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Summary 
 

Summary 

Chronic obstructive pulmonary disease (COPD) is an umbrella term that encompasses 

chronic bronchitis, emphysema and airway obstruction. COPD patients are also prone to 

acute exacerbations (AECOPD) caused primarily by viral and bacterial infection, which 

leads to an increase in inflammation, a worsening of symptoms and can lead to death. There 

is an unmet clinical to better understand and treat AECOPD as well as COPD in general, but 

this is hindered by unreliable animal models of COPD and AECOPD. The aim of this thesis 

was to establish an animal model of COPD that could be exacerbated by an infectious agent. 

Firstly an LPS model of COPD was established in the guinea pig, which resulted in a 

macrophage and neutrophil inflammatory profile, emphysematous changes, a decrease in 

lung function and partial steroid insensitivity that could be partially reversed with low dose 

theophylline. Human parainfluenza 3 virus failed to cause any infection in the guinea pig, so 

a model of AECOPD could not be established in this model.  

A chronic cigarette smoke model in the mouse was established, which again demonstrated a 

similar phenotype to COPD. This model was able to be exacerbated by the bacteria non-

typeable Haemophilus influenza (NTHi) with increases in neutrophils and the neutrophil 

chemoattractant CXCL1. However, it was also observed that while NTHi could exacerbate 

the model, responses to NTHi in cigarette smoke challenged mice compared to sham 

challenged animals were impaired, with significant decreases in CXCL8, TNF-α, IFN-γ and 

IL-10. This impairment was also observed in monocyte derived macrophages (MDMs) 

challenged with cigarette smoke extract (CSE) with significant impairment of Il-1β, while 

chronic LPS challenge also impaired Il-6 and phagocytosis. 

The data in this thesis highlights a possible increase in steroid responses by low dose 

theophylline in an LPS model in the guinea pig. It has also demonstrated chronic cigarette 

smoke exposure in the mouse can be exacerbated by NTHi, however the inflammatory 

response is impaired compared to sham challenged animals suggesting that cigarette smoke 

impairs the innate immune response. MDMs also demonstrated an impaired response to 

NTHi after CSE or LPS challenge. 
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Chapter One 

1.1 Chronic Obstructive Pulmonary Disease 

Chronic Obstructive Pulmonary Disease (COPD) is defined by the Global Initiative 

on Chronic Obstructive Lung Disease (GOLD, 2011) as: 

 “A common preventable and treatable disease, characterized by persistent 

airflow limitation that is usually progressive and associated with an 

enhanced chronic inflammatory response in the airways and the lung to 

noxious particles or gases”. 

COPD is an umbrella term that encompasses a wide range of chronic lung diseases. 

It includes: 

- Chronic bronchitis with increased inflammatory cells and mucous production. 

- Emphysema with destruction of functional alveoli tissue, resulting in increased 

airspaces, a decrease in elasticity of the lung and complete closure of small airways.  

- Chronic obstructive bronchiolitis with fibrous tissue deposition and small airway 

obstruction (Barnes, 2003). 

Different individuals have one, two or all of these conditions, in varying degrees of 

severity and ratios; therefore each COPD patient is unique. Some COPD patients 

also exhibit airway hyperresponsiveness (AHR), whereby an individual responds to 

an innocuous dose of a bronchoconstrictive agent such as histamine or methacholine. 

AHR is a controversial symptom in COPD, with no definitive consensus (Vestbo and 

Hansen, 2001)); however some studies have linked AHR to increased mortality in 

COPD patients (Hospers et al., 2000). 

It is difficult to accurately determine the numbers of people suffering from COPD 

due to difficulties in recognising and diagnosing the disease (van den Boom et 
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al.,1998). However, the World Health Organisations (2010) most recent estimates 

predict that 210 million people worldwide currently suffer from COPD, 3 million 

people died from COPD in 2005 and COPD is predicted to be the third most 

common cause of mortality by 2020.  

1.2 Causes of COPD: The Risk Factors 

The most important risk factor for COPD is the relationship between genes and the 

environment. There are many different environmental factors that can increase the 

risk of developing COPD, but the individual must be genetically susceptible for 

these environmental factors to have an effect (Sandford and Silverman, 2002).  

The main risk factor for COPD is cigarette smoke. This accounts for approximately 

73% of COPD related deaths in developed countries and 40% in less-developed 

countries (WHO, 2010). Studies have shown a direct relationship between smoking 

and a decrease in lung function. This cause shows how important genes are in 

COPD, as not all smokers will develop COPD (Mannino & Buist, 2007), with only 

15-20% of smokers developing the disease. However, this could be a slightly 

conservative estimate (Celli et al., 2004) with the actual figures ranging from 20-

40% (Daheshia, 2005). Maternal smoking during pregnancy (Svanes et al., 2009) is 

also a risk, as is passive smoking, with one study showing COPD as a result of 

passive smoking is responsible for 1.9 million deaths a year in china (Yin et al., 

2007). The effect of cigarette smoke is discussed in more detail in chapter 5. 

Other risk factors include genetics, pollutants, infections and age. The only proven 

genetic risk factor for COPD is α1 anti-trypsin deficiency (Barnes et al., 2002). 

Polymorphisms in many genes have increased prevalence in COPD patients 

including matrix metalloproteinases (MMPs) (Joos et al, 2002) and MMP regulators 
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such as TIMP-2 (Hirano et al, 2001). Polymorphisms in TNF-α (Sakao et al., 2001) 

and IL-13 (van der Pouw Krann et al,. 2002) also have increased prevalence, as do 

polymorphisms in anti-oxidant enzymes such as glutathione S-transferase, 

hemeoxygenase and microsomal epoxide hydrolase (He et al, 2002). Exposure to 

pollutants have been linked to COPD (Lopez et al, 2006), as have infections (Svanes 

et al. 2009) and asthma (Silvia et al., 2004). 

1.3 The Symptoms and Clinical Diagnosis of COPD 

COPD should be suspected if a patient presents with a cough that has sputum 

production, dyspnoea (shortness of breath) or a history of exposure to risk factors. 

COPD is diagnosed when the forced expiratory volume (FEV1): forced vital capacity 

(FVC) ratio is less than or equal to 0.7 (Celli et al, 2004). In more severe cases of 

COPD, fatigue and weight loss can also occur (Schols et al. 1993) 

The global initiative for chronic obstructive lung disease (GOLD, 2011) has issued 

guidelines to determine how a patient is to be treated. These guidelines take into 

account the symptoms, degree of airflow limitation and frequency of exacerbations.  

The symptoms are determined via one of two approved questionnaires, the COPD 

Assessment Test (CAT) or the Modified British Medical Research Council (mMRC) 

breathlessness scale (appendix I). A CAT test score of <10 or a mMRC score of 0-1 

signifies a less symptomatic patient, while a CAT score ≥10 and an mMRC score ≥ 2 

is a more symptomatic patient. Airflow Limitation is classified as mild, moderate, 

severe or very severe (GOLD 1, 2, 3 or 4 respectively), depending on the percentage 

of FEV1 predicted for the patient, as shown in table 1.1 (Celli et al, 2004).  
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Severity Post bronchodilator 
FEV1/FVC FEV1 % Predicted 

At risk > 0.7 ≥ 80 
GOLD 1 ≤ 0.7 ≥ 80 
GOLD 2 ≤ 0.7 50-80 
GOLD 3 ≤ 0.7 30-50 
GOLD 4 ≤ 0.7 < 30 

Table 1.1: Differentiation between at risk, mild, moderate and severe COPD (adapted from 
Celli et al, 2004). 

 

Patient Characteristic 
GOLD 
Score Exacerbations/Year mMRC 

Score 
CAT 
Score 

A 
Low Risk 

Less Symptoms 
1-2 ≤ 1 0-1 < 10 

B 
Low Risk 

More Symptoms 
1-2 ≤ 1 ≥ 2 ≥ 10 

C 
High Risk 

Less Symptoms 
3-4 ≥ 2 0-1 < 10 

D 
High Risk 

More Symptoms 
3-4 ≥ 2 ≥ 2 ≥ 10 

Table 1.2:  Classification of COPD patients depending on their symptoms, airflow 
limitation and exacerbation frequency (adapted from GOLD, 2011) 
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Exacerbation risk is determined by the frequency of exacerbations that take place in 

one year and is usually assessed by previously treated episodes. One or less 

exacerbations a year is low risk while two or more are classed as high risk. Patients 

are classified as high risk or low risk depending on the highest score from airflow 

limitation or exacerbation tests. This is summarised in table 1.2.                                                                                                                                              

1.4 Treatment of COPD 

COPD is a very difficult condition to treat. There is no cure for COPD, with all 

treatments being used to relieve or reduce symptoms, so an effective treatment is 

desperately needed. There are two main drug groups used to treat COPD, which are 

bronchodilators and corticosteroids. Single drug therapy is not an advised course of 

treatment, with several drug combinations used, dependent on the severity and risk 

of the patient as summarised in table 1.3 (GOLD, 2011). 

1.4.1 Bronchodilators 

The purpose of bronchodilators is to relieve the symptoms of COPD sufferers. There 

are several types used such as the β2-agonists, anticholinergics and 

phosphodiesterase inhibitors, which all act on airway smooth muscle, causing a 

relaxation and making it easier to get air into the lungs (Celli et al., 2004). There are 

short acting bronchodilators, such as the short acting β2 agonist salbutamol or the 

short acting anticholinergic ipratropium bromide, which are able to provide fast 

relief of symptoms but only last for between 1 and 4 hours, or there are longer acting 

bronchodilators, such as the long acting β2 agonist formoterol or the long acting 

anticholinergic tiotropium, which take longer to have an effect but can relieve 

symptoms for up to 12 hours (Barnes, 2003). Ultra-long acting β2 agonists are also 

available, such as indacaterol, which can relieve symptoms for approximately 24 

hours, making it a one dose a day product, and is as effective as tiotropium in clinical 
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 trials (Donohue et al., 2010). Longer acting drugs are the preferred treatment over 

the shorter acting ones as they provide a more stable improvement in symptomatic 

relief and are more convenient in the required dosing regimen (GOLD, 2011). 

1.4.1.1 Beta2-agonists 

The β2 agonists are a class of drugs, such as salbutamol, formoterol and indacaterol, 

which exhibit an affect via the β2 adrenergic receptor. These β2 agonists are selective 

for the β2 adrenergic receptor, which is located on smooth muscle, without causing 

an effect on the β1 adrenergic receptors found on the heart. Stimulation of the β2 

adrenergic receptor (figure 1.1(A)) causes a relaxation of smooth muscle, which in 

the airways is witnessed as a bronchodilation. β2 adrenergic receptors are G-protein 

coupled receptors which upon stimulation by an agonist increases the production of 

cyclic adenosine monophosphate (cAMP) via adenylate cyclase. An increase in 

cAMP causes the activation of protein kinase A (PKA) which in turn acts on 

myosin-light chain kinase (MLCK) by phosphorylating it and inhibiting its action. 

This inhibition of MLCK prevents the phosphorylation of myosin, thereby inhibiting 

smooth muscle contraction (Rang et al., 2002). 

1.4.1.2 Anticholinergics 

Anticholinergics are antagonists of acetylcholine receptors. There are two types of 

acetylcholine receptors, muscarinic acetylcholine receptor and nicotinic 

acetylcholine receptor, which are named depending on the response to either the 

agonist muscarine or nicotine. Muscarinic receptors are G-protein coupled receptors 

and are the most important acetylcholine receptor in the treatment of COPD, with the 

muscarinic acetylcholine receptor 3 (M3) being the main target for treatment. The M3 

receptor is  
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Fig 1.1: Control of bronchoconstriction via the β-agonist receptor, muscarinic acetylcholine 
receptor and phosphodiesterases (PDE). (A) Stimulation of the β-agonist receptor increases 
cAMP vie adenylate cyclase. Increased cAMP levels activate protein kinase A, 
phosphorylating myosin light-chain kinase (MLCK) preventing the phosphorylation of 
myosin and its interaction with actin, resulting in a bronchoconstriction. (B) Stimulation of 
the muscarinic acetylcholine receptor by acetylcholine activates phospholipase C which 
forms diacylglycerol (DAG) and inositol triphosphate (IP3). IP3 binds to receptors on 
calcium channels located on the endoplasmic reticulum increasing intracellular calcium 
concentrations. Calcium binds to calmodulin causing it to up-regulate MLCK, resulting in 
phosphorylated myosin interacting with actin and causing a bronchoconstriction. Anti-
cholenergics bind to muscarinic acetylcholine receptors blocking this pathway and 
preventing bronchoconstriction. (C) Phosphodiesterases degrade cAMP causing lower 
concentrations within the cell. This prevents the activation of protein kinase C and the 
phosphorylation of MLCK allowing for the phosphorylation of myosin to interact with actin 
and cause bronchoconstriction. Inhibition of PDEs does not decrease intracellular cAMP so 
allows for easier activation of protein kinase A. 
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found on glandular tissue, smooth muscle and vascular endothelium. Stimulation of 

the M3 receptor (figure 1.1(B)) causes activation of phospholipase C. This results in 

the formation of inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 is soluble 

and diffuses through the membrane, binding to IP3 receptors on calcium channels in 

the endoplasmic reticulum, increasing receptors on calcium channels in the 

endoplasmic reticulum and increasing intracellular calcium. This calcium is able to 

bind to calmodulin, altering its structure and allowing it to regulate MLCK, causing 

phosphorylation of myosin. This phosphorylation of myosin allows it to interact with 

actin causing a constriction of the smooth muscle, which causes a 

bronchoconstriction.  Anticholinergics are antagonists for the muscarinic receptor. 

Drugs such as tiotropium and ipatropium bind to the M3 receptor blocking 

acetylcholine from binding, and preventing the contraction of the smooth muscle via 

this inositol pathway (Rang et al., 2002). However, anticholinergics have a large 

number of side effects, from mild symptoms such as drowsiness and decreases in 

concentration, to more severe symptoms such as hallucinations and heart failure. 

This highlights that anticholinergics must be carefully monitored and managed in 

patients (Mintzer and Burns, 2000) 

1.4.1.3 Phosphodiesterase Inhibitors 

Phosphodiesterases are a family of enzymes, with 11 known isoforms, that break 

phosphodiester bonds. They are important mediators of cell signalling via their 

action on second messengers such as cAMP and cGMP. Phosphodiesterases (PDE) 

are important in COPD and asthma therapies due to their effect on cAMP, which 

affects bronchoconstriction and inflammation. The different isoforms have different 

tissue distributions, with the PDE5 isoform being abundant in airway smooth muscle 

(Moncada and Martin 1993), while the PDE4 isoform is found mainly in 
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inflammatory cells (Currie et al., 2008). PDE’s are responsible for the degradation of 

cAMP, an important messenger in bronchodilator and inflammatory cascades, to its 

inactive nucleotide form (Chung, 2006; Giembycz and Field, 2010). Inhibition of 

PDE, via non-selective methylxanthine drugs such as theophylline, can have an 

effect on bronchoconstriction, similar to, but not as potent as, that of a β2 agonist. 

This is via a very similar mechanism as that of the β2 agonists, but not acting via the 

β2 adrenergic receptor. Inhibition of PDE (Fig 1.1(C)) causes a decrease in the 

degradation of cAMP, so increases its concentration within airway smooth muscle. 

This results in the activation of Protein Kinase A (PKA) which phosphorylates 

MLCK, preventing the phosphorylation of myosin. This pathway blocks myosin and 

actin from interacting, which is responsible for the bronchoconstriction of smooth 

muscle (Rang et al., 2002). However, the toxic and therapeutic doses almost overlap; 

meaning theophylline has a large number of side effects, including nausea, 

headaches and drowsiness. Due to these side effects, where theophylline used to be a 

first line drug for the treatment of asthma, it has now been phased out, only used in 

extreme cases or where patients find inhalation of β2-agonists difficult (Currie et al, 

2008). The anti-inflammatory effects of theophylline are described in more detail in 

chapter 3 

1.4.1.4 Selective Phosphodiesterase Inhibitors 

PDE5 is concentrated in the airway smooth muscle, so can affect bronchodilation 

(Moncada and Martin 1993). Phosphodiesterases are also present in all immune and 

pro-inflammatory cells, so are also important targets for anti-inflammatory therapies. 

PDE4 is the most widely targeted and researched phosphodiesterase, with the PDE4 

selective inhibitor, roflumilast, just being the first approved for COPD therapy 

(Giembycz and Field, 2010). Theophylline is a non-selective PDE inhibitor, but 
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methylxanthine derivatives have been synthesised targeting PDE4 or PDE5 

isoforms. The first generation of PDE4 selective inhibitors included rolipram, which 

showed promising effects in animals, but had too many side effects e.g. nausea. 

Second generation PDE4 inhibitors, such as roflumilast and cilomilast, partially 

overcame these side effects and still exhibited anti-inflammatory effects (Currie et 

al., 2008). PDE4 is present in neutrophils, macrophages, lymphocytes, eosinophils, 

mast cells, goblet cells, endothelial and epithelial cells. The decrease in 

concentration of cAMP, via the action of PDE4, within inflammatory cells causes a 

release of pro-inflammatory cytokines. Inhibition of PDE4 decreases these 

cytokines, decreasing inflammation. PDE4 inhibitors decrease the release of CXCL8, 

LTB4, reactive oxygen species and MMP-9 from neutrophils, important mediators in 

COPD pathogenesis. They also decrease TNF-α, LTC4 LTB4, while increasing the 

release of the anti-inflammatory cytokine IL-10, from macrophages. T-lymphocyte 

cytokines are also reduced including IL-2, IL-4 IL-5 and interferon, with epithelial 

cells also decreasing the release of TNF-α and IL-6. Endothelial cells have decreased 

expression of adhesion molecules, such as ICAM, VCAM and PECAM, all 

contributing to a decrease in inflammation (Currie et al., 2008).                   

  1.4.2 Corticosteroids 

COPD is still treated with corticosteroids, even though it has been widely reported to 

have little effect on the underlying physiological inflammation (Williamson et al., 

2011) or slow down disease progression (Vestbo et al., 1999). Corticosteroids do 

however have a limited ability to improve lung function and decrease the frequency 

of exacerbations (Spencer et al., 2004). 
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1.4.2.1 Mechanism of Action 

Steroids exhibit their effect by interaction with glucocorticoid receptors (GR), which 

are intracellular receptors with a high affinity for glucocorticoids. Steroids are 

lipophilic molecules derived from cholesterol, so easily diffuse through the cell 

membrane into the cell and bind to GRs. Binding of a glucocorticoid to a GR 

induces a conformational change in the receptor resulting in the presentation of 

DNA-binding domains. Two ‘activated’ glucocorticoid receptors form a homodimer 

and move into the nucleus. The GR and steroid complex also interacts with co-

activator molecules such as cAMP response element-binding protein (CREB) and 

histone deacetylase 2 (HDAC2), depending on steroid dose (Rang et al, 2002; 

Barnes, 2006).  

1.4.2.2 Transactivation 

High doses of steroid result in the transactivation of anti-inflammatory cytokines, by 

the up regulation of anti-inflammatory gene transcription; such as the gene encoding 

Il-10. The GR interacts with CREB-binding protein, which has the intrinsic enzyme 

histone acetyltransferase (HAT). This enzyme is responsible for the addition of 

acetyl groups to histone proteins, causing the DNA to unwind. Less compact DNA 

allows for the GR to bind to glucocorticoid response elements (GRE) present on the 

promoter or enhancer regions of the genes (Dombrowsky & Ulig, 2007), controlling 

gene transcription.  Via this process, steroids are able to increase the release of anti-

inflammatory cytokines. (Rang et al, 2002; Barnes, 2006). This is summarised in 

figure 1.2 

1.4.2.3 Transrepression 

During inflammation activation of NF-κB results in its associated proteins, P50 and 

P65, translocating into the nucleus and interacting with CREB-binding protein. In  
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Fig 1.2: The glucocorticoid receptor (GR): glucocorticoids (GC) bind to the glucocorticoid 
receptor, form a homodimer and enter the nucleus. The glucocorticoid-GR homodimer binds 
to glucocorticoid response elements (GRE) altering transcription. 
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turn the proteins intrinsic HAT adds acetyl groups to histone proteins, unwinding the 

DNA and subsequently up regulating pro-inflammatory cytokines. Low dose steroid 

treatment inhibits this process via transrepression. The GR dimerises and 

translocates into the nucleus as in transactivation, however the GR complex interacts 

with histone deacetylase (HDAC) 2 instead of HAT. HDAC2 is responsible for the 

removal of acetyl groups from histone proteins, so is therefore the reciprocal enzyme 

to HAT. 

The removal of acetyl groups from the histone proteins causes the DNA to bind more 

tightly to the histone proteins, shrouding the promoter/enhancer regions of pro-

inflammatory cytokines and decreasing the transcription (Rang et al, 2002; Barnes, 

2006). This is summarised in figure 1.2 

1.4.3 Non-Drug Based Management of COPD 

There are additional ways to manage COPD symptoms as well as drug management 

programmes. A change in diet, to a healthier, more nutritious one, can help COPD 

symptoms; COPD patients can also rehabilitate their lungs and slow down FEV1 

decline through exercise programmes. Many patients, particularly in more severe 

COPD, are given long-term oxygen therapy, where they breathe highly oxygenated 

air to counteract the reduction in oxygen intake. There are also surgical options for 

COPD, with a bullectomy, removal of a portion of lung, to aid in exhalation, and 

lung transplants being a few options (Celli et al., 2004). 

1.5 Steroids in Stable COPD 

Steroids are used in the control of stable COPD and in the treatment of 

exacerbations. ICS are the advised treatment, only in combination with a long acting 

bronchodilator. Long term oral steroid therapy is not advised (GOLD, 2011). The 
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effectiveness however, particularly in respect of the effect on stable disease, is 

widely debated (Barnes, 2000b; Calverley, 2000). In asthma corticosteroid treatment 

is highly effective at reducing inflammation, however in COPD this is not the case.  

Stable COPD shows an active resistance to inhaled corticosteroids, such as 

prednisolone, fluticasone and budesonide, with long-term, high doses of 

corticosteroid failing to slow the progression of the disease (Alsaeedei et al, 2002; 

Culpitt et al, 1999). Clinical trials have shown improvement in lung function with 

ICS, however the benefit only lasted for 6 months and did not affect the rate of lung 

function decline (Soriano et al., 2007). Addition of inhaled budesonide to long acting 

bronchodilators did show significant improvement in lung function in one clinical 

trial (Bӧlukbas et al., 2011), while another clinical trial showed no change in lung 

function with budesonide compared to placebo (Vestbo et al., 1999). Brightling et al. 

(2004) demonstrated an eosinophillic subtype of COPD that responds well to ICS, 

with significant improvements in lung function. 

Inhaled corticosteroids also have mixed results on inflammation. Qi Gan et al. 

(2005) showed prolonged ICS therapy (greater than 6 weeks) was effective at 

reducing some inflammatory parameters in sputum, predominantly neutrophil 

numbers. Macrophage numbers were unaffected. Many studies have found similar 

results, with Ozol et al. (2005), Reid et al. (2008) and Thompson et al. (1992) 

demonstrating reduced neutrophil numbers in the broncholavage fluid of COPD 

patients after ICS treatment, while macrophage numbers remain unchanged. Culpitt 

et al. (1999) however show high dose inhaled corticosteroids failed to supress any 

cell type but did reduce IL8 in the sputum, while Ozol et al. (2005) also 

demonstrated reduced IL8 levels in the BALF after ICS.  
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Other studies highlight the possible detriment of ICS in COPD with those on steroid 

treatment being more likely to acquire pneumonia (Crim et al., 2009; Singh  et al., 

2009), which has been shown to have increased mortality in COPD patients (Rello et 

al., 2006), as well as tuberculosis (Jick et al., 2006). 

It is reported that one benefit of continued ICS therapy is the reduction in 

exacerbation frequency in COPD patients (GOLD, 2011). Frequent exacerbators and 

moderate to severe COPD patients demonstrate a significant decrease in the number 

of exacerbations after fluticasone treatment (Jones et al., 2003). The addition of 

fluticasone to salmeterol was also exacerbation protective in a study by Calverly et 

al., (2007) compared to salmeterol alone. Wedzicha et al., (2008) demonstrated 

fluticasone in combination with salmeterol was no more protective than tiotropium 

alone, but did reduce the need of oral corticosteroid treatment. Agarwal et al, (2010) 

however describe only modest reductions in exacerbation frequency and conclude 

the benefit of ICS in this regard is ‘overstated’. Rice et al. (2000) also describe 

limited benefits of chronic oral corticosteroid treatment in reducing exacerbation 

frequency. 

The use of ICS in COPD is not clear cut, with some patients responding better than 

others. It is important therefore for clinicians to treat each individual on a case by 

case basis, weighing up the benefits and risks and the particular COPD phenotype 

present. 

1.5.1 Steroid Insensitive Mechanisms in COPD 

The reasons for steroid insensitivity in COPD still remains unclear, while studies 

have shown that macrophages and neutrophils, the predominant inflammatory cell 
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types in COPD, play a very important role in this steroid insensitivity (Culpitt et al, 

2003).  

Alveolar macrophage cytokine suppression occurs in non-smokers treated with 

steroid, but steroids are much less effective in smokers and patients with COPD, who 

exhibit partial responses, where some cytokines are supressed, while others are 

unaffected. Steroid insensitivity in alveolar macrophages is believed to be due to a 

reduction in histone deacetylase (HDAC)-2 activity. HDAC is important in the 

regulation of inflammation due to its recruitment by steroids, resulting in the 

removal of acetyl groups from histone proteins, decreasing pro-inflammatory 

transcription. Barnes et al (2004) propose that this reduction in HDAC is due to the 

increased oxidative stress burden in COPD. It has previously been shown that 

oxidative stress alone is able to decrease the activity of HDAC and increase the 

acetylation of histones (Tomita et al, 2003).This decreases the activity of HDAC, 

therefore decreasing the effectiveness of the steroid, while at the same time up-

regulating pro-inflammatory cytokines due to the over expression of the HDAC 

reciprocal enzyme histone acetyltransferase (HAT).   

Neutrophils have also been implicated in the steroid resistance observed in COPD 

patients. Many studies have shown that neutrophils and their associated cytokines are 

not suppressed in COPD by inhaled corticosteroids (Keatings et al.,1997; Culpitt et 

al., 1999), while some studies show that corticosteroids may have some beneficial 

anti-inflammatory effect (Ozol et al., 2005). A possible reason for this is described 

by Strickland et al. (2001) where they describe differences in glucocorticoid receptor 

subtypes in neutrophils, with neutrophils exhibiting the β subtype of glucocorticoid 

receptor not responding to the steroid, while the α subtype do. They conclude that 

most neutrophils have the β subtype and are therefore intrinsically unresponsive, and 
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can have this unresponsiveness increased in an inflammatory environment by up-

regulation of the β glucocorticoid receptor. Corticosteroid action on the β 

glucocorticoid receptor can actually have a detrimental effect, increasing the 

longevity of neutrophils significantly. Plumb et al, (2012) also implicate the 

glucocorticoid receptor in neutrophils in decreased sensitivity to steroids. They 

demonstrate a reduction in total glucocorticoid receptor in airway neutrophils from 

control and COPD subjects compared to neutrophils isolated from the blood. This 

led to decreased sensitivity to dexamethasone on TNF-α and CXCL8 release. 

The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has also 

been implicated in steroid insensitivity due to its role in decreasing oxidative stress. 

Nrf2 up-regulates antioxidants in times of high oxidative stress by binding to the 

promoter region and up-regulating transcription. However, Nrf2 levels have been 

shown to be decreased in chronic oxidative stress environments, resulting in an 

increase in oxidative stress. This increase has been shown to decrease HDAC levels 

in vivo (Adenuga et al., 2010), and Nrf2 deficient mice have been shown to more 

susceptible to emphysema induced by cigarette smoke (Iizuka et al., 2005). 

Since steroids and bronchodilators are the main treatment of COPD, with less than 

satisfactory results, an effective treatment for the disease is urgently required. To 

achieve this, an animal model of COPD that allows the intricate pathophysiology of 

the disease to be studied as well as being used to screen new drugs is desperately 

needed. 

1.6 The Pathophysiology of COPD 

COPD is an abnormal inflammatory response of the lungs to noxious particles or 

gas. There are many mechanisms by which this process progresses, with many 
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inflammatory and other cells involved. COPD is mainly associated with an elevated 

level of neutrophils, macrophages and CD8+ T cells (Barnes et al., 2002). The exact 

pathophysiology that takes place in COPD is poorly understood, but the general 

theories from the literature are described. 

A toxin, such as cigarette smoke, activates monocytes and epithelial cells in the 

lungs. Activated macrophages release a large number of chemokines, specifically 

CXCL8, TNF-α and leukotriene B4 (LTB4), which are all strong neutrophillic 

chemotactic factors, attracting neutrophils into the lungs. Activated mucosal 

epithelium in the lungs also up regulate the presentation of neutrophil adhesion 

molecules, such as E- and P-selectin, ICAM-1 and 2, VCAM-1 and PECAM-1, as 

well as increasing the production of  mucous secreted from goblet cells and 

attracting monocytes via monocyte chemoattractant protein (MCP-1) release. 

Granulocyte-macrophage colony stimulating factor (GM-CSF) is also released, and 

this chemokine increases neutrophil survival in the lung as well as stimulating 

macrophage differentiation.  Once in the lungs neutrophils undergo degranulation, 

releasing serine protease such as neutrophil elastase. They also release matrix 

metalloproteinases, defensins and reactive oxygen species, which are partly 

responsible for the emphysema witnessed in COPD patients. Macrophages are long 

living cells, once in the lung they also release inflammatory proteins responsible for 

the loss in lung elasticity and pro-inflammatory cytokines such as TNF-α. 

Macrophages are prolonged even further in COPD due to an increase in the anti-

apoptotic protein Bcl-Xl. T-lymphocyte numbers are also elevated during COPD, in 

particular CD8+ T-lymphocytes. These are cytotoxic cells able to induce apoptosis 

of other cells. In COPD the elevated numbers of these cells cause apoptosis of lung 

parenchyma cells by release of granzymes and perforins. T cells also release many 
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different cytokines adding to the cytokine cloud inducing further inflammation. The 

T- lymphocytes are particularly localised around areas of cell death, adding to the 

emphysema (Barnes and Rennard., 2009; Daheshia, 2005; Barnes, 2000a). This 

process is summarised in figure 1.3. 

1.7 Airway Inflammation 

As mentioned, COPD is a chronic inflammatory disease with a number of cell types 

playing a vital role. The predominant cell types are neutrophils and macrophages, 

which are the first responders to toxins, infections and injury. The vast number of 

cytokines secreted from cells, in turn attract more inflammatory cells, creating a 

perpetual inflammatory cycle, unable to be adequately controlled, involving both the 

innate and adaptive immune response. 

1.7.1 The Innate Immune Response  

Innate immunity is a response to pathogens and/or toxins, whereby the response is 

no different whether the immune system has come into contact with it before or not. 

It is a generic immunity, whereby bacteria, for example, are treated similarly, 

irrespective of species or strain (Delves and Roitt, 2006). The innate immunity 

involves activation of neutrophils, monocytes/macrophages, eosinophils, basophils, 

dendritic cells, mast cells and natural killer cells (Delves et al., 2011).  

The innate immunity, unlike the adaptive immunity, is unable to differentiate strains 

of pathogen from the next, but seeks out common denominators to varying types of 

pathogen (i.e. bacteria, viruses, fungi) to initiate a response. The innate immunity 

involves a wide range of cell surface receptors called pattern recognition receptors 

(PRRs). These receptors are able to recognise a small number of molecules present 

on pathogens, called pathogen associated molecular patterns (PAMPs). There are  
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Fig 1.3: The effect of cigarette smoke on cells and cytokines in the lung (adapted from 
Daheshia, 2005) 
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many different PRRs on the cell surface, with each one being responsible for 

recognising particular PAMPs. Recognition of a PAMP induces cytokine release, as 

well as phagocytosis, via C-type lectins and scavenger receptors, of the 

pathogen/toxin.  (Delves & Roitt, 2006). 

1.7.2 Toll-like receptors 

Toll-like receptors are one type of PRR and are important receptors of the immune 

system. The first toll-protein was discovered in Drosophila, where it is responsible 

for dorsal-ventral patterning during embryonic development (Anderson et al. 1985). 

There are many different toll-like receptors in man, with each responsible for 

recognising a small number of PAMPs. This is summarized in table 1.4. Recognition 

of a PAMP induces cytokine release, which is appropriate for the type of response 

required to deal with the pathogen recognised (Delves & Roitt, 2006; Lu et al., 

2008). Toll like receptors consist of two functional units. There is an extra cellular 

leucine-rich repeat (LRR) region, which is ‘horseshoe’ in shape and is responsible 

for recognising PAMPs (Bell et al., 2003), and an intracellular region, the Toll-Il-1 

receptor (TIR) responsible for signalling within the cell (Fig 1.4) (Playfair & Chain, 

2009). Specific agonists of TLRs can be administered in vivo to mimic smoke 

induced inflammation in COPD. The effect of TLR stimulation is discussed in more 

detail in chapter 3. 

1.7.3 Neutrophils  

Neutrophils are by far the most numerous leukocytes in the circulation accounting 

for approximately 70-80% of white blood cells. They are polymorphonuclear cells, 

consisting of a nucleus organised into several lobes making it ideal for the 

neutrophils to perform their function efficiently of phagocytising pathogens and 

toxins.  
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In the lungs, an infection or toxin results in the release of cytokines which up-

regulate adhesion molecules on the vascular endothelium and causes secretion of 

chemokines, such as the neutrophil chemoattractant protein CXCL8. Neutrophils 

bind to the adhesion molecules, are activated and migrate through the vascular wall 

into the tissues where they phagocytose the toxin as well as secreting cytokines, 

reactive oxygen species and proteases (Smith, 1994). Neutrophils play a role in 

COPD due to this basic response to toxins, infection and injury. Smokers have been 

shown to have a large increase in neutrophil numbers isolated from bronchoalveolar 

lavage fluid (BALF) (Hunninghake & Crystal, 1983), with COPD patients exhibiting 

an even greater increase again (Confalonieri et al, 1998). The degree of severity of 

COPD is directly associated with neutrophil numbers, with high neutrophil numbers 

signifying a greater severity and faster progression of the disease (Di Stefano et al, 

1998). The chemoattractant CXCL8 has also been shown to be increased in the 

BALF of COPD patients (McCrea et al, 1994). The secretion of the protease 

neutrophil elastase, has been widely reported as a contributory factor towards 

emphysema in COPD. Janoff et al (1977) demonstrated that instillation of neutrophil 

elastase alone into the lungs of dogs could cause histological changes in the lung 

similar to those witnessed in humans with emphysema.  

