6 - Auger recombination in a quantum dot.

Auger recombination is also treated locally in the model. It is assumed that ground 

state electrons can only recombine via Auger recombination with ground state holes, 

and similarly for the excited state, and that for the process to be completed there must 

be at least two electrons and at least one hole present in the same dot. It is also 

assumed that there is always an empty state available in the wetting layer to complete 

the process. For consistency with the radiative and nonradiative via defects 

recombination rates, the Auger recombination is characterised using an Auger lifetime 

for a single dot Taug- It is assumed that this is the same for ground and excited states 

and equal to 300ps.
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First considering the ground state only, for the Auger process to take place there needs 

to be two electrons (i.e. a full electron ground state) and at least one hole in the same 

dot; if there are two holes in the same dot the transition rate is doubled since there are 

two ways that the process can be completed. The Auger rate is therefore proportional 

to the number of holes in the dot on the condition that there are two ground state 

electrons in the dot i.e. i=2. The Auger rate for the ground state of a single dot is 

written as

r z M ° ‘) = —  1=2
T aug

equation 4.16

The excited state is more complicated because it can contain up to four electrons and 

four holes, and the probability of Auger recombination occurring will depend on the 

number of ways of having the combination of two electrons and one hole. For 

example, when the electron and hole states are full there will be 24 different ways of 

the Auger process occurring. If the excited state contains j  electrons the number of 

ways of having two electrons is

2 ! ( / - 2 )

and the probability of Auger recombination occurring is proportional to this number. 

The probability of Auger recombination is also proportional to the number of holes on 

the condition that j  > 2, and so the Auger rate for the excited state of one dot is given 

by:

equation 4.17

To calculate the total Auger rates, equation 4.16 and equation 4.17 are multiplied by 

the number of dots with the corresponding occupation, on condition that there are two

electrons present in the dot. The total Auger rates for the ground and excited states, in
1dimensions of [T]' [L]" , are therefore given by:
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„*r r. . A ^  ( \ , ProbiA w)x Probi A w)
^ Z g ( t o t a l ) = X n Q D (w )  L  l x   ------------------------------------

i=2,j,l,m ^aug X  a r e a

equation 4.18

vex l  . T  l \ f-^Oug (tOtal) = 2_, nQDM  Z . , l XWX--------------
w i,jZ2J,m ^ - \ J  ~  r Taug X area

equation 4.19

Figure 4.7 is a plot of the Auger rates for the ground and excited states, as a function 

of the total current.
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Figure 4.7 - Auger rates for the ground (red line) and excited (blue line) states, as a 

function of the total current in the dots and the wetting layer.

Again, the excited state rate is much larger than the ground state rate due to the higher 

degeneracy in the excited state.
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4.5 Inhomogeneous Broadening: Converting Energies to an Equally 

Spaced Grid

4.5.1 Introduction

Section 4.2 describes how the total radiative rates for all the dots are calculated. Using

equation 4.8 and equation 4.9 the radiative rates per unit energy in dimensions of
1 2  1[T]" [L]‘ [E]' are calculated for a particular group of dots with the same width w (and 

consequently the same energy). The following sections describe how the rates per unit 

energy calculated for each group of dots are redistributed over smaller energy 

intervals.

4.5.2 Converting Energies to an Equally Spaced Grid

To model the ensemble of one million dots a Gaussian distribution is used, as 

described in chapter 3. The probability per unit width of a dot having a width w, in 

dimensions of [L]’1, is given by

(w -  w )2 
2  <j 2

equation 4.20

where w is the mean width and a is the standard deviation of the distribution. The 

range of a standard Gaussian distribution extends to infinity. In the model equation 

4.20 is modified, creating a truncated Gaussian function, to calculate a series of 

equally spaced discrete widths. This is described in detail in chapter 3. These discrete 

widths are subsequently converted into energies using the SHO potential. However, 

because these energies do not scale linearly with the dot width, the result is a non- 

symmetrical distribution in energy, as shown in Figure 4.8.

exp
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Figure 4.8 - Number of dots with ground and excited state transition energies. The 

distribution in energy is asymmetrical.

A series of radiative rates per unit energy are calculated, which, for the ground and 

excited states respectively, are given in equation 4.8 and equation 4.9 as:

RZt(w) = * E P r o b ,j{areax A E(w)

RZi(w) =— s , x  E P>'obIJ(wareax AE( w) r sp v

  1 o
These equations give the radiative rates per unit energy in dimensions of [T]" [L]" 

[E]'1 for a particular group of dots with the same width w. The energy intervals are not 

equal since the energy does not scale linearly with the width of the dot and so each 

energy interval is denoted as AE(w) since its value is dependent on the size of the dot.

To calculate the spontaneous emission and gain spectra the first step is to split the 

rates per unit energy into smaller energy intervals. To do this a grid with equally 

spaced energy intervals is created, for both the ground state and the excited state 

transition energies. The minimum value of each of the two grids is the minimum 

energy of the dots, and similarly for the maximum value, as shown below. To divide
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the rates into smaller energy intervals interpolation is used. At each of the discrete 

transition energies, calculated from the width of each group of dots, the rate per unit 

energy interval is known. A straight line is connected between these points and the 

rates are interpolated to work out the rate per unit energy at intervals along this line, 

as shown in Figure 4.9.

Connect values for different groups 
of dots with a straight line and 

interpolate

Rate per unit 
energy

P T ' i L r W

< >
Energy interval

Minimum
value

Maximum Energy 
value

Figure 4.9 - To calculate the rates per unit energy at intermediate energy values the 

rates are connected with straight lines and interpolated.
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The interpolation is done using the method of similar triangles, which is shown in the 

following figure:

A

B

<C ->
A

Figure 4.10 - Method of similar triangles.

Using the symbols shown in Figure 4.10, simple trigonometry shows that:

B b . aB— =  > b = —
A a A

Applying this method to the radiative rates is done as follows:

Rate per unit

equation 4.21

energy interval 

[T]'1[L]'2[E]'1

► Energy

Figure 4.11 - Applying method of similar triangles to the rates.
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If Ri and R2 are rates per unit energy at energies corresponding to the widths of the 

dots, then the rate per unit energy R is given by

, AE{R,Rl)x{R2 - R l)
K ~ K' + AE(R2, Rl)

equation 4.22

where AE(R,Rj) is the difference in energy between R and Rj, and similarly AE(R2,Ri) 

is the difference in energy between R2 and Rj. Many values of different Rs are 

calculated at different equally spaced energies along the grid. The minimum and 

maximum energies are equal to the minimum and maximum energies of the dots since 

it is not possible to interpolate beyond these. The result is series of rates per unit 

transition energy at equally spaced intervals along the energy grid. These rates have
1 9  1dimensions of [T]' [L]" [E]' and the energy interval is now equal to the difference in 

energy between the points on the new grid. Figure 4.12 shows the interpolated rates 

per unit energy for the ground state as a function of the transition energy. For 

comparison the original values are also shown.
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Figure 4.12 - Interpolated radiative rates per unit transition energy for the ground 

state, plotted for the situation when the dots are fully occupied. For comparison the

original values are also shown.

Now that the rates per unit energy have been converted into points on an equally 

spaced energy grid, the next stage is to include the homogeneous broadening function, 

which is described in the next section

4.6 Im plem enting the H om ogeneous Broadening: Spontaneous 

Em ission

4.6.1 Introduction

Using the equations derived in section 4.2 the total radiative rates for the dots can be 

calculated. If total radiative rates are calculated, and not spectra, it is not necessary to 

include the homogeneous broadening function since the energy of each transition does 

not need to be known. However, the spectra of the emission as a function of energy 

are also studied in this thesis, and so the homogeneous linewidth must be included in
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the calculations. The following sections describe how the homogeneous broadening 

function is implemented in the calculations for the radiative rates.

4.6.2 Homogeneous broadening

The optical transitions of a quantum dot consist of a series of broadened delta- 

function lines. These broadened transitions are centred on the energies of the 

transitions and more than one size of dot will contribute to the transition at any one 

photon energy. This is known as homogeneous broadening. So to calculate the 

absorption or emission at a fixed value of photon energy it is necessary to sum over 

all the dots of different transition energies that make a contribution at that specific 

photon energy. The magnitude of the contribution each dot makes depends on the 

relative magnitude of the homogeneous linewidth and the difference between the 

transition energy of the dot and the photon energy.

Homogeneous broadening is expressed using the Lorentzian function centred on the 

transition energy of the dot E„:

L(hu) = —~---------------  -
n  ( h u - E „ f  +A 2

equation 4.23

A is the linewidth and a value of lOmeV is used throughout this thesis [4]. L(hu) has 

dimensions of [E]'1.

So at any transition energy, more than one dot makes a contribution to the radiative 

rate due to the homogeneous linewidth. Equally spaced photon energies are chosen 

along the axis. At each value of photon energy the contribution that each dot makes at 

this energy to the rate is calculated. This photon energy grid can run from any 

minimum and maximum values; however, at energies that exceed the minimum and 

maximum transition energies of the dot ensemble the contributions calculated will 

become less accurate. The model has a cut off point for the transition energies as a 

truncated Gaussian is used to give the distribution of sizes in the dots (and thus 

energy) and this does not extend to infinity as for a real Gaussian distribution. This is 

shown in Figure 4.13. This means that at photon energies outside the inhomogeneous 

distribution there will be fewer dots contributing to the rate.
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Figure 4.13 - Truncated Gaussian distribution; the range of sizes of the dots (and 

therefore the transition energies) does not extend to infinity as for a real Gaussian

distribution.

At a particular photon energy hu, the contribution that a rate per unit energy at 

transition energy En will make to the rate at hu , in dimensions of [Tj'^LJ'^E]'2, is:

equation 4.24

1 0  1Here, R(Ey) is the rate per unit energy in dimensions of [T]‘ [L]' [E]" at transition 

energy En. So the total rate per unit energy at photon energy hu  is found by 

integrating over the energies of all the dots. In the model this is done using a 

summation over all the transition energies: the rates per unit energy are multiplied by 

the appropriate energy interval, AEn, and summed:
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X « (£ „ )x A £ „ x i A
7t (hu -E„  + A2

equation 4.25

Figure 4.14 is a plot of the homogeneously broadened ground state spontaneous 

emission spectrum, when all the dot states are fully occupied.

5x10’

OJ
Eo

1.0 1.21.1

Photon Energy (eV)

Figure 4.14 - Ground state homogeneously broadened spontaneous emission 

spectrum when all the dots are fully occupied.

Integrating this curve gives the total radiative rate in dimensions of [T]_1[L]"2.

4.7 M o d a l G a in

4.7.1 Introduction and Gain Equations

The modal gain can be related to the spontaneous emission through the Einstein 

relations. The Einstein A and B coefficients can be related to the spontaneous 

emission rate of a dot, and so can also be used to calculate the gain. Optical gain is the 

fractional change in photon number per unit distance, and so to calculate the gain it is
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necessary to calculate the net induced rate per unit area between the conduction and 

valence band states of the dots.

Chapter 2 gives the equation for the net induced rate for an ensemble of Ndots identical 

dots with a degeneracy of two in the upper and lower states as:

R„e,=2NJolsBP(hvXfv + f c - i )

equation 4.26

• 1 ^B is the Emstein coefficient and has dimensions of [T]‘ [L] [E], P(hv) is the photon
*3 1

density in the mode and has dimensions of [L]' [E]' , and f v and f c are the Fermi 

functions giving the probability of occupancy for a hole (in a valence state) and an 

electron (in a conduction state) respectively. So applying equation 4.26 and using the 

notation adopted in this thesis, the net induced rate due to the ground state of a single 

dot, in dimensions of [T]"1, is given by:

R%,(dot)=BP(hu)x2x r i I ^ 
-  +  - - 1  

v2 2 ,

equation 4.27

Including all dots of size w (which all have the same transition energy), and dividing 

by the energy interval to get the net induced rate per unit energy in dimensions of 

[TJ'^E]'1, the net induced rate due to the ground states of all dots of size w is given 

by:

M  = nQD(w)x TT7- ! x X  BP(ho)x prob,j(w)x prob, m(w)
& tL \yV ) i , j j ,m

X 2 X r i I A - + - - 1  
v2 2 J

equation 4.28

The equation for the modal gain, in dimensions of [L]"1, is derived from the net 

induced rate as

G = r n '1 Rnet

y c j P(ho)Vcm

equation 4.29

where Vcav is the volume of the cavity and n is the refractive index of the material. 

Considering a waveguide of width w and length L, allows an effective mode width 

wmod to be defined, such that Vcav = wmodwL, as shown in Figure 4.15.
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Figure 4.15 - Mode width geometry.

Using area=wL, the modal gain can then be rewritten as:

G
J P(hv) x area x wmod

equation 4.30

So using equation 4.30 and substituting in for the net induced rate, the equation for the 

modal gain per unit length due to the ground state of all the dots of size w, in 

dimensions of [L]"1, is:

GgrW \ c )
B

aF T T X/IG (̂W) X 2  probtJ(w)xpr°bitm(w)x2x  area x wmod x AE(w) “ , ^ m
U L - i  
2 2

equation 4.31

The Einstein B coefficient can be written in terms of the Einstein A coefficient, and 

the reciprocal of A is equal to the spontaneous lifetime rsp:

h3c3 1 1 h3c3 1
B21 — A2]

%m3 (ho)2 r sp 8 m 3 (ho)

equation 4.32

To be consistent with the recombination equations, the equation for the modal gain 

due to the ground state of all the dots of size w is rewritten in terms of the 

spontaneous lifetime rsp as:

f n 'U V  «eoO )
G>(w) =

\ c j %7m (hu) x t  x areax wmod x AE(w)

X Y , probi,,,(w) x Pr°b,,, W x 2 x
f  i I '  
- + - - 1  
2 2

equation 4.33
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Similarly, the net induced rate due to the excited state of all the dots of size w is

K l  M  =  nQD x , Z  B P {h u )x  prob (w )x  prob, (w) x 8 x -  +  — - 1
4 4

equation 4.34

which gives the equation for the modal gain per unit length as:

%>(w)
G e X W)  =

f  n \ h3c 3
\ c ) %7m (hu) x r sp x area x wmod x AE(w)

x ^  probl j  (w ) x probl m (w) x 8 x ^ j  m ^  — +  1
4 4

equation 4.35

4.7.2 Implementing the Homogeneous Broadening: Gain

The implementation of the homogenous broadening for the gain spectra follows the 

same principle as for the spontaneous emission spectra. The modal gain has been 

calculated, in dimensions of [L]"1, at fixed values of energy corresponding to the 

transition energies of the dots. As described in section 4.5, interpolation is used 

between these calculated values so as to decrease the energy intervals over which the 

gain is spread. Applying the method of similar triangles to the gain spectrum is done 

as follows:

Gain per 
unit length

Energy

Figure 4.16 - Applying method of similar triangles to the gain.
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If Gi and G2 are the modal gain per unit length at values of transition energy 

corresponding to the groups of dots, then the modal gain G is given by

, a e (g ,  G, ) x  (g 2 -  G ,)
AE(G2 , G ,)

equation 4.36

where AE(G,Gj) is the difference in energy between the transition energies 

corresponding to G and G/, and similarly AE(GzGi) is the difference in energy 

between the transition energies corresponding to G2 and G/. Again many values of G 

are calculated at different equally spaced energies along the grid.

