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Abstract

Sulforhodamine 101 (SR101) is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by
SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the
control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing
astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the
ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it
is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin
hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the
hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-
sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.
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Introduction

Astrocytes are important players in neuronal networks. They

maintain the extracellular milieu by removal of potassium and

neurotransmitters like glutamate and modulate synaptic transmis-

sion by releasing gliotransmitters [1,2,3]. Unequivocal identifica-

tion of astrocytes for imaging experiments as well as electrophys-

iological recordings was facilitated by the availability of transgenic

mouse lines expressing fluorescent proteins under the control of

glia specific promoters [4,5]. Recently, sulforhodamine 101

(SR101) has been used for specific visualization of astrocytes in

cortex and hippocampus [6,7,8,9]. In the spinal cord, however,

SR101 has been described as unspecific [10] and it was also

reported to label oligodendrocytes in the rabbit retina [11].

Furthermore, during hypoxia SR101 can enter also hippocampal

neurons via hemichannels [12]. Currently, it is not known how the

specific loading of SR101 into astrocytes is achieved under

normoxic conditions. Although the synthetic glycyrrhetinic acid

derivative carbenoxolone has been shown to block SR101-labeling

of astrocytes [7], it is not yet clear if this is due to its action on gap-

junctions and hemichannels or a yet unknown, maybe indirect

mechanism. Nevertheless, SR101 is widely used as a marker for

astrocytes in different brain regions [13,14,15] even despite the

fact that sulforhodamine 101 has been found to trigger epileptic

activity in the hippocampus [16].

In this study, we initially aimed to use SR101 for identification

of astrocytes in ventrolateral medulla (VLM). Since VLM

astrocytes were not labeled by SR101 sufficiently, we tried to

improve the staining by pharmacological manipulations of

potential mechanisms that might be involved in export of SR101

from medullary astrocytes. The results guided us to a series of

experiments in the hippocampus to unveil the potential mecha-

nism and functional role of this regional heterogeneity of astrocytes

in ventrolateral medulla and the hippocampus.

Materials and Methods

Ethics statement
In accordance with the German Protection of Animals Act

(Tierschutzgesetz; TierSchG 14 Abs. 3) we did not need formal

approval for the post mortem removal of brain tissue. The

experiments were communicated to and notified by animal welfare

office of University Medical Center Göttingen, Germany (institu-

tional act number: T19.08).

Breeding of mice
Animals were hold and bred in the animal facilities of the

University Hospital Göttingen in accordance with guidelines of the

German Physiological Society as well as the regulations of the

State of Lower Saxony and the Federal Republic of Germany.

Experiments were performed on acute brain slice preparations of

neonatal (P2–P12), juvenile (P29–33) and adult mice (P98–99)

expressing the enhanced green fluorescent protein in astrocytes

[Tg(hGFAP-EGFP)GFEC-Fki; [4]]. Additionally we used mice in

which glycinergic neurons were labeled [Tg(Slc6a5-EGFP)1Uze;

[17]] to unequivocally identify inhibitory neurons.
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Slice preparations
Acute transversal slices from brainstem and hippocampus were

prepared as described previously [18]. Briefly, animals were

decapitated under diethyl-ether anesthesia, brainstem and hippo-

campus were isolated and placed in ice-cooled, carbogen-saturated

(95% O2, 5% CO2) artificial cerebrospinal fluid (aCSF) containing

118 mM NaCl, 3 KCl, 1.5 mM CaCl2, 1 mM MgCl2, 1 mM

NaH2PO4, 25 mM NaHCO3, and 30 mM D-glucose). The

osmolarity was 325–335 mosm/l and the pH was adjusted to

7.4. The isolated brain part was glued with cyanoacryl glue

(Loctite Deutschland GmbH) to an agar block and mounted in a

vibroslicer (VT 1000S or VT 1200S, Leica). Brainstem and

hippocampal slices of 250 mm were cut and stored in oxygenated

aCSF at room temperature for at least 30 minutes before staining.

For the actual experiments, slices were transferred to a recording

chamber at the regarding microscope (see below). Slices were kept

submerged by a nylon fiber grid and continuously perfused with

aCSF at a flow rate of 5–10 ml/min.

Sulforhodamine 101 staining protocol
Sulforhodamine 101 (SR101) labeling was performed with a low

concentration of the dye [6,19]. If not stated otherwise, slices were

incubated for 20 minutes in carbogen-saturated aCSF containing

1 mM SR101 at 34uC. Thereafter, slices were incubated in aCSF

for 10 minutes at 34uC to allow washout of excess dye from the

extracellular space. Sodium-reduced solution was prepared by

replacing NaCl by cholineCl.

Fluorescence imaging using multifocal 2-photon
excitation microscopy

For detection of EGFP- and SR101-fluorescence, we used

multifocal (8 or 16 foci) 2-photon excitation. The principle

arrangement of the microscope (TriMScope, LaVision BioTec)

was described earlier [20]. Two-photon excitation was achieved

with a Ti:Sapphire Laser (SpectraPhysics MaiTai BB) at 800 nm.

