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ABSTRACT 

 

 

This work introduces new enhancements to the Bees Algorithm in order to improve 

its overall performance. These enhancements are early neighbourhood search process, 

efficiency based recruitment for neighbourhood search process, hybrid strategy 

involving tabu search, new escape mechanism to escape locals with similar fitness 

values and autonomy to minimise interaction between search process and the user. 

 

The proposed enhancements were applied alone or in pair to develop improved 

versions of the Bees Algorithm. Three Enhanced Bees Algorithms were introduced: 

the Early Neighbourhood Search and Efficiency Based recruitment Bees Algorithm 

(ENSEBRBA), the Hybrid Tabu Bees Algorithm (TBA) and the Autonomous Bees 

Algorithm (ABA).    

 

The ENSEBRBA with an empowered initialisation stage and extra recruitment for 

neighbourhood search is introduced to improve performance of the Bees Algorithms 

on high dimensional problems. 

 

The TBA is proposed as a new version of the Bees Algorithm which utilises the 

memory lists to memorise less productive patches. Moreover, the local escape 

strategy was also implemented to this algorithm. Proposed modifications increased 

the productivity of the Bees Algorithm by decreasing number of evaluations needed to 

converge to the global optimum. 

 



 iii  

The ABA is developed to provide independency to the Bees Algorithm, thus it is able 

to self tune its control parameters in a sub-optimal manner. 

 

All enhanced Algorithms were tested on continuous type benchmark functions and 

additionally, statistical analysis was carried out. Observed experimental results proved 

that proposed enhancements improved the Bees Algorithm’s performance. 
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1.1 Introduction 

 

Population growth and resource depletion creates tough competition in many areas of 

life. In order to address these issues, industries try to maximise their productions. 

Therefore, optimisation techniques become an important tool for efficient operation.  

 

Optimisation is a process of seeking the values of variables to find an optimal solution 

for the optimisation problem that needs to be maximised or minimised. There are 

various types of optimisation techniques available in the literature. These techniques 

can be classified in many different ways. One such method is to classify based on 

their variables. Classification based on variables divides optimisation techniques into 

two groups, deterministic and stochastic. To solve problems in polynomial time, 

deterministic optimisation techniques are used. On the other hand there are 

optimisation problems which cannot be solved in polynomial time. Stochastic 

optimisation techniques are utilised to solve these types of problems. Many stochastic 

optimisation techniques such as Genetic Algorithm Evolutionary Programming, 

Particle Swarm Optimisation, The Ant Colony technique or the Bees Algorithm were 

inspired by nature. 

 

The motivation for this research is described in the following section. 
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 1.2 Motivation 

 

The Bees Algorithm is a stochastic optimisation technique inspired by the foraging 

behaviour of honey bees. The Bees Algorithm has both global exploration and local 

exploitation strategies which increase the success rate of the algorithm in finding the 

global optimum. In order to demonstrate its performance, the Bees Algorithm was 

implemented on several single and multi-objective functions. The Basic Bees 

Algorithm has undergone many improvements since it was introduced in 2005 by 

Professor D.T Pham and colleagues. Most of the improvements were focused on the 

neighbourhood search site such as an abandonment strategy, population and 

neighbourhood size change strategies. The other improvements were focused on 

parameter tuning and hybridisation of the basic Bees Algorithm with other well- 

known optimisation techniques, such as Ant Colony and Particle Swarm Optimisation 

techniques. 

 

Although several modifications were introduced to the Bees Algorithm, there is still 

opportunity for further improvements. For example, the Bees Algorithm has certain 

weaknesses which were not studied properly, such as a poor initialisation stage, the 

absence of the memory and number of parameters. Moreover, new neighbourhood 

search strategies can also be developed to make the Bees Algorithm more 

competitive.    
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1.3 Aims and objectives 

 

The overall aim of this study is to explore the possibilities of further improvements to 

the Bees Algorithm for single objective optimisation problems. 

 

The following objectives were set to achieve this aim: 

 

• Develop a strategy to improve the initialisation stage of the Bees 

Algorithm.  

• Develop an adaptive neighbourhood search strategy to improve the Bees 

Algorithm’s performance on high dimensional optimisation problems.  

• Provide memory to the Bees Algorithm to avoid site repetitions. 

• Develop a strategy for the Bees Algorithm to prevent producing similar 

fitness values around local optimum. 

• Develop a version of the Bees Algorithm which does not need to be tuned 

manually for each problem. 
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1.3 Research methods 

 

To carry out this research, the following methodologies were used: 

 

• Surveying previous work related to optimisation algorithms focusing on 

swarm-based optimisation techniques. 

• Studying all available versions of the Bees Algorithm. 

• Developing three new versions of the Bees Algorithm. 

• Implementing the proposed algorithms in MATLAB 

• Utilising the proposed algorithms to solve continuous-type benchmark 

functions. 

• Comparing results with some other optimisation techniques for the verification 

of the algorithm. 

• Testing the statistical significances of the algorithms using the T-test. 
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 1.4 Outline of the thesis 

 

The remainder of this thesis is organised as follows: 

 

Chapter 2 reviews both stochastic and deterministic optimisation techniques. The 

chapter is mainly focussed on stochastic optimisation techniques. Also, the Basic 

Bees Algorithm is described in detail. 

 

Chapter 3 presents the Bees Algorithm with Early Neighbourhood Search   and 

Efficiency-based Recruitment. The proposed algorithm has been tested on continuous- 

type benchmark functions. Also, compared results with other well known optimisation 

algorithms are presented in this chapter. Moreover, statistical analysis has been 

carried out using a T-test. 

 

Chapter 4 introduces a Hybrid Tabu Bees Algorithm. The proposed algorithm was 

tested on Continuous-type benchmark functions. In addition, results were compared to 

the Basic Bees Algorithm and The Bees Algorithm with Early Neighbourhood Search 

and Efficiency-based Recruitment. Moreover, statistical analysis has been carried out 

using a T-test. 

 

Chapter 5 presents the Autonomous Bees Algorithm. The proposed algorithm was 

tested on Continuous-type benchmark functions. In addition, results were compared to 

the Basic Bees Algorithm. T-test results are also included. 

 



 7 

Chapter 6 summarises the conclusions and contributions of the research, and gives 

suggestions for further investigations. 
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 2.1 Preliminaries 

 

This chapter presents an overview of current optimisation techniques. There are 

various methods to classify and one of them is classification based on the type of 

variables. The main focus of this chapter is on stochastic optimisation techniques but 

brief information about deterministic methods is also provided. 

 

 

2.2 Optimisation Techniques 

 

The mathematical technique concerned with finding the “best” solution for a problem, 

where the “best” refers to the fittest solution in the solution space, is called 

optimisation. In many fields like physics, chemistry, medicine, manufacturing or 

economic analysis, various optimisation techniques have been used. However, there is 

no optimisation technique which is suitable for every problem (Wolpert and 

Macready, 1997). A block diagram of the optimisation process is given in Figure 2.1 

(Chinneck, 2000). 

 

Moving from the real world problem to the algorithm, model or solution technique is 

called analysis. Here, the main task is eliminating non-crucial details and focusing on 

important elements. Moving from the algorithm, model, solution technique to the 

computer implementation is called numerical methods, and from computer 

implementation back to the algorithm, model, solution technique is called verification.  
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Finally, moving from the algorithm, model, solution technique to real world problems 

is called validation and sensitivity analysis. In this step, obtained results are compared 

with the real world and in case of failure; the process goes to the next cycle. 

The goal of an optimisation is to maximise or minimise the objective function 

concerning constraints and search space. An example is given below: 

 

Given: 

 

            Function:         

                    )(Xf       defined as     nAf ℜ→:  

 

                   AX ∈       and   A   is subset of  n  dimensional  

                                     Euclidian space nℜ                

            Constraints:      

                     Inequality constraints:         ,0)( ≤Xai             mi ........2,1=  

                     Equality constraints:            ,0)( =Xbi             pi .......2,1=  

 

 Sought: 

                     Maximisation:         A∈max  such that )((max) Xff ≥  for all AX ∈  

                     Minimisation:          A∈min  such that )((min) Xff ≤  for all AX ∈               
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Figure 2.1: Block diagram of the optimisation process (Chinneck, 2000). 
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Where f(X) is called the “objective function”, f is called the “search space” or 

“parameter space”, each element of A is called the “candidate solution” (Blondin, 

2009).Candidate solutions are tested in the objective function to find an “optimal 

solution”. An optimal solution is the maximised or minimised solution of an objective 

function. 

 

 

2.2.1 Classification of the optimisation techniques    

 

Many different strategies can be used to classify optimisation techniques. One of 

these strategies is classification of optimisation techniques based on the nature of the 

variables. In this classification, optimisation techniques are distributed in to two 

different groups (deterministic and stochastic optimisation techniques) depending on 

whether their variables are deterministic or stochastic. Figure 2.2 illustrates the 

variable-based classification of optimisation techniques (Weise, 2009).  
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Figure 2.2 Classification of optimisation techniques based on types of the parameters (Baris, 2012).
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2.2.2 Deterministic optimisation techniques 

 

Deterministic optimisation techniques are those where a direct relation exists between 

the characteristics of the possible solutions and their utility and they can be solved in 

polynomial time.  

 

Examples of deterministic optimisation techniques are given below. 

 

2.2.2.1 State space search. 

 

State space search is a deterministic search method. Information is needed to guess 

the effects of an action and to decide if it is a goal state recorded in state (David Poole 

and Alan Mackworth, 2010). State space searching considers that the agent has 

complete knowledge about state space and can tell what state it is in: 

  

• the agent has a set of actions that have known deterministic effects; 

• there are more than one goal states, the agent can identify them and agent 

wants to reach that state. 

• sequence of actions to get the agent from its current state to a goal state is a 

solution 
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2.2.2.2 Algebraic geometry. 

 

Algebraic geometry is a branch of mathematics, classically studying zeros 

of polynomial equations. Thus, the technique focuses on the resolution of the 

stationary conditions in the polynomial optimisation as a system of polynomial 

equations (Kavasseri and Nag, 2007). 

 

 

2.2.2.3 Branch bound. 

 

Branch bound are techniques to solve discrete and combinatorial optimisation 

problems (A. H. Land and A. G. Doig, 1960). The idea of a branch bound search is to 

maintain the lowest-cost path to a goal found so far, and its cost (David Poole and 

Alan Mackworth, 2010). A branch bound algorithm starts with setting the cost as a 

bound. If the search finds a path p where cost(p) ≥ bound, path p can be eliminated. 

Only a better path to the goal will be accepted. Any further new better solution is 

memorised and bound is set to the cost of this new solution. The process continues 

until all paths have been checked. 

 

2.2.3 Stochastic optimisation techniques 

 

If the relationship between the candidate solution and the problem’s fitness is not 

clear or the problem has no solution in polynomial time, then stochastic optimisation 
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techniques bring a different solution which searches for optimum value, generating 

random variables. 

 

2.2.3.1 Stochastic hill climbing 

 

The Stochastic Hill Climbing (SHC) technique is a local search technique which is 

based on a direct search strategy (Schmidhuber and Zhao, 1999). SHC climbing 

attempts to maximize (or minimize) a target function f(X). At each iteration, hill 

climbing will change one element in  to find if the change improves the value of  

f(X). Any change that improves f(X) is accepted and this process continues until no 

improvements can be found. Final X is called the “local optima” of the problem. 

 

2.2.3.2 Random optimisation 

 

The Random Optimisation (RO) technique is one of the most straightforward 

numerical techniques used to search for the global optimum which does not require 

the gradient of the problem (Li and Rhinehart, 1998).  RO is used as starting point for 

most stochastic-based optimisation techniques (Kristoffersen, 2007). 

 

The point at which to start the RO is chosen randomly. There is a “reproduce” 

operator in RO which is responsible for reaching all of the points in the search space 

from every other point (Weise, 2009). 
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2.2.3.3 Simulated annealing 

 

Annealing is a metallurgical technique involving heating and the controlled cooling of 

materials in order to change the size of their crystals. This affects some of their 

physical properties including strength, hardness and ductility (Koppen and et al., 

2011). Slow temperature change gives a material the right hardness and ductility but if 

the temperature change is too rapid, the metal may become too weak. Simulated 

Annealing (SA) is a single-point random search technique imitating the annealing 

process (Goffe et al., 1994). It is one of main methods to locate an approximation of 

the global minimum / maximum for problems with a large search space (Koziel and 

Yang, 2011).  The Slow controlled cooling process of the material is implemented as 

a slow decrease in the probability of accepting worse solutions while exploring the 

solution space. Accepting worse solutions allows more extensive search for the 

optimal solution. 

 

2.2.3.4 Tabu search     

 

Tabu Search (TS) is a Single Individual Based Stochastic search technique with a 

local optima avoidance mechanism ( Pham and Karaboga, 2000). 

 

As for every local search algorithm, TS takes a potential solution to a problem and 

checks its neighbourhood to find an improved solution. The main problem with most 

local search methods is getting stuck in areas where many solutions are equally fit but 
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in Tabu Search this problem is solved by implementing a special memory unit called 

'tabu list'(Tsubakitani and Evans, 1998) . 

Previously visited or not satisfactory solutions are recorded in the 'tabu list'. All data 

in this list is marked as tabu and this helps algorithm to shrink the search space. 

 

Three different structures can be used while creating 'tabu list' (F. Glover, 1990). 

• Short-term: The list of recently considered solutions. The size of the list is 

limited and with every new element entering the list, the oldest one is erased. 

