
CARDIFF
U N I V E R S I T Y

P R I F Y S G O L

CaeRDY|§>

BINDING SERVICES
Tel +44 (0)29 2087 4949
Fax.+44 (0)29 2037 1921

E-Mail Bindery@Cardiff.ac.uk

mailto:Bindery@Cardiff.ac.uk

Supervised and unsupervised
weight and delay adaptation learning

in tem poral coding
spiking neural networks

A thesis submitted to the Cardiff University,
for the degree of

D octor of Philosophy

by

Eugene Yougarajah Andrew Charles

Manufacturing Engineering Centre
Cardiff University

UMI Number: U584933

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584933
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Artificial neural networks are learning paradigms which mimic the biological neu­

ral system. The temporal coding Spiking Neural Network, a relatively new artifi­

cial neural network paradigm, is considered to be computationally more powerful

than the conventional neural network. Research on the network of spiking neurons

is an emerging field and has potential for wider investigation. This research ex­

plores alternative learning models with temporal coding spiking neural networks

for clustering and classification tasks.

Neurons are known to be operating in two modes namely, as integrators and

coincidence detectors. Previous temporal coding spiking neural networks, realis­

ing spiking neurons as integrators, were utilised for analytical studies. Temporal

coding spiking neural networks applied successfully for clustering and classifica­

tion tasks realised spiking neurons as coincidence detectors and encoded input in­

formation in the connection delays through a weight adaptation technique. These

learning models select suitably delayed connections by enhancing the weights of

those connections while weakening the others. This research investigates the

learning in temporal coding spiking neural networks with spiking neurons as

integrators and coincidence detectors. Focus is given to both supervised and

unsupervised learning through weight as well as through delay adaptation.

Three novel models for learning in temporal coding spiking neural networks

are presented in this research. The first spiking neural network model, Self-

Organising Weight Adaptation Spiking Neural Network (SOWA_SNN) realises

the spiking neuron as integrator. This model adapts and encodes input informa­

tion in its connection weights. The second learning model, Self-Organising Delay

Adaptation Spiking Neural Network (SODA_SNN) and the third model, Super­

vised Delay Adaptation Spiking Neural Network (SDA_SNN) realise the spiking

iii

neuron as coincidence detector. These two models adapt the connection delays

in order to detect temporal patterns through coincidence detection. The first

two models were developed for clustering applications and the third for classifica­

tion tasks. All three models employ Hebbian-based learning rules to update the

network connection parameters by utilising the difference between the input and

output spike times.

The proposed temporal coding spiking neural network models were imple­

mented as discrete models in software and their characteristics and capabilities

were analysed through simulations on three bench mark data sets and a high

dimensional data set. All three models were able to cluster or classify the anal­

ysed data sets efficiently with a high degree of accuracy. The performance of the

proposed models, was found to be better than the existing spiking neural network

models as well as conventional neural networks. The proposed learning paradigms

could be applied to a wide range of applications including manufacturing, business

and biomedical domains.

to the loving memory of my father

iv

Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Dr.

M. S. Packianather. His wide knowledge and logical way of thinking have been

of great value for me. His understanding, encouraging and personal guidance

have provided a good basis for the present thesis. I am deeply grateful to my

supervisor, Professor D. T. Pham, for his detailed and constructive comments,

and for his important support throughout this work. My sincere thanks also goes

to Professor S. S. Dimov for his suggestions and comments throughout this work.

I wish to express my warm and sincere thanks to Dr. S. Mahesan for his tireless

and generous effort which gave me the opportunity to do this research. My sincere

thanks also belong to Dr. S. Kanaganathan. I wish to express my thanks to all

the staff, colleagues and friends of University of Jaffna, Sri Lanka.

I would like to thank all my colleagues specially for the Data mining group mem­

bers, for their guidance and company. My sincere thanks also to all the staff of

the Manufacturing Engineering Centre. I wish to express my special thanks to

all my friends in Cardiff, London and elsewhere.

My special gratitude is due to my mother, aunty, brother and my sister for their

love and encouragement.

Declaration

This work has not previously been accepted in substance for any degree and is

not concurrently submitted in candidature for any degree.

Signed . . (Eugene Yougarajah Andrew Charles - Candidate)

D ate.

Statem ent 1

This thesis is being submitted in partial fulfilment of the requirements for the

degree of PhD.

Signed . YqW . (Eugene Yougarajah Andrew Charles - Candidate)

Statement 2

This thesis is the result of my own independent work/investigation, except

where otherwise stated. Other sources are acknowledged by explicit references.

Date . A J : P.1: A™ * .

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopy­

ing and for inter-library loan, and for title and summary to be made available to
outside organisations.

Date . : °.cf. A?Pf>

(Eugene Yougarajah Andrew Charles - Candidate)

Signed (Eugene Yougarajah Andrew Charles - Candidate)

Date . A 7^'. Pf^: P~P? ^

vi

Contents

Abstract ii

Dedication iv

Acknowledgement v

Declaration vi

Contents vii

List of Figures xiii

List of Tables xvi

List of Symbols xviii

1 Introduction 1

1.1 Preliminaries .. 2

1.2 Research objectives.. 5

1.3 Structure of the t h e s i s .. 6

2 The basics of Spiking Neural Networks 8

2.1 Artificial Neural N etw orks.. 9

2.1.1 Structure of the artificial neural n e tw o rk 9

2.1.2 The artificial n e u ro n .. 10

2.1.3 Learning in artificial neural ne tw orks................................... 14

CONTENTS___ viii

2.2 Biological background .. 16

2.2.1 The n e u ro n .. 17

2.2.2 The synapse.. 18

2.2.3 Electrical properties of n e u ro n s .. 20

2.2.4 Neuronal f i r in g .. 22

2.3 Neuronal coding... 23

2.3.1 Rate co d in g .. 24

2.3.2 Temporal coding (Spike cod ing).. 24

2.3.3 Population coding... 26

2.3.4 On the coding of neural information...................................... 26

2.4 Neuron models ... 27

2.4.1 Conductance-based neuron models 28

2.4.2 Spiking neuron m o d e ls .. 30

2.4.3 Spike response m odel... 30

2.5 The spiking neural network ... 32

2.5.1 Definition of the spiking neural network 32

2.5.2 Computing with spiking neural network 35

2.5.2.1 Realising a percep tron ... 35

2.5.2.2 Computing a weighted s u m 36

2.5.2.3 Coincidence d e te c tio n ... 37

2.5.3 Spiking neural network sim ulators... 40

2.5.4 Discrete spiking neural network m o d e l 41

2.5.5 Learning in spiking neural networks...................................... 43

2.6 Research ap p lica tio n .. 47

2.6.1 Clustering and classification.. 48

2.6.2 Description of the data s e t s .. 49

2.7 Research outline... 50

CONTENTS__ ix

3 Self-Organising Weight Adaptation
Spiking Neural Network (SOWA_SNN) 54

3.1 Introduction... 54

3.2 Kohonen’s self-organising m a p .. 55

3.3 Research on unsupervised SNN models and biological neural net­
works 59

3.3.1 Weight-based le a rn in g .. 60

3.3.2 Delay based lea rn in g ... 61

3.3.3 Research on biological neural ne tw orks.............................. 67

3.3.3.1 Learning in biological neural n e tw o rk s................ 67

3.3.3.2 Spike-time-based le a rn in g 69

3.3.3.3 Stabilising the Hebbian learning............................. 70

3.4 Proposed self-organising weight adaptation SNN for clustering . . 74

3.4.1 Network architecture ... 74

3.4.2 Spike time based learning .. 75

3.4.3 Self-organisation .. 75

3.4.4 Stabilising the weight a d a p ta tio n .. 77

3.4.5 Learning r u l e .. 78

3.4.6 Learning s tra teg y .. 78

3.4.7 Interpreting the output and cluster identification 80

3.5 Implementation d e ta ils ... 81

3.5.1 Initialising the connection weights and d e la y s 83

3.5.2 Setting the threshold value... 84

3.5.3 Setting the parameters of the learning r u l e 84

3.6 Simulation results and d iscussion .. 85

3.6.1 Clustering capab ility .. 85

3.6.2 S tab ility ... 96

3.7 Conclusion... 96

CONTENTS x

4 Self-Organising Delay Adaptation
Spiking Neural Network (SODA_SNN) 103

4.1 Introduction...103

4.2 Neuronal delays and coincidence d e te c tio n .. 104

4.2.1 Neural systems and D elays... 104

4.2.2 Neuron as a coincidence d e te c to r ...105

4.2.3 The operating mode of a neuron.. 106

4.2.4 Pattern detection with coincidence detecting spiking neuron 107

4.2.5 Delay adaptation le a rn in g ... 107

4.3 Research on delay adaptation learning .. 110

4.3.1 Delay-based modelling s tu d ies ... 110

4.3.2 Learning models for conventional networks with delays . . I l l

4.3.3 Delay adaptation learning in S N N s ..112

4.4 Proposed self-organising delay adaptation SNN for clustering . . . 113

4.4.1 Network architecture ...113

4.4.2 Integration and coincidence detection with a spiking neuron 114

4.4.3 Spike time-based delay adaptation learning..............................115

4.4.4 Self-organisation ...116

4.4.5 Stabilising the delay ad ap ta tio n .. 118

4.4.6 Learning r u l e ... 119

4.4.7 Interpreting the output and cluster identification 120

4.5 Implementation d e ta ils ...120

4.5.1 Initialising the connection weights and delays 121

4.5.2 Setting the threshold value... 122

4.5.3 Setting the parameters of the learning r u l e 123

4.6 Simulation results and d iscussion ..123

4.6.1 Clustering capab ility ...124

4.6.2 Network a c t iv i ty ...129

CONTENTS__ xi

4.6.3 Degree of coincidence.. 132

4.6.4 S tab ility ..141

4.7 Conclusion... 151

5 Supervised Delay Adaptation
Spiking Neural Network (SDA_SNN) 153

5.1 Introduction.. 153

5.2 Supervised learning in artificial neural ne tw o rk s.................................154

5.2.1 Supervised learning in conventional neural networks 155

5.2.2 Supervised learning in spiking neural networks.......................158

5.2.2.1 Error gradient based learning m odels...................... 159

5.2.2.2 Hebbian rule based learning models......................... 162

5.3 Proposed supervised delay adaptation SNN for classification . . . 164

5.3.1 Network architecture .. 164

5.3.2 The learning r u l e .. 165

5.3.3 Delay change estim ation ..167

5.3.4 Controlling the le a rn in g ..168

5.3.5 Interpreting the results and classifying the input data . . . 169

5.3.6 The training p ro c e ss .. 170

5.4 Implementation d e ta ils .. 171

5.5 Simulation results and d iscussion ..171

5.5.1 Classification capability .. 172

5.5.2 Network a c t iv i ty ...175

5.5.3 Degree of coincidence.. 175

5.5.4 S tab ility ..178

5.6 Conclusion... 184

6 Conclusion and future work 185

6.1 C ontributions... 185

CONTENTS___ xii

6.2 Conclusion.. 188

6.3 Future w o rk ... 190

Bibliography 192

Appendices 202

A Program source code 203

A.l Class definitions... 203

A. 1.1 Definition of class Vector.. 203

A. 1.2 Definition of class m atrix ..204

A. 1.3 Definition of class spikeNN ..205

A.2 Source code for implementing the unsupervised m o d e ls 207

A.2.1 Source code for implementing the S N N207

A.2.2 Source code for implementing SOWA_SNN......... 210

A.2.3 Source code for implementing SODA_SNN......... 212

A.2.4 Section of class spikeNN for testing the data sets215

A.2.5 Source code for clustering Wine data set with SOWAJSNN 217

A.2.6 Source code for clustering Iris data set with SODAJ3NN . 221

A.3 Source code for implementing SD A J3N N ..224

B Data sets 233

List of Figures

2.1 General structure of an artificial neural ne tw o rk 11

2.2 Schematic diagram of an artificial neuron.. 12

2.3 Common activation fu n c tio n s .. 13

2.4 Schematic diagram of a neuron ... 19

2.5 S y n a p se ... 21

2.6 An equivalent circuit for the Hodgkin-Huxley m odel..................... 29

2.7 Spike response fu n c tio n s... 33

2.8 Coincidence detection by a spiking n e u ro n 39

2.9 Control chart p a t te r n s ... 53

3.1 Kohonen’s self-organising netw ork.. 57

3.2 Gerstner et al.s’ learning rule ... 64

3.3 Natschlager and Rufs’ network m o d el... 65

3.4 Natschlager and Rufs’ learning rule for unsupervised learning . . . 66

3.5 Song et al.s’ learning rule for unsupervised le a rn in g 71

3.6 van Rossum et al.s’ rule for synaptic m odification........................ 73

3.7 Learning rule for the SOWA_SNN.. 76

3.8 Clusters formed within Iris data set using SOWA_SNN.............. 88

3.9 Clusters formed within the Cancer data set using SOWA_SNN . . 89

3.10 Clusters formed within Wine data set using SOWA_SNN........... 90

3.11 Clusters formed within Control chart data set using SOWA_SNN . 91

xiii

LIST OF FIGURES__xiv

3.12 Distribution of the connection weights of the SOWA_SNN trained
on Iris data... 98

3.13 Distribution of the connection weights of the SOWA_SNN trained
on Cancer data.. 99

3.14 Distribution of the connection weights of the SOWA_SNN trained
on Wine data... 100

3.15 Distribution of the connection weights of the SOWA_SNN trained
on Control chart data... 101

4.1 Pattern detection by spiking neural n e tw o rk 108

4.2 Learning rule for delay adaptation...117

4.3 Activity of the SODAJ3NN trained on Iris d a t a133

4.4 Activity of the SODA_SNN trained on Cancer d a t a134

4.5 Activity of the SODA_SNN trained on Wine d a t a135

4.6 Activity of the SODA_SNN trained on Control chart d a ta 136

4.7 Clusters formed within the Iris data using SODA_SNN with dy­
namic and fixed th re sh o ld ...137

4.8 Clusters formed within the Cancer data using SODA_SNN with
dynamic and fixed th resho ld ..138

4.9 Clusters formed within the Wine data using SODA_SNN with dy­
namic and fixed th re sh o ld ...139

4.10 Clusters formed within the Control chart data using SODA_SNN
with dynamic and fixed th resho ld .. 140

4.11 Degree of coincidence achieved in the SODA_SNN trained on Iris
d a t a ..142

4.12 Degree of coincidence achieved in the SODA-SNN trained on Can­
cer d a t a ..143

4.13 Degree of coincidence achieved in the SODA_SNN trained on Wine
d a t a ..144

4.14 Degree of coincidence achieved in the SODA_SNN trained on Con­
trol chart d a ta .. 145

4.15 Delay distribution of the SODA_SNN trained on Iris d a ta147

4.16 Delay distribution of the SODA_SNN trained on Cancer data . . . 148

LIST OF FIGURES xv

4.17 Delay distribution of the SODA.SNN trained on Wine data 149

4.18 Delay distribution of the SODA_SNN trained on Control chart data 150

5.1 Schematic diagram of supervised learning..156

5.2 Population coding with overlapping Gaussian receptive fields . . . 161

5.3 Structure of the supervised delay adaptation S N N 166

5.4 Distribution of the delays in the SDAJ3NN trained on Iris data . . 180

5.5 Distribution of the delays in the SDA_SNN trained on Cancer data 181

5.6 Distribution of the delays in the SDAJ3NN trained on Wine data 182

5.7 Distribution of the delays in the SDA_SNN trained on Control
chart d a t a .. 183

List of Tables

2.1 Description of the data s e t s .. 51

3.1 Number of samples used for training and te s tin g 87

3.2 Average clustering accuracy obtained for the SOWA_SNN............. 93

3.3 Network parameter values for the SOWA_SNN............................... 93

3.4 Clustering accuracy obtained for different size of SOWA_SNNs . . 94

3.5 Average clustering accuracy obtained on Control chart data for
different size of SOWA_SNNs ... 94

3.6 Average clustering accuracy obtained for Kohonen’s SOM 97

3.7 Average highest clustering accuracy obtained for Kohonen’s SOM 97

4.1 Average clustering accuracy obtained for the SODA.SNN................ 126

4.2 Network parameter values for the SODA_SNN................................... 126

4.3 Clustering accuracy obtained for different size of SODA_SNNs . . 127

4.4 Average clustering accuracy obtained on Control chart data for
different size of SODA_SNNs..127

4.5 Average clustering accuracy obtained for Kohonen’s SOM130

4.6 Average highest clustering accuracy obtained for Kohonen’s SOM 130

4.7 Details of the SODA_SNNs for the analysis of network activity . . 131

5.1 Average classification accuracy obtained for the SDA_SNN 173

5.2 Network parameter values for the SDAJ3NN...................................... 173

5.3 Classification accuracy for Bohte et al.s’ m odel................................... 176

5.4 Average classification accuracy obtained for M L P176

xvi

LIST OF TABLES__ xvii

5.5 Average highest classification accuracy obtained for M L P177

5.6 Activity of the SDA.SNN ... 177

5.7 Degree of coincidence achieved by the SDAJ3NN.............................. 179

List of Symbols

Sdji The amount of change for delay to the connection from neuron i to j

e The spike response function

V Learning rate

To Set of neurons pre-synaptic to neuron j

N Set of all natural numbers

R + Set of all positive real numbers (excluding zero)

R Set of all real numbers

Si Set of all previous firing times of neuron i

<t> Activation function

T Time constant for the spike response function

Tstdp Synaptic time constant for potentiation and depression of the learning
rule

0 Refractory function of neuron j

bj Bias value for neuron j

dji Delay value of the connection from neuron i to j

dt Time step between the adjacent states of simulation

dwji Change in weight for the connection from neuron i to j

E Set of synapses

N A network of neurons

t time

Unputjmndow Input time window

twindow Activation time window

U j { t) Potential or state variable of neuron j at time t

xviii

List of Symbols xix

V Set of neurons

Vj Linearly combined output of the weighted input signals to neuron j

Wji Strength or weight of the connection from neuron i to j

Xi Input value to neuron i

yj Output of neuron j

||w|| Euclidean norm of w

Chapter 1

Introduction

Artificial neural networks (ANNs) are one of the most powerful and flexible com­

puting paradigms and a well studied area in artificial intelligence. The important

property of an ANN is its ability to learn from the environment and to retain in­

formation. The development of ANN was inspired by the principles of biological

neural networks which process information in an entirely different way from con­

ventional methods. The modern era of ANNs was initiated with the pioneering

work of McCulloch and Pitts [McCulloch and Pitts, 1943]. From then on, the

research on ANNs grew in different directions and led to the creation of various

artificial neurons, network architectures and learning algorithms. As a result,

ANNs have been applied successfully for solving diverse problems in numerous

domains [Haykin, 1999].

In recent years, temporal coding Spiking Neural Networks (SNN), networks

of more biologically realistic artificial neurons, are receiving wider attention. Re­

sults from past research show that the learning in spiking neural networks can

achieve the accuracy of conventional training algorithms with potential room for

improvement [Bohte et al., 2002a]. This research explores alternative learning ap­

proaches for temporal coding SNNs for clustering and classification tasks. This

chapter presents the preliminaries regarding the SNNs and defines the objectives

1

1.1 Preliminaries 2

of this research. The structure of this research is also outlined here.

1.1 Preliminaries

The human brain, the most interesting and important organ in the world, has

revealed only a few of its secrets to humankind. Even though the exploration

of the brain began 2500 years ago when Greek philosophers conceived the idea

that the human beings have a mind and a soul, researchers managed to shed

some light on the true nature of the brain only within the past hundred years.

The study on biological neural systems is developing more rapidly and attracts

people from various disciplines. The findings from these studies not only provide

a better understanding of neural systems but also shape the research on artifi­

cial intelligence. Although the creation and development of ANNs were inspired

by biological neural systems, ANNs are considered to be limited due to their

simplistic structure and behaviour [Zador, 2000; Maass, 1997a].

The brain is composed of billions of simple computing elements called neu­

rons which are connected in parallel with trillions of interconnections or synapses

[Haykin, 1999]. Artificial neural networks axe also structured similarly, with in­

terconnected computational units. The interconnections between the neurons in

a conventional artificial neural network are considered as passive entities. These

synapses are regarded as simple linear entities whose essential role is in learn­

ing. But it is claimed by the neuro biologists that the biological synapses are

not merely passive entities whose outputs are a linear function of their inputs.

Instead, it has been recognised for a long time that the synapses are dynamic

elements with complex non-linear behaviour [Zador, 2000].

Computation and communication within the biological networks are based

on action potentials or spikes. The spikes are electrical pulses with a potential

1.1 Preliminaries 3

of around 100 mV and last for one to two msec. The way the information is

coded with these spikes is an ongoing debate. In general it is accepted that

the coding could be either based on the rate of spikes or on the firing time of

each spike. Artificial neural networks were developed based on the idea that

the biological neurons communicate via the firing rate of spikes [Bohte, 2003].

Generally, the analogue values responsible for computation and communication

in the conventional artificial neural networks are interpreted as the firing rates

of biological neurons [Maass, 1997a]. In recent years, however, the notion of rate

of spikes is claimed to be inadequate for the operation of fast neuronal events.

On the other hand, spike time-based coding or temporal coding are found to be

competent and widely accepted [Gerstner and Kistler, 2002].

The disputes over the structure and functionality of conventional artificial

neural networks resulted in increased interest in temporally coding spiking neu­

ral networks. These networks incorporate the non-linear nature of the synapses

and are capable of dealing with spike-time based coding. It has been proved

that the networks of spiking neurons can simulate arbitrary feed-forward sig­

moidal neural networks and thus approximate any continuous function [Maass,

1997a]. It was also proved that neurons that convey information by the timing of

individual spikes are computationally more powerful than the classical neurons

with sigmoidal activation function [Maass, 1997c]. Another feature of the spiking

neurons is that even with a seemingly increased structural complexity they are

relatively easier to implement in large neural networks [Bohte et al., 2002a]. Sin­

gle spike-time based computing has also been suggested as a new paradigm for

VLSI neural network implementation [Maass, 1996]. It was also observed that

there is considerable opportunity for further research on SNN, with potential

improvement in various directions [Maass, 2001b].

The connections of a spiking neural network are characterised by a weight

1.1 Preliminaries 4

value and a delay mechanism which postpones the arrival of an input spike at

the other end of the connection. It is understood that biological neurons operate

in two modes, as integrators and as coincidence detectors [Konig et al., 1996].

Generally, artificial neurons are known to be integrators, but due to the connec­

tion delays, the spiking neurons exhibit the coincidence detection functionality

[Maass, 2001a]. In this mode, a spiking neuron is activated only when it receives

coinciding inputs. The identification of these two modes of operations of a spiking

neuron is supported by several studies on biological neurons [Konig et al., 1996].

Temporal coding SNNs can be applied to the same types of tasks as con­

ventional ANNs. Recently a number of researchers have carried out significant

research on learning with spiking neural networks. In general, the learning models

adapt the connection weights and attempt to encode the input information in the

connection weights and delays. A significant number of learning models proposed

in the past for spiking neural networks are based on the Hebbian rule [Natschlager

and Ruf, 1998; Bohte et al., 2002b]. This is a preferred approach due to the nature

of the spiking neurons’ functionality and the spike-time based information coding

strategy. Error gradient descent approaches have also been proposed and applied

successfully [Bohte et al., 2002a]. A significant amount of research has targeted

the pattern recognition, clustering and classification tasks as the main application

for their proposed models [Ruf and Schmitt, 1997; Natschlager and Ruf, 1998;

Ruf and Schmitt, 1998; Bohte et al., 2002b]. In addition, several examples can

be found in the literature where the spiking neural networks have been applied to

various other learning tasks such as function approximation [Iannella and Back,

2001], associative memory and speech recognition [Bohte and Kok, 2005].

1.2 Research objectives 5

1.2 Research objectives

The main objective of this research is to investigate the possible supervised and

unsupervised learning strategies for temporal coding spiking neural networks and

to develop alternative learning models. The focus of this research is on learning

models which adapt network connection weights as well as delays for clustering

and classification tasks. More details are given in section 2.7.

Most of the existing learning models for spiking neural networks are based

on the learning models for conventional neural networks. But it is here claimed

that for spiking neural networks, the learning strategies have to be developed

distinctively in order to exploit the full potential of spiking neurons. However,

this is relatively difficult to achieve without the knowledge of learning strategies

of biological neural networks. Fortunately, there are plenty of research findings on

learning in biological networks available which are yet to be incorporated in the

development of artificial neural networks. Hence another objective of this research

is to combine the knowledge gained from the valuable research on biological neural

networks and the knowledge available from the existing ANN learning models in

order to develop novel models for learning in spiking neural networks.

SNNs can be implemented in software as well as hardware. In this research,

developing a suitable software platform is considered as an objective in which the

spiking neural network learning models can be realised and analysed.

The research on learning in spiking neural networks is at a relatively early

stage. The analysis on networks of spiking neurons is important for creating

better network models and learning strategies. Providing analytical results on

various aspects of the network models and learning strategies is also considered

as an objective of this research.

1.3 Structure of the thesis 6

1.3 Structure of the thesis

This study consists of six chapters and two appendices. Chapter 2 summarises

the basics of temporal coding spiking neural network. This chapter starts with a

description of artificial neural networks and methods through which they learn. A

brief outline of the biological neural network is also included. Aspects of neuronal

coding and various neuron models are discussed. The temporal coding spiking

neural network is introduced and topics regarding computing with SNNs and re­

alising the network are explained. Previous research on learning in spiking neural

networks is summarised. Further, a description of clustering and classification,

the main application of this study, is given along with the details of the data sets

utilised. Finally, this chapter concludes with an outline of this research.

This research focuses on learning in spiking neural networks through adapting

the connection weights as well as delays by supervised and unsupervised learning

methods. Chapter 3 focuses on learning through weight adaptation in an un­

supervised manner. This chapter briefly describes the Kohonen’s self-organising

map (SOM), which is a popular unsupervised learning model for artificial neural

networks. Previous research on SNNs regarding the unsupervised and Hebbian-

based learning is summarised along with the key findings on learning in biolog­

ical neural networks. The Self-Organising Weight Adaptation Spiking Neural

Network (SOWA_SNN) is introduced and the details regarding its implementa­

tion are given. Finally, the results of the analytical studies conducted on the

proposed model are summarised and discussed.

Most of the previous research on learning with spiking neural networks adapts

the connection weights. Chapter 4 proposes an unsupervised learning model for

SNNs, in which the connection delays are adapted. Here the spiking neurons

are realised as coincidence detectors, and delays and coincidence detection are

1.3 Structure of the thesis 7

explained in this chapter. Previous work on delay adaptation learning is sum­

marised. The details about the proposed Self-Organising Delay Adaptation Spik­

ing Neural Network (SODAJSNN) are presented along with the implementation

details. Finally, the description of the analytical studies performed on the pro­

posed model is explained and the results obtained are summarised and discussed.

Chapter 5 deals with learning in spiking neural networks in a supervised man­

ner, where the spiking neurons are realised as coincidence detectors, as in chapter

4. This chapter briefly describes supervised learning models in artificial neural

networks and summarises previous supervised learning models for spiking neu­

ral networks. The novel Supervised Delay Adaptation Spiking Neural Network

(SDA_SNN) is introduced and the details regarding its implementation are given.

The details of the analytical studies conducted are presented and the chapter

concludes with the summary of the results obtained along with the discussion.

Each chapter ends with a brief conclusion covering the topics discussed in

that chapter. Chapter 6 gives the conclusions drawn form this whole research

and presents some suggestions for future work.

Appendix A presents the source code of the software developed to implement

the proposed learning models.

Appendix B provides the data sets used for training and testing the proposed

models.

Chapter 2

The basics of Spiking Neural
Networks

Spiking neurons are claimed to be the third generation of artificial neurons with

McCulloch-Pitts [Haykin, 1999] neurons as the first generation and neurons with

continuous activation functions (sigmoidal neurons) as the second generation

[Maass, 1997b]. This chapter lays the foundation for this study by introduc­

ing the basics of SNNs. In order to get a better understanding of SNNs, topics

regarding the neural network models of both artificial and biological systems and

other related themes are explained in this chapter.

This chapter is structured as follows: section 2.1 introduces the concept of

artificial neural networks and related topics; section 2 . 2 explains the biological

neural system and how it forms the basis for artificial neural networks. Neuronal

coding, i.e., the way in which the information is coded in biological neural systems

is summarised in section 2.3, and neuron models are described in section 2.4. The

spiking neural network is defined in section 2.5. This section includes details of

computing with SNNs and the realisation of the network. The previous research

on learning in SNNs is also summarised in this section. Section 2.6 introduces

the application area of this research, namely, clustering and classification. The

details of the data sets used for analytical studies are also described in this section.

8

2.1 Artificial Neural Networks 9

Finally, section 2.7 defines the outline of this research.

2.1 Artificial Neural Networks

An artificial neural network (ANN) is an information processing paradigm made

up of simple processing units analogous to a massively parallel distributed proces­

sor. The simple computational units are called neurons after biological neurons,

which were the inspiration for this method of information processing [Haykin,

1999]. This relatively new computational tool has found its way into solving

many complex problems successfully and efficiently. The important characteris­

tics of ANNs are non-linearity, high parallelism, fault and noise tolerance, learning

and generalisation capabilities [Jain et al., 1996].

2.1.1 Structure of the artificial neural network

The structure or topology of an ANN defines the way the neurons are placed in the

network and the way in which they are connected to one another. The structure

of the network plays an important role in information processing since it is closely

linked to the learning algorithm used to train the network. Generally, in an ANN,

neurons are placed in layers. A network can have more than one layer of neurons

in addition to the input layer. The input layer is simply a set of non-processing

nodes from where the inputs are fed to the network. Neurons in each layer are

connected to neurons in other layers through a set of links. A typical structure of

an ANN is shown in Figure 2 .1 . Although it is not shown in this figure, neurons

within a layer can also be connected one to another through lateral connections.

The output from a neuron is passed to the other neurons through these links.

Depending on the direction of flow of information, the network is referred to

as a feed-forward network or a recurrent network. In the former, the flow is in

2.1 Artificial Neural Networks 10

the forward direction only and in the latter the flow can be both in forward

and as well as backward direction. Each link or connection is characterised by

a weight value, which is known as the connection strength. These connections

are the pathways for the information within the network [Haykin, 1999]. The

processing of information is performed by a neuron which is described in the next

sub-section.

2.1.2 The artificial neuron

A neuron is the fundamental processing unit of an ANN as in a biological neural

network. Figure 2.2 shows a formal base model of a neuron. The output of a

neuron is the linear weighted sum of its inputs subjected to an activation function.

Equations 2.1 and 2.2 define the output of an artificial neuron [Pham and Liu,

where Xi, i = 1 ..n are the input values and bj is the bias value. Wji, i = l..n are

the connection weights for neuron j from neuron i. Here n is the number of input

neurons. Vj is the intermediate output which is passed to the activation function

(f) to produce the final output yj.

There are several forms of activation functions from which a suitable one can

be selected according to the target application. Common activation functions are

threshold function, piecewise linear function and sigmoidal function, which are

shown in figure 2.3 [Haykin, 1999]. The important feature of the artificial neural

networks made up of these simple processing units is their ability to learn and

retain information from their environment. Learning in ANNs is discussed in the

next sub-section.

1999].

n

(2.1)

Vj = <t>(vj) (2.2)

2.1 Artificial Neural Networks 11

bias
input

Input jc(

Output layer

Hidden layer

y i

Output

Input layer

Figure 2 .1 . General structure of an artificial neural network.

2.1 Artificial Neural Networks 12

input

bias b

output
jn—1

n - i
Neuron j

Figure 2 .2 . Schematic diagram of an artificial neuron. Redrawn from [Pham and
Liu, 1999].

2.1 Artificial Neural Networks 13

.0 0 M

0.75

0.5

0.25

0.0
0.0 0.5- 1.5 - 1.0 - 0.5 1.0 1.5

v

(a) Threshold function

1.0
(j) (v)

0.75

0.5

0.25

0.0
- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5

v

(b) Piecewise linear function

<j) (v)

0.75

0.5

0.25

0.0
-12 •8 0-4 4 8 12

v

(c) Sigmoidal function

Figure 2.3. Common activation functions. Redrawn from [Haykin, 1999].

2.1 Artificial Neural Networks 14

2.1.3 Learning in artificial neural networks

The most significant property of the neural system is its ability to learn from its

environment and so improve its performance. In the context of learning in arti­

ficial neural networks, learning can be defined as follows: “Learning is a process

by which the free parameters of a neural network are adapted through a process of

simulation by the environment in which the network is embedded” [Mendel and

McLaren, 1970]. Likewise, an ANN also posses this important feature. With the

aid of a learning procedure, the ANNs can extract and store information from

the data made available to the network. The extracted information is stored in

the network through the connection weights, and can be retrieved for future use.

The learning in the ANNs can either be with a teacher (supervised learning) or

without a teacher (unsupervised learning). In supervised learning the network

is presented with a set of input-output examples. Based on the output for a

given example, the teacher will specify a desired output which the network is

expected to produce. The difference between the actual output and the desired

output is called an error signal. The objective of the training procedure is to

modify the network parameters in such a way that the network produces an out­

put which is as close as possible to the desired output, thus reducing the error.

The modification is based on both the input signal and the error signal [Haykin,

1999].

For unsupervised learning, the examples presented are not labelled and the

learning is performed without any external supervision. There are two modes in

this form of learning, namely, self-organising learning and reinforcement learn­

ing. In self-organising learning the network undergoes change of its parameters

according to its learning rules without any supervision. The modifications to the

network parameters are performed in such a way that the network automatically

2.1 Artificial Neural Networks 15

discovers for itself any possibly existing patterns, regularities, separating proper­

ties etc. in the presented data [Zurada, 1999]. Even though the reinforcement

learning comes under the category of unsupervised learning, it can be considered

as a special case of supervised learning because of the use of a critic to control the

learning. Unlike in the case of supervised learning, here the critic evaluates the

quality of the output produced by the network for a given input signal. Modifi­

cation to the network parameters are based on this criticism and the input signal

[Pham and Liu, 1999].

Supervised and unsupervised learning are known as learning paradigms. In

both models the actual modifications to the network parameters are performed

through learning-rules. There are five basic learning rules mentioned in the litera­

ture. They are error-correction learning, memory-based learning, Hebbian learn­

ing, competitive learning and Boltzman learning [Haykin, 1999]. Error-correction

learning, as the name suggests, tries to correct an error estimation. For a par­

ticular training sample, the difference between the actual output of the network

and a desired output is considered as the error. The learning is performed in such

a way that the network is enabled to give an output as close as possible to the

desired output, thus reducing the error.

Memory-based learning functions by storing all the past experience or training

samples (xi? di) explicitly in a large memory. Here (x*, di) are correctly classified

input-output samples. Classification of an unseen sample is done by retrieving

and analysing a training sample from the stored memory which falls within the

logical neighbourhood of this new sample [Haykin, 1999].

The Hebbian learning rule was proposed in a neuro-biological context. This

rule, which was named in honour of Hebb, is the oldest and most popular among

the five learning rules. The Hebbian learning rule was introduced to explain

2.2 Biological background 16

learning in biological neural networks, which suggests that a particular connec­

tion will be strengthened if neurons on both ends are active simultaneously and

persistently. In mathematical terms, Hebb’s hypothesis can be described by equa­

tion 2.3.:

dwji(n) = r]yj(n)xi(n) (2.3)

where dwji(n) is the change in strength for the connection from neuron i to

j\ yj{n) is the output of neuron j and Xi(n) is an input. 77 is a learning rate

parameter and n specifies some stage in the learning process.

In competitive learning the output neurons compete with each other to be­

come active. Winner-Take-All is a popular example of this type of learning.

Generally this learning rule is used for learning the statistical properties of the

inputs [Haykin, 1999; Zurada, 1999].

Boltzmann learning is a stochastic process based on statistical mechanics. A

neural network with Boltzmann learning is often called as a Boltzmann machine.

Generally, this is a recurrent network and the neurons operate as binary nodes

by being either in an on or off state. An energy function is accompanied with

the machine which can measure the energy contained by the network. A neuron

is selected at random and its state is flipped during the learning process. This is

continued until some equilibrium state is reached [Haykin, 1999].

2.2 Biological background

The creation of .the ANNs was inspired by the way biological neural systems

process information [Jain et al., 1996]. For a better understanding, it is neces­

sary to explore briefly the biophysical aspects of biological neural networks at a

high level of abstraction regarding the processing of information. Over the past

2.2 Biological background 17

hundred years, detailed knowledge about the structure and functionality of the

neural system has been acquired due to the valuable research conducted in vari­

ous disciplines. It is known in neuroscience that the brain, the centre of a nervous

system, is mainly made up of nerve cells called neurons and neuroglia or simply

glia, a glue like substance. Neurons are the elementary processing units and are

connected to each other in a complex pattern. Glia is mainly responsible for giv­

ing the structural stabilisation and providing energy for neurons [Shepherd and

Koch, 1990]. It has been estimated that human brain consists of approximately

10 billion neurons and 60 trillion connections [Haykin, 1999].

2.2.1 The neuron

Neurons, the structural and functional components of the neural systems, came

to light in human history relatively recently. In 1836 Jan Purkinje, a Czech

physiologist, published his observations of cells in the cerebellum (a region of

brain responsible for the integration of sensory perception and motor output).

However, his work showed little more than the nucleus and surrounding jelly-like

material called cytoplasm that fills the cell. Otto Deiters of Bonn observed that

two kinds of fibres arise from the nerve cell body in 1865. Later, in 1885, Camillo

Golgi of Paria found a method to stain a nerve cell in its entirety to enable it

to be visible. Based on the work by Golgi, in 1889 Santiago Raymon y Cajal,

a Spanish histologist, visualised an entire nerve cell and proved that each nerve

cell is an individual entity. In 1891, Wilhelm Waldeyer, a Professor of anatomy

and pathology, applied the cell theory to the nerve cells and suggested the name

neuron for the nerve cell. A more detailed description of the history of neurons

can be found in [Shepherd and Koch, 1990].

Neurons differ in size and shape but in general can be described as shown in

figure 2.4, which is a schematic diagram of the pyramidal cell, one of the most

2.2 Biological background 18

common cortical neurons [Haykin, 1999]. The main functional components of a

typical neuron are the cell body or nucleus, dendrite and axon. Dendrites are the

receptors of a neuron. This tree like structure receives signals from other neurons

and passes them to the nucleus. Neuronal signals are in the form of short electrical

pulses called action potentials or spikes. The nucleus is the functional component

which performs non-linear processing on its inputs and generates the output. The

output signals, which are in the form of pulses, will propagate through the axon,

which is the effector of the neuron. This tube-like component contains many

branches and each branch terminates in a special component named a synapse.

The signals carried along the axon will be replicated at each branch and will be

passed onto the dendrites of other neurons through the synapses.

2.2.2 The synapse

The synapse is the connector of the terminal point of an axon branch and a

dendrite. A signal from a pre-synaptic neuron will be passed onto a post-synaptic

neuron through a synapse. It is common to refer to a sending neuron as the pre-

synaptic neuron and the receiving neuron as the post-synaptic neuron. Figure

2.5 shows a chemical synapse, the most common synapse in the vertebrate brain.

The terminal point of an axon branch and a dendrite is separated by only a small

gap, called the synaptic cleft. When a spike arrives at this point, a series of

biochemical steps will be triggered which will eventually pass the signal to the

other side [Gerstner and Kistler, 2002]. Depending on the type of the synapse,

the effect on the receiving side can be positive or negative. A synapse is not

merely a passive device whose output is a linear function of its input, but is a

dynamic element with complex non-linear behaviour [Zador, 2000].

Synapses play an important role in the learning and memory of a nervous

system. The strength of a synapse determines the amount of excitation induced

2.2 Biological background 19

Dendritic spines

Synaptic
inputs

Apical
dendrites

Segment
of dendrite

Cell
body

Basal
dendrites

Axon

Synaptic
terminals

Figure 2.4. Schematic diagram of a neuron. From [Haykin, 1999].

