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Abstract

Minimisation of the mass of aerospace structures has been investigated
by researchers and designers for many years. It is an efficient means to
reduce the manufacturing costs, fuel consumption and environmental
impact. To achieve this objective, high performance composite ma-
terials and optimised configurations are utilised in modern aircraft
design. Additionally, use of the postbuckling reserve of strength has
been considered during the preliminary design stage to obtain more

efficient structures.

The exact strip analysis and optimum design software VICONOPT
has been developed and used in postbuckling analysis. VICONOPT
is able to give a good initial evaluation of load versus end shortening
when compared with experimental and finite element results. However
it provides poor predictions of the stress and strain distributions in
the postbuckling range. This is due to its assumptions concerning
the longitudinal invariance of stress and the sinusoidal variation of
buckling modes in the longitudinal direction. These assumptions are
appropriate for initial buckling analysis but they limit the accuracy

of subsequent postbuckling analysis.

This thesis outlines some developments which improve the existing
exact strip postbuckling analysis by improving the accuracy of mode
shape prediction and stress and strain distributions. Based on pre-
vious research by Von Kéarmén, improved governing equations are
derived and solved for general anisotropic plates with different in-
plane edge conditions. Implementation of the improved analysis in
VICONOPT enhances the accuracy of mode shapes and stress and

strain distributions in the postbuckling analysis.
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Chapter 1

Introduction

1.1 Background

The design and manufacture of modern commercial aircraft is of major research
interest due to their complexity and technical challenge. Aircraft structural de-
sign has become more complicated and significant due to recent developments in
technology and considerations of safety and financial and environmental factors.
Aircraft structures which are the focus of design and academic research mainly
include wings and fuselage. Figure 1.1 shows typical sections of an aircraft wing
and fuselage of Airbus A380. For the complex task of aircraft design, the design
process normally consists of three stages, a conceptual design phase, a prelimi-
nary design phase and detailed design phase. In the conceptual design phase, a
variety of possible aircraft configurations that meet all the requirements in the
design specifications are collected to sketch up a basic concept of the aircraft.
Then the design specifications established in the conceptual design phase will
be used to fit design parameters in the preliminary design phase. The optimi-
sation of the aircraft, structural analysis and control design are also carried out
in this phase. Moreover, wind tunnel testing and computational calculations are
required to determine the structural stability and mechanical characteristics. As
a result of high speed computers, a variety of computer software is utilised to

complete a great number of tests and analyses, which bring benefits in reducing
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Figure 1.1: Typical section of A380 wing and fuselage [1]

computational consumption and therefore saving money in the preliminary design
phase. Finally in the detailed design stage, determinations of component design
and fabrication aspects are completed.

In modern aircraft design, lightweight aircraft structures are essential due
to the consideration of financial factors and environmental impact. Therefore
minimisation of weight of aircraft is taken into account by both researchers and
designers. High performance composite material is regarded as an alternative to
traditional metalic material (e.g. aluminium and titanium) in parts of aircraft
such as the wings and the fuselages. Composite material can bring advantages
in lighter weight structures due to its higher strength-weight ratios, moreover
it also offers resistance to fatigue and corrosion. Figure 1.2 shows two modern
commercial jets, Boeing 777 and Airbus A380, which utilise a great amount of
composite materials. With a combination of efficient analysis and optimisation
tools, high performance materials can lead to significant increases in stiffness,
strength and reliability, while minimising the weight of aircraft structures.

Another way of minimising the weight of aircraft structures is to take into
account the postbuckling reserve of strength. A plate structure can often carry
loads far in excess of its critical buckling loads in a stable manner before it
collapses. This phenomenon is known as postbuckling and was first investigated
by Euler [4] in 1744. By taking advantage of the postbuckling properties of a
material, structures can carry more loads within a safe range, further reducing

the weight of aircraft structures.
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Figure 1.2: Boeing 787 and Airbus A380 [2]

Owing to the rapid development of computer technology, computer analy-
sis software has been widely accepted and used in aircraft engineering in the
past few decades. Researchers and designers have obtained great benefits from
high speed computers in computational analysis. In the preliminary and detailed
phases of aircraft design, finite element analysis (FEA) software (e.g. ABAQUS,
NASTRAN and ANSYS) have numerous advantages in terms of easy modelling
and accurate analysis. However, researchers and designers keep seeking for more
efficient computational approach to reduce the computation time of the software.
Finite strip analysis (FSA) which was introduced by Cheung [5] in 1968 has proved
to be a powerful and efficient tool in the analysis of structural components. Later
on Stein [3] provided an analytical solution to postbuckling of isotropic and or-
thotropic plates in compression and shear. In 1990, Williams et al. [6] presented a
buckling and vibration analysis and optimum design software VICONOPT based
on an ’exact strip’ approach, which provided an reliable efficient approach for
analysing anisotropic plates in the preliminary design phase.

VICONOPT is not only an analysis software but also an optimisation tool
which deals with anisotropic plates in combined load cases and edge conditions.
It has been shown to be a reliable, fast tool compared with FEA and FSA while
providing adequate accuracy in the preliminary design phase. This thesis is based
on existing theory of Kennedy [7] and Stein [3], while developing the improved
exact strip analysis theory and implementing improvements to VICONOPT in
postbuckling analysis. The features of this improved analysis in VICONOPT lead
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to accurate solutions in postbuckling analysis and keep efficiency advantages in

preliminary design.

1.2 Thesis motivation, aims and objectives

The motivation for this thesis is to enable reliable, efficient, and accurate post-
buckling analysis in the software VICONOPT. VICONOPT has been utilised as
an analysis tool and optimum design software in both research and industry for
many years. It was developed for typical aircraft structure components, such
as aircraft wing and fuselage panels made from both isotropic (e.g. metallic)
materials and anisotropic (e.g. composite) materials with combined load cases.
VICONOPT is an efficient tool in the preliminary design phase having been
proved to be up to two orders of magnitude faster than FEA software such as
ABAQUS [§] and NASTRAN [9]. VICONOPT has been validated as a reliable
tool in initial buckling analysis for preliminary design of aircraft. However it loses
accuracy in postbuckling analysis, notably in the calculation of stress and strain
distributions. The improvement of the postbuckling accuracy of VICONOPT is
therefore an attractive objective. To improve the postbuckling prediction of stress
and strain distributions, previous work by Stein [3], who presented an analytical
solution, provides inspiration for the project accomplished in this thesis. More
importantly, by combining with Kennedy’s [7] work, coupling of different sine
and cosine terms and consideration of anisotropic plates have been implemented
into the improved postbuckling analysis, which enables analysis of anisotropic
plates under more general and complicated load and edge conditions. Mean-
while, features which enable fast analysis in VICONOPT are also kept to retain
the advantage in the preliminary design phase.

VICONOPT analysis assumes longitudinal invariance of stress and the sinu-
soidal variation of buckling modes in the longitudinal direction. These assump-
tions are proper and accurate enough for initial buckling analysis. However they
limit the accuracy of subsequent postbuckling analysis. VICONOPT is able to
give a good evaluation of load versus end shortening in initial buckling analysis

when compared with FEA and experimental results. However VICONOPT shows
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poor prediction of stress and strain distributions in the postbuckling range. The
aims and objectives of the project are mainly concentrated on improving post-
buckling predictions of stress and strain distributions. The work involved roughly
consists of three stages to meet these objectives. First of all, the improved exact
strip postbuckling analysis is investigated based on Stein’s [3] work. In this stage,
the theoretical work is done and improved governing equations are derived and
solved. Then in the second stage, the relevant formulations and calculations are
compiled in a Fortran 77 program which makes possible the implementation of
the improved exact strip postbuckling analysis into VICONOPT. Finally the im-
proved analysis is implemented into VICONOPT so that it can produce accurate

postbuckling analysis by using the improved exact strip postbuckling analysis.

1.3 Layout of the thesis

Section 1.1 in Chapter 1 presents an introduction of background relevant to the
research topic. In section 1.2 the motivations, aims and objectives of the project
have been outlined. Finally, a synopsis of the following chapters is described in
detail as below.

Chapter 2 provides a brief review of initial buckling and postbuckling theory
for prismatic plates. The basic theory and formulation of buckling and postbuck-
ling is introduced. Moreover, relevant research concerning postbuckling behaviour
of plate structures is critically reviewed and evaluated. As a crucial reference to
this project, Stein’s [3] method is introduced and demonstrated in detail.

Chapter 3 gives a detailed description of exact strip analysis and the Wittrick-
Williams algorithm, which provides a theoretical background to the remainder of
the thesis including VICONOPT and improved exact strip postbuckling analysis.

In Chapter 4, the exact strip analysis software VICONOPT is presented with
an emphasis on the development of its analysis features. The earlier programs
VIPASA and VICON are introduced in detail in order to describe the main anal-
ysis features. The development and main features of VICONOPT are then briefly
discussed followed by the presentation of the optimum design capacity. Moreover,

the process of the existing postbuckling analysis in VICONOPT is also examined.
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Chapter 5 is dedicated to the new theory developed in this project which
deals with the problem of inaccurate postbuckling prediction of stress and strain
distribution. The so-called improved exact strip postbuckling analysis is intro-
duced in detail with the improved governing differential equilibrium equations
and solutions.

Chapter 6 presents the illustrative numerical results obtained from improve
exact strip analysis. The results are shown for an isotropic square plate with
various edge conditions. The finite element results from software ABAQUS are
used to compare with those from the improved analysis to validate the current
approach. Old VICONOPT results are also compared with improved postbuck-
ling analysis and ABAQUS analysis in some cases to show the improvement of
improved postbuckling analysis. Relevant discussions of improvements and errors
made by the improved analysis are introduced and evaluated with the demon-
stration of results.

Chapter 7 shows illustrative results from the improved postbuckling analysis
for other cases of problem, including isotropic plate with different aspect ratio
(0.5 and 1.5 respectively), symmetric balanced composite square plate, unsym-
metric unbalanced composite square plate and isotropic square plate with shear.
The results from improved postbuckling analysis are compared with those from
software ABAQUS to validate the accuracy. Discussion of results and evaluation
of error are also presented following the demonstration of results.

Chapter 8 concludes the main objectives of this thesis and briefly summarises
the processes of achieving these targets. The additional capabilities provided
by improved analysis are reviewed and concluded. Recommendations for further
extension and development based on improved analysis are critical evaluated and

proposed for the future work.



Chapter 2

Initial buckling and postbuckling

theory of prismatic plates

The buckling behaviour of a range of commonly used structures has been pre-
dicted and investigated for centuries. Regarding the history of buckling research,
the first study contributing to the buckling problem is the so-called "Euler col-
umn’. Euler [4] presented the theory of obtaining the equilibrium equation and
critical buckling load of a compressed elastic column. Besides buckling research
on column, Bryan [10] is recognised as the pioneer researcher who investigated
the buckling behaviour of plates in 1890. Following researchers like Donnell [11],
Von Kérmén and Tsien [12], and Batdorf [I3] then extended the buckling analysis
and investigation to shell structures. Moreover, the instability buckling analysis
of columns was carried out by Von Kérman [14], who investigated plastic defor-
mation of columns and beams. Later on, the classical nonlinear bifurcation theory
was developed by Koiter [15], which motivated the nonlinear buckling analysis of
continuous elastic structures. Further research by Hutchinson [I6] brought im-
portant contributions to nonlinear post-bifurcation/post-buckling analysis in the
plastic range.

When a slender structure is loaded in compression, a point is reached where
any deformation in geometry causes loss of load carrying ability. At this stage,

the structure is considered to have buckled and is unstable. Therefore, buckling is
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generally known as structural instability leading to failure. In practice, buckling
is regarded as a sudden failure of a member of a structural component subject to
compression, where the actual compressive stress at the point of failure is found
to be lower than the ultimate compressive stress that the material is theoretically
able to carry. Prediction of such buckling behaviour is regarded as crucial to struc-
tures subject to compression, and also to shear and dynamic loading. Basically,
postbuckling problems involve nonlinear analysis rather than linear analysis, and
are therefore more complicated to resolve. This chapter introduces buckling and
postbuckling phenomena, and investigates this behaviour by presenting several
existing plate theories. Meanwhile, recent work on the postbuckling of plates is

reviewed.

2.1 Phenomenon of buckling

A buckled structure is normally known as unstable in engineering, and therefore
buckling is also regarded as structural instability. To better understand the con-
cept of buckling, the definition of instability therefore needs to be mentioned.
Jones [I7] provides a rigorous definition for instability which is ” An equilibrium
state or configuration of a structural element, structure, or mechanical system is
unstable if any ‘small’ disturbance of the system results in a sudden change in
deformation mode or displacement value after which the system does not return
to its original equilibrium state”. Therefore a buckling configuration can be re-
garded as a loss of the stable equilibrium state of a structure. To examine the
state of a structure, it is essential to distinguish the types of equilibrium. In
Fig.2.1 two spheres are placed on surfaces which are concave and convex respec-
tively. In Fig.2.1(a) the sphere will move back to its original stable position (solid
line) after it has been moved to another place (dashed line) due to its gravity.
The condition is hence called stable equilibrium, and the potential energy is a
minimum. In Fig.2.1(b) once the sphere is placed on the convex surface, it moves
away from its original place and is not able to move back. This is a condition of
unstable equilibrium, and the potential energy is a maximum. The phenomenon

of stability as described above is similar to real buckling behaviour of structures
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Figure 2.1: Types of equilibrium (a) stable (b) unstable

subject to combined loadings. Engineers and researchers who study buckling be-
haviour of structures tend to establish the point when structures become unstable,
namely, the onset of structural buckling.

According to Galambos [I8] and Chen and Lui [19], buckling can be classi-
fied into two categories which are buckling into an adjacent stable equilibrium
state and buckling into a non-adjacent stable equilibrium state. For buckling
into an adjacent stable equilibrium state, the load versus deflection behaviour of
structural elements suddenly changes at the critical buckling load from a stable
equilibrium to an adjacent buckled stable equilibrium. In this type of buckling,
the structure starts to buckle when the compression load exceeds the critical
buckling load at which the bifurcation occurs in the load-deflection graph. For
example, an Euler column with axial loading will buckle when the loading exceeds
the critical buckling load P.. (Fig.2.2(a)). The load versus deflection behaviour
follows the deflection path when the compression increases, and otherwise follows
the path in the opposite direction when the column is unloaded. For buckling
into a non-adjacent stable equilibrium state, if the load is increased infinitely
beyond the the critical load, the structure will deform into a different stable con-
figuration which is not adjacent to the previous configuration. In Figure 2.2 (b),
the deflection path achieves a maximum at point A which is known as the limit
point, then suddenly jumps from point A to C which is not an adjacent stable
equilibrium. A typical example of this type of buckling is snap-through buckling
of a toggle frame shown in Fig.2.2(b).

From the load-deflection graph, the critical buckling load can be found at
the point where bifurcation occurs. In the design of structures, a structure may

become unstable and buckled before the ultimate strength has been reached.
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Therefore, buckling behaviour and the critical buckling load of structure is very

important in both design and academic research.

2.2 Buckling theory of thin plates

2.2.1 Classical plate theory

A plate structure is a typical structure which is commonly used in aircraft en-
gineering. The plate structure can be classified as either a thin plate or a thick
plate structure depending on the width to thickness ratio. A plate can be defined
as a thin plate when the thickness to width ratio is less than 0.1, otherwise it
will be defined as a thick plate. The mechanical properties of the plate also have
an effect. In the following section, plate theories will be introduced for isotropic,
orthotropic and anisotropic plates, where isotropic materials have the same prop-
erties in all directions (e.g. glass and metal), orthotropic materials have two or
three mutually orthogonal twofold axes of rotational symmetry so that their me-
chanical properties are different along each axis and anisotropic materials have
mechanical properties which are different in any direction, namely, directional
dependent. Classical plate theory (CPT) considers a plate which is sufficiently
thin to assumes the transverse shear force is small compared to the bending force.
The theory assumes the Kirchhoff hypothesis that: normals to the mid-surface
of plate remain straight and normal after deformation. The neglection of shear
deformation effects in classical plate theory satisfies the analysis of thin isotropic
elastic plates. However for thick plates and anisotropic plates which have a modu-
lus relationship of Ey;/Fas > 25, the shear deformation effects cannot be ignored.
Other plate theories concerning this will be discussed in the following section. In
this section, assumptions and general formulations of CPT are introduced and
referenced to the thin plate buckling theory presented by Leissa [20] and Reddy
[21].

Fig.2.3 shows a typical thin plate with length, width and thickness of a, b
and h respectively, and a plate element. From the Kirchhoff hypothesis the

11
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Figure 2.3: Thin plate notation
22
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displacement for the kinematic behaviour of the plate can be written in the form

U=1Uy— 2=,V ="Uy — 2— (2.1)

where u, v, w are displacements of a typical point in the plate, while ug, vy are in-
plane displacements of the mid-surface. Furthermore, all the above quantities are
functions with respect to  and y only. Using the strain-displacement relationship
of plane elasticity theory, the in-plane normal strain €., €, and shear strain -,

may take the form

5_8u€_02; _8u+av (2.2)
T ox) y_ay’%y_ﬁy ox ‘
Substituting equation (2.1) enables equation (2.2) to be rewritten as
Ex = €9 — 2Ky, Ey = 52 — 2Ky Yoy = ”ygy — 2Ky, (2.3)

0 .0 0 : :
where €, €, and ~,, are the mid-surface strains and k;, k, and k., are the

changes of curvature during deformation. These quantities are given as

0 8U0 0 8110 0o _ auo 6’110

= Z0 0 20, 20 2.4

0w 0w 0*w
Ky = ——

-2 —9 - = 2.
ar2’ " oy? » ey Oxdy (2:5)

By calculating force and moment integrals through the thickness of the plate, the
in-plane force resultants N,, N,, N, and moment resultants M,, M,, M,, can

be obtained as follows

h/2 h/2 h/2
N, :/ o.dz, N, :/ oydz, Ny, :/ Vaydz (2.6)
—h/2 —h)2 —h/2
h/2 h/2 h/2
M, :/ o,2dz, M, :/ oyzdz, My, :/ Vay2dz (2.7)
—h/2 —h/2 —h/2
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where o, and o, are the in-plane normal stresses and +,, is the in-plane shear
stress. Rewriting the relationships between force and moment resultants and mid-

surface strains and curvature in matrix form, the following expression is given

N, Ay A A Bu B Bl6- [ 52 1

Ny Az Az A Bz B B 52

Nzy _ A Asg As¢ DBis B Bes _ 723, (2 8)
M, By B Big Du D Dis —HRg '
My Bia By By Dig Diy Dag —Ry

_M:py_ _Blﬁ Bys Bes Dig Dag D66_ | — Razy |

where A;;, B;; and D;; are the in-plane, coupling and out-of-plane stiffness respec-
tively. To obtain the differential equations which govern the buckling behaviour

of plates, the equilibrium equations are given as

ON, = ONg
ox + oy 0
ON,, ON,
ox + oy 0
0*M. 0*M. *M *w 0%w 0%w
42 el Y+ N. 2N, N, = 2.
0x? + 0x0y + Oy? + ¥ Ox2 + my8w8y+ Y Oy? 0 (2.9)

The above equilibrium equations are the fundamental form for the buckling prob-
lem and describe the state of neutral stability for plate structures. To explore the
equilibrium equations in the buckled configuration for isotropic, orthotropic and
anisotropic plates respectively, a simplified form of the above governing equilib-
rium equations can be obtained by the following procedure. Substituting equa-
tions (2.4), (2.5) and (2.8) into equation (2.9) and rewriting the equations in

matrix form gives

Ly Lyo L3 U 0
Loy Lo Lo v| =10 (2.10)
L3 L3y (Lss—F)| |w 0
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where L;; are differential operators in terms of plate stiffness

0? 0? 02
Ly =A 2A Ags—=—
11 g5 + 2416 D20y + Ago 0
02 0? 0?
Ly =A 2A Aso—=
22 259 + 2A26 5~ D20y + Agp By
oz* ot ot ot ot
Fos = Dnigga + 4Dy 2P0 200) g T4 0 guay + Py
0? 0? 0?
Lig=1Loy =A== + (A A A
12 21 1655 + (A2 + 66)a 9 + Az 0
0’ o? o? o’
Lis=Ls =—B - 3B B 2B — Byg—
13 31 153 165220y — (B2 + 66)a BIE 25,3
9 3 3 ?
Lys = L3y = —B - 3B B 2B — Byp— (2.11
23 32 1653 2% 5012 — (B2 + 66)a 20y 2755 (2.11)
and F' is the differential operator representing the in-plane loading
0? 0? 0?
F=N,— +2N,y——+ N,— 2.12
0x? + Y 0xy * Y Oy? ( )

Just before buckling, the in-plane equilibrium equations yield u = v = 0. For

symmetrically laminated cross-ply plates, B;; = 0 and hence the operators L3

and Loz in equation (2.11) are null. Moreover, the absence of stiffnesses D¢ and

D¢ cancels the corresponding terms in operator Ls3, which gives the out-of-plane

governing equation as

4 4 4 2 2 2

D 2—4 +2(Dya +2Dgs) afzgyZ + Doy g;j - (Nx((%’ +2N,, gx;"y +N, 6@;;)) ~0

(2.13)
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For homogeneous orthotropic plates the governing equation is in the same form
as for equation (2.13) above.

For symmetrically laminated plates, the coupling between bending and twist-
ing can not be ignored therefore stiffnesses Dig and Dsg are non-zero. Hence the

governing equation is written as

0*w J*w o*w 0*w 0*w
Dll@ + 4D16m +2(D12 + QDGG)W + 4D26W + D228_y4_
0*w 0*w 0*w
Ny— +2N,,———+ N,—) =
( ox? + Y 0x0y + y@yz) 0
(2.14)

For a homogeneous anisotropic plate the governing equation has the same form as
equation (2.14) but the only difference is in how the stiffnesses D;; are calculated.
The complex problem of unsymmetrically laminated plates, is not discussed in
this thesis and therefore the equilibrium equation is not given here.

Once the out-of-plane governing equilibrium equations are derived, the solu-
tion can be subsequently obtained from them with in-plane equilibrium equations

using an analytical approach.

2.2.2 First-order shear deformation plate theory

As described above, considerations of shear deformation cannot be ignored when
the plate thickness increases significantly (width to thickness ratio greater than
0.1). Moreover for laminated composites, the shear flexibility is particularly cru-
cial because the moduli of elasticity in transverse shear are much lower than the
in-plane moduli. In these cases, the so-called first-order shear deformation plate
theory (FSDPT) which considers the shear deformation as having an important
effect on buckling behaviour is introduced briefly. To start with the Kirchhoff
hypothesis mentioned in Section 2.2.1, the assumption of no consideration of
transverse shear deformation is relaxed by allowing the transverse normals per-
pendicular to the mid-surface to rotate after deformation. The theory concerning
shear deformation effects was first developed by Reissner [23], [24] and Mindlin
[25] in the 1940s and 1950s on isotropic elastic plates, and later extended to
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anisotropic plates by Ambartsumyan [26]. Because the shear deformation effects
need only be considered when the thickness of plate is big enough, the theory
basically deals with the analysis of thick plates. In this section, first-order shear
deformation plate theory is introduced briefly with basic formulations which are
attributed to Leissa [20], Reddy [21] and Wang et al. [27].