When a potential solution appears on this list, the algorithm does not revisit it 

until a solution drops out from list. 

• Intermediate-term: A list of rules to lead the search in the direction of the 

promising areas of the search space. 

• Long-term: A list of rules that brings variety in the search process. As an 

example, the algorithm can reset when it becomes stuck around equally fit 

solutions. 

 

The pseudo code of the Tabu Search with short term memory for minimising the cost 

function is given as an example in figure 2.3 (Jason Brownlee, 2011). 

 

As for every algorithm, Tabu Search has some weaknesses. One of biggest 

weaknesses of Tabu Search is being effective on discrete spaces because it is very rare 

for the algorithm to visit the same point in real value spaces (Sean Luke, 2009). 
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   sBest ← initial solution                                             

   tabuList ← null                                       

   while (not stoppingCondition())            

      candidateList ← null                           

      for(sCandidate in sNeighborhood) 

           if(not containsTabuElements(sCandidate, tabuList)) 

                 candidateList ← candidateList + sCandidate 

           end 

     end 

     sCandidate ← LocateBestCandidate(candidateList) 

     if(fitness(sCandidate) > fitness(sBest)) 

          tabuList ← featureDifferences(sCandidate, sBest) 

          sBest ← sCandidate 

          while(size(tabuList) > maxTabuListSize) 

               ExpireFeatures(tabuList) 

          end 

     end 

  end 

  return(sBest)  

    

Figure 2.3 Pseudo code of Tabu Search with short term memory. 
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2.2.3.5 Genetic algorithms 

The Genetic Algorithm (GA) is population-based algorithm which was proposed by 

Holland in 1975. In 1983 GA's engineering applications were studied by Goldberg. In 

nature only strong species pass their genes to future generations when weak ones are 

facing extinction.  This phenomenon was the inspiration for the creation of the 

Genetic Algorithm. During many years, various modifications to the original structure 

of GA were proposed. To distinguish it from numerous versions of the algorithm, the 

original GA proposed by Holland is often referred to as the 'canonical' GA. Crossover 

and Mutation are fundamental operators of the canonical GA (Rutkowski, 2008). 

 

Crossover creates offspring by randomly mixing sections of the parental genome. 

One-point crossover, two-point crossover and uniform crossover are the most 

common crossover procedures. (Davis, 1991). Couples not selected for recombination 

will generate two offspring identical to the parents. 

 

A small group of the offspring are randomly chosen to be mutated. Mutation is the 

changing of the bit value, in the case of a binary coding, from 0 to 1 and vice versa 

(Ho et al., 1999). The mutation operator is not extremely important. However, it 

provides diversity to the genetics of the created population. 

 

For GA's better performance, mutation and crossover rates are two important 

parameters requiring careful tuning (Eiben and Smit, 2011).  
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2.2.3.6 Genetic programming 

 

Genetic programming (GP) is a set of instructions and a fitness function to measure a 

computer’s performance on a given task. GP is a specific type of genetic 

algorithm (GA) where each individual is a computer program. Therefore, GP's 

operators are basically GA's operators (Banzhaf, W 1998). 

 

2.2.3.7 Evolutionary programming 

 

Evolutionary programming (EP) is evolutionary algorithm developed by Lawrence J. 

Fogel in 1960. EP uses simulated evolution for the learning process to 

generate artificial intelligence (Back et al., 1997). Traditional EP uses the Gaussian 

mutation operator. Traditional EP has no crossover operator.  However, in the modern 

version of EP there is a crossover operator and the population for crossover will be 

selected by a mutation operator. In modern EP the mutation operator is adaptive. 

The steps for modern EP are given below: 

 

• Firstly generate an initial population, 

• Secondly EP duplicates the initial solutions. After duplication each solution is 

mutated using any chosen distribution function, 

• The last step is the evaluation of the crossover solution of population.  

 



 22 

2.2.3.8 Ant colony optimisation 

Ant colony optimisation (ACO) in swarm-based optimisation techniques was 

introduced by M.Dorigo and his colleagues, inspired by the behaviour of real ants. 

ACO was developed to solve combinatorial optimisation problems (Dorigo et al., 

1996). 

In nature, ants scout for food randomly wandering around their nest. Every scout ant 

explores a wide area to find sources of food. When any of them find food they bring it 

back to the nest. On the way back, the ant marks its passage by laying down a 

pheromone trail (Shtovba, 2005). If another ant finds such a path, it stops random 

scouting and checks for the food source at the end of the trail. In case of success it 

goes back to the nest and brings reinforcements to collect the food more effectively 

(Dorigo and Stutzle, 2004). Reinforcement ants will lay down pheromones on that 

trail as well. Pheromones evaporate in time. The main foraging behaviour of ants is 

based on finding the shortest path between the source and their nest (Panigrahi et al., 

2011). The pheromone level on a shorter path will be reinforced but it will evaporate 

as time passes (Sumathi and Surekha, 2010). A short path will be visited by more ants 

and thus the pheromone level will be higher compared to other paths. That is why 

pheromone density on short passes will remain higher than that on long passes.  After 

observing this behaviour of ants, ACO was created.  

 

Steps for the simple version of ACO is given in Figure 2.4. 
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Start  

  While (stopping criterion not met) 

       Generate solutions 

       Pheromone update using equation (2.2) 

       Move according probability calculated with equation (2.1) 

   End While. 

End  

                    

Figure 2.4: Steps for simple version of ACO 
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The first problem where ACO was used was the Travelling salesman problem (TSP) 

(M. Dorigo, 2003). In ACO, each ant is initially placed in a random location (city) and 

has a memory which stores the partial solution it has constructed so far in that city. 

Each ant starts to move from city to city. Ant k decides to move from city i (initial 

location) to city j with provided probability: 
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•  ijij d/1=η is a already available heuristic information, 

• α and β are parameters to determine the influence of pheromone trail and 

heuristic    information.  

• N is cities around ant k which were not visited yet. After every ant has 

completed a tour solution construction ends. Next step is updating pheromone 

trails. The update process shown in given equation. 

 

            )()(*)1()1(
1

ttpt
M

k

ij
k

ijij ∑
=

∆+−=+ τττ                   ),( ji∀                      (2.2) 

 

• 0 < ρ ≤ 1 is the evaporation rate of the pheromone trail. 

• M is the number of ants. 
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• )(tij
kτ∆  is the amount of pheromone deposited by ant m from node i to node j 

at time step t . 

2.2.3.9 Particle swarm optimisation 

The Particle Swarm Optimisation (PSO) is a swarm-based optimisation algorithm 

which was proposed by Eberhart and Kennedy (Eberhart and Kennedy, 1995).  

Inspiration for the creation of PSO was the socially organised behaviour of different 

animal populations such as animal herds or bird flocks (Blum and Merkle, 2008). The 

concept of PSO gained in popularity due to its simplicity. Individuals in PSO are 

called particles and a population is called a swarm (Li and Liu, 2011). Each particle 

has a position and velocity. Particles are freely flying in the search space by at a given 

velocity. In each iteration, the velocities of particles are stochastically changed based 

on the previous best position for the particle itself and the neighbourhood best 

position. Basically, particles of PSO are travelling in the search space and change 

their positions from time to time. This change happens based on their previous 

experience and the experiences of their neighbours. This behaviour allows particles to 

move toward better locations while being able to explore a wider area. 

The PSO Algorithm has been successfully applied to a number of optimisation problems 

such as; determination of optimum location and its type (Onwunalu and Durlofsky, 2010), 

determination of the optimum constriction factors, inertia weights, and tracking dynamic 

systems (Eberhart and Yuhui, 2001). Due to its simplicity and relatively low number of 

parameters than other algorithms, PSO has become very popular. 

 

The pseudo code for a simple version of PSO is given below (Figure 2.5). 
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For each particle 

            Initialise position P0 and  velocity V0 

End 

 

 While maximum iterations are not exceeded or 

      minimum error is not attained 

 

       Do For each particle 

            Calculate fitness value 

             If fitness better than Pbest 

            Update Pbest 

     End 

 

    Determine Gbest among all particles 

 

       For each particle 

          Update position        

          Update velocity 

       End 

End 

                                 Figure 2.5: Pseudo code for simple PSO. 
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Every iteration velocity and position of the particles change based on 2 cryteria: 

• Pbest :   this is the best position visited by particle itself (local optimum). 

• Gbest : this is best position visited by any particles of the swarm (global 

optimum). 

Equations for velocity and position updates of the particles are given below: 

Vn+1 = wVn + c1 * rand1*(Pbestn – Pn) + c2 * rand2 * (Gbestn – Pn)              (2.3) 

Pn+1 = Pn + k * Vn+1                                                                                            (2.4) 

where: 

Vn , is the particle velocity in iteration n  

Pn , is the particle position in iteration n  

Pbestn  is “personal” best position in iteration n 

Gbestn is “global” best position in iteration n 

rand1 and rand2 are random numbers between 0 and 1 

c1, c2 are weighting factors. These factors determine the size of movement a particle 

can do in a single step (number in the range 0 to 4) 

w is the ‘inertia’ weight. If w has large value it performs a global search. If it is small 

then it performs a local search. 
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2.2.3.10 Artificial Bees Colony 

The Artificial Bee Colony (ABC) algorithm is a swarm-based meta-heuristic 

optimisation technique inspired by the intelligent foraging behaviour of honey bees 

which was proposed by Karaboga in 2005 (Karaboga, 2005). Base for the ABC 

algorithm was the model proposed by Tereshko and Loengarov (Tereshko et al., 

2005) for the foraging behaviour of honey bee colonies. 

The model proposed by Tereshko and Loengarov has three main components: Food 

sources, employed and unemployed bees. Employed bees are foragers employed at a 

promising food source. Unemployed bees are divided into two groups:  

• Scouts: Bees looking for a new food source.   

• Onlookers: Bees waiting at the hive for information about the food source 

(They get information related to the food sources from employed bees) 

 The model defines two type of behaviour: the recruitment to a nectar source and the 

abandonment of a source. 

• Recruitment: Scouts become employed bees when they find a promising food 

source. Onlookers convert to employed bees as well when they get necessary 

information on a food source. 

• Abandonment: Employed bees abandon an extinct source. Some bees go for 

further scouting; some fly back to the hive and become onlookers.  
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After observing the proposed model, the ABC algorithm was developed. The ABC 

algorithm follows the rules of the proposed model. The main steps of the algorithm 

are given below (Figure 2.6): 

 

Send the scouts to the initial food sources  

REPEAT  

Send the employed bees to the food sources and determine their nectar amounts  

Calculate the probability value of the sources which are preferred by the onlooker 

bees  

Send the onlooker bees to the food sources and determine their nectar amounts  

Stop the exploitation process of the sources exhausted by the bees  

Send the scouts into the search area for the discovery of new food sources, randomly  

Memorize the best food source found so far  

UNTIL (requirements are met) 

                                   Figure 2.6: Steps of the ABC 
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2.2.4 The Basic Bees Algorithm 

 

The Bees Algorithm is also one of the swarm intelligence-inspired algorithms which 

was developed by researchers at the Manufacturing Engineering Centre (MEC) in 

Cardiff University, under the supervision of Prof. D.T. Pham (Pham et al., 2005) after 

observing bees foraging for nectar. 

 

 

2.2.4.1 Foraging behaviour of honey bees  

 

A colony of honey bees explores a wide area around their hive to find a food source 

(nectar). Bees assigned for initial exploration are called scout bees. Scout bees can fly 

up to 11 km to find better flower patches (Seeley, 1995 and Gould and Gould, 1988). 

When a scout bee finds a food source its job is to share information regarding the 

discovered patch with bees waiting in the hive. After delivering nectar to the hive, 

scouts go to a special area (dance floor) in front of the hive and perform eight shape 

movements, also known as the ‘waggle dance’ (Seeley, 1995).  The waggle dance 

contains information about the direction, distance and quality of the flower patch 

found by the bee (Talbi, 2009). A waggle dance is shown in Figure 2.7. The relation 

between the duration of the dance and distance from hive is given in Figure 2.8 

(Seeley et al. 2006). Information related to the direction of the source is given in Figure 

2.9. 
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Figure 2.7: Waggle dance of the scout bee. 
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                Figure 2.8: Relation between duration of dance and distance to the food. 
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Figure 2.9: Relation between dance and the Direction of the food source 
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After the performance of the “dancers”, the colony decides the amount of bees that 

need to be assigned for the food source. More bees go to more promising patches for 

harvesting. Recruited bees monitor food levels on every patch and share this 

information with the colony when they go back to the hive. So, bees concentrate on 

better patches all the time, which makes the food gathering process much faster and 

more efficient. This behaviour of honey bees was computationally modelled as a 

search algorithm.  

 
 
 
 
2.2.4.2 The Algorithm 
 
 
 
The parameters and the pseudo code of the algorithm are given below. 
 

• Number of scout bees (n), 

• Number of sites selected out of n visited sites (m), 

• Number of best sites out of m selected sites (e), 

• Number of bees recruited for best e sites (nep), 

• Number of bees recruited for the other (m-e) selected sites (nsp), 

• Patch size around a selected best location (ngh). 

 

Steps of the basic Bees Algorithm are given in Figure 2.10.  
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Figure 2.10: Steps of the basic Bees Algorithm 

 

 

 

 

 

Start 

Initialise population with random solutions. 

Evaluate fitness value of the population. 

 

  While (stopping criterion met). 