2.2 Biological background 20

by the synapse on a dendrite of a post-synaptic neuron for stimulation from a

pre-synaptic neuron. The important aspect is that the strength of a synapse is

modifiable through some molecular mechanisms. This phenomenon is known as

synaptic plasticity [Gaiarsa et al., 2002]. Learning in neural systems is achieved

through some mechanism which modifies the synaptic strength. These modifica­

tions will be retained by the synapses for either short term or long term depending

on the molecular mechanism involved. This plasticity feature enables the learning

and memory storage capability for a neural system [Shi et al., 1999]. Neuronal

activity is a complex mechanism which is based on the flow of ions. The next

section describes the electrical properties of the neurons and gives brief detail

about neuronal activity.

2.2.3 Electrical properties of neurons

Neurons or nerve cells and their surrounding contain a huge number of ions and

molecules in different varieties similar to other biological cells. Ions such as K +,

7Va+, Ca2+, Mg2+, Cl~ and organic anions (A ~) are the more commonly found

components. The nerve cells are covered by a bilayer membrane which is almost

impermeable to ions, hence blocking the free movement of ions and anions across

the membrane. Generally, due to the difference in the concentration of ions,

there is a net negative charge inside the cell and a net positive charge outside the

cell. The ions repel each other and accumulate closer to the inside surface of the

cell membrane. Due to electrostatic forces, positive ions will be attracted to the

outer surface, as in a capacitor. Since the membrane is impermeable for ions, a

potential difference will be maintained across it. This potential difference, called

the membrane potential, is necessary to keep the nerve cell functioning. The

neuronal pulses or spikes are the outcome due to the changes in the membrane

potential. The entire surface of the cell membrane is not strictly impermeable

2.2 Biological background 21

axon terminal
of presynaptic
neuron

microtubules

mitochondrion

synaptic
vesicles

dendnte

dendritic
specialization'

dendritic spine
of postsynaptic
neuron

Figure 2 .5 . A chemical synapse. From [Dayan and Abbott, 2001].

2.2 Biological background 22

to ions. On the surface there are embedded numerous passages. One type of

passage, called ion-channels, will allow specific types of ions to pass through them.

Another type of ion-channel embedded on the membrane is an ion pump. When

activated, this type of ion channel can pump ions through the membrane into or

out of the cell. The capacity of the channels for conducting ions can be modified

by factors such as membrane potential, intracellular messengers and extracellular

neuro-transmitters. When there axe no external excitations, a neuron will be

in an equilibrium state. The membrane potential at this state is called reversal

potential, and under normal conditions this is about -70 mV. If the membrane

potential drops below or becomes higher than reversal potential, ions will flow

into or out of the cell, to reverse the potential back to the equilibrium state

[Dayan and Abbott, 2001].

2.2.4 Neuronal firing

Neuronal activity is marked by the firing of neurons. Generally, in a neuron

the arrival of inputs from other neurons will result in an excess net inward ion

flow. Because of this, a positive charge will build up inside the cell, increasing

the neuron potential. Depending on the previous and current inputs, this charge

build-up may increase or may dissipate over time. This charge build-up will

eventually open more ion channels, which will in turn increase the inward ion flow

in a cyclic manner. At the point when the membrane potential reaches a threshold

value, an action potential will occur causing the neuron to fire due to the huge

amount of positive charge inside the membrane. An action potential is roughly

a 100 mV fluctuation in the electrical potential across the cell membrane with a

time duration of about 1 to 2 msec. Although the action potentials can vary in

duration, amplitude and shape, they are generally treated as identical stereotyped

events in neural encoding studies. After the firing event, the membrane potential

2.3 Neuronal coding 23

will reach a very low value. Due to this low potential and open ion channels,

a neuron cannot fire again within a period following a previous firing activity.

This time period is known as the refractory period. Eventually, the neuron will

return back to its resting state and will be ready again for another episode of

firing activity [Shepherd and Koch, 1990; Dayan and Abbott, 2001].

2.3 Neuronal coding

Neuronal coding is one of the fundamental issues in neuroscience. It is said that

in every small volume of the cortex of a mammalian brain, thousands of spikes

are being generated in each millisecond. Each neuron emits spikes continuously

as a spike train. Generally it is accepted that the information is coded by means

of these spikes [Dayan and Abbott, 2001]. How the information is coded is still

an ongoing debate. What information is transmitted and is it possible for an

external observer to decode that information, are the other two fundamental is­

sues of interest [Gerstner, 2001]. Over the recent years, several coding schemes

have been proposed and analysed. However, three coding schemes, namely, rate

coding, temporal coding and population coding are most widely used in practice.

Another important issue here is to understand whether the individual action po­

tentials and individual neurons encode independently or the correlations between

different spikes from the same or several neurons carry significant information. In

a simpler form, the rate coding and temporal coding schemes deal with a single

neuron. However, the population coding is based on the spikes from a population

of neurons. This scheme considers the correlations among spikes from a single

neuron as well as from other neurons [Gerstner and Kistler, 2002].

2.3 Neuronal coding 24

2.3.1 R ate coding

The most commonly used coding scheme is the rate coding method, where the

information is transferred by using the mean firing rate of a neuron. However,

there is no clear- definition for mean firing rate in the literature. In fact, there

are at least three modes of rate coding methods used in practice. Firing rate as

a temporal average is the most general notion, which is more applicable when

the stimulus is constant or slowly varying. The second rate coding concept is the

average as a spike density. In this mode, the average is found over several obser­

vations of an event. This method is more suitable for the evaluation of neuronal

activity, particularly where the stimulus varies over time. Although it is accept­

able as an experimental procedure, applicability of this notion is questionable in

practical situations. The third form is the rate as population activity, where the

average is taken over a population of neurons instead of using a single neuron.

Throughout the past several decades there was a wide belief that the information

is coded in the neural systems through the mean firing rate of a neuron. Since

the measurement of spike rate is relatively easy and straight forward, this coding

scheme was used as a standard tool for describing the properties of biological

neurons [Gerstner and Kistler, 2002]. Furthermore, the development of the arti­

ficial neural networks was also based on this idea [Zador, 2000], where the analog

value generated by an artificial neuron as its output represents the firing rate of

a neuron [Maass, 1997a].

2.3.2 Temporal coding (Spike coding)

Unlike rate coding, the temporal coding scheme, also known as spike coding,

utilises the timing of individual spikes. Here, information is considered to be

coded through the timing of each spike generated by a neuron. This scheme

2.3 Neuronal coding 25

utilises the exact firing times of neurons, which has the potential to convey a

huge amount of information [Thorpe et al., 2001; Panchev and Wermter, 2001].

There are several variations of this coding notion. A straight forward scheme

is time-to-first-spike, where the information is coded through the timing of the

first spike for a particular stimulation. In this case, the spikes following the first

one are considered as irrelevant and ignored. The idea behind this scheme is

that the time difference between the first spike and a reference signal is used for

coding the information. The reference signal could be local to the neuron or group

of neurons concerned which specifies the commencement of the stimulation. A

highly stimulated neuron will tend to fire rapidly while a less stimulated neuron

will generate spikes more slowly. Hence a neuron which fires closer to the reference

signal would indicate a strong stimulation while a later one could represent a weak

stimulation [Gerstner and Kistler, 2002]. This idea of the timing of the first spike

contains much of the information conveyed through a spike train, is reinforced by

a constraint faced in neural events. It is considered that, due to time constraints,

it is unlikely for the brain to be able to evaluate all the spikes but only the first

from each neuron per processing step [Thorpe et al., 1996]. Due to the simplicity

of this coding scheme, this is deployed in several analytical studies [Maass and

Schmitt, 1999; Maass, 2001a] as well as in this research.

The reference signal considered in the coding model discussed here is local to

the neuron concerned. Alternatively, global periodic signals, which are common in

some areas (Hippocampus, Olfactory) of the brain can be deployed for reference.

Phase coding is a variant of the temporal coding scheme which makes use of the

above mentioned global reference signal. Spikes from some other neurons can also

be used as the reference signal for spike codes, which take into consideration the

correlation and synchrony of neurons. This can be also viewed as a population

coding scheme, which is discussed in the next section.

2.3 Neuronal coding 26

2.3.3 Population coding

Population coding views the problem of neuronal coding in a different way as

compared with the other two schemes mentioned above. The fundamental issue

here is whether the individual spike events and individual neurons encode the

information independently of each other or does the correlation between different

spikes and different neurons carry significant amounts of information? Population

coding takes these correlations into account. Here it is not important whether

the information is carried through spike rates or spike times [Dayan and Abbott,

2001]. For example, a form of population coding views the coding mechanism

as a rate of population activity. Here, instead of the average spike count from a

single neuron, the average is found from spikes generated by a group of neurons.

The population coding scheme cam also utilise the timing of individual spikes.

For example, a reference spike from a neuron can be used to code the information

from some other neurons based on the temporal property of their spikes [Gerstner

and Kistler, 2002].

2.3.4 On the coding of neural information

The nature of the neuronal code is a topic of intense debate within the neuro sci­

ence community.- The rate coding scheme has been successfully applied in various

models and studied over the past years due to the relative ease of measuring the

spike rate experimentally. However, in recent years the validity of rate coding

has been severely questioned [Gerstner and Kistler, 2002]. This coding scheme is

thought to be much too simplistic to perform complex tasks. Not only does the

temporal averaging of the spike train lose valuable information on the individual

spike, but also the process of finding the average firing rate is relatively slow

compared to the speed of neural events. It was found in several studies that the

2.4 Neuron models 27

time window available for a neuron during a neuronal event is too small to find

the rate of spikes [Thorpe and Imbert, 1989], In other words, in neural systems

where very rapid processing is required, the neurons participating at each level

of the processing hierarchy will not have enough time to emit or wait for more

than one spike [Thorpe et al., 2001]. In reality, information is likely to be coded

both by the rate of spike and the spike timing of single neurons. But the question

here is whether the rate coding can be used for fast and complex computation.

Experimental evidence is mounting in favour of temporal coding to establish it

as the most plausible one in most cases [Thorpe, 1990].

In neural systems, information is likely to be carried by both individual spikes

and through correlation. It is evident that the correlation can carry additional

information but it was found that this information is rarely larger than 10% of

the information carried by independent spikes. Since independent spike codes

are much simpler to implement and analyse than population codes, most work

on neural coding favour spike independence [Dayan and Abbott, 2001]. For these

reasons, temporal coding has been widely deployed in recent research studies on

spike-based neural networks.

2.4 Neuron models

Neuron models are well detailed mathematical models used to describe the be­

haviour of neurons. Based on the knowledge of biophysical mechanisms responsi­

ble for generating neuronal activity, several neuron models have been proposed.

These models vary in their level of abstraction, descriptive detail and complex­

ity. Two types of models, namely, conductance-based models and spiking neuron

models are described here. The conductance based models are described here to

give a better understanding of a neuron’s physical behaviour. The spiking neuron

2.4 Neuron models 28

models are the basis for the spiking neural networks which describe the state of

a neuron at a higher level of abstraction [Gerstner and Kistler, 2002].

2.4.1 Conductance-based neuron models

A conductance-based neuron model describes the behaviour of a neuron in terms

of the ion flow through the membrane of a neuron. Hodgkin-Huxley model is

a suitable example because of its simple approach and also for its popularity as

a base model for most of the conductance-based models [Hodgkin and Huxley,

1952]. In order to investigate the flow of electric current through the neuron

membrane, Hodgkin and Huxley performed a series of experiments [Hodgkin and

Huxley, 1952] on the surface membrane of a squid’s giant nerve fibre. Based on

the experimental findings, a mathematical description of the behaviour of the

membrane was developed. The Hodgkin-Huxley model can be explained with an

equivalent circuit shown in Figure 2.6. In this model, three different types of ion

channels are accounted for the flow of ions, namely, sodium channel, potassium

channel and leakage channel. In figure 2.6, the sodium channel is denoted with

subscript N a , the potassium channel with subscript K and an unspecified leakage

channel with subscript L [Gerstner and Kistler, 2002]. This circuit describes each

channel with a conductor and a battery. The conductor in figure 2.6 specifies the

conductance of the channel and the battery specifies the potential induced by

the concentration of ions. As the result of an injected external current I(t),

charges inside the membrane will increase, while a part of it leaks out through

the ion channels. Similarly, in this circuit when a current I(t) is injected, a

part will be stored in the capacitor Cm and the remainder will leak through the

conductors. The Hodgkin-Huxley model may be described with a set of four

differential equations. For a detailed description of the Hodgkin-Huxley model,

refer [Gerstner and Kistler, 2002]. There are a number of other models varying

2.4 Neuron models 29

1(0

On Na

Figure 2.6. An equivalent circuit for the Hodgkin-Huxley model. Redrawn from
[Gerstner and Kistler, 2002].

2.4 Neuron models 30

in complexity and descriptive detail, but they are not discussed here since they

are outside the scope of this study.

2.4.2 Spiking neuron models

Conductance-based models can reproduce the electro-physiological measurements

more accurately, but they are difficult to analyse because of their complex na­

ture. Therefore, integrate-and-fire models were introduced, which are simplified

models and considered as formal spiking neuron models. These models do not

show the complex details explicitly and are very popular for studies of neural

coding, memory and network dynamics. Here, the net current through all the

ion channels is considered as a single leakage current. A popular example of the

formal spiking neuron model is leaky-integrate-and-fire model Generalisation of

the leaky-integrate-and-fire model led to the introduction of the Spike Response

Model (SRM). This model was generalised in such a way as to modify it to be

time dependent, whereas the integrate-and-fire model depends on voltage [Ger-

stner and Kistler, 2002]. The following section introduces the SRM model in

detail.

2.4.3 Spike response model

The spike response model (SRM) is basically a generalised leaky-integrate-and-fire

model. The leaky-integrate-and-fire model describes the biophysical mechanisms

of the neuron mainly by means of its membrane potential. In addition, this

model gives much importance to the time lap taken from the last firing event.

The SRM model is the basis for the spiking neural network introduced later in

this chapter. The model describes the state of a neuron j at time t by the state

variable Uj{t) [Maass, 2001a]. Let T* be the inputs the neuron j receives from

2.4 Neuron models 31

pre-synaptic neurons i G Tj, where Tj = {i \ i pre-synaptic to j}. In a typical

network a neuron would have several pre-synaptic neurons and each could present

several input spikes. The effect of an input spike given at t{ to the neuron j at

time t, (t > t{) will be Wji €ji(t — t{), where eji is called the spike response

function. The input spikes can either increase or decrease the state variable Uj.

If uj exceeds a threshold value 9 at some time t, then an output spike will be

generated. At a particular time t, let all the previous output spikes of neuron j

be Tj where Tj = { t j ; 1 < / < n} = {£ | Uj(t) = 9 and Uj{t) > 0}. Here the tj

is the time when the state variable Uj crosses the threshold value 9 from below.

Immediately after a particular firing event the neuron potential will be set to a

very low value and will return to normal state after a significant amount of time

in order to realise the refractory phenomenon of a biological neuron. The state

variable Uj(t) of a neuron j at time t can be defined by equation 2.4.

uAt) = ^2 (2.4)
t tef j ie r J e7i

where Q is the function to reflect the refractoriness of the neuron j , the term Wji

is the strength of the connection between the neurons i and j , and 6ji is the spike

response function which can be either excitatory or inhibitory. Equations 2.5 and

2.6 specify typical examples of spike response functions which are described in

figure 2.7 [Gerstner, 2001]. A more complex spike response function is given in

equation 2.7 [Gerstner and Kistler, 2002]. Excitatory synapses will increase the

potential of the receiving neuron. For an inhibitory synapse, the effect will be in

negative direction which will decrease the state of the receiving neuron.

2.5 The spiking neural network 32

where re(> 0) and T;(> 0) are time constants for excitatory and inhibitory spike

response functions respectively. ra(> 0) and 7 5 (> 0) are two other time constants.

Although the threshold 0 is specified as a fixed value, it can be viewed as a time

varying function. This is to reflect the refractory behaviour of a biological neuron

immediately after a spike event. In the spike response model there could be an

additional effect due to an external current I ext (=J0°° k(t — U, s) I ext(t — s) ds),

which can be ignored if all the inputs to the neuron are only by means of spikes

[Gerstner and Kistler, 2002].

2.5 The spiking neural network

Spiking neurons differ from conventional neurons such as McCulloch-Pitts or sig­

moidal neurons in their characteristics. Even though spiking neuron models were

introduced roughly at the same time as McCulloch-Pitts neurons, due to their

complexity they were not widely used for applications in artificial neural networks.

The introduction of SRM neurons paved the way for more research on spiking

neural network models. As a result, a recent spiking neural network model intro­

duced in [Maass, 1996] became more popular leading to further analytical studies

[Maass, 1997a] and a significant increase in research on learning in spiking neural

networks [Gerstner et al., 1996; Ruf and Schmitt, 1997; Bohte et al., 2002b,a].

The following sub-sections present the network model introduced by Maass in

[Maass, 1996].

2.5.1 Definition of the spiking neural network

Maass [Maass, 1996] proposed a spiking neural network model which is biologi­

cally realistic and powerful yet easier to implement and analyse. This model is

based on SRM neurons and incorporates the timing of the action potentials for

2.5 The spiking neural network 33

CO

0.8

0.6

0.4

0.2

0.0
600 20 40 10080

time t (msec)
(a)

0.0

- 0.2

-0.4

- 0.6

- 0.8 -

- 1.0

0 20 40 60 80 100
time t (msec)

(b)

Figure 2.7. (a) Excitatory and (b) inhibitory spike response functions. Redrawn
from [Gerstner, 2001].

2.5 The spiking neural network 34

computation and communication. The spiking neural network N can be defined

as follows:

• a finite directed graph (V ,E) , where the elements of V are called as neurons

and elements of E as synapses or connections

• a subset Vin C V of input neurons

• a subset V^t Q V of output neurons

• a threshold function 6 j : R + —» R U oo for each output neuron j G Vout

• a spike response function eji : R + —> R for each synapse { i , j) G E

• a weight function : R + —> R for each synapse { i , j) G E

Assume firing of the input neurons i G Vin is independent of the SNN. Let the

input for the network N is defined as a set T* C R + of firing times for the input

neurons i G Vin . Assume C R^ is the set of potential firing times of the

output neurons j G 14ut- The equation 2 .8 specifies the potential U j (t) of the

output neuron j at some time t .

uj(t) = E, wi ^ ^ (2-8)
ieVin se î-sKt

The set of firing times for an output neuron j G Vout is defined recursively. The

first firing of neuron j occurs at time t when the potential U j (t) > 0 o where #o

is the initial threshold value. The consequent firing events will be at t when

U j (t) > 9 (t — s). Here t > s and s is the time of the most previous firing event

of the output neuron j . The firing times T j of the output neurons j G V^t is the

output of network N.

A number of researchers have carried out significant work on spiking neu­

ral networks based on the above described model. Several modifications and

2.5 The spiking neural network 35

assumptions were proposed in previous research to simplify the implementation

of the above described model without losing its computational power. A major

modification comes through the selection of the temporal coding scheme. If the

information is coded through the timing of the first spike, it is sufficient for a neu­

ron to fire once during a cycle of operation in order to convey the information.

Hence, the refractory term can be removed [Ruf and Schmitt, 1997]. In this case,

the threshold can be kept constant throughout the activity of the network [Ruf

and Schmitt, 1998; Bohte et al., 2002a,b]. Another improvement is the inclusion

of a delay dji for each synapse in addition to the strength [Maass, 1997b]. When

a spike is passed through a connection, it will be delayed from reaching the target

neuron by a finite time, specified by the delay value of that particular connection.

2.5.2 Computing w ith spiking neural network

A number of analytical studies were performed by other researchers on spiking

neural networks in order to investigate their capability. The objective of some of

these studies is to explore how they can be deployed to compute values similar to

the output of conventional neural networks. They are also used to compare the

computing capability of the spiking neural networks with other network models.

These issues are discussed below in detail.

2.5.2.1 Realising a perceptron

A perceptron is the simplest computational unit of the conventional neural net­

work. It is a threshold gate which generates an output of 1 if the sum of the

weighted inputs exceeds a threshold value and otherwise an output of 0. A spik­

ing neuron can act as a threshold gate for binary inputs. Here, the inputs to the

neuron could be either an input spike at some time Tin or no spike at all. By

keeping the spike response function e^(£) identical, the effect of each input spike

2.5 The spiking neural network 36

can be considered as a constant e. Hence, if the weighted sum of the active inputs

e exceeds the threshold value 0, then the neuron j will generate an output

spike. In this way, a single layer network of threshold gates can be realised with

spiking neurons [Maass, 2001a].

2.5.2.2 C om puting a weighted sum

A spiking neural network can produce an output of temporal patterns when

presented with an analog vector encoded temporally. The output of a spiking

neuron is the time of the generation of a spike. For computation in multilayer or

recurrent networks, a mechanism is necessary in order to realise the output of a

spiking neuron as an analog value encoded in the same way as the input. This

mechanism can be viewed as a shifting of the firing time tj of a spiking neuron

j , depending on the input patterns U presented and the connection parameters

Wji and dji. A mechanism which computes the weighted sum Y i aji x i through

the firing time of neuron j is explained below. Here E R are some arbitrary

parameters and E [0,1] are the inputs to the network for all i pre-synaptic to

neuron j [Maass, 2001a].

Let the input pattern be temporally coded as U = Tin — £*, with Tin as

an independent reference signal. Assume that the spike response function Cji(t)

increases linearly until its peak value with a gradient of Aji E R and decreases

linearly after crossing the peak value. With the selection of suitable parameter

values for the spiking neuron model it is possible for the neuron to fire at some

time when all the inputs to the neuron are in their linear increasing segment. For

a spiking neuron j the potential at time t is defined by the equation 2.9:

where Tj is the set of neurons pre-synaptic to neuron j ; Wji are the connection

(2.9)

2.5 The spiking neural network 37

weights and dji are the connection delays for all i E Tj. Let the neuron j fire at

time tj. At the time of firing the potential of neuron j at time t should be equal

to the threshold, i.e., Uj(tj) = 0,

hence

iETj

Since the spike response function is assumed to be linear with gradient Aji,

iETj

Since the parameter is independent from the inputs, the firing time tj repre­

sents an arbitrary weighted sum ^ 2 i e r . &ji %i-

2.5.2.3 Coincidence detection

An important feature of spiking neuron is that it can act as a coincidence detector

for the incoming pulses [Abeles, 1982; Maass, 2001a]. Spiking neuron can detect

(2 .10)

(2 .11)
ieTj

hence

9 Wji kji (ti dji)
(2.12)

let A — ^ jigrj Ĵji ^ji ’ and

thus,
ieTj

ieTj

ieTj

where T ^t is an independent constant defined as,

2.5 The spiking neural network 38

the coincidence of the input signals with great ease, unlike the conventional neural

networks, where it is computationally much expensive. A spiking neuron can be

tuned to fire only when it receives inputs simultaneously, and the coincidence of

the input signals can only then be detected. If the arrival time of the incoming

spikes encodes analog numbers Xi, then a spiking neuron can detect whether

some of these numbers have almost equal value. A neuron fires only when its

potential due to the incoming spikes exceeds the threshold value. Consider a

simple scenario where a spiking neuron needs at least two nearly simultaneous

input spikes. In order to obtain a potential equal to or higher than the threshold,

at least two inputs should reach the neuron within some acceptable time window.

This is because the effect of an input spike will dissipate with time after reaching

a peak value. The combined effect of the input spikes must reach the threshold

in order to enable the neuron to fire. Figure 2.8 describes this typical scenario

graphically. The example specified above handles the coincidence detection of

two spikes, but a spiking neuron can also be deployed to detect more complex

temporal patterns with more than two spikes [Maass, 1997b].

The functionality of a spiking neuron as a coincidence detector in the tempo­

ral domain is similar to a Radial Basis Function (RBF) [Haykin, 1999] unit in the

continuous domain [Maass, 2001a]. The RBF unit is an artificial neural network

paradigm which is based on the techniques for interpolation in multidimensional

space with a set of functions called as Radial basis functions. Radial basis func­

tions are generally a set of Gaussian functions which can compute the difference

between an input vector and a specified vector, using an Euclidean norm. A

typical RBF function for a single input x is given in equation 2.13 [Orr, 1996]:

h(x) = e- (x- c)2/r2 (2.13)

where c is called the centre of the function and r is the radius. In spiking neural

networks, the temporal delays play the role of the centre of an RBF neuron. When

2.5 The spiking neural network 39

2.0

1.6 Threshold

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
20 40 600 30 5010

time t (msec)
scene 1

^ 2.0

1.6 Threshold

1.4

0.8

0.6

0.4

0.2

0.0
0 10 20 4030 50 60

time t (msec)
scene 2

Figure 2.8. Coincidence detection by a spiking neuron. In the figure (a) and
(b) show the effect of two input spikes, (c) shows the change in total potential.
In scene 1, since the two spikes are close, the potential exceeds the threshold
therefore an output spike can be generated, but not in scene 2.

2.5 The spiking neural network 40

correctly tuned, this delay pattern will compensate for the differences of the input

pattern and enable all the inputs to coincide at the target neuron [Hopfield, 1995].

2.5.3 Spiking neural network simulators

In order to analyse the functionality of an SNN, it must be simulated by some

means. A number of dedicated digital and analog pieces of hardware are available

for this purpose [Ienne, 1997]. However, software is more popular for simulating

and analysing neural networks due to its high degree of flexibility. Several soft­

ware packages and libraries are available for this purpose. GENESIS (for GEneral

NEural Simulation System) is well known, which has been developed at Califor­

nia Institute of Technology (CALTECH). In essence, GENESIS is a research tool

to provide a standard and flexible means of constructing realistic simulations of

biological neural systems. This was specifically designed to allow the construction

of biological simulations at many different levels from sub-cellular components to

whole cells and from single cells to networks of cells [Bower, 1991]. Another spik­

ing neural network simulator in objective C for the MacOS platform is available

which was developed in the department of Computing Science and Mathematics,

University of Stirling, Scotland [Smith, 2004].

In addition, there are libraries available for the simulation of spiking neural

networks. SpikeNNS is one of them which is capable of simulating multi-layer

architectures with biologically inspired topologies and spike-timing dependent

learning [Marian, 2001]. This is distributed as a library of C functions and re­

quires Stuttgart Neural Network Simulator (SNNS) as the base program. SNNS

is a software simulator, currently available for UNIX and Windows platforms,

developed in 1990 at the Institute for Parallel and Distributed High Performance

Systems (IPVR) at the University of Stuttgart [Zell et al., 1992]. Currently,

SpikeNNS is available as a patch file which can be added to the SNNS. Another

2.5 The spiking neural network 41

spiking neural network library is Amygdala written in C ++ for Linux platform. It

includes several neuron models, Symmetric Multi-Processing (SMP) support and

facilities for developing SNNs with genetic algorithms [Koch and Grover, 2002].

Although most of the systems available are capable of modelling and simulat­

ing huge networks with complex neurons and connections with realistic biological

neural functions, their applicability is limited for real-world problems. An objec­

tive of this research is to develop a spiking neural network model for clustering

and classification tasks. Hence, software has been developed as part of this re­

search which gave great flexibility for all the types of experiment to be performed.

This software realises the SNN model as a discrete model on a digital computer.

The following section describes this in detail.

2.5.4 Discrete spiking neural network m odel

The functioning of a spiking neuron is time related. To compute with an SNN, it

has to be activated over a period of time. During this time, the inputs are given

at specified times as spikes. Output spikes are generated depending on the timing

of the inputs, network connections and the parameters of the neuron. The output

of the network is the timing of these spikes. The difference between biological

systems and digital systems is that the signals in the former are continuous and

in the latter are discrete. Hence, a suitable model is necessary to realise the

continuous functionality of an SNN on a digital computer. In order to simulate

an SNN, the continuous time window is divided into a number of discrete time

intervals. Each time interval is considered as a step in the computation. For each

step the state of the network is updated [Jahnke et al., 2001]. The input to the

network is realised through the timing of input spikes. Hence, the continuous

analog input values are coded using small temporal differences [Bohte et al.,

2002b]. A high input value is represented by an early input spike and a low value

2.5 The spiking neural network 42

by a late spike with reference to an input time window [Gerstner and Kistler,

2002]. Hence an input value G [0,1] to the neuron i is represented by a spike

at step rii, which can be computed by the equation 2.14.

i (1 %i) t input jwindow i /n . a
= L Jt J <2-14)

where tinput_Window is part of the activity window starting from to where all the

input spike events occur, dt is the time interval between two consecutive steps.

The firing time U of a spike at step rii is an approximation of the time between

to + (rii — 1) dt and to + ni dt.

Let T be the duration of the activation time window and to be the start of

the activity. If the whole process expands over some adequate number of steps

with each step having an equal time slice of dt, then the state of the neuron j at

step n can be given by the equation 2.15:

uj(n) = wji e((n — si) dt) (2.15)
t:l. .m,Si<n

where s, is the step count where the input for neuron i is presented; m is the total

number of input neurons. Here e(t) is the spike response function which is 0 for

t < 0 and reaches 0 when t —> oo. If the simulation is carried out as a separate

activity for each set of stimulation then to can be set to zero. In addition, by

selecting dt as a, unit interval the equations 2.14 and 2.15 can be simplified. In

this case the number of time steps will be equal to the duration of the activation

time window. The precision of the network can be increased by decreasing the

time slice dt. This equates to increasing the activation time steps. The duration

of the activation window has to be chosen to be large enough to accommodate

the full activity of the neuron.

2.5 The spiking neural network 43

2.5.5 Learning in spiking neural networks

A number of researchers have carried out significant work on learning in spiking

neural networks. This section summarises their research, which includes research

on the modelling of biological neural systems with spike-time-based networks as

well as work on learning with SNN for several applications.

Pioneering work on learning in neural systems was performed by Hopfield

[Hopfield, 1995] and a computational model for pattern recognition computation

was proposed. An important argument put forward by Hopfield is that the choice

of information representation in a system should be based on its ease of use for

computing useful results rather than for their efficient transmission properties.

Hence, the usage of the timing of action potentials to represent the information

in the network instead of the very popular analog value representing the rate

of firing, was introduced. This approach later inspired much of the research on

spiking neural networks. The Hopfield model computes by combining information

through pathways of different delays, where a computational unit behaves more

like a radial basis function unit rather than an elementary sigmoid unit [Maass,

1997a]. Gerstner et al. [Gerstner et al., 1996] performed a modelling study

of the barn owl’s auditory system and introduced a mechanism for learning in

neural systems. The network considered is comprised of a broad distribution

of delayed interconnections and trained with an unsupervised Hebbian learning

rule. The learning rule is based on the firing times of the pre- and post- synaptic

neurons. If a post-synaptic spike precedes the pre-synaptic spike by a specified

time, then that connection is strengthened, otherwise the connection is weakened.

The learning selects matching delays and enhances it while weakening the others.

This mechanism is considered to be an implementation of the model proposed in

[Hopfield, 1995] [Ruf and Schmitt, 1998]. Some other significant modelling studies

2.5 The spiking neural network 44

have been reported in [Blum and Abbott, 1996; Gerstner et al., 1996; Eurich et al.,

1999; Kistler and van Hemmen, 2000; Song et al., 2000; van Rossum et al., 2000].

A modelling study for the activity-dependent development of directional selective

cells in the primary visual cortex using self-organising delay adaptation maps can

be found in [Tversky and Miikkulainen, 2002].

Ruf and Schmitt [Ruf and Schmitt, 1998] realised self-organisation in a net­

work of spiking neurons using action potential timings. In their work, an un­

supervised learning mechanism was proposed to train a network of spiking neu­

rons with temporally coded inputs. Based on the firing times, a winner neuron

is determined among the competing neurons and its connections’ strength is in­

creased. Usage of the spike times enabled the model to identify the winner neuron

quicker with locally available information. Self-organisation is realised by using

lateral excitation and inhibition. The neurons which are topologically closer to

the winner neuron are strengthened while neurons which are away from the win­

ner neuron are weakened. It was shown that the training mechanism creates a

topology-preserving map similar to the Kohonen’s self-organising map.

Based on the work presented in [Hopfield, 1995; Gerstner et al., 1996], further

research was performed by Natschlager and Ruf [Natschlager and Ruf, 1998] on

the spatial and temporal pattern analysis capabilities of spiking neurons. This

was an extension of the work of previous research by considering the firing times

of the neurons in addition to the information about whether a neuron is active or

not. Using artificially constructed data, it was found that the neurons converged

to the centres of clusters even in the presence of noise. The model was also able

to reconfigure the clusters if new classes of data were added or removed during

the learning process. This model claimed to be a feature-extraction technique,

since the learning algorithm was able to find proper delays for the coordinates of

the sub-space and deactivate the remaining inputs.

2.5 The spiking neural network 45

Bohte et al. [Bohte et al., 2002b] further investigated unsupervised clustering

using spiking neurons. The model presented in [Natschlager and Ruf, 1998] failed

to cluster more realistic data due to the low precision of the input encoding which

in turn limited the clustering capability. It was found that this model had a lack

of clustering capacity since it failed to detect small clusters. To improve the

encoding precision and clustering capability, a coding scheme was proposed in

[Bohte et al., 2002b], which uses a population of neurons to encode the input.

It was shown that this new coding strategy enhanced the model’s capability

in clustering data with high precision. However, due to the increased number

of input neurons and the multiple sub-connections, the network size is greatly

increased.

Ruf and Schmitt [Ruf and Schmitt, 1997] proposed a supervised learning mech­

anism for spiking neural networks with temporally coded inputs. The proposed

method uses a Hebbian-based learning rule which utilises the single spiking events

of pre- and post- synaptic neurons. Here the connection strengths are updated

with a value which is proportional to the difference between the output spike time

and a reference spike time. It was shown that the training brings the connection

weight values closer to a value which represents the difference between the pre-

and post-synaptic firing times.

Error back-propagation learning is a popular and widely applied classifica­

tion technique. Bohte et al. [Bohte et al., 2002a] achieved this type of learning

in a network of spiking neurons with temporally encoded inputs. A special feed­

forward network structure was proposed which can have one or more hidden layers

in addition to the input and output layers. Here a single connection between two

neurons in adjacent layers is comprised of several sub-connections with different

delays. In order to achieve high temporal resolution for the input patterns, each

input value is distributed over multiple input neurons using a population cod­

2.5 The spiking neural network 46

ing scheme. Each input dimension is coded using an array of one dimensional

receptive field as in [Bohte et al., 2002b]. Learning rules were derived for updat­

ing the connection weights of neurons in the hidden layer and output layer. The

derivation of the rules is analogous to the derivation of the error back-propagation

learning rules. During the training, the interconnection weights are updated using

the learning rules in such a way as to force the output neurons to fire at a pre­

specified time. The model was applied to classify data sets and achieved accuracy

comparable to a sigmoidal network with error back-propagation learning.

Two improvements were suggested by Jianguo and Embrechts [Jianguo and

Embrechts, 2001] for the supervised learning model proposed in [Bohte et al.,

2002a]. Here a momentum term was added to the learning rule with the aim of

improving the learning process. However, it was found that this momentum term

degrades the results instead of enhancing them. The other improvement suggested

was an adaptive learning rate parameter instead of a fixed one. The learning rate

parameter is increased if the error correction is positive and decreased if it is

negative. It was found that this modification enables the model to learn much

faster in the initial state but has achieved the same highest accuracy achieved by

the model with a static learning rate parameter. Another set of improvements

were proposed in [Schrauwen and VanCampenhout, 2004]. Here, in addition to

modifying the connection weights, rules were proposed to adapt the connection

delays, the time constant and the threshold. The derivation of these rules are

similar to the one proposed in [Bohte et al., 2002b]. However, the validity of these

rules was not verified. Further improvement for the model proposed in [Bohte

et al., 2002a] through multiple spikes is reported in [Bohte and Kok, 2005].

The model proposed in [Bohte et al., 2002b] uses an error back-propagation

technique to compute the error gradient. In place of this, a stochastic approxi­

mation to the gradient was introduced in [Xie and Seung, 2004]. Here a learning

2.6 Research application 47

rule was derived, based on a special class of model networks in which neurons

fire spike trains with Poisson statistics. There are a few other learning models

which were also based on statistical measures [Pfister et al., 2003, 2006]. Another

model was proposed in [Carnell and Richardson, 2005], which applied linear alge­

bra apparatus to train spiking neural networks. The practicability of evolutionary

techniques was investigated in [Belatreche et al., 2003].

Much of the previous research in the learning of spiking neural networks can

be grouped into two categories based on the method of learning, namely, unsuper­

vised learning and supervised learning. Each of these two groups can be further

divided into two groups as models which adapt the connection weights and mod­

els which adapt connection delays. Since the input information can be encoded

either in the connection weights or delays, the models can also be categorised

based on their encoding strategy.

Research work reported in [Ruf and Schmitt, 1997; Bohte et al., 2002a; Jianguo

and Embrechts, 2001] falls into the category of supervised learning. Here the

model proposed in [Ruf and Schmitt, 1997] is a supervised model based on the

Hebbian rule which adapts and encodes the input information in the connection

weights. All the others are based on the error gradient technique and adapt the

connection weights. The models proposed in [Natschlager and Ruf, 1998; Bohte

et al., 2002b] come under the category of unsupervised learning and adapt the

connection weights. Even though all of these adapt the connection weights, the

models attempt to encode the input information in the connection delays.

2.6 Research application

Spiking neural networks have been applied to solve various problems in differ­

ent domains [Bohte and Kok, 2005]. This research considers the clustering and

2.6 Research application 48

classification of data sets as the main application and develops learning mod­

els accordingly. This section briefly explains these learning tasks along with the

description of the data sets used in the research.

2.6.1 Clustering and classification

Clustering can be considered as an unsupervised learning problem. Like every

other problem of this kind, it deals with finding groups in a collection of unlabelled

data. The term clustering can be loosely defined as the process of organising

objects into groups whose members are similar in some way and dissimilar to

the objects belonging to other groups. There are a number of popular clustering

methods, including k-means and Kohonen’s self-organising map.

A classification task is generally a supervised learning problem which can be

described as identifying the class of a particular input pattern. A neural network

which performs classification goes through a training session in which a group of

input patterns are presented along with their class information. After training,

the network will be able to identify the class of an unseen pattern. Multilayer

perceptron networks with error back-propagation learning, radial-basis function

networks and Learning Vector Quantisation (LVQ) networks are some of the well

known artificial neural networks for classification tasks [Haykin, 1999].

There are numerous data sets available for training and testing artificial net­

works. In this research, a set of popular data sets were selected for training,

testing and analysing the proposed models. The details on the selected data sets

are given below.

2.6 Research application 49

2.6.2 Description of the data sets

Three bench marking data sets, namely, Wisconsin Breast Cancer Database, Iris

Plants database and the Wine recognition data were selected from the UCI Ma­

chine Learning Repository [Newman et al., 1998] for the analysis of the proposed

models. In addition, a high dimensional data set called Control chart data was

also selected. These were specifically selected due to their wide usage in the neu­

ral network community for bench marking the learning models. All the four data

sets contain continuous attribute values. The temporal coding method employed

in the research cannot handle non-continuous values. However, if an effective

coding scheme is deployed, data sets with nominal values can also be clustered or

classified. A description for each of the data set is given below and a summary

is provided in table 2.1.

The Wisconsin breast cancer database contains data representing the samples

of breast cancer cells in 699 records. Each record belongs to one of 2 possible

classes; benign or malignant. Each record contains 11 attributes, where the first

one is an identification number and the last one specifies the class, 2 if it is benign

and 4 if it is malignant. The other 9 elements describe the features of the cancer

cell. Out of the 699 records, there were 16 records with missing values which were

removed from the training set. Out of this, the benign class is represented with

444 records and malignant class with 239 records. This data base will be referred

to as Cancer data in this study.