Neutrophils are short lived cells, only surviving for 4-6 hours; however, they are able 

to survive longer with steroid treatment due to the inhibition of their apoptosis 

(Meagher et al, 1996). This could partly explain the reason steroids are ineffective in 

treating the pathophysiology of COPD.  
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Toll-Like Receptor 
Pattern Associated Molecular Pattern 

(PAMP) 

TLR1 Gram +ve Peptidoglycan , Lipoproteins 

TLR2 
Lipoproteins, Mycobacterial 

Lipoarabinomannan, Yeast Zymasan 

TLR3 Viral Double-Stranded RNA 

TLR4 Gram –ve LPS 

TLR5 Flagellin 

TLR6 
Mycobacterial Lipoarabinomannan, Yeast 

Zymasan 

TLR7 
Viral Single-Stranded RNA 

TLR8 

TLR9 Viral and Bacterial CpG DNA Sites 

TLR10 PAMP and Function Unknown 

Table 1.4: Human Toll-like receptors and their pathogen associated molecular patterns 
(PAMP) (adapted from Delves & Roitt, 2006). 

 

 

 

Fig 1.4: Structure of Toll-like receptors: extracellular pattern recognition receptor and 
intracellular Toll-Il-1 receptor (TIR) (Adapted from Murphy et al., 2008) 
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1.7.4 Monocytes/Macrophages  

Monocytes are white blood cells that differentiate into tissue specific macrophages 

after migration into those tissues. Alveolar macrophages are monocytes that have 

travelled into the lungs, and are important cells in both the innate and adaptive 

immune response. Just like neutrophils, macrophages are phagocytic cells, but can 

also act as antigen presenting cells and are believed to be the key cell type in 

orchestrating the immune response in COPD (Barnes, 2004a). Macrophages are long 

lived cells, surviving for several months after differentiation under normal 

conditions; however, studies have shown that alveolar macrophages of smokers and 

patients with COPD can survive for up to two years (Tetley, 2002). Upon activation, 

macrophages secrete many cytokines and chemoattractants, with the expression of 

monocyte chemoattractant protein (MCP-1) and the neutrophil chemoattractant 

protein CXCL8 being up regulated (Barnes 2004a). As well as further cell 

recruitment and phagocytosis, macrophages have been shown to play a pivotal role 

in structural remodelling of the lungs by secretion of matrix metalloproteinases 

(MMP). These are zinc- and calcium-dependant proteases secreted to alter the 

extracellular matrix within tissues. In COPD, studies have shown over expression of 

MMPs from macrophages, which have been implicated in the emphysematous 

remodelling observed in the disease (Demedts et al, 2006). Macrophages and their 

role in COPD will be discussed in much more detail in chapter 8. 

1.7.5 Eosinophils  

Eosinophils are granulocytes with a polymorphonucleus. They have a well-defined 

role in the pathophysiology of asthma but have a less defined role in COPD. 

Eosinophil levels are very low in most COPD patients, with very little increase 

compared to healthy samples (Lacoste et al, 1993). However, a subset of COPD 
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patients exhibit higher levels of eosinophilia in sputum, but as yet their role are not 

identified (Brightling et al., 2005). Eosinophils are increased during an exacerbation 

of COPD (Fujimoto K. et al. 2005), while the eosinophilic subtype of COPD have 

more protection against exacerbations after treatment with ICS (Burge et al., 2000). 

1.7.6 The Adaptive Immune Response and T-Lymphocytes  

Unlike the innate immune system, the adaptive immune system is pathogen specific 

due to the recognition of antigens, specific to the type of pathogen that presents it. 

The adaptive immune system involves two types of lymphocyte, the T-lymphocyte 

and the B-lymphocyte, which differentiate in the thymus and bone marrow 

respectively. The B-lymphocyte has two main functions. They are responsible for 

producing antibodies (with the help of the T helper cell) to the specific antigen that 

was recognised, as well as forming memory B-cells to remember the pathogen long 

after it has been encountered.  

T-lymphocytes comprise of five different subtypes, helper (CD4+), cytotoxic 

(CD8+), memory, regulatory and natural killer T cells, with each performing a 

specific role in the immune response. CD4+ T cells recognise antigens presented by 

antigen presenting cells on the major histocompatibility complex (MHC) type II, and 

aid in maturation and function of other immune cells. CD8+ T cells respond to 

antigens presented on the MHC type I and induce apoptosis of the cells presenting 

them. Memory T-cells are cells that are specific to an antigen and survive long after 

the antigen has cleared. They are able to differentiate quickly in response to the 

antigen in the future, speeding up the response time. Regulatory T-cells are 

responsible for controlling the immune response of other T-cell types and are 

important in autoimmunity. Finally, natural killer cells are cells that have both CD4+ 
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and CD8+ T-cell properties and are important in destroying tumour and cancer cells 

(Delves et al., 2011).  

The adaptive immune system is very important in asthma but plays a smaller role in 

COPD. T-cells have been shown to be increased in COPD, but are predominantly 

CD8+ T cells, and are particularly concentrated around areas of parenchymal 

destruction (Cosio et al., 2002). Saetta et al. (1998) demonstrate an increased CD8+ 

T-cell population in the lungs of smokers is indicative of COPD development, while 

smokers with lower CD8+ T-cells were asymptomatic. This means CD8+ T-cells 

may play a role in COPD pathogenesis. Regulatory T cells have also been shown to 

be increased, in an attempt to control the inflammation and possibly suppress CD8+ 

T-cells (Smyth et al., 2007; Plumb et al., 2009). 

Lymphoid follicles are a structure containing high numbers of T-cells, B-cells and 

dendritic cells (van der Strate et al., 2006). They have been found in increased 

numbers in the lungs of COPD patients (Hogg et al., 2004) and are believed to be 

sites of antigen presentation and lymphocyte maturation, multiplication and storage  

(van der Strate et al., 2006).  Their exact role in COPD is currently unknown but 

several hypotheses have been put forward. Plumb et al. (2009) found elevated 

regulatory T-cells in lymphoid follicles in COPD which they surmise are an attempt 

to alter immune regulation and suppress CD8+ T-cells and auto-immunity. The role 

of autoimmunity in COPD is controversial and not well understood, but Feghali-

Bostwick et al. (2008) observed increased auto-antibodies to epithelial cells in 

COPD, possibly due to B-cell antibody production within lymphoid follicles. 
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1.8 Exacerbations of COPD 

As well as underlying inflammation in COPD, patients suffer from exacerbations, 

increasing inflammation, reducing lung function and decreasing their quality of life. 

Exacerbations are defined as: 

“An acute event characterised by a worsening of the patient’s respiratory 

symptoms that are beyond normal day-to-day variations and leads to a 

change in medication” (GOLD, 2011) 

There are many sources of exacerbations: pollutants in the atmosphere, a change in 

temperature (particularly a decrease) and bacterial and/or viral infections of the 

respiratory tract (Barnes, 2003). 

1.8.1 Bacterial Infections 

Bacteria play a complex role in COPD, with COPD patients exhibiting increased 

bacterial colonization compared to controls during the stable disease state. Bacterial 

colonization has been linked to increased disease severity, rate of lung function 

decline and frequency of exacerbations (Patel et al., 2002). Cigarette smoke is shown 

to be a risk factor for increased colonization, with individuals with COPD who 

continue to smoke having increased bacterial colonization compared to ex-smokers 

with COPD (Zalacain et al., 1999).  

The role of bacteria during exacerbations of COPD is poorly understood due to them 

also being present in stable COPD. However, the numbers of bacteria are elevated in 

exacerbations when compared to stable COPD and antibiotic treatment during an 

exacerbation shortens the time and severity. Organisms such as Haemophilus 

influenza, Streptococcus pneumonia, Staphylococcus aureus and Pseudomonas 

aeruginosa have been implicated in exacerbations, as well as less common 
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organisms such as Chlamydia, Mycoplasma and Legionella (Wedzicha & 

Seemungal, 2007). A study performed by Wilkinson et al (2006) showed that 

bacterial colonisation of the airways is increased in COPD patients in general, and 

those presenting with an exacerbation show a higher level of bacterial colonisation 

(48.2 and 69.6% respectively).  

The theory of lung sterility in healthy individuals is a controversial subject. Many 

studies were unable to culture bacteria using standard microbiological techniques, 

leading to the theory that the lung was sterile. However, more recent studies using 

more advanced genetic identification techniques have highlighted that bacteria are 

present in the lungs during health. This has led to the hypothesis that the type of 

bacteria present is important when comparing health and disease (Erb-Downward et 

al., 2011).  

 1.8.1.1 Non-typeable Haemophilus influenza 

Of all bacteria implicated in COPD, NTHi may be the most important in both stable 

and exacerbated states. NTHi is an opportunistic pathogen (King, 2012) and is the 

most frequently isolated bacterium in COPD, accounting for between 30% and 60% 

of all stable COPD samples (Sethi et al., 2006) and up to 87% of samples during 

acute exacerbations (Bandi et al., 2001). Rossell et al. (2005) also showed NTHi was 

the most frequently sampled bacteria in healthy smokers.  

1.8.2 Viral Infections  

Viral infections, by such viruses as rhinovirus, influenza virus, parainfluenza virus 

and adenovirus, among others, are a frequent cause of COPD exacerbations. 

Rhinovirus, responsible for the common cold, is the most common cause of viral 

exacerbations (McManus et al., 2008), with viral exacerbations accounting for 
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approximately half of all exacerbations. Viruses infect the upper respiratory tract and 

cause a decrease in lung function. Of all exacerbations, viral exacerbations are by far 

the most severe, also showing longer recovery times (Wedzicha & Seemungal, 

2007). A study by Hutchinson et al. (2007) showed moderate to severe COPD 

patients were 11 times more likely to catch a viral infection than healthy individuals. 

Mallia et al. (2012) also showed that a significant proportion of virally exacerbated 

COPD patients go on to develop a secondary bacterial exacerbation. Viral 

exacerbations are discussed in more detail in chapter 4. 

This increase in susceptibility to bacterial and viral infections may be due to an 

impaired immune response and will be discussed in more detail in chapters 7 and 8. 

1.8.3 Pollutants 

An increase in environmental pollution has been linked to an increase in hospital 

admissions due to exacerbations of COPD (Anderson et al, 1997). An increase in 

common environmental pollutants that can trigger exacerbations, such as nitrogen 

oxides, sulphur dioxide, ozone and small particulates (<PM10 and PM2.5) have been 

shown to increase hospital admissions for patients with COPD (Ko et al, 2007). A 

study has also shown that an increase in air pollution significantly increases the 

death rate of COPD patients (Sunyer et al, 2000). 

1.9 Treatments of Exacerbations 

GOLD (2011) recommend three pharmacological treatments for exacerbations, with 

the main aims to improve symptoms and decrease the frequency of exacerbations. 

Treatments of exacerbations are continuous, with many treatments for stable COPD 

being used to reduce the frequency of exacerbations and, therefore, improve the 
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patient’s quality of life, without actually affecting the underlying disease. However, 

these treatments are inadequate, with more effective treatments urgently required. 

1.9.1 Bronchodilators 

Studies have shown that bronchodilators are able to reduce the frequency of 

exacerbations (Niewoehner D et al., 2005; Vincken W et al., 2002), but have a 

limited effect on lung function. This applies to all bronchodilator subtypes including 

β2 agonists (Caverly et al, 2007), anticholinergics (Vincken et al, 2002; Casaburi et 

al, 2002) and PDE inhibitors, such as theophylline (Rossi et al 2002). Although 

GOLD (2011) recommends β2 agonists with or without anticholinergics as a 

treatment for exacerbations, there is evidence that only anticholinergics are effective 

during severe exacerbations, while β2 agonists could increase the risk of mortality 

(Salpeter et al., 2006). 

1.9.2 Corticosteroids 

GOLD (2011) recommends systemic/oral corticosteroids as a treatment for 

exacerbations, while inhaled corticosteroids are predominantly used to decrease 

exacerbation frequency. Many studies have shown that systemic steroids are 

beneficial in reducing the morbidity, mortality and the duration of hospital stays 

(Niewoehner et al, 1999; Davies et al, 1999; Thompson et al., 1996; Alia et al., 

2011), with Lindenhaur et al. (2010) showing that low dose oral steroids are as 

equally effective as high dose intravenous steroids.  

1.9.3 Antibiotics/Antivirals 

The use of antibiotics, such as amoxicillin and clarithromycin, in treating 

exacerbations is controversial, as problems with sampling of mucous during an 

exacerbation and recognition of the causative agent, makes it difficult to determine 

when antibiotics are a beneficial treatment. Antibiotics could even compound the 
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problem by increasing the stock of antibiotic-resistant strains (Wedzicha & 

Seemungal, 2007). However, several studies have shown antibiotics to be effective 

in improving the time taken to recover from an exacerbation (Wilson et al., 2012), as 

well as reducing the frequency of exacerbations with prolonged treatment (Albert et 

al., 2011). However, the study by Albert et al., (2011) used prolonged treatment with 

the macrolide antibiotic azithromycin, which has been shown to have additional anti-

inflammatory effects in COPD (Parnham et al., 2005). This makes it difficult to 

differentiate whether it is the anti-bacterial or anti-inflammatory properties of the 

antibiotic that is beneficial in this instance. 

NICE (2009) guidelines also support the use of antivirals in COPD. COPD patients 

are deemed an at risk group who can be prescribed antivirals if they present with flu 

like symptoms. However the guidelines stress that annual influenza vaccination 

programmes for COPD are the preferred and most effective treatment against 

influenza.  

1.9.4 Non-Pharmacological Treatment 

The degree of non-pharmacological intervention required is dependent on the 

severity of the exacerbation. Supplemental oxygen during an exacerbation has been 

shown to significantly decrease mortality and is recommended to all patients who are 

suffering from an acute exacerbation of COPD (Austin et al., 2010). For more severe 

exacerbations, admission to hospital for ventilatory support or mechanical ventilation 

(non-invasive or invasive) may be required. GOLD (2011) suggests that hospital 

admission is required if a patient has severe dyspnoea that fails to respond to normal 

treatment, mental deterioration, worsening hypoxaemia and/or respiratory acidosis or 

a need for invasive mechanical ventilation. 
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1.10 Pathophysiology of Exacerbations 

The pathophysiology of acute exacerbations of COPD is poorly understood, due to 

the difficulties in sampling. However, it is known that there is an increase in 

inflammatory cells and cytokines in sputum and blood (Wedzicha & Seemungal, 

2007), increased protease levels (Mercer et al., 2005) and oxidative stress (Drost et 

al., 2005).  

Clinical studies performed on patients suffering from an acute COPD exacerbation 

have shown increases in systemic levels of cytokines responsible for inflammation. 

Increases in IL-6 and 8 were observed during the start of an exacerbation as well as 

increases in soluble tumour necrosis factor, C-reactive protein (CRP) and 

bactericidal/permeability increasing protein (BPI) (Groenewegen et al., 2007; Perera 

et al., 2007).  

Systemic neutrophil numbers have been shown to increase by up to 80% when 

compared to baseline levels (Pinto-Plata et al., 2007). Increases in sputum and blood   

neutrophils have been linked to an increase in exacerbation severity (Papi et al., 

2006). The cytokine levels witnessed in the systemic circulation have also been 

linked to number and severity of exacerbations. An increase in CRP 14 days post 

exacerbation has signified a recurrent exacerbation is approximately 25% more 

likely to occur within 50 days when compared to patients with normal CRP levels. 

However, it is still unknown whether the increase in systemic cytokines are due to 

increases in baseline levels during stable COPD, or are due to an unresolved 

exacerbation (Perera et al., 2007). Increases in clotting factors, such as fibrinogen, 

are also witnessed during an exacerbation, which can increase secondary cardiac 

issues for exacerbated COPD patients (Groenewegen et al., 2007; Wedzicha & 

Seemungal, 2007).  
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Different exacerbation phenotypes have been described by Bafadhel et al. (2011) 

who show differential responses between the phenotypes. The bacteria-predominant 

phenotype was found to have higher IL-1β levels in the sputum and a pro-

inflammatory response; the virus-predominant had higher serum CXCL10 and a Th1 

response and the eosinophil-predominant phenotype had elevated blood eosinophilia 

and a Th2 response. They propose these markers could be used to identify the type of 

exacerbation taking place and highlight the appropriate treatment. Papi et al. (2006) 

however show increased eosinophilia is related to virus exacerbations. TNF-α is 

increased at exacerbation and has been shown to cause an increase in RANTES 

(Wong et al., 2006), a chemotactic factor for eosinophils, which may be responsible 

for increased eosinophila at exacerbation (Hacievliyagil et al., 2006). 

1.10.1 Frequent and Infrequent Exacerbators 

Frequent exacerbators are described as those patients who experience 2 or more 

exacerbations per year (GOLD, 2011). The ECLIPSE study highlighted the best 

prediction of exacerbations was a previous history of exacerbations with those who 

had two or more exacerbations in year one and two, being much more likely to have 

2 or more in year three. Interestingly they also highlight a subset of patients who 

appear to not suffer from exacerbations, at least over the three years in which they 

were studied (Hurst et al., 2010). This means that the frequent exacerbators are a 

particular phenotype who will have increased disease progression and a reduced 

quality of life.  

It is as yet unknown what differences exist between frequent and infrequent 

exacerbators. An increase in viral susceptibility has been proposed (Wedzicha, 

2004), which may be due to increased ICAM expression in COPD (Di Stefano et al., 
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1994). COPD patients who have a higher level of bacterial colonisation have been 

shown to be more susceptible to exacerbations (Patel et al., 2002) and a genetic 

predisposition to exacerbations has also been raised with Takabatake et al. (2006) 

demonstrating increased CCL1 gene polymorphisms in frequent exacerbators. 

However, it has also been proposed that frequent exacerbators are those patients who 

fail to adequately adhere to their treatment regimen (Bender, 2012). A direct link 

between COPD severity and exacerbation has been shown, with those in GOLD 

stage 4 having more frequent exacerbations than those in GOLD stage 2 (Hurst et al., 

2010). An animal model that exhibits similar responses to AECOPD would help 

elucidate the pathophysiology and improve treatments. 

1.11 Animal Models of COPD 

Due to the poor treatment of COPD and AECOPD, many different animal models of 

COPD, with differences in species and triggers of inflammation have been 

developed. However, each model has its use and every model has its limitations. An 

effective animal model of COPD and AECOPD would help elucidate possible 

mechanisms that can be targeted for treatment. Animal models of COPD are 

primarily rodents, including mice, rats, guinea pigs and hamsters. The LPS-induced 

animal model of COPD will be discussed in more detail in chapter 3, and the tobacco 

smoke animal model will be discussed in more detail in chapter 5, with an overview 

of types of animal models discussed in this chapter.  

1.11.1 Choice of animal species.  

Many animal species are used in respiratory research, each with advantages and 

disadvantages of their own. Guinea pigs have very similar lung structure and 

responses when compared to humans (Canning & Chou, 2008). They are however 

more expensive and have fewer biochemical tools available when compared to other 
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animals, such as mice and rats. Mice and rats do not closely resemble human lung 

function or structure, however mice have a vast biochemical assay arsenal, as well as 

having the advantage of genetically manipulated strains allowing for detailed 

molecular analysis of a disease process (Wright et al., 2008). Rats develop minimal 

disease, so are not a particularly good choice of species for COPD models (Wright et 

al., 2008). Larger animals, such as dogs and primates, could also be used, for 

example if longer studies are required. However, larger species are much more 

expensive and are considered ‘less ethical’ than rodents. The choice of animal model 

therefore, relates to the desired outcomes of the investigation.  

1.11.2 Choice of COPD Inflammatory Trigger 

1.11.3 Cigarette Smoke Models 

Cigarette smoke models are used in a number of species, including mice, rats, dogs 

and guinea pigs. Seventy-three percent of COPD sufferers are/were smokers making 

these models clinically relevant. Cigarette smoke exposure has numerous advantages 

and disadvantages with regard to the modelling of COPD. The primary advantage is 

clinical relevance in terms of the cause of COPD, however, just like in COPD the 

model takes a long time to develop and is difficult to standardise from laboratory to 

laboratory (Wright et al, 2008). Cigarette smoke exposure has been shown to 

increase neutrophils, associated MMPs and, after chronic exposure, cause 

emphysema in mice (Churg et al, 2004), rats (Lee et al, 2005) and guinea pigs 

(Wright et al. 2002; Dominguez-Fandos et al. 2012).  

Acute and chronic cigarette smoke models have been developed in order to better 

understand COPD. Overall, acute models show a predominantly neutrophilic 

response, while more chronic models have neutrophil and macrophage involvement. 
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Cytokine profiles are similar between the different models, with increases in TNF-α 

and CXCL8 (reviewed in table 1.5).  

Acute models show mixed results in response to steroids, with some studies showing 

the models to be steroid sensitive (Wan et al., 2010) while others show insensitivity 

at lower doses (Lecerlc et al., 2006; Marwick et al., 2009). The chronic models are 

less sensitive to steroid than the acute models (Wan et al., 2010).  Wan et al. (2010) 

also describe a reduction in roflumilast sensitivity in the chronic model compared to 

the acute model. They surmise that the acute model could be used to screen for drug 

efficacy, with those showing promise then being tested in the chronic model. 

Chronic models also demonstrate similar changes in lung function as COPD, 

including increased total lung capacity, static compliance and airway 

hyperresponsiveness, while acute models show no change in lung function 

(Table1.5). However, most importantly, acute cigarette smoke models of COPD do 

not show any histological changes that are observed in COPD, while more chronic 

models have been shown to exhibit emphysema, goblet cell metaplasia and airway 

smooth muscle hyperplasia (Table 1.5). 

To try to overcome the length of time required for inflammatory and histological 

changes to appear, alterations to the smoke model have been developed, including 

intranasal administration of tobacco–infused media. This decreases the time to less 

than 40 days, while increasing neutrophil and lymphocyte numbers within the 

BALF, causing mucin hyper-secretion and airway hyperresponsiveness (Miller et al, 

2002).  

Acute cigarette smoke models have their use in drug screening but chronic cigarette 

smoke models are more representative of the disease, with increased inflammation  
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and macrophage involvement, a decrease in lung function and histological changes. 

Drug responses between the two models are also different, signifying differences in 

pathways between the models. 

1.11.4 Lipopolysaccharide (LPS) Models 

LPS has a scientific basis for its use in models of COPD, with cigarette smoke 

containing large quantities of LPS as well as being shown to activate similar 

inflammatory pathways (Hasday et al., 1999).   

Many animal models have been used to test the effects of LPS induced inflammation 

in the lungs, both acutely and chronically (reviewed in table 1.6). Acute LPS 

challenge shows inflammatory cell influx and increased pro-inflammatory cytokine 

expression. No acute models describe any changes in lung function or lung 

histology. Chronic LPS models however have been described showing prolonged 

bronchoconstriction and airway hyperresponsiveness. Many also describe 

histological changes, with increased emphysema, goblet cell metaplasia and airway 

smooth muscle hyperplasia (Table 1.6).  

The corticosteroid dexamethasone had mixed results in the chronic model, with 

descriptions of lung function improving and worsening with dexamethasone 

treatment (Toward and Broadley, 2001; 2002; Kaneko et al., 2007). There were also 

partial responses in inflammation, with a reduction in neutrophils in the BALF but 

no effect on macrophages (Toward and Broadley, 2001), and reductions in tissue 

leucocytes but not BALF cells (Kaneko et al., 2007). Goblet cell hyperplasia was 

also improved with dexamethasone (Toward and Broadley, 2002). Toward and 

Broadley (2001) demonstrated steroid insensitivity to dexamethasone after a single 

LPS exposure, however data in this thesis shows a single exposure to LPS is 

sensitive to dexamethasone, all be it at a higher dose. 
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The PDE4 inhibitor rolipram also showed mixed results in the models, with the same 

chronic LPS model exhibiting improved lung function and inflammation in one 

study and showing reduced lung function in a different study (Toward and Broadley 

2001; 2002). Theophylline and tiotropium has also been shown to be beneficial in 

chronic LPS models (Kaneko et al., 2007; Pera et al., 2011) 

Importantly, as with the cigarette smoke models, no acute model described 

histological changes. The chronic models did however describe differences in 

histology including emphysema, goblet and clara cell metaplasia and increased 

collagen deposition (Table 1.6), which were found in models from 18 days to 12 

weeks. The chronic LPS model is therefore a better representation of COPD as it has 

similar inflammation, but is superior over the acute model, with changes in lung 

function and histology.  

 1.11.5 Emphysema Models 

Many animal models of emphysema have been created that cause extensive damage 

to the lungs, independent of inflammation. Kasahara et al (2000) showed that 

inhibition of the vascular endothelial growth factor receptor, responsible for the 

vasculogenesis and angiogenesis if endothelial cells, was able to quickly cause 

emphysematous changes without inflammation. There are also numerous studies 

involving the direct instillation of various elastases directly into the lungs of animals, 

including human neutrophil elastase (Janoff et al, 1977; Lucey et al, 1988) and 

pancreatic porcine elastase (PPE) (Lai & Diamond, 1990). These again result in the 

rapid development of emphysema, without the COPD-associated inflammation. 

Therefore, none of these models are sufficient for studying the pathophysiology of 

COPD, but are only suitable for examining treatment of emphysema. 
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1.11.6 Genetic Models 

Genetically altered animal models allow for the analysis of a specific gene 

knockout/polymorphism on the cause and progression of the disease. Pallid mice are 

a model of α1 anti-trypsin deficiency, which, as mentioned, is the only proven 

genetic risk factor. Cavarra et al (2001) showed the importance of α1 anti-trypsin in 

the formation of emphysema, with pallid mice exhibiting rapid acceleration of 

histological change compared to wild-type controls. Studies with MMP-12 knockout 

mice have also demonstrated the importance of MMPs in the development of 

emphysema, with MMP-12 deficient mice not developing emphysema when wild 

type controls do (Hautamaki et al, 1997). However, genetic models as a model of 

COPD exhibit a too simplistic view with regards to the disease as a whole. COPD is 

a result of many genetic and environmental factors, with a knockout of one gene 

alone not causing the disease. 

All animal models of human disease have limitations. There is a need to develop a 

model that exhibits a large number of features associated with the disease; 

inflammation, a decrease in lung function and histological changes; however the 

model must also exhibit aspects of steroid resistance and have the potential to be 

exacerbated. A model exhibiting these properties would allow the complex pathways 

involved in the stable and exacerbated phase of COPD to be investigated, improving 

the treatment of the disease. 

1.11.7 Animal Models of Acute Exacerbation of COPD 

1.11.7.1 Viral Exacerbations 

Animal models of AECOPD have been developed to try and better understand the 

pathophysiology taking place. Many different species of animal have been used, with 

a wide variety of viruses being given. 
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Meshi et al (2002) demonstrated that adenovirus on top of chronic smoke challenge 

in the guinea pig increased inflammation and increased emphysema compared to 

smoke challenge alone. Gualano et al. (2008) investigated the effect of influenza in 

mice exposed to smoke for up to 3 days and found increased inflammation and viral 

titre in smoke challenged mice compared to the control. Robbins et al. (2006) also 

showed different responses to influenza in mice, this time after chronic smoke 

exposure. The smoke challenged animals had an increase in inflammation after virus 

inoculation and had a greater mortality rate than virus only challenged animals. 

Parainfluenza virus has been used in many studies as it is a much safer virus to work 

with than influenza, which requires high containment and a vaccination program. It 

is mainly used in guinea pigs, with studies demonstrating an infection in guinea pigs 

with parainfluenza virus (Blomqvist et al., 2002; Adamko et al., 1999). Para 

influenza in the guinea pig increases cell influx into the lungs as well as increasing 

airway hyperresponsivness (Toward et al., 2005; Broadley et al., 2010a) and has 

been demonstrated as a good model of asthma exacerbations (Riedel et al., 1996). 

The effect of parainfluenza inoculation in a guinea pig model of COPD is not 

described in the literature and may be a useful model to develop.  

Viral mimetics, such as the TLR3 agonist Poly I:C, have also been used as 

exacerbation agents. Kang et al. (2008) observed increased inflammation, 

emphysema and fibrosis in mice challenged with cigarette smoke and poly I:C 

compared to smoke only challenged animals. 

1.11.7.2 Bacterial Exacerbations 

Animal models have been developed to better understand the pathophysiology of 

bacterial exacerbations of COPD. These have been in many different species, using 
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many different stimuli to induce COPD-like inflammation/histology, as well as using 

different bacteria. The most frequently isolated bacteria in both stable and 

exacerbated disease is non-typeable Haemophilus influenza (Sethi et al., 2006; Bandi 

et al., 2001), meaning most animal models of exacerbations use this bacterium for 

clinical relevance, even though it is a human only pathogen (King, 2012). However, 

Slater (1990) demonstrated an infection in rats with NTHi, after damaging the 

mucosal lining, meaning NTHi may infect animal models with epithelial damage. 

Drannik et al., (2004) showed Pseudomonas aeroginosa on top of a 6-8 week smoke 

exposure in the mouse, significantly increased inflammatory cell and cytokine 

production compared to bacteria only challenged mice. Cigarette smoke also 

decreased the bacterial clearance of Pseudamonas from the lungs. Gaschler et al. 

(2009; 2010) demonstrated, also in a murine chronic cigarette smoke model, that 

NTHi increased inflammation compared to smoke only challenged animals. 

However, it was also shown that TNF-α levels were impaired by smoke in response 

to NTHi, and bacterial clearance was increased with smoke. Treatment with 

dexamethasone decreased bacterial clearance in both the sham and smoke challenged 

mice (Gaschler et al., 2009). 

Ganesan et al. (2012) demonstrated mice challenged with elastase and LPS prior to 

NTHi inoculation had increased inflammation compared to elastase/LPS only 

challenged mice. The elastase/LPS and NTHi mice also demonstrated prolonged 

inflammation, bacterial colonisation and increased emphysema compared to 

sham/NTHi challenged mice. Wang et al. (2010) also showed porcine pancreatic 

elastase exposed hamsters had decreased NTHi clearance compared to NTHi only 

challenged animals. 
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Most studies show an increase in inflammation after bacterial challenge compared to 

the model of stable COPD. Some models also highlight that animal models that 

mimic the chronic inflammation and/or the histological changes in COPD have 

different responses to bacteria compared to naïve/sham animals. 

1.12 Scope of thesis 

There remain many unknowns in COPD. The literature identifies several aspects of 

the disease that needs further investigation. The reason for altered bacterial 

colonisation and clearance, increased severity and susceptibility to viral infections 

and the pathways involved in exacerbations of COPD are as yet unknown. This 

thesis aims to develop an animal model that closely resembles COPD and has the 

potential to be exacerbated. The model could then be used to help elucidate these 

mechanisms and improve treatments for COPD and AECOPD. 

1.12.1 Aims 

The aims of this thesis are:  

• to develop a chronic LPS-induced model of inflammation in the guinea pig 

and investigate the steroid sensitivity, the effect of low dose theophylline on 

the steroid sensitivity and exacerbation potential of the model. 

• to investigate the effect of human parainflunza 3 virus and the viral mimetic 

poly I:C on the guinea pig as potential exacerbation agents.  

• to develop chronic cigarette smoke induced inflammation in the mouse 

exhibiting a similar phenotype to COPD. 

• to determine the dose of non-typeable Haemophilus influenzae required to 

cause an infection and inflammation in Balb/C mice so it can be used as an 

exacerbating agent in the chronic cigarette smoke model 
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• to investigate the effect of chronic, low level cigarette smoke or LPS on 

monocyte derived macrophage (MDM) cytokine release and phagocytic 

ability in response to non-typeable Haemophilus influenzae. 
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2.1 Animal Experiments 

2.1.1 Animal Husbandry 

All animals were allowed a minimum of seven days to acclimatise after delivery 

before any experiments were performed. All experiments were conducted in 

accordance with the Animals (Scientific Procedures) Act, 1986. 

2.1.2 Guinea Pig 

Groups of six, male, Dunkin Hartley guinea pigs (200-250g) were obtained from 

Charles River (Germany). They were housed in plastic bottom cages with Alpha-dri 

bedding (Lillico, Surrey) in a room with a 12 hour dark/light cycle, maintained at 

18°C ± 2°C, 50% ± 10% humidity and were supplied with dried guinea pig food 

(Harlan, UK) and water with ascorbic acid enrichment ad libitum. Hay, wooden 

blocks and cardboard tubing was supplied for environmental enrichment.  

2.1.3 Mouse 

Groups of ten Balb/C mice were obtained from Charles River (UK). They were 

housed in plastic bottom cages with saw dust and shredded paper bedding in a room 

with a 12 hour dark/light cycle, maintained at 18°C ± 2°C, 50% ± 10% humidity and 

were supplied with dried mouse food (Harlan, UK) and water ad libitum. Cardboard 

tubing and wooden blocks were supplied for environmental enrichment.  

2.2 Challenges 

2.2.1 Lipopolysaccharide Exposures 

Guinea pigs received 30µg/ml of lipopolysaccharide (LPS) (E.Coli 026:B6, Sigma), 

or a control solution of saline, nebulised using a Wright nebuliser at 0.3mls/min at a 

constant pressure of 20 psi in a sealed Perspex chamber (15x15x32cm) for 1 hour. 
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2.2.2 Acute Lipopolysaccharide Exposures 

A single 30µg/ml LPS or saline exposure was performed before the guinea pigs were 

culled 24 hours after the exposure. A bronchoalveolar lavage was performed (as 

described in 2.6) to determine total and differential leucocyte numbers, as well as 

cytokine levels. Drug treated animals received drugs as described in Table 2.1 for 6 

consecutive days prior to the lavage. 

 

Figure 2.1:  A schematic representation of the acute LPS exposure protocol with six day drug 

treatment 

2.2.3 Chronic Lipopolysaccharide Exposures 

Exposures were performed using the method described by Toward and Broadley 

(2001). Guinea pigs received a sub threshold dose of 0.3mM histamine 24 hours 

before the first exposure to 30µg/ml of LPS or saline, as explained in 2.2.7. Guinea 

pigs then received 30µg/ml of LPS or saline every other day until a total of nine 

exposures were reached. Airway function was recorded using whole body 

plethysmography (Buxco, UK) after the first, fifth and ninth exposure using specific 

airway conductance (sGaw) as the measured parameter. sGaw was measured at 0 

minutes, 1, 2, 3 and 4 hours after exposure and compared to measurements 

performed immediately prior to the corresponding LPS or saline exposure. This 

allowed for percentage change in sGaw to be calculated. Animals were exposed to 

another histamine exposure 24 hours after the ninth exposure then killed with a 
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sodium pentobarbital overdose (400mg/kg), and a bronchoalveolar lavage was 

performed to determine total and differential cell counts and cytokine levels. 

Figure 2.2: A schematic representation of the chronic LPS exposure protocol with six day drug 

treatment 

2.2.4 Cigarette Smoke Challenge 

Balb/C Mice received cigarette smoke (1R3F  Kentucky research cigarettes,) or air 

(sham) into a sealed perspex chamber (7000cm
3
) at a flow rate of 0.6 l/min for 30 

minutes. Smoke was produced by peristaltic suction with 4 seconds of smoke per 

minute. The average particulate matter within the chamber was recorded, giving the 

number of small particles in the air. This was used to analyse the densitiy of smoke 

in the chamber and adjustments to the amount of smoke entering the chamber altered 

accordingly to maintain consistant readings across all groups. The average total 

particulate matter was 444.1 ± 1.9 tpm/M
3 

2.2.5 Acute Cigarette Smoke Challenge 

Mice were exposed to cigarette smoke or air for 30 mintes, twice a day, for 3 

consecutive days. A minimum of 5 hours was allowed between exposures. 24 hours 

after the final exposure the mice were culled and a bronchalveolar lavage was 

perfromed to determine total and differential leucocyte numbers and cytokines. 
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Figure 2.3: A schematic representation of the acute cigarette smoke protocol. 