Images were acquired with CCD-cameras (Ixon 885 or Clara,

Andor Technology) using either no or 262 binning. Fluorescence

signals of hGFAP-EGFP expressing astrocytes were detected

through a 531/40 nm band pass emission filter, whereas SR101-

fluorescence was detected through a BP 645/75 nm band pass

emission filter (AHF Analysentechnik AG). Image noise minimi-

zation, was achieved either by offline averaging of four consecutive

images or by integrating the emitted light of consecutive scans on

the CCD camera. To allow quantitative comparison of the

SR101-intensity between controls and drug treatments, all image

parameters, especially camera settings (exposure time, gain and

binning) as well as laser settings (laser power, beam number) were

identical for a particular set of experiments. Cell counting was

performed in a defined volume that was scanned with 2 mm step z-

stacks using a piezo-focus (Physik Instrumente). All settings were

controlled by ‘‘Imspector’’ software (LaVision BioTec, Bielefeld,

Germany). Since fluorescence intensity of EGFP in glycinergic

neurons was low and sensitive to photo bleaching, we used the

dual camera mode of our microscope when performing time-lapse

recordings of SR101-loading in slices from Tg(GlyT2-EGFP)-

mice. In these experiments, emitted light was divided by a dichroic

mirror (580 nm, beam splitter 580 DCXR, AHF), thus shorter

wavelengths could be passed through a 531/40 nm band pass

filter for detection of EGFP-fluorescence with a second CCD-

camera (Clara, Andor Technology), while longer wavelengths

(SR101-fluorescence) were detected with the other Clara CCD-

camera as described above. Overlap of both cameras was adjusted

before the experiment using standard fluorescent probes (Chro-

ma). This technique allows adjusting the camera settings of the

green and red channel independently and, thus, the camera setting

for detection of SR101 could remain the same as in the single

camera experiments.

For analysis of SR101-fluorescence, ‘‘Imspector’’-images were

exported to TIFF-format. Deconvolution was performed with

Autoquant software (MediaCybernetics) using the theoretical point-

spread-function (adaptive PSF, 10 iterations). 3D-volumes were

then further analyzed in Imaris (Bitplane). Drift correction was

performed for time-lapse recordings. The fluorescence intensity of

the SR101 and EGFP channel was determined using the spot

objects feature of Imaris. A spherical 3D volume (spot) of 6 mm

diameter was manually assigned to EGFP-expressing cells in the

‘‘surpass’’ view. In the SR101-channel the ‘‘recenter’’ function of

Imaris was used to identify cells with SR101-labeling. Only if

‘‘recentering’’ was possible a cell was counted as a SR101-positive.

To quantify the fluorescence intensity of an individual cell the

median intensity of the assigned spot was calculated (in the time-

lapse experiments for each time point). We used a R script (The R

Foundation for Statistical Computing) to extract the number of

cells and their intensities out of the comma separated file that was

exported from Imaris and to calculate the average SR101-

fluorescence intensities of the regarding slice.

Electrophysiology
Electrophysiological characterization of SR101-labeled or

EGFP-labeled CA1 stratum radiatum cells was performed as

described earlier [9,21]. After SR101-staining, using the protocol

described above, hippocampal slices were transferred to a custom-

built recording chamber mounted to an upright microscope (Axio

Examiner.Z1, Zeiss) and superfused with aCSF at room temper-

ature. Epifluorescence illumination was achieved by a HBO100

mercury lamp (Zeiss). Two filter sets were used to discriminate

between SR101-labeled cells that did not express EGFP and

EGFP-expressing astrocytes. A dualband GFP/mCherry ET filter

set (F56-019; AHF Analysentechnik) allowed the identification

SR101-positive cells while the GFP filter set (38; AHF) was used to

confirm the expression of EGFP. Fluorescence illumination was

stopped to avoid bleaching, and a Dodt-Gradient-Contrast [22]

was used to approach the identified cell with the patch-pipette.

EGFP- and SR101-fluorescence was documented using a CCD-

camera (Sensicam QE; PCO) that was controlled by CamWare

software (PCO).

Whole-cell recordings were conducted with a Multiclamp 700A

amplifier, Digidata 1440A interface and pClamp10 software

(Molecular Devices, Forster City, CA, USA). For characterization

of the current-voltage (I–V) relations, SR101-positive and EGFP-

positive cells that were voltage-clamped at a holding potential of

280 mV, were exposed to 200 ms voltage-steps that reached from

2160 mV to +60 mV (10 mV increments). Current responses

were low-pass filtered at 2 kHz and digitized at 10 kHz. The

steady state current at 200 ms was measured to calculate the (I–V)

curves. Additionally, the membrane resistance was calculated from

the change of the holding current in response to a hyperpolarizing

voltage step to 290 mV.

Drugs
Electrolytes for aCSF (see above) were purchased from Sigma-

Aldrich (Taufkirchen, Germany) and Merck chemicals (Darm-

stadt, Germany). Drugs were stored in concentrated stock solution

at 220uC and used following dilution in aCSF in final

concentrations as follows: Carbenoxolone (CBX, 100 mM, Sig-

ma-Aldrich), Probenecid (1 mM, Sigma-Aldrich), Estrone-3-sul-

fate (E3S, 100 mM, Sigma-Aldrich), MK-571 (50 and 200 mM,
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Enzo Life Sciences), Rifampicin (100 mM, Sigma-Aldrich), Dehy-

droepiandrosterone sulfate (DHEAS; 100 mM, Sigma-Aldrich).

