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Abstract

Minimisation of the mass of aerospace structures has been investigated

by researchers and designers for many years. It is an efficient means to

reduce the manufacturing costs, fuel consumption and environmental

impact. To achieve this objective, high performance composite ma-

terials and optimised configurations are utilised in modern aircraft

design. Additionally, use of the postbuckling reserve of strength has

been considered during the preliminary design stage to obtain more

efficient structures.

The exact strip analysis and optimum design software VICONOPT

has been developed and used in postbuckling analysis. VICONOPT

is able to give a good initial evaluation of load versus end shortening

when compared with experimental and finite element results. However

it provides poor predictions of the stress and strain distributions in

the postbuckling range. This is due to its assumptions concerning

the longitudinal invariance of stress and the sinusoidal variation of

buckling modes in the longitudinal direction. These assumptions are

appropriate for initial buckling analysis but they limit the accuracy

of subsequent postbuckling analysis.

This thesis outlines some developments which improve the existing

exact strip postbuckling analysis by improving the accuracy of mode

shape prediction and stress and strain distributions. Based on pre-

vious research by Von Kármán, improved governing equations are

derived and solved for general anisotropic plates with different in-

plane edge conditions. Implementation of the improved analysis in

VICONOPT enhances the accuracy of mode shapes and stress and

strain distributions in the postbuckling analysis.
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Chapter 1

Introduction

1.1 Background

The design and manufacture of modern commercial aircraft is of major research

interest due to their complexity and technical challenge. Aircraft structural de-

sign has become more complicated and significant due to recent developments in

technology and considerations of safety and financial and environmental factors.

Aircraft structures which are the focus of design and academic research mainly

include wings and fuselage. Figure 1.1 shows typical sections of an aircraft wing

and fuselage of Airbus A380. For the complex task of aircraft design, the design

process normally consists of three stages, a conceptual design phase, a prelimi-

nary design phase and detailed design phase. In the conceptual design phase, a

variety of possible aircraft configurations that meet all the requirements in the

design specifications are collected to sketch up a basic concept of the aircraft.

Then the design specifications established in the conceptual design phase will

be used to fit design parameters in the preliminary design phase. The optimi-

sation of the aircraft, structural analysis and control design are also carried out

in this phase. Moreover, wind tunnel testing and computational calculations are

required to determine the structural stability and mechanical characteristics. As

a result of high speed computers, a variety of computer software is utilised to

complete a great number of tests and analyses, which bring benefits in reducing
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1.1 Background

Figure 1.1: Typical section of A380 wing and fuselage [1]

computational consumption and therefore saving money in the preliminary design

phase. Finally in the detailed design stage, determinations of component design

and fabrication aspects are completed.

In modern aircraft design, lightweight aircraft structures are essential due

to the consideration of financial factors and environmental impact. Therefore

minimisation of weight of aircraft is taken into account by both researchers and

designers. High performance composite material is regarded as an alternative to

traditional metalic material (e.g. aluminium and titanium) in parts of aircraft

such as the wings and the fuselages. Composite material can bring advantages

in lighter weight structures due to its higher strength-weight ratios, moreover

it also offers resistance to fatigue and corrosion. Figure 1.2 shows two modern

commercial jets, Boeing 777 and Airbus A380, which utilise a great amount of

composite materials. With a combination of efficient analysis and optimisation

tools, high performance materials can lead to significant increases in stiffness,

strength and reliability, while minimising the weight of aircraft structures.

Another way of minimising the weight of aircraft structures is to take into

account the postbuckling reserve of strength. A plate structure can often carry

loads far in excess of its critical buckling loads in a stable manner before it

collapses. This phenomenon is known as postbuckling and was first investigated

by Euler [4] in 1744. By taking advantage of the postbuckling properties of a

material, structures can carry more loads within a safe range, further reducing

the weight of aircraft structures.
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1.1 Background

Figure 1.2: Boeing 787 and Airbus A380 [2]

Owing to the rapid development of computer technology, computer analy-

sis software has been widely accepted and used in aircraft engineering in the

past few decades. Researchers and designers have obtained great benefits from

high speed computers in computational analysis. In the preliminary and detailed

phases of aircraft design, finite element analysis (FEA) software (e.g. ABAQUS,

NASTRAN and ANSYS) have numerous advantages in terms of easy modelling

and accurate analysis. However, researchers and designers keep seeking for more

efficient computational approach to reduce the computation time of the software.

Finite strip analysis (FSA) which was introduced by Cheung [5] in 1968 has proved

to be a powerful and efficient tool in the analysis of structural components. Later

on Stein [3] provided an analytical solution to postbuckling of isotropic and or-

thotropic plates in compression and shear. In 1990, Williams et al. [6] presented a

buckling and vibration analysis and optimum design software VICONOPT based

on an ’exact strip’ approach, which provided an reliable efficient approach for

analysing anisotropic plates in the preliminary design phase.

VICONOPT is not only an analysis software but also an optimisation tool

which deals with anisotropic plates in combined load cases and edge conditions.

It has been shown to be a reliable, fast tool compared with FEA and FSA while

providing adequate accuracy in the preliminary design phase. This thesis is based

on existing theory of Kennedy [7] and Stein [3], while developing the improved

exact strip analysis theory and implementing improvements to VICONOPT in

postbuckling analysis. The features of this improved analysis in VICONOPT lead
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to accurate solutions in postbuckling analysis and keep efficiency advantages in

preliminary design.

1.2 Thesis motivation, aims and objectives

The motivation for this thesis is to enable reliable, efficient, and accurate post-

buckling analysis in the software VICONOPT. VICONOPT has been utilised as

an analysis tool and optimum design software in both research and industry for

many years. It was developed for typical aircraft structure components, such

as aircraft wing and fuselage panels made from both isotropic (e.g. metallic)

materials and anisotropic (e.g. composite) materials with combined load cases.

VICONOPT is an efficient tool in the preliminary design phase having been

proved to be up to two orders of magnitude faster than FEA software such as

ABAQUS [8] and NASTRAN [9]. VICONOPT has been validated as a reliable

tool in initial buckling analysis for preliminary design of aircraft. However it loses

accuracy in postbuckling analysis, notably in the calculation of stress and strain

distributions. The improvement of the postbuckling accuracy of VICONOPT is

therefore an attractive objective. To improve the postbuckling prediction of stress

and strain distributions, previous work by Stein [3], who presented an analytical

solution, provides inspiration for the project accomplished in this thesis. More

importantly, by combining with Kennedy’s [7] work, coupling of different sine

and cosine terms and consideration of anisotropic plates have been implemented

into the improved postbuckling analysis, which enables analysis of anisotropic

plates under more general and complicated load and edge conditions. Mean-

while, features which enable fast analysis in VICONOPT are also kept to retain

the advantage in the preliminary design phase.

VICONOPT analysis assumes longitudinal invariance of stress and the sinu-

soidal variation of buckling modes in the longitudinal direction. These assump-

tions are proper and accurate enough for initial buckling analysis. However they

limit the accuracy of subsequent postbuckling analysis. VICONOPT is able to

give a good evaluation of load versus end shortening in initial buckling analysis

when compared with FEA and experimental results. However VICONOPT shows
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poor prediction of stress and strain distributions in the postbuckling range. The

aims and objectives of the project are mainly concentrated on improving post-

buckling predictions of stress and strain distributions. The work involved roughly

consists of three stages to meet these objectives. First of all, the improved exact

strip postbuckling analysis is investigated based on Stein’s [3] work. In this stage,

the theoretical work is done and improved governing equations are derived and

solved. Then in the second stage, the relevant formulations and calculations are

compiled in a Fortran 77 program which makes possible the implementation of

the improved exact strip postbuckling analysis into VICONOPT. Finally the im-

proved analysis is implemented into VICONOPT so that it can produce accurate

postbuckling analysis by using the improved exact strip postbuckling analysis.

1.3 Layout of the thesis

Section 1.1 in Chapter 1 presents an introduction of background relevant to the

research topic. In section 1.2 the motivations, aims and objectives of the project

have been outlined. Finally, a synopsis of the following chapters is described in

detail as below.

Chapter 2 provides a brief review of initial buckling and postbuckling theory

for prismatic plates. The basic theory and formulation of buckling and postbuck-

ling is introduced. Moreover, relevant research concerning postbuckling behaviour

of plate structures is critically reviewed and evaluated. As a crucial reference to

this project, Stein’s [3] method is introduced and demonstrated in detail.

Chapter 3 gives a detailed description of exact strip analysis and the Wittrick-

Williams algorithm, which provides a theoretical background to the remainder of

the thesis including VICONOPT and improved exact strip postbuckling analysis.

In Chapter 4, the exact strip analysis software VICONOPT is presented with

an emphasis on the development of its analysis features. The earlier programs

VIPASA and VICON are introduced in detail in order to describe the main anal-

ysis features. The development and main features of VICONOPT are then briefly

discussed followed by the presentation of the optimum design capacity. Moreover,

the process of the existing postbuckling analysis in VICONOPT is also examined.
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Chapter 5 is dedicated to the new theory developed in this project which

deals with the problem of inaccurate postbuckling prediction of stress and strain

distribution. The so-called improved exact strip postbuckling analysis is intro-

duced in detail with the improved governing differential equilibrium equations

and solutions.

Chapter 6 presents the illustrative numerical results obtained from improve

exact strip analysis. The results are shown for an isotropic square plate with

various edge conditions. The finite element results from software ABAQUS are

used to compare with those from the improved analysis to validate the current

approach. Old VICONOPT results are also compared with improved postbuck-

ling analysis and ABAQUS analysis in some cases to show the improvement of

improved postbuckling analysis. Relevant discussions of improvements and errors

made by the improved analysis are introduced and evaluated with the demon-

stration of results.

Chapter 7 shows illustrative results from the improved postbuckling analysis

for other cases of problem, including isotropic plate with different aspect ratio

(0.5 and 1.5 respectively), symmetric balanced composite square plate, unsym-

metric unbalanced composite square plate and isotropic square plate with shear.

The results from improved postbuckling analysis are compared with those from

software ABAQUS to validate the accuracy. Discussion of results and evaluation

of error are also presented following the demonstration of results.

Chapter 8 concludes the main objectives of this thesis and briefly summarises

the processes of achieving these targets. The additional capabilities provided

by improved analysis are reviewed and concluded. Recommendations for further

extension and development based on improved analysis are critical evaluated and

proposed for the future work.
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Chapter 2

Initial buckling and postbuckling

theory of prismatic plates

The buckling behaviour of a range of commonly used structures has been pre-

dicted and investigated for centuries. Regarding the history of buckling research,

the first study contributing to the buckling problem is the so-called ’Euler col-

umn’. Euler [4] presented the theory of obtaining the equilibrium equation and

critical buckling load of a compressed elastic column. Besides buckling research

on column, Bryan [10] is recognised as the pioneer researcher who investigated

the buckling behaviour of plates in 1890. Following researchers like Donnell [11],

Von Kármán and Tsien [12], and Batdorf [13] then extended the buckling analysis

and investigation to shell structures. Moreover, the instability buckling analysis

of columns was carried out by Von Kármán [14], who investigated plastic defor-

mation of columns and beams. Later on, the classical nonlinear bifurcation theory

was developed by Koiter [15], which motivated the nonlinear buckling analysis of

continuous elastic structures. Further research by Hutchinson [16] brought im-

portant contributions to nonlinear post-bifurcation/post-buckling analysis in the

plastic range.

When a slender structure is loaded in compression, a point is reached where

any deformation in geometry causes loss of load carrying ability. At this stage,

the structure is considered to have buckled and is unstable. Therefore, buckling is
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generally known as structural instability leading to failure. In practice, buckling

is regarded as a sudden failure of a member of a structural component subject to

compression, where the actual compressive stress at the point of failure is found

to be lower than the ultimate compressive stress that the material is theoretically

able to carry. Prediction of such buckling behaviour is regarded as crucial to struc-

tures subject to compression, and also to shear and dynamic loading. Basically,

postbuckling problems involve nonlinear analysis rather than linear analysis, and

are therefore more complicated to resolve. This chapter introduces buckling and

postbuckling phenomena, and investigates this behaviour by presenting several

existing plate theories. Meanwhile, recent work on the postbuckling of plates is

reviewed.

2.1 Phenomenon of buckling

A buckled structure is normally known as unstable in engineering, and therefore

buckling is also regarded as structural instability. To better understand the con-

cept of buckling, the definition of instability therefore needs to be mentioned.

Jones [17] provides a rigorous definition for instability which is ”An equilibrium

state or configuration of a structural element, structure, or mechanical system is

unstable if any ’small’ disturbance of the system results in a sudden change in

deformation mode or displacement value after which the system does not return

to its original equilibrium state”. Therefore a buckling configuration can be re-

garded as a loss of the stable equilibrium state of a structure. To examine the

state of a structure, it is essential to distinguish the types of equilibrium. In

Fig.2.1 two spheres are placed on surfaces which are concave and convex respec-

tively. In Fig.2.1(a) the sphere will move back to its original stable position (solid

line) after it has been moved to another place (dashed line) due to its gravity.

The condition is hence called stable equilibrium, and the potential energy is a

minimum. In Fig.2.1(b) once the sphere is placed on the convex surface, it moves

away from its original place and is not able to move back. This is a condition of

unstable equilibrium, and the potential energy is a maximum. The phenomenon

of stability as described above is similar to real buckling behaviour of structures
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2.1 Phenomenon of buckling

(a) (b)

Figure 2.1: Types of equilibrium (a) stable (b) unstable

subject to combined loadings. Engineers and researchers who study buckling be-

haviour of structures tend to establish the point when structures become unstable,

namely, the onset of structural buckling.

According to Galambos [18] and Chen and Lui [19], buckling can be classi-

fied into two categories which are buckling into an adjacent stable equilibrium

state and buckling into a non-adjacent stable equilibrium state. For buckling

into an adjacent stable equilibrium state, the load versus deflection behaviour of

structural elements suddenly changes at the critical buckling load from a stable

equilibrium to an adjacent buckled stable equilibrium. In this type of buckling,

the structure starts to buckle when the compression load exceeds the critical

buckling load at which the bifurcation occurs in the load-deflection graph. For

example, an Euler column with axial loading will buckle when the loading exceeds

the critical buckling load Pcr (Fig.2.2(a)). The load versus deflection behaviour

follows the deflection path when the compression increases, and otherwise follows

the path in the opposite direction when the column is unloaded. For buckling

into a non-adjacent stable equilibrium state, if the load is increased infinitely

beyond the the critical load, the structure will deform into a different stable con-

figuration which is not adjacent to the previous configuration. In Figure 2.2 (b),

the deflection path achieves a maximum at point A which is known as the limit

point, then suddenly jumps from point A to C which is not an adjacent stable

equilibrium. A typical example of this type of buckling is snap-through buckling

of a toggle frame shown in Fig.2.2(b).

From the load-deflection graph, the critical buckling load can be found at

the point where bifurcation occurs. In the design of structures, a structure may

become unstable and buckled before the ultimate strength has been reached.
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2.1 Phenomenon of buckling

Figure 2.2: (a) Buckling with a pitchfork bifurcation point (b) Snap-through
buckling

10



2.2 Buckling theory of thin plates

Therefore, buckling behaviour and the critical buckling load of structure is very

important in both design and academic research.

2.2 Buckling theory of thin plates

2.2.1 Classical plate theory

A plate structure is a typical structure which is commonly used in aircraft en-

gineering. The plate structure can be classified as either a thin plate or a thick

plate structure depending on the width to thickness ratio. A plate can be defined

as a thin plate when the thickness to width ratio is less than 0.1, otherwise it

will be defined as a thick plate. The mechanical properties of the plate also have

an effect. In the following section, plate theories will be introduced for isotropic,

orthotropic and anisotropic plates, where isotropic materials have the same prop-

erties in all directions (e.g. glass and metal), orthotropic materials have two or

three mutually orthogonal twofold axes of rotational symmetry so that their me-

chanical properties are different along each axis and anisotropic materials have

mechanical properties which are different in any direction, namely, directional

dependent. Classical plate theory (CPT) considers a plate which is sufficiently

thin to assumes the transverse shear force is small compared to the bending force.