2.2.6 Chronic Cigarette Smoke Challenge 

Mice were exposed to cigarette smoke or air for 30 minutes, twice a day, 5 days a 

week, for 5 weeks. On the sixth week, mice received twice daily smoke or air for 3 

days. Animals were killed 24 hours after the final smoke or air challenge and a 

bronchoalveolar lavage was performed to determine total and differential leucocyte 

numbers.  

  

 

 

 

Figure 2.4: A schematic representation of the chronic cigarette smoke protocol with NTHi/BHi 

challenge 

2.2.7 Histamine Exposures 

A sub threshold dose of histamine needed to be determined to evaluate airway 

hyperresponsivness (AHR). Histamine is a spasmogen released primarily from mast 

cells upon activation (Riley and West, 1953). Histamine acts as an agonist for 

histamine receptors, with the H1 receptor found to be more associated with smooth 

muscle in humans (Hardy et al., 1996) and guinea pigs (Hill et al., 1977). Histamine 

is therefore a bronchodilator in the airways by activation of the H1 receptor. The 
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response to histamine can increase in some disease states, with some COPD patients 

exhibiting AHR (Hospers et al., 2000).  

AHR was performed by administering 0.3, 0.5 and 0.7mM histamine delivered for 2 

minutes, at 20% duty per chamber and a constant flow rate of 2 litres per minute per 

chamber using the whole body plethysmography set up. Figure 2.5 showed 0.3mM 

histamine was a sub threshold dose that caused no response in naive guinea pigs. A 

bronchoconstrictive dose of histamine was also determined in order to evaluate the 

effectiveness of bronchodilator drugs, such as theophylline. 0.7mM of histamine 

delivered for 2 minutes, at 20% duty per chamber and a constant flow rate of 2 litres 

per minute per chamber, exhibited significant bronchoconstriction in naive animals.
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Figure 2.5: Response of the airways to a histamine exposure (0.3, 0.5 or 0.7mM) in 

naive guinea pigs. Mean changes in sGaw are expressed as mean percentage change from 

baseline ± S.E.M. at 0, 5 and 10 minutes after exposure, with a negative value denoting a 

bronchoconstriction. * significantly different from baseline sGaw values. One-way Analysis 

of Variance (*P<0.05; n=6). 
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2.3 Airway Function 

The parameters analysed in the experiments were specific airway conductance 

(sGaw), total lung volume and static compliance of the lung. sGaw is a parameter 

that is used to measure bronchoconstriction in the lung by assessing the conductance 

of the airways. Static compliance measurements analyse the elasticity of the lung, 

with increased compliance signifying a loss of elasticity, while total lung volume 

measures the volume of air the lungs can hold. These measurements were performed 

one of two ways; whole body plethysmography or using a resistance and compliance 

set-up.  

2.3.1 Whole Body Plethysmography 

A whole body plethysmograph was used to measure changes in lung volume and 

airway resistance. Airway resistance (Raw) is affected by the length, diameter and 

number of airways present in the lungs and is inversely proportional to the airway 

conductance (Gaw). Specific airway conductance (sGaw) takes into account Gaw and 

variations in total lung volume between individuals to give a specific change in 

airway conductance for individuals irrespective of total lung volumes (Briscoe & 

Dubois, 1958).During a bronchoconstriction, the smooth muscle of the airway 

contracts, decreasing the diameter of the airways. This increases the resistance (Raw) 

and thus decreases the conductance (Gaw).  

Guinea pigs were placed in a restraint with an elastomeric rubber seal being placed 

over their head and around their neck. They were placed in a double chamber 

plethysmograph, consisting of a thoracic chamber and a nasal chamber, which was 

separated by the rubber seal (Figure 2.6). Each chamber contained a 

pneumotachograph and flow transducer, allowing the measurement of nasal and 

thoracic flows independently. The changes in flow were analyzed by Biosystem XA  
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 Fig 2.6: A schematic diagram of the Buxco, double-chamber plethysmograph setup. 

 

 

 

Fig 2.7: A schematic diagram of the EMMS, resistance and compliance setup.  
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software (Buxco®, Wilmington, North Carolina, USA) and analyzed using Non-

invasive Airway Mechanics (NAM) to give values for sGaw. 

2.3.2 Resistance and Compliance Measurements 

Resistance and compliance measurements can be used to measure a change in airway 

resistance, compliance and conductance, tidal volume, total lung capacity, 

inspiratory and expiratory flow, pressure and breathing frequency. The important 

parameters in COPD are compliance and total lung capacity, with both increasing 

d        p         d           f             f          (O’          d 

Lavaeneziana, 2006). Static compliance was used in the experiments, which takes 

into account the pressure and volume of the lung during a stable phase of breathing, 

i.e. on peak inspiration when  

there is no variation in airflow. Static compliance is calculated using the following 

equation: 

 

Cstat = Static compliance, VT = Tidal volume, Pplat = Plateau pressure, PEEP= 

positive end expiratory pressure 

 

Static compliance is beneficial over other measurements of compliance as it is able 

to identify not only changes in compliance, but also over-inflation in the lung 

(Nikischin et al. 1998). Total lung capacity, as described by Lundsgaard and van 

Slyke (1918), is the total volume of air the lung can hold and is the vital capacity 

plus the residual volume. The vital capacity is the maximum amount of air a person 

can expire after a full inspiration. The residual volume is the amount of air left in the 

lungs after a full expiration. 

Cstat = 
VT

Pplat - PEEP
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Unlike whole body plethysmography, it is an invasive way to measure pulmonary 

function, with mice being anaesthetised with hypnorm/hypnoval, before the trachea 

was cannulated. Mice were placed on a heat mat and the cannula attached to a 

plethysmograph. The plethysmograph was attached to an acquisition unit, which was 

in turn attached to a ventilator, with the whole system being controlled by data 

acquisition software (EMMS, England) (fig 2.7). The software controlled the 

animals breathing and was able to perform forced manoeuvres tests at frequent 

intervals to determine total lung capacity and static compliance.  

2.4 Exacerbating Agents 

2.4.1 Human Parainfluenza 3 Inoculations 

Human parainfluenza 3 virus was cultured in an African green monkey, renal 

epithelial (BSC-1) cell line to achieve a minimum viral titre of at least 10
8 

virus 

particles per ml. The virus particles were quantified by RT-PCR following RNA 

extraction as described in 2.6.8. 

Animals received 0.3mM histamine on day 1 to determine airway responsiveness 

prior to any viral inoculations taking place. Guinea pigs received either 125µl of 

virus or a control of virus-free media, twice in each nostril on days 2 and 3. All viral 

inoculations were performed in a laminar flow cupboard to prevent viral spread. As 

well as this, after the first inoculation with virus, animals were kept in an isolator 

with an independent air supply to prevent viral spread. They were housed in twos or 

threes, dependent on size, in plastic cages with steel cage tops. Each cage contained 

hay, wooden blocks and cardboard tubes for environmental enrichment. Animals 

inoculated with medium were returned to the main animal house facility.  Animals 

received their second dose of 0.3mM histamine on day 7 to test for airways 
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responsiveness, and were then killed by a sodium pentobarbital overdose for a 

bronchoalveolar lavage to be performed.  

Figure 2.8: A schematic diagram of the 7 day virus/media inoculation protocol. 

2.4.2 Poly I:C Inoculations 

Guinea pigs received 0.3mM histamine on day 1 to determine airway 

responsiveness. Guinea pigs received 125µl of poly I:C (2mg/ml) or a saline control 

per nostril per day, on days 2, 3 and 4. Airway responsiveness to 0.3mM histamine 

was measured on day 5, 24 hours after the final poly I:C instillation. The animals 

were then killed by an overdose of sodium pentobarbital and a bronchoalveolar 

lavage was performed.  

Figure 2.9: A schematic diagram of the 7 day virus/media inoculation protocol. 
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2.4.3 Non-typeable Haemophilus influenzae (NTHi) Inoculations 

NTHi was grown on chocolate agar plates (Becton Dickinson, UK) before being 

inoculated into supplemented brain-heart infusion broth (Becton Dickinson, UK) at 

an optical density reading of 600nm (OD600) greater than 1.1. A 1:10 dilution of the 

infusion was adjusted accordingly to give an OD600 reading of 0.4, which 

corresponded to 6x10
9 
CFU/ml. 

Mice were anaesthetised with an intraperitoneal injection of hypnorm (0.1mg/kg 

fentanyl citrate/3.15mg/kg fluanisone) /hypnovel (1.55mg/kg midazolam) before 

they received 50µl of supplemented brain-heart infusion broth or NTHi at a 

concentration of 6x10
9 

CFU/ml
 
intra nasally. Animals were killed 24 hours after 

intranasal administration (unless otherwise stated). All bacterial inoculations took 

place in a laminar flow cupboard to prevent bacterial spread. After bacterial 

inoculation animals were housed in groups of 5 in an OptiMice bio-containment cage 

system (Animal Care Systems, USA) with an independent air supply. 

2.5 In Vivo Drug Administration 

2.5.1 Corticosteroids 

The effect of the corticosteroids budesonide and dexamethasone (Sigma Aldrich, 

UK) were evaluated against the LPS model in chapter 4. All drugs were given once a 

day for 6 consecutive days before the end of an experiment and were received thirty 

minutes before an LPS challenge. Doses, vehicles and administration can be found in 

table 2.1. 

2.5.2 Theophylline 

The effect of theophylline was evaluated in the chronic LPS model in chapter 4. 

Theophylline was administered orally via a gavage needle, twice a day for 6 
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consecutive days before the end of an experiment. Animals receiving theophylline 

alone did so 30 minutes before any challenge. Animals receiving both theophylline 

and a corticosteroid, firstly received theophylline 15 minutes before the steroid was 

administered. Details relating to doses, vehicles and administration can be found in 

table 2.2 

To evaluate the bronchodilator effects of theophylline against a bronchoconstrictive 

dose of histamine (Chapter 4), theophylline was administered 30 minutes before a 

histamine challenge to allow for adequate absorption. 

Drug Dose Vehicle 

Route of 

Administration 

Budesonide 

0.6 mg/ml 

s.i.d 

30% DMSO 

30% Ethanol 

40% Saline 

Nebulised/Inhaled 

(15Mins) 

Dexamethasone 

10mg/kg 

s.i.d 

30% DMSO 

30% Ethanol 

40% Saline 

Intra-peritoneal 

Table 2.1: Doses, vehicles and administration of corticosteroids 

Drug Dose Vehicle 

Route of 

Administration 

Theophylline 

 5mg/kg 

 50mg/kg 

b.i.d (~ 8 hours 

between doses) 

0.5% Methyl 

cellulose and 0.1% 

Tween®20 in 

Saline 

Oral 

(Gavage Needle) 

Table 2.2: A table showing the dosage, vehicle and route of administration for drugs 
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2.6 Posthumous Analysis 

2.6.1 Bronchoalveolar Lavage of the Guinea Pig 

At the end of all experiments, animals were killed by an overdose of sodium 

pentobarbital (Euthatal (400mg/kg)) by bilateral intraperitoneal injection. An 

incision was made into the neck and the trachea was cannulated using polypropylene 

cannulas (7-9FG dependent on trachea size). The lungs were removed, with the right 

lobes being clamped at the bronchi. 0.5ml/100g of saline was instilled into the left 

lobes where it was left for three minutes before removing the bronchoalveolar lavage 

fluid (BALF) with a syringe. This process was repeated one more time to maximise 

BALF return. All lobes were tied off apart from the largest lobe of right lung. The 

clamp was then removed and the large right lobe insuflated with 10% formaldehyde 

at a constant pressure of 25mm/H2O. The largest lobe of right lung was stored in 

10% formaldehyde for further histology explained in 2.8, the remaining right lobes 

were stored at - 80°C for further analysis. 

2.6.2 Cellular Influx 

Total and differential cell counts were determined in the BALF. Total cell counts 

were performed using a Neubauer haemocytometer to determine total cells per ml. 

100µl of BALF was placed under the cover slip which was evenly distributed by 

capillary action and viewed at 100X magnification. The haemocytometer has a 25 

square grid, with cells present within five of these squares (top left, top right, middle, 

bottom left and bottom right) being counted. These numbers were multiplied by 5 

and averaged to determine the number of cells in the 25 square grid. Each square has 

an area of 0.04mm
2
, meaning the 25 squares have an area of 1mm

2
. The depth of the 

haemocytometer is 0.1mm meaning the volume is only 0.1mm
3
, therefore the value 

must be multiplied by 10,000 to achieve cells per 1cm
3
 or cells per ml. 
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To determine differential cell counts, slides of the BALF were made by placing 

100µl of each BALF sample into a funnel of a slide maker which was then spun at 

1000rpm for 7 minutes using a Shandon cytospin (Thermo Scientific, UK). The 

   d   w        w d        d   f             b f    b           d               ’  

stain (1.5% in 100% methanol)(Sigma Aldrich UK) for 5 minutes, then rinsed and 

allowed to dry overnight. Microscopy was then carried out at 1000X, counting 200 

cells, differentiating between neutrophils, monocytes/macrophages, eosinophils and 

lymphocytes. 

 

Figure 2.10 Different leucocytes identified in the BALF after Leishmans stain (Adapted 

from www.rnceus.com). 

 These were used to calculate the percentage of each cell, and along with the total 

cell counts, the number of each cell per ml. The remaining BALF was spun at 

3800rpm for 6 minutes and the supernatant stored at -80°C for biochemical analysis. 

The pellet was discarded. 

2.6.3 Guinea Pig Lung Homogenisation 

The lung was homogenised using a Precellys tissue homogeniser (Precellys, France) 

at 100mg of lung per 1ml of sterile phosphate buffered saline (PBS). The tissue 

homogeniser was run on a 3 x 5second cycle with 15 second gaps. The homogenised 
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lung was then spun at 1300rpm for 1 min to pellet the remaining tissue, with the 

supernatant being stored at -80°C for further analysis. 

2.6.4 Quantification of Guinea Pig Total Protein 

Total protein was determined using a protein assay kit (Fisher, UK). 10µl of standard 

protein dilutions of bovine serum albumin (BSA) ranging from 2mg/ml to 

0.01mg/ml, as well as a blank were placed in duplicate in a 96 well microtitre plate. 

0.5 µl of each sample was placed in the plate in duplicate before 200 µl of working 

reagent was added to each well. The plate was sealed with a plastic lid and placed in 

an incubator at 37°C for 30 minutes. The plate was then removed and allowed to 

cool at room temperature for 5 minutes before being read on a spectrophotometer at 

540nm. A normalised curve of standards was produced and the equation of the line 

used to determine the unknown protein concentration of the samples.  

2.6.5 Guinea Pig Cytokine Analysis 

Cytokine analysis was performed on bronchoalveolar lavage fluid and homogenised 

lung tissue by ELISA (R&D duoset kits, R&D, UK). BALF was placed in the plate 

neat while a 1:5 dilution was required for the lung tissue. 

2.6.6 TNF-α 

TNF-α E I A  w    p  f    d    p                   .     f  ,       ff         w    

plates were coated with 100 µl of the capture antibody, mouse anti guinea pig TNF-α 

at a concentration of 4 µg/ml per well overnight at room temperature. Excess capture 

antibody was then washed off with phosphate buffered saline with Tween 20 (PBST) 

3 times before being blotted dry. 300µl of Reagent Diluent (RD) (1% BSA in PBS, 

pH 7.2-7.4 (0.2µm filtered)) was added to each well to block unbound sites and 

prevent non specific binding and incubated for 1 hour at room temperature. Wells 
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were then washed 3 times with PBST before 100µl of sample, standards or blank 

was added and incubated for 2 hours at room temperature. Standards were a seven 

point standard curve using 2-fold serial dilutions with the highest concentration 

being 2ng/ml. Plates were the washed again three times with PBST. 100µl of 

detection antibody at 4µg/ml was then added to each well and incubated for 2 hours 

at room temperature. Plates were again aspirated and washed 3 times with PBST 

before being blotted dry. 

100µl of enzyme-labelled (horseradish peroxidase) Streptavidin, 1/200 dilution was 

added to each well and incubated for 20 minutes at room temperature, avoiding 

direct light. Unbound label was washed off 3 times with PBST and blotted dry. 

100µl of the enzyme substrate, o-Phenylenediamine, was added to each well and 

incubated at room temperature for approximately 20 minutes, or until the colour 

develops sufficiently.  50µl of the stop solution (2.5M sulphuric acid) was added to 

each well and the plate read at 490nm on a spectrophotometer. 

2.6.7 CXCL-8 

CXCL-8 duosets were performed exactly the same as the TNF-α d       w        

only difference being the working concentration of the detection antibody in the 

CXCL-8 kit at 20ng/ml. However, unlike the TNF-α d      w               p   

specific, a specific CXCL-8 kit did not exist for guinea pigs resulting in a human kit 

being used. 

2.6.8 Quantification of Virions 

2.6.8.1 RNA Extraction 

RNA extraction was performed on leukocyte-free BALF and on a sample of 

homogenised lung for all groups that received virus or media. RNA extraction was 

performed using a high pure viral nucleic acid kit (Roche, UK) according to the 
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method supplied. Briefly 200µl of BALF or homogenised lung was added to 200µl 

of working solution (30µl of poly A and 1.5ml of binding buffer) and 50µl of 

proteinase K and incubated at 72°C for 10 minutes. Binding buffer was then added 

before the entire sample is transferred to a high filter tube, placed in a collection tube 

and centrifuged (13,000RPM for 1 minute). Inhibitor removal buffer was added and 

the sample was centrifuged again. Wash buffer was added, the sample centrifuged, 

and then the wash buffer step was repeated. Elution buffer was then added, the 

sample was centrifuged for a final time discarding the filter tube and the fluid 

containing viral RNA was aliquoted into cryotubes for storage at -80°C. 

2.6.8.2 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

RT-PCR was performed on extracted RNA (from 2.6.8.1) using a SuperScript first-

strand synthesis kit (Invitrogen, UK) according to the method supplied. Briefly 8µl 

of sample was added to 1µl of dNTP mix and 1µl of RNA/primer mix, which along 

with a negative and positive control was incubated at 65°C for 5 minutes, before 

being placed on ice for 1 minute. 10X RT buffer, 25mM MgCl2, 0.1M DTT and 

RNase OUT was then added to each and then incubated for 2 minutes at 25°C. 

Superscript II RT was then added to each tube, except the negative control, and 

incubated at 25°C for 10 minutes,  42°C for 50 minutes and 70°C for 15 minutes 

before being chilled to 4°C. A LightCycler TaqMan Master Kit (Roche, Germany) 

was used to quantify the DNA produced by the thermal cycle step, according to the 

method supplied. 5µl of each sample was placed in a capillary tube with PCR grade 

water, PIV3 primers and the master mix solution. The capillaries were centrifuged at 

700G for 5 seconds, before being placed in the light cycler, programmed for 1 cycle 

of 95°C for 10 minutes, 50 cycles of 95°C for10 seconds then 60°C for 1 minute and 

finally 1 cycle of 40°C for 30 seconds. The lightcycler software then supplies 
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number of virus particles per µl, which was converted into number of virus 

particles/ml. 

2.7 Bronchoalveolar Lavage of the Mouse  

At the end of all experiments, animals were killed with an overdose of a 1 in 10 

dilution sodium pentobarbital (Euthatal (400mg/kg)) by intraperitoneal injection. 

The abdomen was cut open and blood was removed from the inferior vena cava by a 

needle and syringe containing 50µl of EDTA before the animal was exsanguinated 

by cutting the descending aorta. An incision was then made into the neck and the 

trachea was cannulated. 0.4mls of saline was instilled into the lungs and immediately 

removed three times using a syringe to obtain BALF samples. The lungs were then 

removed from the chest and the right lung tied and removed. The top right lung lobe 

was removed for analysis of tissue cytokine and chemokine levels. Two of the right 

lung lobes were removed for bacterial viability analysis if applicable. The remaining 

right lung lobe was stored at -80°C for later gene expression analysis if required. The 

left lung was then inflated with 10% Neutral Buffered Formalin (10% NBF) at a 

constant pressure of 25cm/H2O. Once the lungs were fully inflated the trachea was 

tied off, the lungs removed and placed in a pot of 10% NBF and sent to the histology 

department for histological processing and staining.   

2.7.1 Cellular Influx 

Total and differential cell counts were determined by examining the BALF. 

2.7.2 Total Cell Counts of the Mouse 

The BALF was centrifuged at 1400rpm for 10 minutes at 4°C. The supernatant was 

aliquoted into tubes and stored at -80°C for further analysis. The pellet was 

resuspended in 0.5ml of methyl violet fixative and was thoroughly vortexed. 15µls 
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was then pipetted into the haemocytometer, with 3 large squares being counted. 

Samples containing large numbers of cells were further diluted to increase accuracy. 

The total numbers of cells was multiplied by 10 and then multiplied by the total 

volume the cells were suspended in to give the number of cells per ml. 

2.7.3 Differential Cell Counts of the Mouse 

100µl of uncentrifuged BALF was placed into a cytofunnel of a slide maker and 

spun at 700rpm for 5 minutes using a Shandon cytospin (Thermo Scientific, UK). 

Slides were allowed to air dry for 5 minutes before being stained using a Bayer 

Hematek slide stainer (Bayer, UK). Slides were stained with an accustain automated 

Wright-Giemsa stain (Sigma Aldrich, UK). Slides were then allowed to air dry for 

several minutes before being mounted and cover slipped. Microscopy was then 

carried out at 1000X, counting 200 cells, differentiating between neutrophils, 

monocytes/macrophages, eosinophils and lymphocytes. 

2.7.4 Mouse Blood Processing 

Blood samples were spun at 3500rpm for 10 minutes before the plasma was 

removed, aliquoted and stored at -80°C for further analysis 

2.7.5 Mouse Lung Homogenisation 

2.7.6 Homogenisation for Cytokine Analysis 

A lobe of right lung was placed into 1 ml of phosphate buffered saline containing a 

protease inhibitor cocktail (Roche, UK). The lobes were homogenised for 30 seconds 

using a handheld tissue homogeniser (Fisher, UK). 
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2.7.7 Homogenisation for Bacterial Viability Analysis 

Two right lobes of lung were placed in 1 ml of sterile brain-heart infusion broth 

(Becton Dickinson, UK). The lobes were homogenised for 30 seconds using a 

handheld tissue homogeniser (Fisher, UK). 

2.7.8 Quantification of Mouse Total Protein 

The quantification of mouse total protein was performed in the same way as 

previously described for the guinea pig (2.6.4) 

2.7.9 Mouse Cytokine Analysis 

Cytokines were analysed using the MesoScale Discovery system (MesoScale 

Discovery, USA) as per the instructions. Briefly, a mouse pro-inflammatory 7-plex 

base kit was used, which contained 96-well pre-coated plates with Interferon-ɣ, IL-

 β, I -10, IL12p70, IL6, CXCL1 and TNF-α capture antibodies. A 7 point standard 

curve was prepared by 1 in 4 serial dilutions in PBS; with the highest standard being 

10000pg/ml. 25µl of standard/sample or blank was placed into the wells of a pre-

coated plate, covered and incubated at room temperature with vigorous shaking 

(300-1000rpm) for 1 hour. The detection antibody was prepared by performing a 1 in 

50 dilution of the provided detection antibody in Diluent 100 (MSD, USA) and 

adding 25µl to each well. Again, the plates were sealed and incubated with vigorous 

shaking for 1 hour at room temperature.  The plate was then washed 3 times using 

PBST and blotted dry. The read buffer was then prepared by diluting 1 in 2 in dH20 

and adding 150µl to each well. Plates were then analysed in an MSD SECTOR plate 

reading instrument (MesoScale Discovery, USA). 

2.7.10 Quantification of Colony Forming Units 

100µl of lung homogenised in brain heart infusion broth (as described in 2.7.7) was 

streaked on chocolate agar plates (Becton Dickinson, UK) with a large dilution range 
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using 1 in 10 serial dilutions in BHi broth. The plates were incubated at 37°C in 5% 

CO2 for 16 hours. Plates were read on a protoCOL 2 colony counter (Synbiosis, UK) 

with the limit of detection ranging from a minimum of 30 to a maximum of 300 

colonies per plate. Plates falling below 30 were considered to have no growth while 

plates exceeding 300 were considered too confluent for accurate counting. The 

relevant dilution factors were input into the programme to give colony forming units 

(CFU)/ml 

2.8 Histological Analysis 

2.8.1 Tissue Processing 

Histology was performed on the lobe of unlavaged, insuflated lung that had been 

stored in 10% formaldehyde. Two 3-5mm slices of lung were cut 1mm below the 

bronchus and placed in a histology cassette for processing using the following 

protocol: 

50% industrial methylated spirit (IMS) – 1 hour 

70% IMS – 1 hour 

90% IMS – 1 hour 

100% IMS – 1 hour 30 minutes 

100% IMS – 1 hour 30 minutes 

100% IMS – 1 hour 30 minutes 

50% IMS:50% chloroform – overnight 

Chloroform – 1 hour 30 minutes 

Chloroform – 1 hour 30 minutes 

Paraffin wax – 6 hours 
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Once the lungs had been processed, they were embedded in paraffin wax blocks. 

This was performed by placing the lung sections in a metal mount, covering them 

with molten paraffin wax and allowing them to harden on a cold plate. The 

embedded samples were cut into 3-5µm sections using a microtome and mounted 

onto polysine coated glass slides (Thermo Scientific, UK). The slides were allowed 

to dry overnight at 37°C before being stained. 

2.8.2 Tissue Rehydration/Dehydration 

Tissue section were rehydrated using the following procedure: 

Histoclear – 5 Minutes 

Histoclear – 5 Minutes 

100% IMS - 5 Minutes 

100% IMS - 5 Minutes 

90% IMS - 5 Minutes 

70% IMS -5 Minutes 

50% IMS - 5 Minutes 

Distilled Water –5 Minutes 

Dehydration of the tissues was performed after staining by following this procedure 

in reverse 

2.8.3 Haematoxylin and Eosin Stain - General Morphology 

M    ’         x     – 3 minutes 

Rinse in distilled water 

Running tap water – 5 minutes 

Acid ethanol – dip 8-12 times to destain 
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Running tap water – 2 minutes 

Distilled water – 2 minutes 

Eosin – 20 seconds 

 

2.8.4 Alcian Blue/Periodic Acid Schiff Stain - Mucous 

1% Alcian blue dissolved in 3% aqueous acetic acid (pH 2.5) – 5 minutes 

Running tap water – 5 minutes 

Periodic acid (0.5%) – 5 minutes 

Running tap water – 5 minutes 

Distilled water – 5 minutes 

    ff’          – 10 minutes 

Running tap water – 10 minutes 

M    ’         x     – 20 seconds 

Running tap water – 5 minutes 

 

2.8.5 Mean Linear Intercept 

Mean linear intercept was calculated by taking a photograph of the haematoxylin and 

eosin stained slides at X100 magnification. Two lines were drawn across the 

photograph, one in the centre horizontally and one in the centre vertically. The 

number of times the line intercepted an alveolar wall was recorded and the values 

averaged. If the line intercepted an airway or a blood vessel the line was moved up 

or right appropriately until it was no longer intercepting the artefact. 
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2.9 Monocyte Derived Macrophages 

    d w     q    d f            ’     site donor panel with all relevant consent 

acquired and donors remaining anonymous. Briefly, 20mls of blood was added to 

2mls of EDTA in sterile falcon tubes before 10mls of PBS and 10mls of 4% PBS-

Dextran was added to each falcon tube, mixed by gentle inversion and then left on 

ice for 30 minutes to allow for erythrocyte sedimentation. Following sedimentation, 

30mls of the supernatant was slowly layered on top of 15mls of Ficoll-Paque plus 

(GE Healthcare, UK) and centrifuged at 1800rpm for 20 minutes at 4°C.  

  

Figure 2.11 The density separation of blood using Ficoll (Munoz and Leff, 2007) 

The peripheral blood mononuclear cell (PBMC) layer was then removed into sterile 

falcon tubes and topped up to 50mls with PBS before being centrifuged again at 

1400rpm for 10mins. The supernatant was discarded and the pellet was re-suspended 

in 1ml of PBS. The cells from the same donor were pooled by re-suspending the 

pellets in the same 1ml of PBS with cell counts then being performed. 10-15mls of 

PBS was then added and the tubes centrifuged at 1300 rpm for 10mins at 4°C. The 

supernatant was discarded and the pellet re-suspended in 80µl of MACS buffer 

(PBS, pH 7.2, 2 mM EDTA and 0.5 % bovine serum albumin) per 10
7
 cells before 

20µl of CD14
+
 microbeads (Miltenyibiotec, Germany) per 10

7
 cells was added, 

mixed and incubated at 4°C for 15minutes. A MACS separating column 
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(Miltenyibiotec, Germany) was placed in a magnetic MACS separator 

(Miltenyibiotec, Germany) and prepared by rinsing 3 times with 3mls of MACS 

buffer before the cell suspension was added into the column. The column was then 

washed 3 times with 3mls of MACS buffer to collect unlabelled cells. The column 

was then placed in a falcon tube with 5mls of MACS buffer being flushed through 

the column to remove the labelled cells. The cells were centrifuged at 1300rpm for 

10mins before being re-suspended in 1ml of RPMI 1640 (Invitrogen, UK). Total cell 

counts were performed before the cells were diluted in the relevant volume of RPMI 

1640 with 10% foetal calf serum (Invitrogen, UK), 1% glutamine, 1% 

penicillin/streptomycin and 2µg/ml GM-CSF to acquire a concentration of 1x10
6 

cells per ml. Cells were seeded into wells at a concentration of 100,000 cells per well 

in the 96 well format and 30,000 cells per well in the 384 well format. Cells were 

allowed to adhere for 4 days before the media was changed 

2.9.1 Cigarette Smoke Extract/LPS Challenge of Monocyte Derived 

Macrophages (MDM) 

Cigarette smoke extract was produced by passing five cigarettes (1R3F Kentucky 

research cigarettes) through 100mls of RPMI 1640 media at a flow rate of 0.6l/min. 

This solution was considered 100% cigarette smoke extract (CSE). 1 in 10 serial 

dilutions were performed ranging from 3% to 0.03% CSE, 1 in 10 serial dilutions of 

LPS (E. Coli O26:B6) were also performed ranging from 1ng/ml to 0.01ng/ml in 

GM-CSF enriched RPMI 1640. MDMs were treated with the dilutions of CSE, LPS 

or GM-CSF RPMI control on the fifth day of the experiment. Media was changed on 

days 8 and 10 of the experiment and replaced with GM-CSF enriched media 

containing CSE, LPS or GM-CSF alone. Cells were challenged continuously for a 

total of 1 week before parameters were analysed.  
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Figure 2.12 A schematic diagram of the monocyte-derived macrophage protocol. 

2.9.2 Cytokine Analysis 

On the twelfth day of the experiment the supernatant was removed and stored at -

80°C for further cytokine analysis. After defrosting, cytokines were analysed using 

the MesoScale Discovery system previously described in 2.9.9. The Human 10 Plex 

base kit was used, which contained plates pre-coated in antibodies to detect GM-

CSF, IL- β, I -10, IL-12p70, IL-2, IL-4, IL-5, IL-6, CXCL-8 and TNF-α. Cytokine 

analysis was performed on cells seeded in the 96 well format. 

2.9.3 Phagocytosis Assay 

On the twelfth day of the experiment a phagocytosis assay was performed on cells 

seeded in the 384 well format. Briefly, p   d ™             ® f           p         

(Invitrogen, UK) were defrosted before 2ml of Uptake Buffer (    ’  b      d      

solution containing 20mM hydroxyethyl piperazineethanesulfonic acid, pH7.4) was 

pipetted into the vial. 100µls of opsonising reagent (Invitrogen, UK) was added to 

the bioparticles and the solution was thoroughly vortexed to completely re-suspend 

the particles and incubated for 1 hour at 37°C. 13mls of uptake buffer was then 

added and the tube centrifuged at 1000g for 15 minutes at 20°C to wash the particles.  

The supernatant was discarded and the pellet re-suspended in 800µl of uptake buffer. 

The media was then aspirated from the cells and 15µl of uptake buffer was added to 

1 2 3 4 5 6 7 Day 8 9 10 11 12 

Isolation of MDMs 

from Blood  

7 DayChallenge with LPS, CSE or GM-CSF 

Media Change 

Cytokine Analysis/ 

Phagocytosis Assay 



Chapter Two 
 
 

75 
 

each well. 2.5µl of 50µg/ml cytochalasin D was added to the relevant wells as a 

negative control to inhibit phagocytosis with 2.5µl of uptake buffer added to all other 

wells and incubated for 30 minutes at 37°C.  2.5µl of bioparticles was then added to 

all wells and the plate centrifuged at 300g for 1 minute to settle the particles. The 

plate was immediately read at an excitation wavelength of 544nm and read at an 

emission wavelength of 612nm in a Spectramax florescence plate reader. The plate 

was read every 30 minutes up to 4 hours with incubation at 37°C between readings. 

2.10 Statistical Analysis 

All results were plotted as mean ± standard error of the mean (SEM). sGaw 

measurements were standardised to percentage change from baseline, to take 

calibration differences of the plethysmograph into account and was used to 

determine area under the curve falling below baseline. Cytokines measured from 

monocyte derived macrophages were standardised to percentage of controls to take 

into count large variation in baseline values between samples. Graphs were drawn 

and results statistically analysed using GraphPad Prism 5. In all studies where two 

points from different groups were compared a Mann-Whitney test was performed. In 

studies where two points from the same group were    p   d   p    d    d   ’   -

test was used. If three or more groups were being compared a Kruskal-Wallis with a 

post hoc     ’  test was used. 
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3.1 Lipopolysaccharide Exposure as a Model of COPD 

3.1.1 Lipopolysaccharide 

Lipopolysaccharide (LPS) is the outer component of gram negative bacterial cell 

walls. It confers resistance of the bacteria to host defence mechanisms and decreases 

the uptake of antibiotics. It is also referred to as endotoxin, and can cause septic 

shock in patients who have a systemic infection (Greenwood et al., 2007). LPS is 

comprised of lipids and carbohydrates, and is split into four main units, lipid A, 

disaccharide diphosphate, core oligosaccharide and a repeating O-antigen side chain. 

The immunologically active component of LPS is lipid A, due to its interaction with 

the innate immune system (Lu et al., 2008) (Figure 3.1). There is a scientific 

rationale in using LPS as a stimulus for COPD models. Studies have demonstrated 

LPS is present in large quantities in cigarette smoke (Hasday et al., 1999), with both 

activating TLR4, inducing similar inflammation (Doz et al., 2008). 