    

      For each best patch 

Select the best m patches for neighbourhood search. 

Recruit bees for selected patches (more bees for best   patches) and 

evaluate their fitness. 

Select the fittest bee value from each patch. 

       End 

 

Assign remaining bees to search randomly and evaluate their fitness. 

 End 
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According to Figure 2.10, the Bees Algorithm has six main steps. The first step is 

placing the “n” scout bees on a search space. In the following steps, the fitness values 

of the visited patches are evaluated. 

 

The patches with the highest fitness values are chosen as “selected sites” for 

neighbourhood search as step 3. In step 4, the algorithm performs a neighbourhood 

search on selected areas by assigning more scout bees to the elite sites ‘e’, less scout 

bees to the non elite best sites ‘m-e’. In step 5, the scout bees around the best sites 

with the highest fitness values are selected as representative bees to form a new 

population. The remainder of the bees are assigned for random search to find potential 

solutions in step 6. This process continues until one of the stopping criteria has been 

met. 

 

2.3 Applications of the Bees Algorithm 

 

The Bees Algorithm was utilised to solve multiple optimisation problems. In this 

section, examples for applications of the Bees Algorithm are presented. 

 

Continuous type benchmark functions were selected to test the performance of the 

Bees Algorithm. Optimisation of these functions was the first application of the Bees 

Algorithm (Pham et al., 2006a). Later, the Bees Algorithm was tested on even more 

benchmark functions. Results were compared with different optimisation algorithms 

(Pham and Castellani, 2009a). Results obtained using the Bees Algorithm were better 

when compared to other algorithms. 
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The Bees Algorithm was used to optimise the cost of fabrication on a multi-objective 

welded beam problem by (Ghanbarzadeh, 2007). The goal of the study was to 

minimise the cost by finding an optimum weld thickness, weld length, beam thickness 

and beam width under the stress constraints. The Algorithm was also utilised to solve 

a multi-objective carbon energy system and an environmental dispatch problem (Lee, 

2010). The goal was to minimise the total cost and CO emissions for designing a low 

carbon system. 

 

The Bees Algorithm was also implemented to determine weights for the neural 

networks such as: Learning Vector Quantisation network (Pham et al., 2006b), Multi 

Layered Perceptron neural network (Pham et al., 2006c; Koc, 2010), Radial Basis 

neural network (Pham et al., 2006d). Results showed that the Bees Algorithm is a 

good classifier and optimisation tool. 

 

The Bees Algorithm was also applied to cellular manufacturing systems to optimise 

the cell information problem (Pham et al., 2007a).  The results obtained proved that 

the Bees Algorithm is good enough to be used for combinatorial applications. 

 

The Bees Algorithm was tested on the job scheduling problem (Pham et al., 2007b). 

The performance of the Bees Algorithm was better than that of TS, GA, and PSO on 

this problem. 

 

Another application of the Bees Algorithm was on clustering problems. The Bees 

Algorithm was implemented on the K-means and C-means clustering problems (Pham 
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et al., 2007c; Al-Jabbouli, 2009). The results showed that the Bees Algorithm could 

be a powerful tool for clustering applications. 

 

Promising results were obtained from a robotic application of the Bees Algorithm 

which has been proposed (Pham et al., 2008). In this study the Bees Algorithm was 

used for learning the inverse kinematics of a robot manipulator. The second robotic 

application of the Bees Algorithm was proposed by (Pham et al., 2009b). The 

Algorithm was utilised to tune the fuzzy logic controller parameters for stabilising and 

balancing an acrobatic robot. Experimental results were positive. 

 

Several studies were done to increase the performance of the Bees Algorithm. One of 

these studies was a hybrid approach where the Bees Algorithm and PSO were 

combined (Sholedolu, 2009). This combination was done for the Bees Algorithm to 

benefit from PSO’s advantages in an adaptive neighbourhood search. Hybrid PSO- 

Bees Algorithms results were promising and fast. 

  

Another study done to improve performance of the Bees Algorithm was using 

algorithm to tune parameters (Otri, 2011). The performance of the Bees Algorithm 

was improved by this enhancement. 

 

Moreover, the Bees Algorithm was applied on multiobjective Supply chain problem 

to minimise the total cost and the total lead-time (Ernesto et al., 2013). 
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2.6 Summary 
 
    

    
Different optimisation techniques have been described in this chapter. These 

techniques were classified based on their variables. The aim of this chapter was to 

provide background information for the following chapters. Brief information about 

deterministic optimisation techniques was given. Stochastic optimisation techniques 

were described in detail. The Bees Algorithm was described in detail, which will be 

used in Chapters 3, 4 and 5.  

 

In following chapters three modified versions of the Bees Algorithm will be 

discussed. In chapter 2 the Bees Algorithm with early neighbourhood search and 

efficiency-based recruitment will be introduced. The following Chapter 4 will be 

about the Hybrid Tabu Bees Algorithm. Autonomous Bees Algorithm, which is third 

and last contribution, will be explained in Chapter 5. 
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CHAPTER 3 

 

The Bees Algorithm with Early 

Neighbourhood Search   and Efficiency-

Based Recruitment Strategies 

 

 

 



 41 

3.1 Preliminaries 

 

In the literature there are several optimisation algorithms with different search 

abilities and each of them has their own strengths and weaknesses. Considering the 

Bees Algorithm which is the focus of this study, it has a random initialisation stage. 

Such initialisation has both advantages and disadvantages. The results produced by 

the algorithm are subject to this random initialisation process. This can be overcome 

by starting the search from a more promising location.  

 

 This study presents new modifications to the basic Bees Algorithm, which are early 

neighbourhood search and improved recruitment using an efficiency calculation.  The 

aim of the Early Neighbourhood Search and Efficiency-based Recruitment Bees 

Algorithm (ENSEBRBA) is to enhance the performance of the initialisation stage and 

make the neighbourhood search more competitive, which will empower the overall 

performance of the algorithm on high dimensional problems. The steps and flow chart 

for proposed version of the Bees Algorithm are given in Figures 3.1 and 3.2. 
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Start 

Initialise population with random solutions. 

Do (early neighbourhood search for each random solutions)  

         Evaluate fitness values of each neighbourhood. 

End 

 

While (stopping criterion not met) 

 

    For each best patch                

               Select sites for neighbourhood search. 

Recruit bees for selected sites (using normal strategy + efficiency based                

enhancement) and evaluate fitnesses. 

               Select the fittest bee from each patch. 

     End 

 

Assign remaining bees to search randomly and evaluate their fitnesses. 

End 

                                    Figure 3.1: Steps of the ENSEBRBA 
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Figure 3.2: The flow chart of the ENSEBRBA 
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3.2 The Early Neighbourhood Search Strategy 

 

The Early Neighbourhood Search Strategy-based Bees Algorithm starts with a 

random initialisation of n scout bees on search space, the same as in the Basic Bees 

Algorithm (BBA). The initialisation stage in BBA considers a list of all random points 

visited by each scout bee. This may not contain enough information about the space 

surrounding. To get a better view of the vicinity of the point and to start a 

neighbourhood search from more promising patches, an early neighbourhood search 

stage is introduced during the first scouting process. The neighbourhood search is 

carried out with a minimum number of scout bees in order not to affect the 

computational time of the algorithm too much by increasing the number of iterations. 

This leads to the discovery of better fitness valued sites from where the local search 

will be carried out because if the algorithm starts its search from an advantageous 

position, it is obvious that it will have better opportunity to converge to the global 

optimum. 

 

In addition to this, another improvement is proposed in the following section, which is 

efficiency-based recruitment for each best patch to increase the performance of the 

algorithm. 
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3.3 Efficiency-based Recruitment Strategy 

 

Efficiency characterises how well the time, cost and effort used for the 

implementation of a task or job compares to that achieved by alternative methods. 

This term has widely varying meanings and applications in different disciplines. In 

particular for engineering, it can be generalised such that Efficiency is a capability of 

producing a specific outcome effectively with a minimum amount or quantity of 

waste, cost, or unnecessary work.  

Efficiency can be shown as a percentage of what ideally could be achieved. The 

efficiency of any work in its simplest form can be calculated with the formula below: 

 

                                       100×=
Input

Output
Efficiency                                                  (3.1)  

Efficiency-based recruitment for neighbourhood search strategy is the second step of 

the proposed Bees Algorithm. In this stage, the fitness values of each patch are 

evaluated for choosing “m” best patches to start the neighbourhood search. The 

neighbourhood search process is performed as in the Basic Bees Algorithm with the 

addition of efficiency-based recruitment.  

 

The number of recruited bees for the neighbourhood search changes dynamically 

according to the efficiency of the related sites where the number of bees around elite 
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(nep) and non-elite best sites (nsp) are computed based on Equations 3.2 and Equation 

3.3 respectively.  

 

nabnepnep ii += −1                                                                                                   (3.2) 

nabnspnsp ii += −1                                                                                                   (3.3) 

 

where “nab” is the number of added bees according to the efficiency calculation and 

“ i ” is the number of the iteration. 

 

The number of the added bees,nab, is computed based on the Efficiency Rate (ER) 

of the best sites after a predefined number of iterationsβ .  The ‘ER’ for each selected 

patch is calculated as given in Equation 3.4.  

 

 

  
minmax

min

FF

FF
Er

j
ij

∆−∆
∆−∆=                                                                                                (3.4) 

 

 where “i ” is the iteration number, “j ” is the site number, j
i

j
i

j
i FFF β−−=∆ , 

{ }β−−=∆ ii FFF minmin , { }β−−=∆ ii FFF maxmax , jEr  is the efficiency rate of patch 

“ j ”. Each patch is ranked according to their efficiency rate. So the number of 

recruited bees around each site changes according the ranks given in Table 3.1. 
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Range of ER Group Type Required Bees 

2000 .ER. <=<=  E 0 Bees 

4020 .ER. <=<=  D +1 Bees 

6040 .ER. <=<=  C +2 Bees 

8060 .ER. <=<=  B +3 Bees 

0180 .ER. <=<=  A +4 Bees 

                          

                      Table 3.1: The patch range and required numbers of bees. 
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Finally, the remaining scout bees are assigned randomly to carry out a global search. 

The process will run until stopping criteria are met. Stopping criteria for the proposed 

version of the algorithm are: 

• Global optimum found with acceptable error rate (ER) (In this study error rate 

was chosen as, ER <0.0001). 

• Maximum number of the Evaluations.(In this study this value is chosen as, 

5000000) 

• Number of repetitions of the global optimum.(In this study this value is 

chosen as, 100) 

 

3.4 Experiments 

To measure the performance of the algorithm, some well known continuous type 

benchmark problems were selected. Each of these functions has different 

characteristics, so obtained results illustrate strengths and weaknesses of the algorithm 

in different situations. The Algorithm was run a hundred times for each function. The 

results were compared with the basic Bees Algorithm (BA) and other well-known 

optimisation techniques such as Particle Swarm Optimisation (PSO), Evolutionary 

Algorithm (EA) and Artificial Bee Colony (ABC).  

 

The Bees Algorithm requires a number of parameters to be set manually for each 

benchmark function. Further, the number of recruited bees for early neighbourhood 

search and ‘β ’ for efficiency-based recruitment must be predefined in the proposed 

version of the Bees Algorithm. In this study, the number of recruit bees for early 
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neighbourhood search and ‘β ’ were defined as 2 and 10, respectively. The other 

parameters to run the proposed algorithm to solve different benchmark problems are 

given in Table 3.2 (Ahmed, 2012).  

 

 

 

 

Table 3.2: The parameters to run the ENSEBRBA on different benchmark 

functions (Ahmad, 2012). 

 

 

 

No. Function n m nsp e nep ngh 

1 Goldstein & Price (2D) 10 3 2 1 13 0.005 

2 Schwefel (2D) 10 2 5 1 6 0.5 

3 Schaffer (2D) 100 4 10 2 30 3 

4 Rosenbrock (10D) 15 8 10 5 30 0.0015 

5 Sphere (10D) 10 7 20 1 30 0.05 

6 Ackley (10D) 100 8 10 1 20 0.7 

7 Rastrigin (10D) 100 3 20 1 40 0.01 

8 Martin & Gaddy (2D) 10 5 10 1 30 0.1 

9 Easom (2D) 100 4 10 2 30 0.5 

10 Griewank (10D) 100 40 10 20 30 1.5 



 50 

 

All used test functions are described below. The 3 D plots of all used test function can 

be found in appendix A. (Molga, 2005). 

 

Goldstein-Price’s function 

 

The Goldstein-Price function is a two dimensional global optimisation test function 

which can be defined as following (Molga, 2005):  
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Schwefel’s function 
 
 
The Schwefel function has complex geometrical topography, where the local 

minimuma are far from each other. Thus, search algorithms struggle to converge in 

the direction of the global minimum. A definition of the function is given below 

(Molga, 2005):  
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-418.9829n; 

 xi = 420.9687,           i= 1………n; 

 
 
 
 
Rosenbrock’s valley 
 
 
Rosenbrock’s valley is also known as the banana function or the second function of 

De Jong. The global optimum for the function is located at the flat valley which has a 

long narrow parabolic shape. It is simple enough to find the valley. However 

convergence to the global optimum is difficult. This Function is defined as (Molga, 

2005): 
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Hyper sphere function 

 

Hyper sphere is continues type unimodal, curved function, which is also known as the 

weighted sphere model. Function can be defined as (Molga, 2005): 
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Ackley’s function 

 

Ackley’s is a widely used multimodal test function. This function can be defined as 

(Molga, 2005): 
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Rastrigin function 
 
 
Rastrigin’s function is a modified version of the De Jong function. In order to produce 

numerous local minima with cosine modulation a Rastrigin function was utilised. This 

addition makes the test function highly multimodal. However, the locations of the 

minima are regularly distributed. The function has the following definition (Molga, 

2005): 
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Martin & Gaddy  
 
 
Martin & Gaddy is a widely used multimodal test function. The definition of the test 

functions is given below (Molga, 2005): 
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Easom’s function 
 
 
The Easom function is a two dimensional, unimodal test function. This function’s 

global optimum has a small area compared to the search space. The definition of the 

test functions is given below (Molga, 2005): 
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Griewangk’s function 

 

Griewangk’s function is similar to the function of Rastrigin, where local minima are 

widely spread using regular distribution. The definition of the test function is given 

below (Molga, 2005): 
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Benchmark functions can be used to represent key features of the real world 

problems. Some examples for the benchmark functions representing manufacturing 

problems are given below. 

