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Summary

A range o f Ga2C>3/MoC)3 and C0 3 O4 catalysts have been prepared and tested for the 
oxidative dehydrogenation o f propane to propene. The Ga2 0 3 /M o()i physical mixture 
demonstrated appreciable activity for propane conversion, with selectivity to propene 
comparable to existing known catalysts. The major products were propene and carbon 
dioxide with trace amounts o f acrolein in some cases. The bulk C0 3 O4 catalyst was 
active for the conversion o f propane at temperatures as low as ambient. The 
conversion at such low temperatures was very low but the selectivity to propene was 
near 100%. At temperatures lower than 100°C the catalyst showed rapid deactivation 
but at temperatures nearing 140°C the catalyst was capable o f steady state conversion. 
Further study led to the creation o f a high surface area nano-crystalline C 0 3 O4 catalyst 
that was more active and selective than the original C0 3 O4 sample. The catalyst 
activity was probed by varying the reaction conditions and it was demonstrated that 
the selectivity and activity could be improved by varying the flow rate, feed 
composition and catalyst preparation method. Further studies looked into combining 
the low temperature C0 3 O4 catalyst with an acid hydration catalyst for the one step 
selective oxidation o f propane to iso-propanol. The nano-crystalline sample was 
tested alongside various heteropolyacids and supported phosphoric acid catalyst. Co
feeding water had a negative effect on the activity o f the nano-crystalline C0 3 O4 

catalyst but trace amounts o f iso-propanol were found in the reaction product 
indicating that the process investigated was possible.



Abstract

The oxidative dehydrogenation of propane to propene has been studied over a series 

o f Ga2 0 3 /M o0 .i and C0 3 O4 catalysts in an attempt to find a suitable catalyst that can 

be used in conjunction with an acid hydration catalyst for the direct one-step catalytic 

selective oxidation o f propane to iso-propanol. The catalysts were created as a result 

o f using a design approach recognising that the suitable catalyst should be able to 

activate the alkane and facilitate the desorption o f the alkene without over oxidation 

to COx at temperatures low enough to allow the subsequent conversion o f the product 

propene to iso-propanol. It has been demonstrated that the Ga2 0 3 /M o0 3  catalyst 

synergistically combined the alkane activation properties o f Ga2C>3 with the selective 

oxidation function o f M0 O3 producing appreciable propene yields in the temperature 

range 300-500°C. Studies have probed the influence o f varying the Ga/Mo ratio. 

Catalysts with a 1/1 and 1/3 ratio showed similar catalytic activity, whilst reducing the 

ratio to 1/10 significantly reduced the propene yield. Comparison o f the 1/1 

Ga2 0 3 /MoC>3 catalyst with a 6  wt% X^CVTiCh catalyst, which is known to be active 

for selective propane oxidation, showed that the propene yields were greater for 

Ga203/Mo0 3 .

A series o f bulk C0 3 O4 catalysts were prepared by various methods including 

precipitation from the nitrate and solid-state reaction. Propane conversion was 

observed at temperatures as low as 25°C. and this was a highly significant result as 

the low temperature activation o f short chain alkanes is highly desirable. The catalyst 

prepared by solid-state reaction was more active than the catalyst prepared by 

precipitation. The selectivity to propene was near 100% at temperatures lower than 

80°C but rapid deactivation o f the catalyst occurred at these low temperatures. Steady- 

state activity was possible at 140°C but at the expense o f propene selectivity which



was found to decrease with increasing reaction temperature. Comparison of propane 

conversion was made with a commercial sample o f C0 3 O4 , and it was clear that the 

prepared catalysts were significantly more active. The commercial cobalt oxide 

catalyst was not active below 120°C.

The nano-crystalline C 0 3 O 4  catalyst was tested in conjunction with a number of 

different acid catalysts in an effort to probe the ability o f a dual functioning catalyst 

for the direct one-step conversion o f propane to iso-propanol. The best results were 

found over a phosphomolybdic-Co3 0 4  catalyst operating in the 100-140°C 

temperature range. The co-feeding o f water had a negative effect on the C 0 3 O 4  

activity resulting in a lower than average propane conversion. However iso-propanol 

was present in trace amounts in the product distribution indicating that the process 

was feasible. At this stage, no attempt has been made to optimise the reaction 

conditions to increase iso-propanol yield.

All catalysts tested have been characterised by a range o f techniques including BET, 

powder XRD, TPR/TPO, SEM and Raman spectroscopy the results o f which are 

presented and discussed along with the catalytic data.



Abstract (Microfiche)

The oxidative dehydrogenation o f propane to propene has been studied over a series 

o f Ga2 0 3 /MoC>3 and C0 3 O4 catalysts in an attempt to find a suitable catalyst that can 

be used in conjunction with an acid hydration catalyst for the direct one-step 

catalytic selective oxidation o f propene to iso-propanol. Both the Ga2C>3/M o0 3  and 

C0 3 O4 catalyst were active and selective for the reaction. The Ga2 0 3 /MoOi was 

prepared by physically mixing the component oxides and was found to be active and 

selective for the reaction in the temperature range 300-500°C. A series o f C0 3 O4 

catalysts were prepared by both precipitation and solid-state reaction with the latter 

preparation method resulting in a nano-crystalline sample that was highly active and 

selective. The nano-crystalline C0 3 O4 was active at temperatures as low as ambient 

with a selectivity to propene near 100%. Combination o f the catalyst with a 

phosphomolybdic acid catalyst resulted in a dual functioning catalyst capable of 

converting propane to iso-propanol in trace quantities. The catalysts developed were 

characterised using a wide range o f techniques.
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Abbreviations/Nomenclature

GHSV = Gas Hourly Space Velocity

BET = Brunauer Emmet Teller (Surface area analysis)

HC = Hydrocarbon

ODH = Oxidative Dehydrogenation

SEM = Scanning Electron Microscopy

TCD = Thermal Conductivity Detector

FID = Flame Ionisation Detector

TPO = Temperature Programmed Oxidation

TPR = Temperature Programmed Reduction

XRD = X-Ray Diffraction

GC = Gas Chromatograph

i.d. = Internal Diameter

Iso-propanol = Propan-2-ol

Acrolein = Propenal

Propylene = Propene
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Chapter 1

Introduction

1. Introduction to catalysis

1.1 Catalysts and catalysis

A catalyst may be defined simply as a substance, which increases the rate at which a 

chemical reaction approaches equilibrium, without itself undergoing a chemical change or 

being consumed in the process. A more precise definition states that ‘a catalyst is a 

substance which increases the rate o f attainment o f equilibrium o f a reacting system 

without causing any great alteration in the free energy changes involved’ |IJ. Berzelius 

first used the word ‘catalysis’ in 1836 to describe a series o f observations and discoveries 

made by others; Thenard (1813) discovered that metals could decompose ammonia and 

Dobereiner (1825) found that manganese oxide affected the rate o f decomposition o f 

potassium chlorate. Berzelius suggested that the surface o f some solids possessed a 

‘catalytic force’ [2\

Catalysts fall into two main classes: homogeneous and heterogeneous. A catalyst is 

described as ‘hom ogeneous’ when the reaction takes place in any one phase and 

‘heterogeneous’ when the reaction occurs at an interface. Examples o f the two systems 

are given in table 1.1. Homogeneous catalysts usually operate in the liquid-liquid phase 

and involve soluble metal complexes in solution. The selectivity is typically high with 

moderate activity and the reaction temperatures are usually low (<250°C). Limitations to 

homogeneous methods include product separation and catalyst recycling which can be 

problematic and expensive.



In heterogeneous catalysis the reactants are typically gaseous or liquid and pass over a 

solid catalyst. Catalytic activity is usually high but selectivity to the desired products can 

be quite low, the reaction temperatures are relatively high (250-600°C). Recycling o f the 

catalyst is quite simple and product separation can be easier but the high temperatures of 

reaction make the process energy intensive and environmentally unsound.

Table 1.1 Examples o f  homogeneous and heterogeneous catalysts

Catalytic system Phase Example

Homogeneous Liquid + Liquid 

Gas + Gas

Acid/base catalysed hydrolysis o f  esters

Oxidation o f  sulphur dioxide catalysed by nitric oxide 

SO2 N() SO 3

Heterogeneous Liquid + Gas 

Solid + Liquid 

Solid + Gas

Phosphoric acid catalysed polymerisation o f  olefins 

C 2 H4 m p o ^  ■(■CfLCPL-),,- 

Gold catalysed hydrogen peroxide decomposition 

H20 2 Au*  H2O + I / 2 O 2 

Iron catalysed production o f  ammonia (Haber process) 

N 2 + 3H 2 Fe ^  2NH 3

1.2 Basic principles of catalysis

A catalyst works by providing another route for the reaction i.e. providing an alternative 

reaction mechanism with a lower energy o f activation (figure 1 . 1 ).

2



Reactants
Adsorbed Surface 
reactant reaction

Products

Adsorbed product

Reaction coordinate

Figure 1.1 Potential energy profile of an exothermic reaction: red line, uncatalysed; blue line,

catalysed

A catalyst can only alter the rate at which the reaction attains equilibrium; it cannot alter 

the position of equilibrium in a reversible reaction. This can be easily shown. The Gibbs 

free energy AG° is a state function, and for any reaction there can be only one value for 

the standard Gibbs free energy change AG°. Since:

-AG°=RTln K

where K  is the equilibrium constant, there can be only one value for K.

Given that the equilibrium attained in a catalysed reaction must be the same as the 

corresponding uncatalysed reaction it follows that the catalyst must equally affect the rate 

of both the forward and reverse reactions. The equilibrium constant K  of the uncatalysed 

reaction:



kj
Reactants .r  .. ^ Products

k j

can be defined as:

K = k \
k:

Where k| and k2 are the rate constants for the forward and reverse reaction respectively, 

The corresponding catalysed reaction can be given as:

V
Catalyst +  Reactant Products +  Catalyst

k 7 f

and

Given

and

By definition

*  =  k ' A  •/  ki

-AG°, = RT ln(k,/k2) 

-AG0, ' = RT In (k ,7k2') 

-AG0, = -AG°-r■'

where -AG°t is the standard free energy change at T° Kelvin, and so

(k,/k2) = (k, Vk2')

It is therefore apparent that a catalyst can only accelerate the rate o f a chemical reaction

that is already thermodynamically feasible i.e. a reaction that involves a decrease in free 

[31energy 1 .
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1.3 Heterogeneous catalysis

Many industrial processes are now carried out by heterogeneous catalysts, some of the

most important being the Haber process for the production o f ammonia, the Bosch

process for hydrogen, the contact process for sulphuric acid, the refining o f petroleum and

the synthesis o f vinyl chloride, aldehydes, butadiene, styrene, phenol, alcohols and many

other important organic compounds. One of the earliest observations o f such catalysis was

Paul Sabatiers observation that nickel hydrogenated ethene giving ethane (1 9 0 0 )|4i. Many

more industrial applications followed. A number o f materials are used for heterogeneous

catalysis and they can be divided into two distinct groups: (i) metals and (ii) non-metals.

Table 1.2 highlights some o f the more important reactions with examples of catalysts

used. The metallic and supported metallic catalysts are some o f the most important

catalysts and are used in dehydrogenation, hydrogenation, hydrogenolysis and in some

cases oxidation. Metal oxides and sulphides such as NiO, CT2O 3 and WS2 are proven

catalysts for oxidation, reduction, cyclisation and desulphurisation reactions. Ceramic

metal oxides such as MgO, AI2O3 and SiC>2 are often used as supports for metals because

o f their high stability and inactivity, and are also used in dehydration and isomerisation

reactions. Zeolites are important catalysts for the catalytic cracking o f petroleum fractions

to C2-C 14 hydrocarbons. Zeolites H3PO4 and H2SO4 are examples o f acid catalysts and as

well as catalytic cracking reactions are also useful for polymerisation, isomerisation and 

111alkylation reactions 1
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Table 1.2 Typical catalysed reaction

Reaction Catalyst Type of reaction

CH 2CH=CH2-+ CH 2(CH2),CH CH 2 N i0 /S i0 2/Al20., Polymerisation

Petroleum fractions —► CVC | 2 hydrocarbons AI20-s/Si02 Hydrocarbon cracking

But-l-ene —*■ Buta-1,3-diene 

Ethylene— * H2C (0 )C H 2

Mo0 4/V2O s

Ag

Oxidation

CO + H2 —> alcohols, aldehydes, acids, 
hydrocarbeons

Ee. Co. Ni Synthesis

Olefines—► Paraffins 

Acetylenes —» Olefines

Pd, Pt. Ni, Rh, Os, 

Ni, Rh, Pd, Pt

Reduction

But-l-ene —» cis/trans but-2-ene Ni, Pd, Pt, Ru. Rh Isomerisation

CO + 3H 2 —► CH 4 + H20  

CO + h 2o  — c o 2 + h 2

Ni

Fe30.,/Cr20 :,

Shift reactions

1.4 The petrochemical industry and the production of propene

Many materials and chemical intermediates are derived from propene, some of the most 

important materials include: propene oxide, acrylonitrile, cumene, polypropene,

oxoalcohols and iso-propanol. In turn, each of these chemicals is an important precursor 

in the manufacture o f consumer products. Propene oxide is a precursor to polyurethane 

resins and propene glycols, which are used in flame-retardants and synthetic lubricants. 

Acrylonitrile is converted to acrylic fibres and coatings. Dimerization of acrylonitrile 

affords adiponitrile, which is used in the synthesis o f nylon. Cumene is used to make 

epoxy resins and polycarbonate and is also a constituent o f vinyl floor tiles, carpets, foam



insulation and other rubber floor/wall coverings. Polypropene is an important 

thermoplastic polymer with countless applications in areas such as food packaging, 

textiles, plastic parts and containers to name but a few. High-grade polypropene is used in 

various fabrication processes such as injection moulding, thermoforming, blow moulding 

and laminating. Iso-propanol is typically used as a solvent and disinfecting agent as well 

as being an additive in fuels. Oxo-alcohols are used in coatings and plasticers

Propene is produced primarily as a by-product of petroleum refining and of ethene 

production by the steam cracking of hydrocarbons. For example it is estimated that 

6 6 % of the total amount o f propene produced in 2003 was obtained as co-product in 

ethene manufacture by steam cracking processes. Fluid catalytic cracking (FCC) units 

supply around 32% with propane dehydrogenation and metathesis estimated to account 

for only 2% o f the market |61. The current demand for propene is primarily driven by the 

high growth rate o f propylene for the plastics industry and it is estimated that future 

demand will increase by 5% annually. With the demand for olefins ever increasing the 

principle methods o f steam cracking and FCC may not have the capacity to meet future 

needs. Indeed, with an increasing demand for all alkenes the operating conditions in many 

steam and catalytic cracking processes are being optimised for ethene production at the 

expense o f propene yield [?l.

1.4.1 Steam Cracking

Although a number o f modern processes use catalysts, steam or naptha cracking is an 

example o f one that does not. The process works by naptha being vaporised with super 

heated steam and cracked to smaller molecules via free radical mechanisms in the absence 

of a catalyst. Oil or gas fired burners are used to heat the reactor tubes to 750-900°C with

7



temperatures up to 1100°C (high severity cracking). Light olefins are formed in the 

gaseous state before the reaction mixture is cooled and quenched. The effluent is then 

passed through a series o f heat exchangers before primary fractionation and compression. 

The gasoline and fuel oil steams are separated into liquids and gas fractions with the 

products at this stage being uncrude fuel oil. aromatic gasoline, toluene, benzene and 

xylene. The final stage is product recovery where the products are separated by 

distillation, refrigeration and extraction. CL compounds are removed in a depropanizer 

stage with consequent splitting of the alkane and alkene 17 8|.

The steam cracking o f ethane is similar to naptha cracking and gives rise to propene as a 

by-product. Cracking is a massively energy intensive process and is estimated to be the 

single most energy intensive process in the chemical industry, it is estimated that the 

pyrolysis stage o f the steam cracker consumes 65% of the total process energy alone l?l.

1.4.2 Catalytic cracking

Since its early beginnings research into catalytic chemistry has been stimulated by the 

needs o f industry. The use o f catalysts has led to better reaction control and product 

selectivity as well as improved process efficiency and ecomomics. Indeed, a number of 

existing processes may well become obsolete as the development o f catalytic processes 

increases. The first major catalytic cracking processes were introduced in 1940's 

America and originally used clay catalysts operating at 500°C. Since then development 

has seen the introduction o f newer processes such as modern fluidised-bed catalytic 

cracking (FCC) and hydrocracking.

Fluid Catalytic Cracking (FCC) is an acid cracking process that uses acidic ZSM 

catalysts and heavy feedstocks. By using a zeolite catalyst the process is less energy



intensive than steam cracking and typically operates in the 450-600°C temperature range. 

Efficient heat transfer is managed by good contact between the catalyst and reactant along 

with the moving/riser reactor technology. The low temperatures mean that excess heat can 

be recycled and used as a source o f process energy. The use o f a catalyst also means that 

the reaction is more selective towards the desired product.

The hydrocracking process is less efficient and more expensive than the FCC process 

and operates at about 450°C and 150-200 atm hydrogen. The catalyst used is usually a 

zeolite-supported palladium [7'y|.

1.4.3 Alkane dehydrogenation

The direct catalytic dehydrogenation of alkanes provides a selective way o f alkene 

production from abundant alkane feedstocks and was first commercialised in the 1930's. 

Areas such as the Middle East where alkane feedstocks are in good supply have been 

paying a lot o f attention to propane dehydrogenation for propene production [7 l0). Alkene 

production via catalytic dehydrogenation takes up only a small portion o f total alkene 

production but offer more selective routes to the desired product. Current industrial 

processes in or near operation include:

(i) The Catofin or Houndry process licensed and developed by Sud-Chemie and 

Lummus is a cyclical process using an adiabatic fixed bed reactor comprising 

alkali promoted CrCC/AfCE. The operating temperature is around 590-650°C 

and converts alkanes to alkenes with 85% selectivity |10' M|

9



(ii) The STAR process (Steam Active Reforming), under licence from Philips uses 

a cyclical dehydrogenation and oxydehydrogenation process with a Pt/Sn on 

ZnA^CVCaAhO-j The STAR reactor uses a combination o f dehydrogenation 

and oxydehydrogenation processes giving selectivity to alkenes of around 90%

110- 111

(iii) The UOP Oleflex process for C3 and C4 production uses and alkali promoted 

Pt/Sn/AhCE catalyst and achieves a selectivity to alkenes o f around 91% |n |.

(iv) FBD (Fluidised Bed Dehydrogenation) operates under licence from

Snamprogetti/Yarsintiz and uses an alkaline promoted CrOx/AFCT catalyst for

the production o f alkenes. Process gives selectivity to propene o f around 90%

!11J

Due to the relative stability of ethane and hence the vigorous reaction conditions 

required for dehydrogenation, there is as yet, no commercial ethane dehydrogenation 

process. Indeed one o f the main problems with catalytic dehydrogenation processes is that 

the conversion and selectivity are restricted thermodynamically and high temperatures are 

necessary to supply energy to the strongly endothermic main reaction. In turn, the high 

temperatures can lead to a number of unwanted side reactions resulting in irreversible 

catalyst deactivation. Even when there isn't complete deactivation it is still necessary to 

regenerate the catalyst, sometimes after only minutes online. The high temperatures also 

make the process energy and capital intensive ,6).

10



1.4.4 Alkane oxidat ive  dehydrogenation

The oxidative dehydrogenation of alkanes provides an alternative route for the production 

of alkenes, which overcomes the thermodynamic restrictions, allows operation under 

relatively mild conditions and avoids the necessity o f continuous catalytic regeneration. 

Dioxygen can facilitate the conversion of molecular hydrogen into water and thus shift 

the equilibrium towards the formation of dehydrogenated products. Oxygen acts as a 

hydrogen acceptor which gives rise to an exothermic reaction and overcomes the 

thermodynamic limitations o f a reversible endothermic reaction.

C nH2n+2 — *  0 nH 2n +  M 2

0.5O2+ h 2— h 2o

Overall:

CnH2n+2 + 0.5O2 -  CnH2n + H20

The oxidant also prevents coking by burning off any carbonaceous deposits that can 

decrease catalyst lifetime. However, there are a number o f drawbacks. Controlling 

selectivity can be difficult due to the possibility o f a large number o f oxygenated products 

such as aldehydes and acids (figure 1 .2 ).

11



Acrylic acid 
hC-C H CO d

Acrolein
h 2c = c i  i c m o

Figure 1.2 Oxygenated products o f  propene 1121

The other major problem is controlling the consecutive oxidation to carbon oxides; figure

1.3 shows the reaction network for the oxidative dehydrogenation o f propane. Propene is 

formed from the oxidative dehydrogenation o f propane (k\), and COx is formed as a result 

o f the direct combustion o f propane {kj) or the subsequent total oxidation o f propene (£3). 

For a selective reaction the k^k\ ratio is usually low (-0.1). but with increasing 

conversion there is usually a decrease in alkene yield corresponding to an increased k}/k\ 

ratio (-10-50). The large k^/k\ ratio occurs as a result o f the weaker allylic C-H bond in 

propene and the fact that alkenes are more strongly bound to oxide surfaces. The strongly 

bound alkene is susceptible to further oxidation |l3].

12



Figure 1.3 Reaction network in the O D H  o f  propane

Other difficulties include the flammability of the reaction mixture and controlling the 

heat produced, due to the exothermic reaction the process can be auto-thermal, but this 

can also lead to a runaway reaction. It is therefore necessary to operate within the 

flammability limits and to carefully control the feed mixture. With oxygen in excess there 

is an increased conversion, but also the increased likelihood of total combustion resulting 

in poor selectivity to the desired product.

There is a general agreement that propane oxidative dehydrogenation involves redox 

cycles whereby the organic molecule is oxidised by lattice oxygen resulting in a reduced 

centre which is then reoxidised by O2 f14' 161. i.e the Mars-van Krevelen mechanism. When 

in equilibrium with the gas phase the surface is populated by short lived oxygen species 

capable o f removing the methylene C-H in the propane molecule. A second hydrogen 

abstraction then takes place before desorption o f the propene molecule and subsequent 

reoxidation o f the reduced site (figure 1.4).



Figure 1.4 Proposed reaction mechanism for the O D H  o f  propane (n denoted surface v a c a n c y ) |M|

Propane oxidative dehydrogenation remains a viable route for the production of propene 

but as yet no catalyst has been developed which meet the requirements of industrial 

processes. Also the problem of propene stability towards consecutive unselective 

oxidative attack makes finding a suitable catalyst for the oxidative dehydrogenation of 

propane a difficult task.

1.5 Aims of project

The overall aim o f this project is to find a catalyst capable o f the direct conversion of 

propane to iso-propanol, which historically has not been extensively studied. A vast 

portion o f the research will focus on the initial propane oxidative dehydrogenation step in 

an effort to find a catalyst capable of activating propane at temperatures low enough to 

allow the subsequent hydration step to take place. One o f the main problems will be the 

incompatibility of the reaction conditions for the two different processes. To date the best 

catalysts found for the ODH of propane usually operate in the 400-600°C temperature 

range at atmospheric pressure. Even the most active catalysts can only operate at



temperatures not less than 350°C and this is usually at the expense o f propane conversion 

and propene yield. Such reaction conditions are too severe for the hydration o f propene: a 

process that is thermodynamically limited by the reverse reaction at high temperatures. 

Current propene hydration processes operate in the 100-300°C temperature range and at 

pressures typically between 25-250 atms.

Based on this, two possible approaches are possible. One is to develop a range o f 

multi-component catalysts that possess both oxidative dehydrogenation and acid catalytic 

properties combined synergistically. Simplistically, it can be imagined that synergistic 

combinations may exist in which one component is principally responsible for propane 

activation and the other for oxygen insertion. As an example it has been shown previously 

that Ga2 0 3 /M o0 3  is a selective catalyst for methane oxidation to methanol tl?l. Even if 

the reaction proposed for this investigation is very different, such materials represent an 

excellent starting point, since they contain redox elements (Ga,Mo). The acid function 

could then be introduced by direct impregnation of the ODH catalyst e.g. by the addition 

o f a strong acid such as phosphoric acid.

A second possible approach would be to keep the oxidative dehydrogenation and 

hydration catalyst separate but in contact i.e. by layering the catalyst beds or creating a 

mechanical mixture. Such an approach would prevent modification o f the individual 

functions by addition o f one catalyst to the other e.g. impregnation o f the ODH catalyst 

with a strong acid such as phosphoric acid may increase the acid character o f the catalyst 

but at the expense o f its selectivity to propene.

Either way, one o f the most difficult problems will be finding an oxidative 

dehydrogenation catalyst capable of operating at such low temperatures. Although it is 

theoretically possible to convert propane to propene with 1 0 0 % selectivity at ambient 

temperature using an oxidative dehydrogenation process, this has not yet been realised.
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Conversion is limited at such low temperatures, so in order to achieve appreciable yield 

the propene selectivity would have to be near 100%. Catalyst selectivity is of vital 

importance in the production o f olefins and in the cases o f large-scale applications it can 

often be more important than activity.

1.6 Literature review

1.6.1 Vanadium based catalysts

Vanadium oxide based catalysts are active and selective for a number o f catalytic 

reactions including: the selective oxidation o f short chain alkanes and alkenes such as o- 

xylene, 1,3-butadiene and methane; the oxidation o f methanol; the oxidation and 

ammoxidation o f aromatic hydrocarbons; the decomposition o f iso-propanol, as well as 

the selective catalytic reduction o f NOx118"23’. Industrial processes currently in operation 

using vanadia based catalysts and short chain alkane feedstocks are n-butane to maleic 

anhydride on VPO and propane ammoxidation on VSbO/A^C^. Vanadium catalysts for 

alkane oxidative dehydrogenation have also been the subject o f much research and to date 

there has been a number o f reviews detailing the current state o f the art I24'26]. Bulk V2O5 

is a proven catalyst for alkane oxidation but not a good catalyst for propane oxidative 

dehydrogenation. Propane conversions of 22% at 540°C have been reported in the 

literature but the selectivity to propene was low at 18% ,26). Other groups found similar 

results l29l  However, the spreading of the oxide onto a suitable support leads to 

modification o f the vanadia properties resulting in a highly active and selective catalyst.
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Supported V2O 5 catalysts are very active and selective catalysts for the ODH of propane 

to propene. Some o f the earliest work was done on V-Mg-O catalyst with interesting 

results. Early work by Chaar et al on V impregnated MgO showed how it was capable of 

10% propane conversion at 540°C with a propene selectivity o f 65% *261. Interestingly, the 

only products formed were propene, COx and ethane(ene) with no other oxygenates found 

in the feed. The absence o f oxygenated products was attributed to the absence of V =0 

bonds in the ortho vanadate (Mg3V2 0 8 ) system which are believed to cause over-oxidation 

o f the hydrocarbon. In a similar study Sew et al assigned the activity to the pyrovanadate 

phase (a-M g2V2 0 7 ) and stated that it was the orthovanadate phase that was responsible 

for the total oxidation [2?1. Further work confirmed the pyrovanadate phase to be the most 

selective and reducible with the reactivity o f each phase found to decrease in the order 

Mg2V2 0 7  > MgV20 6 > Mg3V2 0 8 . Gao suggested that the phases work in a cooperative 

manner with the selectivity to propene over MgiV20 8  (orthovanadate) being promoted by 

the presence o f the a-M g2V2 0 7  (pyrovanadate) phase or excess MgO in intimate contact 

I28-29] Qverajj there is a general agreement that the reaction proceeds via abstraction of 

hydrogen from the alkane with the reduction o f tetrahedrally co-ordinated V?+ species.

The influence o f the preparation methods of V-Mg-O catalysts on their catalytic 

properties has been studied and, again, an Mg enriched surface was found to be beneficial

[30]

More recent studies have looked into altering the activity o f the established V-Mg-O by 

modification o f the active site or the addition o f certain promoters. Solid state catalysts 

prepared by mechanical mixing o f the two component oxides have been investigated but 

the results were poorer than those over the impregnated sample l311. The significant 

increase in the selectivity over the impregnated sample has been related to the highly 

dispersed Mg in the meso-VMg. The addition o f Mg to vanadia has been found to
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increase the activity by the formation of VOx tetrahedra with the activity of the catalyst 

being related to the presence o f VOx tetrahedra and the absence o f exposed V=C) bonds 

from V2O 5 crystallites l32'35'. Certain recent studies have focused on the preparation of 

magnesium vanadates with higher concentrations o f these VOx tetrahedra. The 

preparation method studied was found to inhibit the formation o f the less selective double 

V =0 bonds resulting in a more active Mg3V2 0 7 l36). It appears that the strong interaction 

o f the acidic and basic MgO is an important factor for the formation o f active magnesium 

vanadates, the formation o f isolated or clustered VOx units is necessary to prevent over 

oxidation o f the alkane: many groups support the theory that the high selectivity is as a 

result o f the limited oxygen availability within these systems.

