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Human high-level cognitive decisions appear sub-optimal (Kahneman, Slovic, & Tversky,
1982; Kahneman & Tversky, 1979). Paradoxically, perceptuo-motor decisions appear opti-
mal, or nearly optimal (Trommershäuser, Maloney, & Landy, 2008). Here, we highlight lim-
itations to the comparison of performance between and within domains. These limitations
are illustrated by means of two perceptuo-motor decision-making experiments. The results
indicate that participants did not optimize fundamental performance-related factors (pre-
cision and time usage), even though standard analyses may have classed participants as
‘optimal’. Moreover, simulations and comparisons across our studies demonstrate that
optimality depends on task difficulty. Thus, it seems that a standard model of perceptuo-
motor decision-making fails to provide an absolute standard of performance. Importantly,
this appears to be a limitation of optimal models of human behaviour in general. This, in
conjunction with non-trivial evaluative- and methodological differences, suggests that ver-
dicts favouring perceptuo-motor, or perceptual, systems over higher-level cognitive sys-
tems in terms of level of performance are premature.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction same theory (for a review see Trommershäuser et al.,
There appears to be a striking dissociation between hu-
man perceptuo-motor- and cognitive decision-making per-
formance. Cognitive decision-making ability is widely
viewed as distinctly less than optimal, because it conflicts
with the normative prescriptions of decision theory that
set out how ‘rational’ decision makers should behave
(Birnbaum, 2008; Kahneman, Slovic, & Tversky, 1982;
Kahneman & Tversky, 1979). Perceptuo-motor decision-
making, on the other hand, appears well described by the
2008; see Whiteley & Sahani, 2008 for a similar conclusion
in a perceptual domain). This apparent dissociation has
been highlighted repeatedly. Trommershäuser, Landy and
Maloney, for example, note that ‘‘. . .in marked contrast to
the grossly sub-optimal performance of human subjects
in traditional economic decision-making experiments, our
subjects’ performance was often indistinguishable from
optimal.’’ (2006, p. 987; see also e.g., Maloney, Trom-
mershäuser, & Landy, 2007; Trommershäuser et al., 2008).

This performance dissociation is puzzling. Few reasons
are evident for why perceptuo-motor decision-making
should be optimal, while cognitive decision-making is
sub-optimal (but see e.g., Chater & Oaksford, 2008; Evans
& Over, 1996). Furthermore, little progress appears to have
been made in explaining the difference.

There are at least three possible sources for the appar-
ent dissociation: (1) competence may be modality depen-
dent (2) performance may be task dependent and (3)
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differences may result from the way performance is evalu-
ated. If competence were indeed modality dependent this
would be a striking finding. However, as pointed out by
Trommershäuser and colleagues (e.g., Maloney et al.,
2007), experimental paradigms across the two fields differ
along a number of methodological dimensions. Perceptuo-
motor studies generally involve repeated decisions with
outcome feedback and internalized probabilities. Cognitive
decision tasks, on the other hand, generally involve one-
shot decisions without feedback and exact probabilities
stated on paper (see e.g., Birnbaum, 2008; Kahneman &
Tversky, 1979, but see e.g., Hertwig, Barron, Weber, & Erev,
2004; Thaler, Tversky, Kahneman, & Schwartz, 1997). Thus,
a less interesting explanation is that one, or more, of these
methodological differences give rise to the apparent
dissociation.

Not only are there methodological differences in tasks,
performance is also evaluated differently in the two fields.
Although both perceptuo-motor- and cognitive studies
draw on normative theories to provide performance stan-
dards, adherence to these norms is assessed in different
ways. Generally, the perceptual and perceptuo-motor liter-
ature asks how closely human performance matches that
of an ideal agent (see e.g., Barlow, 1962; Geisler, 2003;
Trommershäuser, Maloney, & Landy, 2003a, 2003b).
Broadly, an ideal agent is a model that performs a given
task maximally well. Constraints under which the system
is assumed to operate are typically built into the model.
The cognitive literature, on the other hand, typically asks
if a system violates one or more of the axioms of decision
theory (assumed fundamental principles of rational choice
such as the transitivity of preferences, or independence of
irrelevant alternatives, see e.g., Birnbaum, 2008; Hertwig
et al., 2004; Kahneman & Tversky, 1979). Experiments
are designed so that certain response patterns would con-
stitute violations of these axioms, thereby indicating irra-
tionality (i.e., sub-optimality). Thus, assessment of
performance typically differs in two ways across cognitive
and perceptual/perceptuo-motor studies: quantitative ver-
sus qualitative violations of normative theories and pres-
ence or absence1 of system constraints.

Given these non-trivial differences between cognitive-
and perceptuo-motor studies, comparisons of human per-
formance across the two domains need to be made with
care. In this paper we highlight difficulties associated with
such comparisons using two perceptuo-motor decision-
making experiments. The experiments demonstrate that
minor changes in task parameters, specifically changes that
do not affect an optimal agent’s performance, influence
whether participants are actually viewed as optimal or
sub-optimal. We follow up these empirical results by illus-
1 Studies of higher-level decision making and judgment typically are not
concerned with constraints when evaluating participant performance.
Instead it is assumed that the experimental task is sufficiently easy that
any system that adhered to the studied axioms would in principle be able
to perform the necessary computations (Evans, 1993). This is not to say that
constraints have gone unstudied. Kahneman and Tversky (1996), for
example, have argued that when extensional cues are given to participants,
performance improves. This effect is presumed to be due to extensional
cues triggering a slow and effortful processing system that would otherwise
not have been used (Kahneman & Frederick, 2002).
trating through simulations how specific changes in task
parameters can cause participants hitherto classified as
optimal to be classed as sub-optimal. Our experiments also
suggest that people’s perceptuo-motor decisions are sub-
optimal in ways not captured by Trommershäuser et al.’s
(2003a, 2003b) model. Together these results, we think, sug-
gest that claims of greater optimality for perceptual systems
over higher-level cognitive systems may be premature.

2. Perceptuo-motor decisions & decision performance
assessment

The recent interest in comparing the relative optimal-
ity of cognitive and perceptuo-motor decisions stems
from Trommershäuser et al.’s (2003a, 2003b) elegant
perceptuo-motor decision paradigm. Their paradigm has
made it possible to translate into perceptuo-motor tasks
the kinds of decision problems given to participants in
cognitive psychological studies. We begin with a brief
introduction to Trommershäuser et al.’s paradigm.

Because the perceptuo-motor system is noisy, speeded
pointing towards a target will result in a response distribu-
tion dispersed around a chosen aim point (cross, Panel A,
Fig. 1). Trommershäuser et al. exploit this noisiness to cre-
ate perceptuo-motor decisions that are mathematically
equivalent to standard cognitive decisions (such as those
of e.g., Kahneman & Tversky, 1979).

In Trommershäuser et al.’s (2003a, 2003b) paradigm,
participants point towards stimulus configurations (Panel
B, Fig. 1) under time pressure, with the goal of earning as
many points as possible. Participants accrue points if they
hit a reward region (full line, Panel B), lose points if they hit
a penalty region (dashed line, Panel B), and incur both pen-
alty and reward if they hit the intersection of both regions.

Different aim points (different symbols, Panel B) will re-
sult in different probabilities of hitting each region (hit
probabilities, Panel C). Different hit probabilities, in turn,
will result in different numbers of points earned. Given
that there are many aim points, participants are in effect
choosing between many different options of the form: re-
ward with probability p = X, penalty with p = Y, both re-
ward and penalty with p = Z. This is easily recognized as
a traditional decision-making problem (see e.g., Kahneman
& Tversky, 1979).

If participants are to maximize the number of points
they earn, they have to find the aim point that will allow
them to do so. Trommershäuser et al. (2003a) propose that
people’s behaviour in these tasks can be explained by a
process model that assumes that people solve this optimi-
zation problem and make optimal decisions.