3.1.2 LPS and Toll-like receptor 4 

LPS is unable to activate an immune response on its own. A transporter protein 

called lipopolysaccharide binding protein (LBP) is needed to transport the LPS to 

TLR-4. LPS binds to LBP forming an LPS-LBP complex, which then travels to 

TLR-4 (Fig 3.2). Binding to TLR 4, and its associated co-receptor CD14, initiates 

the transcription of inflammatory mediators and cytokines. This is done via two 

pathways, the MyD88-dependent and independent pathways (Lu et al., 2008). The 

pathways are summarized in figure 3.3, and result in the release of pro-inflammatory 

cytokines, such as TNF-α and CXCL8, via activation of NF-kB and AP-1 (Lu et al, 

2008; Zughaier et al, 2004; Bagchi et al, 2007). Lipopolysaccharide exposure, 

although acting via a singular pathway and mechanism, results in a similar influx of 

cell types into the lungs, as observed in COPD (Aul et al., 2012). 
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Fig 3.1: The structure of lipopolysaccharide. Lipopolysaccharide consists of lipid A, 
disaccharide diphosphate, core oligosaccharide and a repeating O-antigen side chain 

 

Fig 3.2: Transport of LPS to TLR4/CD14 via LPS-binding protein.  Lysis of gram 
negative bacteria results in the release of free lipopolysaccharide which is scavenged by 
lipopolysaccharide binding protein. This LPS-LBP complex travels to Toll-like receptors on 
the cell surface, which along with CD14, induces transcription of pro-inflammatory 
cytokines via the MyD88 dependent and independent pathways. (Adapted from 
student.ccbcmd. edu). 
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Fig 3.3: The MyD88 dependent (red arrows) and independent (blue arrows) pathways. Upon 
activation, the MyD88 dependant pathway activates IRAK-4, which in turn activates IRAK-
1, causing the formation of a complex between TRAF-6 and ubiquitin-conjugating enzymes 
(UBC13 and UEV1A). These complexes activate TAK1, which then activates IKK and 
MAPK. Phosphorylation of IKKβ causes the transcription of pro-inflammatory cytokines by 
translocating NF-κB. MAPK also activates AP-1, which also causes expression of pro-
inflammatory cytokines. The MyD88 independent pathway uses TIR-domain-
containing adapter-inducing interferon-β (TRIF), instead of the MyD88 adaptor 
protein. This activates RIP1 causing the translocation of NF-κB and AP-1 by the 
same mechanisms as the MyD88 dependant pathway. TRIF also recruits TRAF3 
which associates with TANK and IKKi to cause the translocation of IRF3, which 
causes transcription of type 1 Interferons. (Adapted from Lu et al, 2008). 
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3.1.3 Acute or Chronic LPS Exposure 

Acute LPS exposure has been shown to differ from chronic LPS exposure in several 

ways. It is important for a model of COPD to exhibit numerous aspects of the 

disease, including similar inflammation, histological changes, with increased 

emphysema, and decreases in lung function. It was previously mentioned that LPS 

has been shown to exhibit similar inflammation to COPD (Aul et al., 2012), with 

increases in neutrophils and macrophages in the lung. However, no acute model has 

been shown to have emphysematous changes or a decline in lung function. Kaneko 

et al (2007) demonstrated histological changes in a chronic LPS exposure model in 

the guinea pig after 15 exposures to LPS; however, this is a long protocol and takes 

approximately one month to achieve these changes. A model that demonstrates the 

phenotype of COPD in a shorter time frame could speed up research into the disease. 

3.2 Aim 

The aim of this chapter is to develop a chronic LPS-induced model of inflammation 

in the guinea pig. 

3.2.1 Objectives 

Investigate the response to a single challenge of LPS as well as LPS administered 

every 24 hours or 48 hours up to 9 exposures by: 

- Measuring inflammatory cell influx, TNF-α and CXCL8 release in the 

BALF and lung tissue 

- Investigating the effect of LPS exposure on lung function, histology and 

airway hyperresponsiveness. 
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3.3 Methods 

3.3.1 Animal Husbandry 

Animals were housed as described in 2.1 

3.3.2 Challenges 

3.3.2.1 Lipopolysaccharide Exposures 

Guinea pigs received 30µg/ml of lipopolysaccharide (LPS) (unless otherwise stated) 

(E. Coli 026:B6 in saline, Sigma), or a control solution of saline, nebulized using a 

Wright nebulizer at 0.3mls/min at a constant pressure of 20 psi in a sealed Perspex 

chamber (15x15x32cm) for 1 hour. 

3.3.2.2 Acute Lipopolysaccharide Exposures 

A single 30µg/ml LPS or saline exposure was performed before the guinea pigs were 

culled 24 hours after the exposure. A bronchoalveolar lavage was performed (as 

described in 2.6) to determine total and differential leucocyte numbers, as well as 

cytokine levels. 

3.3.2.3 Chronic Lipopolysaccharide Exposures 

Exposures were performed using the method described by Toward and Broadley 

(2001). Guinea pigs were exposed to 30µg/ml of LPS or saline every other day 

until a total of nine exposures were reached, or 15µg/ml every day for nine days. 

Airway function was recorded using whole body plethysmography (Buxco) using 

specific airway conductance (sGaw) as the measured parameter. sGaw was measured 

at 0 minutes, 1, 2, 3 and 4 hours after exposure and compared to measurements 

performed immediately prior to the corresponding LPS or saline exposure. This 

allowed for percentage change in sGaw to be calculated. Area under the curve (AUC) 

analysis was also performed on data that fell below baseline after exposure 1, 5 and 

9, chosen as they were the first, middle and last exposure. Animals were killed 24 
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hours after the ninth exposure with a sodium pentobarbital overdose (400mg/kg), 

and a bronchoalveolar lavage was performed to determine total and differential cell 

counts and cytokine levels. 

Figure 3.4 A diagram representing the chronic protocol for saline/LPS challenge in the 
guinea pig. 

 Figure 3.5. A diagram representing the consecutive 15µg/ml LPS protocol in the guinea pig 

 

3.3.3 Measurement of Airway Responsiveness 

Airway hyperresponsivness was determined via whole body plethysmography. A 

dose of 0.3mM histamine was used, as this was a sub threshold dose causing no 

response in animals before a challenge but was able to cause a response after a 

challenge. Histamine was nebulized for 2 minutes at a duty of 20% per chamber and 

a constant flow rate of 2 litres per minute per chamber. A baseline measurement was 

taken immediately prior to the histamine exposure. Animals then received histamine 

directly into the nasal chamber of the whole body plethysmograph, where their 

response was measured for 10 minutes after the 2 minute histamine nebulization.  

The percentage deviation from baseline at 0, 5 and 10 minutes was calculated, where 

Day 1 2 3 4 5 6 7 

LPS 

Lavage 

8 9 10 11 12 13 14 15 16 17 18 

LPS LPS LPS LPS LPS LPS LPS LPS 

-1 

Histamine Histamine 

1 2 3 4 5 6 7 

LPS Lavage 

Day 8 9 10 -1 

Histamine Histamine 
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a negative value denoted a bronchoconstriction, while a positive value signified a 

bronchodilation. 

3.3.4 Histological Analysis 

Samples were treated and stained as described in 2.8 

3.3.4.1 Mean Linear Intercept 

Mean linear intercept was calculated by taking a photograph of the haematoxylin and 

eosin stained slides at X100 magnification. Two lines were drawn across the 

photograph, one in the centre horizontally and one in the centre vertically. The 

number of times the line intercepted an alveolar wall was recorded and the values 

averaged. If the line intercepted an airway or a blood vessel the line was moved up 

or right appropriately until it was no longer intercepting the artifact. This 

measurement allowed for a rough calculation of the density of alveolar walls and 

indicated the presence of emphysema if the density was reduced. 

 

Figure 3.6 An example of mean linear intercept. Horizontal lines were placed on a stained 
section and the number of times the line intercepted an alveolar wall counted  
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3.4 Results 

The Effect of Acute Saline or Acute LPS Challenge on Cell Influx, TNF-α and 

CXCL8 Levels  

Acute LPS challenged animals showed a significantly greater number of total 

leucocytes, macrophages (P<0.01) and neutrophils (P<0.001)) in the BALF 

compared to acute saline challenged animals (fig 3.7). There was also a significant 

increase in TNF-α (521 ± 24 and 404 ± 34 pg/mg respectively) and CXCL8 (168 ± 

14 and 26 ± 20 pg/mg correspondingly) levels in the lung tissue when acute LPS and 

acute saline were compared, but no change in levels in the BALF for either cytokine 

(fig 3.8).  

The Effect of Nine Consecutive 15µg/ml LPS Exposures on Cell Influx and 

Lung Function. 

In the nine consecutive 15 µg/ml LPS challenged animals there was a significant 

increase in total leucocyte, macrophage, and neutrophil numbers  compared to the 

chronic saline challenged animals (P<0.01) (fig 3.9). 

Lung function for saline exposed animals over the nine exposures peaked at 9.7±1% 

at exposure 2 to a low of -4.6 ± 2.6% at exposure 6. LPS challenged animals showed 

a peak of 10.9 ± 3.9% after the first exposure before a drop to -15.0 ± 6.8% at 

exposure 4. Similar responses were observed after exposures 5, 6 and 7 before a peak 

bronchoconstriction occurred at exposure 8 of -21.8±3.2%. However exposure 9 

showed a much smaller bronchoconstriction of only 7.1 ± 7% (fig 3.10).  

When the first, middle and last exposure trace was plotted, saline showed very little 

deviation from baseline, except after exposure 9 where there was a peak 

bronchodilation of 8.8 ± 4.1%. LPS however, showed a peak bronchodilation after 
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the first exposure of 10.9 ± 3.9%, before a peak bronchoconstriction of -10.9 ± 4.9% 

1 hour after the fifth exposure. This was not compounded with a peak of -7.1 ± 7% 2 

hours after the ninth exposure (fig 3.10). 

When the first, middle and last exposure traces were analyzed using area under the 

curve, nine consecutive 15µg/ml LPS exposures (fig 3.10) showed no significant 

difference in lung function  compared to the saline challenged animals (fig 3.10). 

When airway hyperresponsiveness was analyzed saline showed no significant 

increase in pre- and post- AHR at 0, 5 or 10 minutes after histamine challenge. 

Similarly LPS challenged animals also showed no increased AHR at 0, or 5 minutes 

but did show a significant increase 10 minutes after exposure to 0.3mM histamine 

compared to pre LPS responses (-0.6 ± 2.7 and -17.2 ± 4.9% correspondingly). 

The Effect of Chronic Saline or Chronic LPS Challenge on Cell Influx, TNF-α 

and CXCL8 Levels and Lung Function 

Chronic LPS showed a significant increase in total leucocytes numbers compared to 

chronic saline challenged animals (2.2 ± 0.12 and 0.22 ± 0.024 x107cells/ml 

respectively). Chronic LPS also significantly increased macrophages and neutrophils 

compared to chronic saline challenged animals (P<0.01) (fig 3.12). 

Chronic LPS significantly increased TNF-α levels in the BALF compared to chronic 

saline challenged animals (1469 ± 369 and 115 ± 25pg/ml respectively) (fig 3.13). 

However, TNF-α levels in the lung tissue were quite similar, with no significant 

difference between chronic saline and chronic LPS challenged animals. With 

CXCL8, this trend was reversed, with no significant difference between chronic 

saline  and chronic LPS in the BALF, but a significant increase in CXCL8 levels in 
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the lung tissue of chronic LPS (123 ± 28pg/mg) compared to chronic saline (29 + 

13pg/mg) challenged animals. 

Lung function for saline exposed animals over the nine exposures peaked at 9.7±1% 

at exposure 2 to a low of -4.6 ± 2.6% at exposure 6. LPS challenged animals showed 

a peak of 6.8 ± 3.2% after the first exposure before a drop to -37.7 ± 3.7% at 

exposure 5. There was a similar response after exposures7, 8 and 9, where exposure 

9 showed a bronchoconstriction of -30.8 ± 3.1% (Fig 3.14).  

When the first, middle and last exposure traces were analyzed using area under the 

curve, chronic 30µg/ml LPS exposures showed a significantly increased area under 

the curve, signifying a worsening of lung function compared to chronic saline 

challenged animals (P<0.01) (fig 3.14). 

There was no significant difference between histamine responses when before and 

after saline challenge responses, or before and after LPS challenge responses were 

compared at 0, 5 or 10 minutes after histamine exposure (fig 3.15).  

The Mean Linear Intercept for Chronic Saline and Chronic LPS Challenged 

Guinea Pigs  

Chronic LPS challenge significantly decreases the mean linear intercept compared to 

chronic saline challenged animals, signifying an increase in emphysema (P<0.05) 

(fig 3.16). Figure 3.17 shows chronic LPS challenged lungs exhibit larger 

emphysematous spaces compared to the chronic saline exposed animals.   
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Figure 3.7 The Effect of Acute Saline or Acute LPS Challenge on Cell Influx into the 
Lung of Guinea-pigs. Total cell, macrophage and neutrophil numbers for acute saline and 
acute LPS challenged guinea-pigs. Total cells, macrophage and neutrophils were all 
significantly increased after acute LPS challenge compared to acute saline challenged 
animals. Mean ± SEM, N=6, **P< 0.01,***P<0.001. Mann-Whitney Test. 
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Figure 3.8 The Effect of Acute Saline or Acute LPS Challenge on TNF-α and CXCL8 
Levels in the BALF and Lung Tissue of Guinea-pigs. TNF-α and CXCL8 levels in both 
BALF and lung tissue for acute saline and acute LPS challenged guinea-pigs. There was no 
significant difference between the groups when TNF-α  and CXCL8 are compared in the 
BALF. However, lung tissue showed a significant increase in CXCL8 and TNF-α when 
acute LPS was compared to acute saline. Mean ± SEM, N=6, *P<0.05, **P<0.01 Mann-
Whitney Test. 
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Figure 3.9 The Effect of Nine Consecutive 15µg/ml LPS Exposures on Cell Influx into 
the Lung. Consecutive LPS exposures showed a significant increase in all cell types 
compared to the saline control. Mean ±SEM, N=6, **P<0.01, Mann-Whitney test. 
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Figure 3.10 The Effect of Nine Consecutive 15µg/ml LPS or Saline Exposures on the 
Lung Function of Guinea-pigs. The full 9 exposure trace and the first middle and last 
exposure trace showed very small variations around the baseline for saline challenged 
animals. LPS challenged animals showed a bronchodilation after the first exposure, with a 
consistent bronchoconstriction after the fourth exposure up to the 8th exposure. The peak 
bronchoconstriction was observed at the 8th exposure before a decrease in 
bronchoconstriction after the 9th exposure. An increase in AUC signifies a decrease in lung 
function. Consecutive LPS challenge shows no significant difference in lung function 
compared to consecutive saline challenged animals. Mean ±SEM, N=6, P > 0.05, Mann-
Whitney test. Error bars have been removed from sGaw traces for clarity. 
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Figure 3.11 The Effect of Histamine (0.3mM) Before and After Nine Consecutive 
15µg/ml LPS or Saline Challenge. There was no significant difference in histamine 
responses before or after saline challenge at 0, 5 and 10 minutes. Similarly LPS 15µg/µl 
showed no significant change in responses at 0 and 5 minutes, but there was a significant 
increase in AHR after LPS challenge at 10 minutes. Mean ± SEM, N=6, *P<0.05, Paired t-
test. 
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Figure 3.12 The Effect of Chronic Saline or Chronic LPS Challenge on Cell Influx into 
the Lung of Guinea-pigs. Chronic LPS showed a significant increase in all cell types 
compared to chronic saline challenged animals. Mean ± SEM, N=6, **P<0.01, Mann-
Whitney test. 
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Figure 3.13 The Effect of Chronic Saline or Chronic LPS Challenge on TNF-α and 
CXCL8 Levels in the BALF and Lung Tissue of Guinea-pigs. TNF-α showed a 
significant difference in the BALF but no significant change in the lung tissue. While 
CXCL8 showed the reverse, a significant difference in the lung tissue but no change in the 
BALF. Mean ± SEM, N=6, **P<0.01, Mann-Whitney test. 
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Figure 3.14 The Effect of Chronic Saline or Chronic LPS Challenge on the Lung 
Function of Guinea-pigs. The full 9 exposure trace and the first middle and last exposure 
trace showed very small variations around the baseline for saline challenged animals. 
Chronic LPS challenged animals showed a steady increase in bronchoconstriction after each 
exposure up to exposure 5, excluding exposure 3. After the peak bronchoconstriction at 
exposure 5 there is a steady bronchoconstriction in response to LPS up to exposure 9, 
excluding exposure 6.An increase in AUC signifies a decrease in lung function. Chronic 
LPS challenge shows a significant difference in lung function compared to chronic saline 
challenged animals. Mean ±SEM, N=6, **P<0.01, Mann-Whitney test. Error bars have been 
removed from sGaw traces for clarity. 
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Figure 3.15 The Effect of Histamine (0.3mM) Before and After Chronic Saline or 
Chronic LPS Challenge. There was no significant difference in histamine induced 
bronchoconstriction after either chronic saline or chronic LPS challenge compared to pre 
challenge responses. Mean % change from baseline ± SEM, N=6, P>0.05, Paired T-Test. 
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Figure 3.16 The mean linear intercept for chronic saline and chronic LPS challenged 
Guinea pigs. Chronic LPS exposed animals show a significant decrease in mean linear 
intercept compared to chronic saline challenged animals, signifying an increase in 
emphysema. Mean ±SEM, N=6, *P<0.05, Mann-Whitney test. 

 

 

Figure 3.17 An example of the histology of the guinea pig lung after chronic saline or 
chronic LPS challenge. The chronic LPS challenged lung showed larger emphysematous 
spaces compared to the chronic saline exposed animals. Magnification x100 
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3.5 Discussion 

Many different animal models have been developed to try and understand the 

complex mechanisms that take place in COPD. Acute LPS models in many different 

species, including mice (Hakansson et al., 2012), rats (Spond et al., 2001), guinea 

pigs (Toward and Broadley, 2000) and non-human primates (Seehase et al., 2012), 

have shown an increase in inflammation, which is predominantly neutrophil and 

macrophage driven. They also show an increase in inflammatory mediators, such as 

CXCL8 and TNF-α.  

The inflammation after acute LPS challenge in healthy humans is similar to that 

observed in COPD patients. Healthy people exhibit a ~69% neutrophil and a ~26% 

macrophage profile after single LPS challenge (Aul et al., 2012), while COPD 

patients show a ~58% neutrophil and ~33% macrophage profile (Beeh et al., 2003). 

Similarly the inflammatory response observed in the guinea pig to acute LPS 

challenge showed a distribution of ~49% neutrophils and ~48% macrophages. This 

signifies that, by using inflammatory percentage profiles, LPS is a suitable model to 

study COPD inflammation. The acute model also demonstrated increases in TNF-α 

and CXCL8 in the lung tissue only, while there was no difference between the 

groups in the BALF. This could be due to differential responses between ‘resident’ 

inflammatory cells within the lung tissue and ‘new’ cell influx in the BALF, 

differences in cytokine degradation between the two compartments or continued 

release of cytokines in the short time between lavaging the animal and snap freezing 

the lung tissue. 

Chronic LPS exposure, 30µg/ml with alternating days proved to be the maximal, 

well tolerated dose in the guinea pig and showed a similar inflammatory profile to 
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COPD. Nine LPS exposures were chosen as previous experience with this model in 

this lab demonstrated airway hyperresponsivness was present at 24 hours only after 

the eighth exposure, while bronchoconstriction to LPS was only prolonged after the 

ninth (Toward and Broadley, 2001). Upon histological examination emphysema was 

also present after nine exposures meaning further exposures would not be required. 

This makes this model advantageous over a similar model by Kaneko et al., (2007) 

who demonstrated emphysema after the 15th exposure. 

The chronic model also showed elevated TNF-α levels in the BALF compared to 

control, while the acute model demonstrated little difference. TNF-α levels have 

been shown to be increased in the BALF and sputum of patients suffering from 

COPD (Soler 1999; Blidberg et al, 2012) and have been correlated with the severity 

of the disease, with higher levels signifying more severe COPD (Hacievliyagil et al., 

2006), while CXCL8 levels have also been shown to be increased in COPD 

(Yammamoto et al., 1997). This means the chronic model also exhibits a similar 

inflammatory profile to COPD. The chronic LPS model, where LPS was 

administered every 48 hours, would, however, result in peaks and troughs in 

inflammation (Toward and Broadley, 2001). It is for this reason a consecutive model 

(i.e. LPS exposures every 24 hours) was also investigated. This would mean 

inflammation would not resolve but would instead be peaking by the time the next 

exposure was given. Unfortunately the same dose of LPS could not be used in both 

models as the 30µg/ml of LPS used in the chronic model was not well tolerated in 

the consecutive model, meaning the dose had to be halved.  

To differentiate the acute and chronic models, the most important thing to note in 

terms of acute LPS models is the lack of structural changes. There are no structural 

changes in an acute model, while COPD exhibits emphysematous changes, due to 
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the loss of parenchymal cells (Barnes, 2012), as well as narrowing of the airways and 

increased fibrosis (Barnes, 2011). Goblet cell hyperplasia is also observed, resulting 

in increased mucous secretion and mucous plugging (Rogers, 2000).  No structural 

changes have been reported in the literature after acute LPS challenge in any species. 

Hakansson et al. (2012) state that any alteration in lung function that is observed 

after an acute LPS challenge, is solely down to the influx of inflammatory cells and 

not due to any structural changes, which are the cause of obstructive airflow in 

COPD. So unsurprisingly, an acute LPS model of a chronic disease process, which 

takes many decades to occur, has few clinically relevant manifestations of COPD, so 

a more chronic model is required.  

Chronic LPS as a model of COPD, just like acute models, have been used in many 

species including mice (Veernoy et al., 2002; Brass et al. 2008), rats (Harkema and 

Hotchkiss, 1993) and guinea pigs (Toward and Broadley, 2002). Toward and 

Broadley (2002) showed repeated exposure of the guinea pig to LPS resulted in 

neutrophilia, goblet cell hyperplasia and a decrease in sGaw, representing a 

bronchoconstriction. While Kaneko et al (2007) also describe neutrophilia, as well as 

emphysematous changes after 15 exposures to LPS.  

The chronic LPS guinea pig model does not show any goblet cell hyperplasia, indeed 

goblet cells could rarely be detected at all. However, this may not be surprising as 

studies have shown that guinea pigs exhibit goblet cells in the proximal trachea and 

rarely have any goblet cells beyond this point (Widdicombe et al., 2001; Goco et al., 

1963); However, Toward and Broadley (2002) did observe goblet cell hyperplasia in 

this model. The chronic LPS guinea pig model does, however, exhibit a significant 

increase in emphysema compared to the chronic saline control. This was evaluated 

using mean linear intercept (MLI), where a decrease in MLI signifies an increase in 
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emphysema due to the loss of alveolar walls. MLI was performed on a separate 

group which had to be rested for two weeks after the final exposure to allow for the 

inflammation to clear. This was the only group that was rested, with the sole aim of 

studying the histology of the lung. All other groups were culled 24 hours after the 

final LPS exposure. Although the MLI reached significance, greater significance 

might be possible if the guinea pigs did not have to recover for a couple of weeks 

which may allow time for some regeneration of the lung tissue.  

The chronic model exhibited emphysematous changes while the consecutive model 

did not. This may be due to the length of time proteinases are present and active in 

the lung. Proteases, such as neutrophil elastase (Janoff et al., 1977; Snider et al., 

1984) and MMPs released by inflammatory cells, result in remodelling of the lung 

(Finlay et al., 1997). Secreted proteases are inactivated by anti-proteases such as 

TIMPs (Okada et al., 1999), α1 anti-trypsin and α2 macroglobulins (Poller et al., 

1989). The length of time proteases were present and active in the different models 

are the likely cause of the differences in histology. The chronic model had active 

proteases present in the lungs up to twice as long as the consecutive model possibly 

explaining the differences between the histology. 

With any model using LPS, the concept of LPS tolerance must also be considered. 

LPS tolerance is a reduction in response to LPS after a previous exposure. LPS 

tolerance has been shown to affect cytokine release, with some pro-inflammatory 

cytokines, such as TNF-α showing decreased levels (del Fresno et al., 2009) while 

the anti-inflammatory cytokine IL-10 is increased (Cole et al., 2012). The molecular 

mechanisms for LPS tolerance are not fully elucidated but several theories have been 

hypothesized. Repeated exposure to LPS has been demonstrated to decrease TLR4 
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receptor expression on the cell surface (Fan et al., 2002; Zhong et al., 2008). The 

signaling pathways themselves can be affected such as increased negative feedback 

by inhibitors of TLR signaling such as IRAK-M (Escoll et al., 2003). Impairment of 

IRAK-1 and MAPK activation in the MyD88 dependent pathway has also been 

described (Fan and Cook, 2004). Differences in Nf-κB dimer state, with less pro-

inflammatory P50 homodimers having an increased prevalence during endotoxin 

tolerance, while the more pro-inflammatory P50/P65 heterodimers show increased 

prevalence during normal LPS responses (Porta et al., 2009). The consecutive model 

may be affected more by LPS tolerance than the chronic model due to the challenge 

regimen.  Repeated LPS exposure in a short time frame will result in LPS tolerance, 

while repeated LPS exposure with 48 hours between exposures may mean LPS 

tolerance does not build up, with any mechanisms activated after the first exposure 

resolving prior to the next. 

Many studies have been performed to assess the correlation of emphysema with lung 

function, which show that the two are poorly related (Robbesom et al., 2003), with 

emphysema also varying widely between patients in the same stage of COPD 

(Makita et al., 2007). This highlights the heterogeneity of the disease and the 

difficulties in producing a model for such a varied condition.  

Lung function in COPD is usually measured using spirometry. A FEV1/FVC ratio 

below 0.7 is the diagnosing criteria for COPD, with the severity depending on the 

percentage of FEV1 expected for the individual’s age, height etc. (Celli et al., 2004). 

The measuring of these parameters is not possible in conscious animals, which were 

chosen for experiments as it allows for repeated measurements over time, as well as 

preventing interference in recording respiration by an anesthetic (Flecknell and 

Mitchell, 1984). Experiments have been performed comparing the conventional 
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spirometry measurements with plethysmography in COPD patients, which found that 

while FEV1 was more reproducible, sGaw was better at detecting 

bronchoconstriction and dilation in the airways, and may therefore be the best way to 

measure lung function in patients (Borrill et al., 2004; Gimeno et al., 1993). FEV1 

has also been shown to cause changes in the airways due to the effort of deep 

inspiration and forced expiration itself (Burns and Gibson, 2002). These studies 

rationalize the use of a parameter such as sGaw, signifying that the measurement has 

clinical relevance in COPD.  

The results in the guinea pig show a steadily progressive airflow limitation, with 

sGaw decreasing until 5 LPS exposures and then plateauing until the ninth exposure. 

This results in a significant reduction in airflow compared to the control when 

analyzed by area under the curve. Airway hyperresponsiveness was not observed 

after chronic LPS treatment, while Toward and Broadley (2001) showed airway 

hyper reactivity was present 24 hours after the final LPS exposure in the same LPS 

model. The method of histamine delivery differed between the two studies, with 

Toward and Broadley using 1mM histamine for a 20 second nose only exposure, 

while this study used 0.3mM, (calculated as a sub threshold dose of histamine) for 1 

minute at 20% duty, delivered at 2 litres per minute, into the head chamber of the 

plethysmography machine. It is possible that this dose of histamine is too low; 

however, Turner et al. (2011) demonstrated that this dose, delivered in the exact 

same way as in this study, was able to cause a significant bronchoconstriction in 

ovalbumin challenged guinea pigs, but had no effect prior to challenge. Airway 

hyperresponsiveness used to be used as a way of differentiating between patients 

with asthma and patients with COPD (Irvin, 2012). However, COPD is now 

understood to be more complex than originally thought and also exhibits signs of 
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hyper responsiveness. The symptom is very diverse, with some COPD patients 

showing signs of hyperresponsivness while others do not. AHR has been linked to a 

greater increase in disease progression as a result of a decrease in lung function, as 

well as a diminished response to bronchodilators (Han et al., 2010). Due to this 

variability in COPD phenotype, a general model of COPD does not necessarily need 

to exhibit airway hyperresponsiveness. 

This data shows that the chronic LPS model, where guinea pigs were exposed to 

30µg/ml on alternating days, exhibits similar inflammation and structural changes as 

observed in COPD and also results in a decrease in lung function. Since the model 

exhibits several important aspects of COPD this model could be used to investigate 

steroid sensitivity and exacerbations. 
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4.1 COPD and Steroid Insensitivity 

It has previously been discussed that two important aspects of COPD are steroid 

insensitivity, and the tendency for COPD patients to develop acute exacerbations, 

which are poorly treated. A model that can be used to investigate these two processes 

and help improve treatments is urgently required. 

The exact reason for steroid insensitivity in COPD remains unknown and needs to be 

investigated; however, many theories have been hypothesised. One theory is that it is 

due to the lack of steroid responses in subtypes of neutrophils during inflammation 

(Strickland et al., 2001). The most widely reported theory is the effect of oxidative 

stress on the enzyme histone deacetylease 2 (HDAC-2) reducing its activity. This 

reduced activity can decrease transcription of proinflammatory cytokines by 

regulating the acetylation of histone proteins. To et al (2004) demonstrated that the 

severity of COPD is inversely proportional to HDAC activity, with more severe 

disease exhibiting a larger decrease in HDAC activity. Low dose theophylline has 

been demonstrated to restore HDAC activity in steroid resistant COPD, with a six 

fold increase in alveolar macrophage HDAC activity in COPD patients (Cosio et al, 

2004), but how this effect translates into whole animal models or indeed the disease 

itself is largely unknown. 

4.1.1 Theophylline 

Theophylline is a methylxanthine that acts as a non-specific phosphodiesterase 

inhibitor, allowing cAMP to accumulate, causing bronchodilation. This mechanism 

of action is described in chapter one. Inhibition of phosphodiesterases can also have 

an anti-inflammatory effect by increasing cyclic AMP (cAMP). cAMP is known to 

have an anti-inflammatory effect by decreasing pro-inflammatory cytokines, such as 

CXCL8 and TNF-α and decreasing ROS, as well as increasing the anti-inflammatory 
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cytokine Il-10 (Currie et al, 2008). The anti-inflammatory effect of low dose 

theophylline has been demonstrated by Ito et al (2002) to work independently of 

PDE, with other PDE inhibitors not demonstrating the same effects. This is 

beneficial as the side effects associated with theophylline are due to its PDE 

inhibiting properties (Barnes et al, 2004). This suggests theophylline is also acting 

on HDAC; however, this mechanism as yet remains unclear.  

4.2 Exacerbations of COPD 

Exacerbations are also an important aspect of COPD. Exacerbations are described as 

“An acute event characterised by a worsening or the patient’s respiratory symptoms 

that is beyond normal day-to-day variations and leads to a change in medication” 

(GOLD, 2011). Exacerbations decrease quality of life, increase morbidity and 

mortality and frequently result in hospital admissions for COPD patients.  

Respiratory viral infections play an important role in exacerbations as they have been 

shown to be responsible for approximately half of all exacerbations, either in 

conjunction with bacteria or on their own (Wedzicha & Seemungal, 2007). 

Treatment of exacerbations, like the stable disease, is poor. An animal model of 

acute exacerbations of COPD (AECOPD) is desperately needed to assess the 

mechanisms of AECOPD to improve treatments. 

4.2.1 Human Parainfluenza 3 Virus 

Human parainfluenza viruses (HPIV) is an enveloped, single stranded RNA virus 

that belongs to the taxonomy Paramoxyviridae, which are subdivided into 4 types 

(Greenwood et al, 2007). HPIV 3 is the cause of croup in infants, but is also a cause 

of respiratory infections in the immuno-compromised and is a recognised cause of 

exacerbations in COPD patients (Dimpoloulos et al. 2012).  
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A viral infection triggers both the innate and the adaptive immune response. The 

innate immune response primarily induces apoptosis of virus infected cells by the 

activation of CD8+ cytotoxic lympohcytes as well as activation of Toll like receptors 

by viral components, with TLR-7 recognising single stranded viral RNA. As 

described in chapter 3, activation of TLRs activates the MyD88 dependent and 

independent pathways, resulting in the expression of NF-κB and interferons. 

Interferons are important in viral infections as they are used as messengers between 

cells that a viral infection is taking place. Interferon causes neighbouring cells to 

decrease protein synthesis and increase RNA destruction within the cell, therefore 

decreasing viral replication in possible virus infected cells (Fensterl & Sen, 2009).  

Like HPIV3, the common viruses associated with AECOPD, rhinovirus and 

influenza virus, are single stranded RNA viruses, but they have been shown to 

activate TLR3 during replication due to the synthesis of intermediary double 

stranded RNA (Wang et al., 2009; Guillot et al., 2005). Polyinosinic: polycytidylic 

acid (Poly I:C) is a synthetically manufactured compound closely resembling double 

stranded RNA and has been demonstrated to activate TLR3 (Alexopoulou et al., 

2001). It can be used to mimic viral infection and has advantages over viruses as it is 

not contagious and the amount of poly I:C given is able to be carefully controlled. 

4.3 Aim 

The aim of this chapter iss to investigate the steroid sensitivity, the effect of low dose 

theophylline on the steroid sensitivity and exacerbation potential of the chronic LPS 

model. 
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4.3.1 Objectives 

• Investigate the response to the inhaled corticosteroid budesonide and the 

systemic corticosteroid dexamethasone, measuring inflammatory cell influx, 

TNF-α and CXCL8 release 

• Investigate the effect of low dose theophylline on improving steroid 

sensitivity, measuring the same parameters as steroid alone. 

• Investigate human parainfluenza 3 virus and Poly I:C as possible 

exacerbation agents in the guinea pig, measuring inflammatory cell influx 

and airway hyperresponsivenss,. 

  

106 
 



 Chapter Four 
 
 

4.4 Methods 

4.4.1 Animal Husbandry 

Animals were housed as described in 2.1 

4.4.2 Challenges 

4.4.2.1 Lipopolysaccharide Exposures 

Guinea pigs received 30µg/ml of lipopolysaccharide (LPS) (E.Coli 026:B6, Sigma), 

or a control solution of saline, nebulised using a Wright nebuliser at 0.3mls/min at a 

constant pressure of 20 psi in a sealed Perspex chamber (15x15x32cm) for 1 hour. 

4.4.2.2 Acute Lipopolysaccharide Exposures 

A single 30µg/ml LPS or saline exposure was performed before the guinea pigs were 

culled 24 hours after the exposure. A bronchoalveolar lavage was performed (as 

described in 2.6) to determine total and differential leucocyte numbers, as well as 

cytokine levels. Drug treated animals received drugs as described in 2.5 for 6 

consecutive days prior to the lavage. 

 

 Figure 4.1 A schematic representation of the acute LPS protocol with six day drug 

treatment 

4.4.2.3 Chronic Lipopolysaccharide Exposures 

Exposures were performed using the method described by Toward and Broadley 

(2001). Guinea pigs were exposed to 30µg/ml of LPS or saline every other day until 

a total of nine exposures were reached. Airway function was recorded using whole 

body plethysmography (Buxco) after the first, fifth and ninth exposure using 

-5 -4 -3 -2 -1 0 1 

Drug/Vehicle LPS Lavage 

Day 
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standard airway conductance (sGaw) as the measured parameter. sGaw was measured 

at 0 minutes, 1, 2, 3 and 4 hours after exposure and compared to measurements 

performed immediately prior to the corresponding LPS or Saline exposure. This 

allowed for percentage change in sGaw to be calculated. Animals were killed 24 

hours after the ninth exposure with a sodium pentobarbital overdose (400mg/kg), 

and a bronchoalveolar lavage was performed to determine total and differential cell 

counts and cytokine levels. 