Supporting vanadia on other metal oxides also results in an active catalyst. VOx 

supported on AI2O3 , SiC>2 and MgO has been the subject o f a number o f catalytic and 

structural studies. Silica supported catalyst have received a lot o f attention over the last 

few years, primarily for the oxidation o f ethane and butane *37'391. The oxidative 

dehydrogenation o f propane over Si0 2  supported vanadia has received less attention but 

certain studies have shown it to be an active catalyst for the production of propene. 

Parmaliana et al l40] found that V2O5 greatly enhanced the performance o f pure SiC>2 for 

the production o f propene. However, the temperature o f the reaction was relatively high, 

typically operating in the 500-655°C temperature range. At lower temperatures o f 450°C 

the conversion is relatively poor at 2 .8 % with selectivity to propene o f 6 6 %, although, 

with an alkane rich reaction feed the conversion was increased to 3.3% with a propene 

selectivity o f 73%. The catalyst also showed traces o f other oxygenates in the feed 

(ca.<5%). At higher temperatures (>500°C) the conversion is increased but at the expense 

o f selectivity as methane, ethane and carbon oxides become the dominant products. Other 

groups found similar results with higher temperatures being necessary for appreciable
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conversion o f  propane 141 \  The best propene yields were achieved at 550°C but again, at 

these temperatures traces o f  ethane, ethene and methane were found. The higher reaction 

temperature required for the activation o f  propane on V Si02 catalysts is consistent with 

the evidence that the V species is highly dispersed over the acidic silica surface. 

Increasing the vanadia loading results in an increase in conversion due to the formation o f  

polymeric vanadium species which, although more active, cause over oxidation o f the 

alkane. Silica supported VMgO catalysts are active and selective for the oxidative 

dehydrogenation o f  both propane and n-butane 1421 but as with other silica supported 

catalysts tend to show low selectivity to oxygenates at higher reaction temperatures, in 

this case acrolein. Higher Mg/V ratios were required for better selectivity due to the loss 

o f Mg within the system to the formation o f  Mg2SiC>4. As with previous studies the 

presence o f  ortho-Mg3V208 and pyro-Mg2V2C>7 are necessary to obtain the most selective 

catalyst.

In studies by Lemonidou et a l  V2O5 impregnated TiC>2 and AI2O3 were found to be 

more active and selective than V-Mg-O catalyst [43*. The activity was related to the 

reducibility and structure o f  the V species on the surface. Under the conditions tested the 

activity and selectivity was found to decrease in the order 

V A l203>V Ti02>VZr02>VM g0. The VAI2O3 catalyst was 60% selective to propene at 

8% conversion at 450°C, results comparable to those over Mg-vanadates. The addition o f  

alkali metals (Li, Na and K) was found to increase the selectivity to around 80% but at the 

expense o f  decreased conversion. Recently V205/Al203/Si02 catalysts have been shown 

to activate propane in the 400-500°C temperature range *44l  Propane conversion over the 

catalysts were quite high at around 20% but the selectivity to propene was below average 

at <50%. The addition o f  Ni, Cr, Mo, and Nb to V -Si02 catalysts was found to increase 

the overall activity and selectivity I45); at 500°C, and with conversions o f  10%, a
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selectivity to propene o f around 40% was achieved. The selectivity to propene was found 

to decrease with the increasing electronegativity o f the additive. The addition of an alkali 

potassium promoter increased the selectivity but decreased the activity. Interestingly the 

addition o f K to VOx MgO resulted in a decrease of both activity and selectivity.

Alumina-supported basic vanadates containing ZnO are also active for propane 

conversion but the selectivity to propene is very low *46). As with previous work it was 

found that good interaction o f the active phase with the support was necessary for 

increased propene selectivity. Interestingly the temperature o f the reaction was relatively 

low at 350°C. This is some 50-100°C lower than many o f the other V containing catalysts 

reported in the literature. The addition o f Mg modifiers to V2O5/AI2O3 and XAO.s/TiC^ 

catalyst was investigated by Machli et alJ 471 Addition o f Mg to V2O5/ TiCb almost 

doubled the selectivity o f the catalyst. The effect on V2O5/AI2O3 is less pronounced. This 

increased selectivity was related to the beneficial effect o f Mg in the rate of primary 

formation o f propene from propane. The specific surface activity o f the catalyst was 

found to be related to the acidity; the higher the acidity the higher the activity.

Vanadium phosphates are well known to be active and selective in the oxidation of n- 

butane to maleic anhydride [481 as well as the selective oxidation o f ethane to ethane[431. 

The ability o f VPO to catalyse the ODH o f propane is generally quite poor. Vanadyl 

phosphates give predominately carbon oxides with very low concentrations o f propene, 

ethane, acrylic acid and acrolein 149 '5°1. The highest propene selectivity reported is 12.5% 

over 01-VOPO4 although a selectivity o f up to 75% has been reported when the reaction is 

carried out in the presence o f ammonia 151'. Higher propane selectivity has been obtained 

over vanadium aluminophosphates. VAPO catalysts containing small amounts of vanadia 

were very selective, and this selectivity was attributed to the increased concentration o f 

VOx tetrahedra on the surface |52J.
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Vanadium oxide containing catalysts are active and selective materials for the oxidative 

dehydrogenation o f propane, as well as ethane and butane. The spreading o f the catalyst 

over various supports and carriers is found to greatly increase the activity of the V 

species. The activity and selectivity o f the catalyst is found to be influenced by a number 

of factors including: the preparation method, presence o f dopants, vanadia loading, the 

nature o f the support and hence the nature of the surface V species. Acidic supports give 

a highly dispersed vanadia monolayer whereas basic supports tend to form stable mixed 

oxidic phases. Although vanadium containing catalysts show some o f the highest 

conversion and propene selectivity the temperature of the reaction is typically in excess of 

500°C.

1.6.2 Molybdenum based catalysts

Molybdenum oxide based catalysts are active for a number o f reactions including the 

selective oxidation and ammoxidation o f propene. Bismuth molybdates and vanadyl 

molybdates have proven to be active in the (amm)oxidation o f propene to acrolein, acrylic 

acid and acrylonitrilel53J but it is only recently that significant attention has been paid to 

molybdenum based catalysts for the oxidation and oxidative dehydrogenation of propane. 

Some o f the earliest reported work was done in 1978 on cobalt molybdates that showed 

high selectivity to propene (77.9%) at temperatures in excess o f 500°C but the reported 

propane conversion was very low at just 4.1% |54]. It is only in the last 10 or so years that 

serious effort has been directed towards the study o f various metal molybdates for the
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ODH of propane and although promising results have been seen one o f the major 

problems with molybdenum oxide based catalyst is the high temperature required for 

activation o f the alkane. Indeed the majority o f molybdenum catalysts studied are only 

active at temperatures greater than 450°C with few exceptions.

Yoon et al ,55'56J studied propane oxidation over a series o f metal molybdate catalysts

and found that most o f the catalysts predominately promoted the ODH of propane to

propene. Each catalyst attained 80% selectivity but with varying activity. The most

active catalysts were found to be those containing Mg, Ca, Ni, Al and Cr but selectivity at

these conversions was relatively low. The most active and selective catalyst was

C oo 95M oO x, w h ich  ga v e  60%  selectiv ity  at 20%  con version  at 450°C , these results are

comparable to those obtained over V^O.s/MgO catalysts ,5?1. Precipitated magnesium

molybdates such as M g o  g.sM oO x are active at temperatures as low as 400WC but with low

conversion. The authors report a maximum conversion o f 22%, with a selectivity to

propene of 61% l58l  Bulk and supported magnesium molybdates have also displayed

promising results. Cadus and co-workers 1591 reported an MgMoOa-MoOi catalyst, which

displayed high catalytic performance in the ODH of propane to propene. The maximum

selectivity observed was 91% at 10% conversion at 550°C. The activity was attributed to

a synergistic cooperation between the two phases in the MgMo0 4 -Mo0 3  mechanical

mixture. Bulk M 0 O3 shows little activity for propane oxidation but when used in

conjunction with MgMoOx there is an overall increase in the conversion and selectivity

[58-59] a c t jv jt y  w a s  f o u n ( j  to be strongly dependent on the acidity of the catalyst.

Further studies indicated that excess M0 O3 in the MgMoOx system plays an important

part in the ODH reaction with surface MoOx clusters contributing to the overall activity 

[60]
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The selectivity to propene over certain MgO-MoO} systems is influenced by the 

presence o f promoters. The addition o f K and Sm to a MgO/y-AhOi-supported 

molybdenum catalyst resulted in an increase in selectivity but a decrease in conversion 

l6l). Addition o f Cs, K and Li to a MoOx/Zr0 2  catalyst resulted in a similar decrease in 

activity with subsequent increase in selectivity ,62*. The increased propene selectivity o f 

ODH catalysts with alkaline addition is well known, with the effect being attributed to 

modification o f the acid sites responsible for activity. Similar results were found over 

alkali modified V0 x/Ti0 2  for the ODH of propane to propene ,63).

A number o f  studies have focused on supported molybdenum catalysts with a lot o f  

attention paid to the effect o f  various supports on catalytic activity. Desikan and co

workers [64] investigated propene oxidation over M0O3 supported on Si02, AI2O3 and 

Ti02. The oxidation products formed were found to be dependant upon the support used 

(acetone on M o03/Ti02, acrolein on MoCVSiC^ and acetaldehyde on M0O3/AI2O3). The 

activity for propene oxidation increased in the order SiC>2< Al203<Ti02 and was found to 

correlate with the interaction o f  M0O3 with the support.

Other groups found similar results for the ODH of propane to propene ,6r'1. Propane 

conversion was tested over M0 O3 supported on Nb2 0 s, Ti0 2 , AI2O3, Si0 2 , MgO and 

Zr0 2 . O f these, the M o0 3 /Ti0 2  catalyst was the most selective at iso-conversion with a 

propene selectivity o f 77% at 5% conversion. The rate o f the reaction over the 

Mo0 3 /Ti0 2  catalyst was increased by the addition o f vanadia and niobia promoters which 

gave a catalyst with activity similar to that o f NiMoCL; one o f the better catalysts reported 

for the reaction t66l  An extensive study conducted by Grasselli et al [67"69) showed how 

silica-supported NiosCoo.sMoCL was capable o f 67% selectivity to propene at 20% 

propane conversion. The maximum propene yield was found to be 16% at 34% 

conversion.
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Molybdena-manganese catalysts have been shown to be highly effective for propane 

ODH, especially at low temperatures 170-71 A M o-M n-0 system prepared from dry 

impregnation o f Mo on M ^ O i was active at temperatures as low as 350°C. The propene 

yield was 1.5% with a selectivity to propene of 76%; the only other product was CO2 . 

This temperature was reported to be 100°C lower than other more commonly tested 

catalysts. It is interesting to note that M ^ O i and CuMn2 0 4  are proven catalysts for 

combustion o f CO and small chain olefins [72'731. M ni0 4  has also been shown to activate 

propane and propene at temperatures as low as 100°C l74*. Combination of the highly 

active Mn2 0 3  with the relatively stable M0 O3 led to a selective catalyst that was active at 

a lower than average temperature.

1.6.3 Gallium based catalysts

Catalysts based on gallium oxide have been proven for a number o f catalytic reactions. 

These include gallia exchanged or impregnated ZSM-5, gallium in mordenite or ferrierite, 

gallium with sulfated zirconia or sulfated ZSM-5, and combinations o f gallium with 

zirconium on sulfated and unsulfated ZSM-5 which are all active for the reduction of NOx 

by methane and hydrocarbons Recently Choudry et al showed that MCM-41 

supported Ga2C>3 was active for Friedel-Craft benzene benzylation and acylation of 

aromatic compounds

One o f its most important applications is in the Cyclar process where a Ga-ZSM-5 

catalyst is used for the aromatization o f propane and butane. Early work by Chen and 

Cattanach showed ZSM-5 was an effective catalyst for the conversion o f alkanes to
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aromatics I77'791. Subsequent research and improvements led to the development of the 

Cyclar process [8°* using gallium modified ZSM-5 |8I‘82*. The reaction is generally 

recognised to involve the synergistic interaction between the zeolite and the active 

gallium species. It is believed that the reaction follows a bi-functional process whereby 

the gallium catalyzes the dehydrogenation reaction and the zeolite acid sites facilitate the 

oligomerisation and cyclization o f the propene 18'I  

Since its initial beginning continuing efforts have been made to improve the activity of 

the catalyst and also to probe the nature of the active sites. Buckles and Hutchings |83'841 

tested the effect o f co-feeding NO, O2 and H2 on the activity o f Ga-ZSM-5 for the 

activation and conversion o f propane and found that the addition o f NO resulted in a 

decrease in overall conversion and methane yield, the propene yield however, remained 

constant. The addition o f H2 to the system was also found to decrease the activity and 

aromatic yield. Interesting results were found when the Ga2 0 3  was kept separate from the 

zeolite or was combined as a mechanical mixture. By having Ga20_3 separate from the 

ZSM-5 a propane conversion o f around 34% was achieved with a selectivity to propane 

o f 9%. Again the temperature o f the reaction was high at 550-600°C. Pre-treatment of the 

catalyst with H2 resulted in a decrease in both conversion and selectivity for catalysts with 

higher concentrations o f Ga2C>3 . Combination of the Ga2C>3 and ZSM-5 in a physical 

mixture gave promising results for the conversion o f propane to propene. Increasing the 

concentration o f Ga2C>3 within the mixture resulted in an increase in propane conversion 

and propene selectivity. Methane, ethane and aromatic selectivity decreased. The addition 

of H2 to the reaction mixture increased the activity o f the physically mixed catalyst 

relative to having N 2 in the feed. A 100% Ga2 0 3  catalyst at 600°C with H2 in the feed 

achieved 21.8% conversion with a propene selectivity o f 71.9%. With N2 in the reaction 

mixture the conversion decreases to 8 .8 % with a selectivity to propene o f 74%. The
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authors attribute the higher activity of the physical mixture to contact synergy within the 

Ga2(V Z S M - 5  system. They suggest that the propane molecule is activated at the interface 

between the Ga2C>3 and the zeolite. In related studies on the conversion o f methane to 

methanol, deuterium exchange experiments showed how at 500°C the rate o f CH4/D 2 

exchange was greatest over Ga2C>3 (4.71 x 1019 molecules s '1) |85'86). This would support 

the theory that the key role o f Ga2(>3 in these catalysts is to aid C-H bond activation via 

heterolytic cleavage caused by bond polarisation induced by the Ga2 0 i 

Gallium oxide based catalysts have also been considered for the conversion o f propane to 

propene via alkane dehydrogenation, typically in the presence o f CO2 ,87'881. Work by 

Michorczyk et al showed how both propane conversion and propene selectivity could be 

increased by the use o f CO2 as a mild oxidant. The temperature o f the reaction was very 

high in comparison to those typical for oxidative dehydrogenation using O2 but the results 

are quite interesting. At 600°C the propane conversion and propene selectivity over bulk 

Ga2C>3 was 33 and 93% respectively ,87). The use o f CO2 in this process allows the 

reaction to be run at relatively low temperatures with a high selectivity to C3H6 . Yue et al 

studied the same reaction and found that due to its stability, the promotional effect of CO2 

was only evident above 550°C f891. However, at 500°C the selectivity to propene over [1- 

Ga2C>3 was >95% with a propane conversion o f 25%, this is better than the chromium 

oxide catalyst typically used in this reaction.

Gallium promoted zeolites have also been tested for the oxidative dehydrogenation of 

propane. The rate o f propane conversion over a faujasite catalyst was found to 

significantly increase with the addition o f a few gallium ions, lowering the temperature of 

activity compared to the bare zeolite I90'91!. Very few studies have focused purely on bulk 

Ga2C>3 for the ODH of propane with the majority focused in mixed metal oxides 

incorporated with gallium. Perez Pujol et al found interesting results in studying V-Ga-0
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catalysts [921. The catalysts tested were active at very low temperatures, showing 5% 

conversion at 350°C. The main reaction products were propene CO and CO2 with no 

partial oxidation products. Although the pure Ga2 0 3  show some activity, it was not as 

active as the vanadia-impregnated sample, the activity o f which increased with increasing 

vanadia loading. The selectivity to propene was in range o f 60-80% and increased with 

decreasing O2 feed concentration. The V-Ga-0 catalyst showed the highest activity at the 

lowest temperature out o f all o f the catalyst with the best reported results o f 3.3% propane 

conversion at 300°C, with a selectivity to propene o f 70%. The performance o f the 

catalyst is comparable to that o f the best V-Mg-O catalyst.

1.6.4 Cobalt oxide based catalysts

Cobalt oxides have a wide range o f industrial applications and are used in rechargeable 

batteries, CO sensors and magnetic materials |93'96J. Cobalt oxide catalysts are o f great 

interest due to their high activity in hydrocarbon oxidation [97'981 and CO oxidation 1" I02J. 

There has been little research into bulk or supported cobalt oxide catalysts for the 

oxidative dehydrogenation o f propane. The few catalysts that have been studied usually 

contain cobalt as a promoter within an established catalytic system. C 0 M 0 O3 catalysts are 

particularly good at converting propane and outperform other metal molybdates [l 03-1041 

with addition o f Co to bulk M0 O3 found to increase both activity and selectivity 11051 and 

its addition to V-Mg-O systems has been found to increase propane conversion ,l061. 

Cobalt impregnated MCM-41 catalysts are also active and selective in the ODH of
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propane but with a lower than average conversion and selectivity |l071. One o f the most 

interesting aspects o f  C03O4 is its activity at low temperatures. In the oxidation o f CO, 

C03O4 is found to be active at temperatures as low as -63°C |l()8*. Cunningham et a l  found 

a light-off temperature o f  -54°C ll()t)|. Such high activity at low temperatures has been 

linked to the interaction o f  C03O4 with oxygen in the gas phase. Studies have shown 

C03O4 to have the highest rate o f  oxygen exchange with the gas phase, giving rise to high 

concentrations o f  chemisorbed and physisorbed electrophilic (O2', O * and O22’) and 

nucleophilic (O2’) oxygen species on the surface 17 IH|. Haber and Turek proposed that 

propene was activated on the surface by electrophilic oxygen species giving rise to 

surface oxygenates which break down to CO2 and H2O (figure 1.5)

O', O2  CH2 -CH-CH 3  CH2  + CH-CH 3
ch2= c h - c h 3  I I  ^ i  jl

O — O  --- *  o  o

i  I

HCOOH CH3 COOH

\ /
CO2 + H2O

Figure 1.5. Proposed mechanism for propene oxidation on the surface o f C 0 3 O4
[ 110]

There is no evidence in the literature of cobalt oxide being capable o f propane conversion 

to propene at these low temperatures. However work by Finocchio et a l  attempted to 

determine the reaction mechanism for propane activation by FTIR. It was found that
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C03O4 was more active than other oxides tested, giving rise to substantial conversion o f  

propane at ca. 250°C 11111 although the primary product was CO2. Its activity in the total 

oxidation o f propene was similar to that o f propane. The FTIR studies by this group go 

some way to suggesting a simple mechanism. It states: “On C03O4 we found that propene 

is oxidised at the allylic position giving rise to acrylate species already at room 

temperature”. Also: “Propane is also activated at very low temperatures, at C ( 1) and at C

(2). Activation at C (2) gives rise to acetates” flllJ. Although they present these results no 

mention is made o f  low temperature reaction studies on C03O4 that give rise to propene in 

the gas phase, they merely state the presence o f  such species on the surface. Nevertheless, 

if  bulk C03O4 is capable o f  activating propane at such low temperature it may be a good 

catalyst for the oxidative dehydrogenation o f  propane providing the reaction conditions 

are carefully controlled. As mentioned previously C03O4 is an excellent catalyst for the 

total combustion o f  organic molecules but as long as desorption o f  the propene molecule 

occurs before total oxidation C03O4 could be a good catalyst for the low temperature 

ODH o f propane.

1.5 Isopropanol production

Iso-propanol is classed by the US Environmental Protection Agency and the 

Organisation for Economic Cooperation and Development as a high production volume 

chemical, with a production at least 1 million tonnes per annum worldwide. Chemical 

grade iso-propanol is used as an intermediate for the manufacturing o f  acetone, ethers, 

alkylclorides and amines. Industrial uses are numerous, for example iso-propanol is use in 

the manufacture o f  pharmaceuticals, paints, semiconductors, rubber, and has many
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applications in industries such as electroplating and printing. Iso-propanol is currently 

produced by industrial hydration processes using concentrated sulphuric acid, supported 

phosphoric acid catalysts or acidic cation exchange resins. In the conventional process, 

used since 1930, aqueous sulphuric acid is used as the catalyst. Alkyl sulphates are 

formed initially and then hydrolysed by the addition o f water to form the alcohol product. 

The use o f such strong acid catalysts can be problematic however, causing corrosion to 

reactors and pollution t8 l,2 l. It is also necessary to re-concentrate the used acid. Figure 1.6 

shows a simplified version o f the homogeneous reaction mechanism. The addition of 

water to the alkene obeys M arkovnikov's rule resulting in the secondary alcohol iso

propanol. Oligermerisation o f the alkene as well as dehydration and dehydrogenation of 

the alcohol can give rise to various by-products such as ketones, aldehydes and alkene 

oligomers

C H 3H C = C H 2 +  I T  — ► C H 2 H C * -C H 3 H 2° » C H 3H C (O H )-C H 3 +  IT

Figure 1.6 Homogeneous acid catalysed hydration o f  propene

There are also a number of heterogeneous processes in operation using solid acid 

catalysts. In the ICI process W 0 s/Si0 2  + ZnO is used as catalyst at 270°C and 250 atm. 

and in the Huls process a FbPCVSiC^ catalyst is used at 190°C and 25-45 atm.. in the 

latter process a selectivity o f 95% is achieved at ca. 6 % conversion1" 21. Again it is often 

necessary to re-concentrate the acid catalyst, which can be unstable and degrade over 

time. Figure 1.7 shows a proposed mechanism for the heterogeneous conversion of 

propene to isopropanol.
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Figure 1.7 Proposed mechanism for heterogeneous propene hydration over acid catalyst 11131

Because o f the inherent problems o f existing processes there has been a continuing effort 

to find more suitable catalysts. One o f the most recent developments has been in Japan 

with the introduction o f a large scale commercial process using aqueous solutions of 

heteropolyacids. In the Tukuyama process alkene conversions o f 60-70% are achieved 

with a alcohol selectivity o f 99%. The temperature of the reaction is quite high at around 

240-280°C [I14].

To date there has been little or no research into a process for the direct conversion of 

propane to iso-propanol and given the large worldwide resources o f propane such a 

process has many advantages. Two possible routes have been proposed in the literature 

which include a method whereby the two reactions works in series: the propene is first 

formed via dehydrogenation before being passed to a second reactor where hydration to 

iso-propanol takes place 11151. The second method promotes the use o f enzyme mimicking 

catalysts such as metaloporphyrins and phthalocyanin complexes, the results are 

promising but far from commercialisation.11161. Heterogeneous processes using bi

functional catalysts have received no attention of late but it is envisaged that such a 

catalyst could be fine-tuned to give the desired results.
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Chapter 2

Experimental

2.1 Catalyst Preparation

2.1.1 Ga203/Mo03 mixed oxide catalyst

The mixed oxide catalyst Ga2 0 3 /Mo0 3  was prepared by physical mixing. The catalyst 

was prepared by grinding the two components, Ga2C>3 (Aldrich 99.9%) and M0 O3 

(Aldrich 99.9%), in a pestle and mortar in a 1:1 molar ratio. The catalyst was ground for a 

minimum of 10 minutes to ensure good mixing. The mixed oxide was calcined at 650°C 

for 3 hours in static air. The sample was allowed to cool to below 100°C before being 

removed from the tube furnace and ground in the pestle and mortar for a further 1 0  

minutes. A second uncalcined sample was also prepared. For certain experiments the 

molar ratios were varied as well as the calcination time and temperature .All samples 

were pelleted between 250-600pm. The sample was compressed in a 12mm die at a 

pressure o f 10,000 Kg and then broken down through a sieve with grinding to give pellets 

between 250-600pm.

2.1.2 Precipitated GaOOH precursor

Gallium hydrate was prepared by precipitation from the nitrate (Aldrich 99.9%) with 

aqueous ammonia solution. Gallium nitrate (2.6g) was dissolved in distilled water (50ml) 

and the solution stirred for 30 minutes. Aqueous ammonia (50%) was then added until pH 

9.0 was attained. The resulting white precipitate was stirred for a further 30 min. before 

being filtered and dried for 16h at 40°C.
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2.1.3 Precipitated C 0 3 O 4  catalyst

C0 3 O4 was prepared by precipitation of the oxide from the nitrate. Typically, 40g of 

cobalt nitrate (Co(N 0 3 ) 2  • 6 H2O; Aldrich 99.9+%) was added to distilled H2O (800ml) 

with vigorous stirring. The solution was heated to 80°C before the dropwise addition of 

35% (aq) NH4(OH). The ammonia was added at a rate o f approximately 2ml min ' 1 until 

pH 8.5. Beyond this the rate o f addition was halved until pH 9.0 was attained. The 

purple precipitate was aged between 0-5 h at 80°C with continuous stirring, before being 

filtered and washed with hot distilled water ( 1 0 0 0 ml).

The precursor was dried in an oven at 120°C for 16 hours before being calcined in static 

air. The calcination temperatures were 250°C, 400°C and 550°C. Each precursor was 

calcined for a period o f 2 h.

For comparison, a commercial C0 3 O4 sample (Avacado 99.9%) was obtained and used 

as received from the suppliers.

2.1.4 Nano-crystalline C 0 3 O 4

Nano-crystalline C0 3 O4 was prepared by solid-state reaction according to methods 

described elsewhere The starting materials used were Co(N0 3 ) 2  • 6 H2O (Aldrich) and 

NH4HCO3 (Aldrich). 5g o f the starting materials were mixed in a pestle and mortar with 

Co(N0 3 ) 2  • 6 H2O: to NH4HCO3 molar ratio of 2:5. The starting materials were ground 

for 0.5h before being thoroughly washed with distilled water and filtered by suction. The 

reaction proceeded according to the equation:

Co (N0 3)2-6 H20  + 5 NH4HCO3 —*■ Co(OH)2C 0 3 + NH3 + 4 C 0 2 + 14H20
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The reaction was very fast with the reaction mixture turning a deep purple. The smell of 

ammonia gas was also noticeable. The catalyst precursor was then dried for 16h at 100°C 

before calcination at 300°C for 2h in static air. Samples were also calcined at 200°C, 

400°C and 600°C to investigate the effect of calcination temperature on surface area and 

activity.

2.1.5 Higher cobalt oxide

The higher cobalt oxide system was prepared using the precipitation-oxidation process 

described elsewhere *21. A cobalt nitrate solution (0.4M) was added to a mixture of 

aqueous solutions o f NaOH (4 M) and NaOCl (1 M). NaOH was used as a precipitating 

agent to instead o f NH4OH in order to avoid the formation o f water-soluble Co(II) 

ammonia complexes. Precipitation was carried out using NaOH at 70°C with constant 

stirring. The solution was maintained at pH-9.0. The resulting black precipitate was aged 

for lh  before being filtered and washed with plenty o f hot distilled water to remove Cl' 

and NO3'. The precursor was then dried at 90°C for 6 h.

2.1.6 Silica supported H3 PO4

The silica supported phosphorous catalysts were prepared by insipient wetness 

impregnation. An appropriate amount (70wt%) of phosphoric acid (Aldrich 99.9%) was 

dissolved in distilled water before addition to the fumed silica (Aldrich 99.8%). The 

resultant slurry was stirred thoroughly before being allowed to dry in an oven at 1 10°C for 

16 h.
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2.1.7 Acid hydration catalysts

The bulk acid catalysts were used as supplied from Aldrich. They included 

tungstophosphoric acid (HPW) (Aldrich 99.995+%), phosphomolybdic acid (Aldrich 

99.99+%), tungstosililic acid (Aldrich 99.9+%)and zeolite ZSM-5 (Zeolyst).

