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ABSTRACT

Statistical process control (SPC) is a method for improving the quality o f  products. 

Control charting plays a most important role in SPC. SPC control charts arc used for 

monitoring and detecting unnatural process behaviour. Unnatural patterns in control 

charts indicate unnatural causes for variations. Control chart pattern recognition is 

therefore important in SPC. Past research shows that although certain types o f  charts, 

such as the CUSUM chart, might have powerful detection ability, they lack robustness 

and do not function automatically.

In recent years, neural network techniques have been applied to automatic pattern 

recognition. Spiking Neural Networks (SNNs) belong to the third generation o f 

artificial neural networks, with spiking neurons as processing elements. In SNNs, time 

is an important feature for information representation and processing. This thesis 

proposes the application o f  SNN techniques to control chart pattern recognition. It is 

designed to present an analysis o f the existing learning algorithms o f  SNN for pattern 

recognition and to explain how and why spiking neurons have more computational 

power in comparison to the previous generation o f neural networks.

This thesis focuses on the architecture and the learning procedure o f the network. 

Four new learning algorithms are presented with their specific architecture: Spiking 

Learning Vector Quantisation (S-LVQ), Enhanced-Spiking Learning Vector 

Quantisation (NS-LVQ), S-LVQ with Bees and NS-LVQ with Bees. The latter two 

algorithms employ a new intelligent swarm-based optimisation called the Bees



Algorithm  to optimise the LVQ pattern recognition networks. Overall, the aim o f  the 

research is to develop a simple architecture for the proposed network as well as to 

develop a network that is efficient for application to control chart pattern recognition. 

Experiments show that the proposed architecture and the learning procedure give high 

pattern recognition accuracies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Quality and productivity arc two essential factors for survival in a global economy 

experiencing tremendous developments in information technology. The quality o f  a 

product can be evaluated in several ways. It is often very important to differentiate 

these different dimensions o f  quality. Garvin (1987) provides an excellent discussion 

o f eight components or dimensions o f quality. These are as follows:

1) Performance- will the product do the intended job?

2) Reliability- how often does the product fail?

3) Durability- how long does the product last?

4) Serviceability- how easy is it to repair the product?

5) Aesthetics- what does the product look like?

6) Features- what does the product do?

7) Perceived quality- what is the reputation o f the company or its product?

8) Conformance to Standards- is the product made exactly as the designer intended?

In this research, only the performance dimension will be addressed. Efficient process 

control is a key element in the maintenance and improvement o f quality and 

productivity.
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There are three major areas in statistical methods for quality control and 

improvement:

1) Statistical Process Control (SPC);

2) Design o f  Experiment (DOE);

3) Acceptance Sampling (AS).

This research specifically focuses on SPC. Statistical Process Control is a traditional 

technique to improve the quality o f  products, reduce rework, and scrap so that the 

quality and productivity expectations can be met. SPC primarily involves the 

implementation o f control charts, which are used to detect any change in a process 

that may affect the quality o f  the output. Among the eight dimensions o f  quality, the 

performance dimension for control charts has been chosen as the focus. Control charts 

have been the most popular and widely used charts in industry for providing the 

capability for pattern recognition or pattern classification. Their applications have 

now moved far beyond manufacturing into engineering, environmental science, 

biology, genetics, epidemiology, medicine, finance, and even law enforcement and 

athletics [Lai, 1995; Montgomery, 1997; Ryan 2000].

The first control charts were developed by Shewhart in the 1920s [Shewhart 1931], 

These simple Shewhart charts have dominated applications to date. Recently, control 

chart pattern recognition has received considerable attention in the literature, 

including applications to syntactic approaches, fuzzy-expert systems and artificial 

neural network models. Today’s manufacturing enterprises need to adopt modem 

tools o f  quality engineering to maintain and improve their competitiveness in the
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marketplace. One way to improve control chart procedures is to replace the SPC 

specialist with computers, which are able to mimic human-like intelligent behaviour. 

Although other improved control chart varieties give more powerful detection ability, 

such as the combined Shewhart-CUSUM scheme, they still have limitations. First, 

they still lack a pattern recognition capability [Guo and Dooley, 1993; Cheng 1995]. 

A review suggests that pattern recognition research has increased in importance as 

driven by the need for rapid interpretation and quick response to process deterioration 

within advanced manufacturing environments [Hwang and Hubelc, 1993; Guh et al., 

1999a]. Piplani and Hubele [Piplani and Hubele, 2001] noted that research into this 

area is relatively young. Second, the needs for robustness o f  control chart 

performance to violations o f  assumptions in control charting is increasing as in 

realistic situations data are auto-correlated. Third, as manufacturing complexity and 

uncertainty increase, SPC procedures become more demanding. There is a shortage o f 

good SPC specialists as the skills required to implement proper control chart 

procedures develop over time, making use o f the accumulated knowledge o f  the 

processes involved. In addition, a specialist’s skills may vary from one machine, or 

plant, to another and involve human factors regarding learning ability, attitude and 

decision making aptitude. Fourth, the systems do not take effect automatically.

Recently, attention has focused on artificial intelligence (AI), a branch o f computer 

science, which has shown great promise in dealing with difficult manufacturing 

problems. What makes AI techniques popular is their ability to learn from experience 

and to handle uncertain, imprecise (fuzzy) and complex information in a competitive 

environment that demands high quality. Among the available AI tools, neural 

networks is one o f  those which has attracted the most attention from researchers and
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practitioners for the solving o f  many control chart issues such as pattern recognition. 

A clear definition o f artificial neural networks (ANNs) is given by Hecht-Nielsen, 

[Hecht-Niclscn ,1990] in Pandya & Macy [Pandya & Macy ,1995].

“A neural network is a parallel, distributed information processing structure 

consisting o f  processing elements (which can possess a local memory and can 

carry out localized information processing operations) interconnected via 

unidirectional signal channels called connections. Each processing element 

has a single output

ANNs enhance this work by capturing automatically more meaning from the limited 

number o f measurements that originally were collected for traditional control charts. 

The desired characteristics o f  a real-time SPC system in a highly automated and 

integrated manufacturing environment are accurate representation o f the process 

without oversimplification and adaptability to new changes [Jacobs and Luke, 1993]. 

Previous researchers [Hwang, 1992; Pham and Oztemel, 1994; Cheng, 1997; Spoerre 

and Velasco, 2001] proposed ANNs as a potential solution to SPC pattern recognition 

problems.

A number o f  researchers have demonstrated the utility o f neural networks in 

identifying process non-randomness, such as shifts, cycles or trends, in quality control 

charts. Neural network techniques have greatly extended and enhanced traditional 

approaches. One promising aspect o f neural network pattern recognition is that the 

system simultaneously can be trained to identify a variety o f  unnatural patterns (Guh 

and Tannock 1999). The application o f ANN to SPC can also be beneficial when prior 

knowledge about the probability distribution o f  the process data is unknown. ANN
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has the ability to extract regularities in datasets without any a priori assumptions if  the 

available data is enough for efficient training.

The new generation o f  artificial neural networks has attracted research efforts from 

the domains o f  artificial intelligence and pattern recognition because they offer the 

prospect o f describing much better the actual output o f a biological neuron. Networks 

o f spiking neurons (SNNs) are the third generation o f neural network models. The 

different generations o f  ANNs based on neural network computational units can be 

defined as follows.

The first generation employs McCulloch-Pitts neurons as computational units. These 

are also referred to as pcrceptrons or threshold-gates. They give rise to a variety o f 

neural network models such as multi-layer pcrceptrons, Hopfield nets, and Boltzmann 

machines. A characteristic feature o f  these models is that they can only give digital 

output. In fact, they are universal for computations with digital input and output, and 

every Boolean function can be computed by some multi-layer perceptron with a single 

hidden layer.

The second generation is based on computational units that apply to a weighted sum 

(or polynomial) o f  the inputs an “activation function” with a continuous set o f 

possible output values, such as the sigmoid function or the linear saturated function. 

Typical examples for networks from this second generation are feedforward and 

recurrent sigmoidal neural nets, as well as networks o f radial basis function units. The 

characteristic features o f these models are that they can compute arbitrary Boolean 

functions; furthermore, they can compute certain Boolean functions with fewer gates 

than neural networks from the first generation. In addition, neural networks from this 

second generation are able to compute functions with analogue input and output. In
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fact, they arc universal for analogue computations in the sense that any continuous 

function with a compact domain and range can be well approximated by a network o f 

this type with a single hidden layer. The second generation also support learning 

algorithms, which arc based on gradient descent, such as back propagation.

The third generation incorporates spiking neurons (or “integrate and fire neurons”) as 

computational units. There exist a number o f variations o f  this model, which are 

described and compared in a recent survey [Gerstncr, 1995]. Spiking neuron models 

are high level models in which biological neurons are considered as homogeneous 

processing units. Models for spiking neurons based on temporal coding are the Spike 

Response Model (SRM), and the Leakey Integrate and Fire Model (LIFN) [Maass, 

1997a]. This research adapts the Spike Response Model (SRM) as the model [Bialek, 

Rieke, de Ruyter and Warland, 1991]. SNNs have a similar architecture to traditional 

neural networks. SNNs use spikes as the basis for information processing and are 

based on temporal coding. The characteristic features o f  SNNs are firstly that they are 

substantially more realistic as compared with the previous two models. In particular, 

they describe much better the actual output o f a biological neuron, and hence they 

allow us to investigate on a theoretical level the possibilities for using time as a 

resource for computation and communication. Secondly, the timing o f  individual or 

single spikes plays the kcy-rolc in both computation and communication in SNNs. 

Thirdly, the output o f all the spiking neurons is spikes o f the same dimension. In other 

words, the output o f a spiking neuron consists o f  the set o f points at the time when a 

neuron fires. Fourthly, the timing o f  a single spike is considered, but not the 

dimension. Lastly, a spiking neuron can be viewed as a digital or analogue 

computational element, depending on the type o f  temporal coding that is used [Maass 

& Bishop, 2001].
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1.2 Research Objectives

The overall aim o f  this research was to design and develop spiking neural network 

systems as a powerful pattern recognition tool for control chart data. These systems 

should be able to recognise patterns in control chart data in an efficient and effective 

way. Moreover, the systems should be reliable and with a simple architecture. 

Accordingly, they should be able to achieve superior performance in terms o f 

classification accuracy. To achieve the overall aim o f the research, the following 

objectives were set:

■ To perform a detailed analysis o f  existing spiking neural network techniques 

for classification learning, with particular emphasis on supervised learning, 

and to assess their appropriateness for control chart pattern recognition 

application.

■ To develop a simulator to create and to perform a detailed analysis o f  spiking 

neuron networks on control chart pattern recognition.

■ To improve the overall performance o f spiking neuron networks including:

>  To improve the implementation o f existing learning algorithms that has 

been considered as significantly suitable for identified problems.

> To develop new learning algorithms that are computationally efficient 

for control chart pattern recognition accuracy.

> To adopt a simple architecture such as learning vector quantization 

(LVQ) for spiking neuron networks.
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> To develop an effective method o f training spiking neural networks 

using an optimisation algorithm.

1.3 Thesis Organisation

The remainder o f the thesis is organised as follows.

Chapter 2 defines the classification learning problem, presents a framework for 

viewing approaches to it, discussing in some detail spiking neuron networks 

algorithms and reviews other artificial neural networks approaches. Current trends 

and recent developments in spiking neural networks research are also presented.

Chapter 3 gives a detailed description o f previous work on learning vector 

quantisation and its application to control chart pattern recognition. This chapter also 

discusses the potential o f  spiking neural networks as a pattern recogniser for control 

charts. A simple network structure similar to that o f an LVQ network [Pham and Liu, 

1995] is utilised. Accordingly, a new learning algorithm, called spiking learning 

vector quantisation (S-LVQ), is proposed for control chart pattern recognition. An 

empirical evaluation o f  the proposed algorithm is also reported and discussed.

Chapter 4 is an enhancement o f  the network presented in chapter 3. Based on the S- 

LVQ network, a simpler network structure is proposed. This chapter describes a new 

method for establishing pre-process weight and its advantages are discussed. A study 

of static and adaptive learning parameters is also presented. Finally, the chapter gives 

the results o f experiments carried out to demonstrate the performance o f the proposed 

structure.
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Chapter 5 proposes the use o f  the Bees Algorithm, a new optimisation tool, for 

training spiking neural networks. The chapter presents a detailed description o f  the 

algorithm and its application to the control chart pattern recognition problem.

Chapter 6 summarises the contributions and conclusions o f  the thesis and proposes 

directions for further research.
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CHAPTER 2

APPROACHES TO CONTROL CHART PATTERN RECOGNITION

2.1 Pattern Recognition

An informal definition for pattern recognition is telling things apart. Otherwise, pattern 

recognition is the automatic transformation o f data X j  (observation, features) into a set of 

symbols C j  (classes). Pattern recognition (also known as pattern classification) is a field 

within the area of computer science and can be defined as “the act of taking in raw data 

and taking an action based on the category o f the data” [Duda R.O et al, 2001]. In other 

words, pattern recognition is a process o f extracting information from an unknown data 

stream or signal and assigning it to one o f the prescribed classes or categories [Haykin, 

1999]. It uses methods from statistics, machine learning and other areas. Typical 

applications are automatic speech recognition, classification of text into several 

categories (e.g. spam or non-spam email messages), the automatic recognition o f 

handwritten postal codes on postal envelopes, or the automatic recognition o f images of 

human faces. The last three examples form the subtopic image analysis of pattern 

recognition that deals with digital images as input to pattern recognition systems. Pattern 

recognition techniques include Neural Networks, Hidden Markov Models, and Bayesian 

Networks. The fundamentals o f various aspects of pattern recognition can be found in 

Thcodoridis and Koutroumbas [Theodoridis and Koutroumbas, 2006].
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This chapter gives an overview o f pattern recognition approaches in general and of 

control chart pattern recognition (CCPR) specifically. The chapter is organised as 

follows: section 2 formally defines the pattern recognition learning problem and presents 

a framework for viewing approaches to it. The framework is presented in Figure 2.1; 

section 3 describes in more detail control chart pattern recognition as this thesis is 

concentrated on control chart applications; section 4 reviews current trends and recent 

developments in control chart pattern recognition research; a review of the spiking neural 

networks approach in which this thesis is most interested is presented in section 5; section 

6 concludes the chapter with a summary o f some of the key research issues in CCPR.

2.2 Pattern Recognition Learning Algorithm

Specifically, pattern recognition has three types of learning algorithms. These are 

unsupervised, supervised and reinforcement learning algorithms. However, reinforcement 

learning can be regarded as a special form o f supervised learning. The detailed 

descriptions o f these learning algorithms will be given in the next subsection. Usually, 

any given type of network architecture can be employed in any o f these three major 

learning algorithms. The next two subsections describe these three learning algorithms 

and identify the most suitable application for each algorithm.
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Figure 2.1: A framework for pattern recognition
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2.2.1 Unsupervised Learning

In classification learning, a learning algorithm is given a sample of pre-classified 

examples from the problem domain called the training set. Each example is described by 

a vector o f attributes. An attribute is either nominal or continuous. The algorithm leams a 

model that is used to predict the class of future examples.

Learning methods can be divided into supervised and unsupervised schemes based on 

whether or not a dedicated target function for prediction has been defined. In 

unsupcrvised methods, such a function is not available and the goal is grouping or 

clustering instances based on some similarity or distance measure. The unsupervised 

scheme is more suitable for application where there are insufficient examples.

2.2.2 Supervised Learning

In supervised learning, there is either a nominal or continuous-valued target function to 

be predicted. The former case is referred to as classification and the latter as regression or 

continuous prediction. In this thesis, only methods for supervised classification learning 

will be addressed.

If the examples in the training set are presented and used all at once, learning is said to be 

batch or off-line. If the examples are presented one at a time, and the concept definition 

evolves over time as successive examples are incorporated, learning is said to be 

incremental or on-line. This thesis concentrates on on-line learning. The main goal o f a
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classification learning system is to produce a classifier that will assign previously-unseen 

examples (i.e., examples not in the training set) to the corresponding classes with high

accuracy. In other words, given a set o f example pairs (•r ’ 2/ ^  > V -  ^ , the aim 

is to find a function f in the allowed class of functions that matches the examples and to 

infer the mapping implied by the data.

The accuracy o f a classifier is defined as the probability that it will correctly classify a 

new, unlabelled example (i.e., examples in a test set). Ideally, given a complete 

description o f an example (i.e., the values of all its attributes), its class should be 

determined unambiguously. However, in some instances, process data is available every 

second or every few minutes on hundreds o f process variables and product 

characteristics. Consequently, examples may appear with an erroneous class value, or 

with erroneous attribute values, or with both. These errors may stem from a diversity of 

sources, including the limitations of measuring instruments, and human error while 

typing examples into a computer. All o f these phenomena, referred to collectively as 

noise, limit the achievable accuracy in a pattern recognition or a pattern classification 

problem. The degree o f robustness o f a learning system with respect to noise is one o f its 

most important characteristics. It also occurs often in practice that the values o f certain 

attributes for certain example are simply not available. These are called missing values 

and again a practical control chart pattern recognition system must be able to handle 

them.
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Generally, the applications that use the algorithm of supervised learning are pattern 

recognition (also known as classification) and regression (also known as function 

approximation). The supervised learning paradigm is also applicable to sequential data 

(e.g., for speech and control chart recognition). This thesis concentrates on supervised 

learning algorithms.

2 J  Control Chart Pattern Recognition

Many quality characteristics can be expressed in terms o f a numerical measurement. 

Examples include dimensions such as length or width, temperature, and volume. Such a 

quality characteristic that is measured on a numerical scale is called a variable. Control 

charts for variables are used extensively. The control charts for variable data are: control 

chart for individual (X); moving range chart (MR-chart); average chart (X -chart); range 

chart (R-chart); median chart; standard deviation chart (cr-chart); cumulative sum chart 

(CUSUM); exponentially weighted moving average (EWMA). Two o f the most 

commonly used control charts in industry for variable data are the X-bar charts and the 

range charts (R-charts). These two control charts were adopted in this study. The success 

o f quality improvement depends on two major factors:

1) The quality o f data available;

2) The effectiveness o f the techniques used for analyzing the data.
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Figure 2.2: A typical control chart; control chart indicates the process is in statistical
control.

UCL oo

CL

LCL

Time

Figure 2.3: A typical control chart; control chart indicates the process is out o f statistical
control.

16



Generally, control charts are a graphical display of a quality characteristic that has been 

measured from a sample versus the sample number or time. The chart contains a centre 

line (CL) that represents the average value and the upper (UCL) and lower (LCL) lines 

allow variation limits (natural variation limits) of the quality characteristic under 

consideration.

Figure 2.2 and Figure 2.3 show a typical control chart for a process in statistical control 

and a process out o f statistical control respectively.

These limits, usually taken as the mean value plus and minus three standard deviations, 

represent the boundaries of the range for unavoidable (inherent) variations as follows:

UCL = /u + ^ =  (1)
V/J

LCL = f u -  -?= (2)

Three standard deviations are used because there is a high probability (99.73%) that a 

sample measurement will fall within this range if the process is in control (the quality 

characteristic is assumed to be normally distributed based on the central limit theorem). 

Proper construction and interpretation o f these charts is very important. Careful 

construction o f the charts and a capability analysis will determine the inherent variation 

of a process which is in control and capable of producing the products to meet customer 

specifications. After the charts have been constructed, they are employed for on-line 

process monitoring.
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Control rules are used to detect out-of-control situations considering the very recent 

history o f a process. A bare X-bar chart only indicates when to look for disturbances. It 

does not indicate where to look for them, or what types of disturbances are present. In 

order to avoid the occurrence o f such situations, instead of waiting for them to happen 

and finding out afterwards, it is necessary to monitor the long term behaviour o f the 

process. This can be done by observing the patterns contained in the control charts for the 

process. It is important to detect the out-of-control situation as well as to recognise the 

shape o f an unnatural pattern. The nature of control chart patterns can reveal any 

impending out-of-control situations.

Thus the problem of monitoring a process to predict possible abnormalities reduces to 

that of recognizing control chart patterns, which is the subject of this research. 

Assumptions made for control chart performance are that the data is normally distributed 

and that the data is independent.

A control chart may indicate an out-of-control condition either when one or more points 

fall beyond the control limits or when the plotted points exhibit some non-random pattern 

o f behaviour. Certain types of pattern may also indicate an out-of-control condition. For 

example, consider the control charts in Figure 2.3. Although all points fall within the 

control limits, the points do not indicate statistical control because their pattern is very 

non-random in appearance.

18



Such patterns may indicate a problem with the process, such as operator fatigue, raw 

material deliveries, and so forth. Although the process is not really out of control, the 

yield may be improved by elimination or by reduction of the sources o f variability 

causing those patterns.

The problem is one o f pattern recognition. That is, of recognizing systematic or non 

random patterns on the control chart and identifying the reason for this behaviour. In 

many cases, the pattern o f the plotted points will provide useful diagnostic information on 

the process, and this information can be used to make process modifications that reduce 

variability (the goal o f SPC). There are six main classes of patterns in control charts, 

normal, cycle, upward trend, downward trend, upward shift, and downward shift, as 

illustrated in Figure 2.4.

Specifically, control chart pattern recognition is a process o f recognising an unknown 

CCP and assigning it to one o f the prescribed classes. CCP includes previous data, and 

does not rely merely on the last data. Normally, patterns o f the same category share 

common properties.
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Figure 2.4: Six main classes of control charts.
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Cyclic patterns occasionally appear on the control chart. Cyclic patterns may result from 

systematic environmental changes such as temperature, operator fatigue, regular rotation 

of operators and/or machines, or fluctuation in voltage or pressure or some other variable 

in the production equipment. Shift patterns may result from the introduction of new 

workers, methods, raw materials, or machines; a change in the inspection method or 

standards; or a change in the skill, attentiveness, or motivation of the operators. 

Sometimes an improvement in process performance is noted following the introduction 

o f a control chart program, simply because of motivational factors influencing the 

workers. Trend patterns or continuous movement in one direction are usually due to a 

gradual wearing out or deterioration of a tool or some other critical process component. 

In a chemical process they often occur because of settling or separation of the 

components o f a mixture. They can also result from human causes, such as operator 

fatigue or the presence o f supervision. Finally, trends can result from seasonal influences, 

such as temperature.

Control chart patterns can be categorised either as stationary or non-stationary. The 

overall mean for stationary patterns does not change but it does change for non-stationary 

patterns. An example o f mean stationary patterns is cyclic, while examples o f non- 

stationary mean patterns are trend and shift. The ability to interpret a particular pattern in 

terms of assignable causes requires experience and knowledge o f the process. That is, one 

must not only know the statistical principles o f control charts, but also have a good 

understanding of the process.
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2.3.1 Control chart patterns <*i»nula tor

The following expression* \vefc Usc^ lo generate the different patterns for a control chart. 

This data set is used in this tbc*sis. The total number of generated patterns is 1500. The 

training set employed 1002, and the testing set 498.

1. Normal patterns:

v(f) = n + r(t)<f (3)

2. Cyclic patterns:

y(t) = /u + r(t)ff  4  (tS\n(2j]rJ/^) ^

3. Increasing or decreasing trends:

>’( / )  =  Ji + r { f l o ± g t  (5)

4. Upward or downward shifty:

y(t)  = /j + r(i) <1 * V  (6)

where

n = mean value o f the process v Uri:lble being monitored 

a = standard deviation o f  the prOct,fiS 

a = amplitude of cyclic variations (t^k^n as 15 or less)

g = magnitude of the gradient o f the trend (taken as being in the range 0.2 to 0.5) 

k = parameter determining tbc shi^ p o t io n  (k=0 before the shift position; k=l at the 

shift position and thereafter)

r = normally distributed rundot11 n u t te r  (between -3 and 3) 

s = magnitude of the shift (taken as being hi the range o f 7.5 to 20)
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t = discrete time at which the pattern is sampled (taken as being within the range 0 to 59). 

T = period o f a cycle (taken as being in the range 4 to 12 sampling intervals). 

v(t) = sample value at time t.

This pattern simulator is taken from Pham and Oztemel [Pham and Oztcmcl, 1994].

2 .3.2 Data pre-processing

In data pre-processing, the most important transformation techniques are 1) 

standardization; 2) zoning; 3) scaling and 4) using continuous (as opposed to binary) 

representation. In this thesis, before the data were presented to the networks, two steps of 

data pre-processing were implemented: 1) scaling and 2) coding in spiking networks.

23.2.1 Scaling

Although the input data to any node can theoretically take any value, restricting it to fall 

within a fixed range produces more efficient training. Scaling is a transformation that is 

devised according to each individual application to modify the input data into a fixed 

range. The most important issue in scaling is the range o f output values dictated by the 

scaling transformation. Different types o f scaling transformation may operate over 

different ranges o f values [Zorriassatine and Tannock, 1998]. There are two advantages 

of scaling described by Swinglcr [Swingler, 1996]. Firstly, it takes care of the distribution 

of the training data and the effect o f outliers, and secondly, it ensures that errors or 

variations o f different variables contribute the same proportion to the change in network 

weights. In this thesis, by applying a scaling method mentioned below, the original inputs
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were sealed to fall as continuous values between 0 and 1. The actual data sets were scaled 

values o fy(t). Scaling was performed using the following expression:

v(D = r(t) ~ •Vmin (7)
Tmax ymin

where

v = scaled pattern value (in the range 0 to 1)

Amin= minimum allowed value (taken as 35)

-Vmax= maximum allowed value (taken as 125)

This scaling method is taken from Pham and Oztemel [Pham and Oztemel, 1994] with 

some modification on the minimum and maximum allowed value.

23.2.2 Coding in Spiking Networks

In traditional neural networks, the essential information is encoded in the firing rates, 

which are averaged over time. Unlike the traditional neural networks, spiking neural 

networks use the timing o f single spikes generated by a neuron to encode information. 

The scheme of coding used here is called temporal coding. It utilizes the timing of 

individual spikes. More details concerning temporal coding are given in section 5. The 

scaled input data will then be mapped over a number of time steps, referred to as the 

input time window. The coding resolution affects the performance of the network. 

Increasing the number of steps in the input time window will increase the precision. 

However, this will decrease the computational efficiency of the model. The precision of 

the temporal code should therefore be selected in such a way as to attain adequate
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accuracy with optimal computational efficiency. In this thesis, experiments for control 

chart data set revealed that an input time window with 100 units is adequate. A simple 

linear mapping scheme is as follows:

Input time window = (100 - (100 * (scaled data))) unit.

2.4 Current Trends in Control Chart Pattern Recognition Research

Control chart pattern recognition research has been making significant progress in many 

directions. A review by Hwang and Hubele and also Guh [Hwang and Hubele, 1993; Guh 

et al., 1999a] noted that this area o f research has increased in importance, driven by the 

need for rapid interpretation and quick response to process deterioration within advanced 

manufacturing environments. Piplani and Hubele [Piplani and Hubele, 2001] claimed that 

research into this area is relatively young. This section examines two of the most popular 

directions that have major impact on CCPR and discusses some current problems. The 

two directions are statistical or traditional based CCPR and automated and intelligent 

CCPR.