Figure 4.2 A diagram representing the chronic protocol for saline/LPS challenged guinea 

pigs. 

4.4.2.4  Bronchoconstrictive Dose of Histamine 

A bronchoconstrictive dose of histamine was also determined in order to evaluate the 

effectiveness of bronchodilator drugs, such as theophylline. 0.7mM of histamine 

delivered for 2 minutes, at 20 duty per chamber and a constant flow rate of 2 litres 

per minute per chamber, exhibited significant bronchoconstriction in naive animals 

(figure 4.3).   

4.4.3  In Vivo Drug administration 

4.4.3.1  Corticosteroids 

The effects of the corticosteroids budesonide (Sigma Aldrich, UK) and 

dexamethasone (Sigma Aldrich, UK) were evaluated against the LPS model. All 

drugs were given once a day for 6 consecutive days before the end of an experiment 

1 2 3 4 5 6 7 

LPS 

Lavage 

Day 

Drug/Vehicle 

8 9 10 11 12 13 14 15 16 17 18 

LPS LPS LPS LPS LPS LPS LPS LPS 
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and were received thirty minutes before a challenge. Details relating to doses, 

vehicles and administration can be found in table 2.1. 

4.4.3.2 Theophylline 

The effect of theophylline was evaluated in the chronic LPS model. Theophylline 

was administered orally via a gavage needle, twice a day for 6 consecutive days 

before the end of an experiment. Animals receiving theophylline alone did so 30 

minutes before any challenge. Animals receiving both theophylline and a 

corticosteroid, firstly received theophylline 15 minutes before the steroid was 

administered. Details relating to doses, vehicles and administration can be found in 

table 2.1. 

To evaluate the bronchodilator effects of theophylline against a bronchoconstrictive 

dose of histamine, theophylline was administered 30 minutes before a histamine 

challenge to allow for adequate absorption. Details relating to doses, vehicles and 

administration can be found in table 2.2. 

4.4.4 Exacerbating Agents 

4.4.4.1 Human Parainfluenza 3 Inoculations 

Human parainfluenza 3 virus was cultured in a BSC-1 cell line to achieve a 

minimum viral titre of at least 108 virus particles per ml. The virus particles were 

quantified by RT-PCR following RNA extraction as described in 2.6. 

Animals received 0.3mM histamine on day 1 to determine airway responsiveness 

prior to any viral inoculations taking place. Guinea pigs received either 125µl of 

virus or a control of virus free media, twice in each nostril on days 2 and 3. All viral 

inoculations were performed in a laminar flow cupboard to prevent viral spread. As 

well as this, after the first inoculation with virus, animals were kept in an isolator 
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with an independent air supply to prevent viral spread. They were housed in twos or 

threes, dependant on size, in plastic cages with steel cage tops. Each cage contained 

hay, wooden blocks and cardboard tubes for environmental enrichment. Animals 

inoculated with medium were placed back in the main animal house facility.  

Animals received their second dose of 0.3mM histamine on day 7 to test for AHR, 

and were then killed by a sodium pentobarbital overdose and a bronchoalveolar 

lavage was performed. 

Figure 4.3: A schematic diagram of the 7 day virus/media inoculation protocol. 

4.4.4.2 Poly I:C Inoculations 

Animals received 0.3mM histamine on day 1 to determine airway responsiveness 

prior to any inoculations taking place. Guinea pigs received 125ul of poly I:C 

(2mg/ml) or a saline control per nostril per day, on days 2, 3 and 4. Airway 

responsiveness to 0.3mM histamine was measured on day 5, 24 hours after the final 

poly I:C. The animals were then killed by an overdose of sodium pentobarbital and a 

bronchoalveolar lavage was performed.  

Day 1 2 3 4 5 6 7 

Virus/Media Lavage 

Histamine Histamine 
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Fig 4.4 A schematic diagram of the 5 day poly I:C model. 
  

Histamine 

Day 1 2 3 4 5 

Poly I:C Lavage 

Histamine 
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4.5 Results 

The Effect of Inhaled Budesonide on Cell Influx into the Lung in Acute LPS 

Challenged Guinea-pigs. 

Budesonide showed no significant difference in total leucocyte numbers at either 0.6 

or 1.2 mg/ml compared to the vehicle control group. Vehicle, 0.6 and 1.2mg/ml 

budesonide treated animals also showed no significant difference in macrophage or 

neutrophil numbers (figure 4.5). 

The Effect of Systemic Dexamethasone on Cell Influx, TNF-α and CXCL8 

Levels after Acute LPS Challenged Guinea-pigs. 

Dexamethasone significantly reduced total leucocyte numbers compared to the 

vehicle control group (1.6 ± 0.25 and 3.0 ± 0.17 x107cells/ml respectively). 

Dexamethasone also significantly reduced macrophage (P<0.05) and neutrophil 

(P<0.01) numbers compared to the vehicle (Fig 4.6). Dexamethasone showed no 

significant difference in TNF-α and CXCL8 levels compared to the vehicle control 

group in both the BALF and lung tissue. 

The Effect of Systemic Dexamethasone on Cell Influx, TNF-α and CXCL8 

Levels After Chronic LPS Challenge 

Dexamethasone was able to significantly reduce neutrophil numbers compared to 

vehicle treated animals (0.46 ± 0.17 and 1.2 ± 0.04 x107cells/ml respectively) (fig 

4.8). However, there was no significant difference in total leucocyte or macrophage 

numbers when vehicle and dexamethasone groups were compared.  

Dexamethasone significantly reduced TNF-α levels in the BALF compared to 

vehicle treated animals (147 ± 22 and 251 ± 20pg/ml respectively). However, there 

was no significant difference in TNF-α levels in the lung tissue with vehicle and 
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dexamethasone treated animals having very similar values. There was no significant 

difference between CXCL8 levels in the BALF or lung tissue between vehicle and 

dexamethasone treated animals (fig 4.9). 

The Effect of High or Low Dose Theophylline Treatment on Histamine Induced 

Bronchoconstriction in the Guinea-pig. 

High dose theophylline treatment significantly reduced the bronchoconstriction to 

histamine compared to pre-treatment responses at 0 and 5 minutes after histamine 

exposure (P<0.01) which returned to similar levels by 10 minutes This contrasted 

with the low dose theophylline treatment, which exhibited no significant difference 

in histamine responses before or after theophylline treatment at 0 or 5 minutes after 

exposure, but showed a significant difference in responses at 10 minutes (-26.0 ± 5.7 

and -9.9 ± 1.4 % change from baseline respectively) (fig 4.10). 

The Effect of Low-Dose Theophylline and Dexamethasone Co-treatment on Cell 

Influx, TNF-α and CXCL8 levels in Chronic LPS Challenge. 

There was a significant reduction in macrophage number when dexamethasone and 

low dose theophylline co-treated animals were compared with animals receiving 

dexamethasone only (P<0.05)(fig 4.11). There was no significant difference in total 

cell or neutrophil numbers between the groups 

There was a significant increase in TNF-α levels in the BALF of co-treated animals 

compared to dexamethasone only treatment (P<0.01) (Fig 4.12). This was the only 

parameter to show any significant change, with CXCL8 in both the BALF and lung 

tissue and TNF-α in the lung tissue remaining unchanged. 
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The Effect of Human Parainfluenza 3 Virus on Cell Influx and Airway 

Hyperresponsiveness 

There was no significant difference in total leucocyte, macrophage or neutrophil 

numbers when naïve, and virus challenged animals were compared (fig 4.13). There 

was also no significant difference in airway responses between pre and post media 

and pre and post virus challenge at 0, 5 and 10 minutes after histamine challenge (fig 

4.14). There was also no significant difference in viral titre between media and virus 

challenged animals in both lung tissue and the BALF (fig 4.15). 

The Effect of Poly I:C on Cell Influx and Airway Hyperresponsiveness 

Poly I:C significantly increased total leucocyte numbers and macrophages in the 

lung compared to saline challenged animals (P<0.05). However, there was no 

significant difference in neutrophil numbers between saline and poly I:C challenged 

animals (2.9 ± 0.62 and 4.6 ± 0.95 x107cells/ml respectively) (fig 4.16) and there 

was no significant difference in airway responses between pre and post saline and 

pre and post poly I:C challenge at 0, 5 and 10 after histamine challenge (fig 4.17).  
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Figure 4.5 The Effect of Inhaled Budesonide on Cell Influx into the Lung in Acute LPS 
Challenged Guinea-pigs. Both doses of budesonide, 0.6 and 1.2mg/ml (inhaled, s.i.d), 
failed to show a significant reduction in cell numbers, with the maximum concentration of 
budesonide being reached due to insolubility at higher concentrations. Mean ± SEM, N=6, 
*P<0.05, Kruskal-Wallis test post hoc Dunns. 
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Figure 4.6 The Effect of Systemic Dexamethasone on Cell Influx into the Lung in Acute 
LPS Challenged Guinea-pigs. 10mg/kg dexamethasone (s.i.d, i.p) significantly reduced 
total cell numbers, including macrophages and neutrophils. Mean ± SEM, N=6, *P<0.05, 
**P< 0.01, Mann-Whitney test. 
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Figure 4.7 The Effect of Systemic Dexamethasone on TNF-α and CXCL8 Levels in the 
BALF and Lung Tissue of Acute LPS Challenged Guinea-pigs. Dexamethasone 
(10mg/kg s.i.d, i.p) showed no significant difference in both TNF-α and CXCL8 levels in 
either the BALF or the lung tissue. Mean ± SEM, N=6, P>0.05, Mann-Whitney test post. 
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 Figure 4.8 The Effect of Systemic Dexamethasone on Cell Influx into the Lung After 
Chronic LPS Challenge.  Dexamethasone (10mg/kg s.i.d, i.p) significantly reduced 
neutrophils without having a significant impact on total or macrophage numbers compared 
to the vehicle control group. Mean ±SEM, N=5, **P<0.01, Mann-Whitney test 
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 Figure 4.9 The Effect of Systemic Dexamethasone on TNF-α and CXCL8 Levels After 
Chronic LPS Challenge. Dexamethasone (10mg/kg s.i.d, i.p) significantly reduced TNF-α 
in the BALF but had no significant impact in the lung tissue. Dexamethasone also failed to 
have a significant difference on CXCL8 levels in both the BALF and lung tissue. Mean 
±SEM, N=5, **P<0.01, Mann-Whitney test 
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Figure 4.10 The Effect of High or Low Dose Theophylline Treatment on Histamine 
Induced Bronchoconstriction in the Guinea-pig.  High dose theophylline (50mg/kg) 
treatment significantly impaired bronchoconstriction compared to pre treatment responses, 
while low dose theophylline (5mg/kg) treatment showed no significant change in 
bronchoconstriction to histamine (0.7mM, inhaled). Mean % change from baseline ±SEM, 
N=6,*P<0.05, **P<0.01, Paired T-Test. 
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 Figure 4.11 The Effect of Low-Dose Theophylline and Dexamethasone Co-treatment 
on Cell Influx into the Lung of Chronic LPS Challenged Guinea-pigs. Combined 
dexamethasone (10mg/kg s.i.d, i.p) and low-dose theophylline (5mg/kg b.i.d, p.o) treatment 
showed a significant reduction in macrophage numbers compared to the dexamethasone only 
treated group. Mean ±SEM, N=5, *P<0.05, Mann-whitney test. 
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Figure 4.12 The Effect of Low-Dose Theophylline and Dexamethasone Co-treatment on 
TNF-α and CXCL8 levels in Chronic LPS Challenged Guinea-pigs. TNF-α in the BALF 
was the only measured parameter that showed a significant difference, with levels increased 
in the combined dexamethasone (10mg/kg s.i.d, i.p) and low-dose theophylline (5mg/kg 
b.i.d, p.o) treatment groups compared to dexamethasone alone.  Mean ±SEM, N=5, 
**P<0.01, Mann-Whitney test. 
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Figure 4.13 The Effect of Human Parainfluenza 3 Virus on Cell Influx into the Lung of 
Guinea-pigs. Virus (~1.257 virions, b.i.d, i.n) showed no significant change in any cell type 
compared to both the vehicle control and to naïve animals. Mean ±SEM, N=6, 1 P>0.05, 
Kruskal-wallis test post hoc Dunn’s. 
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Figure 4.14 The Effect of Media and Parainfluenza 3 Virus Challenge on Airway 
Responses to 0.3mM Histamine.  There was no significant difference in histamine 
responses before or after media or before or after virus 0, 5 and 10 minutes after histamine 
challenge. Mean ± SEM, N=6, P>0.05, Paired t-test. 
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Figure 4.15 The Viral Titre After Media or Parainfluenza 3 Virus Challenge. There was 
no significant increase in virus titre in PIV3 challenged animals compared to media 
challenged animals, in either the BALF or lung tissue. Mean ± SEM, N=6, P>0.05, Mann-
Whitney test. 
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Figure 4.16 The Effect of Poly I:C on Cell Influx into the Lung of Guinea-pigs. Poly I:C 
(0.25mg s.i.d, i.n) showed a significant increase in total cell and macrophage numbers 
compared to the vehicle challenged animals. There was no significant change in neutrophil 
numbers. Mean ±SEM, N=6, *P<0.05, Mann-Whitney test 
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Figure 4.17 The Effect of Saline and Poly I:C Challenge on Airway Responses to 
0.3mM Histamine.  There was no significant difference in histamine responses before or 
after saline or before or after Poly I:C 0, 5 and 10 minutes after histamine challenge. Mean ± 
SEM, N=6, P>0.05, Paired t-test. 
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4.6 Discussion 

Inflammation in COPD patients is largely unaffected by corticosteroids (Barnes, 

2009), however acute LPS challenge was steroid sensitive. Guinea pigs have been 

shown to be less responsive to corticosteroids than other rodents (Keightley and 

Fuller, 1994), which may make them a better choice of species. This may not only be 

true in COPD models, but in many disease models, as humans are also less steroid 

sensitive than many rodents (Claman, 1972).  

From the results shown here, acute LPS-induced inflammation was reduced by the 

systemic corticosteroid dexamethasone, with significant reductions observed for total 

leucocytes, neutrophils and macrophages, with no change in CXCL8 or TNF-α 

levels. Whelan et al. (1995) also showed steroid sensitivity in an acute LPS guinea 

pig model with reductions in neutrophils. Although the acute model showed no 

effect on inflammation after inhaled budesonide treatment, the reason for this may 

not be steroid insensitivity, but either the failure to reach a high enough dose due to 

solubility problems or the inability of inhaled steroids to exhibit an effect, while 

systemic steroids are effective. Nevin & Broadley (2004) showed that 0.3mg/ml of 

budesonide was able to suppress eosinophils 24 hours after a single exposure to LPS 

but was unable to lower total cell numbers or any other cell type, including 

neutrophils. However, the authors hypothesised this effect was due to the anti-

inflammatory properties of the DMSO vehicle which exhibited similar results. This 

could mean that inhaled corticosteroids are ineffective at altering the neutrophillic 

inflammation in the lung, with inhaled budesonide having been demonstrated to have 

limited effects on patients with COPD. The treatment fails to decrease the 

inflammation, so also fails to decrease the rate of disease progression (Pauwels et al, 

1999; Vestbo et al, 1999).  
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Many studies have implicated the macrophage in COPD as one of the causes of 

steroid insensitivity (Culpitt et al., 2003; Cosio et al., 2004). The chronic LPS model 

supports this hypothesis, with dexamethasone significantly reducing neutrophils, 

while the macrophage numbers remain completely unaffected. Dexamethasone 

reduced CXCL8 levels in the BALF and lung tissue by 35% and 27% respectively 

but this failed to reach significance, TNF-α showed a reduction in the BALF but 

remained unchanged in the lung tissue. Toward and Broadley (2001) demonstrated 

dexamethasone, 20mg/kg, drastically reduced neutrophil numbers in the chronic LPS 

model, while macrophage numbers were relatively unchanged. Experiments have 

been performed on alveolar macrophages, isolated from the sputum of COPD 

patients, which show macrophages do not decrease CXCL8 release in response to 

dexamethasone (Culpitt et al., 2003).  

As previously discussed, it has been hypothesized that the reason for this reduction 

in macrophage sensitivity is due to a reduction in HDAC activity. HDAC is 

important in the regulation of inflammation due to its recruitment by steroids, 

resulting in the removal of acetyl groups from histone proteins, decreasing pro-

inflammatory transcription. Barnes et al (2004) propose that this reduction in HDAC 

is due to the increased oxidative stress burden in COPD. Cosio et al. (2004) showed 

macrophages isolated from COPD patients had a 51% reduction in HDAC activity 

compared to normal control subjects. This was shown to be reversed using a low 

dose of theophylline, increasing the activity of HDAC tenfold, which could be 

blocked by a HDAC inhibitor. This increase in activity resulted in increased 

sensitivity to dexamethasone and decreases in CXCL8. Low dose theophylline alone 

has also been shown to decrease neutrophil activity and CXCL8 levels in COPD 

(Kobayashi et al., 2004). The same effect was observed by To et al. (2010) when 
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either low dose theophylline or a PI3K inhibitor was administered, that led to the 

hypothesis that theophylline is exerting its action by inhibiting PI3K. PI3Ks are 

enzymes responsible for phosphorylating phosphoinositides, lipid second 

messengers, which play a role in cell signalling by binding to Akt (protein kinase B) 

(To et al. 2010). Akt is able to control key intracellular processes by acting on NF-

κB and IKK, which has previously been described to be involved in the Toll-like 

receptor pathway and COPD. IKK is bound to NF-κB resulting in an inactive form 

of NF-κB. Subsequent activation of Akt by PI3K results in the phosphorylation and 

resultant degradation of IKK, releasing active NF-κB and increasing transcription of 

inflammatory cytokines and oxidative stress. It has previously been shown that 

oxidative stress alone is able to decrease the activity of HDAC and increase the 

acetylation of histones (Tomita et al, 2003), so inhibition of PI3K ultimately leads to 

a reduction in active NF-κB, a decrease in transcription and a decrease in oxidative 

stress. 

These in vitro/ex vitro effects of low-dose theophylline and dexamethasone treatment 

reported for alveolar macrophages isolated from COPD patients were tested in the 

chronic LPS guinea pig model. The dose of theophylline required to exert an anti-

inflammatory effect has been shown to be significantly below the therapeutic 

bronchodilator dose (Ito et al., 2002a). In this study, 50mg/kg theophylline was 

shown to have a significant effect on histamine induced bronchoconstriction, while 

the 10% dose had no effect. While there are large variations in initial histamine 

response between the two groups due to fluctuations in the response of guinea pigs 

to histamine (fig 4.10), the fact that the same guinea pigs are compared before and 

after treatment, reduces the error of this reading.  
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Low dose theophylline alone had no effect on cells or cytokines, but combined with 

dexamethasone significantly improved the responses to dexamethasone, reducing 

total leucocytes and neutrophils compared to the double vehicle control, but not 

significantly compared to dexamethasone alone. Macrophage responses were also 

improved, with a reduction in numbers but again this did not reach significance 

compared to dexamethasone only. CXCL8 levels remained unchanged, while TNF-α 

levels in the BALF were significantly elevated with co-treatment compared to 

dexamethasone only. 

 Clinical trials with theophylline and the inhaled corticosteroid fluticasone in COPD 

patients showed similar results to the in vitro  experiments in terms of HDAC 

activity, which increased nine-fold, but there was no change  in neutrophil numbers 

(Ford et al., 2010). On the other hand, Kanehera et al. (2008) showed low dose 

theophylline reduced neutrophil numbers, but did not affect CXCL8 levels. There is 

very little clinical data showing the effects of low-dose theophylline alone or in 

combination with a corticosteroid. This means that the effects observed in in vitro/ex 

vitro alveolar macrophages are as yet unknown in the complete disease process. The 

decrease in macrophages observed in the chronic LPS model did not reach 

significance, however, the repeated exposure of a strong agonist such as LPS, may 

overpower any effect low-dose theophylline could exert. 

With the chronic LPS model exhibiting aspects of steroid resistance, it is also 

important for a model of COPD to have the ability to be exacerbated, increasing the 

inflammation above what is observed in the stable disease. COPD exacerbations 

account for 15.9% of all hospital admissions in the UK, and are a major cause of 

morbidity and mortality (Wedzicha and Seemungal, 2007). Studies have shown that 
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viruses are detected in roughly half of acute exacerbations (47-64%), while detection 

limits are low during stable disease (Seemungal et al., 2001; Rohde et al., 2003). The 

most common viruses isolated are rhinovirus, influenza, coronavirus and 

parainfluenza (Wedzicha and Seemungal, 2007). A study looking into the aetiology 

of exacerbations found parainfluenza 3 to be the third most common cause of 

hospitalizations (Ko et al., 2007a). Rhinovirus, influenza and coronavirus are viruses 

that are contagious and require high levels of containment, as well as some requiring 

a vaccination program. Parainfluenza, however, is a childhood associated infection 

with most children acquiring a parainfluenza infection before the age of 10 (Gardner, 

1969). This gives most people immunity; however, this immunity is not complete 

and can result in further infections down the line (Henrickson, 2003) and has been 

shown to be a cause of exacerbations in COPD. This partial immunity makes 

parainfluenza a relatively safe, clinically relevant virus.  

Parainfluenza 3 has been shown to infect guinea pigs (Freyer and Jacoby, 2012; 

Buckner et al., 1981). Broadley et al. (2010) and Toward et al. (2005) showed 

intranasal administration of parainfluenza 3 virus in the guinea-pig significantly 

increased cell influx into the lung, which is predominantly macrophage driven, with 

slight increases in eosinophils and neutrophils. They also showed an increase in 

airway hyper responsiveness to histamine after virus compared to before. However, 

the studies performed here, did not show an increase in total, macrophage or 

neutrophil numbers, an increase in AHR or any difference in PCR titre between 

media and virus challenged animals. The PCR titre retrieved was also lower and not 

higher than the 1.25x107 virions/ml inoculated, indicating a lack of infection and 

replication. This could be due to mutations in the virus after repeated culture, or due 

to mutations in the guinea pig. Bailley et al (2000) demonstrated that a change in the 
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nucleocapsid protein of PIV3 virus decreases its virulence in humans. PIV3 initially 

binds to neuraminidase acid receptors on the cell surface via haemagglutanin 

(Henrickson, 2003). A slight mutation on either of these proteins could result in 

decreased ability of the virus to attach and therefore infect the cell. As the virus is 

cultured more and more in the BSC-1 cell line, the virus is likely to mutate into a 

more virulent strain for this specific cell line, to the possible detriment of virulence 

in other species and cell types.  

The TLR3 agonist poly I:C was also used in this study as an alternative for possible 

use as an exacerbating agent. It also failed to produce an adequate response, with no 

significant increase in neutrophil numbers. Poly I:C is a double stranded RNA 

mimetic which acts via activation of the MYD88 dependent and independent 

pathways as a result of TLR3 activation. A study performed by Stowell et al, (2009) 

showed intranasal inoculation of poly I:C in anesthetised mice caused a reduction in 

lung function and an increase in cellular influx. Field et al (1972) showed that the 

failure to initiate an exacerbation with poly I:C is possibly due to the route of 

administration and not due to the chemical failing to trigger a response. The study 

showed poly I:C injected intravenously in guinea pigs developed antibodies to poly 

I:C while intranasal administration failed to do so. 

There were a number of possible reasons for the failure to achieve adequate infection 

to exhibit inflammation. Intranasal inoculation in conscious animals is not very 

accurate, with animals attempting to clear their noses of virus infected media or poly 

I:C by sneezing. Nardelli-Haefliger et al (2001) demonstrated that intranasal 

bacterial inoculation in conscious mice significantly reduces antibody responses 

compared to anaesthetised animals. Conscious mice inhaled only 0.1% of the 
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inoculated dose compared to 30% in anaesthetised mice, which would result in the 

minimum infective dose of PIV3 not being achieved if the same results transferred to 

the guinea pig. This shows that intranasal inoculation in conscious animals is a very 

unreliable method of initiating an exacerbation and may be the reason the model 

failed to show an adequate exacerbation.  

In summary, the chronic LPS model exhibits aspects of steroid resistance, with 

macrophages remaining unchanged with systemic dexamethasone treatment. Low-

dose theophylline improves the action of dexamethasone by decreasing macrophage 

numbers, but not significantly, and has no effect on cytokines. This means the model 

is exhibiting aspects of theophylline responses observed in ex vitro studies in 

alveolar macrophages, but the effect of theophylline in COPD as a whole still 

remains unclear. The model also failed to exhibit an adequate inflammatory response 

to parainfluenza 3 virus or poly I:C, with no increase in neutrophil numbers for 

either inoculations. Therefore a new model that can be used to investigate 

exacerbations needs to be developed. 
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5.1 Cigarette Smoke Exposure as a Model of COPD 

5.1.1 Cigarette smoke 

Cigarette smoke is the most common risk factor for COPD, accounting for 73% of 

COPD related deaths in developed countries and 40% in less-developed countries 

(WHO, 2010). It is not just direct smoking that is detrimental; passive smoking has 

also been implicated in the development of COPD (Yin et al., 2007), with 55% of 

smoke produced by a cigarette ending up as passive smoke (Yoshida and Tuder, 

2007). This makes cigarette smoke the most clinically relevant stimulus in models of 

COPD. 

Cigarette smoke is a complex cocktail, containing over 4700 different chemicals or 

oxidative species (Pryor and Stone, 1993). Studies are being performed to evaluate 

the toxicity of individual components, including aldehydes (Facchinetti et al., 2007), 

nicotine (Smith and Hansch, 2000) acrolien (Pfeifer et al., 2002) and reactive oxygen 

species (Rahman et al., 2002)  

5.1.2 Pathophysiology of Smoke Exposure 

The pathological response to cigarette smoke has previously been discussed in 

chapter 1. Briefly, there is an increase in proinflammatory cytokines, such as CXCL8 

and TNF-α. This results in inflammatory cell influx into the lungs, which are 

predominantly the neutrophil and macrophage, as well as cytotoxic T-lymphocytes. 

This results in three key processes occurring;  

• A protease/anti-protease imbalance 

• An oxidant/antioxidant imbalance 

• A failure to repair and maintain the lung  

This is summarised in figure 5.1. 
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Recent studies have been conducted to elucidate the mechanisms by which cigarette 

smoke increases inflammation, which have implicated the innate immune receptors 

TLR4 (Doz et al., 2008) and TLR9 (Mortaz et al., 2009) in increasing CXCL8 levels 

in response to cigarette smoke. All these mechanisms result in the conditions 

associated with COPD; chronic bronchiolitis, emphysema and increased mucous 

production; However, the exact mechanism by which cigarette smoke exerts this 

large range of effects still remains unclear.  

5.1.3 Cigarette Smoke Models 

A large number of smoke models have been used in many different animal species in 

order to better understand COPD. Acute smoke models in mice, rats and guinea pigs 

have shown an increase in inflammation which is primarily neutrophil driven 

(Thatcher et al., 2005; Hardaker et al., 2010; Nishakawa et al., 1999) and fails to 

show changes in histology. Chronic cigarette smoke challenge in rodents have 

demonstrated increases in inflammation that was more similar to COPD with a larger 

macrophage involvement as well as neutrophils (Churg et al., 2004; Yang et al., 

2007; Wright et al., 2002), and importantly have been demonstrated to exhibit 

histological changes, such as emphysema (Bartalesi et al., 2005). 

5.2 Aim 

The aim of this chapter is to develop cigarette smoke induced inflammation in the 

mouse exhibiting a similar phenotype to COPD. 

5.2.1 Objectives 

• To investigate the differences in acute and chronic exposure to cigarette 

smoke in the mouse by measuring inflammatory cell influx, TNF-α and 

CXCL1 levels. 
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• Investigate the effect of chronic cigarette smoke exposure on lung function, 

measuring static compliance and total lung capacity, as well as lung 

histology. 
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5.3 Methods 

5.3.1 Animal Husbandry 

Animals were housed as described in 2.1 

5.3.2 Cigarette Smoke Challenge 

Balb/C Mice received cigarette smoke (1R3F Kentucky research cigarettes, table 

5.1) or air (sham) into a sealed perspex chamber (7000cm3) at a flow rate of 0.6 

l/min for 30 minutes. Smoke was produced by peristaltic suction with 4 seconds of 

smoke per minute. The average particulate matter was recorded and adjustments to 

the amount of smoke entering the chamber altered accordingly to maintain a 

consistant reading across all groups. The average total particulate matter was 444.1 ± 

1.9 tpm/M3  

Ingredient Percentage (W/W) 

Flue-Cured 32.54 

Burley 20.04 

Turkish 11.09 

Maryland 1.06 

Reconstituted Sheet 27.17 

Invert Sugar 5.3 

Glycerine 2.8 

Table 5.1 The blend of 1R3F research cigarettes acquired from the University of Kentucky 

5.3.2.1  Acute Cigarette Smoke Challenge 

Mice were exposed to cigarette smoke or air for 30 minutes, twice a day, for 3 

consecutive days. A minimum of 5 hours was allowed between exposures (fig 5.2). 

24 hours after the final exposure the mice were culled and a bronchalveolar lavage 
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was performed to determine total and differential leucocyte numbers and cytokines 

as described  in 2.7. 

 

Figure 5.2 A diagramatic representation of the acute cigarette smoke model 

5.3.2.2 Chronic Cigarette Smoke Challenge 

Mice were exposed to cigarette smoke or air for 30 minutes, twice a day, 5 days a 

week, for 5 weeks. On the sixth week, mice recived twice daily smoke or air for 3 

days (fig 5.3) Animals were killed 24 hours after the final smoke or air challenge and 

a bronnchoalveolar lavage was performed to determine total and differntial leucocyte 

numbers as described in 2.7. Animals were also killed 96 hours later to determine 

lung function changes after inflammation had subsided. 

  

Figure 5.3 A diagramatic representation of the chronic cigarette smoke model 
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5.4 Results 

The Effect of Acute Cigarette Smoke or Acute Air Challenge on Cell Influx into 

the Lung of Mice 

Acute cigarette smoke challenge significantly increased total leucocyte numbers in 

the lung compared to sham challenged animals (489.7 ± 69.3 and 110.8 ± 15.2 

x103cells/ml respectively) (fig 5.4). This was predominantly neutrophillic, with acute 

cigarette smoke challenged mice expressing significantly higher neutrophil numbers 

compared to sham challenged animals (P<0.001), but no significant difference in 

macrophage numbers between the groups. 

The Effect of Acute Cigarette Smoke or Acute Air Challenge on CXCL1 and 

TNF-α Levels in the BALF and Lung Tissue of Mice 

There was no significant difference between BALF CXCL1 levels or TNF-α levels 

in acute sham and acute cigarette smoke challenged animals (fig 5.5).  However, 

there was a significant increase in CXCL1 levels (P<0.001) and TNF-α levels (18.3 

± 4.8 and 0.8 ± 0.8pg/mg respectively) in the lung tissue when acute cigarette smoke 

challenged groups were compared with their control group.  

The Effect of Chronic Cigarette Smoke or Chronic Air Challenge on Cell Influx 

into the Lung of Mice. 

Chronic cigarette smoke challenge significantly increased total leucocytes, 

neutrophils and macrophages compared to chronic sham challenged animals 

(P<0.001) (fig 5.6). 

The Effect of Chronic Cigarette Smoke or Chronic Air Challenge on CXCL1 

and TNF-α Levels in the BALF and Lung Tissue of Mice  

Chronic cigarette smoke challenge significantly increased CXCL1 levels in the 

BALF and lung tissue compared to chronic sham challenged animals (P<0.05) (fig 
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5.7). In contrast, TNF-α levels in both the BALF and lung tissue showed no 

significant difference in levels when chronic sham and chronic cigarette smoke 

challenged animals are compared. 

The Effect of Chronic Cigarette Smoke or Chronic Air Challenge on Total 

Lung Capacity and Static Compliance in Mice  

Chronic cigarette smoke significantly increased total lung capacity and static 

compliance (P<0.01) in the mice compared to chronic sham challenged animals (fig 

5.8).  

The Effect of Chronic Cigarette Smoke or Chronic Air Challenge on 

Emphysema in the Mouse Lung. 

Chronic cigarette smoke challenge significantly decreases the mean linear intercept 

compared to chronic air challenged mice (27.9 ± 0.92 and 38.3 ± 1.1 respectively) 

(fig 5.9). This signifies an increase in emphysema in cigarette smoke challenged 

mice compared to sham challenged animals. Figure 5.10 shows chronic cigarette 

smoke challenged mice exhibit larger emphysematous space than chronic air 

challenged mice.   
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Figure 5.4 The effect of acute cigarette smoke challenge on total cell, macrophage and 
neutrophil numbers in the mouse. Acute cigarette smoke challenge significantly increases 
total cell and neutrophil numbers compared to sham challenged animals, with macrophages 
showing no significant difference. Mean ± SEM, N=10, ***P<0.001, Mann-Whitney test. 
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Figure 5.5 The effect of acute cigarette smoke challenge on the cytokines CXCL1 and 
TNF-α in the mouse. Acute cigarette smoke challenge significantly increases CXCL1 levels 
in the lung tissue compared to sham challenged animals, while there is no significant 
difference in the BALF. TNF-α shows no significant change in either BALF or lung tissue. 
Mean ± SEM, N=10, **P<0.01, ***P<0.001, Mann-Whitney test, ----- limit of detection. 
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Figure 5.6 The effect of chronic cigarette smoke challenge on total cell, neutrophil and 
macrophage numbers in the mouse. Chronic cigarette smoke challenge significantly 
increases all parameters compared to sham challenged animals. Mean ± SEM, N=10, 
***P<0.001, Mann-Whitney test. 
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Figure 5.7 The effect of chronic cigarette smoke challenge on the cytokines CXCL1 and 
TNF-α in the BALF and lung tissue of the mouse. Chronic cigarette smoke challenge 
significantly increases CXCL1 in both the BALF and lung tissue compared to sham 
challenged animals. TNF-α shows no significant difference in both the lung tissue and the 
BALF compared to sham challenged animals. Mean ± SEM, N=10, *P<0.05, ***P<0.001, 
Mann-Whitney test ---- limit of detection. 
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Figure 5.8 The effect of chronic cigarette smoke challenge on the lung function of mice. 
Chronic cigarette smoke challenge results in a significantly different total lung capacity and 
static compliance when compared to sham challenged animals. Mean ± SEM, N=10, 
**P<0.01, Mann-Whitney test.  
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Figure 5.9 The mean linear intercept for chronic sham and chronic smoke challenged 
mice. Chronic smoke challenged animals show a significant decrease in mean linear 
intercept compared to chronic sham challenged animals, signifying an increase in 
emphysema. Mean ±SEM, N=10, ***P<0.001, Mann-Whitney test. 

  

    

 

Figure 5.10 An Example of the Histology of the Mouse Lung After Chronic Saline or Chronic 
Cigarette Smoke Challenge. Chronic cigarette smoke increases the emphysematous air spaces in the 
lung compared to chronic air challenged mice. 

Chronic Sham Chronic Smoke
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5.5 Discussion 

Many varied smoke models have been used in many different animal species, in an 

attempt to examine the complex pathways involved in the development of COPD. 