2.1.8 Dehydrogenation/hydration catalyst

Catalysts were prepared by direct mechanical mixing o f nano-crystalline C0 3 O4 and 

phosphomolybdic acid in a 1:1 ratio by mass, or by direct impregnation o f the cobalt 

oxide catalyst with an aqueous solution containing (70wt%) phosphoric acid.

2.2 Reactor Design

2.2.1 Oxidative Dehydrogenation Reactor

The reactor consisted o f an 8  ml i.d quartz tubular reactor running at atmospheric 

pressure. Studies were performed using propane (BOC 99.99%) with oxygen (BOC 

99.5%) as the oxidant and helium (BOC 99.5%) as balance. The flow rates were 

controlled by MKS digital flow meters. Calibration data for the M FC’s can be found in 

the appendices. The catalyst was secured in the quartz tube between silica wool plugs. 

The catalysts bed was heated with a Carbolite furnace with the catalyst sitting in the 

hottest part o f the catalyst hot zone. The temperature of the reaction was monitored using 

a thermocouple placed directly above the catalyst bed, in contact with the silica wool. 

Flow rates for all experiments were between 20-40 ml min ' 1 except where contact times 

were varied.
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For hydration experiments water was introduced to the system using a 150cc stainless 

steel sample cylinder. The temperature o f the water was controlled with heating tape 

attached by a Eurotherm temperature controller. The temperature was monitored with a 

thermocouple inside the sample cylinder (figure 2.1).

Online analysis was conducted using a Varian 3800 GC with Haysep Q and Molsieve 

13X columns in a series/bypass configuration. Reaction products were detected using a

thermal conductivity detector (TCD) and flame ionisation detector (FID).

2.2.2 Low Temperature Oxidative Dehydrogenation Reactor

The low temperature oxidative dehydration reactor (figure 2.2) consisted of a stainless 

steel reactor tube submersed in a temperature controlled water bath. The temperature of 

the catalyst bed was monitored with a thermocouple placed directly above the catalyst 

bed. The rest o f the system was as described previously.

2.2.3 Ga2 0 3 /M o0 3  reaction conditions

0.25g o f catalyst was used, in each case the flow rate was 40 ml m in '1 (HeA^/QHg = 

85/5/10%). For certain experiments the bed composition was varied. Two tests were done 

using a Ga2C>3/SiC/M o0 3  layered bed where the pure metal oxides were separated by a 

silicon carbide layer (O.lg). Experiments were done with Ga2C>3 in both the upper and 

lower portion o f the bed (figure 2.3). For comparison, the metal oxides were also tested 

on their own, the bed volume being maintained using inert silicon carbide. The data for 

silicon carbide blank reaction can be found in the appendices.

The effect o f layering the catalysts in contact with no silicon carbide was also 

investigated; again experiments were done with Ga2 0 3  in both the upper and lower 

portion o f the bed.
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MoQ3

G32Q3

Figure 2.3 (a) Dual bed with silicon carbide separating layer (b) Dual bed with metal oxides in contact

2.2.4 Small bed C 0 3 O 4 reaction conditions

0.25g o f catalyst was used, in each case the total flow rate was 2 0  ml min ' 1 (He/C>2- 

/C3H8 = 80/19/1%) GHSV^SOO h '1. The temperature o f the reaction was between 25- 

140°C. Contact times were changed by varying the flow rates o f the gases, and in certain 

tests the O2 concentrations were also varied. Steady state measurements were conducted 

at temperatures between 25-140°C with a constant flow rate. The catalyst was activated in 

the reactor prior to the reaction at 400°C for 2hrs in a 20 m l/m in'1 10% 0 2 /He flow. Figure

2.1 shows the reactor arrangement.

( a ) ( b )

moo3

Silicon carbide

G a 2 C > 3

4 4



2.2.5 Ambient temperature reaction conditions

Ambient temperature reactions were conducted in the water bath reactor (figure 2.2) 

using between 5-1 Og o f catalyst. The catalyst was pelleted to uniform particle size (250- 

600pm.). In each case the total flow rate was 20 ml m in '1 (He/Ch/CsHs = 80/19/1%) 

GHSV=4800 h '1. The temperature o f the reaction was varied between 25-60°C.

2.2.6 Propene/propane hydration reaction conditions

0.25g o f the phosphomolybdic-Co3 0 4  catalyst was used in each case. The reaction was 

performed at 70-150°C. The total flow rate was 40 ml m in '1 (He/CVHydrocarbon = 

80/19/1%). The concentration o f water in the feed was varied between 2-35KPa. The 

catalyst was heated up to 70°C in a He/02 mix. Once the temperature had been allowed to 

stabilise propane and H2O were introduced to the system. The sample cylinder was 

heated in 10°C steps and allowed to stabilise at each temperature for approx. 15-20
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1 Helium Cylinder
2 Oxygen cylider
3 Propane cylinder
4 7 micron filter
5 Back pressure regulators
6 MKS M ass flow controllers
7 Heating tape
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9 Temperature controller
10 Reactor tube
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12 Carbolite tube Furnace

13 Thermocouple
14 G as chrom atograph
15 Computer

m

Figure 2.1 Oxidative dehydrogenation reactor and hydration reactor

0

Helium cylinder 
oxygen  cylinder 
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MKS m a s s  flow controllers 
W ater bath 

. Therm ocouple
9 C atalyst bed
10 S tee l reactor tube
11 g a s  chromatograph
12 com puter

Figure 2.2 Low Temperature oxidative dehydrogenation reactor
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minutes before sample injection. Three injections were done at each temperature and 

the average taken. CO2 , propene and iso-propanol were the primary products present 

with trace amounts o f other oxygenates formed at higher temperatures.

2.2.7. Reduction of C 0 3 O 4

After activation (400°C 2h. 10% 0 2 /He) the catalyst was reduced in a 10%H2/He 

flow, 20 ml m in '1 at 80, 150 and 200°C for 2h.

2.2.8. Sample delivery

The sample delivery program was built in conjunction with the GC oven temperature 

program to get good separation of the reactants and products along with acceptable 

retention times. Samples were injected into the GC using a six-port valve (V 1) heated 

to 200°C. Separation o f the reactants and products was done on two columns fitted in 

series (figure 2.4) with the Molsieve in the second position.

The Molsieve could be bypassed at the second valve (V2) (figure 2.5). The Molsieve 

13X was used to separate the N2, O2 and CO. The Haysep Q separated the 

hydrocarbons and CO2 The bypass configuration meant that the CO2 could be 

separated efficiently. CO 2 irreversibly adsorbs on the Molsieve and can deactivate the 

column.
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Figure 2.4 Valve position 1. Columns in series configuration.

MOLSIEVE

HAYSEPQ
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Figure 2.5 Valve position 2. Columns in bypass configuration.
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2.2.9. Valve Sequence and temperature programme

Valve 1 (VI ) controlled the injection of the sample and valve 2 (V2) controlled the 

passage o f the sample through the columns. The sequence parameters can be seen in 

table 2.1.

Table 2.1 Valve sequence table. (-) Valve position I. (+) Valve position 2

VI V2
Injection Series Bypass

Initial - -
0.01 + -

0.8 + +
2.20 + -

3.50 + +

The retention times o f the sample components was controlled using the temperature 

programme shown in table 2.2. The total run time of the programme was 10 minutes.

Table 2.2 Temperature programme for column oven

Temperature
(°C)

Ramp rate 
^Cmin'1)

Hold time 
(min)

Total time 
(min)

100 — 2.00 2.0
140 20 0.00 4.0
180 30 0.00 5.3
220 60 4.00 10.00

2.2.9.1 Data handling

The GC was calibrated for analysis by injecting known amounts of reactants and 

products. The peak areas corresponded to a specific concentration determined by 

multiplying the raw counts by the response factor (RF). The response factor (RF) is 

the taken from the gradient o f the calibration chart (see appendix).
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Hydrocarbon con version s w ere calculated using the fo llo w in g  m ethod:

( ( H C in- H C o ut ) / H C in)  X  100%

The HC in value was obtained by taking the average initial counts at the beginning of 

a run prior to light-off. By subtracting the average concentrations of the HC over the 

temperature range studied the percentage conversion is calculated.

The selectivity to products was determined as follows:

(Amount o f product X  / Total amount of products including X) x 100

The proportion o f products determined percentage selectivity after correcting for the 

carbon number o f the product. Carbon balances were in the range o f 95-105%.

Each data point at a given temperature is the average of three injections. To determine 

the accuracy o f the conversion measured the standard deviation o f three runs for each 

catalyst was calculated, resulting in an average error o f ±4%. In the case where the 

conversion is below 1% the catalysts were repeatedly tested to ensure that the trends 

seen were real and reproducible. Rapid deactivation of certain catalysts meant that the 

timing o f the injection was crucial for reproducible results and repeated calibration of 

both the GC and flow rates was necessary to ensure accuracy.

50



2.3. Characterisation

2.3.1 Powder X-ray Diffraction (XRD)

X-ray diffraction (XRD) is one of the oldest and most frequently used techniques 

for catalyst characterisation and it was the discovery of X-rays in 1895 that enabled 

scientists to probe crystalline structures at the atomic level. X-rays are 

electromagnetic radiation that occurs in the spectrum in the region between ultraviolet 

and gamma rays. They have wavelengths in the region o f 1 0 ' 10 m (1  A), which is 

about the same size o f an atom and the diffraction technique depends upon the 

constructive interference o f radiation that is scattered by the larger parts of the 

sample. As a consequence, XRD techniques require long-range order. X-ray 

diffraction has two main uses: the fingerprint characterisation o f crystalline materials, 

and the determination o f their structure. Each crystalline solid has its unique 

characteristic X-ray powder pattern, which may be used as a "fingerprint" for its 

identification. Once the material has been identified. X-ray crystallography may be 

used to determine its structure, i.e. how the atoms pack together in the crystalline state 

and what the interatomic distance and angle are etc. X-rays scattered by atoms in an 

ordered lattice interfere constructively and destructively in directions given by 

Bragg’s law 131.
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Figure 2.6 Reflection of  x-rays from two planes of  atoms in a solid

The path difference between two waves:

2 x = 2dsin(0)

For constructive interference between these waves, the path difference must be an 

integral number o f wavelengths:

n X = 2x

This leads to the Bragg equation:

n X = 2dsin(0)

Where

n is an integer (n= 1,2,3...) called the order of the reflection 

X is the wavelength o f the X-rays

d is the distance between two lattice planes

0 is the angle o f incidence
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For a powdered sample the XRD pattern is usually measured with a stationary X- 

ray source (in this case Cu K a) and a movable detector that scans the intensity of the 

diffracted radiation as a function o f the angle 29. In the case of powdered samples a 

diffraction pattern is formed because, by chance, a small proportion o f the particles 

will be orientated such that a certain crystal plane is at the right angle 0 with the 

incident beam for constructive interference. Diffraction patterns are mainly used to 

identify the crystallographic phases present in the catalyst. However, the applicability 

of the technique is limited to compounds with particle sizes greater than 4nm, since 

extensive line broadening occurs for smaller particles, and clear diffraction peaks are 

only observed when the sample possesses sufficient long-range order.

Analysis was performed on an Enraf Nonius FRS90 Bragg Brentano geometry with 

CuKa radiation and a Ge(l 11) single crystal monochromator. Detection o f the X-rays 

was done using a curved position sensitive scintillater X-ray operated at 1.2KW 

(40mA and 30kV). Each sample was run for 'A hour and the diffractogram compared 

to known patterns on the JCPDS database. Crystallite size calculations were 

determined using the Scherrer equation. Peak broadening was referenced to 

crystalline silicon standard (see appendix).

Crystallite size = (K x X )l (FW x cos)

Where:
K= The Scherrer constant 

X = Wavelength o f X-ray 

FW = Full peak width at half maximum

2.3.2 Raman Spectroscopy

Irradiating a molecule with an incident beam of radiation gives rise to scattering, 

absorption or transmission. Such conditions give rise to Rayleigh scattering where the
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scattered energy consists almost entirely of radiation o f the incident frequency. In 

Raman spectroscopy the incident beam of radiation (ho) interacts with the molecule 

and the scattered beams consist of energies above and below that o f the incident beam 

of radiation. The gain or loss o f energy from the beam corresponds to the energy 

differences in the vibrational and rotational energy levels o f the molecule. The 

quantum theory behind the Raman effect is as follows. Radiation o f frequency d is 

treated as a stream o f photons o f energy ho. The photons can undergo inelastic or 

elastic collisions with the irradiated molecule. In the case o f Rayleigh scattering the 

collision is elastic and there is know energy change. With an inelastic collision 

however the molecule can gain or lose energy AE. If the molecule gains energy there 

is a loss o f energy from the photon as in hu-AE and if the molecule loses energy there 

is a gain o f energy in the photon as in ho+AE. These two forms are referred to as 

Stokes and anti-Stokes radiation respectively. This can be seen schematically in figure 

2.7 where v=0 and v=l are the ground state and first energy level o f the molecule |4).
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Figure 2.7 Energy changes in Raman and Rayleigh scattering

In situ raman analysis was conducted using a linkam TSISOO in situ cell attached to 

a Renishaw system 1000 dispersive laser Raman microscope. The argon ion laser



(514.5 nm) was focused with a BH2-UMA microscope fitted with an optical CCD 

camera. Spectra was collected in the 200-1200 cm '1 range with 10s exposures and 20 

accumulations using 100% laser power. The gas mixture, C3H8/O 2/N 2 =1.5/17.5/79% 

(BOC 99.5%), was passed over the catalyst at 40 ml/min. The temperature was raised 

from 40 to 140°C in 25°C increments at a rate of 10°Cmin''.

2.3.3 Thermogravimetric analysis (TGA)

Thermogravimetric analysis measures the weight loss of material as a function of 

temperature. Weight loss is given as percentage o f the total sample weight and can be 

used to identify species lost during the course o f the temperature ramp. Analysis was 

conducted using a Perkin Elmer TGA 7 with approximately 10 mg o f catalyst in an N2 

atmosphere. The temperature o f the analysis was in the range o f 40-700°C with a 

ramp rate o f 20°C m in '1.

2.3.4 Brunauer Emmet Teller surface area determination

It was Brunauer Emmet and Teller who developed the BET equation for the 

determination o f the surface area of a solid [?1. The method is based on the non

specific physisorption o f a gas (N2 or Ar) onto the surface o f a solid close to the 

condensation temperature o f the adsorbing gas. The results o f the BET process are 

characterised by an isotherm, which displays the equilibrium amount of gas adsorbed 

on a surface at a given temperature as a function of pressure. There are a number of 

isotherms ranging from type I to type V (Figure 2.8). Langmuir developed one of the 

most widely used theoretical descriptions of adsorption but it is the type II isotherm 

that forms the basis for the BET
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Figure 2.8 The 5 types of adsorption isotherm

analysis. The type II isotherm displays how, at low pressures, there is a build up of 

monolayer on the surface and, as the pressure increases; there is accelerated 

multilayer growth. As with other isotherms the type II isotherm exhibits hysteresis 

(hysteresis refers to the way the shape of the isotherms differ depending upon whether 

the isotherm is formed by the progressive addition or removal o f a gas from the 

system). Monolayer coverage occurs at the point circled in the diagram although this 

value is approximate.

The BET equation is actually an extension o f the Langmuir equation to accommodate 

multilayer adsorption (the Langmuir isotherm ignores multilayer coverage to focus on 

monolayers).
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P _ 1 (C’- l ) ^
V ( P o - P )  ~  VmC CVn,Po

Where:

V is the volume o f gas adsorbed.

Po is the saturation pressure

Vm is the volume o f gas adsorbed at (STP) per unit mass o f adsorbent, when the

surface is covered by a unimolecular layer o f adsorbate

The assumption is made that the first layer is adsorbed with a heat o f adsorption Hi, 

while the second and subsequent layers that form on the surface are all characterised 

by the heats o f adsorption equal to the latent heat of evaporation H|. And, it is by 

considering the dynamic equilibrium between each layer and the gas phase that the 

BET isotherm is obtained. The constant C is given by:

C=exp (H |-H [) /RT

A plot of p/V{p0-p) vs. p/po yields Vm, the monolayer uptake. Because this value has 

to be expressed as an area an assumption is made about the packing o f the adsorbed 

molecules on the surface and the area occupied by each; a nitrogen molecule occupies 

16 A2 and a krypton atom is assumed to be 19.5A

BET analyses were performed on a Micromeretics Gemini 2360 surface analyser. All 

samples were degassed for 2 hours at 120°C. For the surface area experiment there is 

a ± 1 0 % error in the recorded values due limitations in the technique and the varying 

amounts o f catalyst tested in each case.
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2.3.5 Temperature programmed reduction/oxidation (TPR/TPO)

Temperature programmed reduction (TPR) is a technique for the determination of 

the reducibility o f a material as a function of temperature. Temperature programmed 

oxidation (TPO) can be thought of as the reverse process and determines how readily 

oxidised the material is at a specific temperature. Powdered samples are placed in the 

elbow of the quartz analyser tube and fitted into the furnace. In the case of TPR, 

diluted H2 is passed over the sample and a stable baseline reading established at a low 

enough temperature that no reduction of the sample is occurring. The temperature is 

then changed and at the critical temperature the H2 reacts with the sample to form 

H2O. The H2O is removed from the stream using a liquid N2/IPA cold trap. Because 

of the reaction, the amount o f H2 in the sample decreases and the proportion between 

the carrier and reactant shifts towards the carrier as does the mixtures thermal 

conductivity. A thermal conductivity detector (TCD) is used to measure the signal.

Analysis was performed using a Micromeretics Autochem 2910. Approximately 

0.05-0. lg  o f powdered sample was secured in the elbow of the quartz U-tube using 

quartz wool plugs. The gas mixtures used were a 10% Ff/A r and a 10% (V A r 

mixture. The flow rate was set to 50 ml m in '1. The temperature scan was between 40 

- 700°C with a 10°C m in '1. For certain experiments the ramp was 20°C m in '1.

2.3.6 Scanning electron microscope (SEM)

Scanning electron microscopy uses a beam of high energy electrons to examine the 

topology, morphology and composition of a sample. The electron beam is generated 

from a field emission gun (FEG) which comprises a very fine single crystal of 

tungsten. A series o f fine apertures and lenses focus the beam to a fine point and
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direct it onto the sample producing secondary electrons, which are detected and 

accumulated into the final image.

Analysis was performed using an A-SEM LEO S360 SEM. Ground catalyst was 

mounted on 12.5mm stubs and coated with a thin layer o f gold. The gold coating 

provides an electrical contact over the whole specimen during analysis.
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Chapter 3

The oxidative dehydrogenation of propane using 
gallium-molybdenum oxide based catalysts

3.1 Introduction

Given the increasing industrial demand for propene, for the production of acrolein, 

acrylic acid, acrylonitrile and iso-propanol, it has been desirable to develop catalysts 

capable o f producing propene by dehydrogenation of the more abundant alkane. 

Studies have probed the oxidative dehydrogenation (ODH) o f alkanes as a potential 

route for alkene production. Unlike non-oxidative dehydrogenation, oxidative propene 

dehydrogenation is exothermic and avoids the thermodynamic constraints that limit 

propene yield from non-oxidative dehydrogenation. However, the introduction of an 

oxidant may also lead to lower than maximum predicted propene yields as deep 

oxidation to carbon oxides are more thermodynamically favoured.

In previous studies catalysts based on a mixture o f Ga2C>3 and M0 O 3 have been 

developed for the partial oxidation of methane 11 *. The G&2 O2I M 0 O3 catalyst showed 

an increased yield o f partial oxidation products by combining the alkane activation 

properties o f Ga2C>3 and the partial oxidation behaviour of M0 O3 in a synergistic 

manner. It is apparent that similar catalytic properties are also required for the partial 

oxidation o f propane to propene Ga2 0 3  itself is known to be highly effective for the 

activation o f methane. In earlier studies investigating C H 4 / D 2  exchange it has been 

shown that the rate o f reaction for Ga2C>3 was at least two orders of magnitude greater 

than any other metal oxide [2'3J. Molybdenum too is known to be highly selective and 

active in many reactions and supported molybdenum oxides have been studied 

extensively in the ODH of propane ,4J. It is against this background that the current
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study has been undertaken to probe the efficacy of GaiO?,/ M0 O3 catalysts for the 

ODH of propane to propene. For propane ODH the most active and selective catalysts 

are based on vanadium and molybdenum based oxides. A series o f variously loaded 

V2 0 s/Ti0 2  were also prepared as a comparison.

3.2 Characterization

3.2.1 BET Surface Areas

Table 3.1 BET surface areas of  prepared catalysts (maximum error ±  10%)

Catalyst BET surface area/m2 g ' 1

1 : 1  Ga20 3/Mo0 3  calcined 13
1 : 1  Ga20 3 /Mo0 3  uncalcined 13
Ga20 3 25
M0 O3 2

1:3 Ga2 0 3 /Mo0 3  uncalcined 9
1 : 1 0  Ga20 3 /Mo 0 3  uncalcined 6

T i0 2 50
3 wt% V20 5/T i0 2 50
6  wt% V20 5/T i0 2 47
10 wt% V 20 5/T i0 2 46

Catalyst surface areas determined by the BET method are summarized in table 3.1 

The M 0 O3 surface area was low whilst Ga2 0 3  was considerably greater at 25m2g''. 

The surface areas for the calcined and uncalcined Ga2 0 3 /M o0 3  catalysts were 13m2g‘ 

the expected value for a 1:1 physical mixture. It was also apparent that the surface 

area was not decreased by calcination. Varying the ratio o f the components resulted in 

a decreased surface area due to the higher M0 O3 content: the surface area decreased 

from 13m2g'' to 9 and 6 m2g'' for the 1:3 and the 1:10 Ga2 0 3 /M o0 3  catalysts 

respectively. Addition o f 3wt% V2O5 to the TiCE support had no measurable effect
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on the surface area. It is only near the calculated point of monolayer formation 

(6 wt%) that there is a noticeable effect, with the surface area decreasing with 

increased V2O 5 content. This is due to the formation o f V2O 5 crystallites over the 

surface of the support.

3.2.2 Powder X-ray Diffraction

The powder X-ray diffraction patterns for Ga2 0 3 . M0 O3 and the 1:1 Ga2 0 3 /Mo0 .3  

catalysts are shown below. The powder pattern for uncalcined Ga2 0 .i (figure 3.1)

showed that diffraction peaks were broad and relatively low in intensity

demonstrating that the structure was relatively disordered. Ga2C>3 has five

polymorphs: a-, /?-, y-, 8- and 8 -Ga2 0 .i. The Ga2C>3 from Aldrich contains

predominately fi-GaiO?, with about 5% a-Ga2 0 i and hydroxy gallium oxide ,5’. The 

peaks at 33.0°, 36.7°, 50.3° and 55.7°C are the (104). (110). (024) and (116) 

diffractions of a-Ga2 0 3 . Also traces of y-Ga2 0 3  are present although it is difficult to 

assign exact peaks.

Ga„C> U n ca lc in ed

20 4 0 6 0 8 0 100 120

Figure 3.1 XRD pattern of uncalcined Ga20
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Calcination o f Ga2C>3 at 650°C (figure 3.2) leads to the formation of the 

thermodynamically more stable p-Q ^O i, with the loss of the hydroxy gallium oxide. 

The peaks corresponding to the diffractions of 110 and 100 planes o f GaO(OH) are 

missing from the calcined catalyst. TGA analysis o f the hydroxide by C. Otero 

Arean et al showed that it lost water over the temperature range 390-650 K (117- 

377°C) evidence that the hydroxyl gallium oxide decomposes during calcination.

G a .O ,  C a lc in ed  6 5 0  C

20 4 0 6 0 8 0 100 120
°20

Figure. 3.2 XRD pattern of Ga20 ? calcined 650°C

On the other hand diffraction data from M0 O3 (figure 3.3) showed that the phase 

was highly crystalline. Calcination of M0 O3 at 650°C led to an increase in peak 

intensity due to crystal growth (figure 3.4).
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MoO., U n ca lc in ed

A./v.A_
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20
Figure 3.3 XRD pattern o f  uncalcined MoO',

2 0 40 60 80 1 0 0 1 2 0

° 2  0

Figure 3.4 XRD pattern of M o 0 3 calcined 650°C

The 1:1 Ga2 0 3 /M o0 3  catalysts showed largely diffraction peaks from M0 O3 (figure 

3.5). Careful inspection o f the diffraction data revealed that diffraction from Ga2C>3 

was observed, but due to the low intensity of the peaks they were barely discernable. 

This is not surprising considering the differences of diffraction intensity between the 

diffraction patterns from M0 O3 and Ga2C>3 .
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G a . O V M o O .  U n c a lc i n e d

L  a. a s — j _̂
120

20

Figure 3.5 XRD pattern of  uncalcined Ga^O^/MoO^ mechanical mixture

Calcination o f l : l Ga2C>3/Mo0 3  at 650°C had little effect upon its structure, no 

new mixed phases were produced, neither was there any recordable distortion of the 

M0 O3 unit cell. Furthermore, after use in the reaction there were no significant 

changes to the powder XRD patterns (not shown). The change in intensity of the 

M0 O3 diffraction peaks post calcination is also observable in the l / l  Ga2 0 3 /Mo0 3  An 

additional diffraction peak at ca. 2 2 ° was observed in the uncalcined l/l  Ga2 0 3 /MoC>3 

catalyst. The peak was attributed to the presence o f GaO(OH) and it is interesting that 

this catalyst alone also demonstrated low selectivity to acrolein at high temperatures.

G a 20 3/ M o 0 3 C a lc in ed  6 5 0 ° C

20 6 0 8 04 0 100 120

° 2 0

Figure 3.6 XRD pattern of  Ga2Oi/MoOi mechanical mixture calcined 650°C

66



The presence of GaOOH can be seen in figure 3.7 with diffraction peaks at 20=22.5° 

and 25.5° corresponding to the (110) and (120) planes respectively. y-Ga20 3  was also 

present as indicated by peaks at 20=36.2°, 64.2° and 76.0°. The main phase present 

was y9-Ga2C>3.

<
%
ca;c

0 20 40 60 80 100 120

°2e

Figure 3.7 Overlaid X-ray diffraction patterns for gallium oxide before and after calcinations. Ga20 3

calcined (red). Ga20 3 uncalcined (black)

The studies indicate that the Ga20 3 /Mo0 3 catalysts comprised a mixture of Ga20 3 

and M 0 O 3  and there was no evidence for the formation of any new mixed phases. The 

noticeable differences between the calcined and uncalcined catalyst were the 

increased crystal growth in a specific plane direction in M 0 O 3  along with the 

formation of the more stable /?-Ga20 3 polymorph and the loss of GaO(OH). The 

diffraction pattern for a pure GaO(OH) sample can be seen in figure 3.8.

G a20 ,  Uncalcined 
Ga O Calcined 650°C
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Figure 3.8 Powder XRD of GaOOH hydroxyl gallium oxide diasopore prepared by precipitation of

the corresponding nitrate

3.2.3 Raman Spectroscopy

The Raman spectra for representative catalysts are presented in figures 3.9 and 3.10 

The Raman data for M0 O3 and the Ga2 0 3 /MoC>3 catalysts confirms the conclusions 

obtained from the powder X-ray diffraction data. The Raman spectrum for Mo03 

was the same as both o f the Ga2 0 3 /Mo0 3  catalysts, reiterating the conclusion that 

M0 O3 is not significantly altered on production of the two component catalysts. The 

characterization studies indicate that the Ga2 0 3 /Mo0 3  catalysts were comprised from 

a mixture o f Ga2C>3 and M0 O3 and there was no evidence for the formation of any 

new mixed phases.
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Figure 3.9 Comparison o f  micro laser Raman spectra for M o0 3 and Ga20 3/M o 0 3 catalysts, (a) M o 0 3 

(b) Ga20 3/M o 0 3 calcined (c) Ga20 3/M o 0 3 uncalcined

It was also apparent that calcined and uncalcined catalysts were not significantly 

different. Weak Raman bands corresponding to the stable P-G&2 O 1 are visible in the 

uncalcined gallia and become more prominent upon calcinations (Figure 3.10). The 

raman spectra o f the calcined sample show lines at 201, 229, 319, 348, 418, 476,

768

654 200

,631
348476 22 9

&
to
co
c (b)

1 0 0 0 8 0 0 6 0 0 4 0 0 200

R a m a n  Shift ( c m ' 1)

Figure 3.10 Micro Laser Raman Spectra for Ga20 3 showing the formation o f  the stable P-Ga20 3 

polymorph: (a) Ga20 3 calcined 650°C; (b) Ga20 3 Uncalcined
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631, 654 and 768 cm '1. The lines in the 300-600 cm ' 1 range correspond to bending 

vibrations while the peak 768cm'1 is from the Ga-C>4 tetrahedral stretching mode. The 

bands attributed to Ga2 0 3 are not visible in the Ga2 0 3/Mo0 3  catalyst due to the 

intensity of the M0 O3 bands.