The theory assumes the Kirchhoff hypothesis that: normals to the mid-surface

of plate remain straight and normal after deformation. The neglection of shear

deformation effects in classical plate theory satisfies the analysis of thin isotropic

elastic plates. However for thick plates and anisotropic plates which have a modu-

lus relationship of E11/E22 > 25, the shear deformation effects cannot be ignored.

Other plate theories concerning this will be discussed in the following section. In

this section, assumptions and general formulations of CPT are introduced and

referenced to the thin plate buckling theory presented by Leissa [20] and Reddy

[21].

Fig.2.3 shows a typical thin plate with length, width and thickness of a, b

and h respectively, and a plate element. From the Kirchhoff hypothesis the
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Figure 2.3: Thin plate notation

[22]
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displacement for the kinematic behaviour of the plate can be written in the form

u = u0 − z
∂w

∂x
, v = v0 − z

∂w

∂y
(2.1)

where u, v, w are displacements of a typical point in the plate, while u0, v0 are in-

plane displacements of the mid-surface. Furthermore, all the above quantities are

functions with respect to x and y only. Using the strain-displacement relationship

of plane elasticity theory, the in-plane normal strain εx, εy and shear strain γxy

may take the form

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
(2.2)

Substituting equation (2.1) enables equation (2.2) to be rewritten as

εx = ε0
x − zκx, εy = ε0

y − zκy, γxy = γ0
xy − zκxy, (2.3)

where ε0
x, ε

0
y and γ0

xy are the mid-surface strains and κx, κy and κxy are the

changes of curvature during deformation. These quantities are given as

ε0
x =

∂u0

∂x
, ε0
y =

∂v0

∂y
, γ0

xy =
∂u0

∂y
+
∂v0

∂x
(2.4)

κx =
∂2w

∂x2
, κy =

∂2w

∂y2
, κxy = 2

∂2w

∂x∂y
(2.5)

By calculating force and moment integrals through the thickness of the plate, the

in-plane force resultants Nx, Ny, Nxy and moment resultants Mx, My, Mxy can

be obtained as follows

Nx =

∫ h/2

−h/2
σxdz,Ny =

∫ h/2

−h/2
σydz,Nxy =

∫ h/2

−h/2
γxydz (2.6)

Mx =

∫ h/2

−h/2
σxzdz,My =

∫ h/2

−h/2
σyzdz,Mxy =

∫ h/2

−h/2
γxyzdz (2.7)
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2.2 Buckling theory of thin plates

where σx and σy are the in-plane normal stresses and γxy is the in-plane shear

stress. Rewriting the relationships between force and moment resultants and mid-

surface strains and curvature in matrix form, the following expression is given
Nx

Ny

Nxy

Mx

My

Mxy

 =


A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

 =


ε0
x

ε0
y

γ0
xy

−κx
−κy
−κxy

 (2.8)

where Aij, Bij and Dij are the in-plane, coupling and out-of-plane stiffness respec-

tively. To obtain the differential equations which govern the buckling behaviour

of plates, the equilibrium equations are given as

∂Nx

∂x
+
∂Nxy

∂y
= 0

∂Nxy

∂x
+
∂Ny

∂y
= 0

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2My

∂y2
+Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
= 0 (2.9)

The above equilibrium equations are the fundamental form for the buckling prob-

lem and describe the state of neutral stability for plate structures. To explore the

equilibrium equations in the buckled configuration for isotropic, orthotropic and

anisotropic plates respectively, a simplified form of the above governing equilib-

rium equations can be obtained by the following procedure. Substituting equa-

tions (2.4), (2.5) and (2.8) into equation (2.9) and rewriting the equations in

matrix form gives L11 L12 L13

L21 L22 L23

L31 L32 (L33 − F )

uv
w

 =

0
0
0

 (2.10)
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2.2 Buckling theory of thin plates

where Lij are differential operators in terms of plate stiffness

L11 = A11
∂2

∂x2
+ 2A16

∂2

∂x∂y
+ A66

∂2

∂y2

L22 = A22
∂2

∂y2
+ 2A26

∂2

∂x∂y
+ A66

∂2

∂x2

L33 = D11
∂x4

∂x4
+ 4D16

∂4

∂x3∂y
+ 2(D12 + 2D66)

∂4

∂x2∂y2
+ 4D26

∂4

∂x∂y3
+D22

∂4

∂y4

L12 = L21 = A16
∂2

∂x2
+ (A12 + A66)

∂2

∂x∂y
+ A26

∂2

∂y2

L13 = L31 = −B11
∂3

∂x3
− 3B16

∂3

∂x2∂y
− (B12 + 2B66)

∂3

∂x∂y2
−B26

∂3

∂y3

L23 = L32 = −B16
∂3

∂x3
− 3B26

∂3

∂x∂y2
− (B12 + 2B66)

∂3

∂x2∂y
−B22

∂3

∂y3
(2.11)

and F is the differential operator representing the in-plane loading

F = Nx
∂2

∂x2
+ 2Nxy

∂2

∂x∂y
+Ny

∂2

∂y2
(2.12)

Just before buckling, the in-plane equilibrium equations yield u = v = 0. For

symmetrically laminated cross-ply plates, Bij = 0 and hence the operators L13

and L23 in equation (2.11) are null. Moreover, the absence of stiffnesses D16 and

D26 cancels the corresponding terms in operator L33, which gives the out-of-plane

governing equation as

D11
∂4w

∂x4
+2(D12 +2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
− (Nx

∂2w

∂x2
+2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
) = 0

(2.13)
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2.2 Buckling theory of thin plates

For homogeneous orthotropic plates the governing equation is in the same form

as for equation (2.13) above.

For symmetrically laminated plates, the coupling between bending and twist-

ing can not be ignored therefore stiffnesses D16 and D26 are non-zero. Hence the

governing equation is written as

D11
∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ 4D26

∂4w

∂x∂y3
+D22

∂4w

∂y4
−

(Nx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
) = 0

(2.14)

For a homogeneous anisotropic plate the governing equation has the same form as

equation (2.14) but the only difference is in how the stiffnesses Dij are calculated.

The complex problem of unsymmetrically laminated plates, is not discussed in

this thesis and therefore the equilibrium equation is not given here.

Once the out-of-plane governing equilibrium equations are derived, the solu-

tion can be subsequently obtained from them with in-plane equilibrium equations

using an analytical approach.

2.2.2 First-order shear deformation plate theory

As described above, considerations of shear deformation cannot be ignored when

the plate thickness increases significantly (width to thickness ratio greater than

0.1). Moreover for laminated composites, the shear flexibility is particularly cru-

cial because the moduli of elasticity in transverse shear are much lower than the

in-plane moduli. In these cases, the so-called first-order shear deformation plate

theory (FSDPT) which considers the shear deformation as having an important

effect on buckling behaviour is introduced briefly. To start with the Kirchhoff

hypothesis mentioned in Section 2.2.1, the assumption of no consideration of

transverse shear deformation is relaxed by allowing the transverse normals per-

pendicular to the mid-surface to rotate after deformation. The theory concerning

shear deformation effects was first developed by Reissner [23], [24] and Mindlin

[25] in the 1940s and 1950s on isotropic elastic plates, and later extended to
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2.2 Buckling theory of thin plates

anisotropic plates by Ambartsumyan [26]. Because the shear deformation effects

need only be considered when the thickness of plate is big enough, the theory

basically deals with the analysis of thick plates. In this section, first-order shear

deformation plate theory is introduced briefly with basic formulations which are

attributed to Leissa [20], Reddy [21] and Wang et al. [27].

In shear deformation plate theory the rotations about x and y axes of a certain

point on the mid-surface can be written as

∂w

∂x
= ψx + φx,

∂w

∂y
= ψy + φy (2.15)

where ψx and ψy are the rotations about the x and y axes respectively, and φx

and φy are the changes in rotation due to shear. The in-plane displacements at

an arbitrary point in the plate are rewritten as

u = u0 − zψx, v = v0 − zψy (2.16)

where u0 and v0 are displacements on the mid-surface of plate as mentioned in

classical plate theory. Meanwhile, the curvature changes are also rewritten as

κx =
∂ψx
∂x

, κy =
∂ψy
∂y

, κxy =
∂ψy
∂x

+
∂ψx
∂y

(2.17)

Owing to the consideration of the shear deformation effect, it is essential to derive

additional stiffness relationships as[
Qx

Qy

]
= k

[
A44 A45

A45 A55

] [
φy
φx

]
(2.18)

where Qx and Qy are shear forces determined by integrating transverse shear

stresses over the thickness of the plate, while A44, A45 and A55 are additional

stiffnesses which describe the relationships between shear forces and stresses.

The coefficient k is a so-called ’shear correction factor’ which is usually taken

as either k = 5/6 = 0.833 [23] or π2/12 = 0.822 [24] for homogeneous isotropic

plates as well as for composite plates.
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2.2 Buckling theory of thin plates

Shear forces are then included in the equilibrium equations so that equation

(2.9) is rewritten as
∂Nx

∂x
+
∂Nxy

∂y
= 0

∂Nxy

∂x
+
∂Ny

∂y
= 0

∂Qx

∂x
+
∂Qy

∂y
+Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
= 0 (2.19)

Substituting equations (2.4) and (2.18) into the stiffness equations (2.8) and

(2.19), and then substituting these expressions into equation (2.20), gives the

governing equilibrium equation as
L11 L12 L13 L14 0
L21 L22 L23 L24 0
L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

0 0 L53 L54 L55




u
v
−ψx
−ψy
w

 =


0
0
0
0
0

 (2.20)

where

L11 = A11
∂2

∂x2
+ 2A16

∂2

∂x∂y
+ A66

∂2

∂y2

L22 = A22
∂2

∂y2
+ 2A26

∂2

∂x∂y
+ A66

∂2

∂x2

L33 = D11
∂2

∂x2
+ 2D16

∂2

∂x∂y
+D66

∂2

∂y2
− kA55

L44 = D66
∂2

∂x2
+ 2A26

∂2

∂x∂y
+D22

∂2

∂y2
− kA44

L55 = −k(A55
∂2

∂x2
+ A45

∂2

∂x∂y
+ A44

∂2

∂y2
)− F

L12 = L21 = A16
∂2

∂x2
+ (A12 + A66)

∂2

∂x∂y
+ A26

∂2

∂y2
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2.2 Buckling theory of thin plates

L13 = L31 = B11
∂2

∂x2
+ 2B16

∂2

∂x∂y
+B66

∂2

∂y2

L14 = L41 = L23 = L32 = B16
∂2

∂x2
+ (B12 +B66)

∂2

∂x∂y
+B26

∂2

∂y2

L24 = L42 = B66
∂2

∂x2
+ 2B26

∂2

∂x∂y
+B22

∂2

∂y2

L34 = L43 = D16
∂2

∂x2
+ (D12 +D66)

∂2

∂x∂y
+D26

∂2

∂y2

L35 = L53 = −k(A55
∂

∂x
+ A45

∂

∂y
)

L45 = L54 = −k(A45
∂

∂x
+ A44

∂

∂y
) (2.21)

where

F = Nx
∂2

∂x2
+ 2Nxy

∂2

∂x∂y
+Ny

∂2

∂y2
(2.22)

The equilibrium equation governs the configuration when a plate has just buck-

led, which gives u = v = 0. For an isotropic plate, the absence of stiffnesses

Bij leads to the vanishing of operators L13 = L31, L14 = L41, L23 = L32 and

L24 = L42. Also the absence of stiffnesses A16, A26, D16, D26 and A45 is under

consideration, therefore the governing equilibrium equation for first-order shear

deformation theory for isotropic, orthotropic plates or cross-ply symmetrically

laminated plates can be written as

D11
∂2ψx
∂x2

+D66
∂2ψx
∂y2

+ (D12 +D66)
∂2ψy
∂x∂y

+ kA55(
∂w

∂x
− ψx) = 0

D66
∂2ψx
∂x2

+D22
∂2ψx
∂y2

+ (D12 +D66)
∂2ψy
∂x∂y

+ kA44(
∂w

∂y
− ψy) = 0

19



2.3 Phenomenon of postbuckling

kA55
∂

∂x
(
∂w

∂x
− ψx) + kA44

∂

∂y
(
∂w

∂y
− ψy) +Nx

∂2

∂x2
+ 2Nxy

∂2

∂x∂y
+Ny

∂2

∂y2
= 0

(2.23)

Further for the general case of anisotropic plates or symmetrically laminated

plates, stiffness D16, D26 and A45 are considered and therefore the governing

equilibrium out-of-plane equations can be given in matrix form asL33 L34 L35

L43 L44 L45

L53 L54 L55

−ψx−ψy
w

 =

0
0
0

 (2.24)

2.3 Phenomenon of postbuckling

Postbuckling is normally known as the non-linear process which occurs after the

critical buckling load has been reached. Slender plate structures can carry load

far exceeding the critical buckling load in the postbuckling range, which brings

great benefits if utilized saving materials. However, the non-linear characteristic

of postbuckling behaviour brings some uncertainty in predicting the behaviour

of structures in postbuckling. For example from Shen [28], plates loaded in com-

pression have a stable postbuckling path and are insensitive to initial geometrical

imperfection, however for cylindrical shells under pressure, the postbuckling path

is unstable and the structures are found to be sensitive to initial geometrical

imperfection. Due to this kind of uncertainty for structures in the postbuckling

range, postbuckling analysis is a major concern for both engineers and researchers.

Figure 2.4 shows a typical load-displacement curve which demonstrates the

behaviour of structures in buckling and postbuckling ranges. For classical buck-

ling theory, the bifurcation behaviour of plate follows paths A, B and C in Figure

2.4. With increasing in-plane load P, the curve follows path A which shows no

displacement with increased load until a critical buckling load is reached. After

this bifurcation point the curve theoretically keeps moving on path B, or may

follow a buckling path C for linear idealization. However, for large displacement

analysis, the curve follows path D which is non-linear with increasing slope. Path
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2.3 Phenomenon of postbuckling

Figure 2.4: Curves of in-plane load versus transverse displacement showing typical
buckling and postbuckling behaviour

[17]

D actually represents the postbuckling behaviour of plate which indicates that

the plate is able to carry more load far in excess of the critical buckling load

Pcr before it goes into unstable equilibrium. Path E shows the buckling and

postbuckling behaviour of an imperfect plate as no plate is initially perfect. The

decrease of imperfection magnitude will make path E increasingly kinked to path

D.

To further understand the postbuckling behaviour of structures, a review of

the types of buckling is given here, based on a classic review of postbuckling theory

by Hutchinson and Koiter [29] and a brief description of postbuckling types by

Jones [17]. Figure 2.5 illustrates four types of postbuckling behaviour for both

perfect (solid line) and imperfect structures (dash line). Figure 2.5 (a) shows

neutral postbuckling behaviour which gives a horizontal line for load-deflection

curve for perfect structure. Points along the line are all in a neutral equilibrium

state as no lower or higher energy state can be assumed for this postbuckling

behaviour. This type of postbuckling behaviour indicates that structures cannot
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2.4 Postbuckling theory of thin plates

carry load in excess of the critical buckling load Pcr. The dash line shows the

postbuckling behaviour for imperfect structures which makes the curve approach

Pcr asymptotically. Figure 2.5 (b) shows unsymmetric postbuckling behaviour

which gives a straight line that is inclined to the horizontal for a perfect structure.

The structure can only carry more load in excess of Pcr if it is constrained to

buckle with a positive w. Otherwise the structure can only carry loads much

less than Pcr until collapse. Figure 2.5 (c) shows symmetric stable postbuckling

behaviour which gives a concave curve for a perfect structure. This type of

postbuckling behaviour ensures a load carrying capacity far in excess of Pcr on

both sides of the vertical axis, and hence it is in a stable equilibrium configuration.