2.4.1 Statistical or Traditional Based CCPR

Generally, statistical based CCPR can be divided into four types: i) syntactic or structural 

matching, ii) template matching, iii) statistical testing, and iv) heuristic algorithm. Pham 

and Wani [Pham and Wani, 1997] applied heuristic techniques in their work on feature- 

based control chart pattern recognition. They reported here that the manual process o f
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obtaining a good set of heuristics is extremely laborious. Cheng [Cheng, 1989] proposed 

syntactic pattern recognition. Cheng and Hubele [Cheng and Hubele, 1996] proposed a 

mathematical pattern recognition algorithm drawn from syntactic (structural) and 

statistical (discriminate) approach. The problem is that the application o f such an 

algorithm would require trial and error experiments to define the parameters for the 

algorithm and their sensitivities to the patterns. Generally, traditional techniques for 

control chart pattern recognition rely on assumptions requiring prior process knowledge.

2.4.2 Artificial Intelligence (AI) Based CCPR

Recently, research issues have been closely related to advances in pattern recognition 

technology. AI in pattern recognition has attracted a lot of research interest in time series 

data sequencing, especially in control chart problems. Artificial intelligence is a science 

that has defined its goal as concerned with designing intelligent computer systems, that 

is, making machines do things that would require intelligence if done by humans -  

understanding language, learning, reasoning, solving problems, and so on. Various AI 

techniques have been implemented for application in control chart pattern recognition 

including fuzzy sets, expert systems, and neural networks.

2.4.2.1 Fuzzy sets

The fuzzy set theory approach is a powerful means of representing and handling 

uncertainty (imprecise information) and is particularly useful when an inexpensive 

solution is sought [Schalkoff, 1997]. It was pioneered by Lotfi Zadeh in 1965. The use of
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fuzzy  rules provides a way o f exploiting the tolerance for imprecision to achieve 

tractability, robustness, and a low solution cost. Kahraman [Kahraman et al., 1995] 

reported the use o f triangular fuzzy numbers in the tests for unnatural SPC patterns. No 

results on the proposed method were given. Chang and Aw [Chang and Aw, 1996] 

developed a neural fuzzy control chart for detecting and classifying process mean shifts. 

Recently, Wang and Rowlands [Wang and Rowlands, 1999; 2000] explored the use of 

fuzzy logic to represent zones in the control chart for detecting runs. Their results 

confirmed the feasibility o f the technique for control chart interpretation.

2.4.2.2 Expert Systems

An expert system is a system that employs human knowledge captured by a computer to 

solve problems that ordinarily require human expertise [Turban, 1995]. The heart of 

expert systems is the domain knowledge (knowledge about a particular problem or 

situation). Therefore, expert systems are also referred to as knowledge-based systems. In 

an expert system, the domain knowledge is usually represented in two forms: it is either 

at the level o f know-how where underlying fundamentals are not detailed (shallow 

knowledge); or at a level where its theoretical and scientific fundamentals are deeply 

expressed (deep knowledge). There are several ways of representing either type of 

knowledge in an expert system. The three most popular methods are rules, frames, and 

semantic networks.
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The four main components o f an expert system are:

(i) Knowledge base. This contains knowledge about the problem domain. It can 

comprise rules, rule sets, frames, classes, and procedures.

(ii) Inference engine. This manipulates the stored knowledge to produce solutions 

to problems. The inference engine in a rule-based expert system scans the 

knowledge base, selecting and applying appropriate rules. Inference can 

proceed in different ways according to different control procedures.

(iii) User interface or explanation module. This handles communication with the 

user in a “natural” language. A set of general facilities to be provided by a 

user interface module is documented by Zahedi [Zahedi, 1990].

(iv) Knowledge acquisition. This assists with the development of the knowledge 

base by facilitating the capture and encoding of the domain knowledge. The 

main principles and strategies for knowledge acquisition may be found in 

Cullen and Bryman [Cullen and Bryman, 1988]. The main components o f an 

expert system are illustrated in Figure 2.5. Expert systems have been applied 

in SPC to automate control chart selection, construction, and analysis.

Some o f the traditional methods for CCPR have been implemented using the expert 

system technique. Swift [Swift, 1987] has described a knowledge-based control chart 

pattern recogniser. The system employs a statistical hypothesis and is designed for off

line use. A drawback of the system is that it assumes an in-control state always follows 

an out-of-control state whereas, in practice, once a process has gone out-of-control, it is 

unlikely to return to an in-control state without corrective intervention.

28



Similar systems have been reported for control chart pattern recognition using templates 

[Cheng, 1989; Cheng and Hubele, 1989] or control theory [Love and Simaan, 1989; 

Simaan and Love, 1990] instead o f statistical hypotheses. Pham and Oztcmel [Pham and 

Oztemel, 1992a] have described an on-line control chart pattern recogniser utilising 

heuristic rules and statistical hypothesis. Swift and Mize [Swift and Mize, 1995] used 

statistical significance tests as interpretative rules to determine the pattern variation. 

Generally, they reported promising results, and noted the feasibility of the expert system 

for control chart pattern recognition.

Researchers have shown that expert systems are a powerful tool for knowledge gathering, 

knowledge retrieval, and decision making. Some drawbacks of the system are its limited 

use for pattern recognition, particularly in a dynamic environment, and that it is time 

consuming to train the expert systems with all possible patterns. Furthermore, as 

mentioned above, expert systems require human experts to provide all the possible rules. 

This may create difficulty when recognising patterns that have not been encountered 

previously.
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The inflexibility of expert systems has limited their effectiveness in recognising control 

chart patterns, particularly within changing and dynamic manufacturing environments. 

Artificial neural networks were found to be a promising tool to overcome this limitation.

2.4.2 J  Artificial Neural Networks

The pattern recognition and classification capabilities of neural networks have been 

shown to be better than those o f traditional techniques [Lippmann, 1989]. Neural 

networks first appeared in the late 1980s. An artificial neural network is a massively 

parallel-distributed processor that has the ability to learn, recall, and generalise 

knowledge [Ilaykin, 1999]. A great deal o f research in neural networks for pattern 

recognition has focused on classification learning, the main aim of which is to increase 

the accuracy of correct classification. Neural network-based pattern recognisers perform 

identification and classification with minimum process knowledge, requiring only 

examples o f how different patterns are classified. Such pattern recognisers are able to 

generalise from given examples. This enables arbitrary patterns to be readily classified.

Sutton, Pham and Zhang [Sutton, 1992; Pham and Oztemel, 1994; Zhang et al., 1995] 

provide more detailed information regarding the application of NNs to manufacturing in 

general. The principle reason for applying NNs to SPC is to automate SPC chart 

interpretation. Accurate representation of the process without oversimplification, and 

adaptability to new changes, were among the features highlighted by Jacobs and Luke 

[Jacobs and Luke, 1993] as the desired characteristics of a real-time SPC system within a
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highly automated and integrated manufacturing environment. NNs can potentially satisfy 

these requirements.

Researchers have applied various examples of NN architecture to pattern recognition. 

Existing popular NN architectures are: Multi-Layer Perception (MLP), Radial Basis 

Function (RBF), Learning Vector Quantization (LVQ), Adaptive Resonance Theory 

(ART), Auto-Associative NNS, and Kohonen Self-Organising Maps (SOM). As with NN 

architecture, there are also many rules for NN learning. Hwang and Hubele [Hwang and 

Hubelc, 1993a, 1993b] have applied NNs with Back-propagation architecture. They used 

the Average Run Length (ARL) as the performance criterion. Pham and Oztemel [Pham 

and Oztemel, 1993a, 1993b] applied BPN with a hybrid structure and used classification 

accuracy (%) as the performance criterion. In 1994, Pham and Oztemel [Pham and 

Oztemel, 1994] applied the structure o f LVQ-X. They used classification accuracy as the 

performance criterion. Hwang and Chong [Hwang and Chong, 1995] used ART1 mod 

architecture, but they used modified ARL as the performance criterion. Yang and Yang 

[Yang and Yang, 2002] proposed a new supervised LVQ for control charts based on a 

fuzzy-soft competitive learning network. They used classification accuracy as the 

performance criterion. Generally, all the researchers reported promising results. Among 

the existing NN architectures, LVQ structures have a very simple architecture. In this 

thesis, LVQ structures will be o f most interest and will be discussed in detail in Chapter

3.
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2.5 Spiking Neural Networks

Experimental evidence from the past few years indicates that many biological neural 

systems use the timing o f single spikes (temporal coding) for very rapid speed 

information processing. It is considered that the timing of the first spike contains most of 

the relevant information needed for processing. As a result, very recently, researchers’ 

attention has shifted to spiking neurons. This research is concerned with spiking neuron 

networks as the ANN technique for control chart pattern recognition. Spiking neuron 

networks have a similar architecture to traditional neural networks, have spiking neurons 

as processing units, transmit information by spike (pulses), and use spikes as the basis for 

information processing.

Spiking neural networks are networks o f spiking neurons, which represent an entirely 

new generation o f artificial neurons. The next subsection introduces SNNs, including the 

biological background, coding scheme, and neuron models.

2.5.1 Biological Background

Research from the past hundred years has shown that the brain is comprised o f neurons. 

The most pertinent structures in neurons are axons, dendrites, the cell body, and 

synapses. The axons carry signals away from the cell body to other neurons. A neuron 

receives connections from thousands other neurons. Most of these contacts take place on 

the neuron dendrites trees; however they can also exist on the soma or the axon o f the
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neuron. The morphology o f the dendrites tree plays an important role in the integration of 

the synaptic inputs and it influences the way the neuron processes information and 

computes [Mel, 1993]. The strengths of the charges received by a neuron on its dendrites 

are added together through a nonlinear process of spatial and temporal summation [Koch, 

1999]. The dendrites receive stimuli and carry it to the cell body. The cell body is 

separated from the surrounding medium by a selectively permeable membrane. There is 

an electric potential which is also known as action potential associated with the 

concentration o f charged ions inside the cell. When the cell receives a signal, the signal 

may cause it to either increase or decrease the potential.

If the action potential exceeds a certain threshold, the neuron fires, sending signals to 

every other neuron to which it is connected through a synapse. Synapses play an 

important role in neuronal information processing. Immediately after a neuron fires, its 

potential is drastically lowered, which prevents it from repeatedly firing in some 

circumstances. Figure 2.6, Figure 2.7 and 2.8 show an action potential exceeding the 

threshold#, a biological neuron, and the structure of a nerve respectively.
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2.5.2 Neuronal Coding Scheme

The mammalian brain contains more than 1010 densely packed neurons that are connected 

to an intricate network. In every small volumes o f cortex, thousands o f spikes are emitted 

each millisecond. Generally, it is agreed that the information from one neuron to another 

is transmitted by an action potential. The action potential can travel along the neuronal 

fibres at a speed o f about forty meters per second. However, there are still a few 

questions that remain unanswered, such as what is the information contained in such a 

spatial-temporal pattern o f pulses, what is the code used by the neurons to transmit that 

information, and how might other neurons decode the signal. Therefore, there is a lot of 

ongoing research with neuronal spikes and it has resulted in several coding schemes. 

Among the potential coding schemes are rate coding, temporal coding, and population 

coding. However, in this thesis only rate coding and temporal coding are discussed in 

order to make a comparison o f the coding logic for these two. The next section analyses 

the most widely accepted coding schemes, which are rate coding and temporal coding in 

traditional neural networks and spiking neural networks respectively.

2.5.3 Rate Codes

In a seminal contribution more than 75 years ago, Adrian showed that the firing rate of 

stretch receptor neurons is related to the force being applied to the muscles [Adrian, 

1926]. As a result, early neural network models interpreted the output o f artificial 

neurons as an abstraction o f the firing rate or rate coding in their biological counterparts. 

In a general way, rate coding is transferring information by means o f the firing rate of a
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neuron. There arc three definitions of rate coding which refer to three different averaging 

procedures: 1) An average over time. 2) An average over several repetitions o f the 

experiment. 3) An average over a population of neurons.

2.5.3.1 Rate as an Average over Time

This is the first and most commonly used definition of a firing rate, referred to as a 

temporal average. Rate as a spike count is essentially the spike count in an interval of 

duration T divided by T. Figure 2.9 (a) and (b) illustrates this coding. The length T of the 

time window is set by the experimenter and depends on the type of neuron from which it 

records and on the stimulus. In practice, to get sensible averages, several spikes should 

occur within the time window. This definition of rate has been successfully used in many 

research activities, particularly in experiments on sensory or motor systems. A classical 

example is the experiment on a stretch receptor in a muscle spindle [Adrian, 1926].
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Rate = Average over time (single 
neuron, single run)

Figure 2.9 (a): Definition o f the mean firing rate via a temporal average.

spike count max

Figure 2.9 (b): Gain function, sehematic. The output rate f'is given as a function o f the 
total input.
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2.53.2 Rate as a Spike Density (Average over Several Repetitions of the 

Experiment)

This is a coding rate based on the average o f spikes over several observations with the 

same stimulation. The same stimulation sequence is repeated several times and the 

neuronal response is reported in a Per-Stimulus-Time Histogram (PSTH). Figure 2.10 

shows the PSTH. The time t is measured with respect to the start of the stimulation 

sequence and At is typically in the range o f one or a few milliseconds. The spike density 

measure is a useful method for evaluating neuronal activity, particularly in the case of 

time-dependent stimuli.

The obvious problem with this approach is that it cannot be the decoding scheme used by 

neurons in the brain. Consider, for example, a frog which wants to catch a fly. It cannot 

wait for the insect to fly repeatedly along exactly the same trajectory. The frog has to 

base its decision on single ‘run’.Each fly, and each trajectory, is different.
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Rate = Average over several runs (single neuron, repeated runs)

Input

I si ru n Spike density in PSTH

2nd

2rd

PSTH

At

Figure 2.10: Definition o f the spike density in the Per-Stimulus-Time Histogram (PSTH) 
as an average over several runs of the experiment.
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2.5.33 Rate as a Population Activity (Average over Several Neurons)

The number of neurons in the brain is huge. The brain often has many neurons with 

similar properties whieh respond to the same stimuli. For example, neurons in the 

primary visual cortex of eats and monkeys are arranged in columns of cells with similar 

properties [Hubei, 1988; Hubei and Wiesel, 1962]. In particular, all neurons in the 

population should have the same pattern o f input and output connections. Figure 2.11(a) 

and (b) show the population activity.

A potential problem with this coding is that it formally requires a homogeneous 

population o f neurons with identical connections, which is hardly realistic. Real 

populations will always have a certain degree o f heterogeneity both in their internal 

parameters and in their connectivity patterns. Rate as a population activity may, however, 

be a useful coding principle in many areas o f the brain.

2.5.4 Temporal Coding

The classical point of view that neurons transmit information exclusively via modulations 

o f their mean firing rates [Shadlen and Newsome, 1998; Mazurek and Shadlen, 2002; 

Litvak et al., 2003] seems to be at odds with the growing empirical evidence that neurons 

can generate spike-timing patterns with millisecond temporal precision in vivo [Chang et 

al., 2000; Tetko and Villa, 2001] and in vitro [Mao et al., 2001; Ikegaya et al., 2004].
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Population

in

Figure 2.11(a): A postsynaptic neuron receives spike input from the population m with 

activity Am.

Rate = Average over pool of equivalent neurons 
(several neurons, single run)

J= i i i; I
i i  1 1 1

i  1 1 il
1 1 j 11

N  1 1 1 1 1
I
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C3 O '

A =
At

Activity

1 n act( t ; t+At)  
A t  N

Figure 2.11(b): The population activity is defined as the fraction of neurons that are 
active in a short interval [f, t + A t]  divided by A t.
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Patterns can be found in the firing sequences of single neurons [Reinagel and Reid, 2002] 

or in the relative timing o f spikes of multiple neurons [Chang et al., 2000] forming a 

functional neuronal group [Edelman, 1993]. Activation of such a neuronal group can be 

triggered by stimuli or by behavioural events [Villa et al., 1999; Riehle et al., 1997]. In 

temporal coding, information is transmitted by the timing of each spike. These findings 

have been widely used to support the hypothesis of “temporal coding” in the brain 

[Abeles, 2002; Diesmann et al. 1999]. Within temporal coding, several variations exist by 

considering the relations between spikes and other neurons. The main consideration in 

this relationship is whether or not the individual action potentials and individual neurons 

encode independently, or if the correlations between different spikes from the same or 

several neurons carry significant information.

2.5.4.1 Time-to-first-spike Coding

Time-to-first-spike is a potential coding strategy that is based on temporal coding which 

counts only the first spike o f each neuron. In this thesis, first spike was chosen as the 

coding strategy as it is reliable and easy to implement. Moreover, there are few 

discussions from previous research that support the idea o f using first spike.

Firstly, in a realistic situation, it is quite common that a neuron may abruptly receive a 

new input at time t {). This means that a neuron might be driven by an external stimulus 

which is suddenly switched on at time t (). Consider the following situation which 

happens in the retina. When someone looks at a picture, their gaze jumps from one point 

to the next.
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After each saccade, there is a new visual input at the photo receptors in the retina. 

Information about the time t o o f  a saccade would easily be available in the brain. Then 

imagine a code where for each neuron the timing of the first spike to follow t 0 contains 

all information about the new stimulus. Hence, all following spikes would be irrelevant. 

Alternatively, each neuron emits exactly one spike per saccade and is shut off by 

inhibitory input afterwards. The time gap between a reference signal and the first spike is 

enough to pass the information. It is also clear that, in such a scenario, only the timing 

conveys information and not the number o f spikes. This coding strategy is certainly an 

idealization which formally analyzed by Wolfgang Maass [Maass, 1997b].

Secondly, in a slightly different context, coding by first spikes has also been discussed by 

S. Thorpe [Thorpe et al., 1996]. He argues that the brain does not have time to evaluate 

more than one spike from each neuron per processing step. Therefore, the first spike 

should contain most of the relevant information. Using information-theoretic measures on 

their experimental data, several groups have shown that most o f the information about a 

new stimulus is indeed conveyed during the first 20 or 50 milliseconds after the onset of 

the neuronal response [Optican and Richmond, 1987; Kjaer et al., 1994; Tovee et al., 

1993; Tovee and Rolls, 1995].Figure 2.12 shows time-to-first-spike coding strategy.
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Figure 2.12: Time to first spike
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An early spike, which will result in a small time gap, could signal a strong stimulation, 

and a later spike would signal a weaker stimulation. A coding scheme based on the time 

to first spike is certainly an idealization and simple. These advantages mean that it is 

applied widely in analytical studies.

2.5.4.2 Phase Coding

A coding scheme with time to first spike codes the information by means of the time gap 

between a neuron spike and a static reference signal. Compared to time-to-first-spike 

coding, a periodic signal is used as reference in phase coding. Oscillations of some global 

variables such as the population activity are quite common in some areas of the brain 

(hippocampus, olfactory). These oscillations could serve as an internal reference signal 

for coding purposes. The concept o f coding by phases has been studied by several 

different groups, not only in model studies [Hopfield, 1995], but also experimentally 

[O’Keefe and Recce, 1993]. There is evidence that the phase of a spike during an 

oscillation in the hippocampus o f the rat conveys information on the spatial location of 

the animal which is not accounted for by the firing rate of the neuron alone. Figure 2.12 

shows phase coding.
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Figure 2.13: Phase coding

Figure 2.14: Correlation / synchrony coding
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2.5.43 Correlations and Synchrony

Correlations and synchrony coding use spikes from other neurons as the reference signal 

for a pulse code. Synchrony between a pair and a group of neurons could signify special 

events and convey information which is not contained in the firing rate o f the neurons. 

One famous idea is that synchrony could mean ‘belonging together’ [Milner, 1974; 

Malsburg, 1981]. Consider for example a complex scene consisting of several objects. It 

is represented in the brain by the activity of a large number of neurons. Neurons which 

represent the same object could be ‘labelled’ by the fact that they fire synchronously. 

Figure 2.14 shows correlations and synchrony coding.

2.5.5 Spiking Neuron Model

There are several models which describe the neuronal activity in the brain for various 

level abstractions. Spiking neuron models are high level models in which biological 

neurons are considered as homogeneous processing units. There are two models for 

spiking neurons based on temporal coding. First, the Spike Response Model (SRM) 

[Gerstner and Van Ilemmen, 1994]. Second, the Leaky Integrate-and-Fire Model (LIFM), 

[Maass, 1997a]. However, this research will adopt SRM only. The study of spiking 

neural networks as the tool for pattern recognition is mainly motivated by the desire to 

develop more realistic neuron models and to automate the systems, as the SNNs have 

more computational power [Maass, 1996] in comparison with the traditional neural 

network model. Consequently, the system should give higher accuracy in pattern 

recognition or classification.
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SRM is basically a generalised leaky integrate-and-fire model. The leaky integrate-and- 

fire model describes the biophysical mechanisms of the neuron mainly by means of its 

membrane potential. In addition, this model gives much importance to the time lag from 

the last firing event. The SRM model is the basis for the SNN proposed in this thesis. The 

model describes the state o f a neuron j  at time t by the state variable m .(/) [Maass,

2001a]. Let F , be the inputs the neuron j  receives from pre-synaptic neurons z e T .,

where r . =  {/ | pre-synaptic to j }. In general, pre-synaptic neurons are the input spikes

data and j  neurons are basically the hidden neurons or called post-synaptic neurons. In a 

typical network, a neuron would have several pre-synaptic neurons and each could 

present several input spikes. The effect o f an input spike given at t\f) to the neuron j  at

time t, (t >t \ f ]) will be w ■,.£■,.(/ - 1{/ ]) , where e }i is called the spike response function.

The input spikes can either increase or decrease the state variable . An output spike will 

be generated when uj exceeds a threshold value 6 at some time t. In this thesis, t is the 

simulated time. All the previous output spikes of neuron j  will be Fy where Fy = 

{ (/*/*) 1 < f  < n} = {t\uj (t) = 6 a n d u j (t) >0} at a particular time t. Here, t P  is the time

where the state variable iij crosses the threshold value from below. A neuron potential

(referred to post-synaptic neuron) will be set to a very low value immediately after a 

particular firing event. This phenomenon will return the neuron potential to its normal 

state after a significant amount o f time. This is known as the refractoriness of a neuron. 

This state variable m . (t) can be defined with equation:
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where rjj is the function to reflect the refractoriness of the neuron y, the strength o f the 

connection between the neuron / and j  is represented by w a n d  e re p rese n t the spike

response function, which can be either excitatory or inhibitory. An excitatory spike 

response function will increase the potential of the receiving neuron while an inhibitory 

spike response function with negative effect will decrease the potential of the receiving 

neuron.

2.6 Optimisation Algorithm

Many complex multi-variable optimisation problems cannot be solved exactly within 

polynomial bounded computation times. This has generated interest in search algorithms 

that find near-optimal solutions in reasonable running times. The algorithm described in 

this paper is a search algorithm capable o f locating good solutions efficiently. The 

algorithm is inspired by the food foraging behaviour of honey bees and could be regarded 

as belonging to the category o f “intelligent” optimisation tools [Pham et al., 2006]. This 

thesis proposes a modified version of the basic Bees Algorithm, specifically for 

determining the neighbourhood range and presents an application o f the new algorithm to 

spiking neural networks. The algorithm is also among the first applications to control 

chart pattern recognition. The aim of applying the Bees Algorithm in the proposed 

networks here is for optimising the network topology to the size o f the network, the time
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needed for the optimisation and the classification accuracy. This algorithm is presented in 

detail in chapter 5.

2.7 Summary

This chapter has given background information on pattern recognition and learning 

algorithms with attention focused on control chart pattern recognition. The basic concepts 

of control chart pattern recognition have been described and the three main types of 

learning algorithms available have been presented. This chapter has also outlined a 

number o f algorithms o f each type and discussed their performance for control chart 

pattern recognition. Finally, recent directions in research approaches have been 

presented.
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CHAPTER 3

S-LVQ: A SPIKING LEARNING VECTOR QUANTISATION

ALGORITHM

3.1 Preliminaries

Learning vector quantisation (LVQ) networks as originally proposed by Kohonen 

[Kohonen, 1984] are known good neural classifiers which provide fast and accurate 

results for many applications. LVQ is a widely used approach to classification. It is 

applied in a variety o f practical problem areas including medical image and data 

analysis, for example in speech recognition and in control chart pattern recognition. 

This is a supervised version o f  vector quantization. Classes are predefined and the 

data are labelled. The goal is to determine a set o f prototypes that best represent each 

class. In vector quantization, it is assumed that there is a codebook which is defined 

by a set o f  M prototype vectors. (M is chosen by the user and the initial prototype 

vectors are chosen arbitrarily).

The first part o f this chapter, from section 3.2 to section 3.6, is organised as follows: 

section 3.2 introduces the general structure o f LVQ networks; a review o f LVQ 

algorithm is then given; this is followed by a detailed description o f the existing 

learning procedure in LVQ networks including the standard LVQ and variants o f its 

learning procedures; finally, section 3.6 outlines the control chart pattern recognition 

problem using LVQ and previous work addressing it.
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3.2 LVQ Network Structure

An LVQ network comprises three layers o f neurons: an input buffer layer, a hidden 

layer, and an output layer. The structure o f an LVQ is shown in Figure 3.1. The input 

layer carries out no information processing and only conveys the input patterns to the 

network. The hidden layer (also known as the Kohonen layer) performs actual 

information processing. The output layer yields the category o f the input pattern. The 

network is fully connected between the input and hidden layers and partially 

connected between the hidden and output layers. Each output neuron is linked to a 

different cluster o f hidden neurons. The hidden layers to output layer connections 

have their values fixed to 1. The weights o f the connections between the input and 

hidden layers constitute the components o f the reference vectors (one reference vector 

is assigned to each hidden neuron).

The reference vectors’ values are modified during the training o f the network. Both 

the hidden neurons and the output neurons have binary outputs. When a Kohonen 

neuron wins the competition, it is turned ‘on’ (its activation value is made equal to 1) 

while others are automatically switched ‘o ff  (their activation values are set to 0). 

This, in turn, makes the output neuron connected to the activated Kohonen neuron or 

to the cluster o f  hidden neurons that contains the winning neuron switch ‘on’ (emits a 

‘ 1 ’) and the rest switch ‘o f f  (emits a ‘0 ’). The output neuron that produces a ‘ 1 ’ gives 

the class o f the input pattern. Each output neuron is dedicated to a different class.
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Figure 3.1: Standard learning vector quantisation network structure
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3.3 The LVQ Algorithm

LVQ, as its name indicates, is based on vector quantisation, which is the mapping o f 

an /i-dimensional vector into one belonging to a finite set o f representative vectors. 