3.2.4 Tem perature Program m ed Reduction

The temperature-programmed reduction of the component oxides is shown in figure 

3.11
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Figure 3.11 Temperature programmed reduction of Ga20 3 and M o 0 3: (a) MoO:,; (b) Ga20 3

M0 O3 shows a large reduction peak at 702°C corresponding to the total reduction of 

M0 O3 . Ga2 0 3 showed negligible H2 consumption over the temperature range

although there is a minor feature at 400°C. P-Ga2 0 3 is the most stable crystalline 

modification and it has been reported that pure gallium oxide cannot be reduced by 

hydrogen below 600°C|7’81. However, some studies have found small reducible peaks 

in the 250°C region indicating that small parts of the gallium oxide can be reduced. 

XPS analysis has confirmed the presence of a Ga2+0  species in a reduced sample ,y|.
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The temperature programmed reduction o f the calcined and uncalcined mixtures of 

Ga2 0 3 /Mo0 3  catalysts can be seen in figure 3.12 Both mixtures show the presence of 

a minor reduction peak centred at ca.400°C. A second much larger peak is visible at 

ca. 610°C, which can be attributed to the M0 O3 component o f the catalyst. It is 

interesting to note that reduction of M0 O3 occurs approximately 100°C lower when in 

combination with Ga2C>3 . Exact values for the reduction peaks can be found in table 

3.2.

- 0.5

0.0

0.5

2.0

3.0
0 100 200 300 400 500 600 700 800 900

Temperature/°C

Figure 3.12 T em perature program m ed reduction  o f  G a2C V M o 0 3 c a lc in e d  (b la ck  lin e) and

G a20 3/M o 03  un ca lc in ed  (red lin e)

Table 3.2 T em perature o f  reduction  p eaks

Catalyst Reduction Peak (°C)
Ga20 3 400 (v. small)
M0 O3 702

Ga2C>3 /M 0 O3 Uncalcined 394,605
Ga2C>3 /M 0 O3 Calcined 400, 582 (shoulder), 703
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The shift to lower temperatures in the combined Ga2 0 3 /MoC>3 catalyst could be due 

to interaction between the two component oxides. It is certainly the case that the 

combination o f Ga2C>3 and M0 O3 results in an increase in reducibility and an increased 

H2 consumption. The appearance o f the reduction peak at ca. 400°C is very 

interesting; this appeared as only a very minor peak in the single Ga2C>3 catalyst and is 

tentatively attributed to the reduction of small parts of Ga2C>3 to a Ga2 +0  species. The 

calcined Ga2 0 3 /MoC>3 catalyst showed a lower H2 consumption relative to the 

uncalcined, which was to be expected, and is probably due to O2 loss during 

calcination and a greater stability.

3.2.5 Scanning Electron Microscopy.

The catalysts were investigated by SEM using the methods described in the 

experimental section 2.3.6. The results can be seen in figure 3.13. Calcination time 

does not affect particle size or surface area to any noticeable extent. The Ga2C>3 has an 

irregular particle size with a jagged edge structure. The M0 O3 has a platelet-like 

morphology with well-defined particles. Combination of the two components with 

additional grinding leads to an intimate mixture with the Ga2C>3 particles covering the 

M0 O3 particles. The regular shaped particles of M0 O3 can just be seen underneath the 

layer o f Ga2C>3 in image (c) and can be seen more clearly in image (d). There is no 

difference in particle size or morphology for the calcined and uncalcined catalysts.
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Figure 3.13 SE M  im a g es o f  G a20 3 and M 0 O 3 ca ta ly sts at 8 0 0 0 X  m agn ifica tio n
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3.3 Results

3.3.1 P rop an e  o x id a t iv e  d eh y d ro g en a tio n  over 1:1 G a jO j /M o O j

Propane conversion over the 1:1 Ga2 0 3 /MoC>3 catalysts and comparison with 

individual Ga2 0 i and M0 O3 are shown in figure 3.14. The data were obtained at 

steady state conversion and there was no measurable deactivation for any of the 

catalysts. The reaction data in the work were reproducible with a precision of less 

than 5%.
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Figure 3.14 Propane conversion over the Ga20 3/M o 0 3 catalysts and comparison with Ga20 3 and 

M0 O3 (C3H8/ 0 2/H e=2/1/8.5, GHSV=9600 h '1)1. A  Ga20 3/M o 0 3 calcined; ■  Ga20 3/M o 0 3 uncalcined;

9  Ga20 3; CD M o03.

The Ga2 0 3  catalyst showed initial propane conversion at 375°C increasing to ca. 8 % 

at 500°C. On the contrary the rate of propane oxidation over M0 O3 was considerably 

lower. Initial activity was detected at 425°C and only increased to ca. 3% at 500°C. 

Both of the 1:1 Ga2 0 3 /Mo0 3  catalysts showed considerably higher rates of propane 

oxidation. The light-off temperatures for the calcined and uncalcined catalysts were
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325°C and 340°C respectively; approximately 50°C lower than the individual Ga2C>3 

catalyst. This trend continued over the entire temperature range with a maximum 

conversion o f 26% for the uncalcined catalyst at 500°C. The profile o f propane 

conversion with temperature was broadly similar for the calcined and uncalcined 

catalyst below 425°C. Above this temperature propane conversion over the 

uncalcined catalyst was greater than the calcined material. The calcined 1:1 

Ga2 0 3 /Mo0 3  catalyst achieved a maximum conversion of 13% at 500°C as compared 

to 26% for the uncalcined catalyst. No appreciable activity was observed below 550°C 

in an empty quartz reactor (see appendix).

Propene, CO2 and CO were the only reaction products over the calcined 1:1 

Ga2 0 3 /Mo0 3 , Ga2 0 3  and M0 O3 catalysts. The same products were observed with the 

uncalcined Ga2 0 3 /Mo0 3  catalyst, but it also showed <2 % selectivity to acrolein above 

440°C. Propene was a major partial oxidation product and the selectivity as a function 

of temperature is shown in figure 3.15.

400 450

I'em peratu re/"C

Figure 3.15 Selectivity to propene as a function o f temperature(C3H8/ 0 2/H e=2/1/8.5, GHSV=9600 h '1): 

▲ Ga20 3/M o 0 3 calcined;B Ga20 3/M o 0 3 uncalcined; •  Ga20 3; □  M o 0 3.
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Propene selectivity was lowest for the Ga2C>3 catalyst; gradually decreasing from ca. 

35 % at 375°C to ca. 20% at 520°C. M0 O3 was most selective for the partial oxidation 

of propane to propene. Selectivities in excess of 95% were observed even at 540°C, 

but it must be noted that these high selectivities were obtained at low propane 

conversion. The propene selectivity over the calcined and uncalcined 1:1 

Ga2 0 3 /Mo0 3  catalysts demonstrated the same trends with temperature. The calcined 

catalyst showed initially 1 0 0  % selectivity to propene. this decreased gradually to 61 

% at 470°C. The propene selectivity was lower over the uncalcined catalyst across the 

entire temperature range, but still remained greater than the Ga2C>3 catalyst.

The per pass yields o f propene for the 1:1 Ga2 0 3 /MoC>3, Ga2C>3 and M0 O3 catalysts 

are shown in figure 3.16 The M0 O3 catalyst gave the lowest propene yields. The 

propene yields over Ga2C>3 were higher than M0 O3 and this was due to the higher 

propane conversion. It must also be noted that considerably higher temperatures were

6.0
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Figure 3.16 Per pass yield o f propene as a function o f temperature: ▲ Ga20 3/M o 0 3 calcined; ■  

Ga20 3/M o 0 3 uncalcined; •  Ga20 3; □  M o03.
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required with the M0O3 catalyst. The propene yields over both 1:1 Ga203/Mo03 

catalysts where markedly similar. Both exhibited a 5.7 % per pass yield at 470 °C for 

the calcined catalyst and, at 460 °C for the uncalcined catalyst.

For comparison with the catalytic data in this study a series o f  V2O5/'TiCb catalysts 

were also prepared and tested. Vanadium and molybdenum based catalyst are one o f  

the most widely studied for this reaction and are generally accepted to be the most 

efficient. The best performance o f the V20s/Ti02 catalysts was shown with a 6wt% 

V2O5 loading. A comparison o f propane partial oxidation, at approximately constant 

conversion, ca. 10% where possible, is presented in table 3.3.

Table 3.3 Comparison o f catalyst performance for propane oxidative dehydrogenation. 
(C 3 H8/ 0 2/H e=2/1/8.5, GHSV=9600 h '1)'6'

Catalyst BET surface 
area/m 2 g ' 1

Temp. /°C Propane
conversion/%

Propene 
selectivity /%

Per pass 
propene 
yield/%

Ga20 3/M o 0 3 calcined 13 470 9.9 ... ..... ....62.............. “ ... 5.7....
Ga20 3/M o 0 3 uncalcined 13 460 1 0 . 1 56 5.7
Ga20 3 25 520 9.6 18 1.7
M o0 3 1.5 540 2.5 97 2.4
3 wt% V20 5/T i0 2 50 260 0.9 50 0.5

300 3.6 32 2 . 0

325 1 0 . 1 19 1.9
6  wt% V20 5/T i0 2 47 240 0 . 8 69 0.5

315 7.5 28 2 . 0

340 1 1 . 0 2 2 2.5
10 wt% V 20 5/T i0 2 46 240 1 . 2 65 0.7

290 8.7 0 . 2

Although the reaction conditions differ, the performance o f the 6wt% V205/Ti02 

catalyst was in agreement with the published data in the literature [7).

The V205/TiC>2 catalysts were active at lower temperatures than the 1:1 

Ga203/Mo03 catalysts, and such a decrease in temperature could be expected to 

produce higher propene selectivity by reducing over oxidation. However, this was not 

the case and the propene yield from the 6wt% V2(V T i0 2  catalyst was lower than that
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for the 1:1 Ga203/Mo03 catalysts. Despite the higher temperatures the propene 

selectivities and yields for the 1:1 Ga203/Mo03 catalysts were superior.

Studies have been performed replacing either the Ga20i or M0O3 components o f the 

1:1 Ga203/Mo03 catalysts with silicon carbide (SiC). The aim o f  these studies was to 

probe the effect o f  dilution for the two component catalysts. Representative data for 

comparison are presented in table 3.4 . The replacement o f  the Ga20i component with 

SiC suppressed the propane conversion relative to M0O3 alone. The propane 

conversion was also significantly lower than with the 1:1 Ga203/Mo03 catalysts. The 

selectivity to propene was also very similar to M0O3. Replacement o f  M0O3 with SiC 

showed that propane conversion was increased when compared to Ga203 alone, 

interestingly the propene selectivity was also affected with a 15% increase at 450°C. 

The results from studies using SiC to dilute Ga203 and M0O3 showed that dilution o f  

the Ga2C>3 may be beneficial in the performance o f the Ga203/Mo03 catalysts but is 

probably not solely responsible. Dilution with silicon carbide may help to control over 

oxidation by allowing heat removal from the bed. It is often the case that dilution o f  

oxidation catalysts has a positive effect on product selectivity. Dilution o f  M0O3 had a 

negative effect.

Table 3.4 Comparison o f catalyst performance and the effect o f dilution with SiC.

Catalyst Temp. /°C Propane
conversion/%

Propene
selectivity/%

M o 0 3/SiC 560 0.3 1 0 0

580 1 . 0 95
M 0 O 3 520 1 . 0 97
Ga20 3/SiC 400 0.5 30

420 1.4 32
Ga20 3 420 1 . 1 28
Ga20 3/M o 0 3 calcined 380 0.9 92
Ga20 3/M o 0 3 uncalcined 380 0.7 80
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These data clearly demonstrate that the 1:1 Ga203/Mo03 catalysts showed 

promising activity for propane oxidative dehydrogenation. Furthermore, at this stage 

no attempt has been made to maximise the performance o f the GajOi/MoCh catalysts 

and it is envisaged that further improvements in catalyst performance are possible.

3.3.2 Propane oxidative dehydrogenation over individual components: Effect of 

heat treatment.

The Ga2C>3 and M0O3 catalysts were tested for propane ODH before and after 

calcination (650°C, 3h.). The results for propane conversion are presented in figure 

3.17. Calcination o f  the pure M0O3 catalyst led to a decrease in overall activity with 

the calcined M0O3 showing no activity within the experimental temperature range. 

Conversely calcination o f  Ga203 led to an increase in activity and selectivity. The 

catalyst showed initial conversion at 350°C with a maximum conversion o f 12.6% at 

500°C as compared to the uncalcined Ga203, which showed initial conversion at 

380°C with a maximum conversion o f 7.9% at 500°C. The propane conversion over 

the calcined Ga2C>3 was similar to that o f the calcined 1:1 Ga203/Mo03 catalyst. This 

was not the case for propene selectivity however.
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Figure 3.17 Propane conversion over component oxides Ga20 3and M o03; Effect o f heat treatment: O 

Ga20 3 Uncalcined; •  Ga20 3 Calcined; □ Ga20 3/M o0 3 Uncalcined: ■ Ga20 3 / M o0 3 Calcined; A

M o0 3 Uncalcined; ▲ M o0 3 Calcined.

The selectivity to propene is shown in figure 3.18. Calcination o f Ga203 leads to an 

increase in selectivity from 20% to 37% at 450°C, decreasing to 20% at higher 

temperatures. Although the Ga2C>3 catalyst showed similar activity to the 1:1 

Ga203/MoC>3 this was not the case for the selectivity, which achieved no greater than 

40% across the entire temperature range tested. It can be seen that calcination o f the 

mixed 1:1 Ga203/Mo03 actually leads to a decrease in activity but an increase in 

selectivity. This differs from the behavior displayed by the individual components 

(calcination o f  Ga2C>3 increases both conversion and selectivity). It appears that the 

catalytic ability o f the individual components is modified upon combination with one 

another. It may be the case that a superior catalyst could be made by combination o f  

calcined Ga2C>3 with uncalcined M0O3.
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Figure 3.18 Selectivity to propene over component oxides: Effect o f thermal heat treatment (450°C, 

6 h); o Ga20 3 Uncalcined; •  Ga20 3 Calcined; □ Ga20 3/M o0 3 Uncalcined; ■ Ga20 3 / M o0 3 Calcined; A

M o0 3 Uncalcined: A M o0 3 Calcined.

Table 3.5 shows the propane conversion and selectivity to propene for the catalysts at 

400°C and 500°C. At 400°C both the calcined and uncalcined 1:1 Ga2C>3/Mo0 3  show 

the highest conversion and propene selectivity compared to the individual 

components. With the exception of the uncalcined M0 O3 catalyst the same was seen 

at the higher temperature of 500°C.

Table 3.5 Conversion and selectivity data at 400°C and 500°C for calcined and uncalcined catalyst.

Catalyst Temperature of reaction Temperature o f
(400°C) Reaction (500°C)

Conversion Selectivity Conversion Selectivity
(%) (%) (%) (%)

Ga20 3 0.3 32 7.9 15
Ga20 3 Calcined 1.5 36 1 2 . 6 2 2

Mo0 3 0 . 0 0 0.5 98
Mo0 3 Calcined 0 . 0 0 0 . 0 0

Ga20 3/M o 0 3 Calcined 1.5 89 13.7 36
Ga20 3/M o 0 3 Uncalcined 1.4 80 26.4 31
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Figure 3.19 Propene yield over component oxides: Effect o f thermal heat treatment (450°C, 6 hrs); o 

Ga20 3 Uncalcined; •  Ga20 3 Calcined; □ Ga20 3/M o0 3 Uncalcined: ■ Ga20 3 / M o0 3 Calcined; A

M o0 3 Uncalcined; ▲ M o0 3 Calcined.

Propene yields are shown in figure 3.19. The highest yields were obtained over the 

1:1 mixed Ga2 0 3 /MoC>3 catalysts. The uncalcined Ga2 0 3 /Mo0 3  catalyst showed the 

highest propene yield o f 8.5% but at a low propene selectivity of just 31%. The 

propene yield over the calcined Ga2C>3/Mo0 3  catalyst was similar to the uncalcined 

below 450°C but decreased to 5% at 500°C. Calcination o f Ga2C>3 resulted in an 

increased propene yield and this is as a result o f the increased conversion and 

selectivity. The overall yield was twice that o f the uncalcined Ga2C>3 rising from 1% 

at 425°C to 2.7% at 500°C. Calcination of M0 O3 resulted in a total loss o f activity 

below 525°C and consequently a low propene yield.

3.3.3 Propane ODH over modified GazOj/MoOj (varying ratio)

The influence o f changing the Ga2C>3 to M0 O3 ratio has been investigated and the 

effect on propane conversion is shown in figure 3.20. The catalyst with Ga/M o=l/l 

was most active showing the greatest propane conversion across the temperature 

range. Decreasing the ratio to 1/3 resulted in a marginal decrease o f propane
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conversion, but it remained close to the 1/1 catalyst. Decreasing the Ga2C>3 content 

further to 1 / 1 0  resulted in a marked decrease of propane conversion when compared 

to the 1/1 catalyst. However, the rate of propane oxidation remained significantly 

greater than M0 O3 alone and indicated that even the addition of a relatively low 

concentration of Ga2C>3 improved propane conversion.

400
Temp*r«tur«/°C

Figure 3.20 The influence o f Ga20 3 to M o0 3 ratio for propane conversion over dual component 

Ga20 3M o0 3 catalysts: A  1/1 Ga20 3/M o0 3 calcined; •  1/3 Ga20 3/M o 0 3 calcined; ■  1/10 Ga20 3/M o0 3

calcined.

The selectivity to propene for the Ga2 0 3 /Mo0 3  catalysts with varying Ga/Mo ratios is 

presented in figure 3.21. The propene selectivity for Ga2C>3 /M 0 O3 catalysts with 

ratios 1/1 and 1/3 were broadly similar with selectivities decreasing from ca. 90% at 

360°C to less than 50% at 460°C. Decreasing the Ga/Mo ratio to 1/10 resulted in an 

increased selectivity to propene. This was evident across the whole temperature range, 

although it must be noted that propane conversion was generally lower over the 1 / 1 0  

Ga2 0 3 /MoC>3 catalyst. The increase in selectivity due to the increased M0 O3 content 

(lower Ga2C>3 content) was to be expected and is largely due to the lower conversion.
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Ga2C>3 is the active component in the catalyst mixture and appears to be responsible 

for the activation of the propane molecule and subsequent total oxidation to COv

100

80

40

20
300 350 400 450 500

Temper ature/°C

Figure 3.21 The influence o f Ga20 3 to M o0 3 ratio for propane selectivity over dual component 

Ga20 3M o0 3 catalysts: A  1/1 Ga20 3/M o 0 3 calcined; •  1/3 Ga20 3/M o0 3 calcined; ■  1/10 Ga20 3/M o0 3

calcined.

3.3.4 P rop an e  o x id a t iv e  d eh y d ro g en a tio n  over  G a 2C>3/M o 0 3  w ith  v a ry in g  bed  

a rr a n g e m en t

Varying the arrangement o f the bed tested the effect of the individual components 

upon the activity of the catalyst. Figure 3.22 shows changes in propane conversion as 

a function o f reaction temperature for the various bed compositions. The exact 

arrangement of the components can be found in the experimental section 2.2.3. The 

catalyst was arranged with either the two component oxides separated by a layer of 

inert silicon carbide (denoted Ga2 0 3 /SiC/Mo0 3  or MoC>3/SiC/Ga2 0 3 ) or in intimate 

contact (denoted Ga2 0 3 /MoC>3 or Mo0 3 /Ga2C>3). The Ga2 0 3  was tested in the lower or 

upper portion o f the bed. As before, the main products were propene and COx.
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Figure 3.22 Propane product conversion over layered Ga20 3 MoOv 

o Ga20 ?/Mo0 3  (Ga20 3 lower); •  M o0 3/Ga20 3 (Ga20 3 higher); □ Ga20 3/S iC /M o0 3 (Ga20 3 lower); ■

M o0 3/SiC/Ga20 3 (Ga20 3 higher)

The overall rate o f conversion for the beds separated by a layer of silicon carbide 

was lower than that o f the beds in intimate contact. The Mo/Si/Ga catalyst (gallium in 

higher position) showed initial propane conversion at 350°C rising to 9% at 525°C. 

The Ga/SiC/Mo catalyst (gallium in lower position) was more active showing initial 

conversion at 325°C rising to a maximum of 11% at 525°C.

With the two oxides in intimate contact the overall conversion was higher. The 

Ga2 0 3 /Mo0 3  catalyst (gallium lower position) displayed initial conversion at 325°C 

with a maximum conversion of 20% at 525°C. Placing the gallium in the higher 

position resulted in a decrease in activity with initial conversion occurring at 350°C 

and a maximum conversion of 13% at 525°C. Both the calcined and uncalcined 1:1 

Ga2 0 3 /Mo0 3  mechanical mixtures were more active over the entire temperature 

range, showing higher conversions at lower temperatures. At temperatures greater 

than 450°C there is a marked difference in activity between the separated and mixed 

catalysts: the uncalcined mixed catalyst showed a maximum conversion of 26% at 

500°C. Allowing a point of contact between the two components increased the
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conversion significantly with a rate of conversion similar to that o f the calcined 1:1 

Ga203 /MoC>3.

Propene was the major partial oxidation product and the selectivity as a function of 

temperature for the separated and mixed catalysts is shown in figure 3.23. Propene 

selectivity was highest for the catalysts in contact with a selectivity o f 50-70% in the 

temperature range 325-450°C as compared to a selectivity of 30-40% for the separated 

catalyst. At temperatures greater than 450°C the dominant product becomes COx for 

both the mixed and separated catalysts. The rapid decrease in propene selectivity for 

the catalysts in contact (ca. 40%) is due to the increased conversion as compared to 

the separated catalysts.
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Figure 3.23 Selectivity to propene over layered Ga20 3/M o03: o Ga20 3/M o 0 3 (Ga20 3 lower); •  

M o0 3/Ga20 3 (Ga20 3 higher); □ Ga20 3/S iC /M o0 3 (Ga2Q3 lower); ■ M o0 3/SiC/Ga:0 3 (Ga20 3 higher)
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Propene yields are given in figure 3.24. The Ga203/MoC>3 in contact, with the gallium 

oxide in the lower portion o f the bed, produced the highest maximum yield o f  

propene: at 525°C  the propene yield is 6 .7%  but due to the high temperature the 

dominant product is CO2 and the selectivity to propene is just 40% . The propene yield 

over the separated Ga203/SiC/Mo03 was similar to that o f  the catalyst in contact but 

decreases to 4 .6 %  at 525°C . The lowest propene yield was over the catalysts arranged 

with M0O3 in the lower portion o f the bed with a maximum yield o f  around 3%  at 

525°C.
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Figure 3.24 Propene yield over layered Ga2OxMo0 3 : o GaiCVMoCT, (Ga20 2 lower); •  M o C V G a ^  

(Ga20 3 higher); □ Ga20 3/SiC/Mo0 3  (Ga2C>3 lower); ■ MoCVSiC/GaiOi (Ga20 3 higher)

3.4 D i s c u s s i o n

The 1:1 Ga2C>3/Mo03 catalysts produced a propene yield comparable with known 

active propane oxidative dehydrogenation catalysts. It is therefore interesting to 

consider the origin o f  this activity. In earlier studies investigating C H 4 /D 2 exchange it 

has been shown that the rate o f  reaction for Ga2C>3 was at least two orders o f  

magnitude greater than any other metal oxide |2‘31. The exchange reaction is used as a
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probe for C-H bond activation and the data from the earlier study demonstrate that 

Ga2C>3 is a very effective catalyst for alkane activation. It has also been shown that of 

all the gallium oxide polymorphs, P-Ga2 0 i is the most reactive for the ODH of 

propane using CO2 as an oxidant ,91 with an intrinsic activity almost twice that of the 

other gallium oxide polymorphs. It is also noteworthy that Ga20_3 is used in 

combination with H-ZSM5 for the Cyclar process to convert propane to aromatics. 

Ga2C>3 is implicated in alkane activation through a dehydrogenation step, although this 

is a non-oxidative process fl0J. p-GaiO?, is known to have a unique structure with 

oxide ions in distorted ccp and Ga3+ in distorted tetrahedral and octahedral sites with 

the coordinatively unsaturated Ga3+ exposed at the surface 11M21. The high catalytic 

activity in this case is purported to be associated with an abundance of medium strong 

acid sites related to the coordinatively unsaturated Ga3+ |13’. Previous studies have also 

shown that hydrogen is dissociatively adsorbed on the gallium surface to give H+ and 

H' l̂4J, and it has been suggested that the reaction proceeds via the formation of a 

gallium alkoxide species which then decomposes to propene 19 1:11:

Ga*+- 0 2' -Gax+ + C3H8 -> GaA+- 0 2“ GaA+

H' C3I V  H' H+
I I  I I

GaA+- 0 2~~GaA+ GaA+- 0 2~G aA+ + C3H6

The reduced surface may then be reoxidised by O2 to give water:



Such a mechanism was proposed to account for the fact that gallium oxide is hardly 

reduced during the reaction and the temperature programmed reduction o f  the pure 

Ga2C>3 tested in this study show that this is indeed the case (section 3.2 .4 ). However, 

although both the Ga2C>3 and M0O3 catalysts showed no reduction below 600°C the 

mixed Ga203/Mo03 showed a reduction feature at ca. 400°C indicating that reduction 

o f the catalyst at the temperatures studied is possible. Propane conversion over 

Ga2CVMo03 may follow a redox mechanism whereby propane is oxidized to propene 

with the simultaneous reduction o f the mixed metal oxide. The reduced metal oxide is 

then re-oxidized by O2.

Comparison o f the propane oxidation over Ga2C>3 and M0O3 showed that the 

conversion over Ga2C>3 was considerably higher than that for M0O3. This is consistent 

with the ability o f  Ga2C>3 to activate alkanes. On the contrary M0O3 alone was very 

selective for propane oxidative dehydrogenation to propene. The same pattern was 

seen for the diluted M o03/SiC although this was not the case for the diluted 

Ga203/SiC. Addition o f  silicon carbide to the Ga203 catalyst led to a slight increase in 

conversion and selectivity indicating that dilution o f  the component has a

positive effect on catalyst activity. It may well be the case that dilution helps control 

over oxidation by allowing better heat removal from the bed. However, the mixing 

(and hence dilution) o f Ga2C>3 with M0O3 results in a better catalyst than dilution with 

an inert indicating that M0O3 plays an active role in the propane conversion and 

affords some control over the selectivity.

The data from catalysts with varying Ga/Mo emphasize the importance o f the 

synergy between Ga20 3 and M0O3. As the Ga/Mo ratio was decreased from 1/3 to



1/10 the behaviour o f the dual component catalyst tended towards the behavior 

exhibited by M0O3. Furthermore it was demonstrated that by separating the Ga20i 

and M0O3 the overall activity and selectivity o f the catalyst was decreased. The 

position o f the Ga2C>3 within the bed altered the activity. These data reiterate that the 

Ga2C>3 component is important for increasing the rate o f  propane conversion, whilst 

the M0O3 imparts selectivity to propene.

The combination o f  the two oxides demonstrated a synergistic effect to produce a 

marked increase in propene yield. The Ga203/Mo03 catalyst has been used 

successfully for methane partial oxidation to methanol ,l1. It is interesting that the 

addition o f  Ga2C>3 to M0O3 resulted in an increased methanol yield by promoting 

methane conversion, whilst maintaining the higher methanol selectivity o f M0O3. The 

same type o f synergy was observed for selective propane oxidation in the present 

study and it is apparent that both reactions have similarities, as the alkanes must be 

activated before undergoing partial oxidation.