Moreover, due to symmetry about the vertical axis, the postbuckling behaviour

is the same no matter whether the displacement w is positive or negative. Figure

2.5(d) shows symmetric unstable postbuckling behaviour which gives a convex

curve for a perfect structure. This type of postbuckling behaviour indicates that

the structure cannot carry load higher than Pcr, and hence it is in a unstable

equilibrium configuration for both positive and negative displacements w. Figure

2.5(e) shows another type of postbuckling behaviour, for some structural elements

which changes suddenly from a stable equilibrium configuration at point C to an

immediately non-adjacent stable equilibrium configuration at point E, so the

structural element ’jumps’ from C to E.

2.4 Postbuckling theory of thin plates

2.4.1 Postbuckling plate theory

After the critical buckling load has been reached, a plate may start to buckle

and undergo out-of-plane displacement, which is relatively large compared to

the thickness. Moreover, the plate may have transverse displacement due to

the buckling of the plate. Therefore, for the analysis of postbuckling additional

terms have to be added to the expressions of strain due to stretching. To find

the expressions for so-called Von Kármán strain, it would be useful to examine

the geometric background for the strains. The following figures and derivation
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2.4 Postbuckling theory of thin plates

(a) Neutral Postbuckling Behaviour (b) Unsymmetric Postbuckling Behaviour

(c) Symmetric Stable Postbuckling (d) Symmetric Unstable Postbuckling
Behaviour Behaviour

(e) Buckling into a Non-Adjacent Stable Equilibrium State

Figure 2.5: Types of Postbuckling Behaviour for perfect and imperfect structure

[17]
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Figure 2.6: Calculation of axial strain

of strains are attributed to Yoo and Lee [22]. Consider a linear element AB of

the middle surface of the plate as shown in Figure 2.6. After deformations, the

length and position of AB has changed and is denoted A’B’. The length change

of the element is due to effects of both in-plane displacement u and transverse

displacement w. According to Figure 2.6, the elongation of the element due to u

displacement is
∂u

∂x
dx (2.25)

The length change due to displacement w is calculated from the Pythagorean

theorem as

A′B′ =

[
dx2 +

(
∂w

∂x
dx

)2
]1/2

'

[
1 +

1

2

(
∂w

∂x

)2
]
dx (2.26)

Therefore the elongation due to the displacement w is

1

2

(
∂w

∂x

)2

dx (2.27)
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2.4 Postbuckling theory of thin plates

And the total elongation is the sum of above two

∂u

∂x
dx+

1

2

(
∂w

∂x

)2

dx (2.28)

Hence the strain εx equals the total elongation divided by the original length of

the element dx. Then the expression of εx is written as

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

(2.29)

Likewise the expression of εy has the form

εy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

(2.30)

The shear strain γxy which is actually an angular change consists of both the in-

plane contribution and an out-of-plane contribution due to bending. Figure 2.7

illustrates the in-plane angle change and out-of-plane angle change. From Figure

2.7(a), the in-plane contribution for γxy is

∂u

∂y
+
∂v

∂x
= γn (2.31)

The bending contribution is

γw = ∠BOA− ∠B′O′A′ =
π

2
−
(π

2
− γw

)
(2.32)

Based on the law of cosines

(A′B′)2 = (O′A′)2 + (O′B′)2 − 2(O′A′)(O′B′)cos
(π

2
− γw

)
(2.33)

where

(O′A′)2 = dx2 +

(
dx
∂w

∂x

)2
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(a)

(b)

Figure 2.7: (a) in-plane angle change (b) out-of-plane angle change
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(O′B′)2 = dy2 +

(
dy
∂w

∂y

)2

(A′B′)2 = dx2 + dy2 +

(
∂w

∂x

)2

dx2 +

(
∂w

∂y

)2

dy2 +

(
dy
∂w

∂y
− dx∂w

∂x

)2

(2.34)

Neglecting higher order terms gives

(O′A′)(O′B′) = dxdy (2.35)

For small angles cos((π/2)− γw) can be computed as γw, therefore

(A′B′)2 = dx2 +

(
dx
∂w

∂x

)2

+ dy2 +

(
dy
∂w

∂y

)2

− 2γwdxdy +

(
∂w

∂x

)2

dx2 +

(
∂w

∂y

)2

dy2

= dx2 + dy2 +

(
dy
∂w

∂y
− dx∂w

∂x

)2

+

(
∂w

∂x

)2

dx2 +

(
∂w

∂y

)2

dy2

which gives

γw =
∂w

∂x

∂w

∂y
(2.36)

Adding both in-plane and out-of-plane angle changes gives

γxy = γn + γw =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
(2.37)

The Von Kármán strains are therefore written as

εx =
∂u

∂x
+

1

2
(
∂w

∂x
)2, εy =

∂v

∂y
+

1

2
(
∂w

∂x
)2, γxy =

∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
(2.38)

and the additional terms, which involve w, are non-linear. The expression for

curvature changes remains as equation (2.5) for buckling analysis, however, in

the case of very large displacements, additional terms have to be added to better

represent the postbuckling behaviour. To obtain the general form of the governing

equilibrium equation for postbuckling analysis, equations (2.1), (2.5) and (2.8)
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into (2.9) are substituted, expressed in matrix form in terms of displacements as

L11 L12 L13

L21 L21 L23

L31 L32 L33

uv
w

 =
∂w

∂x

L11w
L12w
L13w

+
∂w

∂y

L12w
L22w
L23w

+

0
0
ψ

 (2.39)

where Lij are the operators defined by equation (2.22) and further

ψ =
[
∂u
∂x

+ 1
2
(∂u
∂x

)2
]
L7w +

[
∂v
∂y

+ 1
2
(∂w
∂y

)2
]
L8w +

[
∂v
∂x

+ ∂u
∂y

]
L9w

−2(B12 −B26)(
∂2w

∂x∂y
) + 2(B12 −B66)

[
∂2w
∂x2

∂2w
∂y2
− ( ∂

2w
∂x∂y

)2
]

with

L7 = A11
∂2

∂x2
+ 2A16

∂2

∂x∂y
+ A12

∂2

∂y2

L8 = A12
∂2

∂x2
+ 2A26

∂2

∂x∂y
+ A22

∂2

∂y2

L9 = A16
∂2

∂x2
+ 2A66

∂2

∂x∂y
+ A26

∂2

∂y2
(2.40)

Equation (2.39) gives a general form of the postbuckling equilibrium equations for

unsymmetrical composite plate, and some simplifications are possible to represent

certain cases. For instance, for symmetrical laminated angle-ply plate L13 =

L31 = L23 = L32 = 0 due to Bij = 0, and therefore simplifications can be

made in equation (2.39). For a symmetrically laminated cross-ply plate, further

simplifications can be applied in addition, since A16 = A26 = D16 = D26 = 0.

2.4.2 Review of postbuckling analysis of plate structure

To review the work on postbuckling analysis of plates, some remarkable names

who contributed greatly in raising this subject at an early stage ought to be

mentioned. The first pioneer of plate buckling and postbuckling theory may be

regarded as Von Kármán, who derived the basic differential equations for plate

structures undergoing large deflection [14] in 1910. Later Von Kármán and other

co-researchers developed and presented the concept of effective width in 1932
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[30]. Later on, various approximate solutions based on energy considerations

for postbuckling analysis of plates were presented by Cox [31], Timoshenko [32],

Marguerre and Trefftz [33] and Van der Neut [34]. Furthermore, the work by Mar-

guerre and Trefftz [33] was extended for simply supported infinitely long plates

in compression by Kromm and Marguerre [35]. Further work by Koiter [15] en-

abled analysis of plate behaviour far beyond where buckling occurs. Based on

Von Kármán’s large deflection theory, Levy [36] derived the ’exact solution’ of the

equations for square plates. Further researches included Mayers and Budiansky

[37], who presented the plastic behaviour of a simply supported flat plate loaded

in compression. Smith [38], moreover, derived and applied rigorous plasticity the-

ory to the analysis of plate buckling. To introduce Von Kármán large deflection

theory to laminated composites, Reissner and Stavsky [39] and Stavsky [40, 41]

extended Von Kármán’s formulations. Further extensions for dynamic buckling

problems for general elastic and imperfection-sensitive structures was investigated

by Budiansky [42], Budiansky and Hutchinson [43] and Hutchinson and Budian-

sky [16]. Thompson [44] presented a work which starts from the point of view of

elastic stability, then the buckling and snapping behaviour of an elastic structure

subjected to a single generalised load is discussed. The theoretical predictions

of elastic instability of structures and structural components are discussed to

reveal the equilibrium state at which the stability of structure is lost. Further

extension of a previous study from Thompson [45] gave the basic concepts and

theories of elastic stability, both buckling and snapping conditions are examined

at which the equilibrium state loses stability. More development concerning insta-

bility and postbuckling behaviour of structure are included in Thompson [46] and

Thompson and Walker [47]. The first literature from Thompson presented a com-

plete general statistical theory of imperfection-sensitivity in elastic post-buckling.

The structural system has been described by n generalised coordinates, a load-

ing parameter and an imperfection parameter. The behaviour of structures and

structural components beyond which stability is lost has been investigated. In

the second literature from Thompson and Walker, a non-linear perturbation anal-

ysis for discrete non-linear structural system is presented. Sewell [48] presented

a general theory to investigate the bifurcation phenomena of elastic and inelas-

tic thin plates from the standpoint of Hill’s [49] bifurcation theory. The basic
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2.4 Postbuckling theory of thin plates

differential equation is obtained for non-linear analysis of a thin plate under com-

pression. Further extension of Sewell [50] showed the application to rectangular

plates with four edges simply supported and uniaxial compression applied on two

edges. Sewell [51] also investigated a method of postbuckling analysis which is

based on some work of Koiter, and the differences of starting data and conver-

gence technique with previous research from Sewell were discussed. Allen [52]

presented his research on buckling analysis of sandwich plate and panels, and

indicated the significance of shear deformation effects for finding the buckling

loads.

In the past few decades, the postbuckling behaviour of plate structures has

been paid great attention due to the increasing application of lightweight struc-

tures and composite materials in aerospace and military engineering. In recent

years, a large amount of research on the postbuckling of plate structures has been

carried out and published in particular looking at develop faster processes par-

ticularly for preliminary design. Wang and Dawe [53] presented a semi-analytical

finite strip analysis to investigate the large deflection problem and overall post-

buckling behaviour of a geometrically non-linear prismatic plate. In the context

of classical plate theory and shear deformation plate theory, an enhanced stress-

strain relationship was derived including modification of initial curvatures and

the effect of initial imperfections. Furthermore, particular attention has been

paid to a proper representation of longitudinal displacement which better rep-

resents the problem. These results show good comparison with finite element

software and advantages in terms of efficiency. However, this concern with the

accuracy of stress and strain distributions leads to a significant increase in so-

lution time while only improving the accuracy for postbuckling problems with

similar magnitudes of transverse displacement v and out-of-plane displacement

w for a little. Later Wang and Dawe [54] generalised their previous research and

considered the shear deformation effect in postbuckling problems. The govern-

ing equilibrium equations and solutions were obtained and results for symmetric

and unsymmetric composite laminates were shown. Further extension of their

research by Ge et al. [55] investigated thermomechanical postbuckling behaviour

of composite laminates by including the thermal-elastic effects in their previous

work. Rhodes [56] presented a brief review of two analysis methods to investigate
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2.4 Postbuckling theory of thin plates

the postbuckling behaviour of plates and thin-walled members. The so-called

’lower bound’ method provides an analytical solution which can be easily used

to obtain the critical buckling load, while in the other methods based on non-

linear differential equations from Von Kármán [14] and Marguerre [57] are taken

into account to give a more rigorous postbuckling analysis. Librescu and Lin

[58] discussed the postbuckling behaviour of flat and shallow curved panels based

on high-order shear deformation plate theory with linear and non-linear Winkler

elastic foundations. The research also took account of the effects of transverse

shear, geometric non-linearities and geometrical initial imperfection. Everall and

Hunt [59] reduced the Von Kármán plate equations to a series of ordinary differen-

tial equations, and investigated the postbuckling reserve and secondary buckling

for a rectanglar plate with simply supported edges under uniaxial compression.

Singh and Kumar [60] contributed work which integrates first-order shear

deformation plate theory and geometrical non-linearity by using Von Kármán’s

equilibrium equation with finite element procedures. The postbuckling behaviour

and progressive failure response of thin, symmetric laminates under uniaxial com-

pression and uniaxial compression with in-plane shear loading has been examined,

and the buckling and failure loads of anisotropic laminates in various cases have

been compared to determine their postbuckling behaviour. A similar theory has

been extended by Srikanth and Kumar [61] by considering an energy approach

and introducing temperature effects for postbuckling response of plates. Later on,

Jain and Kumar [62] and Singh and Kumar [63] continued their research on eval-

uating the postbuckling behaviour of a plate with a central cutout. Similarly, the

governing equilibrium equations were derived based on Von Kármán’s plate the-

ory with consideration of geometrical non-linearity, and the solutions were given

by using the Newton-Raphson method. Liew et al. [64] presented the first-order

shear deformation theory for isotropic and laminated composite plates in post-

buckling with the Ritz method. The meshfree Ritz method introduced the kernel

particle approximation for the field variables to discretise the non-linear equilib-

rium equations for the theory. Results for isotropic and laminated composites

in postbuckling have been validated to retain accuracy comparing with the finite

element method. Further, the research has been continued by Yang et al. [65]
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for higher-order shear deformation theory with consideration of geometrical im-

perfection sensitivity. Higher-order shear deformation theory and Von Kármán’s

theory were explored to obtain the non-linear equilibrium equations which were

solved to give a semi-analytical solution by involving a one-dimensional differ-

ential quadrature method and the Galerkin technique. The method was applied

to functionally graded plates with imperfections, and the postbuckling behaviour

of plates was tested and presented. More research based on higher-order shear

deformation was extended by Liew et al. [66] and Woo et al. [67] with consider-

ation of thermo-mechanical and thermo-electro-mechanical loadings with various

boundary conditions. Other types of thermo-mechanical postbuckling plate anal-

ysis have been provided by Shen and Williams [68], Shen [69] and Shen [70].

Higher-order shear deformation plate theory was utilised to derive the governing

differential equations, and a perturbation technique was used to find the buck-

ling load and postbuckling equilibrium path. Results were given for laminated

composite plates with consideration of initial imperfections. Kere and Lyly [71],

using Reissner-Mindlin-Von Kármán type equilibrium equation for plates, inves-

tigated the postbuckling behaviour of laminated composite plates subject to large

deflections. Diaconu and Weaver [72] presented an approximate solution to the

postbuckling analysis of infinitely long and unsymmetrically laminated compos-

ite plates. The Von Kármán large deflection theory was used to represent the

postbuckling mode with application of the Galerkin method. To obtain efficient

approximate solutions, non-dimensional parameters have been introduced by re-

ferring to Stein’s [73] work to simplify the formulations. The results have been

found to be efficient for analysing the postbuckling behaviour of infinitely long

and unsymmetrically laminated composite plates. Muradova and Stavroulakis

[74] described a method based on Von Kármán’s plate theory with the use of the

spectral method for discretisation of boundary value problems and results were

presented for buckling and postbuckling behaviour of rectangular plates.

Further types of analysis and solution techniques for the postbuckling be-

haviour of plates have been presented recently, which are worth mentioning and

reviewing here. Chen and Yu [75] however, presented an asymptotically correct,

geometrically non-linear theory which rigorously gives the governing differential

equations for the postbuckling analysis of laminated composite plates. Results
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showed good comparison with finite element analysis in the primary postbuckling

range while also showing the advantage of convergence deep into postbuckling in

various plate configurations and load and boundary conditions. Han et al.[76]

introduced an element-based Lagrangian formulation for postbuckling analysis of

laminated composite plates. Results were given for cases with combinations of

in-plane compression, shear and lateral loads and showed the advantage of fast

convergence.