  

For example, Dynamic motion problems found in physics and manufacturing can be 

described as 3rd, 4th and 5th degree polynomial functions (Klipp 2001). Goldstein Price 

is second degree polynomial problem (Goldstein, Price 1971). Therefore dynamic 

motion problems can be defined with modified Goldstein and Price benchmark 

function. 

 

 Another example is the representation of surfaces in atomic level by benchmark 

functions. Atomic force microscope (AFM) is used to analyse surfaces of the 

materials down to atomic level and can produce 3D topography of surface. It is 

possible to use Rastrigin, Schwefel, Schaffer and Ackley functions to represent the 

surface features of the materials. “Thus, they have the strength of an analytical 

expression with a known global minimum and they are extendable to arbitrary 

dimensionality allowing for scaling investigations on  global structure optimization of 

atomic and molecular clusters” (Dieterich,  Hartke 2012). 

  

Furthermore, the Cost curve in engineering economy (Mishra 2009) can be 

represented by Hyper Sphere benchmark functions. Moreover for cost minimisation, 

Rosenbrock function was suggested to be utilised by Rosenbrock (Rosenbrock 1960). 

 Cases given above can also be extended for other benchmark functions. 
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3.5 Results and Discussion 

 

The performance of the proposed algorithm was assessed according to the accuracy 

and the average evaluation numbers and results were compared to well known 

optimisation techniques. These are given in Tables 3.3 and 3.4. Experimental results 

for PSO, EA and ABC were extracted from Ahmad (2012). 

 

The accuracy of algorithms was computed based on average absolute differences of 

the best results of a hundred runs. According to this approach, the more accurate 

results are closer to zero.  

 

Goldstein-Price 2D: Expected optimum result for the function is 3. Average result 

obtained from the Basic Bees algorithms for a hundred runs was found to be 3.0005. 

The result received from ENSEBRBA on the same problem was found to be 3.0007. 

The BBA used an average of 504 evaluation numbers to find that result, where 

average of new algorithms evaluation numbers was 21.496. Both algorithms produced 

similar average global optima.  However performance of the BA was not improved on 

given problems by applying presented enhancements. Thus average number of 

evaluations used by the ENSEBRBA was significantly more than number of 

evaluations used by the BBA. Figure 3.3 illustrates global optima for a hundred runs 

of BBA and ENSEBRBA on a given problem. 
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Schwefel 2D: The expected optimum for the function is -837.97. The average global 

optimum obtained from a hundred runs of the Basic Bees algorithm and ENSEBRBA 

were -837.144 and -837.964 respectively. BBA used an average of 250049 evaluation 

numbers to find that optimum, whereas the average for the new algorithm’s evaluation 

was 338.600. As mentioned earlier this test function has complex topography so it is 

hard to converge to the global optimum but the Bees algorithm with both global and 

local search found the optimum with no problem. However, ENSEBRBA with early 

neighbourhood search and enhanced local search was more accurate on the given task.  

Average global optima for a hundred runs of BBA and ENSEBRBA on the given 

problem are shown in Figure 3.4. 

 

 Schaffer 2D: The expected optimum for the function is 0. Averages of a hundred 

global optimums of the Basic Bees algorithm was 0,01. The corresponding result 

obtained from the presented version of the Bees algorithm (a hundred runs) was 

0,001. BBA used an average of 121.088 evaluation numbers to find that result, 

whereas the average for the new algorithm’s evaluation was 112.430. The 

ENSEBRBA performed more accurately and faster than the BBA on this optimisation 

problem. Figure 3.5 illustrates global optima for a hundred runs of BBA and 

ENSEBRBA on the given problem. 

 

 

Rosenbrock 10 D: The expected answer is 0. The average global optimum obtained 

from the Basic Bees algorithms (a hundred runs) was 0.0003. The result received from 

ENSEBRBA was 0.0002. BBA used an average of 116904 evaluations to find that 

result, whereas the average for the new algorithm was 148193.The BBA found less 



 58 

accurate global optimum when the presented version of the BA produced more 

accurate result. The performance of algorithm for given problem was increased. This 

is related to the extra initialisation during the early phases of the proposed algorithm.  

Figure 3.6 illustrates global optima for a hundred runs of BBA and ENSEBRBA on 

the given problem. 
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                                 Table 3.3: Accuracy of proposed algorithm compared with other well known optimisation techniques. 

                  

PSO EA ABC BA ENSEBRBA 

No. Functions Average 
Absolute 
Difference 

Standard. 
Deviation. 

Average 
Absolute 
Difference 

Standard. 
Deviation. 

Average 
Absolute 
Difference 

Standard. 
Deviation. 

Average 
Absolute 
Difference 

Standard. 
Deviation. 

Average 
Absolute 
Difference 

Standard. 
Deviation. 

1 
Goldstein & 
Price (2D) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0006 0.0007 0.0008 

2 
Schwefel 
(2D) 

4.7376 23.4448 4.7379 23.4448 0.0000 0.0000 0.1492 0.7679 0.0004 0.0057 

3 
Schaffer 
(2D) 

0.0000 0.0000 0.0009 0.0025 0.0000 0.0000 0.0096 0.0018 0.0009 0.0029 

4 
Rosenbrock 
(10D) 

0.5998 1.0436 61.5213 132.6307 0.0965 0.0880 0.0003 0.0003 0.0002 0.0003 

5 
Sphere 
(10D) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0001 0.0001 

6 
Ackley 
(10D) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0294 0,0477 0.0001 0.0028 

7 
Rastrigin 
(10D) 

0.1990 0.4924 2.9616 1.4881 0.0000 0.0000 0.005 0.02 0.0002 0.0003 

8 
Martin & 
Gaddy (2D) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0003 

9 Easom (2D) 0.0000 0.0000 0.0000 0.0000 0.0000 2.0096 0.3 0.23 0.0000 0.0003 

10 
Griewank 
(10D) 

0.0008 0.0026 0.0210 0.0130 0.0052 0.0078 0.3158 0.1786 0.0049 0.0019 
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                       Table 3.4: Average evaluation of proposed algorithm compared with other well-known optimisation techniques. 

PSO EA ABC BA ENSEBRBA 

No. Functions Average 
evaluation

s 

Standard 
Deviation. 

Avg. 
evaluations 

Standard 
Deviation. 

Avg. 
evaluations 

Standard 
Deviation. 

Avg. 
evaluation

s 

Standard 
Deviation

. 

Avg. 
evaluations 

Standard 
Deviation. 

1 
Goldstein & 
Price (2D) 

3262 822 2002 390 2082 435 504 211 21496 36855 

2 
Schwefel 

(2D) 
84572 90373 298058 149638 4750 1197 250049 680 338600 0 

3 
Schaffer 

(2D) 
28072 21717 219376 183373 21156 13714 121088 174779 112430 66120 

4 
Rosenbrock 

(10D) 
492912 29381 500000 0 497728 16065 935000 0 148193 116904 

5 Sphere (10D) 171754 7732 36376 2736 13114 480 285039 277778 95643.5 89997 

6 
Ackley 
(10D) 

236562 9,119 50344 3949 18664 627 910000 0 236299 123325 

7 
Rastrigin 

(10D) 
412,440 67,814 500,000 0 207,486 57,568 885,000 0 53935 44779 

8 
Martin & 

Gaddy (2D) 
1778 612 1512 385 1498 329 600 259 15,888 16554 

9 Easom (2D) 16124 15942 36440 28121 1542 201 5280 6303 1120 1,345 

10 
Griewank 

(10D) 
290466 74501 490792 65110 357438 149129 4300000 0 316443 97830 
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The Best Results of Each Run
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   Figure 3.3: The results of a hundred runs for the BBA and the ENSEBRBA on 

Goldstein & Price (2D). 
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Figure 3.4: The results of a hundred runs for the BBA and the ENSEBRBA on 

Schewel 2D. 
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The Best Results of Each Run
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Figure 3.5: The results of a hundred runs for the BBA and the ENSEBRBA on  

Schaffer 2D. 
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Figure 3.6: The result of a hundred runs for the BBA and the ENSEBRBA on 

Rosenbrock 10 D. 
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Hyper Sphere 10D: The expected optimum result for this function is 0. The average 

result obtained from a hundred runs of The Basic Bees algorithm on the given 

function was 0.0003. The corresponding result obtained by the presented version of 

The Bees algorithms for 100 runs was 0.0001. BBA used an average of 285039 

evaluations to find that result, whereas the average of the proposed algorithm’s 

evaluation numbers was 95643. The performance of the Bees algorithm was increased 

significantly for the given function. Figure 3.7 illustrates global optima for a hundred 

runs of BBA and ENSEBRBA on the given problem. 

 

Ackley 10D:  The expected global optimum for the function is 0. The average 

optimum result obtained from 100 runs of The Basic Bees algorithms on the given 

function was 0.029. The corresponding result received from the presented version of 

The Bees algorithm was 0.0001. BBA used an average of 910000 evaluations to find 

that result, whereas the average evaluations needed by the new algorithm was 236299. 

According to the experimental results, ENSEBRBA performance on the Ackley 

function was significantly better than that of the BBA. Again, it is because of the 

complex search space of the function that makes algorithms hard to converge to the 

global optimum with the standard approach. Thus, introduced enhancements 

empowered the Bees Algorithm to find a more accurate solution.   Figure 3.8 

illustrates global optima for a hundred runs of BBA and ENSEBRBA on the given 

problem. 

  

Rastrigin 10D: The global optimum of the function is 0. The average optimum 

obtained from The Basic Bees algorithms for a hundred runs was 0.005 and BBA used 

an average of 885000 evaluations to find that value. The corresponding result received 
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from the presented version of The Bees algorithm was more accurate (0.0002), and 

the average of new algorithm’s evaluations was only 53935. The Rastrigin function is 

highly multimodal, which makes it very hard for global optimisation algorithms to 

find an optimum. Even the BBA, with local and global search strategies, was not very 

accurate on the Rastrigin function.  However the ENSEBRBA with improved local 

(efficiency-based recruitment) and global search (early neighbourhood search) 

strategies was successful on this problem. Figure 3.9 illustrates optima of a hundred 

runs for BBA and ENSEBRBA on the given problem. 

 

Martin & Gaddy 2D: The expected optimum  for this function is 0  .Experimental 

results obtained from The Basic Bees algorithms (a hundred runs) was 0,000 with 600 

evaluations.. ENSEBBA found the same result, however the number of evaluations 

was too high (15,887). This is related to the structure of the new algorithm because it 

is not necessary to do extra calculations (efficiency rate, early neighbourhood search) 

for such “easy” functions where it will only increase number of evaluations. Figure 

3.10 illustrates global optima for a hundred runs of BBA and ENSEBRBA on the 

given problem. 
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The Best Results of Each Run
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Figure3.7: The results of a hundred runs for the BBA and the ENSEBRBA on 

Hyper sphere 10D. 
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Figure3.8: The results of a hundred runs for the BBA and the ENSEBRBA on 

Ackley 10D. 
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Easom 2D: The expected optimum result for this function is -1. BBA performance on 

the given function was not satisfactory. An average of hundred results obtained from 

The Basic Bees algorithm was -0.707 while BBA used an average of 5280 

evaluations. On the other hand, results obtained from ENSEBRBA were better. 

Respective results received from ENSEBRBA were -0.9999 and 1120 (evaluations). 

Easom is another hard optimisation problem. The ENSEBRBA performed better than 

the BBA on this function. Figure 3.11 illustrates global optima for a hundred runs of 

BBA and ENSEBRBA on the given problem. 

 

Inverted Griewank 10D: The expected global optimum for this function is 10. The 

average result obtained from the Basic Bees Algorithm for a hundred runs was 9.989. 

The corresponding result received from the presented version of The Bees Algorithm 

was 9.990. BBA used an average of 4300000 evaluations to find that result, whereas 

the average of the new algorithm’s evaluation numbers was 316443. Experimental 

results obtained from the BBA on the given function were not satisfactory. Although, 

the average global optimum was close to the expected one, the number of evaluations 

to get that result was extremely high. However, the ENSEBRBA performed 

significantly well on the Griewank function. Both average optimum and number of 

evaluations for the proposed Bees Algorithm were better than the BBA’s 

corresponding results. The proposed version of algorithm’s number evaluations is still 

too high. Figure 3.12 illustrates global optima for a hundred runs of BBA and 

ENSEBRBA on the given problem. 
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The Best Results of Each Run
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Figure 3.9: The results of a hundred runs for the BBA and the ENSEBRBA on 

Rastrigin 10D. 
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Figure 3.10: The results of hundred runs for the BBA and the ENSEBRBA on 

Martin & Gaddy 2D. 
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The Best Results of Each Run
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Figure 3.11: The results of hundred runs for the BBA and the ENSEBRBA on 

Easom 2D. 
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Figure 3.12: The results of a hundred runs for the BBA and the ENSEBRBA on 

inverted Griewank 10D. 
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A further t-test was utilised to do statistical analysis of the algorithm where the 

confidence level was selected to be 95 % (α < 0.05). Based on observed results 

(Table 3.5), the proposed algorithm is statistically significantly better than the Basic 

Bees on all benchmark functions. 