The characterisation data indicates that the Ga203/Mo03 catalysts were comprised 

from a physical mixture o f Ga2C>3 and M0O3. This being the case the synergy 

developed between the two oxides is associated with the boundary where the oxides 

are in contact with each other. This type o f contact synergy is known for Ga20i in 

other reactions l-131, and it appears that the effect is also important for propane partial 

oxidation.

The Ga2C>3 phase present in the catalysts has a marked effect on the catalysts overall 

activity and explains the difference in activity between the calcined and uncalcined 

Ga203/Mo03 mixture. Calcination o f Ga2C>3 at 650°C leads to the formation o f the 

thermodynamically more stable P-Ga2C>3 with the loss o f  the hydroxy gallium oxide. 

TGA analysis o f  the hydroxide by C. Otero Arean et a l  showed that it lost water over 

the temperature range 390-650 K ( 117-377°C) fS|. The studies indicate that the
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presence of the hydroxy gallium oxide GaO(OH) results in a more active but less 

selective catalyst for propane oxidative dehydrogenation.

3.5 Conclusions

Catalysts based on a physical mixture o f Ga2C>3 and M0O3 have been prepared and 

evaluated for propane dehydrogenation by partial oxidation. Characterisation studies 

indicated that the catalyst was comprised o f a mixture o f the component Ga2()3 and 

M0O3 oxides with no formation o f any new mixed phase. The Ga203/Mo03 catalyst 

synergistically combined the alkane activation properties o f  Ga2C>3 with the selective 

oxidation function o f  M0O3. The yield o f propene o f the non-optimised Ga203/Mo03 

catalyst was comparable with a XGOs/TiC^ catalyst, which is known to be active for 

propane ODH. Reducing the Ga/Mo ratio from 1/1 resulted in a slight decrease o f  

propene yield whilst reducing the ratio to 1/10 resulted in a significantly reduced 

yield. Dilution o f  the Ga2C>3 component with inert silicon carbide leads to an increase 

in activity and selectivity when compared to the undiluted Ga2C>3. Ga20i on its own is 

good at activating propane but is not very selective; the converse is true for M0O3. It 

may be the case that surface migration from one active site to another is an important 

factor with M0O3 suppressing the total combustion o f the propane molecule to COx 

and thus increasing selectivity.
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Chapter 4

Cobalt oxide catalyst for the low temperature 
oxidative dehydrogenation of propane

4.1 Introduction

The production o f  chemicals by energy efficient and environmentally friendly routes 

is an important aim for the modern pharmaceutical and chemical industries. In 

particular, the facile utilisation o f cheap and relatively abundant feedstocks such as 

short chain alkanes (C 1-C 4 ) remains a challenging target ll' 2\  In the previous chapter, 

it was shown how a physically mixed Ga203/Mo03 catalyst was capable o f propane 

oxidative dehydrogenation at temperatures between 3 50°C -500°C . The results were 

comparable to other catalysts studied in the literature but were not as good as those 

regarded, and proven, to be the best such as vanadium containing oxides.

The overall aim o f  the project was to design multi component catalysts containing 

the redox and Bronsted acid functionalities so that iso-propanol can be synthesised 

from propane in a single stage process. This meant that it was necessary to find a 

catalyst capable o f  propane conversion at temperatures low enough to allow the 

resulting propene to be further hydrated to iso-propanol. The typical operating 

temperature for the hydration reaction over existing catalysts is between 100-300°C  

and given that the G a 2 0 3 /M o 0 3  catalyst was inactive below 350°C , it was found to be 

unsuitable for use in the hydration reaction.

The following chapter reports the results for propane oxidative dehydrogenation 

over C03O4. C03O4 is an important and versatile ceramic oxide that is stable in the 

cubic spinel-type structure. It is used in magnetic electrochemical 141 and catalytic 

applications and it is its application in catalysis that makes it most interesting.
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According to Bond 151 catalysts used in dehydrogenation reactions are typically n-type 

semiconducting metal oxides. C03O4, however, is an example o f  a p-type 

semiconductor, which is more active in catalytic combustion. C03O4 is known to be 

highly active for CO oxidation l6'8* as well as being an active component in materials 

used for the catalytic purification o f exhaust gases l9J. It is its catalytic activity for 

hydrocarbon combustion that is the most interesting. C03O4 has been reported to be 

the most active in hydrocarbon catalytic combustion among simple oxides 110 111 and a 

number o f studies have focused specifically on propane and propene combustion

[12.13]

It is against this background that C03O4 was chosen and studied for the oxidative 

dehydrogenation o f propane to propene. It was envisaged that it might be possible to 

control or hinder the total combustion reaction at low temperatures allowing the 

formation and propene.

4.2 Characterisation

4.2.1 BET surface areas

Table 4.1 BET surface areas o f C0 3 O4 . Effect o f preparation conditions.(Maximum error ±10%)

Calcination Temperature 
(°C)

Aged (h.) BET surface area (m2g~')

250 1 78
400 1 35
550 1 10
250 3 79
400 3 35
550 3 12

Commercial (Avacado) n/a 4
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T he B E T  su rface  a reas  fo r the  co b a lt o x id e  ca ta ly sts  a re  sh o w n  in tab le  4 .1 . V ary ing  

the ag in g  tim e  b e tw een  1-3 h. had little  effec t on the su rfa ce  a reas. H ow ever, 

in creasin g  th e  c a lc in a tio n  tem p era tu re  led to  a p ro n o u n ced  d e c re a se  in su rface  a rea  

due to  s in te rin g  o f  th e  ca ta ly st. C alc in a tio n  o f  the p re cu rso r at 250°C  resu lted  in a 

ca ta ly s t su rface  a rea  o f  c .a . 7 8 m 2g ''.  C alc in a tio n  at h ig h e r te m p e ra tu re s  o f  400°C  and 

550°C  re su lted  in su rfa ce  areas  o f  aro u n d  35 and  10m 2 g '' re sp ec tiv e ly . T h e  co b a lt 

o x ide  o b ta in ed  from  a  co m m erc ia l sou rce  had the  lo w est su rface  a rea  o f  4 m 2 g"1, far 

lo w er th an  th o se  p re p a re d  by p rec ip ita tio n .

4.2.2 X-Ray Diffraction

T he p o w d e r X -ray  d iffrac tio n  p a tte rn s  for the p rec ip ita ted  C 0 3 O 4 ca ta ly s ts  are 

show n  in  fig u re  4 .1 . T h e  fig u re  sh o w s the  d iffrac tio n  p a tte rn  fo r th e  p recu rso r, the 

ca lc in ed  ca ta ly s t (4 0 0 °C ; 2h ) and  the  used  ca ta ly st (0 -140°C . C 3 H s/0 2 /H e=  1/20/79, 

4800  h ’1). T h e  p re c u rso r  w as o b ta in ed  by p rec ip ita tio n  o f  the  c o rre sp o n d in g  n itrate  

and  d ry in g  fo r 16 h rs  a t 120°C.

T he p recu rso r is h ig h ly  am o rp h o u s  w ith  no d e fin ite  p h ase s  p re sen t in the pattern . 

C a lc in a tio n  o f  th e  p re c u rso r  a t 400°C  gave  rise  to  the  sp ine l C 0 3 O 4 . T he  p o sitio n  o f  

the d iffrac tio n  p ea k s  fits  w ell to  cu b ic  sp inel ty p e  s tru c tu re  o f  th e  C 0 3 O 4 as co n firm ed  

by JC P D S  d a ta  an d  is in  go o d  ag reem en t w ith  the  lite ra tu re  [6J. N o  o th e r c ry sta llin e  

ph ases  co u ld  be  d e tec ted  in d ica tin g  th a t the  sp inel co b a lt is th e  o n ly  c ry s ta llin e  phase 

fo rm ed , h o w ev er, re f le c tio n s  from  som e o f  the crysta l p lan es  a re  m issin g  from  the 

p attern .
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Figure 4.1 X-ray diffraction patterns of C0 4 O4 . (a) C0 3 O4 used in reaction, (b) Fresh C 0 ;,O4, (c) C0 3 O4

precursor

The diffraction pattern from the used C03O4 catalyst showed no major changes 

from the fresh. There is a minor difference in the intensity and definition o f some o f  

the diffraction peaks, which may be as a result o f the further heat treatment during the 

reaction or surface restructuring due to reduction.

Figure 4.2 shows the x-ray diffraction pattern for the precipitated cobalt oxide 

compared to the commercial sample obtained from Avocado. The commercial catalyst 

is more crystalline than its precipitated counterpart with diffraction peaks from crystal 

planes attributed to C03O4 that are not present in the precipitated catalyst. The 

prepared C03O4 is more amorphous and does not show diffraction from the (422). 

(731) or (751) crystal planes that are present in the commercial sample.

( 311)

(1 1 1) (220) (51 1) <440) (a)
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Figure 4.2 X-ray diffraction patterns o f C0 7 O4 . Comparison with commercial C0 4 O4 (a) Commercial

C0 4 O4 (Avocado), (b) precipitated Co30 4,

4.2.3 Temperature programmed reduction

Temperature programmed reduction and oxidation experiments were conducted as 

described in the experimental (section 2.3.5: catalyst = 0.05-0.lg, flow = 50 ml min' 

11 0 %H2/Ar, ramp rate = 10°C min’1). Figure 4.3 shows the temperature-programmed 

oxidation of the cobalt precursor. The major oxidation feature occurs at 290°C and 

corresponds to the formation of the stable C0 3 O4

(311)

(511 )(440)
(400) (751)

(731)(422) (533)( 2 2 2 )

20 40 60 80 100

°20
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Figure 4.3 T em perature program m ed o x id ation  o f  co b a lt o x id e  precursor.

Figure 4.4 shows the TPR profiles for the freshly prepared catalyst and the 

activated catalyst (400°C, 2 h, 10% 0 2 /He). Activation of the catalyst prior to the test 

is necessary to remove CO2 associated with the surface. Both catalysts show major
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0 10050 150 200 250 300 350 400 450

Te m p er at ur e / °C

Figure 4.4 T em perature program m ed reduction  of: (a) fresh p recip ita ted  C o -,0 4 (b ) A ctiva ted  C 03O 4. 

Inset: C lo se  up o f  the lo w  tem perature red u ction  feature
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reduction peaks at c.a. 290°C and c.a. 350°C attributed to the reduction of C0 3 O4 to 

CoO and from CoO to Co ,6). There is little difference between the two profiles other 

than a slight decrease in the temperature of the major CoO —► Co reduction peak, 

which shifts from 350°C to 330°C for the activated catalyst.

A surprising low intensity reduction feature was also observed at 90-100°C and is 

shown in the inset. This reduction feature was present in both the fresh and activated 

catalyst and remained largely unchanged after activation. This reduction feature is 

difficult to assign to any specific species and given its low intensity may be the result 

of reduction o f a specific active centre or oxygen species present on the surface.

O)

50 100 150 200 250 350 400300

Temperature/°C

Figure 4.5 Temperature programmed reduction of: (a) fresh precipitated Co 40 4 (b) used Co40 4 (c)

Commercial  C o40 4
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Figure 4.5 shows the TPR profiles for the fresh, used and commercial C0 3 O4 catalysts. 

The catalyst was tested against a commercial sample to see if the preparation method 

used here produced a catalyst with differing properties. Also, in research done by 

others fl5’, the C0 3 O4 catalyst studied has been from a commercial source. The fresh 

catalyst, (a), showed the same reduction peaks mentioned previously including the 

low-temperature reduction feature at 80-100°C. The TPR profile of the post-reaction 

catalyst, (b), showed no low-temperature reduction feature indicating that in situ 

reduction o f the catalyst had occurred during the reaction. The two larger reduction 

features are also seen to shift to higher temperatures.

The 80-100°C reduction feature was also missing from the commercial C0 3 O4 , (c). 

The two major peaks present in the fresh catalyst at 268°C and 338°C are not as well 

defined in the commercial sample, and the onset o f F f consumption is at higher 

temperatures. Table 4.2 gives the precise temperatures o f the reduction peaks for the 

C0 3 O4 catalyst tested.

Table 4.2 Temperature of reduction peaks

Catalyst Reduction Peak (°C)
Fresh precipitated C0 3 O4 81 ,268 ,338

Used C0 3 O4 293,350
Commercial C0 3 O4 373(Sm. Shoulder). 389
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4.3 Results

4.3.1. Initial experiments

The C0 3 O4 catalyst was prepared as described in experimental section 2.1.3. The 

catalyst was tested in the 25-140°C temperature range. After the first test the catalyst 

was reactivated in situ (400°C, 3h, flow=20ml min’1. 0 2 //He= 10/90) and tested again. 

The exact conditions are described in the experimental section 2.2.4. The results for 

propane conversion can be seen in figure 4.6. Each data point is the average of 3 

injections. The reaction data in the work were reproducible with a precision of ±4% 

The catalyst showed initial activity at 60°C with a conversion o f ca. 0.1% rising to 

4% at 140°C. The only products were propene and CO2. Such a low temperature of 

conversion is surprising for propane oxidative dehydrogenation, which typically 

operates in the 350-600°C temperature range. Reactivation o f the used catalyst led to a 

decrease in activity. The reactivated catalyst was no longer active at 60°C and showed 

initial activity at 80°C with propene in trace concentrations. The conversion at 140°C 

was 0 .6 %, far lower than that of the fresh C0 3 O4 .

20 40 60 80 100 120 140

T em perature/°C

Figure 4.6 Propane conversion over fresh and reactivated Co:,0 4: (■) fresh Co40 4 (n) reactivated 

C0 3 CX4 (400°C, 3 h, flow=20ml m in'1, O2/He=20/80)
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The selectivity to propene over both the fresh and used C0 3 O4 is shown in figure 4.7. 

The fresh C0 3 O4 catalyst shows a maximum selectivity o f 28% at 140°C, as CO2 is the 

dominant reaction product. The selectivity to propene remains stable, with maximum 

propene selectivity not exceeding 28% beyond 100°C. The reactivated catalyst 

showed a higher selectivity to propene but only as a result o f the lower conversion. As 

with the fresh catalyst the selectivity is seen to rise, increasing from 32% at 80°C to 

39% at 140°C.

1 20 
15 

10

Tem per atu re/°C

Figure 4.7 Propene selectivity over fresh and reactivated Co40 4: (■) fresh Co-;04 (□) reactivated Co40 4

(400°C, 3 h, flow=20ml min’1, O2/He=20/80)

In the initial experiments on the C0 3 O4 catalyst the selectivity was found to increase 

when the used catalyst was treated at 400°C for 2h in 10% flowing O2 . It was 

envisaged that in situ pre-treatment of the fresh C0 3 O4 prior to testing may increase 

the activity and selectivity o f the catalyst. It had been suggested that the CO2 present 

in the original catalytic runs had not been a product o f the reactants but had come 

from the catalyst itself, possibly associated with the surface and is driven off as the 

temperature o f the reaction is increased. The results seen below seem to indicate that
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this is indeed the case. Figure 4.8 shows the decrease in CO2 concentration with time 

on line at 40°C. The catalyst was tested in a 10% 0 2 /He flow with no propane 

present. After approximately 150 minutes the CO2 concentration was seen to decrease 

to 0%. If the reactor temperature is increased, more CO2 is driven off the catalyst, the 

concentration o f which then decreases to 0%. In subsequent experiments it was found 

that the optimum conditions for the total removal of CO2 was in situ calcination at 

400°C for 2h in a 20 ml min ' 1 10% 0 2 /He flow. Pre-treatment at temperatures greater 

than this resulted in a decrease in catalytic activity due to sintering o f the catalyst and 

lower surface areas. Tests conducted on the empty reactor and an inert silicon carbide 

sample showed no CO2 present in the feed (see appendix) indicating that the CO2 was 

from the catalyst.

0 035
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O  0 015
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Figure 4.8 Effect o f catalyst pre-treatment at elevated temperatures. 40°C; 10% 0 2/He 

C 0 2 concentration as a function of time on line

The results for propane conversion over the pre-treated C 0 3 O 4 can be seen in figure 

4.9. The in situ calcination of the catalyst prior to the reaction was found to decrease 

the overall activity o f the catalyst, however, the light off temperature of the catalyst
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was decreased to ambient. Initial activity starts at 25°C, albeit with very low 

conversion, not achieving greater than 0.4% below 80°C. Above this temperature 

there is an increase in conversion achieving a maximum of 1.2% at 140°C. This is a 

lot lower than the untreated catalyst, which shows a maximum conversion of 4.0% at 

140°C. It appears that the in situ pre-treatment lowers the light off temperature but 

also lowers the activity o f the catalyst.

20 40 60 80 100 120 140

Tem perature /°C

Figure 4.9 Propane conversion over pre-treated Co:,0 4: C o ,0 4 (calcined 400°C, 3h.); in  s itu  pre

treatment at 400°C, 2h, 0 2/He= 10/90 %, 20ml m in '1.

Although the pre-treatment had a negative effect upon the conversion, it had a 

marked effect on the low-temperature selectivity of the catalyst. Figure 4.10 shows 

the selectivity to propene as a function of temperature for the pre-treated catalyst. The 

catalyst was 100% selective for propene below 80°C. Above this temperature the 

selectivity decreases, as the dominant reaction product becomes CO2 . At 140°C the 

selectivity is 76%, as the temperature is increased the selectivity continues to 

decrease. It appears that the optimum selectivity and activity occurs in the 

temperature range 25-140°C.
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Figure 4.10 Selectivity to products over pre-treated Co?0 4: Co20 4 (calcined 400°C, 3h.); in  s itu  pre

treatment at 400°C, 2h, 0 2/He= 10/90 %, 20ml m in '1. (■) Propene; (□) Carbon dioxide.

As a result o f the low conversion the propene yield was also very low. not achieving 

greater than 1%. The profile follows that of the conversion with the yield remaining at 

less than 0.5% up to 100°C. It is only at temperatures greater the 100°C that the 

propene yield increases with any significance. The maximum propene yield was just 

0.95% at 140°C as can be seen in figure 4 .1 1 .

20 40 60 80 100 120 140

Temperature/°C

Figure 4.11. Propene yield over pre-treated Co30 4: Co20 4 (calcined 400°C, 3h.); in  s itu  pre-treatment

at 400°C, 2h, 0 2/He= 10/90%. 20ml m in '1.

105



4.3.2 Variation in O2 concentration

In an effort to increase the low-temperature conversion of the pre-treated C0 3 O4 , the 

catalyst was tested in varying O2 concentrations. The results for propane conversion 

are shown in figure 4.12. The catalyst was activated in situ prior to the run (400°C, 2h. 

2 0  ml min ' 1 1 0 % 0 2 /He flow).

With 0% O2 in the feed the catalyst was still active at 25°C and showed conversions 

of 0.1% at 60°C. The overall conversion at temperatures below 80°C was comparable 

to the conversions obtained with oxygen concentrations of 10-35%. Above 80°C the 

conversion decreases to c.a. 0 . 1% and remains low with increasing temperature. 

Increasing the oxygen concentration to 99% resulted in a decrease in overall 

conversion. There was no conversion below 80°C and at 140°C the conversion 

achieves only 0.4% as compared to 1% in lower O2 concentrations. However, the 

conversion in the 80-140°C temperature range is greater than when no gas-phase 

oxygen is present. Varying the O2 concentration

12

20 40 60 80

Tem perature /°C

100 120 140 160

Figure 4.12 Effect o f varying 0 2 concentration on propane conversion. 

Percentage 0 2 in feed (♦) 0%, (A) 10%, (□) 20%, ( • )  35%. (■) 99%
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between 10-35% had little effect upon the activity of the catalyst. The catalyst was 

active at 25°C and in each case followed a similar reaction profile; at 60°C the 

conversion is approximately 0.1% and rises to 1% at 140°C. The optimum 

concentration for maximum conversion appears to 2 0 %. Interestingly repeat runs 

showed that in the temperature range 25-80°C the conversions at each concentration 

were irreproducible and differed at each temperature between repeat reactions. 

However, the catalyst was active at ambient temperatures, and conversion was seen to 

increase gradually with increasing temperature never achieving higher than 0 .2 % 

below 80°C. Given the energy required to activate oxygen it is probably the case that 

molecular oxygen plays no part in the reaction at temperatures lower than 80°C. The 

activity and selectivity is quite possibly the result o f lattice oxygen, which is 

consumed during the reaction rendering the catalyst inactive. The catalyst is not re- 

oxidising due to the low temperature.

The selectivity to propene for varying O2 concentrations is shown in figure 4.13. 

Varying the concentration from 10-35% resulted in no change to the low-temperature 

selectivity. The catalyst was 100% selective for propene up to 80°C. At 140°C the 

selectivity decreased to around 80% in all cases.

1 0 7



• | 6°  "

I
40

20

0
20 40 60 80 100 120 140

Tem perature/°C

Figure 4.13 Effect o f varying 0 2 concentration on propene selectivity.

Percentage 0 2 in feed; (♦) 0% (A) 10% (□) 20% ( • )  35% (■) 99%

With no oxygen in the feed the selectivity decreases to only 90% at 140°C, the total 

combustion reaction is suppressed by the limiting oxygen concentration. Increasing 

the O2 concentration to 99% resulted in over oxidation of the propene to CO2 and 

consequently, a decrease in selectivity to 60% at 140°C.
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Figure 4.14 Effect o f varying 0 2 concentration on propene yield.

Percentage 0 2 in feed; (♦) 0% (A) 10% (□) 20% ( • )  35% (■) 99%

120 14020 60 80 10040

Tem perature /°C
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As a result o f the low conversion the overall propene yield is low, not achieving 

greater than 1% (figure 4.14). With 0% O2 in the feed the catalyst achieves a 

maximum yield of just 0.15%. Increasing the O2 concentration to 10% increased the 

propene yield across the entire temperature range with a maximum yield of 0 .8 % at 

140°C. Further increase in the oxygen concentration to 35% resulted in a decrease in 

yield. Saturating the feed with O2 resulted in no propene production below 80°C. 

Above 80°C the yield is seen to increase with increasing temperature, but still remains 

relatively poor with a maximum conversion of just 0.2% at 140°C.

From the data it appears that varying the oxygen concentration between 10-35% has 

little effect on the conversion in the temperature range 25-80°C. Without gas-phase 

oxygen the reaction still proceeds, with conversions comparable to those when O2 is 

present. In an O2 saturated atmosphere the catalyst favours the combustion pathway 

and due to over dilution of the reactant propane with a competitive diluent i.e.C>2 . the 

low temperature activity is lost and the conversion remains low.

4.3.3 Variation in calcination conditions

The effect of varying the ageing times and calcinations conditions were tested and the 

results for propane conversion and selectivity can be seen below in figure 4.15. The 

catalyst aging times were lh  and 3h. The resultant precursors were then calcined at 

250°C, 400°C and 550°C. The 6  catalysts were prepared as described in the 

experimental section 2.1.3. Each catalyst was activated in situ prior to the run (400°C 

for 2 h in a 2 0  ml min ' 1 1 0 % 0 2 /He flow) and tested under typical conditions 

(C3H8/ 0 2/He= 1/20/79, 4800 h '1)
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Figure 4.15 Effect o f ageing time and calcination temperature on propane conversion over Co^Oa 

catalyst. (♦) Calcined 250°C/lh ageing (0) Calcined 250°C/3h ageing ( • )  Calcined 400°C/lh ageing (o) 

Calcined 400°C/3h ageing (A ) Calcined 550°C/lh ageing (A) Calcined 550°C/3h ageing

It is worth noting that it took less time to activate the catalysts calcined at higher 

temperatures, there was more CO2 associated with the catalyst calcined at 250°C than 

the catalyst calcined at 550°C.

Varying the ageing time between 1 and 3hrs had little effect on the catalyst activity. 

The reaction profiles for the different ageing times are broadly similar. Varying the 

calcination temperature o f  the C03O4 had a marked effect on the activity o f  the 

catalyst. The C03O4 calcined at 250°C displayed the highest rate o f conversion 

increasing from 0.1% at 40°C to 1.5% at 140°C; this was to be expected given its 

higher surface area and low temperature o f calcination. Calcination o f  the catalyst at 

higher temperatures resulted in a decrease in overall conversion. At 140°C the 

catalysts calcined at 400°C and 550°C show conversions o f ca. 1.2% and 0.4% 

respectively.
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Figure 4.16 Effect o f ageing time and calcination temperature on propene selectivity over CO’,0 4 

catalyst. (♦) Calcined 250°C/1 h ageing (0) Calcined 250°C/3h ageing ( • )  Calcined 400°C/1 h ageing (o) 

Calcined 400°C/3h ageing ( A ) Calcined 550°C/1 h ageing (A) Calcined 550°C/3h ageing

T he se lec tiv ity  to  p ro p e n e  as a fu n c tio n  o f  tem p e ra tu re  is sh o w n  in fig u re  4 .16. 

A gain , v a ry in g  the  a g e in g  tim e  had  little  e ffec t on the  ca ta ly s t. T h e  se lec tiv ity  p ro files  

for the  250°C  an d  400°C  ca lc in ed  C 0 3 O 4 are the  sam e fo r b o th  ag e in g  tim es. 

C u rio u sly , th e  lh  ag ed , 500°C  ca lc in ed  C 0 3 O 4 w as m o re  se lec tiv e  th an  its 3h aged 

co u n te rp a rt w ith  a se lec tiv ity  o f  9 7 %  at 140°C as co m p ared  to  85% .

T he h ig h  ac tiv ity  o f  th e  2 5 0 °C -ca lc in ed  C 0 3 O 4 re su lted  in a low  selec tiv ity . 

S e lec tiv ity  d ro p s  fro m  100%  at 40°C  to 80%  at 140°C. C a lc in in g  the p recu rso r at 

h ig h er tem p e ra tu re s  in c re a sed  the  lo w  tem p era tu re  se lec tiv ity  bu t at 80°C the 

se lec tiv ity  d ec rea se s  ra p id ly  as the  to ta l co m b u stio n  re ac tio n  b eco m es d om inan t. 

C a lc in a tio n  o f  th e  p re c u rso r  a t 400°C  leads to  a m o re  ac tiv e  and  se lec tiv e  ca ta ly st 

overall. C a lc in a tio n  o f  th e  p re cu rso r at 550°C  leads to  a m o re  se lec tiv e  ca ta ly st but 

on ly  due to  the  lo w e r co n v e rs io n .
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Figure 4.17 Effect o f ageing time and calcination temperature on propene yield over C 0 4 O4 catalyst.

(♦) Calcined 250°C/lh ageing (0) Calcined 250°C/3h ageing ( • )  Calcined 400°C/lh ageing (o) 

Calcined 400°C/3h ageing (A )  Calcined 550°C/lh ageing (A) Calcined 550°C/3h ageing

Propene yields are given in figure 4.17. Varying the ageing time between lh  and 3h 

had little effect on the yield. The catalyst calcined at 250°C gave the highest yield of 

1.2% at 140°C, but with a propene selectivity o f ca. 80%. At the lower temperature of 

80°C the catalyst is far more active than the others tested with yields of 0.5% at 97% 

selectivity as compared to yields >0.3% for the catalysts calcined at higher 

temperatures. The catalyst calcined at 400°C showed a maximum yield of ca. 0.9% at 

140°C. Increasing the calcination temperature to 550°C lowered the total propene 

yield.

4.3.4 Variation in flow rate

The effect of flow rate on the oxidative dehydrogenation of propene over C0 3 O4 was 

tested and the results are presented below. The catalyst tested was prepared as 

described in the experimental section 2.2.1. The precursor was calcined at 400°C for
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2h. The reaction conditions were as previous but with varying flow rate. The 

concentration o f the reactants remained the same in all experiments. 

(C3H8/C>2/He= 1/20/79). Prior to testing the catalysts was activated in situ (400°C for 

2h in a 20 ml m in '1 10% 0 2 /He flow).

The results for propane conversion a presented in figure 4.18. Increasing the gas 

hourly space velocity from 4800 h '1 to 19200 h '1 resulted in a decrease in conversion 

over the entire temperature range. All low temperature activity was lost with the light 

off temperature increasing to 60°C. The maximum conversion at 140°C decreased to 

less than 0.4% for all flow rates greater than 4800 h '1.