The Iris plants database contains data collected from three classes of plants,

namely, Iris Setosa, Iris Versicolour and Iris Virginica. Each class contains

50 plants making a total of 150 records. Each record contains 5 attributes, 4

describing the plant features and the fifth specifying their class. This data base

will be referred to as Iris data in this study.

2.7 Research outline 50

The Wine recognition data set contains data belonging to wines from three

different cultivators from a region. The quantities of 13 constituents found in the

wine make up the data set in addition to the type identifier of the wine. The data

set contains 178 records of the three types of wines which includes 59 records of

Type 1 wine, 71 records of type 2 wine and 48 records of type 3 wine. This data

will be referred to as Wine data in this study.

A control chart is a tool used in statistical quality control [Pham and Sa-

giroglu, 2001]. In a practical sense, a control chart is a graphical display of a

quality characteristic that has been measured or computed from a sample. Pat­

terns in a control chart can be detected and the information can be utilised to

control a process. The control chart patterns are generally grouped into six main

categories, namely, normal, cyclic, downward shift, upward shift, increasing trend

and decreasing trend which are shown in figure 2.9. The Control chart data is a

collection of artificially created high dimensional data representing the six classes.

Equations are available to create data for each of the six patterns [Pham and Sa-

giroglu, 2001]. The Control chart data used in this study contains 1500 patterns

in total, with 250 patterns in each class. Each pattern was generated with 60

samples, thus each pattern contains 60 attributes.

2.7 Research outline

The main objective of this research is to develop alternative learning models for

temporal coding spiking neural networks. The spiking neural network considered

here is based on the network introduced in [Maass, 1996] (see section 2.5). The

temporal coding strategy is selected as the coding scheme and in particular the

information is coded by the firing time of the first spike of a neuron. Each

activity of the network is considered independent. Therefore, the refractory term

2.7 Research outline 51

Data set Number of
input parameters classes samples

Iris 4 3 150
Cancer 9 2 683
Wine 13 3 178
Control chart 60 6 1500

Table 2.1 . Description of the data sets utilised in the research.

2.7 Research outline 52

is neglected and all the neurons are realised with equal fixed threshold values

during a cycle of activity. The term temporal coding spiking neural network, also

referred to as spiking neural network, is used interchangeably in this study. The

connections of the network are characterised by positive weight and delay values

and realised with identical excitatory spike response function defined by equation

2.5. The spiking neurons are realised either as integrators or as coincidence

detectors for different learning models.

This study concentrates on mechanisms which modify each connection only

with the locally available information provided by the timing of the spikes pro­

duced by the two neurons concerned. Hence, the Hebbian rule, which formulates

the above mentioned mechanism, is selected as the basis of the learning strategy

on which to build the new learning models. The connection weights and delays

are considered to be configurable and adapted in order to encode the input in­

formation. The adaptation of these entities is to be performed both through

unsupervised and supervised methods. In particular, the research was conducted

in three distinct forms, namely, unsupervised weight adaptation, unsupervised

delay adaptation and supervised delay adaptation. Work on supervised weight

adaptation has already been carried out by other researchers. This type of learn­

ing was not, therefore, considered in this study. Clustering task is selected as

the application for the proposed unsupervised models and classification for the

supervised model.

2.7 Research outline 53

I Al rim JiWM
(a)

(c)

(e)

Figure 2.9 . The six categories of the control chart patterns, (a) normal pattern,
(b) cyclic pattern, (c) decreasing trend, (d) increasing trend, (e) downward shift
and (f) upward shift.

(b)

(d)

(f)

Chapter 3

Self-Organising
Weight Adaptation
Spiking Neural Network
(SOWA_SNN)

3.1 Introduction

This chapter investigates unsupervised weight adaptation learning in spiking neu­

ral networks and proposes a novel self-organising weight adaptation spiking neural

network for clustering. The proposed temporal coding SNN is structured similar

to Kohonen’s self-organising map and encodes input information in its connec­

tion weights. Recent findings in computational neuro science are incorporated

for modelling the proposed learning paradigm. This novel learning model was

found to be better than the previous unsupervised SNN models as well as the

Kohonen’s self-organising map in terms of clustering accuracy and efficiency.

This chapter is structured as follows: the structure and functionality of the

Kohonen’s self-organising map is explained in section 3.2. Section 3.3 summarises

the previous work done in the area of unsupervised learning in spiking neural

networks. This section also describes the learning strategies in neural systems

and two findings which formed the basis of this study. The proposed model

54

3.2 Kohonen’s self-organising map 55

is introduced and analysed in detail in section 3.4. Section 3.5 describes the

implementation details of the proposed model. The model has been tested in a

number of simulations in order to investigate its characteristics and clustering

capability. Section 3.6 describes these simulations in detail, presents the results

obtained and discusses them. Finally, the conclusions are given in section 3.7.

3.2 Kohonen’s self-organising map

Kohonen’s self-organising map is an artificial topographic mapping paradigm

which learns through self-organisation in a neurobiologically inspired manner

[Haykin, 1999]. In the human brain it was observed that different sensory inputs

are mapped onto corresponding areas of cerebral cortex in an orderly fashion.

According to the principle of topographic map formation in human brain, the

spatial location of an output neuron in a topographic map corresponds to a par­

ticular domain or features drawn from the input space [Kohonen, 1990]. Hence,

the basic idea behind the SOM is that an input space can be topographically

mapped, where data objects with similar features are represented with distinct

regions in the map. A model for the SOM was initially proposed by Willshaw and

von der Malsburg [Willshaw and von der Malsburg, 1976] and later by Kohonen

[Kohonen, 1982]. The Kohonen model, which is more general than the previous

one, has received much attention and is widely used in practice. The principle

goal of Kohonen’s SOM is to transform a signal pattern of arbitrary dimension

into a one- or two-dimensional discrete map and to perform this transformation

adaptively in a topologically ordered fashion.

Like all the neural network models, the SOM is composed of a network struc­

ture and a learning algorithm. The network is constructed with a layer of input

neurons and an output layer of computing neurons. The neurons in the output

3.2 Kohonen’s self-organising map 56

layer can be arranged in a single array or in a two dimensional lattice. Generally,

a rectangular lattice is used for ease of implementation. The input neurons are

connected to all the output neurons with feed-forward connections. Each connec­

tion is assigned a weight value to represent its strength. In addition, the neurons

in the output layer have a short range excitatory mechanism and a long range

inhibitory mechanism through lateral connections. Figure 3.1 shows a typical

structure of the SOM.

The self-organising algorithm produces a topographical map of the arbitrary

dimensional input space through the response of one- or two-dimensional arrays

of output neurons. This learning algorithm for forming the topographical map

is composed of three essential processes, namely, competition, cooperation and

adaptation. In competitive mode, the computing neurons in the output layer

compete with each other during the learning process. The winner neuron is

determined by comparing the input and the connection weights of a particular

neuron which are two vectors. The winner is the one whose weight vector is closest

to the input vector in terms of Euclidean distance. The amount of modification

for the connections to the winner neuron is relatively higher than other neurons.

In general, the weights of neurons are updated according to their closeness to the

input vector.

Cooperation among neurons is essential in order to form regions in the output

map for representing clusters in the input space. The competition identifies the

centre of a topological neighbourhood and the neurons in this neighbourhood

need to be enhanced to cooperate with the winner while suppressing the neurons

which are located outside this neighbourhood. This is achieved by means of the

lateral excitation and inhibition mechanism in the output layer.

The adaptation mode governs the updating of the network’s connection weights

3.2 Kohonen’s self-organising map 57

Output neuronsLateral connections

Connections

Input neurons

Inputs

Figure 3.1. Kohonen’s self-organising network. Redrawn from [Pham and Liu,
1999].

3.2 Kohonen’s self-organising map 58

in relation to an input vector. This is achieved according to Hebb’s postulate,

which describes the learning mechanism found in biological neural systems. It

states that a synaptic connection’s efficacy is increased if the pre-synaptic activity

and post-synaptic activity occur simultaneously. The self-organising algorithm

based on a modified Hebb’s rule is given below in detail [Haykin, 1999].

The self-organising algorithm

step 1: Initialisation. Create a network with a number of input neurons

equal to the size of the input vector and an adequate number of out­

put neurons. Assign random values for the connection weight vectors

W j (0) . The weight vectors W j (0) should be different for output neu­

rons j , j = 1,2...., m where m is the number of output neurons and it

is advantageous if the initial weight vectors are small in magnitude.

step 2: Sampling. Draw an input vector x from the input space with

a certain probability. Activate the network with that pattern and

compute the outputs.

step 3: Similarity matching. Find the best matching neuron z(x) at time

step n using the minimum distance Euclidean criterion specified in

equation 3.1. This will select the neuron with the closest match be­

tween the weight vector and the input pattern, which is equivalent to

finding the neuron with the maximum output.

z(x) = arg mirij ||x(n) - Wj{n)\\,j = 1 ,2 , ,m (3.1)

step 4: Updating. Update the connection weights of all the neurons with

the following formula given by equation 3.2:

wj(n + 1) = wj(n) + 77(n)/iji(x)(n)(x(n) - wj(n)) (3.2)

3.3 Research on unsupervised SNN models and biological neural
networks 59

where 77(71) is the learning-rate parameter. The function /iji(x)(n)

realises cooperation among neurons in a neighbourhood around the

winner neuron i(x) as defined by equation 3.3:

hji(x){n) = exp(-lji/ 2 * <r(n)2) (3.3)

where Iji is'the lateral distance between neurons i and j; a(n) defines

the neighbourhood of interest. Both 77(77) and h ji^ (n) are varied

dynamically during learning for best results.

step 5: Continuation. Continue from step 2 until no noticeable changes in

the feature map are observed.

3.3 Research on unsupervised SNN models and
biological neural networks

One of the differences between the SNNs and the previous artificial network mod­

els is the representation of the information within the network. There are several

neuron models which use the spikes as the means for computation and communi­

cation. But much of these neuro computational models utilise the amplitudes of

the spikes rather than their firing time. Hopfield [Hopfield, 1995] introduced the

idea of using the timing of action potentials to represent the values for computa­

tion within the network. Instead of the usual approach of representation of rate

of firing, the variables were represented by the timing of action potentials with

respect to an ongoing oscillatory activity. Much of the later research on learning

in spiking neural networks was based on the notion introduced in [Hopfield, 1995].

This section presents a summary of the unsupervised learning models for SNNs

and biological neural networks utilising the timing of action potentials. In the

context of SNNs', two kinds of models can be found in the literature. One cat­

egory encodes the input information in the connection weights and the other in

3.3 Research on unsupervised SNN models and biological neural
networks 60

the connection delays, but both achieve this through some form of Hebbian-based

self-organised weight adaptation.

3.3.1 W eight-based learning

A model for self-organisation in a network of spiking neurons which encodes the

input information in connection weights was proposed by Ruf and Schmitt [Ruf

and Schmitt, 1998]. Their work showed that the spiking neural network model

along with temporal coding is capable of preserving the topology of the input

space similar to Kohonen’s self-organising map. The network was similar to

Kohonen’s SOM except that the output neurons were spiking neurons proposed

by Maass [Maass, 1996]. In order to realise cooperation among neurons, lateral

connections were employed in the output layer. Training the network with an

input vector spans over a time window. Inputs were converted into temporal

code and during the training the input spikes were presented to the network

accordingly. For an input value Xi an input spike was generated at U (= 7\ — X{)

where T\ is some constant referred to by the timing of a reference spike by a

neuron additional to the input neurons. With the assumption that the potential

rise due to an input spike is linear, each competitive neuron can be expected to

fire at T2 — W{X{ with T2 being a constant. It was shown by Maass [Maass,
i

1997b], that a higher potential in a spiking neuron represents an early output

spike. Hence it was assumed that if the input vector and the weight vector

are normalised then the value ^ u>iXi represents the similarity between the two
i

vectors in terms of the Euclidean distance. Therefore, the neuron which fires

first was considered to have a weight vector which is closer to the input vector.

The lateral connections were realised as strongly inhibitory and a straightforward

winner-takes-all learning rule specified in equation 3.4 was utilised.

Swji = r)(xi - wji) (3.4)

3.3 Research on unsupervised SNN models and biological neural
networks 61

where dwji is the modification for the connection between neurons i and j with

weight Wji. rj (> 0) is the learning rate and Xi is the input.

In order to realise cooperation among neurons in the neighbourhood of the

winner neuron, two simple measures were implemented. Neurons which were

topologically closer were assigned to strong excitatory lateral connections and

remote neurons were assigned to strong inhibitory lateral connections. Through

these connections, the neurons which are closer to the winner neuron are encour­

aged to fire while the other neurons are discouraged. In addition, the neurons

which fire temporally closer to the winner neuron are encouraged more than the

neurons which fire later after the winner neuron. The self-organising rule pro­

posed in [Ruf and Schmitt, 1998] is specified in equation 3.5.

= TJ ^ --- {Xi - Wji) (3.5)
out

where Swji, 77 and Xi are same as defined in equation 3.4. The synaptic modifi­

cation specified by the equation 3.5 is based on the firing time tj of the output

neuron. T ^t is an upper limit to specify the applicability of the rule among the

competing neurons. Synaptic connections of those neurons which fire before T^t

are updated, while others remain unchanged. The term (T ou t ~ defines

the effect on neighbouring neurons based on the spike time. Since the winner is

the one which fires first, this term will be high for neurons which fire early and

low for neurons which fire late. The research described above analysed several

aspects of learning with temporal coding spiking neural networks through testing

the model on one- and two-dimensional artificial input patterns.

3.3.2 Delay based learning

A number of researchers have investigated the learning in SNNs through delay

adaptation. In fact, most of these models select suitable delayed connections from

3.3 Research on unsupervised SNN models and biological neural
networks 62

a set of different delayed connections through unsupervised learning rules. These

rules enhance the strength of some connections while weakening the others, re­

sulting in some selected delayed connections with high strength and the rest with

very low strength. This technique was first introduced by Hopfield [Hopfield,

1995], which showed that the input spike patterns can be stored in the delays

across the synapses. The notion behind this strategy is that an encoded delay

pattern will compensate for the differences of the firing times of the input neurons

such that the delayed input spikes reach the output neurons at almost the same

time enabling them to fire [Gerstner et al., 1996]. This type of learning is claimed

to be more like the learning in a RBF network. This approach is supported by

neurobiological findings reported in [Habberly, 1985; O’Keefe and Reece, 1993].

The novel learning model proposed in this chapter encodes the input information

in the connection weights. The reason for summarising the delay-based learning

here is to investigate the spike-time-based learning strategies used in the past.

The Hebbian-based learning models described in this sub-section modify the con­

nection weights based on the time difference between the pre- and post-synaptic

firing of a neuron.

Gerstner et al. [Gerstner et al., 1996] performed a modelling study through

computer simulations of the barn owl’s auditory system. A Hebbian-based un­

supervised learning mechanism was proposed to train a single integrate-and-fire

neuron. Here, a single connection to a neuron was composed of several sub­

connections. Each sub-connection was characterised with a weight and a delay

value. The learning rule proposed in their model enhances the strength of the con­

nections which aTe repeatedly active shortly before a post-synaptic spike event.

Connections which are active shortly after the post-synaptic event are weakened.

In this way the learning model selects connections with suitable delays from a

distribution of connections with different delays. It was also showed that this

3.3 Research on unsupervised SNN models and biological neural
networks 63

learning method can choose the correct delays for inputs from two independent

groups. Figure 3.2 shows the learning rule proposed in their study.

Natschlager and Ruf [Natschlager and Ruf, 1998] extended the approach re­

ported in [Gerstner et al., 1996] for spiking neural networks. In addition, the firing

times of the output neurons were considered instead of the approach in [Gerstner

et al., 1996], where the firing or non-firing of a neuron was taken into consid­

eration. The network architecture used here was a two layered fully connected

feed-forward network. The output layer was constructed with spiking neurons.

A sample network is shown in figure 3.3. As in the previous model a single con­

nection was composed of several sub-connections. The learning rule proposed in

[Natschlager and Ruf, 1998] to calculate the amount of change in the synaptic

strength is given by the equation 3.6 and graphically shown in figure 3.4.

to the neuron j and tj is the time of an output spike. The delay dback is the

time a post-synaptic spike takes to propagate backwards to the synapse. Here

the function L is given by equation 3.7.

S w f = i} L((U + d<*>) - (tj + dt™*)) (3.6)

where Sw£ is the amount of modification to the synaptic strength Wjf of the

sub-connection k between neurons i and j ; S® is the delay for the sub-connection

k between two neurons and 77 is the learning rate. A spike at time U is the input

L{5t) = (1 — b)exp(—(8t — c)2 /a 2) + b (3.7)

where,

(3.8)

(3.9)

tpost — tj + dback (3.10)

where 6 , c and a are constants.

3.3 Research on unsupervised SNN models and biological neural
networks 64

4->CO
_l

0.8

0.6

0.4

0.2

0.0

- 0.2 0 10 20-20 30 40 50 60-10
time 5t (msec)

...............I.. input through synapse a -----
... i input through synapse b
..............................+..output ' '

i — i--------------------1--------------------- 1--------------------- 1--------------------- 1-------------------- 1------------------- 1--»■

s time t (msec)

Figure 3.2. Gerstner et al.s’ learning rule. Here a post-synaptic spike occurs at
time s. Connections are strengthened if pre-synaptic spikes arrive shortly before
the post-synaptic neuron starts firing as in synapse (a). The connections are
weakened if pre-synaptic spikes arrive after the post-synaptic firing as in (b).
Redrawn from [Gerstner et al., 1996].

3.3 Research on unsupervised SNN models and biological neural
networks 65

t

t

wf.cT

Figure 3.3. Natschlager and Rufs’ network model with multiple sub-connections.
Redrawn from [Natschlager and Ruf, 1998].

3.3 Research on unsupervised SNN models and biological neural
networks 66

to

0.8

0.6

0.4

0.2

0.0

- 0.2
-10 -8 -6 -4 -2 0 2 4 6

tim e 8t (m se c)

Figure 3.4. Natschlager and Rufs’ learning rule for unsupervised learning. Re­
drawn from [Natschlager and Ruf, 1998].

3.3 Research on unsupervised SNN models and biological neural
networks 67

The model proposed in [Natschlager and Ruf, 1998] was further improved by

Bohte et al. [Bohte et al., 2002b] in order to increase the precision, capacity

and clustering capability of the specified spiking neural network model. This was

achieved through a population coding scheme and the model’s performance was

tested by clustering several data sets.

3.3.3 Research on biological neural networks

The concept of artificial neural networks stems from various disciplines including

neuroscience, mathematics, statistics and computer science. The creation and the

ongoing research on artificial neural networks was mainly based on the astounding

findings from research on biological neural networks. The modern era of neural

networks began with the pioneering work by McCulloch and Pitts [McCulloch and

Pitts, 1943] which united the knowledge from neurophysiology and mathematical

logic [Haykin, 1999]. This section describes the basics on learning in biological

neural systems and some recent findings which provided significant contributions

to this research..

3.3.3.1 Learning in biological neural networks

The plasticity property of synapses is the basis for learning, memory and devel­

opment in neuronal circuits. Synaptic plasticity is the ability of a synapse to

modify itself due to the activity it is involved in so that it adapts to its environ­

ment and retains information. These changes are likely to be both functional and

structural but in most cases are considered as the modification of its conduction

ability. It is commonly accepted that the correlation between the activities of

neurons is the basis for synaptic modifications after Hebbs postulate. This pos­

tulate, which was formulated on purely theoretical grounds, is still accepted even

though this was proposed long before the actual recordings of neuronal events

3.3 Research on unsupervised SNN models and biological neural
networks 68

became available. Learning in neural systems is supported by a rich collection of

information obtained through vast research in diverse disciplines. However, there

are no definite rules available to define the synaptic plasticity in neural systems,

but only general guidelines. These can be summed up into three rules as given

below [van Rossum et al., 2000]:

Rule 1: The synaptic strength should be allowed to change in response

to the inputs depending on their correlation with the post-synaptic

firing or with the activity of other neurons [Sejnowski, 1977].

Rule 2: The outcome of these changes should result in a stable distribution

of synaptic strength [Abbott and Nelson, 2000].

Rule 3: The learning rules should create competition among the group of

neurons concerned, and hence some synapses should be strengthened

while some others should be weakened [Carla, 1990; Miller, 1996].

One or more of these rules formed the basis for the models of biological systems

as well as for the artificial neural network models proposed in the past. In most

cases, the neuronal activity was measured through the firing rate of neurons.

However, in recent years there has been a growing interest in neuronal models

which are based on the timing of spikes instead of the firing rate of neurons.

Learning is achieved in these models through the correlation between the timing

of pre- and post-synaptic spikes. Two concepts, namely spike-time based learning

and stabilising the learning, proposed in modelling studies by Song et al. [Song

et al., 2000] and van Rossum et al. [van Rossum et al., 2000], formed the basis

for the self-organised learning paradigm proposed in this study. The following

sub-sections discuss these two concepts in detail.

3.3 Research on unsupervised SNN models and biological neural
networks 69

3.3.3.2 Spike^time-based learning

Synaptic modification due to the timing of synaptic activity has been observed by

several researchers [Bell et al., 1997; Markram et al., 1997; Bi and Poo, 1998]. This

type of modification is termed as Synaptic Timing Dependent Plasticity (STDP).

Bi and Poo [Bi and Poo, 1998] performed experiments in cultures of dissociated

rat hippocampal neurons and observed that the relative timing between the pre-

synaptic and post-synaptic firing events determine the direction and amount of

synaptic change. Repetitive post-synaptic firing within a time window of 20 msec

after pre-synaptic activation strengthened the synapse, while the post-synaptic

firing within a window of 20 msec before the pre-synaptic activation resulted in

synaptic depression.

Several modelling studies have been performed to analyse spike-dependent

plasticity rules [Blum and Abbott, 1996; Gerstner et al., 1996; Eurich et al., 1999;

Kistler and van Hemmen, 2000; Song et al., 2000; van Rossum et al., 2000]. Song

et al. [Song et al., 2000] performed a modelling study on competitive Hebbian

learning through synaptic timing-dependent plasticity. It was found that this

form of learning modifies the system to be sensitive to pre-synaptic spikes. The

Hebbian learning rule proposed in [Song et al., 2000], given by equation 3.11,

defines the amount of synaptic modification arising from a single pre- and post-

synaptic spike pair separated by a time 8t. The figure 3.5 illustrates this learning

rule.

f A + e lt/T+ : St < 0
F ^ = { - A - e~« /r- : St > 0 <3-U)

where St = tpre—tpost; twe is the firing time of the pre-synaptic spike and tpost is the

timing of the post-synaptic spike. The parameters r+ and r_ determine the ranges

of pre- to post-synaptic inter spike intervals over which synaptic strengthening

and weakening occur. A+ and A - determine the maximum amount of synaptic

3.3 Research on unsupervised SNN models and biological neural
networks TO

modification per spike pair.

3.3.3.3 Stabilising the Hebbian learning

Activity dependent modification of synapses is a powerful and widely accepted

mechanism for shaping and modifying the response properties of neurons. How­

ever, there is no controlling mechanism to restrict the modification. Unregulated

modification leads to uncontrolled expansion (or depression) of synaptic strength

[Song et al., 2000] which leads to an unstable system. To control this unstable

nature of Hebbian learning, a common practice is to impose a hardbound for

the upper and lower values of the synaptic strength [Blum and Abbott, 1996;

Gerstner et al., 1996; Song et al., 2000]. A Hebbian-based rule, when applied

repeatedly on a network, will increase the strength of some of the connections

while decreasing the others. Hence, when a hardbound is applied, the connec­

tion strengths will be driven to the defined upper or lower values, resulting in

a bimodal distribution of the connection weights. It is unlikely for this bimodal

distribution to reflect the synaptic strength distributions observed in biological

systems where the distribution of synaptic weights is observed to be unimodal

[van Rossum et al., 2000].

A phenomenon observed in previous studies [Debanne et al., 1996; Bi and

Poo, 1998] could be a key for solving the instability problem. Observations show

that a significant amount of strengthening occurs on relatively weak synapses.

For strong synapses, the change due to the potentiation was observed to be low.

However, the depression was found to be independent of the initial synaptic

strength, van Rossum et al. [van Rossum et al., 2000] incorporated the above

mentioned findings in a modelling study to investigate the stability of Hebbian-

based spike time dependent plasticity. The learning rule proposed in their study

re
la

tiv
e

ch
an

ge

3.3 Research on unsupervised SNN models and biological neural
networks 71

1.0

0.8

0.6

0.4

0.2

0.0

- 0.2

-0.4

- 0.6

- 0.8

1.0

-50 -40 -30 -20 -10

time 5t (msec)

Figure 3.5. Song et al.s’ learning rule for unsupervised learning. Redrawn from
[Song et al., 2000].

3.3 Research on unsupervised SNN models and biological neural
networks 72

is given by equations 3.12 and 3.13.

wp = (cp + vw)e St/T (3.12)

Wd = {—CdW + vw)eSt/T (3.13)

where w is the strength of the connection between two neurons. wp is the amount

of modification for potentiation and Wd is for depression. Cp and q are average

amount of potentiation and depression respectively, v is a Gaussian random

variable with zero mean and standard deviation of 0.015. 6t is the time difference

between the pre- and post-synaptic spikes of the neuron in concern, r is the time

constant for potentiation and depression. For potentiation w(t + 1) = w(t) + wp

and for depression w(t + 1) = w(t) + Wd-

Figure 3.6 graphically describes the weight-dependent learning concept pro­

posed by van Rossum et al. [van Rossum et al., 2000]. It was found that the

learning rules produced a stable unimodal distribution of connection strengths.

The underlying mechanism in the above mentioned scheme is that it gradually

slows down the rate of change if the weight approaches one of the boundaries.

This type of stabilisation is known as softbounding. A simple model for realising

this softbounding is given by equations 3.14 and 3.15 [Kistler and van Hemmen,

where is the strength of the connection between neurons i and j. Function

/+ is the stability measure for potentiation and /_ for depression. The two

parameters a+ and a_ are constants.

2000]:

(W m ax Wj i) (L-\- (3.14)

/-(w ji) = —w^ a_ (3.15)

3.3 Research on unsupervised SNN models and biological neural
networks 73

O)
0.8

[a).0.4

fb).0.2

0.0

- 0.2

-0.4

- 0.6

- 0.8

- 1.0
-50 -40 -30 -20 -10 0 10 20 30 40 50

time 5t (m sec)

Figure 3.6. van Rossum et al.s’ rule for synaptic modification, (a) Relative
strengthening of weak connections, (b) relative strengthening of strong connec­
tions and (c) relative weakening of all connections. Redrawn from [van Rossum
et al., 2000].

3.4 Proposed self-organising weight adaptation SNN for clustering 74

3.4 Proposed self-organising weight adaptation
SNN for clustering

The proposed model is presented in this section. Modelling of the network has

been approached according to the three rules specified in subsection 3.3.3.1. The

new model is realised with four distinct and necessary features. They are spike­

time-based learning, self-organisation, stabilising the learning and spike-time-

based output mapping. Based on the findings described in subsection 3.3.3.2,

a new approach on spike-time-based learning is proposed. The self-organisation

is realised in the proposed model in a way similar to the popular approach in

Kohonen’s SOM. Stabilising the connection weights during learning is achieved

based on the findings reported in subsection 3.3.3.3. For mapping the output,

the actual firing times of the output neurons are utilised, in addition to the

common practice of the spatial location of the competing neurons. These issues

are explained clearly in the following sub-sections.

3.4.1 Network architecture

The network architecture chosen for the proposed SOWA_SNN is similar to the

Kohonen’s SOM. A two layered fully connected feed-forward network of spiking

neurons is selected for this purpose. The first layer is the input layer with the

number of neurons equal to the number of input parameters. The output layer

is constructed with spiking neurons as described in section 2.5. Neurons are

arranged in a two dimensional grid but more complex or simpler grid structures

can be adopted. Connections from the input neurons to the output neurons are

characterised by a weight value and a delay value. Since the learning model

proposed in this chapter considers only the connection weights, the connection

delays can be removed.

3.4 Proposed self-organising weight adaptation SNN for clustering 75

3.4.2 Spike tim e based learning

A variant of the Hebb’s postulate is the basis of the proposed learning model. A

connection weight is increased if an input spike through that connection precedes

an output spike of the receiving neuron. If the input spike follows the output spike

then the connection is weakened [Song et al., 2000; van Rossum et al., 2000]. The

amount of change due to the spike activity is defined in equation 3.16 which is

shown graphically in figure 3.7:

rx*\ _ / e~5t/Tstdp - b : S t> 0
- | _ eSt/rstdp . St < o (•)

where 8t is the difference between the timing of the input spike and the time

of generation of an output spike; TstdP is the time constant for potentiation and

depression. The parameter b is the bias, a positive term used to control the

learning.

3.4.3 Self-organisation

Self-organisation is achieved through competition and cooperation among the

spiking neurons. In the Kohonen’s SOM a winner neuron is the one which pro­

duces the highest output. Neurons in the neighbourhood of the winner neuron

are encouraged to cooperate. The neighbourhood is realised through the physical

location of a neuron relative to the winner neuron [Haykin, 1999]. A similar ap­

proach is utilised in the proposed model. The winner neuron is selected as the one

which fires first among the spiking neurons [Bohte et al., 2002b], since a highly

activated neuron tends to fire earlier [Thorpe et al., 2001]. During the training

process, connections of the neurons which are laterally closer to the winner neu­

ron are updated proportional to its distance from the winning neuron. The effect

on neuron j relative to neuron k is given by equation 3.17.

h(j,k) = e-W*W*<' (3.17)

3.4 Proposed self-organising weight adaptation SNN for clustering 76

0.8

0.6

0.4

0.2

0.0

- 0.2

- 0.4

- 0.6

- 0.8

- 1.0

■50 -40 -30 -20 -10 0 10 20 30 40 50
time 8t (m sec)

Figure 3.7. Learning rule for the proposed model, (a) shows part of the learning
rule for St > 0, (b) for St < 0. Curve (c) shows the excitatory spike response
function, which is given here for ease of comparison. Here, the time constant for
the learning rule (rŝ P) is set to 15 and the time constant for the spike response
function (r) to 35.

3.4 Proposed self-organising weight adaptation SNN for clustering 77

where d(j, k) is a function to compute the lateral distance between neurons j

and k ; the parameter a specifies the width of the neighbourhood of coopera­

tion centred at k , which is reduced with training epochs. In equation 3.17 the

parameter a was used instead of cr2 in order to provide high lateral excitation

for neurons which are closer to the winner neuron and low excitation for neurons

which are further away from the winner neuron.

3.4.4 Stabilising the weight adaptation

An important improvement proposed in this study is the stabilisation of the

connection weights during the training process, which is a major problem en­

countered in previous models. This problem arises due to the true nature of

Hebbian-based learning, since it does not have a constraint to restrict the growth

or reduction of the synaptic strength. Some previous models applied a hard lim­

iting constraint to solve this phenomenon. If the synaptic strength exceeds (or

falls below) the allowed maximum (or minimum) value, then it is set to that

maximum (or minimum) value. This hard limiting constraint leads to a bimodal

distribution of weights. Normalisation of the connection weights after each learn­

ing cycle has been utilised as another means for solving this drawback but with

much computational expense [Haykin, 1999]. The above mentioned methods,

namely applying a hard limiting constraint and normalising of weights, consid­

ered the synaptic strength as the one being modified without providing a control

mechanism for the weight adaptation. A suitable method is incorporated in this

study where the change in weight for a particular connection is controlled by the

current weight value. In other words, the change realised for a weak connection

is relatively higher than for a strong connection. This approach is supported by

the findings in [Bi and Poo, 1998; van Rossum et al., 2000] which were explained

in subsection 3.3.3.3. In the proposed model, the change in a connection weight

3.4 Proposed self-organising weight adaptation SNN for clustering 78

during strengthening is constrained by a factor which is inversely proportional

to the current weight as formulated in equation 3.18. Depression is defined as

to be independent of the current connection weight. This equation specifies the

maximum change attainable for a particular connection weight.

f(Wji) — (wmax VJji)/vJmax (3.18)

where is the 'current strength of the connection between input neuron i and

output neuron /, wmax is the maximum value for any connection strength.

3.4.5 Learning rule

In the above three sub-sections, the three main aspects of the self-organised learn­

ing in spiking neural networks, namely activity-based learning, self-organisation

and stabilisation were discussed. A novel learning rule for the proposed model

is defined by combining these three aspects, since they all influence the learning

process. The proposed learning rule, which is given by equation 3.19, specifies

the amount of weight change to the connection from neuron i to j when the firing

time of the input spike from neuron i and the firing time of the output spike from

neuron j differ by time St.

Swji = 77 g(6t) h(v, j) f(wji) (3.19)

where the functions g, h and / are defined in equations 3.16, 3.17 and 3.18

respectively. Swji is the amount of weight change; 77 is the learning rate parameter;

v is the winner neuron, which fires first among the competing neurons; St is the

time difference.

3.4.6 Learning strategy

Learning in the artificial neural networks is generally supported with sound math­

ematical and/or statistical concepts and theories. These concepts and theories

3.4 Proposed self-organising weight adaptation SNN for clustering 79

clearly define the relation between the input, the output and the network param­

eters. For example, the output of a sigmoidal neuron is in fact a representation

of the Euclidean distance between the input vector and the connection weight

vector [Haykin, 1999]. An input vector in the input space is represented by an

output neuron which has the closest weight vector to that input. The training

of the network tends to minimise the difference between the input vectors and

weight vectors.

Since SNNs are different from sigmoidal networks, it is important to under­

stand the relation between the connection weights and the temporally coded

inputs [Ruf and Schmitt, 1997]. The model proposed in [Ruf and Schmitt, 1997]

modifies the connection weights to approach some value given by the difference

between the pre-and post-synaptic firing times in an inversely proportional man­

ner. However, the applicability of their model for complex applications was not

verified. The self-organising model proposed in [Bohte et al., 2002b] encodes the

input patterns in the connection delays through weight adaptation where the

SNN functions similar to RBF network.

The learning process of the model proposed in this study is based on the Ko-

honen’s SOM. In Kohonen’s SOM, the neuron with the highest output is selected

as the winner neuron since the maximisation of the inner product of two vec­

tors corresponds to the minimisation of the Euclidean distance of those vectors

[Haykin, 1999]. In the proposed model, the winner neuron is selected as the one

which fires first among the competing neurons [Bohte et al., 2002b]. If the input

vector and the weight vector are normalised, then the neuron potential computed

by equation 2.8 represents the similarity between the two vectors in terms of

the Euclidean distance [Ruf and Schmitt, 1998]. Also, it was shown in [Maass,

1997b] that a higher potential in a spiking neuron represents an early output

spike. Hence it can be assumed that the neuron which is first to fire has the

3.4 Proposed self-organising weight adaptation SNN for clustering 80

weight vector with the closest match to the input pattern. It is notable here that

in the proposed spiking neural network, connection weight values are confined

within a range [0, 1) and the effect of each input spike is also in the range [0, 1].

Therefore, the learning strategy of the SOWA_SNN can be considered as similar

to Kohonen’s SOM.

3.4.7 Interpreting the output and cluster identification

Out of a number of available methods for cluster identification in Kohonen’s SOM,

the method of visualising the location of the winner neurons and their frequencies

is widely employed [Vesanto and Alhoniemi, 2000]. The output of the SNN is the

firing times of its output neurons. The exact firing time of a neuron conveys

significant amount of information [Thorpe et al., 2001]. This work incorporates

the exact firing time of the winner neuron to map the clusters in addition to the

winner neuron’s spatial location. In this study, it was found that similar input

patterns tend to excite a particular output neuron to fire within some well defined

time interval. The firing time of a winning neuron, along with its position in the

output layer lattice, formed clusters which reflected the topographical mapping of

the input space. Hence, a cluster can be specified with a particular set of neurons

and a particular firing time interval. For mapping the clusters after the training

phase, the input patterns were presented to the network in the recall mode and

the outputs were recorded. The location and the firing time of the winner neuron

for each input pattern was found and plotted in a three-dimensional space. In this

three-dimensional plot, clusters were identified with groups of adjacent neurons

firing within a particular time window.

3.5 Implementation details 81

3.5 Implementation details

The SNN with the proposed self-organising learning model was implemented in

software. The continuous SNN was realised as a discrete model in order to sim­

ulate it on digital computer. Realisation of the spiking neural network through

a discrete model was discussed in section 2.5.4. More detail on this software and

the program listings are given in Appendix A.

In the SNN model each cycle of activity takes a period of time where an input

pattern is presented to the network to produce an output. Similarly, each cycle of

activity in the discrete model takes a number of steps. In each step, input neurons

are scanned for the availability of input spikes and the potential of each neuron is

updated based on the timing of the input spikes. If any of the neurons’ potential

exceeds the threshold, an output spike is generated. For ease of implementation

each step was considered to take one unit time to complete. The resolution of

the temporally coded input and output was scaled to one unit time. During each

cycle of activity, the network was allowed to operate for an adequate number

of steps in order to realise the full effect of each input and to reflect this effect

through its output. This number of steps is referred to as activation time window

(t w i n c U r w) in this study.

Another important aspect of implementing the model is the temporal coding of

the continuous input values. The issues regarding temporal coding were explained

in section 2.3. A straightforward coding scheme was used where a relatively

high input value was represented with an early input spike and a low value with

late spike [Bohte et al., 2002a]. The continuous values were normalised and

temporally coded using the linear coding scheme specified in equation 2.14 over a

number of time steps referred to as input time window (tinput_Wind&w)• The coding

resolution affects the performance of the network. Since the temporal coding

3.5 Implementation details 82

is some form of discretisation, an increase in the number of steps in the input

time window will increase the precision. However, the increase of the number of

steps will decrease the computational efficiency of the model. Hence, precision

of the temporal code should be selected in such a way as to attain adequate

accuracy with optimal computational efficiency. Initial investigations revealed

that an input time window with 30 units was adequate in most cases and even

less in some cases.

The SNN has a number of parameters which control its functionality. Tuning

the network by assigning appropriate values for these parameters is essential for

the smooth functioning of the network and for obtaining optimum performance.

Even though a number of researchers have done significant work on SNNs, there is

a lack of clear guidelines available for selecting these parameters. In this research

these parameters were found by analysing the preliminary results obtained from

initial trials. The strategy followed in this study was to set all the neurons with

the same parameter values, particularly for the time constant and threshold.

Although theoretically it is possible to have different parameter values for each

neuron, having same parameter values for all the neurons will simplify the network

and aid the understanding of the results.

Generally, the spike response function of a synapse can be either excitatory

or inhibitory, which will decide the effect of an input spike instead of the sign

of the connection weight [Maass, 1997a]. In the proposed model, the connection

weights were assigned with positive values and all the connections were realised

as excitatory with spike response function e(t) G [0, 1]. This is to ensure that the

effect of most of the input parameters contribute positively to the output. The

selection of an appropriate value for the time constant r depends primarily on

the size of the input time window. The selection should ensure that the output

of a neuron reflects the effects of all its inputs. The selection should also enable

3.5 Implementation details 83

the neuron to fire at a time when the effect of all its inputs is in their increasing

segment. The spiking neuron functions as an integrator in this proposed model.

Based on the suggestions proposed in [Konig et al., 1996], the time constant was

selected to be slightly greater than the input time window in order to allow the

spiking neuron to function as an integrator. Section 2.5.2 introduced the two

modes of operations of the spiking neuron, namely, integration and coincidence

detection. The two modes of operation of a spiking neuron will be discussed in

more detail in chapter 4 (Section 4.2.3). A notable consideration here is that an

increased input time window will increase the precision of the inputs which will

in turn increase the value for the time constant. But a high value for the time

constant will result in reduced precision of the spike response function. Hence a

trade-off must be found to obtain an optimum result. Selecting the values for the

time constant, the threshold, initialising the network connection parameters and

selection of suitable values for the learning equation parameters, are discussed in

the following sub-sections.