In shear deformation plate theory the rotations about x and y axes of a certain

point on the mid-surface can be written as

0 0
2 :¢z+¢z78_;j :¢y+¢y <2'15)

ox
where 1, and v, are the rotations about the z and y axes respectively, and ¢,
and ¢, are the changes in rotation due to shear. The in-plane displacements at

an arbitrary point in the plate are rewritten as
U= Uy — 2P,V = Vg — 2y (2.16)

where ug and vy are displacements on the mid-surface of plate as mentioned in
classical plate theory. Meanwhile, the curvature changes are also rewritten as
Obe Oy, U, OU

fie = 9= gy v = 5 T gy

(2.17)

Owing to the consideration of the shear deformation effect, it is essential to derive

additional stiffness relationships as

Qx:| |:A44 A45:| |:¢:|

=k Y 2.18
[Qy Ay Ass) |0, (2.18)
where @), and @, are shear forces determined by integrating transverse shear
stresses over the thickness of the plate, while Ay, Ass and Ass are additional
stiffnesses which describe the relationships between shear forces and stresses.
The coefficient k is a so-called ’shear correction factor’ which is usually taken

as either k = 5/6 = 0.833 [23] or 7%/12 = 0.822 [24] for homogeneous isotropic

plates as well as for composite plates.
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Shear forces are then included in the equilibrium equations so that equation

(2.9) is rewritten as

ON, 0N,
— =0
ox + dy
ON,, 0N,
Py
ox + y
0Qu  0Qy OPw oy Fw o Pw_ (2.19)
Ox oy ? Ox2 Y 0xy Yoy '

Substituting equations (2.4) and (2.18) into the stiffness equations (2.8) and
(2.19), and then substituting these expressions into equation (2.20), gives the

governing equilibrium equation as

Lll L12 L13 L14 0 u 0
Loy Loy Loy Loy 0O v 0
Ly L3y Lss Lsa Lss| |—¢z| = |0 (2.20)
Ly Lag Laz Lag Las| | =ty 0
0 0 L53 L54 L55 w 0
where 92 92 92
Ly =An— +2A16——— + Ass =
11 153 + 2456 D20y + Asgs oy°
02 02 02
Loy = Ago— + 2A0—— —
22 2753 + 2A% 020y + Asgo 72
02 0? 02
L33 = Dy1— + 2D1g=——— + Dgs=—— — kA
33 g5 + 256 D20y + Dss 0 55
0? 0? 02
Ly = Deg—=— + 2A26=——= + D= — kA
44 665 3 + 242 D20y + D2 BN 44
0? 0? o
Lss = —k(Ass=— + A A —F
55 ( 558x2+ 555 + 17 5)
0? 0? 0?
Lig=Loy = Ajg=— + (A A A
12 21 165 + (A2 + 66)axa + Az 01
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0? 0? 0?
Ly = Lg = Blla2+281638 +Bo‘6a2
02 0? 0?
Lyy =Ly = Loz = L3y = BlGﬁ + (B2 + B66)axay + B%@_yQ
0? 0? 02
Loy = Lys = 3668 5+ Bzea y B228_y2
0? 02 02
L3y = Lys = D168_ + (D12 + D66)8 3y + DQGa—y2
0 0
Lss = Ly = —k(Ass— + Ass—
35 53 (Ass o7 + Ags 0y)
Lys = Lsy = —k(A 2+A 2) (2.21)
45 = Lisg = 455 “5y :
where o o o
F=N,— +2N (2.22)

92 xyax—ay + Nya—y2
The equilibrium equation governs the configuration when a plate has just buck-
led, which gives v = v = 0. For an isotropic plate, the absence of stiffnesses
Bi; leads to the vanishing of operators Li3 = Lsi, L4 = L, Loz = L3y and
Loy = Lyo. Also the absence of stiffnesses Ajg, Asg, Dig, Dog and Ays is under
consideration, therefore the governing equilibrium equation for first-order shear
deformation theory for isotropic, orthotropic plates or cross-ply symmetrically

laminated plates can be written as

0*, 0*t, 01, ow

Dy—— 92 +D668—y2+(D12+D66)a By +kA55(8_ — ) =
9, 9, 024, o
Des——- oz Day——- 3y + (D12 + D66)8$ay + kA44(8—y — ) =
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2.3 Phenomenon of postbuckling

5w o ow o2 o2 02
R 0 o — V) + R (G =) Nagg 4 2N Ny 5 = 0
(2.23)

Further for the general case of anisotropic plates or symmetrically laminated
plates, stiffness D5, Do and Ays are considered and therefore the governing

equilibrium out-of-plane equations can be given in matrix form as

Lss L3y Lss| |~y 0
L43 L44 L45 —¢y = [0 (224)
Lss Lsy Lss w 0

2.3 Phenomenon of postbuckling

Postbuckling is normally known as the non-linear process which occurs after the
critical buckling load has been reached. Slender plate structures can carry load
far exceeding the critical buckling load in the postbuckling range, which brings
great benefits if utilized saving materials. However, the non-linear characteristic
of postbuckling behaviour brings some uncertainty in predicting the behaviour
of structures in postbuckling. For example from Shen [2§], plates loaded in com-
pression have a stable postbuckling path and are insensitive to initial geometrical
imperfection, however for cylindrical shells under pressure, the postbuckling path
is unstable and the structures are found to be sensitive to initial geometrical
imperfection. Due to this kind of uncertainty for structures in the postbuckling
range, postbuckling analysis is a major concern for both engineers and researchers.

Figure 2.4 shows a typical load-displacement curve which demonstrates the
behaviour of structures in buckling and postbuckling ranges. For classical buck-
ling theory, the bifurcation behaviour of plate follows paths A, B and C in Figure
2.4. With increasing in-plane load P, the curve follows path A which shows no
displacement with increased load until a critical buckling load is reached. After
this bifurcation point the curve theoretically keeps moving on path B, or may
follow a buckling path C for linear idealization. However, for large displacement

analysis, the curve follows path D which is non-linear with increasing slope. Path
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Figure 2.4: Curves of in-plane load versus transverse displacement showing typical
buckling and postbuckling behaviour
[17]

D actually represents the postbuckling behaviour of plate which indicates that
the plate is able to carry more load far in excess of the critical buckling load
P.. before it goes into unstable equilibrium. Path E shows the buckling and
postbuckling behaviour of an imperfect plate as no plate is initially perfect. The
decrease of imperfection magnitude will make path E increasingly kinked to path
D.

To further understand the postbuckling behaviour of structures, a review of
the types of buckling is given here, based on a classic review of postbuckling theory
by Hutchinson and Koiter [29] and a brief description of postbuckling types by
Jones [I7]. Figure 2.5 illustrates four types of postbuckling behaviour for both
perfect (solid line) and imperfect structures (dash line). Figure 2.5 (a) shows
neutral postbuckling behaviour which gives a horizontal line for load-deflection
curve for perfect structure. Points along the line are all in a neutral equilibrium
state as no lower or higher energy state can be assumed for this postbuckling

behaviour. This type of postbuckling behaviour indicates that structures cannot
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2.4 Postbuckling theory of thin plates

carry load in excess of the critical buckling load P,... The dash line shows the
postbuckling behaviour for imperfect structures which makes the curve approach
P.. asymptotically. Figure 2.5 (b) shows unsymmetric postbuckling behaviour
which gives a straight line that is inclined to the horizontal for a perfect structure.
The structure can only carry more load in excess of P, if it is constrained to
buckle with a positive w. Otherwise the structure can only carry loads much
less than P, until collapse. Figure 2.5 (¢) shows symmetric stable postbuckling
behaviour which gives a concave curve for a perfect structure. This type of
postbuckling behaviour ensures a load carrying capacity far in excess of P,. on
both sides of the vertical axis, and hence it is in a stable equilibrium configuration.
Moreover, due to symmetry about the vertical axis, the postbuckling behaviour
is the same no matter whether the displacement w is positive or negative. Figure
2.5(d) shows symmetric unstable postbuckling behaviour which gives a convex
curve for a perfect structure. This type of postbuckling behaviour indicates that
the structure cannot carry load higher than P,., and hence it is in a unstable
equilibrium configuration for both positive and negative displacements w. Figure
2.5(e) shows another type of postbuckling behaviour, for some structural elements
which changes suddenly from a stable equilibrium configuration at point C to an
immediately non-adjacent stable equilibrium configuration at point E, so the

structural element ’jumps’ from C to E.

2.4 Postbuckling theory of thin plates

2.4.1 Postbuckling plate theory

After the critical buckling load has been reached, a plate may start to buckle
and undergo out-of-plane displacement, which is relatively large compared to
the thickness. Moreover, the plate may have transverse displacement due to
the buckling of the plate. Therefore, for the analysis of postbuckling additional
terms have to be added to the expressions of strain due to stretching. To find
the expressions for so-called Von Karman strain, it would be useful to examine

the geometric background for the strains. The following figures and derivation
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Figure 2.5: Types of Postbuckling Behaviour for perfect and imperfect structure
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Figure 2.6: Calculation of axial strain

of strains are attributed to Yoo and Lee [22]. Consider a linear element AB of
the middle surface of the plate as shown in Figure 2.6. After deformations, the
length and position of AB has changed and is denoted A’B’. The length change
of the element is due to effects of both in-plane displacement u and transverse
displacement w. According to Figure 2.6, the elongation of the element due to u
displacement is

%dw (2.25)

The length change due to displacement w is calculated from the Pythagorean

9 ow 2] '/2 1 /0w’
dx® + %dx ~ 1+§ E dx (2.26)

Therefore the elongation due to the displacement w is

2
% (g—?) dx (2.27)

theorem as

A/B/ —
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2.4 Postbuckling theory of thin plates

And the total elongation is the sum of above two

ou 1 /ow\?
%dx + 3 (—) dz (2.28)

Hence the strain €, equals the total elongation divided by the original length of

the element dz. Then the expression of ¢, is written as

ou 1 [ow\’
=—4+-|= 2.2
co 8x+2(8x) (2.29)
Likewise the expression of ¢, has the form
Ey = dv + L(ow 2 (2.30)
Y oy 2\ 0y '

The shear strain 7,, which is actually an angular change consists of both the in-
plane contribution and an out-of-plane contribution due to bending. Figure 2.7
illustrates the in-plane angle change and out-of-plane angle change. From Figure

2.7(a), the in-plane contribution for v,, is

Ju Ov

— =, 2.31
oy tor (2.31)

The bending contribution is

'Y Al Z _ z _

Yu=LBOA— LBO'A = 2 (2 %,) (2.32)

Based on the law of cosines
(A'B')? = (O'A')? + (O'B')? — 2(0' A')(O' B')cos (g - %,) (2.33)

where

2
(O'A")? = da” + (d:pg—w>

X
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2.4 Postbuckling theory of thin plates

Figure 2.7: (a) in-plane angle change (b) out-of-plane angle change
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(O'B')? = dy* + dya—w 2
dy

N 9 9 ow\? ow\> ., ow ow\?
(A'B")* = da” + dy* + e dx” + ay dy” + dya—y—dx% (2.34)

Neglecting higher order terms gives
(O'A)(O'B") = dady (2.35)

For small angles cos((m/2) — 7,) can be computed as 7, therefore

2 2 2 2
(A'B')? = da® + (daza—w) + dy® + (dya—w) — 2vdxdy + (a—w) da® + ((’9_11)) dy?

ox oy ox dy
ow ow\” ow\” ow\”
= da?® + dy? dy— — drx— — ) da? — ) dy?
x+y+(y3y xax) +<3$> x+<5y> ’
which gives
ow Ow
w=———= 2.36
"= B oy (2.36)
Adding both in-plane and out-of-plane angle changes gives
ou Ov Owow
oy =MntVo=—+——+—— 2.37
Yoy = Tn+ 8y+3x+8x8y (237)
The Von Karman strains are therefore written as
ou 1, 0w, ov 1 0w, ou Ov Owodw
p= ot (e = (o e = o et o (238
c 8x+2<8:ﬁ) v 8y+2<8x> Ty 8y+8x+8x8y ( )

and the additional terms, which involve w, are non-linear. The expression for
curvature changes remains as equation (2.5) for buckling analysis, however, in
the case of very large displacements, additional terms have to be added to better
represent the postbuckling behaviour. To obtain the general form of the governing

equilibrium equation for postbuckling analysis, equations (2.1), (2.5) and (2.8)
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2.4 Postbuckling theory of thin plates

into (2.9) are substituted, expressed in matrix form in terms of displacements as

Ly Ly Ly u o Lyw o Lisw 0
L21 Lgl L23 v :—w ngw +—w L22’UJ + 10 (239)

L3y Lszy Lss w Or Lizw y Losw (%

where L;; are the operators defined by equation (2.22) and further

=24+ 3(54)%] Lrw + [§2 + 5(52)%] Lsw + [§2 + §2] Lew

62 w w w
ax8y> + 2(Bi2 — Beg) [(32??92? - (gjay)ﬂ

—2(B12 — Bas)(

with

02 0? 0?
L = Ana 5 + 21416a ay A123_y2
0? 0? 0?
Lg = A128 5+ 2A2 020y + A228_y2
82 82 0?

Equation (2.39) gives a general form of the postbuckling equilibrium equations for
unsymmetrical composite plate, and some simplifications are possible to represent
certain cases. For instance, for symmetrical laminated angle-ply plate L3 =
L3y = Log = L3z = 0 due to B;; = 0, and therefore simplifications can be
made in equation (2.39). For a symmetrically laminated cross-ply plate, further

simplifications can be applied in addition, since Ajg = Agg = D1g = Dog = 0.

2.4.2 Review of postbuckling analysis of plate structure

To review the work on postbuckling analysis of plates, some remarkable names
who contributed greatly in raising this subject at an early stage ought to be
mentioned. The first pioneer of plate buckling and postbuckling theory may be
regarded as Von Karman, who derived the basic differential equations for plate
structures undergoing large deflection [14] in 1910. Later Von Karmén and other

co-researchers developed and presented the concept of effective width in 1932
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2.4 Postbuckling theory of thin plates

[30]. Later on, various approximate solutions based on energy considerations
for postbuckling analysis of plates were presented by Cox [31], Timoshenko [32],
Marguerre and Trefftz [33] and Van der Neut [34]. Furthermore, the work by Mar-
guerre and Trefftz [33] was extended for simply supported infinitely long plates
in compression by Kromm and Marguerre [35]. Further work by Koiter [15] en-
abled analysis of plate behaviour far beyond where buckling occurs. Based on
Von Karmén’s large deflection theory, Levy [36] derived the ’exact solution’ of the
equations for square plates. Further researches included Mayers and Budiansky
[37], who presented the plastic behaviour of a simply supported flat plate loaded
in compression. Smith [38], moreover, derived and applied rigorous plasticity the-
ory to the analysis of plate buckling. To introduce Von Karman large deflection
theory to laminated composites, Reissner and Stavsky [39] and Stavsky [40, 41]
extended Von Karmén’s formulations. Further extensions for dynamic buckling
problems for general elastic and imperfection-sensitive structures was investigated
by Budiansky [42], Budiansky and Hutchinson [43] and Hutchinson and Budian-
sky [16]. Thompson [44] presented a work which starts from the point of view of
elastic stability, then the buckling and snapping behaviour of an elastic structure
subjected to a single generalised load is discussed. The theoretical predictions
of elastic instability of structures and structural components are discussed to
reveal the equilibrium state at which the stability of structure is lost. Further
extension of a previous study from Thompson [45] gave the basic concepts and
theories of elastic stability, both buckling and snapping conditions are examined
at which the equilibrium state loses stability. More development concerning insta-
bility and postbuckling behaviour of structure are included in Thompson [46] and
Thompson and Walker [47]. The first literature from Thompson presented a com-
plete general statistical theory of imperfection-sensitivity in elastic post-buckling.
The structural system has been described by n generalised coordinates, a load-
ing parameter and an imperfection parameter. The behaviour of structures and
structural components beyond which stability is lost has been investigated. In
the second literature from Thompson and Walker, a non-linear perturbation anal-
ysis for discrete non-linear structural system is presented. Sewell [48] presented
a general theory to investigate the bifurcation phenomena of elastic and inelas-

tic thin plates from the standpoint of Hill’s [49] bifurcation theory. The basic
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2.4 Postbuckling theory of thin plates

differential equation is obtained for non-linear analysis of a thin plate under com-
pression. Further extension of Sewell [50] showed the application to rectangular
plates with four edges simply supported and uniaxial compression applied on two
edges. Sewell [51] also investigated a method of postbuckling analysis which is
based on some work of Koiter, and the differences of starting data and conver-
gence technique with previous research from Sewell were discussed. Allen [52]
presented his research on buckling analysis of sandwich plate and panels, and
indicated the significance of shear deformation effects for finding the buckling
loads.

In the past few decades, the postbuckling behaviour of plate structures has
been paid great attention due to the increasing application of lightweight struc-
tures and composite materials in aerospace and military engineering. In recent
years, a large amount of research on the postbuckling of plate structures has been
carried out and published in particular looking at develop faster processes par-
ticularly for preliminary design. Wang and Dawe [53] presented a semi-analytical
finite strip analysis to investigate the large deflection problem and overall post-
buckling behaviour of a geometrically non-linear prismatic plate. In the context
of classical plate theory and shear deformation plate theory, an enhanced stress-
strain relationship was derived including modification of initial curvatures and
the effect of initial imperfections. Furthermore, particular attention has been
paid to a proper representation of longitudinal displacement which better rep-
resents the problem. These results show good comparison with finite element
software and advantages in terms of efficiency. However, this concern with the
accuracy of stress and strain distributions leads to a significant increase in so-
lution time while only improving the accuracy for postbuckling problems with
similar magnitudes of transverse displacement v and out-of-plane displacement
w for a little. Later Wang and Dawe [54] generalised their previous research and
considered the shear deformation effect in postbuckling problems. The govern-
ing equilibrium equations and solutions were obtained and results for symmetric
and unsymmetric composite laminates were shown. Further extension of their
research by Ge et al. [55] investigated thermomechanical postbuckling behaviour
of composite laminates by including the thermal-elastic effects in their previous

work. Rhodes [56] presented a brief review of two analysis methods to investigate
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the postbuckling behaviour of plates and thin-walled members. The so-called
lower bound’ method provides an analytical solution which can be easily used
to obtain the critical buckling load, while in the other methods based on non-
linear differential equations from Von Kérmén [14] and Marguerre [57] are taken
into account to give a more rigorous postbuckling analysis. Librescu and Lin
[58] discussed the postbuckling behaviour of flat and shallow curved panels based
on high-order shear deformation plate theory with linear and non-linear Winkler
elastic foundations. The research also took account of the effects of transverse
shear, geometric non-linearities and geometrical initial imperfection. Everall and
Hunt [59] reduced the Von Karman plate equations to a series of ordinary differen-
tial equations, and investigated the postbuckling reserve and secondary buckling
for a rectanglar plate with simply supported edges under uniaxial compression.
Singh and Kumar [60] contributed work which integrates first-order shear
deformation plate theory and geometrical non-linearity by using Von Kérméan’s
equilibrium equation with finite element procedures. The postbuckling behaviour
and progressive failure response of thin, symmetric laminates under uniaxial com-
pression and uniaxial compression with in-plane shear loading has been examined,
and the buckling and failure loads of anisotropic laminates in various cases have
been compared to determine their postbuckling behaviour. A similar theory has
been extended by Srikanth and Kumar [61] by considering an energy approach
and introducing temperature effects for postbuckling response of plates. Later on,
Jain and Kumar [62] and Singh and Kumar [63] continued their research on eval-
uating the postbuckling behaviour of a plate with a central cutout. Similarly, the
governing equilibrium equations were derived based on Von Karman’s plate the-
ory with consideration of geometrical non-linearity, and the solutions were given
by using the Newton-Raphson method. Liew et al. [64] presented the first-order
shear deformation theory for isotropic and laminated composite plates in post-
buckling with the Ritz method. The meshfree Ritz method introduced the kernel
particle approximation for the field variables to discretise the non-linear equilib-
rium equations for the theory. Results for isotropic and laminated composites
in postbuckling have been validated to retain accuracy comparing with the finite

element method. Further, the research has been continued by Yang et al. [65]
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for higher-order shear deformation theory with consideration of geometrical im-
perfection sensitivity. Higher-order shear deformation theory and Von Karman’s
theory were explored to obtain the non-linear equilibrium equations which were
solved to give a semi-analytical solution by involving a one-dimensional differ-
ential quadrature method and the Galerkin technique. The method was applied
to functionally graded plates with imperfections, and the postbuckling behaviour
of plates was tested and presented. More research based on higher-order shear
deformation was extended by Liew et al. [66] and Woo et al. [67] with consider-
ation of thermo-mechanical and thermo-electro-mechanical loadings with various
boundary conditions. Other types of thermo-mechanical postbuckling plate anal-
ysis have been provided by Shen and Williams [68], Shen [69] and Shen [70].
Higher-order shear deformation plate theory was utilised to derive the governing
differential equations, and a perturbation technique was used to find the buck-
ling load and postbuckling equilibrium path. Results were given for laminated
composite plates with consideration of initial imperfections. Kere and Lyly [71],
using Reissner-Mindlin-Von Karman type equilibrium equation for plates, inves-
tigated the postbuckling behaviour of laminated composite plates subject to large
deflections. Diaconu and Weaver [72] presented an approximate solution to the
postbuckling analysis of infinitely long and unsymmetrically laminated compos-
ite plates. The Von Karman large deflection theory was used to represent the
postbuckling mode with application of the Galerkin method. To obtain efficient
approximate solutions, non-dimensional parameters have been introduced by re-
ferring to Stein’s [73] work to simplify the formulations. The results have been
found to be efficient for analysing the postbuckling behaviour of infinitely long
and unsymmetrically laminated composite plates. Muradova and Stavroulakis
[74] described a method based on Von Karman’s plate theory with the use of the
spectral method for discretisation of boundary value problems and results were
presented for buckling and postbuckling behaviour of rectangular plates.
Further types of analysis and solution techniques for the postbuckling be-
haviour of plates have been presented recently, which are worth mentioning and
reviewing here. Chen and Yu [75] however, presented an asymptotically correct,
geometrically non-linear theory which rigorously gives the governing differential

equations for the postbuckling analysis of laminated composite plates. Results

32



2.5 Review of Stein’s work on postbuckling

showed good comparison with finite element analysis in the primary postbuckling
range while also showing the advantage of convergence deep into postbuckling in
various plate configurations and load and boundary conditions. Han et al.[70]
introduced an element-based Lagrangian formulation for postbuckling analysis of
laminated composite plates. Results were given for cases with combinations of
in-plane compression, shear and lateral loads and showed the advantage of fast

convergence.

2.5 Review of Stein’s work on postbuckling

In an early work of Stein [77], a perturbation analysis is introduced in detail
and postbuckling results are given for a plate under longitudinal compression
and temperature effects. The perturbation analysis converts the Von Karméan
large-deflection equations for a plate given below, a set of three non-linear partial

differential equations, into an infinite set of linear partial differential equations.

ON,  ONyy
ox + oy 0
ONy, N ON, _

ox Jy 0

0w 0w 0*w
DV*w + N,—— + 2N, —— + N,—— =
Viwt T Ox? * Y 0xdy LR 0y?
where D = Gh3/12(1 — v), V* = (0*/0x* + 201 /0220y* + 0*/0y*) To achieve

the above conversion, the displacements which are function of only x and y are

0 (2.41)

expanded into a power series in terms of an arbitrary parameter € (at buckling
e = 0). The power series is assumed to start from zero power and have only odd

powers for u and v but start from the first power and have only even powers for

w as , i, .
u= Z uMe v = Z v w = Z w™en (2.42)
n=0,2,.. n=0,2,.. n=1,3,..
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For a plate without any initial imperfections and subject to in-plane loading, the
out-of-plane displacement w is zero in the loading range prior to buckling but
in-plane displacements v and v have values other than zero. Thus, the series for
u and v are expected to start from zero power but for w is expected to start from
the first power. To convert Von Karman’s equation into an infinite set, it is also
essential to rewrite the applied force into a series. Writing the force-strain and

strain-displacement relationships below as

Eh Eh Eh

Nl-: T 7N = $7NI = —
1_M2(5 "‘N%) y 1_M2(5y+N5) y 2(1 + p)

oy (243)

_0u 1 0w _Ov 1 ow ou Ov Owow

- __2 —_ __2 —_ - -
_8x+2(8x)’8y 8y+2(8y)7%y 0y+6x+8x8y (2:44)

Ex

where p is Poisson’s ratio. Substituting the power series in equation (2.5.2)
into the above relationships, the following power series for applied forces can be

obtained as

]\/'z _ Z Nm(n)€n+ Z Z Nggmn)e(m-i-n)
n=0,2,.. m=1,3,.. n=1,3,
Ny _ Z Nén)En—F Z Z Ny(mn)e(m+n)
n=0,2,.. m=1,3,.. n=1,3,
Ny= 3 NP4 33 N .45
n=0,2,.. m=1,3,.. n=1,3,
where ) )
Eh ou\" ov'™
N —
p 1—#2[&@ + (9y]
(n) _ Eh [821(”) N 8u(”)]
N K or
w 301 oy | oz
NOmn) — pr(nm) _ Eh <8w(m) ow™ n ’u(‘?w(m) 8w(”)>
v v 2(1—p?)" O Ox dy Oy
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Eh ow™ ow™) ow™ ow™)
y y 5 +u )
2(1—p?)" 9y Oy dx  Ox

Amn) _ Eh Ow™  gw™

o 2(1—|—u)[ or dy (2.46)

This allows the Von Karman large-deflection equations to be rewritten in power

terms as
N N NS 0
ox oy
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ox oy
92w 92w 92w
DV — N NO 0 =0 2.47
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92w ®)
DV4w® — N©) -
v T Ox? Ty 0xdy Ty 0y?

*w®
0x?

92w
(4) (13)
+(Nz +N:v ) 8[E2 + Yy Yy

To obtain the linear differential equations, the power series terms in the arbi-
trary parameter € have to vanish which requires each coefficient of the power
series to vanish. The odd powers in the series for v and v and the even pow-
ers in the series for w can form a set of homogeneous differential equations with
homogeneous boundary conditions. Thus equations (2.47) can be regarded as
the linear small-deflection equations, where the forces N are independent of
out-of-plane displacement w. Solutions of the first equations enables resolving of
succeeding equations terms, therefore the behaviour of plate beyond buckling can
be examined. Stein also provided another approximation using exactly the same
procedure as discussed above except that the perturbation parameter €2 is defined
as a function of buckling load, as ¢ = (P — P,.)/P... Results for both theory
and experiments are given for a plate under longitudinal compression for compar-
ison. Figure 2.8 from Stein [77] shows load versus end shortening curves under
compression and where b, h are width and thickness of plate respectively, and pu
is Poisson’s ratio. The experimental curve shows mode jumping with m being
the number of buckles in the longitudinal direction. The linear set of equations
show the advantages of simplicity of solution, which brings efficiency in solving
linear partial differential equations instead of nonlinear large-deflection partial
differential equations. For the compression problem of a square plate, results of
the second approximation shows agreement with exact results. However, there
are certain limitations depending on the application desired. Stein indicated that
solutions may be unable to converge satisfactorily for certain problems, and the
linear equation can not be used for postbuckling problems with eccentricities.
Further work by Stein [3] provided a further analytical approach which is
key material for this thesis. In this work, Stein presented an analytical solution

for isotropic and orthotropic plates in compression and in shear for postbuckling
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Figure 2.8: Comparison of non-dimensional load versus end shortening curves as
given by theory and experiment [3]

analysis. In contrast to his previous work, Von Karman large-deflection equa-
tions are converted into non-linear ordinary differential equations, by assuming
trigonometric functions in the longitudinal direction. To obtain non-linear ordi-
nary differential equations, the displacement has first to be derived based on a

trigonometric series approximation, which gives

z 1 . 2w 2mx
u = —ﬂcn(g — 5) + uo(y) + us(y)smT + uc(y)cosT
2 2
v =uwp(y) + vs(y)sin% + vc(y)COS%
w = ws(y)sin% + wc(y)cosl)\x (2.50)

where 1., is the applied longitudinal compressive displacement. The out-of-plane
displacement w is sinusoidally periodic with half-wavelength A, and the in-plane

displacements u and v are sinusoidally periodic with half-wavelength A/2. The
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strains and curvatures are then given by applying Von Karman plate theory with
a similar trigonometric form for the stress and moment resultants. Further calcu-
lations involving the energy principle give the virtual work of the system in terms
of twenty unknown quantities to be solved. By applying the differential equa-
tions which have to be satisfied, the stress-strain relations and proper boundary
conditions, the first-order ordinary differential equations can be solved. By using
an algorithm from Lentini and Pereyra [78] which is based on Newton’s method,
the equations are solved for certain problems.