Mefloquine (MFQ) was purchased from BioBlocks as (6)-erythro-

(R*/S*)-mefloquine (QU024-1) and used in concentrations

between 0.1–50 mM.

Data analysis
Data are expressed as mean 6 SEM. Statistical comparison was

performed with the SigmaPlot software (Systat Software, Inc.).

Statistical significance (t-test or Mann-Whitney U test) was

expected if p,0.05.

Results

Sulforhodamine 101 is not a selective marker for
astrocytes in the ventrolateral medulla

To assess the specificity of SR101-staining in the ventrolateral

medulla (VLM) in the brainstem, we adopted the Sulforhodamine

101 (SR101) staining protocol described earlier for acute

hippocampal slices [6], to acute brainstem slices from neonatal

Tg(hGFAP-EGFP) mice (Figure 1). It was obvious that labeling of

VLM-astrocytes with SR101 was not sufficient for the reliable

identification of astrocytes (Figure 1B). The intensity of SR101-

staining was so weak that we had to increase the gain of the images

to detect SR101-staining in astrocytes at all (Figure 1B9). In

contrast, SR101-staining of hippocampal slices with the same

protocol confirmed a good labeling of stratum radiatum astrocytes in

the CA1 and CA3 region with SR101 (Figure 1F).

We quantified the differences in SR101-labeling by measuring

the intensity of the red-fluorescence using 2-photon microscopy. In

the VLM we were able to identify a faint SR101-fluorescence,

which was different from the background, in 59.9612.4% EGFP-

positive astrocytes. The SR101-intensity was determined to be

22.3262.9 au (n = 5 slices; mean 6 SEM). In the hippocampus

SR101-intensity of astrocytes (EGFP-positive) was five-fold higher

(101.72621.29 au) (n = 6, p,0.05, Mann-Whitney U test). The

Figure 1. Sulforhodamine 101 labeling in the ventrolateral medulla (VLM) and stratum radiatum (CA1 area) of the hippocampus. A–
C: Sulforhodamine (SR101) labeling (B) in VLM from transgenic mice expressing EGFP (A) under the hGFAP-promotor. B9: The overall labeling with
SR101 of the VLM is very weak and only visible after increasing image gain. C: Overlay of A and B. D–E: In hippocampal slices, SR101-staining (E)
largely overlaps with EGFP-labeling (D) of astrocytes. (F) Overlay of D and E. Images are maximum intensity projections of 21 2P-images, 2 mm
distance). Scale bars: 40 mm. G–H: Statistical comparison of labeling of EGFP-astrocytes with SR101 in slices from the VLM and hippocampus. G:
Comparison of the percentage of EGFP-positive astrocytes that showed detectable levels of red SR101-fluorescence. H: Comparison of SR101-
intensity of EGFP-positive astrocytes. The intensity of SR101 is significantly reduced (asterisk) in the VLM. Error bars = standard error of the mean.
doi:10.1371/journal.pone.0049398.g001
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Figure 2. Electrophysiological characterization of SR101-positive cells in the hippocampus. A: CCD-camera image of an EGFP-expressing
astrocyte using a EGFP-filter, 531/40 nm BP filter. The image was taken after the cell was approached with patch-pipette. B: Image of a whole-cell
recorded SR101-loaded stratum radiatum cell that did not express EGFP. The picture was merged from the EGFP-filter image (531/40 nm, green) and
the dual band filter image (EGFP/mCherry; F56-019, red). C: Membrane current traces of the astrocytes in (A) in response to the voltage-step protocol
shown in D. E: membrane current traces of the SR101-positive EGFP-negative cell in (B). Capacitance artifacts have been truncated. F: Averaged I–V
curves from EGFP-positive (EGFP; green) and SR101-positive EGFP-negative (SR101; red) cells. G,H: Statistical comparison of resting membrane
potential (G) and membrane resistance (H).
doi:10.1371/journal.pone.0049398.g002

Figure 3. Comparison of SR101-staining in different ages. A–C: staining in the ventrolateral medulla (VLM) with 1 mM SR101 for 20 min and
10 min wash out. EGFP-fluorescence is not shown. The SR101 labeling was poor in all three tested ages. D–F: In the stratum radiatum of the
hippocampal CA1 region SR101-labeling of juvenile (P33) an adult mice (P99) was very similar as compared to neonatal mice.
doi:10.1371/journal.pone.0049398.g003
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number of EGFP-positive cells that were stained with SR101 was

76.567.2% (n = 6, n.s., t-test).

In the hippocampus 46.363.1% of SR101-positive cells were

lacking EGFP-fluorescence. These cells resembled astrocytes in

size and shape and when we recorded from these cells we found no

differences in the electrophysiological properties between EGFP-

negative SR101-positive cells and EGFP-positive astrocytes

(Figure 2). The resting membrane potential of EGFP-positive

astrocytes was 276.6363.74 mV (n = 8) and 274.7362.93 mV

(n = 11) for the SR101-positive but EGFP-negative cells. No

difference was detected in the membrane resistance (SR101-

positive but EGFP-negative: 80.1628.8 MV; EGFP-positive:

59.0611.9 MV). Additionally, it appears that SR101-labeled cells

that did not express EGFP resembled also mature astrocytes

indicated by the almost linear IV-curve (Figure 2H).