 

Overall results illustrate that the ENSEBRBA’s performance on complex high 

dimensional functions is better than on lower dimensional ones. Although the 

proposed algorithm finds an accurate global optimum, the number of evaluations 

needed to get that result is relatively high.  This is due to extra computation performed 

in the proposed version of the algorithm.   

 

According to the ‘no free lunch’ theorem, if an algorithm performs well on a certain 

class of problems then it necessarily pays for that with degraded performance on the 

set of all remaining problems (Wolpert and Macready, 1997).  
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Table 3.5: The statistical analysis between the proposed Bees Algorithm and the 

basic Bees Algorithm. 

 

 

 

No. Function 
Significance between the basic Bees Algorithm 

and the improved Bees Algorithm 

  
Significant  

( α<0.05) 
α 

1 Goldstein & Price (2D) Yes 0.0004 

2 Schwefel (2D) Yes 3.698 E-18 

3 Schaffer (2D) Yes 6.472 E-52 

4 Rosenbrock (10D) Yes 0.0045 

5 Sphere (10D) Yes 1.9650 E-06 

6 Ackley (10D) Yes 7.150 E-08 

7 Rastrigin (10D) Yes 0.0085 

8 Martin & Gaddy (2D) Yes 0.0010 

9 Easom (2D) Yes 0.0024 

10 Griewank (10D) Yes 0.019 
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3.6 Summary  

 

In this study, two novel enhancements have been presented for the Bees Algorithm. 

The Basic Bees algorithm was improved both with the early neighbourhood search in 

the initialisation stage and efficiency-based recruitment in the neighbourhood search 

stage. The proposed algorithm has been successfully applied to continuous type 

benchmark functions and compared with other well-known optimisation techniques.  

 

To test the performance of proposed algorithm, the following approaches have been 

utilised; accuracy analysis, average evaluation and t-test. 

 

According to the accuracy analysis and the average evaluation, the proposed 

algorithm performed better on higher dimensional than lower dimensional functions. 

Finally, the statistical significance of the proposed algorithm has been computed with 

a t-test and the results were compared with the basic Bees Algorithm. Based on t-test 

results, it can be claimed that the proposed algorithm is statistically significantly 

better in performance than the basic Bees Algorithm.  
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Chapter 4 

 
 
 
 
 
 
 
 

Tabu Bees Algorithm 
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4.1 Preliminaries 

 

In earlier chapters it was mentioned that the Bees Algorithm has both local and global 

searches. Global search of the Basic Bees Algorithm considers random exploration of 

the search space. Because of this random behaviour, the algorithm is unable to avoid 

visiting already visited sites in order to carry out a local search. Eventually the 

algorithm converges to the global optimum at the expense of the number of 

evaluations.  

 

To overcome this site repetition problem, a new algorithm is proposed which is a 

hybrid of BBA and Tabu Search. The new algorithm is called the Tabu Bees 

Algorithm (TBA). In TBA, the tabu list was adopted to provide memory to the BBA, 

memorising unproductive sites and not visiting them again. This shrinks the search 

space and decreases the number of evaluations needed. 

 

Moreover, a new escape strategy for neighbourhood search is proposed to lead the 

algorithm out of patches where the fitness values are too similar, due to the Bees 

Algorithm’s nature of getting stuck around the local optima.. 

The steps and the flowchart for the proposed algorithm are given in Figures 4.1 and 

4.2 
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Start 

Initialise population with random solutions. 

Evaluate fitness values of each neighbourhood. 

While (stopping criterion not met) 

     Define tabu list 

 

         Do for each best patch 

          Select sites for neighbourhood search. 

          Recruit bees for selected sites  

          If Neighbourhood search gets stuck around one point 

Use escape strategy 

                End 

          Evaluate fitness values from neighbourhood areas 

         Select the fittest bee from each patch. 

   End 

 

Update tabu list 

Assign remaining bees to search randomly and evaluate their fitnesses. 

End  

 

Figure 4.1: Steps of the TBA. 
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Figure 4.2: Flowchart  of the TBA. 

 

 

 



 76 

4.2 Defining Tabu List 

 

Tabu list is a list of not satisfactory or previously visited solutions which helps an 

algorithm to avoid those solutions in order to improve its performance. The length of 

tabu list strongly affects the computational time of the algorithm. Thus, the new 

solution needs to be verified from the recorded (memorised) tabu list. 

 

To avoid this problem, the length of the tabu list will be updated in every iteration due 

to having limited size (Rothlauf, 2011). 

 

There are three main strategies to create a tabu list (Pham and Karaboga, 2000), given 

below: 

 

1. Forbidding strategy:  to control new elements entering the existing list. 

2. Freeing strategy: to control what exits the tabu list and when. 

3. Short-term strategy: to determine a hybrid strategy of forbidding and freeing 

strategies. 

 

In this study, a short-term strategy-based approach was utilised to create the tabu list. 

 

Tabu Bees Algorithm (TBA) starts the search by randomly placing scout bees in the 

search space. Then, the fitness values of each allocated site will be evaluated. The 

next stage is to define the sites for the local and the global search. The local search 

process will be carried out on “m” best patches. A certain percentage of the “n-m” 

patches   will be utilised for the global search and the rest will be recorded to the tabu 
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list. These selected patches are the worst patches (w) among the “n-m” sites. The size 

of the tabu list will be determined empirically. In this study, the tabu list size “t” was 

determined as equal to the number of scout bees “n”. The next stage of the process is 

to undertake the neighbourhood search based on an adaptive approach. This will be 

given in the next section.                              

 

4.3 Escape Strategy 
 
 
 
There are some problems with a complex search space, where fitness values are too 

close to each other or even have same value. In this case, the Bees Algorithm 

performs remarkably slowly during neighbourhood search. It may not be able to 

escape from local search either. Let us call sites with close fitness values ‘plain’ areas. 

To escape from ‘plain’ areas an adaptive neighbourhood search is presented. The 

algorithm tracks the improvement ratio (IR) of fitness values on elite patches to detect 

‘plain’ areas. Value of IR must be lower than 0.0001 for the patch to be marked as a 

‘plain’ area 

 

ii fitnessfitnessIR −= +1                                                       (4.1) 

 

If no ‘plain’ areas are found, the neighbourhood search process is carried out as for 

the basic Bees Algorithm. However, if the algorithm detects ‘plain’ areas, it changes 

its behaviour and shifts the neighbourhood search area into two directions in order to 

escape. The new neighbourhood search areas are called test neighbourhoods (tnbh). 

The size of the shifting is ngh/2, which means that the central points for test 

neighbourhoods areas will be the borders of the initial one (Figure 4.3). 
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                      Figure 4.3: Simple example for shifting neighbourhood area. 

 

After evaluating the fitness values of the test neighbourhoods, the algorithm decides 

on the direction of the search by choosing a more promising ‘test neighbourhood’ as 

the actual neighbourhood area. There can be several outcomes of the search on test 

neighbourhoods as follows:   

 

• Fitness values are not improving for both test neighbourhood areas (Figure 

4.4a). In this case, the algorithm shifts test neighbourhood areas further. 

Shifting is carried out three times and if no improved solutions are found, that 

patch is added to the tabu list. 

• Fitness values are degrading for both test neighbourhood areas (Figure 4.4b). 

The algorithm adds both patches to the tabu list. 

• Fitness values are improving on one of the test neighbourhood areas (Figure 

4.4c). The algorithm adds the better site to the tabu list and continues 

neighbourhood search from the patch where better fitness values were found. 

• Fitness values are improving on both test neighbourhood areas (Figure 4.4d). 

The algorithm compares obtained fitness values. The test neighbourhood with 

the better fitness is selected in which to continue a neighbourhood search. The 

worse one will be considered as one of ‘m’. 
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Figure 4.4: Simple example for possible outcomes from ‘test neighbourhood’ 

areas. 
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Further, when neighbourhood search is finished, the TBA evaluates results and 

updates the tabu list. 

 

 

4.4 Updating the tabu list 

 

After every neighbourhood search process, the Tabu list is updated using a ‘first in 

last out’ strategy. New elements enter to the list from the top. As a result, elements 

which were already in the list move down. One or more elements drop out from the 

list if there is no space for new incoming data. Algorithm continues search process 

until one of stopping criteria not met. 

 

Stopping criteria for the proposed version of the algorithm are: 

• Global optimum found with acceptable error rate (ER) (In this study error rate 

was chosen as, ER <0.0001). 

• Maximum number of the Evaluations.(In this study this value is chosen as, 

5000000) 

• Number of repetitions of the global optimum.(In this study this value is 

chosen as, 100) 
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4.5 Experiments  

 

To measure the performance of the proposed algorithm, it was tested on ten 

continuous type benchmark functions. These functions are given in Table 4.1 (Pham 

and Castellani, 2009 and Ahmad, 2012). Brief information about the used test 

functions was given in previous chapter. 

 

In previous chapters it was mentioned that the Bees Algorithm requires some 

parameters to be tuned manually for each optimisation problem. Parameters used for 

the TBA are given in table 4.2 (Ahmed, 2012). Moreover, value of “w” was chosen 

empirically to be (n-m)/5 and value “t” was equal to “n” in this study.  

 

 

 



 82 

 

Table 4.1: Test functions (Pham and Castellani, 2009and Ahmad, 2012). 
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Table 4.2: Parameters used for the TBA (Ahmad, 2012). 

 

 

 

 

 

 

 

 

No. Function n m nsp e nep ngh 

1 Goldstein & Price (2D) 10 3 2 1 13 0.005 

2 Schwefel (2D) 10 2 5 1 6 0.5 

3 Schaffer (2D) 100 4 10 2 30 3 

4 Rosenbrock (10D) 15 8 10 5 30 0.0015 

5 Sphere (10D) 10 7 20 1 30 0.05 

6 Ackley (10D) 100 8 10 1 20 0.7 

7 Rastrigin (10D) 100 3 20 1 40 0.01 

8 Martin & Gaddy (2D) 10 5 10 1 30 0.1 

9 Easom (2D) 100 4 10 2 30 0.5 

10 Griewank (10D) 100 40 10 20 30 1.5 
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4.6 Results and Discussion 

The performance of the algorithm was assessed as defined in previous chapter, which 

will be based on the accuracy and the average evaluation numbers (Tables 4.3-4.4). 

Results were compared to BBA and ENSEBBA.   

 

The experimental results for each function are given below. 

 

Goldstein-Price 2D: The expected global optimum is 3. According to the 

experiments, the computed results were obtained by evaluation of a hundred runs. The 

BBA and the ENSEBRBA found the average global optimum at 3.0005 and 3.0007, 

respectively. The average evaluation numbers found for each algorithm were 504 with 

BBA and 21496 with ENSEBRBA. The TBA is utilised to solve this benchmark 

function and the average global optimum was found as 3.0002 in 761 evaluations. The 

results of a hundred runs for BBA, ENSEBRBA and TBA are given in Figure 4.5.  

Although the number evaluation of the proposed algorithm is better than the 

ENSEBRBA, the performance of the BBA is better. Moreover, the proposed 

algorithm found the global optimum better than all others. According to this 

comparison, the proposed algorithm performed better than all. 
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Table 4.3: Accuracy of proposed algorithm compared with the BBA and the ENSEBRBA. 

ENSEBRBA BA TBA 

No. Functions Average 
Absolute 

Difference 

Standard 
Deviation. 

Average 
Absolute 

Difference 

Standard 
Deviation. 

Average 
Absolute 

Difference 

Standard 
Deviation. 

1 
Goldstein & Price 

(2D) 
0.0007 0.0008 0.0005 0.0006 0.0002 0.0002 

2 Schwefel (2D) 0.0004 0.0057 0.1500 0.7679 0.0004 0.0212 

3 Schaffer (2D) 0.0009 0.0029 0.0096 0.0018 0.0000 0.0000 

4 
Rosenbrock 

(10D) 
0.0002 0.0003 0.0003 0.0003 0.0000 0.0000 

5 Sphere(10D) 0.0001 0.0003 0.0003 0.0003 0.0001 0.0001 

6 Ackley (10D) 0.0001 0.0028 0.0294 0.0477 0.0001 0.0003 

7 Rastrigin (10D) 0.0003 0.0003 24.8499 8.3306 0.0000 0.0000 

8 
Martin & Gaddy 

(2D) 
0.0000 0.0003 0.0000 0.0003 0.0000 0.0000 

9 Easom (2D) 0.3 0.23 0.0003 0.0003 0.0000 0.0002 

10 Griewank (10D) 0.0049 0.0019 0.3158 0.1786 0.0000 0.0001 
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Table 4.4: Average evaluation of proposed algorithm compared with the BBA and the ENSEBRBA. 

 

ENSEBBA BA TBA 
No. Functions 

Average 
Evaluations 

Standard 
Deviation. 