As noted in the introduction, the standard way of
assessing performance in paradigms such as Trommershä-
user et al.’s (2003a, 2003b) is to compare participants’
performance to that of an ideal agent. An ideal agent is
an agent that performs the task maximally well. Of
course, we should not expect participants (even if opti-
mal) to precisely match optimal performance (e.g., be-
cause our estimates of their behaviour are noisy).
Instead, the typical question is whether people are statis-
tically distinguishable from optimal. Next, we describe
how this is determined.
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Fig. 1. Perceptuo-motor gambles and performance assessment. Panel A: A simulated response distribution (grey discs) from one participant (r2 = 14.78,
Participant 2, Experiment 2, in Trommershäuser et al., 2003a) aiming at the centre of a target (cross, Panel A). Panel B: Example of one stimulus
configuration and reward structure employed by Trommershäuser et al., with example aim points (symbols) and region-specific rewards and penalties
(numbers). Panel C: Hit probabilities for the aim points in panel B. Panel D: Efficiencies (expected gain normalized by optimal expected gain) for the aim
points in panel B. The optimal aim point (circle) has an efficiency of 1. The horizontal line represents the lower 95 percentile of optimal performance.
Efficiencies below this line are lower than expected by chance and hence sub-optimal.
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First we need to determine the optimal choice for a gi-
ven stimulus configuration (e.g., Panel B, Fig. 1). Given the
response distribution of a specific participant (e.g., Panel A,
Fig. 1), it is relatively straightforward to find what would
be the optimal aim point. One simple method is to system-
atically move the response distribution around and evalu-
ate the expected gain at each point, until a maximum is
found. This simple method, and other more complex meth-
ods based on maximum likelihood estimation and numer-
ical integration (Trommershäuser et al., 2003a), work
because participants are assumed to control only the posi-
tion of their response distribution – not its shape.2
2 Harris and Wolpert (1998) showed that Fitts law (Fitts, 1954) is well
accounted for by a model that assumes that movements are executed so
that, given a specific movement duration, precision is maximized (or
equivalently: movement duration is minimized given a precision con-
straint). Thus, to the extent that people maximize time use in perceptuo-
motor decision-making tasks (as e.g., Trommershäuser et al., 2003a found,
but see Gepshtein, Seydell, & Trommershäuser, 2007) it can be assumed
that participants also maximize precision and therefore do not actively
control the shape of their response distribution. If this assumption holds,
precision (and equivalently - movement time) should be unaffected by, for
example, the size of targets or verbal instruction in paradigms such as
Trommershäuser et al.’s. This prediction applies because movement time is
restricted, and using nearly all the available time will maximize precision,
which in turn will allow targets to be hit more often, which in turn results
in more money earned. However, for every-day reaching, in which the goal
is to pick up an object, without a strong constraint on movement time,
people are likely to reach to objects such that they can interact with them
successfully (e.g., use more time, and so be more precise, when reaching
towards a key than a pillow, see also e.g., Fitts, 1954).
Once the optimal aim point is found, the hypotheti-
cal optimal agent, having inherited the participant’s
perceptuo-motor variability, ‘‘performs’’ the experiment
many times (e.g., 100,000 times). The agent always
chooses the optimal aim point. Effectively, one asks: ‘‘if
this participant performed the same experiment again –
but this time always chose the best possible aim point
– how well would they do?’’

For each simulated experiment, the average earnings of
the optimal agent are computed. This procedure results in
a distribution of average (expected) optimal earnings (the
agent’s earnings will vary due to the inherited perceptuo-
motor variability), describing how many points an optimal
agent is expected to earn in this particular experiment. As
described below, this distribution can be used to infer
whether participants are performing sub-optimally.

To facilitate comparisons across experiments and par-
ticipants, the earnings distribution of the optimal agent is
divided by its mean. This generates an efficiency distribu-
tion, where an efficiency of 1 corresponds to the expected
earnings of the optimal agent. Because of the modelled
sensori-motor noise, even an optimal agent is likely to
deviate from an efficiency of 1 in a particular experiment.
Efficiencies below 1 mean that the agent performed worse
than expected and efficiencies above 1 mean that the agent
performed better than expected. By the same token, if par-
ticipants were in fact optimal, their efficiency scores would
likewise be distributed around an efficiency of 1.

The above procedure estimates the distribution of earn-
ings for the optimal agent. To infer whether a specific
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participant behaved sub-optimally, the efficiency of that
participant is computed by dividing their earnings with
the expected earnings of the optimal agent. The partici-
pant’s efficiency can then be compared to the 95% confi-
dence interval on the optimal agent’s efficiency
distribution. If the participants’ earnings lie below the low-
er bound of the confidence interval the participant is
classed as sub-optimal (i.e., statistically distinguishable
from optimal).3 In other words, when participants earnings
are sufficiently unlikely to have been generated by an opti-
mal agent they are classed as sub-optimal.

Again, the example in Fig. 1 demonstrates this. Panel B
shows a number of potential aim points: because of the
cost incurred by hitting the penalty region, the optimal
aim point is not the centre of the reward region (here rep-
resented by a cross), but rather a point shifted slightly
away from the penalty region, specifically the point
marked by the circle. The two aim points marked by trian-
gles are shifted further from the penalty region than is
optimal; aiming here further reduces the chances of hitting
the penalty region, but makes it more likely that the re-
ward region is missed altogether. However, only one of
these – the rightward facing triangle – would result in
the participant being classed as sub-optimal (see Panel
D), because only it lies outside the lower confidence bound
[straight line, Panel D]). Thus, due to the limited precision
with which we estimate optimal performance, and because
deviations from optimality might not be particularly
costly, participants can deviate from the optimal strategy
and still be classed as optimal.

3. Experimental investigation

Using the paradigm just outlined, or variants thereof,
Trommershäuser, Maloney and Landy have explored per-
ceptuo-motor decision-making extensively (see Trom-
mershäuser et al., 2008). We were interested in one of
the distinctions they make: that of implicit and explicit
decisions. Seydell, McCann, Trommershäuser, and Knill
(2008) note that cognitive paradigms generally involve ex-
plicit choices (introspectively one is aware of choosing),
whilst perceptuo-motor paradigms, such as the one out-
lined above, generally involve implicit decisions (intro-
spectively one is unaware of choosing). Trommershäuser
et al. have previously explored the explicit/implicit choice
dimension in two studies (Seydell et al., 2008; Trom-
mershäuser, Landy, & Maloney, 2006) – and concluded that
both explicit and implicit motor choice are optimal, or
near-optimal.

In our two experiments, which were designed to ex-
plore this distinction further, participants made two
choices per trial: an aim point choice (the ‘‘implicit’’
choice) and a target choice (the ‘‘explicit’’ choice). The par-
adigm is illustrated in Fig. 2 (see Methods for details). All
pointing movements originated from a dock (the white
disc in Fig. 2) and targets were displayed at different
3 Of course, the logic of null-hypothesis testing implies that one cannot
conclude optimality by this method. Strictly speaking, all one can do is to
reject the null hypothesis of optimal performance, i.e., reject as optimal
anyone who lies outside this interval.
distances (crosses illustrate potential target locations in
Fig. 2). On each trial, participants had to choose whether
to attempt to hit a small or a large target. Participants’ re-
sponse time was limited, which meant that small targets
were more difficult to hit than large targets, and meant
that far targets were more difficult to hit than nearer tar-
gets (Fitts, 1954; Schmidt, Zelaznik, Hawkins, Frank, &
Quinn, 1979).

Hitting a target incurred a reward and missing a target
resulted in a penalty. The task goal was to earn as many
points as possible. To earn as many points as possible, par-
ticipants had to trade off the probability of hitting each tar-
get with the target’s value. The small target was always
worth more than the large target. Target hit probabilities de-
pended on participants’ aim point choices, their motor var-
iability, the size of the target, and the distance to the target.

A novel aspect of our study was that the expected gain
(i.e., the average number of points received) for each target
depended on the size of the target as well as its distance to
the dock. Thus, a basic question was whether humans are
able to trade off target size and target distance in an opti-
mal manner when making perceptuo-motor choices.

The use of two target sizes also enabled an indirect
assessment of one of the assumptions built into Trom-
mershäuser et al.’s model (2003a, 2003b): that the percep-
tuo-motor system minimizes motor variability. This
assumption is critical because motor variability is fixed
when deriving optimal predictions (as noted above in ‘Per-
ceptuo-motor decisions & decision performance
assessment’).

Previous studies have also probed the question of human
time allocation in perceptuo-motor tasks. The general con-
clusion has been that time allocation is optimal or near-opti-
mal (e.g., Battaglia & Schrater, 2007; Dean, Wu, & Maloney,
2007; Hudson, Maloney, & Landy, 2008, and see Jarvstad,
Rushton, Warren, & Hahn, 2012 for a comparison of time
allocation across perceptual and cognitive domains). How-
ever, participants in those studies were explicitly instructed
to optimize time usage. Consequently, this does not answer
the question of whether the perceptuo-motor system opti-
mizes time in general. First evidence that it may not can
be found in the study of Gepshtein et al. (2007).

Gepshtein et al. (2007) employed near and far targets
and a response time criterion that was identical for near
and far targets. In other words, participants could poten-
tially spend just as much time reaching for near as for far
targets. However, participants used less time when they
reached for near targets compared to when they reached
for far targets. Given the speed-accuracy trade-off (Fitts,
1954; Schmidt et al., 1979), it would appear that precision
was sacrificed as reaches to near targets were faster than
necessary. Since Gepshtein et al.’s results suggest that time
allocation in motor responding may not be optimal with-
out specific, explicit, instruction, further examination
seems important.

We conducted two experiments with the task just
outlined. The task parameters differed across Experi-
ments 1 and 2. Specifically, target size, target distance,
number of possible target locations and the reward for
the large target differed across the experiments. To state
that the perceptuo-motor system is optimal (or nearly
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so), presumably implies that it can deal with a variety of
situations that might occur – not that it is optimal for
one particular target size or one specific set of rewards
only. That is, if the perceptuo-motor system is optimal,
one would expect it to be able to cope with the changing
conditions across Experiments 1 and 2.