To apply the analysis, a long isotropic plate is investigated under compression
and shear respectively. The longitudinal edges are forced to keep straight and
the in-plane displacements normal to the edges are zero during the investigations.
The results from Stein indicated that in a postbuckling analysis: (1) plates with
clamped edges are stiffer than those with simply-supported edges, and plates
with a zero displacement edge condition are stiffer than those with zero average
stress condition; (2) an isotropic plate is slightly stiffer than a +45°-laminate for
the same loading and boundary conditions; (3) for an isotropic plate, transverse
tension builds up in the postbuckling range due to shallow buckles and the zero
transverse in-plane deformation condition, while for a +45°-laminate, tension
does not build up due to the deeper buckles; (4) for a long, isotropic plate loaded
in shear, the tensile longitudinal stress reaches about four times its critical value,
the shear displacement increases to seven times its critical value and moreover
the tensile transverse stress increases to about seventeen times its critical value
for the zero-displacement-simply-supported-edge conditions in the postbuckling
range, indicating that the longitudinal and transverse stresses can be very large
during postbuckling; (5) for a £45°-laminate in shear loading, it is indicated that
isotropic plates have greater stiffness than the laminate for all cases.

Both of Stein’s works provide an analytical concept of investigating the non-
linear behaviour of plates in the postbuckling range. Results are validated by
comparing with exact solutions, experiments and other researchers’” work. How-
ever, there are still limitations in both works which bring possibilities of improving
and developing the theory. The earlier work from Stein is shown to be efficient
and accurate for certain problems, but the validation of solutions depends on the

application desired which brings uncertainty for the general case. The later work
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2.5 Review of Stein’s work on postbuckling

introduces a trigonometric series which better represents displacement for buck-
ling analysis and gives remarkable solutions. A limitation of the theory is that
only postbuckling behaviour of isotropic and orthotropic plates are considered in
this work which can not used for a mere general case. Furthermore, the twenty
unknowns lead to the satisfaction of a number of differential equations and proper
choice of boundary conditions, which makes the solution quite difficult to imple-
ment. In this thesis, a further improvement has been made to the assumption of
displacement which couples the half-wavelengths A and \/2 together to represent

a more accurate form for the in-plane displacements v and v.
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Chapter 3

Exact finite strip analysis and

Wittrick-Williams algorithm

3.1 Exact finite strip analysis

Finite strip analysis is an alternative approach to finite element analysis for buck-
ling and postbuckling analysis of rectangular plates and prismatic plate struc-
tures. It provides an efficient procedure for numerical analysis which can reduce
the computational costs significantly. For the buckling and postbuckling analysis
of plates, classical plate theory, first-order shear deformation and higher-order
shear deformation theory can be utilised, while the semi-analytical solution tech-
nique ensures reliable and efficient solutions to be obtained.

The finite strip method was first introduced and described by Cheung [79] in
1976. Applications for rectangular plates and plate structures were investigated,
dealing with buckling and vibration analysis. Early works based on classical plate
theory as a model of plate behaviour also included Cheung and Cheung [80], Babu
and Reddy [81], Turvey and Wittrick [82], Dawe [83], and Graves Smith and Srid-
haran [84]. Most of these works assumed a sinusoidal mode in the longitudinal
direction for isotropic and orthotropic plates with no shear loading applied. Wit-

trick [85] [86] derived explicit expressions for the stiffness properties of long, thin
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3.1 Exact finite strip analysis

isotropic plates loaded with longitudinal compression combined with uniform lon-
gitudinal shear. Classical plate theory is used and the buckling mode is assumed
to vary sinusoidally in the longitudinal direction. The assumptions lead to ’ex-
act’ solutions for problems where no shear load or anisotropy are present, and
provide accurate solutions for infinitely long plates. Wittrick and Williams [87]
later extended the work to anisotropic plate assemblies under combined loads
and compiled it into a computer software VIPASA. These analyses from Wittrick
[85], [86] and Wittrick and Williams [87] form the basis of so-called ’exact’ finite
strip analysis.

Buckling and postbuckling behaviour of plate structures using finite strip
analysis based on classical plate theory, first-order shear deformation theory and
higher-order shear deformation theory has been investigated by many researchers.
Kong and Cheung [88] presented finite strip buckling analysis based upon third-
order shear deformation plate theory which was used to examine the effects of
geometrical non-linearity and initial imperfection. Numerical results demonstrate
the performance of the modified finite strip analysis. Dawe and Peshkam [89] and
Wang and Dawe [53] 54] provided semi-analytical finite strip analysis based on
first-order shear deformation theory with modification on longitudinal displace-
ment. The calculated buckling and postbuckling behaviour of plates demon-
strated good agreement with finite element analysis. Later Tan and Dawe [90]
presented a general spline finite strip method based upon first-order shear de-
formation theory and incorporated a sub-structuring technique into the solution
process. Numerical results showed the positive effects of the method on flexible
matching of boundary conditions. Further extensions of their work [55], [91] con-
centrated on thermal effects on buckling and postbuckling behaviour of laminated
composite plates by using spline finite strip analysis. Bradford and Azahri [02]
presented a finite element analysis using different series functions as buckling co-
efficients which provided an efficient way of examining the buckling behaviour of
plates with different load and boundary conditions applied. Ovesy and co-workers
contributed several analytical methods based on the finite strip technique to de-
termine the buckling and postbuckling behaviour of plate structures. Ovsey et
al. [93] and Ovsey and Assaee [94] presented a so-called semi-energy finite strip

approach in the context of classical plate theory. The out-of-plane displacement
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w is assumed as a function of a properly selected deflection series. This has been
substituted into Von Karman’s compatibility equations which are solved exactly
to get stresses and displacements. The governing equilibrium equations are then
solved by considering minimum potential energy. Numerical results describing
postbuckling behaviour are given for laminated composite plates and comparison
made with other researchers work and the finite element approach. The semi-
energy finite strip analysis is then extended by Ovesy and Assaee [95 06] by
including bending-twisting coupling effects in the postbuckling analysis. Results
are given for the postbuckling analysis of laminated composite plates consider-
ing coupling and uncoupling effects respectively, and compared with the finite
element software ANSYS [97]. The results indicated that the coupling of in-
plane bending membrane and out-of-plane twisting curvature should be taken
into account for postbuckling analysis. Similar analysis presented by Loughlan
[98] makes the same conclusion for anti-symmetric angle-ply laminates. A further
extension by Ovesy et al. [99] considered the thick plate problem were shear defor-
mation effects need to be considered. The same semi-energy finite strip approach
is followed based on first-order shear deformation theory, with results for the
postbuckling behaviour of thick symmetric laminated plates demonstrated. Con-
clusions showed that for certain accuracy requirements, the approach requires
fewer degrees of freedom compared to the finite element approach and hence
leads to computational efficiency. The other approach proposed by Ovesy et al.
[100, 10T, 102, 103], the so-called full-energy finite strip analysis postulated all
displacement by a proper shape function. The displacements are substituted
into Von Karman’s compatibility equations, and the equilibrium equations are
solved using an energy method. Results are given based on the semi-energy and
full-energy approaches for the postbuckling analysis of laminated plates. It is
indicated that the full-energy finite strip approach is slightly more accurate for
postbuckling analysis than semi-energy approach, however it increases the com-
putation time. This is due to the increasing number of degrees of freedom in the
full-energy approach. Suggestions are also made for improving the accuracy of
the semi-energy approach, which involve introducing multi-terms into the shape
function for displacement w instead of single terms. Further work [104] T05] on

the semi-energy and full-energy approaches is carried out to examine the effects
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of initial imperfections on laminated composite plates. Most recently, Ovesy and
Ghannadpour [106] and Ghannadpour and Ovesy [107] presented an exact strip
analysis based on the full-energy approach. The Von Karmén’s equilibrium equa-
tions are solved exactly and the transcendental stiffness matrix is assembled for
the plate strips. Solutions are found by the energy method and convergence of the
critical buckling load is secured by introducing a recursive Newton’s method from
Yuan [I08]. Various analytical techniques including, Eccher et al. [109} 110] and
Yao and Rasmussen [IT1] have provided isoparametric spline finite strip analyses
which use transverse cubic shape functions in the expression of the displacement
function. Lui and Lam [I12] provided a deep discussion of the effects of initial
imperfections on plate buckling. A polynomial expression for imperfections and

trigonometric series for deformations are used to better represent the problem.

3.2 Wittrick-Williams algorithm

The Wittrick-Williams algorithm is a numerical technique which can be used to
find the critical buckling loads and natural frequencies of a structure for non-linear
eigenvalue problems. The algorithm was first presented by W. H. Wittrick and
F. W. Williams in 1971 [113] for determining the natural frequencies of vibration
problems; however following this it was used to find the critical buckling stresses
for plates [87]. The algorithm was not developed to calculate the value of natural
frequencies, but enable the number of natural frequencies which lie below a certain
frequency to be calculated, allowing convergence on any natural frequency at the
accuracy required. The algorithm works is outlined below.

The global stiffness matrix K(w) is first assembled
KwD=P (3.1)
where P is the perturbation forces, D is the displacement vector and w is nat-

ural frequency or load factor [IT14]. Since the global stiffness matrix K(w) is

transcendental in terms of the non-linear elements w, the solution of the natural
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frequency or load factor can be found by solving the transcendental eigenvalue
equation below
K(w)D =0 (3.2)

The Wittrick-Williams algorithm calculates the number of eigenvalues J lying

below a trial value w*, where J can be calculated as
J=Jy+ s{Kw")} (3.3)

where Jy is defined as the number of natural frequencies which would still be
exceeded by w* if constraints were imposed so as to make all the displacements D
zero, and s {K(w*)} is known as the sign count which is the number of negative
diagonal elements of the upper triangular matrix K (w*) obtained from Gauss
elimination of K(w*) [87]. J can be also be calculated from the following equation

if substructures are not used

Jo=Y Jn (3.4)

where J,,, is the number of eigenvalue exceeded the trial value w* with their ends

fully restrained.
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Chapter 4

Exact strip analysis software

VICONOPT

The exact strip analysis software VICONOPT [6] has been developed as an anal-
ysis and optimum design software for aerospace engineering and has been used
in both industry and academic for many years. From an analysis perspective,
VICONOPT has the capacity to carry out vibration analyses, buckling analyses
and postbuckling analyses. In terms of optimisation, VICONOPT provides an
efficient optimum design tools from optimum design perspective. This chapter
introduces the main features of the earlier programs VIPASA and VICON upon
which VICONOPT is based and developments in VICONOPT in recent years.

4.1 Main features of VIPASA analysis

VIPASA analysis uses a stiffness matrix approach based on exact flat plate the-
ory with Winkler foundations. The Wittrick-Williams algorithm is also used to
guarantee convergence on the required eigenvalues. Multi-level substructuring is
used very concisely and flexibly to reduce solution times, data preparation, and
computer memory usage [115]. VIPASA analysis assumes the mode of buckling

or vibration varies sinusoidally in the longitudinal direction z, and hence the
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amplitudes u, v, w and 1 relating to the axes z, y, z are also sinusoidal. The
computation is repeated rotation for a range of user specified half-wavelengths
A and converged to the required eigenvalues with a pre-set accuracy allowance.
VIPASA analysis requires the in-plane membrane stiffness matrix A and the out-
of-plane bending stiffness matrix D to be uncoupled, i.e. the coupling stiffness
matrix B is null in the constitutive equation of plate. If all the component plates
are either isotropic or orthotropic with no shear, i.e. Ng = 0, the nodal lines of
zero displacement are straight and perpendicular to the longitudinal direction x
and the simply supported end condition is satisfied with A divided exactly into
plate length ¢. If anisotropic materials and shear are considered the global stiff-
ness matrix becomes complex and the solution obtained is approximate for such
end conditions. In a VIPASA analysis, due to the assumption of a sinusoidal
mode in the longitudinal direction with half-wavelength A, the exact solution can
be obtained by taking A = ¢,¢/2,¢/3, ... if no shear load and anisotropy exist and
simply supported boundary conditions are satisfied. The minimum buckling load
can be found by examining all values of \ until the smallest one is smaller than
the smallest plate width (i.e. the unsupported width between different plates).
The advantages of VIPASA analysis, are that it is based on an ’exact’ plate theory
in comparison with other approximated methods such as finite element and finite
strip methods, and that the solution time can be shown to be 1000 times faster
than finite element programs such as STAGS [I16]. The limitations of VIPASA
analysis is the requirement that shear load and anisotropy are absent for an accu-
rate analysis for simply supported end conditions. To solve a problem with shear
load, anisotropy and various end conditions, VICON analysis is recommended to

provide a more accurate modeling solution.

4.2 Main features of VICON analysis

To overcome the inaccuracies in VIPASA analysis for shear load and anisotropy,
VICON analysis has been developed by researchers at Cardiff University in col-
laboration with NASA [117]. VICON analysis permits the same assumptions,
loading and stiffness matrices as VIPASA analysis. The key difference between
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VICON analysis and VIPASA analysis is the introduction of Lagrangian Multi-
pliers which couple the responses of different half-wavelengths A. VICON analysis
uses Lagrangian Multipliers to minimise the total energy of panel so that the a
shear loaded panel support can be accurately represented. VICON analysis deals
with an infinitely long plate assembly with constraints which represent rigid or
elastic point supports repeating at interval of /. The mode of buckling or vi-
bration repeats n times over an interval L = M/, where M and n are integers,
as shown in Figure 4.1. The boundary conditions can be expressed explicitly
to give accurate results. Meanwhile, accurate buckling and vibration modes are
achieved by providing different half-wavelength A which are coupled together.
VICON analysis assumes that the buckling and vibration modes repeat over a
length L = 2¢/¢, where 0 < ¢ < 1. The half-wavelengths required in VICON

analysis is governed by the expression

l
Ap=————,(m=0,£1,+2, ... + 4.1
il ) (1.1
where m and ¢ are integers having different meanings. To determine the minimum
buckling load, ¢ and m are determined by users and appropriate values of & which
can be given as £ = 2n/M (0 < £ < 1) are examined to ensure the lowest buckling
load can be found. As the mode of buckling or vibration is repeated n times over

M lengthwise bays of length ¢, L. can be written as

L="" (4.2)

Eigenvalues of problems (i.e. buckling load factors and natural frequencies of
vibration) are found in a similar way to that using in VIPASA analysis. The slight
difference is that the Wittrick-Williams algorithm has been extended to allow for
introducing Lagrangian Multipliers, i.e. to couple the 'exact’ stiffness matrices for
different half-wavelengths [I18]. VICON analysis improves the accuracy for more
general buckling problems and also ensures the advantage of time reduction, which

as stated previously has been shown to be 159 times faster than finite element
program STAGS [116].
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Figure 4.1: Illustration of the infinitely long structure with constraints. (a) plan
view (b) isometric view
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(a) (b)

Figure 4.2: (a) Prismatic plate assemblies (b) Component plate, showing in-plate
loading and coordinates

4.3 VICONOPT

VICONOPT is a FORTRAN 77 computer program which has over 50000 lines
of code. It incorporates the earlier programs VIPASA (Vibration and Instability
of Plate Assemblies including Shear and Anisotropy) [87] and VICON (VIPASA
with CONstraints) [I17]. It covers the prismatic assemblies of anisotropic plate
structures with a combination of longitudinal invariant in-plane stresses [119).
Typical panel sections that can be analysed by VICONOPT and a typical plate
component with in-plate loading are shown in Figure 4.2. In the following section
the main features of the optimisation program VICONOPT will be introduced in
detail, including a critical assessment of postbuckling capability.

VICONOPT analysis was first presented by Williams et al. [6] at the SDM
conference, then in 1993 a further release by Williams et al. [120] applied material
strength constraints and also included bending and pressure loading, approxima-
tions for curved and tapered members and allowance for the effects of transverse
shear deformation. In 1996, a new release from Williams et al. [121] included
multi-level substructuring and local postbuckling analysis, as well as cost opti-
misation, simultaneous analysis and/or design of multiple structures, the ability
to study wave propagation along the plate assembly and the ability to attach

three-dimensional supporting frames. To provide an optimum design capability
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to VICONOPT, the well know linear optimiser CONMIN [122] was introduced
in 1990, which led to the first release of the program VICONOPT. Postbuckling
analysis capability was added by Powell et al. [123], which extensively modified
the buckling analysis of VICONOPT to include local postbuckling capacity, and
in 2002 Fischer et al. [124], [125] 126] presented the development of VICONOPT
MLO (Multi-Level Optimisation), which is a Visual C++ program providing
a multilevel optimisation interface between VICONOPT and the finite element
software MSC/NASTRAN [127]. These developments were reviewed by Kennedy
et al. [114] in 2007. In 2008, an improvement to the postbuckling capacity was
implemented by Anderson and Kennedy [128] with convergence by Newton iter-
ation. This provided an accurate convergence on the critical buckling load and
associated postbuckling mode. Research done by Qu [129] applied postbuckling
effects in VICONOPT MLO creating the new multilevel optimisation interface
VICONOPT MLOP (VICONOPT MLO with Postbuckling) [130]. Most recently
analysis carried out by the author [I31] of this thesis provided an analytical ap-
proach for VICONOPT postbuckling capacity, which improved the mode shape

and prediction of stress and strain for a postbuckled plate.

4.4 Main features of VICONOPT design opti-
misation

VICONOPT’s optimum design capacity was developed by introducing the linear
optimiser CONMIN [122]. VICONOPT currently has different design capabilities,
including continuous optimisation [132], discrete optimisation [132], discontinuous
cost functions [132] and vibration constraints [133], 134} [135]. Two main objectives
of VICONOPT optimum design are minimising the mass of structural components
and therefore achieving reduction in cost. In this section, an overview of the
main features and procedures of continuous optimisation are introduced while
the theory and details will not be further discussed in this thesis.

In the design problem formulated in VICONOPT, a number of different de-

sign variables (e.g. plate widths, layer thicknesses and layer ply angles) can be

90



4.4 Main features of VICONOPT design optimisation

Initial Analysis
!

Initial Stabilisation

Constraint and
Sensitivity Analysis

Move Limit
Calculation

CONMIN

L Optimisation
Sizing I
Cycle

Stabilisation

Stop
Sizing Cycling
?

No

Final Analysis

Figure 4.3: Continuous design procedure of VICONOPT using sizing strategy

specified and then optimised. The continuous design phase in VICONOPT is
based on the sizing strategy and the main procedures are illustrated in Fig 4.3.
Initial analysis is firstly carried out in a design problem which determines the
critical buckling load. The initial stabilisation [116] process follows which mod-
ifies the unstable or over-stable initial design to a just stable configuration. At
the beginning of the sizing cycle, a constraint and sensitivity analysis is carried
out to determine the buckling load factor. Later on in the move limit calculation
the proper upper and lower limits of the design variables are determined. In the
following CONMIN optimisation, results obtained in the constraint and sensitiv-
ity analysis are re-used to tailor the linear optimisation of CONMIN by adjusting
the move limits for subsequent CONMIN cycles. After CONMIN optimisation, a

stabilisation process which is similar to the initial stabilisation process is carried
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out to adjust the design variables to achieve a just stable configuration for the
next CONMIN cycle. The final analysis verifies the buckling results for the design
problem before the end of the design problem.

4.5 Postbuckling analysis in VICONOPT

VICONOPT was first extended to enable postbuckling analysis by Powell et al.
[123] in 1998. The method is presented for geometrically non-linear postbuckling
analysis of perfect or imperfect longitudinally compressed prismatic plate assem-
blies with local modes. It uses the efficient exact stiffness calculation based on the
Wittrick-Williams algorithm to find the critical buckling load and postbuckling
mode shape of a structure at the very beginning of the iterative procedures. The
applied load is then found for the first iteration of the first cycle based on the
ratio of postbuckling to prebucklng axial stiffness. A number of iterations are
then carried out to find the longitudinal strain, flexural shortening strain, initial
buckling load and stress resultants. This postbuckling analysis was implemented
in VIPASA analysis for postbuckling analysis capacity, however, difficulty was ex-
perienced in converging when investigating a stiffened panel with regularly spaced
stiffeners which was believed to be due to the accuracy of the mode shape which
caused mode jumping in postbuckling [136].

An alternative type of postbuckling analysis which is also the one currently
being used in VICONOPT was developed by Anderson and Kennedy [128] and
further discussed by Kennedy and Featherston [I37]. In this method, instead
of using the Wittrick-Williams algorithm to determine the critical buckling load
and associated mode, the so-called Newton method is used to perform Newton
iterations for accurate convergence on the postbuckling modes and stress distri-
butions. At the start of each cycle, the increment of longitudinal strain has to
be determined to ensure the total applied load, the stress and strain distribution
and the postbuckling mode shape can be found after convergence.

Postbuckling analysis has also been extended to the optimum design capacity
of VICONOPT. Qu et al. [130] presented the multilevel optimisation of aircraft
wing structures using VICONOPT MLO with the effects of postbuckling. The
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new method, the improved exact strip postbuckling analysis presented in this
thesis is expected to improve some analysis features of VICONOPT postbuckling

analysis.
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Chapter 5

Improved exact strip

postbuckling analysis

5.1 Introduction

Exact strip analysis of a prismatic plate provides a reliable efficient approach to
the preliminary design stage of aerospace wing and fuselage panels. In addition,
it reduces the computational and modeling time incurred by discretisation in
finite element (FE) analysis. In the postbuckling range however, assumptions
concerning the longitudinal invariance of stress and the sinusoidal variation of
buckling modes in the longitudinal direction result in errors in the prediction of
stress and strain.

This chapter outlines the major contribution of this thesis - the improved
exact strip postbuckling analysis which provides greater accuracy of mode shape
and stress and strain distribution prediction in postbuckling analysis. The im-
proved analysis is based on an existing approach created by Stein [3], from which
analytical results for the postbuckling of isotropic and orthotropic plates are ob-
tained. Furthermore it uses the work of Kennedy [7] from which the prediction of
stress and strain in postbuckling analysis are derived. In the improved analysis,

more accurate governing equations are derived and solved for different combina-
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tions of edge conditions and load cases. Implementation of the improved analysis
in VICONOPT is validated to enhance the accuracy of postbuckling mode shape
and postbuckling distribution of stress and strain.

The work begins by first examining the strip level at which the in-plane dis-
placements, out-of-plane displacements, strains and curvatures are expressed. In-
plane equilibrium conditions are necessarily assembled to find these quantities.
However out-of-plane displacements from VICONOPT which will be utilised in
the consequent calculation of in-plane displacements are expressed at the edge of
each strip, namely at node level. To ensure the out-of-plane displacements are
usable for the following analysis, the quantities and equilibrium conditions are
converted from strip level to node level by introducing finite difference approx-
imations and linear interpolations. The disadvantage of this approach is that
too many quantities are converted to approximate forms, which brings the risk
of losing accuracy in the final results. For the sake of ensuring the accuracy of
the results, the previous analysis at the strip level is terminated and the same
analysis procedures are investigated at node level instead. The analysis at node
level requires all the quantities and equilibrium equations to be expressed at node
level. This reduces the approximations introduced in the entire analysis but leads
to higher order derivatives of the finite difference approximations in the stress-
strain relationships. However, the results of analysis at node level tend to be more
accurate than those at strip level, and the latter will not be discussed further in
this thesis.

Before starting the entire procedure of calculations, Figure 5.1 provides a
flow chart which demonstrates all the calculations described in the following sec-
tions. The red arrow represents the beginning of each analysis cycle while the
green arrow represents the ending of the cycle. The main purpose of the cal-
culations is actually finding the effective uniform stresses which will be used in
VICONOPT for calculation of the postbuckling mode shape for the next cycle.
The calculation starts from assumed expressions of in-plane displacements u; and
out-of-plane displacements w;. However, the improved analysis utilises w; from
VICONOPT directly at the very beginning of analysis. Then strains, stresses and
effective uniform stresses which are obtained by an energy approach are calcu-

lated in terms of known variables w; and unknown variables u;. To calculate uj,
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Figure 5.1: Flow chart of entire procedure of calculations

first and higher order derivatives of finite different approximations are applied to
stress and strain relationships. By considering in-plane equilibrium and boundary
conditions, ten equilibrium equations are given at each edge of the strips. Sub-
stituting the known variables w; into the equilibrium equations, the unknown
variables w; can be calculated. The detailed instructions and calculations for

each stage of the procedure will be given in following sections.