Acute smoke models are routinely employed using mice (Thatcher et al., 2005), rats 

(Hardaker et al., 2010) and guinea pigs (Nishikawa et al., 1999). Smoke is delivered 

in varying different ways; nose only inhalation, nose and mouth inhalation, whole 

body smoke exposure, anesthetized inhalation and intratrachael inhalation (van der 

Vaart et al., 2004), with varying acute smoking schedules, making it particularly 

difficult to compare these non-standardised protocols. However, they all show an 

increase in inflammation which is neutrophil and macrophage driven. 

The acute smoke model shows a purely bronchoalveolar inflammation, with no 

inflammatory infiltration into the lung (from previous studies at Novartis) and an 

inflammatory profile of 83% neutrophils and 17% macrophages, while COPD shows 

a 58% neutrophil and 33% macrophage profile (Beeh et al., 2003). This means that 

acute cigarette smoke exposure is a predominantly neutrophillic response, with little 

macrophage involvement. Wan et al. (2010) also demonstrated that acute, 3 day 

cigarette smoke exposure in mice was almost entirely neutrophillic, with no 

macrophage involvement. Macrophages play a very important role in the 

pathophysiology of COPD (Barnes, 2004a), meaning the acute cigarette smoke 

model is not expressing the correct pathophysiology for the disease. 

The most important thing to note in terms of acute cigarette smoke models is the lack 

of structural changes and lung function impairment. There are no structural changes 

in an acute model, while COPD exhibits emphysematous changes, due to the loss of 

parenchymal cells (Barnes, 2012). No structural changes have been reported in the 

literature after acute cigarette smoke challenge in any species. Churg et al. (2002) 
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did show acute smoke exposure resulted in measurable markers of elastin and 

collagen breakdown after 24 hours, but did not lead to structural changes due to 

insufficient time for these changes to occur. Previous studies at Novartis have also 

shown that this model does not exhibit any change in lung function after acute 

cigarette smoke exposure, as well as being sensitive to corticosteroids. Despite these 

flaws, the acute smoke model is favoured in drug discovery over the more chronic 

models due to time constraints and the expense of keeping and dosing animals for a 

prolonged period of time. However, with the wrong distribution of inflammation and 

no change in lung structure or lung function, the relevancy of any results obtained in 

this model is questionable. A more chronic model with more clinically relevant 

manifestations of COPD is required. 

Chronic cigarette smoke as a model of COPD, like the acute model, has been used in 

many different species, including mice (Churg et al., 2004), rats (Yang et al., 2007), 

and guinea pigs (Wright et al., 2002). Chronic cigarette smoke significantly 

increased total, neutrophil and macrophage numbers, with an inflammatory profile of 

35% neutrophils and 65% macrophages meaning this model displays a larger, and 

more representative, macrophage response than the acute model. The chronic model 

displayed increases in CXCL1 in both the BALF and lung tissue just like in COPD 

(Yammamto et al., 1997; de Boer et al., 2000), unlike in the acute smoke model, 

which only showed elevations in CXCL1 in the lung tissue. However, the model 

exhibited no increase in TNF-α in either the lung tissue or the BALF, with very 

similar levels as observed in the sham exposed animals. These cytokines were 

chosen for the preliminary investigation to make the results comparable with the LPS 

model. Since cytokines were measured using an MSD 10-plex assay, other cytokines 

did show differences, but significance was only observed in IL-10 in the BALF and 
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IL-1β in the lung tissue which were significantly impaired and increased by smoke 

respectively (P<0.01).  Many studies have shown that TNF-alpha is increased in 

COPD (Profita et al., 2003; Cosio et al., 2004), while there is increasing evidence 

that TNF-α release from macrophages is decreased after exposure to cigarette smoke 

as a result of oxidative stress (Droeman et al., 2005; Berenson et al., 2006a). The 

exact effect cigarette smoke has on the inflammatory pathways in macrophages as 

yet remains poorly understood, but will be discussed in more detail in chapters 7 and 

8. Another possible reason for a decrease in TNF-α levels is due to chronic exposure 

to a stimulus desensitizing receptors of the innate and adaptive immune system, 

decreasing the response to the stimulus over time (Parker et al., 2004). 

Unlike in the acute cigarette smoke model, the chronic model displayed decreases in 

lung function. In COPD forced expiratory volume (FEV1) is decreased, while total 

lung capacity (TLC) (O’Donnel et al., 2004) and static compliance (Cstat) (Zanotti et 

al., 1995) are measurably increased. This is due to loss of elasticity in the lungs 

increasing compliance, resulting in hyperinflation and increases in total lung 

capacity (Vlahos et al., 2006). This makes patients feel short of breath as the lungs 

are unable to efficiently exhale all the air in the lungs, decreasing the amount of 

oxygen that can then be inhaled. As in COPD, the chronic smoke model shows 

significant increases in total lung capacity and static compliance and also 

demonstrates emphysematous changes, with a significant decrease in mean linear 

intercept in smoke challenged animals compared to the sham controls. A decrease in 

mean linear intercept signifies a reduction in the number of alveolar walls, due to the 

loss of parenchyma (Barnes, 2011). As previously mentioned, many studies have 

been performed to assess the correlation of emphysema with lung function, which 
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show that the two are poorly related (Robbesom et al., 2003), with emphysema also 

varying widely between patients in the same stage of COPD (Makita et al., 2007).  

In summary, this data has shown that the chronic cigarette smoke model exhibits 

similar inflammation and structural changes as COPD and also results in a decrease 

in lung function. This makes the chronic model a better model over acute cigarette 

smoke exposure in exhibiting several important aspects of COPD. Therefore, the 

chronic model is the model that should be used in further studies investigating 

exacerbations and pathways. 
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6.1 Bacteria and COPD 

Bacteria’s role in COPD is poorly understood due to the difficulties in sampling and 

identification; however, studies are beginning to suggest that bacteria also play a 

vital role in the pathophysiology of COPD. Bacterial colonization of the lungs is 

believed to not only cause increased numbers of exacerbations, but to also increase 

stable COPD inflammation, independent of cigarette smoke, increasing the severity 

and progression of the disease (Sethi  et al., 2006).  The most commonly isolated 

bacterium in COPD is non-typeable Haemophilus influenza (NTHi), followed by 

Streptococcus pneumoniae and Morexella catharrlis (Wedzicha & Seemungal, 

2007).  

6.2 NTHi and COPD 

Haemophilus influenza was first discovered in 1892 by Pfeiffer (Murphy, 2001) and 

was the first organism to have its entire genome sequenced in 1995 (Todar, 2008). 

Haemophilus influenza and non-typeable Haemophilus influenza differ in the 

presence or absence of a polysaccharide capsule. Haemophilus influenza has six 

serotypes, a-f, dependent on the type of capsule present. NTHi lacks a capsule, so is 

therefore termed ‘non-typeable’. Differing strains of NTHi can be distinguished 

using electrophoresis or enzymatic analysis of external proteins (Foxwell et al., 

1998). 

NTHi is a Gram negative, pleomorphic coccobaccillus that can grow aerobically (in 

the presence of hemin and NAD) or anaerobically. NTHi is a human specific 

pathogen and colonizes 50% of children by the age of six, and 75% of healthy adults 

are colonized by this bacteria, but it is also an opportunistic pathogen (King, 2012). 

Non-typeable Haemophilus influenza is the most frequently isolated bacterium in 

COPD, accounting for between 30% and 60% of all stable COPD samples (Sethi et 
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al., 2006) and up to 87% of samples during acute exacerbations (Bandi et al., 2001). 

Rossell et al. (2005) also showed NTHi was the most frequently sampled bacteria in 

healthy smokers. Studies have shown that impaired immune states and decreases in 

the ability of macrophages to phagocytose NTHi in COPD could be responsible for 

the persistent colonization as well as the increased rate of infection of NTHi in these 

patients (Berenson et al., 2006). 

NTHi have many virulence factors to evade detection and increase infection. The 

Haemophilus inflenzae capsule is a virulence factor that allows it to be more invasive 

than NTHi; however NTHi has several other virulence factors that increase its 

virulence. NTHi is a diverse species with very large genetic variability. This allows 

the bacteria to increase virulence, evade the host’s immune system and better acquire 

the necessary nutrients (Garmendia et al., 2012). NTHi has been shown, for 

example, to decrease the rate of ciliary clearance from the lungs due to the 

modulation of protein kinase C (Bailey et al., 2012). It has also been demonstrated to 

evade complement by altering its lipooligosaccharide composition, preventing 

recognition and subsequent binding of IgM. (Langeris et al., 2012). NTHi has also 

been shown to secrete IgA proteases to prevent detection (Erwin and Smith, 2007; 

Murphy et al., 2011), as well as entering epithelial cells to evade phagocytosis 

(Morey et al., 2011). 

6.3 Aim 

The aim of this chapter iss to determine the dose of NTHi required to cause an 

infection and inflammation in Balb/C mice and whether there is a difference in 

response to live or heat-inactivated NTHi. 
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6.3.1 Objectives 

• Correlate the optical density of NTHi in broth to the CFU/ml for accurate 

determination of dose 

• Identify the dose of NTHi that gives maximal response in inflammatory cell 

influx 

• Investigate the inflammatory cell and cytokine responses as well as the 

bacterial load at 6, 24, 96 and 168 hours after NTHi inoculation. 

• Identify the time taken to heat-inactivate NTHi at 70°C 

• Quantify the LPS levels in live and heat-inactivated NTHi 

• Investigate the response to live and heat-inactivated NTHi in the mouse 

measuring neutrophil influx and activity (Myeloperoxidase levels), as well as 

CXCL1 and TNF-α levels. 
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6.4 Methods 

6.4.1 Animal Husbandry 

Animals were housed as described in 2.1 

6.4.2 Bacterial Growth Curve 

6.4.2.1 Optical Density Measurements 

NTHi was grown on chocolate agar plates (Becton Dickinson, UK) for 16 hours at 

37°C with 5% CO2 to achieve a lawn growth. Colonies were then added to 1.5mls of 

brain-heart infusion broth, supplemented with 1% hemin and 0.1% NAD to achieve a 

value greater than 1.1 when read in a spectrophotometer at a wavelength of 600nm 

(OD600). 30mls of the supplemented brain heart infusion broth was placed in a 

culture flask and inoculated with the NTHi infected broth to give a starting optical 

density of 0.05. The flask was then placed in a shaking incubator at 37°C and 

225rpm. Every 30 minutes, ranging from 0-480 minutes after inoculation, 1ml was 

taken and placed in a cuvette and the OD600 value was recorded.  

6.4.2.2 Colony Forming Unit Analysis 

 A flask of supplemented brain heart infusion broth was prepared and incubated at 

37°C with constant shaking at 300rpm. Every 30 minutes, ranging from 0-480 

minutes after inoculation, 1ml was taken and serial dilutions were made in broth 

ranging from 1 in 10 to 1 in 1000000. 100µl of the dilutions ranging were streaked 

onto separate chocolate agar plates and incubated at 37°C with 5% CO2 for 24 hours. 

The colony forming units per ml of the streaked plates were then determined on a 

protoCOL 2 plate reader (Symbiosis, UK)  

6.4.3 Dose Response to Non-typeable Haemophilus influenzae 

NTHi was grown on chocolate agar plates (Becton Dickinson, UK) before being 

inoculated into supplemented brain heart infusion broth (BHi) (Becton Dickinson, 
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UK) at an OD600 reading of greater than 1.1. A 1 in 10 dilution of the infusion was 

adjusted accordingly to give an OD600 reading of 0.4, which corresponded to 3x109 

CFU/ml. 

Mice were anaesthetised with an intraperitoneal injection of hypnorm/hypnovel 

before receiving 50µl of supplemented brain-heart infusion broth or NTHi at 

concentrations ranging from 6x107 to of 3x109 CFU/ml intra-nasally. Animals were 

killed 24 hours after intranasal administration (unless otherwise stated). All bacterial 

inoculations took place in a laminar flow cupboard to prevent bacterial spread. After 

bacterial inoculation animals were housed in groups of 5 in an OptiMice bio-

containment cage system (Animal Care Systems, USA) with an independent air 

supply. 

6.4.4 Time-course of Non-typeable Haemophilus influenzae infection 

Mice were inoculated with 1x108cfu/mouse NTHi intranasally as described in 2.4.3. 

Mice were culled 6, 24, 96 and 168 hours after inoculation and a bronchoalveolar 

lavage performed, as described in 2.7, to determine inflammatory cells and 

cytokines. 

6.4.5 Quantification of Colony Forming Units 

100µl of lung homogenised in brain heart infusion broth (as described in 2.7.10) was 

streaked on chocolate agar plates (Becton Dickinson, UK) with a large dilution range 

using 1 in 10 serial dilutions in BHi broth. The plates were incubated at 37°C in 5% 

CO2 for 16 hours. Plates were read on a protoCOL 2 colony counter (Synbiosis, UK) 

with the limit of detection ranging from a minimum of 30 to a maximum of 300 

colonies per plate. Plates falling below 30 were considered to have no growth while 

plates exceeding 300 were considered too confluent for accurate counting. The 
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relevant dilution factors were input into the program to give colony forming units 

(CFU)/ml 

6.4.6 Heat-inactivated NTHi 

NTHi was grown on chocolate agar plates (Becton Dickinson, UK) for 16 hours at 

37°C with 5% CO2 to achieve a lawn growth. Colonies were then added to 1.5mls of 

brain-heart infusion broth, supplemented with 1% hemin and 0.1% NAD to achieve 

on OD600 value greater than 1.1. 30mls of the supplemented brain heart infusion 

broth was placed in a culture flask and inoculated with the NTHi infected broth to 

give a starting optical density of 0.05. The flask was then placed in a shaking 

incubator at 37°C and 225rpm for 380 minutes to allow the bacteria to be in the log 

phase of growth. A sample was then taken and the optical density of the broth 

measured. The flask was adjusted accordingly to achieve an optical density of 0.4 

(3x109cfu/ml). 1 ml was then placed in boiling tubes and placed in a water bath set at 

70°C. A tube was removed every ten minutes ranging from, 0-90 minutes after being 

placed in the bath. Serial dilutions were made in broth ranging from 1 in 10 to 1 in 

1000000. 100µl of each dilution was streaked onto separate chocolate agar plates and 

incubated at 37°C with 5% CO2 for 24 hours. The colony forming units per ml of the 

streaked plates were then determined on a protoCOL 2 plate reader (Symbiosis, UK). 

6.4.7 Quantification of LPS Levels 

LPS levels were determined using a limulus amebocyte lysate (LAL) assay kit 

(Thermo Scientific, UK) according to the instructions. Levels were determined for 

live and heat inactivated NTHi at 3x109cfu/ml. Briefly, standards were made by 

dilution of the supplied standard in endotoxin-free water to give a range from 

1EU/ml to 0.1EU/ml. An endotoxin-free 96 well plate was pre-incubated at 37°C for 

10 minutes. 50µl of each standard, blank and sample (diluted 1:5000) was added to 
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the appropriate wells, covered and incubated for 5 minutes at 37°C. 50µl of the 

supplied LAL (dissolved in endotoxin free water) was added to each well before the 

plate was gently shook on a plate shaker for 10 seconds and incubated at 37°C for 10 

minutes. 100µl of the supplied chromogenic substrate (dissolved in endotoxin- free 

water to yield a concentration of 2mM) was added to each well and then gently 

shaken on a plate shaker for 10 seconds and incubated at 37°C for 6 minutes. 50µl of 

the stop reagent (25%acetic acid) was added and the plate gently shaken for the final 

time for 10 seconds. The absorbance was then read at 410nm in a spectramax plate 

reader. 
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6.5 Results 

The Time-Course of Growth of Haemophilus influenza Determined by Optical 

Density and Colony Forming Unit. 

The optical density time-course for Haemophilus influenza showed three distinct 

phases. The lag phase starts at 0 minutes and ends around 180 minutes, with optical 

densities ranging from 0.053 ± 0.003 to 0.223 ± 0.043 respectively. The next phase 

was the log phase ranging from 210 minutes to 390 minutes with optical densities of 

0.377 ± 0.072 and 1.730 ± 0.056 correspondingly; and the final phase was the 

stationary phase, where growth plateaus, ranging from 420 to 480 minutes with 

optical densities of 1.853 ± 0.054 and 1.907 ± 0.041 respectively (fig 6.1). The same 

pattern was observed for the colony forming unit time-course, although it was less 

distinct with a lot more variation. Here, the lag phase spanned 0 to 120 minutes with 

colony forming unit measurements of 4.1± 2.0 and 5.8 ± 3.7 x108CFU/ml 

correspondingly. The log phase ranged from 150 to 390 minutes with colony 

forming units of 25.2 ± 8.3 x108CFU/ml and 15.9 ± 2.7 x109CFU/ml respectively. 

The stationary phase spanned the same length of time as the optical density 

measurements, 420 to 480 minutes (17.1 ± 1.3 and 11.5 ± 2.1 x109CFU/ml 

respectively) (fig 6.1). 

There was a good correlation between optical density and colony forming unit, with 

an R2 value of 0.87. The equation of the graph was: Y = 7.0x109x +1.975 x108. From 

this equation it was inferred that a colony forming unit value of 3x109CFU/ml 

requires an optical density of 0.4 (fig 6.2). 
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The Effect of Varying Doses of Haemophilus influenza on Cell Influx and 

Bacterial Retrieval from the Lung of Mice. 

There was no significant difference in total leucocyte numbers between media 

challenged animals and mice challenged with 3x106CFU/mouse of Haemophilus 

influenza (fig 6.3). However, there was a significant increase in leucocytes, when 1, 

3 (x107CFU/mouse) (P<0.01) and 1x108CFU/mouse were compared to media only 

challenged animals (P<0.001). Similarly, the exact same pattern was observed in 

neutrophil responses, with media and mice challenged with 3x106CFU/mouse of 

Haemophilus influenza showing no significant difference, but the mice challenged 

with 1x107CFU/mouse, 3x107CFU/mouse and 1x108CFU/mouse of Haemophilus 

influenza showed a significant increase when compared to the media only group. 

Macrophages, on the other hand, showed no significant difference for mice 

challenged with Haemophilus influenza at any dose compared to the media control 

group (152.0 ± 19.1 x103cells/ml).  

There was no significant difference in bacterial retrieval in mice challenged with 

3x106CFU/mouse and 1x107CFU/mouse Haemophilus influenza compared to media 

only animals, but there was a significant increase in retrieval when mice challenged 

with Haemophilus influenza at 3x107CFU/mouse and 1x108CFU/mouse  were 

compared to media only animals (P<0.01) (fig 6.3). 

The Bacterial Retrieval Time-Course Response to Haemophilus influenza 

Challenge in the Mouse. 

There was a significant difference in viable bacterial clearance from the lungs 

between mice challenged with BHi media only and mice challenged with 1x108 

CFU/mouse of Haemophilus influenza at 6 hours and 24 hours (P<0.001) after intra-
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nasal inoculation (fig 6.4). By 96 hours there was no significant difference between 

media only and Haemophilus influenza challenged animals, and by 168 hours both 

media and Haemophilus influenza challenged mice had a retrieval of 0.0 ± 

0.0CFU/ml. 

The Time-Course of Cell Influx into the Lung after Haemophilus influenza 

challenge in the Mouse 

Total leucocyte and neutrophil influx into the lung was significantly increased in 

NTHi challenged mice compared to the control group at 6 hours (P<0.001), peaks at 

24 hours (P<0.01 and P<0.001 respectively) and total leucocytes were still 

significantly increased at 96 hours (P<0.05), while neutrophils returned to similar 

levels as the control. There was no significant difference in total or neutrophil cell 

numbers by 168 hours after inoculation. Macrophages however, remained unchanged 

at 6 and 24 hours  after NTHi challenge compared to their respective controls, but 

were significantly increased in NTHi groups compared to media only groups at 96 

hours (P<0.001)). Macrophage numbers returned to similar numbers between NTHi 

groups and media only groups by 168 hours. Lymphocytes, like macrophages, 

remained unchanged in NTHi groups compared to their respective controls at 6 and 

24 hours after challenge, however, at 96 and 168 hours lymphocyte numbers were 

significantly increased in NTHi animals compared to media only mice (P<0.001) (fig 

6.5). 

The Time-Course of CXCL1 and TNF-α Levels in the BALF and Lung Tissue 

after Haemophilus influenza challenge in the Mouse 

CXCL1 levels in NTHi challenged animals were increased at six hours compared to 

media only challenged mice (1856.0 ± 529.5 and 145.4 ± 55.8pg/ml respectively) but 
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failed to reach significance (figure 6.6).  However, at 24 hours the groups were 

significantly different <P<0.01), but returned to very similar levels at 96 and 168 

hours after challenge. Similarly, CXCL1 levels in the lung tissue were increased in 

NTHi challenged mice compared to media only groups at 6  and 24 hours, but these 

differences were significantly different (P<0.001). As in the BALF, CXCL1 returned 

to very similar levels between the groups at 96 and 168 hours. TNF-α in the BALF 

was also raised at 6 hours in NTHi challenged animals compared to media only but 

again this did not reach significance. 24 hours after challenge however, NTHi groups 

had significantly elevated levels compared to the control (522.6 ± 223.6 and 12.8 ± 

3.0pg.ml respectively), while at 96 and 168 hours the groups had very similar levels. 

TNF-α levels in the lung tissue were undetectable at any time point. 

The Time Required to Heat-Inactivate NTHi at 70C 

At the 0 minute time point the CFU/ml was 1.4 ± 0.6 x1010. There was a rapid 

decrease in viable bacteria numbers up until 20 minutes, with a CFU/ml of 9238 ± 

2531, which plateaued until 40 minutes with a CFU/ml count of 4368 ± 1634. There 

was then a sharp decline at 50 minutes (138 ± 137 CFU/ml), until all bacteria were 

killed at 60 minutes (0 ± 0 CFU/ml). Bacteria remained at 0 ± 0CFU/ml at 70, 80 

and 90 minutes (fig 6.7). 

Determination of LPS levels and Bacterial Viability in Media, Live and Heat-

inactivated NTHi 

The brain-heart infusion media had small levels of LPS, with an optical density value 

of 0.4. However, both the live and heat-inactivated NTHi had much higher values 

compared to the broth but had the exact same value as each other with an optical 

density value of 2.92 each (fig 6.8). Media and heat-inactivated NTHi showed no 
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evidence of viable bacteria with a CFU/ml value of 0 ± 0 each. Live NTHi showed a 

significantly increased bacterial viability (10466 ± 4781 CFU/ml) compared to both 

the media and heat-inactivated NTHi challenged groups (P<0.01) (fig 6.9). 

The Effect of Live and Heat-Inactivated NTHi on Neutrophil Influx and 

Myeloperoxidase Levels in the BALF of Mice. 

Live and heat-inactivated NTHi showed a significantly increased neutrophil response 

compared to media only challenged animals (P<0.01), however, there was no 

significant difference between live and heat-inactivated NTHi. The exact same 

pattern was observed for myeloperoxidase levels in the BALF, with media only 

challenged animals expressing significantly lower levels of MPO compared to both 

live and heat-inactivated NTHi (P<0.05). Again, there was no significant difference 

in MPO levels between live and heat-inactivated NTHi (figure 6.10). 

The Effect of Live and Heat-Inactivated NTHi on CXCL1 and TNF-α levels in 

the BALF and Lung Tissue of Challenged Mice. 

Live NTHi challenged animals showed a significantly higher expression of CXCL1 

in the BALF compared to media only challenged animals (P<0.01). However, heat-

inactivated NTHi showed no significant difference between either media only of live 

NTHi challenged mice. Similarly, the lung tissue CXCL1 levels were significantly 

elevated in live NTHI challenged mice compared to media only challenge (P<0.001), 

but the heat-inactivated NTHi group (P<0.01) also showed a significant increase in 

levels compared to media only animals. Again, there was no significant difference 

between live and heat-inactivated NTHi challenged groups.  
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TNF-α levels in the BALF increased significantly when both live (P<0.05) and heat-

inactivated (P<0.001) NTHi challenged mice were compared to media only 

challenged animals. Again, there was no significant difference in levels between the 

live and heat-inactivated NTHI challenged groups. TNF-α levels in the lung tissue, 

although live and heat inactivated NTHi increased the expression of the cytokine, 

this was not significantly different from the media only challenged animals, nor each 

other (figure 6.11). 
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Figure 6.1 The Time Course of Growth for NTHi Measured by Optical Density and 
Colony Forming Units. Optical density showed a smooth growth curve with distinct lag, 
log and stationary phases, reaching optimum rate at ~200minutes and reaching peak at 
~400minutes. The colony forming unit time course also showed rough lag, log and 
stationary phase around the same time as the optical density time course. Mean ± SEM, 
N=3. 
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Figure 6.2 The Comparison of Optical Density and Colony Forming Units of NTHi. The 
graph shows the optical density required to obtain a set cfu/ml of bacteria. To achieve a 
cfu/ml of 3x109, an optical density of 0.4 is required Mean ± SEM, N=3. 
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Figure 6.3 The Effect of Varying Concentrations of NTHi (0, 3x106, 1x107, 3x107, and 
1x108 cfu/mouse) on Total Cell, Neutrophil and Macrophage Numbers in the BALF and 
Viable Bacterial Return from the Lung Tissue. Concentrations ranging from 1x108 to 
1x107 showed significant increases in total cell and neutrophil numbers compared to the 
media control group. No group showed a significant difference in macrophages. Only 1x108 
and 3x107 showed a significant difference in bacterial return compared to the control. 
3x109cfu/ml had the most statistically significant difference from control of all the 
concentrations. Mean ± SEM, N=10, *P<0.05, **P< 0.01, ***P<0.001 Kruskal-Wallis test 
post hoc Dunns 
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Figure 6.4 Viable Colony Forming Units/ml Retrieved from Lung Tissue at 6, 24, 96 
and 168 Hours After NTHi Inoculation (1x108 cfu/mouse i.n). There was a significant 
difference between NTHi infected animals and their corresponding control group at 6 and 24 
hours. NTHi infected animals did not show any significant difference to the controls at 96 
and 168 hours with cfus falling below the limit of detection. BHi = Brain heart infusion 
broth, Mean ± SEM, N=10, **P< 0.01, ***0.001, Mann-Whitney test. 
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Figure 6.5 The Effect of NTHi Inoculation (1x108 cfu/mouse i.n) on Total Cell, 
Neutrophil, Macrophage and Lymphocyte Numbers at 6, 24, 96 and 168 Hours after 
Inoculation. Total cell and neutrophil numbers were significantly increased at 6 and 24 
hours for NTHi infected animals compared to the respective control groups. Total cells 
remained significantly different at 96 hours after inoculation as did macrophages and 
lymphocytes. Lymphocytes also remained significantly elevated at 168 hours after 
inoculation. Mean ± SEM, N=10, *P<0.05, **P< 0.01, ***0.001, Mann-Whitney test. 
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Figure 6.6 The Effect of NTHi Inoculation (1x108 cfu/mouse i.n) on CXCL1 and TNF-α 
Levels in the BALF and Lung Tissue at 6, 24, 96 and 168 Hours After Inoculation. 
CXCL1 was significantly increased in the BALF 24 hours after inoculation. It was also 
increased at 6 and 24 hours in the lung tissue, while TNF-α was only significantly increased 
in the BALF 24 hours later. TNF-α was undetectable in the lung tissue at any time point. 
Mean ± SEM, N=10, **P< 0.01, ***P<0.001, Mann-Whitney test. 

 

6 Hours 24 Hours 96 Hours 
TNF-α (BAL only) Serum Amyloid A 

(Blood) 
 

CXCL1 (+ Blood) Il-1β (BAL)  
IL-10 (BAL Only)   

Il-1β (Lung Tissue)   
Il-12p70   

Il-6   
Table 6.1 Table of Other Recorded Cytokines Measured at 6, 24 and 96 hours After 
NTHi inoculation (1X109 cfu/mouse i.n).  Table represents the peak response of each 
cytokine, with peaks occurring in BALF and lung tissue unless otherwise stated. Cytokines 
failed to reach significance (raw data in appendix 2). Mean ± SEM, N=10, P> 0.05, Mann-
Whitney test. 
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Figure 6.7 The Time Required to Heat- Inactivate NTHi at 70°C. NTHi was heat 
inactivated after 60 minutes at 70°C, with no growth occurring at or after this time point. 
Mean ± SEM, N=3 
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Figure 6.8 Quantification of LPS Levels of Live and Heat-Inactivated NTHi. There was 
no difference in LPS levels between live and heat inactivated NTHi. Mean, N=3,  
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Figure 6.9 Viable NTHi Recovery from the Lungs of Live and Heat-Inactivated 
Inoculated Mice.  There was a significant difference in CFUs when live infection was 
compared to both the control group and the heat-inactivated NTHi challenged animals. Heat-
inactivated NTHi showed no significant difference compared to the control group. Mean ± 
SEM, N=10, ***P<0.001, Kruskal-wallis post hoc Dunn’s test. 
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Neutrophils
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Figure 6.10 The Effect of Live and Heat-Inactivated NTHi on Neutrophil Numbers and 
Neutrophil Secreted Myeloperoxidase Levels in the BALF. Both live and heat-inactivated 
NTHi showed a significant difference in neutrophil numbers and myeloperoxidase levels 
compared to the control group. Live and heat-inactivated NTHi showed no significant 
difference from each other in cell number or activity. Mean ± SEM, N=10, 
*P<0.05,**P<0.01, Kruskal-wallis post hoc Dunn’s test. 
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Figure 6.11 The Effect of Live and Heat-Inactivated NTHi on CXCL1 and TNF-α 
Levels in the BALF and Lung Tissue. CXCL1 showed a significant difference between 
live NTHI and the control in the BALF and a significant change in levels in both live and 
heat-inactivated NTHi compared to the control group in the lung tissue. Live and heat-
inactivated showed no significant difference from each other in either the BALF or the lung 
tissue. TNF-α showed a significant increase in levels for both live and heat-inactivated NTHi 
in the BALF compared to the control but no significant difference from each other. TNF-α 
levels in the lung tissue showed no significant difference between any of the groups. Mean ± 
SEM, N=10, *P<0.05, **P<0.01, ***P<0.001, Kruskal-wallis post hoc Dunn’s test. 
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6.6 Discussion 

Non-typeable Haemophilus influenza is the most commonly isolated bacteria in 

stable and exacerbated COPD (Eldika and Sethi, 2006). It is therefore a clinically 

relevant bacterium in exacerbation experiments. The growth of this strain of NTHi 

was investigated in order to correlate an optical density reading with the number of 

colony forming units/ml. This would allow for accurate determination of the number 

of bacteria being administered using optical density readings.  

The optical density growth curve (Fig 6.1) clearly shows three out of the four distinct 

phases of bacterial growth; the lag, log and stationary phases (figure 6.12) 
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Figure 6.12 A Diagrammatic Representation of the Three Phases of Bacterial Growth. 
The graph shows three of the four distinct phases of bacterial growth, the Lag, Log and 
Stationary Phase 

 

The lag phase is where bacteria acclimatize to the new surroundings and prepare for 

growth. The log phase is a period of exponential growth, where the bacteria double 

in number after each generation, which is followed by the stationary phase, where 

the nutrients are depleting and the growth rate and death rate are in equilibrium. The 

final, fourth phase is the death phase, where nutrients become so depleted that the 

equilibrium shifts, with more cells dying than are being generated (Pommerville and 
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Alcamo, 2012). Both the optical density and CFU/ml graphs show these phases, with 

both reaching the peak of log phase at approximately 400 minutes. Correlating the 

two measurements gives a cfu/ml value of 3x109cfu/ml at an OD600 of 0.4. 

NTHi has been investigated in numerous mouse models in the drive to better 

understand the pathways involved in exacerbations of COPD. NTHi concentration 

ranges of 1x106 (Gaschler et al., 2010) to 2x108 CFU/mouse (Koyama et al., 2007) 

have been described in the literature. Half log increases in CFU/mouse from 3x106 to 

1x108 were investigated for peak inflammatory cell responses. Figure 6.3 shows a 

dose dependent increase in total leucocytes and neutrophils. Macrophages remain 

fairly stable across all concentrations, while the highest concentration gives the 

highest CFU/ml return. Gaschler et al. (2010) also show similar responses to NTHi 

in Balb/C mice, an increase in total leucocytes that are predominantly neutrophilic. 

From these results, the peak inflammatory response occurs at 1x108 CFU/mouse, so 

was chosen for future experiments. 

NTHi is a specialist human colonizer and pathogen, failing to naturally infect other 

species (Garmendia et al., 2012). This can be seen in the bacterial load responses 

from the mouse. The bacterial load peaks at 6 hours but is less than what was 

administered. 1x108 CFU/mouse was given intranasally but only 2x105 CFU/mouse 

was recovered 6 hours later. Similarly, the number of viable bacteria recovered from 

the lungs 24 hours after inoculation was 2x102 CFU/mouse. This shows that NTHi 

fails to colonize or replicate in the mouse lung and is cleared quite quickly. Infection 

with NTHi in animal models have been described where replication occurs, but they 

are usually obtained by firstly damaging the mucosal lining (Slater, 1990). Despite 

this drawback, NTHi was still chosen as the exacerbating agent in the mouse, as 
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cigarette smoke may cause enough damage to the epithelial lining to allow infection 

to occur and be investigated. 

The fast clearance of NTHi can be linked to the fast response of the immune system. 

The neutrophil chemoattractant CXCL1, and the pro-inflammatory cytokine TNF-α 

show peak responses at 6 hours. This means neutrophils are significantly increased 

by 6 hours and peak at 24 hours. CXCL1 and neutrophil influx are a key response to 

an NTHi infection (Look et al., 2006). This has been shown to be partly due to TLR4 

recognition, with neutrophils in TLR4 deficient mice taking longer to arrive at the 

site of infection, as well as increasing the time taken to clear the bacteria (Wang et 

al., 2002). Essilfie et al. (2011) also showed similar responses to NTHi in a time 

course study in the mouse. The viable bacterial load was almost halved by 24 hours, 

while there were peak responses in neutrophils after 24 hours which returned to 

normal by day 5. Lymphocytes were then significantly increased by day 5. 

Neutrophils are able to respond quickly to pulmonary infections as even when 

healthy they are more concentrated in the pulmonary circulation than anywhere else 

in the body (Doerschuk et al., 1999). When an infection is detected, CXCL1 is 

secreted by alveolar macrophages and epithelial cells and neutrophils migrate into 

the alveoli (Downey et al., 1993). Once in the airspaces neutrophils have three 

primary defences against bacteria. The first is phagocytosis, where neutrophils ingest 

opsonised bacteria into phagosomes where they are destroyed (Mancuso et al., 

2001). The second is degranulation, where neutrophils secrete antimicrobial 

compounds and proteins such as bactericidal/permeability-increasing protein (BPI) 

and myeloperoxidase (MPO) (Standish and Weiser, 2009). The final method is 

neutrophil extracellular traps (NETs) which are extracellular protrusions, consisting 
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primarily of DNA and contain proteases and oxidant species to decrease the 

virulence of bacteria trapped within the NETs (Brinkman et al., 2004). 