In the following, we report on both Experiment 1 and
Experiment 2 simultaneously. This facilitates comparisons
between the two experiments which should produce very
similar results if behaviour is indeed optimal. As it turns
out, however, seemingly innocuous changes in task param-
eters can have dramatic effects on whether participants are
classed as optimal or sub-optimal.

4. Methods

4.1. Participants and instructions

Sixteen (8 in each experiment) members of the Cardiff
University Psychology participant panel were paid an
hourly rate of £6 to participate, plus a performance related
bonus based on their efficiency (efficiency � £6). The study
had approval of the local ethics committee.

Participants were informed of the reward structure in
each experiment (that is, how many points could be earned
by hitting each target, and how many were deducted for a
‘miss’). Participants were told to maximize their total score
(‘‘earn as many points as possible’’). They were also told
that they could receive an additional bonus (ranging be-
tween £0 and £6) depending on their performance (‘‘the
better you do the more money you will receive’’). All par-
ticipants were naive as to the purpose of the study. All
had normal, or corrected to normal, vision and were fully
mobile. Participants were fully informed about the experi-
mental protocol.

4.2. Apparatus

The experiments were written in Matlab (Mathworks,
Inc.) and run with the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) on a Mac Mini (Apple, Inc.). Participants
were seated in front of a pen display (Wacom DTZ-2100,
Wacom Co. Ltd.) slanted at 65�. The pen display was used
to display stimuli and record responses. Responses were
made with the spring loaded eraser end of a standard Wa-
com stylus pen. Participants chose their distance and
height relative to the display so as to enable natural point-
ing movements.
4.3. Stimuli, experimental design and procedure

Fig. 3 (Panel A, see also Fig 2) illustrates a sample stim-
ulus configuration. In both experiments, each stimulus
configuration contained a dock (radius 16 pixels/
�4.3 mm); this dock was the starting position for each trial
and was displayed throughout the session. Two discs (po-
tential targets), one large (Experiment1: radius 16 pixels/
�4.3 mm; Experiment 2: radius 22 pixels/�5.9 mm) and
one small (Experiment 1: radius 8 pixels/�2.16 mm;
Experiment 2: radius 11 pixels/�2.9 mm), were displayed
to the left of the dock (except for one left handed partici-
pant, for whom dock/targets were mirrored).

On each trial, one disc was displayed along the upward
diagonal (dotted line Fig. 3 Panel A) and one was displayed
along the downward diagonal. In Experiment 1, discs were
displayed at one of two distances relative to the dock: near
(200 pixels/�5.4 cm) and far (900 pixels/�24.3 cm). In
Experiment 2, discs were displayed at one of three dis-
tances: near (170 pixels/�4.6 cm), medium (340 pixels/
�9.2 cm), or far (510 pixels/�13.8 cm). A full factorial com-
bination of elevation (up/down), target location and non-
target location resulted in 8 unique perceptuo-motor lot-
teries (i.e., stimulus configurations) for Experiment 1 and
18 unique lotteries for Experiment 2.

Each experiment consisted of one practice session and
one experimental session. Each session contained 44 trials
per unique stimulus configuration. In the practice session
no explicit (target) choice was made. Instead, a disc was
designated as the target by the colour green (the non-tar-
get was red) and participants merely had to hit it. In the
experimental session both discs were yellow and partici-
pants chose which disc to aim for.

In Experiment 1, the small target was worth 100 points,
the large target was worth 50 points and the background
was worth �25 points. In Experiment 2, the reward associ-
ated with the large target was raised to 75 points, an
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above the dock (white disc) represents participants’ cumulative score. Note: stimuli are not drawn to scale and the background was black and not white.
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alteration that should pose no problems for an optimal
participant.

Throughout the experiment, the participant’s cumula-
tive score was displayed above the dock in blue numerals
(Panel B–F, Fig. 3, – exemplified here by ‘‘175’’ and
‘‘275’’). Participants initiated each trial by touching the
dock with the stylus (Panel B), whereupon one of the un-
ique stimulus configurations was displayed. Participants
were required to maintain contact with the dock for
750 ms (decision time, Panel C). A 550 Hz tone signalled
that movement should begin (Panel D). After the tone, par-
ticipants had 550 ms to attempt to hit their chosen target
(Panel E). Participants received feedback both on where
they hit the screen and on the amount of points earned
on each trial (Panel F). They could rest at any time during
the experiment simply by not initiating a new trial.

Participants were told to respond within the 550 ms
interval, but they were free to move as fast as they wished
within that upper bound. Responses that exceeded 550 ms
were recorded as ‘late’. Trials in which the stylus was lifted
off the dock before 100 ms had passed since the go signal
were recorded as ‘anticipatory’. These limits on decision
and response time match those of Seydell et al.’s (2008)
study. Late and anticipatory responses resulted in feedback
to speed up and slow down respectively and were rerun.
Late and anticipatory responses were not penalized.

For each trial, reaction time, movement time, response
coordinates and the number of points earned were re-
corded. Reaction time was defined as the time from the
go-signal to the lifting of the stylus pen off the dock area.
Movement time was defined as the time from lifting the
stylus off the dock area to contact with the tablet surface.
Total response time was the sum of reaction time and
movement time. Response coordinates were defined as
the x and y position of the stylus upon first contact with
the screen after the stylus had been lifted off the dock.
4 Defining aim point as the [x,y] coordinate of a maximum likelihood
fitted bivariate Gaussian (cf., Gepshtein et al., 2007) produced equivalent
results.
4.4. Data analysis

The first block in the experimental session was viewed
as a warm up block and was deleted prior to any analyses.
Late and anticipatory responses were discounted (see e.g.,
Seydell et al., 2008). For the decision session, the mean
proportion of late responses was .07 (SD = .06). The mean
proportion of anticipatory responses was .07 (SD = .05).
To assess participants’ overall performance (i.e., effi-
ciency), a reliable estimate of movement variability is
needed. The free choice component of the decision session
meant that some targets (e.g., large near targets) had few
or no data points. In order to guarantee a minimum of 20
data points for each precision estimate, data sets for each
participant were created by adding the last 20 data points
from the practice session to the decision data (for each tar-
get location and target size combination). The mean pro-
portion of trials excluded as outliers in the merged data
sets was .01 (SD = .016). Outliers were defined as data
points further from the target centre than 2.5 times the
large target radius (following Gepshtein et al., 2007).

Responses were analysed separately for each partici-
pant and each factor. As in previous studies (e.g., Gepshtein
et al., 2007; Trommershäuser et al., 2003a, 2003b) three
assumptions were made. Firstly, it was assumed that the
response distributions were bivariate normal, an assump-
tion that we verified by inspecting chi square plots (John-
son & Wichern, 1998). Secondly, it was assumed that a
participant selects a single aim point per target. As in past
work, it was assumed that the centroid of each response
distribution describes the aim point for that distribution.
Any deviation from this aim point was assumed to be
due to unexplained variability influencing planning
(Churchland, Afshar, & Shenoy, 2006) and execution (van
Beers, Haggard, & Wolpert, 2004) of movements. Finally,
it was assumed that differences in biomechanical cost be-
tween targets were negligible (see e.g., Gepshtein et al.,
2007; Trommershäuser et al., 2003a, 2003b).

To describe participants’ pointing behaviour we use two
metrics: aim point error and movement variability. Given a
normal response distribution, circular targets and symmet-
ric penalty regions (as employed here) the optimal aim
point is the target centre. Aim point error describes the dis-
tance between a participant’s aim point (the centroid of
each response distribution) and the target centre.4 The
lower the aim point error – the closer to optimal the aim
point choice. Movement variability was defined as the mean
distance of the movement end points from the centroid of
the response distribution (see e.g., Gordon, Ghilardi, & Ghez,
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Fig. 4. Response times: group averages (B, D) and individual participants’ averages (A and C) as a function of target distance, target size and experiment. The
dashed line represents small targets and the full line represents large targets. The legend shows the radius of each target in pixels (1 pixel = .27 mm). Error
bars are within-subject 95% confidence intervals.
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1994).5 Movement variability describes how variable partic-
ipants’ pointing movements were (their perceptuo-motor
variability). For every participant, we computed aim point
error and movement variability separately for each target
size and target location combination while collapsing across
target elevation.

We present both individual level plots as well as group
averages for each analysis. Repeated measures ANOVA’s
were used to test for group-level effects. When sphericity
assumptions were violated, Greenhouse–Geisser correc-
tions were used. We first report on how participants used
the available response time. Thereafter we describe how
movement variability and aim point choice related to tar-
get distance and size. Following this, data describing par-
ticipants’ choices between the two targets (target choice)
is presented. Finally, participants overall task performance
is compared to that of an optimal agent.