5.2 Descriptions and assumptions of the analy-
sis

The following improved exact strip postbuckling analysis assumes classical plate
theory (CPT), there is no allowance for transverse shear deformation. Initial
imperfections are not allowed at present while in-plane anisotropy and curvature
effects (i.e. general A, B and D matrices) are permitted. The analysis allows
variation of in-plane displacements within the plates, so that the internal dis-
placements are no longer governed entirely by the boundary conditions. The
in-plane displacements, strains and stress resultants are combinations of sinu-

soidal responses with half-wavelengths A and A/2 to allow for curvature effects
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Figure 5.2: Typical coordinates with displacements

in coupled problems. The analysis finds the longitudinal, transverse and shear

stress resultants on the edges of each strip, i.e. all resultants are at node level.

5.3 Displacements

In the trial mode, the typical flat plate is divided into n-1 strips which gives
n nodes at the strip edges. Figure 5.2 shows the typical coordinates of a plate
with displacement vectors. The out-of-plane deflection w;; and rotation ;; are
assumed to vary sinusoidally in the longitudinal x direction with half-wavelength

A, written in the form as

T T
i = Wic - is SIN —— 5.1
w W;. COS h\ + w;, SIn 3 ( )
Vi = Pic cO8 % + ;s sin % (5.2)

The presence of both sine and cosine terms allows for the skewing of the nodal
lines which occurs for shear-loaded and anisotropic plates. It is assumed that
Vij = ng, where the prime denotes the derivative with respect to the transverse
direction . In the absence of shear and anisotropy, the w;. and ;. terms are

zero in the above equations. According to Stein’s method [3] and allowing for
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sine and cosine terms with half-wavelengths A and A/2, the in-plane deflections

are assumed to take the form

3 T . T 2w . 2z
u; = —&,(T—a/2) +uip + Uje COS — + Uy SIN — + ;0 €08 —— + ;g sin —— (5.3)
A A A A
T . T 2rx . 2mx
V; = Vjo + Vje COS ~ + ;g SIn ~ + v;c cos B + ;g sin —~ (5.4)

The sine and cosine terms with half-wavelength A occur in unsymmetric laminates
with B; # 0, and otherwise can be ignored. The linear term in equation (5.3)

allows for the application of a uniform longitudinal strain &,.

5.4 Calculation of strains and curvatures

From Von Kérman’s large deflection theory, the neutral surface strains and cur-

vatures are given as

i Oou; 1 (Ow; 2 ]
B ] ox + 2 ( Ox ) B . . . . o
Exi 5 1 (8 2 €zi0 Ezic Exis EziC ExiS 1
v, 1 w;
Eyi oy + 2 ( dy ) €yi0 Eyic Eyis EyiCc Eyis cos ™2
wyi [ Dy B : or Oy _ Tyl Tyic TYs Tyt Tyt sin %
R _ 07w R0 Raic Rgis RaiC Rais 27T
9x? COSs ~
Kyi . 821121i Ryio Ryic Ryis RyiC KRyis sin 2z
1o}
_/imyi_ 332/1111’ _nyiO Reyic Rayis  RayiC H:vyiS_ A
L — 25wy i
(5.5)

On substitution from equations (5.1-5.4) the following expressions are given

1
Ei = €o (W1> -+ BE]_ui -+ 82Ui/ (56)
KRi = Ko (Wl) (57)
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5.4 Calculation of strains and curvatures

where
€xi0 Exic Ewis ExiC Exis
€1 = | Eyi0 Eyic Eyis EyiC Eyis
Exzyi0 Eaxyic Eaxyis ECazyiC ExyiS

Rzi0 Rzic KRzis Rzic Kzis
Ri = | Ryio Ryic Ryis RyiC Ryis
Rayi0  Kayic Rayis KzyiC KayiS
T
Wi = (wi(] Wie Wis Yio Vie 77Z)is)
T
uj = (Uz‘o Uje Ujs  Uic UiS Vio Ve Vis ViC UiS)

T
_ / / / / / / /
u; = (Uz‘o Ui Uiy Ui UWig Uig Ve Uis Ui UiS)

—&z + Iﬁ(wzzc + wZQS) [ 0 ]
0 ﬂ—i ic
0 DY,
2 (w2 _ w2 ) )\20 18
4)\2 225 ic
_;Wwicwis 0
AR 0
0 —!
g0 (W) = 0 Ko (W;) = —l,
élL (1 1’20 - 225) 0
SVictis 0
o (Wisic — wictis) 0
2
0 Tﬂwzc
% (wisd)ic + wic¢is) 0
| % (wiswis - wic¢ic) ] L 0 |
J O O O
&1 = O O Eg = O 1
O J I O
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5.5 Stress-strain relationships

10000 00000
01000 00000
I=1[0 010 0 O=1{00000
000710 00000
00001 00000
0 0 0 0 0
0 0 w 0 0 )
J=10 —w;, 0 0 0 wy = (5.8)
0 0 0 0 2 A
0 0 0 —2w O

5.5 Stress-strain relationships

Following the calculation of strains and curvatures, the stress-strain relationships
are consequently obtained in order to derive the equilibrium equations. For a

general anisotropic plate, the stress-strain relationships are written as

Nui = (Ai)118zi + (Ai)128yi + (Ai)16Vayi + (Bi)11kzi + (Bi)iakiyi + (Bi)i6kayi (5.9)

Nyi = (Ai)lzé?;m; + (Ai)225yi + (Ai)26'7myi + (Bi)IQ’%M' + (Bi>22’iyi + (Bi)%Hx?Ji <510)

Nayi = (Ai) 1680+ (As)26€yi + (Ai)66Vayi + (Bi)16K2i + (Bi) 26kyi + (Bi)ekayi (5.11)

My = (Bi)11€2i+ (Bi)12€yi +(Bi)16Vayi + (Di) 1162+ (Di)126yi + (D;)16K2yi (5.12)
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5.5 Stress-strain relationships

My = (B;)12€2i +(Bi)22eyi + (Bi)26Vayi + (Di)1262i + (D) 22kyi + (Di) 26 Kayi (5.13)

My = (Bi)16€2i+(Bi)26Eyi+ (Bi) 66 Vayi + (Di)16Kwi+ (Di)26yi+ (Di)oeKayi (5.14)

In the subsequent analysis, the moment resultants are not essential so that only
the in-plane stress-strain relationships are analyzed. The stress resultants and

their first derivatives at node i can therefore be rewritten in matrix form as

— _ 1 - _
N; = AiEO (Wl) + B;ko (Wl) + EAislui + Ai€2ui, (515)
_ _ 1- —
Ni, = Aie’fo/ (Wl) -+ BiHOI (Wl) + EAielui’ + Ai€2ui// (516)
where ~ _
N:ciO N.mc N:vis NziC N:viS
Nl - NyzO Nyzc Nyis NyzC NyzS
_N:L‘yiO nyzc N:cyis nyzC nyzS
[ N;ZO N;;zc Na/:zs Na/czC' NQIMS ]
N; = Ng;zo Ng/;zc Ng/ﬂs Ng//zC N;zS
_N:f:yiO Nylcyzc N:f:yis Nalsin N;yiS
_ (Ai>111 (Ai)121 (Ai)usI _ (Bi)ul (Bi)12I (Bi)161
A = (Ai)12 I (Ai)22 I (Az‘)zesI B; = (Bi)121 (Bi)22 I (Bi)ze I
(Ai)m I (Ai)26 I (Ai)66 I (Bi)lﬁ I (Bi)% I (Bi)66 I
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5.5 Stress-strain relationships

% (wz‘cd]ic + wis¢is) [ 20
0 2 Vic
0
%2 (Wisis — Wictic)
— o5z (Wietis + Wisthic) 0
3 Wil + istdiy) 0
O _
€o (Wi) = 0 Ko (Wi) = | —!!
5 (Wil — Yistiy) 0
5 (Visie + Vi) 0
a5 (Wi, + Wi ie — Wi, — Wicis) 0
0 — 24
0 2,
a5 (Wi, + Wi ie + Wici, + Wicthis) 0
oy (Wistis + % —wietj, —¥7) | L 0

2
;\r_2¢is
0

(5.17)

The derivatives uj, ui are obtained by introducing finite difference approxima-

tions with adjustments by parabolic interpolation at the plate edges

{ = o5 (—3ui + 4uq — uiy2) (i=1)
{ =5 (Wip1 —uiq) (1<i<n)
uf = o (052 — 4u;_1 + 3u;) (i=mn)
uf = 35 (2u; — 5ujyg + Ui — Uiys) (i=1)
uf = 75 (W1 — 205+ ujq) (1<i<n)
u;’ = le (ui_g — 411i_1 + 5ui_1 — 2ui) (Z = n)

(5.18)

(5.19)

substituting equations (5.17) into equations (5.15, 5.16) and applying finite dif-

ference approximations in equations (5.18, 5.19) to the derivatives, detailed ex-

pressions for N; and N; can be obtained.
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5.6 Equilibrium equations

5.6 Equilibrium equations

To solve for the in-plane displacement u;, the in-plane equilibrium conditions for

node i are given as

aNyi I 8nyi

» 0 =0 (5.20)
ON.yi  ONg
5 " =0 (5.21)

which can be further extended in the following expressions by rewriting the stress

resultants in terms of their components

g//iO =0
Nyie + 5 Noyis = 0
N — §nyic =0
N+ QTWNWS — 0
is QTWN:cin =0
zltyi() =0
N+ §N =0
Na/cyis - ;Nwic =0

2
Niyic + 5 Neis = 0
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5.6 Equilibrium equations

, 2m

zyiS TNmC =0 (522)

Substituting expressions for N; and N} gives ten equilibrium equations for each
node, in terms of the unknown in-plane displacement terms w;g, Uic, Uis, Uic, Usis,
Vios Vie, Vis, Vi and v;g of equations (5.3) and (5.4). The equilibrium equations
are formulated in the following forms, where expressions in curly brackets are
for the first node (i=1), interior nodes (1 < i < n) and the last node (i=n),

respectively from top to bottom

(Ai) Vie (—3Vic + Ait1.c — Vitoe) + Yis (—3Uis + 4iv1 s — Yigas)
2 8 e (Yiv1e — Vic1e) + Yis Wig1s — Vio1s)

4b
Vie (Bic — 4i_1c + Vicoe) + Vis (3is — dhi1 s + Vias)
(4;),, = (4) 2uip — SUiy1,0 + AUit2,0 — Uits0
+ 2—;5 (Wicthic + wisthis) + b—226 Uit1,0 = 2Uio + Ui—1,0

2ui0 — dUj—1,0 + 4ui—20 — Ui—30

(A, 7 Vie (—3wis + dwiy1 s — Witas) + Wis (—3ic + 4it1c — Yiyare)
——20 8y, (Wit1,s — Wis1,s) + Wis (Vit1,c — Yiz1,c)

VYie (Bwis — 4w;_1 s + Wi—as) + Wis (3hie — 410+ Yia)

(/L') r | —Wic (=3tis + Mi1s — Vivas) — Yis (—3Wic + 4Wig1,c — Wiae)
26 —Wie (¢z’+1,s - wifl,s) — s (wiJrl,c - wifl,c)

—Wie (3is — 4ii1s + Yias) — Vis (Bwiec — 4wy + Wi—a)

(4;) 2050 — 9Vit1,0 + Ai20 — Vigso

2 0 Vig10 — 200 + Vi1 =0 (5.23)
2050 — dVi—1,0 + 4Vi—20 — Vi3
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5.6 Equilibrium equations

(B:) 205 — i1+ 4Vivoc — Vigse 02 (B )
- b2 22 ¢i+1,c - 2¢zc + wi—l,c + — % T/ch
2%@ - 5wi—l,c + ¢4@ - 2a ¢ — wi—B,c
(1212,)22 20 — D10 + AVigo e — Vigse (AZ) L —3Uis + 4Uit1s — Uitas
+ B2 Vitl,e — 2Vic + Vim1c + o Uit1,s — Ui—1,s
2050 — DVj—1,c + 400 — Vi3, 3is — 415 + Ui_o
(A;) i —30is + 4015 — Vigos (By)yy —3tis + 4is1,s — Vi
+ T Vit1,s — Vi—1s - T wiﬂ,s - z,bifl,s
3is — 41, + Vi—as 3this — Ahi1 s+ Vi_o
_3 18 + 4 [ s — Wi S
(Bi)gs ™ v Virts = Yira (Bi )1277 (Bi) 1 i
2—)\b wiJrl,s - %:71,3 + ¢zc )\3 Wi
3is — 41 s +io
(A-)% T —30is + 4vip1s — Vigos —3Uis + AUjp1s — Uiyos
+ Tonh Vitl,s — Vi—1,s 2)\b Uit1,s — Ui—1,s
3vis - 47}2'—1,5 + Vi—2.s 3uzs 4uz 1,s + Ui—2,s
A 2Uic - 5uz c + 4uz ,C — Uy c A A
n (Ai)gﬁ Ui _2J,I7+u, 1+2 > A o (Ai)66wiﬂ-v. -0
b2 1+1,c 1c 1—1,c )\b Uje )\b ic

Quic - 5ui—l,c + 4ui—2,c — Ui—3,c

65



5.6 Equilibrium equations

2055 — Oiq1s + Aigos — VYigss
Yiy1,s — 2is + Yi1s
2%‘5 - 5%’—1,5 + ¢4Z - 2a s = %’—3,3

212 (B;
+ i §\2 )66%3

20i5 — DViq1,s + AVigos — Vigss (121%) W —3Uie + dit1c — Uirae
12

Vigl,s — 2Vis + Vi1 -
2056 — SV;_1s +4Vi_9 s — Vi3

2b2

Uit1,c — Ui—1,c
Sje — 4Ui—1 0 + Ui—2,¢

—3Vic + 4Vit1c — Vigoe (BZ,)% o | 3Vie T i1 — Yitac

Vitl,c = Vi-l,e +

3Vic — 4Vi_1 .+ Vig, Ab

wi+1,c - Qﬂifl,c
3%@ - 4¢i71,c + ¢i72,c

—3Vic + 4i1c — Vigoe (Bi)y 2 (B)ys w3

Yit1,e — Yi-1,e + 2 Yis — \3 Wic
3Vic — 410+ Via,

—3Vic + Vi1 — Vigae (4) —3Uje + AUjg1,c — Uigac
Vitl,e — Vi-1,c - 2)\62 Uit1,c — Ui—1,c

3Vic — 401+ Vi—a .

2Ujs — DUjt1,s + 4Uijro s — Uiyss
Ujg1,s — 2Ujs + U1 s —
Quis - 5ui—l,s + 4ui—2,s — Uj—3,s

66
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Uis —
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5.6 Equilibrium equations

(Az) Vie(—=3ic + 4it1,c — Vigoe) — Yis(—30is + dig1s — Yigas)
2 wic(¢i+1,c - 1/%’—1,(:) - wis (wi—‘rl,s - wi—l,s)

4b
Vie(3tic — Wi1c + Vimze) — Vis(3tis — Aio1s + thizas)
72 (Ai)12 (A;) 16> S
* 72>\2 (wisthis — wichic) — 23 wicwis + (Ai)26 Xwicwis
(A;)ee? 4w — 4w

2 (Wisthis — Wietic) — (Ai)16—7— e + (Ai)es /\;)

(Ai)26 T wzc( Bwis + 4wi+1,s - wi+2,s> + wis(_Bwic + 4wi+1,c - ¢i+2,c>
YV Vie(Wi1s — Wiz1s) + Wis(Vig1.c — Yic1c)

¢zc(3wzs 4wi—1,s + wi—?,s) + wis(3¢ic - 4¢i—1,c + wi—Q,c)
(Ai)% T Wie(—3is + 4ig1s — Vigos) + Yis(—3Wie + 4Wig1.c — Wita,)
RV Wic(Vig1,s — Yic1,s) + Vis(Wit1,c — wis1e)

wzc(?ﬂl}zs 4¢i—1,5 + %‘—2,5) + QyDis(?’u}ic - 4uji—l,c + wi—Z,c)

()2 200 — Svip1,0 + Wito o — Viss o (A,) 19 —3uis + 41,5 — Uiyos
(A (A
+ 2 Viy1,c — 200 +Vi—1,0 T2 WitLs T UioLs
20,0 — 1,0 +4via 0 — Vi3 o g — 4ui—15 + Ui—2 5
(A;)26w; —3vis +4vip1,5 — Viga,s (Ay)s6 2uic — SUiq1,0 + Mivo o — Uirs o
T 3 1
R Vit1,8 — Vi—1,8 + B Uip1,0 — 2U;c + Ui—10
3Vis — 4vi_1,5 + Vi—a g 2uic — duj—1,c +4ui—2c — Ui—3,C
T —3u,s + 4u; —u; T —3v;s + 4v; —v;
(A)es is T 4Uir1,9 i+2,8 (A;)67 is T 4Vit1s i+2,9
Uit1,8 — Ui—1,8 + Vit+1,8 — Vi—1,8 =0
b 4 b 4
uis — 4ui—1,5 +Ui—a s 3vis — 4vi_1.5 + Vi—a g
(5.26)
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5.6 Equilibrium equations

(4;) Vis(—=3Vic + 4it1c — VYigae) + Vic(—30is + 4ig1,s — Vigos)
m 22 & Yis(Viv1e — Vic1e) + Yie(Wir1.s — Yio1,s)
Yis(3hic — 410 + Vi) + Vic(30is — 4hi1 s + Vias)

(A), 7 Wis(—3is + Aip1 s — Vigas) — Wis(=3Vic + 4it1e — Viyare)
26 wis(%ﬂ,s - %‘—1,5) - wis<wi+1,c - %‘—1,(:)

4A\b
Wis(3his — 415 + Yias) — Wis(3Yic — 41 o + VYi—a )
7T2(121 )12 I
- 18 Wic wcWis A 2 - A 2 2
2)\2 (w w + w; w ) ( )262)\( zc) ( )162/\3< wzc)
(Ai)o6m (A;)gem? - AwT o dw
— — — — = (WisVic icis_Ai—i_Ai—z
2\ (wzc wzs) 22 (U) 1/} +w ¢ ) ( )16 \b Uis ( )66 \b Vis
(Ai)%W —3uic + 4ui1,0 — Uira.0 ([1 )oe T —3vic + 41,0 — Viga,o
- b Uit1,0 — Ui—1,C b Vit1,0 — Vi—-1,C
3uic — 4ui—1,c + Ui—a2 o 3vic — 4vi—1,c +vi—ac
()2 2055 — SVi1,s + AVito s — Vigs s (Ay)s6 2Ujs — DUiq1,s + AU s — Uiys s
+ 52 Vigl,s — 2Vis + Vi—1g + le Uig1,s — 2Ujs + U1 s
2055 — D15 +4Vi_9 s — Vi3 2Ujs — DUj—1s +4Uj—o s — Uj—3 6
(A)1aw; —3uic + 41,0 — Uiyo,c (A;)160n —3vic + 4vip1,0 — Viga,0
- 12 Ui+1,c — Ui—-1,C - b—2 Vi+1,c — Vi-1,C =0
3uic — 4ui—1,0 + Ui—2.c 3ic — 4vi_1,c + Vi—a o
(5.27)

(Ai)GGﬂ' wls( 377ZJZC + 4¢i+1,c - ¢i+2,c) - wic(_3wis + 4¢i+1,5 - 77@—}—2,3)
Wis <wz+l c %71,@) - wic(¢i+1,s - %4,5)
(

4Nb
Wi szc 42/)1‘71,0 + wi72,c> - wic(?’wis - 4¢i71,s + zﬂifZ,s)
(/_1')667T c( 3w;e + 4wi+1,c - wi+2,c) - wis(_Bwis + 4wi+1,s - wi+2,s)
4>\b wzc(w1+1 c wifl,c) - wis (wi+1,s - wifl,s)
¢zc(3wzc 4wi—1,c + wi—Q,C) - ¢is(3wi3 - 4wi—1,5 + wi—2,s)
(Ai)66 2ui0 — 5u¢+1,0 -+ 4Ui+2’0 — Ui+3,0 (A')Qﬁ 21}@'0 — 5’Ui+170 + 4Ui+270 — Ui+3,0
B2 Uit1,0 — 2Ui0 + Ui—1,0 + B Vit1,0 — 2050 + Vi—10
2u0 — Su;—1,0 + 4Ui—20 — Ui—30 2040 — V1,0 + 4vi_20 — Vi—30
(/_11')167T2
2—/\2(wic¢ic + wisthis)
(A;)os VYis(—3is + Ais1s — Vitas) + Vie(—30ic + 41,0 — VYivae)
T Yis(Vit1,s — Vic1,s) + Vie(Vit1.e — Vic1e) =0

Vis(3this — A1 s + Vicos) + Vic(3thic — 4hi1 0 + iza )
(5.28)
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5.6 Equilibrium equations

(B:)esT 7;3@/)1‘5 +$¢i+1,s — Yitas (A:)gows —304s + 4115 — Vigos
it1,s — Vi-1,s

Vit+1,s — Vi—1,s

2
Ab Vs — dhi1 s + Vi_o 2 3Vis — 4Ui_1 5+ Vo
1 —3Ujs + 4Uit1s — Uig2 5 2ic — Diq1e + 4igo e — Vigs
(Ai)IGL’Ji 18 1+1,s 1+2,8 Bz c 1+1,c 1+2,C 1+3,c
+ Topz ) Yitls T Uicls — ( b2)26 Vig1,e — 2Vic + i1 c
3is — 4ui—1 s + Ui—o s 2ic — i1+ 4o — Yz,
(/_11-)26 2/Uic — 5Ui+1,c + 4Ui+2,c — Ui43.c (Ai)(sﬁ QUic — 5ui+1,c + 4ui+27c — Ui43,c
+ 02 Vigl,e — 2Vic + Vim1c + 2 Uig1,e — 2Ujec + Ui—1c
20jc — i1 +4Vi—a . — Vi3 2Uje — DUj—1c +4Ui—2 . — Ui—3¢
; RN (A T T
(Bi)llﬂ-g _ 7.(_2 Bz T 18 1+1,s 1+2,s
+ s Wis + (Bi)lﬁﬁwic _ 22\1; VYit1,s — Yi-1s
3his — A1 s+ Vi_o
= —3;s + 4 — Y;
_ 27'('2 _ W _ Wi Bz T 18 i+1,s 1+2,s
+ (Bi)lﬁvwic - (Ai)ll Euic - (Ai)lfiﬁvic - ( )\)26 ¢i+1,s - ¢i—1,s
3¢is - 4¢i—1,s + 77Di—2,s
(A —3Vis + 415 — Vigas (A —3Uis +4Uit1 s — Uitos
D Vigl,s — Viel,s oy ) Uit T Uicls =0
3Vis — 41,5 + Vi—os Sis — 415 + Uj—2
(5.29)
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5.6 Equilibrium equations

(Bi)IQ’ﬂ' _377sz + 4¢i+1,c - ¢i+2,c (Ai)16ﬂ- —3uic + 4ui+1,c — Uit2.c

Yit1e — Vic1c + Uit1,e — Ui—1c
2\ 3thie — 4¢i—1,c + ¢i—2,c 2Ab e — 4ui—l,c + U2,
_ 27‘(2 _ 7T2 _ 7T3
+ (Bi)lﬁﬁq/]z‘s + (Bi)lﬁﬁwis — (Bi)n Fwic
(A,)gsws —3Vic + 4Vit1c — Vigac (B)as 25 — Sig1s + Aigo s — Vigs s
T o Vitl,e — Vi-le T Yig1,s — 205 + i1
3Vic — 41}2'71,0 + Vi2. 295 — 5%71,3 + 4%’72,5 - %'73,5
A _3ic 42 c— U c D _3ic 41 c— Wi c
(A1 Vie + 4Vit1,c — Vigo, (By)osm Yic + Aitrc — Yigo,
Y Vitl,e — Vi—1,c + b Vit1,e — Vicic
3Vic — 4Vi_1c + Vig, 3thic — 41+ o,
(Ai)mwi —3Uic + 4ui+1,c — Ui42,c (Ai)ﬁfi 2UZ‘S — 5ui+17s + 4ui+2,s — U435
T o Uitl,e — Ui—1,c + 02 Uip1,s — 2Uis + Ui—1 5
3jc — 4Ui—1 0+ Ui—a, 2Uis — DUj—1 s +4Ui—g s — Uj—3
1 20;5 — BVi41,s + AVigo s — Vigs
(Ai>26 +1, 1+2,8 1+3,s _ Wy _ Wi
+ Vit1,s — 2vis + Vic1s - Az 5 Uis — Az 3 Vis — 0
12 +1, 1, ( )11 b ( )16 b v

2055 — SV s +4Vi_9 s — Vi3

(5.30)
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5.6 Equilibrium equations

77ch( 3¢zc + 4¢i+1,c - ¢i+2,c) - ¢zs(_3¢zs + 477Z}i+1,s - 77Z)i+2,s)
¢zc(¢z+1 c 77Z1i—1,c) - ¢is(¢i+1,s - wi—l,s)

wzc(szc 4wi—l,c + wi—2,c) - wzs<3wzs - 4%‘—1,5 + %’—2,5)

Ai wzs( 3¢zc + 4¢i+1,c - ¢i+2,c) + wic(_gwis + 477Z}i+1,s - ,Ivbi—i—Q,s)
( )667T Wi <wz+1 c ¢i—1,c) + wic(wi—ﬁ—l,s - Qﬂi—l,s)