We also performed SR101-labeling in brainstem and hippo-

campus slices from different developmental stages (Figure 3).

While in the VLM SR101 did not allow a reliable identification of

astrocytes at any time (Figure 3A–C), solid SR101-staining of

astrocytes was always possible in the stratum radiatum of the CA1

region (Figure 3D–F).

2-photon time lapse imaging reveals transient labeling of
non-astrocytic cells in the VLM

To examine the time course of SR101-labeling of astrocytes, we

performed time-lapse 2-photon-imaging during the labeling

procedure. After recording the fluorescence background in aCSF

for 2 min, SR101 (1 mM) was bath-applied. Then changes of the

fluorescence intensity were recorded every 2 min. In the VLM,

EGFP-positive astrocytes did not take up much SR101 during the

20 min loading phase (Figure 4 C). However, we found SR101-

positive cells that were EGFP-negative (Figure 4 C,G). During

washout, SR101-fluorescence disappeared rapidly from the latter

(Figure 4 F,G).

In the hippocampus most EGFP-positive astrocytes but also

EGFP-negative were loaded with SR101 during the 20 min

loading phase (Figure 4 C9). Among the EGFP-negative cells most

SR101-labeled cell resembled the EGFP-positive astrocytes in size

Figure 4. Time course of the SR101-staining procedure. (A–E9) Images show 2-photon time-lapse recording of SR101-stainings and unstaining
during washout in acute slices (40 mm, 21 images, 0.5 min21). A–E show the results from the ventrolateral medulla (VLM) and A9–E9 from
hippocampus. A, A9: Maximum intensity projections of the EGFP-fluorescence of the astrocytes. B–E, B9–E9: Images show maximum intensity
projections of the SR101-labeling at 4 different time points in the hippocampus and in the VLM. Scale bars: 40 mm. F–H: Analysis of the time course of
SR101-staining. Arrows underneath the traces represent the time points according to the images in A–E and A9–E9, respectively. Data (mean 6 SEM) is
derived from 3–5 cells per slice (6 slices in hippocampus and 5 in the VLM). F: Note that the SR101-staining of hippocampal astrocytes (red) is much
stronger than the staining in the VLM astrocytes (green). G: In the VLM additionally EGFP-negative cells are stained while SR101 is applied (blue trace)
but the fluorescence is disappearing during the washout. H: Normalized time course of the staining of astrocytes (red in the hippocampus; green in
the VLM) and EGFP-negative cells in the VLM (blue).
doi:10.1371/journal.pone.0049398.g004
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and shape. During washout, SR101-fluorescence of EGFP-positive

astrocytes decreased only slightly and allowed identification of

astrocytes until the end of the recording (Figure 2 D9,E9).

Additionally, a large number of the EGFP-negative cells retained

SR101, yet, most of them resembling astrocytes in size and shape,

confirming the labeling pattern of the initial staining experiments

described above.

In an additional set of 2-photon time lapse imaging experi-

ments, we stepwise increased the SR101-concentration in the bath

solution (Figure 5; n = 3). With a SR101 concentration of 0.1 mM,

astrocytes in the CA1 stratum radiatum started to become labeled

(Figure 5 B). During the 20 min staining procedure the SR101-

fluorescence intensity in the astrocytes was increasing above the

fluorescence intensity of the SR101-containing aCSF that was

measured above the slice (Figure 5F). At 1 mM, the intracellular

SR101-intensity increased further (Figure 5 C,F), while also the

SR101 background fluorescence in the slice increased slightly.

Both measured fluorescence intensities were larger as compared to

the SR101-fluorescence in solution above the slice. Subsequent

increase of the SR101-concentration to 10 mM caused an

additional increase of the SR101-fluorescence of astrocytes during

the 20 min staining procedure. The fluorescence intensity at

20 min did not reach a plateau, suggesting continuing accumu-

lation of SR101 in the astrocytes (Figure 5D). In all 3 tested

conditions the SR101-intensity in astrocytes exceeded the fluores-

cence intensity of the background in the slice as well as the

intensity in the aCSF (See also Movie S1). However the best signal

to noise ratio was found in the 1 mM SR101-solution (Figure 5G).

Gap-junction hemichannels are not responsible for
SR101-uptake in the hippocampus

In the original study describing the specific labeling of astrocytes

with SR101 in vivo [7], the gap-junction blocker carbenoxolone

was found to suppress labeling of astrocytes by topical applied

SR101. Thus one can speculate that SR101 enters hippocampal

astrocytes via gap-junctional hemichannels. We therefore tested if

carbenoxolone also blocks SR101-labeling of hippocampal astro-

cytes in the slice preparation. Carbenoxolone (CBX; 100 mM)

reduced SR101-labeling of EGFP-positive astrocytes

(50.61621.59 au (CTRL) vs. 18.3562.16 au (CBX); n = 6,

p,0.05, Mann-Whitney U test; Figure 3A–C). The fraction of

SR101-positive EGFP-positive astrocytes was, however, not

reduced by CBX (70.565.7% (CTRL) vs. 53.468.9% (CBX);

n = 6, n.s., t-test; Figure 6D).