5. Results

5.1. Overall response time

Did participants use all of the available response time as
in studies with only one effective reach distance (Trom-
mershäuser et al., 2003a,b), or did they fail to maximize
time usage as found in the one previous study, by Gepsh-
5 Because movement data was anisotropic, defining movement variabil-
ity as the standard deviation of the response distribution necessitates
multi-variate dependent variables. Using Gordon et al.’s (1994) measure
provides a univariate dependent measure, making analyses easier and the
exposition clearer. Seydell et al. (2008) likewise adopted a univariate
measure (the square root of the determinant of the covariance matrix) to
describe the variability of anisotropic data.
tein et al., 2007, that involved different reach distances?
As can be seen in Fig. 4, participants used nearly all the
available response time (550 ms) when targets were far
away.6 However, for near and medium distance targets, par-
ticipants used comparatively less of the available time, giv-
ing rise to a significant effect of target distance,
Experiment 1: F(1,7) = 85.14, p < .001, g2

p = .92, Experiment
2: F(2,14) = 247.15, p < .001, g2

p = .97). This suggests that
participants may not be maximizing time use, and therefore
not be maximizing precision. If they had used the available
time as efficiently as in the far condition there would be lit-
tle difference between near and far targets, and the plots in
Fig. 4 would show horizontal lines.

Another trend worth noting is that participants ap-
peared to use more of the available time when they
reached towards small targets (dashed lines, Fig. 4) than
towards larger targets (full lines, Fig. 4). The difference be-
tween response times for small and large targets was mar-
ginal in Experiment 1 (F(1,7) = 4.87, p = .063, g2

p = .41) and
significant in Experiment 2 (F(1,7) = 20.87, p = .003,
g2

p = .75). We did not detect an interaction between target
size and target distance in Experiment 1 (F(1,7) = 2.17,
p = .184, g2

p = .24), but did so in Experiment 2
(F(2,14) = 5.92, p = .014, g2

p = .46). For a detailed analysis
breaking down the effects of response times into its sepa-
rate components, reaction time and movement time, see
Appendix A.
6 Note that, because responses longer than the allocated response time
are ‘timed out’ and discarded, the means must be lower than the maximal
response time unless participants were able to perfectly match that
response deadline on every trial.
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Fig. 5. Movement variability: group averages (B and D) and individual participants’ averages (A and C) as a function of target distance, target size and
experiment. The dashed line represents small targets and the full line represents large targets. The legend shows the radius of each target in pixels (1
pixel = .27 mm). Error bars are within-subject 95% confidence intervals.
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5.2. Movement variability

Movement variability appears related both to target
distance and size as shown in Fig. 5. As expected, move-
ments to far targets were more variable than movements
to near targets (Experiment 1: F(1,7) = 63.21, p < .001,
g2

p = .9, Experiment 2: F(1.2,8.4) = 40.9, p < .001, g2
p = .85).

There was also evidence that movements were more vari-
able for large targets than for small targets, with a main ef-
fect of size in Experiment 2 (F(1,7) = 15.47, p = .006,
g2

p = .69), though not in Experiment 1 (F(1,7) = 0.78,
p = .41, g2

p = .1) and a (marginal) interaction between target
size and target distance in Experiment 1, F(1,7) = 5.23,
p = .056, g2

p = .43 (Experiment 2: F(1.1,7.7) = .23, p = .668,
g2

p = .03). A direct comparison between near small targets
and near large targets as the likely source of that marginal
interaction (see Panel B, Fig. 5) shows that movements to
large near targets were more variable than those to near
small targets (t(7) = �4.14, p = .004); in other words, par-
ticipants in Experiment 1 aimed with greater precision to
small near targets than they did to large near targets.7 Thus
both studies show evidence of effects of size and distance on
movement variability (see also e.g., Chua & Elliott, 1993;
Fitts, 1954).
7 There are trends in the data that suggest that for the furthest distance
tested (Experiment 1, 900 pixels distance), the difference may disappear or
even reverse (a trend that is also visible in the movement time plots, see
Fig. 4). A possible explanation is that at very high difficulties participants
relax their precision criteria even further (e.g., ‘‘there is no point in trying
hard – it’s too difficult’’). An alternative explanation is that the far distance
employed in Experiment 1 was sufficiently far, given the time deadline, as
to constrain the possible pointing strategies that could be employed (i.e., it
was not possible for subjects to choose different movement times for these
targets).
The result that movements to larger targets were more
variable than movements to small targets, and that partic-
ipants did not use all of the available time for near and
medium distance targets (‘Overall response time’), sug-
gests that the perceptuo-motor system does not always
choose the optimal movement strategy as defined in Trom-
mershäuser et al.’s model. Instead, the perceptuo-motor
system may satisfice (Simon, 1959) end-point variance or
optimise a more complex cost function, an issue we will
be returning to below.

5.3. Aim point error

The implicit choice participants made in our task was
where to aim. ‘Aim point error’ (the distance between the
participant’s aim point and the optimal aim point) indi-
cates how well participants chose aim points. In contrast
to movement variability (Fig. 5), aim point choice (Fig. 6)
seemed less strongly influenced by target distance and
size. Also in contrast to movement variability, there was
little evidence of consistent patterns across participants.

More specifically, aim point error showed no main ef-
fects of either size or distance in Experiment 1 (size:
F(1,7) = .02, p = .9, g2

p < .01, distance: F(1,7) = 4.42,
p = .074, g2

p = .39), although there was a significant interac-
tion (F(1,7) = 12.18, p = .01, g2

p = .64). In Experiment 2,
there was a significant effect of size only, with aiming at
larger targets worse than aiming at smaller targets (size:
F(1,7) = 10.46, p = .014, g2

p = .60; distance: F(2,14) = 2.45,
p = .12, g2

p = .25; size � distance interaction: F(2,14) = .86,
p = .45, g2

p = .11). In general, aim points rarely deviated
from the target centre by more than 5 pixels (1.35 mm),
suggesting that participants’ aiming performance was
good.
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Fig. 6. Aim point error: group averages (B and D) and individual participants’ averages (A and C). Aim point errors as a function of target distance, target size
and experiment. The dashed lines represent small targets and the full lines represent large targets. The legend shows the radius of each target in pixels (1
pixel = .27 mm). Error bars are within-subject 95% confidence intervals.

8 It has been suggested that, because of optimizing biomechanical cost,
the perceptuo-motor system is biased towards undershooting targets (e.g.,
Lyons, Hansen, Hurding, & Elliott, 2006). In this literature ‘undershoot’ is
used to refer to the spatial location (primary movement endpoint) of the
initial (more or less) ballistic phase of movements (Lyons et al., 2006, p. 97).
Since our apparatus did not allow for reliable trajectory measurements (i.e.,
kinematics) it is impossible to say whether primary endpoints undershot
targets. However, we can assess whether the actual endpoints (i.e., where
the screen was hit) systematically undershot targets. Though we found
some evidence of this type of undershooting, participants did not seem to
consistently undershoot the target, which is in line with previous findings
(e.g., Chua & Elliott, 1993; Fitts & Petersen, 1964).
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5.4. Target choice behaviour

The explicit choice component of the task required par-
ticipants to choose between a small and a large target. To
characterise participants’ target choices, we compared
the proportion of times the small target was chosen to
the number of times it would have been chosen, had par-
ticipants been optimal. In Fig. 7, the proportion of small
target choices is plotted as a function of the difference be-
tween the expected value for the small and large target
(DEV).

Participants should always choose the small target for
positive DEV (a small choice proportion of 1), and always
choose the large target for negative DEV (a small choice
proportion of 0). Cumulative Gaussians have been fit to
the individual data to assist the eye. If participants’ choices
were perfect, these functions would match step-functions
centred on the dashed lines at 0 DEV.

The individual data (Experiments 1 and 2, Fig. 7), sug-
gest that participants were sensitive to differences in ex-
pected gain, but not perfectly so. They generally picked
the higher valued target. However, differences between
the experiments are apparent. In Experiment 1, many par-
ticipants appeared nearly un-biased - they chose small tar-
gets when these had higher EV’s and large targets when
these had higher EV’s. In Experiment 2, on the other hand,
most participants appeared biased towards the small tar-
get – choosing it even if doing so resulted in a loss relative
to choosing the larger target. This is apparent in the fact
that best-fitting functions appear shifted to the left of the
dashed line at DEV = 0.

To characterise this apparent bias on a group level, we
pooled the data by experiment and fit cumulative Gaussian
density functions. As can be seen (Fig. 7), group level fits
confirm the apparent trend and show that the small target
bias is stronger in Experiment 2 than in Experiment 1 (as
judged by non-overlapping 95 percentile intervals). This
is noteworthy as participants appeared to have aimed for
the harder-to-hit target even though aiming for the eas-
ier-to-hit larger target would have resulted in a higher
return.
5.5. Task performance

We used standard methods, briefly outlined below, to
assess whether participants were optimal or not. See ’Per-
ceptuo-motor decisions & decision performance assess-
ment’ above for a detailed description and see
Trommershäuser et al. (2003a, 2003b) for mathematical
details.