That is, vector quantisation involves clustering input samples around a predetermined 

number o f reference vectors. Learning in an LVQ network consists essentially o f 

finding those reference vectors. The classification of input values into clusters is 

conducted on the basis o f  nearest neighbourhood, and the smallest distance between 

the input vector and reference vectors is sought (smallest in the sense o f the normal 

Euclidean distance). For each training pattern, the reference vector that is closest to it 

is determined. The corresponding output neuron is also called the winner neuron. At 

each learning iteration, the network is told only if its output is correct or incorrect and 

only the reference o f  that neuron which wins the competition by being closest to the 

input vector is activated and allowed to modify its connection weights. This 

movement o f  the reference vector is controlled by a parameter called the learning 

rate. It states how far the reference vector is moved as a fraction o f the distance to the 

training pattern. Usually the learning rate is decreased in the course o f time, so that 

initial changes are larger than changes made in later epochs o f the training process. A 

simple LVQ training procedure is as follows [Pham and Liu, 1995]:

(i) Initialise the weights o f  the reference vectors;

(ii) Present a training input pattern to the network;

(iii) Calculate the (Euclidean) distance between the input pattern and each reference 

vector;
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(iv) Update the weight o f the reference vector that is closest to the input pattern, that 

is, the reference vector o f the winning hidden neuron. If the latter belongs to the 

cluster connected to the output neuron in the class that the input pattern is known to 

belong to, the reference vector is moved closer to the input pattern. Otherwise, the 

reference vector is moved away from the input pattern;

(v) Return to (ii) with a new training input pattern and repeat the procedure until all 

training patterns are correctly classified (or a stopping criterion is met).

3.4 Learning Procedure in Standard LVQ networks

Good performance in an LVQ network depends on the correct number o f reference 

vectors being assigned to each category, their initial values, and the choice o f a proper 

learning rate and stopping criterion. In general, the Euclidean distance is adopted as a 

basic rule o f  competition between the weight vectors o f the reference vectors and the 

input vector. The distance ^  between the weight vectors Wt o f neuron i and the input 

vector X  is given by:

Where Wi} and X } are the j th components o f W{ a n d ^ ,  respectively. As mentioned

in section 3.3, the neuron which has the minimum distance wins the competition and 

is permitted to change its connection weights in each learning iteration. The learning 

formula for updating the reference vector is given as follows:

If the winning neuron is in the correct category, then;

(8)
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w ~ = i r M + H x - i r M ) (9)

and if the winning neuron is in the incorrect category, then;

W „ = W M - X  ( X - W M ) (10)

In equations (9) and (10), A is the learning rate (usually, 0<A<1), which decreases 

monotonically with the number o f iterations. The implication o f the learning rule 

expressed in equations (9) and (10) is that the weight or reference vector is updated to 

be close to the input vector if it represents the input pattern, and is pushed away if it 

does not. Figure 3.2 summarised the features o f a standard LVQ network.

3.5 Variants of LVQ Learning Procedures

3.5.1 LVQ2

LVQ2 was also developed by Kohonen [Kohonen et al. 1988, Kohonen 1990]. It is 

usually employed after acceptable results have been obtained by applying the standard 

procedure. LVQ2 refines the solution boundary between regions where 

misclassifications have occurred. The learning algorithm modifies simultaneously two 

reference vectors wx and w2 in each learning iteration if:

(i) wt and w2 are the closest and next closest neighbours o f the input vector, where wK 

is in the incorrect category and w2 is in the correct category, and
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Features o f an LVQ network

1) Vector quantisation

2) Representative classifiers -  Nearest neighbour

3) Learning algorithm -  Reinforcement

4) Learning rules -  Winner-Takes-All

5) Learning rate -  Monotonically decreasing

6) Input layer----------------- Hidden la y e r ...................

fully connected partially connected

Figure 3.2: Features o f an LVQ network
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(ii) The input vector x  falls inside a window located centrally between wx and w2.

The learning formula for updating the reference vector is given as follows:

^\neyx =  ̂ /\o U i~ ^ i^ ~ ^ \o lc j )  ( 1 1 )

^2 new=Wlold~MX-W2 „/</) ( 12)

where tvlnew and wlnew are the new reference vectors. The learning rate A is a

monotonically decreasing function o f  time. Other connection weights o f the network 

remain untouched. This weight modification procedure is represented geometrically in 

Figure 3.3.
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Figure 3.3: Geometric representation of LVQ2 procedure
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3.5.2 LVQ with A Conscience

This version o f LVQ was originally developed by DeSieno [DeSieno, 1988] to avoid 

the problem that some neurons tend to win too often while others are always inactive. 

The standard LVQ algorithm can suffer from this type o f problem. This happens 

particularly when the neurons are initialized far from the input vectors. In this case 

some neurons would quickly move closer to the input vectors and the others would 

remain permanently far away. The conscience mechanism gives the neuron which 

wins too often a ‘guilty conscience’ and penalises it by adding a distance bias to the 

true distance between that neuron and the input vector. The distance bias is based on 

the number o f  times the neuron has won the competition. The distance bias is 

calculated as:

Where C is a constant bias factor, N is the number o f Kohonen neurons, and /?, is the 

probability o f  the competition being won by neuron i. The probability is initially set at 

1/N but is then updated according to the following equation:

Where B is a constant selected to prevent random fluctuations in the data, >, =1 if

(13)

P i new P  i old ^  O'*/ P i old ) (14)

neuron i wins the competition, and 0 otherwise. The new distance ^inew o f neuron i

from the input vector is calculated as:

d  i new d  i 0id +  bji new (15)
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The competition is carried out with the new distances, and the same weight updating 

procedure is then applied as for the standard LVQ.

3.5.3 LVQ-X

The training procedure employed is largely based on the learning procedure originally 

developed by Kohonen [Kohonen, 1990]. As mentioned before, in the two existing 

LVQ models, only one weight vector is updated at each learning iteration. In LVQ2, 

however, two weight vectors are updated at a time, which happens under rare 

circumstances. In LVQ-X, the extended version o f the LVQ learning procedure, two 

reference vectors are updated in most iterations, resulting in a decrease in the learning 

time and an increase in the generalisation capability o f the system.

The main idea o f  LVQ-X is to modify two candidate weight vectors. The first, called 

the “global w inner”, is the weight vector nearest to the input vector. The second, the 

“local w inner”, is the weight vector which is in the correct category and nearest to the 

input vector in that category. If  the global winner is not in the correct category then it 

is pushed away from the input vector and at the same time the local winner is brought 

closer. This gives a chance for the correct neuron to win the competition in the next 

iteration. Obviously, if the global winner is also the local winner then only one weight 

vector needs to be updated.
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In this case, the weights are modified as follows:

W neK.= lV oU + X ( X - W  oU) (16)

where is the learning rate. If  the global winner is different from the local winner 

then:

Pham and Oztemel [Pham and Oztemel, 1994] claim that numerical comparison 

showed that LVQ-X has a better classification accuracy within a shorter training time 

than LVQ and its two variants, o f LVQ2 and o f LVQ with a conscience mechanism. 

Moreover, dependency on the initial values o f the weight vectors is virtually 

eliminated and the performance o f  the network is almost the same for the cases o f 

arbitrary initial weight values and initial weight values taken from the training set. A 

comparison o f  the various LVQ models is given in Table 3.1. The proposed LVQ-X 

network achieves even better classification accuracy than that obtained with the MLP 

network.

w neK=w old- i { x - w  M) (17) and

(18)
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Pattern recogniser Number of 

training epochs

Learning 

performance (%)

Test performance 

(% )

LVQ (Standard) 70 95.18 92.31

LVQ2 4 94.31 89.62

LVQ (Standard) + 

LVQ2

74 96.18 92.61

LVQ (with a 

conscience mechanism)

70 95.98 92.71

LVQ-X 1 20
i
i

100.0 97.70

Table 3.1: Performance o f various LVQ pattern recognisers
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3.6 Discussion for LVQ

Experiments showed that in standard LVQ some neurons may win too often while 

others are always inactive. This means that only a few neurons have been learning, 

hence resulting in poor initial performance. This situation may occur when a network 

cannot learn the complete set o f training patterns when the weights are randomly 

initialised. The accuracy levels achieved are below 60%. To solve this initialisation 

problem, some o f the patterns in the training set were assigned as initial weight 

vectors. The number o f patterns that can be learned had increased. However, the 

network still did not achieve 100% learning. The classification accuracy levels o f the 

network after 70 training epochs are 95.18% for the training data and 92.3% for the 

test data.

Experiments again showed that the initialisation procedure problem occurs in LVQ2. 

Patterns from the training set were assigned as the initial values o f the weight vectors 

since the network cannot learn with random initial weight values. Furthermore, after 

only four training epochs the LVQ2 learning procedure was no longer applicable 

because o f  the conditions set out as mentioned above in section 3.5.1. The overall 

accuracy levels o f  the network are 94.31% for the training set and 89.62% for the test 

set after 4 training epochs.

Applying LVQ2 to a network using the standard LVQ algorithm showed some 

improvement in the accuracy level. The accuracy levels achieved after the network is 

trained for 70 epochs are 96.18% for the training set and 92.61% for the test set.
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Applying a conscience mechanism to the standard LVQ model increases the learning 

capability o f the network. It also helps to reduce the dependence on using training 

examples as initial weights. Results showed that an LVQ module with a “conscience” 

can learn 95.98% o f the training set and correctly classify 92.71% o f the test set 

following 70 training epochs.

Pham and Oztemel [Pham and Oztemel, 1994] reported that at the end o f 10 training 

epochs, the network o f LVQ-X can correctly classify 99.39% o f the training set and 

96.30% o f the test set. After 20 training epochs, the overall recognition accuracy level 

increases to 100% for the training set and 97.70% for the test set in a shorter training 

time. Despite the good classification performance o f LVQ-X, at the same time, two 

weights at most need to be modified for LVQ-X. The first is called the “global 

winner”, which is the one globally nearest to the training vector but not necessarily in 

the correct category. The second is called the “local winner” and is the one nearest to 

the training vector in the correct category. Pham and Oztemel {Pham and Oztemel, 

1994] claimed that this approach gives an opportunity for the correct neuron to win in 

the next iteration.

It could therefore be concluded that most o f the existing LVQ algorithms were 

originally designed to tackle the problem that some neurons may win too often while 

others are always inactive, thus reducing the dependency on using training examples 

as initial weights. Moreover, a significant drawback o f many o f these techniques is 

the poor classification accuracy.

68



The second part o f this chapter reviews current trends in SNNs research. The review 

includes the network architecture and it existing learning procedure. Section 3.8 

discusses the pattern recognition problem using SNNs and previous work addressing 

it. SNNs research has been making significant progress in many directions.

This section examines two o f the most important directions and discusses some 

current problems. The two directions are those based on supervised learning and on 

unsupervised learning.

3.7 Current Trends in Spiking Neural Networks Research

3.7.1 Typical Spiking Neural Networks Architecture

Spiking neural networks have a similar architecture to traditional neural networks. 

Elements that differ in the architecture are the numbers o f synaptic terminals between 

each layer o f  neurons and also the fact that there are synaptic delays. Several 

mathematical models have been proposed to describe the behaviour o f spiking 

neurons, such as the Hodgkin-Huxley model [Hodgkin and Huxley, 1952], the Leaky 

Integrate-and-Fire model (LIFN) [Maass, 1997] and the Spike Response Model 

(SRM) [Bialek, Rieke, de Ruyter and Warland, 1991]. Figure 3.4 shows the network 

structure as proposed by Natschlager and Ruf [Natschlager and Ruf, 1998].
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This structure consists o f a feedforward fully connected spiking neural network with 

multiple delayed synaptic terminals. The different layers are labelled H, I, and J for 

the input, hidden, and output layer respectively as shown in Figure 3.4. The adopted 

spiking neurons are based on the Spike Response Model to describe the relationship 

between input spikes and the internal state variable. Consider a neuron j , having a

setD ; o f immediate pre-synaptic neurons, receiving a set o f spikes with firing times 

tt , / € D j . It is assumed that any neuron can generate at most one spike during the 

simulation interval and discharges when the internal state variable reaches a threshold. 

The dynamics o f  the internal state variable*•(/) are described by the following

function:

(t) is the un-weighted contribution o f  a single synaptic terminal to the state variable 

which described a pre-synaptic spike at a synaptic terminal k as a PSP o f standard

(19)
<e D

height with delay d k .

(20)
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Figure 3.4: Feedforward spiking neural networks
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The time is the firing time o f  pre-synaptic neuron/, and d k the delay associated 

with the synaptic terminal A:. Considering the multiple synapses per connection case, 

the state variable x . ( / ) o f  neuron j  receiving input from all neurons i  is then

described as the weighted sum o f the pre-synaptic contributions as follows:

The effect o f the input spikes is described by the function e  (t) and called the spike 

response function and wiy is the weight describing the synaptic strengths. The spike

response function s  (t) is modelled with an a  -function, thus implementing a leaky- 

integrate-and-fire spiking neuron, and is given by:

r  is the time constant which defines the rise time and the decay time o f  the post- 

synaptic potential (PSP). The individual connection, which is described in 

[Natscchlager and Ruf, 1998], consists o f  a fixed number o f m synaptic terminals. 

Each terminal serves as a sub-connection that is associated with a different delay and 

weight, see Figure 3.4. The delay d k o f a synaptic terminal k is defined as the 

difference between the firing time o f the pre-synaptic neuron and the time when the 

post-synaptic potential starts rising. The threshold 6 is a constant and is the same for 

all neurons in the network.

m
(21 )

ie D . k = 1

for t > 0, else s  (t) = 0 (22)
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3.7.2 A Review of Existing Spiking Neural Networks Learning Procedure

Network architectures based on spiking neurons that encode information in the 

individual spike times have yielded, amongst other things, a self-organising map akin 

to Kohonen’s SOM [Ruf and Schmitt, 1998], and networks for unsupervised 

clustering [Bohte et al., 2000; Natscchlager and Ruf, 1998]. The principle o f coding 

input intensity by relative firing time has also been applied successfully to a network 

for character recognition [Buonomano and Merzenich, 1999]. Recently, a review o f  a 

spiking neural network model based on supervised learning for spike time coding has 

been carried out [Ponulak, 2005].

3.7.2.1 SNNs for Supervised Learning Procedure

Generally, supervised learning procedures in SNNs are categorised into two groups 

based on the underlying training strategy. The groups are error gradient descent based 

models and Hebbian rule based models. Furthermore, since the input information in 

SNNs can be encoded either in the connection weights or delays, the two models can 

also be grouped based on the encoding strategy. The following subsection gives 

details o f the above mentioned learning models.
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3.7.2.1.1 Error Gradient Based Learning Procedures

Bohte et al. [Bohte et al., 2000] proposed a network of spiking neurons that encodes 

information in the timing o f individual spike times. They derive a supervised learning 

rule, SpikeProp, akin to traditional error-backpropagation. They utilise a fully 

connected feedforward spiking neural network. Each connection between two neurons 

corresponds to sixteen sub-connections. Each sub-connection is characterised with a 

different delay and weight. In Bohte et al’s work, using this algorithm, they 

demonstrate how networks o f spiking neurons with biologically reasonable action 

potentials can perform complex non-linear classification in fast temporal coding just 

as well as rate-coded networks.

A drawback o f Bohte et al.’s work is that a large set o f weights have to be adjusted, 

so the size o f  the network increases drastically with the number o f neurons. A simpler 

learning procedure might help to reduce this problem. The presented Spikeprop 

algorithm was reinvestigated in Schrauwen and Campenhout [Schrauwen and Van 

Campenhout, 2004], Moore [Moore, 2002], and Jianguo and Embrechts [Jianguo and 

Embrechts, 2001]. Schrauwen and Campenhout proposed an improvement on Bohte 

et al.’s model. They proposed to adopt connection delays; a time constant, and the 

neuron’s threshold instead o f  adapting only the connection weights. In M oore’s work 

[Moore, 2002], the weights were initialized with a value that led the network to 

successful training in a similar number o f iterations as in Bohte’s work, but with high 

learning rates. However, this conflicts with Bohte’s work as he argued that the 

approximation o f the threshold function implies that only small learning rates can be 

used. Jianguo and Embrechts [Jianguo and Embrechts, 2001] improved the proposed 

model by Bohte et al. by adding a momentum term to the learning rule.
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3.7.2.1.2 Hebbian-based Supervised Learning Procedures

Hebbian learning is much more biologically realistic. There are numerous examples in 

biological modelling studies where Hebbian-based learning has been implemented. 

Hebb’s rule states that synaptic strength will be increased if the post-synaptic neuron 

and the pre-synaptic neuron are both highly active at the same time. According to the 

Supervised Hebbian Learning, it is assumed that learning rules apply to all synaptic 

inputs o f the learning neuron and the post-synaptic neuron receives an additional 

“teaching” input I(t). This additional input could either arise from a second group of 

neurons or from the intracellular current injection. The role o f I(t) is to increase the 

probability that the neuron fires at or close to the desired firing time. Maass [Maass, 

1997b] proposed a monosynaptic learning rule which trains a single synapse with 

temporarily encoded inputs. The network is activated for a time period during each 

learning cycle. An important assumption in this model is that the potential rise in the 

neuron due to an incoming spike is linear. However, in a practical situation where 

neurons have several incoming connections and receive inputs from each connection, 

it is difficult to find the effect induced by a single connection. Ruf and Schmitt [Ruf 

and Schmitt, 1997] suggested a Hebbian-based supervised learning model which 

encodes the information in the connection weights. It was suggested also that the 

connections in M aass’s work can be trained in parallel through a normalisation 

technique.
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3.7.2.2 SNNs for Unsupervised Learning Procedure

Hopfield [Hopfield, 1995] presents a model o f spiking neurons for discovering 

clusters in an input space akin to Radial Basis Functions. Extending Hopfield’s idea, 

Natschlager and Ruf [Natschlager and Ruf, 1998] proposed a learning algorithm that 

performs unsupervised clustering in spiking neural networks using spike-times as 

input. This model encodes the input patterns in the delays across its synapse and is 

shown to reliably find centers o f  high-dimensional clusters. Generally, there are two 

kinds o f model for the unsupervised learning:

(i) Encodes the input vectors in the connection weights;

(ii) Encodes the input vectors in the connection delays.

Basically, both o f  the models use Hebbian-based self-organised weight adaptation.

3.7.2.2.1 Weight-based Learning

The model discussed below encodes the input information in the connection weights. 

R uf and Schmitt [Ruf and Schmitt, 1998] proposed a model for self-organisation in a 

network o f  spiking neurons which encodes the input information in connection 

weights. The effect o f weight normalisation also has been studied in several 

implementations o f the SOM. It was discovered that, after a certain number o f 

learning cycles, approximately the same degree o f topology preservation could be 

achieved regardless o f whether or not the weights were normalised.

In contrast to the standard formulation o f the SOM, their work has the additional 

advantage that the winner among the competing neurons can be determined quickly 

and locally by using lateral excitation and inhibition. These lateral connections also

76



constitute the neighbourhood relationship among the neurons. In order to realise 

cooperation among neurons in the neighbourhood o f the winning neuron, two simple 

measures were implemented as follows:

(i) Neurons which are topologically closer were assigned with strong excitatory lateral 

connections and remote neurons were assigned with strong inhibitory lateral 

connections. Through these connections the neurons closer to the winning neuron are 

encouraged to fire while the other neurons are discouraged from firing;

(ii) Neurons which fire temporally closer to the winning neuron are encouraged more 

than the neurons which fire later after the winning neuron.

Ruf and Schmitt [Ruf and Schmitt, 1998] in this work proposed a self-organising rule 

as specified in equation (23) below:

r  Tout ~ t j  ( \
S wj i = ft —z  I*/ -  wj i) (23)* out

where 8 Wj, is the modification for the connection weight at some learning

cycle, (// > 0) is the learning rate and is slowly decreased during learning, and 

jc, = (* 1  , . . . ,  xm) is the input vector presented to the network. Synaptic modification in

equation (23) is based on the firing time o f the output neuron. Tout is an upper limit 

to specify the applicability o f  the rule among the competing neurons. Synaptic 

connections o f  those neurons which fire before Tout are updated, while others remain

T - t_ 1 out 1J
unchanged. The term ( — z   ), defines the effect on neighbouring neurons based

' out
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^  T o u t ~ t j
on the spike time. Since the winner is the one which fires first, then ( z  ) will

* out

return a higher value, while returning low values for late neurons. Generally, their 

work showed that the spiking neural network model along with temporal coding is 

capable o f preserving the topology o f the input space in a fashion similar to 

Kohonen’s self-organising map.

3.7.2.2.2 Delay-based Learning

In delay-based learning, the input information is encoded in the connection delays 

through adapting the connection weights. Hebbian-based learning modifies the 

connection weights based on the time difference between the pre-synaptic and post- 

synaptic firing o f  a neuron. Through the weight adaptation strategy, suitable delayed 

connections are selected while pruning the unwanted connections. In unsupervised 

learning, the rules applied enhance the strength o f some connections while weakening 

others. This results in some selected delayed connections with high strength and the 

rest with very low or null strength. This helps to encode the input information 

effectively in the connection delays. Hopfield [Hopfield, 1995] was the first to 

introduce this and showed that the input spike patterns can be stored in the delays 

across the synapses.

His work was supported by Gcrstner’s [Gerstner et al., 1996] work which established 

that an encoded delay pattern will balance the differences o f  the firing times o f the 

input neurons such that the delayed input spikes reach the output neurons at almost 

the same time, enabling them to fire. This type o f  learning is claimed to be more like
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the learning in a Radial Basis Function (RBF) network. This approach is supported by 

many neurobio logical findings reported in Habberly’s, and O ’Keefe and Reece’s 

works [Habberly, 1985; O ’Keefe and Reece, 1993]. Gerstner et al. [Gerstner et al., 

1996] performed a modelling study through computer simulations on the bam ow l’s 

auditory system. A Hebbian-based unsupervised learning mechanism was proposed to 

train a single integrate-and-fire neuron with multisynapse (several sub-connections) 

connections for each single connection. Each sub-connection is characterised with a 

weight and a delay. The learning rule proposed here enhances the strength o f the 

connections which are repeatedly active shortly before a postsynaptic spike event. 

Connections which are active shortly after the postsynaptic event are weakened. This 

learning rule then selects connections with suitable delays from a distribution o f 

connections with different delays. The learning rule also selects the correct delays 

from two independent groups o f inputs, for example, from the left and right ear.

Natschlager and Ruf [Natschlager and Ruf, 1998] extended the approach reported in 

Gerstner’s et al. work [Gerstner et al., 1996]. In contrast with Gerstner’s et al. work, 

here the firing times o f the output neurons are considered where the firing or non

firing o f  a neuron was taken into consideration. The network architecture deployed in 

their work is a two layered fully connected feedforward network.

The model proposed in Natschlager and Ruf [Natschlager and Ruf, 1998] was further 

improved by Bohte et al., [Bohte et al., 2002], in order to increase the precision, 

capacity, and clustering capability o f the specified spiking neural network model. This 

was achieved through a population coding scheme and the model’s performance was 

proved with clustering several real world data sets. Previous research by Bohte et al.,

79



[Bohte et al., 2002] on unsupervised learning used the Winner-Takes-All learning rule 

to modify the weights between the source neurons and the neuron first to fire in the 

target layer, using a time-variant version o f Hebbian learning. The firing time o f an 

output neuron reflects the distance o f  the evaluated pattern to its learned input pattern. 

The first neuron to fire is chosen as the winner. If  the start o f the post-synaptic 

potential (PSP) at a synapse slightly precedes a spike in the target neuron, the weight 

o f this synapse is increased, as it exerts significant influence on the spike-time by 

virtue o f a relatively large contribution to the membrane potential. Earlier and later 

synapses are decreased in weight, reflecting their lower impact on the target neuron’s

spike time. For a weight with delay d k from neuron i to neuron j ,  Bohte et al used 

equation (24) to update the weights;

A w f y  =  7]

Where the parameter b determines the effective integral over the entire learning

window P  sets the width o f  the positive learning window, and c determines the

position o f this peak. The value o f  A77 denotes the time difference between the onset 

o f a PSP at a synapse and the time at which the spike is generated in the target neuron. 

The weight o f a single terminal is limited by a minimum and maximum value o f 0 and

Wmax respectively. In their experiments, A77 is set to [0-9] (ms) and delays d k to 1-15 

(ms) in 1 ms intervals (m=16). The parameter values used by Bohte et al. for the

learning function were set to: b = -0.2, c = -2.85, P  =1.67, ^7=0.0025 and

(AT-c)-

U,bT) = rj{\-b)e p* +b (24)
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w’max -2 .75. To model the post-synaptic potentials, they used an a -function with 

r =3.0 (ms) as in equation (22) in section 3.7.1.

3.8 Discussion of SNNs

Generally, the research work on supervised learning with SNNs discussed above 

applied a fully connected feedforward network (back-propagation) with multi-synapse 

connections. The most usual arrangement has 12 to 16 sub-connections, with delays 

o f up to 15 (ms). The combination o f  this type o f architecture with multi-synapse 

connections will increase the network complexity and training time since a large set 

o f weights have to be adjusted. Lippman [Lippmann, 1991] has carried out a critical 

overview o f neural network pattern classifiers. He presented the results o f handwritten 

digit recognition experiments using Multi-Layer Perceptron, k-Nearest Neighbour, 

and Radial Basis Function classifiers as shown in table 3.2. The result showed that 

Back-propagation requires a longer training time compared with the other three 

classifiers. Research work on unsupervised learning mostly applied the Kohonen’s 

network with delay-based learning as discussed above. Previous research on 

unsupervised learning used the Winner-Takes-All learning rule to modify the weights 

between the source neurons and the neuron first to fire in the target layer, using a 

time-variant version o f Hebbian learning.

The remainder o f  this chapter is organised as follows: section 3.9 explains in depth 

LVQ and SNN networks’ pattern detection capability which motivate the research 

into this area; section 3.10 details the proposed supervised SNN learning model with 

an LVQ structure, the so called S-LVQ, for the application to control chart pattern 

recognition; section 3.13 presents the pattern recognition results obtain using the
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Back-Prop KNN RBF

Error rate (no rejections) 5.15% 5.14% 4.77%

Free parameters 5,472 11,016,000 371,000

Training time (hours) 67.7 0.0 16.5

Classification time (secs/char) 0.14 6.22 0.24

Table 3.2: Results o f handwritten digit recognition
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proposed S-LVQ networks; lastly, section 3.14 discusses some interesting findings on 

the proposed learning model. This chapter concludes with a summary o f all the three 

parts.