Carbenoxolone does not discriminate between hemichannels

formed by connexins or pannexins [23]. Therefore we tested if the

anti-malaria drug and pannexin blocker mefloquine (MFQ) blocks

SR101-staining of hippocampal astrocytes. However, SR101-

staining of hippocampal astrocytes was not changed by MFQ

using a concentration of 0.1 mM or 1 mM (not shown). Even at a

concentration of 50 mM when MFQ blocks also connexin

hemichannels [24] no change of SR101-intensity (58.569.5 au

in MFQ (n = 4) vs. 49.564.0 au in CTRL (n = 3, n.s., t-test,

Figure 6G) or cell number (81.764.1% in MFQ (n = 4) vs.

92.060.7% in CTRL (n = 3, n.s., t-test, Figure 6H) was observed.

Since MFQ did not affect SR101-fluorescence intensity, we

conclude that hemichannels formed by connexins or pannexins

are not the major route for SR101-uptake and that the organic

Figure 5. Accumulation of SR101 in cells. A–D: Maximum intensity projections of 2-photon z-stacks from time-lapse recordings during the
staining of hippocampal CA1 region with different SR101-concentrations (70 mm z-stacks, 2 mm steps, 2 min21). A: SR101-fluorescence before SR101
was applied. B–D: SR101-fluorescence at different time points as indicated. E: EGFP-fluorescence of the astrocytes. Scale bars: 40 mm. F: Quantitative
analysis of the time course of the SR101- fluorescence in hippocampal astrocytes (n = 17 astrocytes, 3 slices, red circles) and SR101-intensity of the
background within the slice (n = 3 spots) and in the SR101 containing aCSF solution above the slice (n = 3 spots). G: Comparison of signal to noise
ratio of the somatic SR101-fluorescence of astrocytes versus background (in the slice) and versus the SR101 in the aCSF solution above the slice. Note:
1 mM SR101 gave the best signal to noise ration.
doi:10.1371/journal.pone.0049398.g005
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Figure 7. Test for the contribution of MRP-transporters to selective SR101-labeling. A–H: Effect of Mrp1-blocker MK-571 on SR101-
labeling in the VLM (A–D) and hippocampus (E–H) using EGFP-expressing astrocytes. A: Overlay of EGFP- and SR101-fluorescence in the VLM after
staining in CTRL conditions. B: Overlay of EGFP- and SR101-fluorescence after staining with MK-571 (200 mM) in the staining solution. C, D: Statistical
comparison shows no change of SR101-fluorescence intensity of EGFP-positive astrocytes in the VLM (C) but a reduction of the fraction of EGFP-
positive astrocytes that were also labeled with SR101. E: Overlay of EGFP- and SR101-fluorescence in the hippocampus after staining in CTRL
conditions. F: Overlay of EGFP- and SR101-fluorescence after staining with MK-571 (200 mM) in the staining solution. G, H: Statistical comparison
reveals that the intensity of SR101-labeling as well as the fraction of EGFP-positive astrocytes that were also labeled with SR101 was significantly
reduced by MK-571 present during staining.
doi:10.1371/journal.pone.0049398.g007

Figure 6. Effects of the hemichannel blocker carbenoxolone and mefloquine on SR101-labeling in the hippocampus. A–D:
Carbenoxolone (CBX) reduced SR101-labeling in the hippocampus. A: Overlay of EGFP (green)- and SR101-fluorescence (red) in CTRL conditions. B:
With CBX (100 mM) present during SR101-staining, SR101-fluorescence is significantly reduced. C,D: Statistical comparison of SR101-labeling of EGFP-
labeled astrocytes in the absence (CTRL) and presence of CBX reveals significant reduction of fluorescence intensity but no significant difference in
the fraction of SR101-positive astrocytes. E: Overlay of EGFP- and SR101-fluorescence after a staining in CTRL conditions. F: Overlay of EGFP- and
SR101-fluorescence after a staining with Mefloquine (MFQ, 50 mM). G,H: Statistical comparison: Neither the staining intensity (G) nor the number
EGFP-positive astrocytes that were labeled with SR101 (H) was changed. Scale bars: 40 mm.
doi:10.1371/journal.pone.0049398.g006
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Figure 8. SR101 in neurons of the ventrolateral medulla. A–D: two-photon images from the SR101-labeling procedure of EGFP-labeled
inhibitory neurons (GlyT2-EGFP) in the ventral-lateral medulla. A,B: Green EGFP-fluorescence is quickly photo-bleached during the 20 min SR101
application. C: At 20 min, SR101 is increasing in numerous cells, but SR101 could only be found in one EGFP-positive neuron (arrow). D: Overlay of
panels A and C. E–G: SR101-labeling of GlyT2-EFGP neurons (E) and SR101-labeled cells (F) in the presence of MK-571 (200 mM). G: merged image
from E and F. The arrows point to SR101-labeled glycinergic neurons. Scale bars: 40 mm.
doi:10.1371/journal.pone.0049398.g008