2.5 Review of Stein’s work on postbuckling

In an early work of Stein [77], a perturbation analysis is introduced in detail

and postbuckling results are given for a plate under longitudinal compression

and temperature effects. The perturbation analysis converts the Von Kármán

large-deflection equations for a plate given below, a set of three non-linear partial

differential equations, into an infinite set of linear partial differential equations.

∂Nx

∂x
+
∂Nxy

∂y
= 0

∂Nxy

∂x
+
∂Ny

∂y
= 0

D∇4w +Nx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
= 0 (2.41)

where D = Gh3/12(1 − ν), ∇4 = (∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4) To achieve

the above conversion, the displacements which are function of only x and y are

expanded into a power series in terms of an arbitrary parameter ε (at buckling

ε = 0). The power series is assumed to start from zero power and have only odd

powers for u and v but start from the first power and have only even powers for

w as

u =
∞∑

n=0,2,..

u(n)εn, v =
∞∑

n=0,2,..

v(n)εn, w =
∞∑

n=1,3,..

w(n)εn (2.42)
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For a plate without any initial imperfections and subject to in-plane loading, the

out-of-plane displacement w is zero in the loading range prior to buckling but

in-plane displacements u and v have values other than zero. Thus, the series for

u and v are expected to start from zero power but for w is expected to start from

the first power. To convert Von Kármán’s equation into an infinite set, it is also

essential to rewrite the applied force into a series. Writing the force-strain and

strain-displacement relationships below as

Nx =
Eh

1− µ2
(εx + µεy), Ny =

Eh

1− µ2
(εy + µεx), Nxy =

Eh

2(1 + µ)
γxy (2.43)

εx =
∂u

∂x
+

1

2
(
∂w

∂x
)2, εy =

∂v

∂y
+

1

2
(
∂w

∂y
)2, γxy =

∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
(2.44)

where µ is Poisson’s ratio. Substituting the power series in equation (2.5.2)

into the above relationships, the following power series for applied forces can be

obtained as

Nx =
∞∑

n=0,2,..

N (n)
x εn +

∞∑
m=1,3,..

∞∑
n=1,3,..

N (mn)
x ε(m+n)

Ny =
∞∑

n=0,2,..

N (n)
y εn +

∞∑
m=1,3,..

∞∑
n=1,3,..

N (mn)
y ε(m+n)

Nxy =
∞∑

n=0,2,..

N (n)
xy ε

n +
∞∑

m=1,3,..

∞∑
n=1,3,..

N (mn)
xy ε(m+n) (2.45)

where

N (n)
x =

Eh

1− µ2
[
∂u(n)

∂x
+ µ

∂v(n)

∂y
]

N (n)
y =

Eh

1− µ2
[
∂v(n)

∂y
+ µ

∂u(n)

∂x
]

N (n)
xy =

Eh

2(1 + µ)
[
∂u(n)

∂y
+
∂v(n)

∂x
]

N (mn)
x = N (nm)

x =
Eh

2(1− µ2)
(
∂w(m)

∂x

∂w(n)

∂x
+ µ

∂w(m)

∂y

∂w(n)

∂y
)
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N (mn)
y = N (nm)

y =
Eh

2(1− µ2)
(
∂w(m)

∂y

∂w(n)

∂y
+ µ

∂w(m)

∂x

∂w(n)
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)

N (mn)
xy =

Eh

2(1 + µ)
[
∂w(m)

∂x
+
∂w(n)

∂y
] (2.46)

This allows the Von Kármán large-deflection equations to be rewritten in power

terms as
∂N

(0)
x
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+
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(0)
xy
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xy
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To obtain the linear differential equations, the power series terms in the arbi-

trary parameter ε have to vanish which requires each coefficient of the power

series to vanish. The odd powers in the series for u and v and the even pow-

ers in the series for w can form a set of homogeneous differential equations with

homogeneous boundary conditions. Thus equations (2.47) can be regarded as

the linear small-deflection equations, where the forces N (0) are independent of

out-of-plane displacement w. Solutions of the first equations enables resolving of

succeeding equations terms, therefore the behaviour of plate beyond buckling can

be examined. Stein also provided another approximation using exactly the same

procedure as discussed above except that the perturbation parameter ε2 is defined

as a function of buckling load, as ε2 = (P − Pcr)/Pcr. Results for both theory

and experiments are given for a plate under longitudinal compression for compar-

ison. Figure 2.8 from Stein [77] shows load versus end shortening curves under

compression and where b, h are width and thickness of plate respectively, and µ

is Poisson’s ratio. The experimental curve shows mode jumping with m being

the number of buckles in the longitudinal direction. The linear set of equations

show the advantages of simplicity of solution, which brings efficiency in solving

linear partial differential equations instead of nonlinear large-deflection partial

differential equations. For the compression problem of a square plate, results of

the second approximation shows agreement with exact results. However, there

are certain limitations depending on the application desired. Stein indicated that

solutions may be unable to converge satisfactorily for certain problems, and the

linear equation can not be used for postbuckling problems with eccentricities.

Further work by Stein [3] provided a further analytical approach which is

key material for this thesis. In this work, Stein presented an analytical solution

for isotropic and orthotropic plates in compression and in shear for postbuckling
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Figure 2.8: Comparison of non-dimensional load versus end shortening curves as
given by theory and experiment [3]

analysis. In contrast to his previous work, Von Kármán large-deflection equa-

tions are converted into non-linear ordinary differential equations, by assuming

trigonometric functions in the longitudinal direction. To obtain non-linear ordi-

nary differential equations, the displacement has first to be derived based on a

trigonometric series approximation, which gives

u = −ūcn(
x

a
− 1

2
) + u0(y) + us(y)sin

2πx

λ
+ uc(y)cos

2πx

λ

v = v0(y) + vs(y)sin
2πx

λ
+ vc(y)cos

2πx

λ

w = ws(y)sin
πx

λ
+ wc(y)cos

πx

λ
(2.50)

where ūcn is the applied longitudinal compressive displacement. The out-of-plane

displacement w is sinusoidally periodic with half-wavelength λ, and the in-plane

displacements u and v are sinusoidally periodic with half-wavelength λ/2. The
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strains and curvatures are then given by applying Von Kármán plate theory with

a similar trigonometric form for the stress and moment resultants. Further calcu-

lations involving the energy principle give the virtual work of the system in terms

of twenty unknown quantities to be solved. By applying the differential equa-

tions which have to be satisfied, the stress-strain relations and proper boundary

conditions, the first-order ordinary differential equations can be solved. By using

an algorithm from Lentini and Pereyra [78] which is based on Newton’s method,

the equations are solved for certain problems.

To apply the analysis, a long isotropic plate is investigated under compression

and shear respectively. The longitudinal edges are forced to keep straight and

the in-plane displacements normal to the edges are zero during the investigations.

The results from Stein indicated that in a postbuckling analysis: (1) plates with

clamped edges are stiffer than those with simply-supported edges, and plates

with a zero displacement edge condition are stiffer than those with zero average

stress condition; (2) an isotropic plate is slightly stiffer than a ±45◦-laminate for

the same loading and boundary conditions; (3) for an isotropic plate, transverse

tension builds up in the postbuckling range due to shallow buckles and the zero

transverse in-plane deformation condition, while for a ±45◦-laminate, tension

does not build up due to the deeper buckles; (4) for a long, isotropic plate loaded

in shear, the tensile longitudinal stress reaches about four times its critical value,

the shear displacement increases to seven times its critical value and moreover

the tensile transverse stress increases to about seventeen times its critical value

for the zero-displacement-simply-supported-edge conditions in the postbuckling

range, indicating that the longitudinal and transverse stresses can be very large

during postbuckling; (5) for a ±45◦-laminate in shear loading, it is indicated that

isotropic plates have greater stiffness than the laminate for all cases.

Both of Stein’s works provide an analytical concept of investigating the non-

linear behaviour of plates in the postbuckling range. Results are validated by

comparing with exact solutions, experiments and other researchers’ work. How-

ever, there are still limitations in both works which bring possibilities of improving

and developing the theory. The earlier work from Stein is shown to be efficient

and accurate for certain problems, but the validation of solutions depends on the

application desired which brings uncertainty for the general case. The later work
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introduces a trigonometric series which better represents displacement for buck-

ling analysis and gives remarkable solutions. A limitation of the theory is that

only postbuckling behaviour of isotropic and orthotropic plates are considered in

this work which can not used for a mere general case. Furthermore, the twenty

unknowns lead to the satisfaction of a number of differential equations and proper

choice of boundary conditions, which makes the solution quite difficult to imple-

ment. In this thesis, a further improvement has been made to the assumption of

displacement which couples the half-wavelengths λ and λ/2 together to represent

a more accurate form for the in-plane displacements u and v.

39



Chapter 3

Exact finite strip analysis and

Wittrick-Williams algorithm

3.1 Exact finite strip analysis

Finite strip analysis is an alternative approach to finite element analysis for buck-

ling and postbuckling analysis of rectangular plates and prismatic plate struc-

tures. It provides an efficient procedure for numerical analysis which can reduce

the computational costs significantly. For the buckling and postbuckling analysis

of plates, classical plate theory, first-order shear deformation and higher-order

shear deformation theory can be utilised, while the semi-analytical solution tech-

nique ensures reliable and efficient solutions to be obtained.

The finite strip method was first introduced and described by Cheung [79] in

1976. Applications for rectangular plates and plate structures were investigated,

dealing with buckling and vibration analysis. Early works based on classical plate

theory as a model of plate behaviour also included Cheung and Cheung [80], Babu

and Reddy [81], Turvey and Wittrick [82], Dawe [83], and Graves Smith and Srid-

haran [84]. Most of these works assumed a sinusoidal mode in the longitudinal

direction for isotropic and orthotropic plates with no shear loading applied. Wit-

trick [85, 86] derived explicit expressions for the stiffness properties of long, thin

40



3.1 Exact finite strip analysis

isotropic plates loaded with longitudinal compression combined with uniform lon-

gitudinal shear. Classical plate theory is used and the buckling mode is assumed

to vary sinusoidally in the longitudinal direction. The assumptions lead to ’ex-

act’ solutions for problems where no shear load or anisotropy are present, and

provide accurate solutions for infinitely long plates. Wittrick and Williams [87]

later extended the work to anisotropic plate assemblies under combined loads

and compiled it into a computer software VIPASA. These analyses from Wittrick

[85, 86] and Wittrick and Williams [87] form the basis of so-called ’exact’ finite

strip analysis.

Buckling and postbuckling behaviour of plate structures using finite strip

analysis based on classical plate theory, first-order shear deformation theory and

higher-order shear deformation theory has been investigated by many researchers.

Kong and Cheung [88] presented finite strip buckling analysis based upon third-

order shear deformation plate theory which was used to examine the effects of

geometrical non-linearity and initial imperfection. Numerical results demonstrate

the performance of the modified finite strip analysis. Dawe and Peshkam [89] and

Wang and Dawe [53, 54] provided semi-analytical finite strip analysis based on

first-order shear deformation theory with modification on longitudinal displace-

ment. The calculated buckling and postbuckling behaviour of plates demon-

strated good agreement with finite element analysis. Later Tan and Dawe [90]

presented a general spline finite strip method based upon first-order shear de-

formation theory and incorporated a sub-structuring technique into the solution

process. Numerical results showed the positive effects of the method on flexible

matching of boundary conditions. Further extensions of their work [55, 91] con-

centrated on thermal effects on buckling and postbuckling behaviour of laminated

composite plates by using spline finite strip analysis. Bradford and Azahri [92]

presented a finite element analysis using different series functions as buckling co-

efficients which provided an efficient way of examining the buckling behaviour of

plates with different load and boundary conditions applied. Ovesy and co-workers

contributed several analytical methods based on the finite strip technique to de-

termine the buckling and postbuckling behaviour of plate structures. Ovsey et

al. [93] and Ovsey and Assaee [94] presented a so-called semi-energy finite strip

approach in the context of classical plate theory. The out-of-plane displacement
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w is assumed as a function of a properly selected deflection series. This has been

substituted into Von Kármán’s compatibility equations which are solved exactly

to get stresses and displacements. The governing equilibrium equations are then

solved by considering minimum potential energy. Numerical results describing

postbuckling behaviour are given for laminated composite plates and comparison

made with other researchers work and the finite element approach. The semi-

energy finite strip analysis is then extended by Ovesy and Assaee [95, 96] by

including bending-twisting coupling effects in the postbuckling analysis. Results

are given for the postbuckling analysis of laminated composite plates consider-

ing coupling and uncoupling effects respectively, and compared with the finite

element software ANSYS [97]. The results indicated that the coupling of in-

plane bending membrane and out-of-plane twisting curvature should be taken

into account for postbuckling analysis. Similar analysis presented by Loughlan

[98] makes the same conclusion for anti-symmetric angle-ply laminates. A further

extension by Ovesy et al. [99] considered the thick plate problem were shear defor-

mation effects need to be considered. The same semi-energy finite strip approach

is followed based on first-order shear deformation theory, with results for the

postbuckling behaviour of thick symmetric laminated plates demonstrated. Con-

clusions showed that for certain accuracy requirements, the approach requires

fewer degrees of freedom compared to the finite element approach and hence

leads to computational efficiency. The other approach proposed by Ovesy et al.

[100, 101, 102, 103], the so-called full-energy finite strip analysis postulated all

displacement by a proper shape function. The displacements are substituted

into Von Kármán’s compatibility equations, and the equilibrium equations are

solved using an energy method. Results are given based on the semi-energy and

full-energy approaches for the postbuckling analysis of laminated plates. It is

indicated that the full-energy finite strip approach is slightly more accurate for

postbuckling analysis than semi-energy approach, however it increases the com-

putation time. This is due to the increasing number of degrees of freedom in the

full-energy approach. Suggestions are also made for improving the accuracy of

the semi-energy approach, which involve introducing multi-terms into the shape

function for displacement w instead of single terms. Further work [104, 105] on

the semi-energy and full-energy approaches is carried out to examine the effects
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of initial imperfections on laminated composite plates. Most recently, Ovesy and

Ghannadpour [106] and Ghannadpour and Ovesy [107] presented an exact strip

analysis based on the full-energy approach. The Von Kármán’s equilibrium equa-

tions are solved exactly and the transcendental stiffness matrix is assembled for

the plate strips. Solutions are found by the energy method and convergence of the

critical buckling load is secured by introducing a recursive Newton’s method from

Yuan [108]. Various analytical techniques including, Eccher et al. [109, 110] and

Yao and Rasmussen [111] have provided isoparametric spline finite strip analyses

which use transverse cubic shape functions in the expression of the displacement

function. Lui and Lam [112] provided a deep discussion of the effects of initial

imperfections on plate buckling. A polynomial expression for imperfections and

trigonometric series for deformations are used to better represent the problem.

3.2 Wittrick-Williams algorithm

The Wittrick-Williams algorithm is a numerical technique which can be used to

find the critical buckling loads and natural frequencies of a structure for non-linear

eigenvalue problems. The algorithm was first presented by W. H. Wittrick and

F. W. Williams in 1971 [113] for determining the natural frequencies of vibration

problems, however following this it was used to find the critical buckling stresses

for plates [87]. The algorithm was not developed to calculate the value of natural

frequencies, but enable the number of natural frequencies which lie below a certain

frequency to be calculated, allowing convergence on any natural frequency at the

accuracy required. The algorithm works is outlined below.