3.9 Motivation for Research

Control chart patterns normally contain a random noise element. Therefore, it would 

be difficult to classify these patterns using simple heuristic rules with fixed and well- 

defined detection limits. Experiments have shown that the noise filtering and 

generalisation capabilities o f  neural networks make them suitable for this 

classification task. This is clearly demonstrated by the good identification results 

presented in table 3.1. Although the standard LVQ network has a relatively poor 

performance, after a slight modification, it achieves the best classification 

performance in a short training time. Lippman [Lippman, 1991] reported that 

characteristics which often differ dramatically across classifiers include classification 

time, training and adaptation time, ease o f implementation, memory requirements, 

rejection accuracy, and usefulness o f outputs as estimated by Bayes’ probability. 

Among the most attractive features o f LVQ is the natural way in which it can be 

applied to multi-class problems and its simple learning rule. The reason for the focus 

on LVQ networks is the proven strength o f their classification abilities [Baig et al., 

2001].

Previous research on ANNs showed that most practical applications o f ANNs are 

based on computational models involving the propagation o f continuous variables 

from one processing unit to the next using the concept o f mean firing rates. The
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concept o f mean firing rates has been applied successfully during the last 80 years. It 

dates back to the pioneering work o f Adrian [Adrian, 1926] who showed that the 

firing rate o f stretch receptor neurons in muscles is related to the force applied to the 

muscle. In the following decades, measurement o f firing rates became a standard tool 

for describing the properties o f  all types o f sensory or cortical neurons [Mountcastle, 

1957; Hubei and Wiesel, 1959], due partly to the relative ease o f  measuring rates 

experimentally.

It is clear, however, that an approach based on a temporal average neglects all the 

information possibly contained in the exact timing o f the spikes. It is therefore no 

surprise that the firing rate concept has been criticized repeatedly and is the subject o f 

an ongoing debate [Abeles, 1994; Bialek et al., 1991; Hopfield, 1995; Shadlen and 

Newsome, 1994; Softky, 1995; Rieke et al., 1996]. Although ANNs are considered to 

be one o f the most powerful and flexible computational models known today, recent 

research has found that ANNs are not powerful enough as a biological counterpart 

due to their more simplified approach and coding o f information [Zador A M, 2000; 

Maass W, 1997]. In recent years, more and more neurobio logical experimental 

evidence has accumulated showing clearly that biological neural networks, which 

communicate through pulses, use the timing o f these pulses to transmit information 

and to perform computation. In addition, SNNs are deemed computationally more 

powerful than common ANNs formalisms on the basis o f  extensive theoretical work 

by Maass [Maass W, 1996],

Together, these realisations have stimulated or motivated a significant growth o f 

research activity in the area o f  pulsed neural networks. These range from 

neurobio logical modelling and theoretical analyses, to algorithm development and
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hardware implementations. Generally, pattern recognition problems are involved with 

research activity in algorithm development. Much o f the research into learning 

algorithms for pulsed neural networks has been focused on unsupervised learning and 

most o f these existing learning algorithms adjust the synaptic weights based on the 

adaptation o f a Hebbian rule. According to Ammar [Ammar et al., 2003] the first 

supervised training was suggested by Bohte [Bohte et al., 2000] where the classical 

back propagation, which is a gradient descent based algorithm, is adapted to temporal 

coding, and an approximation o f the post-synaptic potential is assumed to allow 

derivation.

However, a large set o f weights has to be adjusted since a connection between two 

neurons corresponds to sixteen sub-connections, so the size o f the network increases 

drastically with the number o f neurons. Therefore, more research into supervised 

learning for pulsed neural networks is essential. In addition, a more efficient 

supervised learning algorithm is needed for the better exploitation o f pulsed neural 

networks models.

Together with the advantages o f  LVQ, a new approach for supervised training called 

the “Spiking Learning Vector Quantisation (S-LVQ)” algorithm is proposed in this 

chapter to address this problem. The proposed S-LVQ uses spiking neurons instead o f 

the common neurons in LVQ. It uses the motivation concepts in behavioural 

neuroscience [Berridge, 2004], instead o f a penalty, to encourage a neuron to be a 

winner. It is expected that these concepts, together with the new updating weights rule 

proposed in this chapter, will help to increase the classification performance. The 

proposed S-LVQ updates the weights o f the winning neurons and o f its neighbours in 

the same cluster simultaneously. Furthermore, S-LVQ gives more concentration to the
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neurons in the correct category and in the same cluster, as this is more practical. This 

will help to fully use the number o f hidden neurons in each cluster in the network. 

This concentration might lead to a decrease in the number o f inactive neurons in the 

network.

The remainder o f this chapter is organised as follows: section 3.10 describes in detail 

the proposed S-LVQ that consists o f the suggested network structure and the 

supervised learning algorithm; section 3.12 describes the training and testing data sets 

in control charts; in section 3.13 an empirical evaluation o f the method is presented; 

section 3.14 provides general discussion about an interesting finding on the effect on 

classification accuracy o f  various hidden neurons; finally, a summary o f the findings 

o f the chapter is given.

3.10 Proposed S-LVQ Algorithm

3.10.1 Network Structure

This thesis proposes a new architecture for spiking learning vector quantisation for 

control chart pattern recognition. Generally, the proposed architecture uses the 

structure o f an LVQ network with some modification in the connection. It consists o f 

spiking neurons instead o f common neurons. It is a feedforward network o f spiking 

neurons which is fully connected between the input and hidden layers. It has multiple 

delayed synaptic terminals (m) and is partially connected between the hidden and 

output layers, with each output neuron linked to a different cluster o f hidden neurons. 

An individual connection consists o f  a fixed number o f  m synaptic terminals, where 

each terminal serves as a sub-connection that is associated with a different delay and
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weight between the input and hidden layers. The weights o f the synaptic connections 

between the hidden and output neurons are fixed at 1. Experiments were carried out 

with a number o f  network structures with different parameters and learning 

procedures. The network finally adopted had 60 input neurons in the input layer, 

which means the input patterns consisted o f the 60 most recent mean values of the 

process variable to be controlled. One input neuron was therefore dedicated for each 

mean value. There were six output neurons, one for each pattern category, and 36 

hidden neurons (as in LVQ). Table 3.3 shows the details o f the networks used. At the 

beginning o f  training, the synaptic weights were set randomly between 0 and +1. The 

input vector components were scaled between 0 and 1. Using a temporal coding 

scheme, the input vector components were then coded by a pattern o f firing times 

within a coding interval, and each input neuron was allowed to fire no more than once 

during this interval. In this work, the coding intervals a t were set to [0-100] ms and 

the delays dk to {1„ 15}[ms] in 10 ms intervals. The available synaptic delays were 

therefore 1-16 (ms). These parameters were chosen experimentally to produce the best 

results. The post-synaptic (PSP) was defined by a a -func tion  with a constant time 

r = 120 (ms). Input vectors were presented sequentially to the network together with 

the corresponding output vectors identifying their categories as shown in Table 3.3. 

Unlike the network structure and its variants used in the standard LVQ, as shown in 

Figure 3.1 and Figure 3.2 respectively, the proposed structure has different features:

(i) It uses spiking neurons instead o f the common neurons;

(ii) It uses multi-synapse terminals instead o f single reference vector between 

input layer and hidden layer;

(iii) For each reference vector each multi-synapse terminal has delay and 

weight instead o f weight only.
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The difference between spiking neurons and conventional neurons that enable 

spiking neurons to outperform conventional neurons is that they represent a more 

plausible model o f real biological neurons, since spiking neurons consider time as 

an important feature for information representation and processing. Another 

important feature is that the models o f SNNs are much more nonlinear and that 

more parameters are considered than in the conventional networks. Hence, a 

network o f spiking neurons appears to be an interesting tool for investigating 

temporal neural coding and for exploiting its computational potential in a much 

more sophisticated manner than offered by conventional networks.

Another difference in the application o f the network structure is the multiple 

synapse approach. The existence o f multiple synapses is biologically plausible 

[Wolf, Zhao and Roberts, 1998], since in brain areas like the neocortex a single 

pre-synaptic axon makes several independent contacts with the post-synaptic 

neuron. The practical aspects o f this theory have been discussed recently and 

using this approach for neural computation has already been demonstrated [Wei 

and Fahn, 2002; Nager, Storck, and Deco, 2002; Natschlager, Maass, and Zador, 

2001; Maass and Zador, 1999]. Instead o f a single synapse, with its specific delay 

and weight, this synapse model consists o f many sub-synapses, each one with its 

own weight and delay as shown in Figure 3.5. The use o f multiple synapses 

enables an adequate delay selection using the learning rule that is presented in the 

next section. For each multiple synapse connecting input neurons to hidden 

neurons, the resulting PSP is given by equation (21) in sub section 3.7.1.
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Number o f inputs = 60 Number o f outputs = 6 j
i

Number o f hidden neuron for each output Initial weights range = 0 to 1 !
i

category = 6
Scaling range = 0 to 1 Coding interval = 0 to 100

Learning rate = 0.0075 Delay intervals = 15 (ms) in 10 (ms) 

interval
Synaptic delays = 1 to 16 (ms) Time constant = 120 (ms)

Table 3.3: Details o f the proposed S-LVQ network used for control charts

, Pattern Outputs

1 2 3 4 5 6

Normal 1 0 0 0 0 0

Increasing trend
i

0 1 0 0 0 0

1 Decreasing trend 0 0 1 0 0 0

! Upward shift 0 0 0 1 0 0

: Downward shift
i

0 0 0 0 1 0

1 Cycle
j

0 0 0 0 0 1

Table 3.4: Representation o f the output categories
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Class 1

Output layer

Hidden
(Kohonen
layer)

Figure 3.5

Input layer (in time 
coding)

Input vector

Figure 3.5: The proposed S-LVQ network structure

Figure 3.6: Multi-synapse terminals for the S-LVQ spiking neural network
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Compared to the network structure used in Natschlager and Ruf [Natschlager and Ruf,

1998] and Bohte et al. [Bohte et al., 2000], the proposed structure helps to reduce the 

complexity o f  the connections where the multiple synaptic delays exit only between 

the input and hidden neurons.

3.10.2 S-LVQ Learning Procedure

In this research, the adopted spiking neurons were based on the Spike Response 

Model [Gerstner and Kistler, 2002] with some modification to the spike response 

function in order for the networks to be applied to control chart pattern recognition. 

The spike response function used in this architecture has been modified to:

e ( t )  =
1

j tee
v tci J

f  _ ( l  + sO

e
\

o+so A
tc i -  e tee

(25)

In this spike response function, tee and tci represent the time constant for membrane 

and synapse respectively and tee = 120 (ms) and and tci=20 (ms). Here st is equal 

to (t - t  - d k) where t is the simulating time (0 to 300), t. is the firing time o f pre- 

synaptic neurons, and d k represents the delay w itlu  = 16.
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With this proposed spike response function, the spiking neural network technique 

worked well for control chart data. Bohte et al [Bohte, 2000] have stated that 

“Depending on the choice o f  suitable spike response functions, one can adapt this 

model to reflect the dynamics o f a large variety o f different spiking neurons.”

There are, at most, two weights to be modified for the LVQ-X and the variant o f the 

LVQ as discussed in section 3.6. As discussed in sections 3.3 to section 3.6, the main 

problem with standard LVQ is that only the winning neuron is permitted to modify 

the connection weights in each learning iteration. This is the so-called “winner-take- 

a ir’ competition. This will result in a situation where some neurons may win too often 

while others are always inactive. Although each cluster o f neurons has more than one 

neuron, most o f the time only one neuron seems to be contributing or playing a role 

during the learning. This means that only a few neurons have been learning and the 

potential o f the other neurons, especially the neurons in the cluster which belong to 

the correct category, is wasted.

To address this problem, a new supervised LVQ architecture based on an SNN model 

learning algorithm is proposed. Moreover, due to the time-series nature o f control 

chart data, an SNN with temporal coding would more naturally be able to learn to 

process the data and detect any patterns in it. This is expected to result in a compact 

classifier that is easy to train. There are two methods applied in the proposed network 

(S-LVQ): firstly, to boost the neuron potential; secondly, to motivate the neurons.
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3.10.2.1 Boosting

Generally, one spike is not enough to cause a post-synaptic neuron to fire. Biological 

neurons typically must have their potentials raised by around 20mV, while individual 

spikes change this potential by a few millivolts at most [Maass, 1997]. Therefore, to 

determine a potential for a neuron at a certain time t, it is necessary to integrate the 

response function for each spike encountered before time t. This could be a daunting 

task as spikes accumulate over a simulation. This might result in M  potential winners, 

corresponding to the top M  external inputs. In general, when the external inputs are 

close in magnitude, M  tends to be larger. I f  M >  1, the selection o f  the actual winner is 

strongly influenced by the initial states (membrane potential). For some initial states, 

the winner is the first neuron to spike, and the computation is done at the first spike o f 

the network [Jin and Seung, 2002]. Experiments performed on control chart data sets 

have confirmed this biological phenomenon in the proposed network. This means that 

there is more than one potential winner and the selection o f  the actual winner is 

strongly influenced by the initial states (membrane potentials).

To address this problem, a boosting technique is applied to the proposed learning rule. 

With supervised learning, the classes o f the training patterns are known. When a 

training pattern is presented to the network, a bias value may be injected to boost the 

initial state o f the spiking neuron’s potential in the cluster that belongs to the class o f 

that training pattern. This bias value is selected after a few experiments to give a 

reliable value. The selected value will produce a reasonable distance for the particular 

cluster from the other clusters in the network. The best value found for control chart 

data with the proposed S-LVQ network was in the ranges o f  0.5 to 1.0. The value 

chosen is fixed for all the spiking neuron clusters in the network. The effectiveness o f
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this boosting technique depends upon how efficiently the updating weights are 

implemented and upon the regularity o f the data to which the training is applied.

3.10.2.1 Motivating

Concepts o f motivation are vital to progress in behavioural neuroscience. 

Motivational concepts help one to understand what limbic brain systems are chiefly 

evolved to do, i.e., to mediate psychological processes that guide real behaviour. 

Motivational concepts are needed to properly understand how real brains generate real 

behaviour [Berridge, 2004]. Epstein [Epstein, 1982] suggested that three additional 

criteria are needed to distinguish truly motivated behaviour. These criteria are as 

follows:

(1) Flexible goal directedness. This means behavioural demonstration that the target 

was a true goal, shown by flexible learning and coordinated appetitive behaviour 

aimed at obtaining the goal, both changing appropriately when the alteration of 

circumstances necessitate new strategies to obtain the goal. It means ruling out 

both simple forms o f learning and simple drive activation o f behaviour.

(2) Goal expectation. This means expecting to find something interesting.

(3) Affect. This means that real motivation is always accompanied by affective 

reactions to the goal itself.

These three criteria are used as a guideline to measure the effectiveness o f the 

motivation concepts implemented in the proposed learning rule. This will be 

supported by empirical evaluation o f the proposed learning rule.
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In the proposed learning rule, the goal is to learn a set of firing times at the output 

layer, for a given set o f temporal input patterns. The learning rule is easy to 

implement. The proposed S-LVQ updates not only the weights o f the winning neuron 

but also the other spiking neurons in the same cluster simultaneously. Moreover, 

instead o f penalising the winner as implemented in previous work, the winner and the 

spiking neurons in the same cluster are motivated.

The main idea or the goal expectation here is that the spiking neurons in the same 

cluster with the winner are as motivated as the candidates to be the winner in the next 

iteration. By motivating the other spiking neurons in the same cluster with the winner, 

their weight vectors which are in the correct category with the winner will get closer 

to the input vector in that category. Obviously, this approach gives a chance to the 

other spiking neurons in the same category with the winner to win the competition in 

the next iteration. In this way, most probably, all the spiking neurons in the same 

cluster will be activated. Clearly, this method gives more concentration to the spiking 

neurons in the same cluster with the winning neuron.

Based on the goal and its expectation mentioned above, the learning rule should give 

an affective reaction which acts on the goal itself. As more spiking neurons become 

activated, then the performance o f  the learning algorithm will become better.

A pseudo-code description for updating the weight o f S-LVQ is given in Figure 3.6. 

The details o f  the pseudo-code are as follows.



Procedure Training For S-LVQ Algorithm

1) Define the network structure ;

2) Initialise the weights and the delays;

3) Encode the input data into temporal coding;

4) Present a training input pattern to the network;

5) For each t (simulation time) Do

i) Update the synapse potential;

ii) Update the output (boosting); 

W hile ( t < time window)

6 ) Find the winner;

7) Update the weights as the following:

For Category = 1 Do

Process = 1 End For

For Category = 2 Do

Process = 2 End For

Continue until

For Category = n Do
Process = n End For

8 ) Return to (4).

Figure 3.7: A pseudo-code description for S-LVQ Algorithm
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The algorithm requires the network structure definition. This involves deciding on the 

number o f inputs and outputs, the number o f  sub-connections, the learning rate, the 

time constant, and the threshold parameter. The chosen values for these parameters 

were mentioned in sub-section 3.10.1 and in table 3.3. SNN is a complex network 

model with a number o f  parameters which control its functionality. Tuning the 

network by assigning appropriate values for these parameters is essential for the 

smooth functioning o f the network and for obtaining optimum performance. There is 

a lack o f clear guidelines regarding the selection o f these parameters. Hence, in this 

work, these parameters were found by analysing the preliminary results obtained with 

some initial trial values.

In step 2, initialising the network plays an important role in the learning process. The 

important parameters here are the weights and delays o f the interconnections between 

the input neurons and the output neurons. The chosen values for these two parameters 

have been mentioned in sub-section 3.10.1 and table 3.3 In the proposed model the 

connection weights are assigned only with positive values and all the connections are

realised as excitatory with positive spike response function £”(0  e [0-l] . This is to

ensure that the effect o f most o f  the input parameters contributes positively to the 

output.

In step 3, another important aspect o f implementing the model is effected, the 

temporal coding for the continuous input values. Precision o f the temporal code 

should be selected in a way as to attain adequate accuracy with optimal computational 

efficiency. Experiments have revealed that an input time window with 100 units is 

adequate in the case o f control chart data sets for this learning rule.
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In step 4, a training input pattern will be presented to the network sequentially.

In step 5, the simulation time (/) is selected as from 0 to 300 units. For each t, the 

network is updating the synapse potential for the training input pattern. This is then 

followed by updating the output. The potential neurons o f the class belonging to that 

particular training input are raised here.

In step 6 , the system will determine the first neuron to fire. The first neuron to fire is 

determined as the winner and will specify the class o f the input vector.

In step 7, the winning neuron and other neurons in the same cluster with the winner 

will be modified or updated. If  the winning neuron is in category (class) 1, then 

proceed with process 1. Process 1 involves updating that winning neuron and also 

other neurons in category 1 only. I f  the winning neuron is in the correct category and 

a t  > 0, the neurons will be updated using equation (26). If  a t  < 0, equation (27) is 

used, which is mentioned below. I f  the winning neuron is in the incorrect category for 

A 7 ' > 0 o r A r < 0 ,  then equation (28) is used. This process will be continued for other 

categories.

In step 8 , the system will return to step 4 with a new training input pattern and will 

repeat the procedure until all training patterns are correctly classified (or a stopping 

criterion is met).
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In this research, the unsupervised learning equations in (24) in sub section 3.7.2.2.2 

were modified to create a supervised learning equation using the following update 

equations. Learning is achieved through adapting the weights in the network 

connections to encode the input information.

If the winner is in the correct category, then:

W n e * = Wo M + d w  W h e r e

V y
(26)

V y
(27)

If the winner is in the incorrect category, then:

W new ~  W old dw where

for AT> 0  or  AT<0
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In the simulation, the parameter values for the learning function ^ ( ^ ) w e r e  set to: 

77 = 0.0075, p  = 35, A = ^ ( 2  * ( 2 2 / 7 )) , = [0-100], a  = 0.8, wneH, is the new

value for the weight, and wold is the old weight value. The parameter 77 is the constant 

learning rate. Parameter p  sets the width o f the positive part o f the learning window 

and a  T denotes the time difference between the onset o f a PSP at a synaptic terminal 

and the time o f the spike generated in the winning output neuron. Parameter a  was 

used because in supervised learning there is prior information about the training sets.

3.11 Setting the Weights, Delay, and Threshold

In this chapter, in order to realise a neuron as an integrator, a time constant that is 

longer than the time input window is selected. In addition, the threshold 0  value 

should be reliable in order to get better accuracy. A suitable threshold value for this 

experiment could be the number o f  inputs multiplied by the number o f multi-synapses 

multiplied by the average o f the connection weights, and all this multiplication 

divided by a constant number. In this experiment, the corresponding value is 10. The 

weights range is 0  to 1 and the delay interval is 1 0  for each o f the synapses.

3.12 Data Set

Experiments have shown that the ability o f  the networks to generalise is affected 

significantly by the quality o f  data available and by the effectiveness o f the techniques 

used for analysing the data. The process simulator designed to create the required
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training data set has been described in Chapter 2. There were 1500 data sets generated 

using this simulator. From these data sets, 1002 were used as training patterns (167 

patterns in each category) and 498 (83 patterns in each category) were used for the 

testing patterns. The patterns were sequentially applied to the network.

3.13 Empirical Evaluation of S-LVQ

This section presents an empirical evaluation o f  the control chart pattern recognition 

performance with the S-LVQ algorithm. Two criteria were used to evaluate the 

performance o f the tested algorithm, namely, number o f  training epochs and 

classification accuracy. The number o f  epochs was taken as the total number o f 

epochs to get the best performance during the training and testing process. 

Classification accuracy is generally the most important criterion in control chart 

pattern recognition performance. It is defined as the percentage o f instances from the 

test set that were correctly classified when the network developed from the 

corresponding training set was applied. The accuracy level was calculated using the 

following equation.

.... Number o f  patterns correctly classified
Accuracy (%) = --------------------------- ------------------------- -—  A lUl)

Total number o f  patterns tested

The results obtained with the proposed architecture and the supervised learning 

procedure for control chart pattern recognition are presented in Table 3.5, together 

with the results obtained with an LVQ network and its variants. The results in Table 

3.7 are presented graphically in Figure 3.7.
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Pattern recogniser N um ber of 
tra in ing  epochs

Learning 
perform ance (% )

Test performance
(%)

LVQ (Standard) 70 95.18 92.31

LVQ2 4 94.31 89.62

LVQ (Standard) + 
LVQ2

74 96.18 92.61

LVQ (with a 
conscience mechanism)

70 95.98 92.71

LVQ-X 2 0 1 0 0 . 0 97.70

S-LVQ 40 99.85 98.28

Table 3.5: Results o f different pattern recognisers applied to control chart data set.
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Figure 3.8: Graph showing the result o f the different pattern recognisers
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3.14 Comparison with LVQ and its Variants

S-LVQ was compared with LVQ and its variant as mentioned in section 3.5. 

Experimental results have demonstrated that the proposed S-LVQ gives better 

performance compared to the other five LVQ pattern recognisers. With only 40 

training epochs, it can reach 98.28% o f classification accuracy. Although LVQ-X has 

fewer numbers o f training epochs, the classification accuracy is only 97.70%. Overall, 

S-LVQ gives the best performance among the other pattern recognisers.

3.15 The Effect of Number of Hidden Neurons on S-LVQ

The primary factors which controlled the behaviour o f the LVQ network were the 

number o f hidden neurons, the learning rate, and the training time. In the proposed S- 

LVQ, some interesting findings have been made. In S-LVQ, the number o f hidden 

neurons effects the number o f  active neurons in a particular cluster. Hence, it will 

affect the classification accuracy. Five different numbers o f  hidden neurons have been 

tested in this problem. Experiments showed that the number o f hidden neurons 

activated in the same cluster increased with the number o f  hidden neurons. With 36 

hidden neurons, all o f  the six hidden neurons in the same cluster were active in almost 

each learning iteration. When the number o f hidden neurons was decreased to 24, 

only 3 or 2 o f the hidden neurons in the same cluster were active. Table 3.6 shows the 

result o f the effect o f the number o f  hidden neurons on the proposed S-LVQ, and this 

is shown in a graphical presentation in Figure 3.8. Figure 3.9 shows the summary o f 

the implementation o f  the proposed S-LVQ algorithm for control chart pattern 

recognition.
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Number o f hidden 

neurons

Number o f active 

neurons

Learning 

performance (%)

Test performance 

(%)

1 2 Less than 2 88.73 87.22

18 Less than 3 92.02 90.33

24 Less than 4 96.88 94.25

36 All neurons in the 
same cluster

99.85 98.28

42 All neurons in the 
same cluster

99.97 98.30

Table 3.6: The effect o f the number o f hidden neuron

training
testing

12 18 24 36 42

Number of hidden neurons

Figure 3.9: The classification accuracy for different number of hidden neurons

104



Spiking neural 
networks

f' ^
Input Representation, 
Design and Training

LVQ

Figure 3.10: The implementation o f the proposed S-LVQ algorithm for control chart
pattern recognition.
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3.16 Summary

This chapter has presented a new spiking learning vector quantisation (S-LVQ) 

algorithm for classification learning, particularly for control chart patterns which 

include the new architecture and new learning rule for S-LVQ. Modifications were 

made to suit the typical spiking neural networks used for control chart pattern 

recognition. Spiking neuron networks together with the LVQ structure have resulted 

in a simple structure o f spiking neurons for control chart data, reducing the 

complexity o f implementation. As in LVQ-X, there is no dependency on the initial 

values o f  the weights in spiking neural networks for control chart pattern recognition. 

The training and adaptation time o f  the S-LVQ was clearly shorter than that for LVQ 

and its variant. The new learning rule has increased the numbers o f hidden neurons 

activated and has greatly improved the efficiency o f the algorithm in terms o f 

classification accuracy. This shows clearly the superior performance o f the S-LVQ 

networks technique in an application to control chart data over other procedures using 

traditional neural networks.

The algorithm presented in this chapter is an implementation o f spiking neurons to the 

standard LVQ which involved some modification o f the architecture and learning 

rule. A new algorithm based on S-LVQ but with much simpler architecture than S- 

LVQ is considered in the next chapter.
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CHAPTER 4

ENHANCED S-LVQ NETWORK (NS-LVQ)

4.1 Previous Work

Extensive recurrent connections between neurons exist in the brain. This has inspired 

researchers to propose recurrent neural network models with multiple feedback loops 

for many computations done in the brain, such as the Winner-Takes-All (WTA) 

computation [Hahnloser et al., 2000]. A WTA results when the dynamics o f the 

network lead to sustained spiking o f a single neuron or a group o f neurons (the 

“winner”), although all neurons are driven by external inputs and are capable of 

spiking in the absence o f couplings with other neurons. WTA behaviour in the brain’s 

neural networks could be the basis o f perceptual decision making [Salzman and 

Newsome, 1994] and control o f visual attention [Niebur and Koch, 1996; Lee et al.,

1999]. WTA can also be used for implementing universal computations [Maass,

2000] and as a hierarchical model o f  vision [Riesenhuber and Poggio, 1999]. 