3.5.1 Initialising the connection weights and delays

Initialising the network plays an important role in the learning process. The

important parameters here are the weights and delays of the interconnections

between the input neurons and the output neurons. The connection weights are

allowed in the range [0, 1) and the delays in the range of [0, tinput_Windcnv]. Initial

connection weights were randomly assigned within a small interval in order to

ensure that no neuron can dominate all the other neurons for all or most of the

input patterns. The objective of the initial weight assignment is to have the

winner neurons evenly spread all over the output grid for the input patterns.

Since the connection delays were not considered in this proposed model, they

were set to zero.

3.5 Implementation details 84

3.5.2 Setting the threshold value

More care is needed in the selection of the threshold value for a neuron. If the

value is too low, the neurons will fire prematurely without reflecting the entire

input pattern. On the other hand, a high threshold value will prevent neurons

from firing and will block the learning process because a neuron can learn only

when it is active. Hence the threshold was set to an appropriate value to capture

the effect of all or most of the inputs while ensuring that it can fire. A suitable

threshold value could be the number of inputs multiplied by the average of the

connection weights multiplied by the average spike response value.

3.5.3 Setting the parameters of the learning rule

Selection of suitable values for the parameters of the learning rule (equation 3.19)

is critical for better learning and stability. The two important parameters, namely

the time constant Tstdp and the bias term b were selected with the help of some

guidelines provided in [van Rossum et al., 2000] and some initial trials of the

proposed model on various data sets. A synapse was heavily strengthened if a

spike through it reached a neuron just before a post-synaptic event. The amount

of strengthening was decreased with the increase in the difference between the

arrival time of the input spike and the generation of the output spike. The amount

of change was decreased and at some point made to become negative in order to

stabilise the learning process. Better learning was observed when the change in

weight was made to reach zero when the time difference was approximately equal

to the time constant t for the spike response function, as shown in the figure 3.7.

It was found that a suitable choice for TstdP is roughly the half of the value of r.

The value for the bias term b was selected such that it forces the weight change to

become zero and then negative when the time difference becomes approximately

3.6 Simulation results and discussion 85

equal to the time constant r and higher. A suitable value for b was found to be

in the range [0.1, 0.2].

3.6 Simulation results and discussion

The SOWAJ3NN was implemented and applied to clustering tasks in order to

investigate its characteristics. The main focus was on assessing its clustering

capability and determining the behaviour of the proposed model due to the mea­

sures introduced in the learning rule. The following sub-sect ions discuss these

issues in detail.

3.6.1 Clustering capability

The clustering capability of the SOWA_SNN was analysed by applying it to cluster

a number of data sets. For each data set a custom made network was constructed.

The number of input neurons for each network was set to be equal to the number

of input attributes of the data set in concern. The number of output neurons

and the size of the output grid were selected after several trials. Out of the total

available data, approximately 66% of the records were randomly selected and

used for training for a fixed number of epochs. The number of training epochs

was determined by trial and error such that towards the end of the training the

change in the total weight adaptation became very low according to a predefined

value. On completion of the training, the network’s connection weights and the

output of the network for each sample were recorded. The output of the network

was analysed and clusters were identified. Details regarding cluster identification

were discussed in sub-section 3.4.7. In order to determine the clustering accuracy,

the identified clusters were verified using their class information. The clustering

accuracy is defined as the percentage of correctly classified input patterns from

3.6 Simulation results and discussion 86

the entire input data.

The generalisation capability of the proposed model and the validity of the

formed clusters were also analysed by clustering a test data set using the trained

network. The test set contains approximately 33% of the total data which was

separated from the whole data set and not used for training. The process of

training and testing the proposed model was repeated five times and the average

accuracies were calculated for each data set. The number of attributes, number

of classes and the number of records used for training and testing are given in

table 3.1. The data used for training and testing is given in Appendix B.

The clusters formed within the training and testing set of the Iris data are

shown in figures 3.8 (a) and figure 3.8 (b) respectively. Likewise the clusters

formed within Cancer, Wine and Control chart data sets are shown in figures 3.9,

3.10 and 3.11 respectively. Using the information gained from the firing time of

the winner neurons, clusters could be separated as shown in these figures. These

results suggest that the use of the firing time of the winner neurons reduces the

number of output neurons required to map the clusters.

Figure 3.8 shows the formation of clusters within the Iris data set. Here most

of the input samples belonging to class 1 are represented by the neuron at grid

position (5, 2). Two samples belonging to class 1 are represented each at positions

(2, 3) and (4, 2). Input samples from class 2 and class 3 are indicated by neurons

at (2, 3), (3, 3) and (4, 4). Further, class 2 and class 3 are separated by the firing

time of the neurons. In this case, if the output firing time is less than or equal to

16, then the sample belongs to class 3. If the firing time is equal or greater than

17 then that sample belongs to class 2.

The average clustering accuracy obtained for each data set is given in table

3.2. This table lists the average clustering accuracy obtained on both the train-

3.6 Simulation results and discussion 87

Data set Number of Total
records

No. of records
attributes classes training testing

Iris 4 3 150 105 45
Cancer 9 2 683 450 233
Wine 13 3 178 120 58
Control chart 60 6 1500 1000 500

Table 3.1 . Number of samples used for training and testing.

88

c la s s 1 .
c la s s 2
c la s s 3

GtidP<*^oti
00

f o r m e d * ^

W reS d a t a ^ S0^ oi the his

G«dl>°*tionV

th e tta » i,a&set

the

^ V u D **

Ĝ '

cV^ „ SO'

se&
d ^

X&&

o t ^ 6

90

jVts A &

c\ass \
c\»ss .
c\a*s

Sflfc®*** / y V y 7 v
35 r / • * \ /\ /_ • / ^

A / /X» \ /-.....7 - v V /
\ / * • • /

ao V 1 V *

\5 r t r 1 %*>

Oo4?»s* 0OV ^ 1 (V) ^
« * * » * ■ *

< a ^ e

. t Y v e ^ 6̂ ^ ^ '

o i^ e

2 3 4 S 6

(,)

°0tT°lch lus*er

3.6 Simulation results and discussion 92

ing and the test sets along with the standard deviation. The results show that

the SOWA.SNN achieved better clustering accuracy for all the data sets. The

accuracy obtained for the test sets can be viewed as an evidence for the proposed

model’s generalisation capability and the validity of the clusters. In addition,

the model was able to obtain good clustering accuracy with relatively smaller

networks and a lesser number of training epochs.

Section 3.5 describes in detail the implementation of the proposed model in­

cluding the assignment of network parameters. Certain network parameters de­

scribed in section 3.5 which were selected for the proposed model by trial and

error are listed in table 3.3. This table lists the most suitable values for the pro­

posed model for each data set used in the simulation to obtain the results listed

in table 3.2.

The proposed model was tested with different sizes of networks. Here the

network size is specified by the size of the output grid. The number of training

and testing samples and the number of training epochs were selected to be equal

to the corresponding SNNs which obtained the optimum results listed in table

3.2. The network parameter values were set to be the same as in table 3.3. The

results obtained are presented in tables 3.4 and 3.5. The results show that the

clustering accuracy increases with the size of the network, where this reaches a

maximum and then starts to decrease. In smaller size networks there would not

be adequate randomness and space to form clear clusters and thus the clustering

accuracy was found to be low. In bigger networks, the training would be dispersed

all over the network forming several overlapping sub-clusters, thus resulting in

reduced accuracy.

Self-organising SNNs proposed in [Ruf and Schmitt, 1997, 1998] were applied

to artificial data sets to prove their clustering ability. The unsupervised model

3.6 Simulation results and discussion 93

Data set No. of neurons No. of training
epochs

Clustering accuracy(%)
Input Output Training Testing

Iris 4 5x5 20 96.4±0.4 96.9±1.2
Cancer 9 5x5 15 98.0±0.4 96.9±0.7
Wine 13 5x5 25 94.5±0.5 94.4±0.7
Control chart 60 8x8 25 95.8±0.6 95.7±0.7

Table 3.2. Average clustering accuracy obtained for the SOWA_SNN.

Data set tinputjwindow r Tstdp b V Threshold
Iris 30 35 15 0.15 0.007 4 x 0.5 x 0.5
Cancer 30 35 17 0.1 0.001 9 x 0.5 x 0.5
Wine 30 35 17 0.15 0.02 13 x 0.5 x 0.5
Control chart 30 35 15 0.15 0.003 60 x 0.5 x 0.5

Table 3.3. Values assigned for the parameters of the network used to obtain the
results listed in table 3.2.

3.6 Simulation results and discussion 94

Network
size

Clustering accuracy(%]
Iris Cancer Wine

training testing training testing training testing
3x3 92.8±3.5 94.4±5.9 97.8±0.7 96.7±1.0 92.2±2.1 89.1±1.0
4x4 94.2±2.0 91.7±1.9 97.6±0.3 97.1±0.9 93.0±2.7 92.0±3.6
5x5 96.4±0.4 96.9±1.2 98.0±0.4 96.9±0.7 94.5±0.5 94.4±0.7
6x6 95.2±0.9 94.2±3.2 95.6±1.2 93.6±3.1 93.6±0.5 90.8±2.0
7x7 94.7±1.1 93.6±3.5 93.8±1.4 92.1±3.7 92.8±0.7 89.4±2.3

Table 3 .4 . Average clustering accuracy obtained for different size of SOWA_SNNs.

Network
size

Clustering accuracy(%)
Control chart

training testing
6x6 84.2±2.4 80.7±1.8
7x7 95.3±2.6 94.7±1.9
8x8 95.8±0.6 95.7±0.7
9x9 89.8±2.2 88.8±1.9

10x10 89.6±2.4 87.9±1.8

Table 3.5. Average clustering accuracy obtained on Control chart data for differ­
ent size of SOWA_SNNs.

3.6 Simulation results and discussion 95

proposed in Bohte et al. [2002b] encodes the input patterns primarily through

the connection delays. The model proposed in [Bohte et al., 2002b] obtained a

clustering accuracy of 92.6 ± 0.9% for the Iris data set, where the inputs were

encoded with 4x8 input neurons. The clustering accuracy of the proposed model

for Iris data set has been found to be better than the model proposed in [Bohte

et al., 2002b]. In addition, the SOWA_SNN uses single connections and a temporal

coding scheme which represents an input value by a single spike time. Whereas

in the model proposed in [Bohte et al., 2002b], a single connection is made up of

a group of sub-connections and requires a population coding scheme for temporal

code the input values. Hence the performance of the proposed model can be

considered to be better than the previous SNN models.

For comparing the clustering capability of the proposed model, the same data

sets were clustered with Kohonen’s self-organising map using ESOM Analyzer -

a shareware program from the Databionics research group [Ultsch and Moerchen,

2005]. Initially, the size of the network and the training epochs were selected to

be equal to the corresponding SNN models. Each data set was clustered with

ESOM Analyser five times and the average accuracy was found. The clustering

accuracies obtained for the training and testing sets are listed in table 3.6. With

the specified size of the network and training epochs, the clustering accuracy for

the proposed model has been found to be better than the SOM for all the data

sets.

The SOMs mentioned above were further trained until they reached their

optimum performance. Table 3.7 lists the average highest clustering accuracies

obtained for SOM. Although the performance of SOM on Iris data and Control

chart data was better on the training data, the clustering accuracy of SOWA.SNN

on the test data was higher than the SOM. SOWA_SNN obtained better accuracy

3.7 Conclusion 96

the data sets, the SOWAJ3NN required a smaller number of training epochs

than the SOM to reach the highest clustering accuracy. The results obtained

demonstrate the superior clustering and generalisation capability of the proposed

model compared to the standard Kohonen’s SOM.

3.6.2 Stability

Uncontrolled Hebbian learning could lead to an unstable system. Issues regard­

ing stability were discussed in sections 3.3.3.3 and 3.4.4. In order to determine

the behaviour of the stability measures in the proposed model, the distribution

of the connection weights of the trained networks were analysed. The weight

distribution of the network trained on the Iris data set is shown in figure 3.12.

Likewise, the weight distributions for the networks trained on Cancer, Wine and

Control chart data are shown in figures 3.13, 3.14 and 3.15 respectively. Here the

SOWA_SNNs analysed are those obtained the optimum results in the previous

sub-section. These figures show that during training, while some of the connec­

tion weights were strengthened, others were weakened, allowing the network to

reach a stable condition with unimodal weight distribution. This shows that the

stabilisation measures incorporated in the proposed model effectively contribute

to the learning process, resulting in an acceptable distribution of the connection

weights to achieve a stable network.

3.7 Conclusion

This chapter proposed the Self-Organising Weight Adaptation Spiking Neural

Network (SOWA_SNN) for clustering. The proposed model’s structure and func­

tionality is similar to Kohonen’s SOM. In addition, a number of biological findings

were incorporated in this temporal coding SNN model.

3.7 Conclusion 97

Data set No. of neurons No. of training
epochs

Clustering accuracy(%)
Input Output Training Testing

Iris 4 5x5 20 95.O il.4 93.3i2.7
Cancer 9 5x5 15 96.8±0.3 96.1±0.2
Wine 13 5x5 25 77.4±1.9 73.2±3.2
Control chart 60 8x8 25 95.1±0.4 94.6i0.7

Table 3.6. Average clustering accuracy obtained for Kohonen’s SOM. The soft­
ware package ESOM was utilised for this purpose.

Data set No. of neurons No. of training
epochs

Clustering accuracy(%)
Input Output Training Testing

Iris 4 5x5 30 96.8±0.5 96.4 il.2
Cancer 9 5x5 20 97.6±0.4 96.3i0.5
Wine 13 5x5 30 78.7±0.5 78.3±0.9
Control chart 60 8x8 30 96.1±0.9 95.5±0.9

Table 3.7. Average highest clustering accuracy obtained for Kohonen’s SOM.

F
re

qu
en

cy

3.7 Conclusion 98

40

35

30

25

20

15

10

5

0

W eight value

Figure 3.12. Distribution of the connection weights of the SOWA_SNN trained
on Iris data.

3.7 Conclusion 99

§ 80
cr
£
U- 70

60

50

40

30

20

10

0

W eight va lu es

Figure 3.13. Distribution of the connection weights of the SOWA_SNN trained
on Cancer data.

F
re

qu
en

cy

3.7 Conclusion 100

W eight va lu es

Figure 3.14. Distribution of the connection weights of the SOWA_SNN trained
on Wine data.

F
re

qu
en

cy

3.7 Conclusion 101

W eight v a lu es

Figure 3.15. Distribution of the connection weights of the SOWA_SNN trained
on Control chart data.

3.7 Conclusion 102

The SOWA.SNN adapts the connection weights in order to encode the input

information in its connection weights. The model employs a Hebbian-based learn­

ing rule utilising the timing of the pre- and post-synaptic spikes. A soft bounding

approach has been incorporated for stabilising the weights during learning. The

locations of the winner neurons and their firing times have been utilised effectively

to identify the clusters within the input data.

The performance of SOWA_SNN has been tested by clustering four data sets

and the model exhibited high degree of clustering accuracy. The proposed net­

work has been found to be performing better than the previous unsupervised

spiking neural network models developed for clustering. The performance of the

proposed model has been compared with Kohonen’s SOM and found to be bet­

ter. The weight distribution of the trained networks was analysed. The unimodal

distribution of the connection weights shows that the learning is well stabilised

with the incorporated measures. In essence, the SOWA_SNN can be considered

as an alternative tool for clustering tasks.

Chapter 4

Self- Organising
Delay Adaptation
Spiking Neural Network
(SODAJSNN)

4.1 Introduction

This chapter investigates the unsupervised delay adaptation learning in spiking

neural networks and proposes a novel self-organising delay adapting spiking neu­

ral network for clustering. The proposed temporal coding spiking neural network

realises the spiking neurons as coincident detectors rather than as integrators.

A delay shifting rule has been employed to adapt the connection delays in or­

der to detect input patterns through enabling coincidence among inputs. The

SODAJ3NN was implemented in software and experimentally analysed to deter­

mine its characteristics. It was successfully applied to cluster several data sets and

the results demonstrated its capability and efficiency over other existing models.

This chapter is structured as follows: section 4.2 reviews the notion of delays,

coincidence detection and delay adaptation learning. Section 4.3 summarises the

previous research on delay based learning. The new model is proposed in section

4.4. The implementation details are given in section 4.5 and section 4.6 presents

103

4.2 Neuronal delays and coincidence detection 104

the results and discussion. Finally the conclusions are given in section 4.7.

4.2 Neuronal delays and coincidence detection

The concept of delays is quite common in biological neural systems. Not only in

biological systems but in general for any system which conveys signals through

some medium, the delays are inevitable. This section gives a review of neuronal

delays and coincidence detection in the biological systems as well as in the artifi­

cial systems. In addition, the concept of delay-based learning is also introduced

here.

4.2.1 Neural system s and Delays

Unlike artificial systems, biological systems are non-uniform in a structural sense.

In a biological neural network, the spatial distribution of neurons is not consis­

tent. Neurons are connected in a very complex pattern, with a varying length

of connectors. The conductance of the neuronal connections significantly varies

due to the presence of different type of ions and a varying number of ion chan­

nels. Neuronal time delays, or simply delays, arise due to these finite differences

in neural systems [Eurich et al., 1999]. Because of these differences, a propa­

gating neural signal will not reach all the receiving neurons at the same time.

It is evident that delays are present in electrical and electronic circuits due to

the length of connections and their conductivity similar to the biological neural

circuits. While the delays in these man-made circuits are often considered as a

hindrance to the circuits’ computational capability, in some biological systems

they are essential for coordinating the activity. Good examples are the auditory

system of barn owls, the echo location of bats and the lateral line systems found

in weakly electric fish [Carr, 1993]. A possible way of using these neuronal de­

4.2 Neuronal delays and coincidence detection 105

lays in neural processing was identified in [Abeles, 1982]. It was found by Konig

et al. [Konig et al., 1996] that the cortical neurons act as coincidence detectors

and it was suggested that this could be the appropriate code for higher cortical

functions. This seems to be in contrast to the notion of a neuron acting as an

integrator. Nevertheless, biological neurons are known to operate in two modes,

namely, as a coincidence detector and as an integrator.

4.2.2 Neuron as a coincidence detector

Carr [Carr, 1993] analysed the processing of temporal information in the nervous

system belonging to three species, namely, weakly electric fish, barn owls and echo

locating bats. These three species are well known because of their superior sensing

ability to detect minute changes in the environment. It was pointed out that the

temporal information processing mechanisms depend on some form of delay lines

and coincidence detection. Here, neurons were found to be excited maximally

only when they receive input spikes simultaneously and are thus functioning like

coincidence detectors. In other words, these neurons generate output spikes if and

only if their inputs coincide. In reality, however, the inputs to the neurons are not

evenly distributed in time and thus the delays of the connections through which

these input spikes travel to the receiving neuron compensate for these differences

and make them coincide at some point in time.

A good example to illustrate the importance of delays and the role of a neu­

ron as a coincidence detector is the functioning of auditory place cells found in

the barn owl. These cells are believed to be performing the important task of

computing the azimuthal position of a sound source. This is achieved by detect­

ing the time coincidence between the signals originated from each ear due to the

reception of sound from the source. The coincidence will be detected in a cell

whose connections from each ear have delays representing the different lengths of

4.2 Neuronal delays and coincidence detection 106

the paths between the sound source and each ear [Hopfield, 1995].

4.2.3 The operating mode of a neuron

Neurons have been found to be operating in two distinct modes, as an integrator

and as a coincidence detector [Konig et al., 1996]. The previous sub-section (sub­

section 4.2.2) described the functioning of the neuron as a coincidence detector.

In the coincidence detecting mode, the neuron fires when its inputs coincide or

when it receives synchronised inputs or simply when it receives its inputs within

a small time window. In the integrator, mode the neuron integrates or sums

up the inputs it receives and generates an output when its potential exceeds a

threshold value. Notice that in both cases the underlying mechanism is based

on summing up the effect of all inputs received by the neuron and generating an

output if it satisfies the threshold criterion. The effect of an input at some time

t is defined by the spike response function. The potential of a neuron represents

the collective effect of all the inputs it receives. This potential increases with the

arrival of input spikes and dissipates with time, due to the non-linear nature of

the synapse. Figure 2.7 describes the effect of an input spike over time. The

distinction between the two modes of operation depends on the configuration of

the neuron and the connections.

An acceptable explanation for the two distinct modes of operation can be

found in [Konig et al., 1996]. They made the distinction based on the duration

of the operating interval or interaction interval of a neuron. If the operating in­

terval is equal to or greater than the mean inter-spike interval, then the neuron

will act as temporal integrator. On the other hand, the neuron will function

as coincidence detector if the integration interval is shorter. Due to the short

integration time, the output will become sensitive to the arrival timing of the in­

coming spikes, causing the neuron to act as coincidence detector [Hopfield, 1995].

4.2 Neuronal delays and coincidence detection 107

This phenomenon of delay lines and coincidence detection of neural systems was

first proposed by Jeffress [Jeffress, 1948] and was further researched by Abeles

[Abeles, 1982]. .

4.2.4 Pattern detection with coincidence detecting spik­
ing neuron

Coincidence detection is an important feature of a spiking neuron. A good ex­

ample of how this could be realised was given in sub-section 2.5.2.3. This feature

has no analogy in the computational units of conventional neural network models

[Maass, 2001a]. It was proved that the spiking neurons outperform sigmoidal

neurons in this regard [Maass, 1997b]. As a coincidence detector, a neuron can

generate an output spike only when it receives coinciding inputs. This feature

can be utilised efficiently to detect input patterns using the connection delays.

The strategy here is that it is possible to find a set of delays which can compen­

sate for the differences in the firing times of the input pattern and enable them

to coincide at an output neuron. Hence, when similar patterns are temporally

coded, a spiking neuron can detect them with a finely tuned set of delayed con­

nections. The finely tuned delays can be viewed as a representation of similar

input patterns and can be utilised for encoding information [Hopfield, 1995]. Ob­

taining the correct delay patterns can be achieved through a suitable learning

method. A scenario which explains the coincidence detection by a spiking neuron

can be found in figure 2.8 of chapter 2. Figure 4.1 shows a simple scenario where

connections with tuned delays enable the inputs to coincide.

4.2.5 Delay adaptation learning

The connection strength in network models represents the amount of conductance

of a connection in biological neural networks. In biological systems, appropriate

4.2 Neuronal delays and coincidence detection 108

Connection
delays (msec)Input at

th7 msec

Input at
3 rd3 msec

Input at
th

5 msec 0
Input Output

neurons neurons time t (msec)

Figure 4.1. Pattern detection by spiking neural network. Right hand side of the
figure shows how the differences in the timing of input spikes are compensated
by the delays.

4.2 Neuronal delays and coincidence detection 109

stimulation can induce changes in the transmission efficacy of the connections.

These changes can affect the connections for a short time or for longer period,

which are thought to be the factors responsible for learning and memory [Gerstner

and Kistler, 2002]. Hence, most of the learning models proposed for biological

networks encoded information in their connection strength [Bi and Poo, 1998;

van Rossum et al., 2000]. Furthermore, new evidence available from the study

of biological systems shows that the temporal delays in neuronal connections can

also be adapted. Target localisation in neural systems requires precise neuronal

signal integration, which can be achieved through delay adaptation [Eurich et al.,

2000]. A study on optic nerves shows that the time delays in them are equalised

[Stanford, 1987]. Innocenti et al. [Innocenti et al., 1994] found that the signals

in visual collosal axons arrive simultaneously at all axonal endings. These find­

ings indicate that the delays are adaptable and could be used as an alternative

mechanism for learning in neural circuits.

In the context of neural learning, two methods using delay-based learning

schemes can be found in the literature, namely, delay shifting and delay selec­

tion. In the delay shifting mechanism, the connection delays are adapted in such

a way as to reflect the learning. The delay selection mechanism on the other

hand, chooses a sub-set of connections with appropriate delays from a large set

of connections. The selection process can be performed through altering the con­

nection strengths, which enhances the connections with appropriate delays while

pruning the others [Eurich et al., 2000]. The next section summarises in detail

the work on delay adaptation learning reported in the literature.

4.3 Research on delay adaptation learning 110

4.3 Research on delay adaptation learning

This section summarises the previous work on delay adaptation learning, includ­

ing both delay selection and delay shifting schemes. These range from biological

modelling studies to real world applications. The models discussed here are not

restricted to spiking neural networks. Some of the delay selection techniques re­

ported so far have been used for applications such as clustering and classification.

However, most of the delay shifting learning models reported so far for spike-based

neural networks are for analytical studies. This section first describes the delay

adaptation learning models utilised in biological modelling studies. Most of these

learning models are unsupervised and rely on Hebbian-type learning rules. The

work on classical neural networks with delays are reported next, which is followed

by a detailed description of previous unsupervised delay adaptation learning in

spike-based neural network models.

4.3.1 Delay-based modelling studies

Baldi and Atiya [Baldi and Atiya, 1994] performed a study to explore how delays

affect neural dynamics and learning. The investigation was focused on the stabil­

ity and convergence properties of the network with delays. Eurich et al. [Eurich

et al., 1999] studied the dynamics of delay adaptation through self-organisation.

The objective of their proposed model was to optimise the coincidence of the

inputs through delay adaptation. This was achieved through a Hebbian-based

delay selection learning rule which modifies the connection weights in order to

select suitable delays, which will in turn enable the inputs to coincide at the

post-synaptic neuron. The connections through which input spikes arrive si­

multaneously with the output spike are strengthened while the others remain

unchanged or even weakened. Further, a delay shift scheme was also proposed,

4.3 Research on delay adaptation learning 111

where the delays were modified instead of the connection strengths. It was shown

that stable solutions exist for arbitrary temporal inputs. The proposed training

scheme was able to select the shortest possible set of delays which yields coinci­

dence. Another delay adaptation learning rule was introduced by Tversky and

Miikkulainen [Tversky and Miikkulainen, 2002] for the activity-dependent devel­

opment of directionally selective cells in the primary visual cortex. This delay

shift learning model adapts the delays in order to align the input spikes at the

target neuron. A modelling study by Gerstner et al. [Gerstner et al., 1996], which

selects appropriate delayed connections through weight adaptation, was described

in sub-section 3.3.2 of chapter 3.

4.3.2 Learning models for conventional networks w ith
delays

A significant amount of research was conducted on the classical neural network

models with delays. In general, conventional neural networks are considered to

be static. Since they have no internal time delays, they respond immediately to

a particular static input. These networks can handle temporal inputs if the input

is a delayed sample of the temporal pattern [Day and Davenport, 1993]. This

technique, along with standard back-propagation learning, has been used in vari­

ous applications [Lapedes and Farber, 1987; Widrow and Winter, 1988; Weigend

et al., 1990]. A drawback with these static network models is that they cannot re­

spond to the temporal patterns in the hidden layer neurons’ outputs. Time Delay

Neural Networks (TDNNs) were introduced by Waibel et al. [Waibel et al., 1989]

to address this problem. In these networks, fixed integral multiples of unit delays

were included in each layer of the network. This model exhibited the benefits of

internal delays and was used for speech recognition tasks. However, this model

encountered problems of spatial expansion and weight constraints. These were

4.3 Research on delay adaptation learning 112

overcome with a temporal back-propagation algorithm presented by Wan [Wan,

1990], where a model was proposed with fixed time delays and discrete-time rep­

resentation of input signals. Later, this algorithm was generalised by Day and

Camporese [Day and Camporese, 1991] in order to handle continuous-time sig­

nals and further generalised by Day and Davenport [Day and Davenport, 1993] to

accommodate adaptable delays, which can be used to train a network for signal

prediction.

4.3.3 Delay adaptation learning in SNNs

Hopfield is one of the pioneers who inspired the research on computing based on

the timing of action potentials. In his classic paper, “Pattern recognition compu­

tation using action potential timing for stimulus representation”, the coincidence

detection capability of a neuron was described and the potential of this new com­

putational technique for pattern recognition was explained [Hopfield, 1995]. This

model was claimed to be functioning more like a Radial Basis Function unit [Bo-

hte et al., 2002b] rather than as a sigmoidal unit. The strategy behind this is that

during the learning phase a particular neuron encodes a given input pattern with

its connection delays. After learning when an input pattern which is closer to the

stored pattern is presented, the connection delays compensate for the differences

of the inputs and make the arrival of these inputs at the neuron coincide, enabling

the neuron to fire [Natschlager and Ruf, 1998].

Based on the research reported in [Hopfield, 1995; Gerstner et al., 1996],

Natschlager and Ruf [Natschlager and Ruf, 1998] performed a study on spatio-

temporal pattern analysis specifically to cluster high dimensional data. Their

work was explained clearly in sub-section 3.3.2 of chapter 3. This model’s capa­

bility was improved through a population coding scheme by Bohte et al. [Bohte

et al., 2002b]. A Supervised error-back propagation learning was also proposed by

4.4 Proposed self-organising delay adaptation SNN for clustering 113

Bohte et al. [Bohte et al., 2002a] for the network model introduced in [Natschlager

and Ruf, 1998]. Their model also incorporated the population coding scheme pro­

posed in [Bohte et al., 2002b]. Here, the learning process performed a form of

delay selection through weight adaptation. Improvements to this model were

proposed in Schrauwen and VanCampenhout [Schrauwen and VanCampenhout,

2004], in which an error gradient-based delay adaptation method was introduced,

but its applicability was not verified.

4.4 Proposed self-organising delay adaptation
SNN for clustering

The self-organising delay adaptation spiking neural network (SODA_SNN) is in­

troduced in this section. This temporal coding spiking neural network employs

spiking neurons as coincidence detectors which can identify correct delay patterns

corresponding to the input patterns. The proposed learning model organises a

network of spiking neurons in a way similar to Kohonen’s self-organising map.

Rather than selecting appropriate delay values from a set of delays, the proposed

learning model shifts connection delays using a learning rule based on the mod­

elling study reported in [Tversky and Miikkulainen, 2002]. Clustering of data sets

is considered as the target application and the model was successfully applied to

the clustering of several data sets. In the following sub-sections the proposed

model is introduced and discussed.

4.4.1 Network architecture

A two-layer network similar to Kohonen’s SOM was chosen as the network archi­

tecture of the SODA.SNN. The input layer was assigned with a number of input

neurons equal to the number of input parameters. The output layer was con­

4.4 Proposed self-organising delay adaptation SN N for clustering 114

structed with spiking neurons as defined in section 2.5. Here, the spiking neurons

were realised as coincidence detectors. The neurons in the output layer were ar­

ranged in a two-dimensional rectangular grid. The input layer was fully connected

to the output layer with feed-forward connections. A connection here is a single

entity with no multiple sub-connections. Each connection was characterised with

a weight and a delay value. The connection strengths can be represented with

values in the range of [0,1). The connection delays can be assigned with values

in the range of 0 to some predefined positive value depending on the other net­

work parameters such as the input time window and the time constant. In the

proposed model, the learning rule adapts the delays while keeping the connection

strengths fixed.

4.4.2 Integration and coincidence detection with a spiking
neuron

The spiking neurons in chapter 3 were realised as integrators. In this chapter

the spiking neurons are implemented as coincidence detectors. The two modes of

operation of the spiking neuron are realised based on the suggestion presented in

[Konig et al., 1996]. In the proposed spiking neural network models, a neuron is

activated for a period of time window defined as over which the neuron’s

potential is summed up and an output spike is generated if it satisfies the thresh­

old criterion. During this period, inputs are presented to the neurons within an

input time window defined as { t input.windaw)■

The coding scheme proposed in this research considers only the timing of the

first spike of a neuron. Hence, it is sufficient for a neuron to fire only once during

a particular cycle of activity. Since the inputs are given to the network within an

input time window, this time window can be considered as the inter-spike interval.

According to the suggestions presented in [Konig et al., 1996], integration can be

4.4 Proposed self-organising delay adaptation SN N for clustering 115

achieved when the activation period is greater than the inter-spike interval and

coincidence detection is achieved when it is less than the inter-spike interval.

But for the spiking neural network concerned, if the activation period is brought

down below the input time window, then the effect of some of the inputs would be

missed. However’, the effective summing-up period depends on the activity period

of the input spikes. Hence, instead of varying the activation period, the period of

activity of an input spike can be varied to realise both modes of operation of the

spiking neurons. Since the time constant r of the activation function defines the

period of activity of an input spike, the two modes of operation can be realised

effectively by varying the r relative to the input time window.

When the value chosen for r is equal or greater than the t input_windmju, the

effect of the spikes will span over this window. Therefore, the effective summing

period would be greater than tinput_Window This causes the spiking neuron to

operate as an integrator. On the other hand, when r is chosen to be shorter

than tinjmtjwindow) the effective period of each spike will be shorter. Hence, the

effective summing period will be shorter than tinput_Window and the spiking neuron

will operate as a coincidence detector.

4.4.3 Spike time-based delay adaptation learning

A Hebbian-type spike-timing based learning rule is employed for training the

network. The learning rule encodes the input information in the connection

delays such that the delayed inputs coincide at some neuron. The learning rule

is based on the timing of the input and output spikes. In typical neuron activity,

if an input spike arrives at a neuron through a delayed connection before there is

an output spike, then the delay associated with that connection is increased. On

the other hand, if the input spike arrives after the generation of an output spike,

then the connection delay is decreased. In both cases the amount of modification

4.4 Proposed self-organising delay adaptation SNN for clustering 116

is determined by the difference between the time when an input spike arrives

and the time when an output spike is generated [Eurich et al., 1999; Tversky

and Miikkulainen, 2002]. The learning equation is based on the modelling study

as reported in [Tversky and Miikkulainen, 2002], which analysed the activity-

dependent development of directional selective cells in the primary visual cortex.

Equations 4.1 and 4.2 specify the learning rule which is graphically described in

where 8t is the difference between the timings of the post- and pre-synaptic firing

events and rstdp is the time constant for depression and potentiation; b is a positive

of the output spike, dji is the delay of the connection between the neurons i and

j. s is a positive value which shifts the learning rule to the right along the axis.

4.4.4 Self-organisation

Self-organisation in the SODA_SNN is achieved through competition and cooper-

In a practical situation, more than one neuron will fire for an input pattern. A

highly activated neuron will tend to fire earlier [Thorpe et al., 2001]. The neuron

that fires first (the winning neuron) will have a high degree of coincidence among

its inputs, thus having the most accurate delay pattern to compensate for differ­

ences in input timings. Therefore, the winning neuron is more likely to represent

the input pattern [Natschlager and Ruf, 1998; Bohte et al., 2002b,a].

Cooperation among the neurons is achieved through lateral excitation. Neu­

rons which are closer to the winner neuron are given precedence over the other

figure 4.2.

(4.1)

8t = tj — (U + d^) — s (4.2)

bias value. U is the timing of an input to neuron j from neuron z, t'j is the time

ation. The competition is created based on the firing times of the output neurons.

4.4 Proposed self-organising delay adaptation SNN for clustering 117

S 1.0
o>

0.8

0.6

0.4

0.2

0.0

- 0.2

- 0.4

- 0.6

- 0.8

1.0

10 20 30•50 -40 -30 10 0
time St (m sec)

Figure 4.2. Learning rule for delay adaptation. Spike response function is shown
in dotted lines for ease of comparison. Here r , TstdP, b and s are assigned with
values 5, 25, 0.1 and 2 respectively.

4.4 Proposed self-organising delay adaptation SNN for clustering 118

neurons. Lateral excitation is realised through the physical location of a neuron

relative to the winning neuron as in the Kohonen’s SOM [Haykin, 1999]. Dur­

ing the training.process, connections of the neurons which are laterally closer

to the winner neuron are updated proportional to its distance from the winner

neuron. A simple strategy given by equation 4.3 which specifies the lateral effect

on neuron j relative to neuron k is incorporated into the learning rule.

hU,k) = e -mk))2/2a (4.3)

where d(j, k) is the lateral distance between the neurons j and k in the output

lattice. The parameter o is the maximum width of lateral excitation which could

be reduced with training epochs from a wide area of interest to a single neuron.

4.4.5 Stabilising the delay adaptation

Stabilising the learning is achieved through two measures. A stability measure

which is local to a particular connection is incorporated in the spike time-based

rule given in equation 4.1. Modification of a connection delay could be stabilised

through properly assigning values for r, rstdv, b, and s in consideration with the

selected input time window. Better results can be achieved when the values

for these parameters are assigned such that the learning rule given by equation

4.1 reaches its maximum when the spike response function begins to saturate as

shown in figure 4.2. Here, r is assigned a value such that the period of the spike

activity is a fraction of the input time window in order to ensure the operation

of the spiking neuron as a coincidence detector. A value for Tstdp is selected such

that the learning rule could be applicable over the full activity period of the spike.

Bias b and shift s play an important role in stabilising the delay adaptation. The

bias restricts the expansion of the delays when the difference between the timing

of the input spike and the time of generation of the output spike exceeds a finite

value. In fact, the delay change is made negative if the time difference exceeds

4.4 Proposed self-organising delay adaptation SN N for clustering 119

this limit. The shift 5 restricts the continued increase of tuned delays. If properly

tuned, a set of connections will enable inputs to reach a target neuron just before

the firing of that neuron. Due to the shift, the connections’ delay through which

spikes reach a neuron just before firing will not be increased. If not controlled by

local stability measures the delays will increase indefinitely.

The second measure considers a neuron as a whole entity and stabilises the

delay adaptation based on the amount of coincidence of the inputs to that neuron.

A simple linear measure given by equation 4.4 is utilised, which is based on the

time between the first and last delayed input spikes to the neuron.

f ^ ^ r n a x j U + ^ - m i n l U + d d . = ^ ^ (4 4)

tinputjwindow

where U is the time of an input spike to neuron j through input neuron i. dji

is the delay of the connection between neuron i and j . tinput_Window is the input

time window, n is the number of input neurons. If the delays had been tuned

to enable the input spikes to coincide then further modification is not necessary.

Hence, the amount of change for a particular connection delay can be decreased

while achieving the same degree of coincidence. Therefore, if the total change of

connection delays falls below a minimum value or the change remains constant,

then the training process can be terminated.

4.4.6 Learning rule

The proposed learning rule is based on the three main aspects, namely spike-time

based learning, self-organisation and stabilisation, discussed in sections 4.4.3,

4.4.4 and 4.4.5 respectively. The learning rule is given by equation 4.5, which

specifies the amount of change to the connection delay from neuron i to j.

8dji = r) g(St) h(v, j) f(dji) (4.5)

4.5 Implementation details 120

where g, h and / are defined by equations 4.1, 4.3 and 4.4 respectively. 6dji is

the amount of change for the connection delay from neuron i to neuron j ; rj is

the learning rate; v is the winner neuron, which fires first among the competing

neurons; 5t is the time difference as defined in equation 4.2.

4.4.7 Interpreting the output and cluster identification

The output of the SNN is the timing of the spikes generated by its output layer

neurons. Since the neurons function as coincidence detectors, a neuron which fires

first contains a delay pattern which is the closest match for an input pattern in

terms of coincidence. In a similar fashion to the self-organising weight adaptation

SNN, it was observed in this model that similar input patterns tend to excite a

particular output neuron to fire within some well defined time interval. Hence,

the mapping of the output is based on the position of the winner neuron in the

output grid and their firing times as described in chapter 3 (sub-section 3.4.7).

Here, a cluster is specified with a particular set of neurons and a particular firing

time interval.

4.5 Implementation details

The SODA_SNN was realised as a discrete model, described in chapter 2 of section

2.5.4 and implemented in software. A separate computer program was written

for this purpose and used for the analysis of the model. The spiking neurons were

realised as coincidence detectors by assigning a relatively low value for the time

constant of the spike response function, with respect to the input time window

as described in sub-section 4.4.2.

Setting the values and range for the connection weights and delays also played

an important role in the operation of the model. In addition, the threshold

4.5 Implementation details 121

values were set appropriately in order to obtain better performance from the

network. The selection of these parameters was carefully made in order to detect

the coincidence as accurately as possible and to give adequate space to reflect the

cluster distribution. The optimum values were found effectively by trial and error.