Average 
Evaluations 

Standard 
Deviation. 

Average 
Evaluations 

Standard 
Deviation. 

1 
Goldstein & Price 

(2D) 
219496 36855 504 211 761 330 

2 Schwefel (2D) 338600 0 250049 0 62054 0 

3 Schaffer (2D) 112430 66120 121088 174779 6.309 2165 

 
4 
 

Rosenbrock 
(10D) 

148193 116904 935000 0 9821 3333 

5 Sphere (10D) 95644 89997 285,039 277,778 2,972 1,963 

6 Ackley (10D) 236299 123325 910000 0 9199 3651 

7 Rastrigin (10D) 53935 44779 885000 0 7559 7093 

8 
Martin & Gaddy 

(2D) 
15888 16554 600 259 1065 1.517 

9 Easom (2D) 1120 1345 5280 6303 1063 1130 

10 Griewank (10D) 316443 97830 4300000 0 8294 2586 
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Schwefel 2D: The expected optimum result for the function is -837.97. The average 

result obtained from a hundred runs of the BBA and the ENSEBRBA were -837.144 

and -837.964 respectively. BBA used an average of 250049 evaluations to find that 

optimum, whereas the average for the ENSEBRBA was 338.600. The TBA used to 

solve same optimisation problem and the algorithm found the average global optimum 

as -837.93 in 62054 evaluations. Figure 4.6 illustrates global optima for a hundred 

runs of BBA, ENSEBRBA and TBA on the given problem. Although all versions of 

the Bees algorithm produced fairly accurate results for this optimisation problem, the 

TBA found the global optimum in lower number of evaluations. This is because TBA 

has memory and the algorithm avoids revisiting already visited sites. 

 

Schaffer 2D: The expected global optimum is 0. The experimental results computed 

by evaluation of a hundred runs were 0.01 and 0.001 respectively. BBA used an 

average of 250049 evaluations to find that result, whereas the average of ENSEBRBA 

evaluations was 112430. The TBA is utilised to solve this benchmark function and the 

average global optimum was found as 0 in 6309 evaluations. The results of a hundred 

runs for BBA, ENSEBBA and TBA are given in Figure 4.7. Based on experimental 

results, the TBA found a more accurate global optimum for the problem in lower 

number of evaluations than other described versions of the Bees Algorithm. 

 

Rosenbrock 10 D: The expected optimum is 0. An average of a hundred 

experimental results obtained from the BBA and the ENSEBRBA were 0.0003 and 

0.0002 respectively. BBA used an average of 11690 evaluations to find that result, 

whereas the average of ENSEBRBA evaluations was 148193. Moreover, TBA was 

applied on the same function and the new algorithm found the average global 
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optimum as 0 in 9821 evaluations. Figure 4.8 illustrates global optima for a hundred 

runs of BBA, ENSEBRBA and TBA on the given problem. Although ENSEBRBA 

was better than the BBA in terms of results on this complex high dimensional 

problem, due to the memory unit used in TBA, results were improved even further. 

This is because Rosenbrock’s global optimum is located at the flat valley, which has a 

long narrow parabolic shape and the TBA, with a local escape strategy, converges to 

the global optimum easily. 

 

Hyper Sphere 10D:  The global optimum for this function is 0. Experimental results 

computed by evaluation of a hundred runs were 0.0003 and 0.0001 respectively. The 

BBA needed an average of 285039 evaluations to find that result, when the average of 

the proposed ENSEBRBA evaluations was 95643. Experimental results obtained from 

the TBA on the same benchmark function were 0.0001 (global optimum) in 2972 

evaluations.  The results of a hundred runs for BBA, ENSEBRBA and TBA are given 

in Figure 4.9. The proposed version of the Bees Algorithm produced the same global 

optimum as the ENSEBRBA, which was already better than the optimum obtained 

using the BBA. However, due to utilised memory, the TBA used fewer evaluations to 

get that result.  
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The Best Results of Each Run
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Figure 4.5: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Goldsein-Price 2D function. 
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Figure 4.6: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Schewel 2D function. 
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The Best Results of Each Run
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Figure 4.7: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Schaffer 2D function. 
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Figure 4.8: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Rosenbrock 10 D function. 
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Ackley 10D:  The expected optimum of this is 0. According to the experiments, the 

computed global optimum obtained by the evaluation of a hundred runs were 0.029 

for the BAA and 0.0001 for the ENSEBRBA. The BBA needed an average of 910000 

evaluations to find that result and the average number of evaluations of the 

ENSEBRBA was 236299. The TBA was utilised to solve the same optimisation 

problem and the algorithm found an average global optimum as 0,0001 in 2972 

evaluations. The results of a hundred runs for BBA, ENSEBRBA and TBA are given 

in Figure 4.10. As for the previous function, the proposed version of the Bees 

Algorithm produced the same global optimum as the ENSEBRBA which was already 

better than optimum found by the BBA. Because of the memory factor, the TBA used 

a lower number of evaluations to converge to a global optimum.  

 

Rastrigin 10D: The global optimum of this function is 0. An average of a hundred 

optima of the BBA and the ENSEBRBA were 0.005 and 0.0002 respectively. An 

average of a hundred evaluations for the BBA was of 885000, when the 

corresponding result for the ENSEBRBA was 53935. The result of the same 

experiment using the TBA was an average global optimum as 0 in 7559 evaluations. 

The results of a hundred runs for BBA, ENSEBBA and TBA are given in Figure 4.11. 

On the Rastrigin function, the proposed algorithm performed better than the other 

two. The TBA was better than the BBA in all aspects and as it was expected that TBA 

would surpass ENSEBRBA on number of evaluations. 

 

Martin & Gaddy 2D: The expected global optimum is 0. According to the 

experiments, the computed results were obtained by evaluation of a hundred runs. The 

average optimum obtained from the BBA and the ENSEBRBA were both 0. BBA 
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needed an average of 600 evaluations to find that result, whereas the average for 

ENSEBRBA was 15888. The average of a hundred global optima found by using the 

TBA to solve the same optimisation problem was 0 and average number of 

evaluations was 1065. Figure 4.12 illustrates global optima for a hundred runs of 

BBA, ENSEBRBA and TBA on the given problem. On the Martin and Gaddy 

function, the Basic version of the Bees algorithm performed better than both proposed 

versions. However, the TBA obtained global optimum in fewer evaluations than the 

ENSEBRBA. 

 

 

Easom 2D: The expected optimum result for this function is -1. The average result 

obtained from a hundred runs of the BBA and the ENSEBRBA were -0.707 and -

0.9999   BBA needed an average of 5280 evaluations. The corresponding results for 

ENSEBRBA were 1120. TBA was used to solve the same optimisation problem and 

the algorithm found the average global optimum as -0.9999 in 1063 evaluations.  

Figure 4.13 illustrates global optima for a hundred runs of BBA, ENSEBRBA and 

TBA on the given problem.  On the given function the TBA found the same global 

optimum as the ENSEBRBA, which was already better than the optimum found by 

the BBA. This is because the Easom function’s optimum is in a small area compared 

to a large search space. Therefore, the BBA with the standard approach is unable to 

converge to the global optimum. 
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Figure 4.9: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Hyper sphere 10D function. 
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Figure 4.10: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Ackley 10D function. 
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Figure 4.11: The results of a hundred runs for BBA, ENSEBRBA and TBA on  

Rastrigin 10D function. 
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Figure 4.12: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Martin & Gaddy 2D function. 
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Inverted Griewank 10D: The expected global optimum for this function is 10. The 

average result obtained from the Basic Bees algorithms over hundred runs was 9.989. 

The corresponding result obtained by ENSEBRBA was 9.990. BBA needed an 

average of 4300000 evaluations to find that result, whereas the average of 

ENSEBRBA’s evaluations was 316443. TBA was used to solve the same optimisation 

problem and the algorithm found an average global optimum as 9.9999 in 8294 

evaluations. The experimental results of a hundred runs for BBA, ENSEBBA and 

TBA are given in Figure 4.14. Due to having widely spread local optima, the BBA 

has performed poorly on the Griewank function. The ENSEBRBA found a fairly 

accurate global optimum but in a high number of evaluations. However, the TBA 

found the most accurate global optimum in fewer evaluations because this algorithm 

has poor location avoidance mechanisms. 

 
Although main reason to develop both introduced strategies was to decrease the 

number of evaluations used by the BBA to find the global optimum, overall results 

illustrate that the accuracy of the BBA was significantly increased in the process as 

well. 

 

Further statistical analysis was carried out by using t-test, where the confidence level 

was selected to be 95 % (α < 0.05). The T- test results are illustrated in table 4.5. 

From the t-test results between the Tabu Bees Algorithm and the Basic Bees 

Algorithm it is clearly seen that TBA performs statistically significantly better.  
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Figure 4.13: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

Easom 2D function. 
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Figure 4.14: The results of a hundred runs for BBA, ENSEBRBA and TBA on 

inverted Griewank 10D functions. 
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Table 4.5: The statistical analysis between the TBA and the basic Bees 

Algorithm. 

 

 

 

 

No. Function Significance between the TBA and the BBA 

  
Significant 

( α<0.05) 
α 

1 Goldstein & Price (2D) Yes 0,0021 

2 Schwefel (2D) Yes 
2,59325E-17 

3 Schaffer (2D) Yes 
2,24632E-14 

4 Rosenbrock (10D) Yes 
1,42986E-15 

5 Sphere (10D) Yes 
3,82E-09 

6 Ackley (10D) Yes 
2,09428E-08 

7 Rastrigin (10D) Yes 
0,0057 

8 Martin & Gaddy (2D) Yes 
4,94477E-25 

9 Easom (2D) Yes 
2,53E-22 

10 Griewank (10D) Yes 
3,06308E-06 
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4.7 Summary 

 

In this study a novel algorithm was proposed which is hybrid between the BBA and 

Tabu. The new algorithm is called Tabu Bees algorithm. In this algorithm, tabu list 

was utilised to give memory to the BBA to solve the site repetition problem. In 

addition, a new adaptive neighbourhood strategy was proposed to overcome the issue 

of getting stuck around local optima with similar fitness values. The proposed 

algorithm has been successfully applied on continuous type benchmark functions and 

compared with the BBA and ENSEBRBA.  

 

Accuracy analysis, average evaluation and t-test were utilised compute the 

performance of the proposed algorithm. 

 

According to the Experimental results it can be concluded that the number of 

evaluations needed both on lower and higher dimensional problems were dramatically 

decreased. On the other hand, the proposed improvements increased the accuracy of 

algorithm as well. Based on t-test results, it can be concluded that the proposed 

algorithm is statically significantly better performing than the basic Bees Algorithm.  
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Chapter 5 

 

The Autonomous Bees Algorithm 
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5.1 Preliminaries 

 

In this chapter, the Autonomous Bees Algorithm (ABA) is presented as a solution for 

the below mentioned problem. 

 

Various weaknesses of the BBA were discussed in previous chapters and some 

enhancements were introduced to solve these problems. This chapter focuses on the 

one of the biggest issues for the BBA, which is the large number of parameters to be 

set manually. These parameters must be tuned to produce accurate results. Although 

the BBA is a relatively easy algorithm to apply on different optimisation problems, 

the large number of parameters makes it hard for new users. 

 

As a concept, autonomy is the capacity of an individual to make an informed, un-

coerced decision. It is widely used in fields like politics, sociology, religion and 

engineering. Autonomy has applications in artificial intelligence as well. For example: 

Autonomous Genetic Algorithm for Functional Optimisation (Meng, 2007).  

 

In the literature several studies on parameter tuning for the BBA have been presented. 

However, these studies did not provide the BBA with full independence. The ABA is 

a self-directed version of the BBA where interaction between the user and the process 

is on a minimal level. 

 

The block diagram of the ABA is given in Figure 5.1.  
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Figure 5.1: Block diagram of the ABA. 
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5.2 Autonomous Behaviour 

 

In this section autonomous behaviour of the ABA is explained in detail. To illustrate 

every step of algorithm, a ten dimensional Hyper Sphere function was chosen. The 

definition of the used function was given in Chapter 2. 

 

 The ABA starts search with a set of predefined parameters. It is then guided, based 

on previous information, toward a better parameter set.  The default values of the 

parameters are given below: 

 

• Number of scout bees. n =10; 

• Number of sites selected out of n visited sites. m = 3; 

• Number of best sites out of m selected sites. e =1; 

• Number of bees recruited for best e sites. nep =8; 

• Number of bees recruited for the other (m-e) selected sites.  nsp =4; 

• Patch size around of a selected best location. ngh=1; 

 

In previous research on the BBA, the parameters were tuned as given numbers 

empirically to solve many different optimisation problems. Therefore, it is quite 

promising to start searching with these parameters. The ABA tunes parameters one at 

time and there are two steps for each of them: rough tuning and fine tuning. 

 

Determining n: Number of scout bees is the first parameter to be tuned. It is an 

important parameter because if “n” is too low, the algorithm will fail to find the 
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optimum and if n is too large the number of evaluations needed will be high. Based on 

previous experience, it can be said that the number of scout bees alters between 0 and 

100 depending on the structure of the problem. The algorithm creates ten equal groups 

of numbers in this range and randomly picks one value from each group [1-10; 11-20; 

21-30; 31-40; 41-50; 51-60; 61-70; 71-80; 81-90; 91-100]. 