Similar to Essilfie et al. (2011) who show lymphocytes peak at 5 days, this study 

shows lymphocytes and macrophages appear and peak 4 days after inoculation of 

NTHi. Macrophages appear at the end of an infection to phagocytose inflammation 

fragments and apoptotic neutrophils. Phagocytosis is increased by the release of 

interferon-ɣ and by T helper lymphocytes (Kedzierka et al., 2004). T helper cells and 

B lymphocytes are also involved in the production of antibodies to impart host 

immunity if the same bacteria are encountered in the future (Alberts et al., 2008). 

The time taken to heat-inactivate NTHi was also investigated in order to assess 

whether there was a difference in immune responses between live and heat-

inactivated bacteria. NTHi was heat-inactivated by 60 minutes at 70°C, with no 

viable cell growth being detected. Bailey et al. (2012) showed NTHi was heat 

inactivated at 95°C for 5 minutes. They also showed inactivation by freeze thawing, 

with other methods such as formalin inactivated NTHi being employed in other 

studies (Zhao et al., 2011). The lower temperature and longer time frame was used in 

order to inactivate the bacteria as gently as possible, keeping the bacteria as 

structurally intact as feasible, preventing the release of LPS. This meant that when 

LPS levels were tested there was no difference between the levels in live or heat-

inactivated NTHi. Therefore, any differences that might be observed between the 

live and heat-inactivated bacteria was not due to variations in LPS levels. The viable 

bacterial return of heat inactivated NTHi in the mouse confirmed that there was no 

viable bacteria in the lungs after 24 hours, while the live bacteria showed a 

significant bacterial return. 
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There was no difference between the number or activity of neutrophils (MPO), while 

CXCL1 and TNF-α levels were also the same between live and heat-inactivated 

NTHi groups. With no difference between live and heat inactivated bacteria there is 

a suggestion that the response is solely down to LPS and other external proteins, 

with no active infection component. Bosnar et al., (2009) showed that pure LPS in 

the mouse significantly increased total leucocytes which were predominantly 

neutrophilic, with increases in CXCL1 and TNF-α being observed.  

However, live NTHi is advantageous over heat-killed in investigating exacerbations 

of a chronic cigarette smoke model as epithelial damage may allow for infections to 

occur, as well as allowing the effect cigarette smoke has on bacterial clearance to be 

studied. Alternatively, heat inactivated NTHi can be used in vitro, where live NTHi 

would kill the cells, having been shown to have the same effect in vivo.  

In conclusion, the peak inflammatory response to NTHi was 1x108 CFU/mouse, 

which is achieved by an OD600 reading of 0.4. The peak inflammatory response is 

after 24 hours with a predominantly neutrophil response, which switches to a 

macrophage and lymphocyte resolutory profile at 4 days. All bacteria were cleared 

from the lungs 96 hours after inoculation, while live and heat-inactivated NTHi 

showed no difference in LPS levels or inflammatory response. This means that live 

NTHi can be used in vivo to study inflammation and bacterial clearance, while heat 

inactivated NTHi can be used in vitro to study the inflammation.  
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7.1 Exacerbations of COPD 

Exacerbations are an important aspect of COPD. Exacerbations occur 1-3 times a 

year (Sethi et al., 2002), and decrease the quality of life, increase morbidity and 

mortality and frequently result in hospital admissions for COPD patients. Bacterial 

infections of the lungs play an important role in exacerbations as they have been 

shown to be responsible for approximately half of all exacerbations, either in 

conjunction with viruses or on their own (Veeramachaneni and Sethi, 2006; van der 

Valk et al., 2004).  

7.2 Bacterial Exacerbations of COPD 

The role of bacteria in acute exacerbations of COPD (AECOPD) is controversial and 

is still poorly understood. Bacteria, as previously discussed, are known to colonize 

the airways of COPD patients. Species of bacteria isolated during an exacerbation 

were the same as those isolated during stable disease, leading to the conclusion that 

bacteria played no role in AECOPD (Fagon and Chastre, 1996). However, it is now 

understood that strain variations in bacteria that are already established colonizers 

can lead to an infection and an exacerbation (Sethi et al., 2002). During a bacterial 

exacerbation, inflammation and pro-inflammatory cytokines are elevated, sputum 

purulence is increased, lung function declines and a change in medication and/or 

hospitalization is required (Gompertz et al., 2001). The most frequently isolated 

bacteria implicated in AECOPD are Haemophilus influenza, Moraxella catarhallis 

and Streptococcus pneumonia (Biswal et al., 2012; Sethi, 2011). Of these, 

nontypeable Haemophilus influenza (NTHi) is the most commonly isolated bacteria 

during AECOPD (Miravitalles et al., 2012), accounting for up to 87% of all 

exacerbations (Bandi et al., 2001).  
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Treatment of exacerbations, like the stable disease, is poor. An animal model of 

AECOPD is desperately needed to investigate the mechanisms and improve 

treatments. 

7.3 Aims 

The aim of this chapter is to develop an exacerbated cigarette smoke model using 

non-typeable Haemophilus influenza and the effect cigarette smoke has on the 

inflammatory response to NTHi.   

 7.3.1 Objectives 

- Investigate the response to NTHi on top of the chronic smoke model measuring- 

 - Inflammatory cell influx at 24 and 96 hours. 

- cytokine release, including TNF-α and CXCL8, in the BALF and lung 

tissue at 24 and 96 hours 

- Bacterial load of NTHi to determine bacterial clearance 

- Investigate the effect cigarette smoke has on the inflammatory response to NTHi 

measuring the same parameters as above.  
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7.4 Methods 

 7.4.1 Animal Husbandry 

Animals were housed as described in 2.1 

7.4.2 Chronic Cigarette Smoke Challenge 

Balb/C Mice received cigarette smoke (1R3F  Kentucky research cigarettes,) or air 

(sham) into a sealed perspex chamber (7000cm3) at a flow rate of 0.6 l/min for 30 

minutes. Smoke was produced by peristaltic suction with 4 seconds of smoke per 

minute. The average particulate matter was recorded and adjustments to the amount 

of smoke entering the chamber altered accordingly to maintain a consistant reading 

across all groups. The average total particulate matter was 444.1 ± 1.9 tpm/M3 

Mice were exposed to cigarette smoke or air for 30 minutes, twice a day, 5 days a 

week, for 5 weeks. On the sixth week, mice received twice daily smoke or air for 3 

days. Animals were killed 24 hours after the final smoke or air challenge and a 

bronnchoalveolar lavage was performed to determine total and differential leucocyte 

numbers. 

 

Figure 7.1 A diagrammatic representation of the chronic cigarette smoke model with NTHi 
inoculation. NTHi = Nontypeable Haemophilus inflienzae, BHi = Brain heart infusion broth  

1 2 3 4 

Lavage Smoke/Sham 

NTHi/BHI 

6 

Day 

Week 

1 2 3 4 

Smoke/Sham 

1-5 

5 

178 
 



 Chapter Seven 
 
 
In NTHi infected groups of mice and their controls, animals were killed 24 hours 

after the final smoke exposure, as described above, as well as groups af animals 

being terminally anaesthetised 96 hours after inoculation.  

7.4.3 Non-typeable Haemophilus influenzae Inoculations 

NTHi was grown on chocolate agar plates (Becton Dickinson, UK) before being 

inoculated into supplemented brain heart infusion broth (BHi) (Becton Dickinson, 

UK) at an OD600 reading of greater than 1.1. A 1 in 10 dilution of the infusion was 

adjusted accordingly to give an OD600 reading of 0.4, which corresponded to 6x109 

CFU/ml. 

Mice were anaesthetized with an intraperitoneal injection of hypnorm/hypnovel 

before they received 50µl of supplemented BHi or NTHi at a concentration of 6x109 

CFU/ml intra nasally. All bacterial inoculations took place in a laminar flow 

cupboard to prevent bacterial spread. After bacterial inoculation animals were 

housed in groups of 5 in an OptiMice bio-containment cage system (Animal Care 

Systems, USA) with an independent air supply. Animals were killed 24 or 96 hours 

after intranasal administration and a bronchoalveolar lavage performed as described 

in 2.7. Inflammatory cells and cytokines were analysed as described in 2.7.2-2.7.10 

 

  

179 
 



 Chapter Seven 
 
 

7.5 Results 

The Effect of NTHi on Total Cell Influx into the Lung in Chronic Smoke or 

Chronic Sham Challenged Mice 24 and 96 Hours after Challenge. 

At 24 hours, there was no significant difference in the total cell number between any 

of the groups. At 96 hours, Smoke NTHi was significantly increased compared to 

both Smoke/BHi and Sham/NTHi (P<0.05) (fig 7.2). 

The Effect of NTHi on Neutrophil Influx and Myeloperoxidase Levels in the 

BALF in Chronic Smoke or Chronic Sham Challenged Mice, 24 and 96 Hours 

after Challenge. 

Twenty Four hours after challenge, Smoke/NTHi challenged mice showed a 

significantly elevated neutrophil number compared to Smoke/BHi challenged 

animals (P<0.01) (fig 7.3). The myeloperoxidase levels measured in the BALF in the 

however were no different between the two groups, nut was significantly increased 

in Sham/NTHi compared to Smoke/NTHi (P<0.05).  

At 96 hours, Smoke/NTHi and Smoke/BHi challenged animals showed no 

significant difference in neutrophil numbers. Smoke/NTHi neutrophils were 

significantly elevated compared to the Sham/NTHi group (P<0.001). BAL MPO was 

significantly increased in the Sham/NTHi challenged animals compared to the 

Smoke/NTHi group at both time points (P<0.05), while there was no significant 

difference in MPO levels between Smoke/NTHi and Smoke/BHi at either time point. 
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The Effect of NTHi on CXCL1 Levels in the BALF and Lung Tissue in Chronic 

Smoke or Chronic Sham Challenged Mice, 24 and 96 Hours after Challenge. 

Twenty-four hours after challenge, there was a significant increase in CXCL1 levels 

in Smoke/NTHi challenged animals compared to Smoke/BHi challenged mice in the 

BALF (P<0.001) and lung tissue (P<0.05)(fig 7.4). There was no significant 

difference between Smoke/NTHi and Sham/NTHi in both the BALF and lung tissue 

at either time point.  

At 96 hours, there was no significant difference in CXCL1 levels in the BALF and 

lung tissue between Smoke/BHi and Smoke/NTHi, however, there was a significant 

increase in levels when Smoke/NTHi is compared to sham/NTHi in both the BALF  

(P<0.05) and lung tissue (P<0.001). 

The Effect of NTHi on TNF-α Levels in the BALF and Lung Tissue in Chronic 

Smoke or Chronic Sham Challenged Mice 24 Hours after Challenge. 

Smoke/BHi and Smoke/NTHi TNF-α levels in the BALF and the lung tissue were 

not significantly different. The Smoke/NTHi challenged group was significantly 

different from the sham/NTHi in both the BALF (P<0.05) and the lung tissue 

(P<0.01). TNF-α was undetectable in both BALF and lung tissue 96 hours after 

NTHi/BHi challenge (fig 7.5). 

The Effect of NTHi on Interferon -ɣ and Il-10 Levels in the BALF in Chronic 

Smoke or Chronic Sham Challenged Mice 24 Hours after Challenge. 

As observed for TNF-α, interferon-ɣ and IL-10 levels were increased in sham/NTHi 

challenged mice compared to the Smoke/NTHi challenged in the BALF (P<0.05 and 
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P<0.001 respectively). Smoke/NTHi however had no significant difference in both 

interferon-ɣ and IL-10 levels compared to Smoke/BHi challenged animals (fig 7.6). 

The Effect of NTHi on Lymphocyte numbers in the BALF and Lung Tissue in 

Chronic Smoke or Chronic Sham Challenged Mice 96 Hours after Challenge. 

There was no significant difference between any of the groups (fig 7.7). Sham/NTHi 

had the highest average score of 2.1 ± 0.3, smoke/NTHi and smoke/BHi challenged 

animals had a very similar score of 1.5 ± 0.2 and 1.1 ± 0.1 respectively, while 

sham/BHi challenged mice had the lowest score of 0.1 ± 0.1.  

The Effect of NTHi on Macrophage numbers in the BALF in Chronic Smoke or 

Chronic Sham Challenged Mice, 24 and 96 Hours after Challenge. 

Smoke/BHi and Smoke/NTHi challenged animals showed no significant difference 

in macrophage number at 24 hours. Smoke/NTHi challenged animals however had 

significantly elevated numbers compared to Sham/NTHi challenged mice 

(P<0.001)(Fig 7.8).  

By 96 hours, this was reversed. There was a significant increase in macrophage 

numbers when Smoke/NTHi and Smoke/BHi challenged groups were compared 

(P<0.01). There was no significant difference between Smoke/NTHi and 

Sham/NTHi. 

The Effect of Chronic Smoke or Chronic Sham Challenge on Bacterial Load of 

NTHi from the Lungs of Mice 24 Hours after Challenge. 

Smoke/NTHi challenged mice showed a significantly reduced bacterial load 

compared to sham/NTHi challenged animals (P<0.05) (fig 7.9) 
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Figure 7.2 The Effect of NTHi on Total Cell Influx into the BALF in Chronic Smoke or 
Chronic Sham Challenged Mice 24 and 96 Hours after Challenge. There was no 
significant difference in total cell number between any of the groups at 24 hours. 
Smoke/NTHi total cells were significantly increased compared to both smoke/BHi and 
sham/NTHi at 96 hours. Mean ± SEM, N=10, *P<0.05 Mann-Whitney test. 

 

Figure 7.3 The Effect of NTHi on Neutrophil Influx and Myeloperoxidase Levels in the 
BALF in Chronic Smoke or Chronic Sham Challenged Mice, 24 and 96 Hours after 
Challenge. Smoke/NTHi challenged animals showed a significant increase in Neutrophil 
numbers at 24 hours compared to smoke/BHi challenged mice. Sham/NTHi and 
Smoke/NTHi challenged mice showed no significant difference, however they did show a 
significant difference in MMPO levels at 24 hours. Smoke/BHi and smoke/NTHi showed no 
difference. Smoke/NTHi had significantly elevated neutrophil numbers at 96 hours 
compared to Sham/NTHi but no significant change compared to Smoke/BHi. The same 
pattern was observed for MPO activity at 96 hours. Mean ± SEM, N=10, *P<0.05, **P< 
0.01, ***P<0.001 Mann-Whitney test 
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Figure 7.4 The Effect of NTHi on CXCL1 Levels in the BALF and Lung Tissue in 
Chronic Smoke or Chronic Sham Challenged Mice, 24 and 96 Hours after Challenge. 
There was a significant increase in CXCL1 levels in both the BALF and lung tissue 24 hours 
after inoculation in Smoke/NTHi compared to Smoke/BHi challenged animals. Sham/NTHi 
challenged animals showed no significant difference compared to Smoke/NTHi challenge. 
At 96 hours, Smoke/NTHi showed a significant increase in CXCL1 levels in both the BALF 
and lung tissue compared to Sham/NTHi challenged mice, while there was no significant 
difference in levels between Smoke/NTHi and Smoke/BHi in the BALF or lung tissue. 
Mean ± SEM, N=10, *P<0.05, ***P<0.001 Mann-Whitney Test. 

 

Figure 7.5 The Effect of NTHi on TNF-α Levels in the BALF and Lung Tissue in 
Chronic Smoke or Chronic Sham Challenged Mice 24 Hours after Challenge. TNF-α 
levels were significantly elevated in the Sham/NTHi challenged animals compared to 
Smoke/NTHi challenged mice in both the BALF and lung tissue. There was no significant 
difference in TNF-α levels between Smoke/NTHi and Smoke/BHi challenged animals at 24 
hours in both the BALF and lung tissue. Mean ± SEM, N=10, *P<0.05, **P< 0.01, Mann-
Whitney Test. 
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Figure 7.6 The Effect of NTHi on Interferon -ɣ and Il-10 Levels in the BALF in 
Chronic Smoke or Chronic Sham Challenged Mice 24 Hours after Challenge. There 
was a significant reduction in both interferon-ɣ and IL-10 in Smoke/NTHi challenged 
animals compared the NTHi only challenged group. There was no significant difference in 
levels in Smoke only and Smoke/NTHI challenged animals. Mean ± SEM, N=10, *P< 0.05, 
***P<0.001 Mann-Whitney Test. 

 

Figure 7.7 The Effect of NTHi on Lymphocyte numbers in the BALF and lung tissue in 
Chronic Smoke or Chronic Sham Challenged Mice 96 Hours after Challenge. There 
was no significant difference between any of the groups. Mean ± SEM, N=10, Mann-
Whitney Test. 

  

BAL Interferonγ 24 Hours

Smoke/BHI Smoke/NTHI Sham/NTHI
0

10

20

30

40

(1X109/mouse)

*

pg
/m

l

BAL IL-10 24 Hours

Smoke/BHI Smoke/NTHI Sham/NTHI
0

20

40

60

80

(1X109/mouse)

***

pg
/m

l
Lympohcytes 96 Hours

Smoke/BHI Smoke/NTHI Sham/NTHI
0

5

10

15

(1X109/mouse)

C
el

ls
 x

 1
03

Lung Tissue CD3+ 96 Hours

Smoke/BHI Smoke/NTHI Sham/NTHI
0

1

2

3

4

(1X109/mouse)

Se
ve

rit
y 

Sc
or

e

185 
 



 Chapter Seven 
 
 

Figure 7.8 The Effect of NTHi on Macrophage numbers in the BALF in Chronic 
Smoke or Chronic Sham Challenged Mice, 24 and 96 Hours after Challenge. 24 hours 
after NTHi inoculation there was a significant increase in macrophages in Smoke/NTHi 
challenged animals compared to Sham/NTHi challenged mice, but no significant difference 
was observed between Smoke only and NTHi only challenged mice. 96 hours after 
challenge Smoke/NTHi showed a significant increase in Smoke/BHi challenged mice while 
no difference was observed between Smoke/NTHi and Sham/NTHi challenged animals. 
Mean ± SEM, N=10, **P< 0.01, ***P<0.001 Mann-Whitney Test. 

 

 

Figure 7.9 The Effect of Chronic Smoke or Chronic Sham Challenge on Bacterial Load 
of NTHi from the Lungs of Mice 24 Hours after Challenge. Twenty-four hours after 
NTHi inoculation there was a significant increase in bacterial clearance/decrease in bacterial 
load, in smoke/NTHI challenged mice compared to Sham/NTHi challenged animals. Mean ± 
SEM, N=10, *P<0.05 Mann-Whitney Test 
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7.6 Discussion 

Exacerbations of COPD are an important aspect of the disease. They cause a 

worsening of symptoms, decrease a patient’s quality of life and remain poorly 

treated. Nontypeable Haemophilus influenza (NTHi) is the most frequently sampled 

bacteria implicated in AECOPD (Miravitalles et al., 2012), so is a very important 

and clinically relevant pathogen. An NTHi exacerbation of COPD results in an 

increase in pro-inflammatory cytokines and an influx of pro-inflammatory cells, 

including macrophages and neutrophils (Clemans et al., 2000; Berenson et al., 

2005). This study shows that an NTHi exacerbation in a murine chronic cigarette 

smoke model mimics this, with significantly increased neutrophils and the neutrophil 

chemoattractant CXCL1, compared to smoke alone (figs 7.2 and 7.3). TNF-α is also 

elevated in NTHi challenged mice, however this fails to reach significance. This 

could be due to TNF-α being an acute cytokine that peaks between 2 and 5 hours 

after challenge (Tsutsui et al., 1997), so may be significant at an earlier time point. 

Total cells and macrophages were also significantly elevated in NTHi challenged 

animals four days (96 hours) after challenge. Similarly, Gaschler et al. (2010) 

demonstrated that an NTHi infection on top of chronic cigarette smoke in the mouse 

increases inflammation compared to smoke alone.  

The data from this study demonstrate that an exacerbation model has been achieved 

with significant increases in cells and cytokines similar to those observed during an 

AECOPD (Aaron et al., 2001). 

Interestingly, the level of inflammation seen after an NTHi exacerbation in the 

cigarette smoke model does not reach the same magnitude as observed in 

sham/NTHi challenged animals. This signifies that chronic cigarette smoke in fact 
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impairs the immune response to pathogens. The possible reason for this will be 

discussed later. Little clinical data is available comparing the inflammatory 

responses in humans of healthy individuals and COPD patients to an infection. To 

my knowledge Mallia et al. (2010) is the only study and have shown that interferon 

responses to a rhinovirus infection are impaired in COPD patients compared to 

healthy controls.  

Here the impairment of the initial immune response by cigarette smoke observed 24 

hours after NTHi inoculation will be discussed as well as the possible theories from 

the literature as to why cigarette smoke impairs these responses. The effect cigarette 

smoke then has on the resolution of inflammation 4 days after inoculation will also 

be reviewed. 

7.6.1 The Initial Twenty-Four Hour Response to NTHi 

Firstly focusing on the initial 24 hour response to the pathogen, this study shows that 

smoke impairs the inflammatory response to NTHi, decreasing cellular influx and 

cytokine release. Total inflammatory cells in the smoke/NTHi challenged group 

were decreased compared to sham/NTHi challenged animals as well as neutrophil 

numbers and activity, CXCL1, TNF-α, interferon-ɣ and Il-10 levels. The only 

exception to this pattern was macrophages, which were comparatively increased, but 

this was solely due to cigarette smoke, with no difference between smoke only and 

smoke/NTHi challenged groups.  

This impairment in inflammatory response is counterintuitive with little clinical 

evidence available highlighting this impairment, with most clinical studies 

examining the effects of exacerbations compared to stable disease and/or ‘healthy 

smokers’. This study highlights the problems in using control groups such as these 
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(e.g infected non-smokers) which do not occur in clinical trials. For example, while 

there is an increase in neutrophilia in the exacerbated (Smoke/NTHi) group 

compared to the stable (Smoke/BHi) group in this study (fig 7.3), this would not 

reveal the attenuation of the neutrophil response to NTHi by smoke compared to an 

infected control (Sham/NTHi). 

The impaired neutrophil response may be linked to chemotaxis, which has been been 

shown to be decreased in COPD in response to an infection compared to healthy 

nonsmokers (Venge et al., 1991; Yoshikawa et al., 2007). This is despite COPD 

patients exhibiting increased neutrophilia in the airways. The levels of CXCL1 in 

this murine model, although increased in response to Smoke/NTHI compared to 

smoke alone, were impaired when compared to NTHi alone. The activity of 

neutrophils present in the airways of COPD patients have also been shown to be 

decreased compared to the healthy controls, including decreased phagocytic potential 

(Fietta et al., 1988; Yoshikawa et al., 2007). Again, this is observed in the mouse 

model, with decreased levels of MPO compared to NTHi alone.  

The impairment of neutrophils is not only a COPD phenomenon; asthma patients 

with frequent exacerbations have also been shown to have decreased neutrophil 

responses in the lung (Baines et al., 2009), signifying that impaired neutrophil 

responses may impact on the severity and frequency of exacerbations. 

This model also highlights several cytokines that are impaired by cigarette smoke. 

TNF-α levels from COPD alveolar macrophages have been shown to be decreased 

when responding to NTHi antigens, while monocytes from COPD patients have the 

same response as healthy individuals (Berenson et al., 2006a). TNF-α levels have 

also been shown to be decreased in epithelial cells when challenged with bacterial 
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products after chronic cigarette smoke extract challenge (Laan et al., 2004). Other 

chronic mouse models have shown attenuation of TNF-α levels to NTHi after smoke 

challenge (Gaschleer et al., 2009). Epithelial cells also secrete TNF-α and are 

damaged in COPD (Lapperre et al., 2007) as well as undergoing increased apoptosis 

(Hodge et al., 2005). This decreases the number of epithelial cells present in the 

airways, possibly decreasing the amount of TNF-α released. Birrell et al., (2007) 

have shown that cigarette smoke depletes the antioxidant enzyme glutathione, 

increasing oxidative stress which impairs NF-kB and leads to a reduction in TNF-α. 

Levels of the anti-inflammatory cytokine Il-10 were also impaired in this model by 

cigarette smoke, with similar responses having been demonstrated by Takanashi et 

al. (1999) in the sputum of COPD patients and in smokers in general, compared to 

healthy controls. IL-10 is released from lymphocytes and macrophages and has been 

shown to down regulate a large number of pro-inflammatory cytokines. Impaired 

release of IL-10 impairs the ability of the body to decrease inflammation causing 

further damage to the lungs (Takanashi et al., 1999).This reduction in Il-10 shows 

that the reduction of pro-inflammatory cytokine release is not being mediated by this 

anti-inflammatory cytokine.  

Many studies implicate the macrophage in this impaired response. Twenty-four 

hours after NTHi challenge the smoke/NTHi challenged animals have a significantly 

larger number of macrophages compared to the NTHi alone animals. However, this 

is solely down to the smoke, as the same levels were observed in the smoke only 

challenged animals. It may be partly for this reason, along with increased 

neutrophils, why the bacterial load was reduced by cigarette smoke (fig 7.9). One 

possible reason for this reduced bacterial load is an increased clearance by 

phagocytosis by neutrophils and macrophages. Alveolar macrophages from COPD 

190 
 



 Chapter Seven 
 
 
patients as well as macrophages exposed to cigarette smoke have however 

demonstrated a diminished phagocytic ability (Taylor et al., 2010; Marti-Lliteras et 

al. 2009). The increase in bacterial clearance by chronic cigarette smoke observed in 

the present study may be partially down to the sheer numbers of inflammatory cells 

present in the lungs prior to inoculation, so despite a decrease in activity they are still 

able to be quickly phagocytosed. This may be different if a pathogenic strain of 

bacteria was used. Streptococcus pneumonia for example is able to infect mice 

(Ludewick et al., 2011). A Streptococcus infection on top of cigarette smoke may 

mean the impaired activity of macrophages and neutrophils allow the bacteria to take 

hold more readily than in healthy mice and multiply (Phipps et al., 2010). Gaschler 

et al. (2010) however, hypothesize that the increased clearance is not due to 

increased existing neutrophilia due to the same rate of clearance being observed in a 

less severe smoke model with much lower numbers of neutrophils. They propose 

that the increased clearance is due to increased IgA in the lungs, opsonising the 

bacteria and increasing phagocytosis by macrophages. 

Another possible explanation for the decreased bacterial load observed in the chronic 

smoke infected mice is due to the inhospitable environment present in the lungs. 

Cigarette smoke is full of reactive oxidant species, with the inflammatory process 

also releasing oxidant species (MacNee, 2001). Bacteria are damaged by reactive 

oxygen species, with Haemophilus having been shown to cope less well with 

oxidative stress than other bacteria, despite extensive mechanisms to combat it 

(Harrison et al., 2012). This may result in decreased viable bacterial load. Also, as 

previously discussed, NTHi has been described evading host defences by crossing 

into epithelial cells (Morey et al., 2011). Here they can avoid detection and 

subsequent phagocytosis by macrophages. New pattern recognition receptors have 
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been discovered intracellularly to detect bacteria called nucleotide-binding 

oligomerization domain (NOD)-like receptors and can complement the innate 

immune response via Toll-like receptors (TLRs) to subsequently increase pro-

inflammatory cytokines (Kanneganti et al., 2007; Shaw et al., 2008). However, it has 

been demonstrated that these receptors are down regulated as a result of cigarette 

smoke exposure, so may play a part in impaired recognition and therefore reduced 

epithelial entry (Gaschler et al., 2007). Unfortunately, attempts in the present study 

to identify whether NTHi did in fact enter epithelial cells using both Gram stain and 

immunohistochemistry failed to detect any NTHi in the airways, even in samples 

known to have bacteria present, so this process of evasion could not be examined. 

NTHi has also been shown to cause necrosis of neutrophils in humans. This may be 

a host specific response, which does not occur in mice, resulting in increased 

clearance of NTHi by neutrophils in a murine model compared to those in a human 

model (Gaschler et al., 2009). The bacterial load at 96 hours in this smoke model 

may be of interest, possibly showing differential responses compared to NTHi only.  

7.6.2 The Response to NTHi After Four Days 

The initial impairment of the innate immune response subsequently affects the 

inflammatory profile of the lungs 4 days after NTHi inoculation. Neutrophils and the 

neutrophil chemoattractant CXCL1 were significantly elevated in cigarette smoke 

challenged animals compared to the sham challenged group after NTHi inoculation, 

but this was due to the cigarette smoke. Cigarette smoke still impaired neutrophil 

activity, while macrophages were still elevated. The lymphocyte response was also 

impaired in smoke challenged animals indicating that the adaptive immune response 

may also be impaired along with the innate immune response.  
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COPD patients have more severe and longer infections compared to healthy 

individuals with increased inflammation for longer after an infection and a marked 

decrease in lung function.  COPD patients also suffer from bacterial colonization, 

which may, in part, be due to impaired innate responses in the clearance of bacteria 

(Marti-Lliteras et al., 2009). However, with reduced lymphocyte numbers 4 days 

after an infection, cigarette smoke may also be impairing the adaptive immune 

response. 

Lymphocyte development may be impaired in COPD due to a decrease in mature 

dendritic cells in the airways (Tsoumakidou et al., 2009). These cells, along with 

macrophages are responsible for presenting antigens to T cells and causing them to 

become appropriate effector T cells depending on the stimulus. A decrease in mature 

cells as well as a decrease in alveolar macrophage activity could decrease the 

lymphocyte responses. 

Knobloch et al. (2010) describe impaired-helper cell type 1 immune responses in 

COPD and in smokers in general, in response to Gram–negative bacteria. They 

surmise that this is a result of decreased TLR4 expression and altered signaling 

pathways by cigarette smoke exposure of lymphocytes. This decreases the release of 

interferon-ɣ, which improves the phagocytic activity of macrophages in response to 

an infection. Takabatake et al., (2004) also showed impaired interferon-ɣ secretion in 

COPD patients. King et al. (2002) also describe an impairment of the Th1 response 

in COPD patients, who tend to shift to a more Th2 response than healthy individuals 

in response to NTHi. However, other studies have shown LPS impairs Th2 

responses, pushing for a more Th1 response (Koch et al., 2007a). Counteracting this, 

IL-5, a cytokine responsible for B cell proliferation, has been shown to be decreased 

by Th2 cells in response to LPS (Schild et al., 2011). CD8+ lymphocytes have also 
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been shown to be affected by cigarette smoke, with increases in numbers and activity 

in smokers and in COPD patients (Koch et al., 2007), which has been implicated in 

the structural remodeling and destruction of parenchymal cells in COPD. As 

observed in some studies investigating the immune response of COPD to infections, 

this chronic cigarette smoke model also expresses decreased interferon-ɣ release in 

response to NTHi, possibly contributing to the impaired responses of the alveolar 

macrophages. Natural killer cells have also been shown to have reduced cytotoxicity 

in COPD patients, which can be linked to viral exacerbations and lung cancer (Prieto 

et al., 2001). 

There are many theories as to why cigarette smoke diminishes the immune response 

to pathogens, but there has been very little research to elucidate specific 

mechanisms. Firstly, an oxidant/anti-oxidant imbalance can cause a significant 

amount of damaging reactive oxygen species. As previously noted, Birrell et al. 

(2007) showed cigarette smoke depleted the anti-oxidant enzyme glutathione, 

increasing oxidative stress and resulting in lower NF-κB production but higher AP-1. 

Drost et al. (1992; 1993) have implicated oxidative stress in the plasticity of 

neutrophils, with more oxidative stress decreasing the degree with which neutrophils 

can deform. This decreases the progression of neutrophils from the blood into the 

airspaces, and is reversed by the antioxidant glutathione.  

The pattern recognition receptors themselves have also been implicated in the 

decreased inflammatory response to pathogens in COPD. Droeman et al. (2005) 

have shown that the gram-positive pathogen receptor TLR2 is down regulated in 

cigarette smokers and in COPD patients. Gaschler et al., (2007) show that the Toll-

like receptors TLR3 and TLR4 are not down regulated in response to smoke but the 

inflammation after stimulation is attenuated due to decreased activation of NF-kB 
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and AP-1. As previously discussed a large proportion of cigarette smoke is LPS, 

with studies showing chronic LPS exposure desensitizes the TLR4 receptor (Liew et 

al., 2005) as well as scavenger receptors (Ganesan et al., 2012), decreasing pro-

inflammatory cytokine release. 

Cigarette smoke itself has also been shown to contain immune-regulatory 

compounds, such as NKK and acrolien, which have been demonstrated to suppress 

inflammation (Therriault et al., 2003; Li et al., 1998). Carbon monoxide inhalation, 

at levels appropriate to levels in cigarette smoke can decrease inflammation 

(Bathoorn et al., 2007) and nicotine, as well as having antimicrobial activity, has 

also been shown to have anti-inflammatory activity (Geng et al., 1996). 

This model has shown an NTHi exacerbation on top of chronic cigarette smoke 

exposure significantly increases inflammation. This model also highlights cigarette 

smoke has a significant impact on the immune response to NTHI, impairing both 

innate and adaptive responses. This model could therefore be used to elucidate 

mechanisms and possible therapeutic treatments for 1) AECOPD and 2) impaired 

immunity. This could slow disease progression, reduce exacerbation frequency and 

improve exacerbation treatments. 
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8.1 Macrophages in COPD 

Alveolar macrophages (AM) are an important cell type in COPD, with increased 

numbers in the lung and increased levels of associated cytokines compared to 

healthy individuals (Tetley, 2002). Important cytokines released by AMs in COPD 

are the neutrophil chemo-attractant CXCL8, the pro-inflammatory cytokines TNF-α 

and IL-1β and the regulatory cytokine IL-6 (Kent et al., 2008). Macrophages also 

play a key role in tissue remodeling due to the release of proteolytic enzymes such as 

matrix metalloproteinases, which break down the extra cellular matrix of the lung 

and lead to changes in lung histology (Demedts et al., 2006).  

The release of these cytokines by AMs in situ means the cells may be important in 

‘orchestrating’ and mediating the inflammation in the lung during COPD (Barnes, 

2004a). Alveolar macrophages play a key role in the response to inhaled particles by 

migrating into the lungs to phagocytose them, preventing infections and/or 

irritations. In COPD irritants are present in cigarette smoke, with ‘healthy smokers’ 

exhibiting elevated macrophage numbers in the lungs, which have been shown to 

have reduced ability to regulate inflammation (Mikuniya et al., 1999). While in the 

lungs, AMs phagocytose these irritants and secrete the aforementioned cytokines, 

increasing the influx of neutrophils and other inflammatory cell types (Barnes, 

2012). 

There are two distinct subpopulations of macrophages, the M1 subtype, primarily 

thought to be pro-inflammatory, and the M2 subpopulation, generally thought of as 

anti-inflammatory or immune-regulatory and pro-remodeling. They vary by 

expression of receptors on their cell surface and secretion of cytokines (Benoit et al., 

2008), and can be driven to an M1 or M2 phenotype in vitro by GM-CSF or M-CSF 
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respectively (Verreck et al., 2006). It has been demonstrated that macrophages are 

able to quickly change from one subtype into another, with pro-inflammatory 

macrophages switching to an M2 phenotype and aiding the resolution of 

inflammation (Porcheray et al., 2005). The proportion of subtypes in COPD however 

is as yet unclear (Hodge et al., 2011) but studies have demonstrated that 

macrophages from COPD patients have exhibited down-regulated M1 genes and up 

regulated M2 genes leading to increased tissue remodeling (Shaykhiev et al., 2009). 