Overall performance depended on two choices – choice
of aim point and choice of target. An optimal agent always
picks the best target and aim point. As the response distri-
butions were Gaussian and the penalty region symmetric
(missing a target in any direction incurred a penalty), the
optimal aim point was always the centre of each target.8



Fig. 7. Explicit target choice behaviour. Plots show the proportion of times the small target was chosen as a function of the value difference between the
small and the large target (DEV). Positive DEV means that the small target was more valuable. Conversely, negative DEV means that the large target was
more valuable. The top plots (Experiments 1 and 2) show individuals’ target choices for each experiment. Cumulative Gaussian density function were fit to
facilitate comparisons. The bottom plot (Group level fits) show cumulative Gaussian density functions fit to the pooled data for Experiment 1 (full grey line)
and Experiment 2 (dashed black line) respectively. Error bars are bootstrapped 95 percentile intervals.
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For each participant, we simulated an optimal agent, who
inherited the participant’s pointing variability, performing
the experiment 100,000 times. The resulting distribution of
average gains allowed us to estimate the expected gain of
the optimal agent and the confidence in this estimate. If a
participant’s performance lay outside the lower 95% confi-
dence bound on the expected gain of the optimal agent, they
were classed as sub-optimal. If participants performed bet-
ter than this lower bound, they were classed as statistically
indistinguishable from optimal.

Fig. 8 shows participants’ efficiencies for Experiment 1
and Experiment 2 (top and bottom panel, respectively).
The first thing to note is that participants’ efficiencies are
not distributed around an efficiency of 1 as would be ex-
pected if participants had been optimal, rather they are
lower. Nevertheless, six of eight participants in Experiment
1 were within the bounds of optimal performance. In
Experiment 2, on the other hand, only one of eight partic-
ipants’ efficiencies was within the 95th percentile of the
optimal expected gain. A Fisher’s exact test testing for dif-
ferences in optimal performance rates across the two
experiments is significant (p = .04). Likewise a Bayesian
comparison of rates (Kass & Raftery, 1995; Lee & Wagen-
makers, 2005) shows that, compared with the hypothesis
that the rates of optimal performance is the same across
the two experiments, the hypothesis that the rates differ
across experiments is 10.7 times more likely.

However, the absolute efficiencies across the two exper-
iments are fairly similar. In other words, relative to the
optimal agents, participants earned similar amounts in
the two experiments. The lower bound on optimal perfor-
mance, on the other hand, appears to be substantially



Fig. 8. Overall task efficiency (circles) and the lower bound of optimal efficiency (full line) for each participant in Experiments 1 and 2 respectively.

9 Of course, participants not minimizing motor variability and/or not
maximizing movement time does not, in of itself, imply that participants
were sub-optimal. The experimental task did not demand that they do
either, but that they earn as many points as possible. If participants were
hitting the larger target 100% of the time, or were hitting the nearer targets
100% of the time, differences in movement time and variability would be
largely irrelevant. However, even large near targets were not hit 100% of the
time (see Appendix C for details). This means that participants could
theoretically have improved their scores if they had minimized error and
maximized movement time.
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lower in Experiment 1 than in Experiment 2. Thus, the rea-
son participants are classed as optimal in Experiment 1,
but not in Experiment 2, appears to be due to differences
in the confidence intervals and not due to differences in
absolute efficiency levels. This is supported by statistical
analysis.

A Bayesian t-test (Rouder, Speckman, Sun, & Morey,
2009) comparing the absolute efficiency levels across the
two experiments shows that there is insufficient evidence
to conclusively favour either the null hypothesis that they
are the same or the alternative hypothesis that absolute
efficiencies differ (JZS Bayes Factor in favour of alternative
hypothesis = .55, unpaired t-test, t(14) = �1.13, p = .28).
However, the same test performed on the lower 95% confi-
dence interval of optimal performance shows overwhelm-
ing support for the hypothesis that confidence bounds
differ (JZS Bayes Factor = 79438, unpaired t-test,
t(14) = �9.68, p < 1e�6). Thus, the difference in participant
optimality across Experiments 1 and 2 appears due to a dif-
ference in how variable the optimal agent’s earnings were,
and not due to different levels of absolute participant
performance.

6. Discussion – Experiments 1 and 2

Regardless of whether participants were classed as sub-
optimal or optimal, they were generally sensitive to the
difference in expected gain between small and large tar-
gets and generally chose the target with the higher ex-
pected value. On the other hand, participants in
Experiment 2 were biased towards choosing the small tar-
get, the target with the higher but more uncertain gain,
even when this choice produced lower gains on average.
Both experiments further suggest that participants’ per-
ceptuo-motor behaviour may deviate from what is optimal
in ways not captured by Trommershäuser et al.’s (2003a,
2003b) model. Firstly, participants appeared to favour
speed over precision, producing movements to near targets
that were faster than necessary. Given the speed-accuracy
trade-off (Fitts, 1954; Schmidt, Zelaznik, Hawkins, Frank, &
Quinn, 1979), such movements should decrease precision
and therefore participants’ ability to hit targets. The model
does not capture such apparent satisficing as it assumes
that people’s movements maximize precision.

Secondly, participants appeared to relax their precision
criteria when aiming for larger targets. As Trommershäus-
er et al.’s model assumes that precision is maximized, par-
ticipants are not penalised for their less-than-maximal
precision, because it is the degree of precision they actually
display that is ‘inherited’ by the optimal model. Hence an
optimal model assuming that participants always mini-
mize movement error in perceptuo-motor task may make
participants appear more optimal than they really are:
Points that are lost, because participants’ are hitting the
targets less often than they could have done, do not enter
into the comparison with the optimal agent.9
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We followed this up in a control study (see Appendix B
for details), where we tested whether participants could
reach with equal precision to small and large targets when
they were explicitly asked to do so. Under these conditions,
three of five tested participants reached with equal preci-
sion to small and large targets. For these three participants,
the null hypothesis of equal precision was more than three
times as likely as the alternative hypothesis that the preci-
sion was unequal (JZS Bayes Factors > 3), with the evidence
for the two other participants being inconclusive. Conse-
quently, the failure to reach to small and large targets with
equal precision in Experiments 1 and 2 does not appear to
be due to a capacity limitation. By simulating optimal
agents who aim with equal precision to both target sizes,
one can also show that the apparent precision-satisficing
in Experiments 1 and 2 was consequential. Had partici-
pants been compared to such agents, their efficiencies
would have dropped significantly relative to the standard
analyses presented above (paired t-test, t(15) = �3.74,
p = .002, mean difference = �.02).

Most worryingly for claims about optimality, however,
was the effect of seemingly minor changes to task param-
eter. Across Experiment 1 and Experiment 2, the experi-
mental set-up was identical, and both experiments
required two kinds of choices: aim point- and target
choices. However, the precise stimulus configurations
and the reward structure differed across the experiments.
Compared to Experiment 2, Experiment 1 had smaller tar-
gets, fewer target locations, target distance differences
were greater and the difference between reward for the
small and the large target was greater. It turns out that
these differences in task parameters were highly conse-
quential. Experiment 1 resulted in optimal participants,
whereas Experiment 2 resulted in sub-optimal partici-
pants. This result implies that optimality standards as
commonly employed are not absolute but relative (see also
Section 11).

Relative standards mean that classifying systems as
optimal or sub-optimal is problematic without further
clarification. For which experiment should we use if we
wanted to evaluate the optimality of the perceptuo-motor
system: Experiment 1 or Experiment 2? We next explore
the effects of particular task parameters on the two sub-
components of our task in greater detail.
7. The effect of task parameters on performance metrics

The key result of Experiments 1 and 2 was that seem-
ingly innocuous changes in task parameters such as target
size result in very different verdicts on optimality. Next, we
simulate the effects of changes in task parameters to ex-
plore in greater detail how such changes might affect
sub-optimal participants.

We focus on three properties of the tasks: hit probability,
rewards and the total number of trials experienced. Note
that, although we simulate changes in hit probability by
manipulating target size, the same effects can be achieved
by instead changing target distance (Fitts, 1954; Schmidt
et al., 1979). That is, changes in hit probability can be
brought about by either changing target distance or target
size. However, simulating changes in target distance would
require extrapolating beyond the data we have available,
whereas simulating a change in target size merely requires
changing a task parameter (given the assumptions of the
model, i.e., that precision is maximized).

First, we consider how task parameter changes impact
on participants’ efficiency separately for the implicit and
the explicit choice component. Then, we explore which
changes across Experiments 1 and 2 are likely to explain
why most participants were classed as optimal in the first
experiment but not the second.
8. Task parameters and the optimality of aim point
choices

Fig. 9 illustrates the effect of changing target size on the
implicit component. Panel A shows the optimal aim point
(cross) with sample hit points (grey discs) as well as two
sub-optimal aim points (triangle and square). As target size
increases, naturally so does the likelihood of hitting the
target (Panel B), whether a participant is optimal (full line)
or sub-optimal (triangles and squares). Panel C shows the
hit probability for the two sub-optimal aim points as a pro-
portion of the optimal hit probability (i.e., as efficiency). It
appears that sub-optimal aiming becomes less costly in
terms of absolute efficiency as target size increases.