Figure 9. Effect of probenecid on SR101-labeling. A: Overlay of astroglial EGFP-fluorescence and SR101-fluorescence in the VLM after staining
in CTRL conditions. B: Overlay of astroglial EGFP- and SR101-fluorescence after staining with Probenecid (Prob, 1 mM). C,D: Statistical comparison
shows no change of astroglial SR101-labeling in the VLM. E: Overlay of astroglial EGFP- and SR101-fluorescence in the hippocampus after staining in
CTRL conditions. F: Overlay of astroglial EGFP- and SR101-fluorescence after staining with Probenecid present in the staining solution shows a
reduction of astroglial SR101-labeling in hippocampal astrocytes. G,H: Statistical comparison reveals a significant reduction of the intensity (G) as well
as the percentage of EGFP-positive astrocytes that were also labeled (H). Scale bars: 40 mm.
doi:10.1371/journal.pone.0049398.g009
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Figure 10. Effects of Estrone-3-Sulfate and Na+-free solution on SR101-uptake by astrocytes. A: Overlay of astroglial EGFP- fluorescence
(green) and SR101-fluorescence (red) in the hippocampus after a staining in CTRL conditions. B: Overlay of EGFP- and SR101-fluorescence after
application Estrone-3-Sulfate (E3S, 100 mM) in the staining solution shows significant reduction of SR101-fluorescence intensity. C: Overlay of EGFP-
and SR101-fluorescence in the hippocampus after staining in Na+-free solution shows no Na+-dependence of SR101-uptake. Scale bars: 40 mm. D: the
statistical comparison confirms significant reduction of SR101-labeling by E3S in the hippocampus, but no effect of Na+-free solution. (E) Statistical
comparison of the effects of E3S and Na+-free solution on the percentage of SR101-labeled astrocytes in the hippocampus.
doi:10.1371/journal.pone.0049398.g010

Figure 11. Effects of OATP blockade on SR101-uptake in the hippocampus. A: Overlay of astroglial EGFP-fluorescence (green) and SR101-
fluorescence (red) in the hippocampus after a staining in control conditions. B: Rifampicin in the staining solution decreased SR101-fluorescence
intensity. C: While the reduction of SR101-labeling by rifampicin (Rif; 100 mM) was significant, the fraction (D) of SR101-labeled astrocytes remained
unchanged by rifampicin. E: astroglial EGFP-fluorescence (green) and SR101-fluorescence (red) in the hippocampus after a staining in control
conditions. F: Reduced SR101-labeling of hippocampal astrocytes when the neurosteroid dehydroepiandrosterone sulfate (DHEAS, 100 mM) was
present during SR101-staining. G: The statistical comparison reveals a significant reduction of SR101-fluorescence intensity by DHEAS G: Additionally,
the percentage of EGFP-positive astrocytes that were also labeled with SR101 was significantly lowered as compared to control. Scale bars: 40 mm.
doi:10.1371/journal.pone.0049398.g011
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anion carbenoxolone might interfere with another uptake mech-

anism.

MK-571 reduces SR101-labeling in the hippocampus
Time-lapse imaging suggested that SR101 might be removed

from neurons and VLM astrocytes via an active transport

mechanism. Possible candidates are multidrug resistance proteins,

which can mediate efflux of SR101 from cells [25] and also have

been found in astrocytes [26]. Furthermore, blockade of efflux-

transporters was shown to improve fluorescent dye-labeling of

neurons [27].

When we tested MK-571 (200 mM), an inhibitor of the Mrp1

(ABCC1) transporter, SR101-labeling of EGFP-positive VLM-

astrocytes was not improved (Figure 7, A–D). The SR101 intensity

was 22.267.4 au (n = 5) in MK-571 (vs. 28.363.5 au in aCSF;

n = 6, n.s., t-test, Figure 7C). Rather, the number of EGFP-positive

astrocytes, in which some SR101-fluorescence could be detected

was reduced (30.168.9% (n = 5) in MK-571 vs. 73.467.0% in

aCSF; n = 6, p,0.05, t-test, Figure 7D). Interestingly, labeling of

EGFP-negative cells, including some that rather looked like

neurons (arrow in Figure 7B), appeared to be improved by MK-

571 in the VLM.

When we applied MK-571 to hippocampal slices, the number of

SR101-positive astrocytes was significantly reduced (27.6611.0%

(n = 5) in MK-571 vs. 83.166.0% in aCSF; n = 6, p,0.05, Mann-

Whitney U test, Figure 7H). The effect of MK-571 on the SR101-

intensity of EGFP-positive astrocytes was even more pronounced

(21.364.3 au (n = 4) in MK-571 vs. 179.1655.0 au in aCSF;

n = 6, p,0.05, Mann-Whitney U test, Figure 7G). One possible

interpretation of this observation is that MK-571 interferes with

the uptake of SR101.

Neurons can be labeled by SR101 in the ventrolateral
medulla

In the VLM, as shown in Figure 4, SR101 enters EGFP-

negative cell when SR101 is applied but leaves these cells once

SR101 is removed from the extracellular medium. When MK-571

is applied in the VLM, SR101 was also detectable in EGFP-

negative cells (Figure 7), which suggests that extrusion might be

depending on a MK-571-sensitive process. Since some of the

EGFP-negative SR101-positive cells had the shape and size of

neurons, we aimed to test this by using another transgenic mouse

line that expresses EGFP under the control of the GlyT2-

promotor [28]. In a first set of experiments we performed time

lapse imaging of the labeling process with 1 mM SR101 in the

VLM (Figure 8A–D). Most of the SR101-fluorescence did not co-

localize with cell bodies of glycinergic neurons. We could measure

SR101-fluorescence after 20 min of SR101-application in only 2

glycinergic neurons (n = 3 slices). When we labeled VLM-slices

(n = 5) from GlyT2-EGFP mice in the presence of MK-5171

(200 mM) we also found SR101 in a small number of glycinergic

neurons (Figure 8 E–G). On average 7.362.7% of the SR101-

positive cells were glycinergic neurons.