This optimisation process was enhanced by analysing the inputs, and in particular

the distribution and range of values for each input feature. In addition to setting

the parameter values, the implementation of the learning process encountered

some interesting and critical issues which are discussed in detail in the following

sub-sections.

4.5.1 Initialising the connection weights and delays

The structure of the SODA_SNN is similar to that of a Kohonen’s SOM except

that the computing neurons are coincidence detecting spiking neurons. The out­

put neurons were placed in a two-dimensional rectangular grid. The input and

output layers were fully connected through feed-forward connections and the con­

nections were characterised by a weight and a delay value. The values for the

connection weights were assigned randomly within a small predefined range in

order to prevent the connection weights dominating the effect of the connection

delays. A suitable range for the weights was found to be between 0.4 and 0.6.

The delays were assigned with random values closer to the middle of the input

time window. An input time window with 30 unit intervals was found to be

adequate to represent the input vectors temporally in most cases, and the delays

were assigned within the range of 10 to 20. The delays could also be assigned

using a Gaussian distribution, where the mean and the standard deviation of the

distribution can be selected to reflect the distribution of temporally coded inputs.

The main concern here is to ensure an initial evenly distributed representation

of the input vectors over the output space. In addition, the initial distribution

4.5 Implementation details 122

should give adequate space for the adaptation of delays in order to achieve better

coincidence detection and thus better clustering. Due to the nature of the learning

strategy, it is possible for a connection to have a delay value equal to the input

time window. This is to accommodate the worst case scenario where the first

input at the beginning of the input time window is followed by another input at

the end of this time window. Hence, the activation window was selected to be

greater than twice the duration of the input time window.

4.5.2 Setting the threshold value

The threshold value is a critical factor for the learning process. Initially in the

untrained network, it is unlikely that any neuron’s delayed connections are able to

make all the inputs to coincide. In order to achieve high accuracy in coincidence

detection, it is necessary to keep the threshold value of the neurons high. However,

this will prevent most of the neurons from firing at the early stage of learning. As

a result, these neurons will remain dead throughout the learning process. It is a

necessity for a neuron to be active in order to be trained, since the learning rule is

based on the input and output spike times. Even if some neurons managed to fire

due to the random assignment of delay values, there is a high possibility that these

neurons could be surrounded by dead neurons. This will prevent cooperation

among neurons and will result in a poorly distributed output space. As a result

the training will produce many dispersed and overlapped clusters. This problem

could be solved effectively if an adequate number of output neurons can be kept

active throughout the learning process. This can be easily achieved by starting

with a low threshold value and later increasing it by a fraction with each epoch

of learning. It was found experimentally that by adopting this method the model

learned the input information effectively and formed clear clusters.

Initially a low threshold value was selected to enable most of the neurons to

4.6 Simulation results and discussion 123

fire for almost all of the input vectors. This value was increased gradually with

training to a value which could detect around 75% to 85% of the effect of each

input. A suitable maximum value for the threshold was found to be number of

inputs x 0.5 x 0.8. Here 0.5 is the average weight and the value of 0.8 reflects the

80% effect of an input.

4.5.3 Setting the parameters of the learning rule

Setting the learning equation parameters at their optimum level is the key to

obtaining better results. In general, the parameters were assigned with values

which cause the spike response function and the learning equation approximately

to overlap as shown in figure 4.2. The exact values for the time constant r and

Tstdp were determined by trial and error. The shifting of the learning equation

to the right was performed appropriately in order to minimise the delay change

for coinciding inputs. A shifting value, which is a fraction of the time constant

for the spike response function, was found to be suitable. The value for bias is

another factor which affects the learning process. A low bias value of around 0.1

was found to be adequate. In addition, the learning rate is also an important

parameter. Better stability was achieved in learning when the learning rate was

set in the range of 0.1 to 0.5.

4.6 Simulation results and discussion

The SODAJSNN was analysed through a number of simulations in order to de­

termine its clustering capability, activity, coincidence accuracy and stability. The

analyses were performed using the three bench marking data sets and the high

dimensional control chart data which were described in chapter 2 of section 2.6.2.

Table 2.1 summarises the details of these data sets. For the simulations, approx­

4.6 Simulation results and discussion 124

imately 66% of the data set was randomly selected and used for training and the

remaining set was used for testing. Description of the number of samples used

for training and testing is given in table 3.1. The simulation results were used

to investigate the effectiveness of the learning model and of the strategies incor­

porated in the learning model. The following sub-sections discuss these issues in

detail.

4.6.1 Clustering capability

The SODAJSNN was applied to each data set specified in section 2.6.2 and the

clusters were identified based on the location of the winner neurons and their

firing time. Clustering accuracy for the training set was found using the class

information of the training samples. Validity of the clusters was verified with

the test set which was not used for the training. After the training process was

completed, the test set was presented to the network and the clusters within the

input data were identified. The clustering accuracy of the test set was found using

the class information of the testing samples. For each data set the training and the

testing process was repeated five times and the average clustering accuracy was

computed. The network’s connection delays and weights were reassigned in each

trial. Table 4.1 lists the optimum clustering accuracy obtained by SODAJSNN

for each data set. The data used for training and testing is given in Appendix B.

The results show that the SODA_SNN achieved better clustering accuracy

with a relatively small network and fewer training epochs. In addition, the model

obtained high accuracy for the test sets, which confirms the validity of the clusters

and the generalisation capability of the model. The SODA-SNN obtained bet­

ter clustering accuracies than the weight adaptation model SOWAJ3NN for Iris,

Wine and Control chart data. For Cancer data, SODA-SNN obtained marginally

lower clustering accuracy than SOWAJ3NN. Further, SODAJSNN was found to

4.6 Simulation results and discussion 125

be utilising the network efficiently to form well separated clear clusters. Clusters

formed using the SODA_SNN are given in the next sub-section. Hence it can be

considered that the SODA_SNN is a viable tool for clustering applications and

the coincidence detection feature of the spiking neuron enables the SODA_SNN

to perform better than the SOWA.SNN.

As discussed earlier in section 4.5, the values for the network parameters affect

the clustering capability of the model. The parameter values of the network for

clustering different data sets were found by analysing the data set and assigned

by trial and error. Table 4.2 lists these parameter values. A number of trial runs

were performed to find the near optimum values for each parameter. It is notable

here that the values for the parameters r , r^p , s and b are critical for optimum

performance. They were chosen along with the learning rate in order to achieve

maximum clustering accuracy while keeping the delay values to a minimum.

Further experiments were performed to determine the effect of the network

size on the clustering capability. Here, the network size is specified by the size

of the output grid. Data sets were clustered with different sized networks and

their average clustering accuracies were found over five trials. The number of

training and testing samples, number of training epochs and the values for the

network parameters, were kept the same as those of the corresponding SNNs

which obtained the optimum results. Results obtained for the Iris, Cancer and

Wine data are given in table 4.3. Results for the Control chart data are given

in table 4.4. These results show that when the network size was reduced from

its optimum, the clusters were found to be overlapping and resulted in reduced

clustering accuracy. When the network size was increased from its optimum,

the clustering accuracy was also found to be reducing. Here several sub clusters

were identified, which were scattered over the output space and the network was

underutilised, resulting in low clustering accuracy.

4.6 Simulation results and discussion 126

Data set No. of neurons No. of training
epochs

Clustering accuracy (%)
Input Output Training Testing

Iris 4 5x5 20 96.9±0.8 96.9±1.2
Cancer 9 3x3 10 97.4±0.3 96.8±0.2
Wine 13 5x5 20 95.3±0.7 95.2±0.8
Control chart 60 8x8 20 96.4±0.3 96.1±0.4

Table 4 .1 . Average clustering accuracy obtained for the SODAJSNN.

Data set tinput.window T T~s tdp b s V e
Iris 30 5 25 0.05 2 0.1 0.7—0.8
Cancer 30 5 25 0.05 2 0.3 0.6—0.8
Wine 30 5 25 0.1 2 0.3 0.6-0.67
Control chart 30 5 25 0.1 2 0.4 0.7-0.83

Table 4.2. Values assigned for the parameters of the network used to obtain the
results listed in table 4.1.

4.6 Simulation results and discussion 127

Network
size

Clustering accuracy(%)
Iris Cancer Wine

training testing training testing training testing
3x3 88.6±1.0 87.4±1.3 97.4±0.3 96.8±0.2 88.8±2.8 87.4±4.0
4x4 89.2±2.0 89.6±3.4 96.3±0.7 95.6±1.0 92.0±2.7 93.1±2.4
5x5 96.9±0.8 96.9±1.2 96.5±0.9 96.5±0.6 95.3±0.7 95.2±0.8
6x6 93.7±2.8 91.1±2.7 96.3±1.1 94.9±2.6 90.5±1.9 91.7±4.3
7x7 93.2±2.7 91.6±2.4 96.1±1.4 93.4±3.3 90.1±2.2 90.1±4.9

Table 4.3. Average clustering accuracy obtained for different size of SODAJSNNs.

Network
size

Clustering accuracy(%)
Control chart

training testing
6x6 93.5±2.5 93.6±3.5
7x7 93.1±0.2 92.7±1.5
8x8 96.4±0.3 96.1±0.4
9x9 92.3±1.6 93.9±0.6

10x10 91.8±0.7 92.5±0.8

Table 4.4. Average clustering accuracy obtained on control chart data for different
size of SODA_SNNs.

4.6 Simulation results and discussion 128

The approach taken in the proposed delay adaptation model is novel for learn­

ing in spiking neural networks. The model proposed in [Bohte et al., 2002b] ob­

tained a clustering accuracy of 92.6 ± 0.9% for the Iris data set, where the inputs

were encoded with 4x8 input neurons through a population coding scheme. Each

connection was composed of several sub-connections, thus increasing the size of

the network even more. For the Iris data set, the clustering accuracy obtained

for the proposed model is greater than for the results presented in [Bohte et al.,

2002b]. In addition, the size of the network was much smaller without any addi­

tional sub-connections. The model proposed in [Bohte et al., 2002b] required a

population coding scheme to obtain better clustering accuracy, which increased

the number of input parameters, thus increasing the required computational ef­

fort. The SODAJSNN utilises a linear temporal coding scheme which represents

an input value through a single spike time. In addition, the clustering accuracy

of the SODAJSNN on other data sets, including the high dimensional Control

chart data, was found to be high. These results show that the clustering capabil­

ity of SODAJSNN can be considered better than the previous unsupervised SNN

models.

For comparing the capability of the proposed model with conventional network

models, the same data sets listed in table 2.1 were clustered using Kohonen’s

SOM. For this purpose the freeware program ESOM Analyser was utilised. The

data sets were clustered using this program and the results obtained are given

in table 4.5. The size of the network, number of training samples and training

epochs were kept same as used for the corresponding SNN model. The proposed

model achieved better clustering accuracies on all the data sets than the SOM in

this configuration.

The SOMs specified above were further trained until they reached their highest

clustering accuracy. The results obtained are listed in table 4.6. For Iris, Cancer

4.6 Simulation results and discussion 129

and Control chart data sets, the SODA.SNN obtained slightly higher clustering

accuracy on both training and testing sets. SODAJ3NN obtained much better

results than the SOM on the Wine data set. For all the data sets SODA_SNN

required fewer training epochs than SOM to reach the highest accuracy. These

results show that the performance of the proposed model is better than the Ko-

honen’s SOM.

4.6.2 Network activity

The activity of the SODAJ3NN was examined in order to investigate the effec­

tiveness of the dynamic threshold strategy introduced in sub-section 4.5.2. The

investigation was performed on four different SNNs trained on the four data sets

concerned. For analysing the proposed model with the Iris data set, a network

with 4 input neurons and 5x5 output neurons was constructed. The network pa­

rameters were assigned with values as described in the section 4.5. Initial thresh­

old value was set to detect 70% effect of each input and further increased to 80%

linearly with each training epoch. The data samples were temporally coded and

the network was trained with the temporal data for a total of 20 epochs. Dur­

ing the training phase, the lateral excitation was initially set to realise within a

neighbourhood spanning the whole network and was reduced gradually with each

epoch of training to a single neuron. After each training epoch, the whole train­

ing set was presented to the network and the average number of active neurons

was found. Similarly, SNNs were constructed for analysing the other three data

sets and the above mentioned procedure was followed. Details regarding the four

SNNs analysed are given in table 4.7. The network size and other parameters are

the same as used to obtain the optimum results of the SODA_SNN in sub-section

4.6.1.

In order to compare the effect of learning with the dynamic threshold, net-

4.6 Simulation results and discussion 130

Data set No. of neurons No. of training
epochs

Clustering accuracy(%)
Input Output Training Testing

Iris 4 5x5 20 95.O il .4 93.3i2.7
Cancer 9 3x3 10 96.5±0.4 96.1i0.2
Wine 13 5x5 20 75.3±2.7 73.0±3.5
Control chart 60 8x8 20 94.8±0.5 94.4±0.9

Table 4.5. Average clustering accuracy obtained for Kohonen’s SOM. The soft­
ware package ESOM was utilised for this purpose.

Data set No. of neurons No. of training
epochs

Clustering accuracy(%)
Input Output Training Testing

Iris 4 5x5 30 96.8±0.5 96.4±1.2
Cancer 9 3x3 20 97.3±0.3 96.3i0.9
Wine 13 5x5 30 78.7i0.5 78.3±0.9
Control chart 60 8x8 30 96.1±0.9 95.5±0.9

Table 4.6. Average highest clustering accuracy obtained for Kohonen’s SOM.

4.6 Simulation results and discussion 131

Data set No. of neurons No. of training
epochs

Threshold
Input Output Initial Final

Iris 4 5x5 20 4x0.5x0.7 4x0.5x0.8
Cancer 9 3x3 10 9x0.5x0.6 9x0.5x0.8
Wine 13 5x5 20 13x0.5x0.6 13x0.5x0.67
Control chart 60 8x8 20 60x0.5x0.7 60x0.5x0.83

Table 4.7. Details of the SODAJSNNs for the analysis of network activity.

4.6 Simulation results and discussion 132

works with the same topology specified in table 4.7 were trained using a fixed

threshold equal to the maximum value assigned in the case of dynamic threshold.

Figure 4.3 shows the average number of active neurons after each epoch in both

networks trained on the Iris data set. Likewise, figures 4.4, 4.5 and 4.6 show the

network activity observed in both cases of the networks trained on Cancer, Wine

and Control chart data respectively. It can be seen from the figures that, for

the networks with the dynamic threshold, the average number of active neurons

were high at the beginning and they were reduced with the increase of threshold

over training. However, for the networks with the fixed threshold, the average

number of active neurons remained approximately at the same level, with only

a slight increase. Since the number of active neurons was high for the networks

with dynamic threshold, they formed clear and finely distributed clusters, while

the networks with fixed threshold formed several poorly distributed sub-clusters.

Figures 4.7, 4.8, 4.9 and 4.10 show the clusters formed in both cases within Iris,

Cancer, Wine and Control chart data respectively. These results show that the

proposed learning method with dynamic threshold effectively kept the network

with an adequate level of activity and enabled formation of clear and finely dis­

tributed clusters. The drop in the number of active neurons for the network

with dynamic threshold is due to the restriction imposed on learning within a

small neighbourhood. Another reason is that after learning, a single or group of

neurons will fire only for input vectors belonging to a particular class.

4.6.3 Degree of coincidence

The measure given in equation 4.4 was employed to specify the degree of coin­

cidence among the delayed inputs. This measure utilises the difference between

the arrival times of the first and the last input spike to a neuron. This section

analyses the degree of coincidence achieved through learning. For this purpose,

A
ve

ra
ge

nu

m
be

r
of

ac
tiv

e
ne

ur
on

s

4.6 Simulation results and discussion 133

16
* — with dynam ic threshold15
* — with fixed threshold

14

13

12

11

10

9

8

7

6

5
0 42 106 8 12 14 16 18 20

Epoch number

Figure 4.3. Activity of the SODAJSNN trained on Iris data with dynamic and
fixed threshold values.

A
ve

ra
ge

nu

m
be

r
of

ac
tiv

e
n

eu
ro

n
s

4.6 Simulation results and discussion 134

8

— wi th dynanpic threshold
— wi th fixed threshold !

7

6

5

4

3
8 100 2 4 6

E poch num ber

Figure 4.4. Activity of the SODA_SNN trained on Cancer data with dynamic
and fixed threshold values.

A
ve

ra
ge

nu

m
be

r
of

ac
tiv

e
ne

ur
on

s

4.6 Simulation results and discussion 135

26

24

22

20

18

16

14

12

10

8

0 2 4 6 8 10 12 14 16 18 20

Epoch number

j - « — With dynamic threshold
■r with fixed threshold

Figure 4.5. Activity of the SODA_SNN trained on Wine data with dynamic and
fixed threshold values.

A
ve

ra
ge

nu

m
be

r
of

ac
tiv

e
ne

ur
on

s

4.6 Simulation results and discussion 136

60
with dynamic threshold
with fixed!threshold I

50

40

30

20

10

0
8 10 12 14 16 18 20 220 2 4 6

Epoch number

Figure 4.6. Activity of the SODA_SNN trained on Control chart data with dy­
namic and fixed threshold values.

Grid Position y

Spike t ime.

Figure 4.7. Clusters formed within the Iris daU
dynamic and (b) with fixed threshold.

class j
class 2
class 3

Usu,g S 0 ^ s m
(a) with

4.6 Simulation results and discussion 138

Spike time
class 1
class 2

Grid position x

Grid position y

(a)

Spike time
class 1 ■
class 2 •

Grid position x

Grid position y

(b)

Figure 4.8. Clusters formed within the Cancer data using SODA_SNN (a) with
dynamic and (b) with fixed threshold.

4.6 Simulation results and discussion 139

class 1 ■
Spike time class 2 •

class 3 A

Grid position x

Grid position y

(a)

class 1 ■
Spike time class 2 •

class 3

Grid position x

Grid position y

(b)

Figure 4.9. Clusters formed within the Wine data using SODA.SNN (a) with
dynamic and (b) with fixed threshold.

Grid position y
(b)

Figure 4.10. Clusters formed w ithin the Coi-^01 cnart ' usin (a) w ith dynamic and (b) w ith

s SO D A _Sm

4.6 Simulation results and discussion 141

networks similar to those described in the previous sub-section were trained on

the corresponding data sets. After each epoch of training, the whole training set

was presented to the networks and the winner neurons were found. The degree of

coincidence of the delayed inputs to the winner neuron for each input sample was

found and the average was computed. Figure 4.11 shows the average degree of

coincidence achieved by the winner neurons through learning after each epoch on

the network trained on Iris data. It can be seen from this figure that the average

falls gradually from 0.4 with each training epoch and reaches a value of 0.23 after

20 epochs. The final value 0.23 which represents an average time difference of 6.9

obtained after learning is much smaller than the activation period of a synapse.

For example, when r is assigned with a value of 5 as in this case, the activation

period is around 30 units (see figure 4.2). The final threshold value was set to

detect 80% of the input effect. The value 6.9 is approximately equal to the period

of the spike response function, where its effect is more than or equal to 0.8. Like­

wise, figures 4.12, 4.13 and 4.14 show the average degree of coincidence achieved

through learning on Cancer, Wine and Control chart data respectively. Hence,

the results clearly show that the learning model effectively adapts the connection

delays and achieves a high degree of coincidence among the inputs. This also can

be viewed as proof of the efficiency of the method introduced in section 4.4.2 for

realising the two modes of operation of the spiking neurons.

4.6.4 Stability

In order to investigate the effectiveness of the stability measures introduced in

sub-section 4.4.5-, the delay distribution of the trained SNNs which obtained the

optimum results in sub-section 4.6.1 were analysed. Figures 4.15, 4.16, 4.17 and

4.18 show the distribution of delays of the SODA_SNNs trained on Iris, Cancer,

Wine and Control chart data respectively. It is notable here that initially the

De
gr

ee

of
co

in
ci

de
nc

e

4.6 Simulation results and discussion 142

0.40

0.38

0.36

0.34

0.32

0.30

0.28

0.26

0.24

0.22

0 2 4 6 8 10 12 14 16 18 20 22
Epoch number

Figure 4.11. Degree of coincidence achieved on the SODA_SNN trained on Iris
data.

De
gr

ee

of
co

in
ci

de
nc

e

4.6 Simulation results and discussion 143

0.46

0.44

0.42

0.40

0.38

0.36

0.34

0.32

0.30

0.28
104 80 2 6

Epoch number

Figure 4.12. Degree of coincidence achieved on the SODA_SNN trained on Cancer
data.

De
gr

ee

of
co

in
ci

de
nc

e

4.6 Simulation results and discussion 144

0.66

0.64

0.62

0.60

0.58

0.56

0.54

0.52

0.50
10 12 14 16 18 20 224 6 820

Epoch number

Figure 4 .13 . Degree of coincidence achieved on the SODA_SNN trained on Wine
data.

De
gr

ee

of
co

in
ci

de
nc

e

4.6 Simulation results and discussion 145

0.46

0.44

0.42 -

0.40

0.38

0.36

0.34

0 2 4 6 8 10 12 14 16

Epoch number

Figure 4.14. Degree of coincidence achieved on the SODA_SNN trained on Con­
trol chart data.

4.6 Simulation results and discussion 146

connection delays of the networks were randomly assigned in the range of 10 to

20. These figures show that with the stability measures, the connection delays

reached a normal distribution with much of the delays concentrated in the central

region of the allowed delay range. The proposed measures effectively kept the

connection delays with relatively low values, resulting in a stable system.

F
re

qu
en

cy

4.6 Simulation results and discussion 147

* & # & <y Nv N* # <y Nv ̂ vvvvvyV V V V *v

D elay values

Figure 4.15. Distribution of the connection delays of the SODA-SNN trained on
Iris data.

F
re

qu
en

cy

4.6 Simulation results and discussion 148

D elay va lu es

Figure 4.16. Distribution of the connection delays of the SODA_SNN trained on
Cancer data.

F
re

qu
en

cy

4.6 Simulation results and discussion 149

40

35

30

25
332$3

20

15

10

5

0
<b kN n*S

D elay va lu es

Figure 4.17. Distribution of the connection delays of the SODAJ3NN trained on
Wine data.

4.6 Simulation results and discussion 150

feXMXhl

D elay va lu es

Figure 4.18. Distribution of the connection delays of the SODA_SNN trained on
Control chart data.

4.7 Conclusion 151

4.7 Conclusion

Biological neurons have been found to be utilising a form of coincidence detection

for information processing which is considered to be the key for some of their high

speed cortical actions. The temporal coding spiking neural networks possess this

coincidence detection ability, which is a relatively novel concept in neural net­

works for pattern recognition. This efficient feature of spiking neural networks

was utilised for developing a learning model for temporal coding spiking neural

networks. In this chapter, the Self-Organising Delay Adaptation Spiking Neural

Network (SODA_SNN) for clustering tasks has been proposed. This model em­

ploys a Hebbian-based delay adaptation mechanism to train the network, which

encodes the input information in the connection delays. This mechanism directly

adapts the connection delays instead of the previous approaches of modifying

connection weights to select suitable delayed connections. An efficient learning

mechanism utilising a dynamic threshold approach has been employed, which

enabled the network to learn efficiently. A stabilisation measure has been incor­

porated which utilises the degree of coincidence of inputs in order to control the

delay adaptation effectively.

The proposed model has been implemented in software and various aspects

have been analysed in order to investigate its characteristics. The SODA-SNN’s

clustering capability was successfully demonstrated by applying it to cluster

benchmarking data sets and also a high dimensional data set. The performance

of the model was found to be better than the previous unsupervised spiking neu­

ral network learning models. The clustering capability of the proposed model

was compared with the Kohonen’s SOM and found to be better. The proposed

model’s capability was shown to be better than the SOWA_SNN proposed in

chapter 3, especially in terms of cluster formation. Through analysing the out­

4.7 Conclusion 152

put and the delay distribution during and after learning, the SODA_SNN was

demonstrated to be performing efficiently. The method introduced to realise the

two modes of operation of the spiking neurons was also showed to be effective.

It can be concluded, therefore, that the self-organising delay adaptation spiking

neural network is an efficient tool for clustering applications.

Chapter 5

Supervised Delay Adaptation
Spiking Neural Network
(SDA_SNN)

5.1 Introduction

This chapter investigates supervised learning in spiking neural networks and pro­

poses a novel supervised learning model to train temporally coding spiking neural

networks for classification tasks. The spiking neurons used in the proposed learn­

ing model operate as coincident detectors which become optimally active when

they receive synchronised inputs. The proposed learning process adapts the net­

work’s connection delays rather than the connection strength. The learning model

shifts the connection delays of one or a group of neurons in order to detect tem­

poral patterns from a particular class. The network architecture of the proposed

model is similar to a Learning Vector Quantisation (LVQ) network [Zurada, 1999]

and the model utilises a Hebbian-based learning rule which acts as an error es­

timator. The efficiency of the model was shown by applying it to classify four

data sets successfully. Analytical studies were also performed to establish the

characteristics of the proposed model. The proposed model was able to achieve

better classification accuracies with smaller networks and fewer training epochs

153

5.2 Supervised learning in artificial neural networks 154

than the existing supervised SNN models and Multi Layer Perceptron (MLP)

[Haykin, 1999] networks.

This chapter is structured as follows; section 5.2 introduces the supervised

learning paradigm for artificial neural networks. Popular supervised learning

models for conventional neural networks are also briefly explained here. In addi­

tion, this section summarises the previous research related to supervised learning

in spiking neural networks. The proposed model for supervised delay adaptation

learning is introduced in section 5.3. The implementation details of the proposed

model are given in section 5.4. In section 5.5 the simulation results are presented

with discussions. Finally, conclusions are given in section 5.6.

5.2 Supervised learning in artificial neural net­
works

Supervised learning, or learning with a teacher, is a well-known learning paradigm

used to train artificial neural networks. This type of training is possible if the

target information of the training data is available. A schematic diagram which

describes this learning technique is shown in figure 5.1 [Haykin, 1999] and ex­

plained below.

The environment shown in figure 5.1 is the knowledge about, or collected

information of, a particular domain. The teacher presents examples drawn from

the environment, usually in an input-output pair, to the learning system. The

actual output of the system is compared with the desired output and an error

value is computed. The learning system modifies the connection weights in such

a way as to reduce this error. This process is continued in a step-by-step manner

until some terminating criteria is met. The terminating criteria could be based

on several factors, such as the total error or the total change in the system.

5.2 Supervised learning in artificial neural networks 155

The training can be stopped when the total error reaches a minimum value or

the change in the system becomes stable. The stopping criterion is necessary

for generalising the trained network in order for it to function properly with

unseen data. After the training process is completed, the network can function

independently in recall mode without the help of the teacher. In recall mode,

when the network is presented with an input pattern, the generated output is

expected to be closer to the desired output. Hence the network can be employed

to find the desired output for data objects belonging to the same domain where the

target information is unknown [Haykin, 1999; Zurada, 1999; Pham and Liu, 1999].

The following sub-sections describe some popular supervised learning models for

conventional and spiking neural networks.

5.2.1 Supervised learning in conventional neural networks

There are a number of popular supervised learning models available for conven­

tional networks. Perceptrons are the basis for most of these models, which can be

considered as the simplest form of a neural network, with a single neuron consist­

ing of adjustable synaptic connections. This non-linear neuron, which was based

on the McCulloch-Pitts neuron model, consists of a linear combiner followed by

a hard limiting activation function. Rosenblatt [Rosenblatt, 1958] introduced

the perceptron and a novel method of supervised learning as a new approach to

solving the pattern recognition problem. This single neuron model is capable of

classifying patterns belonging to two linearly separable classes. By increasing the

number of neurons, classification of more than two classes can be achieved. How­

ever, the classes should be linearly separable. In a different approach, Widrow and

Hoff [Widrow and Hoff, 1960] introduced the Least-mean square (LMS) algorithm,

which is also known as the delta rule. Rosenblatt’s perceptron learning algorithm

and the LMS algorithm are error correction algorithms, where the former applies

5.2 Supervised learning in artificial neural networks 156

Vector describing the state
o f the environment.

:£> TeacherEnvironment

+ V

Actual response

Error signal

Figure 5.1. Schematic diagram of supervised learning. Redrawn from [Haykin,
1999].

5.2 Supervised learning in artificial neural networks 157

to binary valued units and the latter to continuous valued units.

It was reported in [Minsky and Papert, 1969] that there are fundamental

limits on what single layer perceptrons can compute. This was overcome with

the introduction of error back-propagation algorithm for the training of multi­

layer perceptron networks, which was reported in [Rumelhart et al., 1986]. The

multilayer perceptron network, a generalised version of the single layer network,

includes one or more hidden layers in addition to the output layer of comput­

ing neurons. An important difference as concerns the neurons in the multilayer

perceptron networks is that the non-linear activation function used is continuous

instead of the hard limiting function of the perceptrons. In fact, this continuity

is an essential condition for the error back-propagation algorithm to converge.

During training, the actual output of the network and the desired output are

utilised to compute an error value which is propagated back to each layer of neu­

rons. Efficient learning rules were derived to update the weight of the connections

between neurons in all layers. The multilayer perceptron network with the error

back-propagation algorithm is the most popular network model for supervised

learning. This model has been applied successfully in solving numerous difficult

and diverse problems [Haykin, 1999].

Another supervised learning paradigm is the Radial Basis Function (RBF)

network, which takes a completely different approach as compared to the error

back-propagation algorithm [Haykin, 1999]. The network consists of an input

layer, a hidden layer and an output layer. Hidden neurons are represented with

radial basis functions, generally a Gaussian function, as specified in equation

2.13. The network is trained by finding proper values for the centre and radius

for the basis functions of each hidden neuron and the connection weights for the

output neurons. When an input pattern is presented to the network each hidden

neuron computes the distance between its centre and this input vector, generally

5.2 Supervised learning in artificial neural networks 158

through a Euclidean norm. Based on these values, the neurons in the output

layer produce a weighted sum which is the output of the network [Pham and Liu,

1999].

The LVQ network is another important supervised learning model, which is

structured with three layers of neurons: an input layer, a non-linear hidden layer

and a linear output layer. The network is fully connected between the input

and hidden layers and partially connected between the hidden and output layers,

with each output neuron linked to a different group of hidden neurons. Each

output neuron represents a particular class of input data. Connections between

the hidden and output neurons are assigned with a fixed weight value 1. The

connections between the input layer and hidden layer are updated during training.

When an input pattern is presented to the network, a hidden layer neuron with

the connection weights closest to the input pattern in terms of Euclidean distance

is found. This neuron, which is called the winner, produces an output of 1

and the output neuron connected to this neuron also generates an output of

1. The connections are strengthened if this neuron is connected to the desired

output neuron but otherwise weakened. The strengthening (or weakening) of the

connections is performed in such a way that the connection weight vectors of

a particular group of hidden neurons become closer to the corresponding input

vectors [Pham and Liu, 1999].

5.2.2 Supervised learning in spiking neural networks

Supervised learning algorithms are reliable training models for artificial neural

networks and they are, therefore, widely employed for training network models.

A number of different supervised learning models for spiking neural networks can

be found in the literature. These models can be grouped into two categories based

on the underlying training strategy, namely error gradient decent based models

5.2 Supervised learning in artificial neural networks 159

and Hebbian rule based models [Ponulak, 2005]. Most of the supervised learning

models found in the literature adapt the connection weights. The following sub­

section summarises the existing learning models in the above two categories and

analyses them.

5.2.2.1 Error gradient based learning models

It is well known that the error back-propagation is an efficient and guaranteed

learning paradigm for multilayer feed-forward networks. The efficiency and reli­

ability of this algorithm has inspired many supervised learning models, including

the models for spiking neural networks. Bohte et al. [Bohte et al., 2002a] intro­

duced a supervised learning method for multilayer feed-forward spiking neural

networks based on error gradient decent. With the aid of some important as­

sumptions, learning equations were derived in the same manner as Rumelhart’s

error back-propagation learning rules. The assumptions were taken to fulfil the

continuity criteria of the activation function. A special type of network was

utilised, where connections between two neurons were constructed of several sub­

connections, each characterised with different delay and weight values (see figure

3.3).

The precision and the classification capability of the learning model proposed

in [Bohte et al., 2002a] was further improved with a population coding scheme.

This coding scheme aimed to improve the resolution of the temporal input code,

thus increasing the classification precision and capability of the network. Ac­

cording to the coding scheme, a single input value is represented with a vector

of values. This vector was found with the aid of a one-dimensional receptive

field comprised of overlapping Gaussian functions as shown in figure 5.2. This

supervised learning model, along with the coding scheme, was applied to the

classification of several data sets and found to be successful. In addition, its

5.2 Supervised learning in artificial neural networks 160

performance was also found to be comparable with that of MLP networks.

Improvements for the model described above were proposed in [Schrauwen

and VanCampenhout, 2004], In the model proposed in [Bohte et al., 2002a],

only the connection weights are modified, but here rules were proposed to adapt

connection delays, time constant and the neuron’s threshold in addition to the

connection weights. The derivation of these rules was similar to the one proposed

in [Bohte et al., 2002a]. However, the applicability of these rules was not verified.

Improving the model proposed in [Bohte et al., 2002a] by adding a momentum

term to the learning rule was specified in [Jianguo and Embrechts, 2001].

Error correction learning is the usual choice for supervised learning in con­

ventional neural networks. A condition for convergence in error gradient descent

models is that the activation function of the neurons should be continuous. The

common use of a sigmoidal or hyperbolic tangent as the activation function is in

line with this condition. In spiking neural networks, the output is the time when

the neuron potential exceeds a threshold value. Hence, the activation function

of a spiking neuron behaves more like a threshold function. Therefore, the error

gradient method of supervised learning cannot be explicitly evaluated in spiking

neural networks [Kasisnski and Ponulak, 2006]. The error gradient based learn­

ing models proposed for spiking neural networks tackle this problem with two

assumptions. The first assumption is to consider the spike response function to

be linearly increasing up to its maximum point and then decreasing linearly. The

second assumption is that the activation function is considered to be continuous

for a small enough region close to the moment of firing [Bohte et al., 2002a]. The

model’s efficiency relies on these assumptions. However, due to the discontinuity

of the activation function, the learning rules proposed in [Bohte et al., 2002a] are

very complex and require high computational effort.

5.2 Supervised learning in artificial neural networks 161

1 2 3 4 5 6 7 8
(A
©
3

Iso
Q .
E
©»-

other

Input values

Figure 5.2. Population coding with overlapping Gaussian receptive fields. Here
an input value a is translated into firing times as (TOJ Tc, T3, T4, T5, T0, T0, T0, TQ,
T0). T3, T4, T5 are the intersecting points of the line at a with Gaussian curves
3, 4 and 5 respectively. T0 represents temporal value Tother where all the other
curves intersect with the line at a. Redrawn from [Bohte et al., 2002a].

5.2 Supervised learning in artificial neural networks 162

Even though the classification accuracy of the model proposed in [Bohte et al.,

2002a] was comparable to the results obtained with MLP networks, the size of the

network was much greater. The number of input nodes was increased by n-folds,

where n is the number of nodes required to represent a single input value by the

population coding scheme, thus increasing the number of connections. In addi­

tion, the multiple sub-connections which replaced a single connection increased

the size of the network heavily.

5.2.2.2 Hebbian rule based learning models

A number of learning models for spiking neural networks are based on Hebbian

type rules. Ruf and Schmitt [Ruf and Schmitt, 1997] proposed a Hebbian-based

supervised learning model which encodes the input information in the connection

weights. This learning model utilises the timings of the pre- and post-synaptic

firing of the neurons. It was shown that the learning rule modifies the connection

weights so as to be closer to a value representing the time between the pre-

and post-synaptic firing events. The spiking neuron considered in this work was

introduced by Maass [Maass, 1996], which was described in section 2.5. A mono­

synaptic learning rule was proposed to train a single synapse with temporally

encoded inputs. The network is activated for a time period for each learning

cycle. During a learning cycle, an input to neuron i given at U enables the output

neuron j to fire at some time tj. Along with the input spike, a reference spike is

also given, say at time to. This reference spike specifies the input strength when

considered with the input U and determines the amount of weight modification

when compared with the timing of the output spike. The learning rule is given

by equation 5.1, which modifies the connection weight in such a way as to force

the output neuron to fire at a time as close as possible to the firing time of the

5.2 Supervised learning in artificial neural networks 163

specified reference spike.

8 w j i = r] (t j - t 0) (5.1)

where 5wji is the amount of change on strength of the synapse from neuron i to

neuron j; 77 is the learning rate. The time difference (tj — to) is considered as an

error value which the learning rule tries to reduce. It was mathematically proved

that the repeated application of the rule 5.1 makes the connection strength Wji

to approach a value which is proportional to (t.*toy It was suggested in [Ruf

and Schmitt, 1997] that the connections can be trained in parallel through a

normalisation technique. This modified rule is given in equation 5.2.

8wji = r) { t j - t o) / \ \ w \ \ (5.2)

where Swji and 77 are same as defined above, w = (wji,Wj2, Wjn) is the weight

vector representing the connections from all the input neurons to neuron j; ||w||

is the Euclidean norm. The mono-synaptic learning rule specified by equation

5.1 can train only a single synapse at a time. Both rules, 5.1 and 5.2 specify the

error by the term (t j — t o) . In a practical situation where neurons have several

incoming connections and receive inputs from each connection, it is difficult to

find the effect induced by a single connection. Hence, the applicability of this

model for real problems is questionable. An important assumption of this model

is that the potential rise in the neuron due to an incoming spike is linear.

Hebbian learning is much more biologically realistic. There are numerous ex­

amples in biological modelling studies where Hebbian-based learning rules have

been implemented. In order to obtain the optimum power of the spiking neural

networks, it is necessary to develop learning algorithms which capture the special

aspects of these networks. Classical techniques have been shown to be excellent

for the sigmoidal network models, but their efficiency is questionable in biolog­

ically realistic network models [Maass, 2001b]. In this context, the coincidence

5.3 Proposed supervised delay adaptation SNN for classification 164

detection capability of a spiking neuron posses great potential. A novel Hebbian-

based learning model with a network of coincidence detecting spiking neurons

is, therefore, introduced in the following sub-section as an alternative learning

strategy.

5.3 Proposed supervised delay adaptation SN N
for classification

This section presents the proposed supervised delay adaptation spiking neural

network (SDA.SNN) for classification. The pattern detection capability of tem­

poral coding spiking neural networks is utilised in this model. The proposed

model encodes the input information in the connection delays in a similar fashion

to that realised in the self-organising delay adaptation spiking neural network

proposed in chapter 4. But instead of an unsupervised learning strategy, this

model employs a supervised approach. The following sub-sections describe the

model in detail.

5.3.1 Network architecture

A network architecture similar to that of an LVQ network is utilised for the

SDAJ3NN. Figure 5.3 illustrates a sample structure of the network. The structure

comprises an input layer, a hidden layer and a linear output layer. The input

layer is composed of a number of simple input neurons equal to the number of

attributes present in the input patterns. The hidden layer is constructed with

spiking neurons, introduced in chapter 2 of section 2.5. Here, the neurons are

realised as coincidence detectors. Section 4.4.2 presents more detail regarding

the realisation of coincidence detection with spiking neurons. The input neurons

and the spiking neurons are fully connected with feed-forward connections. Each

5.3 Proposed supervised delay adaptation SNN for classification 165

connection is characterised by a weight value and a delay value. Each class of

the data set is represented by a group of spiking neurons. These neurons are

connected to a single linear neuron in the output layer. This neuron produces an

output of 1 if any of the neurons connected to it fires first during a specified time

window.

The proposed network structure can have only a single hidden layer of spiking

neurons because of the utilisation of a Hebbian-based learning rule. This single

layer of neurons is adequate for the detection of temporal patterns in the input

data. The number of neurons representing each class in the input data can be

varied depending on the complexity of the data. In addition, each class can

be represented by different number of neurons depending on the resolution of

the input of a particular class. This arrangement would keep the number of

computing neurons to a minimum and hence control the computational cost.