12060 80 100 14020 40

T em perature l°C

Figure 4.18 Effect o f flow rate on propane conversion over C0 3 O4 catalyst: space velocities (♦) 4800 h’

1 (X) 2400 h '1 (□) 14400 h '1 ( A ) 19200 h '1

The selectivity to propene as a function of temperature is shown in figure 4.19. 

Increasing the flow rate led to a loss o f low temperature activity and hence no propene 

yield below 60°C. At temperatures greater than 80°C the catalyst remained 

approximately 80% selective to propene. Space velocities of 48001 /h led to a more 

selective catalyst. The catalyst was 100% selective to propene in the temperature 

range 25-80°C. Above 80°C the selectivity is seen to decrease with increasing
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temperature. At 140°C the selectivity drops to below 80%. At higher temperatures it 

appears that increasing the space velocity does have the effect of increasing 

selectivity. At 140°C the selectivity for the catalyst running with higher flow rates 

remains greater than 80%.
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Figure 4.19 Effect o f flow rate on propene selectivity over C0 3 O4 catalyst: space velocities (♦) 4800 h'

1 ( X)  2400 h' 1 (□ ) 14400 h-1 (A ) 19200 h ' 1

It seems that at low temperatures a longer contact time is necessary for the catalyst 

to be active but at higher temperatures (>80°C) decreasing the contact time prevents 

over oxidation of the alkene to CO2 .

4.3.5 Steady state activity

The CoOx catalyst was retested in the smaller reactor using 0.25g o f sample. The 

reaction mixture was 2 0 ml min' 1 comprising 1% propane in synthetic air mixture. 

(C3Hg/0 2 /He= 1/20/79). The fresh catalyst was first tested until it showed complete 

deactivation before being reactivated at increasing temperatures for a period of 2 h in 

10% O2 in He. After each reactivation the catalysts were retested for activity the

114



results for which are given in figure 4.20. The temperature o f the reaction was 40°C 

and the selectivity to propene 100%. The freshly prepared C0 3 O4 showed rapid 

deactivation at 40°C with conversion decreasing from 0.05% to 0% in 80 minutes.

propane product conversion aga inst time

0 6

0 5

—g — R eactivated 100 degrees

0 4

R eactivated 180 degrees*c
o
?  0.3
>coo

0 2

0 1

* =
80

0
10060 70 9030 40 5010 200

Figure 4.20 Steady state activity of C0 3 O4 at 40°C and the effect o f reactivation at increasing 

temperature. Propane conversion as a function o f time on line.

Calcination of the catalyst at 80 and 100°C gave rise to moderate activity displaying 

half of the original conversion of the fresh catalyst. The reactivated catalysts also 

deactivated more rapidly than the fresh and displayed zero conversion in less than 30 

minutes. Reactivation of the catalyst at 140°C increased the initial conversion to 

almost 1 0  times that o f the fresh but again deactivation was rapid with conversion 

dropping from 0.25% to less than 0.1% in 10 minutes, reaching zero conversion in 

approximately 45 minutes. Reactivation at 180°C resulted in the highest initial 

conversion o f ca. 0.5% but again deactivation was rapid.
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Although the selectivity to propene at 40°C is 100% the conversion at this 

temperature is very small and does not exceed 0.6 %. In order to increase the 

conversion and catalyst lifespan, the reaction temperature was increased, the results 

for which are shown in figure 4.21. In each case a fresh C0 3 O4 catalyst was used and 

was activated in situ prior to each run. The temperature o f the reaction increased in 

20°C increments.
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Figure 4.21 Steady state propane conversion over Co:,0 4at different reaction temperatures as a 

function o f time on line.(O) 60°C, (A) 80°C, (o) 100°C, (□) I20°C. ( • )  140°C, ( A)150°C

Increasing the temperature of the steady state reaction resulted in an increase in 

conversion and catalyst stability. At 60°C the conversion was still extremely low at 

0.1% and decreased to 0% after approximately one hour. Increasing the reaction 

temperature to 80°C increased the initial conversion to 0.35% but the activity still 

decreased with time on line. At 80°C total deactivation took 250 minutes. At 100°C 

the conversion was still less than 1% and again the catalyst was not stable and 

deactivated steadily to 0% conversion after 400 minutes. At 120°C the conversion 

reaches 1% and the catalyst lifespan is increased to ca. 660 minutes. The catalyst still
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shows steady deactivation with time on line with the conversion decreasing to less 

than 0.5% after 500 minutes. It is only when the reaction was run at 140°C that the 

conversion remained stable. The catalyst displayed a maximum conversion of 3.5% 

that decreased to 1.5% after 100 minutes. The catalyst showed no deactivation with 

time on line and maintained steady state conversion for the duration of the 

experiment. Increasing the temperature further to 150°C increased the maximum 

conversion to 5.5% that steadily decreased to 4% before becoming stable. It seems 

that temperatures o f 140°C and greater are required for stable turnover of the catalyst.

100 » » » o » o » o o

200 250 300

Tim e on line/(m ins)

Figure 4.22 Selectivity to propene with steady state conversion over Co^C^at different reaction 

temperatures as a function o f time on line. (0) 60HC, (A) 80°C, (o) I00°C, (□) 120°C, ( • )  140°C, ( A)

150°C

The selectivity to propene is shown in figure 4.22. Increasing the temperature of the 

reaction resulted in the expected decrease in selectivity. At 60°C the catalyst is still 

1 0 0 % selective to propene but the propane conversion at this temperature is near zero. 

Increasing the temperature by 20°C resulted in a decrease in selectivity with the 

selectivity at 80°C stabilising at ca. 92%. Running the catalyst at 100°C resulted in a
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selectivity to propene o f ca. 92%, similar to that o f the catalyst run at 80°C. At 140°C, 

where the catalyst is stable, the selectivity is 75% and remains so for the duration of 

the experiment. At 150°C there is a large drop in selectivity. At this temperature the 

dominant reaction becomes the total combustion of propane with propene selectivity 

decreasing to just 15%.

The catalysts tested at 60°C and 80°C gave the lowest yields overall not achieving 

greater 0.1% propene. Increasing the reaction temperature to 120°C increased the 

yield by a factor o f five with the maximum propene yield being 0.5%. The highest 

yield was shown over the C0 3 O4 ran at 140°C. The catalyst gave a maximum yield of 

ca. 1% propene at 76% selectivity. Increasing the temperature of the reaction to 150°C 

resulted in a significant decrease in propene selectivity and hence a decrease in the 

yield to just 0.7%

4.3.6 Improved conversion with lower space velocities

In an effort to increase the low temperature conversion o f the cobalt catalyst a lOg 

batch was prepared and tested in a large-scale reactor. The preparation of the catalyst 

is described in the experimental (section 2.1.3). A description of the apparatus used 

along with the specific reaction conditions is described in section 2.2.2. The reaction 

was conducted at 40°C and the selectivity to propene throughout the reaction was 

100%. The propane conversion as a function of time on line is shown in figure 4.23 

along with the propane conversion over the reactivated sample.

Propane conversion in the large-scale reactor turned out to be a lot lower than 

expected. Initial conversion at time zero was just 0.68% and decreased to less than 

0 . 1% after 1 0 0  minutes.
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Figure 4.23 Propene conversion at 100% selectivity over lOg C0 3 O 4 at 40°C. GHSV = 120 h' 1

It was envisaged that by using 40 times the original amount o f  catalyst the overall 

conversion would increase by the same factor. This was not the case. However, the 

catalyst lifetime was increased and reactivation o f the catalyst (400°C, 2h. 10%O2) 

resulted in an activity identical to that o f  the fresh. The total yield was extremely low 

rapidly deceasing to <0.1% after 100 minutes online

4.3.7 Comparison with commercial sample

The laboratory prepared C03O4 was compared to a commercial C03O4. The 

commercial sample was used as received and was tested under identical conditions to 

the prepared sample. The catalyst was tested against a commercial sample to see if the 

preparation method used here produced a catalyst with differing properties. Also, in 

research done by others, the C03O4 catalyst studied has been from a commercial 

source The results for propane conversion are presented in figure 4 .24.
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The commercial catalyst showed no activity below 140°C, light o ff occurred at 

150°C with a conversion o f  0 .1%. This rose to a maximum o f 0 .4% at 200°C, 

significantly lower than the prepared catalyst which was active at room temperature 

and achieved a maximum conversion o f 1.2% at 140°C.

20050 100 150

Tem perature /°C

Figure 4.24 Propane conversion over commercial and prepared Co.-?04: (■) Prepared Co^04; (□)

Commercial C0 3 O4

Selectivity data is presented in figure 4 .25. The commercial C03O4 catalyst was 

generally less selective than the prepared catalysts. A maximum selectivity o f 75 %  

was achieved with the commercial catalyst at 175 °C, and propene selectivity 

decreased as the temperature was increased. The commercial C03O4 was less active 

and selective than the prepared catalyst and displayed no low temperature activity.
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Figure 4.25 Selectivity to propene over commercial and prepared C ch04: (■) Prepared Cor,0 4; (□)

Commercial C o i0 4

4.3.8 In situ reductions

From the results reported so far it has been found that the C0 3 O4 catalyst is active and 

100% selective below 80°C. Above this temperature, however, the reaction profile is 

seen to change, with selectivity reducing with increasing temperature. Temperature 

programmed reduction o f the cobalt oxide samples also showed a minor reduction 

feature present at approximately 80-90°C. This feature was only found in the 

prepared active catalyst and was not present in the used or commercial cobalt oxide. 

The following experiment tested the effect of the controlled removal of the reducible 

species by in situ reduction of the catalyst with H2 . The exact conditions for the 

reduction are given in the experimental section 2.2.7. The effect o f reduction on the 

propane conversion is shown in figure 4.26.
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Figure 4.26 Propane conversion over Co30 4 reduced at increasing temperatures. (♦ )  Reduced 80°C 

(□) Reduced 150°C (A) Reduced 200°C (O ) Unreduced Co30 4 comparison

Reduction of the catalyst at 80°C resulted in a total loss o f activity below 80°C. The 

reduced catalyst showed initial activity at 80°C with conversion of 0.08%. This 

increased to 1.7% at 140°C. Interestingly, the reaction profile above 80°C is identical 

to that of the unreduced fresh catalyst indicating that the reducible species at 80-90°C 

seen in the TPR may well be responsible for the low temperature activity. Further 

reduction at 150°C resulted in an overall decrease in conversion over the entire 

temperature range. The catalyst was still active at 80°C but the maximum conversion 

at 140°C was 1.4%. Reduction at 200°C resulted in a shift in the light off temperature 

to 100°C and a further reduction in overall conversion.
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The selectivity to propene as a function of temperature for the reduced catalyst is 

shown in figure 4.27. As before the unreduced catalyst was 100% selective to
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Figure 4.27 Selectivity to propene over C o i0 4 reduced at increasing temperatures. ( ♦ )  Reduced 80°C 

(□ ) Reduced 150°C (A)  Reduced 200°C (O ) Unreduced C 0 3 O4 comparison

propene at temperatures lower than 80°C. The catalyst reduced at 80°C showed 

similar decrease in selectivity as the unreduced catalyst. It was 100% selective at 80°C 

decreasing to 35% at 140°C. The selectivity o f the catalyst reduced at 150°C was 

lower than that for the unreduced catalyst. It was still active at 80°C but with a lower 

selectivity of 84% which decreased to 40% at 140°C. Further reduction at 200°C 

resulted in the light off temperature shifting to 100°C; the selectivity at this 

temperature was lower again at 72% educing to 21% at 140°C.
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4.4 Discussion

F rom  the  re su lts  seen  ab o v e , the C 0 3 O 4 ca ta ly st p rep ared  w as  fo u n d  to  be ac tive  and 

se lec tive  fo r the  o x id a tiv e  d eh y d ro g en a tio n  o f  p ro p a n e  to  p ro p en e  at low  

tem p era tu res . It is in te re stin g  to  co n sid er the o rig in  o f  th e  e x c ep tio n a l b eh av io u r. X- 

ray d iffrac tio n  an a ly s is  o f  the  p rep ared  ca ta ly st (f ig u re  4 .1 ) sh o w ed  th a t it co m p rised  

the cub ic  sp inel ty p e  C 0 3 O 4 T h is  ca ta ly st has p ro v en  i ts e lf  to be a h igh ly  ac tive  and 

e ffec tiv e  ca ta ly s t fo r a  n u m b er o f  d iffe ren t re ac tio n s  in c lu d in g  lo w -tem p e ra tu re  C O  

o x id a tio n  f6"81, as w ell as h y d ro carb o n  co m b u stio n  and  o x id a tio n  I !()"l314l jn a s tudy  on 

the ro le  o f  ac id ity  in o x id a tio n  reac tio n s  B u sca  et al  su m m arised  p re v io u s  d a ta  and 

d escrib ed  C 0 3 O 4 as a  b in ary  o x id e  w ith  s trong  red u c ib ility , s tro n g  n u c leo p lilic ity  and 

a h igh ly  io n ic  m e ta l-o x y g e n  bo n d  ,l5l  T h ese  h igh ly  ion ic  m eta l o x id es  w ith  h ighly  

red u cib le  ca tio n s  a re  u su a lly  ex ce llen t to ta l o x id a tio n  ca ta ly s ts  and  so m e o f  them  can 

have a se lec tiv e  b e h a v io u r  in  O D H  reac tions. Indeed  the  p rec ip ita te d  ca ta ly s t s tud ied  

here w as v ery  se lec tiv e  fo r the O D H  o f  p ro p an e  to p ro p en e . T h e  re su lts  from  the 

ca ta ly tic  reac tio n  sh o w ed  th a t C 0 3 O 4 w as cap ab le  o f  ac tiv a tin g  p ro p an e  at am bien t 

tem p era tu res  w ith  100%  se lec tiv ity  to p ropene. H o w ev er, th e  co n v e rs io n  w as very  

low  and  th e  C 0 3 O 4  w as fo u n d  to  d eac tiv a te  very  rap id ly . T he  critica l tem p era tu re  

range fo r th is  100%  se lec tiv ity  w as found  to  be 25-80°C . It ap p e a rs  th a t w ith in  this 

tem p era tu re  ran g e  th e  ca ta ly s t is cap ab le  o f  ac tiv a tin g  th e  w e ak es t C -H  bond w ith  

red u ctio n  o f  th e  su rface  site  p o ss ib ly  re su ltin g  in th e  fo rm a tio n  o f  a  su rface  a lkoxy  

species. F u rth e r h y d ro g e n  ab s trac tio n  w ou ld  then  be n ec essa ry  b efo re  deso rp tio n  o f  

the p ro p en e  p ro d u c t an d  co n seq u en t h y d ra tio n  o f  the su rface . T he fo rm ation  o f  

h y d ro x id e  sp ec ie s  on  th e  su rface  m ay  be the reaso n  fo r the  rap id  d eac tiv a tio n  w ith the 

tem p era tu re  b e in g  to o  lo w  to  fac ilita te  d eso rp tio n . It w as sh o w n  that a lte ring  the O 2

124



concentration had little effect on the activity at temperatures lower than 80°C 

indicating that it plays no part in the reaction. It is unlikely that at such low 

temperatures activation of the gas phase O2 is possible. And. consequently, there is no 

re-oxidation o f the active site or indeed promotion of water formation.

It is equally likely that deactivation occurs as a result o f surface bound CO2 from 

over oxidation o f the propane molecule. It was shown in section 4.3.1 that the fresh 

catalyst needed to be heated in order to drive off CO2 . It is possible that over 

oxidation of the propane molecule is also occuring with the CO2 molecule being too 

tightly bound to desorb at such low temperatures. Jansson et al conducted TPO 

experiments on cobalt oxide involved in CO combustion. The deactivated catalyst 

showed presence o f surface carbonates and carbon. However, the authors state that 

this is not the source of the deactivation. They suggest that deactivation occurs due to 

reconstruction o f the surface hindering the redox cycle *61. Interestingly another 

group, Cunningham et al, concluded the opposite, in that the carbonates are 

responsible for the deactivationfl6].

The nature o f the reaction changes quite clearly at 80°C. Above this temperature 

there is typically a drop in selectivity due to over oxidation o f propane to CO2 . 

Interestingly no other products were observed throughout the reaction. The catalyst 

deactivates rapidly at temperatures lower than 130°C, and it is only at 140°C that the 

catalyst shows steady state activity. It may be the case that temperatures of 140°C and 

higher are necessary for re-oxidation of the catalyst from gas phase oxygen.

Temperature programmed reduction studies of the fresh catalyst showed a reduction 

feature around 80°C. The same reduction feature was not observed with a deactivated 

catalyst or the inactive commercial sample. It is thought that this low temperature 

reduction feature is associated with a surface oxygen species that effects the low 

temperature selective oxidation. This postulation is enforced by experiments in which
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the fresh catalyst was treated with hydrogen in situ at 80°C for 120 minutes prior to 

being tested for propane oxidative dehydrogenation (section 4.3.8). The pre-treated 

catalyst showed no activity for propane ODH. Regeneration o f the pre-treated 

catalyst at 180°C for 2h in a 1 0 %O2/He mixture resulted in the propane conversion 

and selectivity to propene being fully restored to that of the fresh catalyst.

The precise nature of the active site responsible for this high activity is as yet 

unknown but a number of authors support the theory that within spinels (Cotet (II) 

Co2°ct (111)0 4 ), the high catalytic activity is related to the weaker Co°ct (III)-O bond 

[|7-|9i precjse nature of the active oxygen species is indeterminable from the

experimental data but work done by others indicated the presence of physisorbed or 

chemisorbed electrophilic (O22', O’ and O2" ) and nucleophilic ( 0 2’),62()|. Although 

there is disagreement in the role of each oxygen species. Further tests are necessary 

to probe the precise nature of the active species present but it is believed that 

increasing the concentration of the low-temperature reducible species seen in the TPR 

experiments may result in an increase in the activity.
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4.5 Conclusions

C 0 3 O 4 p repared  by p rec ip ita tio n  o f  the co rre sp o n d in g  n itra te  w as found  to be ac tive 

fo r the o x id a tiv e  d eh y d ro g en a tio n  o f  p ropane  to p ro p en e  a t am b ien t tem pera tu res. 

In itia l tests  found  the  ca ta ly s t to  be ac tive  bu t h igh ly  u n se lec tiv e  d u e  to  the p resence  

o f  C O 2 . F u rth e r tests  rev ea led  that the C O 2 p ro d u ced  in the  tem p e ra tu re  range 25- 

80°C w as in  fact from  the  ca ta ly st i ts e lf  no t a p ro d u c t o f  th e  re ac tio n . T h is surface 

C O 2 w as easily  re m o v e d  p rio r to  the  reac tio n  by p re -trea tm e n t o f  the  ca ta ly st at 

tem p era tu res  o f  400°C  in a 10-20%  ox y g en  a tm o sp h ere . T he  ac tiv a ted  ca ta ly st w as 

100%  se lec tiv e  b e lo w  80°C . T em p era tu re  p ro g ram m ed  red u c tio n  o f  the ca ta lyst 

show ed  th e  p re sen ce  o f  a  red u c ib le  ox y g en  spec ies at 80-90°C  w h ich  w as a ttrib u ted  to 

the low  tem p e ra tu re  ac tiv ity . A t tem p era tu res  g rea te r th an  80°C the  se lec tiv ity  

decreases  as th e  co m p e tin g  co m b u stio n  reac tio n  b eco m es d o m in an t. S teady  state 

ac tiv ity  is o n ly  p o ss ib le  at tem p era tu res  g rea te r than  140°C bu t the  se lec tiv ity  to 

p ropene  a t th e se  h ig h e r tem p era tu res  is low er.
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Chapter 5



Chapter 5

Nanocrystalline Cobalt Oxide: a catalyst for selective 

oxidation under ambient conditions

5.1. Introduction

The following chapter expands upon the research conducted previously on C0 3 O4 

catalysts for the oxidative dehydrogenation of propane to propene. In the previous 

chapter it was shown how precipitated bulk C0 3 O4 was capable o f propane conversion 

at temperatures as low as ambient with 100% selectivity. However, the conversion at 

these temperatures was very low and only reached 1% at 140°C. Steady state activity 

was possible at 140°C but with a reduced selectivity of ca. 75%. Temperature 

programmed reduction o f the active catalyst showed the presence of an 80-100°C 

reducible species which evidence suggests was responsible for propane conversion to 

propene at ambient temperature with 100% selectivity. The overall aim of this study 

was to assess the potential o f a bi-functional catalyst for the direct conversion of 

propane to iso-propanol. It was realised that it would require a catalyst capable of 

activating the alkane at temperatures low enough to allow the subsequent hydration 

step. In the following chapter this work is expanded upon to include other C0 3 O4 

polymorphs prepared by a variety of different methods. Particular attention is paid to 

C0 3 O4 nanoparticles prepared by mechanochemical synthesis. Nanomaterials 

currently receive a high degree of interest from many fields of science, such as 

medicine, optics, energy and computing fl1, as well as catalysis. Nanomaterials have 

opened a new era for many catalytic reactions due to their particular characteristics ,21.
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In fact when materials approach molecular dimensions their properties usually change 

when compared with a bulk material. For example nanocrystalline materials present 

different adsorption capacities, high surface area and increased accessibility of the 

active sites. Unfortunately, many of them have a limited stability and usually cannot 

tolerate severe reaction conditions.

The nanocrystalline C 0 3 O 4 catalyst was tested for propane dehydrogenation using 

the reaction conditions tested previously. The results indicated that the nanocrystalline 

C 0 3 O 4  was the best catalyst tested so far and hence was used in conjunction with an 

acid catalyst to test the possibility of direct conversion of propane to iso-propanol. 

The final section of the chapter investigates an approach for the direct conversion of 

propane to iso-propanol and details the design o f multi-component catalysts 

containing redox and Bronsted acid functionalities to show how iso-propanol can be 

synthesised directly from propane in a single stage process.
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5.2. Characterisation

5.2.1 BET surface areas

The BET surface areas of the C0 3 O4 samples were determined as described in 

experimental section (2.3.4.). The results are given below in table 5.1.

Table 5.1 BET surface areas of C0 3 O4 , (Maximum error ±10%)

C 0 3 O 4 sample BET surface area (m2g ')

C0 3 O4 precursor 64

Precipitated Co30 4 35

Commercial C0 3 O4 4

C 0 3 O4 calcined from nitrate 14

High valence C 0 3 O4/C 0 2 O3 32

Solid state C 0 3 O4 precursor. Dried 120°C 81

Solid state C0 3 O4 calcined 300°C 159

Solid state C 0 3 O4 calcined 450° C 134

Solid state Co30 4 calcined 600°C 1 17

2 1The C0 3 O4 uncalcined precursor had a surface area of 64m g' , which decreased to

2 I35m g' after calcination. The commercial catalyst had the lowest surface area of

9 I4m g‘ . Preparing the catalyst by the solid-state method had a marked effect on
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surface area. The surface area of the solid-state precursor was 81m2g '1, which was

larger than the precipitated precursor. The surface area o f the solid-state catalyst

calcined at 300°C is 159m2g '', nearly 5 times that of the precipitated catalyst. Further

calcinations at higher temperatures lead to a decrease in surface area for the 450°C

and 600°C, dropping to 134 m2g'' and 117m2g'' respectively. This decrease in surface

area is as a result o f the higher thermal treatment which causes sintering of the

catalyst. Preparation of the catalyst by a mechanochemical route results in a catalyst

with a much larger surface area. Such an increase would have a marked effect on the

activity due to a higher proportion of active surface sites being exposed. The catalyst

prepared by calcination of the nitrate at 800°C had a lower than average surface area 

2 1of 14m g' , such a small surface area is typical of an oxide prepared at higher 

temperatures. The higher valence C0 3 O4 has a surface area o f 32m2g '’, slightly lower 

than the precipitated catalyst and possibly due to distortion o f the typical spinel 

structure by the C0 2 O3 phases present in the system.

5.2.2 X-ray diffraction

X-ray diffraction data was obtained using the equipment and methods described in 

the experimental (section 2.3.1.) All the new samples were tested and compared to the 

precipitated and commercial samples tested previously. The X-ray diffraction 

patterns can be seen below in figure 5.1. As seen previously the commercial sample is 

the most crystalline with diffraction peaks attributed to pure C0 3 O4 (20° of 31.2, 36.8,

59.3 and 65.2). The same peaks are present in the sample calcined from the nitrate but 

are slightly weaker and display a certain amount of broadening. The high valence
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cobalt oxide shows diffraction peaks from C0 2 O3, 20° of 38.6 and 67.8. These peaks 

are relatively weak and broad indicating a certain amount of disorder within the 

system. Small peaks at 20° = 19.0 and 65.2 are present and these are attributed to the

(111) and (440) planes. The high
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Figure 5.1 X-ray diffraction pattern o f Cobalt oxide catalysts: (a) Co40 4 nanoparticles (b) Co30 4 

precipitated from nitrate (c) High Valence Co30 4/Co2Oi (d) Co:,0 4 calcined from nitrate (e)

Commercial Co40 4

valence sample appears to be a mixture of both C0 3 O4 and C0 2 O3 . This is consistent 

with the literature, which suggests that the cobalt oxide formed by this method 

comprises both C0 3 O4 and C0 2 O3 [3]. Interestingly the sample also shows peaks at 20° 

= 50.5 and 61.7. These are phases are from neither C0 3 O4 nor C0 2 O3 and cannot be 

attributed to any other phases in the JCPDS database. The XRD pattern for the 

precipitated sample indicates that it comprises pure C0 3 O4 although the broader,
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w eak er d iffrac tio n  p eak s w o u ld  ind icate  that it is m ore  am o rp h o u s  than  the o ther 

sam ples. T he d iffrac tio n  pa tte rn  o f  the sam ple  p repared  by so lid -s ta te  reaction  is 

ind icative  o f  a n an o -c ry s ta llin e  sam ple. T he b roadness o f  the  lo w -in ten s ity  peaks 

ind icates th a t th e  p a rtic le  s ize  is too  sm all to allow  su ffic ien t d iffrac tio n . T he sam ple 

show s very  w eak  and  b ro ad  d iffrac tio n  peaks at 20°= 36 .8 , 59.3 and  6 5 .2 , a ttrib u tab le  

to C 0 3 O 4 .

C ry sta llite  s ize  w as d e te rm in ed  by  use  o f  the S ch errer eq u a tio n . T h e  ex ac t m eth o d  is 

d esc rib ed  in  ex p e rim en ta l sec tio n  (2 .3 .1 ). P eak  b ro ad en in g  w as co m p ared  to a h igh ly  

c ry sta llin e  s ilico n  sam p le  (see  ap p en d ix ). T he resu lt for w h ich  are show n  in tab le  5.2.

T able 5.2 Co30 4 crystallite size as determined by the Scherrer equation.

C 0 3 O4 sample Crystallite size (nm)

Precipitated Co30 4 34

Commercial Co30 4 108

C0 3 CX4 calcined from nitrate 44

Solid state Co30 4 calcined 300°C 1 2

Solid state Co30 4 calcined 600°C 17

Used precipitated Co30 4 36

D ete rm in a tio n  o f  th e  av e rag e  c ry s ta llite  size  by X -ray  line  b ro ad en in g  show ed  that 

the p rec ip ita ted  ca ta ly s t had  a  c ry s ta llite  s ize o f  34 nm , w h ils t the  average  crysta llite  

size fo r the  m o re  ac tiv e  so lid  sta te  p rep ared  C 0 3 O 4 w as 12 nm . C a lc in a tio n  o f  the 

n an o -c ry sta llin e  sam p le  at h ig h er tem p era tu res  re su lts  in ag g lo m era tio n  o f  the 

partic le s  an d  h en ce  la rg e r c ry sta ls  o f  17nm . T he n an o -c ry s ta llin e  na tu re  o f  the 

ca ta ly sts  is co n sis ten t w ith  th e ir re la tiv e ly  h igh  su rface  area. T he com m ercia l ca ta lyst
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had a m easu red  av e rag e  c ry s ta llite  size o f  103 nm , w h ich  is too  large  to be c lassed  as 

n an o -cry sta llin e . T h e  C 0 3 O 4 sam ple  p repared  by ca lc in a tio n  o f  the n itra te  had  an 

average  cry sta llite  size  o f  44  nm , b e tw een  th a t o f  the co m m erc ia l and  p recip ita ted . 

T he cry sta llite  size  o f  th e  used  p rec ip ita ted  sam ple  is 36nm , la rg er than  the fresh 

sam ple. T h is m ay  be as a  re su lt o f  s in te rin g  o f  the  ca ta ly st d u rin g  the  reaction .