The next step in working out the gain/absorption spectra is to include the 

homogeneous broadening function L(hv). The gain/absorption at a fixed value of 

photon energy is calculated by summing over all the transitions that make a 

contribution at that specific photon energy. Again, the magnitude of the contribution 

will depend on the relative magnitude of the homogeneous linewidth and the 

difference between the energy of the transition and the photon energy.

To work out the homogeneously broadened gain spectra equally spaced energy 

intervals are again chosen along the axis, and at each value of photon energy the 

contributions to the modal gain are calculated. So at a particular value on the energy 

axis of hu, the contribution that the modal gain at energy En will make to the gain at 

hu, in dimensions of [L j'^E ]'1, is

equation 4.37

where G(En) is the modal gain in dimensions of [L]"1 at energy En. So the total modal 

gain at energy hu, in dimensions of [L]"1, is given by integrating over the 

contributions at all energies, which is done in the model using a summation:

equation 4.38
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Figure 4.17 is a plot of the homogeneously broadened ground state modal gain 

spectrum. The blue curve is for the case where all the dots are empty, the red curve for 

fully occupied dots, and the black curve is for an intermediate case.
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Figure 4.17 - Ground state homogeneously broadened gain spectrum. The blue 

curve is for the case where all the dots are empty, the red curve for fully occupied 

dots, and the black curve is for an intermediate case.

4.8 The W etting Layer Recom bination

The wetting layer is a two-dimensional layer left over from the growth process and is 

treated like a quantum well with a step-like density of states. If the distribution of 

carriers in the wetting layer is approximated as a Boltzmann distribution, then the 

radiative rate for the wetting layer, in dimensions of [T]' [L]' , can be written as:

K L  = b wI

equation 4.39

Nwi and Pwi are the electron and hole densities in the wetting layer respectively, and 

Bwi is the recombination coefficient which takes a value of 3.5 * 10'7 s_1m2 [5].
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The nonradiative rate in the wetting layer is proportional to the density of electrons

300ps. Auger recombination in the wetting layer is not included in the model.

4.9 Current

To compute the light-current characteristics of the system the current flowing in the 

various systems needs to be calculated, i.e. the dot states and the wetting layer. 

Current is the rate of flow of charge and so to calculate the current the total 

recombination rate is multiplied by the electronic charge q. For the case of the dots, 

the total recombination rate is the sum of the radiative, nonradiative via defects and 

Auger rates; for the wetting layer it is the sum of the radiative and nonradiative via 

defects rates. It is assumed that there is no leakage current.

The current is worked out separately for the ground and excited states of the dots. In 

units of A m ', the equations for the total current flowing due to the ground and excited 

states respectively are:

since the rate limiting step is assumed to be electron capture onto the defect site. The 

nonradiative rate, in dimensions of [T]'1[L]'2, is therefore given by

^nrwl

equation 4.40

where rnrwi is the nonradiative lifetime in the wetting layer and is given a value of

area

equation 4.41
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= q x 2 s   xarea

'  . 'V mA

/ X proft,, (w)x profy (w)

+ y! x m x
prob, j(w)x pr°bi m(w)

aug

equation 4.42

The total current flowing in the dots, from all the ground and excited states, is:

J  dots =  J  gr +  J  ex

X ^ W x A £ ( W) + X ^ W  + X ^ W  "
w w w

+  Z  K a ,  W x  A£(W ) +  X  K  M  +  Z  W

q x

V w

= ? x L area

i f  * Y  O  ^£  prob, {w)xprob, (w )x2 —  -  -
T . . A 2 J y 2 Ji j  ,1 ,m

+ z
i,j,l>0,m

+ z
i= 2 j,l,m

sp

i x prob, j (w )x  prob, m (w)

^nr

problJ(w)xprobl (w) 
l x  ----------------------

aug

+ Z  p r o b u ( w ) x p r o b i ,» (w ) x S -
i j j , m

+ z
ij,l,m > 0

sp

f  ; \ f m \

+

]  X prob, j  (w)x problm (w)

7 nr

j\ prob, j{w)x prob,m(w)
,m 2!(y-2>

x m x
aug

equation 4.43

The current flowing in the wetting layer, Jwi, is given by:

'nrwl )

equation 4.44
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In an experiment there is no means to eliminate the wetting layer contribution to the 

current (other than cooling the sample) and the current measured is the total current 

due to the dots and the wetting layer. The total current is calculated by adding up the 

contributions from the wetting layer, equation 4.44, and from the dots, equation 4.43:

J  tot =  J w l  +  J  dots

equation 4.45

4.10 Summary

In this chapter I have derived equations for the optical processes occurring in the dots 

using localised population statistics. First equations for the radiative, nonradiative and 

Auger recombination rates in the dots were described. I then explained how the 

homogeneous broadening is implemented to produce spontaneous emission and gain 

spectra. I also derived equations for the recombination in the wetting layer and the 

current. The next chapter describes an alternative model in which the number of holes 

in a dot is forced to be equal to the number of electrons, and this is called the neutral 

model.
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5 Localised Population Statistics for the 

Neutral Model

5.1 Introduction

In chapter 3 the method used for calculating the localised population statistics for an 

ensemble of dots in thermal equilibrium is described. A thermal distribution of carriers is 

assumed amongst the different energy levels of the inhomogeneous dot distribution and of 

the wetting layer, with global quasi-Fermi levels for both the electrons and holes. In this 

non-neutral case each dot does not necessarily contain equal numbers of electrons and holes, 

although the total numbers of electrons and holes are equal. In the literature, models used for 

quantum dots usually assume an excitonic model [1-4], in which electron-hole pairs are 

considered and each dot contains equal numbers of electrons and holes. For comparison, a 

neutral model has also been developed in this thesis, in which the number of holes in any dot 

is set equal to the number of electrons in that dot. Consequently, in this neutral model, 

Fermi-Dirac statistics cannot be applied to both the electron and hole distributions. The 

details of this neutral model are described in this chapter.

5.2 Electron and Hole distributions

The approach taken to model the dots and wetting layer for the neutral model is the same as 

for the non-neutral case. Again an ensemble of one million InAs dots is modelled and a two- 

dimensional wetting layer is included in the calculations. The energy levels are calculated 

using the SHO potential. Full details of the modelling can be found in chapter 3.

The distribution of electrons is calculated in exactly the same way as for the non-neutral 

model, as described in chapter 3. The equations for the electron distribution for a particular 

value of electron quasi-Fermi level are shown again for clarity in the following table, nj is

the number of dots with i electrons in the ground state and j  electrons in the excited state and 

uqd is the total number of dots. f Cigr and f c<ex are the fraction of occupied electron states, for 

the ground and excited states respectively.
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N u m b e r  o f  d o t s  w i t h  

e l e c t r o n  d i s t r i b u t i o n  ij:  nj
E x p r e s s i o n

" o f c , M - f c , J

»>° n QD 2  f c . g r  ( l  -  f c . g r  X 1 “  f c .e x  ) “

n\ n Q D f c .g r 2 ^ -  f c . e , y

n\ n QD ( !  -  f c . g r  }  * f c , e x  ( l  -  f c . e x  J

n \ " Q D  2  f c . g r  ( l  -  f c . g r  Y  f c . e x  0  “  f c .e x  f

n\ n QD f c J i > f c , J ^ - f c . e x  f

" o » O D ( l  - f c , g r } 6 f c j ^ - f c j

n\ n QD 2  f c . g r  ( l  -  f c . g r  ^  f c .e x  ( J “  f c .e x  f

n\ n Q D f c .g r 1 ( > f c . e , 2 ^ -  f c . e x j

” o n QD ( l  -  f c . g r  }  4 f c J  ( l  -  f c .e x  )

" l 3 n QD 2  f c . g r  ( l  -  f c . g r  W c J  ( l  ~  f c . e x )

n\ n QD f c . g r 2 ^ f c J ^ - f c . , x )

K n Q D ^ ~  f c . g ^ f  f c .e x

^ Q D  2 f c . g r  0  f c . g r  ) f  c.ex

n\ ^ Q D  -fc .g r  f c ,e x
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The condition that the number of holes in any dot must equal the number of electrons in that 

dot is now imposed. It is assumed that the holes are distributed amongst the dot states in the 

same way as the electrons, i.e. if there are i electrons in the ground state there are also i holes 

in the ground state, and similarly for the excited state. So for any one dot the following 

conditions apply:

/ = i 

m = j

If there are nj dots with i electrons in the ground state and j  electrons in the excited state, 

then there must also be nj dots with i holes in the ground state and j  holes in the excited 

state, i.e.

p i = « /

equation 5.1

5.3 Fermi-Dirac Statistics

It is not possible for the electron and hole distributions to both be described by Fermi-Dirac 

statistics if each dot is neutral, and this can be proved as follows. Consider one dot and set 

the number of holes in the ground state equal to the number of electrons i.e. /=/. If Fermi- 

Dirac statistics are used then this condition can be written as:

1 1

equation 5.2

E cgr and E vgr are the ground state energy levels for the electrons and holes respectively, and

Efc and Ej\, are the quasi-Fermi levels for the electrons and holes respectively. This equation 

reduces to:

F° -  F -  F v -  F
Sr ^  fc ~  gr ^  P

equation 5.3

Now considering the excited states for the electrons and holes, setting the number of holes 

equal to the number of electrons gives j=m. If the excited state electron energy is written as
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Egr+ SEC, and the excited state hole energy as E vgr + SEV, the following equation can begr

written

r E l,+ 8 E c - E
exp

kT
+ 1 exp

r Elr + 8 E , - E ^
kT

+ 1

equation 5.4

which gives

E ' y + S E ' - E f - E ' p + S E , - E fi

equation 5.5

The two conditions in equation 5.3 and equation 5.5 can both be true only if

8EC = 6E,

equation 5.6

However, the equations for the electron and hole energy levels in the dot are dependent on 

the effective masses of the electrons and holes. Therefore, because the electrons and holes 

have different effective masses, they have different energy levels. Thus it is not possible to 

satisfy the condition in equation 5.6 and the electron and hole distributions cannot both be 

described by Fermi-Dirac statistics. An electron quasi-Fermi level can be defined, but it is 

not possible therefore to define a hole quasi-Fermi level.

5.4 Recombination in Neutral Dots

5.4.1 Introduction

The condition of charge neutrality in each dot simplifies the equations for the recombination 

processes. The following sections give the modified recombination equations for the neutral 

dots.

5.4.2 Radiative Recombination

As derived in chapter 4, the radiative rate for the ground state of one dot, in dimensions of 

[T]"1, is given by
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KaA^ot)=2A

=  2 -

sp

equation 5.7

where i is the number o f electrons in the ground state, and / is the number of holes. The 

reciprocal of the Einstein A coefficient is the spontaneous lifetime xsp for a single transition. 

With charge neutrality in the dot, equation 5.7 reduces to the following equation, and it is 

interesting that this equation implies that recombination in neutral dots is bimolecular in 

each dot:

RZa{d o t) = 2 A

=  2 —

equation 5.8

Similarly, the excited state radiative rate for one dot is

K l A dot ) = % A

sp

fTl 
U J

equation 5.9

which for neutral dots becomes:

R ^{d o t)  = ZA

i
sp

equation 5.10

The ground state radiative rate per unit energy for all dots with a distribution i,l (and z-/), in 

dimensions of [T]"1[L]“2[E]"1, is
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RZj(‘>l) = ngD x
QD area x AE

1 x X  prob,j X  prob, „ x  2 — [ T  "  *

J,m T V 2sp \  s

=  X
1

QD A  r-a rea  x AE x X L dto^ j ]2 x 2 —
i

5/7

equation 5.11

where Ais is the energy interval. Similarly, the excited state radiative rate per unit energy for 

all the dots with an electron distribution j,m  is

K d b ' ’m ) = n OD X

1 1
QD a j-*

area  x AE  t

The total ground and excited state rates for all the dots are

sp

equation 5.12

Rfad 0total ) = T  ”g° ̂ — x Y ,  Prob, j (w )x  prob, m(w )x 2 — ( ^
“ &E(w)xarea ,jpm t \ 2

= x
” 0 0  (w)

= £

AE(w) x area

"GoW

x Z I ^ j W ]2 x2
i

sp

equation 5.13

k t~* s \ X Z  PV0Kj  M  X Pr°Km (W) X 8 —  K  AE(w)xarea rsp \ 4 J

AE(w)xarea x Z [ M j W f  x 8 1 ( j '
sp

equation 5.14

Figure 5.1 shows the total ground state radiative rate per unit energy as a function of the 

current in the dots for both the neutral dots and the non-neutral dots. It can be seen that the 

rate for the neutral dots is much higher at low currents than the rate for the non-neutral dots. 

This is because in the neutral dots there is always a hole present to complete the 

recombination process. At low currents for the non-neutral dots, although there may be an 

electron in a dot there may not necessarily be a hole.
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Figure 5.1 - Total ground state radiative rate for the neutral dots (dashed line) and the non­

neutral dots (solid line), plotted as a function of the current in the dots.

5.4.3 Nonradiative Recombination

For nonradiative recombination in a dot an electron and hole must be present in the same 

dot. Thus for neutral dots, if there is an electron in the dot there will always be nonradiative 

recombination since there will always be a hole to complete the nonradiative process. The 

rate is proportional to the number of electrons as electron capture is assumed to be the 

slowest process. The nonradiative rates for the ground and excited states of a single dot are 

respectively given by:

« : W = -

equation 5.15

C M = —
T*r

equation 5.16
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The total nonradiative rates for the ground and excited states, in dimensions of [T]_1[L]“2, are 

given by:

R Z (to ta l)= Y ,n QD{w) £
x probu (w)x pr°bl m(w)

/  X (w )}

x area
2

hJ Tnr x area

. a  ^  ( \ j  x p r o b , ,A w ) x  p r o b i A w )R-nr (tOtal) = 2^ nQD (w) ^  ----------------------------------
^>o r„,xarea

j* \p ro b tJ{wfi
r„, X area

equation 5.17

equation 5.18

Figure 5.2 shows the total ground state nonradiative rate as a function of the current in the 

dots for both the neutral dots and the non-neutral dots.
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Figure 5.2 - Total ground state nonradiative rate for the neutral dots (dashed line) and the 

non-neutral dots (solid line), plotted as a function of the current in the dots.