5.3.2 The learning rule

Learning is achieved through adapting the network connections’ delays in such

a way that they can detect temporal input patterns. The learning rule pro­

posed in this study is based on the delay adaptation rule introduced in [Tversky

and Miikkulainen, 2002]. This Hebbian-based rule has been employed in the

self-organising model proposed in chapter 4. The learning rule employed in the

proposed model is specified in equation 5.3 and described graphically in figure

neuron j and the input neuron i. rstdp is the time constant for the learning rule;

4.2.

(5.3)

where 5dji is the change in delay value for the connection between the spiking

b is a positive bias value to stabilise the learning. 5t is basically the difference

5.3 Proposed supervised delay adaptation SNN for classification 166

Class 1

Input

Class 2

Class 3Input neurons

Output

Output neurons

Spiking neurons

Figure 5.3. The structure of the supervised delay adaptation SNN.

5.3 Proposed supervised delay adaptation SNN for classification 167

between the timing of the delayed input spike and the timing of the output spike,

which can be found with the equation 5.4.

5t = t'j - (tj + dji) (5.4)

where t' is the firing time of a spiking neuron j and U is the firing time of input

neuron i. s is a positive term which shifts the learning rule in the direction of

positive X axis. Here b and s are realised in the same way for stabilising the

learning as in chapter 4 (see sub-section 4.4.5 for more detail).

5.3.3 Delay change estim ation

The objective of the learning process is to tune the connection delays of a single

neuron in such a way that the delayed inputs coincide with each other. The train­

ing of the network is conducted in a supervised approach using the learning rule

specified in equation 5.3. This rule estimates the amount of modification for each

connection delay in order to achieve the objective of the training. There is a need

for the selection of appropriate values for the learning rule parameters r, TstdP, b

and s. It was found experimentally that better learning could be achieved if the

values for the time constants r and Tstdp are set to allow the learning function

to reach its maximum when the spike response function begins to saturate, as

shown in figure 4.2.

Connection delays are updated based on the difference between the time when

an input spike arrives and the time when an output spike is generated. If an input

spike arrives at a neuron through a delayed connection before there is an output

spike, then the delay associated with that connection is increased so that the time

difference can be reduced. If the input spike arrives after the generation of an

output spike, then the connection delay is decreased. If the output spike follows

an input spike within a very short time, then the delay change is set to zero

5.3 Proposed supervised delay adaptation SNN for classification 168

or slightly negative, in order to control the adaptation of the connection delays.

This is achieved through the term s in the learning rule. A similar situation

applies when an input spike reaches the neuron much after the output spike is

generated. The change in connection delay is given by parameter b in this case.

Thus b and 5 specify the range of spike time differences where the connection

delays are increased or decreased.

5.3.4 Controlling the learning

Controlling the learning has been achieved in two distinct phases. One is to

control the learning in the group of neurons which represent a particular class

and the other is to control the learning in the network as a whole. Training the

network must be controlled properly in order to achieve better classification and

generalisation. Since a class is represented by a group of neurons, a measure based

on the coincidence of inputs is incorporated to correctly train each neuron in that

group. A simple linear measure given in equation 5.5 can be used to control the

learning, which is based on the time between the first and the last delayed input

spikes to a neuron. This difference specifies the time width in which all the input

spikes reaches the neuron. A measure of coincidence can be specified by dividing

this time difference by some appropriate value. Here the value tinput_Window is a

suitable selection.

maxft;} — min {£(•
cm* = ----- — --------- —

1 input jwindow

where for i = l..n is the reaching time of input spikes U at neuron j , which is

equivalent to ti + dji; where dji is the delay of the connection between neuron i

and j.

If the delays had been tuned to enable the input spikes to coincide, then

further modification is not necessary. Hence, the amount of change for a particular

i = l..n (5.5)

5.3 Proposed supervised delay adaptation SNN for classification 169

connection delay could be decreased while still achieving the required degree of

coincidence. Hence, if the total change of connection delays falls below a minimum

value or the change remains constant, then the training process is terminated. To

control the learning in the whole network, a global error value is utilised. This

error value is calculated based on the desired outputs and the actual outputs.

Training continues until the error value falls below an acceptable value or when

no change is observed.

5.3.5 Interpreting the results and classifying the input
data

The output of the network is interpreted as in chapter 4. Based on the output, a

trained network can effectively detect temporal patterns. The class of an input

sample can be identified by the neuron first to fire. This spiking neuron is more

likely to have the connection delays which can compensate for the differences in

the firing timings of the input spikes. Hence, the group to which this neuron

belongs would specify the class of the input pattern.

In a straightforward approach, an output neuron can be set to generate an

output of 1 when it receives the first output spike from one of the spiking neurons

connected to itself. All the other neurons can be forced to generate an output of

0. Hence, the output neuron connected to the spiking neuron which is first to fire

will generate an output of 1 while all the others of 0. The activity of the network

can be stopped after the firing event of a spiking neuron since the following spikes

will not affect the output. This approach will reduce the computational time and

effort significantly.

Even though the above procedure achieved a high degree of classification

accuracy, it was observed that the accuracy can be increased further by utilising

5.3 Proposed supervised delay adaptation SNN for classification 170

the firing times of those following the winner neuron. More specifically, the firing

times of the spiking neurons which are first to fire in each group can be used

for this purpose. As observed in the previous two models, this model was also

found to be firing within a well defined time window when correctly detecting

patterns. It was observed that when the first firing neuron fails to identify the

correct class of the input pattern, it was, in most cases, followed by a neuron from

the correct group. This observation has been utilised in this model to increase

the classification accuracy.

On completion of the training process, the output of the spiking neurons

for the training set was obtained and analysed to determine the suitable time

window of firing for neurons belonging to each group. These values were assigned

to the corresponding output neurons. The output neurons were set to generate an

output of 1 if the first spike they received fell within the specified time window.

Otherwise the output was set to 0. The activity of the network can be stopped

after the generation of output 1 from any of the output neurons.

5.3.6 The training process

During the training process, temporally coded input vectors were presented to

the network and the outputs from all the neurons were found. The connection

delays were adapted in two phases. In the first phase, the connections to all the

neurons in the desired group were updated using equation 5.3. In the second

phase, only the neuron which was the first to fire in the desired group of neurons

was updated.

A major obstacle in delay adaptation learning was to keep the neurons active

while detecting the coincidence of inputs with adequate accuracy. In the initial

stage of training, a high threshold value will prevent neurons from firing. On the

5.4 Im plem entation details 171

other hand, a low threshold value will not detect the coincidence properly. In

order to keep relevant neurons active, a low threshold value was assigned initially

and increased after each training epoch in small equal steps to a preset value.

5.4 Im plem entation details

The proposed model was realised as a discrete model and implemented in software

in a similar manner to the previous two SNNs. Continuous input values were

coded using small temporal differences, as in the previous two models, using the

equation 2.14. For ease of implementation, temporal differences were calculated in

discrete unit intervals. The spiking neurons were realised as coincidence detectors

by assigning a relatively low value for the time constant of the spike response

function with respect to the input time window as described in sub-section 4.4.2

of chapter 4. The network connections were assigned with approximately equal

weight values and random delay values in the mid range of the input time window.

The connection weights were kept fixed and the delays were allowed to be in the

range (0, Unput îndcnv). All the neurons were assigned with equal threshold value.

Initially, a low threshold value was assigned and then increased linearly to a

predefined value with each training epoch.

5.5 Sim ulation results and discussion

The SDA_SNN was analysed by applying it to classify the four data sets described

in chapter 2 of section 2 .6 . 2 in order to investigate its characteristics and the

learning ability. Similar to chapter 4, classification capability, activity of the

network, degree of coincidence and the stability of the proposed model were

investigated. The following sub-sections discuss these in detail.

5.5 Simulation results and discussion 172

5.5.1 Classification capability

This section presents the classification results obtained by the SDA_SNN and

compares them with those for other SNN models and the MLP network. Similar

to the chapters 3 and 4, standard bench marking data sets, Cancer, Iris and Wine,

were used for this purpose. In addition, the high-dimensional Control chart data

was used to demonstrate the capability of the proposed model in more complex

cases. The detailed description of each data set can be found in section 2.6.2,

and a summary in table 2 .1 .

Networks were constructed to classify each data set and trained with approxi­

mately 6 6 % of randomly selected samples of the data set. The remaining samples

of the set were used to test the trained network. The classification accuracy of the

training and testing phase were computed using the class detail of each sample

available in the data sets. The training and testing of each network was con­

ducted five times and the average classification accuracies were calculated. Table

5.1 lists the obtained optimum training and testing results on each data set. The

data used for training and testing is given in Appendix B.

It was stated earlier that the network parameter values should be selected

appropriately in order to achieve better learning. The parameter values of the

networks obtained the optimum results for each classification task are listed in

table 5.2.

The results provided for the supervised Hebbian-based learning model in [Ruf

and Schmitt, 1997] were for artificial data sets. The results reported for the su­

pervised error back-propagation learning model proposed in [Bohte et al., 2002a]

are given in table 5.3. Although the classification accuracy for the training set

of Iris data is approximately similar for both models, the classification accuracy

5.5 Simulation results and discussion 173

Data set No. of neurons No. of training
epochs

Classification accuracy(%)
Input Hidden Training Testing

Iris 4 3x3 15 97.4 ± 1.0 97.3 ± 1.0
Cancer 9 2x2 10 97.9 ± 0.6 97.3 ± 0.6
Wine 13 3x4 15 97.7 ± 0.7 96.8 ± 0.7
Control chart 60 6x4 30 97.0 ± 0.2 96.9 ± 0.2

Table 5 .1 . Average classification accuracy obtained for the SDA_SNN.

Data set Training r Tstdp b s V Threshold epochs

Iris Phasel 5 25 0.05 2 0.1 0.7-0.8 10
Phase2 5 25 0.05 2 0.1 0.8-0.85 5

Cancer Phasel 5 25 0.05 2 0.1 0.5-0.7 7
Phase2 5 25 0.05 2 0.1 0.7-0.8 3

Wine Phasel 5 25 0.12 2 0.2 0.55-0.7 10
Phase2 5 25 0.12 2 0.1 0.7-0.75 5

Control
chart

Phasel 5 25 0.12 2 0.2 0.7-0.78 20
Phase2 5 25 0.1 2 0.2 0.78-0.83 10

Table 5 .2 . Values assigned for the parameters of the network used to obtain the
optimum results.

5.5 Simulation results and discussion 174

of SDAJ3NN on the test set of Iris data has been found to be better. SDA_SNN

obtained higher accuracy on both the training and testing set of Cancer data.

For all the data sets, the SDA_SNN achieved its highest classification accuracy

with a much smaller network. It can be seen from table 5.3 that the size of the

networks used in [Bohte et al., 2002a] were very high due to the population coding

scheme. In addition each connection was composed of multiple sub-connections.

Hence in terms of accuracy and efficiency it can be claimed that the proposed

model performs better. The SDA_SNN achieved higher classification accuracy

for the Wine data and the high dimensional Control chart data, which exhibits

the classification capability of the proposed model. Hence the SDA_SNN can be

considered as a better supervised learning model for spiking neural networks.

In order to compare the classification capability of the SDA_SNN against sig­

moidal networks, the same data sets were classified using a multilayer perceptron

network with an error back-propagation algorithm. Programs were developed

using Matlab and applied to classify the data sets. For each data set a network

with two hidden layers was created. Computing neurons had hyperbolic tangent

(tansig) activation and resilient back-propagation (trainrp) training was adopted.

Initially, for ease of comparison, the number of training, testing samples and the

number of training epochs were kept the same for MLP networks as for the cor­

responding SNNs obtaining the optimum results. The size of the MLP networks

were selected according to the usual practice. The classification accuracies ob­

tained with MLP in the above-mentioned configuration are given in table 5.4.

Better results were obtained with the proposed model on all training and testing

data sets. In all cases, the number of neurons and the number of connections

required for the SNN models were far fewer compared to the MLP network.

The MLP networks mentioned above were trained further to get their highest

classification accuracy. Table 5.5 lists the results obtained. Although the clas­

5.5 Simulation results and discussion 175

sification accuracies of the SDA_SNN on all the training sets were slightly lower

than the MLP network, their accuracy on the test sets was found to be higher. It

is notable here that the MLP networks required a very high number of training

epochs to obtain their highest classification accuracies but the SDA_SNN required

significantly fewer training epochs. In addition, the size of the SDA_SNNs utilised

to classify the data sets were much smaller than the size of the MLP networks.

Hence it can be concluded that the classification capability of the proposed model

is better than that of the MLP networks with error back-propagation.

5.5.2 N etwork activ ity

The activity of the SDAJ3NN during training was analysed by counting the active

neurons after each training epoch. Table 5.6 summarises the average number of

active neurons initially and after each phase of training on each data set. Here

the SNNs analysed were selected to have the same configuration as that of the

networks which obtained the optimum results in the previous sub-section. It

was observed initially that almost all the neurons were active and the number of

active neurons decreased gradually due to the increase of the threshold value with

each epoch. However, the training process effectively kept an adequate number

of neurons active, especially the neurons belonging to the relevant groups.

5.5.3 D egree o f coincidence

In order to analyse the degree of coincidence of the inputs attained due to training,

the output of the SDA_SNNs which obtained the optimal results listed in table 5.1

were utilised. The measure specified in sub-section 5.3.4, based on the difference

between the arrival time of the first and the last input spikes to the winner neuron,

was used for this purpose. Table 5.7 lists the values of the degree of coincidence

5.5 Simulation results and discussion 176

Data set Network
size

No. of training
iterations

Classification accuracy(%)
Training Testing

Iris 50x10x3 1000 97.4 ± 0.1 96.1 ± 0.1
Cancer 64x15x2 1500 97.6 ± 0.2 97.0 ± 0.6

Table 5 .3 . Classification accuracy for Bohte et al.s’ [Bohte et al., 2002a] model.

Data set Network
size

No. of training
epochs

Classification accuracy(%)
training testing

Iris 4x5x5x3 15 96.8 ± 1.0 93.3 ± 1.8
Cancer 9x5x5x2 10 94.6 ± 0.9 94.1 ± 0.7
Wine 13x5x5x3 15 86.5 ± 1.3 77.8 ± 1.0
Control chart 60x30x12x6 30 53.9 ± 1.4 50.7 ± 1.9

Table 5 .4 . Average classification accuracy obtained for multilayer perceptron
network with error back-propagation learning.

5.5 Simulation results and discussion 177

Data set Network
size

No. of training
epochs

Classification accuracy(%)
training testing

Iris 4x5x5x3 250 98.0 ± 0.9 96.9 ± 1.2
Cancer 9x5x5x2 200 98.4 ± 0.6 96.3 ± 0.2
Wine 13x5x5x3 90 99.6 ± 0.6 96.1 ± 1.0
Control chart 60x30x12x6 240 99.2 ± 0.4 96.7 ± 0.5

Table 5 .5 . Average highest classification accuracy obtained for multilayer per­
ceptron network with error back-propagation learning.

Data set Average No. of active neurons
initial after 1st phase after 2nd phase

Iris 5.9 4.3 3.8
Cancer 3.0 2.8 2.6
Wine 11.6 6.5 4.9
Control chart 15.8 9.8 5.7

Table 5 .6 . Average number of active neurons in SDA_SNN initially and after each
phase of training.

5.5 Simulation results and discussion 178

initially and after each phase of training on each data set. The results show that

the learning rules effectively adapted the connection delays and achieved high

coincidence accuracy.

5.5.4 Stability

Several measures were incorporated in the SDA.SNN to stabilise and control

the learning. Better stability was achieved by selecting suitable values for the

parameters r , r ŝ p, b and s of the learning rule given by equation 5.3. Measures

to control the learning were discussed in sub-section 5.3.4. Delay distribution

in the trained networks was analysed in order to investigate the effectiveness of

the proposed stability and control measures. The values of the connection delays

of the SNNs trained on the four data sets which obtained the optimum results

were used for this purpose. The frequency of the connection delays were found

and plotted to find their distribution. Figures 5.4, 5.5, 5.6 and 5.7 show the

delay distribution in the SDA_SNNs trained on Iris, Cancer, Wine and Control

chart data respectively. Initially, the networks were assigned with random delay

values in the mid region (10 to 20) of the allowed delay range (0 to 30). It can

be seen from the figures that the connection delays of the trained networks form

an acceptably even distribution and many of the delays fall in the mid region of

the allowed delay range. Thus it can be concluded that the stability and control

measures effectively stabilise the adaptation of connection delays.

5.5 Simulation results and discussion 179

Data set Degree of coincidence
initial after 1st phase after 2nd phase

Iris 0.37 0.17 0.16
Cancer 0.47 0.29 0.25
Wine 0.57 0.42 0.41
Control chart 0.63 0.35 0.34

Table 5 .7 . Average degree of coincidence of the inputs achieved by SDA-SNN
initially and after each phase of training.

F
re

qu
en

cy

5.5 Simulation results and discussion 180

18

16

14

12

10

8

6

4

2

0
& *$>

D elay v a lu es

Figure 5.4. Distribution of the connection delays in the SDA_SNN trained on Iris
data.

F
re

q
u

en
cy

5.5 Simulation results and discussion 181

^ & & A ' &
<o <V . $> o>

V f\y eyj

D elay v a lu es

Figure 5.5. Distribution of the connection delays in the SDAJSNN trained on
Cancer data.

F
re

qu
en

cy

5.5 Simulation results and discussion 182

25

20

15

10

5

0
A n * & A A & <& n>

D elay v a lu e s

Figure 5.6. Distribution of the connection delays in the SDA_SNN trained on
Wine data.

F
re

qu
en

cy

5.5 Sim ulation results and discussion 183

KV *>' & Nq>> ^ ^ ^ ^CV ^ ^ ^

D elay v a lu es

Figure 5.7. Distribution of the connection delays in the SDA_SNN trained on
Control chart data.

5.6 Conclusion 184

5.6 Conclusion

The coincidence detection characteristic of a spiking neuron is utilised to de­

velop a novel supervised learning model for temporal coding spiking neural net­

works. In this chapter the Supervised Delay Adaptation Spiking Neural Network

(SDAJ3NN) for classification tasks has been proposed. Aided by a Hebbian-based

learning rule, the proposed model encodes the input information in the connection

delays. Here, the connection delays are shifted instead of selecting the appropri­

ate delays from a set of delayed connections through weight adaptation. Efficient

stabilisation and training mechanisms have been incorporated in the proposed

model.

The model was realised in software and applied successfully to classify four

data sets. The performance of the proposed model was found to be better than the

previous supervised spiking neural network models. SDA_SNN obtained better

classification accuracy than the MLP networks for all the analysed test data. Fur­

ther, the SDAJSNN required significantly fewer computing neurons and network

connections and was able to learn with fewer training epochs. The compactness,

accuracy and the ability to learn with fewer training epochs entitles this network

to be considered as a better alternative for classifying data sets including complex

and high-dimensional data.

Chapter 6

Conclusion and future work

This research has been focused on the development of alternative temporal coding

spiking neural network learning models for clustering and classification tasks. The

learning models have been developed appropriately to utilise the special features

of the spiking neural networks and to incorporate knowledge from research on

biological neural systems and conventional artificial neural networks. Throughout

this research, a number of contributions have been made which are summarised

in the first section of this chapter. In section two, the conclusions drawn from

this study are given. Finally, possible directions for future research are suggested.

6.1 Contributions

The main contribution of this research is the development of the three learning

models for spiking neural networks, namely, Self-Organising Weight Adaptation

Spiking Neural Network, Self-Organising Delay Adaptation Spiking Neural Net­

work and Supervised Delay Adaptation Spiking Neural Network. More specific

detail regarding the contributions are summarised below:

• Review on spiking neural networks

A comprehensive review on topics related to this research has been pre-

185

6.1 Contributions 186

sented. This provides a better insight into artificial neural networks, bi­

ological neural networks, spiking neural networks and learning models for

these networks.

• Self-organising weight adaptation spiking neural network (SOWA-SNN)

A self-organising weight adaptation spiking neural network has been in­

troduced for clustering tasks. The structure of the network is similar to

Kohonen’s SOM. Here the spiking neurons are realised as integrators and

the input information is encoded in the connection weights in a way similar

to Kohonen’s SOM. Learning is achieved through a Hebbian-based learn­

ing rule with efficient stability measures. By incorporating several findings

from biological neural networks and a spike time based cluster mapping ap­

proach, this network is able to cluster data sets successfully and with high

accuracy. The model obtained better clustering accuracy than the previ­

ous unsupervised spiking neural network models and their performance was

found to be better than the Kohonen’s SOM.

• Self-organising delay adaptation spiking neural network (SODA.SNN)

A self-organising delay adaptation spiking neural network for clustering has

been proposed. The proposed network utilises a network architecture sim­

ilar to Kohonen’s SOM but with coincidence detecting spiking neurons as

the output layer neurons. The network encodes the input information in the

connection delays through a Hebbian-based rule which shifts the connection

delays. The pattern detection capability of the spiking neural network was

efficiently implemented in this model. The network was successfully applied

to cluster data sets and was able to form clear clusters within the input data.

Its clustering capability was found to be better than the previous unsuper­

vised learning models for spiking neural networks. The performance of the

model was compared with the Kohonen’s SOM and found to be better.

6.1 Contributions 187

• Supervised delay adaptation spiking neural network (SDA.SNN)

A supervised delay adaptation spiking neural network has been proposed

for classification tasks. The structure of the network is similar to that of an

LVQ network except that the hidden layer neurons are coincidence detect­

ing spiking neurons. A Hebbian-based learning rule has been incorporated

for realising supervised learning. The idea of pattern detection through

delay adaptation and coincidence detection has been successfully imple­

mented. The model’s classification capability has been demonstrated suc­

cessfully and the performance has been found to be better than previously

presented supervised spiking neural network models. The performance of

the SDA.SNN was also found to be better than the MLP network with

error-back propagation.

• Realisation of the mode of operation

It is understood that biological neurons operate in two modes, as integrators

and as coincidence detectors. An efficient way of realising these two modes

of operations with temporal coding spiking neurons has been introduced

and its effectiveness was verified with analytical studies.

• Implementation of efficient stabilisation techniques

The proposed models employ a number of stabilisation techniques to control

the Hebbian learning. A soft-bounding method to control the weight adap­

tation which utilises the current weight values has been incorporated into

the SOWA_SNN. Stabilisation of the delay adaptation has been achieved

through a measure utilising the degree of coincidence of the temporal in­

puts. These measures effectively stabilised the learning in the networks.

The efficiency of these proposed measures was verified with analytical stud­

ies.

6.2 Conclusion 188

• Introduction of effective learning techniques

A number of efficient learning techniques have been incorporated in the pro­

posed models. An effective learning technique utilising a dynamic threshold

to train coincidence detecting spiking neural networks has been introduced.

This method effectively kept adequate number of neurons active during

training, enabling the network to learn evenly throughout the network. A

two-phase learning procedure has been introduced to train the SDAJ3NN

efficiently, which incorporated both supervised and unsupervised learning

techniques. The efficiency of the proposed techniques was verified through

analysing the networks during and after learning.

• Simplified learning models for SNNs

Proposed learning models are relatively simple and thus easy to implement

in software or hardware, requiring fewer computational resources. Utilisa­

tion of the timing of spikes and the coincidence detecting capability of the

spiking neuron enabled a less complex development of these models.

• Development of SNN software platform

Computer programs were written in C + + in object oriented approach to

develop the SNN software platform for realising the spiking neural network

and learning models. Simulation and analysis of the network and the learn­

ing models for data clustering and classification tasks can be performed

easily with this software platform. This software can be easily modified for

further study.

6.2 Conclusion

In recent years, temporal coding spiking neural networks have been receiving

wider attention. Previous spiking neural network models applied for cluster­

6.2 Conclusion 189

ing or classification tasks utilised a weight adaptation mechanism, where con­

nections with appropriate delays were selected for encoding the input informa­

tion. The utilisation of multiple sub-connections and the need for a popula­

tion coding scheme for higher accuracy resulted in increased network size and

computational effort. This study investigated the learning in SNNs through

weight adaptation and delay adaptation independently, utilising a temporal cod­

ing scheme which encodes input values through single spike times. As a result,

three novel networks, namely, Self-Organising Weight Adaptation Spiking Neural

Network (SOWA_SNN), Self-Organising Delay Adaptation Spiking Neural Net­

work (SODA_SNN) and Supervised Delay Adaptation Spiking Neural Network

(SDAJ3NN), have been proposed.

The performances of the three temporal coding SNN models were found to be

better than that of previous spiking neural network models. This finding shows

that the spiking neural network can learn successfully through adapting weights

as well as through delays. In addition, the successful application of the proposed

networks for clustering and classification tasks further strengthens the case for

the use of precise spike timings for computation and communication within the

neural networks.

The performances of all the three proposed models were found to be better

than that of previous spiking neural network models. Among the two proposed

unsupervised models, the SODA_SNN’s capability was observed to be better than

the SOWA-SNN in terms of clustering accuracy and cluster formation. Hence,

in terms of pattern detection, the capability of the coincidence detecting spiking

neurons can be considered to be higher than that of the neurons as integrators.

The performances of the proposed models were demonstrated to be better

than that of conventional neural network models. The SOWAJSNN was able to

6.3 Future work 190

cluster the analysed test data sets, including the high-dimensional Control chart

data, with higher accuracy than that of the Kohonen’s SOM. The SODA_SNN

was able to obtain better clustering accuracy than the Kohonen’s SOM for all

of the analysed training and testing data sets. The SDA.SNN obtained better

classification accuracies for all the analysed test data compared to that of the

MLP networks, with significantly smaller network size and fewer training epochs.

These results show that the temporal coding spiking neural networks are capable

of out performing the conventional neural networks in the three proposed learning

paradigms.

It can be concluded that the proposed SNN models can be considered as alter­

native tools for clustering and classification tasks instead of the existing spiking

neural network models. The same applies to the conventional artificial neural net­

work paradigms. The results of this study could be considered as an incremental

improvement in the research on learning with spiking neural networks.

6.3 Future work

This section specifies a significant number of indicators for further research which

can lead to better learning models with temporal coding spiking neural networks.

A major area of interest could be the coding of continuous and nominal input

values into spike codes and vice versa. The coding scheme utilised in this research

is a linear method which converts the input values into discrete spike events.

This linear method reduces the accuracy of the temporal inputs. A non-linear

method could therefore be utilised as an alternative to improve the temporal

coding scheme [Bohte et al., 2002a]. A complex population coding scheme can be

found in the literature but with increased computational effort. Implementation

of a better coding strategy can increase the clustering and classification capability

6.3 Future work 191

of the models even further.

The proposed models either adapt connection weights or connection delays.

This research can be extended to incorporate both strategies into a single model.

Since both the connection delays and weights play a significant role in the network

functioning, a combined approach could produce a better learning model for

spiking neural network.

The proposed models could be utilised for efficient feature selection. It was

observed on the trained models that not all the input parameters were fully

contributing to the output in some cases. Further study can reveal more on

the applicability of the proposed models for the selection of dominating features

among the input parameters.

The proposed models have been confined to those with simple design features

in order to get a better understanding of the spiking neurons and the learning

models. The efficiency of the models could be increased by adding special features

such as momentum term for the learning rule, complex output grids and neigh­

bourhood functions for unsupervised learning models and efficient terminating

criteria.

The proposed models have been developed specifically for clustering and clas­

sification tasks. However, the strategies incorporated are not application specific

and they can therefore be utilised to develop models in other application areas.

Bibliography

Abbott, L. F. and Nelson, S. B. (2000). Synaptic Plasticity: Taming the beast.

Nature Neuroscience, 3 (lls) : 1178—1183.

Abeles, M. (1982). Role of the cortical neuron: Integrator or coincidence detector?

Israel Journal of Medical Science, 18(l):83-92.

Baldi, P. and Atiya, A. F. (1994). How delays affect neural dynamics and learning.

IEEE Transactions on Neural Networks, 5(4):612-621.

Belatreche, A., Maguire, L. P., McGinnity, M., and Wu, Q. X. (2003). An evo­

lutionary strategy for supervised training of biologically plausible neural net­

works. In Proceedings of the sixth international conference on computational

intelligence and natural computing, pages 1524-1527, Cary, North Carolina,

USA.

Bell, C. C., Han, V. Z., Sugawara, Y., and Grant, K. (1997). Synaptic plasticity in

cerebellum-like structure depends on temporal order. Nature, 387(6630):278-

281.

Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal

neurons: Dependence on spike timing, synaptic strength, and post synaptic cell

type. Journal of Neuroscience, 18(24):10464-10472.

Blum, K. I. and Abbott, L. F. (1996). A model of spatial map formation in the

hippocampus of the rat. Neural Computation, 8(l):85-93.

192

BIBLIO G R APH Y 193

Bohte, S. M. (2003). Spiking Neural Networks. PhD thesis, University of Leiden.

Bohte, S. M. and Kok, J. N. (2005). Applications of spiking neural networks.

Information Processing Letters, 95:519-520.

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002a). Error-back propagation in

temporally encoded networks of spiking neurons. Neurocomputing, 48(1-4): 17-

37.

Bohte, S. M., La Poutre, H., and Kok, J. N. (2002b). Unsupervised clustering

with spiking neurons by sparse temporal coding and multilayer RB F networks.

IEEE Transactions on Neural Networks, 13(2):426-435.

Bower, J. (1991). Exploring biological neural networks using realistic computer

simulations. Naval Research Reviews, 43:17-22.

Carla, J. S. (1990). Impulsive activity and the patterning of connections during

cns development. Neuron, 5(6):745-756.

Carnell, A. and Richardson, D. (2005). Linear algebra for time series of spikes.

In Proceedings of the 13th European Symposium on Artificial Neural Networks,

2005, Bruges, Belgium.

Carr, C. E. (1993). Processing of temporal information in the brain. Annual

Review of Neuroscience, 16:223-243.

Day, S. P. and Camporese, P. S. (1991). Continuous-time temporal back-

propagation. In Proceedings of the International Joint Conference on Neural

Networks, 1991, volume 2, pages 95-100, Seattle, USA.

Day, S. P. and Davenport, M. R. (1993). Continuous-time temporal back-

propagation with adaptable time delays. IEEE Transactions on Neural Net­

works, 4(2):348-354.

BIBLIO G R APH Y 194

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience. The MIT Press.

Debanne, D., Gahwiler, B. H., and Thompson, S. M. (1996). Cooperative interac­

tions in the induction of long-term potentiation and depression of synaptic ex­

citation between hippocampal CA3-CA1 cell pairs in vitro. Proceedings of the

National Academy of Sciences of the United States of America, 93(20): 11225—

11230.

Eurich, C. W., Pawelzik, K., Ernst, U., Cowan, J. D., and Milton, J. (1999). Dy­

namics of self-organized delay adaptation. Physical Review Letters, 82(7): 1594-

1597.

Eurich, C. W., Pawelzik, K., Ernst, U., Thiel, A., Cowan, J. D., and Milton, J. G.

(2000). Delay adaptation in nervous systems. Neurocomputing, 32-33:741-748.

Gaiarsa, J. L., Caillard, O., and Ben-Ari, Y. (2002). Long-term plasticity at

GABAergic and glycinergic synapses: Mechanisms and functional significance.

Trends in Neurosciences, 25(ll):564-570.

Gerstner, W. (2001). Spiking neurons. In Maass, W. and Bishop, C. M., editors,

Pulsed Neural Networks, pages 3-53. The MIT Press, Cambridge, first edition.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). Neuronal

learning rule for sub-millisecond temporal coding. Nature, 383(6595):76-78.

Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models. Cambridge

University Press, Cambridge, UK, first edition.

Habberly, L. B. (1985). Neuronal circuitry in olfactory cortex: Anatomy and

functional implication. Chemical Senses, 10(2):219-238.

Haykin, S. (1999). Neural Networks - A comprehensive foundation. Prentice hall,

New Jersey, second edition.

BIBLIO G R APH Y 195

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of ion

currents and its application to conduction and excitation in nerve. Journal of

Physiology, 117(4):500-544.

Hopfield, J. J. (1995). Pattern recognition computation using action potential

timing for stimulus representation. Nature, 376(6535):33-36.

Iannella, N. and Back, A. D. (2001). A spiking neural network architecture for

nonlinear function approximation. Neural Networks, 14(6-7):933-939.

Ienne, P. (1997). Digital connectionist hardware: Current problems and future

challenges. In Jos Mira, R. M.-D. and Cabestany, J., editors, Biological and

Artificial Computation: From Neuroscience to Technology (volume 1240 of Lec­

ture Notes in Computer Science), pages 688-713. Springer, Berlin.

Innocenti, G. M., Lehmann, P., and Houzel, J. C. (1994). Computational struc­

ture of visual collosal axons. The European journal of neuroscience, 6(6):918-

935.

Jahnke, A., Roth, U., and Schonauer, T. (2001). Digital simulation of spiking

neural networks. In Maass, W. and Bishop, C. M., editors, Pulsed Neural

Networks, pages 237-257. The MIT Press, Cambridge, Massachusetts, first

edition.

Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks:

A tutorial. IEEE Computer, 29(3):31-44.

Jeffress, L. A. (1948). A place theory of sound localisation. Journal of comparative

and physiological psychology, 41:35-39.

Jianguo, X. and Embrechts, M. J. (2001). Supervised learning with spiking neural

networks. In Proceedings of International Joint Conference on Neural Networks

IJCNN ’Of volume 3, pages 1772-1777, Washington, DC, USA. IEEE.

BIBLIO G R APH Y 196

Kasisnski, A. and Ponulak, F. (2006). Comparison of supervised learning methods

for spike time coding in spiking neural networks. International Journal of

Applied Mathematics and Computer Science, 16(1):101—113.

Kistler, W. M. and van Hemmen, J. L. (2000). Modeling synaptic plasticity in

conjunction with the timing of pre- and postsynaptic action potentials. Neural

Computation, 12(2):385-405.

Koch, R. and Grover, M. (2002). Amygdala, a spiking neural network library.

Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps. Biological Cybernetics, 43(l):59-69.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,

78(9): 1464-1480.

Konig, P., Engel, A. K., and Singer, W. (1996). Integrator or coincidence de­

tector? The role of the cortical neuron revisited. Trends in Neuro sciences,

19(4): 130-137.

Lapedes, A. and Farber, R. (1987). Nonlinear signal processing using neural net­

work: Prediction and system modelling. Technical report, Los Alamos National

Laboratory, Los Alamos, NM, USA.

Maass, W. (1996). Lower bounds for the computational power of networks of

spiking neurons. Neural Computation, 8(1): 1-40.

Maass, W. (1997a). Fast sigmoidal networks via spiking neurons. Neural Com­

putation, 9(2):279-304.

Maass, W. (1997b). Networks of spiking neurons: The third generation of neural

network models. Neural Networks, 10(9): 1659-1671.

BIBLIO G R APH Y 197

Maass, W. (1997c). Noisy spiking neurons with temporal coding have more com­

putational power than sigmoidal neurons. In Mozer, M., Jordan, M. I., and

Petsche, T., editors, Advances in Neural Information Processing Systems, vol­

ume 9, pages 211-217. The MIT Press, Cambridge, Massachusetts.

Maass, W. (2001a). Computing with spiking neurons. In Maass, W. and Bishop,

C. M., editors, Pulsed Neural Networks, pages 55-85. The MIT Press, Cam­

bridge, Massachusetts, first edition.

Maass, W. (2001b). Neural computation: a research topic for theoretical com­

puter science? Some thoughts and pointers. In Rozenberg, G., Salomaa, A.,

and Paun, G., editors, Current Trends in Theoretical Computer Science, En­

tering the 21st Century, pages 680-090. World Scientific Publishing.

Maass, W. and Schmitt, M. (1999). On the complexity of learning for spiking

neurons with temporal coding. Information and Computation, 153(1):26-46.

Marian, I. (2001). SpikeNNS - a simulator for spiking neural networks. Techni­

cal report, Department of Computer Science, National University of Ireland,

Maynooth, Ireland.

Markram, H., Liibke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of post synaptic APs and E PSPs. Science,

275(5297) :213-215.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133.

Mendel, J. M. and McLaren, R. W. (1970). Reinforcement-learning control and

pattern recognition systems. In Mendel, J. and Fu, K., editors, Adaptive,

Learning and Pattern Recognition Systems: Theory and Applications, pages

287-318. Academic Press, New York.

BIBLIO G R APH Y 198

Miller, K. D. (1996). Synaptic economics: Competition and cooperation in synap­

tic plasticity Neuron, 17(3):371-374.

Minsky, M. L. and Papert, S. A. (1969). Perceptrons. The MIT Press, Cambridge,

Massachusetts.

Natschlager, T. and Ruf, B. (1998). Spatial and temporal pattern analysis via

spiking neurons. Network: Computational Neural Systems, 9(3):319-332.

Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI repository

of machine learning databases.

O’Keefe, J. and Reece, M. L. (1993). Phase relationship between hippocampal

place units and EEG theta rhythm. Hippocampus, 3(3):317-330.

Orr, M. J. L. (1996). Introduction to RB F networks. Technical report, Centre

for cognitive science, University of Edinburg, Edinburg, UK.

Panchev, C. and Wermter, S. (2001). Hebbian spike-timing dependent self­

organization in pulsed neural networks. In Proceedings of the world congress

on Neuroinformatics, Vienna, Austria.

Pfister, J.-P., Barber, D., and Gerstner, W. (2003). Optimal hebbian learning:

A probabilistic point of view. In Kaynak, O., Alpaydin, E., Oja, E., and Xu,

L., editors, ICANN , volume 2714 of Lecture Notes in Computer Science, pages

92-98. Springer.

Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006). Optimal

spike-timing-dependent plasticity for precise action potential firing in super­

vised learning. Neural Computation, 18(6): 1318-1348.

Pham, D. T. and Liu, X. (1999). Neural Networks for Identification Prediction

and Control Springer-Verlag, London, Great Britain, second edition.

BIBLIO G RAPH Y 199

Pham, D. T. and Sagiroglu, S. (2001). Training multilayered perceptions for

pattern recognition: A comparative study of four training algorithms. Inter­

national Journal of Machine Tools and Manufacture, 41(3):419-430.

Ponulak, F. (2005). ReSuMe - new supervised learning method for spiking neural

networks. Technical report, Institute of Control and Information Engineering,

Poznan University of Technology, Polland.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review, 65(6):386-408.

Ruf, B. and Schmitt, M. (1997). Learning temporally encoded patterns in net­

works of spiking neurons. Neural Processing Letters, 5(1):9—18.

Ruf, B. and Schmitt, M. (1998). Self-organization of spiking neurons using action

potential timing. IEEE Transactions on Neural Networks, 9(3):575-578.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal

representations by back-propagating errors. Nature, 323:533-536.

Schrauwen, B. and VanCampenhout, J. (2004). Improving SpikeProp:

Enhancements to an error-backpropagation rule for spiking neural networks.

In Proceedings of the 15th Pro RISC Workshop.

Sejnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons.

Journal of Mathematical biology, 4(4):303-321.

Shepherd, G. M. and Koch, C. (1990). Introduction to synaptic circuits. In

Shepherd, G. M., editor, The synaptic organization of the brain, pages 3-31.

Oxford university press, New York.

Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R., Svoboda,

K., and Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA

BIBLIO G R APH Y 200

receptors after synaptic NMD A receptor activation. Science, 284(5421): 1811—

1816.

Smith, L. S. (2004). Spiking neural network simulator: User’s guide. Techni­

cal report, Department of Computing Science and Mathematics, University of

Stirling, Stirling, Scotland, UK.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learn­

ing through spike-timing-dependent synaptic plasticity. Nature Neuroscience,

3(9):919-926.

Stanford, L. R. (1987). Conduction velocity variations minimize conduction time

differences among retinal ganglion cell axons. Science, 238(4825):358-360.