 

 Further, algorithm uses these values as the number of scout bees to do a search on the 

optimisation problem. After running the search for each of the scout bees, the ABA 

evaluates the obtained results to choose the most promising group of numbers. The 

algorithm assesses the results based on fitness values and the number of evaluations 

prioritised on the fitness values. In our experiment, the algorithm chose 69 as most 

promising number of scout bees, as shown in Figure 5.2a. The fitness value obtained 

using 69 bees to do the scouting was 0, which is the expected result for the Hyper 

Sphere function. The same result was obtained while using other numbers of scout 

bees as well. However, the number of evaluations needed to achieve that result was 

the lowest for 69 scout bees (Figure 5.2b). Finding this value is considered as rough 

tuning of parameter “n” (number of scout bees). 

 

After determining the rough value of “n”, the algorithm carries out the fine tuning of 

the parameter, using every member of the group where the rough value of “n” was 

found [61; 62; 63; 64; 65; 66; 67; 68; 69; 70]. Furthermore, ABA evaluates the 

results of the fine tuning using the same strategy (based on global optimum and 

evaluation numbers) as for rough tuning. The number of scout bees was selected to be 

66 after fine tuning, as illustrated in figures 5.3a and 5.3b. 
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Figure 5.2a: Fitness values obtained after Rough Tuning of “n”. 

 

 

Figure 5.2b: Number of Evaluations obtained after Rough Tuning “n”. 
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Figure 5.3a: Fitness values obtained after Fine Tuning of “n”. 

 

 

Figure 5.3b: Number of Evaluations obtained after Fine tuning of “n”. 
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Determining m: Number of sites selected for local search is another very important 

parameter to be determined accurately. The value of “m” changes the core behaviour 

of the algorithm, such as: 

 

• 0<m<n : Classical global and local search of the Bees Algorithm 

• 0=m<n:  Only global search of the Bees Algorithm. 

• 0<m=n : Only local search  of the Bees Algorithm 

 

After finding the value of “n”, the algorithm starts tuning the next parameter, which is 

“m”. Accordingly, “m” can not exceed “n”. Therefore the value of “m” will be 

between 0 and 66. The ABA creates ten groups of numbers in that range and chooses 

random numbers from each of them [0-6; 7-13; 14-20; 21-27; 28-35; 36-42; 43-49; 

50-56; 57-63; 64-66;]. 

 

 Based on the best fitness and evaluations, the algorithm selects the rough value of 

“m”, which is 9 for our problem, as shown in Figures 5.4a and 5.4b.  

 

Fine tuning can then be performed when the rough number of “m” is found. Fine 

tuning is carried out using ten numbers from the group to which 9 belongs. The 

algorithm needs 10 numbers from that group to undertake fine tuning. If the number 

of elements in that group is lower than ten, the algorithm adds random elements from 

same range to the group [7; 8; 9; 10; 11; 12; 13; (7; 10; 11;)]. 

 

After evaluating results obtained, “m” was chosen to be 8, as illustrated in Figures 

5.5a and 5.5b. 
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Figure 5.4a: Fitness values obtained after Rough Tuning of “m”. 

 

 

 

Figure 5.4b: Number of Evaluations obtained after Rough Tuning of “m”. 
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Figure 5.5a: Fitness values obtained after Fine Tuning of “m”. 

 

 

 

Figure 5.5b: Number of Evaluations obtained after Fine tuning of “m”. 
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Determining e: The same methodology as for determining “m” was used to find the 

number of elite sites. “e” must be lower or at least equal to “m”. The algorithm will 

create ten groups of numbers between 0 and 8 and random elements from each group 

will be selected as “e” while solving the optimisation problem [0; 1; 2; 3; 4; 5; 6; 7; 

8;( 0;)]. 

 

Figures 5.6a and 5.6b illustrate the results of rough tuning where 2 was selected as “e” 

for further fine tuning. 

 

The fine tuning of “e” in this experiment was relatively easy because there was only 

one element in the group from where algorithm chooses values of elite sites to 

perform fine tuning. The results obtained from fine tuning on the given problem are 

illustrated in Figures 5.7a and 5.7b. 

 

Determining nsp: In general, the number of recruited bees for neighbourhood search 

on selected sides has no direct relations with number of patches or scout bees. 

Because of this the parameter is tuned independently from “n”, “m” or “e”. Maximum 

number of recruit bees is assumed to be 50. This number is divided into five groups of 

numbers and 2 random values are selected from each group in order to have 10 well 

distributed values of nsp for comparison [1-10; 11-20; 21-30; 31-40; 41-50]. 

 

The rough number of “nsp” is selected to be 3 as shown in Figures 5.8a and 5.8b. The 

group of numbers which 3 represents is selected for fine tuning of the parameter. 

After fine tuning of the parameter, the value “nsp” was found to be 2 (Figures 5.9a 

and 5.9b). 
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Figure 5.6a: Fitness values obtained after Rough Tuning of “e”. 

 

 

Figure 5.6b: Number of Evaluations obtained after Rough Tuning “e”. 
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Figure 5.7a: Fitness values obtained after Fine Tuning of “e”. 

 

 

 

Figure 5.7b: Number of Evaluations obtained after Fine tuning of “e”. 
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Figure 5.8a: Fitness values obtained after Rough Tuning of “nsp”. 

 

 

 

 

Figure 5.8b: Number of Evaluations obtained after rough tuning of” nsp”. 
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Figure 5.9a: Fitness values obtained after Fine Tuning of “nsp”. 

 

 

 

 

Figure 5.9b: Number of Evaluations obtained after Fine tuning of “nsp”. 
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Determining nep:  The next parameter to be tuned is the number of recruit bees for 

elite sites. In most studies, the value of this parameter is greater than nsp. However, in 

this study both these parameters are considered to be in the same range. So, the same 

approach as for nsp was used to tune nep. The results of rough tuning are given in 

Figures 5.10a and 5.10b. Figures 5.11a and 5.11b illustrate the results of fine tuning. 

 

Determining ngh: Size of neighbourhood search is the last parameter to be tuned. 

There is no need to do rough tuning for “ngh”. In this study, the maximum size of the 

neighbourhood search was chosen to be 1 and decreased by half for ten times, [1; 0.5; 

0.25; 0.125; 0.062; 0.031; 0.015; 0.007; 0.003; 0.001], and the results were 

compared. Results are given in Figures 5.12a and 5.12b. 
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Figure 5.10a: Fitness values obtained after Rough Tuning of “nep”. 

 

 

 

 

Figure 5.10b: Number of Evaluations obtained after Rough tuning of “nep”. 
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Figure 5.11a: Fitness values obtained after Fine Tuning of “nep”. 

 

 

 

Figure 5.11b: Number of Evaluations obtained after Fine tuning of” nep”. 
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Figure 5.12a: Fitness values obtained after Fine Tuning of “ngh”. 

 

 

 

Figure 5.12b: Number of Evaluations obtained after Fine tuning of “ngh”. 
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After tuning the last parameter, which is ngh, the algorithm gets the parameter set to 

start the actual search. In the case of the Hyper Sphere function, the algorithm has 

generated the given parameter set: 

 

                n=66; m=8; e=2; nsp=2; nep=13; ngh=0,007; 

 

In the following section experimental results obtained from the ABA will be 

presented. 

 

5.3 Experiments 

 

Ten continuous type benchmark functions were used for experiments to test the 

productivity of the proposed algorithm. These functions are given in Table 4.1 in 

chapter four (Pham and Castellani, 2009 and Ahmad, 2012). Brief information about 

the used test functions was given in chapter 2.  The algorithm was applied to all 

problems as described in the previous section. 

5.4 Results and Discussion 

The performance of the algorithm was assessed according to the global optima found 

and the average number of evaluations needed (Table 5.1 and 5.2).  Further, T test 

was utilised to check the significance of the algorithm. Results obtained from the 

ABA were compared with results of the BBA on the same functions. 
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Goldstein-Price: The expected global optimum is 3. The parameter set used for BBA 

to solve this problem was: 

 

                                    n=10; m=3; e=1; nsp=2; nep=13; ngh=0,005;    

 

The average global optimum obtained from the BBA was 3.0005 and the algorithm 

needed an average of 504 evaluations to find that optimum. The parameter set found 

by the ABA was: 

                                    n=12; m=3; e=2; nsp=4; nep=9; ngh=0,005; 

 

The average of 100 global optima produced by the ABA was 3.0002 and the average 

of evaluations was 654. Global optima obtained from the ABA and the BBA’s 

hundred runs are given in Figure 5.13.  The experimental results obtained from the 

ABA were better than the results obtained from the BBA. Thus, with a better 

parameter set, the algorithm becomes more accurate and efficient. 

 

The two dimensional Schwefel function was selected for experiment. The expected 

optimum for the function is -837.97. The parameter set used for BBA to solve this 

problem was: 

                                    n=10; m=2; e=1; nsp=5; nep=6; ngh=0,05;    

 

The average of results obtained from the BBA was -837,144 and the algorithm used 

an average of 250049 evaluations to find that optimum. The parameter set found by 

the ABA was: 
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                                    n=53; m=17; e=3; nsp=8; nep=41; ngh=0.25; 

 

The average of 100 global optima produced by the ABA was -837,711 and the average 

of evaluations was 163053. Global optima obtained from the ABA and the BBA’s 

hundred runs are given in Figure 5.14. Experimental results show that the 

performance of the ABA is better than the Basic Bees. However, even the global 

optimum found by the ABA is not very accurate. This is because the BBA was used 

as an “engine” in the ABA which already failed to find an accurate global optimum. 

To overcome this problem, more accurate versions of the Bees Algorithm can be used 

as a core for the ABA.  

 

The two dimensional Schaffer function was selected for experiment. The expected 

answer for the function is 0. The parameter set used for BBA to solve this problem 

was: 

                                    n=100; m=4; e=2; nsp=10; nep=30; ngh=3;    

 

The average of results obtained from the BBA was 0.01 and the algorithm used an 

average of 121088 evaluations to find that optimum. The parameter set found by the 

ABA was: 

                                    n=60; m=23; e=5; nsp=5; nep=15; ngh=0.5; 

 

The average of 100 global optima produced by the ABA was 0.0005 and the average 

of evaluations was 9370. Global optima obtained from the ABA and the BBA’s 

hundred runs are given in Figure 5.15. 
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Table 5.1:  Average evaluations obtained from hundred runs of the BBA and the 

ABA. 

 

 

BA ABA 
No. Functions 

Average Evaluations 

1 Goldstein & Price (2D) 504 654 

2 Schwefel (2D) 250049 163053 

3 Schaffer (2D) 121088 9370 

4 Rosenbrock (10D) 935000 529045 

5 Sphere (10D) 285039 
29906 

6 Ackley (10D) 910000 700870 

7 Rastrigin (10D) 885000 148960 

8 Martin & Gaddy (2D) 600 840 

9 Easom (2D) 5280 3137 

10 Griewank (10D) 4300000 750020 



 122 

 

 

 

 

Table 5.2: Global optimums obtained from hundred runs of the BBA and the 

ABA. 

 

BA ABA 
No. Functions 

Global optimum 

1 Goldstein & Price (2D) 0.0005 0.0002 

2 Schwefel (2D) -837.144 
-837,711 

3 Schaffer (2D) 0.01 0.0005 

4 Rosenbrock (10D) 0.0003 0.0004 

5 Sphere (10D) 0.0003 0.0000 

6 Ackley (10D) 0.029 0.02 

7 Rastrigin (10D) 0.0048 0.0004 

8 Martin & Gaddy (2D) 0 0 

9 Easom (2D) -0.707 -0.8168 

10 Griewank (10D) 9.9895 9.9949 
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The Rosenbrock function was selected for experiment.  The expected answer for the 

function is 0. The parameter set used for the BBA to solve this problem was: 

 

                                    n=15; m=8; e=5; nsp=10; nep=30; ngh=0,0015; 

    

The average of results obtained from the BBA was 0.0003 and the algorithm used an 

average of 935.000 evaluations to find that optimum.  The parameter set found by the 

ABA was: 

 

                                    n=23; m=17; e=6; nsp=5; nep=44; ngh=0,003; 

 

The average of 100 global optima produced by the ABA was 0.0004 and the average 

of evaluations was 529045. Global optima obtained from the ABA and the BBA’s 

hundred runs are given in Figure 5.16.  Due to the function’s nature, accurate local 

search is required to find the global optimum. Both the BBA and the ABA found 

fairly accurate global optima because of utilised local search. However, the ABA 

found the optimum in fewer evaluations because the proposed algorithm performed a 

local search on more patches. 
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The Best Results of Each Run
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Figure 5.13: The results of a hundred runs for the BBA and the ABA on 

Goldstein and Price 2D. 

 

The Best Results of Each Run

-838,5

-838

-837,5

-837

-836,5

-836

-835,5

-835

-834,5

-834

0 20 40 60 80 100 120

Number of Run

F
itn

es
s 

V
al

u
e

The ABA

The BBA

 

 

Figure 5.14: The results of a hundred runs for the BBA and the ABA on 

Schwefel 2D. 
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The Best Results of Each Run
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Figure 5.15: The results of a hundred runs for the BBA and the ABA on Schaffer 

2D. 
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Figure 5.16: The results of a hundred runs for the BBA and the ABA on 

Rosenbrock 10D. 
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The Hyper Sphere function was selected for experiment. The expected answer for the 

function is 0. The parameter set used for the BBA to solve this problem was: 

 

                                    n=10; m=7; e=1; nsp=20; nep=30; ngh=0,05;    

 

The average of results obtained from the BBA was 0.0003 and the algorithm used an 

average of 285039 evaluations to find that optimum. The parameter set found by the 

ABA was: 

                                    n=66; m=8; e=2; nsp=2; nep=13; ngh=0,007; 

 

The average of 100 global optima produced by the ABA was 0 and the average 

evaluations was 29906. Global optima obtained from the ABA and the BBA’s 

hundred runs are given in Figure 5.17.  The influence of the accurate parameter set on 

the performance of the algorithm can be observed from the experimental results, thus, 

with more precise parameters, the algorithm obtained better results. 