5.4.4 Auger Recombination

The Auger process modelled in this thesis involves two electrons and one hole, which must 

be present in the same dot. For neutral dots, if there are two electrons then there will also be 

two holes. Considering the ground state case first, Auger recombination will only take place 

when the ground state is full i.e. when there are two electrons and two holes in the dot. This 

gives rise to two possible Auger recombination events. The Auger rate for the ground state 

of one dot is therefore proportional to the number of holes in the dot, on the condition that 

there are two electrons (and therefore two holes). The rate is given by

—  —

2
i

T aug

equation 5.19
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Now considering the excited state, again the number of ways of having two electrons from j  

is:

f-
2 ! ( / - 2 )

equation 5.20

If there are j  electrons in the excited state of a dot then there will also be j  holes. The Auger 

rate for the excited state of one dot is therefore given by

K l  (dot) =  —  {■ x  m

J  f i _  . 7 * 2
2 ! ( y - 2 ) X7

equation 5.21

Multiplying by the number of dots with the corresponding occupation gives the total Auger 

rates for the ground and excited states, in dimensions of [T]_1[L]'2, as

v  t \ TP , Probu ( w)x Probi A w)
= 2 .  / x ------------------------------

, - 1 J J .m  * a u g  X  a r C a

v  t i v  lProbu ( wn
= Z ”0d(w) Z ' x

'=2,7 L aug x area

K ‘J fo ta l )  = Y JnQDW )  Z  ■' v ,

equation 5.22

r- ' ' '  ' .........." '■ '/i Prob,j(w)x prob, m(w)
x m x

t  X  area

,1 . \probtJ(wft
y  (w )y  —^ —r-x j x —— ~
w , ^ 2  2! (y -  2) x area

equation 5.23

5.5 Spectra

The spectra are calculated in exactly the same way as for the non-neutral dots, as described 

in chapter 4, using the revised equations for the radiative recombination detailed above. 

When the dots are all full/empty the spontaneous emission and gain/absorption spectra are 

identical for both the neutral and non-neutral cases. The difference between these the two 

cases is simply the way that the dots are populated.
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5.6 The Wetting Layer

The wetting layer recombination is calculated in the same way as for the non-neutral model. 

The radiative rate for the wetting layer is:

R l = B „ , N wlPw,

equation 5.24

Nwi and Pwi are the electron and hole densities in the wetting layer respectively, and Bwi is the

recombination coefficient which takes a value of 3.5 xlO'7 s_1m2. The rate has dimensions of
1 0[T]‘ [L] . The nonradiative rate, in dimensions of [T]‘ [L]‘ , is given by

n  wl ^  wl
nr ~ -----------

7nrwl

equation 5.25

5.7 Current

Because there will always be a hole present in a dot if there is an electron present, the 

recombination rates for the same value of electron quasi-Fermi level are much greater for the 

neutral dots than for the non-neutral dots. Therefore, the current due to the neutral dots will 

also be greater for the same value of electron quasi-Fermi level.
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The total current due to the ground and excited states of the dots respectively is given by

J w = x (z R£ Mx +Z w+ZV w w w y

= q x 2 ^ — x
area

+

x[/7TO*,y(w)f

ixfproft,. .(w)f

‘J

+
1=2 J

. \ p r o b , j ( w ) }

aug

V w
4  = « x  I c W x A £ w + I c W + Z c ? W

w w

X s  - L g J x ^ W f

y x fp ro ^ /w )]2

area
+

ij

+ f- x y x. [pro*.v(w)f

equation 5.26

equation 5.27
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The total current flowing in the dots, from all the ground and excited states, is:

J  dots ~  J  gr + J  ex

= q x
Z RZd (W)X Rnr (W) + Z  R^g (W)

w w w

+z  RZ  W x m m +z  RZ  W +z  M
w w

Z 2~ f ^ l  x \proh A wt
‘J  7 sp \ Z J

„  i X [probI J (w)]2

= ? XZ area

ij

+ Z / x
'= 2 J

. \prob,.Awn
aug

. \  2

+ Z ^ \ i )  A p r o b J W)]
i , j  ~sp W

j x . \ p r o b , j ( w f i
+

+

IJ

X J X
. [prob,,j (w)f

aug J

The current flowing in the wetting layer, Jw/, is given by:

=  q A B ^ N j + —
nrwl /

5.8 Summary

equation 5.28

equation 5.29

In this chapter I have described an alternative model to the one presented in chapter 3. In this 

model, called the neutral model, the dots are electrically neutral, and the number of holes in 

any one dot is equal to the number of electrons. I have described how this condition alters 

the equations for the recombination processes. I have also shown that Fermi-Dirac statistics 

cannot be applied to both the electron and hole distributions for this neutral case.
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6 Electron and Hole Occupancies

6.1 Introduction

One of the aims of this thesis is to study how the localisation of the states in quantum 

dots affects their optical properties such as the light output and gain. To get a better 

understanding of the processes occurring in the dots, this chapter looks at how the 

states in the dots are filled with increasing injection, for both the non-neutral and 

neutral cases. It should be noted that, due to the difference in the effective masses of 

the electrons and holes, the hole energies are about ten times smaller than those of the 

electrons. For example, the range of ground state energies for the electrons is about 

120meV compared to about lOmeV for the holes. The electron energies are therefore 

more sensitive to the quantum dot size than the hole energies [1].

6.2 Electron and Hole Distributions for Non-Neutral Dots

6.2.1 Introduction

In this section the evolution of the electron and hole distributions with increasing 

quasi-Fermi level separation is studied, for the non-neutral model.

6.2.2 Electron and Hole Distributions for Fully Occupied Dots

Figure 6.1 is a plot is the electron and hole distributions for the fully occupied dots i.e. 

a distribution of the states. The hole energies are plotted relative to the conduction 

band minimum. The inhomogeneity in the dots is modelled in this thesis by assuming 

a Gaussian distribution in the dot widths. The resulting distribution in energy is 

therefore not a Gaussian distribution, as can be seen in the plots in Figure 6.1. The 

ground and excited state mean electron energies are 80meV and 237meV respectively, 

measured from the conduction band minimum. Similarly, the ground and excited state 

mean hole energies are 7meV and 19meV respectively, measured from the valence 

band minimum. The total number of dots is one million. Each ground state can 

accommodate two electrons and two holes in the upper and lower states respectively, 

and similarly each excited state can accommodate four electrons and four holes.
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Figure 6.1 - State occupancies for the electron and hole ground (red points) and 

excited (blue points) states when the dots are fully occupied. The hole energies are 

plotted relative to the conduction band minimum (£^=leV). It should be noted that 

the hole energies are about a tenth of the magnitude of the electron energies.

6.2.3 Evolution of the Electron and Hole Distributions

The following figures show how the electron and hole distributions for the non­

neutral dots evolve with increasing quasi-Fermi level separation. Figure 6.2 is plot of 

the electron and hole distributions for an electron quasi-Fermi level of 0.1 eV and a 

corresponding hole quasi-Fermi level of -0.979eV, measured from the conduction 

band minimum. The hole quasi-Fermi level is defined by setting charge neutrality 

over the dots and the wetting layer. The fully occupied ground state for the electrons 

is shown for comparison (solid red line).
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Figure 6.2 - Electron and hole distributions for the non-neutral dots. The electron 

and hole quasi-Fermi levels are O.leV and -0.979eV respectively, measured from the 

conduction band minimum. The fully occupied ground state for the electrons is 

shown for comparison (solid red line).

It can be seen that for these values of electron and hole quasi-Fermi levels, the ground 

state is relatively full with electrons, but there are not many electrons in the excited 

state. This is because the electron quasi-Fermi level is not high enough to begin 

significantly populating the excited state with electrons. Considering the holes, the 

number of holes in the ground state is less than half the number of electrons, but there 

are more than twice as many holes in the excited state compared with electrons. This 

is due to the ground and excited state hole energy levels being more closely spaced 

than those of the electrons. In total, there are far more electrons than holes in the dots. 

To explain this a schematic of the energies of the dots and the wetting layer is shown 

in the following figure.
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Figure 6.3 - Schematic of energies for the dots and the wetting layer.

Charge neutrality is defined over the whole system, comprising of the dots and the 

wetting layer. The value of electron quasi-Fermi level of 0.1 eV is too far away from 

the wetting layer for high electron population there. However, the difference in energy 

between the quasi-Fermi level and the wetting layer energy is much smaller for the 

holes than for the electrons and so for the corresponding hole quasi-Fermi level of 

-0.979eV there is significant hole population of the wetting layer. There are 29405 

electrons and 165302 holes in the wetting layer, and since overall the total number of 

electrons equals the total number of holes, this means that there are more electrons 

than holes in the dots.

Figure 6.4 shows the electron and hole distributions for the non-neutral case, for 

electron and corresponding hole quasi-Fermi levels of 0.2eV and -1.024eV 

respectively, measured from the conduction band minimum. The fully occupied 

ground and excited states are shown for comparison (solid lines).

120



Chapter 6: Electron and Hole Occupancies

>»E?0)
c

LU

50000  100000

Number of Electrons
150000 50000  100000

Number of Holes
150000

Excited S tate  
G round S ta te  
Full Excited S tate  
Full G round S tate  
E lectron Q uasi-Ferm i Level

-0 .99  ■

- 1.00  -

£  - 1 .0 1 -

05 - 1 .0 2 - <1)
111 -1 .0 3 -

- 1 . 0 4 -

■ G round S ta te
• Excited S ta te

 Full G round S ta te
 Full Excited S ta te
 Hole Q uasi-Ferm i Level

Figure 6.4 - Electron and hole distributions for the non-neutral dots. The electron 

and hole quasi-Fermi levels are 0.2eV and -1.024eV respectively, measured from the 

conduction band minimum. The fully occupied ground and excited states are shown

for comparison (solid lines).

For these values of electron and hole quasi-Fermi levels, the ground state is more or 

less completely filled with electrons. However, only the lower energy excited states 

are full with electrons; the higher energy excited states have very few electrons as the 

value of Efc is too low to populate these. There are more electrons in the ground state 

than there are holes. However, in the excited state there are more holes than electrons. 

Again this is because the hole energy levels are more closely spaced than those of the 

electrons. The value of the electron quasi-Fermi level is now high enough that the 

number of electrons in the wetting layer is greater than the number of holes. The 

number of electrons and holes in the wetting are, respectively, 1311670 and 950954. 

Because charge neutrality is defined over the whole system, this means that there are 

more holes than electrons in the dots.

As the quasi-Fermi level separation is increased further, all the ground and excited 

states become full, and the numbers of electrons and holes in each state become equal.

6.3 Variation of the Quasi-Fermi Levels with the Quasi-Fermi Level 

Separation for Non-Neutral Dots

In this section the variation of the electron and hole quasi-Fermi levels as a function 

of the quasi-Fermi level separation A£/is studied for the non-neutral dots. Figure 6.5 

is a plot of the electron (red curve) and hole (blue curve) quasi-Fermi levels as a 

function of the quasi-Fermi level separation for the non-neutral dots. The quasi-Fermi 

levels are measured with respect to the conduction band minimum (iSg=leV).
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Figure 6.5 - Variation of the electron (red curve) and hole (blue curve) quasi-Fermi 

levels with the quasi-Fermi level separation for the non-neutral dots. The quasi- 

Fermi levels are measured with respect to the conduction band minimum (E ^leV ).

It can be seen that the electron quasi-Fermi level E/c shows more variation with the 

quasi-Fermi level separation AE/than the hole quasi-Fermi level Ej\>. The quasi-Fermi 

level separation is given by

A E , = Ef i +Efi

equation 6.1

where Eg is the bandgap of the dot material. The hole quasi-Fermi level is defined for 

a particular electron quasi-Fermi level by setting charge neutrality over all the dots 

and the wetting layer. Because the hole levels for the dots and the wetting layer are 

more closely spaced than those of the electrons this means that Ej\> does not need to 

increase by the same amount as Efc to achieve charge neutrality.
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6.4 Hole Occupancies for Neutral Dots compared with Non-Neutral 

Dots

The neutral and non-neutral models have the same electron distribution for a 

particular value of electron quasi-Fermi level, and the electron distribution is 

calculated using Fermi-Dirac statistics. For the non-neutral dots the hole distribution 

is also calculated using Fermi-Dirac statistics. However, the number of holes in a 

neutral dot is set equal to the number to the electrons in the dot. This approach 

effectively assumes that the electrons and holes have the same energy levels [2, 3]. In 

this section is a study of how the evolution of the hole distribution with increasing 

electron quasi-Fermi level differs for neutral and non-neutral dots. In each figure the 

hole distributions are plotted for the same value of electron quasi-Fermi level. The 

hole quasi-Fermi level shown is for the non-neutral case (the holes in the neutral 

model do not follow a Fermi-Dirac distribution). Figure 6.6 is a plot of the hole 

distribution for the neutral and non-neutral models, for an electron quasi-Fermi level 

of 0. leV.
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Figure 6.6 - Hole distributions for the neutral dots (dashed lines) and non-neutral 

dots (solid lines), plotted for the same value of electron quasi-Fermi level, O.leV.

The hole quasi-Fermi level shown is for the non-neutral case and has a value of - 

0.979eV, measured from the conduction band minimum.

It can be seen that for the ground state, the neutral dots are occupied by many more 

holes than the non-neutral dots. This is because in the neutral model, for every 

electron in a dot, there is also a hole present in the same dot; the value of the hole 

quasi-Fermi level is too small to populate the non-neutral dots with as many holes. 

However, for the excited state there are more holes in the non-neutral dots than the 

neutral. This is because the hole energy levels are more closely spaced than those for 

the electrons, and so for the non-neutral dots the hole excited state begins to get 

occupied for relatively small values of the hole quasi-Fermi level. Because the excited 

state can accommodate twice as many electrons as the ground state, the excited state 

population of the non-neutral dots thus begins to increase quickly, and this results in 

more valence holes than conduction electrons in the excited state.
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The following plot shows the hole distributions for the neutral and non-neutral 

models, for an electron quasi-Fermi level of 0.2eV.
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Figure 6.7 - Hole distributions for the neutral dots (dashed lines) and non-neutral 

dots (solid lines), plotted for the same value of electron quasi-Fermi level, 0.2eV.

The hole quasi-Fermi level shown is for the non-neutral case and has a value of - 

1.024eV, measured from the conduction band minimum.

The situation here is similar to that in Figure 6.6. Again, there are more holes in the 

ground state of the neutral dots than the non-neutral dots. At lower excited state 

energies there are more holes in the neutral dots, but at higher excited state energies 

there are more holes in the non-neutral dots. This is because of the difference in the 

spacing of the energy levels for the holes compared with the electrons. At higher 

energies the number of electrons (and therefore the number of holes) in the neutral 

dots is low since the electron quasi-Fermi level is too small for higher population. 