However, recurrent networks are often assumed to be slow in converging to the 

computational results [Jin and Seung, 2002]. Jin and Seung in their work have shown 

that recurrent networks can perform fast computation if the detailed dynamics o f 

individual spikes are considered. They specifically analyse a simple spiking recurrent 

network that performs WTA computation. In their work, they impose a structural 

symmetry on the network by using neurons with identical parameters, that is 

excitatory connections with the same strength. However they also neglect the time
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course o f the spikes and the time delay o f spike transmissions. The external inputs are 

modelled as constant currents injected into the neurons. When inhibition and/or 

excitation are strong enough, the network performs a WTA computation for all 

possible external inputs and initial states o f the network. The computation is done as 

soon as the winner spikes once. This is because the inhibition from the winner 

prevents other neurons from spiking. In general, the selection o f the winner can be 

strongly influenced by the distribution o f the external inputs and by the initial states of 

the network. In another case, if a group o f neurons get external inputs close to the 

maximum input, the network is multistable, and any neuron in the group can be the 

winner. As to which neuron will be the actual winner, this depends largely on their 

initial membrane potentials.

Previous studies all assumed a particular initial state o f the networks where all 

neurons are at the resting membrane potential, and they proposed that the winner will 

be the neuron with the maximum external input. In the brain, this assumption is too 

restrictive, since the membrane potential o f  the neurons often deviates from the 

resting membrane potential because o f noise and the inputs from other brain areas.

Generally, their analysis shows that initial states o f the network can strongly influence 

the selection o f the winner, depending on the distribution o f the external inputs. Their 

work also showed that WTA have the potential to carry out fast computation with 

suitable parameters and initial state o f the membrane potential o f the network.
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Inspired by the fast computation o f the Winner-Takes-All learning rule, together with 

the superior results o f S-LVQ and the finding about SNNs with fewer neurons 

[Maass, Schnitger, and Sontag, 1991], this chapter presents an enhanced S-LVQ and 

so-called NS-LVQ

4.2 Motivation for Research

According to Ammar [Ammar et al., 2003], the first supervised training was 

suggested in Bohte [Bohte et al., 2000] where the classical back propagation, which is 

a gradient descent based algorithm, is adapted to temporal coding, and an 

approximation o f the post-synaptic potential is assumed to allow derivation. A large 

set o f weights have to be adjusted, since a connection between two neurons 

corresponds to sixteen sub-connections. The size o f the network therefore increases 

drastically with the number o f neurons. For this reason, more research into supervised 

learning for pulsed neural networks is essential. In addition, a more efficient 

supervised learning algorithm is needed for the better exploitation o f  the pulsed neural 

networks models.

To address this problem, a new approach for supervised training is proposed in 

Chapter 3 above with the so-called S-LVQ algorithm. The algorithm is applied to 

control chart pattern recognition. As mentioned in Chapter 3, S-LVQ is the 

combination o f LVQ structure and spiking neuron models. The structure o f LVQ was 

chosen because it is simple and easy to implement. These factors help to reduce the 

complexity o f the spiking neuron network with multi-synapse. Results showed that
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the algorithm gave better performance compared to traditional neural networks. 

However, previous experiments with spiking neuron networks have demonstrated the 

ablility to perform well with fewer neurons than a traditional neural network [Maass, 

Schnitger, and Sontag, 1991].

The proposed NS-LVQ presents an improvement to the network architecture of S- 

LVQ. The proposed architecture consists of a feedforward network with a simple 

structure o f spiking neurons where each class o f control chart patterns is represented 

by a single hidden neuron. The simple structure reduces the number o f  weights to be 

adjusted since it is fully connected between input layer and hidden layer only. It is 

partially connected between the hidden layer and output layer. The next section is 

organised as follows: first, section 4.3 will describe the proposed spiking neural 

networks architecture; next, section 4.4 gives the description o f setting the weights, 

delays and the threshold; section 4.5 introduces the technique o f pre-process weights; 

the next section describes the learning procedure applied here, which defines its 

characteristics, and its strengths and limitations are given in the context of 

classification problems; next comes an empirical evaluation o f  the proposed network 

and lastly a description o f an experiment using a different learning rate technique on 

the proposed algorithm.

4.3 NS-LVQ Networks Architecture

This structure consists o f a feedforward network fully connected between the input 

and hidden layers with multiple delayed synaptic terminals (m) and partially 

connected between the hidden and output layers, with each output neuron linked to 

different hidden neurons. An individual connection consists o f a fixed number o f

110



m synaptic terminals, where each terminal serves as a sub-connection that is 

associated with a different delay and weight between the input and hidden layers. The 

weights o f the synaptic connections between the hidden and output neurons are fixed 

at 1. Experiments were carried out with a number o f  network structures with different 

parameters and learning procedures. The networks finally adopted had 60 input 

neurons in the input layer, which means the input patterns consisted o f the 60 most 

recent mean values o f the process variable to be controlled. One input neuron was 

therefore dedicated for each mean value. There were six output neurons, with one for 

each pattern category, and six hidden neurons where the number o f hidden neurons 

here depends on the number o f  classes. Table 4.1 shows the details o f the networks 

used.

At the beginning o f training, the synaptic weights were set randomly between 0 and 

+1. The input vector components were scaled between 0 and 1. Using a temporal 

coding scheme, the input vector components were then coded by a pattern o f firing 

times within a coding interval and each input neuron allowed firing once at most 

during this interval. In this work,, the coding intervals AT were set to [0-100] ms and 

the delays d k to {1,..., 15} [ms] in 10 ms intervals. The available synaptic delays 

were therefore 1-16 ms. The PSP was defined by an a  -function with a constant time 

r =150 ms. Input vectors were presented sequentially to the network together with the 

corresponding output vectors identifying their categories as shown in table 4.2. Unlike 

the network structure used in S-LVQ, [Natschlager and Ruf, 1998] and [Bohte, Poutre 

and Kok, 2 0 0 0 ], the proposed structure helps to reduce the complexity o f the 

connections where the multiple synaptic delays only exist between the input and 

hidden neurons. There were six output neurons, one for each pattern category, and six
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hidden neurons (the number o f hidden neurons here depends on the number of 

classes).

Only single connections between the hidden and output neurons and the weights were 

fixed to 1. This reduced the number o f weights that had to be adjusted since only the 

connections between the input and hidden neurons had multiple synaptic terminals. 

Generally, the NS-LVQ network adopted the spiking neuron models from S-LVQ. 

These two models, S-LVQ and NS-LVQ were based on the Spike Response Model 

[Gerstner and Kistler, 2002] with some tuning in the parameter used for NS-LVQ 

model in order for the network to be applied to control chart pattern recognition. The 

spike response function used in this architecture is exactly the same as in Chapter 3 in 

equation (25). The only difference is the value o f the parameter for membrane time 

constant tee, which is 150 (ms). The synapse time constant tci used in this spike 

response function is 20 (ms). Here, st is equal to (t - t i - d k) as in S-LVQ where t is 

the simulating time (0 to 300), /. is the firing time o f pre-synaptic neurons and dk 

represents the delay with* = i 6 . Other parameters in this spike response function are 

the same as in S-LVQ in Chapter 3.
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Number o f inputs = 60 Number o f outputs = 6

Number o f hidden neuron for each output Initial weights range = 0 to 1

category = 1

Scaling range = 0 to 1 Coding interval = 0 to 100

Learning rate = 0.0075 Delay intervals = 15 (ms) in 10 (ms) 

interval
Synaptic delays = 1 to 16 (ms) Time constant = 150 (ms)

Table 4.1: Details o f  the proposed NS-LVQ network used for control charts

Pattern Outputs

1 2 3 4 5 6

Normal
1

0 0 0 0 0

Increasing trend 0 1 0 0 0 0

Decreasing trend 0 0 1 0 0 0

Upward shift 0 0 0 1 0 0

Downward shift 0 0 0 0 1 0

Cycle 0 0 0 0 0 1

Table 4.2: Representation o f the output categories
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Unlike the network structure used in the traditional neural network, the proposed 

structure has different features:

(i) Using spiking neurons instead o f the common neurons;

(ii) Multi-synapse terminals instead o f a single reference vector between input 

layer and hidden layer;

(iii) Each multi-synapse terminal has delay and weight instead o f weight only 

for each reference vector;

(iv) The proposed network has a fewer neurons.

Compared to the structure o f the S-LVQ network, the NS-LVQ structure has been 

modified to be simpler than the structure o f the traditional LVQ, where only one 

hidden neuron is used to represent each category o f patterns.

Figure 4.1 and Figure 4.2 show the architecture o f the proposed network. Figure 6  

demonstrates the multi-synapse terminals for the NS-LVQ network. The different 

layers are labelled as input, hidden, and output layer respectively as shown in Figure 

4.1. It is assumed that any neuron can generate at most one spike during the 

simulation interval and discharges when the internal state variable reaches a threshold.

4.4 Setting the Weights, Delays and Threshold

One o f the most important roles in a learning process is initialising the network. The 

important parameters in the networks are the weights, delays and also the threshold 

value. The connection weights are allowed in the range [0, 1] and the delays in the 

range o f {1, ..., 15} [ms] in 10 ms intervals. This value was chosen after to give the
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best performance after a few experiments. The available synaptic delays were 

therefore 1-16 (ms).

In the proposed network, in order to ensure that no neuron dominates all the other 

neurons for all or most o f the input pattern, a pre-process weights technique is 

proposed. The range o f the weights and delays are exactly the same as for the S-LVQ 

algorithm in Chapter 3.

The selection o f the threshold value for a neuron needs more concentration as too low 

a value will force the neuron to fire prematurely without reflecting the entire input 

pattern. On the other hand, too high a value will prevent the neurons from firing and 

will block the learning process because a neuron can learn only when it is active. 

Therefore, the threshold value should be set to an appropriate value to capture the 

effect o f all or most o f the inputs while ensuring that it fires.

A suitable threshold value in this proposed algorithm is as the following equation:

, , ,  (Inputs) x  (Num o f  sub-connection x  (Weights average)
Threshold = -----------------------------------------------------------------------------------------

A conAant value
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Figure 6
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Figure 4.1: A structure proposed for the NS-LVQ network

Hidden layer

Input layer

Figure 4.2: Multi-synapse terminals for the NS-LVQ network
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4.5 Pre-process Weights

As mentioned before, in the “Winner-Takes-AH” learning rule some neurons may win 

too often while others are always inactive. In order to prevent this drawback o f the 

learning rule, a pre-process weights technique is presented in this work. The pre- 

process weights are applied before the training procedure. This technique is repeated 

for a few times to find the best setting. As a suitable selection, repeating was set to 6. 

The main purpose o f this technique is to balance the weights among the hidden 

neurons. Hence, the value for the connection weights will be almost equal and will not 

dominate the effect o f delays. The pseudo-code o f the pre-process weight is shown in 

Figure 4.3. A detailed description o f the technique is as follows:

In step 1, for each hidden neuron, do the summation o f the weights for the sub

connections for that particular neuron. This will give the total weights for each hidden 

neuron. Do the calculation for each training pattern.

In step 2, the average o f  weights for hidden neurons is calculated in order to find the 

average value o f  total weights for each hidden neuron. This is calculated using the 

following equation:

The total weights o f  all hidden neuron
A verage = ------------------------------------------------------------

Number o f  output

In step 3, compare the total weights o f each hidden neuron with the average value in 

step 2. This is to find the final distance to be used as a bias value in step 4.

In step 4, for a winning neuron the weights will be decrease by the value found in step 

3.

A step 5 is repeating the procedure until a certain time or until a stopping criterion is 

met. In this work, the procedure is repeated for 6 times.
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4.6 NS-LVQ Learning Procedure

As mentioned in sub-section 3.9.2.1 in Chapter 3, there are, at most, two weights to be 

modified for the LVQ and its variant including LVQ-X methods. As discussed in 

sections 3.3 to 3.6, the main problem with the standard LVQ is that only the winning 

neuron is permitted to modify the connection weights in each learning iteration. This 

is so-called “Winner-Takes-All” competition. This will result in some neurons 

winning too often while others are always inactive.

Inspired by the fast computation o f the “Winner-Take-All” learning rule [Jin and 

Seung, 2002], the proposed NS-LVQ algorithm applies the “Winner-Take-All” 

learning rule. Taking into account that the membrane potential o f the neurons often 

deviates from the resting membrane potential because o f  noise and the inputs from 

other brain areas, the proposed network also applies the boosting technique as applied 

in the S-LVQ algorithm in Chapter 3. Moreover, this technique has been proved by S- 

LVQ to contribute to better classification.
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Procedure for Pre-process W eights

1) Calculate the total weights for each hidden neuron;

2) Calculate the Average o f  weights for hidden neuron;

3) For each hidden neuron Do

If the (total weight > Average) Then 

Distance = (total weights -  Average)

Else

Distance = (Average - total weights)

Final distance = Distance / (Number o f input)*Number subconnection 

End For;

4) If a hidden neuron is the winner Then

Weight = Weight -  Final distance for that particular hidden neuron 
Else
Weight = Weight + Final distance for that particular hidden neuron;

5) Repeat this procedure (1) to (4) until a certain time or until a stopping 

criterion is met.

Figure 4.3: A pseudo-code description for pre-process weight

119



The technique o f  boosting applied in this network is similar to that applied for the S- 

LVQ network. The Winner- Takes-All learning rule applied here will modify the 

weights between the input neurons and the neuron first to fire (winning neuron) in the 

hidden layer. The winner will be activated to 1 and the others to 0. In this learning 

procedure, only if the winning neuron is in the correct category and the start o f the 

PSP at a synapse slightly precedes a spike in the target neuron, is the weight of this 

synapse increased, as it exerts a significant influence on the spike-time by virtue o f a 

relatively large contribution to the membrane potential. A pseudo-code description for 

updating weight o f S-LVQ is given in Figure 4.3. The details o f the pseudo-code are 

as follows:

The network structure needs to be defined. This involves deciding on the number of 

inputs, outputs, and the number o f sub-connections, the learning rate, and time 

constant parameter. The chosen values for theses parameters were mentioned in sub

section 4.3. SNN is a complex network model with a number o f parameters which 

control its functionality. Tuning the network by assigning appropriate values for these 

parameters is essential for the smooth functioning o f the network and for obtaining 

optimum performance. There is a lack o f  clear guidelines regarding the selection o f 

these parameters. Hence, in this work, these parameters were found by analysing the 

preliminary results obtained with some initial trial values.

In step 2, initialising the network plays an important role in the learning process. The 

important parameters here are the weights and delays o f the interconnections between 

the input neurons and the output neurons and also the threshold. The chosen values 

for these two parameters have been mentioned in section 4.4. In the proposed model,

120



the connection weights are assigned only with positive values and all the connections 

are realised as excitatory, with positive spike response function G [0*1] . This

is to ensure that the effect o f most o f the input parameters contributes positively to the 

output.

In step 3, another important aspect o f implementing the model is addressed, namely 

the temporal coding the continuous input values. Precision o f the temporal code 

should be selected in such a way as to attain adequate accuracy with optimal 

computational efficiency. Experiments have revealed that an input time window with 

1 0 0  units is adequate in the case o f  control chart data sets.

In step 4, a training input pattern will be presented to the network sequentially.

In step 5, the simulation time (t) in this work is selected at from 0 to 300 units. For 

each t, the network is updating the synapse potential for the training input pattern. 

Then followed the updating o f  the output. Here is where the potential neurons o f the 

class belonging to that particular training input are raised.
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Procedure Training For NS-LVQ Algorithm

1) Define the network structure ;

2) Initialise the weights and the delays;

3) Encode the input data into temporal coding;

4) Present a training input pattern to the network;

5) For each t (simulation time) Do

i) Update the synapse poten tia l;

ii) Update the output (boosting); 

While (t < time window)

6 ) Find the winner;

7) Update the weights as the following:

8 ) Return to (4).

Figure 4.4: A pseudo-code description for NS-LVQ Algorithm
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In step 6 , the system will determine the first neuron to fire. The first neuron to fire is 

determined as the winner.

In step 7, the weight o f the winning neuron only will be modified or updated. If the 

winning neuron is in the correct category and a t  > 0 , the neurons will be updated 

using equation (29) or a t  < 0, the equation (30) is used. If the winning neuron is in 

the incorrect category for a t  > 0  or a t  < 0 , then equation (31) is used.

In step 8 , the system will return to step 4 with a new training input pattern and repeat 

the procedure until all training patterns are correctly classified (or a stopping criterion 

is met).

In this research, the unsupervised learning equations in (24) were employed to create 

a supervised learning equation using the following update equations:

If the winner is in the correct category, then

W neK =  W o U + d w  where

V y
or (29)

V y
(30)
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If the winner is in the incorrect category, then

W,1(n,  =  Wnhl ~ d w  where

dw =

( A T  'j ^

f  1 ' ,  2P2 Jai j

V /

for A T >0 or  AT<0 (31)

In the simulation, the parameter values for the learning function L (A T )  were set to: 

;; = 0.0075, p  = 35, A = ^ ( 2  * ( 2 2 / 7 )) , AT= [0-100], a  = 0.8, wHew is the new 

value for the weight and wold is the old weight value. The parameter rj used here is a 

static learning rate. Parameter p  sets the width o f the positive part o f the learning 

window and A T denotes the time difference between the onset o f a PSP at a synaptic 

terminal and the time o f  the spike generated in the winning output neuron. Parameter 

a  was used because in supervised learning there is prior information about the 

training sets.

4.7 Data Set

The same data set as used in Chapter 3 is used here in order to make a comparison o f 

the network. There were 1500 data sets generated, using the process simulator 

mentioned above. From these data sets, 1002 were used as training patterns (167 

patterns in each category) and 498 (83 patterns in each category) for the testing 

patterns. The patterns were sequentially applied to the network.
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4.8 Empirical Evaluation of NS-LVQ

This section presents an empirical evaluation o f  the control chart pattern recognition 

performance with the NS-LVQ algorithm. Two criteria were used to evaluate the 

performance o f the tested algorithm, namely, number o f training epochs and the 

classification accuracy. The number o f epochs determine the training time. The 

performance o f the network is calculated based on the classification accuracy. The 

calculation o f the accuracy was made using the following equation:

Number o f  patterns correctly classified _ _
Accuracy (%) = --------------  — ----------------------  —  X  100

Total number o f  patterns tested

The results obtained with the proposed architecture and the supervised learning 

procedure for control chart pattern recognition are presented in Table 4.3. A 

comparison was made with the results obtained with an LVQ network [Pham and 

Oztemel, 1994] and a back-propagation neural network.
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Pattern recogniser j Num. o f  training 
| epochs

Learning 
performance (%)

Test
performance (%)

LVQ-X 20
i

1 0 0 . 0 0 97.70

Back-propagation | 200
!

1 0 0 . 0 0 95.00

S-LVQ i 40 99.85 98.28

NS-LVQ j 15
i

99.93 97.85

Table 4.3: Results o f different pattern recognisers applied to control chart data set.
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4.9 Comparison with S-LVQ and Traditional Neural Networks

In Bohte et al’s work, a large set o f weights have to be adjusted since a connection 

between two neurons corresponds to sixteen sub-connections, so the size of the 

network increases drastically with the number o f  neurons. Furthermore, the network is 

fully connected. Modifications were made to suit the spiking learning vector 

quantisation (S-LVQ) used for a much simpler network. Compared to S-LVQ, the 

resulting network has a shorter training time although the classification accuracy o f S- 

LVQ is slightly better. The resulting neural network has a simple structure o f spiking 

neurons for control chart data, reducing the complexity o f  implementation. As 

mentioned in Chapter 3, the resulting network has no dependency on the initial values 

o f the weights. The training and adaptation time o f the resulting spiking network 

clearly was shorter than that for LVQ and back-propagation networks [Pham and 

Oztemel, 1992; Pham and Oztemel, 1994]. At the end o f  10 training epochs, the 

network was able to classify correctly 98.73% o f the training data set and 95.89% of 

the test set. After 15 training epochs, the overall recognition accuracy level was 

increased to 99.93% for the training set and 97.85% for the test set. This shows 

clearly the superior performance o f the spiking neural networks technique in an 

application to control chart data over the other procedures using traditional neural 

networks.
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4.10 Learning Parameter ( 7  )

As mentioned in the above chapter, SNNS is a complex model which involves more 

parameters. Choosing the suitable parameters will affect the efficiency of the 

recogniser. Another important parameter to be identified is the learning parameter 7 . 

There is no way to decide it theoretically. The maximum allowable static value of the 

learning parameter can be obtained empirically. However, there are two techniques to 

determine the most suitable learning value. There are:

1) Static learning rate;

2) Adaptive learning rate.

4.10.1 Static Learning Rate

Static learning rate means that the value is fixed for all iterations. Experiments 

showed that the classification accuracy with a small learning parameter is better and 

the learning time is faster than with a larger learning rate. The smaller learning rate is 

in the range o f [0.0025, 0.01] and the larger is in the range o f [0.05-0.1]. In this thesis, 

the reasonable value o f learning rate that give the best performance is 0.0075.

4.9.2 Adaptive Learning Rate

The adaptive learning rate monotonically decreases with time t. Different functions

could be adopted to implement 7 ( 0 , including the exponential decay function as in 

Figure 4.4 and the linear decay function as in Figure 4.5. The allowed value for every 

step in both functions is 0.003. The learning rate value is updated at each learning 

iteration.
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Iterations

Figure 4.5: Exponential decay function

i  l

0

Iterations

Figure 4.6: Linear decay function
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Learning parameter 7

5
Number of iterations 

1 0 15 2 0

0.0025 91.83 97.87 98.21 98.72

0.0050 91.72 97.14 97.84 97.84

0.0075 93.06 97.23 97.85 97.85

0 . 0 1 93.77 97.13 97.74 95.42

0.05 93.63 96.46 97.39 94.68

0 . 1 90.33 94.72 95.25 96.36

Table 4.4: Testing accuracy for different values o f static learning rate

Epochs Testing accuracy with 

exponential decay 

[0.0025-0.01]

Testing accuracy with 

linear decay 

[0.0025-0.01]

5 94.26 % 92.35%

1 0 96.56% 95.67%

15 95.83% 95.67%

2 0 93.17% 94.33%

Table 4.5: Comparison o f training accuracy based on two different types o f adaptive 
learning rate.
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Figure 4.7: Adaptive vs. static learning for classification accuracy
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4.10.3 Static Vs Adaptive Learning Rate

Tables 4.4 and 4.5 show the results for control chart data using static learning rate and 

adaptive learning rate respectively. Figure 4.7 presents the results clearly in a 

graphical way. Table 4.6 shows the results o f different cases o f static value. From the 

results shown in table 4.6, it is clear that with a small learning parameter, which is in 

the range o f [0.0025, 0.01], the performance o f the classification is much better. The 

percentage o f correct classifications is between 91.71% and 93.77% for 5 learning 

epochs. The percentage is better with the increasing epochs. The best performance is 

at 15 learning epochs. The percentage o f  correct classifications is between 97.74% 

and 97.85% and the best performance is 97.85% with the static learning rate at 

0.0075. After 20 learning epochs, the performance remains static. The adaptive 

learning strategy proposed here showed that it learns much faster for the first 1 0  

iterations. The classification accuracy reaches 96.56% at 10 iterations. However, this 

is the highest percentage reached. In these experiments, static learning produced 

better results than adaptive learning. This is in contradiction to the results reported by 

Xin and Embrechts [Xin and Embrechts, 2001]. The adaptive learning strategy 

proposed here can be improved in future to get better results.

4.11 Summary

This chapter has presented an enhanced spiking learning vector quantisation (S-LVQ) 

algorithm, so-called NS-LVQ, particularly applied for control chart patterns. Here, a 

new architecture and a technique for pre-process weights were proposed. Previously, 

neural networks have proved capable o f  data smoothing and generalisation. This 

research has shown that spiking neural networks with a simpler architecture together
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with an efficient learning rule can produce good capability in data smoothing and 

generalisation. This permits them to recognise noisy control chart patterns not 

identical to those they have been taught, as indicated by the good results presented in 

this work. Some improvement in the adaptive strategy proposed in this chapter will 

enable better classification accuracy.
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CHAPTER 5

OPTIMISATION OF SPIKING NEURAL NETWORKS USING

THE BEES ALGORITHM

5.1 Preliminaries

Generally, an optimisation algorithm is defined as a numerical method or algorithm 

for finding a value jc such that f(x )  is as small (or as large) as possible, for a given 

function / ,  possibly with some constraints on jc. Here, jc can be a scalar or vector o f 

continuous or discrete values. If  jc is continuous, then the study o f the algorithm is part 

o f numerical analysis. However, classical optimisation methods encounter great 

difficulty when faced with the challenge o f  solving hard problems with acceptable 

levels o f time and precision. It is generally believed that NP-hard problems cannot be 

solved to optimality within polynomial bounded computation times, thus generating 

much interest in approximation algorithms that find near-optimal solutions within 

reasonable running times.

Over the past several years, researchers have been inspired by nature in many 

different ways. Svvarm-bascd optimisation algorithms (SOAs) mimic nature’s 

methods to drive a search towards the optimal solution. They often provide state-of- 

the-art solutions for hard optimization problems. They have been demonstrated to be 

efficient algorithms for tracking or finding the optimal solution in the dynamic
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environment and have received increasing interest. Successful optimisation methods 

play a crucial role for finding optimal or near-optimal solutions for such problems.

5.2 Intelligent Swarm-based Optimisation Algorithms (SOAs)

Swarm intelligence is an innovative computational way to solve hard problems. 

Swarm intelligence (SI) is an artificial intelligence technique based around the study 

o f collective behaviour in decentralised, self-organised systems. The expression 

"swarm intelligence" was introduced by Beni & Wang in 1989 [Beni and Wang, 

1989], in the context o f  cellular robotics systems.

This discipline is mostly inspired by the behaviour o f swarms o f ants, termites, bees, 

wasps, fishes and other biological creatures. In general, there is some kind o f 

mimicking o f the behaviour o f  these swarms. SI systems are typically made up o f  a 

population o f  simple agents interacting locally with one another and with their 

environment. Although there is normally no centralized control structure dictating 

how individual agents should behave, local interactions between such agents often 

lead to the emergence o f global behavior. Swarm Intelligence is a relatively novel 

discipline devoted to the study o f  self-organizing collective processes in Nature and 

Human artefacts as well as on their applications.

A key difference between SOAs and direct search algorithms such as hill climbing 

and random walk is that SOAs use a population o f  solutions for every iteration instead 

o f producing a single solution. As a population o f  solutions is processed in iteration, 

the outcome o f  each iteration is also a population o f  solutions. If an optimisation 

problem has a single optimum, SOA population members can be expected to
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converge to that optimum solution. However, if an optimisation problem has multiple 

optimal solutions, an SOA can be used to capture them in its final population.

Among the most popular SOAs are the Ant Colony Optimisation (ACO) algorithm 

[Dorigo and Stutzle, 2004], the Genetic Algorithm (GA) [Goldberg, 1989] and the 

Particle Swarm Optimisation (PSO) algorithm [Eberhart, Shi, and Kennedy, 2001].