However, as noted above, whether or not behaviour is
considered optimal depends not on absolute efficiency,
but the relationship between absolute efficiency and the
variability of the optimal agent. Panel D shows the lower
95% confidence bound on the optimal agent’s hit efficiency
(dashed line). When either of the two sub-optimal aim
points (triangles, squares) results in efficiencies above the
dashed line, participants are classed as optimal. Con-
versely, efficiencies below the dashed line imply that par-
ticipants are sub-optimal. As can be seen in Panel D,
smaller targets lead to more variable optimal agents (and
thus wider CI’s). This means that small targets allow for
greater deviation from the optimal aim point before partic-
ipants are classed as sub-optimal.

How do these simulations fit with the results of Exper-
iments 1 and 2? Targets in Experiment 1 were smaller than
targets in Experiment 2. This means that sub-optimal par-
ticipants should have been more likely to be classed as
optimal in Experiment 1. This is precisely the pattern of re-
sults obtained. There were significantly more optimal par-
ticipants in Experiment 1 than in Experiment 2, and this
contrast appeared driven by differences in confidence
intervals rather than differences in absolute efficiencies.
However, we will return to the issue of the confidence
interval difference between Experiments 1 and 2 below,
and show that changes in target size are likely to have ac-
counted only for a small part of the total effect.
9. Task parameters and the optimality of target choices

We next examine how a change in hit probability af-
fects the explicit choice component of our task: the partic-
ipant’s choice between the small and the large target.
Fig. 10 illustrates the effect of changing target size and
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Fig. 9. Effects of changing task parameters on implicit choice. (A) Target with optimal and sub-optimal aim points (with a hypothetical response
distribution [grey discs]). (B) Hit probabilities for each of the three aim points: optimal (full line), small deviation (triangles), and a large deviation (squares).
(C) Efficiencies (hit probabilities normalized by optimal hit probabilities) for the two sub-optimal aim points in Panel A and B. (D) As Panel (C) but now with
the lower 95% CI of optimal performance.
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the resultant change in hit probability on target choice. In
the simulation, we set the size of the large target such that
the hit probability is close to 1 and then vary the size of the
smaller target. Panel A illustrates the effect of this manip-
ulation on hit probabilities for the small target (dashed
line) relative to the large target (full line). As we increase
the small target’s size (i.e., increase the small/large target
ratio), it becomes increasingly easy to hit (hit probability
increases).

Of course, for choosing between the small (dashed line)
and the large target (full line), knowing hit probabilities
alone is not sufficient; one also needs to know the rewards
associated with each target in order to identify the target
with the greater expected value. Panel B (Fig. 10) shows
the number of points a participant can expect to earn for
each target given the reward structure of Experiment 1.
DEV is the difference in expected value between the small
and large target. If it is positive, the smaller target would
yield greater gains on average and should be chosen (if
negative, it is the large target that promises better returns).
As can be seen from the graph, the large target should be
chosen for a small-to-large target size ratio of up to about
.4, as its expected value is higher in this range. With further
increases in the size of the small target, the participant
should switch and choose the small target.
Of course, to choose the more highly valued target, the
participant must recognize the differences in expected va-
lue. The black step-function in Panel C (Fig. 10), illustrates
the behaviour of an optimal agent who does this perfectly,
and so fully maximizes expected value (as in Trommershä-
user et al.’s 2003a, 2003b model). Such an agent will al-
ways choose the small target when its expected value is
higher (in which case the proportion of small target
choices is 1), and choose the large target when its expected
value is higher. The shape of the resultant step-function is
illustrative of the generally all-or-none prediction of max-
imization theories such as expected utility. However, peo-
ple’s ability to resolve differences will be limited in
practice: some differences will simply be too small for
the system to detect, thus making participants less than
perfectly sensitive to differences in expected value. Conse-
quently participants are unlikely to exhibit such perfect
sensitivity, though one would expect better choices when
DEV is large (because it should be more readily apparent
which of the two targets is better, see e.g., Mosteller & No-
gee, 1951; see also Brandstätter, Gigerenzer, & Hertwig,
2008, for this idea applied to model evaluation).

The grey function in Panel C of Fig. 10 illustrates a par-
ticipant who is less-than-perfectly sensitive to differences
in expected value (DEV). The cross in Panel B and C,
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Fig. 10. Effects of changing task parameters on explicit choice. (A) The effect of the target size ratio on hit probability for the small (dashed line) and large
(full line) respectively. (B) Expected value of the small (dashed line) and large (full line) target as a function of target size ratio. DEV is the difference in
expected value between the small and the large target (see text for explanation). The cross represents a hypothetical choice situation in which the small
target should be chosen. (C) Choice predictions (as proportion small target choices) for an optimal agent (black step-function) and a less-than-perfectly
sensitive sub-optimal agent (grey function).
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illustrates a particular choice situation in which the opti-
mal response is to choose the small target. The less-than-
perfectly sensitive participant (grey line) will only pick
the optimal target �80% of the time – leading to a loss rel-
ative to the ideal agent (black line). From the grey function,
it should also be clear that as the absolute DEV becomes
larger, the optimal agent and the sub-optimal agent be-
come increasingly similar.

How does this all relate to the explicit choices in Exper-
iments 1 and 2? Given that people are likely to be less-
than-perfectly sensitive to differences in expected value,
we would expect better choices in the experiment that
had the largest expected value differences. In Experiment
1, the difference between the small and large target reward
was greater, and the differences in target distance (and
hence hit probabilities) were greater, than those in Exper-
iment 2. This should mean that, on average, Experiment 1
had choice options that were more different than those in
Experiment 2. The mean absolute difference in expected
value was indeed greater in Experiment 1 than in Experi-
ment 2 (unpaired t-test, t(13) = 2.74, p = .017, mean differ-
ence = 4.2310). Thus, for anyone who is less-than-perfectly
sensitive to DEV differences, Experiment 1 is easier than
Experiment 2. One indication, that the explicit choice was
indeed easier in Experiment 1, is that the proportion of
choices that maximized expected value was greater in
Experiment 1 than in Experiment 2 (unpaired t-test,
t(14) = 3.86, p = .0017, mean difference = .218).
10. Task parameters and the bounds of optimal
performance in overall evaluation

So far, we have explored separately the effect of individ-
ual task parameters on the two choice components, but
what about their combination? Do these parameters inter-
act and which is most influential in bringing about the dif-
fering verdicts on optimality across the two experiments?

Participants’ absolute efficiencies were comparable in
the two experiments, yet participants were classed as opti-
10 One outlier �2.5 inter-quartile ranges from the median in Experiment 2
was excluded.
mal in Experiment 1 and sub-optimal in Experiment 2. The
crucial difference seemed to be the confidence intervals on
the optimal agents’ performance (see Fig. 8 above). The
confidence intervals are used to infer whether or not par-
ticipants are optimal. The wider confidence intervals in
Experiment 1 therefore meant a more lenient standard of
optimality. What could account for the different standards
of optimality?

The two experiments differed in seemingly innocuous
ways. Target distances, target sizes and the reward struc-
ture were slightly different across the two experiments.
However, one additional factor could be of importance
here. A further variation between studies was the number
of stimulus configurations (i.e. distinct decision problems).
Manipulating the number of distinct choice configurations
(here: 8 in Experiment 1 and 18 in Experiment 2), whilst
keeping the number of trials for each configuration con-
stant, results in a different number of total trials. Specifi-
cally, the total number of trials was substantially greater
in Experiment 2 (44 � 18 = 792) compared to Experiment
1 (44 � 8 = 352). Everything else being equal, a greater
sample size leads to tighter confidence intervals, so that
this also needs to be considered.

In short, the different widths of the confidence intervals
could potentially be accounted for by changes in target size
(and/or distance), changes in rewards and/or changes in to-
tal sample size. We explored the effect of these factors by
simulation. We simulated the eight optimal agents of
Experiment 2 (one for each participant) under conditions
that were made increasingly similar to those of Experiment
1. The variable of interest is how the lower 95% confidence
bound on the optimal agents’ efficiency changes when the
various task parameters change. In other words – how do
changes in task parameters affect the chances that a sub-
optimal participant is classed as optimal?

Fig. 11 shows the original tight confidence bound from
Experiment 2 (gray discs, ‘Exp. 2’) for each optimal agent
(1–8, x-axis). The other symbols show the result of varying
the degree of similarity between Experiment 2 and Exper-
iment 1. The difference, between the original bound (gray
discs) and the other bounds, is a measure of the effect size
of a particular change. The shaded region in Fig. 11 is the
between-subject 95% confidence interval on the lower



Fig. 11. The lower confidence bound of optimal efficiency as a function of
sample size, target size and reward structure. The five different symbols
represent the lower 2.5% bound of optimal performance as Experiment 2
is made increasingly similar to Experiment 1. The shaded area between
the dashed lines represents the 95% confidence bound (bootstrapped) on
the average lower 2.5% bound of optimal performance in Experiment 1.

11 As noted in the introduction to this simulation section, we would have
to extrapolate beyond the current data to simulate the effect of changes in
target distance and so treat such differences as noise here. To the extent
that the confidence bounds converge as experiments are made more similar
this imperfection is of little relevance.
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confidence bound from Experiment 1. If the two experi-
ments were identical we would expect the bounds from
Experiment 2 (or the simulated variants) to lie in this
region.