Because the hole energy levels are more closely spaced, these higher energy states in 

the non-neutral dots get populated. Figure 6.8 shows the situation for an electron 

quasi-Fermi level of 0.3eV.

125



Chapter 6: Electron and Hole Occupancies

- 1.00

- 1.02  -

^  -1.04 -

>*
W
£ -1.06 - 
LU

-1.08 - 

- 1 .1 0 -

0 20000 40000 60000 80000 100000 120000 140000
Number of Holes

Figure 6.8 - Hole distributions for the neutral dots (dashed lines) and non-neutral 

dots (solid lines), plotted for the same value of electron quasi-Fermi level, 0.3eV.

The hole quasi-Fermi level shown is for the non-neutral case and has a value of - 

1.104eV, measured from the conduction band minimum.

For this value of electron quasi-Fermi level, the ground states are more or less fully 

occupied and the lower energy excited states are almost full. The only differences that 

can be seen between the two models here is the elevated occupancy of the higher 

energy excited states for the non-neutral model compared with the neutral model.

As the electron quasi-Fermi level is increased further, all the states become occupied 

and there are no differences in the electron and hole distributions for the neutral and 

non-neutral dots.

6.4.1 Summary of the Differences in Neutral and Non-Neutral Hole 

Occupancies

In this section the evolution of the electron and hole populations with increasing 

electron quasi-Fermi level has been studied, for both the neutral and non-neutral dots. 

For the ground state, the neutral model shows higher occupancies of holes than the 

non-neutral model. The excited state is more complicated: generally, at lower energy

 Ground State Non-Neutral
 Excited State Non-Neutral
 Ground State Neutral
 Excited State Neutral
 Hole Quasi-Fermi Level

(Non-Neutral)
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excited states there are more electrons for the neutral model but at higher excited 

states energies the non-neutral model has higher hole occupancies. These differences 

are due to the differences in energy between the states of the dots and the wetting 

layer for the electrons and holes, which is not taken into account in the neutral model

6.5 Fermi-Dirac Statistics for the Neutral Model

The electron distribution for the neutral dots follows a Fermi-Dirac distribution. The 

hole distribution is defined by forcing charge neutrality in each dot and setting the 

number of holes in a dot equal to the number of electrons. In this section it is 

investigated whether the resulting hole distribution in the neutral dots can be 

described by Fermi-Dirac statistics. Figure 6.9 shows the hole distribution for the 

ground state of the neutral dots (dashed line) for an electron quasi-Fermi level of 

0.1 eV. For comparison the hole distribution for the non-neutral dots (solid line) is also 

shown, and the corresponding hole quasi-Fermi level is -0.979eV.
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Figure 6.9 - Ground state hole distributions for neutral dots (dashed line) and non­

neutral dots (solid line), plotted for Zs/c=0.1eV.

The hole distribution for the non-neutral dots does follow a Fermi-Dirac distribution. 

It can be seen that to match this Fermi-Dirac distribution to the number of holes for 

the neutral dots, a higher value of hole quasi-Fermi level is needed. The following 

plot shows the fit obtained for a hole quasi-Fermi level of -1.029eV, measured from 

the conduction band zero.
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Figure 6.10 - Ground state hole distributions for neutral dots (dashed line) and non­

neutral dots (solid line) for Efc=O.leV. A Fermi-Dirac distribution is plotted for

Ef,= -1.029eV and T=300K.

It can be seen that although the values of the peaks now match, the energies at which 

the peaks occur are not the same. The Fermi-Dirac distribution is also a different 

shape to the distribution of holes in the neutral dots. The only other parameter which 

can be fitted is the temperature and altering the temperature does not give a match to 

the distribution.

Now considering the excited state, the following figure shows the excited state hole 

occupancy for both neutral dots (dashed line) and non-neutral dots (solid line), again 

plotted for an electron quasi-Fermi level of O.leV.
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Figure 6.11 - Excited state hole distributions for neutral dots (dashed line) and non­

neutral dots (solid line), plotted for Efc=O.leV.

It can be seen that to match a Fermi-Dirac distribution to the holes for the neutral dots, 

the energy at which the peak of the distribution occurs needs to be lowered. This is 

done by reducing the value of the hole quasi-Fermi level, and the distribution is 

shown in the following figure for Ef/= -0.875eV.

130



Chapter 6: Electron and Hole Occupancies

-1.010

Excited State Neutral
Fit

-1.045
0 1000 2000 3000 4000 5000

Number of Holes

Figure 6.12 - Excited state hole distribution for neutral dots (dashed line) and non­

neutral dots (solid line) for Zs/c=0.1eV. A Fermi-Dirac distribution is plotted for

Ep = -0.875eV and 7K300K.

Reducing the hole quasi-Fermi level does not give a match for the energies at which 

the peaks occur. Also, the number of holes at each energy is now too low to match the 

distribution, and the shape is very different to a Fermi-Dirac distribution. Therefore, 

in conclusion, the hole distributions for the neutral dots cannot be described by Fermi- 

Dirac statistics, and so it is not appropriate to define a hole quasi-Fermi level for the 

neutral dots.

6.6 Summary

In this chapter I have studied how the electron and hole populations evolve as the 

electron quasi-Fermi level is increased. I have compared the hole distributions for the 

neutral and non-neutral dots, and there are significant differences between the hole 

distributions for the two cases. These differences are due to the energy level 

separation of the holes being smaller than those for the electrons, which is not taken 

into account in the hole distribution for the neutral dots. From investigation of the 

hole distributions for the neutral dots I conclude that they do not follow Fermi-Dirac
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statistics and therefore a hole quasi-Fermi level cannot be defined for the neutral dots. 

The next chapter described the light-current characteristics of the system.
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7 Light-Current Characteristics

7.1 Introduction

The recombination processes occurring within semiconductor lasers are often investigated by 

measurement of the light versus current (L-I) characteristics in the spontaneous emission 

regime, which is described in this chapter. A detailed understanding of the recombination 

mechanisms is essential for optimisation of their performance. Carrier localisation in dots 

affects the relation between the radiative, nonradiative and Auger recombination rates and 

the number of electrons populating the dots. However, because the number of carriers cannot 

be measured directly, the aim of this work is to examine how localisation affects the relation 

between measurable properties such as the light output and device current. For example in a 

system where radiative recombination is the only process, the light-current curve is linear, 

irrespective of the relation between the radiative recombination rate and the number of 

carriers in the system: the radiative rate is the current. One of the aims of the thesis is to 

determine whether radiative, nonradiative via defects and Auger recombination rates can be 

characterised by simple, distinctive functions of the number o f carriers in the system, 

enabling these processes to be distinguished by their combined influence on the shape of the 

light-current curve. This is described in more detail in the next section.

7.2 Power Law Relations

Experimentally the recombination processes are often investigated by measurement of light 

versus current characteristics by consideration of the functional form of the data using 

assumed power law dependences on carrier number for the various recombination processes. 

In systems with extended electronic states carriers are free to move along the quantum wire 

or quantum well, or throughout the bulk crystal, and this assists the carrier systems in 

achieving an internal equilibrium throughout the crystal. The extended states produce a 

continuum in energy which is represented by a density of states function and treatments of 

recombination are based on the assumption that any electron in an extended state may 

recombine with any hole in an extended state, subject to the appropriate ^-selection rules. If 

Boltzmann statistics are used to describe the electron and hole distributions, this leads to the
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result that the radiative recombination rate is proportional to the product of the electron and 

hole densities, N  and P  respectively, in each sub-band:

Rrad = BNP

equation 7.1

B is the radiative recombination coefficient [1]. When the system is electrically neutral N=P 

and the radiative rate is written as:

= B N 2

equation 7.2

This bimolecular characteristic is widely used in the analysis of light emission from lasers 

and LEDs in extended state systems [2-4] and in the modelling of devices. It is assumed that 

the rates of nonradiative recombination via defects and Auger recombination are 

proportional to linear and cubic functions of the carrier density respectively:

Rnr = AN

equation 7.3

Rmg = C N 3

equation 7.4

The current is the sum of all the recombination processes multiplied by the electronic charge, 

and can therefore be written as

I  = q(AN + B N 2 + C N3)

equation 7.5

The light-current curve can then be used to distinguish radiative recombination from 

nonradiative recombination processes in the analysis of light emission from lasers and LEDs. 

In simple terms, the L-I curve is linear if  radiative recombination is dominant, super-linear if 

nonradiative recombination is dominant, and sub-linear if Auger processes dominate, as 

shown in Figure 7.1.
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Figure 7.1 - Light-current curve shown for the cases of (i) nonradiative via defects 

recombination dominant (black line) (ii) radiative recombination dominant (red line) and 

(iii) Auger recombination dominant (blue line).

The derivation of these functional forms for the recombination mechanisms is possible in 

quantum well and bulk structures because the extended electronic states make it meaningful 

to talk of a global carrier population. In a quantum dot system it is still possible to talk of 

the total number of electrons populating the dot states, but the behaviour of the 

recombination processes on this number may be modified by localisation of all the 

recombination processes. In the absence of quantum mechanical coupling, the electronic 

states of a quantum dot are localised in all three directions; consequently, it is only possible 

for electrons and holes which are located within the same dot to recombine with each other. 

The maximum number of available electrons and holes within a single ground state is then 

equal to the spin degeneracy and this considerably reduces the radiative recombination rate 

relative to the quantum well or bulk case. Whether simple relationships can be found in 

quantum dot systems is not obvious from immediate inspection and depends on the 

individual contributions of the many dots which make up the whole ensemble. L-I curves 

measured on quantum dot LEDs show sub-linear and super-linear behaviours but, since the 

number of electrons cannot be measured directly, it is not known whether the power law 

components of such data are indicative of specific recombination processes.
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7.3 L-I Characteristics

The following plots are all computed at 300K. The current is calculated by summing over all 

the recombination processes i.e. the nonradiative via defects, radiative and Auger 

recombination. Plots are for the case where overall electron and hole distributions are in 

equilibrium and individual dots are not neutral (the non-neutral case) unless otherwise 

stated. For simplicity nonradiative via defects recombination will be referred to as simply 

nonradiative recombination. A summary of the values used for the main parameters in this 

thesis is given below. Full details can be found in Table 3.1.

Parameter Symbol Value

Number of dots nQD lxlO 6

Bandgap of dot material Es leV

Bandgap of wetting layer Eg'Wi 1.4eV

Dot radiative lifetime Tsp Ins

Dot nonradiative lifetime Tnr 300ps

Dot Auger lifetime T'aug 3 OOps

Wetting layer recombination coefficient Bwi 3.5xl0‘7 s''m 2

Wetting layer nonradiative lifetime Tnrwl 3 OOps

Wetting layer electron confined energy 

(relative to the conduction band edge)
Ewic 250meV

Wetting layer hole confined energy 

(relative to the valence band edge)
Ewlv 150meV

The simplest situation is the behaviour of the ground state and Figure 7.2 is a plot of the 

radiative, nonradiative and Auger recombination rates between the ground states of the dots
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as a function of the average fractional total occupancy of the dots, i.e. the total number of 

electrons in the dots divided by the number of dots in the system.
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Figure 7.2 - Computed dependences of the ground state radiative, nonradiative and Auger 

recombination rates on the total number of electrons in the dots expressed as a fractional 

population relative to the number of dots, for the non-neutral dots.

The relative magnitudes of the radiative, nonradiative and Auger recombination rates are 

fixed by the choice of lifetimes and the detailed form of their dependences on the number of 

electrons is determined by the probabilities which control the numbers of dots with the 

appropriate occupations.

When all the dots are full it can be seen that the nonradiative and Auger rates are equal since 

their lifetimes are equal. For a fixed electron number the nonradiative rate is higher than the 

Auger rate. This is because whilst the nonradiative rate is dependent on the number of 

electrons in a dot (provided there is also a hole in the same dot), the Auger rate is dependent 

on the number of holes; for fixed values of electron and hole quasi-Fermi levels, on average 

there will be more electrons than holes in a dot. Also, for Auger recombination to occur in
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the ground state, the state needs to contain two electrons (i.e. a full ground state) and this 

limits the Auger rate at low carrier numbers.

It can be seen that none of the rates can be written as a simple function of the number of 

electrons. Furthermore, the dependences of the radiative, nonradiative and Auger rates on 

electron number are similar. Thus, the three recombination processes cannot be characterised 

by significantly different behaviours with respect to electron number. They cannot be fitted 

with simple functions of the electron number N  such as AN, BN  and CN  for nonradiative, 

radiative and Auger rates respectively, as is the case for an extended state system. It can be 

seen that as the carrier number increases there is no transition from one process to another 

and all the processes contribute to the total rate across the whole plot.

Now considering the light-current curve for the ground state alone, Figure 7.3 is a plot of the 

ground state radiative rate as a function of the total ground state recombination current 

(nonradiative plus radiative plus Auger recombination).
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Figure 7.3 - Computed relation between the radiative recombination rate and the total 

recombination current (radiative plus nonradiative plus Auger rates) for the ground state

alone, for the non-neutral dots.

At high injection the radiative process becomes super-linear with respect to the total rate 

because some of the dots have an occupancy of two for electrons and holes which enhances 

the radiative rate thus increasing the light output. The effect is less marked on the current 

due to the predominance of nonradiative processes. Figure 7.2 shows that the curvature of 

the light-current curve in Figure 7.3 arises from the inherent dependence of the radiative, the 

nonradiative and the Auger rates on the number of electrons. It is not a transition from 

nonradiative to radiative to Auger processes as the carrier number increases, as expected for 

an extended state system. All three processes contribute to the total rate across the whole plot 

and their variations with electron number are not sufficiently distinctive for them to be 

separated in a simple analysis of experimental measurements as represented by the data in 

Figure 7.2. So even for a simple ground state system, the L-I characteristics in Figure 7.3 

cannot be fitted with terms of the form light = BN2 and total recombination rate = (AN + BN2 

+ CN2) as is the case for a simple extended state system.
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Now including the excited state contribution, Figure 7.4 shows the computed radiative 

recombination rates between ground and excited states as functions of the fractional 

occupancy of the dots.
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Figure 7.4 - Computed radiative recombination rates for the ground and excited states as 

functions of the electron number for the non-neutral dots.

At low electron number the ground state radiative rate is higher than that of the excited state. 

This is because initially the ground state fills up with electrons at a faster rate then the 

excited state. As the total number of electrons increases there are multiple numbers of 

electrons in the excited state of some dots; this enhances the excited state rate considerably. 

When the dots are full the excited state rate is four times that of the ground state rate since 

the excited state can accommodate twice as many electrons. Figure 7.5 shows the light- 

current curve for the complete dot system.
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Figure 7.5 - Computed relation between the radiative recombination rate and the total 

recombination current (radiative plus nonradiative plus Auger rates) for the dots (ground 

plus excited state) for the non-neutral case.