5.2.3 Tem perature programmed reduction

T he tem p era tu re  p ro g ram m e d  red u c tio n  stu d ies w ere  co n d u c ted  using  the  m ethods 

d escrib ed  in th e  ex p e rim en ta l sec tion  (2 .3 .5 .). T he re su lts  for the tem p era tu re  

p ro g ram m ed  re d u c tio n  o f  the  n an o -c ry s ta llin e  C 0 3 O 4 are sh o w n  in figu re  5.2.
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Figure 5.2 Temperature programmed reduction o f Co30 4 nanoparticles: (a) Co30 4 calcined 300°C 

(b) Co30 4 calcined 450°C (c) Co30 4 calcined 600°C. Inset: expansion o f low-temperature feature at 80-

100°C
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The major reduction peaks at ca. 270°C and 350°C are as a result o f the reduction o f  

C03O4 —► CoO (270°C) and CoO —> Co (350°C)141. The precise temperature o f the 

reductions is given in table 5.3. Increasing the calcination temperature o f  the catalyst 

resulted in a shift in the reduction peaks to higher temperatures. This shift in 

temperatures is as a result o f the increased stability o f the sample due to the higher 

calcination times.

Table 5.3 Temperature o f reduction peaks and areas of the low temperature reduction feature.

Catalyst Reduction Peak 
(°C)

Area of low 
temperature 

peak (81-98°C)

Area 
normalized for 
catalyst mass

Nanocrystalline C03O4 
calcined 300°C

98, 243,336 0.90 14

Nanocrystalline C03O4 
calcined 450°C

93, 257,338 0.09 1.5

Nanocrystalline C03O4 
calcined 600°C

88, 257, 345 0.004 0.1

Precipitated C03O4 81, 268,338 0.03 0.5

Inset in figure 5.2 is an expansion o f the 80- 100°C temperature range. As with the 

precipitated catalyst the low temperature peak is still present and is seen to shift to 

lower temperatures with increasing calcination temperature. This pattern is surprising 

given that one would expect the peak to shift to higher temperatures. The values in 

the last column o f table 5.3 denote the areas o f the low temperature peak for each 

catalyst. With increasing calcination temperature the total concentration o f the 

reducible species is seen to decrease. The catalyst calcined at 300°C shows the 

highest concentration o f the reducible species with a peak area o f 0.9. This value 

drops to just 0.004 for the 600°C calcined catalyst.
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Comparison of the nanocrystalline catalyst with the precipitated and commercial 

sample can be seen below in figure 5.3.
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Figure 5.3 Temperature programmed reduction profiles for (a) fresh nanocrystalline Cor,0 4 calcined 

300°C, (b) precipitated Co40 4 ,(c) fresh commercial Co40 4 (Avocado) and (d) used at 40°C

The nanocrystalline sample has a larger concentration of reducible species in the 80- 

100°C temperature range. The 80°C reduction peak is smaller for the precipitated 

catalyst than for the nanocrystalline sample. The commercial catalyst, which was 

proven inactive for propane conversion shows no reduction peak below 100°C. The 

TPR of the used nanocrystalline sample also showed no low-temperature reduction 

peak. From the previous work the low temperature activity of the C0 3 O4 catalyst was 

attributed to the presence of this 80-100°C reducible species. The nanocrystalline 

sample appears to have this species present in larger concentrations and, as with the 

precipitated catalyst, the activity disappears with removal of this low temperature 

species. TPO experiments on the used nanoparticle catalyst are shown below in figure 

5.4. It can be seen that heating in O2 reoxidises the catalyst in the 80-100°C region

nanocrystalline Co40,
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and in higher concentrations. This higher concentration is as a result of the smaller 

particle sizes and hence the higher surface area.

< _
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Figure 5.4 Temperature programmed oxidation o f used C 0 4 O4 nanoparticle catalyst

The C0 3 O4 nanoparticle catalyst was also subjected to experiments in a wet 

atmosphere. The temperature programmed reduction profiles for both the fresh and 

used catalyst are presented in figure 5.5.
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Figure 5.5 Temperature programmed reduction o f C0 3 O4 nanoparticles: (a) before reaction, and (b) 

after reaction in wet atmosphere: Inset: expansion of low-temperature feature at 80-100°C
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Treatment of the catalyst in a wet atmosphere resulted in rapid deactivation resulting 

in the loss of the 80-100°C reduction peak. Treatment of the catalyst at low 

temperatures did not affect the reducibility of the major reduction peaks at 289°C and 

350°C. As in the previous tests it appears that deactivation of the catalyst occurs as a 

result o f the loss o f the reducible species present at 80-100°C. Again reactivation of 

the used catalyst in an oxygen atmosphere resulted in re-oxidation o f the used species. 

Deactivation o f the catalyst is more rapid in a wet atmosphere than in dry, this would 

indicate that moisture is becoming irreversibly adsorbed on the catalyst surface 

resulting in a decrease in activity.

5.2.4 Scanning Electron Spectroscopy

The catalysts were investigated by SEM using the methods described in the 

experimental section. The results can be seen in figure 5.6. All samples consisted of 

irregular particles o f no discernible shape. Calcination time does not affect particle 

size or surface area to any noticeable extent although X-ray diffraction data does 

indicate an increase in particle size with increasing calcination. There is no visible 

difference in the used catalyst as compared to the fresh.
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(b) C 0 3 O 4 nanoparticles calc ined  300°C 
(15000X )

(a) C 0 3 O 4 p recu rso r (1 5000X )

(c) C 0 3 O 4 nan o p artic les ca lc ined  450°C  
(15000X )

(d) C 0 3 O 4 nanopartic les  calcined 600°C 
(15000X )

(e) C 0 3 O 4 nanopartic les U sed (15000X )

Figure 5.6 SEM of Co?0 4 nanoparticles.
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5.3 Results

5.3.1 Variation in preparation methods

So fa r th e  c o b a lt o x id e  ca ta ly s t tes ted  w as p rep ared  by  p rec ip ita tio n  o f  the  

co rresp o n d in g  n itra te . T h is  m e th o d  resu lted  in a ca ta ly st th a t w as b o th  ac tive  and 

se lec tive  fo r th e  d irec t co n v e rs io n  o f  p ropane  to  p ropene  a t low  tem p era tu res . 

H o w ev er, a lth o u g h  it d isp lay ed  100%  se lec tiv ity  to the  d esired  p ro d u c t the  co n v ers io n  

at th ese  te m p e ra tu re s  w as  very  lo w  n o t ach iev in g  m o re  th an  1 %  co n v ersio n  b e lo w  

120°C. C o m p ariso n  w ith  a  com m erc ia l sam ple  ind ica ted  th a t th e  p rep ara tio n  m ethod  

p lay ed  an  im p o rtan t p a r t in  th e  p ro d u c tio n  o f  an ac tiv e  ca ta lyst. In  an  e ffo rt to 

in crease  th e  ac tiv ity  a  se rie s  o f  co b a lt o x id e  sam ples w ere  p rep ared  u sin g  d iffe ren t 

m eth o d s  an d  th e  re su lts  co m p ared  to  th e  o rig in a l p rec ip ita tio n  m ethod .

A  h ig h e r C o  o x id e  sy stem  w as p rep ared  u sin g  th e  m e th o d  d esc rib ed  in  

ex p e rim en ta l sec tio n  2 .1 .5 . T P R  ex p erim en ts  d o n e  p rev io u s ly  (S ec tio n  4 .2 .3 .) 

in d ica ted  th e  p re sen ce  o f  a  lo w  tem p era tu re  red u c ib le  sp ec ie s , w h ich  m ay w ell be 

h igh ly  ac tive  o x y g en  re sp o n sib le  fo r th e  lo w  tem p e ra tu re  ac tiv ity  o f  the C 0 3 O 4  

ca ta lyst. It h as  b een  s ta ted  p rev io u s ly  th a t th e  h ig h  ac tiv ity  o f  th e  C 0 3 O 4  m ateria l is 

re la ted  to  th e  w eak n ess  o f  th e  C o  (III)-O  bo n d  i.e. to  th e  h ig h e r o x id a tio n  state  o f  the 

m etal ca tio n  [5'7l  It w as  en v isag ed  th a t su ch  a  m ate ria l w o u ld  co n ta in  a h igher 

co n cen tra tio n  o f  ac tiv e  o x y g en  sp ec ie s  and  be  m o re  am o rp h o u s  in natu re  due to 

d is to rtio n  o f  th e  ty p ica l C 0 3 O 4  sp inel s tru c tu re . A  n u m b er o f  m eth o d s are reported  for 

the p rep a ra tio n  o f  a  h ig h e r co b a lt o x id e  sy stem  l3,81; th e  m eth o d  used  here is o f  that 

d esc ribed  by  C h ris to sk o v a  et al. O th e r p rep a ra tio n s  tes ted  included  a C 0 3 O 4  

ca ta ly st p re p a re d  by  d irec t c a lc in a tio n  o f  th e  n itra te  in an  o x y g en  a tm o sp h ere  as w ell
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as co b a lt o x id e  n an o p a rtic le s  p repared  by m ech an o ch em ica l syn thesis . T he 

p rep ara tio n  o f  a  co b a lt n an o stru c tu re  w as o f  co n sid erab le  in tere st because  o f  the 

un ique p ro p e rtie s  in h e ren t in nan o m ate ria ls  due to th e ir p artic le  size. A n u m b er o f  

p rep ara tio n s  h av e  been  rep o rted  I9*11*. T he p repara tion  m eth o d  used  has been 

described  e lsew h ere  an d  the  sp ec ific  deta ils  are g iven  in ex p e rim en ta l sec tion  2.1.4. 

T he p rep a ra tio n  m eth o d s  used  a lo n g  w ith  the experim en ta l d e ta ils  are  h ig h lig h ted  in 

tab le  5 .4  below .

Table 5.4 Preparation o f Co30 4 catalyst by different methods and their experimental details

C 0 3 O 4 Catalyst 
preparation methods

Experimental details

Precipitated cobalt 
oxide

Precipitated from C o(N 03)2*6H20

Mechanochemical
synthesis

Prepared from C o(N 03)2*6H20  and NH4H C 03 according to 
2C o(N 03)2*6H20  + 5 NH4 HC0 V-+ Co2(OH)2C 0 3 + 4NH4N 0 3 + NH3 + 4

C 0 2+14H20
Thermal treatment of 

nitrate
Calcined 

C o(N 03)2»6H20  A-  ►  Co30 4
Precipitated higher 

cobalt oxide
C o(N 03)2*6H20  + NaOH + NaOCI -------- ► Co(OH)2 — A—► CoOx

F igure 5.7 sh o w s the  p ro p an e  p ro d u c t co n v e rs io n  o v er the v a rio u s ly  p repared  C 0 3 O 4  

ca ta lysts. T he reac tio n  co n d itio n s  w ere  as d esc rib ed  in the ex p e rim en ta l section  2.2.4. 

E ach  d a ta  p o in t a t a  g iv en  tem p era tu re  is the  av e rag e  o f  th ree  in jections. T he reaction 

d a ta  in th e  w o rk  w ere  rep ro d u c ib le  w ith  a  p rec is io n  o f  ± 4 %

T he ca ta ly st p rep a red  by ca lc in a tio n s  o f  C o (N 0 3 )2 *6 H 2 0  d isp layed  the low est 

overall co n v ersio n . L igh t o f f  o ccu rred  at 60°C  w ith  0 .0 4 %  co n v ers io n  and  increased 

to  on ly  0 .8%  at 140°C. It w as less ac tiv e  th an  the o th er C 0 3 O 4 ca ta ly sts , w hich  w ere 

all ac tive  at am b ien t tem p era tu re . T he  p rec ip ita ted  ca ta ly st d isp lay ed  the sam e
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activ ity  as described  p rev iously  w ith initial activ ity  at 25°C. M axim um  conversion  at 

140°C w as 1.2%.

20 40 60 80 100 120 140

Tem perature/°C

Figure 5.7 Propane conversion over Co30 4 prepared by different methods; (■) Co30 4 nanoparticles 

(o)Co30 4 calcined from nitrate (□) high valence Co30 4 ( • )  Co30 4 precipitated from the

nitrate

The h igher valence C o O x w as m ore active than the p recip ita ted  C 0 3 O 4 . A t 25°C the 

conversion  w as tw ice  tha t o f  the precip ita ted  sam ple show ing  0 .09%  conversion  as 

com pared to 0 .04%  for the precip ita ted  sam ple. At 140°C the  conversion  is seen to 

rise to 3 .7% , nearly  4 tim es that o f  the p recip ita ted  ca ta lyst. The best resu lts cam e 

from  the cobalt ox ide  nano-partic les p repared  by the m echanochem ical m ethod. 

A gain the cata lyst w as active at 25°C g iv ing  a co nversion  o f  0.11% , the highest 

conversion  at th is tem peratu re  seen  so far. T he C 0 3 O 4 nano-partic les rem ained the 

m ost active o v er the en tire  tem peratu re  range w ith  m axim um  conversions o f  ca. 5 %  at 

140°C. T his is far better than the p recip ita ted  ca ta lyst that has been studied.
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Figure 5.8 Selectivity to propene as a function of temperature over C0 3 O4 prepared by different 

methods; (■)Co3 0 4 nano-particles (o)Co30 4  calcined from nitrate (A) high valence Co30 4 ( • )  C0 3 O4

precipitated from the nitrate

The selectivity to propene as a function of temperature is given in figure 5.8. The 

catalyst prepared by calcination of the nitrate was the most selective being 1 0 0 % 

selective up to 100°C. Above this temperature the selectivity decreased to 87% but 

was still the highest overall. However, this high selectivity was only due to the low 

conversion. The precipitated C0 3 O4 was 100% selective up to 100°C but again the 

selectivity decreased above this temperature dropping to 76% at 140°C. The higher 

valence C0 3 O4 was the least selective overall. Although the catalyst was active at 

ambient temperature the primary product was CO2, no propene was seen at 

temperatures below 80°C. Propene production only became apparent at 100°C but 

with a maximum selectivity of 57% which rapidly decreased to 13% at 140°C. The 

C0 3 O4 nanoparticles were 100% selective up to 80°C but showed a large decrease in 

selectivity at higher temperatures falling to 58% at 100°C and decreasing further still 

to just 18% at 140°C. This lower selectivity is as a result o f the higher activity of the
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catalyst. However, it is this higher activity that makes the C0 3 O4 nanoparticle catalyst 

the most interesting, especially in the 25-80°C temperature range where the catalyst 

showed the highest conversion with 1 0 0 % selectivity to propene.

The propene yields as a function of temperature are shown below in figure 5.9. The 

C0 3 O4 prepared by calcinations of the nitrate showed the lowest yield with no propene 

production below 100°C above this temperature the yield rises to 0.5% at 140°C, as 

did the high valence CoOx. The highest yields were displayed by the precipitated and 

nanoparticle catalysts with maximum yields of around 0.9% at 140°C, none of the 

catalysts tested gave a yield greater than 1% over the entire temperature range. Again 

it is the nanoparticle catalyst that proved the most interesting with the highest yields 

in the 25-80°C temperature range.

20 40 60 80 100 120 140

Tem perature /oC

Figure 5.9 Propane yields as a function of temperature over C0 3 O4 prepared by different methods; 

(•)C o 30 4 nanoparticles (o)Co 30 4 calcined from nitrate (□) high valence Co30 4 (■) Co30 4 precipitated

from the nitrate

The higher activity of the nanoparticle catalyst can be related to the increased surface 

area allowing more exposure o f the surface active sites. The surface area of the 

nanoparticle catalyst is 159m2g‘' as compared to just 35m2g_l for the precipitated 

sample.
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5.3.2 Cobalt oxide nanoparticles

In an effort to increase the activity and to study the effect of preparation conditions a 

series of C0 3 O4 nanoparticles were synthesised using the methods described 

previously and calcined at increasing temperatures of 300°C, 450°C and 600°C. The 

reaction conditions were as before (section 2.2.4). The results for propane conversion 

and a comparison to the already tested precipitated C0 3 O4 are presented below in 

figure 5.10.
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Figure 5.10 Propane product conversion as a function o f temperature over mechanochemical 

synthesised Co30 4 nanoparticles. Effect o f calcination temperature and comparison to original 

precipitated catalyst: (x )  Precipitated catalyst calcined 400°C; (A ) Co?0 4 nanoparticles calcined

600°C; (□ ) Co:,0 4 nanoparticles calcined 450°C; (O ) Co30 4 nanoparticles calcined 300°C.

The rate of propane conversion over the nanoparticle C0 3 O4 is appreciably greater 

than over the precipitated catalyst. Calcination at 300°C led to the most active catalyst 

with initial propane conversion of 0 . 1%, as compared to 0 .0 1 % for the precipitated 

sample. This rose to a maximum of 4.8% at 140°C: 5 times that of the precipitated
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C0 3 O4 . Increasing the calcination temperature resulted in a decrease in activity, with 

propane conversion at 140°C dropping to 4.2% for the 450°C and 3.4% for the 600°C 

calcined catalyst. This pattern was constant over the entire temperature range 

especially below 80°C where propane conversion over the catalyst calcined at 600°C 

decreases to near that of the precipitated. This decrease in conversion with increasing 

calcination temperature is consistent with previous data (section 4.3.3) and is as a 

result o f agglomeration of the nano-scale particles. As seen in section 5.2.1, 

increasing the calcination time also led to a decrease in surface area.
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Figure 5.11 Selectivity to propene as a function o f temperature over mechanochemical synthesised 

C0 3 O4 nanoparticles. Effect o f calcination temperature and comparison to original precipitated catalyst: 

(x ) Precipitated catalyst calcined 400°C; (A) C0 3 O4 nanoparticles calcined 600°C; (□ ) Co30 4

nanoparticles calcined 450°C; (O ) Co30 4 nanoparticles calcined 300°C.

The selectivity to propane as a function of temperature can be seen above in figure 

5.11. The lower selectivity for the nano-particle catalyst is consistent with the 

increased conversion. All of the catalysts were 100% selective to propene below 

80°C. Above this temperature the selectivity over the nanocrystalline catalysts
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decreases, falling to around 22% at 140°C. Curiously, at 80°C the decrease in 

selectivity was greater for the catalyst calcined at 600°C than for the 300°C calcined 

catalyst. One would expect the less active catalyst to remain more selective over the 

entire temperature range due to the lower conversion.

The precipitated catalyst displayed a lower selectivity to propene than that seen in 

previous tests but was still the most selective overall, remaining 1 0 0 % selective at 

80°C and decreasing steadily to 44% at 140°C.
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Figure 5.12 Propene yield as a function of temperature over mechanochemical synthesised C0 3 O4 

nanoparticles. Effect o f calcination temperature and comparison to original precipitated catalyst: (x) 

Precipitated catalyst calcined 400°C; (A) C0 3 O4 nanoparticles calcined 600°C; (o) C0 3 O4 nanoparticles 

calcined 450°C; (□) C0 3 O4 nanoparticles calcined 300°C.

The propene yields as a function o f temperature are shown in figure 5.12. The 

propene yield over the nanocrystalline C0 3 O4 is greater than the precipitated catalyst 

over the entire temperature range. Below 80°C the catalyst calcined at 450°C gives the 

highest yield o f 0.2%, which increases to ca. 1% at 140°C. The catalyst calcined at 

600°C gives the lowest yield below 120°C, but this is still greater than the precipitated
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catalyst, which shows a maximum yield of 0.6% at 140°C. At 140°C the nanoparticle 

catalyst displays yields between 0 .8  and 1%, nearly twice that of the precipitated 

catalyst. The higher selectivity of the 600°C calcined catalyst results in the highest 

yields of 1% at 140°C.

5.3.3 Steady state measurements

Previously (section 4.3.5) the steady state activity of the precipitated catalyst was 

tested at 40°C. It was found that the catalyst deactivated rapidly, reaching 0% 

conversion in approximately lh. Reactivation of the catalyst was found to increase the 

initial conversion but after 6  reactivations the catalyst was inactive. The same 

experiment was conducted on the nanocrystalline catalyst calcined at 300°C. The 

300°C calcined catalyst was chosen for the experiment due its higher activity in the 

25-100°C temperature range. The catalyst remained 100% selective to propene 

throughout the experiment and was reactivated in situ at 180°C between each run. As 

with the precipitated catalyst reactivation at 180°C for 2h was necessary for the total 

removal of all traces o f CO2 . The results for propane conversion as a function of time 

on line are displayed in figure 5.13.
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Figure 5.13 Deactivation profile at 40°C of the C0 3 O4 catalyst prepared by solid state reaction. After 

reactivation the catalyst was regenerated at 180°C and the cycle repeated 9 times.

Once the catalyst was deactivated it was possible to regenerate the activity for 

propane conversion. Heating in air restored the original catalyst activity. Regeneration 

at 80, 100 and 140°C for 2h restored partially the catalyst activity to that observed for 

the fresh catalysts. Regeneration at 180°C resulted in fully re-activated catalysts with 

activity identical to the fresh catalyst. After the first few reactivation and regeneration 

cycles the catalyst profile with time on stream was extremely reproducible. These data 

indicate that the catalyst was regenerated fully even after several deactivation and 

regeneration cycles. The ability to operate the catalyst in a reproducible cycle means 

that propane selective oxidation can be performed at low temperature followed by 

regeneration at elevated temperature. Again the conversions at these temperatures is 

very low decreasing from 0.5% to less than 0.05% after approximately 2h but this is 

still better than the precipitated catalyst which showed a maximum conversion of just 

0.25% and deactivated in half the time. From these data it appears that not only is the 

nanoparticle C 0 3 O 4  more active for longer but also more stable; it was possible to 

reactivate the catalyst 9 times without any loss of either activity or selectivity.
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5.3.4. Effect of water on C03O4 nanoparticles

In this section the effect o f humidity on the low temperature conversion of propane 

to propene is studied. It was envisaged that the highly active and selective 

nanocrystalline C03O4 could be use in conjunction with a suitable hydration catalyst 

for the one-step direct conversion of propane to propene. The role of water in the 

reaction mechanism is important to this study, as the aim was to carry out the 

dehydrogenation and hydration reactions in a concerted manner. Although the 

oxidative dehydrogenation step for propane activation will contain a concentration of 

water in the feed that will aid the hydration of propene to iso-propanol it may be well 

be too small a concentration to have a positive effect. Current alkene hydration 

reactions using heterogeneous catalyst operate with a concentration of water in the 

feed to facilitate the re-hydration of the acid catalyst. However the presence of water 

can also influence the reaction by acting as an inhibiter and by quenching thermal and 

radical reactions.
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Figure 5.14 Propane product conversion as a function o f temperature over C0 3 O4 nanoparticles. Effect 

of water on catalyst activity. (□) No water in feed (■) Water in feed (0°C) 0.61 I KPa ( • )  Water in feed 

(8-10°C) 1.15 KPa. Temperature in parenthesis refers to temperature o f sampler used to achieve the

corresponding vapour pressure
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Introduction of water to the feed resulted in a decrease in conversion across the entire 

temperature range (figure 5.14). With a minimal amount of water in the feed the low 

temperature reactivity was suppressed with light-off shifting to 60°C. At 140°C the 

conversion reaches a maximum of 0.3%, far lower than the maximum conversion in a 

dry atmosphere. With higher concentrations of water in the feed the activity is 

suppressed further, initial conversion is at 80°C and only increases to 0.1% at 140°C. 

It appears that water has a negative effect upon the activity of the catalyst. Previous 

work on C0 3 O4 deactivation by water has shown similar results with Yau et al finding 

that CO oxidation is inhibited by surface bound H2O. At these low temperatures it is 

possible that water is becoming irreversibly adsorbed, blocking the active surface sites 

and inhibiting catalytic turnover [121. Cunningham et al also stated that there is 

competition between CO and moisture for the active sites with similar results being 

found by other groupsfl 31.
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Figure 5.15 Selectivity to propene as a function o f temperature over Co30 4 nanoparticles. Effect of 

water on catalyst activity. (□) No water in feed (■) Water in feed (0°C) 0.611 kPa ( • )  Water in feed (8 - 

10°C) 1.15 kPa. Temperature in parenthesis refers to temperature of sampler used to achieve the

corresponding vapour pressure
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As a result of the lowered conversion the selectivity for the catalyst in a wet 

atmosphere is high, remaining above 90% throughout the experiment (figure 5.15). It 

appears that the presence of water suppresses both the dehydrogenation and total 

combustion reactions. In a dry atmosphere the selectivity is as previously with a rapid 

decrease above 100°C as CO2 becomes the dominant reaction product. The high 

conversions seen over the nanocrystalline C0 3 O4 are only as a result of the extremely 

low conversion.
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Figure 5.16 propene yield as a function of temperature over Co30 4 nanoparticles. Effect of water on 

catalyst activity. (□) No water in feed (■) Water in feed (0°C) 0.61 lkPa ( • )  Water in feed (8-10°C) 

1.15 kPa. Temperature in parenthesis refers to temperature of sampler used to achieve the

corresponding vapour pressure

The results for propene yield as function of reaction temperature are given in figure 

5.16. The results for propene yield in a wet atmosphere are quite poor with yields 

being half that of the catalyst in a dry atmosphere. No propene is produced below 

80°C and the maximum yield at 140°C is just 0.3%. Increasing the water pressure 

resulted in a further decrease in yield not achieving greater 0.1% at 140°C.
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5.3.5 Conversion of propene to iso-propanol over acid catalysts

Initial experiments into iso-propanol production focused on the secondary propene 

hydration step. A series of acid catalysts with known hydration capabilities were 

selected and prepared for propane hydration to isopropanol. These included a 70 

wt%H3P0 4 /Si0 2  catalyst prepared as described in experimental section 2 .1 .6  and a 

number of heteropolyacids used as received. 0.4g of catalyst was used in each case 

with the catalyst bed being saturated with water prior to the reaction. Propene was 

introduced to the feed after a lh  stabilisation period. The exact details of the 

experimental conditions are described in the experimental section 2.4.1.

Initial experiments studied the effect of temperature on the reaction with the water 

partial pressure kept constant. Subsequent experiments looked at the effect of water 

partial pressure on the reaction.

The results for propene conversion to iso-propanol as a function o f temperature are 

given in figure 5.17. At low temperatures only isopropanol was detected. For all 

catalysts, the activity increased in parallel with the increase in temperature and passed 

through a maximum at 100°C. Further increase in temperature led to a decrease in the 

rate of iso-propanol formation due to thermodynamic limitation. At the highest 

reaction temperatures there is an increase in the formation of the oligomerisation- 

cracking and etherification products.
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Figure 5.17 Propene conversion to iso-propanol as a function of temperature. Water partial pressure: 

4.2 kPa (temperature: 30°C). ( • )  70 wt%H3P0 4/Si0 2 (o) Tungstosililic acid (□) Phosphomolybdic acid

(♦) ZSM-5 zeolite (A) Bulk HPW

Propene conversion remained very low over the entire temperature range for all of 

the catalysts. The catalysts displayed similar reaction profiles with the highest 

conversions occurring at 100°C. The bulk HPW and tungstosililic catalyst showed 

near identical reaction profiles with initial conversion of 0.2% at 80°C, this rose to a 

maximum of 0.7% at 100°C before diminishing to 0.2% at 150°C. The 

70wt%H3PO4/SiO2 catalyst showed a similar trend, with a maximum conversion of 

0.7% at 100°C, the rate o f propanol formation then decreases with increasing 

temperature to just 0.2% at 150°C. Propane conversion is the highest over the 

phosphomolybdic catalyst with a maximum conversion of ca. 1.2% at 100°C. As with 

the other catalyst this decreases with increasing temperatures falling to 0.1% at 150°C. 

The rate of propene conversion over the ZSM-5 zeolite was different to the other 

catalysts showing an increase in conversion with increasing conversion. At 80°C the 

conversion is 0.1% and rises to 0.8% at 150°C.
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Figure 5.18 Selectivity to iso-propanol as a function of temperature. Water partial pressure: 4.2kPa 

(temperature: 30°C): ( • )  70wt%H3PO4/SiO2 (O ) Tungstomolybdic acid (□) Phosphomolybdic acid

(♦ ) ZSM-5 zeolite (A) Bulk HPW

The selectivity to iso-propanol as a function of temperature is given in figure 5.18. 