The global stiffness matrix K(ω) is first assembled

K(ω)D = P (3.1)

where P is the perturbation forces, D is the displacement vector and ω is nat-

ural frequency or load factor [114]. Since the global stiffness matrix K(ω) is

transcendental in terms of the non-linear elements ω, the solution of the natural
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3.2 Wittrick-Williams algorithm

frequency or load factor can be found by solving the transcendental eigenvalue

equation below

K(ω)D = 0 (3.2)

The Wittrick-Williams algorithm calculates the number of eigenvalues J lying

below a trial value ω∗, where J can be calculated as

J = J0 + s {K(ω∗)} (3.3)

where J0 is defined as the number of natural frequencies which would still be

exceeded by ω∗ if constraints were imposed so as to make all the displacements D

zero, and s {K(ω∗)} is known as the sign count which is the number of negative

diagonal elements of the upper triangular matrix K∆(ω∗) obtained from Gauss

elimination of K(ω∗) [87]. J can be also be calculated from the following equation

if substructures are not used

J0 =
∑
m

Jm (3.4)

where Jm is the number of eigenvalue exceeded the trial value ω∗ with their ends

fully restrained.
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Chapter 4

Exact strip analysis software

VICONOPT

The exact strip analysis software VICONOPT [6] has been developed as an anal-

ysis and optimum design software for aerospace engineering and has been used

in both industry and academic for many years. From an analysis perspective,

VICONOPT has the capacity to carry out vibration analyses, buckling analyses

and postbuckling analyses. In terms of optimisation, VICONOPT provides an

efficient optimum design tools from optimum design perspective. This chapter

introduces the main features of the earlier programs VIPASA and VICON upon

which VICONOPT is based and developments in VICONOPT in recent years.

4.1 Main features of VIPASA analysis

VIPASA analysis uses a stiffness matrix approach based on exact flat plate the-

ory with Winkler foundations. The Wittrick-Williams algorithm is also used to

guarantee convergence on the required eigenvalues. Multi-level substructuring is

used very concisely and flexibly to reduce solution times, data preparation, and

computer memory usage [115]. VIPASA analysis assumes the mode of buckling

or vibration varies sinusoidally in the longitudinal direction x, and hence the
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4.2 Main features of VICON analysis

amplitudes u, v, w and ψ relating to the axes x, y, z are also sinusoidal. The

computation is repeated rotation for a range of user specified half-wavelengths

λ and converged to the required eigenvalues with a pre-set accuracy allowance.

VIPASA analysis requires the in-plane membrane stiffness matrix A and the out-

of-plane bending stiffness matrix D to be uncoupled, i.e. the coupling stiffness

matrix B is null in the constitutive equation of plate. If all the component plates

are either isotropic or orthotropic with no shear, i.e. NS = 0, the nodal lines of

zero displacement are straight and perpendicular to the longitudinal direction x

and the simply supported end condition is satisfied with λ divided exactly into

plate length `. If anisotropic materials and shear are considered the global stiff-

ness matrix becomes complex and the solution obtained is approximate for such

end conditions. In a VIPASA analysis, due to the assumption of a sinusoidal

mode in the longitudinal direction with half-wavelength λ, the exact solution can

be obtained by taking λ = `, `/2, `/3, ... if no shear load and anisotropy exist and

simply supported boundary conditions are satisfied. The minimum buckling load

can be found by examining all values of λ until the smallest one is smaller than

the smallest plate width (i.e. the unsupported width between different plates).

The advantages of VIPASA analysis, are that it is based on an ’exact’ plate theory

in comparison with other approximated methods such as finite element and finite

strip methods, and that the solution time can be shown to be 1000 times faster

than finite element programs such as STAGS [116]. The limitations of VIPASA

analysis is the requirement that shear load and anisotropy are absent for an accu-

rate analysis for simply supported end conditions. To solve a problem with shear

load, anisotropy and various end conditions, VICON analysis is recommended to

provide a more accurate modeling solution.

4.2 Main features of VICON analysis

To overcome the inaccuracies in VIPASA analysis for shear load and anisotropy,

VICON analysis has been developed by researchers at Cardiff University in col-

laboration with NASA [117]. VICON analysis permits the same assumptions,

loading and stiffness matrices as VIPASA analysis. The key difference between
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4.2 Main features of VICON analysis

VICON analysis and VIPASA analysis is the introduction of Lagrangian Multi-

pliers which couple the responses of different half-wavelengths λ. VICON analysis

uses Lagrangian Multipliers to minimise the total energy of panel so that the a

shear loaded panel support can be accurately represented. VICON analysis deals

with an infinitely long plate assembly with constraints which represent rigid or

elastic point supports repeating at interval of `. The mode of buckling or vi-

bration repeats n times over an interval L = M`, where M and n are integers,

as shown in Figure 4.1. The boundary conditions can be expressed explicitly

to give accurate results. Meanwhile, accurate buckling and vibration modes are

achieved by providing different half-wavelength λ which are coupled together.

VICON analysis assumes that the buckling and vibration modes repeat over a

length L = 2`/ξ, where 0 ≤ ξ ≤ 1. The half-wavelengths required in VICON

analysis is governed by the expression

λm =
`

(ξ + 2m)
, (m = 0,±1,±2, ...± q) (4.1)

where m and q are integers having different meanings. To determine the minimum

buckling load, ξ and m are determined by users and appropriate values of ξ which

can be given as ξ = 2n/M(0 ≤ ξ ≤ 1) are examined to ensure the lowest buckling

load can be found. As the mode of buckling or vibration is repeated n times over

M lengthwise bays of length `, L can be written as

L =
2n`

ξ
(4.2)

Eigenvalues of problems (i.e. buckling load factors and natural frequencies of

vibration) are found in a similar way to that using in VIPASA analysis. The slight

difference is that the Wittrick-Williams algorithm has been extended to allow for

introducing Lagrangian Multipliers, i.e. to couple the ’exact’ stiffness matrices for

different half-wavelengths [118]. VICON analysis improves the accuracy for more

general buckling problems and also ensures the advantage of time reduction, which

as stated previously has been shown to be 159 times faster than finite element

program STAGS [116].
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4.2 Main features of VICON analysis

Figure 4.1: Illustration of the infinitely long structure with constraints. (a) plan
view (b) isometric view
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4.3 VICONOPT

Figure 4.2: (a) Prismatic plate assemblies (b) Component plate, showing in-plate
loading and coordinates

4.3 VICONOPT

VICONOPT is a FORTRAN 77 computer program which has over 50000 lines

of code. It incorporates the earlier programs VIPASA (Vibration and Instability

of Plate Assemblies including Shear and Anisotropy) [87] and VICON (VIPASA

with CONstraints) [117]. It covers the prismatic assemblies of anisotropic plate

structures with a combination of longitudinal invariant in-plane stresses [119].

Typical panel sections that can be analysed by VICONOPT and a typical plate

component with in-plate loading are shown in Figure 4.2. In the following section

the main features of the optimisation program VICONOPT will be introduced in

detail, including a critical assessment of postbuckling capability.

VICONOPT analysis was first presented by Williams et al. [6] at the SDM

conference, then in 1993 a further release by Williams et al. [120] applied material

strength constraints and also included bending and pressure loading, approxima-

tions for curved and tapered members and allowance for the effects of transverse

shear deformation. In 1996, a new release from Williams et al. [121] included

multi-level substructuring and local postbuckling analysis, as well as cost opti-

misation, simultaneous analysis and/or design of multiple structures, the ability

to study wave propagation along the plate assembly and the ability to attach

three-dimensional supporting frames. To provide an optimum design capability
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4.4 Main features of VICONOPT design optimisation

to VICONOPT, the well know linear optimiser CONMIN [122] was introduced

in 1990, which led to the first release of the program VICONOPT. Postbuckling

analysis capability was added by Powell et al. [123], which extensively modified

the buckling analysis of VICONOPT to include local postbuckling capacity, and

in 2002 Fischer et al. [124, 125, 126] presented the development of VICONOPT

MLO (Multi-Level Optimisation), which is a Visual C++ program providing

a multilevel optimisation interface between VICONOPT and the finite element

software MSC/NASTRAN [127]. These developments were reviewed by Kennedy

et al. [114] in 2007. In 2008, an improvement to the postbuckling capacity was

implemented by Anderson and Kennedy [128] with convergence by Newton iter-

ation. This provided an accurate convergence on the critical buckling load and

associated postbuckling mode. Research done by Qu [129] applied postbuckling

effects in VICONOPT MLO creating the new multilevel optimisation interface

VICONOPT MLOP (VICONOPT MLO with Postbuckling) [130]. Most recently

analysis carried out by the author [131] of this thesis provided an analytical ap-

proach for VICONOPT postbuckling capacity, which improved the mode shape

and prediction of stress and strain for a postbuckled plate.

4.4 Main features of VICONOPT design opti-

misation

VICONOPT’s optimum design capacity was developed by introducing the linear

optimiser CONMIN [122]. VICONOPT currently has different design capabilities,

including continuous optimisation [132], discrete optimisation [132], discontinuous

cost functions [132] and vibration constraints [133, 134, 135]. Two main objectives

of VICONOPT optimum design are minimising the mass of structural components

and therefore achieving reduction in cost. In this section, an overview of the

main features and procedures of continuous optimisation are introduced while

the theory and details will not be further discussed in this thesis.

In the design problem formulated in VICONOPT, a number of different de-

sign variables (e.g. plate widths, layer thicknesses and layer ply angles) can be
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4.4 Main features of VICONOPT design optimisation

Figure 4.3: Continuous design procedure of VICONOPT using sizing strategy

specified and then optimised. The continuous design phase in VICONOPT is

based on the sizing strategy and the main procedures are illustrated in Fig 4.3.

Initial analysis is firstly carried out in a design problem which determines the

critical buckling load. The initial stabilisation [116] process follows which mod-

ifies the unstable or over-stable initial design to a just stable configuration. At

the beginning of the sizing cycle, a constraint and sensitivity analysis is carried

out to determine the buckling load factor. Later on in the move limit calculation

the proper upper and lower limits of the design variables are determined. In the

following CONMIN optimisation, results obtained in the constraint and sensitiv-

ity analysis are re-used to tailor the linear optimisation of CONMIN by adjusting

the move limits for subsequent CONMIN cycles. After CONMIN optimisation, a

stabilisation process which is similar to the initial stabilisation process is carried
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4.5 Postbuckling analysis in VICONOPT

out to adjust the design variables to achieve a just stable configuration for the

next CONMIN cycle. The final analysis verifies the buckling results for the design

problem before the end of the design problem.

4.5 Postbuckling analysis in VICONOPT

VICONOPT was first extended to enable postbuckling analysis by Powell et al.

[123] in 1998. The method is presented for geometrically non-linear postbuckling

analysis of perfect or imperfect longitudinally compressed prismatic plate assem-

blies with local modes. It uses the efficient exact stiffness calculation based on the

Wittrick-Williams algorithm to find the critical buckling load and postbuckling

mode shape of a structure at the very beginning of the iterative procedures. The

applied load is then found for the first iteration of the first cycle based on the

ratio of postbuckling to prebucklng axial stiffness. A number of iterations are

then carried out to find the longitudinal strain, flexural shortening strain, initial

buckling load and stress resultants. This postbuckling analysis was implemented

in VIPASA analysis for postbuckling analysis capacity, however, difficulty was ex-

perienced in converging when investigating a stiffened panel with regularly spaced

stiffeners which was believed to be due to the accuracy of the mode shape which

caused mode jumping in postbuckling [136].

An alternative type of postbuckling analysis which is also the one currently

being used in VICONOPT was developed by Anderson and Kennedy [128] and

further discussed by Kennedy and Featherston [137]. In this method, instead

of using the Wittrick-Williams algorithm to determine the critical buckling load

and associated mode, the so-called Newton method is used to perform Newton

iterations for accurate convergence on the postbuckling modes and stress distri-

butions. At the start of each cycle, the increment of longitudinal strain has to

be determined to ensure the total applied load, the stress and strain distribution

and the postbuckling mode shape can be found after convergence.

Postbuckling analysis has also been extended to the optimum design capacity

of VICONOPT. Qu et al. [130] presented the multilevel optimisation of aircraft

wing structures using VICONOPT MLO with the effects of postbuckling. The

52



4.5 Postbuckling analysis in VICONOPT

new method, the improved exact strip postbuckling analysis presented in this

thesis is expected to improve some analysis features of VICONOPT postbuckling

analysis.
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Chapter 5

Improved exact strip

postbuckling analysis

5.1 Introduction

Exact strip analysis of a prismatic plate provides a reliable efficient approach to

the preliminary design stage of aerospace wing and fuselage panels. In addition,

it reduces the computational and modeling time incurred by discretisation in

finite element (FE) analysis. In the postbuckling range however, assumptions

concerning the longitudinal invariance of stress and the sinusoidal variation of

buckling modes in the longitudinal direction result in errors in the prediction of

stress and strain.

This chapter outlines the major contribution of this thesis - the improved

exact strip postbuckling analysis which provides greater accuracy of mode shape

and stress and strain distribution prediction in postbuckling analysis. The im-

proved analysis is based on an existing approach created by Stein [3], from which

analytical results for the postbuckling of isotropic and orthotropic plates are ob-

tained. Furthermore it uses the work of Kennedy [7] from which the prediction of

stress and strain in postbuckling analysis are derived. In the improved analysis,

more accurate governing equations are derived and solved for different combina-
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5.1 Introduction

tions of edge conditions and load cases. Implementation of the improved analysis

in VICONOPT is validated to enhance the accuracy of postbuckling mode shape

and postbuckling distribution of stress and strain.

The work begins by first examining the strip level at which the in-plane dis-

placements, out-of-plane displacements, strains and curvatures are expressed. In-

plane equilibrium conditions are necessarily assembled to find these quantities.

However out-of-plane displacements from VICONOPT which will be utilised in

the consequent calculation of in-plane displacements are expressed at the edge of

each strip, namely at node level. To ensure the out-of-plane displacements are

usable for the following analysis, the quantities and equilibrium conditions are

converted from strip level to node level by introducing finite difference approx-

imations and linear interpolations. The disadvantage of this approach is that

too many quantities are converted to approximate forms, which brings the risk

of losing accuracy in the final results. For the sake of ensuring the accuracy of

the results, the previous analysis at the strip level is terminated and the same

analysis procedures are investigated at node level instead. The analysis at node

level requires all the quantities and equilibrium equations to be expressed at node

level. This reduces the approximations introduced in the entire analysis but leads

to higher order derivatives of the finite difference approximations in the stress-

strain relationships. However, the results of analysis at node level tend to be more

accurate than those at strip level, and the latter will not be discussed further in

this thesis.

Before starting the entire procedure of calculations, Figure 5.1 provides a

flow chart which demonstrates all the calculations described in the following sec-

tions. The red arrow represents the beginning of each analysis cycle while the

green arrow represents the ending of the cycle. The main purpose of the cal-

culations is actually finding the effective uniform stresses which will be used in

VICONOPT for calculation of the postbuckling mode shape for the next cycle.

The calculation starts from assumed expressions of in-plane displacements ui and

out-of-plane displacements wi. However, the improved analysis utilises wi from

VICONOPT directly at the very beginning of analysis. Then strains, stresses and

effective uniform stresses which are obtained by an energy approach are calcu-

lated in terms of known variables wi and unknown variables ui. To calculate ui,
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5.2 Descriptions and assumptions of the analysis

Figure 5.1: Flow chart of entire procedure of calculations

first and higher order derivatives of finite different approximations are applied to

stress and strain relationships. By considering in-plane equilibrium and boundary

conditions, ten equilibrium equations are given at each edge of the strips. Sub-

stituting the known variables wi into the equilibrium equations, the unknown

variables wi can be calculated. The detailed instructions and calculations for

each stage of the procedure will be given in following sections.

5.2 Descriptions and assumptions of the analy-

sis

The following improved exact strip postbuckling analysis assumes classical plate

theory (CPT), there is no allowance for transverse shear deformation. Initial

imperfections are not allowed at present while in-plane anisotropy and curvature

effects (i.e. general A, B and D matrices) are permitted. The analysis allows

variation of in-plane displacements within the plates, so that the internal dis-

placements are no longer governed entirely by the boundary conditions. The

in-plane displacements, strains and stress resultants are combinations of sinu-

soidal responses with half-wavelengths λ and λ/2 to allow for curvature effects
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5.3 Displacements

Figure 5.2: Typical coordinates with displacements

in coupled problems. The analysis finds the longitudinal, transverse and shear

stress resultants on the edges of each strip, i.e. all resultants are at node level.