4N
w'Ls(szc 4¢i71,c + ¢i72,c> + wic(Bwis - 41/%‘71,3 + wi72,s)
(/Ii)GGW s( 3w;e + 4wi+1,c - wi+2,c) + ¢ic(—3wis + 4wi+17s - wi+2,s)
5y} Yis(Wit1.e — Wis1e) + Yie(Wit1,s — Wii15)
wzs(ngc 4’(1)1',170 + wz’72,c) + wic<3wis - 4U}ifl,s + wi72,3>
(A,)ssws —3vis +4vi41,9 — Vigos (Ay)s6 20,0 — Hiy1,0 +4Vita.c — Vigs,c
2 Vig1,8 — Vi—1,8 + 2 Viv1,c — 200 + Vi1 o
3vis —4vi_1.5 + Vi g 20,0 — D10 +4vi0 0 — Vi_s o
(A)16wi —3uis + 4uip1,5 — Uiyos (A)es 2uic — dujy1,c +4uita.c — Uirs o
+ Tz ) WitLs T UicLs + 2 Ui, — 2Uic + Ui—1.0
3uis — 4ui—1,5 +ui—ag 2uic — dui—1,c +4ui—o 0 — Ui—3.0
dw;m = Awm - 2
— (A)n—— N liC (Ai)i6—— Vet (Ai)165 o2 (Wistis — WicYic)
3 - _ . w2
— (A3 N3 WicWis — (A;)mx%dﬂis + (Ai)16p<wis¢is — WicYPic)
(A'>167T —3uis + 4U2‘+1,S — Uit+2,9 (Ai)mﬂ' —37)2'5 —+ 41}1'4_1,5 — Vj+2,8
T ) WitLs T Uiovs " Vi1, — Vi—1,8 =0
3uis — 4ui—1,5 +ui—ag 3vis —4vi_1.5 + Vi—a s

(5.31)
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5.6 Equilibrium equations

(Ao —3vic + 41,0 — Vigao (A)as 20;5 — BU1.5 + AVita.s — Vits.s
1 1 (]
T2 ) UHie Tl + 2 Vig1,5 — 209 + Vi_1 5

3vic —4vi_1.0 +vi—ao 20;5 — Sv_1,9 +4vi_o 5 — Vi_3.g

(A7 —3uic + 4uip1,c — Uipa,c (Ay)ss 2ui5 — D15 + 4Uiya s — Uigs,s

- Uiy1,0 — Ui—1,C + 2 Uiy1,5 — 2Uis + Ui—1,9

3uic —4u—1,0c + Ui—ac 2u;s — dui—1,9 +4ui_o 5 — U;i_3 5

2
- _ o
— (4 )16 92 (wzswzc + Wictis) + (4 )66 2)\( 2 — 120) — (Ai)lfiﬁ(wiswic + Wicis)
(Ai)% Vis(—3%ic + 4it1.c — Vigae) + Vis(—30is + 4hig1,s — Yigas)
m Yis(Vit1.e — Vic1.e) + Vis(Vig1,s — Yic1s)
wzs(?ﬂ/}zc 4"#1'71,0 + wiflc) + wls(?)wzs - 4%’71,5 + ¢i72,s)

(z‘_li)(sa?T Wis(—3Vis + 4Vit1,s — Yitas) — Wic(—3ic + 4iv1c — Yigac)
wis(wiﬂ,s - 1/1171,3) - wic(¢i+1,c - wifl,c>

4
Ab wz’s(3¢is - 4%‘—1,3 + %—2,5) - wic(3¢z‘c - 41/1i—1,c + 1/11‘—2,c)
— o dwm — . dwm . 3 - T
(A s — (AT s — (At ooy (0, — wh) — (A rze (2 — 7
( )11 )\b ( )16 \b Vis ( )11 2)\3 (wzs w’LC) ( )122)\( ic zs)
(A))1om —3vic + 4vip1.0 — Voo (A;) 16w —3uic + 4uip1,0 — Uiya,c
" Vit1,0 — Vi—1,0 T Whe T uiagc =0
3vic —4vi_1,c +viac 3uic — 4ui—1,c + Ui—a o
(5.32)

To solve the in-plane displacements u;, ten equilibrium equations for each node are

assembled into the global equilibrium equations which can be written in matrix

form as
Hu = G(w) (5.33)

where u includes the unknown in-plane displacements u; for all the nodes of
the structure, H is a square matrix with constant coefficients and G(w) is a
non-linear function of the out-of-plane displacements w which are known from
the VICONOPT analysis. Equation (5.33) can be therefore solved to give the
in-plane displacements as

u=H"'G(w) (5.34)

from which the components of stress resultants N,;;, Ny;; and Ng,; can be ob-

tained and then the uniform effective stress resultants can then be calculated.
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5.7 Calculation of effective uniform stress resultants

5.7 Calculation of effective uniform stress resul-
tants

For the next iteration of VICONOPT, equivalent uniform stress resultants are
needed. In buckling analyses, the work done by the applied loading at node i is
calculated by

where
A
0
A
0
:):yz = / Nazyzgzyzdx (538)

Writing the general expressions for the stress resultants as

2rx 2
N,i = Nyio + Nyic cos = + Nyis sin -~ + Ngic cos —— + N, g sin e (5.39)
A A A A
2mx 2
Nyi = Nyio + Nyic cos 2 Nyis sin 20+ Nyic cos — L Nyis sin — ki (5.40)
A A A A
T . T 2k 21k
Nzyi = Nayio + Neyic €OS ~ + Nyyis sin ~ + Nyyic cOS —— 5y + Nyyis sin Y (5.41)

and substituting equations (5.8) and equations (5.39-5.41) into equations (5.36-

5.38), the work done can be written as

Vm' = bZ(NCCZO/r,IlO + incnm’c + insnxis + inCnm'C + inSﬁxiS) (542>
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5.7 Calculation of effective uniform stress resultants

Vyi = bi(Nyiotiyio + Nyiclyic + Nyistiyis + Nyicnyic + Nyisnyis) (5.43)

‘/acyi - bi(Nacyiona:yiO + Nzyicnxyic + nyisnzyis + nyicnzyi(} + NacyiSU;tyiS) (544>

where 7; are coefficients expressed in terms of known variables €, u; and w;

Nzio = _Agx - 2uic + 7T_ (wz2c + wzzs)

™

ziS = JUWis — TUC —

eis =3 T
2\

yzO )‘sz + Uzs + — <77Z}zc + ¢zs)

WisWie

A 4\ 2\
Nyic = 52’20 + g“gs + g%‘c%s

A, A, 2X, A,
is — i S Vis T i i 29;
77y T Uso + 2,025 37TUzC + I ( ic + wzs)

2 A A
Nyic = 3_U/+210+8(2_ 7,25)

an, X,

Nyis = 3_ + 9 15 + %c%s

2 T
Nayio = )\U;o + ?U;S — 204 + 5 (WisWic — Wictis)

A, 4N, s 8
Neyic = =W + 5= U;g + Vs — ZVic +

2
2 ic R a wiswis - wicwic)

2 3 3<
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5.8 Calculation of components N,;;, N,; and N;

2\ A 2) T 4 1
Neyis = 7”;0 + 5”;5 - %u;(j - §Uic - gviS - g (wiswic + 7wic¢i5)
A 2 2\
Nayic = §UZ~C + gvic + %vis + 7 (Wictis + Wisthic) — gu;
4\ A 4
NayiS = gugc + §U§s + 3Vis — Tic + % (Wistis — Wictic) (5.45)

Comparing with the corresponding expressions for uniform loading yields the
following expressions for equivalent uniform stress resultants, which are used in

the strip stiffness calculations.

1
Nmi - 10 + — (N:vicnxic + Nazisnxis + inCna:iC + NziSﬁa:iS) (546)
10
1
Nyi = NyiO + ﬂ (Nyicnyic + Nyisnyis + Ninnin + NyisnyiS) (547)
yi
1
nyi = {Vzxyi0 + _0 (Nmyicnxyic + Na:yisnxyis + Na:innxin + waisnwyiS) (548>
Tyl

To calculate the effective uniform stress resultants, the components of stress re-

sultants Ny, Nyi; and N,,;; are needed.

5.8 Calculation of components N,;;, N,;; and N,;;

Using the stress-strain relationships for the force resultants for node 7 in equations
(5.9-5.11)

Nyi = (Ai)11€ai + (Ai) 126y + (Ai)16Vayi + (Bi) 116z + (Bi)12kyi + (Bi) 16Ky (5.49)

Nyi = (Ai) 1280 + (Ai)22€yi + (Ai)26Vayi + (Bi)126zi + (Bi) 22kyi + (Bi)26Kzyi (5.50)
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5.8 Calculation of components N,;;, N,; and N;

Nayi = (Ai) 1682+ (Ai)26eyi + (Ai)66Vayi + (Bi) 16K + (Bi) 26 kyi + (Bi)eeKayi (5.51)

Substituting equation (5.5) into the formulas above, the following expressions can
be written

Ny =[(Ai)11€zi0 + (Ai)12€yio + (Ai)16Vayio)

+ [( )llgmc (A')125yic + (A')lﬁ'yzyic
T
+ ( )llﬁxzc ( )12’£yic (Bz)lﬁliacyic] COS %
+ [( )1153318 ( )12€yis (Az)16’7zyis
. T
+ ( )11"{2:25 ( )12’iyis (Bz)16"<!a:yis] SII FT
2w
+ [(Ai)11€zic + (Ai)12eyic + (Ai)16Vayic] cos N
. 27mx
+ [(Ai)11€xis + (Ai)12eyis + (Ai)16Vayis]) sin Y (5.52)
Nyi =[(Ai)126zi0 + (Ai)a2eyio + (Ai)26Vayiol
+ [( )125mc (A')QQEyic + (A')ZG'.nyic
T
+ ( )1253610 ( )22Hyic (Bz)26"€a:yic] COs 7
+ [( )125128 ( )22€yis <A1)267xyis
. T
+ ( )125113 ( )22/€yis (Bz)26’€xyis] S111 T
2rx
+ [(Ai)12€zic + (Ai)a2eyic + (Ai)26Vayic] cos %
. 2mx
+ [(Ai) 126215 + (Ai)2eyis + (Ai)26Vayis] sin DY (5.53)
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5.8 Calculation of components N,;;, N,; and N;

Ny :[(Ai)lﬁgmo + (A‘>265yz‘0 + (Ai)66%cyz'o]

+ [(Ai)16€wic + (Ai)26yic + (Ai)e6Vayic
T
+ (Bi)16Kzic + (Bi)2skyic + (Bi)e6Kayic] COS By
+ [( )165:1713 ( )265yis + (Ai)66'7;tyis
. T
+ (Bi)16Kwis + (Bi)26kyis + (Bi)eslayis) Sin 5N
2w
+ [(Ai)16€zic + (Ai)aseyic + (Ai)e6Vayic] coOs Y
. 27mx
+ [(Ai)16E2is + (Ai)26Eyis + (Ai)e6Vayis] sin DY

From which

Nzio = (Ai)11€zi0 + (Ai)12€yi0 + (Ai)16Vayio

(5.54)

= (A)11€zic + (Ai)128yic + (Ai)16Vayic T (Bi)11Kzic + (Bi)12kyic + (Bi)16Kayic

Nic = (A)n€zic + (Ai)12eyic + (Ai)16Vayic

Nuis = (Ai)11€zis + (Ai)12eyis + (Ai)167Vayis

Nyio = (Ai)12€zi0 + (Ai)22€yi0 + (Ai)26Vayio

Nais = (Ai)11€is + (Ai)126yis + (Ai)16Vayis + (Bi)11Kzis + (Bi)i2kyis + (Bi)16Kayis

= (Ai)12€zic + (Ai)22eyic + (Ai)26Vayic + (Bi)126zic + (Bi)22kyic + (Bi)26Kayic
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5.9 Calculation of derivatives

Nyis = (Ai)12€4is + (Ai)22eyis + (Ai)26Vayis + (Bi)12kzis + (Bi)2akyis + (Bi)26Kayis

Nyic = (Ai)12€zic + (Ai)2eyic + (Ai)26Vayic

Nyis = (Ai)12€zis + (Ai)22eyis + (Ai)26Vayis

Nayio = (Ai)16€zio + (Ai)26Eyio + (Ai)e6Vayio

Nayic = (Ai)16€zic + (Ai)26Eyic + (Ai)e6Vayic + (Bi)i6Kzic + (Bi)2skyic + (Bi)esKayic

Nayis = (Ai)16€wis + (Ai)26Eyis + (Ai)66Vayis T (Bi)16Kwis + (Bi)2ekyis + (Bi)esRayis

Nayic = (Ai)16€zic + (Ai)ascyic + (Ai)s6Vayic

Nayis = (Ai)16€zis + (Ai)26Eyis + (Ai)e6Vayis (5.55)

5.9 Calculation of derivatives

The above calculations provide an explicit solution procedure for the effective
uniform stresses for the next iteration in VICONOPT. However for Newton iter-
ations in VICONOPT, the derivatives of stresses at each node with respect to all

the components of out-of-plane displacement w at each node are also required.
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5.9 Calculation of derivatives

In reference [I37], Kennedy and Featherston describe the detailed process

of Newton iterations in VICONOPT. The mode vector D = {D;;j = 1,...n}

includes displacements and rotations both at the longitudinal plate edges and

strip edges of each plate. K = {Kj;;7,j = 1,..n} is the corresponding exact

stiffness matrix, which is a transcendental function of the stress resultants in
each strip. Suppose

D=D"+d (5.56)

where D* is a trial mode vector and d = {d;;j = 1,...n} is the adjustments of

D*. The Newton iteration is therefore written as matrix form
8K*
(K* + Z ) (K*+d) =0 (5.57)

where K* = K(D*). Neglecting higher order terms then write equation (5.57) as

n

Z ( . Z 0K}, Dk*) dj = — i K:‘]D;‘ (5.58)
j=1

J=1

To solve the equation and obtain d, the terms 0K}, /OD; are required to be
calculated. Stiffness matrix K is in terms of stress resultants which are calculated
by the above sections and the derivatives 0K, /0D; are calculated in Appendix
A. After d is obtained, equation (5.56) gives a new trial mode vector D which is

used as D* in the next iteration.
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Chapter 6

Illustrative results and discussion

for isotropic plates

This chapter introduces the framework of the program written based on the im-
proved exact strip postbuckling analysis. The entire process by which the im-
proved postbuckling analysis works with VICONOPT to enable the postbuckling
analysis capacity is demonstrated. Illustrative results of isotropic plates with dif-
ferent load and edge conditions are then shown. The results are compared with
old VICONOPT results to present the improvements, while are also compared
with FE (ABAQUS) results for validation.

6.1 Introduction

The program based on the improved exact strip postbuckling analysis utilises
out-of-plane displacements w from VICONOPT to calculate unknown in-plane
displacements u and v. Then the strains € and curvatures x which depend on
displacements u and v can then be obtained. Finally the uniform stress resultants
and their derivatives with respect to each component of w can be calculated. For
the next cycle in VICONOPT, the uniform stress resultants and their derivatives

are used to obtain the new postbuckling mode shape which provides the out-of-
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6.1 Introduction
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Figure 6.1: Improved postbuckling analysis before being implemented into VI-
CONOPT

plane displacements for the new cycle. Therefore, improved postbuckling analysis
finds the uniform stress resultants and their derivatives for each cycle only. It
cannot automatically move on to the next cycle because the new postbuckling
mode shape which is calculated by VICONOPT is necessary. Hence it is efficient
and essential to implement the improved postbuckling analysis into VICONOPT
so that it is able to work with VICONOPT as a whole program. Figures 6.1 and
6.2 show two flow charts which illustrate how the improved postbuckling analysis
works before and after being implemented into VICONOPT. Implementation of
the improved postbuckling analysis into VICONOPT enables achievement of more
accurate postbuckling analysis in VICONOPT. To start a complete VICONOPT
postbuckling analysis, the pre-processing stages including spatial modelling, as-
signing material properties and applying load must be completed in VICONOPT.
Then VICONOPT provides the critical buckling load, critical longitudinal strain
and mode shape after initial buckling analysis has done. The out-of-plane dis-
placements are then utilised by the improved postbuckling analysis to calculate

in-plane displacements, strains, curvatures, uniform stress resultants and their
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6.1 Introduction
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Figure 6.2: Improved postbuckling analysis after being implemented into VI-
CONOPT

derivatives for each cycle. This process is achieved by an iterative procedure
where the increment for each cycle is defined by the user and the above quanti-
ties are required to converge in each cycle. The post-processing stage for improved
postbuckling analysis including creation of figures and contour plots shown in the
following sections are completed in a spreadsheet. By using in-plane and out-of-
plane displacement and stress resultants and their components, the spreadsheet
is able to calculate the stresses and strains at a particular point on the plate and

create the contour plot for stresses and strains in the postbuckling stage.

6.1.1 Isotropic square plate model

The model used in the postbuckling analysis is an isotropic square thin plate.
The plate has length and width 0.3m, thickness 0.001m, Young’s modulus is
110kNmm~2 and Poisson’s ratio 0.3. Various edge conditions including a fixed
edge condition, a free edge condition and a straight edge condition are applied

on the top and bottom edges symmetrically. Symmetric uniform compression
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6.1 Introduction
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Figure 6.3: Dimension of the plate and axes

is applied on the left and right edges which are simply supported respectively
and the amount of load is 50kN/m. The plate is divided into 10 strips of equal
width for the VICONOPT analysis and improved postbuckling analysis, and it is
divided into 900 elements (30 x 30) in the ABAQUS analysis. Figure 6.3 shows
the dimensions and axes of the plate, and Figure 6.4 shows the load and edge

assignments.

6.1.2 In-plane edge conditions

All edges are simply supported against out-of-plane displacement w in the model,
while the uniform compressions are applied on the left and right edges as shown in
Figure 6.4. Various in-plane edge conditions are applied on the unloaded top and
bottom edges respectively. The edge conditions analysed in this study include the
fixed edge condition, free edge condition and straight edge condition. The fixed
edge condition requires the longitudinal top and bottom edges are fixed in-plane,
i.e. in the solution of equation (5.33) all components of u; are forced to zero at
nodes ¢ = 1 and ¢ = n which represent the top and bottom edges respectively.

The free edge condition releases the constraints of v;, i.e. all components on w;
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Figure 6.4: Loads and edge assignments
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6.2 Numerical study and contour plots of stress distributions

are required to be zero at nodes ¢ = 1 and ¢ = n. The straight edge condition
requires the top and bottom edges are kept straight therefore whilst v,y at node
t = 1, ¢ = n could be non-zero, the remaining components of u; are forced to zero
at the top and bottom edges. However in the actual analysis using the improved
postbuckling analysis, to avoid the rigid body movement one more constraint is
applied for the free edge condition and the straight edge condition, which is, the

component v,y at the middle nodes of the plate are forced to zero.

6.2 Numerical study and contour plots of stress
distributions

VICONOPT assumes longitudinal invariance of stress and a sinusoidal postbuck-
ling mode which is believed to reduce the accuracy of stress and strain distribu-
tions in the postbuckling range. Therefore, one of the objectives of the improved
postbuckling analysis is to improve the prediction of stress distributions in the
postbuckling analysis. Illustrative results in this section show the numerical study
and contour plots of longitudinal and transverse stress (N, and N,) distributions
at different stages of the postbuckling analysis. The contour plots indicate the dis-
tribution of longitudinal stress IV, and transverse stress [V,, while the numerical
study compares the stresses on both the horizontal and vertical centre lines of the
plate (as shown in Figure 6.4) between the improved postbuckling analysis and
ABAQUS analysis. The stresses are compared by plotting the stress distribution
along the horizontal and vertical centre lines respectively. A correlation study
has been carried out between the improved postbuckling analysis and ABAQUS
analysis for three edge conditions, then the error evaluation and discussion has
been given. To avoid excessive duplication of figures, the numerical study com-
pares the stresses on the top surface of the plate only since the bottom surface
shows similar curves and trends as the top surface but in the opposite direction.

Three stages (i.e. cycle 1, cycle 5 and cycle 10) are chosen to represent the
entire postbuckling process. The comparison between improved postbuckling

analysis and VICONOPT results shows the improvement and development of
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6.2 Numerical study and contour plots of stress distributions

this new analysis, then the comparison between the improved postbuckling anal-
ysis and ABAQUS results validates the accuracy of the analysis. The contour
plots for the improved postbuckling analysis and old VICONOPT results are
obtained by a set of spreadsheets. The mode shape for a particular cycle en-
ables the corresponding stresses distributions to be plotted. The contour plots
of stress distribution are shown for both top surface and bottom surface of plate
respectively. Three different edge conditions including fixed edge condition, free
edge condition and straight edge condition are also illustrated in this section.
To provide an overall evaluation of the accuracy of the improved postbuckling
analysis, figures of total longitudinal load against longitudinal strain are plotted
and compared with those from ABAQUS analysis and old VICONOPT analysis
for three different edge conditions before the onset of investigation for particular
cycles. The dots on the curves denote the values for analysis cycle 1, 5 and 10
from right to left. Figure 6.5 shows a plot of the total longitudinal load against
longitudinal strain and indicates that the improved postbuckling analysis shows
close agreement with ABAQUS analysis while old VICONOPT results loses some

accuracy.

6.2.1 Stress distributions in cycle 1

The stress distributions of cycle 1 which represents the very beginning of post-
buckling behaviour are shown. When the longitudinal strain of cycle 1 in the
improved postbuckling analysis (4.0274 x 107°) and ABAQUS (4.0266 x 107°)
exceeded the critical buckling strain (4.0169 x 107°) by 0.26% and 0.24%, the
out-of-plane displacement w and effective uniform stresses were saved and used
as input to the procedure described in Chapter 5. In the contour plots, blue
shading denotes increasing compression while red indicates decreasing compres-
sion (which usually results in regions of tension on the bottom surface). The units
of stresses in all contour plots in this chapter are in N/m. The contour plots of N,
and N, distributions across the top surface of the plate for fixed edge conditions
are shown in Figures 6.6 and 6.7 for comparison. Figures 6.8 and 6.9 show the
numerical comparison of stress /N, and N, on both horizontal and vertical centre

line of plate. The error evaluation has been given in the tables in Figures 6.8 and
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Figure 6.5: Total longitudinal load (N) against longitudinal strain for (a) fixed
edge, (b) free edge and (c) straight edge.
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6.2 Numerical study and contour plots of stress distributions

6.9, where the mean error and root mean square (RMS) error have been calcu-
lated for comparison between improved postbuckling analysis, ABAQUS analysis
and VICONOPT analysis. Figures 6.10 and 6.11 show contour plots of the N,
and N, distributions across the bottom surface of the plate.

It is seen that the improved postbuckling analysis gives closer prediction of
stresses N, and N, to the ABAQUS results than VICONOPT results does, which
validates the improved postbuckling analysis. For the distribution of stress N,
and N, in cycle 1, improved postbuckling analysis does show improvement over
old VICONOPT although it is not apparent enough. It is believed that the
improvement would become apparent in the following cycle 5 and cycle 10. Owing
to the fixed edge condition applied on top and bottom edges, the stresses do not
vary much on these two edges. In Figure 6.8, the mean error and RMS error of
stress IV, across horizontal centre line and vertical centre line between improved
postbuckling analysis and ABAQUS analysis are 1.39% and 1.55%, and 2.41%
and 3.02% respectively, while for stress N, the mean error and RMS error are
4.12% and 4.99%, and 3.52% and 4.33% respectively. Figure 6.8 also shows
the mean error and RMS error of N, and N, between ABAQUS analysis and
old VICONOPT analysis. The improved postbuckling analysis achieves good
agreement with ABAQUS analysis in prediction of stresses distribution hence
validates the accuracy of the analysis, while VICONOPT analysis also gives good
comparison due to it is currently cycle 1 in this stage. However, the improved
postbuckling analysis provides more accurate results in distribution of N, than
VICONOPT analysis which starts to lose accuracy in N,

Figures 6.12 to 6.17 show the prediction of stresses N, and N, distributions
for free edge conditions. The mean error and RMS error of N, across the hori-
zontal centre line and vertical centre line are 0.50% and 0.56%, and 0.20% and
0.22% respectively which are small enough to validate the accuracy of the im-
proved postbuckling analysis. While for the mean error and RMS error of N,
the errors increase up to 4.25% and 5.11%, and 5.02% and 5.87%. The improved
postbuckling analysis shows good agreement with the ABAQUS results for this
edge condition. Owing to the free edge condition which releases the constraints
on all components in v;, the stresses vary much more than those having fixed

edge condition.
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6.2 Numerical study and contour plots of stress distributions

Figures 6.18 to 6.23 show the prediction of stresses N, and N, distributions
for straight edge conditions. The mean error and RMS error for stress IV, across
the horizontal centre line and vertical centre line are 1.88% and 2.38%, and 1.47%
and 1.70% respectively, and for stress N, are 4.96% and 5.41%, and 2.95% and
3.58% respectively. The improved postbuckling analysis shows good agreement
with the ABAQUS results except for very small differences in the patterns near
the four corners of plate. The differences are caused by the slight differences in
the left and right edge conditions applied in improved postbuckling analysis and
ABAQUS analysis. In improved postbuckling analysis, the left and right edges
which are loaded by uniform compression are free to move. However, in ABAQUS
analysis both edges are forced to keep straight.