The phosphomolybdic and the 70wt%H3PO4/SiO2 remained the most selective over 

the entire temperature range being 100% selective to iso-propanol up to 150°C. The 

tungstosililic and bulk HPW displayed 100% selectivity at 100°C before decreasing to 

approximately 60% at 150°C. At these temperatures there is an increase in the 

formation of the oligomerisation-cracking and etherification products. The ZSM-5 

zeolite was the least selective overall with a maximum iso-propanol selectivity of 

52% at 100°C, this rapidly decreased to just 6 % at 150°C. The optimum temperature 

for the reaction under these conditions appears to be 100°C. The most active and 

selective catalyst was the phosphomolybdic. giving a maximum 1 .2 % conversion with 

100% selectivity. The 70wt%H3P(VSiC)2 was also 100% selective but with a lower 

conversion.

The iso-propanol yields as a function o f temperature are given in figure 5.19.
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Figure 5.19 Iso-propanol yield as a function o f temperature. Water partial pressure: 4.2kPa 

(temperature: 30°C): ( • )  70wt%H3PO4/SiO2 (o) Tungstosililic acid (□) Phosphomolybdic acid (♦)

ZSM-5 zeolite (A) Bulk HPW

The most active and selective catalysts gave the highest yields. The phosphomolybdic 

acid catalyst gave a maximum yield of 1.2% iso-propanol at 100°C, this was with 100% 

selectivity. The ZSM-5 catalyst gave the lowest yield, not achieving greater than 0.2% 

across the entire temperature range this was as a result o f the low activity and 

selectivity. The 70wt%H3PO4/SiC>2, tungstosililic acid and bulk HPW gave similar 

yields across the temperature range studied with a maximum of 0.7% at 100°C.

The results from the catalytic experiments showed clearly that the most active and 

selective catalyst was the phosphomolybdic acid catalyst giving the highest conversion 

and yields with 100% selectivity. Interestingly all of the catalysts, with the exception of 

ZSM-5 zeolite showed a maximum conversion at 100°C. These data are in keeping with 

those reported in the literature which also saw a temperature of maximum

1141conversion1 J.
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5.3.6 Direct conversion of propane to iso-propanol over bi-functional catalyst

Following on from the previous work, experiments were conducted using the C0 3 O4 

nanoparticles in combination with the best hydrating catalyst from the previous 

experiment. The direct catalytic partial oxidation of propane to iso-propanol would 

require a duel functioning catalyst that is able to activate propane and introduce 

oxygen via hydration at the lowest possible temperature in order to avoid gas phase 

and unselective reactions. It was envisaged that by combination of the low 

temperature and highly active C 0 3 O 4  nanoparticles with a suitable hydrating catalyst 

the direct conversion o f propane to iso-propanol could be achieved. The catalyst 

studied in the following section was made by direct combination of the C0 3 O4 

nanoparticles with the phosphomolybdic acid catalyst. The arrangement within the 

bed and the precise reaction conditions are given in experimental section 2.4.1. The 

catalyst was heated up to 70°C in a He/ 0 2  mix. Once the temperature had been 

allowed to stabilise propane and H2O were introduced to the system. The sample 

cylinder was heated in 10°C steps and allowed to stabilise at each temperature for 

approx. 15-20 minutes before sample injection. Three injections were done at each 

temperature and the average taken. Carbon dioxide, propene and iso-propanol were 

the only products present. There was no evidence of any other hydration products in 

the reaction effluent. The results for propane conversion as a function of water 

concentration are given in figure 5.20.
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Figure 5.20 Propane conversion to iso-propanol over Ct^CVPhosphomolybdic acid mixture. 

Conversion as a function of water partial pressure. Reaction at 100°C.

With water in the feed propane conversion over the mixed catalyst was very low with 

a maximum of 0.36% conversion to products. The conversion is seen to decrease 

with increasing water pressure. Generally the iso-propanol is present in trace amounts

with carbon dioxide being the primary product. The exact conversion values are 

given in table 5.5.

Table 5.5 Propane conversion to iso-propanol as a function of water vapour pressure

Water temperature/°C Vapour pressure/KPa Conversion/%
2 0 1 .2 0.33
30 2.3 0.19

40 4.2 0.17
50 7.4 0.13
60 12.3 0 . 1 0

The bifunctional catalyst is relatively inactive with propane conversion being 

suppressed by both water in the feed and by dilution of the active redox catalyst with 

the relatively inactive phosphomolybdic acid. Increasing the water concentration has a 

negative effect on the C0 3 O4 catalyst limiting propene production and hence limiting 

the total iso-propanol yield.

s
£s
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The selectivities as a function of water temperature are given in figure 5.21.
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Figure 5.21 Selectivity to iso-propanol as a function of water partial pressure over 

Co30 4/phosphomolybdic acid catalyst: ( + ) C 0 2 (□ ) C 3H6(A )C 3H5OH

The typical propane conversion over the nanocrystaline C0 3 O4 at 100°C is 

approximately 1% with a 97% selectivity to propene. This was not the case with the 

cobalt oxide used in this experiment. Tests done with no water in feed showed results 

of less than 0.5% conversion with only a 10-20% selectivity to propene. The primary 

product under these conditions was carbon dioxide with the catalyst remaining 80% 

selective to CO2 throughout the whole reaction. Whether this is due to the presence of 

the acid catalyst or due to the cobalt oxide will have to be established. Varying the 

concentration of water in the system had little effect on product selectivity. The 

catalyst showed a maximum 14% selectivity to iso-propanol and varied little with 

water concentration. The same was true for the propene selectivity which was no 

greater than 10% throughout the reaction. Interestingly it is worth noting that even 

with no water in the feed, trace amounts o f iso-propanol are still present. Removal of 

propane from the feed results in the disappearance of this peak. This could indicate
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that there is sufficient water from the initial reaction to hydrate the silica catalyst 

according to:

CnH2n+2 + 0.5O2 —CnH2n + H20

Alternatively it may just be the case that the acid catalyst is itself sufficiently 

hydrated from the outset. Given that there is very little variation in activity with 

increasing water concentration this may well be the case
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Figure 5.22 product yields as function o f water partial pressure over Co30 4/Phosphomolybdic acid

catalyst

The product yields as function of water temperature are given in figure 5.22. Due to 

the poor conversions and selectivities the iso-propanol yields are very poor. There are 

trace amounts of propene and iso-propanol in the feed but nothing significant. All 

yields are below 0.5% with iso-propanol yields not exceeding 0.03%. Such low traces
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of product are disappointing but not unexpected given the low temperatures 

employed, coupled with the limited activity of the catalysts used.

Given that the propane conversion over C0 3 O4 is suppressed by the presence of 

water it not surprising that the conversion is so low. The maximum yield of propene 

obtainable over the C0 3 O4 in a wet atmosphere at 100°C is just 0.5%. This means that 

there is only a trace amount of propene within the feed that can go on to react with the 

acid catalyst to produce isopropanol. The total iso-propanol production is limited by 

the activity o f the redox catalyst in the system. Nevertheless, iso-propanol is still 

present as a product in the reaction mixture and although the conversions and 

selectivities are extremely low there is definite proof that the concept works. By 

combination of a dehydrogenation and acid catalyst the direct conversion of propane 

to iso-propanol was possible at 100°C.

5.4 Discussion

5.4.1 Propane oxidative dehydrogenation over bulk C0 3 O4 catalyst

In an effort to increase the low temperature activity of the C 0 3 O 4 catalyst a series of 

samples were prepared using different methods. The most active of the cobalt oxides 

was found to be nanoparticle C 0 3 O 4 prepared by mechanochemical synthesis. The 

cobalt oxide was synthesized by solid state reaction and the surface area of the sample 

was 159m2g ''. The nano-crystalline nature of the catalyst is consistent with their 

relatively high surface area. Powder XRD of this material only shows the presence of 

C 0 3 O 4 with very broad diffraction peaks. The average particle size, calculated by X- 

ray line broadening through the Scherrer equation, was 12 nm. TPR of this sample 

shows two main reduction bands at c.a. 240 and 340°C, that can be attributed to the
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reduction of C0 3 O4 to CoO and from CoO to Co . 141 The low intensity reduction

feature at 80-100°C, seen previously in the precipitated C0 3 O4 was present in the

nanocrystalline sample and in higher concentrations. Calculation of the peak areas 

indicated that the concentration of reducible species was three times that of the 

precipitated catalyst. The most remarkable characteristic of this material is that at 

ambient temperature and pressure it activates propane yielding propene with 1 0 0 % 

selectivity. Furthermore the activity of the catalyst was greater than that for the 

precipitated sample. Unfortunately, deactivation of the catalyst takes place and after a 

period, depending on the contact time employed, no further propane activity was 

observed.

One of the most positive aspects of this catalyst is that it can be reactivated

relatively easily by heating in air at a temperature as low as 180°C (below this

temperature the catalytic activity is only partially restored). Investigation of the 

catalyst deactivation and regeneration cycle was presented in figure 5.13. After the 

first few deactivation and regeneration cycles the catalyst profile with time on stream 

was extremely reproducible. These data indicate that the catalyst was regenerated 

fully even after several deactivation and regeneration cycles. The ability to operate the 

catalyst in a reproducible cycle means that propane selective oxidation can be 

performed at low temperature followed by regeneration at elevated temperature.

It is important to indicate that although propane conversion decreases with time on 

line for reaction temperatures below 120°C, above this temperature the propane 

conversion remained constant with prolonged time on line. However, the selectivity to 

propene was lower than 1 0 0 %.

Using the nanocrystalline cobalt oxide similar experiments to those made with 

propane were carried out using other alkanes as substrates. In the case of ethane, 

activation at low temperatures and deactivation was observed as in propane. However,
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important differences were apparent. To achieve the same conversion to that observed 

for propane ca. 40-50°C higher temperature was required. In addition, the selectivity 

to ethylene did not exceed 70%. In the case of methane no activity was demonstrated 

even at a reaction temperature of 100°C.

At this stage the origin of this catalytic behaviour is uncertain. However, it is probable 

that it is related to the presence o f a very active species that reduces in the TPR 

experiments at 90°C (section 5.2.3). As synthesised nanocrystalline cobalt oxide 

exhibits this feature but the deactivated catalyst after reaction at 25 or 40°C does not. 

If the deactivated catalyst was calcined in air at 180°C, which are the conditions used 

to regenerate catalyst activity, the reduction feature reappears. Therefore, the low 

temperature catalytic behaviour is assigned to the presence of this very active species, 

which could be cobalt in a high oxidation state or a very reactive oxygen species. 

Thus, the deactivation o f the catalyst would be due to the exhaustion of this very 

active species that cannot be fully reoxidised at lower temperatures. Therefore, it 

appears that this low temperature reduction feature is associated with a surface 

oxygen species that affects the low temperature selective oxidation. This postulation 

is enforced by experiments in which the precipitated catalyst was treated with 

hydrogen in situ at 80°C prior to being tested for propane oxidation (Section 4.3.8.) 

The pre- treated catalyst showed no activity for propane oxidation, selective or non- 

selective. Regeneration o f the hydrogen pretreated catalyst at 180°C in air resulted in 

the propane conversion and selectivity to propene being fully restored to that of the 

fresh catalyst. In addition, the commercial C0 3 O4 catalyst did not present this 

reduction at ca. 90°C and propane oxidation results confirmed that the catalyst was 

inactive at low temperature. Identification of this low temperature selective oxidation 

site will aid in the scientific design of more effective catalysts for alkane oxidation as
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catalysts that are capable o f activating alkanes at low temperatures are o f fundamental 

importance.

At this moment most of the catalysts reported in the literature for oxidative 

dehydrogenation of short chain alkanes (ethane, propane, n-butane) operate at 

temperatures over 400°C and are based on vanadium and molybdenum oxides ll5' 17). 

In the case of catalytic dehydrogenation in the absence of molecular oxygen the 

temperatures employed are even higher (>550°C) since this reaction is 

thermodynamically limited l' 8-191. In contrast, for the present work very low reaction 

temperatures have been employed. It is true that the conversions obtained are low but 

if the nature o f the extremely reactive species could be identified and materials could 

be synthesised with higher concentration of this species, very interesting catalytic 

results should be obtained at ambient temperature. Another problem that arises is the 

deactivation of the catalyst. It has been reported that the main problem of redox 

catalytic reactions at low temperature is the reoxidation step of the reduced catalyst

[20]. It appears that a similar effect may be operating with the nanocrystalline C0 3 O4, 

strategies such as using a different oxidant or increasing reaction pressure may help to 

overcome this limitation. Nevertheless, the ability to operate the catalyst with high 

selectivity and then fully regenerate the original activity is important. This mode of 

operation has already been successfully commercialised by DuPont using the Riser 

reactor for the selective oxidation of butane to maleic anhydride at elevated 

temperature [2I].

The production of chemicals by energy efficient and environmentally friendly routes 

is an important aim for the modem pharmaceutical and chemical industries. In 

particular, the facile utilisation of cheap and relatively abundant feedstocks such as 

short chain alkanes (C1-C4) remains a challenging target. [22 231 Presently, the 

activation of these hydrocarbons under benign conditions, has not yet been reported.
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The efficient utilisation of short chain alkane feedstocks is highly desirable as their 

production volumes are set to increase significantly, due to large scale international 

investment in new gas to liquids technology. Experimental evidence has been found 

for the selective oxidation of methane to methanol at room temperature on Fe-ZSM-5 

catalysts.[24] However, the methanol product is bound strongly to the catalyst surface 

and upon heating it is not released into the gas phase, but decomposes to evolve 

carbon monoxide. A number of studies have confirmed C0 3 O4 to be the most active 

catalyst for alkane oxidation. Simonet et al reported the lowest light-off temperature 

of 277°C [25], Finocchio and co-workers obtained similar results with propane 

activation occurring at approximately 300°C f26J. There is no evidence in the literature 

of a cobalt oxide capable of propane conversion to propene at room temperature. 

However work by Finocchio et al attempted to determine the reaction mechanism by 

FTIR for propane activation. It was found that C0 3 O4 was more active than the other 

oxides, giving rise to substantial conversion of propane at ca. 250°C l27). Its activity in 

the total oxidation of propene was similar to that of propane. The commercial catalyst 

tested by us was more active with light off occurring at ca. 120°C and a maximum 

selectivity to propene of approximately 80% at 150°C. The differences in activity can 

be attributed to the use of different commercial catalysts (In our case Avacado 4m2g '’) 

and reaction conditions.

The FTIR studies by this group go some way to suggesting a simple mechanism. It 

states: “On C0 3 O4 we found that propene is oxidised at the allylic position giving rise 

to acrylate species already at room temperature”. Also: “Propane is also activated at 

very low temperatures, at C (l) and at C(2). Activation at C(2) gives rise to acetates.”

[27] Although they present these results no mention is made of low temperature 

reaction studies on C0 3 O4 that give rise to propene, they merely state the presence of 

such species on the surface.
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In the present work we demonstrate a catalyst that achieves selectivity to propylene 

of 100% at low reaction temperatures. The per pass yields to the olefin obtained are 

relatively low, but the results are highly significant as no other catalyst has shown any 

activity for this reaction under the same conditions. Presently the low yield means that 

considerable improvement is required before the catalyst could be considered for 

industrial use. However, these are still very significant fundamental results for alkane 

activation, since we show for the first time a catalyst capable o f selectively activating 

propane using ideal reaction conditions: atmospheric pressure, ambient temperature 

and using air as an oxidant.

5.4.2 Direct oxidation of propane to iso-propanol

The direct functionalisation of propane (instead of propylene) to oxygen containing 

compounds presents a significant research challenge. One of the aims of this study 

was to find new approaches for the development of more effective catalytic routes. 

Processes reported so far include liquid phase heterogeneous catalytic reactions using 

metalloporphyrin 2̂81 and phthalocyanine complexes^29' that mimic enzymes. Other 

routes include indirect methods whereby the propene is oxydehydrogenated at high 

temperatures and the unseparated effluent mixture is passed on to a second propane 

oxidation step Generally, in processes such as these, a relatively high temperature 

is required for activation of the alkane, but unselective gas phase homogeneous 

reactions can then predominate and the partial oxidation product can be destroyed. 

Therefore, to minimise the influence of gas phase reactions, a low temperature
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method has been tested using the highly selective C03O4 nanoparticle catalyst in 

combination with a suitable hydration catalyst.

The results for iso-propanol production over a duel functioning redox/acid catalyst 

were quite poor. Direct impregnation of the C0 3 O4 nanoparticle catalyst with an acidic 

precursor containing tungstosililic acid, phosphomolybdate acid, HPW or H3PO4 

resulted in total loss of activity below 150°C. At these higher temperatures the sole 

product was CO2 with no iso-propanol. Supporting the C0 3 O4 on an acidic support 

gave similar results, with the dispersion of the C0 3 O4 resulting in the dilution of the 

active sites and hence a no activity below 200°C. Above this temperature there is total 

oxidation of the alkane. The best results were achieved by the direct mechanical 

mixing of C0 3 O4 with the phosphomolybdic catalyst. Under these conditions iso

propanol production was possible but with very low conversion and iso-propanol 

selectivity.

Due to the already low product yields over both the C0 3 O4 catalyst and the hydration 

catalyst, the total iso-propanol yield was in trace proportions. The total iso-propanol 

production is limited by the activity of the redox catalyst in the system. Nevertheless, 

iso-propanol is still present as a product in the reaction mixture and although the 

conversion and iso-propenol selectivity are extremely low there is definite proof that 

the concept works. By combination of a dehydrogenation and acid catalyst the direct 

conversion of propane to iso-propanol was possible at 100°C.
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5.5 Conclusions

Following on from previous work on precipitated C03O4 a series of C03O4 catalysts 

were prepared by different means and tested for propane ODH. The best results were 

obtained over the nano-crystalline C03O4 prepared by solid-state reaction. The 

catalyst was active at temperature as low as ambient and displayed a conversion 

nearly five times that o f the precipitated C03O4 with 100% selectivity to propene. 

However above 80°C the selectivity was found to decrease rapidly to <20%. The 

catalyst deactivated with time on stream, but activity was restored to the initial value 

after regeneration in air at 180 °C. Consequently, the catalyst can be operated in a 

cyclic manner to achieve selective alkane dehydrogenation. The activation and 

selective oxidation of short chain alkanes at low temperatures is a major aim. Against 

this background, this work presents a significant breakthrough. At this stage no 

attempt has been made to optimise these catalysts and it is clear that they are now 

worthy of further study so that their potential for energy efficient and by-product 

minimisation can be fully appreciated for the utilisation of cheap and abundant 

chemical feedstocks.

The nano-crystalline catalyst was also tested in combination with a hydration 

catalyst for the direct conversion of propane to iso-propanol. Due to the low propene 

yield and wet atmosphere the propane conversion was very low but iso-propanol was 

detectable in the reaction effluent.
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Chapter 6

Conclusions and future work

6.1 Ga20 3/M o03 catalysts.

A Ga2C>3/Mo0 3  catalyst, prepared by physically mixing Ga20 3  and M0 O3, was 

tested for the oxidative dehydrogenation of propane to propene. The catalyst was 

active and selective for the reaction with initial propane conversion occurring at 

325°C for the calcined Ga2 0 3 /Mo0 3  mixture. A propane conversion of 5% with a 

selectivity to propene of ca. 76% was achieved at temperatures as low as 440°C. 

Calcination of the catalyst at 650°C was found to be beneficial due the formation of 

the more active /?- Ga2C>3 within the system. This was confirmed by tests done on the 

calcined Ga20 3  catalyst, which showed increased activity and selectivity to propene as 

compared to the uncalcined sample. Dilution of the Ga20 3  component with inert 

silicon carbide was found to increase the activity and selectivity o f the catalyst but not 

to the same extent as dilution with M0 O3. This would indicate that M0 O3 plays an 

active part in the reaction; it may be the case that surface migration from one active 

site to another is an important factor with M0 O3 suppressing the total combustion of 

the propane molecule to COx and thus increasing selectivity. One of the most 

important factors was that the rate of propane conversion over the mixed catalysts was 

greater than over the individual component oxides and the best results were obtained 

by having the oxides in intimate contact.

The Ga2 0 3  and M0 O3 catalysts tested in this study were used as received from a 

commercial source with the only modification being calcination at 650°C. XRD 

analysis indicated the presence of a-Ga20 3 and y-Ga20 3  as well as /?-Ga20 3 In
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p rev ious s tu d ies  the G a 2 C>3 ca ta ly st used has been p rep ared  by p rec ip ita tio n  o f  the 

n itra te  and  su b seq u en t ca lc ina tion  o f  the gallium  h y d ro x id e  p recu rso r to form  the pure 

/?-Ga2 C>3 In bo th  th is  study and those co n d u c ted  e lsew h ere  the  m ost ac tive  

p o lym orph  is fo u n d  to be /?-Ga2 0 3  121 In fu tu re s tu d ies it m ay  be b en efic ia l to 

investigate  th e  e ffec t o f  p repara tion  m ethods on  the ac tiv ity  o f  G a 2 0 3 /M o 0 3  w ith  a 

pure (3-Ga2C>3 b ein g  u sed  as opposed  to  a m ix tu re  o f  vario u s p o ly m o rp h s. A n u m b er o f  

m ethods have been  rep o rted  for the p roduc tion  o f  pure (3 4|.

T he m o st ac tiv e  ca ta ly st tested  w as found to  be the ca lc in ed  G a 2 0 3 /M o 0 3  ca ta ly st 

w ith  the in creased  ac tiv ity  being  linked to the fo rm atio n  o f  the  m ore ac tive  P~Ga2 0 3  

upon ca lc in a tio n . H ow ever, ca lc ination  o f  the ind iv idual M 0 O 3 co m p o n en t w as found  

to  be de trim en ta l to  the  ac tiv ity  and selectiv ity  o f  the ca ta ly st. T h ere fo re , it can  be 

proposed  th a t a  m ore  ac tiv e  and selective ca ta lyst m ay be fo rm ed  by a co m b in a tio n  o f  

the ca lc ined  G a 2 C>3 w ith  the  uncalc ined  M 0 O 3 . A lso , ca lc in a tio n  o f  M 0 O 3 resu lted  in 

crysta l g ro w th  a lo n g  a  spec ific  p lane. Iden tification  o f  the ex ac t p h ases  p resen t and  

th e ir e ffec t on  ca ta ly st ac tiv ity  m ay  p rove useful for the im p ro v em en t o f  ac tiv ity  and  

selectiv ity .

6.2 C03O4 catalysts

F o llo w in g  on  fro m  p rev io u s stud ies on a lkane co m b u stio n  o v e r C 0 3 O 4  sp in e ls  a 

series o f  C 0 3 O 4 ca ta ly sts  w ere p repared  by p rec ip ita tio n  from  the  n itra te  and  tes ted  fo r 

the o x id a tiv e  d eh y d ro g en a tio n  o f  p ropane to  p ropene. In itia l ex p e rim en ts  sh o w ed  h o w  

fresh  C 0 3 O 4 w as cap ab le  o f  p ropane conversion  at tem p era tu res  as lo w  as am b ien t bu t 

w ith  a lo w  se lec tiv ity  to  propene. S ubsequen t ex p e rim en ts  fo u n d  th a t the fresh  C 0 3 O 4
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sample contained a high concentration of surface bound CO2 . Pre-treatment of the 

catalyst (400°C 2 h 0 2 /He =10/90) was necessary for the complete removal of CO2 

from the surface. After activation the catalyst was capable of propane conversion at 

temperatures as low as ambient with a selectivity to propene o f 100%. However the 

conversion was less than 0.5% and the catalyst deactivated rapidly at temperatures 

lower than 140°C. Steady state activity was possible at temperatures greater than 

140°C but with a reduced propene selectivity of ca.70%.

Temperature programmed reduction of the bulk C0 3 O4 indicated the presence of 

reducible species at 80-90°C that was attributed to the low temperature activity of the 

catalyst. Varying the O2 concentrations had no effect on the activity or selectivity of 

the catalyst below 80°C indicating that it plays little part in the reaction at these 

temperatures. Activation of the O2 molecule is not possible at such low temperatures 

and it is only at 140°C that there is any appreciable catalytic turnover. The precise 

reason for catalyst deactivation is unknown but there are a number of possibilities 

including the build up of site blocking carbonates or water on the surface over time. 

Another possibility is that the low temperature reducible species present is being 

rapidly reduced with reactivation of the surface sites not being possible. Long 

residence times and low alkane concentrations are beneficial to the reaction.

In an effort to improve activity and selectivity a number of C0 3 O4 catalysts were 

prepared by different methods and tested for the ODH of propane. Preparation of 

C0 3 O4 by calcination of the nitrate resulted in a poor catalyst that was inactive at 

temperature lower than 80°C and unselective for propene. A high-valence C0 3 O4 

catalyst prepared by a precipitation-oxidation process displayed a higher rate of 

propane oxidation above 100°C but with a reduced selectivity as compared to the 

precipitated catalyst. Interesting results were found with the nano-crystalline catalyst
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prepared by solid-state reaction. The rate of propane conversion at ambient 

temperature was greater than the precipitated catalyst and the selectivity to propene 

was still 100%. The higher activity is attributable to the higher surface area, 159m2g'' 

as compared to 34m2g '', and hence the increased concentration of active sites over the 

surface. Temperature programmed reduction studies indicated a higher concentration 

of low temperature reducible species at 80-90°C.

Unlike the precipitated catalyst the nano-crystalline C0 3 O4 could be reactivated after 

deactivation. The ability to operate the catalyst in a reproducible cycle means that 

propane selective oxidation can be performed at low temperature followed by 

regeneration at elevated temperature.

Further work is necessary to determine the precise nature of the active site:

• In situ Raman and FTIR studies using propane as adsorbent could give 

information on the nature of the metal oxygen bond in C0 3 O4 as well as the 

activated complex present on the surface.

• To determine the product and regioselectivity of the catalyst and the role of 

oxygen in the oxidation of propane, and to improve understanding of the 

selective surface chemistry

• To probe the reaction mechanism using temporal analysis of products under 

typical operating conditions to provide new information on the active catalyst 

phases and to use this information to synthesise improved catalysts

One of the main objectives of future work would be to improve the low temperature 

conversion and yield of the catalyst. The addition of certain promoters may be 

beneficial but may also lead to over oxidation and a reduction in overall selectivity. 

Another possibility is to improve the selectivity of the catalyst in the 80-140°C 

temperature range by hindering the total oxidation reaction at the higher temperatures.
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One of the major problems with the dual functioning catalyst for the conversion of 

propane to iso-propanol was the unfavourable reaction conditions and the low 

conversions and yields over both of the component catalyst. Water was found to 

suppress propene production over the C03O4 and limit activity Operating the system 

under pressure may lead to an improvement in iso-propanol production but the effect 

on the alkane activation step may be detrimental.
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C hapter 7 
Appendix

7.1 Mass Flow Controller calibration.
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Figure 7.1.1. Helium MFC calibration
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Figure 7.1.2 Oxygen MFC Calibration

Figure 7.1.3. Propane MFC calibration



7.2 Detector Caiibration
Appendix

Figure 7.2.1. Calibration of FID for propane.
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Figure 7.2.2. Calibration of TCD for propane
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Figure 7.2.3 Calibration of TCD for oxygen
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7.3 Blank Reactor Test.

Appendix
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Figure 7.3.1. Propane conversion over inert silicon carbide
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Figure 7.3.2 . Selectivity to products over inert siliconcarbide. (□) C3H6 (■) CH4 
(A) CO ( • )  Acrolein (X) Acetone (o) Ethane/ethane ( A )C 0 2



Gemini 23 60 V5.01 
Instrument ID: 236/20851/00 

Setup Group: 9 - None
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l e  ID: Carbon Black Ref Date: 30/06/05 Time: 14/17/07
l e  Weight: 0.5184 g Saturation Pressure: 780.50 mmHg
u r e d  Free Space: -1.015 cc STP Evacuation Time: 1.0 min
ysis Mode: Equilibration Equilibration Time: 10 sec

BET Multipoint Surface Area Report
Surface Area: 24.0437 sq. m/g
Slope: 0.179763
Y-Intercept: 0.001290
C: 140.336349
Vm: 5.523232
Correlation Coefficient: . 9.9998e-001

Analysis Log
Relative Pressure Vol. Adsorbed Surface Area
Pressure (mmHg) (cc/g STP) Point
0.0501 39.08 5.204 *
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Expected value 24 mV*
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