Thorpe, S. J. (1990). Spike arrival times: A highly efficient coding scheme for

neural networks. In Eckmiller, R., Hartmaan, G., and Hauske, G., editors,

Parallel processing in neural systems, pages 91-94. Elsevier, North-Holland.

Thorpe, S. J., Delorme, A., and van Rullen, R. (2001). Spike-based strategies for

rapid processing. Neural Networks, 14(6-7):715-725.

Thorpe, S. J., Fize, D., and Marlot, C. (1996). Speed of processing in the human

visual system. Nature, 381(6582):520-522.

Thorpe, S. J. and Imbert, M. (1989). Biological constraints on connectionist

models. In Pfeifer, R., Schreter, Z., Fogelman-Soulie, F., and Steels, L., edi­

tors, Connectionism in Perspective, pages 63-92. Elsevier, Amsterdam, second

edition.

Tversky, T. and Miikkulainen, R. (2002). Modeling directional selectivity using

self-organizing delay-adaptation maps. Neurocomputing, 44-46:679-684.

Ultsch, A. and Mberchen, F. (2005). ESOM-Maps: Tools for clustering, vi­

sualization, arid classification with emergent SOM. Technical Report No. 46,

BIBLIO G R APH Y 201

Dept, of Mathematics and Computer Science, University of Marburg, Marburg,

Germany.

van Rossum, M. C. W., Bi, G. Q., and Turrigiano, G. G. (2000). Stable Hebbian

learning from spike timing-dependent plasticity. Journal of Neuroscience,

20(23) :8812-8821.

Vesanto, J. and Alhoniemi, E. (2000). Clustering of the self-organising map.

IEEE Transactions on Neural Networks, 11 (3):586-600.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989).

Phoneme recognition using time-delay neural networks. IEEE Transactions on

Acoustics, Speech and Signal Processing, 37(3):328-339.

Wan, E. A. (1990). Temporal backpropagation for F IR neural networks. Proceed­

ings of IEEE International Joint Conference on Neural Networks, 1:575-580.

Weigend, A. S., Huberman, B. A., and Rumelhart, D. E. (1990). Predicting the

Future: a Connectionist Approach. International Journal of Neural Systems,

1(3): 193-209.

Widrow, B. and Hoff, M. E. J. (1960). Adaptive switching circuits. IRE Western

Electric Show and Convention Record, Part 4, pages 96-104.

Widrow, B. and Winter, R. (1988). Neural nets for adaptive filtering and adaptive

pattern recognition. Computer, 21 (3):25-39.

Willshaw, D. J. and von der Malsburg, C. (1976). How patterned neural connec­

tions can be set up by self-organisation. In Proceedings of the Royal Society of

London, Series B, volume 194, pages 431-445.

Xie, X. and Seung, H. S. (2004). Learning in neural networks by reinforcement

of irregular spiking. Physical Review E, 69(4):Id. 041909.

BIBLIO G RAPH Y 202

Zador, A. M. (2000). The basic unit of computation. Nature neuroscience, Sup­

plement 3:1167.

Zell, A., Mache, N., Huebner, R., Schmalzl, M., Sommer, T., and Korb, T.

(1992). SNNS: Stuttgart Neural Network Simulator. Technical report, Insti­

tute for Parallel and Distributed High Performance Systems (IPVR), University

of Stuttgart, Stuttgart.

Zurada, J. M. (1999). Introduction to Artificial Neural Systems. West Publishing

Company, St. Paul, USA.

Appendix A

Program source code

This appendix provides comprehended source code of the software developed to
implement the proposed learning models. In the proposed models the spiking
neurons were implemented in two modes of operation namely integration and
coincidence detection. Realisation of the two modes of operation depends only in
the assignment of correct parameter values. Hence much of the source code for
implementation of the weight and delay adaptation models is similar. Since self-
organising weight and delay adaptation models were based on Kohonen’s SOM,
the programs for both modes are similar except the learning procedures. The
program for the SDA_SNN was designed similar to the previous two models in a
way to reuse the source code.

This appendix is separated into several sections. Section A.l gives the defini­
tions of classes Vector and matrix. spikeNN is the main class which handles the
implementation of the spiking neural network and learning procedures. Section
A.2 gives the code for implementing SOWA.SNN and SODA_SNN. This includes
the major operations of the network and the code for applying the models to
cluster data sets. Section A.3 provides the code for implementing the SDA_SNN.
Most of the names chosen for the methods and variables are self explanatory and
do exactly same as the name suggests.

A .l Class definitions

A. 1.1 Definition of class V e c t o r

i f n d e f VECTORJH
d e f i n e VECTOFLH

t y p e d e f d o u b l e e l t y p e ;

c l a s s V e c t o r f
p r i v a t e :

i n t n e l t ;
d o u b l e * v e l t ;

p u b l i c :
V e c t o r (i n t);

203

A .l Class definitions 204

' V e c t o r () ;

/ / S e t a l l e l e m e n t s t o v a l
v o i d i n i t i a l i s e (d o u b l e v a l) ;

/ / l e n g t h o f t h e v e c t o r
i n t g e t c n t () { r e t u r n n e l t ; } ;

/ / r e a d e l e m e n t i
d o u b l e g e t e l t (i n t i) { r e t u r n v e l t [i — 1] ; } ;

/ / s t o r e e fo r e l e m e n t at i
v o i d s e t e l t (i n t i , d o u b l e e) { v e l t [i —l] = e ; } ;

d o u b l e min () ;
d o u b l e max () ;
d o u b l e sum () ;
d o u b l e a v e r a g e () ;
d o u b l e s t d e v () ;
v o i d p r i n t _ V e c t o r () ;

/ / n o r m a l i s e t h e v e c t o r
v o i d n o r m a l i z e () ;

/ / T o w r i t e a v e c t o r i n t o a f i l e
i n t w r i t e _ V e c t o r _ t o _ f i l e (c o n s t c h a r * , i n t) ;
/ / F i l e name, ope n t y p e (w r i t e 1 / a p p e n d 2)

/ / T o r e a d a v e c t o r from a f i l e
i n t r e a d _ V e c t o r _ f r o m _ f i l e (c o n s t c h a r *) ;

/ / f i l l t h e v e c t o r w i t h v a l u e s
/ / i n c r e a s i n g from min to max
v o i d f i l l _ i n c (i n t s e e d , i n t m in , i n t m ax);

/ / f i l l t h e v e c t o r ran d om ly
v o i d f i l l _ r a n d o m (i n t s e e d) ;

/ / m u l t i p l y t h e e l e m e n t s w i t h m
v o i d m u l t i p l y (d o u b l e m) ;

/ / s w a p e l e m e n t s i and j
v o i d s w a p . e l t s (i n t i , i n t j) ;

/ / s h u f f l e e l e m e n s t fo r n t i m e
v o i d s h u f f l e (i n t);

/ / c o p y t h e v e c t o r o n t o
/ / a n o t h e r v e c t o r cv
v o i d c o p y . v e c t o r (V e c t o r cv);

};

e n d i f

A. 1.2 D efinition o f class m a t r i x

i f n d e f MATRDCH

A .l Class definitions 205

d e f i n e MATRDCH
i n c l u d e ” v e c t o r . h ”

c l a s s m a t r i x {
p r i v a t e :

i n t rows ;
i n t c o l s ;
d o u b l e * m e l t ;

p u b l i c :
m a t r i x (i n t , i n t);
~ m a t r i x () ;
i n t i n d e x (i n t i , i n t j) { r e t u r n (i — l) * c o l s + j - 1 ; } ;
v o i d i n i t m a t r i x (d o u b l e t y p e) ;
i n t nro ws () { r e t u r n r o w s ; } ;
i n t n c o l s () { r e t u r n c o l s ; } ;
d o u b l e g e t e l t (i n t , i n t);
v o i d s e t e l t (i n t , i n t , d o u b l e) ;
v o i d f i l l _ r a n d o m (i n t s e e d , d o u b l e mn, d o u b l e mx);
v o i d p r i n t _ m a t r i x () ;

i n t g e t . r o w . V e c t o r (i n t rowno , i n t s c o l , i n t e c o l , V e c t o r v);
i n t s e t . r o w . V e c t o r (i n t rowno , i n t s c o l , i n t e c o l , V e c t o r v);
i n t g e t _ c o l _ V e c t o r (i n t c o l n o , i n t srow , i n t erow , V e c t o r v);
i n t s e t _ c o l _ V e c t o r (i n t c o l n o , i n t srow , i n t erow , V e c t o r v);

i n t a d d m a t r i x (m a t r i x);
i n t v m p r o d u c t (V e c t o r , V e c t o r) ;
i n t m m p r o d u c t(m a t r i x , m a t r i x) ;

i n t c o p y m a t r i x (i n t srow , i n t s c o l , i n t erow , i n t e c o l , m a t r i x) ;
v o i d t r a n s p o s e () ;
v o i d n o r m a l i z e . c o l u m n () ;
v o i d n o r m a l i z e . r o w () ;

i n t r e a d _ m a t r i x _ f r o m _ f i l e (c o n s t c h a r *) ;
i n t w r i t e _ m a t r i x _ t o _ f i l e (c o n s t c h a r * , i n t) ;

v o i d m u l t i p l y (d o u b l e);

v o i d s w a p . r o w s (i n t , i n t);
v o i d s w a p . c o l s (i n t , i n t);

v o i d s h u f f l e (i n t);
d o u b l e a v e r a g e (i n t k) ;
i n t e l e m e n t s _ b e l o w (f l o a t e , i n t k) ;

};

e n d i f

A. 1.3 Definition of class s p i k e N N

i n c l u d e ” m a t r i x , h ”
i n c l u d e ” m a t r i x 3 d . h ”

c l a s s s p i k e N N {
p r o t e c t e d :

A .l Class definitions 206

i n t N _ r e c o r d , N . a t t r i b , N _ t a r g e t _ a t t r i b ;
i n t N _ t r a i n , N _ t e s t , N _ c l a s s , N . s a m p l e , N _ b i a s ;
i n t m a x _ ep o cs , c o n t _ l e a r n ;

i n t N _ in p u t , N . o u t p u t , N . r o w s , N _ c o l s ;

m a t r i x * s o u r c e _ d a t a ;
V e c t o r * s o u r c e _ t a r g e t ;
m a t r i x * p r o c e s s e d _ d a t a ;

m a t r i x * t r a i n . m a t r i x ,* t r a i n _ t a r g e t ;
m a t r i x * t e s t _ m a t r i x ,* t e s t _ t a r g e t ;
V e c t o r * t e s t _ d a t a _ c o u n t ;

d o u b l e maxw, minw, maxd, m in d , d b i a s , s h i f t ;
V e c t o r ^ t h r e s h o l d ;
V e c t o r *pspmax;

i n t dt , t w i n d o w _ i n p u t , tw in d o w ;
i n t t i m e s t e p , e a r l y . f i r e , l a t e . f i r e ;
d o u b l e w i n n i n g _ t i m e ;
i n t w in n e r , w i n n e r - f o u n d ;

d o u b l e l e a r n i n g _ r a t e O , l e a r n i n g . r a t e ;
d o u b l e s ig m a. wO , s i g m a . w ;

d o u b l e m a x _ t h r e s h o l d , m i n . t h r e s h o l d ;

d o u b l e t o t a l . e r r o r , m i n . e r r o r , t o l e r a n c e ;
d o u b l e t o t a l _ w e i g h t _ c h a n g e , p r e v . w e i g h t . c h a n g e ;
d o u b l e t o t a l _ d l a y _ c h a n g e , p r e v _ d l a y _ c h a n g e ;
d o u b l e n e i _ p o t e n , n e i _ d e p ;
i n t p r e c i s i o n ;
V e c t o r * i n p v , * t v ;

i n t o r d e r _ b y _ t i m e , o r d e r . b y . p o s i t i o n ;
i n t v a r y . n e i g h b o r h o o d , l a t t e r a l . e f f e c t ;
d o u b l e w i n n e r . b i a s . c h g , l o o s e r . b i a s . c h g ;

/ / S y n a p t i c w e i g h t s — N _ i n p u t X N . o u t p u t
m a t r i x * w g h t ; / / C o n n e c t i o n w e i g h t s
m a t r i x *d wgh t; / / w e i g h t c h a n g e
m a t r i x * d e l a y ; / / C o n n e c t i o n d e l a y s
m a t r i x * d d e l a y ; / / d e l a y c h a n g e

d o u b l e t c ; / / t i m e c o n s t a n t f o r t h e s p i k e r e s p o n s e fn
d o u b l e t c p d ; . / / t i m e c o n s t a n t f o r t h e l e a r n i n g r u l e

/ / t o s t o r e s y n a p s e p o t e n t i a l
/ / N . i n p u t X N . o u t p u t
m a t r i x * s p ;
V e c t o r *np; / / N e u r o n (s o m a) p o t e n t i a l — N . o u t p u t
V e c t o r *op; / / N e t w o r k o u t p u t — N . o u t p u t
V e c t o r * e x a c t _ o p ; / / E x a c t O u t p u t — N . o u t p u t

/ / t o s t o r e t e s t o u t p u t N . t e s t X N . o u t p u t
m a t r i x * t e s t . o u t p u t ;
m a t r i x * t e s t . w i n n e r ;

A .2 Source code for implem enting the unsupervised models 207

m a t r i x * t r a i n . w i n n e r ;
V e c t o r * c o i n c i d e n c e _ m e a s u r e ;

p u b l i c :
sp ik e N N () ;
' s p i k e N N () ;
v o i d c r e a t e N N () ;
v o i d i n i t _ s p i k e N N () ;
v o i d i n i t _ p a r a m e t e r s () ;

v o i d u p d a t e . s y n a p s e . p o t e n t i a l (i n t) ;
v o i d u p d a t e . o u t p u t (i n t);
d o u b l e s p i k e . r e s p o n s e (i n t t) ;
v o i d s i m u l a t e . S N N () ;
v o i d f i n d . w i n n e r () ;
v o i d f i n d . e x a c t . w i n n e r () ;

v o i d s e l e c t . d a t a () ;

f l o a t d i s t (i n t , i n t) ;
v o i d s e t . t h r e s h o l d - f i x e d (d o u b l e);
d o u b l e g e t _ t h r e s h o l d _ m i n () ;
d o u b l e g e t _ t h r e s h o l d _ m a x () ;
v o i d s e t _ t h r e s h o l d (i n t);
v o i d s e t _ l e a r n i n g _ r a t e (i n t e p o c N o) ;
d o u b l e t p l . n e h b r (i n t x i);
v o i d s e t . s i g m a (i n t e p o c N o) ;
v o i d c o m p u t e . c o i n c i d e n c e . m e a s u r e () ;

v o i d t r a i n . s p i k e N N () ;
v o i d u p d a t e . d l a y (i n t i n d e x) ;
d o u b l e d l a y . c h a n g e (i n t i n d e x) ;

v o i d t e s t . t r a i n . s e t (c o n s t c h a r * o p t _ t e s t) ;
v o i d t e s t _ s p i k e N N (c o n s t c h a r * o p t _ t r a i n) ;

};

A .2 Source code for im plem enting the unsuper­
vised models

A .2.1 Source code for im plem enting th e SN N

i n c l u d e ’’ s p i k e n n . h ”
i n c l u d e < i o s t r e a m >
i n c l u d e < m a t h . h >
i n c l u d e < s t d l i b . h >
i n c l u d e < t i m e . h >
i n c l u d e < f s t r e a m >
i n c l u d e ’’ u t i l s . h ”

u s i n g n a m e s p a c e s t d ;

sp ik eN N :: sp ik e N N ()
{

A .2 Source code for im plem enting the unsupervised models 208

}

s p ik e N N :: ~ sp ik eN N ()
{
}

v o i d sp ik e N N :: c r e a t e N N ()
{

s o u r c e _ d a t a = n e w m a t r i x (N _ record , N . a t t r i b);
s o u r c e _ t a r g e t = n e w V e c t o r (N . r e c o r d);
p r o c e s s e d _ d a t a = n e w m a t r i x (N . r e c o r d , N . i n p u t) ;

/ / M a t r i x t o c o n t a i n t h e t r a i n i n g r e c o r d s ;
t r a i n _ m a t r i x = n e w m a t r i x (N . t r a i n , N . i n p u t);
t r a i n _ t a r g e t = n e w m a t r i x (N . t r a i n , N . t a r g e t . a t t r i b);

/ / M a t r i x t o c o n t a i n t h e t e s t r e c o r d s ;
t e s t _ m a t r i x = n e w m a t r i x (N . t e s t , N . i n p u t);
t e s t _ t a r g e t = n e w m a t r i x (N . t e s t , N . t a r g e t . a t t r i b);

/ / c o u n t d a t a from e a c h c l a s s
t e s t _ d a t a _ c o u n t = n e w V e c t o r (N . c l a s s);

/ / i n p u t v e c t o r
i n p v = ne w V e c t o r (N . i n p u t);
/ / t a r g e t v e c t o r
t v = n e w V e c t o r (N . c l a s s);

/ / m a t r i x t o h o l d c o n n e c t i o n w e i g h t s
wght = n ew m a t r i x (N . i n p u t , N . o u t p u t);
/ / m a t r i x t o h o l d c h a n g e s to c o n n e c t i o n w e i g h t s
dwght = n e w m a t r i x (N . i n p u t , N . o u t p u t);

/ / M a t r i x t o s t o r e c o n n e c t i o n d e l a y s
d e l a y = n e w m a t r i x (N . i n p u t , N . o u t p u t);
/ / m a t r i x t o s t o r e c o n n e c t i o d e l a y c h a n g e
d d e l a y = n e w m a t r i x (N . i n p u t , N . o u t p u t);

/ / v e c t o r t o s t o r e t h r e s h o l d o f e a c h o u t p u t n e u r o n
t h r e s h o l d = n e w V e c t o r (N . o u t p u t);

/ / M a t r i x t o s t o r e t h e s y n a p s e (c o n n e c t i o n) p o t e n t i a l s
s p = n e w m a t r i x (N . i n p u t , N . o u t p u t);

/ / V e c t o r t o s t o r e ne ur on p o t e n t i a l s
np=tiew V e c t o r (N . o u t p u t);

/ / V e c t o r t o s t o r e o u p u t
op = ne w V e c t o r (N . o u t p u t);

/ / E x a c t o u t p u t for t i e b r e a k i n g
e x a c t _ o p = n e w V e c t o r (N . o u t p u t);

c o i n c i d e n c e _ m e a s u r e = n e w V e c t o r (N . o u t p u t);

A .2 Source code for im plem enting the unsupervised models 209

v o i d sp ik e N N :: i n i t _ p a r a m e t e r s ()
{
/ / I n i t i a l i s e p a r a m e t e r s s u c h as s i z e , e p o c h s , e t c
/ / t o be d e f i n e d in t h e c h i l d . c l a s s
}

v o i d sp ik eN N :: i n i t _ s p i k e N N ()
/ / I n i t i a l i s e t h e n e t w o r k b e f o r e each c y c l e o f l e a r n i n g
{

s p —> i n i t m a t r i x (0 . 0) ;

np—> i n i t i a l i s e (0 . 0) ;

op —> i n i t i a l i s e (t w in d o w);

e x a c t _ o p —> i n i t i a l i s e (t w i n d o w);

d w g h t—> i n i t m a t r i x (0 . 0) ;
d d e l a y —> i n i t m a t r i x (0 . 0) ;

}

v o i d spi ke NN :: s e t _ t h r e s h o l d _ f i x e d (d o u b l e m a x _ t h r e s h o l d)
{

f o r (i n t i = 1 ; i < = N . o u t p u t ; i + +)
t h r e s h o l d —> s e t e l t (i , m a x - t h r e s h o l d);

}

d o u b l e sp ik e N N :: s p i k e _ r e s p o n s e (i n t s t)
/ / s p i k e r e s p o n s e f u n c t i o n
{

d o u b l e v a l = 0 . 0 ;
i f (s t > 0) v a l = (s t / t c e) * e x p (l — (s t / t c e)) ;

r e t u r n v a l ;
}
v o i d sp ik eN N :: u p d a t e _ s y n a p s e _ p o t e n t i a l (i n t s t)
/ / u p d a t e t h e p o t e n t i a l o f e a c h c o n n e c t i o n
{

d o u b l e inpT , d l a y , s p i k e T , s p o t e n ;

f o r (i n t i = 1; i < = N - i n p u t ; i H—h) {
i n p T = i n p v —> g e t e l t (i);
i f ((inpT < 0) 11 (i n p T > t w i n d o w _ i n p u t)) c o n t i n u e ;

f o r (i n t j = l ; j < = N _ o u t p u t ; j + +) {
i f (np—> g e t e l t (j) < 0 . 0) c o n t i n u e ;
d l a y = d e l a y —> g e t e l t (i , j);
s p i k e T = s t —in p T —d l a y ;
i f (s p i k e T < 0) c o n t i n u e ;
s p o t e n = s p ik e . r e s p o n s e ((i n t) s p i k e T) * w g h t —> g e t e l t (i , j);
s p —> s e t e l t (i , j , s p o t e n) ;

} / / e n d for j
} / / e n d fo r i

}

v o i d sp ik eNN :: u p d a t e . o u t p u t (i n t s t)
/ / s u m up t h e p o t e n t i a l from e a c h c o n n e c t i o n
{

d o u b l e sv , pnp , s p i k e _ t i m e ;

A .2 Source code for im plem enting the unsupervised models 210

f o r (i n t i =1 ; i < = N _ o u t p u t ; i + +) {
i f (np —> g e t e l t (i) < 0) c o n t i n u e ;

s v = 0 .0;
f o r (i n t j =1 ; j < = N _ i n p u t ; j + +)

s v = s v + s p —> g e t e l t (j , i);
pnp=np—> g e t e l t (i);
np—> s e t e l t (i , s v);
i f (s v > = t h r e s h o l d —> g e t e l t (i)) {

s p i k e _t i m e = (t h r e s h o l d —> g e t e l t (i) —p n p) / (s v —p n p);
op —> s e t e l t (i , s t) ;
e x a c t _ o p —> s e t e l t (i , s t —l + s p i k e _ t i m e);

np—> s e t e l t (i , —1 0 0 0) ;
f o r (i n t j = 1 ; j < = N _ i n p u t ; j + +)

s p —> s e t e l t (j , i , 0) ;

}
}

}

v o i d sp ik eN N :: s i m u l a t e _ S N N ()

{
i n t s t = (i n t) i n p v —>min () ;
d o {

s t = s t + d t ;
u p d a t e _ s y n a p s e _ p o t e n t i a l (s t);
u p d a t e _ o u t p u t (s t);

} w h i l e (s t Ctwind ow) ;

}

A .2.2 Source code for im plem enting SOW A_SNN

v o i d sp ik eN N :: t r a i n _ s p i k e N N ()
/ / c o d e fo r t h e l e a r n i n g p r o c e d u r e
{

i n t e p o c ;
t o t a l - w e i g h t . c h a n g e = 0 . 0 ;

i n t w in ne r_r ow , w i n n e r . c o l ;
i n t x i n d e x s , y i n d e x s ;
i n t x i n d e x e , y i n d e x e , i n d e x ;

d o u b l e n e i _ d i s t ;
e p o c = 0 ;

/ / r e p e a t u n t i l t h e t e r m i n a t i n g
/ / c r i t e r i a met

d o {
e p o c + + ;
c o n t - l e a r n =1;
n e i _ p o t e n = 0 . 0 ; n e i _ d e p = 0 . 0 ; d e p = 0 . 0 ;
t o t a l . w e i g h t . c h a n g e = 0 .0 ;
p r e v - w e i g h t . c h a n g e = 0 . 0 ;
s e t _ s i g m a (e p o c);
/ / s e t _ l e a r n i n g _ r a t e (e p o c);

A .2 Source code for im plem enting the unsupervised models 211

/ / r e p e a t f o r a l l t h e t r a i n i n g s a m p l e s
f o r (i n t r = l ; r < = N _ t r a i n ; r + - f) {

/ / i n i t i a l i s e t h e n e t w o r k
i n i t _ s p i k e N N () ;
/ / g e t a t r a i n i n g v e c t o r
t r a i n - m a t r i x - > g e t _ r o w _ V e c t o r (r ,1 , N . i n p u t ,* i n p v);
w i n n e r . f o u n d = 0;
/ / s i m u l a t e t h e n e t w o r k w i t h t h e i n p u t
s i m u l a t e . S N N () ;
/ / f i n d t h e w i n n e r
f i n d . w i n n e r () ;

i f (w i n n e r - f o u n d) {
/ / F i n d t h e n e i g h b o u r h o o d o f c o o p e r a t i o n

w i n n e r _ r o w = w i n n e r / N _ c o l s + l ;
w i n n e r _ c o l = w i n n e r % N _ c o l s ;
i f (w i n n e r _ c o l = = 0) {

w i n n e r _ c o l = N _ c o l s ;
w i n n e r . r o w ;

}

n e i _ d i s t = (i n t) s i g m a . w ;
x i n d e x s = w i n n e r _ r o w —n e i _ d i s t ;
y i n d e x s = w i n n e r _ c o l —n e i . d i s t ;

i f (x i n d e x s < = 0) x i n d e x s = l;
i f (y i n d e x s < = 0) y i n d e x s = l ;

x i n d e x e = w i n n e r _ r o w + n e i _ d i s t ;
y i n d e x e = w i n n e r _ c o l + n e i _ d i s t ;

i f (x i n d e x e > N _ r o w s) x i n d e x e = N _ r o w s ;
i f (y i n d e x e > N _ c o l s) y i n d e x e = N _ c o l s ;

/ / u p d a t e a l l n e u r o n s in t h e n e i g h b o u r h o o d
f o r (i n t i = x i n d e x s ; i < = x i n d e x e ; i + +)

f o r (i n t j = y i n d e x s ; j < = y i n d e x e ; j + - f)
{

i n d e x = (i —1)* N _ c o l s + j ;
u p d a t e . w e i g h t (i n d e x);

}
}

t o t a l _ w e i g h t _ c h a n g e + = w g h t _ c h a n g e () ;

}
c o u t « ” ep oc w : ”« e p o c « e n d l ;
c o u t « ” ^ w e i g h t ^ ch a n g e : ”« e n d l ;
c o u t « ” N e i g h ^ p o t e n w: ”« n e i _ p o t e n « e n d l ;
c o u t « ” N e ig h ~ d e p r e s s i o n ~ : ”« n e i _ d e p « e n d l ;

c o n t _ l e a r n = (t o t a l _ w e i g h t . c h a n g e > t o l e r a n c e);
p r e v _ w e i g h t Tc h a n g e = t o t a l . w e i g h t . c h a n g e ;

} w h i l e ((e p o c < m a x _ e p o c s) && (c o n t - l e a r n)) ;
}

d o u b l e sp ik eN N :: w g h t . c h a n g e ()
{
d o u b l e t w c = 0 . 0 ;

A .2 Source code for im plem enting the unsupervised models 212

f o r (i n t i =1; i < = N . i n p u t ; i+-(-)
f o r (i n t j =1 ; j < = N _ o u t p u t ; j + +)

twc-f=mod(dw ght—> g e t e l t (i , j)) ;

r e t u r n (t w c) ;
}

v o i d sp ik eN N :: u p d a t e . w e i g h t (i n t n)
/ / u p d a t e t h e c o n n e c t i o n w e i g h t s o f n e u r o n n
{

d o u b l e i n p u t , w e i g h t , n e w w e i g h t ,dw, d e l t a T , d l a y ;
d o u b l e w f , o u t p u t , v , nf , t f ;

o u t p u t = o p —> g e t e l t (n);
f o r (i n t i = 1 ; i < = N _ a t t r i b ; i + +) {

i n p u t = i n p v —> g e t e l t (i);
i f ((i n p u t < 0) 11 (i n p u t > (t w i n d o w _ i n p u t)) | | (o u t p u t > = t w i n d o w))

c o n t i n u e ;
d l a y = d e l a y —> g e t e l t (i , n);
d e l t a T = o u t p u t —d l a y —i n p u t ;
w e i g h t = w g h t —> g e t e l t (i , n);
w f = 0 . 0 ;
d w= 0 . 0 ;
n e w w e i g h t = 0 . 0 ;
v = 0 . 0 ;

i f (d e l t a T > = 0) {
wf=(maxw—w e i g h t) / maxw;

n f = t p l _ n e h b r (n);
t f = e x p (—d e l t a T / t c p d) — f f a c t ;

d w = l e a r n i n g . r a t e * w f * n f * t f ;
n e i _ p o t e n + = m o d (d w) ;

}
i f (d e l t a T < 0) {

w f = 0 . 5 ;
n f = t p l _ n e h b r (n);
t f = e x p (d e l t a T / t c p d);

dw=—l e a r n i n g _ r a t e * w f * n f * t f ;
n e i _ d e p + = m o d (d w) ;

}
n e w w e i g h t = w e i g h t + d w ;
d w g h t—> s e t e 11 (i , n , d w);
w g h t —> s e t e l t (i , n , n e w w e i g h t);

}
}

A .2.3 Source code for im plem enting S O D A .S N N

v o i d spi ke NN :: c o m p u t e _ c o i n c i d e n c e _ m e a s u r e ()

{
V e c t o r temp (N . i n p u t);

i n t i n p t , d l a y , mx, mn, d i f f ;
d o u b l e c f = 1;

A .2 Source code for im plem enting the unsupervised models 213

f o r (i n t j = l ; j < = N . o u t p u t ; j + +) {
f o r (i n t i = 1 ; i < = N _ i n p u t ; i + +) {

i n p t = (i n t) i n p v —> g e t e l t (i);
d l a y = (i n t) d e l a y —> g e t e l t (i , j);
temp . s e t e l t (i , i n p t + d l a y) ;

}

mx=temp . max () ;
mn=temp . min () ;
dif f= mxH im;
c f = d i f f / (d o u b l e) t w i n d o w . i n p u t ;
c o i n c i d e n c e . m e a s u r e —> s e t e l t (j , c f);

}
}

v o i d sp ik eN N :: t r a i n . s p i k e N N ()
/ / t r a i n t h e n e t w o r k
{

i n t e p o c ;
i n t w i n n e r . r o w , w i n n e r . c o l ;
i n t n e i . d i s t , x i n d e x s , x i n d e x e ;
i n t y i n d e x s , y i n d e x e , i n d e x ;
t o t a l _ d l a y _ c h a n g e = 0 . 0 ;

e p o c = 0 ;

d o {
e p o c + + ;
c o n t - l e a r n = 1;
n e i . p o t e n = 0 . 0 ; n e i _ d e p = 0 . 0 ; d e p = 0 . 0 ;
t o t a l _ d l a y . c h a n g e = 0 . 0 ;
p r e v _ d l a y - c h a n g e = 0 . 0 ;
s e t _ s i g m a (e p o c);
s e t _ l e a r n i n g _ r a t e (e p o c);
s e t _ t h r e s h o l d (e p o c);
/ / s e t _ t h r e s h o l d _ f i x e d (g e t _ t h r e s h o l d _ m i n ()) ;

f o r (i n t r = l ; r < = N _ t r a i n ; r + +) {
i n i t . s p i k e N N () ;
t r a i n _ m a t r i x —> g e t _ r o w - V e c t o r (r ,1 , N . i n p u t ,* i n p v);
i n p v —> w r i t e _ V e c t o r _ t o . f i l e (o u t p u t f i l e , 2) ;

w i n n e r . f o u n d =0;

s i m u l a t e . S N N () ;
f i n d . w i n n e r () ;
c o m p u t e . c o i n c i d e n c e . m e a s u r e () ;
i f (w i n n e r . f o u n d) {

w i n n e r _ r o w = w in n e r / N _ c o l s + l ;
w i n n e r _ c o l = w i n n e r % N _ c o l s ;
i f (w i n n e r _ c o l = = 0) {

w i n n e r _ c o l = N _ c o l s ;
w i n n e r . r o w ;

A .2 Source code for im plem enting the unsupervised models 214

n e i . d i s t = (i n t) s i g m a . w ;
• x i n d e x s = w i n n e r _ r o w — n e i . d i s t ;

y i n d e x s = w i n n e r _ c o l — n e i . d i s t ;

i f (x i n d e x s < = 0) x i n d e x s = l;
i f (y i n d e x s < = 0) y i n d e x s = l;

x i n d e x e = w i n n e r _ r o w + n e i _ d i s t ;
y i n d e x e = w i n n e r _ c o l + n e i _ d i s t ;

i f (x i n d e x e > N _ r o w s) x i n d e x e = N _ r o w s ;
i f (y i n d e x e > N _ c o l s) y i n d e x e = N _ c o l s ;

f o r (i n t i = x i n d e x s ; i < = x i n d e x e ; i-f-f)
f o r (i n t j = y i n d e x s ; j < = y i n d e x e ; j + +)
{

i n d e x = (i — l) * N _ c o l s + j ;
up d a t e . d l a y (i n d e x);
t o t a l . d l a y _ch an g e + = d l ay . c h a n g e (i n d e x);

}
}

}
c o u t « ” e p o c - : ”« e p o c « e n d l ;
c o u t « ” - D e l a y - c h a n g e : ”« e n d l ;
c o u t « ” N e i g h - p o t e n - : ”« n e i _ p o t e n « e n d l ;
c o u t « ” N e i g h - d e p r e s s i o n - : ”« n e i _ d e p « e n d l ;
c o u t « ” T o t a l - : ”« t o t a l _ d l a y . c h a n g e « e n d l ;

/ / c o n t . l e a r n = ((t o t a l . w g h t . c h a n g e —p r e v . w g h t . c h a n g e) > t o l e r a n c e);
c o n t _ l e a r n = (t o t a l _ d l a y _ c h a n g e > t o l e r a n c e);
p r e v _ d l a y . c h a n g e = t o t a l . d l a y . c h a n g e ;

} w h i l e ((e p o c < m a x _ e p o c s) &&; (c o n t - l e a r n)) ;
}

v o i d sp ik eN N :: u p d a t e . d l a y (i n t i n d e x)
/ / u p d a t e t h e c o n n e c t i o n d e l a y s
/ / o f ne u r o n i n d e x
{

d o u b l e i n p u t , d e l t a T , dd , d l a y , n e w . d l a y ;
d o u b l e c f , o u t p u t , v ; / / , n f , n t c ;
d o u b l e m a x . d e l a y = m a x d ;
d o u b l e m i n _ d e l a y = m i n d ;

d o u b l e dn , d t t ;

d d e l a y —> i n i t m a t r i x (0 . 0) ;

o u t p u t = o p —> g e t e l t (i n d e x);
f o r (i n t i =1; i < = N _ i n p u t ; i + +) {

i n p u t = i n p v —> g e t e l t (i);
i f ((i n p u t < 0) 11 (o u t p u t > = t w i n d o w))

c o n t i n u e ;
d l a y = d e l a y —> g e t e l t (i , i n d e x);
d e l t a T = o u t p u t —d l a y —i n p u t —s h i f t ;

c f = c o i n c i d e n c e _ m e a s u r e —> g e t e l t (i n d e x);
dd = 0 .0;

A .2 Source code for im plem enting the unsupervised models 215

n e w . d l a y = 0 . 0 ;
v = 0 .0;

i f (d e l t a T > = 0) {
d n = t p l _ n e h b r (i n d e x);
d t t = d e l t a T * (e x p (—d e l t a T * d e l t a T / (t c p d * t c p d)) / t c p d) —d b i a s ;
d d = l e a r n i n g . r a t e * d n * d t t * c f ;
n e i _ p o t e n + = m o d (d d);

}

i f (d e l t a T < 0) {
d n = t p l _ n e h b r (i n d e x);
d t t = d e l t a T * (e x p (—d e l t a T * d e l t a T / (t c p d * t c p d)) / t c p d) —d b i a s ;
d d = l e a r n i n g . r a t e * d t t * d n * c f ;

n e i _ d e p + = m o d (d d);
}
n e w _ d l a y = d l a y + d d ;
i f (n e w _ d l a y > m a x _ d e l a y) n e w _ d l a y = m a x _ d e l a y ;
i f (n e w _ d l a y < m i n _ d e l a y) n e w . d l a y = m i n _ d e l a y ;
d d e l a y —> s e t e l t (i , i n d e x , d d);
d e l a y —> s e t e l t (i , in d e x , n e w . d l a y);
}

A .2.4 Section o f class spikeN N for testing the data sets

v o i d spi ke NN :: t e s t . s p i k e N N (c o n s t c h a r * o p t _ t e s t)
/ / s t o r e t h e o u t p u t o f t h e n e tw o r k for t e s t d a t a
{ .

i n t s t , wx, wy;
m a t r i x d a t a . s t o r e (N . t e s t , 5) ;
m a t r i x o p . w h o l e (N . i n p u t , N . o u t p u t) ;

t e s t . m a t r i x —> w r i t e . m a t r i x . t o . f i l e (o p t . t e s t , 1) ;
w g h t —> w r i t e . m a t r i x . t o . f i l e (o p t . t e s t , 2) ;
d e l a y —> w r i t e . m a t r i x _ t o . f i l e (o p t . t e s t , 2) ;
f o r (i n t r = l ; r < = N _ t e s t ; r + +) {

i n i t . s p i k e N N () ;
t e s t . m a t r i x —> g e t . r o w . V e c t o r (r , 1 , N . i n p u t , * i n p v);
t e s t . t a r g e t —> g e t . r o w . V e c t o r (r , l , N . c l a s s ,* t v);

s t = (i n t) i n p v —>min () ;
d o {

s t = s t + d t ;
u p d a t e . s y n a p s e . p o t e n t i a l (s t);
u p d a t e . o u t p u t (s t);

} w h i l e (st Ctwindow);

f i n d . e x a c t . w i n n e r () ;
w x = w in n e r / N . c o l s +1;
w y = w i n n e r % N . c o l s ;
i f (w y = = 0) {

w y = N _ c o l s ;
wx=wx—1;

}
d a t a . s t o r e . s e t e l t (r ,5 , t e s t . t a r g e t —> g e t e l t (r , 1)) ;
d a t a . s t o r e . s e t e l t (r ,1 , w x) ;

A .2 Source code for im plem enting the unsupervised models 216

d a t a . s t o r e . s e t e l t (r ,2 , w y) ;
d a t a . s t o r e . s e t e l t (r ,3 , w i n n i n g . t i m e) ;
d a t a . s t o r e . s e t e l t (r ,4 , w i n n e r);

}
o p . w h o l e . w r i t e . m a t r i x . t o . f i l e (o p t . t e s t , 2) ;
d a t a . s t o r e . w r i t e . m a t r i x . t o . f i l e (o p t . t e s t , 2) ;

}

v o i d sp ik eN N :: t e s t . t r a i n . s e t (c o n s t c h a r * o p t _ t r a i n)
/ / s t o r e t h e o u t p u t o f t h e n e t w o r k f o r t r a i n d a t a
{

i n t wx, wy, i n p t , d l a y , s t ;
m a t r i x e f f . i n p t (N . t r a i n , N . i n p u t) ;

m a t r i x d a t a . s t o r e (N . t r a i n , 5) ;
w g h t —> w r i t e . m a t r i x . t o . f i l e (o p t . t r a i n , 1) ;
d e l a y —> w r i t e . m a t r i x . t o . f i l e (o p t . t r a i n , 2) ;
t r a i n . m a t r i x —> w r i t e . m a t r i x . t o . f i l e (o p t . t r a i n , 2) ;
f o r (i n t r = l ; r < = N _ t r a i n ; r-H-){

i n i t . s p i k e N N () ;
t r a i n . m a t r i x —> g e t . r o w . V e c t o r (r , 1 , N . i n p u t ,* i n p v);

s t = (i n t) i n p v —>min () ;
d o {

s t = s t + d t ;
u p d a t e _ s y n a p s e _ p o t e n t i a l (s t);
u p d a t e . o u t p u t (s t);

} w h i l e (s t c t w i n d o w);

op—> w r i t e . V e c t o r . t o . f i l e (o p t . t r a i n , 2) ;
f i n d . e x a c t . w i n n e r () ;

w x = w in n e r / N . c o l s +1;
w p = w in n er% N _c ol s ;
i f (w y = = 0) {

wy^=N_co'ls ;
w x ^ w x - 1;