5.3 Displacements

In the trial mode, the typical flat plate is divided into n-1 strips which gives

n nodes at the strip edges. Figure 5.2 shows the typical coordinates of a plate

with displacement vectors. The out-of-plane deflection wij and rotation ψij are

assumed to vary sinusoidally in the longitudinal x direction with half-wavelength

λ, written in the form as

wi = wic cos
πx

λ
+ wis sin

πx

λ
(5.1)

ψi = ψic cos
πx

λ
+ ψis sin

πx

λ
(5.2)

The presence of both sine and cosine terms allows for the skewing of the nodal

lines which occurs for shear-loaded and anisotropic plates. It is assumed that

ψij = w′ij, where the prime denotes the derivative with respect to the transverse

direction y. In the absence of shear and anisotropy, the wic and ψic terms are

zero in the above equations. According to Stein’s method [3] and allowing for
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5.4 Calculation of strains and curvatures

sine and cosine terms with half-wavelengths λ and λ/2, the in-plane deflections

are assumed to take the form

ui = −ε̄x(x−a/2)+ui0 +uic cos
πx

λ
+uis sin

πx

λ
+uiC cos

2πx

λ
+uiS sin

2πx

λ
(5.3)

vi = vi0 + vic cos
πx

λ
+ vis sin

πx

λ
+ viC cos

2πx

λ
+ viS sin

2πx

λ
(5.4)

The sine and cosine terms with half-wavelength λ occur in unsymmetric laminates

with Bi 6= 0, and otherwise can be ignored. The linear term in equation (5.3)

allows for the application of a uniform longitudinal strain ε̄x.

5.4 Calculation of strains and curvatures

From Von Kármán’s large deflection theory, the neutral surface strains and cur-

vatures are given as


εxi
εyi
εxyi
κxi
κyi
κxyi

 =



∂ui
∂x

+ 1
2

(
∂wi

∂x

)2

∂vi
∂y

+ 1
2

(
∂wi

∂y

)2

∂ui
∂y

+ ∂vi
∂x

+ ∂wi

∂x
∂wi

∂y

−∂2wi

∂x2

−∂2wi

∂y2

−2 ∂
2wi

∂x∂y


=


εxi0 εxic εxis εxiC εxiS
εyi0 εyic εyis εyiC εyiS
εxyi0 εxyic εxys εxyiC εxyiS
κxi0 κxic κxis κxiC κxiS
κyi0 κyic κyis κyiC κyiS
κxyi0 κxyic κxyis κxyiC κxyiS




1

cos πx
λ

sin πx
λ

cos 2πx
λ

sin 2πx
λ


(5.5)

On substitution from equations (5.1-5.4) the following expressions are given

εi = ε0 (wi) +
1

b
ε1ui + ε2ui

′ (5.6)

κi = κ0 (wi) (5.7)
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where

εi =

 εxi0 εxic εxis εxiC εxiS
εyi0 εyic εyis εyiC εyiS
εxyi0 εxyic εxyis εxyiC εxyiS



κi =

 κxi0 κxic κxis κxiC κxiS
κyi0 κyic κyis κyiC κyiS
κxyi0 κxyic κxyis κxyiC κxyiS


wi =

(
wi0 wic wis ψi0 ψic ψis

)T
ui =

(
ui0 uic uis uiC uiS vi0 vic vis viC viS

)T
u′i =

(
u′i0 u′ic u′is u′iC u′iS v′i0 v′ic v′is v′iC v′iS

)T

ε0 (wi) =



−ε̄x + π2

4λ2
(w2

ic + w2
is)

0
0

π2

4λ2
(w2

is − w2
ic)

− π2

2λ2
wicwis

1
4

(ψ2
ic + ψ2

is)
0
0

1
4

(ψ2
ic − ψ2

is)
1
2
ψicψis

π
2λ

(wisψic − wicψis)
0
0

π
2λ

(wisψic + wicψis)
π
2λ

(wisψis − wicψic)



κ0 (wi) =



0
π2

λ2
wic

π2

λ2
wis
0
0
0
−ψ′ic
−ψ′is

0
0
0

−2π
λ
ψis

2π
λ
ψic
0
0



ε1 =

J O
O O
O J

 ε2 =

O O
O I
I O


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I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 O =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



J =


0 0 0 0 0
0 0 ωi 0 0
0 −ωi 0 0 0
0 0 0 0 2ωi
0 0 0 −2ωi 0

 ωi =
πbi
λ

(5.8)

5.5 Stress-strain relationships

Following the calculation of strains and curvatures, the stress-strain relationships

are consequently obtained in order to derive the equilibrium equations. For a

general anisotropic plate, the stress-strain relationships are written as

Nxi = (Ai)11εxi + (Ai)12εyi + (Ai)16γxyi + (Bi)11κxi + (Bi)12κyi + (Bi)16κxyi (5.9)

Nyi = (Ai)12εxi+(Ai)22εyi+(Ai)26γxyi+(Bi)12κxi+(Bi)22κyi+(Bi)26κxyi (5.10)

Nxyi = (Ai)16εxi+(Ai)26εyi+(Ai)66γxyi+(Bi)16κxi+(Bi)26κyi+(Bi)66κxyi (5.11)

Mxi = (Bi)11εxi+(Bi)12εyi+(Bi)16γxyi+(Di)11κxi+(Di)12κyi+(Di)16κxyi (5.12)
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5.5 Stress-strain relationships

Myi = (Bi)12εxi+(Bi)22εyi+(Bi)26γxyi+(Di)12κxi+(Di)22κyi+(Di)26κxyi (5.13)

Mxyi = (Bi)16εxi+(Bi)26εyi+(Bi)66γxyi+(Di)16κxi+(Di)26κyi+(Di)66κxyi (5.14)

In the subsequent analysis, the moment resultants are not essential so that only

the in-plane stress-strain relationships are analyzed. The stress resultants and

their first derivatives at node i can therefore be rewritten in matrix form as

Ni = Āiε0 (wi) + B̄iκ0 (wi) +
1

b
Āiε1ui + Āiε2ui

′ (5.15)

Ni
′ = Āiε0

′ (wi) + B̄iκ0
′ (wi) +

1

b
Āiε1ui

′ + Āiε2ui
′′ (5.16)

where

Ni =

Nxi0 Nxic Nxis NxiC NxiS

Nyi0 Nyic Nyis NyiC NyiS

Nxyi0 Nxyic Nxyis NxyiC NxyiS



N′i =

N ′xi0 N ′xic N ′xis N ′xiC N ′xiS
N ′yi0 N ′yic N ′yis N ′yiC N ′yiS
N ′xyi0 N ′xyic N ′xyis N ′xyiC N ′xyiS



Āi =

(Ai)11 I (Ai)12 I (Ai)16 I
(Ai)12 I (Ai)22 I (Ai)26 I
(Ai)16 I (Ai)26 I (Ai)66 I

 B̄i =

(Bi)11 I (Bi)12 I (Bi)16 I
(Bi)12 I (Bi)22 I (Bi)26 I
(Bi)16 I (Bi)26 I (Bi)66 I


u′i =

(
u′i0 u′ic u′is u′iC u′iS v′i0 v′ic v′is v′iC v′iS

)
u′′i =

(
u′′i0 u′′ic u′′is u′′iC u′′iS v′′i0 v′′ic v′′is v′′iC v′′iS

)
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5.5 Stress-strain relationships

ε′0 (wi) =



π2

2λ2
(wicψic + wisψis)

0
0

π2

2λ2
(wisψis − wicψic)

− π2

2λ2
(wicψis + wisψic)

1
2

(ψicψ
′
ic + ψisψ

′
is)

0
0

1
2

(ψicψ
′
ic − ψisψ′is)

1
2

(ψisψ
′
ic + ψicψ

′
is)

π
2λ

(wisψ
′
ic + w′isψic − wicψ′is − wicψis)

0
0

π
2λ

(wisψ
′
ic + w′isψic + wicψ

′
is + wicψis)

π
2λ

(wisψ
′
is + ψ2

is − wicψ′ic − ψ2
ic)



κ′0 (wi) =



0
π2

λ2
ψic

π2

λ2
ψis
0
0
0
−ψ′′ic
−ψ′′is

0
0
0

−2π
λ
ψ′is

2π
λ
ψ′ic
0
0



(5.17)

The derivatives u′i, u′′i are obtained by introducing finite difference approxima-

tions with adjustments by parabolic interpolation at the plate edges
u′i = 1

2b
(−3ui + 4ui+1 − ui+2)

u′i = 1
2b

(ui+1 − ui−1)
u′i = 1

2b
(ui−2 − 4ui−1 + 3ui)

(i = 1)
(1 < i < n)

(i = n)
(5.18)


u′′i = 1

b2
(2ui − 5ui+1 + 4ui+2 − ui+3)

u′′i = 1
b2

(ui+1 − 2ui + ui−1)
u′′i = 1

b2
(ui−3 − 4ui−1 + 5ui−1 − 2ui)

(i = 1)
(1 < i < n)

(i = n)
(5.19)

substituting equations (5.17) into equations (5.15, 5.16) and applying finite dif-

ference approximations in equations (5.18, 5.19) to the derivatives, detailed ex-

pressions for Ni and N′i can be obtained.
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5.6 Equilibrium equations

5.6 Equilibrium equations

To solve for the in-plane displacement ui, the in-plane equilibrium conditions for

node i are given as
∂Nyi

∂y
+
∂Nxyi

∂x
= 0 (5.20)

∂Nxyi

∂y
+
∂Nxi

∂x
= 0 (5.21)

which can be further extended in the following expressions by rewriting the stress

resultants in terms of their components

N ′yi0 = 0

N ′yic +
π

λ
Nxyis = 0

N ′yis −
π

λ
Nxyic = 0

N ′yiC +
2π

λ
NxyiS = 0

N ′yiS −
2π

λ
NxyiC = 0

N ′xyi0 = 0

N ′xyic +
π

λ
Nxis = 0

N ′xyis −
π

λ
Nxic = 0

N ′xyiC +
2π

λ
NxiS = 0
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5.6 Equilibrium equations

N ′xyiS −
2π

λ
NxiC = 0 (5.22)

Substituting expressions for Ni and N′i gives ten equilibrium equations for each

node, in terms of the unknown in-plane displacement terms ui0, uic, uis, uiC , uiS,

vi0, vic, vis, viC and viS of equations (5.3) and (5.4). The equilibrium equations

are formulated in the following forms, where expressions in curly brackets are

for the first node (i=1), interior nodes (1 < i < n) and the last node (i=n),

respectively from top to bottom

(
Āi
)

22

4b


ψic (−3ψic + 4ψi+1,c − ψi+2,c) + ψis (−3ψis + 4ψi+1,s − ψi+2,s)
ψic (ψi+1,c − ψi−1,c) + ψis (ψi+1,s − ψi−1,s)
ψic (3ψic − 4ψi−1,c + ψi−2,c) + ψis (3ψis − 4ψi−1,s + ψi−2,s)

+

(
Āi
)

12
π2

2λ2
(wicψic + wisψis) +

(
Āi
)

26

b2


2ui0 − 5ui+1,0 + 4ui+2,0 − ui+3,0

ui+1,0 − 2ui0 + ui−1,0

2ui0 − 5ui−1,0 + 4ui−2,0 − ui−3,0

+

(
Āi
)

26
π

4λb


ψic (−3wis + 4wi+1,s − wi+2,s) + wis (−3ψic + 4ψi+1,c − ψi+2,c)
ψic (wi+1,s − wi−1,s) + wis (ψi+1,c − ψi−1,c)
ψic (3wis − 4wi−1,s + wi−2,s) + wis (3ψic − 4ψi−1,c + ψi−2,c)

+

(
Āi
)

26
π

4λb


−wic (−3ψis + 4ψi+1,s − ψi+2,s)− ψis (−3wic + 4wi+1,c − wi+2,c)
−wic (ψi+1,s − ψi−1,s)− ψis (wi+1,c − wi−1,c)
−wic (3ψis − 4ψi−1,s + ψi−2,s)− ψis (3wic − 4wi−1,c + wi−2,c)

+

(
Āi
)

22

b2


2vi0 − 5vi+1,0 + 4vi+2,0 − vi+3,0

vi+1,0 − 2vi0 + vi−1,0

2vi0 − 5vi−1,0 + 4vi−2,0 − vi−3,0

= 0 (5.23)
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5.6 Equilibrium equations

−
(
B̄i

)
22

b2


2ψic − 5ψi+1,c + 4ψi+2,c − ψi+3,c

ψi+1,c − 2ψic + ψi−1,c

2ψic − 5ψi−1,c + ψ4i− 2, c− ψi−3,c

+
2π2

(
B̄i

)
66

λ2
ψic

+

(
Āi
)

22

b2


2vic − 5vi+1,c + 4vi+2,c − vi+3,c

vi+1,c − 2vic + vi−1,c

2vic − 5vi−1,c + 4vi−2,c − vi−3,c

+

(
Āi
)

12
ωi

2b2


−3uis + 4ui+1,s − ui+2,s

ui+1,s − ui−1,s

3uis − 4ui−1,s + ui−2,s

+

(
Āi
)

26
ωi

2b2


−3vis + 4vi+1,s − vi+2,s

vi+1,s − vi−1,s

3vis − 4vi−1,s + vi−2,s

−
(
B̄i

)
26
π

λb


−3ψis + 4ψi+1,s − ψi+2s

ψi+1,s − ψi−1,s

3ψis − 4ψi−1,s + ψi−2,s

− (Bi)26 π

2λb


−3ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

3ψis − 4ψi−1,s + ψi−2,s

+
(Bi)12 π

2

λ2
ψic +

(Bi)16 π
3

λ3
wis

+
(Ai)26 π

2λb


−3vis + 4vi+1,s − vi+2,s

vi+1,s − vi−1,s

3vis − 4vi−1,s + vi−2,s

+
(Ai)66 π

2λb


−3uis + 4ui+1,s − ui+2,s

ui+1,s − ui−1,s

3uis − 4ui−1,s + ui−2,s

+

(
Āi
)

26

b2


2uic − 5ui+1,c + 4ui+2,c − ui+3,c

ui+1,c − 2uic + ui−1,c

2uic − 5ui−1,c + 4ui−2,c − ui−3,c

−
(
Āi
)

16
ωiπ

λb
uic −

(
Āi
)

66
ωiπ

λb
vic = 0

(5.24)
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5.6 Equilibrium equations

−
(
B̄i

)
22

b2


2ψis − 5ψi+1,s + 4ψi+2,s − ψi+3,s

ψi+1,s − 2ψis + ψi−1,s

2ψis − 5ψi−1,s + ψ4i− 2, s− ψi−3,s

+
2π2

(
B̄i

)
66

λ2
ψis

+

(
Āi
)

22

b2


2vis − 5vi+1,s + 4vi+2,s − vi+3,s

vi+1,s − 2vis + vi−1,s

2vis − 5vi−1,s + 4vi−2,s − vi−3,s

−
(
Āi
)

12
ωi

2b2


−3uic + 4ui+1,c − ui+2,c

ui+1,c − ui−1,c

3uic − 4ui−1,c + ui−2,c

−
(
Āi
)

26
ωi

2b2


−3vic + 4vi+1,c − vi+2,c

vi+1,c − vi−1,c

3vic − 4vi−1,c + vi−2,c

+

(
B̄i

)
26
π

λb


−3ψic + 4ψi+1,c − ψi+2c

ψi+1,c − ψi−1,c

3ψic − 4ψi−1,c + ψi−2,c

− (Bi)26 π

2λb


−3ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

3ψic − 4ψi−1,c + ψi−2,c

+
(Bi)12 π

2

λ2
ψis −

(Bi)16 ωiπ
3

λ3
wic

− (Ai)26 π

2λb


−3vic + 4vi+1,c − vi+2,c

vi+1,c − vi−1,c

3vic − 4vi−1,c + vi−2,c

− (Ai)66 π

2λb


−3uic + 4ui+1,c − ui+2,c

ui+1,c − ui−1,c

3uic − 4ui−1,c + ui−2,c

+

(
Āi
)