During an infection, macrophage responses to a lung pathogen are pro-inflammatory, 

recruiting other inflammatory cells to the source of the infection as well as 

phagocytosing the pathogen and presenting it to the adaptive immune system. This is 

primarily through activation of Toll-like receptor pathways by agonists such as 

lipopolysaccharide (LPS) (Nau et al., 2002). In healthy individuals this is a 

predominantly M1 response; however in COPD this response is more muddled, with 

a heterogeneous mix of M1 and M2 macrophages (Gutierrez et al., 2010).  Droeman 

et al. (2005) showed that certain Toll-like receptors on AMs are down regulated in 

COPD and in healthy smokers decreasing their ability to recognize and respond to 

pathogens. This may partly explain the results by Taylor et al. (2010) and Berenson 

et al. (2006) demonstrating the phagocytic ability of macrophages were diminished 

in AM and monocyte derived macrophages (MDMs) from COPD patients. This may 

play a part in the increased bacterial colonization and exacerbations observed in 

COPD patients (Patel et al., 2002).  

However, cigarette smoke is not the only agent shown to affect macrophage 

responses. LPS is a significant component of cigarette smoke and is also, as 

previously discussed, an integral constituent of Gram-negative bacteria. Studies have 
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shown that chronic colonization of the airways by bacteria causes a chronic 

inflammation in the lungs, increasing inflammatory cytokines (Sethi and Murphy, 

2001; Hill et al., 2000). The increased colonization of the airways in COPD 

increases the amount of LPS in the lung which has been shown to affect MDM 

responses in vitro (Doyle et al., 2010). 

8.2 Aim 

The aim of this chapter is to investigate the effect of chronic, low level cigarette 

smoke and LPS on monocyte derived macrophage (MDM) cytokine release in 

response to NTHi and their phagocytic ability. 
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8.3 Methods 

8.3.1 Peripheral Blood Mononuclear Cell Isolation from Human Whole 
Blood 

Blood was acquired from Novartis’s on site donor panel with all relevant consent 

acquired and donors remaining anonymous. Mononuclear cells were separated from 

whole blood and differentiated in GM-CSF as described in 2.11.  Cells were seeded 

into wells at a concentration of 100,000 cells per well in the 96 well format and 

30,000 cells per well in the 384 well format. Cells were allowed to adhere for 4 days 

before the media was changed 

8.3.2 Cigarette Smoke Extract/LPS Challenge of Monocyte Derived 
Macrophages 

Cigarette smoke extract was produced by passing five cigarettes (1R3F Kentucky 

research cigarettes) through 100mls of RPMI 1640 media at a flow rate of 0.6l/min. 

This solution was considered 100% cigarette smoke extract (CSE). One in ten serial 

dilutions were performed ranging from 3% to 0.03% CSE, 1 in 10 serial dilutions of 

LPS (E. Coli O26:B6) were also performed ranging from 1ng/ml to 0.01ng/ml in 

GM-CSF enriched RPMI 1640. MDMs were treated with the dilutions of CSE, LPS 

or GM-CSF RPMI control on the fifth day of the experiment. Media was changed on 

days 8 and 10 of the experiment and replaced with GM-CSF enriched media 

containing CSE, LPS or GM-CSF alone. Cells were challenged continuously for a 

total of 1 week before parameters were analyzed.      

8.3.4 Heat Inactivated NTHi 

NTHi was heat inactivated as described in 6.4.6 and was shown to have the same 

effect as live NTHi in chapter 6. Heat inactivated NTHi was used as live bacteria 
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would kill the cells and contaminate the tissue incubators. One hundred µl of brain 

heart infusion 

 

Figure 8.1 A schematic of the monocyte-derived macrophage protocol. LPS-
Lipopolysaccharide, CSE-cigarette smoke extract, GM-CSF-Granulocyte macrophage 
colony stimulating factor, BHi-Brain heart infusion broth, NTHi-Nontypeable Haemophilus 
influenza. 

 

broth (BHi) or heat inactivated NTHi at concentrations of 1x108, 3x108, 1x109 and 

3x109cfu/ml were added to the relevant wells on day 11 of the experiment. Cells 

were then incubated for 24 hours before the supernatant was removed for future 

cytokine analysis. 

8.3.5 Cytokine Analysis 

On the twelfth day of the experiment the supernatant was removed and stored at -

80°C for further cytokine analysis. Cytokines were analyzed using the MesoScale 

Discovery system previously described in 2.9.9. The Human 10 Plex base kit was 

used, which contained plates pre-coated in antibodies to detect GM-CSF, IL-1β, IL-

10, IL-12p70, IL-2, IL-4, IL-5, IL-6, CXCL-8 and TNF-α. Cytokine analysis was 

performed on cells seeded in the 96 well format. 

8.3.6 Phagocytosis Assay 

On the twelfth day of the experiment a phagocytosis assay was performed on cells 

seeded in the 384 well format as described in 2.11.3. Briefly, after the addition of 

1 2 3 4 5 6 7 Day 8 9 10 11 12 

7 DayChallenge with LPS, CSE or GM-CSF 

Media Change 
Cytokine Analysis/ 
Phagocytosis Assay 

BHi/NTHi 
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fluorescently labelled E.coli and the cytoskeleton fixative cytochalasin D, which 

inhibits phagocytosis, to the relevant wells the plate was read immediately at an 

excitation wavelength of 544nm and read at an emission wavelength of 612nm. The 

plates were then incubated at 37°C and read every 30 minutes up to 4 hours with 

incubation between readings. 
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8.4 Results 

The Dose-Dependent Effect of Heat-Inactivated NTHi on CXCL8, TNF-α, IL-

1β and IL-6 Levels in Monocyte-Derived Macrophages. 

All heat-inactivated NTHi challenged groups exhibited a significant increase in 

CXCL8, TNF-α, IL-1β and IL-6 levels compared to the media control group 

(P<0.001) (fig 8.2). CXCL8, TNF-α and IL-1β showed maximal responses at a 

concentration of 1x109CFU/ml of heat-inactivated NTHi, while IL-6 showed peak 

responses at 3x109CFU/ml of heat-inactivated NTHi; Therefore, 1x109CFU/ml of 

heat-inactivated NTHi was used in future experiments. 

The Dose-Dependent Effect of Cigarette Smoke Extract Challenge on CXCL8 

Levels in Monocyte-Derived Macrophages 

CXCL8 levels peaked at the highest concentration of 3% cigarette smoke extract. 0.3 

and 0.03% CSE had very similar CXCL8 levels, with all CSE challenged groups 

exhibiting increased levels of CXCL 8 compared to the media challenged group. 

0.3% CSE was the submaximal response, so was the dose used in further 

experiments (fig 8.3). 

The Effect of Heat-Inactivated NTHi on CXCL8, TNF-α, IL-1β and IL-6 Levels 

in GM-CSF or Cigarette Smoke Extract Challenged Monocyte-Derived 

Macrophages 

There was no significant change in CXCL8, TNF-α and IL-6 levels when heat-

inactivated NTHi challenged groups for both the CSE and control groups were 

compared (fig 8.4); however, they were all increased compared to their respective 

vehicle control groups. When Il-1β levels for heat-inactivated NTHi challenged cells 

for both 0.3% CSE and GM-CSF groups were compared there was a significant 
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reduction in levels in CSE challenged groups (P<0.05), which were elevated 

compared to the respective control groups.  

The Effect of Cigarette Smoke Extract Challenge on Phagocytosis by Monocyte-

Derived Macrophage. 

Cigarette smoke extract challenged groups showed a 22% decrease in the initial two 

hour rate of phagocytosis compared to the GM-CSF treated group, but this failed to 

reach significance. Both groups showed an increased rate compared to their 

cytochalasin D control groups. There was a very similar pattern in the peak response, 

with CSE challenged groups expressing a 21% decrease in peak phagocytosis 

compared to the GM-CSF treated, but again this failed to reach significance, but both 

groups showed an increase rate compared to their respective cytochalasin D treated 

groups (fig 8.5). 

The Dose-Dependent Effect of LPS Challenge on CXCL8 Levels in Monocyte-

Derived Macrophages  

CXCL8 levels peaked at the highest (1ng/ml) concentration of LPS, with a dose 

dependent increase in levels as the dose increased from 0.01 to 0.1ng/ml, with all 

groups being elevated compared to the control. 0.1ng/ml of LPS being the 

submaximal response and was therefore chosen for future experiments (fig 8.6). 

The Effect of Heat-Inactivated NTHi on CXCL8, TNF-α, IL-1β and IL-6 Levels 

in GM-CSF or LPS Challenged Monocyte-Derived Macrophages 

There was no significant change in CXCL8 levels when heat-inactivated NTHi 

challenged groups, for both the LPS and control groups, were compared (fig 8.7), 

however, CXCL8 levels were increased compared to their respective controls. TNF-

α levels between heat-inactivated NTHi challenged groups for LPS and GM-CSF 
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also showed no significant change in levels, despite having an almost 50% reduction. 

There was a significant difference in IL-1β levels between heat-inactivated NTHi 

groups challenged with either GM-CSF or LPS, with the LPS group exhibiting a 

significant reduction (P<0.05). LPS and vehicle challenged cells exhibited similar 

IL-1β levels compared to the LPS NTHi group but showed increased levels 

compared to the GM-CSF and vehicle challenged cells. Similar to the IL-1β 

response, IL-6 levels also exhibited a significant change in the heat-inactivated NTHi 

and GM-CSF or LPS challenged groups (P<0.01) and again LPS and vehicle 

challenged cells had similar levels of IL-6 compared to the LPS and NTHi 

challenged group but were increased compared to the GM-CSF and vehicle 

challenged group. 

The Effect of LPS Challenge on Phagocytosis by Monocyte-Derived 

Macrophage. 

LPS challenged cells showed a significant 54% impairment in the initial two hour 

rate of phagocytosis, compared to GM-CSF treated cells (P<0.001), while both 

groups showed an increased rate compared to their respective cytochalasin D treated 

group. There was a similar 55% significant reduction in the peak response in LPS 

challenged cells compared to the GM-CSF treated group (P<0.001), which was again 

increased compared to their respective cytochalasin D treated group which remained 

unchanged (fig 8.8). 
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Figure 8.2 The dose dependent effect of heat-inactivated NTHi (1x108, 3x108, 1x109 and 
3x109cfu/ml) on CXCL8, TNF-α, IL-1β and IL-6 levels in MDMs. All cytokines are 
significantly elevated at each NTHi concentration compared to the control, with CXCL8, 
TNF-α and IL-1β reaching maximal response at 1x109 cfu/ml and IL-6 achieving maximal 
response at 3x109cfu/ml. ***P<0.001, Mean ± SEM, N=6. 
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Figure 8.3 The dose dependent effect of cigarette smoke extract on CXCL8 levels in 
monocyte derived macrophages. Monocyte derived macrophages were challenged for one 
week with 1 in 10 serial dilutions ranging from 3 to 0.03% cigarette smoke extract. All 
concentrations of cigarette smoke extract raised CXCL8 levels, with 0.3% being the sub-
maximal response. Mean ± SEM, N=6. 
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Figure 8.4 The effect of NTHi (1x109 cfu/ml) on monocytes differentiated in GM-CSF 
or GM-CSF and 0.3% cigarette smoke extract for 7 days. There is no significant 

difference in CXCL8, TNF-α and IL-6 levels between GM-CSF or cigarette smoke extract 
differentiated monocytes after challenge with NTHi. There was a significant difference 
between these groups for IL-1β. Mean ± SEM, N=6, *P<0.05, Kruskal-Wallis post hoc 

Dunn’s test.  
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Figure 8.5 The effect of cigarette smoke extract (0.3%) on the rate and peak 
phagocytosis response in monocyte-derived macrophages. Cigarette smoke extract 
showed no significant change in rate or peak phagocytosis response compared to the control 
group. Mean ± SEM, N=3, P>0.05, Kruskal-Wallis post hoc Dunn’s test. 

 

207 
 



 Chapter Eight 
 
 
 

CXCL8

GM-CSF 0.01 0.1 1
0

1000

2000

3000

4000

5000

GM-CSF + LPS (ng/ml)

pg
/m

l

 

Figure 8.6 The dose dependent effect of LPS on CXCL8 levels in monocyte derived 
macrophages. Monocyte derived macrophages were challenged for one week with 1 in 10 
serial dilutions ranging from 1 to 0.01ng/ml of LPS. All concentrations of LPS raised 
CXCL8 levels, with 0.1ng/ml being the sub-maximal response. Mean ± SEM, N=6. 
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Figure 8.7 The effect of NTHi (1x109 cfu/ml) on monocytes differentiated in GM-
CSF or GM-CSF and LPS (0.1ng/ml) for 7 days. There is no significant difference in 
CXCL8 or TNF-α levels between GM-CSF or LPS differentiated monocytes after 
challenge with NTHi. There was a significant difference between these groups for IL-1β 
and IL-6. Mean ± SEM, N=6, *P<0.05, **P<0.01, Kruskal-Wallis post hoc Dunn’s test.  
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Figure 8.8 The effect of LPS (0.1ng/ml) on the rate and peak phagocytosis response in 
monocyte-derived macrophages. LPS showed a significant difference in both initial rate 
and peak phagocytosis response compared to the control group. Mean ± SEM, N=3, 
***P<0.001, Kruskal-Wallis post hoc Dunn’s test. 
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8.5 Discussion 

To my knowledge this study is novel in investigating the effect of low level chronic 

CSE or LPS exposure on monocyte derived macrophages (MDMs). This study has 

shown that stimulation with CSE or LPS impairs the response of MDMs to NTHi. 

Many studies have been performed on alveolar macrophages and monocyte derived 

macrophages from COPD patients, healthy individuals and animal models to 

examine the differences in their gene and cytokine profiles. The results from this 

study showed that mild but prolonged stimulation of MDMs with CSE significantly 

reduced the release of IL-1β in response to heat-inactivated NTHi while LPS 

significantly reduced Il-1β and Il-6.  

Varying concentrations of CSE have been described in many different macrophage 

models to investigate its effect on their responses; however the very nature of 

producing CSE means that batches vary considerably, meaning results are not 

perfectly comparable and must be assessed with caution. The effect of high 

concentrations on cell viability must also be taken into account (Yang, 2006). The 

effect of low concentrations of CSE on cell viability was not assessed in this study, 

but flow cytometry could be employed to determine whether this was a factor. 

A low concentration of CSE was desired to more accurately reflect the type of 

exposure that might be expected in smokers. 0.3% CSE was a relatively low 

concentration and was shown to be submaximal in this study. Kent et al. (2008) used 

1, 10 and 25% CSE which suppressed 24, 340 and 627 genes respectively after an 

acute 6 hour exposure in MDMs from COPD patients, however CXCL8 expression 

was increased. Ouyang et al. (2000) demonstrated a concentration of CSE as low as 

~0.1% (after correction to current study protocols) for 27 hours significantly 
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suppressed Il-1β, Il-2 and IFN-ɣ release by MDMs in response to an anti-CD3 

antibody. Similarly, Doyle et al. (2010) demonstrated alveolar macrophages taken 

directly from the lungs of COPD patients as well as healthy smokers exhibited a 

significantly down regulated IFN-ɣ pathway compared to non-smokers.  

The results seen in this study with LPS challenged MDMs further suppressed 

cytokines after NTHi compared to CSE, significantly impairing Il-1β and IL-6. TNF-

α was also decreased compared to non challenged cells; however this failed to reach 

significance. To my knowledge there are no studies in the literature examining the 

effect of chronic low-level LPS challenge on MDMs. Many studies have been 

performed evaluating the effect of LPS challenge acutely on AMs from COPD 

patients which showed that they had an impaired innate immune response compared 

to healthy AMs (Berenson et al., 2006). Studies have also shown challenge with LPS 

down regulates key inflammatory receptors and pathways (Maris et al., 2006; 

Ganesan et al., 2012; Armstrong et al., 2009), possibly explaining why the response 

to NTHi is diminished. 

This down regulation of macrophage responses by cigarette smoke and LPS may 

appear to be beneficial, reducing inflammatory cytokines; however on the other hand 

the impaired response can also have a detrimental effect on the host’s response to 

pathogens, leading to increased colonization and exacerbations. Further suppression 

of the response by dexamethasone has also been observed, which may increase the 

detriment in this process, questioning the rationale of steroid therapy in COPD (Kent 

et al., 2010).  It has previously been noted that bacteria and increased colonization 

can affect the progression of COPD and increase the frequency of exacerbations 

(Sethi and Murphy 2001).  
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As formerly mentioned NTHi is the most frequently isolated bacteria during stable 

and exacerbated disease, so is a very clinically relevant pathogen (Sethi et al., 2006). 

This study has shown that the response of the macrophage to NTHi is significantly 

impaired by CSE and LPS. Berenson et al. (2006a) have shown that AM responses 

to NTHi antigens were significantly suppressed by smoking and in COPD compared 

to non-smokers, impairing the response to pathogens. Unfortunately, standard 

fluorescently labeled E. coli was used in the phagocytosis experiments due to the 

time constraints not allowing for NTHi to be labeled. This study showed a 21% 

inhibition in phagocytosis by CSE, which although is not significant, many studies 

have shown cigarette smoke can significantly suppress the phagocytic potential of 

macrophages. Significant impairment of phagocytosis may be possible in this study 

if the concentration or length of challenge of CSE was increased. LPS challenged 

cells on the other hand exhibited a significant decrease in phagocytic ability of 55% 

compared to unchallenged cells.  

Martí-Lliteras et al. (2009) demonstrated significant impairment in phagocytosis of 

NTHi by alveolar macrophages, from smokers and COPD patients, and macrophage 

cell lines challenged with CSE. Beresson et al., (2006) also showed AM from COPD 

patients were impaired in phagocytosing NTHi. While Taylor et al. (2010) showed 

this is not only applicable to NTHi, as phagocytosis of Streptococcus pneumonia was 

also impaired. Hodge et al. (2003) also demonstrated alveolar macrophages from 

COPD patients had impaired efferocytosis of apoptotic epithelial cells.  

There are many possible explanations as to why cigarette smoke and LPS down 

regulates macrophage innate immunity and phagocytosis. Firstly chronic exposure to 

an antigen such as CSE or LPS has been shown to result in down regulation of toll-
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like receptors and their associated co-receptors (Droeman et al., 2005; Wang et al., 

2002a; Lin et al., 2004; Oshikawa and Sugiyama, 2003). Ganesan et al. (2012) 

demonstrated in mice exposed to LPS a link in an impaired phagocytic ability of 

macrophages with a decrease in scavenger receptors. This decreases the 

inflammatory response of the macrophage in response to the antigen over time, as 

well as impairing its ability to recognize specific pathogen antigens in the future. As 

previously discussed in chapter 3, activation of Toll-like receptor pathways causes 

the activation of NF-κB and AP-1 via the MyD88 pathways. Kent et al. (2008) 

showed CSE affected NF-ΚB and AP-1 decreasing the expression of inflammatory 

genes with the exception of the neutrophil chemoattractant CXCL8. This study 

showed very little variation in CXCL8 levels for CSE with similar increases in 

response to NTHi challenge; however Il-1β was impaired. LPS alone increased 

CXCL8 levels as would be expected, but again responses to CXCL8 were not 

impaired after further challenge with NTHi but Il-1β and Il-6 were.  

Birrell et al’s. (2007) study in AM exposed to CSE proposes this affect may be due 

to oxidative stress and glutathione depletion. While increased oxidative stress 

attenuated the NF-κB pathway resulting in a decrease in some cytokines, the AP-1 

pathway was up regulated, resulting in increases in other cytokines, most notably 

CXCL8. This response was blocked by glutathione. CSE has also been shown to 

affect the regulation of genes and inflammation due to its effect on histone 

deacetylase 2 (HDAC2). This has been discussed in chapter 4, but briefly HDAC2 is 

responsible for removing acetyl groups from histone proteins, allowing DNA to bind 

more tightly to the protein, preventing the transcription of genes by obscuring the 

promoter regions. Adenuga et al. (2009) demonstrated that CSE impaired HDAC2 in 

213 
 



 Chapter Eight 
 
 
 
a macrophage cell line as well as in bronchial epithelial cells, resulting in abnormal 

inflammation. 

The difference in M1 and M2 responses may also be important. Cells in this study 

were stimulated with GM-CSF which drives them to an M1 phenotype, while cells 

differentiated in M-CSF would exhibit a more M2 phenotype (Verreck et al., 2006). 

LPS has also been shown to drive cells to an M1 phenotype (Mantovani et al., 2004), 

while cigarette smoke shows a more heterogeneous mix of M1 and M2 AMs in 

COPD (Hodge et al., 2011). It has previously been mentioned that studies have 

observed reductions in M1 type cytokines and up regulation of M2 cytokines in 

COPD AMs (Shaykhiev et al., 2006), so with GM-CSF pushing an M1 phenotype, 

the impaired response observed here is similar to the disease, however a possible 

homogenous population of M1 macrophages may react differently than a more 

heterogeneous M1/M2 population. Further studies should be performed to establish 

the phenotype present, as well as examining the effect CSE and LPS challenge has 

on their gene profiles.  

It is important to note that while CSE and LPS were treated as separate entities, their 

interplay in COPD cannot be ignored.  As previously noted, CSE has been shown to 

down regulate phagocytosis in AMs of COPD patients, which may lead to increased 

colonization and exacerbations in COPD. This in turn could lead to more LPS 

present in the airways, decreasing the response to pathogens further and possibly 

leading to a vicious cycle of increased colonization with decreased innate immunity 

and more frequent exacerbations. The effect of CSE and LPS co-challenge on 

MDMs may be of interest, to investigate whether the decrease in innate immune 

response to NTHi is compounded. 
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In summary, this study has demonstrated that chronic low level CSE was able to 

significantly decrease Il-1β release from MDMs in response to NTHi challenge. LPS 

had a greater effect, decreasing IL-1β and IL-6 as well as impairing phagocytosis. 

This study has suggested that LPS from bacterial colonization may also play a key 

role in impairing the innate immune response to pathogens, increasing the frequency 

of exacerbations. 
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The aim of this thesis was to create an animal model of COPD that could be 

exacerbated with a pathogen. This model could then be used to investigate acute 

exacerbations of COPD (AECOPD), identifying pathways as possible therapeutic 

targets.  

Firstly, the chronic LPS guinea pig model demonstrated a similar phenotype to 

COPD, with increased inflammatory cell influx, decreased lung function and 

changes in lung histology, notably emphysema. Guinea pigs were chosen as they 

have a more similar lung structure and pharmacology to humans compared to mice. 

Furthermore, Broadley et al. (2010) and Toward et al. (2004) demonstrated an 

infection in guinea pigs after intranasal administration of PIV3. However, initial 

experiments in this thesis with human parainfluenza 3 virus (PIV3) and poly I:C 

failed to show infection or adequate increases in inflammation respectively, meaning 

the model could not be exacerbated with these agents. This may have arisen through 

mutations in the virus making it less virulent. Another possible explanation is 

conscious guinea pigs expelled a large amount of the virus from their noses, meaning 

the infective dose may not have been met, possibly explaining why poly I:C also 

failed to adequately increase inflammation. Nardelli-Haefliger et al. (2001) 

demonstrated mice that were anaesthetised, inhaled 300 times more of the 

inoculation than conscious animals, so anaesthetising the animals may have 

overcome this problem. This would still leave investigations into pathways and 

cytokine responses difficult to investigate due to lack of specific reagents for guinea 

pigs. 

The guinea pig model demonstrated similar responses as COPD to the drug 

theophylline as described in the literature, with theophylline improving the response 

to the glucocorticoid dexamethasone by decreasing leucocyte numbers, neutrophils 
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in particular. The use of steroids in COPD is controversial (Barnes 2000b; Calverly 

2000), with the disease (Alasaeedi et al., 2002; Culpitt et al., 1999; Keatings et al., 

1997) and the chronic LPS guinea pig model demonstrating a lack of response to 

inhaled steroids. Many studies have been performed to investigate the mechanisms 

of COPD steroid insensitivity and whether this could be reversed. Low dose 

theophylline has been shown to increase the effectiveness of glucocorticoids (Ford et 

al., 2010), which is believed to be due to the effect of PI3Kδ inhibition on HDAC2. 

This results in increased HDAC2 activity, decreasing NF-κB and oxidative stress 

resulting in decreased inflammation and increased steroid sensitivity (To et al., 

2010). However, research into improving steroid responses in COPD may do more 

harm than good. This is because reducing the response of the immune system with 

glucocorticoids may make the disease worse by impairing the clearance of 

aetiological and exacerbating agents, such as viruses and bacteria. 

Chronic cigarette smoke model in the mouse highlights the negative effect impairing 

the immune response could have.  The chronic cigarette smoke model exhibited a 

similar phenotype to COPD, with increased inflammation, structural changes and 

decreased lung function. Chronic cigarette smoke induced inflammation has 

historically been shown to be resistant to steroids. However, this mouse model does 

have its drawbacks, in that it is expensive, time consuming, has relatively mild 

inflammation and takes a long time to develop structural changes, but it is generated 

with a disease-relevant substance, which is a more representative heterogeneous mix 

of chemicals than a singular toxin such as LPS. 

The chronic cigarette smoke model was exacerbated with the bacteria, non-typeable 

Haemophilus influenza (NTHi) with significant increases in neutrophils. NTHi is the 

most frequently isolated bacteria in acute exacerbations of COPD, so was a clinically 
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relevant bacterium to use (Mitravelles et al., 2012).  The addition of NTHi in the 

chronic smoke model resulted in an increase in inflammation on top of the 

inflammation caused by cigarette smoke as observed during an AECOPD; however, 

the results in the chronic smoke model demonstrated a significant impairment in 

many cytokines and cells of the innate and adaptive immune response to NTHi 

compared to non-smoke exposed animals.  

This impairment in immune response has rarely been reported previously. Many 

models of AECOPD focus on an increase in inflammation with a pathological agent 

on top of a stimulus, such as cigarette smoke or LPS, compared to the stable disease 

model. However, there is increasing evidence that cigarette smoke impairs the 

response of the immune system, rather than enhancing it as would be expected in an 

exacerbation. This would result in a decreased ability to fight infections. Kent et al.  

(2008) demonstrated down regulation of numerous inflammatory genes in monocyte-

derived macrophages (MDMs) from COPD patients challenged with CSE, while 

many other studies have demonstrated down regulation of cytokines in the disease 

(Takanashi et al., 1999; Doyle et al., 2010), cell models (Ouyang et al.,2000) and in 

animal models (Gascheler et al., 2009) challenged with CSE.  

With relatively little research into the blunting of the immune response, the exact 

reasons for this impairment is not fully understood. Theories include the down 

regulation of pattern recognition receptors such as toll like receptors (Droeman et al., 

2005; Liew et al., 2005; Wang et al., 2002a; Lin et al., 2004; Oshikawa and 

Sugiyama, 2003) and scavenger receptors (Ganesan et al., 2012),  impairment of the 

NF-kB pathway (Gaschler et al., 2007, Birrell et al., 2007; Kent et al., 2008), 

differential responses between macrophage subtypes (Shaykhiev et al., 2006), 

oxidative stress (Drost et al., 1992, 1993; Birell et al., 2007), down regulation of 
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HDAC2 (Adenuga et al., 2009) and anti-inflammatory compounds in cigarette 

smoke (Therriault et al., 2003; Li et al., 1998; Bathoom et al., 2007; Geng et al., 

1996), but much more research is needed in this area to elucidate mechanisms and 

pathways involved.  

The mouse model, with down regulated immunity would be expected to show 

decreased bacterial clearance, however, the reverse was true, with a lower bacterial 

load in smoke/NTHi mice compared to sham/NTHi animals. This could be due to 

several reasons. Firstly NTHi is not a bacteria that can infect mice, so does not 

actively replicate making it easier to clear. This was highlighted by the similar 

responses observed between live and heat-inactivated NTHi. An infective strain of 

bacteria in the mouse, such as Streptococcus pneumoniae (Ludewick et al., 2011), 

which is present in 15 % of COPD exacerbations (Sethi, 2011), making it a clinically 

relevant pathogen, may show decreased colonisation in this impaired immunity 

model. Secondly, while macrophages may experience decreased phagocytic ability, 

the sheer numbers present in the lungs prior to inoculation may overcome this and 

result in increased bacterial clearance. Thirdly, the inhospitable environment in the 

lungs of cigarette smoke exposed mice, with increases in oxidative species, could 

decrease the viability of the bacteria. Lastly, NTHi has been demonstrated to cross 

into epithelial cells to evade the host immune response (Morey et al., 2011). If this 

happened in this model, more bacteria could cross into epithelial cells of the chronic 

cigarette smoke mouse lung than non-smoked due to increased epithelial cell damage 

in the model. Unfortunately attempts with Gram stain and immunohistochemistry to 

elucidate whether this did occur failed. The phagocytic ability of macrophages in this 

model should be investigated to determine whether it was affected by chronic 

cigarette smoke exposure as observed in the disease (Taylor et al., 2010). The model 
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should also be validated by using pharmacological agents that have been proven 

beneficial in treating AECOPD, such as phosphodiesterase 4 inhibitors (Reannard et 

al., 2011). 

This impairment of the immune response was also observed in the study with MDMs 

differentiated in GM-CSF and challenged with CSE or LPS. COPD alveolar 

macrophages have demonstrated an impaired immune response (Doyle et al., 2010; 

Berenson et al., 2006) and phagocytic ability (Marti-Lliteras et al., 2009). Monocyte 

derived macrophages in this study also showed that chronic, low level stimulus with 

cigarette smoke or LPS reduces cytokine release and impairs phagocytosis. This may 

be partly responsible for the increased bacterial colonisation associated with the 

disease and lead to a vicious cycle of impaired immunity, increased bacterial 

colonisation/exacerbation and lead to faster disease progression. This is summarised 

in figure 9.1. It would also be preferable to fluorescently label NTHi and 

Streptococcus pneumoniae to investigate the phagocytosis in both the chronic 

cigarette smoke model and the MDM model rather than using pre-prepared E.coli. 

Analysing and comparing the pathways involved in phagocytosis in both models 

may help pinpoint specific therapeutic targets to up- regulate phagocytosis, with the 

aim of decreasing colonisation and exacerbations and breaking the vicious cycle. 

These pathways must then be analysed in the disease to determine whether the 

pathways are similar in both the model and in COPD. 
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Figure 9.1: The Vicious Cycle of Impaired Immunity and Increased Bacterial 
Colonisation and Exacerbation in COPD. 

 

Another important aspect that must be investigated in the chronic cigarette smoke 

model is the macrophage subpopulations that are present. As previously discussed 

studies have shown distinct differences in macrophage subpopulation responses in 

COPD, with the pro-inflammatory M1 macrophages being typically impaired, while 

the anti-inflammatory M2 macrophages are generally up-regulated (Shaykhiev et al., 

2006). The subpopulation of macrophages in COPD comprise of both M1 and M2 

macrophages (Verreck et al., 2006). The subpopulation of macrophages in the 

chronic smoke model should be investigated, with gene analysis determining which 

pathways are up-regulated and down-regulated within the different populations and 
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Differentiating MDMs in M-CSF as opposed to GM-CSF would cause the 

macrophages to display a more M2 phenotype. The response of this separate 

population to chronic cigarette smoke extract or LPS challenge could also be 

investigated to examine differences between the two subpopulations in response to 

the same stimulus. The addition of CSE and LPS co-challenge may also be 

interesting to investigate to see whether there is a compounding of the impaired 

response. 

It is important, whatever model is used, that pathways investigated and identified in 

the models or in the disease itself are cross checked with each other to determine 

whether the models and the disease are responding similarly and via the same 

pathways. A model that heavily involves pathways which the disease does not have 

may be of little use in understanding and drug discovery. However, it may also be 

important to note large phenotypes within the disease, which may exhibit different 

pathways but have the same outcome, should be investigated with many different 

models focussing on particular phenotypes instead of attempting to generalise an 

entire disease within a small number of models. 

In conclusion this study has shown that a chronic LPS model in the guinea pig 

developed similar inflammation, lung function and structural changes observed in 

COPD, however it was unable to be exacerbated by PIV3 or Poly I:C. Low dose 

theophylline did increase steroid sensitivity in the model but this failed to reach 

significance. It was also shown that a model of COPD exacerbation in the mouse 

was achieved, with increased inflammation after NTHi and smoke compared to 

smoke alone. The model also demonstrated impaired responses to NTHi after smoke 

challenge, with decreased inflammatory cell and cytokine respsonses. This was 

replicated in monocyte derived macrophages challenged with cigarette smoke and 
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LPS, with down regulated cytokine release and phagocytosis in response to bacteria. 

This impairment may lead to a vicious cycle of impaired immunity, increased 

colonisation/exacerbation and faster disease progression. Studies must be performed 

to elucidate specific mechanisms by which this impaired response occurs with the 

aim of specifically up regulating inflammation to healthy levels, which may slow 

down the vicious cycle of colonisation and impairment and lead to resolved 

inflammation. 
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0 1 2 3 4 5

Your name: Today’s date:

How is your COPD? Take the COPD Assessment Test™ (CAT)

This questionnaire will help you and your healthcare professional measure the impact COPD (Chronic Obstructive
Pulmonary Disease) is having on your wellbeing and daily life.Your answers, and test score, can be used by you and
your healthcare professional to help improve the management of your COPD and get the greatest benefit from treatment.

For each item below, place a mark (X) in the box that best describes you currently. Be sure to only select one response
for each question.

Example: I am very happy I am very sad

TOTAL
SCORE

SCORE

COPD Assessment Test and CAT logo is a trademark of the GlaxoSmithKline group of companies.
© 2009 GlaxoSmithKline. All rights reserved.

RES/QST/09/43163/1  Date of preparation: September 2009.

I never cough 0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

I cough all the time 

I have no phlegm (mucus)
in my chest at all 

My chest is completely
full of phlegm (mucus)

My chest does not
feel tight at all

My chest feels
very tight 

When I walk up a hill or
one flight of stairs I am
not breathless 

When I walk up a hill or
one flight of stairs I am
very breathless  

I am not limited doing
any activities at home 

I am very limited doing
activities at home

I am confident leaving
my home despite my
lung condition 

I am not at all confident
leaving my home because
of my lung condition  

I sleep soundly
I don’t sleep soundly
because of my lung
condition

I have lots of energy I have no energy at all 
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Modified Medical Research Council Dyspnea Scale, MRC  Page 1 of 1 

 

MODIFIED MEDICAL RESEARCH COUNCIL 
DYSPNEA SCALE 

 

ID NUMBER:         FORM CODE:   MRC 
VERSION: 1.0  10/26/10 

Visit 
Number     SEQ #    

 
 
 
 

0a) Form Date ........... / /  0b) Initials ...........  
 
 
 
  
 
Please choose the one best response to describe your shortness of breath. 
 
Grade 
 

0 “I only get breathless with strenuous exercise” 
 
 
1 “I get short of breath when hurrying on the level or walking up a slight hill” 

 
 
2 “I walk slower than people of the same age on the level because of breathlessness or have to 

stop for breath when walking at my own pace on the level” 
 
 
3 “I stop for breath after walking about 100 yards or after a few minutes on the level” 

 
 
4 “I am too breathless to leave the house” or “I am breathless when dressing” 

 
 
 

 1. Grade ......................................................  
 
 
 

Instructions:  This form should be completed during the participant’s visit. Choose the one best 
response. 
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