}
d a t a . s t o r e . s e t e l t (r ,5 , t r a i n . t a r g e t —> g e t e l t (r , 1)) ;
d a t a . s t o r e . s e t e l t (r ,1 , w x) ;
d a t a . s t o r e . s e t e l t (r ,2 , w y) ;
d a t a . s t o r e . s e t e l t (r ,3 , w i n n i n g . t i m e) ;
d a t a . s t o r e . s e t e l t (r , 4 , w i n n e r);

f o r (i n t i = 1 ; i < = N _ a t t r i b ; i + +) {
i n p t = (i n t) i n p v —> g e t e l t (i);
d l a y = (i n t) d e l a y —> g e t e l t (i , w i n n e r);
e f f . i n p t . s e t e l t (r , i , i n p t + d l a y) ;

}

}
d a t a . s t o r e . w r i t e . m a t r i x . t o . f i l e (’’ t r a i n . o u t p u t . d a t ” , 1) ;
d a t a . s t o r e . w r i t e . m a t r i x . t o . f i l e (o p t . t r a i n , 2) ;
e f f . i n p t . w r i t e . m a t r i x . t o . f i l e (o p t . t r a i n , 2) ;

v o i d spi ke NN :: s e l e c t . d a t a ()

A .2 Source code for im plem enting the unsupervised models 217

/ / T o s e l e c t t e s t and t r a i n d a t a
/ / f r o m t h e w h o le d a t a s e t
{

V e c t o r s v e c t (N . i n p u t);
i n t s e e d g e n , se e d , i , s t ;

s e e d g e n = t i m e (NULL) % 1000;
f o r (i = 0 ; i < s e e d g e n ; i + +)

rand () ;

s e e d = r a n d () ;
s r a n d (s e e d);

i n t * c h o o s e d = n e w i n t [N . r e c o r d + 1] ;
i n t r o w .n o , c n t = l;

f o r (i = 1 ; i < = N . r e c o r d ; i + +)
c h o o s e d [i] = 0 ;

i f (N . t e s t) {
d o {
r o w _ n o = (r and ()%N . .record) + l;
i f (! c h o o s e d [r o w . n o]) {

s t = s o u r c e _ t a r g e t —> g e t e l t (r o w . n o);
i f (t e s t _ d a t a _ c o u n t —> g e t e l t (s t)) {

p r o c e s s e d _ d a t a —> g e t _ r o w _ V e c t o r (r o w . n o , 1 , N _ a t t r i b , s v e c t);
i f (N _ b i a s) s v e c t . s e t e l t (N . i n p u t , 1 . 0) ;
t e s t . m a t r i x —> s e t . r o w_ V e c t o r (c n t , 1 , N . i n p u t , s v e c t);

t e s t . t a r g e t —> s e t e l t (c n t , 1 , s t);
t e s t . d a t a . c o u n t —> s e t e l t (s t , t e s t . d a t a . c o u n t —> g e t e l t (s t) — 1);

c h o o s e d [row_no] = l ;
c n t + + ;

}
}
} w h i l e (c n t < = N _ t e s t);

}

c n t = l;
f o r (i =1 ; i < = N _ r e c o r d ; i-H-)

i f (! c h o o s e d [i]) {
pr o c e s s e d _d at a —> g e t . r o w . V e c t o r (i ,1 , N _ a t t r i b , s v e c t);
i f (N . b i a s) s v e c t . s e t e l t (N . i n p u t , 1 . 0) ;

t r a i n . m a t r i x —> s e t . r o w . V e c t o r (c n t , 1 , N . i n p u t , s v e c t);
t r a i n . t a r g e t —> s e t e l t (c n t ,1 , s o u r c e . t a r g e t —> g e t e l t (i)) ;
c n t + + ;

}
}

A .2.5 Code for clustering W ine data set w ith SOWA_SNN

i f n d e f WINEJ1
d e f i n e WINEJ1

i n c l u d e ’’ s p i k e n n . h ”

A .2 Source code for im plem enting the unsupervised models 218

c l a s s w in e : p u b l i c s p i k e N N {
p r i v a t e :

i n t N_sourceRow , N _ s o u r c e C o l ;

p u b l i c :
w in e () ;
' w i n e () ;

v o i d i n i t () ;
v o i d a c q u i r e _ d a t a () ;
v o i d p r e p r o c e s s . d a t a () ;
v o i d s h u f f l e _ t r a i n s e t () ;
v o i d i n i t . p a r a m e t e r s () ;
v o i d s t a r t () ;

};

e n d i f

i n c l u d e ’’ w i n e . h ”
i n c l u d e C m a t h . h>
i n c l u d e < i o s t r e a m >
i n c l u d e < s t d l i b . h >
i n c l u d e < t i m e . h >
i n c l u d e < f s t r e a m >

w i n e : : w in e ()
{
}

w i n e :: ~ w i n e ()
{
}

v o i d w in e : : i n i t ()
{

N_sourceRow = 178;
N _ s o u r c e C o l = 1 4 ;

N . r e c o r d = 1 7 8 ;
N . a t t r i b =1 3;
N . b i a s =0 ;
N . t a r g e t . a t t r i b =1;
N . t r a i n = 1 2 0 ;
N . t e s t = 5 8 ;

N _ i n p u t = N _ a t t r i b + N . b i a s ;
N _ ro w s= 4 ;
N . c o l s =4 ;
N _ o u t p u t = N _ r o w s * N . c o l s ;

N _ c l a s s = 3 ;

l e a r n i n g . r a t e = 0 . 0 0 1 ;

dt = 1;
t i m e s t e p =1;

A .2 Source code for im plem enting the unsupervised models 219

t w i n d o w = 6 5 ;
e a r l y _ f i r e =50 ;
l a t e _ f i r e =60 ;
t w i n d o w - i n p u t = 3 0 ;

t o l e r a n c e = 0 .0 0 1 ;
maxw= 1.0;
minw= 0 . 0 ;
maxd = 30 .0;
mind = 0 .0;

o u t p u t f i l e = ” i r i s _ t e s t _ o u t p u t . t x t ” ;

}

v o i d w i n e :: p r e p r o c e s s . d a t a ()
{

i n t i , j ;
d o u b l e t a r g e t ;

s o u r c e . d a t a —> c o p y m a t r i x
(1 , 1 , N .r e c o r d , N . a t t r i b , * p r o c e s s e d _ d a t a) ;

p r o c e s s e d . d a t a —> n o r m a l i z e _ c o l u m n () ;

f o r (i = 1 ; i < = N . r e c o r d ; i + +)
f o r (j = 1 ; j < = N _ a t t r i b ; j + +) {

t a r g e t = p r o c e s s e d _ d a t a —> g e t e l t (i , j);
t a r g e t = t w i n d o w - i n p u t —(t a r g e t * t w i n d o w - i n p u t);
p r o c e s s e d . d a t a —> s e t e l t (i , j , t a r g e t) ;

}
}

v o i d w i n e :: s h u f f l e _ t r a i n s e t ()
{

i n t s e e d g e n = t i m e (N U L L) % 1 0 0 0 ;
f o r (i n t i = 0 ; i < s e e d g e n ; i + +)

rand () ;

i n t n s h u f f l e = N _ t r a i n / 3 ;
i n t r l , r 2 , t l , t2 ;
V e c t o r t m p t r v l (N . i n p u t);
V e c t o r t m p t r v 2 (N . i n p u t);

f o r (i n t c n t = 0 ; c n t < = n s h u f f l e ; c n t + +) {
r l = l - (- r a n d () % N _ t r a i n ;
r 2 = l + r a n d () % N _ t r a i n ;
t r a i n . m a t r i x —> g e t . r o w . V e c t o r (r l ,1 , N . i n p u t , t m p t r v l);
t r a i n . m a t r i x —> g e t . r o w . V e c t o r (r2 ,1 , N . i n p u t , t m p t r v 2) ;

t l = (i n t) t r a i n _ t a r g e t —> g e t e l t (r l , 1) ;
t 2 = (i n t) t r a i n _ t a r g e t —> g e t e l t (r2 , 1) ;

t r a i n . m a t r i x —> s e t _ r o w _ V e c t o r (r l ,1 , N . i n p u t , t m p t r v 2);
t r a i n . m a t r i x —> s e t . r o w . V e c t o r (r2 ,1 , N . i n p u t , t m p t r v l);

t r a i n . t a r g e t —> s e t e l t (r 2 ,1 , t l);

A .2 Source code for im plem enting the unsupervised models 220

t r a i n . t a r g e t —> s e t e l t (r l ,1 , t 2) ;
}

}

v o i d w in e :: i n i t . p a r a m e t e r s ()
{
i n t s e e d g e n ;
i n t s e e d . a r r a y [1 0 0] ;
i n t s e e d _ c n t = 0 ;
i n t i , j ;

s e e d g e n = t i m e (NULL)%1000;
f o r (i = 0 ; i < s e e d g e n ; i + +)

rand () ;

f o r (i = 0 ; i < 1 0 0 ; i + +)
s e e d . a r r a y [i] = rand () ;

d e l a y —> i n i t m a t r i x (0 . 0) ;
w g h t —> f i l l . r a n d o m (s e e d . a r r a y [s e e d . c n t + +] , 0 . 3 , 0 . 5) ;

}

v o i d w in e :: s t a r t ()
{

i n i t () ;
c r e a t e N N () ;
a c q u i r e . d a t a () ;
p r e p r o c e s s . d a t a () ;

s e l e c t . d a t a () ;

s h u f f l e . t r a i n s e t () ;
i n i t . p a r a m e t e r s () ;

t c e = 3 5 ;
t c p d = 15;
f f a c t = 0 . 1 5 ;

t o l e r a n c e = 0 .0 0 1 ;

s e t . t h r e s h o l d . f i x e d (N . i n p u t * 0 . 5 * 0 . 5) ;

t e s t . t r a i n . s e t (” t r a i n _ s e t _ o u t p u t 0 . t x t ”);
t e s t . s p i k e N N (’’ t e s t . s e t . o u t p u t O . t x t ”);

m a x _ e p o c s = 2 5 ;
s igm a_w O= 5;
l e a r n i n g _ r a t e = 0 . 0 2 ;

o r d e r _ b y _ p o s i t i o n = l ;
l a t t e r a l _ e f f e c t = l ;
v a r y . n e i g h b o r h o o d =1;

s h u f f l e . t r a i n s e t () ;
t r a i n . s p i k e N N () ;
t e s t . t r a i n . s e t (” t r a i n . s e t . o u t p u t l . t x t ”);
t e s t _ s p i k e N N (” t e s t _ s e t _ o u t p u t l . t x t ”);

A .2 Source code for im plem enting the unsupervised models 221

}

v o i d w in e : : a c q u i r e _ d a t a ()
{

m a t r i x s o u r c e _ m a t r i x (N _sou rceR ow , N _ s o u r c e C o l);
V e c t o r s v e c t (N . a t t r i b);

s o u r c e _ m a t r i x . r e a d _ m a t r i x _ f r o m _ f i l e (”D : / D a t a S e t s / w i n e / w i n e . d a t a ”);

f o r (i n t i = 1 ; i < = N _ s o u r c e R o w ; i + +) {
s o u r c e - m a t r i x . g e t _ r o w _ V e c t o r (i ,2 , N . s o u r c e C o l , s v e c t);
s o u r c e _ d a t a —> s e t _ r o w _ V e c t o r (i , 1 , N _ a t t r i b , s v e c t);
s o u r c e - t a r g e t —> s e t e l t (i , s o u r c e _ m a t r i x . g e t e l t (i , 1)) ;

}
}

A .2.6 Code for clustering Iris data set w ith SO DA_SNN

i f n d e f IR IS- H
d e f i n e IRIS -H

^ i n c l u d e ’’ s p i k e n n . h ”

c l a s s i r i s : p u b l i c sp ik eN N

{
p r i v a t e :

i n t N . s o u r c e R o w , N _ s o u r c e C o l ;

p u b l i c :
i r i s () ;
' i r i s () ;
v o i d i n i t () ;
v o i d a c q u i r e . d a t a () ;
v o i d p r e p r o c e s s . d a t a () ;
v o i d s h u f f l e . t r a i n s e t () ;
v o i d i n i t . p a r a i p e t e r s () ;
v o i d s t a r t () ;
};

e n d i f

i n c l u d e ’’ i r i s . h ”
i n c l u d e < m a t h . h >
i n c l u d e < i o s t r e a m >
i n c l u d e < s t d l i b . h >
i n c l u d e < t i m e . h >
i n c l u d e < f s t r e a m >

u s i n g n a m e s p a c e s t d ;

i r i s : : i r i s ()
{
}

A .2 Source code for im plem enting the unsupervised models 222

i r i s :: ~ i r i s ()
{
}

v o i d i r i s :: i n i t ()
{

N_sourceRow = 150;
N _ s o u r c e C o l = 5 ;

N _ r e c o r d = 1 5 0 ;
N . a t t r i b =4 ;
N _ b i a s = 0 ;
N . t a r g e t . a t t r i b =1;
N . t r a i n = 1 2 0 ;
N . t e s t = 30 ;

N _ i n p u t = N _ a t t r i b + N _ b i a s ;
N _ ro w s= 5 ;
N _ c o l s = 5 ;
N _ o u t p u t = N _ r o w s * N . c o l s ;

N . c l a s s = 3 ;

d t = l ;
t i m e s t e p =1;
t w i n d o w = 6 5 ;
e a r l y . f i r e = 35;
l a t e . f i r e = 50;
t w i n d o w . i n p u t = 3 0 ;

t o l e r a n c e = 0 . 0 0 1 ;
maxw= 1.0;
minw = 0 .0;
maxd=t w i n d o w . i n p u t ;
mind = 0 .0;

}

v o i d i r i s :: i n i t . p a r a m e t e r s ()

{
i n t s e e d g e n ;
i n t s e e d . a r r a y [1 0 0] ;
i n t s e e d _ c n t = 0 ;
i n t i , j ;

s e e d g e n = t i m e (NULL) % 1000;
f o r (i = 0 ; i < s e e d g e n ; i + +)

rand () ;

f o r (i = 0 ; i < 1 0 0 ; i + +)
s e e d . a r r a y [i] = r a n d () ;

w g h t—> f i l l . r a n d o m (s e e d . a r r a y [s e e d _ c n t + +] , 0 . 4 , 0 . 6) ;

d e l a y —> f i l l . r a n d o m (s e e d . a r r a y [s e e d _ c n t + +] , 0 . 0 , 1 . 0) ;

A .2 Source code for im plem enting the unsupervised models 223

f o r (i =1; i < = N _ i n p u t ; i + +)
f o r (j = l ; j < = N _ o u t p u t ; j + +)

d e l a y —> s e t e l t
(i , j , 1 0 + i n t (d e l a y —> g e t e l t (i , j) * 1 0)) ;

}

v o i d i r i s :: s t a r t ()
{

i n i t () ;
c r e a t e N N () ;
a c q u i r e . d a t a () ;
p r e p r o c e s s . d a t a () ;

s e l e c t - d a t a () ;

s h u f f l e . t r a i n s e t () ;
i n i t . p a r a m e t e r s () ;

t c e = 5 ;
t c p d = 2 5 ;
d b i a s = 0 . 0 5 ;
s h i f t = 2;

/ / 1 II M I II I II I I I II I n i t i a l o u t p u t I H II I I I I

s e t . t h r e s h o l d - f i x e d (N . i n p u t * 0 . 5 * 0 . 5) ;

t e s t . t r a i n . s e t (’’ t r a i n . s e t . o u t p u t O . t x t ”);
t e s t . s p i k e N N (” t e s t . s e t . o u t p u t O . t x t ”);

/ / I II t I I I I I I I II I i T r a i n i n g P h a s e 1 - I I I I I I I

m a x _ e p o c s = 2 0 ;
s ig m a_ wO= 5;

m i n . t h r e s h o I d = (N . i n p u t) * 0 . 5 * 0 . 7 ;
m a x _ t h r e s h o l d = (N . i n p u t) * 0 . 5 * 0 . 8 ;

o r d e r _ b y _ p o s i t i o n = l ;
v a r y . n e i g h b o r h o o d =1;
l a t t e r a l _ e f f e c t = l ;

t r a i n . s p i k e N N () ;

t e s t . t r a i n . s e t (’’ t r a i n . s e t . o u t p u t l . t x t ”);
t e s t . s p i k e N N (’’ t e s t . s e t . o u t p u t l . t x t ”);

/ / -I I 1 + 1 I II I I I I End T r a i n i n g P h a s e 1 I I I I I I I I

}

v o i d i r i s : : a c q u i r e . d a t a ()
{

m a t r i x s o u r c e . m a t r i x (N . s o u r c e R o w , N . s o u r c e C o l);
V e c t o r s v e c t (N . a t t r i b);

s o u r c e . m a t r i x . r e a d . m a t r i x . f r o m . f i l e

A .3 Source code for im plem enting SDA_SNN 224

(”D: / D a t a S e t s / i r i s / i r i s _ d a t a . t x t ”);

f o r (i n t i =1; i < = N _ s o u r c e R o w ; i + +) {
s o u r c e . m a t r i x . g e t _ r o w _ V e c t o r (i , 1 , N . a t t r i b , s v e c t);
s o u r c e . d a t a —> s e t _ r o w _ V e c t o r (i , 1 , N . a t t r i b , s v e c t);
s o u r c e . t a r g e t —>

s e t e l t (i , s o u r c e . m a t r i x . g e t e l t (i , N . s o u r c e C o l)) ;
}

}

A .3 Source code for im plem enting SDA_SNN

^ i n c l u d e ” m a t r i x , h ”
i n c l u d e ” v e c t o r . h ”

i f n d e f SPIKENNJd
d e f i n e SPIKENNJH

c l a s s sp i k e N N {
p r o t e c t e d :

i n t N . r e c o r d , N . a t t r i b , N . t a r g e t . a t t r i b ;
i n t N . t r a i n , N . t e s t , N . c l a s s ;
i n t m a x . e p o c s , c o n t . l e a r n ;

i n t N . i n p u t , N . o u t p u t , N .p opu N eur on , N .r o w s , N . c o l s ;

m a t r i x * s o u r c e . d a t a ;
V e c t o r * s o u r c e . t a r g e t ;
m a t r i x * p r o c e s s e d . d a t a ;

m a t r i x * t r a i n . m a t r i x ,* t r a i n . t a r g e t ;
m a t r i x * t e s t _ m a t r i x ,* t e s t . t a r g e t ;

d o u b l e maxw, minw, maxd, mind, d b i a s ;
V e c t o r * t h r e s h o l d ;
V e c t o r *psp_ max;

i n t d t , t w i n d o w . i n p u t , tw in do w , t i m e s t e p , e a r l y . f i r e , l a t e . f i r e ; / / t im e ,
d o u b l e w i n n i n g . t i m e ;
i n t w in n e r , w i n n e r . f o u n d ;

d o u b l e l e a r n i n g . r a t e ;
d o u b l e m a x . t h r e s h o l d , m i n . t h r e s h o l d ;
V e c t o r * m x . t h r e s h o l d , * m n _ t h r e s h o l d ;

d o u b l e t o t a l . e r r o r , m i n . e r r o r , t o l e r a n c e , c t o l , s h i f t ;
d o u b l e t o t a l . d l a y . c h a n g e , p r e v . d l a y . c h a n g e ;
d o u b l e n e i . p o t e n , n e i . d e p ;
i n t p r e c i s i o n ;
V e c t o r * i n p v , * t v , * t e s t . d a t a . c o u n t ;

i n t u p d a t e . a l l , o r d e r . n e t w o r k , s e t t h r e s h o l d ;

m a t r i x *w ght ;
m a t r i x *dw ght ;
d o u b l e t c ;

A .3 Source code for im plem enting SDA_SNN 225

d o u b l e t c p d ;
m a t r i x * d e l a y ;
m a t r i x * d d e l a y ;

m a t r i x * sp;
V e c t o r *np;
V e c t o r *op;
V e c t o r * e x a c t _ o p ;

/ / V e c t o r t o s t o r e t h e o u t p u t o f t h e n e t w o r k
V e c t o r *opy ;

/ / V e c t o r t o s t o r e w i n n e r s o f e a c h gr oup
V e c t o r * r o w _ w i n n e r ;
V e c t o r * e r r o r v ;
V e c t o r * c o i n c i d e n c e . m e a s u r e ;

m a t r i x * t e s t - o u t p u t ;
m a t r i x * t e s t . w i n n e r ;
m a t r i x * t r a i n . w i n n e r ;

p u b l i c :
s p ik eN N () ;
' s p i k e N N () ;
v o i d c r e a t e N N () ;
v o i d i n i t - s p i k e N N () ;
v o i d i n i t . p a r a m e t e r s () ;

v o i d s e l e c t - d a t a () ;

v o i d s e t _ t h r e s h o l d _ f i x e d (d o u b l e);
d o u b l e s p i k e . r e s p o n s e (i n t t) ;
v o i d u p d a t e - s y n a p s e . p o t e n t i a l (i n t) ;
v o i d u p d a t e - o u t p u t (i n t);
v o i d s i m u l a t e . S N N () ;

/ / M e t h o d to f i n d t h e o u t p u t o f t h e n e tw o r k
v o i d p r o c e s s . o u t p u t () ;

v o i d f i n d _ w i n n e r () ;
v o i d f i n d _ e x a c t _ w i n n e r () ;

/ / M e t h o d to f i n d t h e w in n e r in t h e grou p i
i n t l o c a l _ w i n n e r (i n t i) ;

v o i d c o m p u t e . e r r o r (i n t);
d o u b l e e r r o r () ;
v o i d com pu te _m ax _p sp () ;
v o i d c o m p u t e _ c o i n c i d e n c e _ m e a s u r e (i n t t a r g e t) ;

v o i d t r a i n _ s p i k e N N _ o r d e r () ;
v o i d t r a i n . s p i k e N N . t u n e () ;
v o i d t r a i n . s p i k e N N . f i n e t u n e () ;
v o i d t e s t . t r a i n . s e t (c o n s t c h a r * o p t _ t e s t) ;
v o i d t e s t . s p i k e N N (c o n s t c h a r * o p t _ t r a i n) ;

v o i d u p d a t e . d l a y (i n t);
v o i d u p d a t e . w e i g h t () ;

d o u b l e e r r o r _ t r a i n _ s e t () ;

A .3 Source code for im plem enting SDA_SNN 226

d o u b l e w g h t - c h a n g e () ;
d o u b l e d l a y _ c h a n g e () ;

v o i d s t o r e _ i n p u t _ e f f e c t (i n t);

v o i d s t o r e . o u t p u t (c o n s t c h a r * o u t p u t f i l e , i n t t y p e) ;

v o i d s t o r e _ t e s t _ o u t p u t () ;
d o u b l e t e s t . t r a i n . s e t () ;

};

e n d i f

i n c l u d e ’’ s p i k e n n . h ”
i n c l u d e < i o s t r e a m >
i n c l u d e < m a t h . h >
i n c l u d e < s t d l i b . h >
i n c l u d e < t i m e . h >
i n c l u d e < f s t r e a m >
i n c l u d e ” u t i l s , h ”
u s i n g n a m e s p a c e s t d ;

sp ik eN N :: sp ik eN N ()
{

}

sp ik eN N :: ~ sp i keNN ()
{
}

v o i d sp ik eN N :: c r e a t e N N ()
{

s o u r c e _ d a t a = n e w m a t r i x (N . r e c o r d , N . a t t r i b);
s o u r c e _ t a r g e t = n e w V e c t o r (N . r e c o r d);
p r o c e s s e d _ d a t a = n e w m a t r i x (N . r e c o r d , N . i n p u t) ;
t r a i n _ m a t r i x = n e w m a t r i x (N . t r a i n , N . i n p u t);
t r a i n _ t a r g e t = n e w m a t r i x (N . t r a i n , N . t a r g e t . a t t r i b);
t e s t _ m a t r i x = n e w m a t r i x (N . t e s t , N . i n p u t);
t e s t . t a r g e t = n e w m a t r i x (N . t e s t , N . t a r g e t . a t t r i b) ;
t e s t _ d a t a _ c o u n t = n e w V e c t o r (N . c l a s s);
i n p v =ne w V e c t o r (N . i n p u t);
t v = n e w V e c t o r (N . c l a s s);

wght =new m a t r i x (N . i n p u t , N . o u t p u t);
dwght =ne w m a t r i x (N . i n p u t , N . o u t p u t);
d e l a y = n e w m a t r i x (N . i n p u t , N . o u t p u t);
d d e l a y = n e w m a t r i x (N . i n p u t , N . o u t p u t);
sp =ne w m a t r i x (N . i n p u t , N . o u t p u t);
t h r e s h o l d = n e w V e c t o r (N . o u t p u t);
psp_max=new V e c t o r (N . o u t p u t);
np=new V e c t o r (N . o u t p u t);
op=new V e c t o r (N . o u t p u t);

A .3 Source code for im plem enting SDA_SNN 227

e x a c t _ o p = n e w V e c t o r (N . o u t p u t);

/ / v e c t o r to s t o r e t h e o u t p u t o f t h e n e t w o r k
opy = ne w V e c t o r (N .r o w s);
r o w _ w in n e r = n ew V e c t o r (N . r o w s) ;
e r r o r v = n e w V e c t o r (N . r o w s);
c o i n c i d e n c e _ m e a s u r e = n e w V e c t o r (N . o u t p u t);
m x _ t h r e s h o l d = » e w V e c t o r (N . r o w s);
m n _ t h r e s h o l d = n e w V e c t o r (N . r o w s);

}

v o i d sp ik eN N :: p r o c e s s . o u t p u t ()
{
i n t i n d e x , w i ;
d o u b l e w t ;

f o r (i n t i =1; i< =N _r ow s ; i + +) {
i n d e x = (i — l) * N _ c o l s + l;
w t= tw in d o w ;
w i = 0 ;
f o r (i n t j = i n d e x ; j c i n d e x + N . c o l s ; j + +) {

i f (w t>op —> g e t e l t (j)) {
wt=op—> g e t e l t (j);
wi=j ;

I
o p y —> s e t e l t (i , w t) ;
r o w . w i n n e r —> s e t e l t (i , w i);

}
}

}

i n t sp ik eN N :: l o c a l . w i n n e r (i n t t a r g e t)
{

d o u b l e l w i n _ t = t w i n d o w ;
i n t i n d e x = (t a r g e t —1) * N . c o l s + 1;
i n t l w = 0 ;

f o r (i n t j = i n d e x ; j < i n d e x + N _ c o l s ; j + +) {
i f (l w i n _ t > = e x a c t _ o p —> g e t e l t (j)) {

lw=j ;
l w i n _ t = e x a c t _ o p —> g e t e l t (j);

}
}
r e t u r n l w ;

}

v o i d spi ke NN :: c o m p u t e . e r r o r (i n t t a r g e t)
{
i n t w i ;
d o u b l e w t , d i f f , e , t . t a r g e t ;

w t = tw i n d o w ;
w i = 0 ;
f o r (i n t i = 1 ; i < = N _ r o w s ; i + +)

i f (w t > o p y —> g e t e l t (i)) {
w t = o p y —> g e t e l t (i);
w i = i ;

A .3 Source code for im plem enting SDAJSNN 228

}
d i f f = t w i n d o w —w t ;
t _ t a r g e t = o p y —> g e t e l t (t a r g e t);

i f (d i f f) {
f o r (i = 1 ; i < = N _ r o w s ; i + +) {

e = (t - t a r g e t —o p y —> g e t e l t (i)) / d i f f ;
e r r o r v —> s e t e l t (i ,1 —e);

}
}

}
d o u b l e sp ik eN N :: e r r o r ()
{
d o u b l e e , t t e ;

t t e = 0 . 0 ;
f o r (i n t i =1; i<=N _ro ws ; i + +) {

e = e r r o r v —> g e t e l t (i);
11 e+=mod (e);

}
r e t u r n t t e ;
}

v o i d sp ik eN N :: s i m u l a t e . S N N ()
{

i n t n s t = (i n t) i n p v —>min () ;
d o {

n s t = n s t + d t ;
u p d a t e _ s y n a p s e _ p o t e n t i a l (n s t) ;
u p d a t e _ o u t p u t (n s t);

} w h i l e (n s t < t w i n d o w);
p r o c e s s _ o u t p u t () ;

}

v o i d sp ik eN N :: t r a i n _ s p i k e N N _ o r d e r ()
{

i n t e p o c , t a r g e t , w i n n e r . r o w , w i n n e r _ c o l , i n d e x , c o r r e c t = 0;

d o u b l e t o t a l - e r r o r , wop;

e p o c = 0 ;
t o t a l _ d l a y . c h a n g e = 0.0;
p r e v . d l a y . c h a n g e = 1 0 0 0 . 0 ;
e r r o r v —> i n i t i a l i s e (1 . 0) ;
co i n c i d e n c e . m e a s u r e —> i n i t i a l i s e (1 . 0) ;
d o {

e p o c + + ;
c o n t - l e a r n =1;
n e i _ p o t e n = 0 . 0 ; n e i _ d e p = 0 . 0 ;

t o t a l . e r r o r = 0 . 0 ;
c o r r e c t = 0 ;

s e t _ t h r e s h o l d (e p o c);

f o r (i n t r = l ; r < = N _ t r a i n ; r + +) {

A .3 Source code for im plem enting SDA_SNN 229

i n i t . s p i k e N N () ;
t r a i n _ m a t r i x —> g e t _ r o w _ V e c t o r (r , 1 , N - i n p u t , * i n p v);

t a r g e t = t r a i n _ t a r g e t —> g e t e l t (r , 1) ;

w i n n e r - f o u n d =0;
e r r o r v —> i n i t i a l i s e (1 . 0) ;

s i m u l a t e _ S N N () ;
f i n d _ e x a c t _ w i n n e r () ;

i f (w i n n e r - f o u n d) {
w in n e r _ r o w = w in n e r / N _ c o l s + 1;
w i n n e r _ c o l = w i n n e r % N _ c o l s ;
i f (w i n n e r _ c o l = = 0) {

w i n n e r _ c o l = N _ c o l s ;
w i n n e r . r o w — ;

}
i f ((w i n n e r _ r o w = t a r g e t)&&(w i n n i n g - t i m e C t w i n d o w))

c o r r e c t + + ;
c o m p u t e _ c o i n c i d e n c e _ m e a s u r e (t a r g e t);

i n d e x = (t a r g e t — l) * N _ c o l s + l;
f o r (i n t j = i n d e x ; j < i n d e x + N _ c o l s ; j + +)

u p d a t e . d l a y (j);

}
t o t a l _ d l a y - c h a n g e + = d l a y - c h a n g e () ;

t o t a l _ e r r o r + = e r r o r () ;

}
c o u t « ” e p o c ~ : ”« e p o c « e n d l ;
c o u t « ” N e i g h ^ p o t e n ^ : ”« n e i _ p o t e n « e n d l ;
c o u t « ” N e i g h ^ d e p r e s s i o n ^ : ”« n e i _ d e p « e n d l ;
c o u t « ” T o t a l - . : ”« t o t a l _ d l a y . c h a n g e « e n d l ;

c o u t « ” T o t a l - . e r r o r : ”« (f l o a t) N - t r a i n —c o r r e c t « e n d l ;

c o n t . l e a r n = ((((N . t r a i n — c o r r e c t) / N _ t r a i n) > t o l e r a n c e) | |
((p r e v . d l a y . c h a n g e — t o t a l _ d l a y _ c h a n g e) > c t o l)) ;

pr e v _ d l a y _ c h a n g e = t o t a l _ d l a y . c h a n g e ;
/ / c o n t . l e a r n =1;

} w h i l e ((e p o c C m a x . e p o c s) &&; (c o n t _ l e a r n)) ;
}

v o i d sp ik eN N :: t r a i n . s p i k e N N . t u n e ()
{

i n t epoc , t a r g e t , w i n n e r . r o w , w i n n e r . c o l , rowwn, i n d e x , c o r r e c t = 0 ;

d o u b l e t o t a l . e r r o r , wop;
i n t l w ;
t o t a l _d l a y . c h a n g e = 0 .0;
p r e v . d l a y . c h a n g e = 1 0 0 0 . 0 ;
e p o c = 0 ;
t o t a l . d l a y . c h a n g e = 0 . 0 ;
e r r o r v —> i n i t i a l i s e (1 . 0) ;
c o i n c i d e n c e . m e a s u r e —> i n i t i a l i s e (1 . 0) ;

A .3 Source code for im plem enting SD A .SN N 230

d o {
e p o c + + ;
c o n t . l e a r n =1;
n e i _ p o t e n = 0 . 0 ; n e i _ d e p = 0 . 0 ; d e p = 0 . 0 ;

t o t a l . e r r o r = 0 . 0 ;
c o r r e c t =0;

s e t _ t h r e s h o l d (e p o c);

f o r (i n t r = l ; r < = N _ t r a i n ; r + +) {
i n i t _ s p i k e N N () ;
t r a i n _ m a t r i x —> g e t _ r o w . V e c t o r (r ,1 , N - i n p u t ,* i n p v);

t a r g e t = t r a i n _ t a r g e t —> g e t e l t (r , 1) ;

w i n n e r - f o u n d =0;
e r r o r v —> i n i t i a l i s e (1 . 0) ;

s i m u l a t e . S N N () ;
f i n d _ e x a c t _ w i n n e r () ;

i f (w i n n e r - f o u n d) {
w i n n e r _ r o w = w i n n e r / N . c o l s + 1;
w i n n e r _ c o l = w i n n e r % N _ c o l s ;
i f (w i n n e r _ c o l = = 0) {

w i n n e r _ c o l = N _ c o l s ;
w i n n e r . r o w — ;

}

i f ((w i n n e r _ r o w = t a r g e t)&&(w i n n i n g - t i m e C t w i n d o w))
c o rrect - f -+ ;

l w = l o c a l . w i n n e r (t a r g e t);
c o m p u t e _ c o i n c i d e n c e _ m e a s u r e (t a r g e t);
u p d a t e . d l a y (lw);

t o t a l _ d l a y _ c h a n g e + = d l a y . c h a n g e () ;
t o t a l _ e r r o r + = e r r o r () ;

}
c o u t « ” e p o c w : ”« e p o c « e n d l ;
c o u t « ” N e i g h ^ p o t e n ^ : ”« n e i _ p o t e n « e n d l ;
c o u t « ” N e i g h - d e p r e s s i o n ~ : ”« n e i _ d e p « e n d l ;
c o u t « ” T o t a l ^ : ”« t o t a l _ d l a y . c h a n g e « e n d l ;

c o u t « ” T o t a l ^ e r r o r : ”« (f l o a t) N . t r a i n — c o r r e c t « e n d l ;

c o n t . l e a r n = ((((N _ t r a i n —c o r r e c t) / N _ t r a i n) > t o l e r a n c e) | |
((p r e v . d l a y . c h a n g e — t o t a l _ d l a y _ c h a n g e) > c t o l)) ;

p r e v . d l a y _ c h a n g e = t o t a l _ d l a y . c h a n g e ;
c o n t . l e a r n =1;

} w h i l e ((e p o c < m a x _ e p o c s) (c o n t . l e a r n)) ;
}

i n c l u d e ’’ s p i k e n n . h ”

c l a s s c o n t r o l . c h a r t : p u b l i c sp ik e N N
{ .

p r i v a t e :

A .3 Source code for im plem enting SDA_SNN 231

i n t N_sourceRow , N _ s o u r c e C o l ;

p u b l i c :
c o n t r o l _ c h a r t () ;
~ c o n t r o l _ c h a r t () ;
v o i d i n i t () ;
v o i d a c q u i r e . d a t a () ;
v o i d p r e p r o c e s s . d a t a () ;
v o i d s h u f f l e _ t r a i n s e t () ;
v o i d i n i t . p a r a m e t e r s () ;
v o i d s t a r t () ;
};

v o i d c o n t r o l . c h a r t : : s t a r t ()
{

i n i t () ;
c r e a t e N N () ;
a c q u i r e . d a t a () ;
p r e p r o c e s s _ d a t a () ;

t e s t _ d a t a _ c o u n t —> s e t e l t 1 , 8 3) ; / Out o f 250
t e s t - d a t a . c o u n t —> s e t e l t 2 , 8 3) ; / Out o f 250
t e s t _ d a t a _ c o u n t —> s e t e l t 3 , 8 3) ; / Out o f 250
t e s t - d a t a . c o u n t —> s e t e l t 4 , 8 3) ; / Out o f 250
t e s t _ d a t a _ c o u n t —> s e t e l t 5 , 8 3) ; / Out o f 250
t e s t _ d a t a . c o u n t —> s e t e l t 6 , 8 3) ; / Out o f 250

s e l e c t . d a t a () ;

s h u f f l e _ t r a i n s e t () ;
i n i t . p a r a m e t e r s () ;

/ / I I I I 1 1 I I I I I I I I I 1 I n i t i a l o u t p u t I I I I I - H 1 1 1 I I I I I I I 1 I I I I I l - H 1 1 H
t c =5;
t c p d = 2 5 ;
d b i a s = 0 . 1 2 ;
s h i f t =2;

s e t - t h r e s h o l d - f i x e d ((N . i n p u t) * 0 . 5 * 0 . 5 5) ;

t e s t _ t r a i n _ s e t (” t r a i n _ s e t _ o u t p u t O . t x t ”);
t e s t _ s p i k e N N (” t e s t _ s e t _ o u t p u t O . t x t ”);

/ / l l l f l II I I I I I I f + T r a i n i n g P h a s e 1 I I I I II I 1-1 I I I I I I I I I I 1 I l-H I 1+ 1 I

m a x . e p o c s =20 ;
l e a r n i n g _ r a t e = 0 . 2 ;
m i n _ t h r e s h o l d = (N _ i n p u t) * 0 . 5 * 0 . 7 ;
m a x _ t h r e s h o l d = (N _ i n p u t) * 0 . 5 * 0 . 7 8 ;

/ / s h u f f l e _ t r a i n s e t () ;
t r a i n _ s p i k e N N . o r d e r () ;
t e s t _ t r a i n _ s e t (” t r a i n _ s e t _ o u t p u t l . t x t ”);
t e s t _ s p i k e N N (” t e s t _ s e t _ o u t p u t l . t x t ”);

/ / H I 1 1 1 I I I I I I End T r a i n g P h a s e 1 I I I I I 1 I I H I I l-l I I I I I I I I H-l I 1 I I I I I

A .3 Source code for im plem enting SDAJSNN 232

/ / I I I I I I I II I I | + T r a i n i n g P h a s e 2 + 1 I H I I I I I I I I I I I 1 H I I I I I I 1- 1 I I

t c =5;
t c p d = 2 5 ;
d b i a s = 0 . 1 ;
s h i f t = 2;

m a x _ e p o c s = 10;
l e a r n i n g _ r a t e = 0 . 2 ;
m i n _ t h r e s h o l d = (N _ i n p u t) * 0 . 5 * 0 . 7 8 ;
m a x _ t h r e s h o l d = (N _ i n p u t) * 0 . 5 * 0 . 8 3 ;

s h u f f l e _ t r a i n s e t () ;
t r a i n _ s p i k e N N _ t u n e () ;
t e s t _ t r a i n _ s e t (” t r a i n _ s e t _ o u t p u t 2 . t x t ”);
t e s t . s p i k e N N (” t e s t _ s e t _ o u t p u t 2 . t x t ”);

/ / | | I | II I II I I |-E nd T r a i n i n g P h a s e 2 H M i l

}

Appendix B

Data sets

The training and testing data used for analysing the proposed models are given
in the CD Rom attached to the thesis. The text files containing the data are
separated into three folders corresponding to the appropriate model. The files
are named in the form of SNN model name-Data base name-training/Testing-trial
number. For example data set used to train SOWA_SNN in trial 1 would be in
the folder SO W ASN N and named as S 0 WAJris-Train-Trial 1.txt.

233