The improved postbuckling analysis shows very good comparison on distribu-
tion of longitudinal stress IV, and transverse stress IV,. It has been validated by
both contour plots of stress distributions and also a numerical study on particular
nodes of the plate. Although improved postbuckling analysis gives good outcomes
for cycle 1, the results in this section represent the very beginning of postbuck-
ling analysis. Therefore, it is essential to investigate the stresses distribution far

beyond the onset of postbuckling behaviour.
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Figure 6.6: Variation of stress N, across the top surface of plate for cycle 1 in (a)
improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.

90



6.2 Numerical study and contour plots of stress distributions

m -1300 m -1300
B -1330 B -1330
@ -1360 i @ -1360
O -1390 ,'E O -1390
0 -1420 il’ 0 -1420
O -1450 - O -1450
O -1480 i'{ O -1480
O -1510 "E O -1510
@ -1540 - @ -1540
B 1570 B 1570
B _1600 B 1600

BB OO0 EODOC0ODDEN
-
&
(-]

Figure 6.7: Variation of stress N, across the top surface of plate for cycle 1 in (a)
improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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of stress distributions
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Figure 6.8: Comparison of stress (a) N, and (b) N, across the horizontal centre
line of top surface of plate for cycle 1 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.9: Comparison of stress (a) N, and (b) N, across the vertical centre
line of top surface of plate for cycle 1 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.10: Variation of stress IV, across the bottom surface of plate for cycle 1 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.11: Variation of stress N, across the bottom surface of plate for cycle 1 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.12: Variation of stress (a) IV, and (b) N, across the top surface of plate
for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.13: Variation of stress (a) N, and (b) N, across the top surface of
plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.14: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate for cycle 1 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges free in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.15: Comparison of stress (a) IV, and (b) N, across the vertical centre line
of top surface of plate for cycle 1 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges free in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.16: Variation of stress (a) N, and (b) N, across the bottom surface of
plate for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.17: Variation of stress (a) IV, and (b) N, across the bottom surface
of plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.18: Variation of stress (a) IV, and (b) N, across the top surface of plate
for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.
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Figure 6.19: Variation of stress (a) N, and (b) N, across the top surface of
plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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6.2 Numerical study and contour plots of stress distributions
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Figure 6.20: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate for cycle 1 in improved postbuckling analysis and

ABAQUS analysis, with longitudinal edges straight in-plane.
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Figure 6.21: Comparison of stress (a) IV, and (b) N, across the vertical centre line

of top surface of plate for cycle 1 in improved postbuckling analysis and ABAQUS

analysis, with longitudinal edges straight in-plane.
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Figure 6.22: Variation of stress (a) N, and (b) N, across the bottom surface of
plate for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.

m 4850 W -1450
B 4865 B 1465
o -4880 @ -1480

] O 4895 @ -1495

=

= O _a910 0 1510

H O 4925 0 .1525

]

. O 4900 B 1540
O 4955 O _1555
B _a970 B 1570
) EEEENEENEE ]

-4985 i LT -1585

B 5000 B 1600

Figure 6.23: Variation of stress (a) IV, and (b) N, across the bottom surface
of plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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6.2 Numerical study and contour plots of stress distributions

6.2.2 Stress distributions in cycle 5

The stress distribution of cycle 5 has been selected to represent the state of the
panel further into the postbuckling analysis. To find the stress distribution at
a particular stage (e.g. cycle 5), the improved postbuckling analysis needs ide-
ally work with VICONOPT continuously to find the new mode shape in cycle 5.
However this will require full integration of the improved postbuckling analysis
into the VICONOPT code by others (which is not finished yet) to find the new
mode shape at each cycle, the old mode shape calculated by old VICONOPT
will be used in the following sections instead for presentation of cycles 5 and 10.
The new stress calculations in the improved postbuckling analysis will be used to
calculate the stresses and corresponding contour plots using the spreadsheets. A
comparison of stress distributions between the improved postbuckling analysis,
ABAQUS analysis and the old VICONOPT analysis is made to show the improve-
ment of the improved postbuckling analysis. Although the results of improved
postbuckling analysis for cycle 5 do not provide a truly complete presentation
of the new analysis, the difference between the old mode shape in VICONOPT
and new mode shape in improved postbuckling analysis is small enough to give a
good indication of the improvement to be made using the new method. Reference
[131] shows that the maximum difference in mode shape between improved post-
buckling analysis and old VICONOPT is 0.09779% for cycle 5 in postbuckling
analysis. When the longitudinal strain of cycle 5 in the improved postbuckling
analysis (4.6199 x 107°) and ABAQUS (4.6212 x 107°) exceeded the critical buck-
ling strain (4.0169 x 107°) by 15.01% and 15.04%, the out-of-plane displacement
w and effective uniform stresses were saved and used as input to the procedure
described in Chapter 5. In the contour plots, blue shading denotes increasing
compression while red indicates decreasing compression (which usually results
in regions of tension on the bottom surface). The contour plots of N, and N,
distributions for fixed edge conditions are shown in Figures 6.24 and 6.25 for
comparison. Numerical comparison of both N, and N, are given in Figures 6.26
and 6.27 to show the differences between improved postbuckling analysis and
ABAQUS analysis. Figure 6.28 and 6.29 show contour plots of the N, and N,

distributions across the bottom surface of the plate.
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6.2 Numerical study and contour plots of stress distributions

The plots in Figures 6.24 to 6.29 are shown for the improved postbuckling
analysis, ABAQUS analysis and old VICONOPT analysis for comparison. The
value of stresses for both N, and NN, across horizontal and vertical centre line of
plate are also given. The improved postbuckling analysis shows good agreement
with ABAQUS results, but the old VICONOPT results start to lose accuracy in
the prediction of stress distribution especially in N,. Owing to the assumption
of longitudinal stress invariance in old VICONOPT results for simplification in
postbuckling analysis, the distribution of transverse stress IV, loses accuracy and
shows similar prediction with longitudinal stress N,.

Figures 6.30 to 6.35 show the distribution of longitudinal stress IV, and trans-
verse stress IV, for both top surface and bottom surface of the plate in postbuck-
ling cycle 5, with in-plane longitudinal edges free. The stress distribution for the
free edge condition shows more stress variation than the fixed edge condition.
Moreover, the stress distribution of the free edge condition in the ABAQUS re-
sults shows more stress variation than that of the improved postbuckling analysis
along the longitudinal edges.

Figures 6.36 to 6.41 show the distribution of longitudinal stress IV, and trans-
verse stress IV, for both top surface and bottom surface of the plate in postbuck-
ling cycle 5, with in-plane longitudinal edges straight. The improved postbuckling
analysis shows good agreement with ABAQUS results for both longitudinal and
transverse stress on both top surface and bottom surface. The small difference in
pattern is believed to be due to the slightly different transverse edge conditions

between improved postbuckling analysis and ABAQUS analysis.
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Figure 6.24: Variation of stress N, across the top surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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Figure 6.25: Variation of stress N, across the top surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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Figure 6.26: Comparison of stress (a) N, and (b) N, across the horizontal centre
line of top surface of plate for cycle 5 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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Figure 6.27: Comparison of stress (a) N, and (b) N, across the vertical centre
line of top surface of plate for cycle 5 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.

109




6.2 Numerical study and contour plots of stress distributions

Ho

B 600
2 -1200
0 1800
0 -2400

o

B 600
B -1200
O -1800
0 -2400
0 3000
0 3600
0 4200
B _s800
B _sa00

0 3000
g -3600
0 4200
B 4800
B 5400

B 5000 B 000

pEm==a, [
P Z5EN N R
¥/ Y B
| W -
I\ [ I - o
‘ ‘“k "l' ‘ 0 _a00
AR - A
i g B 5400

B 6000

()

Figure 6.28: Variation of stress IV, across the bottom surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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Figure 6.29: Variation of stress IV, across the bottom surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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Figure 6.30: Variation of stress (a) IV, and (b) N, across the top surface of plate
for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.31: Variation of stress (a) N, and (b) N, across the top surface of
plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.32: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate for cycle 5 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges free in-plane.
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Figure 6.33: Comparison of stress (a) IV, and (b) N, across the vertical centre line
of top surface of plate for cycle 5 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges free in-plane.
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Figure 6.34: Variation of stress (a) N, and (b) N, across the bottom surface of
plate for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.35: Variation of stress (a) IV, and (b) N, across the bottom surface
of plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.36: Variation of stress (a) IV, and (b) N, across the top surface of plate
for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.
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Figure 6.37: Variation of stress (a) N, and (b) N, across the top surface of
plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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Figure 6.38: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate for cycle 5 in improved postbuckling analysis and

ABAQUS analysis, with longitudinal edges straight in-plane.
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Figure 6.39: Comparison of stress (a) IV, and (b) N, across the vertical centre line
of top surface of plate for cycle 5 in improved postbuckling analysis and ABAQUS

analysis, with longitudinal edges straight in-plane.
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Figure 6.40: Variation of stress (a) N, and (b) N, across the bottom surface of
plate for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.
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Figure 6.41: Variation of stress (a) IV, and (b) N, across the bottom surface
of plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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6.2.3 Stress distributions in cycle 10

The stress distributions at cycle 10 have been selected to represent the state at
a point much further into postbuckling stage. When the longitudinal strain of
cycle 10 in the improved postbuckling analysis (5.4232 x 107°) and ABAQUS
(5.3218 x 107°) exceeded the critical buckling strain (4.0169 x 107°) by 35.01%
and 32.49%, the out-of-plane displacement w and effective uniform stresses were
saved and the stress distribution calculated and plotted in the spreadsheet. In
the contour plots, blue shading denotes increasing compression while red indicates
decreasing compression (which usually results in regions of tension on the bot-
tom surface). Numerical comparisons are also given for stresses across both the
horizontal centre line and the vertical centre line to validate the improved post-
buckling analysis numerically. The contour plots of N, and N, distributions and
numerical comparisons (Figures 6.42 to 6.47) for fixed edge conditions for both
top and bottom surfaces in three different analyses are shown for comparison.

The improved postbuckling analysis shows good agreement with ABAQUS
results in the distribution of longitudinal stress IV, and transverse stress NN, for
both top surface and bottom surface. However, it loses some accuracy in mean
error and RMS error of N, across both horizontal centre line and vertical centre
line. Old VICONOPT also shows good agreement with ABAQUS results for
distribution of longitudinal stress N, although it is less accurate than improved
postbuckling analysis. For prediction of transverse stress N,, old VICONOPT
shows an inaccurate distribution which is improved by the improved postbuckling
analysis. It is believed, as mentioned in section 6.2.2 that this is due to the
assumption of longitudinal stress invariance in the old VICONOPT analysis. The
improved postbuckling analysis improves the accuracy of the stress distributions
and shows good agreement with FE analysis.

Figures 6.48 to 6.53 show distribution of longitudinal stress N, and transverse
stress N, for both top surface and bottom surface of the plate in postbuckling
cycle 10, with in-plane longitudinal edges free. Improved postbuckling analysis
shows a very small stress variation along the longitudinal edges in the prediction
of longitudinal stress N,, while ABAQUS analysis shows more obvious stress

variation. Improved postbuckling analysis shows small tension at the middle
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6.2 Numerical study and contour plots of stress distributions

of the longitudinal edges in the prediction of longitudinal stress NNV,, but the
ABAQUS results show no tension at this stage.

Figures 6.54 to 6.59 show the distribution of longitudinal stress IV, and trans-
verse stress [V, for both top surface and bottom surface of the plate in postbuck-
ling cycle 10, with in-plane longitudinal edges straight. The improved postbuck-
ling analysis shows good agreement with ABAQUS results for both longitudinal
and transverse stress on both top surface and bottom surface. The improved
postbuckling analysis shows small tension on both transverse edges and only tiny
tension on both longitudinal edges for distribution of N,. ABAQUS results show
small tension on all four edges and a more symmetric pattern for distribution of
N,. This is due to the tiny difference between the ’straight edge condition’ in
improved postbuckling analysis and ABAQUS analysis. In ABAQUS analysis,
all four edges are kept straight and therefore the pattern of stress distribution
is more symmetric. However, in improved postbuckling analysis, the transverse
edges are simply supported and the longitudinal edges are kept straight.

This section demonstrates one of the improvements achieved by improved
postbuckling analysis, which is enhancing the accuracy of stress distribution in
postbuckling analysis. Improved postbuckling analysis shows good agreement
with ABAQUS analysis for distribution of longitudinal stress N, and transverse
stress IV, on both top and bottom surface. Improved postbuckling analysis has
been validated in the sense that it gives close prediction with FE results for longi-
tudinal stress distribution. Moreover, it corrects the inaccurate prediction in old
VICONOPT for transverse stress distribution. However, improved postbuckling
analysis loses some numerical accuracy (e.g. prediction of transverse stresses N,
across both horizontal and vertical centre line in cycle 10). Therefore, the errors
have been evaluated in the following section to discuss possible reasons for errors

and to propose further improvements in future work.
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Figure 6.42: Variation of stress N, across the top surface of plate for cycle 10 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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Figure 6.43: Variation of stress N, across the top surface of plate for cycle 10 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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Figure 6.44: Comparison of stress (a) N, and (b) N, across the horizontal centre
line of top surface of plate for cycle 10 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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Figure 6.45: Comparison of stress (a) N, and (b) N, across the vertical centre
line of top surface of plate for cycle 10 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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Figure 6.46: Variation of stress IV, across the bottom surface of plate for cycle
10 in (a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VI-
CONOPT analysis, with all edges simply supported against out-of-plane deflection
and the longitudinal edges fixed in-plane.
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Figure 6.47: Variation of stress N, across the bottom surface of plate for cycle
10 in (a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VI-
CONOPT analysis, with all edges simply supported against out-of-plane deflection
and the longitudinal edges fixed in-plane.
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Figure 6.48: Variation of stress (a) N, and (b) NNV, across the top surface of plate
for cycle 10 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.49: Variation of stress (a) N, and (b) N, across the top surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.50: Comparison of stress (a) IV, and (b) N, across the horizontal centre
line of top surface of plate for cycle 10 in improved postbuckling analysis and

ABAQUS analysis, with longitudinal edges free in-plane.

129




6.2 Numerical study and contour plots of stress distributions
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analysis, with longitudinal edges free in-plane.
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Figure 6.51: Comparison of stress (a) IV, and (b) N, across the vertical centre line




6.2 Numerical study and contour plots of stress distributions
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Figure 6.52: Variation of stress (a) IV, and (b) N, across the bottom surface
of plate for cycle 10 in improved postbuckling analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges free in-plane.

H 3000
B 2000
3 1000
Oo

B 9000
B 8000
= 7000
0 6000
O so00
O a000
2 3000
0 2000
8 1000
By

O -1000
O -2000
B 3000
O _a000
B _s000

EESEE NN

i

K
[
I
[
[
L
B

] I e |

B 6000

B 7000 5 3000

Figure 6.53: Variation of stress (a) N, and (b) Ny across the bottom surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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Figure 6.54: Variation of stress (a) IV, and (b) N, across the top surface of plate
for cycle 10 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.
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Figure 6.55: Variation of stress (a) N, and (b) N, across the top surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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Figure 6.56: Comparison of stress (a) IV, and (b) N, across the horizontal centre
line of top surface of plate for cycle 10 in improved postbuckling analysis and

ABAQUS analysis, with longitudinal edges straight in-plane.
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Figure 6.57: Comparison of stress (a) IV, and (b) N, across the vertical centre line

of top surface of plate for cycle 10 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges straight in-plane.
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Figure 6.58: Variation of stress (a) IV, and (b) N, across the bottom surface
of plate for cycle 10 in improved postbuckling analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges straight in-plane.
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Figure 6.59: Variation of stress (a) N, and (b) Ny across the bottom surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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6.3 Error evaluation and discussion

The illustrative results shown in this chapter provide plenty of evidence which
validates the improvement made by the improved postbuckling analysis. The im-
proved postbuckling analysis shows very good comparison with ABAQUS results
in the majority of cases. However, it does lose some accuracy in some particular
cases. In this section, the possible reason for the inaccuracy in some cases will
be discussed and further improvement will also be proposed.

First of all, the errors (both mean error and RMS error) between improved
postbuckling analysis and ABAQUS analysis in cycle 1 are basically tiny. The
errors are almost less than 5% and in some particular cases the errors are even less
than 1%. However, in cycle 10 the errors grow up to around 7% for most cases but
are greater than 10% in some particular cases. This is believed to be due to the
number of strips used in improved postbuckling analysis. In all cases, the plate has
been divided into 10 strips for analysis while in ABAQUS each edge of plate has
been divided into 30 elements in the transverse direction. The reduced number of
strips therefore is believed to be a possible reason which may reduce the accuracy
of the improved postbuckling analysis especially in cycle 10 rather than cycle 1.
To show evidence, the distribution of longitudinal stress /N, across the horizontal
centre line of plate with fixed edge condition in cycle 5 has been chosen for testing.
Figure 6.60 shows curves of N, for ABAQUS analysis and improved postbuckling
analysis with 10 strips and 30 strips respectively. Moreover, the quantitative
comparison of stress N, between improved postbuckling analysis with 30 strips
and ABAQUS analysis gives the mean error and the RMS error 1.24% and 1.37%
respectively, which is smaller than those of improved postbuckling analysis with
10 strips (1.39% and 1.55%).

Secondly, the errors for free edge condition are generally less than those of the
other two edge conditions. Owing to the limitation in old VICONOPT that no
fixed edge condition and straight edge condition are available, the initial buckling
mode from VICONOPT which is used in improved postbuckling analysis is calcu-
lated with longitudinal edges free in-plane. Therefore, the postbuckling analysis
for fixed edge condition and straight edge condition actually start from the initial

buckling mode of free edge condition. This is believed to be another reason which
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Figure 6.60: (a) Curves and (b) quantitative comparison of stress N, for
ABAQUS analysis and improved postbuckling analysis with 10 strips and 30 strips.

increases the overall error for the improved postbuckling analysis of fixed edge
condition and straight edge condition.

Thirdly, the biggest errors (e.g. stress N, across the vertical centre line for
fixed edge condition in cycle 10) always appear on the first and last nodes on the
vertical centre line (i.e. the middle points of the longitudinal top and bottom
edges). This is due to the small differences in the edge conditions applied on
longitudinal top and bottom edges between improved postbuckling analysis and
ABAQUS analysis. For example, in the fixed edge condition, all components of u
are forced to be zero in the improved postbuckling analysis. However, this cannot
be achieved in ABAQUS analysis as u has been used as a perturbation factor for
postbuckling nonlinear analysis. The release of constraint in ABAQUS analysis
leads to more free redistribution of stresses than improved postbuckling analysis.
Hence the ABAQUS results give a greater peak value at the middle and edge
of plate, which is believed to increase the error between improved postbuckling
analysis and ABAQUS analysis.

Lastly, the numerical comparison shows that stress N, loses more accuracy
than stress NV, in each case. In section 6.2, the old VICONOPT results have been
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6.3 Error evaluation and discussion

proved to be inaccurate in the prediction of the N, distribution, which is due
to the assumption of a sinusoidal buckling mode in the longitudinal direction.
Therefore, the enhanced expressions of in-plane displacements and stresses are
assumed to provide more accurate analysis. However, stress IV, still loses more
accuracy than N, which is also due to the assumption of a sinusoidal buckling

mode in the longitudinal direction.
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Chapter 7

Illustrative results and discussion

for other cases

In the previous chapter, a quantitative study of longitudinal and transverse stress
distributions has been performed in detail for both top and bottom surface of a
square isotropic plate with three different edge conditions. The results of the im-
proved analysis have been compared with ABAQUS results and old VICONOPT
results. The improved analysis largely shows good agreement with ABAQUS
analysis and demonstrates considerable improvement on the existing technique.
Hence the improved analysis has been validated to be able to provide more ac-
curate results for the distribution of stresses in the postbuckling range. In this
chapter, more cases including a rectangular isotropic plate, a plate under pure
shear load and an anisotropic composite plate will be investigated to validate the
improved analysis in more general cases. To avoid duplicating plots and results in
this chapter, only stress distributions at the top surface of the plate for the fixed
edge condition in cycle 5 will be analyzed and discussed. Quantitative analysis
of stresses is also carried out across both the horizontal centre line and vertical
centre line of the plate. Similarly to previous chapter, blue shading denotes in-
creasing compression while red indicates decreasing compression (which usually
results in regions of tension on the bottom surface). The units of stresses in all

contour plots in this chapter are in N/m.
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7.1 Investigation of isotropic plate with differ-

ent aspect ratios

7.1.1 Introduction

In this section, a rectangular isotropic plate with different aspect ratios 0.5 and
1.5 will be investigated to compare with a square isotropic plate. For better
comparison with a square plate, the material properties and applied compressive
load have been defined exactly as the square isotropic model in the previous
chapter. The width of the plate will also be kept and the only change will be
the different length of the plate. The plate had width 0.3m, thickness 0.001m,
Young’s modulus 110kNmm~2 and Poisson’s ratio 0.3. For the model with aspect
ratio 0.5 the length of plate is 0.15m, while for the other one with aspect ratio
1.5 the length of the plate is 0.45m.

7.1.2 Results and discussion for isotropic plate with as-
pect ratio 0.5

Figure 7.1 shows the distribution of longitudinal stress /N, and transverse stress
N, on the top surface of the plate in postbuckling cycle 5. In contrast to the
square plate which has a square pattern in the contour plot of stress distribution,
Figure 7.1 shows a rectangular pattern which is basically due to the shortening
of the length of the plate. Figures 7.2 and 7.3 show the quantitative evaluation
of stresses N, and N, across the horizontal centre line and vertical centre line
respectively. The contour plots in Figure 7.1 show good agreement of stress
distribution in the postbuckling range between improved postbuckling analysis
and ABAQUS analysis. The mean errors and square root mean errors in Figures
7.2 and 7.3 are basically lower than 10% and some are even lower than 5%, which
validates the accuracy of improved postbuckling analysis for a rectangular plate
with aspect ratio 0.5.

For the rectangular plate with aspect ratio 0.5 which is ’shorter’ than the
square plate, the critical buckling load (2071.2N/m) is much higher than that of
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Figure 7.1: Variation of stress N, across the top surface of plate in (a) N, in
improved postbuckling analysis, (b) Nyin ABAQUS analysis, (¢) N, in improved
postbuckling analysis and (d) N, in ABAQUS analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges fixed in-plane.
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Figure 7.2: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
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analysis, with longitudinal edges fixed in-plane.
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Figure 7.3: Comparison of stress (a) N, and (b) N, across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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Figure 7.4: Comparison of stress N, across the horizontal centre line of top
surface of plate between square plate and rectangular plate with aspect ratio 0.5
in improved postbuckling analysis

the square plate (1325.6N/m). Therefore, for the plates with the same material
properties and applied loading, the shorter’ rectangular plate has greater in-plane

stresses than the square plate (see Figure 7.4).

7.1.3 Results and discussion for isotropic plate with as-

pect ratio 1.5

Figure 7.5 shows the distribution of longitudinal stress N, and transverse stress
N, on the top surface of the rectangular plate with aspect ratio 1.5. Figures
7.6 and 7.7 provide a quantitative comparison of stress N, and stress N, across
the horizontal centre line and vertical centre line. Improved postbuckling analy-
sis gives good agreement with ABAQUS results and the improved postbuckling
analysis has therefore been validated for the analysis of a rectangular plate with
aspect ratio 1.5.

In contrast to the square plate and the rectangular plate with aspect ratio 0.5,
the plate with aspect ratio 1.5 shows two rectangular patterns on the surface.
The critical buckling load was found with half-wavelength A\ equal to half the
length of the plate. For the plate with aspect ratio 1.5, the critical buckling
load has been calculated as 1438.4N/m which is greater than that of the square
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Figure 7.5: Variation of stress N, across the top surface of plate in (a) Nx in
improved postbuckling analysis, (b) Nx in ABAQUS analysis, (¢) Ny in improved
postbuckling analysis and (d) Ny in ABAQUS analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges fixed in-plane.
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Figure 7.6: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.
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Figure 7.7: Comparison of stress (a) N, and (b) N, across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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Figure 7.8: Comparison of stress N, across the horizontal centre line of top
surface of plate between square plate and rectangular plate with aspect ratio 1.5
in improved postbuckling analysis

plate (1325.6N/m) but much lower than that of the rectangular plate with aspect
ratio 0.5 (2071.2N/m). Figure 7.8 gives the quantitative comparison of stress
N, across the horizontal centre lines of the square plate and the rectangular
plate with aspect ratio 1.5. It is apparently seem that for rectangular plate with
aspect ratio 1.5, the maximum compressive stress appears at 1/4 of length while
the minimum stress appears at 3/4 of length. This is because the stress on the
top surface is dominated by the through-thickness effects, which are compressive
over the first half of the length and tensile over the remainder. However, for
the square plate with whatever edge condition, the maximum compressive stress

always appears at the middle of the plate.