26

b2


2uis − 5ui+1,s + 4ui+2,s − ui+3,s

ui+1,s − 2uis + ui−1,s

2uis − 5ui−1,s + 4ui−2,s − ui−3,s

−
(
Āi
)

16
ωiπ

λb
uis −

(
Āi
)

66
ωiπ

λb
vis = 0

(5.25)
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5.6 Equilibrium equations

(
Āi
)

22

4b


ψic(−3ψic + 4ψi+1,c − ψi+2,c)− ψis(−3ψis + 4ψi+1,s − ψi+2,s)
ψic(ψi+1,c − ψi−1,c)− ψis(ψi+1,s − ψi−1,s)
ψic(3ψic − 4ψi−1,c + ψi−2,c)− ψis(3ψis − 4ψi−1,s + ψi−2,s)

+
π2(Āi)12

2λ2
(wisψis − wicψic)−

(Āi)16π
3

λ3
wicwis + (Āi)26

π

λ
ψicψis

+
(Āi)66π

2

λ2
(wisψis − wicψic)− (Āi)16

4ωiπ

λb
uiC + (Āi)66

4ωiπ

λb
viC(

Āi
)

26
π

4λb


ψic(−3wis + 4wi+1,s − wi+2,s) + wis(−3ψic + 4ψi+1,c − ψi+2,c)
ψic(wi+1,s − wi−1,s) + wis(ψi+1,c − ψi−1,c)
ψic(3wis − 4wi−1,s + wi−2,s) + wis(3ψic − 4ψi−1,c + ψi−2,c)(

Āi
)

26
π

4λb


wic(−3ψis + 4ψi+1,s − ψi+2,s) + ψis(−3wic + 4wi+1,c − wi+2,c)
wic(ψi+1,s − ψi−1,s) + ψis(wi+1,c − wi−1,c)
wic(3ψis − 4ψi−1,s + ψi−2,s) + ψis(3wic − 4wi−1,c + wi−2,c)

+
(Āi)22

b2


2viC − 5vi+1,C + 4vi+2,C − vi+3,C

vi+1,C − 2viC + vi−1,C

2viC − 5vi−1,C + 4vi−2,C − vi−3,C

+
(Āi)12ωi

b2


−3uiS + 4ui+1,S − ui+2,S

ui+1,S − ui−1,S

3uiS − 4ui−1,S + ui−2,S

+
(Āi)26ωi

b2


−3viS + 4vi+1,S − vi+2,S

vi+1,S − vi−1,S

3viS − 4vi−1,S + vi−2,S

+
(Āi)26

b2


2uiC − 5ui+1,C + 4ui+2,C − ui+3,C

ui+1,C − 2uiC + ui−1,C

2uiC − 5ui−1,C + 4ui−2,C − ui−3,C

+
(Āi)66π

λb


−3uiS + 4ui+1,S − ui+2,S

ui+1,S − ui−1,S

3uiS − 4ui−1,S + ui−2,S

+
(Āi)26π

λb


−3viS + 4vi+1,S − vi+2,S

vi+1,S − vi−1,S

3viS − 4vi−1,S + vi−2,S

= 0

(5.26)
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(
Āi
)

22

4b


ψis(−3ψic + 4ψi+1,c − ψi+2,c) + ψic(−3ψis + 4ψi+1,s − ψi+2,s)
ψis(ψi+1,c − ψi−1,c) + ψic(ψi+1,s − ψi−1,s)
ψis(3ψic − 4ψi−1,c + ψi−2,c) + ψic(3ψis − 4ψi−1,s + ψi−2,s)(

Āi
)

26
π

4λb


wis(−3ψis + 4ψi+1,s − ψi+2,s)− wis(−3ψic + 4ψi+1,c − ψi+2,c)
wis(ψi+1,s − ψi−1,s)− wis(ψi+1,c − ψi−1,c)
wis(3ψis − 4ψi−1,s + ψi−2,s)− wis(3ψic − 4ψi−1,c + ψi−2,c)

− π2(Āi)12

2λ2
(wisψic + wicψis) + (Āi)26

π

2λ
(ψ2

is − ψ2
ic)− (Āi)16

π3

2λ3
(w2

is − w2
ic)

− (Āi)26π

2λ
(ψ2

ic − ψ2
is)−

(Āi)66π
2

λ2
(wisψic + wicψis)− (Āi)16

4ωiπ

λb
uiS − (Āi)66

4ωiπ

λb
viS

− (Āi)66π

λb


−3uiC + 4ui+1,C − ui+2,C

ui+1,C − ui−1,C

3uiC − 4ui−1,C + ui−2,C

− (Āi)26π

λb


−3viC + 4vi+1,C − vi+2,C

vi+1,C − vi−1,C

3viC − 4vi−1,C + vi−2,C

+
(Āi)22

b2


2vis − 5vi+1,s + 4vi+2,s − vi+3,s

vi+1,s − 2vis + vi−1,s

2vis − 5vi−1,s + 4vi−2,s − vi−3,s

+
(Āi)26

b2


2uis − 5ui+1,s + 4ui+2,s − ui+3,s

ui+1,s − 2uis + ui−1,s

2uis − 5ui−1,s + 4ui−2,s − ui−3,s

− (Āi)12ωi
b2


−3uiC + 4ui+1,C − ui+2,C

ui+1,C − ui−1,C

3uiC − 4ui−1,C + ui−2,C

− (Āi)16ωi
b2


−3viC + 4vi+1,C − vi+2,C

vi+1,C − vi−1,C

3viC − 4vi−1,C + vi−2,C

= 0

(5.27)

(Āi)66π

4λb


wis(−3ψic + 4ψi+1,c − ψi+2,c)− wic(−3ψis + 4ψi+1,s − ψi+2,s)
wis(ψi+1,c − ψi−1,c)− wic(ψi+1,s − ψi−1,s)
wis(3ψic − 4ψi−1,c + ψi−2,c)− wic(3ψis − 4ψi−1,s + ψi−2,s)

(Āi)66π

4λb


ψic(−3wic + 4wi+1,c − wi+2,c)− ψis(−3wis + 4wi+1,s − wi+2,s)
ψic(wi+1,c − wi−1,c)− ψis(wi+1,s − wi−1,s)
ψic(3wic − 4wi−1,c + wi−2,c)− ψis(3wis − 4wi−1,s + wi−2,s)

(Āi)66

b2


2ui0 − 5ui+1,0 + 4ui+2,0 − ui+3,0

ui+1,0 − 2ui0 + ui−1,0

2ui0 − 5ui−1,0 + 4ui−2,0 − ui−3,0

+
(Āi)26

b2


2vi0 − 5vi+1,0 + 4vi+2,0 − vi+3,0

vi+1,0 − 2vi0 + vi−1,0

2vi0 − 5vi−1,0 + 4vi−2,0 − vi−3,0

+
(Āi)16π

2

2λ2
(wicψic + wisψis)

(Āi)26

4b


ψis(−3ψis + 4ψi+1,s − ψi+2,s) + ψic(−3ψic + 4ψi+1,c − ψi+2,c)
ψis(ψi+1,s − ψi−1,s) + ψic(ψi+1,c − ψi−1,c)
ψis(3ψis − 4ψi−1,s + ψi−2,s) + ψic(3ψic − 4ψi−1,c + ψi−2,c)

= 0

(5.28)
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− (B̄i)66π

λb


−3ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

3ψis − 4ψi−1,s + ψi−2,s

+
(Āi)66ωi

2b2


−3vis + 4vi+1,s − vi+2,s

vi+1,s − vi−1,s

3vis − 4vi−1,s + vi−2,s

+
(Āi)16ωi

2b2


−3uis + 4ui+1,s − ui+2,s

ui+1,s − ui−1,s

3uis − 4ui−1,s + ui−2,s

− (B̄i)26

b2


2ψic − 5ψi+1,c + 4ψi+2,c − ψi+3,c

ψi+1,c − 2ψic + ψi−1,c

2ψic − 5ψi−1,c + 4ψi−2,c − ψi−3,c

+
(Āi)26

b2


2vic − 5vi+1,c + 4vi+2,c − vi+3,c

vi+1,c − 2vic + vi−1,c

2vic − 5vi−1,c + 4vi−2,c − vi−3,c

+
(Āi)66

b2


2uic − 5ui+1,c + 4ui+2,c − ui+3,c

ui+1,c − 2uic + ui−1,c

2uic − 5ui−1,c + 4ui−2,c − ui−3,c

+
(B̄i)11π

3

λ3
wis + (B̄i)16

π2

λ2
ψic −

(B̄i)12π

2λb


−3ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

3ψis − 4ψi−1,s + ψi−2,s

+ (B̄i)16
2π2

λ2
ψic − (Āi)11

ωiπ

λb
uic − (Āi)16

ωiπ

λb
vic −

(B̄i)66π

λb


−3ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

3ψis − 4ψi−1,s + ψi−2,s

+
(Ā12)π

2λb


−3vis + 4vi+1,s − vi+2,s

vi+1,s − vi−1,s

3vis − 4vi−1,s + vi−2,s

+
(Ā16)π

2λb


−3uis + 4ui+1,s − ui+2,s

ui+1,s − ui−1,s

3uis − 4ui−1,s + ui−2,s

= 0

(5.29)
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(B̄i)12π

2λb


−3ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

3ψic − 4ψi−1,c + ψi−2,c

+
(Āi)16π

2λb


−3uic + 4ui+1,c − ui+2,c

ui+1,c − ui−1,c

3uic − 4ui−1,c + ui−2,c

+ (B̄i)16
2π2

λ2
ψis + (B̄i)16

π2

λ2
ψis − (B̄i)11

π3

λ3
wic

− (Āi)66ωi
2b2


−3vic + 4vi+1,c − vi+2,c

vi+1,c − vi−1,c

3vic − 4vi−1,c + vi−2,c

− (B̄i)26

b2


2ψis − 5ψi+1,s + 4ψi+2,s − ψi+3,s

ψi+1,s − 2ψis + ψi−1,s

2ψis − 5ψi−1,s + 4ψi−2,s − ψi−3,s

− (Āi)12π

2λb


−3vic + 4vi+1,c − vi+2,c

vi+1,c − vi−1,c

3vic − 4vi−1,c + vi−2,c

+
(B̄i)66π

λb


−3ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

3ψic − 4ψi−1,c + ψi−2,c

− (Āi)16ωi
2b2


−3uic + 4ui+1,c − ui+2,c

ui+1,c − ui−1,c

3uic − 4ui−1,c + ui−2,c

+
(Āi)66

b2


2uis − 5ui+1,s + 4ui+2,s − ui+3,s

ui+1,s − 2uis + ui−1,s

2uis − 5ui−1,s + 4ui−2,s − ui−3,s

+
(Āi)26

b2


2vis − 5vi+1,s + 4vi+2,s − vi+3,s

vi+1,s − 2vis + vi−1,s

2vis − 5vi−1,s + 4vi−2,s − vi−3,s

− (Āi)11
ωiπ

λb
uis − (Āi)16

ωiπ

λb
vis = 0

(5.30)
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(Āi)26

4b


ψic(−3ψic + 4ψi+1,c − ψi+2,c)− ψis(−3ψis + 4ψi+1,s − ψi+2,s)
ψic(ψi+1,c − ψi−1,c)− ψis(ψi+1,s − ψi−1,s)
ψic(3ψic − 4ψi−1,c + ψi−2,c)− ψis(3ψis − 4ψi−1,s + ψi−2,s)

(Āi)66π

4λb


wis(−3ψic + 4ψi+1,c − ψi+2,c) + wic(−3ψis + 4ψi+1,s − ψi+2,s)
wis(ψi+1,c − ψi−1,c) + wic(ψi+1,s − ψi−1,s)
wis(3ψic − 4ψi−1,c + ψi−2,c) + wic(3ψis − 4ψi−1,s + ψi−2,s)

(Āi)66π

4λb


ψis(−3wic + 4wi+1,c − wi+2,c) + ψic(−3wis + 4wi+1,s − wi+2,s)
ψis(wi+1,c − wi−1,c) + ψic(wi+1,s − wi−1,s)
ψis(3wic − 4wi−1,c + wi−2,c) + ψic(3wis − 4wi−1,s + wi−2,s)

+
(Āi)66ωi

b2


−3viS + 4vi+1,S − vi+2,S

vi+1,S − vi−1,S

3viS − 4vi−1,S + vi−2,S

+
(Āi)26

b2


2viC − 5vi+1,C + 4vi+2,C − vi+3,C

vi+1,C − 2viC + vi−1,C

2viC − 5vi−1,C + 4vi−2,C − vi−3,C

+
(Āi)16ωi

b2


−3uiS + 4ui+1,S − ui+2,S

ui+1,S − ui−1,S

3uiS − 4ui−1,S + ui−2,S

+
(Āi)66

b2


2uiC − 5ui+1,C + 4ui+2,C − ui+3,C

ui+1,C − 2uiC + ui−1,C

2uiC − 5ui−1,C + 4ui−2,C − ui−3,C

− (Ai)11
4ωiπ

λb
uiC − (Āi)16

4ωiπ

λb
viC + (Āi)16

π2

2λ2
(wisψis − wicψic)

− (Ai)11
π3

λ3
wicwis − (Āi)12

π

λ
ψicψis + (Āi)16

π2

λ2
(wisψis − wicψic)

+
(Āi)16π

λb


−3uiS + 4ui+1,S − ui+2,S

ui+1,S − ui−1,S

3uiS − 4ui−1,S + ui−2,S

+
(Āi)12π

λb


−3viS + 4vi+1,S − vi+2,S

vi+1,S − vi−1,S

3viS − 4vi−1,S + vi−2,S

= 0

(5.31)
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− (Āi)66ωi
b2


−3viC + 4vi+1,C − vi+2,C

vi+1,C − vi−1,C

3viC − 4vi−1,C + vi−2,C

+
(Āi)26

b2


2viS − 5vi+1,S + 4vi+2,S − vi+3,S

vi+1,S − 2viS + vi−1,S

2viS − 5vi−1,S + 4vi−2,S − vi−3,S

− (Āi)16π

λb


−3uiC + 4ui+1,C − ui+2,C

ui+1,C − ui−1,C

3uiC − 4ui−1,C + ui−2,C

+
(Āi)66

b2


2uiS − 5ui+1,S + 4ui+2,S − ui+3,S

ui+1,S − 2uiS + ui−1,S

2uiS − 5ui−1,S + 4ui−2,S − ui−3,S

− (Āi)16
π2

2λ2
(wisψic + wicψis) + (Āi)66

π

2λ
(ψ2

is − ψ2
ic)− (Āi)16

π2

λ2
(wisψic + wicψis)

(Āi)26

4b


ψis(−3ψic + 4ψi+1,c − ψi+2,c) + ψis(−3ψis + 4ψi+1,s − ψi+2,s)
ψis(ψi+1,c − ψi−1,c) + ψis(ψi+1,s − ψi−1,s)
ψis(3ψic − 4ψi−1,c + ψi−2,c) + ψis(3ψis − 4ψi−1,s + ψi−2,s)

(Āi)66π

4λb


wis(−3ψis + 4ψi+1,s − ψi+2,s)− wic(−3ψic + 4ψi+1,c − ψi+2,c)
wis(ψi+1,s − ψi−1,s)− wic(ψi+1,c − ψi−1,c)
wis(3ψis − 4ψi−1,s + ψi−2,s)− wic(3ψic − 4ψi−1,c + ψi−2,c)

− (Āi)11
4ωiπ

λb
uiS − (Āi)16

4ωiπ

λb
viS − (Āi)11

π3

2λ3
(w2

is − w2
ic)− (Āi)12

π

2λ
(ψ2

ic − ψ2
is)