An example o f  a particularly successful research direction in swarm intelligence is ant 

colony optimisation (ACO), which focuses on discrete optimisation problems, and has 

been applied successfully to a large number o f hard discrete optimisation problems, 

including the travelling salesman, the quadratic assignment, scheduling, vehicle 

routing, etc., as well as to routing in telecommunication networks.

However, apart from these remarkably successful applications in optimisation as well 

as on their critical features as bio-inspired computational paradigms, a small number 

o f research works have still been devoted to Pattern Recognition , Data Classification 

and Retrieval Systems, Clustering, Distributed Data-Mining, Web Mining and 

GRIDS, Collaborative Filtering, Image Analysis and Signal Processing, Pattern 

Formation, Perception, Memory and Generalisation.

In the real world one usually has to deal with the task of searching for an optimal 

solution in a dynamic environment. Because o f  the continual change of both the 

external environment and parameters, the optimum solution will also change with 

time. In contrast to the static case, the main goal in dynamic optimisation problems is 

no longer to acquire just the global extreme but to track its orbit through space as 

closely as possible, or to find a robust solution that operates optimally in the presence 

of uncertainties. Many algorithms fail when applied to the dynamic problem due to
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their inability to adapt or sclf-adapt to the change o f the environment. Currently, a 

swarm-based algorithm, the so called Bees Algorithm (BA), is claimed to be capable 

o f locating good solutions efficiently [Pham et al, 2006].

This algorithm is inspired by the behaviour o f honey bees [Pham et al, 2005]. There 

are other SOAs with names suggestive o f possibly bee-inspired operations [Frisch, 

1976: Seeley, 1996, Bonabeau, 1999, and Camazine et al, 2003]. However, as far as 

the author is aware, those algorithms do not closely follow the behaviour o f bees. In 

particular, they do not seem to implement the techniques that bees employ when 

foraging for food.

5.3 The Basic Bees Algorithm

5.3.1 Honey Bees in Nature

A colony o f honey bees can extend itself over long distances (more than 10 km) and 

in multiple directions simultaneously to exploit a large number o f  food sources 

[Frisch, 1976; Seeley, 1996]. A colony prospers by deploying its foragers to good 

fields. In principle, flower patches with plentiful amounts o f nectar or pollen that can 

be collected with less effort should be visited by more bees, whereas patches with less 

nectar or pollen should receive fewer bees [Bonabeau, 1999, and Camazine et al, 

2003].
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The foraging process begins in a colony by scout bees being sent to search for 

promising flower patches. Scout bees move randomly from one patch to another. 

During the harvesting season, a colony continues its exploration, keeping a percentage 

ol the population as scout bees [Seeley, 1996]. When they return to the hive, those 

scout bees that found a patch which is rated above a certain quality threshold 

(measured as a combination o f  some constituents, such as sugar content) deposit their 

nectar or pollen and go to the “dance floor” to perform a dance known as the “waggle 

dance” [Frisch, 1976].

This mysterious dance is essential for colony communication, and contains three 

pieces o f information regarding a flower patch: the direction in which it will be found, 

its distance from the hive and its quality rating (or fitness) [Frisch, 1976; Camazine et 

al, 2003]. This information helps the colony to send its bees to flower patches 

precisely, w ithout using guides or maps. Each individual’s knowledge o f the outside 

environment is gleaned solely from the waggle dance.

This dance enables the colony to evaluate the relative merit o f different patches 

according to both the quality o f  the food they provide and the amount o f energy 

needed to harvest it [Camazine et al, 2003]. After waggle dancing on the dance floor, 

the dancer (i.e. the scout bee) goes back to the flower patch with follower bees that 

were waiting inside the hive. More follower bees are sent to more promising patches. 

This allows the colony to gather food quickly and efficiently.

While harvesting from a patch, the bees monitor its food level. This is necessary to 

decide upon the next waggle dance when they return to the hive [Camazine et al,
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2003], If the patch is still good enough as a food source, then it will be advertised in 

the waggle dance and more bees will be recruited to that source.

5.3.2 Bees Algorithm

As mentioned above, the Bees Algorithm finds the optimal solution to a problem by 

copying the natural foraging behaviour o f  honey bees [Pham et al, 2005]. Figure 5.1 

shows the flowchart for the basic Bees Algorithm in its simplest form [Pham et al, 

2005]. Figure 5.2 illustrated the Bees Algorithm in a simple but attractive graphical 

representation [Pham et al, 2005]. The details o f  the Bees Algorithm will be described 

in the next section, with an addition to it.

5.3.3 Characteristics of Bees Algorithm

Population (n) is one o f the key parameters in the Bees Algorithm. Pham et al., 2005 

presented an experiment designed to measure the effect o f changing population size 

on the mean number o f iterations, number o f  evaluated points and reliability o f 

successfulness o f the algorithm. Experiments proved that increasing the population 

size will result in a reduced number o f  iterations. Elitism (e) is another important 

parameter. The number o f elites does not have a major effect on the performance o f 

the Bees Algorithm. Thus, the number o f elites can be a small number more than zero.
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Neighbourhood search is an essential concept for all evolutionary algorithms 

including the Bees Algorithm. In the Bees Algorithm, the searching process in the 

neighbourhood range is similar to the foraging field exploitation o f natural bees.

In the Bees Algorithm, the natural behaviour o f  bees to find quality nectar has been 

used as a neighbourhood search. Only one bee is chosen from each neighbourhood 

site (foraging site). This bee has the best solution information about the field. 

Neighbourhood search is based on the random distribution o f bees in a predefined 

neighbourhood range. For every selected site, bees are randomly distributed to find a 

better solution. The number o f recruited bees around selected sites should be defined 

properly. Experiment has shown that increasing the number will result in increasing 

the probability o f finding a good solution. This problem also depends on the 

neighbourhood range. Neighbourhood range is another variable which needs to be 

tuned for different types o f problem spaces.
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Neighbourhood search

Evaluate fitness o f the population

Determine the neighbourhood range

Select elite bees (e)

Select sites for neighbourhood search (tn-e)

Select fittest bees from each site

Initialise a scout bee population (n)

Assign remaining bees to random search (n-m-e)

New population o f  scout bees (e+m+ (n-m-e))

Recruit the bees around selected sites

Figure 5.1: Flowchart o f Bees Algorithm
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Graph 1. Initialise population with random solutions and 
evaluate the fitness.

Graph 2. Select elite bees

Graph. 3. Select sites for neighbourhood search*1' 
and“°”.

Graph 4. Define neighbourhood range.

h m *

Graph 5. Recruit bees around selected sites.

Graph 6. Select the fittest from each site “ ”

Graph 7. Assign remaining bees to search randomly and 
evaluate their fitness

Graph 8. New population with “previous elite bee”, 
representative bees and randomly distributed bees

Figure.5.2: Graphical illustration o f bee algorithm.
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Therefore, it is necessary to discuss different strategies for increasing the robustness 

and quality o f  the algorithm. In this chapter, a shrinking method is applied to the Bees 

Algorithm in order to get better result and to speed the computation time. Details o f 

the proposed method are discussed in following section.

5.4 Bees in Artificial Neural Networks

Optimising the topology o f artificial neural networks is an important task, when one 

aims to get smaller and faster networks, as well as a better generalisation 

performance. Moreover, optimisation automatically avoids the time-consuming search 

for a suitable topology. The main criterion for optimising the network topology is the 

size o f the network. The time needed for the optimisation and the classification 

accuracy are also important.

The Bees Algorithm has shown good performance in its application to neural 

networks for control chart pattern recognition. Architectures used are Learning 

Vector Quantisation (LVQ), Radial Basis Function (RBF), and Multi-Layer Peceptron 

(MLP) [Pham et al., 2006]. These papers have described the use o f the Bees 

Algorithm to train the network for control chart pattern recognition
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In terms o f the Bees Algorithm, each bee represents an LVQ network with a particular 

set o f  reference vectors. The aim o f  the algorithm is to find the bee with the set o f 

reference vectors producing the smallest value o f the error function. The LVQ 

networks adopted had 60 input neurons in the input layer, 6 output neurons, and 36 

hidden neurons. The algorithm was initialised with all weight values set randomly 

within the range 0 to 1. The classification accuracy levels achieved after 4000 

iterations were 96.56% for the training data and 95.47% for the test data. The authors 

reported that despite the high dimensionality o f  the problem,(each bee represented 

2160 (60X36) parameters that had to be determined) the algorithm still succeeded in 

training more accurate classifiers than those produced by the standard LVQ training 

algorithm.

[Pham et al., 2006] explained both the standard RBF training method and a training 

procedure based on the Bees Algorithm. In this algorithm, each bee represents an 

RBF network with a particular set o f  basis function centres, spreads and weight 

vectors. The aim o f  the algorithm is to find the bee producing the smallest value o f  the 

error function. The RBF network configuration used involves three layers: an input 

layer, a hidden layer and an output layer. The input layer has 60 neurons, one for each 

point in a pattern. The hidden layer consists o f 35 neurons. The output layer 

comprises 6 neurons, one for each o f the six classes. They reported that despite the 

high dimensionality o f  the problem (each bee represented 2345 (60*35+6*35+35) 

parameters that had to be determined), the algorithm still succeeded in training the 

network with 99.1% classification accuracy and their results are comparable with 

those given by conventional RBF networks.
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For MLP networks, each bee represents an MLP network with a particular set of 

weight vectors. The aim o f  the algorithm is to find the bee with the set o f weight 

vectors producing the smallest value o f  the error function. MLP networks are trained 

with the Bees Algorithm as well as with the standard back-propagation algorithm. The 

multi-layer perceptron (MLP) configuration used involves three layers: an input layer, 

a hidden layer and an output layer. The input layer has 60 neurons, one for each point 

in a pattern. The output layer comprises 6 neurons and the hidden layer consists o f 35 

neurons. The input neurons perform no processing roles, acting only as buffers for the 

input signals. Processing is carried out by the hidden and output neurons, the 

activation functions for which were chosen to be o f the sigmoidal type. In addition, 

the algorithm was initialised with all weight values set randomly within the range -1 

to 1. The authors reported that at the end o f 1000 iterations, the MLP network was 

able correctly to classify 98.2% o f  the training set and 96.9% o f the test set. The 

network was also here applied to a high dimensionality o f the problem as each bee 

represented 2310 (60*35+35*6) parameters that had to be determined. Their results 

demonstrated that this algorithm outperformed the back-propagation algorithm.

Table 5.1 shows the values o f  the parameters adopted for the Bees Algorithm for the 

three recognisers. The values were decided empirically. The performance o f the 

ANNs mentioned above is shown in Table 5.2.
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Bees Algorithm parameter

Artificial neural networks architecture

LVQ RBF MLP

Population (n) 200 200 200

Number o f selected sites (m) 20 10 20

Number o f elite sites (e) 1 2 2

Initial patch size (ngh) 0.01 0.1 0.1

Number o f bees around elite 
points (nep) 20 80 50

Number o f bees around other 
selected points (nsp) 10 20 20

Table 5.1: The parameters o f the Bees Algorithm for LVQ, RBF and MLP 
for control chart pattern recognition

Pattern recogniser with Bees Learning accuracy Test accuracy

LVQ 96.56% 95.47%

RBF 99.59% 99.10%

MLP 98.2% 96.9%

Table 5.2: Performance o f different pattern recognisers with Bees
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5.5 Evaluation Strategy (ES) in SNNs

In [Belatreche et al., 2003], the authors investigate the viability o f evolutionary 

strategies (ES) regarding supervised learning in spiking neural networks. The use of 

the evolutionary strategy is motivated by the ability o f  ESs to work on real numbers 

without complex binary encoding schemes. ESs proved to be well suited for solving 

continuous problems [Spears et al., 1993]. The ESs are used to search for the 

optimum weights and delays that minimise the total error between actual and target 

output firing times. The objective function to be minimised is given by equation (32):

E=YZ(C{t)-m? 02)
t  o e O

where t°0 ( 0  and t ‘0 ( t ) are, respectively, actual and target output firing times o f

node i for pattern t, and T is the total number o f patterns in the training set. In their 

work, a modified ES is used to train the spiking network in a supervised way, where a 

combination o f Cauchy and Gaussian mutation is used.

A feedforward fully connected spiking network is implemented in their work. 

Basically there are input, hidden and output layers (16X10X1) for IRIS benchmark 

data. The adopted spiking neurons are based on the Spike Response Model [Gerstner 

and Kistler, 2002] and are connected via synapse, which are characterised by a weight 

representing the synaptic strength and a delay for the time a spike takes to reach the 

post-synaptic neuron. The advantage here is its simple structure. The structure 

considers only one synaptic connection between two neurons, each o f  which is
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characterised by a weight and a delay value. M oreover, both positive and negative 

weights are allowed. The approach has been reported  as successful for learning 

nonlinearly separable problems without using any gradient information. The 

classification accuracy level achieved for the IRIS data  set is 98.67% for the training 

set and 94.67% for the test set. However, a disadvantage o f  this approach is that it is 

time-consuming. These results demonstrate that an alternative approach such as 

optimisation for supervised learning with spiking neural network have a great 

potential.

5.6 Motivation for Research

Although significant progress has already been made in recognisng information codes 

that can be beneficial for computation in SNNs [G erstner and Kistler, 2002a; Maass, 

1999; 2003; Maass and Bishop, 1999], how to determ ine efficient neural learning 

mechanisms that facilitate the implementation o f  these particular time coding schemes 

is still an open problem. Numerical experiment has proved that the performance o f the 

S-LVQ and the NS-LVQ algorithms is superior to that o f the standard ANNs. 

However, experiment using a single synapse for each connection between two 

neurons showed that further work is needed to improve the performance o f the 

classification achieved. These algorithms still suffer from problems that limit their 

efficiency and widespread use. One o f the main lim itations is the method used to set 

the values o f weights and delays. In these algorithms, the value o f  weights, delays and 

o f the delay interval must be set by trial and error to get the best result.
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This section presents S-LVQ and NS-LVQ with the Bees Algorithm, an alternative 

algorithm which addresses the limitation o f  the spiking networks. In particular, it 

employs a new optimisation algorithm, which modifies the basic Bees Algorithm. 

Generally, the proposed Bees Algorithm applies the shrinking method to narrow the 

neighbourhood size in order to focus the searching process. This enhancement enables 

an improvement o f performance for both networks.

The remainder o f  this chapter is organised as follows: section 5.7 gives a detailed 

description o f the proposed Bees Algorithm and the spiking neural network structure; 

section 5.8 presents the pattern recognition results obtained using the S-LVQ and NS- 

LVQ networks with the Bees Algorithm.

5.7 Spiking Neural Networks with Proposed Bees Algorithm

5.7.1 Networks Structure

Optimisation using the Bees Algorithm will involve both o f the proposed spiking 

networks presented above in Chapters 3 and 4, the so called SB-LVQ and NSB-LVQ 

networks respectively. In order to maintain comparability, the structure o f  the spiking 

neural networks (number o f  hidden layers and number o f neurons) remained the same 

throughout. The networks and parameters adopted here are exactly the same. Details 

o f the network structures are presented in Tables 5.1 and 5.2 respectively. Basically, 

those networks have a similar architecture to both the S-LVQ and the NS-LVQ 

networks, as explained above in Chapters 3 and 4 respectively. In this work, the 

adopted spiking neurons are based on the Spike Response Model [Gerstner and 

Kistler, 2002] with some modification to the spike response function in order for the
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networks to be applicable to control chart pattern recognition. The spike response 

function used in that architecture is as explained in equation (21) in Chapter 3. Input 

vectors were also presented sequentially to the network together with the 

corresponding output vectors identifying their categories as shown in Table 3.4 above. 

Unlike the network structure used for S-LVQ and NS-LVQ in Chapters 3 and 4, this 

structure considers only one synaptic connection between two neurons, each o f which 

is characterised by a weight and a delay value. Furthermore, this structure is much 

simpler compared to both previously proposed algorithms as only one synapse is 

considered. As previous work, only positive values o f weights are tested here.

5.7.2 Optimising the Networks

Previously the method presented for refining such a spiking network was the use o f 

the proposed S-LVQ and NS-LVQ algorithms. However, in both o f the proposed 

algorithms, during the training phase, the new learning algorithms are used to adjust 

the weights. In this thesis, a modified version o f  Bees Algorithm is used to optimise 

the weights and the delays o f the networks previously developed in Chapters 3 and 4 . 

The main motive for using the Bees Algorithm is to search for the optimum set of 

both synaptic weights and delays that allow the spiking network to learn temporal 

patterns.
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Number o f inputs = 60 Number o f outputs = 6

Number o f hidden neuron for each output Initial weights range = 0 to 1

category -  6
Scaling range = 0 to 1 Coding interval = 0 to 100

Learning rate = 0.0075 Time constant = 120 (ms)

Table 5.3: Details o f the proposed S-LVQ network used for control charts 
with the Bees Algorithm.

Number o f inputs = 60 Number o f outputs = 6

Number o f hidden neuron for each output Initial weights range = 0 to 1

category = 1
Scaling range = 0 to 1 Coding interval = 0 to 100

Learning rate = 0.0075 Time constant = 1 5 0  (ms)

Table 5.4: Details o f the proposed NS-LVQ network used for control charts 
with the Bees Algorithm.
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Figure 5.3: Single synapse connection between two neurons for the proposed spiking 

neural network with the Bees Algorithm.
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5.7.3 Proposed Bees Algorithm

As mentioned above, figure 5.4 shows the pseudo-code for the proposed Bees 

Algorithm. The modification to the basic Bees Algorithm is the addition at step 

number 6 and 9. The detailed description o f the pseudo-code is as follows:.

The algorithm starts with the n scout bees being placed randomly in the search space.

The fitnesses o f the points visited by the scout bees are evaluated in step 2.

Subsequently, in step 4, the m sites with the highest fitnesses are designated as 

“selected sites” and chosen for neighbourhood search.

Then, in steps 5-8, the algorithm conducts searches around the selected sites, 

assigning more bees to search in the vicinity o f  the best e sites. Selection o f the best 

sites can be made directly according to the fitnesses associated with them. 

Alternatively, the fitness values can be used to determine the probability o f the sites 

being selected. Searches in the neighbourhood o f the best e sites, those which 

represent the most promising solutions, are made more detailed. As already 

mentioned, this is done by recruiting more bees for the best e sites than for the other 

selected sites. Together with scouting, differential recruitment is a key operation of 

the Bees Algorithm. As explained previously, both scouting and differential 

recruitment are used in nature.

In step 6, the shrinking method is applied for neighbourhood size if the value o f the 

fittest bee remains unchanged. This is determined after certain number o f iterations.
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Procedure for Proposed Bees Algorithm

1. Initialise population with random solutions.

2. Evaluate fitness o f  the population.

3. While (stopping criterion not met)

// Forming new population.

4. Select elite bees and elite sites for neighbourhood search.

5. Select other sites for neighbourhood search.

6. Use initial patch size or shrink the patch size if the value o f the fitness remains 

unchanged.

7. Recruit bees around selected sites (more bees for best elite sites) and evaluate 

fitnesses.

8. Select the fittest bee from each site.

9. Assign remaining bees to search randomly and evaluate their fitnesses.

(After some iteration, reduce the population o f the bees)

10. End While.

Figure 5.4: Pseudo-code o f  the proposed Bees Algorithm
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The objective o f using this method is to focus the searching in a smaller 

neighbourhood size. If  the point is close to the optimum solution or the peak, a bigger 

neighbourhood range makes the search more difficult. Therefore, the patch size needs 

to be shrinking in order to speed up the search. After a few iterations of time 

shrinking, if there is no improvement to the value o f the fittest bee then it means that 

the bee is at the peak, so the shrinking is stopped. This phenomenon is illustrated 

using a simple graphical example in figure 5.5. So far, this shrinking method has only 

been tested on an artificial neural network problem.

In step 8, for each patch, only the bee that has found the site with the highest fitness 

(the “fittest” bee in the patch) will be selected to form part o f the next bee population. 

In nature, there is no such a restriction. This restriction is introduced here to reduce 

the number o f points to be explored.

In step 9, the remaining bees in the population are assigned randomly around the 

search space to scout for new potential solutions.

At the end o f each iteration, the colony will have two parts to its new population: 

representatives from the selected patches, and scout bees assigned to conduct random 

searches. After some iteration, reduce the population o f the bees as this will speed up 

the algorithm.

Lastly, steps 4-9 are repeated until the stopping criterion is met. This usually means 

that either the best fitness value has stabilised over a number o f iterations or the 

specified maximum number o f iterations has been reached.
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i i

Patch size after shrinkingInitial patch size

Figure 5.5: Graph illustrating the shrinking method for points that 
are near to the peak
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5.7.4 Spiking Networks Training Procedure

The training o f the artificial network can be regarded as the minimisation of an error 

function. The error function defines the total difference between the actual output and 

the desired output o f the network over a set o f training patterns [Pham and Oztemel, 

1992]. Training proceeds by presenting to the network a pattern o f known class taken 

randomly from the training set. I f  the class o f  the pattern is correctly identified by the 

network, the error component associated with that pattern is null. I f  the pattern is 

incorrectly identified, the error component is set to 1. The procedure is repeated for 

the entire pattern in the training set and the error components for all the patterns are 

summed to yield the value o f  the error function for the spiking networks with a given 

set o f weights and delays.

In terms o f the Bees Algorithm, each bee represents an S-LVQ or NS-LVQ network 

with a particular set of the weights and delays vectors. The aim o f the algorithm is to 

find the bee with the set o f weights and delays producing the smallest value o f error 

function. In this research, a modified Bees Algorithm is used to train the spiking 

network in a supervised way. The spiking network training procedure using the Bees 

Algorithm thus comprises the following steps:

1. Generate an initial population o f bee;

2. Apply the training data set to determine the value o f the error function associated 

with each bee;

3. Based on the error value obtained in step 2, create a new population o f bees 

comprising the best bees in the selected neighbourhoods and randomly placed scout 

bees;
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4. Stop if the value o f the error function has fallen below a predetermined threshold;

5. Else, return to step 2.

5.7.5 The Proposed Bees Algorithm Parameters

Table 5.5 shows the values o f  the parameters adopted for the Bees Algorithm for the 

spiking networks. The values were decided empirically. In addition, as mentioned 

above, only positive values for weights were tested. The algorithm was initialised 

with all weight values set randomly within the range 0 to 1. The range value o f the 

delays was initially set empirically from 30 to 80. This is based on experience from 

the previous experiments in chapters 3 and 4 above.

5.8 Data Set

Spiking neural networks with the Bees Algorithm used the same data sets as described 

in Chapter 2. These were also generated using the previously mentioned process 

simulator. From these data sets, 1002 were used as training patterns (167 patterns in 

each category) and 498 (83 patterns in each category) were used for the testing 

patterns. The patterns were sequentially applied to the network.
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Bees Algorithm parameters Symbol Value

Population n 1000

Number o f selected sites m 20

Number o f elite site e 5

Initial patch size ngh 0.5

Final patch size ngh 0.007

Number o f bees around elite points nep 70

Number o f bees around other selected points nsp 50

Table 5.5: The parameters o f the proposed Bees Algorithm
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5.9 Empirical Evaluation of Spiking Networks with Proposed Bees Algorithm

This section presents an em pirical evaluation o f  the control chart pattern recognition 

performance for spiking neural networks with a single connection using the Bees 

Algorithm. Two criteria were used to evaluate the performance o f the tested 

optimisation algorithm, namely, the simple structure and classification accuracy. The 

accuracy level was calculated using the same equation as explained in chapters 3 and

4.

The results obtained with the proposed architecture and the supervised learning 

procedure for control chart pattern recognition using the Bees Algorithm are 

presented in Table 5.7. The results obtained for the S-LVQ and NS-LVQ networks 

with single synapse connection w ithout optimisation are also presented. The results in 

Table 5.6 are presented graphically in Figure 5.6.

160



Pattern recogniser Learning

accuracy

Test accuracy

LVQ (standard) 95.18% 92.31%

S-LVQ (single synapse) 94.24% 86.65%

NS-LVQ (single synapse) 93.49% 85.10%

LVQ (Bees) 96.56% 95.47%

S-LVQ (single synapse with Bees) 96.44% 95.28%

NS-LVQ (single synapse with Bees) 94.24% 93.70%

T able 5.6: Results o f different pattern recognisers

F igure 5.6: Classification accuracy o f different pattern recognisers
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5.9.1 Comparison with Spiking Network without Bees Algorithm

Spiking neural networks for single synapse connection for S-LVQ and NS-LVQ 

architecture was compared with S-LVQ and NS-LVQ with the Bees Algorithm. 

Experimental results have demonstrated that the proposed Bees Algorithm gives 

better performance compared to single synapse architecture without the algorithm. 

After 2000 iterations, S-LVQ can reach 95.28% of classification accuracy. NS-LQ 

achieved the classification accuracy 93.70% after 1000 iterations. The optimisation 

algorithm successfully improved the performance o f the spiking network with single 

synapse connection. S-LVQ and NS-LVQ alone with single synapse only achieved 

86.65% and 85.10% classification accuracy respectively. Compared to spiking 

networks without optimisation [Table 5.6], the performance demonstrated that the 

Bees Algorithm still succeeded in training more accurate classifiers despite the high 

dimensionality o f the problem it faced as each bee represented 2160 (60X36) for S- 

LVQ and 360 (60X6) for NS-LVQ parameters need to be determined. Moreover, 

these results are comparable to the LVQ with Bees and represent a better performance 

than achieved by the standard LVQ training algorithm.

5.10 Summary

This chapter has presented a modified Bees Algorithm for optimising supervised 

spiking neural networks for classification learning particularly for control chart 

patterns, which include the simple architecture. This study was motivated by the 

recent experimental results on Bees Algorithm on artificial neural networks as 

explained above. This section also presented briefly various approaches to the task of 

optimising and discussed their potential in artificial neural networks. From the
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literature review, only Evolution Strategy (ES) has been implemented for optimising 

spiking neural networks with single synapse. However, this method was only tested 

on XOR problems and on IRIS data. As far as the author is aware, this is the first 

application o f the Bees Algorithm for optimising spiking neural networks for control 

chart pattern recognition.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter summarises the main contributions o f this work and the conclusions 

reached. It also provides suggestions for future work.

6.1 Contributions

This research addressed the problem o f pattern recognition in control chart data sets. 

The aim is to develop a good learning algorithm based on the spiking neuron model 

so that they can be successfully applied to control chart data sets. Its contributions 

include:

• A thorough analysis o f  the issue o f  pattern recognition. A critical overview 

has been conducted o f recently available or applied learning techniques 

ranging from statistical to artificial intelligence methods specifically applied to 

control chart data sets. This also includes a discussion o f  their potential for the 

application o f control chart pattern recognition. This led to the design of 

networks using the architecture o f conventional ANNs.
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• A thorough analysis o f  spiking neural networks. A critical overview has been 

performed o f more plausible models o f real biological neurons and also the 

existing learning algorithms, especially those suitable for pattern recognition. 