 

The ten dimensional Ackley function was selected for experiment. The expected 

answer for the function is 0. The parameter set used for BBA to solve this problem 

was: 

                                    n=100; m=8; e=1; nsp=10; nep=20; ngh=0,7;    

 

The average of results obtained from The BBA was 0,029 and the algorithm used an 

average of 910.000 evaluations to find that optimum. The parameter set found by the 

ABA was: 

                                    n=54; m=6; e=3; nsp=15; nep=24; ngh=1; 
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The average of 100 global optima produced by the ABA was 0.02 and the average of 

evaluations was 700870. Global optima obtained from the ABA and the BBA’s 

hundred runs are given in Figure 5.18. Ackley is another hard type benchmark 

function. Both the ABA and the BBA failed to find a precise global optimum and the 

number of evaluations needed to get results was not far from each other. However, 

both algorithms got similar results, so it can be concluded that the ABA is as effective 

as the BBA for a given optimisation problem. 

 

The ten dimensional Rastrigin function was selected for experiment. The expected 

answer for the function is 0. The parameter set used for BBA to solve this problem 

was: 

                                    n=10; m=3; e=1; nsp=20; nep=30; ngh=0,01; 

    

The average of results obtained from the BBA was 0.048 and the algorithm used an 

average of 885000 evaluations to find that optimum. The parameter set found by the 

ABA was: 

                                    n=70; m=13; e=7; nsp=8; nep=21; ngh=0.31; 

 

The average of 100 global optima produced by the ABA was 0.0004 and the average 

of evaluations was 148960. Global optima obtained from the ABA’s and the BBA’s 

hundred runs are given in Figure 5.19.  In the BBA “n” was chosen too low. The 

algorithm used the maximum number of evaluations available and stopped searching 

before converging to an actual global optimum. However, the ABA chose a higher 

number of initial scout bees, which lead to a more accurate result. Another factor, 

which affects result on such problems, is the number of sites for local search. On 
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functions like Rastrigin, algorithms utilising local search are more productive than 

those that the use only global search. 

 

The two dimensional Martin & Gaddy function was selected for experiment. The 

expected answer for the function is 0. The parameter set used for BBA to solve this 

problem was: 

                                    n=10; m=5; e=1; nsp=10; nep=30; ngh=0,1;   
  

The average of results obtained from the BBA was 0 and the algorithm used an 

average of 600 evaluations to find that optimum. The parameter set found by the ABA 

was: 

                                    n=13; m=4; e=3; nsp=17; nep=36; ngh=0.625; 
 

The average of 100 global optima produced by the ABA was 0 and the average of 

evaluations was 840. Global optima obtained from the ABA’s and the BBA’s hundred 

runs are given in Figure 5.20. On the given function, performances of both algorithms 

were approximately the same. As mentioned in previous chapters, the BBA is already 

enough to solve relatively easy optimisation problems. 

 

The two dimensional Easom function was selected for experiment. The expected 

answer for the function is -1. The parameter set used for the BBA to solve this 

problem was: 

                                    n=100; m=10; e=2; nsp=4; nep=30; ngh=0, 5;    
 
 
The average of results obtained from the BBA was -0,707 and the algorithm used an 

average of 5280 evaluations to find that optimum. The parameter set found by the 

ABA was: 
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                                    n=69; m=11; e=8; nsp=2; nep=48; ngh=0,5; 
 

The average of 100 global optima produced by the ABA was -0.8168 and the average 

of evaluations was 3137. Global optima obtained from the ABA’s and the BBA’s 

hundred runs are given in Figure 5.21. Both the Basic Bees Algorithm and the 

Autonomous Bees Algorithm failed to find a global optimum but again, both 

algorithms generated similar results. 

 

A modified version of the ten dimensional Griewank function was selected for 

experiment. The expected answer for the function is 10. The parameter set used for 

the BBA to solve this problem was: 

 

                                    n=100; m=40; e=20; nsp=10; nep=30; ngh=1,5;    
 

Average of results obtained from The BBA was 9.989 and algorithm used average of 

4300000 evaluations to find that optimum. Parameter set found by the ABA was: 

 

                                    n=48; m=32; e=19; nsp=6; nep=9; ngh=1; 
 

The average of 100 global optima produced by the ABA was 9.9949 and the average 

of evaluations was 750020. Global optima obtained from the ABA’s and the BBA’s 

hundred runs are given in Figure 5.22. For this function “n” was chosen too high for 

the BBA, which caused an unusually high number of evaluations. Although the ABA 

found a similar global optimum, due to well tuned parameters, number of evaluations 

to find the global optimum was significantly lower. 
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The Best Results of Each Run
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Figure 5.17: The results of a hundred runs for the BBA and the ABA on Hyper 

Sphere 10D. 
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Figure 5.18: The results of a hundred runs for the BBA and the ABA on Ackley 

10D. 
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The Best Results of Each Run
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Figure 5.19: The results of a hundred runs for the BBA and the ABA on 

Rastrigin 10D. 
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Figure 5.20: The results of a hundred runs for the BBA and the ABA on Martin 

and Gaddy 2D. 
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The Best Results of Each Run
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Figure 5.21: The results of a hundred runs for the BBA and the ABA on Easom 

2D. 
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Figure 5.22: The results of a hundred runs for the BBA and the ABA on 

Griewank 10D. 
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Moreover, Statistical analysis has been carried out using t-test. The confidence level 

was selected to be 95 % (α < 0.05). T- test results are illustrated in table 5.3. 

According to results the ABA is more significant than the BBA on most benchmark 

functions. Which means the ABA is better than the BBA 

 

 
Table 3.5: The statistical analysis between the Autonomous Bees Algorithm and 

the Basic Bees Algorithm. 

 

No. Function 
Significance between the Basic Bees Algorithm 

and the Autonomous Bees Algorithm 

  
Significant  

( α<0.05) 
α 

1 Goldstein & Price (2D) Yes 
4,09009E-10 

2 Schwefel (2D) Yes 
6,89091E-11 

3 Schaffer (2D) Yes 
6,23132E-74 

4 Rosenbrock (10D) No 
0,06113 

5 Sphere (10D) Yes 
3,28918E-14 

6 Ackley (10D) No 
0,06612 

7 Rastrigin (10D) Yes 
0,0111 

8 Martin & Gaddy (2D) No 
0,72923 

9 Easom (2D) Yes 
7,74352E-05 

10 Griewank (10D) Yes 
0,0132 
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5.5 Summary 

In this study, the Autonomous Bees Algorithm was presented. The aim of the research 

was to create an independent version of the BBA where there is no need to tune the 

initial parameters manually.  

The proposed algorithm has been successfully tested on continuous type benchmark 

functions and the results observed were compared with the results obtained from the 

experiment on the Basic Bees Algorithm. Results of the experiments proved that the 

ABA can autonomously tune parameters without human interaction and produce   at 

least similar or better results than The Basic Bees algorithm. 

 

All experimental results were illustrated in the previous section. Moreover, statistical 

analysis has been employed using t-test and the results have been shown in this 

chapter. 
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Chapter 6 

 

 

 

Conclusion and Future Work 
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6. Conclusion 

 

This chapter summarises the main contributions and conclusions of this study. It also 

provides suggestions for the future work. 

 

6.1 Contributions 

 

This study has introduced new enhancements to the Bees Algorithm. The following 

enhancements are given below: 

 

• Early neighbourhood search to improve initialisation stage of the Bees 

Algorithm. 

 

• Efficiency based recruitment for the neighbourhood search to improve 

performance of the algorithm on high dimensional problems. 

 

• Hybridisation of the Tabu search and the Bees algorithm to provide memory 

for the Bees Algorithm to decrease number of evaluations. 

 

• Novel strategy to escape from local patches with similar fitness values 

 

• Provide autonomy for the Bees Algorithm to minimise the human interaction 

with the search process. 
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6.2 Conclusions 

 

The objectives stated in chapter one have all been achieved. 

 

This thesis has proposed three enhanced the Bees Algorithms. Each new algorithm was 

tested on continues type benchmark functions. Further statistical analysis was carried out 

using T-test. All experimental results were provided in related chapters. The conclusions 

are given below: 

 

1. Early neighbourhood search and efficiency based recruitment for the 

neighbourhood search were utilised to create new version of the Bees Algorithm 

which was called the Early Neighbourhood Search and Efficiency-based 

Recruitment Bees Algorithm (ENSEBRBA). Proposed algorithm was tested on 

ten different types of continues benchmark functions. Results were assessed based 

on average absolute difference technique and average number of evaluations. 

From experimental results it can be concluded that performance of the Bees 

Algorithm on high dimensional problems was improved due to proposed 

modifications. However, performance of the proposed algorithm was not 

satisfactory on easy low dimensional benchmark functions. This can be related 

with high computational calculation of the efficiencies of each best patch. Such 

calculations are not necessary for "easy" problems. Thus it will only increase the 

number of evaluations. The proposed enhancements improved the overall 

performance of the algorithm. Moreover results of statistical analysis proved that 

the proposed algorithm is significantly better than the Basic Bees Algorithm. First 

and second objectives described in chapter 1 were achieved by using 

ENSEBRBA. 
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2. The Hybrid Tabu Bees Algorithm (TBA) was proposed by combining the Tabu 

search and the Bees Algorithms. This is first version of the Bees Algorithm which 

utilises the memory unit. Moreover new strategy to escape from locals with 

similar fitness values. The new algorithm was also tested on continues type 

benchmark functions and the results were compared with the BBA and the 

ENSEBRBA. Experimental results were again assessed based on average absolute 

difference and average number evaluations. According to the generated results the 

proposed modifications decreased the number of evaluations needed for the Bees 

Algorithm go converge to the global optimum. Although the TBA was introduced 

to decrease number of evaluations, it also improved accuracy of the Bees 

Algorithm. Utilised t-test proved that proposed algorithm is significantly better 

than the Basic Bees Algorithm. The third and forth objectives met by proposing 

the Hybrid Tabu Bees Algorithm. 

 

3. Concept of autonomy was utilised to develop version of the Bees Algorithm 

where interaction between user and the search process was minimised. The 

proposed algorithm was called the Autonomous Bees Algorithm (ABA). The 

proposed algorithm was also tested on continues type benchmark functions. The 

generated results were compared to the results of the BBA. The experimental 

results were assessed based on average of global optimums and number of 

evaluations. Observed results proved that the ABA generated optimal parameter 

set and produced at least same or better results than the BBA. Moreover, t-test 

based statistical analysis was carried out. According to this experiment the ABA 

was significantly better than the BBA on seven functions out of ten. Results 

observed from those three functions were similar to results of the BBA. From t-

test result it can be concluded that utilised autonomy not only provided the 
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independency to the Bees Algorithm but also improved accuracy.  Objective five 

proposed in chapter 1 was achieved by developing the ABA.  

 

 

6.3 Future work 

 

There are a number of issues which can be investigated in order to improve the Bees 

Algorithm and widen its potential.  

 

• Early neighbourhood search was introduced as a solution for the poor 

initialisation stage of the Bees Algorithm. However, this search was carried 

out in its simplest form using minimum number of recruit bees. In the future 

different search strategies can be applied to improve efficiency of this 

approach in the initialisation stage. 

 

• Efficiency based recruitment was suggested to improve the performance of the 

Bees Algorithms on high dimensional problems. However, the performance of 

the algorithm was degraded on simple low dimensional problems due to the 

computational complexity. This can be investigated to find more productive 

approach to calculate efficiency of the patches with minimum number of 

evaluations. 

 

• Different tabu list strategies can be investigated for the Hybrid Tabu Bees 

Algorithm. 
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• Various enhancements were proposed in this study. It can be investigated to 

have various combinations of those enhancements.  

 

• In future, it is possible to focus on the BA parameter reduction to run the 

algorithm with less parameters. 

 

• Most studies in the BA were carried out to improve the neighbourhood search 

stage (local search). The future research studies on the BA may focus on the 

global search process stage. 

 

• The new research trend on the BA is to enhance the algorithm with hybrid 

approaches using Tabu Search, Genetic Algorithm and PSO. It is possible to 

investigate the availability of using other hybrid combinations.  
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APPENDIX A 

 

2 dimensional graphic illustrations of the Benchmark functions are given below 

(Molga, 2005): 

 

 

Figure A1: Graphic illustration of the Goldstein and Price’s function (Molga, 

2005). 
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Figure A2: Graphic illustration of the Schwefel function (Molga, 2005). 

 

 

Figure A3: Graphic illustration of the Rosenbrock function (Molga, 2005). 



 153 

 

Figure A4: Graphic illustration of the Hyper Sphere function (Molga, 2005). 

 

 

Figure A5: Graphic illustration of the Ackley funct ion (Molga, 2005). 
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Figure A6: Graphic illustration of the Rastrigin fu nction (Molga, 2005). 

 

 

Figure A7: Graphic illustration of the Easom function (Molga, 2005). 
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Figure A8: Graphic illustration of the Griewank fun ction (Molga, 2005). 

 