Probenecid reduces astroglial SR101-uptake into
hippocampal astrocytes

Probenecid [29], another MRP-transporter blocker, also did not

increase the SR101 labeling in VLM astrocytes (Figure 9A–D).

This indicates that the weak SR101-labeling of astrocytes in the

ventrolateral medulla is not due to an active extrusion mechanism

but rather result of a poor uptake. Like MK-571, probenecid

reduced the SR101-labeling of hippocampal astrocytes. The

SR101-intensity of EGFP-positive astrocytes was reduced by

probenecid (1 mM) to 41.3615.6 au (n = 4) as compared to

131.8627.8 au in aCSF (n = 4, p,0.05, t-test, Figure 9G). In

probenecid, the fraction of SR101-positive astrocytes was smaller

(76.564.9% (n = 4)) as compared to aCSF (93.362.3%; n = 4,

p,0.05, t-test, Figure 9H). Since it is very unlikely that MRP-

transporter (e.g. ABCC1 transporter) mediate an uptake into cells

[30], our observation might be explained by an interaction of

probenecid and MK-571 with another type of uptake transporters.

SR101 labeling can be reduced by antagonists of organic
anion transporting polypeptides

Probenecid is not only known to block MRP-transporters but is

also a blocker of organic anion transporters (OATs) [31,32] and

some organic anion transporting polypeptides (OATPs) [33]. Since

SR101 is an organic anion [34,35], we hypothesized that OATs

and OATPs are candidates for the SR101-uptake into hippocam-

pal astrocytes. By simultaneous application of estrone-3-sulfate

(E3S; 100 mM), a substrate of both families of organic anion

transporters, we observed a strong reduction of SR101-intensity in

hippocampus astrocytes (65.566.4 au (n = 5) as compared to

237.3637.7 au in aCSF (n = 6, p,0.05, Mann-Whitney U test,

Figure 12. Pharmacological profile of astrocyte SR101-staining. Carbenoxolone (CBX); mefloquine (MFQ); estrone-3-sulfate (E3S);
dehydroepiandrosterone sulfate (DHEAS); not tested (n.t.); very strong reduction of intensity (KKK), strong reduction (KK), moderate reduction
(K), unchanged (I).
doi:10.1371/journal.pone.0049398.g012
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Figure 10D). The fraction of SR101-positive astrocytes was also

reduced (68.169.4% (n = 5) in E3S vs. and 87.362.4% in aCSF

(n = 6, p,0.05, Mann-Whitney U test, Figure 10E). Since E3S is

also a substrate of sodium-dependent anion transporters of the

SLC10 family [36], we tested SR101-uptake in sodium free aCSF.

However, no significant reduction of SR101-staining was observed

(Figure 10C–E).

Furthermore, rifampicin (100 mM; Figure 11), which is an

inhibitor of OATPs but not of OATs [32] reduced the SR101-

intensity of hippocampal astrocytes to approximately 50%

(Figure 11C), while leaving the fraction of labeled astrocytes

unchanged.

The OATP substrate DHEAS reduces SR101-uptake
The brain endogenous steroid hormone dehydroepiandroster-

one sulfate (DHEAS; [37]) has been shown to be a substrate of

OATPs [38]. When we tested the effect of 100 mM DHEAS on

SR101-uptake, we observed a significant reduction of the SR101-

fluorescence of hippocampal astrocytes (37.766.8 au in DHEAS

(n = 4) vs. 162.1636.1 au in CTRL (n = 4), p,0.05, Mann-

Whitney U test, Figure 11F,G). We observed also a significant

reduction of the fraction of SR101-labeled EGFP-positive

astrocytes (28.7618.5% in DHEAS (n = 4) vs. 90.662.8% in

CTRL (n = 4), p,0.05, t-test, Figure 11H). This strong reduction

of astroglial SR101-labeling indicates that DHEAS competes with

the uptake of SR101 into astrocytes.

Discussion

SR101 is an excellent tool for the identification of astrocytes for

imaging experiments in the hippocampus and cortex of rodents

[6,7]. In this study, we show that SR101 is taken up into

hippocampal astrocytes via an active transport mechanism. The

uptake is likely to be mediated via a yet not described (orphan)

organic anion transporting polypeptide (OATP; SLCO family),

which can be blocked by probenecid and rifampicin.

SR101 is not a good marker for astrocytes in the
ventrolateral medulla

We were unable to stain astrocytes efficiently in the ventrolat-

eral medulla with SR101. SR101-labeling of astrocytes was also

poor in the hypoglossal nucleus and in the spinal trigeminal

nucleus (data not shown). In the ventrolateral medulla, SR101 can

enter neurons (Figure 8) and other cell types during the staining

procedure but escapes from these cells when the slice is rinsed with

normal aCSF (Figure 2). However, additional experiments are

necessary to clarify the mechanism of SR101-loading in neurons.