Their potential and successful application in pattern recognition were 

discussed. Finally, this led to the design o f  networks with spiking neurons 

instead o f common neurons, that consider time as an important feature for 

information representation and processing.

• A simpler architecture fo r  the proposed spiking networks. Four new 

architectures were developed, S-LVQ, NS-LVQ, SB-LVQ and NSB-LVQ. S- 

LVQ is a simple structure network similar to that o f an LVQ network (S- 

LVQ). An enhanced network o f S-LVQ (NS-LVQ) which is simpler than S- 

LVQ was developed. An optimisation technique was used to simplify both of 

the proposed spiking networks to a single synapse network instead o f multi

synapses, as in SB-LVQ and NSB-LVQ. The implementation o f these simple 

structures to the networks significantly reduced the complexity o f  the network 

and the learning time.

• An efficient learning algorithm fo r  better exploitation o f  this plausible model 

o f  real biological neurons. The proposed algorithms employed appropriate 

strategies adopted from o f nature and weight updating techniques that 

significantly increase the classification accuracy.
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• Nature-inspired techniques fo r  improved spiking network learning. The 

presented techniques for learning, which are boosting and motivation, were 

built inspired by the behaviour o f human neuroscience for training purposes 

[Cooper, 2002; Tolman, 1948; Barch, 2005; Berridge, 2004]. These techniques 

overcame drawbacks in the spiking neural network applied to control chart 

pattern recognition. The Bees Algorithm is a new population-based search 

algorithm. The shrinking method proposed for the Bees Algorithm procedures 

is reliable for artificial neural network problems. This optimisation method 

resulted in a simpler architecture as well as better accuracy for control chart 

pattern recognition with spiking networks.

• Supervised classification learning algorithms appropriate fo r  control chart 

data. Three new learning algorithms were developed, S-LVQ, NS-LVQ, and 

SB-LVQ and NSB-LVQ. The adopted spiking neurons in these networks are 

based on the Spike Response Model [Gerstner and Kistler, 2002] with some 

modification to the spike response function in order for the networks to be 

applied to control chart pattern recognition. The learning algorithm for S-LVQ 

is based on the integration o f boosting and motivation techniques mentioned 

above. Such integration led to an efficient and effective learning rule for 

control chart pattern recognition. NS-LVQ is an enhanced network o f S-LVQ. 

NS-LVQ is based on the integration o f  the boosting technique mentioned 

above and the Winner-Takes-All [Jin and Seung, 2002] updating weights. The 

main advantageous features o f NS-LVQ over S-LVQ are simpler architecture 

and faster computation. Enriched with these new features, NS-LVQ should
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produce a shorter learning time as well as better classification accuracy for 

control chart data sets. SB-LVQ and NSB-LVQ are improved versions o f the 

two networks mentioned above respectively. Both networks used the Bees 

Algorithm to search for the optimum set o f both synaptic weights and delays 

that allow the spiking network to learn temporal patterns. The main 

improvement o f SB-LVQ and NSB-LVQ over NS-LVQ and S-LVQ is the 

simplified network structure as mentioned above. Such an optimisation 

method allows the network to implement a single synapse with better 

classification accuracy for control chart data sets.

• An interesting effect fo r  different numbers o f  hidden neurons. The new 

learning algorithm proposed for S-LVQ took full advantage o f the numbers o f 

neurons in the hidden layer to improve its performance. It produced a precise 

learning rule as well as a learning time comparable to that achieved with 

standard LVQ and its variants and also with Back-propagation. This effect 

also resulted in better classification accuracy.

• An effective method fo r  pre-processing weights. This method follows a simple 

mathematical formula. The weights pre-processing method which is applied 

before the training process overcame the drawback o f using only a small range 

o f weights in spiking networks. It is found that weight initialisation is a critical 

factor for good performance o f the learning rule [Moore, 2002; Schrauwen and 

Van Campenhout, 2004; Tino and Mills, 2005; Xin and Embrechts, 2001] in 

certain algorithms such as SpikeProp.
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6.2 Conclusions

To gain the edge in today’s competitive environment, companies must employ 

effective tools to ensure that their products are o f the highest quality. Moreover, 

continuous improvement o f their production process is important in order continually 

to raise quality standards. Statistical Process Control (SPC) is a quality improvement 

tool widely adopted in industry and the most popular tool is control charts. It uses 

simple rules to determine if a process is out o f control and needs corrective action. It 

is also possible to detect incipient problems and to prevent the process from going out 

o f control by identifying the type o f  patterns displayed by the control charts [Pham 

and Oztemel, 1996]. Control chart pattern recognition has been successfully trained 

using artificial neural networks [Zorriassatine and Tannock, 1998]. For many years a 

common belief was that essential information in neurons is encoded in their firing 

rates. However, recent neurophysio logical results suggest that efficient processing of 

information in neural systems can be founded also on the precise timing o f action 

potentials (spikes) [Bohte, 2004; VanRullen et al., 2005; Thorpe et al., 2001]. 

Although the creation and development o f ANNs were inspired by biological neural 

systems, ANNs are considered to be limited compared to their biological counterparts 

due to their simplistic structure and behaviour [Zador, 2000; Maass, 1999].

These considerations have led to increased interest in temporal-coding spiking 

neurons which are more biologically realistic artificial neurons and in Spiking Neural 

Networks (SNNs) which are made up o f  such neurons. SNNs have shown great 

promise as pattern recognisers [Hopfield, 1995]. Most o f the existing learning 

algorithms are unsupervised, based on an adaptation o f the famous Hebbian rule. 

Hebbian learning is biologically based and is a simple learning method. Therefore it is
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a natural candidate for application to spiking neural networks [Kunkle and Merrigan, 

2005]. However, the unsupervised approach is not suitable for learning tasks that 

require an explicit goal definition. Most o f the supervised learning algorithms in 

previous research adopted the Multilayer Peceptron network with the classical back- 

propagation learning algorithm. However, the sizes o f the network increases 

drastically with the number o f  neurons as a large set o f weights have to be adjusted 

for multi-synapse connection.

Therefore, a new approach for supervised training is needed. Moreover, most existing 

algorithms were designed for low dimensions o f  data set. As far as the knowledge of 

the author goes, this thesis presents the first application o f the spiking network to 

control chart pattern recognition [Pham and Shahnorbanun, 2006]. Producing a good 

supervised learning algorithm for such high dimension data sets is a formidable 

challenge. Therefore, simple networks architecture together with efficient and 

effective learning algorithm is needed for better exploitation o f  these new 

applications.

This research presented a new supervised learning algorithm that can efficiently 

extract accurate and comprehensible models from high-dimensional data sets such as 

control charts. These algorithms were tested in several experiments and the results 

proved that they produced better performance as regards classification accuracy.

A simulator have been developed to create and to perform a detailed analysis o f 

spiking neuron networks on CCPR. The code for the simulator can be found in 

Appendix A and B.
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Chapter 3 presented a supervised learning algorithm that is suitable specifically for 

application to control chart pattern recognition. The proposed algorithm employs a 

new learning rule, which embodies several techniques o f natural behaviour and 

conventional architecture. Such integration produced a simple network which reduced 

the network complexity as well as overcaming the drawbacks o f most LVQ learning 

algorithms. This algorithm also demonstrated the interesting effect o f using different 

numbers o f hidden neurons in the network. This effect resulted in precise 

classification accuracy.

Chapter 4 concentrated not only on enhancement o f the proposed network mentioned 

above, but also on the procedure before the training process. The main objective o f 

chapter 4 is to produce a simpler architecture provided with an efficient learning 

algorithm. The procedure before training, so called pre-process weights, is a reliable 

way to balance the weights so that they will not dominate the neuron potential. 

Adaptive learning rate experiments were also carried out, aiming to take into account 

the effect o f the learning parameter on the learning time o f the network. Experiments 

indicated that the proposed network with the integration o f  several procedures 

substantially improved performance in terms o f learning time.

The application o f spiking neural networks to control chart pattern recognition is a 

new research area. Therefore, it is formidable challenge to develop powerful learning 

mechanisms with a non-complex architecture. Setting the values o f several 

parameters, such as the threshold, the range o f the weights and the delays, are very 

important as they play an important role in the network. Optimisation methods are 

well suited for solving this task. Chapter 5 introduced a new optimisation method, the
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Bees Algorithm (BA), to search for these parameters. This thesis presents the first 

application o f the Bees Algorithm to the optimisation of parameters of spiking neural 

networks for control charts. The Bees Algorithm is employed to search for the 

optimum set o f both synaptic weights and delays. The threshold is based on the 

previous experiments in chapters 3 and 4. The BA allows the networks to consider 

only a single synapse instead o f  multi-synapse as in the networks proposed in chapters 

3 and 4. Moreover, it produces a simpler architecture for both networks. In this work, 

software called CONDOR is used to speed up the optimisation process. CONDOR is 

a software system that creates a High-Throughput Computing (HTC) environment. 

Condor effectively utilises the computing power o f workstation that communicate 

over a network. Condor’s power comes from the ability to effectively harness 

resources under distributed ownership. The new optimisation technique demonstrated 

competitive results in terms o f classification accuracy compared to a spiking neural 

network with a single synapse for the networks proposed in chapters 3 and 4.

6.3 Future Work

This section suggests some o f the ways in which the method and algorithms 

developed in this thesis could be enhanced.

• In the proposed network, only the first spike produced by a neuron is relevant 

and the rest o f the time course o f  the neuron is ignored. Whenever a neuron 

fires a single spike, it is not allowed to fire again and this is so called ‘time-to- 

first-spike’ coding scheme [Kasinski and Ponulak, 2006]. The reason for 

considering this coding scheme is to ease the implementation o f the network.
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However, further work should consider investigating the second, the third and 

the rest o f the spike as well as the first spike.

• The proposed networks were only tested positive weight values. The weights

were initialised within the range o f 0 and 1. Further work should allow

negative weights which still lead to successful convergence. Examples of 

research in this area can be found in [Moore, 2002; Xin and Embrechts, 2001].

• In [Schrauwen and Van Campenhout, 2004], the authors adapted the gradient

descent method derived in SpikeProp to adjust not only synaptic weights, but

also synaptic delays, time constants and neurons’ thresholds. They claimed 

that this resulted in faster algorithm convergence and in smaller network 

topologies required for the given learning task. A further research task is to 

optimise these parameters using the Bees Algorithm, as in BA each bee 

represent an individual bee.

• It is also possible to apply other competitive optimisation algorithms such as 

the Ant Colony (ACO) algorithm [Pham et al, 2006; Dorigo et al., 2004], 

Genetic Algorithms [Pham et al, 2006; Goldberg 1989], and the Particle 

Swarm Optimisation (PSO) algorithm [Xu and Eberhart, 2002a and 2002b; 

Carlisle and Dozier 2002; Eberhart et al., 2001] to spiking neural networks to 

make a realistic comparison in terms o f speed o f optimisation and accuracy.

• In the Bees Algorithm, the values o f the tuneable parameters used are set by 

conducting a number o f  trials. Further work should address a method to solve
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this drawback and to achieve a reduction o f parameters. Since this algorithm 

is new, it is still an open problem to determine efficient learning mechanisms.

• The experiments carried out for the proposed shrinking method in the Bees 

Algorithm demonstrated that this method is limited for artificial neural 

network problems only. Further work should address a method suitable for 

general purposes.
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Appendix A

C++ simulator for Spiking Learning Vector 
Quantisation (S-LVQ) and Enhanced- Spiking 

Learning Vector Quantisation (NS-LVQ)
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MAIN

# i fde f  H A V E_CON FI G_H 
#include <config.h>
#endif

#include <iostream>
#include <stdlib.h>

#include "spkmodified.h" 
//#include "cancer.h"
//include "irish.h"
//#include "xor.h"

int main(int argc, char *argv[])
{
spkmodified_dataset snnRBF;
snnRBF.start();
return EXIT_SUCCESS;

}

MATRIX

#include "Vector.h" 
using namespace std;

class matrix{ 
private:

int rows; int cols; double *melt; int *meltct; 

public:
matrix(int,int); int ctype; int index(int i,int j){retum (i-l)*cols+j-l;};
void initmatrix(double type); void fill_random(int seed);
void print_matrix(); int nrows(){return rows;}; int ncols(){return cols;};
double getelt(int,int); void setelt(int, in t , double);
int get_row_Vector(int rowno, int scol, int ecol, Vector v);
int set_row_Vector(int rowno, int scol, int ecol, Vector v);
int get_col_Vector(int colno, int srow, int erow, Vector v);
int set_col_Vector(int colno, int srow, int erow, Vector v);
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int addmatrix(matrix); int vmproduct(Vector, Vector); 
int mmproduct(matrix, matrix);
int copymatrix(int srow, int scol,int erow, int ecol, matrix); 
void transpose(); void v_normalize(); void h_normalize(); 
int read_matrix_from_file(const char*); int write_matrix_to_file(const char*, int); 
void multiply(double); void swap_rows(int,int); void swap_cols(int,int); 
void shuffle(int);

\;

matrix: :matrix(int m, int n)
{
rows=m; cols=n; me It=new double[rows*cols*sizeof^double)];

double matrix: :getelt(int i, int j)
{
retum(melt[(i-1 )*cols+j-1 ]);

}

void matrix::setelt(int i, int j, double e)
{
melt[(i-1 )*cols+j-1 ]=e;

void matrix::initmatrix(double type)
{
for(int i=0;i<rows;i++) 

for(intj=0;j<cols;j++) 
melt[i*cols+j]=type;

}

void matrix::multiply(double val)
{
double tmp;

for(int i=0;i<rows;i++) 
for(int j=0;j<cols;j++){ 
tmp=melt[i*cols+j]*val; 
melt[i*cols+j]=tmp;

I 
I

void matrix::fill_random(int seed)
{
int tmp 1; 
double tmp2; 
srand(seed); 
for(int i=0;i<rows;i++) 

for(intj=0;j<cols;j++){ 
do{
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tmp 1 =rand()% 1000; 
tmp2=tmp 1/1000.0; 
}while((tmp2<0.3)||(tmp2>0.8)); 
melt[i*cols+j]=tmp2;

I
}

void matrix::print_matrix()
I
for(int i=0;i<rows;i++)

{
for(int j=0;j<cols;j++) { 

cout.width(wdth); 
c o u t«  m elt[i*cols+ j]«" ";

}
cou t«end l;

}
}

int matrix: :addmatrix(matrix am)
{
if ((rows!=am. nro ws()) ||(co Is!=am. nco ls())) 

cout«"D im ensions do not match(addmatrix)";

else
{
int i,j;
for(i=l ;i<=rows;i++) 

for(j=l;j<=cols;j++) 
setelt(i,j,getelt(i,j)+am.getelt(i,j)); 

return 1;
I
return 0;
}

int matrix::mmproduct(matrix pm, matrix opm)
{
if (cols!=pm.nrows())

cout«"D im ensions do not match(mmproduct)"; 

else
{
double sum; 
int i,j,k;
for(i= 1 ;i<=rows;i++) 

for(j=l;j<=pm.cols;j++)
{

sum=0;
for(k=l; k<=pm.rows;k++) 

sum=sum+getelt(i,k)*pm.getelt(kj);
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opm.setelt(i,j,sum);
}

return 1;
}
return 0;
}

int matrix: :vmproduct(Vector pv, Vector opv)
{
if (rows!=pv.getcnt()){

cout«"D im ensions do not match(vmproduct)";
}

else
{
double sum; 
int j,k;

for(j= 1 ;j<=cols;j++)
{

sum=0;
for(k=l; k<=rows;k++) 

sum=sum+p v. getelt(k) * gete lt(k,j); 
opv.setelt(j,sum);

}
return 1;

}
return 0;
}

int matrix::copymatrix(int srow, int scol, int erow, int ecol, matrix cpym)
{

int i,j,nrow,ncol;

nro w=erow-srow+1; 
ncol=ecol-scol+l;

for(i=l ;i<=nrow;i++) 
for(j=l ;j<=ncol;j++)

cpym.setelt(i,j,getelt(i+srow-1 ,j+scol-1));

return 1;
}

int matrix::get_row_Vector(int rowno, int scol, int ecol, Vector rowv)
{

int cnt;
cnt=ecol-scol+l; 
double tmp;
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int tmpcl;

if^cnt>rowv.getcnt())
cout«"D estination dimension do not match(getrowvect)"; 

else
{
for(int i= 1 ;i<=cnt;i++) {

tmpcl=getelt(rowno, i+scol-1); 
rowv.setelt(i, tmpcl); 
ctype=tmpcl;

}
else
{
tmp=getelt(rowno,i+scol-l);

rowv.setelt(i,tmp);
}

i

return 1;
}
return 0;

}
int matrix: :set_row_Vector(int rowno, int scol, int ecol, Vector rowv)
{

int cnt;
cnt=ecol-scol+l; 
if^cnt>rowv.getcnt()) 

cout«"Destination dimension do not match(getrowvect)";

else
I
for(int i=l;i<=cnt;i++)

i l ( i= l){
setelt(rowno,i,rowv.getelt(i+scol-l));

}
else

setelt(rowno,i,rowv.getelt(i+scol-l)); 
return 1;
}
return 0;

\

int matrix::get_col_Vector(int colno, int srow, int erow, Vector colv)
{
int cnt; 

cnt=erow-srow+1; 
if(cnt>colv.getcnt())
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cout«"D estination dimension do not match(getcolvect)"; 

else
{

for(int i=l;i<=cnt;i++) 
colv.setelt(i,getelt(i+srow-1 ,colno)); 

return 1;
\
return 0;

int matrix: :set_col_Vector(int colno, int srow, int erow, Vector colv)
{
int cnt; 

cnt=erow-srow+1; 
if(cnt>colv.getcnt())
cout«"D estination dimension do not match(setcolvect)"; 

else
{

for(int i=l;i<=cnt;i++) 
setelt(i+srow-1 ,colno,colv.getelt(i)); 

return 1;
}
return 0;

}

int matrix: :read_matrix_from_file(const char *file_name)
{
int i,j; char ch; double ele;

ifstream infile(filenam e); 
for(i= 1 ;i<=rows;i++) { 
for(j=l;j<cols;j++){

if G==l){
in file»ctype;
in file» ch ;

setelt(i,j,ctype);
}
else { 

in file» e le ; 
in file» ch ;

setelt(i,j,ele);
}

I
in file»e le ;
setelt(i,j,ele);
}

infile.closeQ;
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return 1;
}

int matrix::write_matrix_to_file(const char *file_name,int type)
{

charch; int i,j; ch=7; 
if (type— 1){
ofstream outfile(filenam e); 
for(i= 1 ;i<=rows;i++) { 
for(j= 1 ;j<=cols-1 ;j++) 

o u tfile« g e te lt( i,j)« ch ; 
o u tfile« g e te lt( i,j)« en d l;
}
ou tfile«end l;
outfile.close();

}
else{

ofstream outfile(file_name,ios::app); 
for(i=l ;i<=rows;i++)

for(j=l;j<=cols;j++){ 
if (j<cols) o u tf ile « g e te lt( i,j)« c h ; 

else o u tfile« g e te lt( i,j)« en d l;
}

o u tflle«end l;
outfile.close();
}

return 1;

}

MATRIX 3D

//#include "Vector.h"

class matrix3D{ 
private:

int rows; int cols; int planes; int P_ele; //No o f elements in a plane 
int N_ele; //Total no o f  elements double *melt; 

public:
matrix3D(int,int,int); void initmatrix(double type); void fillrandom(int seed); 
void fill_inc(int seed,int, int); void print_matrix(); int nrows(){return rows;}; 
int ncols(){retum cols;}; int nplanes(){returnplanes;}; double getelt(int,int,int); 
void setelt(int, in t , int, double); void seteltl(int, in t , int, double); 
int read_matrix_from_fIle(const char*); int write_matrix_to_file(const char*, int); 
void multiply(double);

};

matrix3D::matrix3D(int 1, int m, int n)
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{
rows=m; cols=n; planes=l; P_ele=rows*cols; N_ele=l*P_ele; 
melt=new double[N_ele*sizeof(double)];

}

double matrix3D::getelt(int i, int j, int k)
{
retum(melt[(k-1 )*P_ele+(i-2)*cols+j-1 ]); } 

void matrix3D::setelt(int i, int j, int k, double e)
{
melt[(k-1 )*P_ele+(i-2)*cols+j-1 ]=e;

}

void matrix3D::seteltl(int i, int j, int k, double e)
{
m elt[(k-l)*P_ele+(i-2)*cols+j-l] = e+0.4;

if (m elt[(k-l)*P_ele+(i-2)*cols+j-l] > 1) { 
m elt[(k-l)*P_ele+(i-2)*cols+j-l]=l;

}
}

void matrix3D::initmatrix(double type)
{
for(int k=0;k<N_ele;k++) 

melt[k]=type;
}

void matrix3D::multiply(double val)
{
double tmp;

for(int k=0;k<N_ele;k++) { 
tmp=melt[k]*val; 
melt[k]=tmp;

}
}

void matrix3D::fill_inc(int seed, int min, int max)
{
int md; double val,s,p; srand(seed); p=planes; s=(max-min)/p;

for(int i=l;i<=rows;i++) 
for(int j= l ;j<=cols;j++) { 

val=min;
for(int k= 1 ;k<=p lanes ;k++) { 

md=rand()% 1000; 
val=val+(rnd/1000.0)*s; 
setelt(i,j,k,val);

}
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}
(

void matrix3D::fillrandom(int seed)
{
int md, to te le ; 
double val;

srand(seed);
tot_ele=rows*cols*planes; 
for(int k=0;k<tot_ele;k++) {

// do{ testing 4/10/05 
md=rand()% 1000; 
val=rnd/1000.0; 
melt[k]=val;

}
1

void matrix3D::print_matrix()
{
for(int i=0;i<rows;i++){ 

for(int j=0;j<cols;j++) { 
for(int k=0;k<planes;k++){ 

cout.width(wdth);
c o u t«  m elt[k*P_ele+i*cols+j]«" ";

}
cou t«endl;

}
cou t«endl;
}

}

int matrix3D::read_matrix_from_file(const char *file_name) 
{
int i,j,k; char ch; double ele;

ifstream infile(file_name); 
for(k= 1 ;k<p lanes ;k++) { 

for(i= 1 ;i<=rows;i++) { 
for(j=l;j<cols;j++){ 

in file»ele ; 
in file»ch ; 
setelt(k,i,j,ele);

}
in file»e le ;
setelt(i,j,k,ele);
}

1
return 1;

}
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int matrix3D::write_matrix_to_file(const char *file_name,int type)
{

char ch; int i,j,h; ch - 
if ( ty p e = l){
ofstream outfile(file_name); 
for(i=2;i<=rows+1 ;i++) 
for(j=l;j<=cols;j++){ 

for(h= 1 ;h<planes;h++) 
o u tfile« g e te lt(i,j,h )« ch ; 

ou tfile«ge te lt(i,j,h )«end l;
}
outfile«endl;

else{
ofstream outfile(file_name,ios::app); 
for(i=2;i<=rows+1 ;i++)

for(j=l;j<=cols;j++){ 
for(h=l ;h<planes;h++)

ou tfile« g e te lt(i,j,h )« ch ;
ou tfile«gete lt(i,j,h )«end l;
}

outfile«endl;
}

return 1;

}

MULTISYNAPSE

#include "matrix.h"
#include "matrix3d.h"
# include <iostream>
#defme PI 22.0/7.0 
using namespace std;

inline double mod(double val){return (val<0) ? -v a l : val;}

void write_string_to_file(const char *file_name ,const char *text)
{
o fstream o utfile( fi le n a m e , io s :: app); 
o u tf ile« te x t« e n d l;

}

void write_number_to_file(const char *file_name ,double number)
{
ofstream outfile(file_name,ios::app); 
o u tflle« n u m b er« en d l;

}
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double round(double num, double preci)
{

double multiplier=pow( 10,preci); 
int val=( int)(num* mult ip lier+0.5); 
return val/multiplier;

}

double normdist(double e)
{
double sigma=0.2; double mu=0.5; double val;

val=2 * sigma* sqrt(2 * PI); val= 1 /val; 
val=val*exp(-(e-mu)*(e-mu)/(2*sigma*sigma));

return val;
I

class spikeNN_multi { 
protected:

int N_records,N_attrib,N_target_attrib,N_train,N_test,N_class,N_sample,N_bias; 
int m axepocs, cont leam; 

int N_input,N_output,N_subc,N_popNeuron,N_rows,N_cols; 
const char *trainset,*train_targetset,*testset,*test_targetset,*sampleset; 
const char *outputfile,*outputfile_2,*outputfile_sample,*outputfile2; 
matrix *train_matrix, *tv_train, *tv_test, *test_matrix;

double maxw, minw; Vector th resh o ld ; Vector *pspmax;

int t,dt,twindow_input,twindow,timestep,early_fire,late_fire;//time, 
double winning time; int winner,winner_found;

double m in le a m in g ra te , max leaming rate, leaming rate;
float m in n eh b rw id th , max nehbr width, nehbr_width_time,nehbr_width_dist;

double total_error, min_error,tolerance; 
int precision;
Vector *inpv;

double winner_bias_chg, looser_bias_chg;

matrix3D *wght; //Synaptic weights - N_input X N_output X N_subc
matrix3D *dwght; //weight change
double tce,tci; //syanptic time constant
matrix3D *delay; //Synaptc delays
Vector *iln_type; Vector *oln_type;

matrix3D *sp; //synapse potential - N_input X N_output X N_subc
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Vector *np; //Neuron(soma) potential - N_output
Vector *op; //Output - N output
Vector *exact_op; //Exact Output - N_output 
matrix *test_output; //to store test output N_test X N_output 
matrix *test_winner; matrix *train_winner;

public:
spikeNN_multi(); void createNN(); void init_spikeNN();
void init_parameters(); void set_neuron_type();
double correct_class(); double pattems_evaluated(); float dist(int, int);
int check_convergence(); void set_threshold_min(int seed);
double adj_leaming_rate(double delta step);
void preprocess_weight(const char *opt_train);

void update_synapse_potential(); void update_output(); 
void update_output_test(); void update_output_pw();

void find_winner(int output label); void prefmd winner 

void train_spikeNN(); void test_spikeNN(const char *opt_train); 

double error_train_set();

double calculate_error(); double error(int ,int); int set_error_vect();

void update_weight(int classt); void update_weight_new(); 
void update_weight_modifIed();

double spike_response(double t); double spike_response_Char(double st); 
double spike_response_Shah(double st); double spike_response_abc(double st); 
double spike_response_newl(double st); double spike_response_123(double st);

double spike_time_total; double spike_time_new[6]; double dif_spike_time[6]; 
double test_win_t[6]; double arr_op[6];

double etamin; float train_accuracy,test_accuracy;

int ctype; int classtype; int patterns,total; int sum_total,sum_pattems;
};

spikeNN_multi:: spikeNN_multi()
{
}

vo id sp ikeNN_mu It i:: createNN()
{

train_matrix=new matrix(N_train,N_attrib*N_popNeuron); //Matrix contains the 
training records;
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test_matrix-new matrix(N_test,N_attrib*N_popNeuron); //Matrix contains the test 
records;

inpv =new Vector(N_attrib); 
wght =new matrix3D(N_subc,N_input,N_output); 
dwght=new matrix3D(N_subc,N_input,N_output); 
iln_type=new Vector(N_attrib); oln_type=new Vector(N_output);

delay=new matrix3D(N_subc,N_input,N_output); 
sp=new matrix3D(N_subc,N_input,N_output); 
threshold=new Vector(N_output); pspmax=new Vector(N_output); 
np=new Vector(N_output);
op=new Vector(N output); exact_op=new Vector(N_output); 
test_winner=new matrix(N_test,4); train_winner=new matrix(N_train,4);