Again it can be seen that there is no distinct transition from one process to another and the 

L-I curve offers little information about the processes occurring in the dots.

If the band edges in the wetting layer are made sufficiently large such that the wetting layer 

is not highly populated the following L-I curve is produced, Figure 7.6. The wetting layer 

does not contribute to the current and the combined dot emission is very similar to the L-I 

curve shown above in Figure 7.5. It can be seen that the light emission from the dots 

saturates as the dot states become full.

141



Chapter 7: Light-Current Characteristics

<3

3.0x1O20-

2.5x1020 -

" c  2.0x1020 - 

0)
£  1.5x1020 - 

$
.2 1.0x1020 -TJ 03
a:

5.0x1019- 

0 .0 -

0 100 200 300 400 500 600 700 800

Total Current (Dots plus Wetting Layer)
(Acnrf2)

Figure 7.6 - Computed dependences of the radiative recombination rates on the total 

current, for the non-neutral case, where the wetting layer bandgap is made sufficiently 

large that the wetting layer does not contribute to the current.

The wetting layer, however, is an unavoidable consequence of the growth process for the 

dots and as so must be included in all calculations. Figure 7.7 shows the radiative rates for 

the ground and excited states of the dots and the wetting layer as a function of the average 

number of electrons in the dots.
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Figure 7.7 - Computed radiative recombination rates for the ground and excited states of 

the dots and the wetting layer as functions of the electron number, for the non-neutral dots.

It can be seen that at low electron number the wetting layer radiative rate is low compared to 

those of the dots. However, as the quasi-Fermi level separation is increased and the number 

of electrons (and holes) in the system increases, the wetting layer contribution starts to 

dominate. Figure 7.8 shows the computed L-I behaviour of the complete system, including 

the wetting layer.
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Figure 7.8 - Computed dependences of the radiative recombination rates on the total

current, for the non-neutral dots, where the wetting layer is included.

The wetting layer emission dominates the total light output because the emission from the 

dots saturates at high current and such a plot cannot provide information about the

recombination processes in the dots. The plot saturates at high current due to the rapid

increase in the wetting layer current. In an experiment it is possible to resolve spectrally the 

light from the dots from that of the wetting layer, to produce a plot of dot emission versus 

total current, but there is no means of eliminating the contribution of the wetting layer to the 

current (other than by cooling the sample). In extended state systems a sub-linear 

dependence of light on current is often characteristic of Auger recombination which is 

proportional to N3. In this case it arises from the combination of saturation of the emission 

from the dots at high occupancy and the contribution of the wetting layer to the current.
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7.4 Neutral Dots compared with Non-Neutral Dots

In this section the computed results for the non-neutral dots are compared with the 

alternative model described in chapter 5, in which each dot contains equal numbers of 

electrons and holes (the neutral model). Figure 7.9 is a plot of the radiative and nonradiative 

emission rates for the ground states as a function of the average fractional total occupancy of 

the dots, i.e. the total number of electrons in the dots divided by the number of dots in the 

system.
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Figure 7.9 - Computed dependences of the ground state radiative and nonradiative 

recombination rates on the total number of electrons in the dots expressed as a fractional 

population relative to the number of dots, for neutral and non-neutral dots.

It can be seen that for the same total number of electrons, the neutral dots have higher 

radiative and nonradiative rates than those of the non-neutral dots. This is because if there is 

an electron present in a neutral dot there is always a hole present too, to complete the 

process. For non-neutral dots, a higher value of electron quasi-Fermi level is needed to 

achieve the same number of holes in the dots as for the neutral case. For both cases, it can be 

seen that the rates are not simple functions of the number of electrons. Furthermore, for each
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scenario the dependence of the radiative and nonradiative rates on electron number is similar 

(compare blue symbols for the non-neutral dots and red symbols for the neutral dots). Thus, 

the two recombination processes for the neutral dots can also not be characterised by 

significantly different behaviours with respect to electron number. So while the dependences 

of the rates on electron number are very different for the non-neutral and neutral cases, the 

resulting ground state L-I curves shown below in Figure 7.10 are very similar.
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Figure 7.10 - Computed relation between the radiative recombination rate and the total 

recombination current (radiative plus nonradiative plus Auger rates) for the ground state 

alone, for neutral (dashed line) and non-neutral (solid line) dots.

The form of the curve is similar for both non-neutral and neutral dot cases. Again, for the 

same value of current the neutral dots have a higher radiative rate than that of the non-neutral 

dots because in a neutral dot there is always a hole present for every electron which enhances 

the rates. The light-current curve for the neutral dots is linear since the radiative process 

occurs even at low current because there is always a hole for every electron. When the 

ground and excited state rates are summed to produce an L-I curve for the complete dot 

system, a similar dependence to that for the ground state alone is found. The neutral and non­

neutral L-I curve is shown in the following plot, and it can be seen that the curves show very

Non-Neutral
Neutral
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little difference for each case. The plots show sub-linear behaviour due to a high Auger 

recombination rate in the excited states at high current.
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Figure 7.11 - Computed relation between the radiative recombination rate and the total 

recombination current (radiative plus nonradiative plus Auger rates) for the dots (ground 

plus excited state) for neutral (dashed line) and non-neutral (solid line) dots.

Thus it is concluded that charge neutrality in the dots does not effect the light emission as a 

function of current. The differences between the neutral and non-neutral cases can only be 

seen in the recombination rates as a function of the carrier number, and these cannot be 

measured experimentally.

7.5 Comparison with Experimental Results

7.5.1 Introduction

To validate the results from the model, the computed L-I curves are compared with 

experimental data measured by I. Sandall at Cardiff University. At the start of this project it 

was decided to model 1pm emitting dots since this would allow comparison with 

experimental data from the dot samples available. However, since this time 1.3pm emitting
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dots have become available and it is therefore experimental data measured on these dots that 

the results from the model are compared with. To compensate for this, in this section of the 

thesis I have modified the input parameters to the model such that the energies of the ground 

and excited state in the model are comparable with those of the dot sample measured. The 

two-dimensional wetting layer incorporated in the model is also present in the dot sample 

measured. The radiative lifetime of the sample was estimated using the measured optical 

absorption cross section (see chapter 2). A fit to the experimental data was obtained by 

varying the nonradiative and Auger lifetimes in the dots, the only fitting parameters used.

7.5.2 Experimental Details

Experiments were carried out using a 1.3 pm emitting quantum dot sample, which is a laser 

structure comprising of an Ino.15Gao.85As/InAs dot-in-well (DWELL) structure with 50nm 

wide GaAs spacer layers between each DWELL. The DWELL structure is incorporated 

within a GaAs-Alo.4Gao.6As waveguide structure. Full details are given in reference [5]. The
1 n 9structure has five layers of dots with an estimated dot density of 4x10 cm' per layer and 

the sample is normally doped. The measurements were done at room temperature (300K).

True spontaneous emission spectra were obtained in absolute units from analysis of the 

amplified spontaneous emission spectra [6 ] as a function of the current. By fitting the 

spontaneous emission spectra with Gaussian functions the total ground state spontaneous 

emission rate was obtained. The total radiative emission rate was also calculated from these 

spectra to give the total radiative current density. This was subtracted from the measured 

drive current density to obtain the total nonradiative current, giving the total nonradiative 

current versus ground state radiative current plotted in Figure 7.12.
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Figure 7.12 - Experimental measurements of the total nonradiative current as a function of 

the ground state radiative current. A radiative lifetime of 2.5ns was obtained from the

measured modal absorption.

From the measured ground state optical cross section the radiative lifetime for the ground 

state was calculated by formulating the Einstein relations for a single dot, using the nominal 

dot density. This gave a value for the radiative lifetime of 2.5ns.

No assumptions about the relations between these current components and the number of 

carriers injected into the structure have been made. The spectra show that for currents below 

about 11 Acm" only the ground state is populated and in this region there is a linear relation 

between the radiative and nonradiative currents, which would not be so if the processes were 

bi-molecular and mono-molecular respectively with respect to the total number of injected 

carriers.

7.5.3 Comparisons between Computed and Experimental Data

To fit the experimental data the only matching parameters used are the nonradiative via 

defects and Auger lifetimes in the dots. The standard deviation of the Gaussian curve fitted 

to the ground state absorption spectrum of the sample is 16meV, and the ground to excited
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state separation is 65meV. To compare the model with the experimental data, the energy 

separations in the model were altered to match those measured for the sample. This was done 

by changing the standard deviation of the Gaussian to match the linewidths, and shifting the 

excited state energy levels so that the ground to excited state separation was comparable. 

The value of the radiative lifetime in the code was set at 2.5ns, the value obtained from the 

modal absorption of the sample. To fit the experimental data the nonradiative via defects and 

Auger lifetimes in the dots were varied so that the computed current matched that of the 

experimental data. Figure 7.13 shows the total nonradiative (via defects and Auger) current 

(in the dots and the wetting layer) versus the ground state radiative current. The nonradiative 

via defects and Auger lifetimes necessary to fit the experimental data are 2ns and 15ns 

respectively, using the nominal dot density.
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Figure 7.13 - Experimental measurements of the total nonradiative current as a function of 

the ground state radiative current shown as points, and computed results shown as a solid 

line. The calculation uses the nominal dot density and a radiative lifetime of 2.5ns obtained 

from the measured modal absorption. The nonradiative via defects and Auger lifetimes 

required to obtain this fit are 2ns and 15ns respectively.

The maximum possible ground state radiative current, when the upper state of the ground 

state is occupied in every dot, is 26Acm' . This is of similar magnitude to, and exceeds, the 

experimental values as expected. The values of the nonradiative via defects and Auger 

lifetimes of 2 ns and 15ns respectively are physically reasonable and there is good agreement 

with the observed linear dependence in the region where the ground state recombination is 

dominant. The experimental data shows an up-tum in the total nonradiative current above a 

ground state radiative current of about 11 Acm'2. This could be due to recombination in 

excited states or in the wetting layer.

In summary, the model predicts a linear relation between the total nonradiative current and 

the ground state radiative current in the region where recombination occurs predominantly 

via the ground state. Good agreement is found between the model calculations and the 

experimental data obtained using calibrated measurements of the spontaneous emission rate.
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This behaviour would not be expected for a combination of mono-molecular and bi- 

molecular processes with respect to the total injected carrier number.

7.6 Summary

In summary, I have computed the light-current characteristics of model dot systems with 

localised nonradiative via defects, radiative and Auger recombination between states. The 

recombination processes have similar dependences on electron number and there is no clear 

transition from one process to another as the carrier number is increased. These dependences 

cannot be represented by simple power law functions of N. The L-I characteristics of the dot 

system alone are similar for non-neutral and neutral dots even though the recombination 

rates have very different dependences on N. Light emission from the dots as a function of 

the total current shows sub-linear behaviour due to the saturation of the dot emission and the 

wetting layer contribution to the current. I have compared the computed L-I curves to 

experimental data by fitting the nonradiative via defects and Auger lifetimes in the dots and 

found good agreement between the computed and experimental data. I conclude that the 

analyses of L-I curves based on power law relations between recombination rates and carrier 

number, as used for extended state systems, cannot be applied to localised recombination in 

dots. The next chapter describes the spontaneous emission spectra, including a comparison 

between neutral and non-neutral dots.
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8 Spontaneous Emission Characteristics

8.1 Introduction

In this chapter the spontaneous emission spectra are plotted for different values of quasi- 

Fermi level separation. Comparisons are made between the spontaneous emission for the 

neutral and non-neutral dots. It is investigated whether a Gaussian distribution can be fitted 

to the spectra, and what effect changing the radiative lifetime has on the emission. It should 

be noted that when plots are shown for the ground state alone, these do not contain any 

emission due to the homogeneous broadening of the excited state, and vice versa.

8.2 Integrated Spontaneous Emission

Integrating the spontaneous emission spectrum gives the total radiative rate in dimensions of 

[T]_1[L]"2. In this section it is shown that the integrated values agree with the total summed 

values for the model. When the dots are fully occupied the total radiative rate for the ground 

state is given by

RZd {total) = „ = 6  x 10“  s - W
r ^ x a r e a  10 x 3.33x10

equation 8.1

Figure 8.1 is a plot of the ground state spontaneous emission spectrum for the fully occupied 

dots and integrating this curve should give a value equal to the one calculated above.
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Figure 8.1 - Ground state spontaneous emission spectrum when the dots are fully occupied.

Integrating the curve shown in the above plot gives a value of 5.89 x 10 s' m' (the units 

have all been converted to SI units).The theoretical and actual integrated values agree within 

98%. The difference in the two numbers is due to the interpolation done between the 

radiative rates to obtain many more data points, and also because the Lorentzian extends to 

energies outside those in the inhomogeneous distribution. The excited state emission 

spectrum is shown in the following figure, again for fully occupied dots.
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Figure 8.2 - Excited state spontaneous emission spectrum when the dots are fully occupied.

The integral for the excited state is equal to 2.28 x 1024 s^m'2. The theoretical total radiative 

rate for the fully occupied excited state is:

J C  (total) = = 8 x l f  = 2.4 x 1 0 2V 'm - 2
rsp x area 1 0  x 3 .3 3 x 1 0

equation 8.2

Again, the theoretical and actual integrated values for the excited state show good 

agreement.

8.3 Spontaneous Emission Spectra for different Quasi-Fermi Level 

Separations for the Non-Neutral Dots

In this section the evolution of the spontaneous emission spectra with increasing quasi-Fermi 

level separation is studied, for the non-neutral dots. First looking at the ground state alone, 

Figure 8.3 is a plot of the ground state spontaneous emission spectra for the non-neutral dots, 

for different values of the quasi-Fermi level separation.
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Figure 8.3 - Ground state spontaneous emission spectra for the non-neutral dots shown for 

different values of quasi-Fermi level separation.

As the quasi-Fermi level separation is increased the ground state spontaneous emission 

increases. Eventually the ground states of all the dots become full and the spontaneous 

emission saturates. As the quasi-Fermi level separation is increased the photon energy that 

corresponds to the peak emission increases slightly, from 1.076eV for AE/equal to 1.070eV, 

to 1.079eV for the fully occupied dots.

The following figure is a plot of the excited state spontaneous emission spectra for the non­

neutral dots, for different values of the quasi-Fermi level separation.
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Figure 8.4 - Excited state spontaneous emission spectra for the non-neutral dots shown for 

different values of quasi-Fermi level separation.

Again, as the quasi-Fermi level separation is increased the excited state spontaneous 

emission also increases until saturation occurs when the excited state is fully occupied. For 

the excited state, the photon energy that corresponds to the peak emission increases from 

1.181eV for AE/equal to 1.157eV, to 1.229eV for the fully occupied dots.

The total spontaneous emission spectra, for both the ground and excited states, are shown in 

the following graph for different values of quasi-Fermi level separation.
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Figure 8.5 - Ground and excited state spontaneous emission spectra for the non-neutral 

dots shown for different values of quasi-Fermi level separation.