7.2 Investigation of anisotropic composite plates

7.2.1 Introduction

In the previous chapter and sections above, the accuracy of the improved post-
buckling analysis for a square isotropic square plate with different edge conditions
and for a rectangular plate with different aspect ratios has been validated by com-

paring with ABAQUS results. However, the isotropic plate model leads to the
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7.2 Investigation of anisotropic composite plates

absence of out-of-plane components w., V., stiffness A4, Asg and all stiffness
Bi;;, and all components of €,,;; in the stiffness matrix. Therefore, the test of an
isotropic plate is only a partial evaluation of the improved postbuckling analy-
sis. To test the improved postbuckling analysis fully, it is necessary to test an
anisotropic composite plate which enables these variables to be non-zero in the
analysis. In this section, two composite laminates are tested including a sym-
metric, balanced laminate and an unsymmetric, unbalanced laminate. The first
composite model enables involvement of the out-of-plane components w;.., ¥;. and
€zyis, While the second composite model leads to all previously absent variables
being non-zero. The composite plates which will be used in this section are square
plates under compressive loading with top and bottom edges fixed. The length
of the plate is 0.3m and the compressive load (50000N/m) is applied on the left
and right edges. For both tests, only the distributions of longitudinal stress N,
and transverse stress IV, on the top surface of the plate in calculation cycle 5 will

be evaluated.

7.2.2 Results and discussion for symmetric balanced lam-

inate

A symmetric balanced composite plate is used for analysis in this section. The
length of the square plate is 0.3m and the thickness is 0.002m. The compos-
ite plate has eight symmetric layers (with equal thickness 0.25mm) which have
ply angles [0, 45, -45, 90, 90, -45, 45, 0] respectively. The ply properties of the
laminate are given as E;1=131kNmm™2, E;,=6.41kNmm 2, Ey=1.30kNmm2,
G13=6.41kNmm—2, Go3=6.41kNmm~2 and vy, = 0.38. Uniform compressive
stresses are applied on both left and right edges of the plate.

Figures 7.9 and 7.10 show the distribution of longitudinal stresses NN, and
transverse stresses IV, on the top surface of the plate. In the ABAQUS results,
the distribution pattern is skewed and so the pattern is less symmetric than that
of the isotropic plate. However, in improved postbuckling analysis the pattern
remains symmetric, like that of the isotropic plate and shows slight skewing which

is not apparent from the plot but can only be seen from stress values. Figures
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Figure 7.9: Variation of stress IV, across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.
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Figure 7.10: Variation of stress N, across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.
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Figure 7.11: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS

analysis, with longitudinal edges fixed in-plane.
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Figure 7.12: Comparison of stress (a) IV, and (b) N, across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,

with longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

7.11 and 7.12 give the quantitative comparison of stresses N, and N, which shows
good agreement between improved postbuckling analysis and ABAQUS analysis.
However these figures show the stress distributions across the horizontal and ver-
tical centre lines and therefore not much skewing is seen in the ABAQUS results.
To explore the skewing in ABAQUS analysis, Figure 7.13 plots the distribution
of stress N, along a horizontal line at a quarter width of plate. The curve of
stress distribution for ABAQUS analysis shows an apparently unsymmetric pat-
tern while for improved analysis the curve keeps symmetric. This clearly reveals
that ABAQUS has some apparent skewing in the stress distributions whereas
the improved analysis does not. The reasons for less skewing in improved post-
buckling analysis will be analysed and discussed in Section 7.4. Figure 7.12 gives
the quantitative comparison of stresses N, and N, which shows good agreement

between improved postbuckling analysis and ABAQUS analysis.

7.2.3 Results and discussion for unsymmetric unbalanced

laminate

To test the accuracy of the improved postbuckling analysis fully, an unsymmetric
unbalanced composite plate has been tested in this section. The length and thick-
ness of the square plate are 0.3m and 0.002m respectively, and the plate has eight
layers with equal thickness 0.25mm for each one. The compressive stresses are
applied on the left and right edges of plate and the amount of stress is 50000N /m
which is the same as for the symmetric balanced composite. The ply angles are [0,
45, -45, 90, 90, 0, 0, 45] respectively for each layer from the top to the bottom of
plate. The ply properties for this composite plate are given as F1;=131kNmm 2,
F15=6.41kNmm~2, Fo=13kNmm™2, G13=6.41kNmm 2, G93=6.41kNmm~2 and
1o = 0.38.

Figures 7.14 and 7.15 shows a comparison of the distribution of stresses N,
and [V, on the top surface of the plate between the improved postbuckling analy-
sis and ABAQUS analysis. The contours of stress distribution from both analyses
are similar, and therefore improved postbuckling analysis shows good correlation
with ABAQUS results. Figures 7.16 and 7.17 show the quantitative comparison
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Figure 7.13: Comparison of stress (a) N, across the horizontal line at a quarter
along the width of top surface of plate in improved postbuckling analysis and

ABAQUS analysis, with longitudinal edges fixed in-plane.
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Figure 7.14: Variation of stress IV, across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.
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Figure 7.15: Variation of stress N, across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.
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Figure 7.16: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.
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(b)

Figure 7.17: Comparison of stress (a) IV, and (b) N, across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,

with longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

of stresses N, and N, which validates the accuracy of improved postbuckling
analysis for a fully anisotropic plate. Further discussions for the unsymmetric
unbalanced composite plate and comparison with analysis of the symmetric bal-

anced composite plate will be made in Section 7.4.
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Figure 7.18: Geometry of plate and in-plane shear load assignment

7.3 Investigation of isotropic square plate with

shear load

7.3.1 Introduction

To evaluate the postbuckling capacity of improved postbuckling analysis for vari-
ous load conditions, an isotropic square plate with shear loading on both left and
right edges has been tested in this section. Figure 7.18 shows the geometry of
the isotropic plate and in-plane shear load on its left and right edges. The plate
had width and length 0.3m, thickness 0.001m, Young’s modulus 110kNmm™2,
Poisson’s ratio 0.3 and the amount of shear load is 50kN/m for both edges with

opposite directions as shown.

7.3.2 Results and discussions for isotropic square plate

with shear load

Figures 7.19 and 7.20 show the distribution of longitudinal stress IV, and trans-

verse stress IV, on the top surface of the plate for both improved postbuckling
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7.3 Investigation of isotropic square plate with shear load

analysis and ABAQUS analysis. The contour plots of N, and N, show poor
agreement between improved postbuckling analysis and ABAQUS analysis. The
maximum values of N, and N, appear in the middle of the plate in improved
postbuckling analysis, however ABAQUS analysis shows a skewed patten in both
N, and N, and therefore the maximum and minimum values of stress appear on
the corner of the diagonals. Figures 7.21 and 7.22 show the quantitative evalua-
tion of stresses between improved postbuckling analysis and ABAQUS analysis.
ABAQUS analysis shows more complex variation in both N, and N,. In Figure
7.21 which demonstrates the stress distribution across the horizontal centre line,
the ABAQUS stresses decrease a small amount then increase from the edge to the
middle of the plate. But in the improved postbuckling analysis, the stresses in-
creases monotonically from the edge to the middle of the plate. This is due to the
constraints on the left and right edges of plate in ABAQUS that both edges are
forced to keep straight throughout the analysis. However, in improved postbuck-
ling analysis these constraints are released. In Figure 7.22 which demonstrates
the stress distributions across the vertical centre line, the ABAQUS analysis also
shows a more complex variation of stresses than improved postbuckling analy-
sis. Stress N, reaches its maximum value at around 1/4 and 3/4 width of the
plate, then decreases a small amount to the middle. But in improved postbuck-
ling analysis, stress increases from the edge to the middle like the variation of
stress IV,. The values of error in Figures 7.21 and 7.22 indicate that improved
postbuckling analysis gives acceptable agreement with ABAQUS results in N,
but poor agreement in N,. Overall, the comparison of isotropic square plate in
shear load is not acceptable and unsatisfied. The evaluation and discussion for

the poor agreement for this type of problem will be given in the following section.
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7.3 Investigation of isotropic square plate with shear load
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Figure 7.19: Variation of stress N, across the top surface of plate with shear
loading in (a) improved postbuckling analysis and (b) ABAQUS analysis, with all
edges simply supported against out-of-plane deflection and the longitudinal edges
fixed in-plane.
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Figure 7.20: Variation of stress N, across the top surface of plate with shear
loading in (a) improved postbuckling analysis and (b) ABAQUS analysis, with all
edges simply supported against out-of-plane deflection and the longitudinal edges
fixed in-plane.
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Figure 7.21: Comparison of stress (a) N, and (b) N, across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.
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Figure 7.22: Comparison of stress (a) IV, and (b) N, across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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7.4 Error evaluation and further discussion of results

7.4 FError evaluation and further discussion of
results

In this chapter, other cases including isotropic rectangular plate with different
aspect ratios, a symmetric balanced composite plate, an unsymmetric unbalanced
composite plate and an isotropic square plate with shear have been tested and
analysed. These results and plots provide a full investigation and validation of
improved postbuckling analysis. The improved postbuckling analysis shows good
agreement in these different cases. However, the quantitative study of these cases
also shows some error and inaccuracy of the improved analysis which are now
evaluated and discussed.

For an isotropic rectangular plate with different aspect ratios, improved post-
buckling analysis shows good agreement with ABAQUS results in both contour
plots of stress distribution and quantitative comparison of stresses. In improved
postbuckling analysis, the isotropic plate problem leads to non-zero terms wjs,
Ui(0,0)» Vi(0,0), Nzio,c)y and Ny;o,c)- The absence of all the other terms simplifies
the governing equilibrium equation (5.22) and gives a symmetric pattern about
the horizontal centre line for both stresses N, and N,. The results in section 7.1
indicated that for an isotropic plate with the same material properties, edge con-
ditions and applied load, the two rectangular plate give greater critical buckling
load than the square plate, particularly in the case of the plate with aspect ratio
0.5. The evidence can be found from classic literature by Timoshenko and Gere
[32], who gave the solution of critical buckling load for isotropic plate with uniaxi-
ally load in one direction. In the literature, the critical buckling load o, has been
given as 0., = 72D (b/a + a/b)?/tb?, therefore for the plates with the same mate-
rial properties, thickness and width, the critical buckling load is determined only
by aspect ratio. For square plate (a/b=1), rectangular plate with aspect ratio 0.5
and 1.5, the coefficients (b/a + a/b)*=4, 6.25 and 4.69 respectively which shows
the agreement with results in this study. Moreover, the results for the square
plate show a square pattern in contour plots of stress distribution. However, the
results for the plate with aspect ratio 0.5 show a rectangular pattern in contour

plots of stress distribution which fit the shape of the plate, while for the plate
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7.4 Error evaluation and further discussion of results

with aspect ratio 1.5, the contour plots of stress distribution show two rectangu-
lar patterns. One of the patterns indicates the maximum stress distribution and
the other indicates the minimum stress distribution.

For anisotropic problems, two composite plates have been tested in this section
including a symmetric balanced composite plate and an unsymmetric unbalanced
composite plate. For the symmetric balanced problem, improved postbuckling
analysis gives non-zero terms wj(.s), wi(0,c,s), vi(0,c,s)s Nei(0,c,5)s Nyi(0,0,5)- In the
results for the symmetric balanced composite plate, the improved postbuckling
analysis shows slight disagreement with ABAQUS analysis in prediction of stress
distribution. From Figures 7.9 and 7.10, ABAQUS analysis shows a skewed pat-
tern in stress distribution for both N, and N,,, however the improved postbuckling
analysis shows less skewing. The contour plots of stress distribution for improved
postbuckling analysis are very close to a symmetric pattern which is similar to
that of the isotropic plate, and the slight skewing in the improved postbuckling
analysis can be only seen in the value of stresses. The ABAQUS analysis is be-
lieved to give more convincing results and the improved postbuckling analysis
appears to lose some accuracy in stress distribution. The first reason for losing
accuracy is the absence of stiffness A and Asg for a symmetric balanced prob-
lem, which leads to non-zero terms for only Ny,c,s) and Ny,c,5). However, 0
and C terms in N, and N, give a symmetric pattern about the horizontal centre
line of the plate, and only S terms give a skewed distribution. In the calculation
of stresses, the S term is found to be much smaller than the 0 and the C terms
which leads to slight skewing because the symmetric distribution 0 and C are
dominating. The second, and more significant, reason is believed to be that the
out-of-plane mode w used from VICONOPT is not accurate enough. For any
problem with skewed mode shape, VIPASA analysis can only give approximate
results because the simply supported end conditions are not satisfied. To sat-
isfy the end conditions, VICON analysis would have to be used to give accurate
results. However, VICON analysis is currently not available for postbuckling
analysis and therefore VIPASA analysis had to be used for postbuckling analysis
for anisotropic problems in this section. VIPASA analysis provides an approxi-
mate out-of-plane mode w which loses some accuracy and has a lack of skewing.

Therefore, the postbuckling analysis of a symmetric balanced composite problem
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7.4 Error evaluation and further discussion of results

in improved postbuckling analysis can only be regarded as an approximate alter-
native to FE analysis. And because lack of skewing in stress distribution does
not have much effect on the accuracy of uniform stress resultants, so improved
postbuckling analysis can be still believed to be accurate for postbuckling anal-
ysis. For the unsymmetric unbalanced problem, improved postbuckling analysis
gives non-zero terms for all components of displacements and stresses, i.e. wj(c,s),
Ui(0,e,5,0,5) > Vi(0,e,5,0,5)s Vzi(0,¢,5,0,5)> NVyi(0,e,5,0,5)- The results of unsymmetric un-
balanced composite plate show good agreement between improved postbuckling
analysis and ABAQUS results. The presence of ¢ terms in N, and N, provides
a more skewed distribution which makes the results skewed enough for more
accuracy. The test of an unsymmetric unbalanced problem is actually a full
investigation of improved postbuckling analysis because all the components of
displacements, strains and stresses are non-zero. The good comparison between
improved postbuckling analysis and ABAQUS analysis validates the accuracy of
the new postbuckling analysis and hence it is recommended for implementation
into VICONOPT as a new capacity.

For the isotropic square plate with shear load, the agreement of both stress
distributions and values is poor between improved postbuckling analysis and
ABAQUS analysis. The most significant reason for the bad comparison is due
to the incorrect mode shape provided by VICONOPT. As mentioned above, for
a buckling problem which involves a skewed buckling mode, VIPASA analysis
cannot provide an accurate mode shape due to the simply supported edge condi-
tions not being satisfied. To ensure the satisfaction of the edge condition, VICON
analysis is necessary for this type of problem. However, the existing postbuck-
ling capacity is not available for VICON analysis and hence it cannot provide
the postbuckling mode shape which is needed in improved postbuckling analysis.
Therefore, the results of improved postbuckling analysis use the mode shape from
VIPASA analysis. From the quantitative comparison in Figures 7.21 and 7.22,
the improved postbuckling analysis failed to reveal the skewed pattern in the
shear problem which is incorrect. Moreover, the mean value of stresses across the
horizontal and vertical centre lines of the plate show a great amount of difference
in both N, and N, which indicates the inaccuracy in not only stress distribution

but also the quantities of stress. The error evaluation in Figures 7.21 and 7.22
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7.4 Error evaluation and further discussion of results

shows acceptable agreement in N, but unacceptable agreement in NV,, but the
error is expected to increase a great amount if the stresses along the edges are
evaluated. Thus the improved postbuckling analysis for buckling problems of
plates under shear loading is unsatisfied at present and is expected to be so until

a more accurate postbuckling mode shape can be provided by VICONOPT.
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Chapter 8

Conclusions and future work

8.1 Conclusions

Exact strip postbuckling analysis provides an efficient approach to postbuckling
analysis of isotropic plate assemblies for industrial and academic purposes in the
preliminary design of aircraft structures. This thesis contributes to a theoretical
improvement to the existing exact strip postbuckling analysis, which improves
the accuracy of mode shape, stress and strain distributions in the postbuckling
range. Illustrative results are shown for isotropic and anisotropic plates with com-
bined edge and load cases, improvements are validated by comparing with finite
element results. The improved analysis will be implemented into the exact strip
analysis software VICONOPT which enables an efficient and accurate procedure
for postbuckling analysis of plates and panels.

The improved exact strip postbuckling analysis is inspired by the work done
by Stein who provided an analytical solution for isotropic and orthotropic plates
in compression and shear. It is assumed that the in-plane and out-of-plane dis-
placements are varying with half-wavelength A/2 and A respectively. However,
the improved analysis assumed that the in-plane displacements are varying with
half-wavelength A and A/2 which enables the accurate mode shape to be pre-

sented. Based on Von Karman plate theory, the improved governing equilibrium
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equations have been derived and solved. Numerical techniques have been applied
which ensure three different edge conditions can be assigned to the plate model.

[lustrative numerical results are presented for both isotropic metal plates and
anisotropic composite plates respectively with different edge and load conditions.
The results of the improved postbuckling analysis are validated by comparing
with ABAQUS results and generally show good agreement. The results are also
compared with old VICONOPT results in Chapter 6 to show the improvement.
The old VICONOPT postbuckling analysis shows good comparison of load ver-
sus end shortening in the initial postbuckling range, while accuracy is lost in
the postbuckling range for mode shape and stress and strain distribution. The
improved analysis derives the improved governing equations and enhances accu-
racy in mode shape, stress and strain distributions in the postbuckling range,
and hence improves the postbuckling mode shape and stress distribution in VI-
CONOPT.

Implementation of the improved analysis into VICONOPT enables a more
efficient procedure for postbuckling analysis. The improved analysis utilizes the
out-of-plane displacements for initial buckling results from VICONOPT to cal-
culate effective uniform stress resultants and their derivatives, which are used
to obtain new out-of-plane displacements for the next cycle of the postbuckling
analysis. Implementation of the improved analysis ensures the enhanced post-
buckling mode shape and distribution of stress and strain can be obtained and
accurate postbuckling analysis can be performed using VICONOPT.

The objective of this thesis has been achieved by introducing the improved
exact strip postbuckling analysis which will be implemented into software VI-
CONOPT in the future. The thesis starts with an introduction of the research
background of the area and then lists the objectives of this project in Chapter
1. Reviews of buckling and postbuckling phenomena with classic plate theory
are introduced in Chapter 2. Moreover, two key papers from Stein on the post-
buckling behaviour of plates are briefly reviewed and postbuckling analysis from
other researchers in past few decades is also reviewed. In Chapter 3, the exact
strip method and Wittrick-Williams algorithm are reviewed as a preparation for
a preview of the software VICONOPT. In Chapter 4, the exact strip analysis
and optimum design software VICONOPT has been introduced explicitly, and
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the theory and analysis of two earlier programs, VIPASA and VICON, have been
described. The postbuckling capacity of VICONOPT and its optimum design
capacity have also been introduced in this chapter to show the entire analysis
properties of this software. Chapter 5 starts to introduce the so called 'improved
postbuckling analysis’ in detail. The introduction begins with the assumptions
that have been made in this analysis, then the in-plane and out-of-plane displace-
ment modes have been given. Then the explicit expression of strain and stress
are derived for the equilibrium equation of this analysis. After the expression of
the improved governing equilibrium equation has been given, the solution of the
equilibrium equations has been obtained at the end of this chapter. In Chapter 6,
the illustrative results for an isotropic square plate under compression with three
different edge conditions are shown. The improved postbuckling analysis shows
good agreement with ABAQUS results which validates the postbuckling analysis
capacity for an isotropic square plate. To fully test the new analysis, Chapter 7
provides more cases for testing including an isotropic plate with different aspect
ratios, symmetric balanced and unsymmetric unbalanced composite plates and
an isotropic square plate with shear load. The results also show good comparison
with ABAQUS results except for the isotropic plate with shear load. It is believed
that is due to the inaccurate postbuckling mode from VICONOPT. Finally the
thesis is summarised and concluded in this chapter.

The improved postbuckling analysis has been demonstrated to be able to
provide more accurate postbuckling analysis than the previous version of VI-
CONOPT. The improvement in this analysis may further affect the optimum
design capacity in VICONOPT so that more accurate and explicit design work
can be achieved. It is believed that further extension of the improved analysis
and application on optimum design can provide additional efficient and accurate

compatibilities for aircraft engineers and designers.

8.2 Further development

Implementation of the improved exact strip postbuckling analysis provides addi-

tional capabilities in VICONOPT for aircraft analysis and design, increasing its
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accuracy whilst maintaining the benefits of reduced computational effort when
compared to alternatives such as FEA modelling. Further improvements have
however been identified throughout the course of this study which may bring
additional benefits and which should be considered for implementation in the
future. Some recommendations for future development based on the improved
analysis are discussed below.

The improved analysis is currently applied to isotropic and anisotropic single
plates only, and it is essential to further extend it to the analysis of stiffened
panels. This extension would ensure the improved analysis can be used for the
postbuckling analysis of complex aircraft structures. To achieve this task, pre-
vious experience of stiffened panel assembly in VICONOPT can be referred to.
Dealing with the displacements at the junction of different plates is crucial for
this task.

From the results of the improved postbuckling analysis, it is suspected that
the analysis loses some accuracy due to the assumption of sinusoidal variation
of stress with coupling of half-wavelengths A and A/2. It is recommended that
the coupling of more different half-wavelengths can provide more accuracy in the
analysis. However, the increase of the number of different half-wavelengths will
lead to a significant increase in the number of unknown variables, and hence in
the number of equilibrium equations for each node and the order of matrix H in
equation (5.33).

A limitation of the improved analysis is concerned with the fact that only
three different edge conditions which are fixed edge, straight edge and free edge
respectively have been implemented. These can be used directly in an improved
analysis, while the flexible edge conditions can not be applied by user. To enable
flexible application of edge conditions in improved analysis, rows and columns
corresponding to the constraints defined by the user will be eliminated auto-
matically so that the stiffness matrix for the particular edge conditions can be
established. Furthermore, unsymmetrical edge conditions can be achieved which
may then be helpful for analysis of stiffened panels.

Another limitation is that the old postbuckling capacity in VICONOPT is
not available for VICON analysis, which leads to inaccurate postbuckling mode

shapes for buckling problems with skewed modes. This is the main reason for
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incorrect analysis for isotropic plates with shear load in section 7.4. To enable
the accurate postbuckling analysis of shear problems in improved postbuckling
analysis, the availability of VICON analysis in postbuckling is necessary.

Since improved analysis brings benefits in terms of efficiency and accuracy in
the postbuckling range, it may provide additional advantages to optimum design
capacity in VICONOPT. The multi-level optimization of an aircraft wing incorpo-
rates postbuckling effects which can be improved by using improved postbuckling

analysis.
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Appendix A

Derivative calculations in

VICONOPT

The implementation of improved exact strip postbuckling analysis into VICONOPT
requires derivatives of stresses at each node with respect to all the components
of out-of-plane displacement w at each node.

In section 5.5, the expression of stress is written as form below
!/ A !/ D / 1 A !/ A "
N, = Aseo (Wl) + Biko (Wl) + EA1€1U.i + Ajeay (Al)

Therefore the derivative with respect to out-of-plane displacement w can be writ-

ten
ON; - Ogo(wy) o 8/@0(101) 1. Ou ou;
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8'(1)7;5 AND i+1,c i—1,c 2)\2 18 )\3

6vic — 410+ Yo,
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Wi +

Wi +

)\2

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

A667T2
A2
(A.17)

wic

A667T2

wis

(A.18)



9G (w;) Aoy —6ic + 4Vip1c — Vigac 72 Ap AT
00 T Vit1,e — Yic1e + o Wie T Twis
e 6ic — 41+ i,
Agg? Agerr —6w;s +4wit1s — Witas
5 Wic — Wit1,s — Wi-1,s

A Arb bw;s — 4w;_1,s + Wi—2.s

0G(w;)  Ag —60is +4Pig1s — Yivas 2 Auy Agerr
o, i Yiv1,s — Yic1,s T o Wis — \ Vic
' 6is — 4hi_1s + Vi_o
Ager? Ao —6w;e + 4Wwip1c — Wita,c

—)\2 Wis — —4)\b Wit1,c — Wi—1,¢
O6wie — 4w;—1,c + Wi—o,

Equilibrium equation 5:

(’)G(wz) A267T _S@Z)z‘c T 4¢‘i+1,c B ¢i+2,c 77'2A12 AIGT‘-S
D = Y Vit1,c — PSli-1,c o2 Vis — 3 Wi
v 3wzc - 4¢Z - 17 c+ w’i*Q,C

OG(w;)  Agrm ;31/%5 +§;§i+1,s — Yiqos ) 2 AL Ay
- - i+1,s — i—1,s

A667T2

wic + Twis +

(A.19)

(A.20)

(A.21)

(A.22)

AZ wis

(A.23)

A667T2

,lvbic

Ow;s 4T\ i — 40bi — 1,5 + Wy_os 2\ Y

(A.24)
0G (w;) Aso —6¢0is + 4¢‘i+1,s — Yiy2s A —3wic
Ow- = - 4D ,lvbi—i-l,s — DPSti—1s D 0 (A25)
ZC 6¢zs - 4W - 17 S+ %72,3 gwic
T2 A1s Aggm Agm?