}

vo id spikeNN_multi:: init_parameters()
I
//to be defined in the parent_class}
double spikeNN_multi::adj_learning_rate(double delta_step)
{
leaming_rate=(leaming_rate - delta step); 
if^leaming_rate < etamin)

learn ingrate  = etamin; 
return learning rate;

\

void spikeNN_multi::init_spikeNN()
{
sp->initmatrix(0.0);
np->initialise(0.0);
op->initialise(twindow);
exact_op->initialise(twindow);
dwght->initmatrix(0.0);

}

void spikeNN_multi::set_neuron_type()
{
int i;
for(i=+2;i<=N_input+1 ;i++) 

iln_type->setelt(i, 1);

for(i=l ;i<=N_output;i++) 
oln_type->setelt(i, 1);

}
void spikeNN_multi::set_threshold_min(int seed) 
{
int rownum,active,i; double max threshold;
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srand(seed);
max_thresho ld=(N_input *N_subc * 0.5)/10; 
inpv->initialise(40.0);

do{
init_spikeNN();
rownum=rand()%N_train;

train_matrix->get_row_Vector(rownum, 1 ,N_attrib,*inpv); 
for(i= 1 ;i<=N_output;i++) { 
thresho ld->setelt( i,max_thresho Id);

}

t=0;
active=true;
init_spikeNN();
do{

t=t+dt;
updatesynapse j3otential(); 
updateoutputO ;

} while(t<twindow);

for(i=l ;i<=N_output;i++) 
if (active) active=(op->getelt(i)<twindow);

max_thresho ld-=5.5;
} while(! (act ive)&&(max_thresho ld>0));

thresho ld->initialise(max_threshold-5.0); //testing 
cout«"T hresho Id: "« th re sh o  ld->getelt( 1 )« e n d l ;  
if (!(active)) co u t« "N o t all neurons can fire";

}
double spikeNN_multi::spike_response_123(double st)
{
double val=0.0;

if (st>0) val=( 1 /(1 -(tce/tci)))*(exp((-( 1 +st)/tci))-exp((-( 1 +st)/tce))); 
return val;

}

vo id sp ikeNN mu It i:: up dat e synap se_p o tent ial()

double inpT,dlay,spikeT,spoten,type; int i,j,k,inpTclass;

for(i= 1 ;i<=N_attrib;i++) { 
if(i==l){

inpTclass=inpv->getelt(i);}
else { 

inpT=inpv->getelt(i); 
type=iln_type->getelt(i); 
if ((inpT<0)||(inpT>twindow_input)) continue;
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for(j= 1 ;j<=N_outputy++) { 
if (np->getelt(j)<0.0) continue; 

for(k= 1 ;k<=N_subc;k++) { 
dlay=delay->getelt(i,j,k); 
spikeT=t-inpT-dlay;

if (spikeT<0) continue;
/* if (inpTclass==l){

spoten= spike_response_123(0. l+spikeT)*wght-
>getelt(i,j,k)*type;

sp->setelt(i,j,k,spoten); } 

else if (inpTclass==2){

spoten= spike_response_123(0.3+spikeT)*wght-
>getelt(i,j,k)*type;

sp->setelt(i,j,k,spoten);}

>getelt(i,j,k)*type;

>getelt(i,j,k)*type;

>getelt(i,j,k)*type;

>getelt(ij,k)*type;

else if (inpTclass==3){

spoten= spike_response_123(0.5+spikeT)*wght- 

sp->setelt(i,j,k,spoten);} 

else if  (inpTclass==4){

spoten= spike_response_123(0.7+spikeT)*wght- 

sp->setelt(i,j,k,spoten);} 

else if (inpTclass==5){

spoten= spike_response_123(0.9+spikeT)*wght- 

sp->setelt(i,j,k,spoten);}

else {

spoten= spike_response_123(0.95+spikeT)*wght- 

sp->setelt(i,j,k,spoten);}

spoten=spike_response_123(spikeT)*wght->getelt(i,j,k)*type;

sp->setelt(i,j,k,spoten);

} //end for k 
}//end for j
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} //end for i 
}

// outfile.close();
}

void spikeNN_multi::update_output_pw()
I

double sv,pnp,spike_time; int i,j,k,outTclass;

for(i= 1 ;i<=N_output;i++) { 
il(np->getelt(i)<0) continue; 

sv=0.0;
for(j=l ;j<=N_attrib;j++) 

iflj==l) { 
outTclass=inpv->getelt(j);} 

else {
for(k=l ;k<=N_subc;k++) 

sv=sv+sp->getelt(j,i,k);
I

if(i==outTclass) { 
pnp=np->getelt(i); 
np->setelt( i, s v=s v+0.0);

}
else
{
pnp=np->getelt(i);

np->setelt(i,sv);
}
pnp=np->getelt(i);
np->setelt(i,sv);

if(sv>=threshold->getelt(i)) {

spike_time=(threshold->getelt(i)-pnp)/(sv-pnp);

op->setelt(i,t); 
exact_op->setelt(i,t-1 +spike_time);

np->setelt(i,-1000); 
for(j=+2 ;j<=N_attrib;j++) 

for(k= 1 ;k<=N_subc;k++) 
sp->setelt(j,i,k,0);

}
}

}

void spikeNN_multi::update_output()
{
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double sv,pnp,spike_time; int i,j,k,outTclass;

for(i=l ;i<=N_output;i++) { 
if(np->getelt(i)<0) continue; 

sv=0.0;
for(j=l ;j<=N_attrib;j++)

ifli==i) {
outT class=inpv->getelt(j);} 

else {
for(k= 1 ;k<=N_subc;k++)

sv=sv+sp->getelt(j,i,k);
}

i^i==outTclass) {
pnp=np->getelt(i);
np->setelt(i,sv=sv+0.9);

}
else
{
pnp=np->gete lt( i); 

np->setelt(i,sv);
}
pnp=np->gete lt( i); 
np->setelt(i,sv);

if(sv>=threshold->getelt(i)) { 
spike_time=(threshold->getelt(i)-pnp)/(sv-pnp);

op->setelt(i,t); 
exact_op->setelt(i,t-1 +spike_time);

np->setelt(i,-1000); 
for(j=+2 ;j<=N_attrib;j++) 

for(k=l ;k<=N_subc;k++) 
sp->setelt(j,i,k,0);

}
}

}
void spikeNN_multi: :update_output_test()
{

double sv,pnp,spike_time; int i,j,k,outTclass;

for(i= 1 ;i<=N_output;i++) { 
if{np->getelt(i)<0) continue; 

sv=0.0;
for(j=l ;j<=N_attrib;j++)

i f U = l )  i
outT class=inpv->getelt(j);} 

else {
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for(k= 1 ;k<=N_subc;k++)

sv=sv+sp->getelt(j,i,k);
}

if(i==outTclass) {
pnp=np->getelt(i);
np->setelt(i,sv=sv);}

else
{
pnp=np->getelt(i);

np->setelt(i,sv);
}
pnp=np->getelt(i);
np->setelt(i,sv);

if{sv>=threshold->getelt(i)) {

spike_time=(threshold->getelt(i)-pnp)/(sv-pnp);

op->setelt(i,t); 
exact_op->setelt(i,t-1 +spike_time);

np->setelt(i,-1000); 
for(j=+2 ;j<=N_attrib;j++) 

for(k= 1 ;k<=N_subc;k++) 
sp->setelt(j,i,k,0);

}
}

}
void spikeNN_multi::prefind_winner()
{
double win_t=twindow;

for(int i=l;i<=N_output;i++) 
if (win_t>=exact_op->getelt(i)) { 

winner=i;
win_t=op->getelt(i);

}
winner_found=(win_t<twindow); 
w in n in g t ime=w i n t ;
}

void spikeNN_multi::find_winner(int output_label)
{
double win_t=twindow;
int winning node, winner_category;
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for(int i=l;i<=N_output;i++) 
if (win_t>=exact_op->getelt(i)) { 

winner=i;
win_t=op->getelt(i);

}
winner_found=(win_t<twindow);
winning_time=win_t;

winning node = winner;
i w inn in g n o  de== 1)

{w innercategory = 1;} 
else if(winning_node==2)

{winner_category =2;}  
else if(winning_node==3)

{winner_category =3;} 
else if(winning_node==4)

{winner_category = 4;} 
else if^winning_node==5)

{w innercategory = 5;}
else

{w innercategory = 6;}

//*****Update Number O f Correct Classifications*****

iflw innercategory  == output_label) { 
correct_class();

}

//**** *Update Number o f  Patterns Processed****** 

pattems_evaluated();

do ub le sp ikeNN_mult i:: correct c lass()
{

total = total + 1; 
s u m to ta l  = total; 
return (sum _total-l);

}

double spikeNN_multi: :pattems_evaluated()
{

patterns = patterns + 1; 
sum _pattem s = patterns; 
return (sum _pattem s-l);

void spikeNN_multi::train_spikeNN()
{
int epoc; int max_epocs=15; double eta=0.0003; etamin=0.0025;
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double leaming_rate=0.0075; double delta eta; 
wght->write_matrix_to_file(outputfile, 1); epoc=0; 
m in error=1000; total_error=0.0; cont_leam= 1; total=0; pattems=0; 
tr  ain_accuracy=0.0;

do{
epoc++;

delta_eta=(leaming_rate-eta);

for(int r=l;r<=N_train;r++){ 
spike_time_total=0; 

init_spikeNN();

train_matrix->get_row_Vector(r, 1 ,N_attrib,*inpv);

classtype=train_matrix->getelt(r,l); //add on 5/8/05 to classify

inpv->write_Vector_to_flle(outputfile,2);
t=0;
winner_found=0;

do{
t=t+dt;

update_synapse_potential(); 
update_outputO;
} while(t<t window);

find_winner(classtype);
if  (winner_found) update weight(classtype); //add on 5/8/05 to classify 
cont_leam=check_convergence();

>

c o u t « ”epoc :u« e p o c « e n d l ;  
adj_leaming_rate(delta_eta);

}while((epoc<max_epocs) & cont_leam);
train_accuracy=((float)correct_class()/(float)pattems_evaluated())* 100.00; 
c o u t« " tra in  accuracy :"« tra in _ a cc u ra c y « " \n ,,;

}

int spikeNN_multi: :check_convergence()
{
int converged;double acc weight change;

for(int j= l ;j<=N_output;j++) 
fo r( int i=2; i<=N_input+1; i++) 

for(int k=l;k<=N_subc;k++) 
acc_weight_change+=mod(dwght->getelt(i,j,k));
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converged=(acc_weight_change<tolerance);
converged=l;
return converged;
}

void spikeNN_multi::update_weight(int classt)
{
double input,weight,newweight,dw,deltaT,dlay;
double wf,output; int type,winning_node,winner_category;
double beta=35; double spi=sqrt(2*22.0/7.0); cont_leam=l;

winning_node = winner; 
if(winning_node== 1)

{winner_category = 1;} 
else if(winning_node==2)

{w innercategory = 2;} 
else if(winning_node==3)

{w innercategory =3;} 
else if(winning_node==4)

{w innercategory = 4;} 
else if(winning_node==5)

{w innercategory =5;}
else

{w innercategory = 6;} 
output=op->getelt(winner); 

for(int i=2;i<=N_attrib;i++){ 
input=inpv->getelt(i); 
type=(int)iln_type->getelt(i);

if (input<0) continue;

for(int k= 1 ;k<=N_subc;k++) {
dlay=delay->getelt(i,winner,k); //testing on 12/9/05 

deltaT=output-dlay- input;
weight=wght->getelt(i,winner,k); //testing on 12/9/05 
wf=0.0; dw=0.0; newweight=0.0;

if(winner_category==classt) {

if (deltaT>=0) 
dw= leaming_rate * (1 /(beta* sp i)) * exp(- 

(sqrt(deltaT*deltaT)/(2.0*beta*beta)));//add on 5/8/05 to classify

else
dw=- learning_rate* (1 /(beta* spi)) * exp(- 

(sqrt(deltaT * de ltaT)/(2.0 *beta*beta)));

newweight=weight+dw;
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if(newweight<0.0) newweight=0.0; 
if (newweight>l .0) newweight=l .0;

}
// *** Weight Adjustments For Incorrect Output Label *** //

else {

if (deltaT>=0)

dw=0.8 * learning_rate*( l/(beta*spi))*exp(- 
(sqrt(deltaT * de ltaT)/(2.0 *beta*beta)));

else

dw=-0.8*(-leaming_rate)*(l/(beta*spi))*exp(-
(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

newweight=weight-dw; 
if (newweight<0.0) newweight=0.0; 
if (newweight>l .0) newweight=1.0;

dwght->setelt(i,winner,k,dw); 
wght->setelt(i,winner,k,newweight);

}
}

}
}
/*
void spikeNN_multi::update_weight(int classt)
{
double input,weight,newweight,dw,deltaT,dlay;
double wf,output; int type,winning_node,winner_category;

double beta=35; double spi=sqrt(2*22.0/7.0); cont_leam=l; 
winning_node -  winner; 
if(winning_node== 1)

{winner_category = 1;} 
else if(w inning_node=2)

{w innercategory = 2;} 
else if(winning_node==3)

{w innercategory = 3;} 
else if(winning_node==4)

{winner_category = 4;} 
else if(winning_node==5)

{winner_category =5;}
else

{winner_category = 6;} 

output=op->getelt(winner); //testing on 12/9/05
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fo r(int i=2; i<=N_attrib; i++) { 
input=inpv->getelt(i); 
type=(int)ilii_type->getelt(i); 

if  (input<0) continue; 
for(int k= 1 ;k<=N_subc ;k++) {

dlay=delay->getelt(i,winner,k); //testing on 12/9/05 
deltaT=output-dlay- input;

weight=wght->getelt(i,winner,k); //testing on 12/9/05 
wf=0.0; dw=0.0; newweight=0.0;

if (deltaT>=0)

dw= leaming_rat e * (1 /(beta* sp i)) * exp(- 
(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

else

dw=-leaming_rate*(l/(beta*spi))*exp(-(sqrt(deltaT*deltaT)/(2.0*beta*beta)));

// *** Weight Adjustments For Correct Output Label *** //

if(winner_category==classt) {

newweight=weight+dw; 
if (newweight<0.0) newweight=0.0; 
if  (newweight>1.0) newweight=1.0;

dwght->setelt(i,winner,k,dw); 
wght->setelt(i,winner,k,newweight);

}
// *** Weight Adjustments For Incorrect Output Label *** //

else {

newweight=weight-dw; 
if  (newweight<0.0) newweight=0.0; 
if  (newweight>1.0) newweight=1.0;

dwght->setelt(i,winner,k,dw); 
wght->setelt(i,winner,k,newweight);

}
}

}
}
*/
void spikeNN_multi::test_spikeNN(const char *opt_test)
{
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test_accuracy=0.0;

test_matrix->write_matrix_to_file(opt_test, 1); 
wght->write_matrix_to_flle(opt_test,2); 
for(int r= 1 ;r<=N_test;r++) { 

init_spikeNN();

test_matrix->get_row_Vector(r, 1 ,N_attrib,*inpv);
t=0;
do{

t=t+dt;
update_synapse_potential();
updateou tpu ttestQ ;

} while(t<twindow);

op->write_Vector_to_file(opt_test,2);
find_winner(classtype);

}
test_accuracy=((float)correct_class()/(float)pattems_evaluated())* 100.00; 
cou t« "tes t accuracy :"« te s t_ a c cu rac y « " \n " ; }

SPKMODIFIED

#include "multisynapse.h"

class spkmodified_dataset: public spikeNN_multi 
{
private:

public:
spkmodified_dataset();voidselect_data();voidpreprocess_data(); 
void shuffle_trainset();void init_parameters();void set_neuron_type(); 
void start();
};

spkmodified_dataset::spkmodified_dataset()
{
max_epocs=5; N_attrib=61; N_target_attrib= 1; N_train= 1002; N_test=498; 
N_input=N_attrib-1; N_rows= 1; N_cols=6; N_output=N_rows*N_cols; 
N_subc=16; N_popNeuron=l; N_class=6; leaming_rate=0.001; 
dt=l; timestep=l; twindow=300; early_fire=15; late_fire=25; 
twindow_input=100; tolerance=1.0; maxw=1.0; ruinw=0.0;

outputflle="cchart_test_output.txt,,; outputfile_2=,’cchart_test.txt,,; 
t=0;

}

vo id spkmo dified dataset:: prepro cess_data()
{
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int i,j,category; double target;

for(i= 1 ;i<=train_matrix->nrows();i++)
for(j= 1 ;j<=train_matrix->ncols();j++) {

category=train_matrix->getelt(i,j); 
train_matrix->setelt(i,j,category);

}
else {

target=train_matrix->getelt(i,j);
//target= 100-(target* 100);

target=l* target; 
train_matrix->sete lt(i,j, target);

}
t

for(i= 1 ;i<=test_matrix->nrows();i++) 
for(j= 1 ;j<=test_matrix->ncols();j++) {

iflj==D { 
category=test_matrix->getelt(i,j); 
test_matrix->setelt(i,j,category);

}
else {

target=test_matrix->getelt(i,j);
// target= 100-(target* 100); 

target= 1 * target; 
test_matrix->setelt(i,j,target);

}
}
}

void spkmodified dataset::init_parameters()
{
int seedgen;int seed_array[35000]; int seed_cnt=0;int i,j,k;

seedgen=time(NULL)% 1000; 
for(i=0;i<seedgen;i++) 

rand();
for(i=0;i<35000;i++) 

seedarray  [ i]=rand();

for(i=2;i<=N_input+l ;i++)
for(j=l ;j<=N_output;j++) 

for(k= 1 ;k<=N_subc;k++) { 
delay->setelt(i,j,k,k* 10);

\
wght->fillrandom(seed_array[seed_cnt++]); 
for(i=2;i<=N_input+1 ;i++)

for(j=l ;j<=N_output;j++)
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for(k= 1 ;k<=N_subc;k++) {
wght->setelt(i,j,k,double(wght->getelt(i,j,k)));

}
wght->write_matrix_to_file(outputfile, 1);

}
void spkmodified_dataset::set_neuron_type()
I

for(int i=2;i<=N_input+l;i++) 
iln_type->setelt(i, 1);

\

void spkmodified_dataset::start()
I
createNN(); set_neuron_type(); select_data(); preprocess_data();
init_parameters();
tce=150; tci= 20;
set_threshold_min(time(NULL));
for(int i=l;i<=5;i++)

// preprocess_weight("preprocess_wght.txt"); 
set_thresho ld_min(t ime(NULL)); 
train_spikeNN();
test_sp ikeNN (" test_set_o utput. tx t");

void spkmodified_dataset::select_dataO 
I

int i;
matrix sourcetr_matrix(N_train,N_attrib); 
matrix sourcete_matrix(N_test,N_attrib); 

sourcetr_matrbc.read_matrix_from_file(',R:\Traindata.txt"); 
sourcete_matrix.read_matrix_from_flle("R:\Testdata.txt");
Vector svect(N_attrib); 

for(i=l;i<=N_train;i++) {
sourcetr_matrix.get_row_Vector(i, 1 ,N_attrib,svect); 
train_matrix->set_row_Vector(i, 1 ,N_attrib,svect);
}
fo r( i= 1; i<=N_test; i++) {
sourcete_matrix.get_row_Vector(i, 1 ,N_attrib,svect); 
test_matrix->set_row_Vector(i, 1 ,N_attrib,svect);
}
}

VECTOR

# include <iostream>
# include <math.h>
# include <stdlib.h>
# include <time.h>

200



# include <fstream> 
using namespace std;

#define wdth 15

typedef double eltype;

class Vector{ 
private: 
int nelt; 
double *velt; 

public:
Vector(int); void initialise(double val); int getcnt(){return nelt;}; 
double getct(int i) {return velt[i-1 ];}; double getelt(int i){retum velt[i-l];}; 
void setelt(int i, double e){velt[i-l]=e;}; void setct(int i,int e) {velt[i-l]=e;} 
double min(); double max(); void print_Vector(); void normalize(); 
int write_Vector_to_file(const char*,int);//File name, open type(write/append) 
int read_Vector_from_file(const char*); void fill_inc(int seed, int min, int max); 
void fill_random(int seed); void multiply(double); void code_temporal(); 
void swap_elts(int, int); void shufTle(int);

};

Vector::Vector(int n)
{
nelt=n;
velt=new eltype[nelt*sizeof(eltype)];

}

eltype Vector::min()
{
eltype mn=10; 
for(int i=0;i<nelt;i++) 

if (velt[i]<mn) mn=velt[i]; 
return mn;

}
eltype Vector::max()
{
eltype mx=0; 
for(int i=0;i<nelt;i++) 

if (velt[i]>mx) mx=velt[i]; 
return mx;

}

void Vector::initialise(double val)
{
for(int i=0;i<nelt;i++) 

velt[i]=val;
}
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void Vector: :print_Vector()
{
for (int i=0;i<nelt;i++){ 

cout.width(wdth); 
c o u t« v e l t [ i ]« "

}
co u t« en d l;

void Vector::normalize()
{

eltype mn,mx,diff,tmp;

mn=min()-0.5; mx=max()+0.5; diff=mx-mn; 
for(int j=0;j<nelt;j++) { 

tmp=l-((velt[j]-m n)/difi); 
velt[j]=tmp;

}

int Vector: :write_Vector_to_file(const char *file_name,int type) 
{

if(type==l){
ofstream outfile(file_name); 
for(int j=0;j<nelt;j++) 
o u tf i le « v e l t [ j ]« n 

o u tf i le « e n d l« e n d l;
}
else {

o fstream o ut fi le( fi le n a m e , io s:: app); 
for(int j=0;j<nelt;j++) 
o u t f i le « v e l t [ j ]« M 

ou tfile«end l;
}
return 1;

}

int Vector::read_Vector_from_file(const char *file_name)
{
int k; char ch; double ele;

ifstream infile(file name); 
for(k= 1 ;k<nelt ;k++) { 

in file» e le ; 
in file» c h ; 
setelt(k,ele);
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\
in file» e le ; 
setelt(k,ele); 
return 1;

}

void Vector: :fill_random(int seed) 
{
double radl,m d2; 

srand(seed);
for(int k=l;k<=nelt;k++){ 

do{
md 1 =rand()% 1000; 
m d2=m dl/l 000.0; 
}while((md2<0.3)||(md2>0.8)); 

setelt(k,md2);
\

void Vector::multiply(double val)
{
double e;

for(int k=l;k<=nelt;k++){ 
e=getelt(k)*val; 
setelt(k,e);

}
}
void Vector::fill_inc(int seed, int min, int max) 
{
int md;
double val,s;
srand(seed);
s=(max-min)/double(nelt);

val=min;
for(int k= 1 ;k<=nelt;k++) { 

md=rand()% 1000; 
val=val+s*rnd/1000.0; 
setelt(k,val);

}

void Vector::code_temporal() 
{
double val;

for(int k=l;k<=nelt;k++){
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val=getelt(k);
val=10-val;
setelt(k,val);

}

void Vector: :swap_elts(int i, int j)
{
double tmp;

tmp=getelt(j);
setelt(j,getelt(i));
setelt(i,tmp);

}

void Vector::shufTle(int seed)
{

srand(seed);int nshufTle=rand()%10;int e l,e2 ;

for(int cnt=0;cnt<=nshuffle;cnt++) { 
e 1 = 1 +rand()%nelt; 
e2= 1 +rand()%nelt; 
swap_elts(el,e2);

}
\
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Appendix B 

C++ for Pre-process Weight
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void spikeNN multi::preprocess_weight(const char *opt_train)
{
double weight;
double twon[16]; //array o f  3 variables twon: total weight output neuron 
double totalow; // total output weight
double ttow_gr[6]; double Sum totalw; double Average; double dif_ttow; 
double dist_diflw[6];

for(int r= 1 ;r<=N_train;r++) { 
init_spikcNN();

train_matrix->get_ro w_ V ector(r, 1 ,N_attrib, * inp v);

t=0;
do{

t=t+dt;
update_synapse_potential(); 
update_output_pw();

}while(t<twindow);

prefind_winner(); // add on 5/8/05 for classifying 
Sum_totalw=0;

for(int j=  1 ;j<=N_output;j++) { 
totalow=0; 

for(int i=2;i<=N_attrib;i++ ){

for(int k=l;k<=N _subc;k++)
{

weight=wght->getelt(i,j,k); 
wght->setelt(i,j,k,weight); 

twon[k] = weight;
totalow += twonfk];

}
}

tto w g rjj]  = totalow;
S u m to ta lw  += ttow_gr[j];

}
Average = S u m to ta lw  / N_output;

for(j= 1 ;j<=N_output;j++) {

if  (ttow_gr[j] > Average)
d if ttow = ttow_gr[j] - Average;

else
d if ttow = Average - ttow_gr[j]; 

d is td iftw jj] = d if tto w  / ((N_attrib-l)*N_subc);

\

for(int i=2;i<=N_attrib;i++) 
for(int j= l ;j<=N_output;j++){
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if (j==w inner)

for(int k=l;k<=N_subc;k++)
{

weight=wght->getelt(i,j,k); 
weight=weight - dist_diflw[j]; 

wght->setelt(i,j,k,weight);
\

else
for(int k=l;k<=N_subc;k++)

{
weight=wght->getelt(i,j,k);

weight=weight + d is td iftw jj]; 
wght->setelt(i,j,k, weight);}

}
}
}
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Appendix C 

Procedure for Basic Bees Algorithm
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1. Initialise population with random solutions.

2. Evaluate fitness o f  the population.

3. While (stopping criterion not met)

// Forming new population.

4. Select elite bees and elite sites for neighbourhood search.

5. Select other sites for neighbourhood search.

6. Recruit bees around selected sites (more bees for best elite sites) and evaluate

fitnesses.

7. Select the fittest bee from each site.

8. Assign remaining bees to search randomly and evaluate their fitnesses.

9. End While.
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