It can be seen that at low values of quasi-Fermi level separation, the ground state 

spontaneous emission exceeds that of the excited state. It is not until the ground state 

emission has almost reached its maximum (when AEf equal to about 1.288eV) that the 

excited state emission dominates. There is emission from the excited state before the ground 

state is saturated, which has been observed experimentally [1 ].

8.4 Com paring the Spontaneous Em isison Spectra for Neutral and Non- 

Neutral Dots

Here, the spontaneous emission spectra for the non-neutral dots are compared with those for 

the neutral dots. The only difference in the two models is the way in which the dots are filled 

with holes and so when the dots are fully occupied there is no difference in the spontaneous 

emission spectrum for the two cases. Both models have the same electron distribution, but in 

the neutral model the number of holes in each dot is not controlled by Fermi-Dirac statistics 

(as in the non-neutral case), but is set equal to the number of electrons in the dot. Figure 8 . 6

158



Chapter 8: Spontaneous Emission Characteristics

is a plot of the spontaneous emission spectra for the neutral (dashed lines) and non-neutral 

(solid lines) models, plotted for the same value of electron quasi-Fermi level E/c (i.e. the 

same total number of electrons in the dots for both cases). For comparison the spontaneous 

emission is also shown for the fully occupied dots.
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E =0.145eV
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Figure 8.6 - Spontaneous emission spectra for the neutral dots (dashed lines) and non­

neutral dots (solid lines), plotted for the same value of electron quasi-Fermi level.

It can be seen that for the same value of Efc, the spontaneous emission due to the ground 

state is larger for neutral dots. This is because the neutral dots have more holes in the ground 

state than the non-neutral dots and, also, they are correlated i.e. for every electron in a 

neutral dot there is a hole in the same dot. At low excited state energies, the emission is 

again higher for the neutral dots due to a higher number of holes in the neutral dots. 

However, at higher energies the emission is bigger for non-neutral dots, since there become 

more holes in the non-neutral dots than in the neutral. This is because the hole energy levels 

are more closely spaced than those of the electrons, and this is taken into account in the non­

neutral model where higher energy levels for holes can be populated compared with the 

electrons.
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8.5 Fitting a G aussian Distribution to the Em ission Spectra

It is common practise to fit the spontaneous emission spectra with Gaussian functions and in 

this section it is investigated whether this can be done for the computed spontaneous 

emission spectra in the model. Figure 8.7 shows the spontaneous emission spectrum for the 

fully occupied non-neutral dots (green curve) with a Gaussian curve fitted (black curve). The 

individual contributions from the ground (red curve) and excited (blue curve) states are also 

shown.
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Figure 8.7 - Spontaneous emission spectrum for the fully occupied non-neutral dots (green 

curve). A Gaussian distribution has been fitted (black curve). The individual contributions 

from the ground (red curve) and excited (blue curve) states are also shown.

Values used for the standard deviation of the ground and excited states are 18meV and 

65meV respectively. It can be seen that the spontaneous emission spectrum cannot be fitted 

with a Gaussian distribution. Whilst it is possible to fit the peaks of the emission, the tails of 

the emission spectrum do not follow a Gaussian distribution, particularly at high and low 

photon energy. This is expected since the inhomogeneous broadening is applied to the dots 

sizes and not the energies.
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8.6 Spontaneous Emission Spectra for Different Radiative Lifetimes

In this section the effect that changing the radiative lifetime has on the spontaneous emission 

spectrum is investigated. The following plots show the spontaneous emission spectra for the 

fully occupied dots. The red curve corresponds to the nominal radiative lifetime used 

throughout this thesis of Ins, and the blue curve is for a radiative lifetime of 5ns. In the 

graph on the left, the same scale is used for both curves. In the graph on the right the curves 

have been rescaled: the left hand axis corresponds to the curve for T s p =  Ins (red), and the right 

hand axis corresponds to the curve for T ^^ns (blue).
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 1 n s
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4 x 1 0 4 -8 x 1 0 'c  4 x 1 0 -
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Q. 1.41.4

Photon Energy (eV) Photon Energy (eV)

Figure 8.8 - Ground and excited state spontaneous emission spectra. The red curve is for 

Ts/,=lns (the nominal value used throughout the thesis), and the blue curve is for rSp=5ns.

The plots on the right have been rescaled and the left axis (red) is for rsp=lns and the right

axis (blue) is for rsp=5ns.

As can be seen from the plot on the left in Figure 8 .8 , increasing the radiative lifetime from 

Ins to 5ns has the effect of decreasing the spontaneous emission at a particular photon 

energy. This is intuitive since the spontaneous emission is inversely proportional to the 

radiative lifetime and changing this simply scales the value at each energy. When the two 

curves are rescaled it can be seen that changing the radiative lifetime does not alter the shape 

of the emission spectrum, and this is also true at lower injection.

8.7 Sum m ary

In this chapter I have studied the evolution of the spontaneous emission spectra for non­

neutral dots as the quasi-Fermi level separation is increased. I have also compared the 

spectra of non-neutral dots with those of neutral dots. I have shown that a Gaussian 

distribution cannot be fitted to the emission spectra, and that changing the radiative lifetime
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does not alter the shape of the emission. The next chapter describes the modal gain 

characteristics for the dots.

8.8 References

[1] M. Grundmann and D. Bimberg, Physical Review B 55 (1997) 9740.
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9 Modal Gain Characteristics

9.1 Introduction

In this chapter the modal gain spectra for the quantum dot ensemble are studied, 

comparing the spectra for the neutral dots with those for non-neutral dots. The 

differences in the plots of the peak modal gain as a function of the electron quasi- 

Fermi level, electron number and radiative current are investigated, comparing the 

neutral and non-neutral models. Finally, the absorption spectrum for different values 

of the homogeneous linewidth is plotted, and a Gaussian distribution is fitted to the 

data. Again, it should be noted that plots shown for the ground state alone do not 

contain any emission due to the homogeneous broadening o f the excited state, and 

vice versa.

9.2 Transparency and the Quasi-Fermi Level Separation

To calculate the distributions of electrons and holes in the dots and the wetting layer, 

the electron quasi-Fermi level E/c is inputted. The hole quasi-Fermi level Ef, is then 

defined by setting charge neutrality over the dots and the wetting layer. This gives a 

particular value of quasi-Fermi level separation given by

= Efc + Efv + Eg

equation 9.1

where Eg is the bandgap of the dot material (equal to lev).

When the photon energy is equal to the quasi-Fermi level separation, an incident 

photon experiences no gain or absorption and this is called the material transparency. 

This photon energy is usually equal to the intercept between the modal gain curves 

and G=0cm'1. However, the inclusion of the homogeneous broadening in the gain 

spectra alters the photon energy at which the gain is zero, as shown in Figure 9.1.
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Figure 9.1 - Ground state modal gain before (black curve) and after (red curve) the 

inclusion of the homogeneous broadening. The photon energy at which the gain is

zero changes.

Before the homogeneous broadening is included, the photon energy at which the gain 

is zero is equal to the quasi-Fermi level separation, which for the example shown is 

1.079eV. However, the inclusion of the homogeneous broadening alters this since at 

the photon energy equal to the quasi-Fermi level separation, there are transitions 

contributing to the gain because of the homogeneous linewidth. Therefore, if 

homogeneous broadening is included the transparency point observed on the gain 

spectra cannot be equated to the quasi-Fermi level separation and is not a meaningful 

measurable quantity.

These effects are a well known problem and are discussed in detail in references [1, 

2]. The origin of this problem is in the oversimplification in using Lorentzian 

functions to model the gain spectra, which do not take into account the Coulomb 

interaction effects. It has been shown that to reproduce gain spectra accurately it is 

essential to include the nondiagonal Coulomb correlation contributions to the active 

medium polarisation, which significantly alter the shape of the gain spectra.
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9.3 M odal Gain Spectra

9.3.1 Modal Gain Spectra for Non-Neutral dots

In this section the modal gain spectra as a function of the photon energy are shown for 

the non-neutral dots. In the plots, the positive region on the modal gain axis indicates 

gain whereas the negative region indicates absorption. The following plot is the 

ground state modal gain as a function of photon energy for three values of quasi- 

Fermi level separation.
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Figure 9.2 - Ground state modal gain as a function of photon energy for the non­

neutral model.

The blue curve is for the case when the dots are empty, the red curve for the case of 

fully occupied dots, and the black curve is for an intermediate case for which the 

quasi-Fermi level separation is equal to 1.088eV. It can be seen that due to the 

spectral homogeneous broadening of the transitions, there is gain/absorption at 

photons energies below the bandgap; this is because there is a long tail in energy for a 

Lorentzian distribution. As described in section 9.2, the intercept between the modal 

gain curves and G=0cm'1 does not occur exactly when the photon energy is equal to
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the quasi-Fermi level separation due to the homogeneous broadening. As the quasi- 

Fermi level separation is increased all the dot states become full and experience gain. 

The following plot, Figure 9.3, shows the excited state modal gain as a function of 

photon energy, for the non-neutral case.
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Figure 9.3 - Excited state modal gain as a function of photon energy for the non­

neutral model.

Again, the blue curve is for the case when the dots are empty, the red curve for the 

case of fully occupied dots, and the black curve is for an intermediate case. When the 

dots are full (empty) there is more gain (absorption) from the excited state than the 

ground state as expected, since the excited state can accommodate twice as many 

electrons as the ground state. Figure 9.4 shows the modal gain spectra for the ground 

and excited states together, for various quasi-Fermi level separations (for the non­

neutral case).
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Figure 9.4 - Ground and excited state modal gain spectra for various quasi-Fermi 

level separations, for the non-neutral case.

It can be seen that as the quasi-Fermi level separation is increased, initially the system 

begins to exhibit gain due to the ground state whilst the excited state is still showing 

absorption. As the quasi-Fermi level separation is increased further the excited state 

also shows gain and eventually the gain due to the excited state exceeds that due to 

the ground state (the excited state has an occupancy equal to twice that of the ground 

state). When the dots are fully inverted the maximum gain due to the ground and 

excited states is about 5.0cm'1 and 6.3cm'1 respectively.

9.3.2 Modal Gain Spectra of Neutral Dots compared with Non-Neutral Dots

In this section the gain spectra for the neutral dots are compared with those for the 

non-neutral dots. When the dots are empty or fully occupied there are no differences 

between the gain spectra for the two cases: this is because the only difference in the 

two models is the way in which the dots are filled with holes. Both models have the 

same electron distribution, but in the neutral model the number of holes in each dot is 

not controlled by Fermi-Dirac statistics (as in the non-neutral case), but is set equal to 

the number of electrons in the dot. Because of this, a hole quasi-Fermi level cannot be

167



Chapter 9: Modal Gain Characteristics

defined for the neutral model (as proved in chapter 6). Figure 9.5 shows the modal 

gain spectra for neutral and non-neutral dots, plotted for the same value of electron 

quasi-Fermi level.
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Figure 9.5 - Modal gain spectra for the neutral dots (dashed lines) and non-neutral 

dots (solid lines), plotted for the same value of electron quasi-Fermi level.

For comparison, the gain (absorption) for full (empty) dots is also shown (black 

curves), and these curves are the same for both neutral and non-neutral dots. It can be 

seen that for the same value of electron quasi-Fermi level, the gain due to the ground 

state is larger for neutral dots. This is because the neutral dots have more holes in the 

ground state than the non-neutral dots, and these are correlated such that for every 

electron in a neutral dot there is also a hole. Plots of the electron and hole distributions 

for different electron quasi-Fermi level are shown in chapter 6. At low excited state 

energies, the gain is again higher for the neutral dots due to a higher number of holes 

in the neutral dots. However, for higher energies, there become more holes in the non­

neutral dots than in the neutral, and so the gain at these energies is higher for the non­

neutral dots.
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9.4 Com paring the Evolution o f the Peak M odal Gain for Neutral 

and Non-Neutral Dots

9.4.1 Peak Modal Gain as a function of the Electron Quasi-Fermi Level

The modal gain is often plotted as a function of the quasi-Fermi level separation. 

However, for the neutral dots a hole quasi-Fermi level cannot be defined. Therefore, 

in this section the peak modal gain as a function of the electron quasi-Fermi level is 

investigated, comparing neutral dots with non-neutral dots.

Figure 9.6 is a plot of the ground state peak modal gain as a function of the electron 

quasi-Fermi level. The dashed line is for neutral dots and the solid line is for non­

neutral dots.
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Figure 9.6 - Ground state peak modal gain as a function of the electron quasi-Fermi 

level, for both neutral dots (dashed line) and non-neutral dots (solid line).

It can be seen that to achieve the same value of modal gain, a higher value of electron 

quasi-Fermi level is needed for the non-neutral dots. This is because for the same 

value of electron quasi-Fermi level there are more holes in the ground state of the 

neutral dots than of the non-neutral dots, and this results in an increased gain. The
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modal gain for both the neutral and non-neutral dots saturates at the same value, as the 

occupancies of the dots reach the same value.

Now considering the excited state, the following plot shows the excited state peak 

modal gain as a function of electron quasi-Fermi level, for neutral dots (dashed line) 

and non-neutral dots (solid line).
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Figure 9.7 - Excited state peak modal gain as a function of the electron quasi-Fermi 

level, for both neutral dots (dashed line) and non-neutral dots (solid line).

At low values of electron quasi-Fermi level, the situation is the same as for the ground 

state: the gain at a particular value of E/c is higher for the neutral dots. However, at 

higher values of Efc there is little difference in the peak gain between the two cases. 

This can be explained by considering how the hole distributions differ, as described in 

chapter 6. For E/c ~ 0.2eV, the distribution of holes for the neutral dots is spread over 

a smaller range of energies and so there is a larger contribution to the peak gain for 

the neutral dots. As Ejc increases, the difference in the hole distributions for the two 

cases becomes less distinct.
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9.4.2 Modal Gain as a function of the Electron Number

In this section is a study of the variation of the peak modal gain with the average 

number of electrons in a dot i.e. the total number of electrons divided by the total 

number of dots. Considering the ground state only first, Figure 9.8 is a plot of the 

peak modal gain as a function of the average number of electrons in the dots.
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Figure 9.8 - Ground state peak modal gain as a function of the average number of 

electrons in the dots, for both neutral dots (dashed line) and non-neutral dots (solid

line).

It can be seen that for the same average number of electrons in the dots, the neutral 

dots experience more gain than the non-neutral dots. This is because for the ground 

state in the non-neutral model, the total number of electrons in the dots is less than the 

total number of holes, and consequently, for every electron there is not always a hole 

present in the same dot. However, in the neutral model, for every electron in a dot 

there is also a hole and this leads to an increased gain for the neutral dots compared 

with the non-neutral dots.