In this context it is noteworthy that, during hypoxia, hippocampal

neurons can be labeled with SR101 via gap-junction hemichannels

[12].

SR101 labels astrocytes in the hippocampal stratum
radiatum efficiently and selectively

We found that about 46% of the SR101-positive cells did not

express EGFP. However, SR101-positive EGFP-negative cells in

the hippocampus resemble astrocytes in shape, size and process

morphology, corroborating earlier observations by other groups

[6,8]. When we performed whole-cell recordings from SR101-

positive EGFP-negative cells in the stratum radiatum of the

hippocampus we only found cells that had electrophysiological

properties of astrocytes (Figure 2). Thus we conclude that SR101 is

an efficient and selective marker for hippocampal astrocytes.

Blockers of organic anion uptake prevent SR101-labeling
of hippocampal astrocytes

In the hippocampus astrocytes, intracellular SR101-concentra-

tion reaches a much higher level compared to the VLM (Figure 4).

Obviously, the SR101-fluorescence within the astrocytes increased

above the fluorescence intensity of the SR101 containing aCSF,

suggesting that SR101-fluorescence intensity is not depending on

passive diffusion but rather on an active SR101-uptake into

hippocampal astrocytes.

Since carbenoxolone [39] and probenecid are organic anions

and probenecid is known to block organic anion transport [40],

possible transporters for the SR101-uptake are organic anion

transport systems including organic anion transporters (OAT)

belonging to the SLC22 family or organic anion transporting

polypeptides (OATP; SLCO family) and also transporters of the

SLC10 family. Estron-3-sulfate (E3S) is the substrate of many

members of these transporter families [32] and indeed was able to

reduce the SR101-labeling significantly. Interestingly, organic

anion transporting polypeptides have also been shown to be

inhibited by MK-571 [41] and probenecid [40]. Finally rifampicin

(rifampin) is known as an inhibitor of OATPs, i.e. OATP1A2,

OATP1B1, OATP1B3, and OATP2B1 but not for OATs [32],

strongly suggesting that SR101-uptake is mediated via an organic

anion transporting polypeptide.

Although little is known about OATP expression in astrocytes,

the pharmacological profile of the SR101-labeling in the

hippocampus (figure 12) favors an orphan organic anion

transporting polypeptide (OATP) as the transporter for selective

loading of SR101 into astrocytes. Unfortunately, most of the

pharmacology on OATP has been performed with human

transporter clones, and thus species differences cannot be excluded

for the mouse orthologues. Nevertheless, we can assume that

hippocampal astrocytes have a higher expression of that uptake

transporter as compared to VLM astrocytes.

Efflux transporter inhibition does not improve astrocyte
labeling in the VLM

It appears very unlikely that multidrug resistance proteins

(MRPs) of the ABCC-subfamily or p-glycoprotein are actively

lowering the SR101-concentration in the VLM astrocytes, since

inhibition of those efflux transporters did not improve SR101-

labeling of VLM astrocytes. Neither MK-571 (MRP1, Mrp2) nor

probenecid (MRP2-6) did increase the SR101-fluorescence in

VLM astrocytes. However, we observed an increase of SR101-

staining in EGFP-negative cells, suggesting that MRPs contribute

to the de-staining of cells in the VLM.

A potential role of the orphan SR101-transporter in the
hippocampus

It is interesting to note that sulfated neurosteroids, such as

dehydroepiandrosterone sulfate (DHEAS) [38] or pregnenolone

sulfate [42], are known substrates of organic anion transporting

polypeptides. Thus, we can speculate that in the hippocampus,

astrocytic organic anion transporting polypeptides might be

involved in transport and regulation of neurosteroids and thereby

might modulate neuronal network activity [37,43] or glial

plasticity [44,45]. If this is the case, external application of

SR101 could compete with the astrocytic uptake of those

neurosteroids and then may cause side effects such as described

by Kang et al. [16]. SR101-induced elevation of DHEAS or

pregnenolone-sulfate might increase neuronal excitability by

blocking GABAA receptors [46,47,48] and activation of NMDA-

receptors [43,49].
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Conclusion
In conclusion, the selective labeling of astrocytes in the

hippocampus with SR101 was confirmed, but this method is not

applicable for the identification of astrocytes in the ventrolateral

medulla. Additionally, our data strongly suggest that SR101 is

taken up by hippocampal astrocytes via a transporter for organic

anions, most likely an organic anion transporting polypeptide

(OATP), which, however, is missing or differentially regulated in

VLM astrocytes. An unequivocal identification of the candidate

gene among the cloned OATPs requires new experiments.

Supporting Information

Movie S1 This movie is a two-photon z-stack recording
(70 mm, 2 mm, 0.5 min21) of a SR101-staining experi-
ment with 3 different SR101-concentrations. After record-

ing one z-stack without SR101, 0.1 mM SR101 was bath-applied,

20 minutes later the SR101-concentration was increased to 1 mM

for 20 minutes. Finally, 10 mM SR101 was applied for 20 minutes

before the recording was stopped. The white spots identify EGFP-

labeled astrocytes that were selected for analysis of fluorescence

intensities (Figure 5). The blue spot marks the position where

fluorescence background within the slice was recorded, while the

purple spot was located above the slice to record fluorescence

changes of the bath solution (Scale bar 40 mm).
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