For the first simulation (crosses, Fig. 11) we equated the
number of total trials across the two experiments. This was
achieved by excluding from Experiment 2 the mid-distance
targets – creating an experiment with four possible target
locations (like Experiment 1). This resulted in Experiment
2 having the same number of total trials as Experiment 1,
but with different rewards and different target sizes. As
can be seen, the crosses that illustrate this change
(Fig. 11) deviate only marginally from the original confi-
dence bound – suggesting that the total number of trials
is relatively unimportant in explaining the difference in
confidence bounds across Experiments 1 and 2.

For the next three simulations, the number of total tri-
als was kept the same as those in Experiment 1. For the
second simulation, we additionally changed the target
sizes to match those of Experiment 1 (stars, Fig. 11). This
also had only a marginal effect on the confidence bounds.
For the third simulation, we changed the rewards (but
not target size). This appears to have an appreciable effect
on the confidence bounds (triangles, Fig. 11).

For the final simulation, in addition to equating the total
number of trials, we replaced both the target sizes and the
rewards in Experiment 2 with those from Experiment 1.
This resulted in the largest drop in the lower confidence
bound (squares, Fig. 11). In fact, the lower optimal bound
for many participants is now within a range we would ex-
pect from Experiment 1 (shaded region, Fig. 11).
The slight underestimation of variability relative to
Experiment 1 (shaded area) is possibly due to the fact that
far targets were nearer in Experiment 2 (this difference
could not easily be simulated11). Because targets were
nearer, they also were easier to hit (a greater proportion had
hit probabilities close to 1), and therefore should result in less
variable gains, which lead to tighter confidence intervals.

It is perhaps surprising that the effect of roughly dou-
bling the number of trials has such a relatively minor effect
on the width of the confidence bounds. However, what
matters is the variability on the overall gain in an entire
experiment. This variability depends not only on the confi-
dence intervals for hit-probabilities of particular targets (as
illustrated in Fig. 9), but also on the specific combinations
of rewards, penalties and hit probabilities across targets.
As Fig. 11 illustrates, these factors may interact in ways
that are difficult to predict.

To illustrate this further, consider two hypothetical
instantiations of our experimental task. In both instantia-
tions, the optimal agent is faced with two target pairs.
For each pair, the agent chooses the optimal target 40
times. In Experiment A, the rewards for hitting the two
optimal targets are 259 and 10 points respectively. In
Experiment B the rewards for the optimal targets are 115
and 100 points respectively. In both experiments the pen-
alty for missing is �5 points, and the higher valued target
is harder to hit than the lower valued target (probability of
hitting the high value target p = .5; probability of hitting
the low value target p = .8).

An optimal participant would, on average, earn the
same number of points in both experiments (134 points).
However, the confidence interval on the expected gain will
be very different. In fact, Experiment A will result in confi-
dence intervals almost twice the width of Experiment B:
namely, a width of approximately 80 points versus a width
of approximately 45 points. By imposing a different reward
structure, a change that will not affect a strictly optimal
participant, we have made it much more likely that a
sub-optimal participant be classed as optimal.

The previous simulations illustrate that one can, as we
did, illustrate some of the potential problems of categoriz-
ing participants as optimal or sub-optimal by breaking
down the effects of particular changes in task parameters,
but the final verdict on whether people are optimal or not,
depends on task parameters that interact in ways not eas-
ily foreseen.
11. General discussion

It has been suggested that the perceptuo-motor system
makes optimal, or near-optimal, decisions in tasks that re-
quire both explicit target choice and implicit aim point
choice (Seydell et al., 2008; Trommershäuser et al., 2006).
Using a novel perceptuo-motor decision task, we found
that this was the case for one set of task parameters
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(Experiment 1), but not for another set of task parameters
(Experiment 2). Even in Experiment 1, where participants
were mostly classed as optimal, participants’ efficiencies
were consistently lower than 1. That is, efficiencies did
not cluster around 1 as expected if participants had been
optimal.

We argued that the likely origin of the difference in per-
formance between Experiments 1 and 2 was a more lax cri-
terion of optimality in Experiment 1. The change in
criterion for optimal performance followed innocuous
changes in task parameters, such as changes in target size
and target reward. These parameter changes do not affect
the expected performance of an optimal agent and there-
fore do not affect participants who are truly optimal. Yet,
the changes had dramatic effects on whether participants
were classed as optimal. Through simulations, we showed
that task parameter dependent optimality is a general
problem that extends beyond the specific parameters of
our experiments.

Furthermore, departures from optimality were evident
in the raw data itself. Participants reached with greater
precision to small targets than to large targets, which sug-
gests that humans sometimes satisfice rather than maxi-
mize precision. Moreover, we showed that the apparent
failure to maximize precision was consequential. Had par-
ticipants been compared to optimal agents who aimed
with equal precision to both target sizes, their efficiencies
would have been lower than the ones reported here. We
further established that participants seem capable of
reaching with equal precision to small and large targets
when they are explicitly asked to do so.

Similar to Gepshtein et al. (2007), we also found that
participants did not make use of all the available response
time when pointing to near targets. Whatever the source of
this time under-utilisation, it is likely sub-optimal in the
present tasks. Spending more time on harder-to-hit targets
should increase the likelihood of hitting those targets (Fit-
ts, 1954; Schmidt et al., 1979), leading in turn to greater
earnings.

Both of these limitations in performance suggest that it
may be more appropriate to view performance as sub-opti-
mal, and they highlight the model-dependency of optimal
agent-based comparisons. Neither the failure to maximise
precision when reaching to large targets, nor the failure
to use all available response time when reaching to near
targets, both which likely impeded participants’ perfor-
mance, are captured when precision-maximization is as-
sumed as in Trommershäuser et al.’s (2003a, 2003b)
optimal agent model. Instead, the optimal agent simply
inherits the participants’ actual variability in hitting
targets.

The deeper problem, here, concerns which constraints
and cost assumptions to include in one’s model. It might
be possible to build optimal agents based on independent
assessment of how precise participants’ pointing behav-
iour could be if they were performing at their maximal le-
vel. Conversely, one might also assume that participants
are optimizing a different cost function; if this function
(whatever it is) were to be used for analysis instead, one
might potentially be tempted to label their actual precision
as optimal.
However, there are clear conceptual limitations that
arise here: If one includes all the factors influencing behav-
iour then ‘optimality’ seemingly follows by definition: lim-
itations in performance are simply translated into system
constraints and/or appropriate trade-offs between (subjec-
tive) costs. In the limit, findings of optimality become triv-
ial and cease to be of theoretical interest.

Methodologically, it may be invaluable to assume opti-
mality and iteratively seek to incorporate constraints as a
way of understanding the workings of the system. Ideal ob-
server analysis (Geisler, 2011) and rational analysis
(Anderson, 1990) can be used in this way: to, for example,
constrain the search for plausible models (see e.g., Schrater
& Kersten, 2002) and to facilitate the design of process
models (see, e.g., Howes, Lewis, & Vera, 2009).

Such methodological use of optimal models, however,
should be distinguished from contexts where substantive
statements about optimality per se (or lack thereof) are
at stake. Such statements are frequent in the literature,
whether they are phrased in terms of system optimality
or, as is more common in the cognitive and social litera-
ture, in terms of ‘rationality’. The statements discussed in
the introduction, which contrast the degree of optimality
between perception and cognition, provide just one small
sample of such claims.

The results presented in this paper, make clear how dif-
ficult such claims are to establish and sustain. A given
empirical assessment of human decision-making perfor-
mance necessarily involves a specific task that determines
how difficult the decision problem is. Everything else being
equal, an easier task will naturally lead to a more optimis-
tic view of human decision-making performance compared
with a harder task.

To illustrate task difficulty, consider a choice pattern
that violates maximization of expected value. When asked
to choose between a gamble that yields $2500 with a .33
probability, $2400 with a .66 probability and $0 with a
.01 probability and a gamble that yields $2400 with cer-
tainty, most tend to pick the latter (Kahneman & Tversky,
1979, pp. 265–266). The expected value of the former is
$2409 and the expected value of the latter is $2400. This
may be deemed sub-optimal, yet the expected loss of
choosing the modal response is only 0.4%. Moreover,
assuming noisy computational processes (Faisal, Selen, &
Wolpert, 2008), people might not even be able to distin-
guish between expected values that differ so little.

It may seem obvious that comparing performance
across tasks that vary in difficulty is problematic. Never-
theless, there has been little attempt to equate decision-
problems when making comparisons across modalities or
cognitive domains. When such attempts have been made,
little – if any – difference in performance has been found
(see Jarvstad, Hahn, Rushton, & Warren, 2013; Jarvstad
et al., 2012; Wu, Delgado, & Maloney, 2009). Furthermore,
the issue is not limited to comparison such as that between
perception and cognition.

All performance evaluations are inherently relative to
the tasks that make up the evaluation. Consequently, the
evaluations they provide are relative, not absolute. Opti-
mality analyses that evaluate performance relative to an
optimal agent do not circumvent this limitation, rather
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they compound it, because such model-dependent com-
parisons depend also on the constraints included in the
optimal agent.12

That statements about optimality are specific and con-
ditional in this way – that is, a behaviour is optimal given
a task of this difficulty, and given these capacity constraints
included in the optimal agent— may be appreciated by
many, however the literatures typically do not make this
explicit, and many claims are simply unsustainable once
this fact is taken into account.