The peak modal gain as a function of the average number of electrons in the dots is 

now plotted for the excited state in the following figure.
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Figure 9.9 - Excited state peak modal gain as a function of the average number of 

electrons in the dots, for both neutral dots (dashed line) and non-neutral dots (solid

line).

When the average number of electrons in a dot is low, there is more gain for the 

neutral dots. Again, this is because the holes in the neutral dots are spread over a 

smaller range of energies and so make a bigger contribution to the peak gain. As the 

average number of electrons increases, the hole distributions for the neutral and non­

neutral dots become more similar, and there is not much difference in the peak gain 

between the two models.

9.4.3 Modal Gain as a function of the Radiative Current in the Dots

It is now studied how the peak modal gain varies with the radiative current in the dots. 

Figure 9.10 is a plot of the ground state peak modal gain as a function of the ground 

state radiative current in the dots, for neutral dots (dashed line) and non-neutral dots 

(solid line).
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Figure 9.10 - Ground state peak modal gain as a function of the ground state 

radiative current, for both neutral dots (dashed line) and non-neutral dots (solid

line).

It can be seen that at low values of radiative current there is little difference between 

the peak gain for the neutral and non-neutral dots. However, at higher radiative 

currents the peak gain is bigger for neutral dots, until the dots become fully occupied 

and the gain saturates. In these plots, both the peak gain and the radiative current 

depend on the electron and hole numbers. The current is simply the integrated total 

radiative rate and is independent of the energies of the carriers. However, the peak 

gain depends on the distribution of the electrons and holes amongst the available 

energy states. The range of energies over which the holes are spread is smaller for the 

neutral dots and so there are more transitions contributing to the peak gain.

The situation for the excited state is shown in the following plot of the excited state 

peak modal gain as a function of the excited state radiative current.
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Figure 9.11 - Excited state peak modal gain as a function of the excited state 

radiative current, for both neutral dots (dashed line) and non-neutral dots (solid

line).

The same trends can be seen as for the ground state, with the neutral dots 

experiencing a higher value of peak gain for the same radiative current, again due to 

the distribution of the holes over a smaller energy range in the neutral dots. It has been 

reported previously that charged dots offer, in general, higher gain at lower current

[3].

9.5 Absorption Spectra with varying H om ogeneous Linewidths

In this section the shape of the absorption spectrum for different homogeneous 

linewidths is studied, and it is investigated whether the spectra can be fitted with 

Gaussian distributions. Figure 9.12 is a plot of the absorption spectra for varying 

values of the homogeneous line width A. The standard value of the linewidth used 

throughout this thesis is lOmeV, and the absorption spectrum for this value is shown 

in red.

174



Chapter 9: Modal Gain Characteristics

30meV
20meV
10meV
5meV

- 2 -

Eo
-3-co

C li—
O -4  -  (/)£<

-5 -

- 6 -

1.0 1.1 1.2 1.3 1.4

Photon Energy (eV)

Figure 9.12 - Absorption spectrum for varying values of the homogeneous linewidth 

A. The standard value of the linewidth used throughout this thesis is lOmeV (the red

curve).

It can be seen that as the linewidth is increased, the ground and excited state 

absorption curves become less distinct, and the peak values are lower. For these 

curves, the high energy tail of the ground state absorption becomes merged into the 

excited state absorption. Also, at higher values of the linewidth, the absorption spectra 

extend further in photon energy. The homogeneous linewidth causes absorption below 

the bandgap.

The absorption spectra are now with Gaussian distributions. Figure 9.13 shows the 

modal absorption for the ground and excited states for the nominal value of the 

linewidth, lOmeV. Gaussian distributions have been fitted to both the ground and 

excited state peaks and summed to give the best fit for the total distribution. The 

individual contributions are also shown for comparison.
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Figure 9.13 - Absorption spectrum for a homogeneous linewidth of lOmeV. The plot 

is fitted with a Gaussian curve for the ground and excited states, using standard 

deviations of 18meV and 65meV respectively.

To fit the Gaussians, values used for the standard deviations are 18meV and 65meV 

for the ground and excited states respectively. It can be seen that the fit for the ground 

state peak is reasonable. The excited state fit is less good; the fit to the peak is 

reasonable, but away from the peak the fit does not match the absorption. The 

Gaussian fit is worst for the tails of both the ground and excited state curves, with the 

excited state showing considerable differences at higher photon energies.

The absorption spectrum for a linewidth of 30meV is now considered. Fitting a 

Gaussian to this spectrum is more difficult. It is not possible to fit both the absorption 

peaks and tails. In the following graph, Figure 9.14, a Gaussian distribution is fitted 

by matching the peak values of the ground and excited state absorption, using 

standard deviations of 38meV and 58meV respectively.
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Figure 9.14 - Absorption spectrum for a homogeneous linewidth of 30meV. The plot 

is fitted with a Gaussian curve for the ground and excited states, using standard

deviations of 38meV and 58meV respectively.

It can be seen that, whilst the peaks show a reasonable fit, the energy tails of the 

spectrum do not match well. In Figure 9.15 a Gaussian distribution is fitted by

matching the absorption tails. For a sensible match here, the fit to the peaks is poor,

and the fit to the tails at low and high energy is also poor.
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Figure 9.15 - Absorption spectrum for a homogeneous linewidth of 30meV. The plot 

is fitted with a Gaussian curve for the ground and excited states, using standard 

deviations of 45meV and 95meV respectively.

The plots shown in this section imply that the inhomogeneous broadening is changing 

since different values of the standard deviation are needed to fit the absorption spectra 

for different linewidths. But it is the homogeneous broadening that is changing. It is 

concluded that a Gaussian distribution cannot be reasonably fitted to the absorption 

spectra, independent of the homogeneous linewidth used. This is intuitive: the 

inhomogeneous broadening is implemented by using a Gaussian distribution in the 

sizes of the dots and the resulting energy distribution is not a Gaussian.

9.6 Sum m ary

In this chapter I have studied the modal gain for both the neutral and non-neutral dots. 

The spectra for the neutral and non-neutral dots when the dots are empty or fully 

occupied are the same. However, they show big differences for intermediate 

occupancies due to the differences in the hole distributions for the neutral and non­

neutral dots. There are also differences in the variation of the peak modal gain with 

parameters such as the electron quasi-Fermi level and the electron number for neutral
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and non-neutral dots. I have also shown that the absorption spectra cannot be fitted 

with Gaussian distributions. In the next chapter I investigate the gain-current 

characteristics of the dots and the Pf distribution function.
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10 Gain-Current Characteristics and 

the Distribution Function Pf

10.1 Introduction

In this chapter the spontaneous emission and gain chapters are brought together and 

the gain-current characteristics are investigated. The peak gain is plotted as a function 

of the current, where the current is equal to the integrated spontaneous emission. 

Comparisons are made between the gain-current curves for the neutral and non­

neutral dots. The distribution function P f  is also studied, which is derived from the 

gain and spontaneous emission. It is investigated whether the P f  function is 

appropriate for the neutral dots. Again, it should be noted that plots shown for the 

ground state alone do not contain any emission due to the homogeneous broadening of 

the excited state, and vice versa. As a reminder, a summary o f the values used for the 

main parameters in this thesis is given below. Full details can be found in Table 3.1.

Parameter Symbol Value

Number of dots nQD lxlO6

Bandgap of dot material Eg leV

Bandgap of wetting layer Eg,wi 1.4eV

Dot radiative lifetime T'sp Ins

Dot nonradiative lifetime *nr 300ps

Dot Auger lifetime T-aug 300ps

Wetting layer recombination coefficient B\vi 3 .5 x lO 'V m 2

Wetting layer nonradiative lifetime T-nrwl 3 OOps
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Wetting layer electron confined energy 

(relative to the conduction band edge)
E „ i c 250meV

Wetting layer hole confined energy 

(relative to the valence band edge)
E w lv 150meV

10.2 G ain-C urrent Characteristics

In an experiment, the peak modal gain is often measured as a function of the current. 

In this section the variation of the peak gain with current is studied, with comparisons 

made between the neutral and non-neutral cases. Figure 10.1 is a plot of the ground 

state peak gain as a function of the total radiative current in the dots, for the neutral 

dots (dashed line) and non-neutral dots (solid line).
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Figure 10.1 - Ground state peak gain as a function of the total radiative current in 

the dots, for the neutral dots (dashed line) and non-neutral dots (solid line).

It can be seen that both neutral and non-neutral dot ensembles start to exhibit gain at a 

similar value of the radiative current in the dots. However, as the current is increased, 

for the same value of current, the peak gain for the neutral dots is much higher than
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the peak gain for the non-neutral dots. Both the peak gain and the radiative current 

depend on the electron and hole numbers. The current is simply the integrated total 

radiative rate and is independent of the energies of the carriers. The peak gain, 

however, depends on the distribution of the electrons and holes amongst the available 

energy states. The range of energies over which the holes are spread is smaller for the 

neutral dots and so there are more transitions contributing to the peak gain. An 

experiment in which the gain is measured as a function of the radiative current should 

therefore give very different results depending on the statistics of the system. Now 

considering the excited state, Figure 10.2 is a plot of the excited state peak gain as a 

function of the total radiative current in the dots, again for the neutral (dashed line) 

and non-neutral (solid line) cases.

Eo,
c

’oj
0
CUa>Q_
a>
co

CO
XJ<U
.tso
X
LU

7

6

5

4

3

-  - Neutral
—  Non-Neutral2

1

o
5 10 15 20 25 30 35 40 45 50

Total Radiative Current in the Dots (A cm ')

Figure 10.2 - Excited state peak gain as a function of the total radiative current in 

the dots, for the neutral dots (dashed line) and non-neutral dots (solid line).

For the excited state, the non-neutral dots exhibit gain at lower values of radiative 

current than the neutral dots. This is because the hole population in the non-neutral 

dots builds up at a faster rate than for the neutral dots (which contain the same number 

of electrons and holes). However, as the current is increased further, the neutral dots 

reach the maximum value of peak gain at a lower value of current than for the non-
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neutral dots. The difference between the two cases is more noticeable for the ground 

state than for the excited state.

Considering the whole system, Figure 10.3 shows both the ground and excited state 

peak gain as a function of the total radiative current in the dots. Red curves show 

ground state gain and blue curves show excited state gain, for neutral (dashed line) 

and non-neutral (solid line) cases.
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Figure 10.3 - Ground (red curves) and excited (blue curves) state peak gain as a 

function of the total radiative current in the dots for the neutral (dashed lines) and

non-neutral (solid lines) cases.

For the neutral dots, it can be seen that the excited state gain only overtakes the 

ground state gain when it has reached its maximum value. However, for the non­

neutral dots the excited state peak gain becomes dominant before the ground state 

gain has reached its maximum.

In an experiment the peak gain is often measured as a function of the total radiative 

current in the dots and the wetting layer, and this is plotted in Figure 10.4 for the non­

neutral dots.
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Figure 10.4 - Ground (red curve) and excited (blue curve) state peak gain as a 

function of the total radiative current in the dots and the wetting layer for the non­

neutral case.

Again, the excited state peak gain only becomes more prominent than the ground state 

peak gain once the ground state gain has saturated, which occurs at a total radiative 

current of about 40Acm'2. The excited state gain saturates at a current of about 

200Acm'2, at which point all the dot states are fully occupied and any further increase 

in current only results in an increased occupation of the wetting layer.

10.3 The Distribution Function Pf

10.3.1 Introduction

In experimental measurements, the distribution function P j  is often used as a measure 

of thermal equilibrium in semiconductor devices. The P f  function assumes that the 

distribution of carriers can be described by Fermi-Dirac statistics, and is derived from 

the gain and spontaneous emission calculations. Considering the ground state only, 

chapter 4 gives the general equations for the modal gain and radiative rate as

185



Chapter 10: Gain-Current Characteristics and the Distribution Function P f

G = R nc,

c)p{hu)V cav 

n 'Y^NdoaB ( fv + f c - l )  
c j  area x wmod

Rsp0n = ^ dotsAfcf v

equation 10.1

equation 10.2

These equations hold for an ensemble of Ndots identical dots, in a waveguide of width 

Wmod, with two available electron and hole states in the upper and lower states 

respectively. Using these two equations and the relationship between A and B ,

h3c3 1 
87m3 {hvy

B  =  A

a distribution function, P f can be derived [1], which describes the distribution of the 

conduction electrons and valence holes

h3c2 1
R ,pon % m 2( h v Y  w mod f

equation 10.3

where:

p  ( / y  + f c  ~ 0  

7  / c / y

equation 10.4

In terms of the gain and spontaneous emission, the distribution function P f  can thus be 

written as:

Pr  =

G $7m2 (h v )‘
R

3
spon h e

wmod

equation 10.5

The shape of the spontaneous emission and gain is determined solely by the energy 

distributions of the electrons and holes. Therefore, from these the form of the carrier 

distributions can be determined. If the electron and hole distributions are in thermal
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equilibrium, and so can be described by Fermi-Dirac statistics then the distribution 

function P/can be written as

Pf - 1 -  exp
' E „ -  

kT

equation 10.6

where Ehu is the photon energy and AEf is the quasi-Fermi level separation, i.e. the 

energy at which the system experiences no net gain or absorption. Figure 10.5 shows 

how the distribution function varies with photon energy, for three different 

temperatures, for a quasi-Fermi level separation of 1.13eV.

200K
300K
400K

- 2 -
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Figure 10.5 - Variation of the distribution function Pf  with photon energy for three 

different temperatures, for A£y=1.13eV.

It can be seen that at low photon energies (Etiu< AEj) the distribution function 

approaches a value of one. This can be explained by considering equation 10.4. At 

low photon energy,/, and f c both approach a value of one as there is a high probability 

that the valence and conduction states are filled with holes and electrons respectively. 

Thus at low photon energies P f  tends to one also. As the photon energy increases, the 

number of valence holes and conduction electrons decreases and so f v and f c both tend
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toward zero. Thus, P f  tends towards infinity in the negative direction. At higher 

temperatures the occupancies become less sensitive to energy, and so the slope of the 

P f  function becomes less.

Considering the ground state only, the equations for the gain and spontaneous 

emission for dots of size w are:

Note that these equations do not include the homogeneous broadening: the gain and 

spontaneous emission for each group of dots with the same transition energy are 

calculated as a series of discrete values. The ground state P f  function is therefore 

given by

( V i A V __________ nQD{w)__________
I, c )  8mi* E 2 x r  x area x wmod x AE(w) 

Z  Pr° b< J (W) X Pr0bl,m (w)x 2  X ( -

equation 10.7

area x AE (w )

equation 10.8

pgr Gg O ) 8m 2( h v ) 2

f R M  h'c2 -
equation 10.9

where hu  is the ground state transition energy at which the value of P f  is being 

calculated. Similarly, the excited state P f  function is

G ex{ w )  S m t 2 ( h o ) 2 

/  R M  AJc 2

equation 10.10

where hu  is the excited state transition energy.
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10.3.2 Pf for Non-Neutral Dots

Figure 10.6 shows the ground state P f function calculated using equation 10.10 (black 

squares). A fit has been calculated using equation 10.6, which assumes Fermi-Dirac 

statistics for the electrons and holes (red line).
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Photon Energy (eV)

Figure 10.6 - Ground state Pf function (black squares) with a fit calculated assuming 

Fermi-Dirac statistics (red line). The quasi-Fermi level separation is 1.148eV. No 

homogeneous broadening is included.