Syz Wis T2 : ; A2

+ 2)\2 wZS + )\ wzc + )\2 wZS ( 6)
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AG(w;) Asy —61;c + 4¢z‘+1,c — Yiyor - —3wje
ST Vit1,c — DSli—1c Y 0 (A.27)
zc Gwzc - 4@“ - 17 c+ wi—2,c 3u}ic
7T2A12 Agem A667T2
+ oz Wie ™ 2 3 is + N Wie (A.28)
Equilibrium equation 6:
8G(w,~) B 7 Ags 1;3%’5 +$?/JZ + 1,8 —ija T Ags 3tis 7r2A16¢
] — 4/\b i+1,s — $i—1;s - 4)\[) - 2)\2 ic
Owie 3this — dhi_1 s + Vi_a —3;s
(A.29)
0G(w;))  mAg ;3?/%(: +j}¢i + 1,8 — igo. 7 Age 3ic 7T2A16¢
o N - = AND i+1l,c — ¥i—1l,c - AND - 2)\2 s
v 3thic — i1 e+ Vicac —3ie
(A.30)
GG(wl) 7TA66 _Gwis + 4wi+1,s — Wiq2s 7T2A16
e = - W Wit1,s — Wi—1s - Wwic (A'31)
' Ow;s — 4w;—1 s + Wi—2 6
Ao —6vic + 4i1c — Vigore
T Yit1,e — Yi-1,e (A.32)
6ic — 41+ Via
aG(wl) 7 Age —6w;. + 4U)i+1,c — Wit2,c 7T2A16 (A 33)
= Wit1,c — Wi—1,¢ — a5 Wic .
V) - L N2

6wie — 4w;—1c + Wi—a,

A —6vis + 4016 — Vigos
T Vit1,s — Yic1s (A.34)
6tis — 41,6 + Yia
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Equilibrium equation 7:

81/%3 v

B Biam Begem
0G(w;) { 30500 + 3% T )
35 + 55 + )

Equilibrium equation 8:

GG(wZ) ’/T3
8wic - A3
0G(w;) 0
8’(1]1'5 B
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(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)



Equilibrium equation 9:

9G (w;) AgeT —6vis + 4516 — VYigos Apgn?  Aggn? Ayymd
= - 2piJrl,s - wifl,s + 9)\2 2 77Z)ic \3 Wis

awic 4\b 6¢Zs — 41%-_1,3 + ¢z‘—2,s
(A.43)

9G (w;) _ Agm @;61/% +qj¢i+1,a — Yiyorc Aggr? A167T2w Anﬂsw
] —_— - 4 i+1l,c — ¥i—1l,c - 2 2 2 ic 3 1S
D Ab 6vic — 410+ Vi—ae A A A

(A.44)

—6vic + 4i1c — Vigoe Agg —6w;s + 4w 15 — Witas

87,(& ) == 426 ¢z‘+1,c - wifl,c - N Wit1,s — Wi—1,s
. 6vic — 4i—1c + Viae Owis — 4w;—1 s + Wi—2 6
(A.45)
3A167T2 A127T
2)\2 Wie — /\ 1/}2'3 (A46>
ag(wi) Ao —6vis + 4¢z’+1,s - ¢z’+2,s AgeT —6wie + 4wiq1c — Wit
i :4_b ¢i+1,s - @/)i—l,s - 4—)\1) Wit1,c — Wi—1.c
6is — i1 s + Vi_os b6w;c — 4w; 1 + Wi—2,
(A.A47)
3141671'2 A127T
Equilibrium equation 10:
—3Vic + 4ip1.c — Yigoe 2 3
0G (w; AgeT ’ ’ 3A6T Apm
( ) == % wiJrl,c - wifl,c + 21—;)2¢zs - %wic (A49)

awic 4\b 3¢zc — 4¢z‘—1,c + wi—Q,c
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9G (w;) Ager —3Vis + 4Vip1 s — Vigos 3A Ay
Gun T AN | Lo Ve o
" 3¢zs - 4%’—1,3 + wi—Z,s

8G(wz) A26 _6¢15 + 41/]7;"!‘178 - wi—s—Z,s A667T 3W;e
8¢ - 4b wi-ﬁ-l,s - %’—1,5 — D 0
* 6%3 - 47/}1'71,5 + w’ifQ,s —3'11}1'0
314167"'2 A667T A127T
202 Wis A wic + \ wic

9G (w;) Ao —6ic + 4it1.c — Yigare Agerr —3w;s
8¢ ~ = 4D wiJrl,c - 7wb'ifl,c — D 0
" 6ic — 41+ Via 3W;s
3A16’ﬂ'2 A667T A127T
2)\2 Wie — )\ wis + >\ ¢is
0Gin
8wi

1<i<n

Equilibrium equation 1:

8G(wi+1) _ _A267T

wiJrl,s

0G(w,~+1) o A267T

awis - 4)\b wi-‘rl,c
8G(wi+1) . Az Ao
O ab Vet g it
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%;JrT

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)
(A.56)

(A.57)

(A.58)

(A.59)



aG(wi—H) o Az A

is T ¢z‘+1,s - sz‘ﬂ,c (A'60)
Equilibrium equation 2:
01
i
Dws. 0 (A.62)
0Giy1 By
G 1 (A.63)

OGiy1  Bym  Bogm

OMis b 2\b (A.64)
Equilibrium equation 3:
oG,
W,H =0 (A.65)
oG,
anl =0 (A.66)
0Gi11 . Bogm  Bagm
e b 2\b (A.67)
0G,; B
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Equilibrium equation 4:

an‘+1 . A267Tw'
ow;e  4AXb M
8Gz’+1 o A267T¢'
Qwis ANy T
0G; A Agem
W; = T Ve T g Wik
aGiJrl N Amw A267Tw
awis i+1,s AND i+1,c
Equilibrium equation 5:
0Gi
— =0
aU)ic
0Gis _
awis =0
an‘+1 A22w . A267Tw
awic i+1,s 4)\() i—+1,c
8Gi+1 _ A22¢ A267Tw
awis i+1,c 4>\b i+1,s
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(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)

(A.76)



Equilibrium equation 6:

aGi—i—l . _A667T¢‘
ow;. AN T
8Gz’+1 o A667r¢'
dwis  4AXb M
8G¢+1 Az Agem

O ab Ve T g i

aGiJrl _ @W . A667Tw'
8wis 4h i+1,s AND i+1,c

Equilibrium equation 7:

9Gis1

aU)ic =0
0Cin _

awis =0
0G4 1 _ Bss
awic b2

0Giy1  4(Bes + Bio)m

Obis 20D
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(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)



Equilibrium equation 8:

0Gip _
Era
0Gi1

awis =0

0Gi1 (B2 + 2Beg)m

Oie 2\b
0G4 _ By
8¢is b2

Equilibrium equation 9:
0Gi11 . A667777Z)'
dwie AN TP
8Gz‘+1 . Aﬁﬁﬁw
dwis  4Xb THC
0Gi11 Az AgeT

e 4—b¢i+1,c + 4—)\bwi+1,s

0G4 . A AgeT
s 4b Virrs +
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Dy

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)

(A.92)



Equilibrium equation 10:

0Gip1 _
aU)ic =0
0Gi1 _
awis =0
0G4 o Agg AgeT

e = E%’H,s - Wwiﬂ,c

3G¢+1 Az Agem

D, = 4—b¢i+1,c + 4—)\bwi+1,s

0G4
8wi

1<i<n

Equilibrium equation 1:

0G;_1 . Agem

77Di71,s

0G4 . _A267T

¢i—1,c

0G4 . —AQQW . Ao
ad}ic B 4b mhe
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e

(A.93)

(A.94)

(A.95)

(A.96)

(A.97)
(A.98)

(A.99)

(A.100)

(A.101)



0G4 . _A22 Age

Dins T Vi1 + 4—>\bwi—1,c (A.102)
Equilibrium equation 2:
G
pu— A-l
B, 0 (A.103)
Gt
B 0 (A.104)
0G;1 By
= — Al
8Gi,1 3B26’/T
pu— A.].
Equilibrium equation 3:
G
= Al
.. 0 (A.107)
0G. 1
B 0 (A.108)
801;1 3B267T
= — Al
0G;_y By
= — A1l
a,lvbis bZ ( O>
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Equilibrium equation 4:

0G4 . —A%W?ﬂ‘

ow;e AN M

0G4 - _A267T¢A

dwis  ANb TS
0G4 . —A22"¢' . A267Tw‘
e 4b TN 4
0G;_1 . Az A267T

Mis o YT
Equilibrium equation 5:

G

=0

aU)ic

0G; 4

awis =0
0G4 Az Age
8¢ic - 4D 2pzfl,s + AND Wi—1,c
0G;_1 —A22l/}' A267Tw'
Opiy  4b TN Ay
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(A.111)

(A.112)

(A.113)

(A.114)

(A.115)

(A.116)

(A.117)

(A.118)



Equilibrium equation 6:

0G;_1 . Agem
Ow,e 4N Victs (A.119)
3Gi—1 - Agem
awis - AND ¢z—l7c (A120>
0G4 Az AgeT
_ _ s AP A121
e 1 Ve T Ty Wit (A.121)
0G;_1 A AgeT
_ . 2766 A122
s 1 Ve T Winte (A.122)
Equilibrium equation 7:
0G4
=0 A.123
Du ( )
0G;_1
= A.124
Dwn. 0 ( )
0Gi—1 By
—— A.125
awic b2 ( )

8Gi_1 . (4B66 + B12)7T
s 2)\b

(A.126)
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Equilibrium equation 8:

G

= A12
0G; 4

= A.12
duw,. 0 (A.128)

8Gi,1 . (2B66 + 312)77'

= A12
8wic b2 ( 9)
0G4 Bos
——— A.]_
Equilibrium equation 9:
0G; 1 . AgeT
awic - 4)\[) %—1,5 (Al?)l)
0Gi_1 . Age
Ow;,s  ANb Vicie (A.132)
0G4 Az AgeT
- _ R P Al
a¢ic 4D ,Ivz}z l,c AND Wi—1,s ( 33)
0G,;_, Ao Agem
= —) s — ——W,;_ A.134
Mis — 4b Victs = N Winte (A.134)
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Equilibrium equation 10:

0G; 1
=0
aU)ic
0G4
=0
awis
0Gi_1 Ao AgeT
8¢ic - 4b 1/%71,3 + AND Wi—1,c
0G;_1 A AgeT
8%‘5 - m wz—l,c + AND Wi—1,s
0Gisi . _
awi (Z - )
Equilibrium equation 1:
an‘+1 - _A267T¢.
dwie  Ab TP
3G¢+1 . Azﬁﬂw
dwis  Ab T
Gy _ Agy AgeT

D, = T¢i+1,c + Twi-&-l,s
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(A.135)

(A.136)

(A.137)

(A.138)

(A.139)
(A.140)

(A.141)

(A.142)

(A.143)



an‘H Az Age

i = Twi—‘rl,s - Twi-f—l,c (A.144)
Equilibrium equation 2:
Gt
— =0 A.145
D, ( )
9Gis1
- = A.14
0Gi 5B
= — A.14
awic b? ( 7)

aGiJrl . _63267r

= A.14
Y, (A.148)
Equilibrium equation 3:
G
— = A.14
0Gi1
aTis =0 (A.150)
0Gi11 6 Bog
= A.151
0Gi11 5B
e s R A.152
ad]is b2 ( ’ )
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Equilibrium equation 4:

an‘+1 A267T
o == werl s
8Gz’+1 A267T
(9w' - ¢z+1 c
0G; A Agem
(9%-? = ¢z+1 c ;Z Wit1,s
aGiJrl A22?/1 . A267Tw'
awis i+1,s \b i+1,c
Equilibrium equation 5:
0Gi
— =0
aU)ic
0Gip1 _
awis - 0
an‘+1 A22w . A267Tw'
awic i+1,s \b i—+1,c
8G1+1 A22¢) A267Tw‘
awls i+1,c \b i+1,s
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(A.153)

(A.154)

(A.155)

(A.156)

(A.157)

(A.158)

(A.159)

(A.160)



Equilibrium equation 6:

an A m
o ==y Vi (A.161)
0G; A
S = Sy Vi (A.162)
; A
aa(jpfl = )G\Zﬂ-wi+1,s (A-163>
0G; A
8w-+1 == )G\Zﬂ-wi-&-l,c (A.164)
Equilibrium equation 7:
% =0 (A.165)
0G;
anl =0 (A.166)
; B
88(;“ _ _51)226 (A.167)
8Gi+1 _ (8366 —+ 2B12)7T (A168)
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Equilibrium equation 8:

0Gip _
Era
0Gi1

awis =0

OGir1  (4Bgs + 2Bi2)

OGiy1 5By
awis B b2
Equilibrium equation 9:
0Gi11 . A667777Z)'
dwie b P
8Gz‘+1 . Aﬁﬁﬁw
owi,  Ab THC
3G¢+1 . Agem Agg

F Y Wit1,s + T?/Jiﬂ,c

GGZ-H . A66’/T A26

8¢' =~ Wit1,c — T@/JHLS

196

(A.169)

(A.170)

(A.171)

(A.172)

(A.173)

(A.174)

(A.175)

(A.176)



Equilibrium equation 10:

0Gi41
— =90
8wic
0Gi11
— =90
awis
0G; AgeT A
W; = —%wiﬂ,c + %%’H,s
0G; AgeT A
8¢;1 = _%wi-‘rl,s + %'@Z}H-l,c
0G;i_1 .
=1
Tw, (i=1)
Equilibrium equation 1:
an‘—l - _A267T¢.
owie b Y
0G4 . A%Ww
owis  Ab
0G4 Agem A22¢
= ——7Wi-1s — 7T Vi—1,¢
Mic Ny T
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(A.177)

(A.178)

(A.179)

(A.180)

(A.181)
(A.182)

(A.183)

(A.184)

(A.185)



0G _Aur  Am,
3%5 - \b i—1,c b i—1,s

Equilibrium equation 2:

G, _

=0
awic
0G, 1
awis =0
aGifl o _5B22
awic B b2
8Gi,1 . 6B26’/T
Ohis A
Equilibrium equation 3:
0G4
=0
awic
9G,1
awis =0

801;1 . 632671'

Mie b
0Gi—1 5By
ad]is B b2
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(A.186)

(A.187)

(A.188)

(A.189)

(A.190)

(A.191)

(A.192)

(A.193)

(A.194)



Equilibrium equation 4:

0G4 . A267T
8w¢c - wz 1,s
0G;1 - A267T
aWis - 77ij l,c
8Gi—1 . A22”¢ _ A267Tw‘
(92/% 1—1,c )\b i—1,s
0G;_1 . A22w . Agem '
awis - i—1,s \b Wi—1,c
Equilibrium equation 5:
0G4 A267T
3w¢c % 1,c
an’—l A267r
awis ¢z 1,s
0G;_1 A22¢ A267T '
8"¢@'c i—1,s )\b Wi—1,c
3G¢71 A22¢ A267Tw
awis i—1,c )\b i—1,s
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(A.195)

(A.196)

(A.197)

(A.198)

(A.199)

(A.200)

(A.201)

(A.202)



Equilibrium equation 6:

Equilibrium equation 7:

G

8wic

9Gi-

=0
awis

0G4 o _5326
8%@ B b2

8Gi,1 . 4B667T 231271'

Ois  Ab b
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(A.203)

(A.204)

(A.205)

(A.206)

(A.207)

(A.208)

(A.209)

(A.210)



Equilibrium equation 8:

9Giy
aU)ic =0
0G, 1
awis =0

8G¢_1 . _4B667T 231271'

M.  Ab b
0G; 1 - _5326
awis B b2
Equilibrium equation 9:
0G4 . _A667Tw
owie b
aGi—l o _A667T¢A
dwis  Ab M
0G4 . _A26w' _ A667Tw‘
(92/% - b 1—1,c \b i—1,s
0G;_1 o Agg AgeT

i = T?/Ji—l,s - Twi—l,c
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(A.211)

(A.212)

(A.213)

(A.214)

(A.215)

(A.216)

(A.217)

(A.218)



Equilibrium equation 10:

0G4 . A6677w.
Ow;e R
0G4 _A667T n
Owis b
0Gi_1 Agg AgeT
8¢ic - b 1/%71,3 + \b Wi—1,c
0G;_1 _Azﬁv A667Tw
awis — b i—1,c \b i—1,s
0Gisa . _
awi (Z - )
Equilibrium equation 1:
8Gi+2 o A267Tw
owi.  4Xb TP
8Gi+2 . _A267Tw
dwis  4Xb T
aGz’+2 _ —A22¢‘ o A267Tw‘
8¢ic m i+2,c AND i+2,s
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(A.219)

(A.220)

(A.221)

(A.222)

(A.223)
(A.224)

(A.225)

(A.226)

(A.227)



aGz‘+2 . _A22 Age

= ; ——w; A.22
s 1 Ve g i (A.228)
Equilibrium equation 2:
OGiyo
— =0 A.229
D, ( )
9Gis2
- = A2
B, 0 (A.230)
0Giy2  4Ba
= A.231
8¢ic b? ( k )

8Gi+2 . Bogm Bagm

= A.232
Equilibrium equation 3:
OGit2
— = A2
Dy, 0 (A.233)
0Giys
0G; .o Bogm Bagm
= — — A2
Oje Ab 2Xb (A.235)
0Gio 4B
= A2
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Equilibrium equation 4:

3Gz‘+2 _ A267T w'
ow;.  4lambdab it

0Gita _Azeﬂw

dwis  ANb e
3G7;+2 _ _A22w . A267Tw‘
e 4b RO 4Ny
0Gito - Agy AgeT

E = 4—b¢i+2,s - 4—)\bwi+2,c
Equilibrium equation 5:

8Gi+2 . A267T

awic - 4>\b ¢i+2,c
0Giyy _A267T¢‘
dwis 4N TP
0Gi12 . A AgeT
) Vivas T Wik
0Giys o Agy AgeT
(9%5 - m wz+2,c + AND Wi+2,s

204

(A.237)

(A.238)

(A.239)

(A.240)

(A.241)

(A.242)

(A.243)

(A.244)



Equilibrium equation 6:

3G¢+2 o Agem

7wDiJrQ,s

OGivz  Agem

@Z)i—l—lc

5G¢+2 . _A667T
O 4\

Wi+2,s

0G 42 . _A667T
Obis — 4Xb

Wi42,c

Equilibrium equation 7:

9Gis2

8wic

IGits

=0
awis

0Gt2 - 4By
81/%0 B b2

aGi+2 . Beggm Biom

Mbis b 2\b
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(A.245)

(A.246)

(A.247)

(A.248)

(A.249)

(A.250)

(A.251)

(A.252)



Equilibrium equation 8:

0Gia _
Er
0Gips _

awis =0

an’+2 . _BGGW Biom

Mie b 2\b
0G 12 4By
6wis B b2
Equilibrium equation 9:
aGi+2 . _A667Tw
Ow;e AN TP
0Gita _Aaeﬂw
Ow;s AN T
an’+2 _ _A26w' A667Tw‘
M 4b RO 4np
0Git2 o Agg AgeT

is = 4—61/%2,5 - 4—)\bwi+2,c
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(A.253)

(A.254)

(A.255)

(A.256)

(A.257)

(A.258)

(A.259)

(A.260)



Equilibrium equation 10:

3G1+2 . Agem

wi+2,c

OGiy2  Agem

¢i+2,s

0Git2 o _A26 AgeT

O e T Ty e

3Gi+2 _ _Azﬁv _ A667Tw'
awis 4h i+2,c AND i+2,s

0Gi—2 .
=1
g, V=1

Equilibrium equation 1:

an‘—z A267T

Owie  4ND Vicas

0G;_ . A267T
Ow;s  4\b

wi—2,c

8Gi—2 - Agy A267T
I Eﬂ)z—zc + sz—ls
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(A.261)

(A.262)

(A.263)

(A.264)

(A.265)
(A.266)

(A.267)

(A.268)

(A.269)



Equilibrium equation 2:

Equilibrium equation 3:

0G; o o Ago Agem

g Wi—2.c

Nyis VT

G s

awic =0
G,y
awis =0
aGi72 o 4B22
8¢ic B B2
0G;_o . _B267T o
0Gis
awic =0
9Gis
awis =0

BQ(}T(

2)b

0G;_» . Bogm Bogm

Mpie  Ab

0G5 4B

877Z}is B bZ
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2)\D

(A.270)

(A.271)

(A.272)

(A.273)

(A.274)

(A.275)

(A.276)

(A.277)

(A.278)



Equilibrium equation 4:

0G;_ . A%Ww'

ow,, 4N T

an’—z . A267T¢'

dwis  4ANb
0G;_ Azzw A267T .
a¢ic — 1— 2c 4/\[) Wi—2. 5

0G; o N Amw A267T
awis — i— 25 4)\[) — 5 W;— 2,c
Equilibrium equation 5:
0G;_o . —A%Ww'

ow;,, AN T

5Gz’—2 - A267T¢‘

Owys  ANb TP
0G;_ A22w . Ao '
awic 1—2,8 4)\() Wi—2.¢
0G;_o . A22¢ A267T
awis — i— 20 4>\b — 7 W;— 2.8
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(A.279)

(A.280)

(A.281)

(A.282)

(A.283)

(A.284)

(A.285)

(A.286)



Equilibrium equation 6:

Equilibrium equation 7:

0G;_ . _A667T¢‘
owie AN T
0G5 . A667r¢'
dwis  4ANb
0G;_o . Agem

e ANp 2

0G;_o . _A667T
OV

Wi—2,c

0Gi—s

8wic

9Gi—»

=0
awis

0G;_2 o 4By
81/%0 B b2

0G;_9 . Beg Biom

Obis  Ab 2X\b
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(A.287)

(A.288)

(A.289)

(A.290)

(A.291)

(A.292)

(A.293)

(A.294)



Equilibrium equation 8:

9Gi s
aU)ic =0
G, s

awis =0

0G5 o Bég 4 Appm
OMbie  Ab 2\b

0G;_o o 4By
6wis B b2
Equilibrium equation 9:
0G;_ . A667Tw'
ow;. AN TP
an’—z o A6677¢'
Owys AN T
8Gi_2 A26 A667T

G ab e T

0G,;_ A A
2 _ _ 26%_278 i 6677

Wi—2,c
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(A.295)

(A.296)

(A.297)

(A.298)

(A.299)

(A.300)

(A.301)

(A.302)



Equilibrium equation 10:

0G;_o . _A667T

wifQ,c

0G;_9 o Agem

77Z)i—2,s

0G;_o . @1/1' . AgeT
Oy Ab TP

0G;_» . Agg AgeT
awis B

Equilibrium equation 1:

0Giyzs 0Giz 0Giz - 0Giz
aU)z'c —07 awis _O’ awzc _07 aqu)zs _0

Equilibrium equation 2:

0Giys 0 0Git3 _0 OGiyz3 By 0Gi3 0

aq/}ic B b2 ’ aqujzs B

8wic - 8wz~5
Equilibrium equation 3:

Gy _,
8wic o awis

0Giy3 0G4 3

—0, —0 0Givs _322

awic o a% B b_2
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(A.303)

(A.304)

(A.305)

(A.306)

(A.307)
(A.308)

(A.309)

(A.310)

(A.311)



Equilibrium equation 4:

0Giy3 —0, 0Giy3 —0, 0Giy3 —0, 0Gi3 —0
awic awis awzc awzs
Equilibrium equation 5:
0Giys 0Gips 0Giy3 0 0Giys 0
awic o awis o awzc o awzs -
Equilibrium equation 6:
0Gii3 —0, 0Giy3 —0, 0Giys —0, 0Giys _0
aU)z'c awis awzc aqu)zs
Equilibrium equation 7:
0Gii3 _0 0Giys3 _0 0Gits __DBa 0Gits _0
8wic ’ awis ’ aq/}zc b2 7 aqujzs
Equilibrium equation 8:
0Git3 ~0 0G4 3 —0 0G4 3 —0 0G4 3 _ _@
awic ’ awis ’ awzc ’ a% b2
Equilibrium equation 9:
0Giy3 —0, 0Giy3 —0, 0Giy3 —0, 0Gi3 —0
aU)ic awis awlc 3%3
Equilibrium equation 10:
0Giy3 —0, 0Giy3 —0, 0Giy3 —0, 0Giy3 —0
awic awis awzc awzs
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(A.312)

(A.313)

(A.314)

(A.315)

(A.316)

(A.317)

(A.318)



0Gi-—3

=1
Tw, (i=1)
Equilibrium equation 1:
0Gi s  0Gi3  0Gi3 0 0G;_3
awic o awis - a¢zc - aqu)zs B
Equilibrium equation 2:
0G;—3 0 0Gis  0Gi3 _322 0Gi_3 0
awic o awis - 61/%0 B b2 7 aqujzs B
Equilibrium equation 3:
0G5 0 0Gi 3 0Gi3 0 0G5 _@
awic o 8wi$ ’ a¢zc o a,@bzs B b2
Equilibrium equation 4:
0G5 _, 0Gis  0Gis  9Gis
awic 7 awis - awzc 7 3%3 B
Equilibrium equation 5:
0Gi s |, 0Giy  0Giy  0Giy
aU)ic ’ awis - awlc 7 877Dzs B
Equilibrium equation 6:
0G; 3 0G5 0 0G; 3 0 0G;_3
awic ’ awis - awzc o awzs B
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0

0

(A.319)
(A.320)

(A.321)

(A.322)

(A.323)

(A.324)

(A.325)

(A.326)



Equilibrium equation 7:

aGi—S -0 aGi—B -0 aGi—?) o _B22 aGi—3 o
B - awzc B b2 ’ awzs B

0
awic ’ awis

Equilibrium equation 8:

0Gi_3 0 0Gi_3 0 0Gi_3 0 0Gi_3 _@
awic - awis - awzc - awzs B b2

Equilibrium equation 9:

aGi—?: o aGi—S o 8Gi—3 . 8Gi—3 o
a7~Uic —07 awis _O’ awzc _07 aqu)zs =0

Equilibrium equation 10:

0Giy  0Gi,  0Gi,  9Ciy
8U)z'c _O’ awis _O’ a¢zc _0’ a,lvbzs =0
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