The fact that performance evaluations are always task
relative makes comparative evaluations across systems
difficult. The surprising extent to which results reported
in this paper further reveal statements about optimality
to be sensitive to task parameters that are unlikely to be
the focus of attention compounds these difficulties. As
we have shown, it is possible to make people appear opti-
mal, or sub-optimal, by seemingly innocuous changes to
decision-making tasks, because changes to task parameters
have consequences for the confidence intervals delineating
optimal performance in ways that are difficult to foresee.
Consequently, a comparable level of performance can lead
to opposite verdicts on optimality across tasks.

In conclusion, our results suggest that statements about
optimality, both within and across domains, are likely to be
considerably more fragile than the literature presently
assumes.
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Appendix A.

Here we break down the response times into its two
separate components: reaction time and movement time
and analyse them separately.

A.1. Movement time

As can be seen in Fig. A1, movement times show
approximately the same pattern of results as the overall re-
sponse times (movement time + reaction time) reported on
12 Sometimes it is argued that some ideal observer models do provide
absolute standards (e.g., Ma, 2012), provided that the models are defined
relative to the information available at the sensory stage (e.g., the retinae).
However, even these models are conditioned on something – the
constraints of the sensors. It seems to us that there is no principled reason
for thinking that this particular constraint - the sensors being the way they
are - is any different to any other constraint, for example a particular
cortical structure (e.g., V1) being the way it is. In fact, recently the opposite
argument has been made: that higher cortical structures have constrained
the evolution of our eyes (Beck, Ma, Pitkow, Latham, & Pouget, 2012).
Regardless, modelling any constraint, whether at the sensor- or later levels,
implies that performance standards are relative (to those constraints) and
not absolute. Nevertheless, fully unconstrained models can perhaps be
specified. For light detection, this may involve conditioning on the whole
light spectrum – not just the one that is visible to our retinae. Similarly, for
the motor system such an unconstrained model might have no constraints
on precision and speed. In both cases, it seems unlikely that the system
would perform optimally given such an unconstrained model.
in the main paper. When participants point to far targets
they use more time than when pointing to near targets
(Experiment 1: (F(1,7) = 120.68, p < .001, g2

p = .95, Experi-
ment 2: F(2,14) = 289.28, p < .001, g2

p = .98). Recall that
the time available for each pointing movement was the
same regardless of distance. If participants had used nearly
all the available time (550 ms) to point at targets, the plots
in Fig. A1 would have been horizontal lines. Faster move-
ment times for nearer targets, compared to far targets,
suggests that movements to near targets were faster than
necessary. Another interesting trend is that participants
moved more slowly towards small targets than they did
to large targets (Experiment 1: F(1,7) = 21.31, p = .002,
g2

p = .75, Experiment 2: F(1,7) = 41.81, p < .001, g2
p = .86).

Given the speed-accuracy trade-off (Fitts, 1954; Schmidt
et al., 1979) this also suggests that people were sacrificing
precision for movement speed. In Experiment 1 there was
also a significant interaction F(1,7) = 9.54, p = .018,
g2

p = .58), whereas in Experiment 2 it did not reach signifi-
cance (F(2,14) = 41.81, p = .09, g2

p = .29).

A.2. Reaction time

Reaction times for most participants show the opposite,
albeit weaker, trend to that of movement time. Firstly,
reaction time decreases with increases in target distance
(Experiment 1: F(1,7) = 11.32, p = .012, g2

p = .62, Experi-
ment 2: F(2,14) = 20.01, p < .001, g2

p = .74). Thus, partici-
pants to some extent appear to trade-off movement time
with response time, initiating movements faster to targets
that are far away. Secondly, for some participants reaction
times to small targets are slower than reaction times to
large targets. This trend was significant in Experiment 2
(F(1,7) = 8.125, p = .025, g2

p = .54) and marginal in Experi-
ment 1 (F(1,7) = 4.92, p = .06, g2

p = .41). In Experiment 1
there was also a significant interaction (F(1,7) = 5.72,
p = .048, g2

p = .45), whereas none was detected in Experi-
ment 2 (F(2,14) = .376, p = .693, g2

p = .05) (Fig. A2).
Appendix B. Is target size-independent precision
achievable?

Here we give brief details on the small control study re-
ported on in ’’Discussion – Experiments 1 and 2’’. Only sig-
nificant deviations from Experiments 1 and 2 are noted.

B.1. Method

B.1.1. Participants and instructions
Five participants took part. All participants (except Par-

ticipant 2 who was the first author) were paid at an hourly
rate of £10. Participants were informed that speeded
movements are variable and that even if one aims for the
same spot on each reach, the actual end point will deviate
randomly from trial to trial. They were further informed
about the difference between accuracy and precision. Par-
ticipants were instructed to minimize the distance be-
tween each end point and the perceived target centre. All
participants (except Participant 2) were naive as to the
purpose of the study.



A B

C D

Fig. A1. Movement time: group averages (B and D) and individual movement times (A and C) as a function of target distance, target size and experiment.
The dashed line represents small targets and the full line represents large targets. The legend shows the radius of each target in pixels (1 pixel = .27 mm).
Error bars are within-subject 95% confidence intervals.
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Fig. A2. Reaction time: group averages (B and D) and individual reaction times (A and C) as a function of target distance, target size and experiment. The
dashed line represents small targets and the full line represents large targets. The legend shows the radius of each target in pixels (1 pixel = .27 mm). Error
bars are within-subject 95% confidence intervals.
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B.1.2. Stimuli, experimental design and procedure
On each trial, one target disc was displayed to the left of

the dock at a distance of �9.2 cm (340 pixels) at one of five
angles (�15�, �7.5�, 0�, +7.5�, +15�). Targets were either
small (radius �2.9 mm/11 pixels) or large (radius
�5.9 mm/22 pixels) yellow discs. On each trial a random



Fig. C1. Hit probabilities for Experiments 1 and 2. Each panel shows average hit probability (across participants) for each experiment as a function of target
distance and size (pixel radius). The dashed line represents small targets and the full line represents large targets. The legend shows the radius of each
target in pixels (1 pixel = .27 mm). Error bars are within-subject 95% confidence intervals.
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target size and target angle was selected for presentation.
In total, 300 small and 300 large non-late and non-antici-
patory trials were collected.

Participants received feedback identical to that in
Experiments 1 and 2 on where they hit the screen (but
did not receive any points for hitting the targets as we
wanted to minimize the incentive for satisficing).
13 There are two potential issues with directly comparing Experiment 3
with Experiments 1 and 2. Firstly, Experiment 2 generally had more data
than Experiment 3 (where there were 300 large and 300 small target
samples). A reviewer also questioned whether precision differences may be
affected by target distance (in Experiment 3 one mid-distance was used,
whereas Experiments 1 and 2 used two and three different target distances
respectively). As a control, we therefore fit bivariate Gaussians to the mid-
distance data in Experiment 2 (the same distance as used here). The
parameters of these maximum-likelihood fits were used to simulate
participants in Experiment 2 reaching, the same number of times as here,
to mid-distance targets only. Even when distance and sample size has been
equated, the average precision difference between small and large targets is
larger in Experiment 2 than here (t(11) = 3.7, p = .003, mean
difference = .96).
B.1.3. Data analysis and results
For each participant we collapsed across target angle,

creating one small target and one large target distribution
(see Gordon et al., 1994). On a group level, there was a very
small but detectable effect of target size on movement
time (t(4) = 4.18, p = .014, mean difference = 4.2 ms), indi-
cating that movements to smaller targets were marginally
slower than movements to large targets. We did not detect
an effect of target size on either response time or reaction
time (t(4) = 1.02, p = .37, mean difference = 1.6 ms;
t(4) = 2.51, p = .066 , mean difference = 5.9 ms).

We compared each participant’s movement variability
for small targets to their movement variability for large
targets using un-paired t-tests. The t-statistic was used to
derive JZS Bayes Factors (Rouder et al., 2009), which allow
inferences in favour of the null hypothesis (movement var-
iability does not differ across target size) as well as in fa-
vour of the alternative hypothesis (movement variability
does differ across target size).

Three of five participants reached with equal precision
to small and large targets (JZS Bayes Factors > 3) and the
evidence for two of five participants was inconclusive. If
one performs the same analyses on the data for Experi-
ments 1 and 2, the results are markedly different – most
participants reached with greater precision to small targets
(12 of 16, JZS Bayes factors < 0.33) and only three of sixteen
participants reach with equal precision to small and large
targets (JZS Bayes Factor > 3). A group-level analysis pro-
vides similar evidence, showing that participants had a
lower average difference (between small and large targets)
in movement variability compared to those in Experiments
1 and 2 (t(19) = 3.86, p = .001, mean difference = 1.33).13

Appendix C. Target hit probabilities

See Fig. C1.
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