It can be seen that the fit is a perfect match to the calculated P f  function, and this is 

expected since Fermi-Dirac statistics are used to calculate the distributions of 

electrons and holes in the model. The excited state P f is now shown in the following 

figure (black squares) with a Fermi-Dirac fit (blue line).
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Figure 10.7 - Excited state /y  function (black squares) with a fit calculated assuming 

Fermi-Dirac statistics (blue line). The quasi-Fermi level separation is 1.404eV. No 

homogeneous broadening is included.

Again, the fit matches the calculated values, and this confirms that the electron and 

hole states in both the ground and excited states can be described using Fermi-Dirac 

statistics.

It is not possible to fit the P f functions calculated from the homogeneously broadened 

gain and spontaneous emission spectra. This is because the homogeneous broadening 

changes the shape of the spectra (including the transparency point) and Fermi-Dirac 

statistics cannot be fitted. This is described in more detail in section 10.3.4.

10.3.3 Pf for Neutral Dots

In this section it is investigated whether the distribution function P/can be fitted to the 

results for the neutral dots. The electron distribution follows a Fermi-Dirac 

distribution but the hole distribution does not. Therefore it is not possible to define the 

quasi-Fermi level separation for the neutral dots. The following graph shows the 

calculated ground state P f function (black squares) for £/c=0.15eV, calculated using 

equation 10.9.
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Figure 10.8 - Ground state Pf  for neutral dots for £yc=0.15eV (black squares), fitted 

using a Fermi-Dirac distribution with A£y=1.163eV and 7K300K (red line). No 

homogeneous broadening is included.

If Fermi-Dirac statistics apply then is should be possible to fit the following equation, 

equation 10.6, to the curve.

P f = 1 -  exp
kT

A value of AEf is needed, which is the energy at which the P f  is zero, which from 

inspection of the curve is about 1.163eV. The P f  fit for this value is shown as a red 

line in Figure 10.8. It can be seen that this fit does not match the calculated values. 

The only other parameter that can be varied is the temperature. A temperature of 

155K gives a good match, as shown in the following figure.
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Figure 10.9 - Ground state Pf  for neutral dots for £yc=0.15eV (black squares), fitted 

using a Fermi-Dirac distribution with A£y=1.163eV and T=\55K  (red line). No 

homogeneous broadening is included.

The plot implies that the neutral dots can be described using Fermi-Dirac statistics. 

However, this is not the case, as proved in chapter 6 where it is shown that a Fermi- 

Dirac distribution cannot be fitted to the hole distributions for the neutral dots. The 

fact that a curve can be fitted with a Pf function does therefore not explicitly imply 

that the system is obeying Fermi-Dirac statistics.

10.3.4 Including the Homogeneous Broadening in the Calculations of Pf

The P f  graphs shown in this chapter do not include homogeneous broadening, and the 

gain and spontaneous emission have been calculated at the discrete transition energies 

corresponding to the widths of the groups of dots. In this section it is demonstrated 

how the Pf function changes when the homogeneous broadening is included. The 

following graph shows how the ground state Pf function changes with the inclusion of 

the homogeneous broadening, plotted for the non-neutral dots for a quasi-Fermi level 

separation of 1.148eV. The black line is for the case where the homogeneous 

broadening is not included, as shown previously in this chapter.
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Figure 10.10 - Ground state Pf for non-neutral dots, for varying values of the 

homogeneous linewidth. The quasi-Fermi level separation is 1.148eV. The black 

curve is for the case of no homogeneous broadening.

It can be seen that as the value of the homogeneous linewidth is decreased the P f 

function becomes more like the curve for no homogeneous broadening, as expected. 

At high values of homogeneous linewidth the transparency point becomes much 

larger than the quasi-Fermi level separation. The curves also show a different shape to 

the expected P f  function at higher photon energies. This is because when the 

homogeneous linewidth is large, for photon energies inside the inhomogeneous 

distribution, transitions are being included which are outside the inhomogeneous 

distribution. For further discussions on how the homogeneous broadening affects the 

gain spectra see reference [2, 3].

10.4 Sum m ary

In this chapter I have investigated the gain-current relations, and compared those of 

neutral and non-neutral dots. There are marked differences in the two cases, and these 

should be observable in an experiment. I have plotted the P f  functions for both the 

neutral and non-neutral dots. A fit assuming a thermal distribution of carriers has been
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shown for the non-neutral dots, confirming that Fermi-Dirac statistics are used to 

describe the electron and hole occupancies. However, a thermal fit can also be fitted 

to the curves for the neutral dots even though it has been shown that the hole 

distribution in the neutral dots does not obey Fermi-Dirac statistics. The next chapter 

gives a summary and the main conclusions of the thesis, and suggestions for future 

work.
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11 Summary and Discussion

11.1 Introduction

In this thesis a model has been presented for localised, discrete states in an ensemble 

of quantum dots. The effect that this localisation has on the recombination processes 

in dots has been investigated. This final chapter begins by summarising the main 

principles of the model. Then, the main conclusions and results from the thesis are 

summarised, and suggestions for future work are presented.

11.2 Summary

A model has been presented which takes into account the localised, discrete nature of 

the states in quantum dots. The two-dimensional wetting layer is also included, which 

is treated in the same way as a quantum well. The dot distribution is inhomogeneously 

broadened in size. A ground and first excited state are modelled, that can contain two 

and four electron/holes respectively.

Two types of dots have been modelled for comparison: neutral and non-neutral dots. 

In the model for non-neutral dots, Fermi-Dirac statistics are used, and the electron and 

hole populations are calculated using their respective electron and hole quasi-Fermi 

levels. Due to the differences in energy between the electron and hole states this 

means that individual dots may not contain equal numbers of electrons and holes. 

However, the overall numbers of electrons and holes in the dots and the wetting layer 

are equal (this is also true for the neutral model). In the model for neutral dots, Fermi- 

Dirac statistics are again used to calculate the electron distribution. However, the 

number of holes in each dot is then set equal to the number of electrons in that dot. 

Consequently, a hole quasi-Fermi level cannot be defined for this neutral case.

Recombination is modelled locally in each dot, and an electron can only recombine 

with a hole in the same dot. Nonradiative via defects, radiative and Auger 

recombination are modelled. Homogeneous broadening is included to work out the 

spontaneous emission and gain spectra.
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11.3 Conclusions

The main conclusions drawn from this thesis are that the localisation of the states in 

quantum dots affects the dependence of the recombination processes on the carrier 

number in the dots. It is often assumed that the rates of nonradiative recombination 

via defects, radiative recombination and Auger recombination are proportional to 

linear, quadratic and cubic functions of the carrier number, and the derivation of these 

functional forms is possible in quantum well and bulk structures because the extended 

electronic states make it meaningful to talk of a global carrier population. In quantum 

dots, because an electron can only recombine with a hole in the same dot, the 

recombination processes cannot be related to the global total number of carriers, and 

the rates in each dot are proportional to the electron and hole numbers in that 

particular dot. Because of this, the recombination processes have similar dependences 

on electron number and there is no clear transition from one process to another as the 

injection level is increased. These dependences cannot be represented by simple 

power law functions of the carrier number, and so analyses of L-I curves based on 

power law relations between recombination rates and carrier number, as used for 

extended state systems, cannot be applied to localised recombination in dots.

Due to the saturation of dot emission and the wetting layer contribution to the current, 

the light emission from the dots as a function of the total current shows sub-linear 

behaviour. Comparing the neutral and non-neutral dots, the L-I characteristics of the 

dot system alone are similar for the two cases even though the recombination rates 

have very different dependences on the carrier number. The computed L-I curves have 

been compared to experimental data by fitting the nonradiative and Auger lifetimes in 

the dots, and good agreement is found between the computed and experimental data

The inhomogeneous broadening is applied to the dot sizes and this gives an 

asymmetrical distribution in energy. Therefore the gain and spontaneous emission 

spectra for both neutral and non-neutral dots cannot be fitted with Gaussian 

distributions. This has implications in that caution should be used when fitting 

experimental data since the form of the inhomogeneous broadening may not be 

known. The gain and spontaneous emission spectra for the neutral and non-neutral 

dots when the dots are empty or fully occupied are the same. However, they show big 

differences for intermediate occupancies due to the differences in the hole occupation
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between the two models. These differences are due to the difference in energy levels 

for the electrons and holes. This is not taken into account in the neutral model and the 

number of holes in a dot is simply set equal to the number of electrons. From 

investigation of the hole distributions for the neutral dots it is concluded that they do 

not follow Fermi-Dirac statistics and therefore a hole quasi-Fermi level cannot be 

defined for neutral dots.

The main conclusions from the thesis are summarised below:

• Recombination rates in each dot are proportional to the electron and hole 

numbers in that particular dot.

• All recombination processes have a similar dependence on electron number.

• There is no clear transition from one process to another as the injection level is 

increased.

• Recombination processes cannot be related to the global total number of 

carriers.

• Analyses o f L-I curves based on power law relations between recombination 

rates and carrier number cannot be applied to localised recombination in dots.

11.4 Future Work

Suggestions for future work can be divided into two categories: further calculations 

using the present model, and calculations using an improved/modified model. These 

are discussed in more detail in the following sections.

• Further Calculations using the Present Model

The present model can be used to investigate further the properties of the 

quantum dot ensemble. All the calculations in this thesis have been done at 

room temperature. It would be interesting to investigate the emission 

characteristics o f the dots at lower temperatures. It would also be useful to do 

more comparison between the computed data from the model and 

experimental results. This may provide some insight into whether real dot 

samples show behaviour similar to the neutral model or the non-neutral model, 

or a combination of both. Previous work has shown that neither the free carrier
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nor the exciton (neutral) model can fully explain the characteristics of real 

quantum dot lasers [1].

Another suggestion is to use a different radiative lifetime for dots of different 

sizes, reflecting the different energy distributions. At present, for simplicity, 

the model only calculates occupancies for a small (51) number of dot sizes. 

Rates are then interpolated to produce a spectrum. To increase the accuracy of 

the calculations a wider distribution of dot energies could be calculated, using 

more sizes of dots.

• Modifications to the Present Model

A possible option for future work would be to modify the model. Many 

assumptions are made in the model, and the extent to which these are 

reasonable could be investigated.

Auger recombination could be investigated in more detail. At present only one 

process is modelled for Auger recombination, and this could be looked at in 

more detail. The model also assumes that there is a defect present in every dot 

for nonradiative recombination. A random defect could be implemented so as 

to make the model more realistic.

In the current model a ground and first excited state are modelled. It may be 

helpful to include higher energy excited states.

Previous work has shown that Fermi-Dirac statistics can be applied to the 

electron and hole distributions at room temperatures [2]. However, it would be 

interesting to investigate whether the use of Fermi-Dirac statistics is 

reasonable at lower temperatures. Another possibility for future work is to 

calculate the occupation statistics of the dots using different statistics to Fermi- 

Dirac, such as a random population model [3].

It has been shown that the inclusion of the homogeneous broadening in the 

spectra changes the transparency point from that of the quasi-Fermi level 

separation. This could be investigated in more detail to see what implications 

homogeneous broadening has for quantum dots, and what effects its inclusion 

has on the thermal equilibrium of the system.
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Finally, it would be interesting to see how excitonic states in a quantum well 

compare to the localised states in quantum dots, and whether they show 

similar properties.
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Appendices

Table o f N otation

The following table lists the notation used throughout this thesis, along with the 

corresponding dimensions. The dimensions are [E] energy, [L] length and [M] mass. 

Dimensionless quantities with are written as [0].

Symbol Definition Dimensions

e cM
Energy of the electron ground state for dots of 

width w
[E]

EvM
Energy of the hole ground state for dots of 

width w
[E]

Energy o f the electron excited state for dots of 

width w
[E]

Elc(W)
Energy of the hole excited state for dots of 

width w
[E]

E wlc

Wetting layer electron confined energy (relative 

to the conduction band edge)
[E]

E„h
Wetting layer hole confined energy (relative to 

the valence band edge)
[E]

E fC Electron quasi-Fermi level [E]

Hole quasi-Fermi level [E]

f cgr{™)
Fermi function for the electron ground state for 

dots of width w
[0]



/ ^ W
Fermi function for the hole ground state for dots 

of width w
[0]

f L  W
Fermi function for the electron excited state for 

dots of width w
[0]

/ «  w
Fermi function for the hole excited state for dots 

of width w
[0]

i Number of electrons in ground state of one dot [0]

j Number of electrons in excited state of one dot [0]

I Number of holes in ground state of one dot [0]

m Number of holes in excited state of one dot [0]

m c Effective mass of the electron [M]

mv Effective mass of the hole [M]

n{{w)
Number of dots with i electrons in the ground 

state and j  electrons in the excited state, for a 

width w

[0]

n M
Number of electrons in the ground state for dots 

of width w
[0]

N j w )
Number of electrons in the excited state for dots 

of width w
[0]

Nw,
Number of electrons in the wetting layer per unit

area
[L]-2

p ? W )
Number of dots with I holes in the ground state 

and m holes in the excited state, for a width w
[0]



p gX w )
Number of holes in the ground state for dots of 

width w
[0]

PeX W)
Number of holes in the excited state for dots of 

width w
[0]

Pr°b,,j
Probability o f having a dot with an electron 

distribution i,j
[0]

Pr0bi,jLm
Probability of having a dot with an electron 

distribution i j  and a hole distribution l,m
[0]

probhm
Probability o f having a dot with a hole 

distribution l,m
[0]

Pwl Number o f holes in the wetting layer per unit area [L]-2



List o f Abbreviations

Abbreviation Term

OD Zero-dimensional

ID One-dimensional

2D T wo-dimensional

3D Three-dimensional

AlAs Aluminium Arsenide

AlGaAs Aluminium Gallium Arsenide

DOS Density of States

DWELL Dot-in-well structure

GaAs Gallium Arsenide

GaN Gallium Nitride

HH Heavy Hole

InAs Indium Arsenide

LED Light Emitting Diode

LH Light Hole

L-I Light-Current

Si Silicon

SHO Simple Harmonic Oscillator

SO Split-Off Bands



SRH Shockley-Read-Hall

QD Quantum Dot

QW Quantum Well

VCSEL
Vertical Cavity Surface 

Emitting Laser