− (Āi)12π

λb


−3viC + 4vi+1,C − vi+2,C

vi+1,C − vi−1,C

3viC − 4vi−1,C + vi−2,C

− (Āi)16ωi
b2


−3uiC + 4ui+1,C − ui+2,C

ui+1,C − ui−1,C

3uiC − 4ui−1,C + ui−2,C

= 0

(5.32)

To solve the in-plane displacements ui, ten equilibrium equations for each node are

assembled into the global equilibrium equations which can be written in matrix

form as

Hu = G(w) (5.33)

where u includes the unknown in-plane displacements ui for all the nodes of

the structure, H is a square matrix with constant coefficients and G(w) is a

non-linear function of the out-of-plane displacements w which are known from

the VICONOPT analysis. Equation (5.33) can be therefore solved to give the

in-plane displacements as

u = H−1G(w) (5.34)

from which the components of stress resultants Nxij, Nyij and Nxyij can be ob-

tained and then the uniform effective stress resultants can then be calculated.
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5.7 Calculation of effective uniform stress resultants

5.7 Calculation of effective uniform stress resul-

tants

For the next iteration of VICONOPT, equivalent uniform stress resultants are

needed. In buckling analyses, the work done by the applied loading at node i is

calculated by

V = Vxi + Vyi + Vxyi (5.35)

where

Vxi = bi

∫ λ

0

Nxiεxidx (5.36)

Vyi = bi

∫ λ

0

Nyiεyidx (5.37)

Vxyi = bi

∫ λ

0

Nxyiεxyidx (5.38)

Writing the general expressions for the stress resultants as

Nxi = Nxi0 +Nxic cos
πx

λ
+Nxis sin

πx

λ
+NxiC cos

2πx

λ
+NxiS sin

2πx

λ
(5.39)

Nyi = Nyi0 +Nyic cos
πx

λ
+Nyis sin

πx

λ
+NyiC cos

2πx

λ
+NyiS sin

2πx

λ
(5.40)

Nxyi = Nxyi0 +Nxyic cos
πx

λ
+Nxyis sin

πx

λ
+NxyiC cos

2πx

λ
+NxyiS sin

2πx

λ
(5.41)

and substituting equations (5.8) and equations (5.39-5.41) into equations (5.36-

5.38), the work done can be written as

Vxi = bi(Nxi0ηxi0 +Nxicηxic +Nxisηxis +NxiCηxiC +NxiSηxiS) (5.42)
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5.7 Calculation of effective uniform stress resultants

Vyi = bi(Nyi0ηyi0 +Nyicηyic +Nyisηyis +NyiCηyiC +NyiSηyiS) (5.43)

Vxyi = bi(Nxyi0ηxyi0 +Nxyicηxyic +Nxyisηxyis +NxyiCηxyiC +NxyiSηxyiS) (5.44)

where ηi are coefficients expressed in terms of known variables ε, ui and wi

ηxi0 = −λε̄x − 2uic +
π2

4λ

(
w2
ic + w2

is

)
ηxic =

π

2
uis −

8

3
uiC −

2π

3λ
wicwis

ηxis = −2λ

π
ε̄x −

π

2
uic −

4

3
uiS +

π

3λ

(
w2
is + w2

ic

)
ηxiC =

2

3
uic + πuiS +

π2

8λ

(
w2
is − w2

ic

)
ηxiS =

4

3
uis − πuiC −

π2

4λ
wiswic

ηyi0 = λv′i0 +
2λ

π
v′is +

λ

4

(
ψ2
ic + ψ2

is

)
ηyic =

λ

2
v′i0 +

4λ

3π
v′iS +

2λ

3π
ψicψis

ηyis =
2λ

π
v′i0 +

λ

2
v′is −

2λ

3π
v′iC +

λ

3π

(
ψ2
ic + 2ψ2

is

)
ηyiC = −2λ

3π
v′is +

λ

2
v′iC +

λ

8

(
ψ2
ic − ψ2

is

)
ηyiS =

4λ

3π
v′ic +

λ

2
v′iS +

λ

4
ψicψis

ηxyi0 = λu′i0 +
2λ

π
u′is − 2vic +

π

2
(wisψic − wicψis)

ηxyic =
λ

2
u′ic +

4λ

3π
u′iS +

π

2
vis −

8

3
viC +

2

3
(wisψis − wicψic)
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ηxyis =
2λ

π
u′i0 +

λ

2
u′is −

2λ

3π
u′iC −

π

2
vic −

4

3
viS −

1

3
(wisψic + 7wicψis)

ηxyiC =
λ

2
u′iC +

2

3
vic +

π

4
viS + π (wicψis + wisψic)−

2λ

3π
u′is

ηxyiS =
4λ

3π
u′ic +

λ

2
u′iS +

4

3
vis − πviC +

π

4
(wisψis − wicψic) (5.45)

Comparing with the corresponding expressions for uniform loading yields the

following expressions for equivalent uniform stress resultants, which are used in

the strip stiffness calculations.

Nxi = Nxi0 +
1

ηxi0
(Nxicηxic +Nxisηxis +NxiCηxiC +NxiSηxiS) (5.46)

Nyi = Nyi0 +
1

ηyi0
(Nyicηyic +Nyisηyis +NyiCηyiC +NyiSηyiS) (5.47)

Nxyi = Nxyi0 +
1

ηxyi0
(Nxyicηxyic +Nxyisηxyis +NxyiCηxyiC +NxyiSηxyiS) (5.48)

To calculate the effective uniform stress resultants, the components of stress re-

sultants Nxij, Nyij and Nxyij are needed.

5.8 Calculation of components Nxij, Nyij and Nxyij

Using the stress-strain relationships for the force resultants for node i in equations

(5.9-5.11)

Nxi = (Ai)11εxi+(Ai)12εyi+(Ai)16γxyi+(Bi)11κxi+(Bi)12κyi+(Bi)16κxyi (5.49)

Nyi = (Ai)12εxi+(Ai)22εyi+(Ai)26γxyi+(Bi)12κxi+(Bi)22κyi+(Bi)26κxyi (5.50)
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5.8 Calculation of components Nxij, Nyij and Nxyij

Nxyi = (Ai)16εxi+(Ai)26εyi+(Ai)66γxyi+(Bi)16κxi+(Bi)26κyi+(Bi)66κxyi (5.51)

Substituting equation (5.5) into the formulas above, the following expressions can

be written

Nxi =[(Ai)11εxi0 + (Ai)12εyi0 + (Ai)16γxyi0]

+ [(Ai)11εxic + (Ai)12εyic + (Ai)16γxyic

+ (Bi)11κxic + (Bi)12κyic + (Bi)16κxyic] cos
πx

λ
+ [(Ai)11εxis + (Ai)12εyis + (Ai)16γxyis

+ (Bi)11κxis + (Bi)12κyis + (Bi)16κxyis] sin
πx

λ

+ [(Ai)11εxiC + (Ai)12εyiC + (Ai)16γxyiC ] cos
2πx

λ

+ [(Ai)11εxiS + (Ai)12εyiS + (Ai)16γxyiS] sin
2πx

λ
(5.52)

Nyi =[(Ai)12εxi0 + (Ai)22εyi0 + (Ai)26γxyi0]

+ [(Ai)12εxic + (Ai)22εyic + (Ai)26γxyic

+ (Bi)12κxic + (Bi)22κyic + (Bi)26κxyic] cos
πx

λ
+ [(Ai)12εxis + (Ai)22εyis + (Ai)26γxyis

+ (Bi)12κxis + (Bi)22κyis + (Bi)26κxyis] sin
πx

λ

+ [(Ai)12εxiC + (Ai)22εyiC + (Ai)26γxyiC ] cos
2πx

λ

+ [(Ai)12εxiS + (Ai)22εyiS + (Ai)26γxyiS] sin
2πx

λ
(5.53)
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Nxi =[(Ai)16εxi0 + (Ai)26εyi0 + (Ai)66γxyi0]

+ [(Ai)16εxic + (Ai)26εyic + (Ai)66γxyic

+ (Bi)16κxic + (Bi)26κyic + (Bi)66κxyic] cos
πx

λ
+ [(Ai)16εxis + (Ai)26εyis + (Ai)66γxyis

+ (Bi)16κxis + (Bi)26κyis + (Bi)66κxyis] sin
πx

λ

+ [(Ai)16εxiC + (Ai)26εyiC + (Ai)66γxyiC ] cos
2πx

λ

+ [(Ai)16εxiS + (Ai)26εyiS + (Ai)66γxyiS] sin
2πx

λ
(5.54)

From which

Nxi0 = (Ai)11εxi0 + (Ai)12εyi0 + (Ai)16γxyi0

Nxic = (Ai)11εxic + (Ai)12εyic + (Ai)16γxyic + (Bi)11κxic + (Bi)12κyic + (Bi)16κxyic

Nxis = (Ai)11εxis + (Ai)12εyis + (Ai)16γxyis + (Bi)11κxis + (Bi)12κyis + (Bi)16κxyis

NxiC = (Ai)11εxiC + (Ai)12εyiC + (Ai)16γxyiC

NxiS = (Ai)11εxiS + (Ai)12εyiS + (Ai)16γxyiS

Nyi0 = (Ai)12εxi0 + (Ai)22εyi0 + (Ai)26γxyi0

Nyic = (Ai)12εxic + (Ai)22εyic + (Ai)26γxyic + (Bi)12κxic + (Bi)22κyic + (Bi)26κxyic
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5.9 Calculation of derivatives

Nyis = (Ai)12εxis + (Ai)22εyis + (Ai)26γxyis + (Bi)12κxis + (Bi)22κyis + (Bi)26κxyis

NyiC = (Ai)12εxiC + (Ai)22εyiC + (Ai)26γxyiC

NyiS = (Ai)12εxiS + (Ai)22εyiS + (Ai)26γxyiS

Nxyi0 = (Ai)16εxi0 + (Ai)26εyi0 + (Ai)66γxyi0

Nxyic = (Ai)16εxic + (Ai)26εyic + (Ai)66γxyic + (Bi)16κxic + (Bi)26κyic + (Bi)66κxyic

Nxyis = (Ai)16εxis + (Ai)26εyis + (Ai)66γxyis + (Bi)16κxis + (Bi)26κyis + (Bi)66κxyis

NxyiC = (Ai)16εxiC + (Ai)26εyiC + (Ai)66γxyiC

NxyiS = (Ai)16εxiS + (Ai)26εyiS + (Ai)66γxyiS (5.55)

5.9 Calculation of derivatives

The above calculations provide an explicit solution procedure for the effective

uniform stresses for the next iteration in VICONOPT. However for Newton iter-

ations in VICONOPT, the derivatives of stresses at each node with respect to all

the components of out-of-plane displacement w at each node are also required.
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5.9 Calculation of derivatives

In reference [137], Kennedy and Featherston describe the detailed process

of Newton iterations in VICONOPT. The mode vector D = {Dj; j = 1, ...n}
includes displacements and rotations both at the longitudinal plate edges and

strip edges of each plate. K = {Kij; i, j = 1, ...n} is the corresponding exact

stiffness matrix, which is a transcendental function of the stress resultants in

each strip. Suppose

D = D∗ + d (5.56)

where D∗ is a trial mode vector and d = {dj; j = 1, ...n} is the adjustments of

D∗. The Newton iteration is therefore written as matrix form(
K∗+

n∑
j=1

∂K∗

∂Dj

dj

)
(K∗ + d) = 0 (5.57)

where K∗ = K(D∗). Neglecting higher order terms then write equation (5.57) as

n∑
j=1

(
K∗ij +

n∑
k=1

∂K∗ik
∂Dj

Dk∗

)
dj = −

n∑
j=1

K∗ijD
∗
j (5.58)

To solve the equation and obtain d, the terms ∂K∗ik/∂Dj are required to be

calculated. Stiffness matrix K is in terms of stress resultants which are calculated

by the above sections and the derivatives ∂K∗ik/∂Dj are calculated in Appendix

A. After d is obtained, equation (5.56) gives a new trial mode vector D which is

used as D∗ in the next iteration.
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Chapter 6

Illustrative results and discussion

for isotropic plates

This chapter introduces the framework of the program written based on the im-

proved exact strip postbuckling analysis. The entire process by which the im-

proved postbuckling analysis works with VICONOPT to enable the postbuckling

analysis capacity is demonstrated. Illustrative results of isotropic plates with dif-

ferent load and edge conditions are then shown. The results are compared with

old VICONOPT results to present the improvements, while are also compared

with FE (ABAQUS) results for validation.

6.1 Introduction

The program based on the improved exact strip postbuckling analysis utilises

out-of-plane displacements w from VICONOPT to calculate unknown in-plane

displacements u and v. Then the strains ε and curvatures κ which depend on

displacements u and v can then be obtained. Finally the uniform stress resultants

and their derivatives with respect to each component of w can be calculated. For

the next cycle in VICONOPT, the uniform stress resultants and their derivatives

are used to obtain the new postbuckling mode shape which provides the out-of-
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6.1 Introduction

Figure 6.1: Improved postbuckling analysis before being implemented into VI-
CONOPT

plane displacements for the new cycle. Therefore, improved postbuckling analysis

finds the uniform stress resultants and their derivatives for each cycle only. It

cannot automatically move on to the next cycle because the new postbuckling

mode shape which is calculated by VICONOPT is necessary. Hence it is efficient

and essential to implement the improved postbuckling analysis into VICONOPT

so that it is able to work with VICONOPT as a whole program. Figures 6.1 and

6.2 show two flow charts which illustrate how the improved postbuckling analysis

works before and after being implemented into VICONOPT. Implementation of

the improved postbuckling analysis into VICONOPT enables achievement of more

accurate postbuckling analysis in VICONOPT. To start a complete VICONOPT

postbuckling analysis, the pre-processing stages including spatial modelling, as-

signing material properties and applying load must be completed in VICONOPT.

Then VICONOPT provides the critical buckling load, critical longitudinal strain

and mode shape after initial buckling analysis has done. The out-of-plane dis-

placements are then utilised by the improved postbuckling analysis to calculate

in-plane displacements, strains, curvatures, uniform stress resultants and their
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6.1 Introduction

Figure 6.2: Improved postbuckling analysis after being implemented into VI-
CONOPT

derivatives for each cycle. This process is achieved by an iterative procedure

where the increment for each cycle is defined by the user and the above quanti-

ties are required to converge in each cycle. The post-processing stage for improved

postbuckling analysis including creation of figures and contour plots shown in the

following sections are completed in a spreadsheet. By using in-plane and out-of-

plane displacement and stress resultants and their components, the spreadsheet

is able to calculate the stresses and strains at a particular point on the plate and

create the contour plot for stresses and strains in the postbuckling stage.

6.1.1 Isotropic square plate model

The model used in the postbuckling analysis is an isotropic square thin plate.

The plate has length and width 0.3m, thickness 0.001m, Young’s modulus is

110kNmm−2 and Poisson’s ratio 0.3. Various edge conditions including a fixed

edge condition, a free edge condition and a straight edge condition are applied

on the top and bottom edges symmetrically. Symmetric uniform compression
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6.1 Introduction

Figure 6.3: Dimension of the plate and axes

is applied on the left and right edges which are simply supported respectively

and the amount of load is 50kN/m. The plate is divided into 10 strips of equal

width for the VICONOPT analysis and improved postbuckling analysis, and it is

divided into 900 elements (30 × 30) in the ABAQUS analysis. Figure 6.3 shows

the dimensions and axes of the plate, and Figure 6.4 shows the load and edge

assignments.

6.1.2 In-plane edge conditions

All edges are simply supported against out-of-plane displacement w in the model,

while the uniform compressions are applied on the left and right edges as shown in

Figure 6.4. Various in-plane edge conditions are applied on the unloaded top and

bottom edges respectively. The edge conditions analysed in this study include the

fixed edge condition, free edge condition and straight edge condition. The fixed

edge condition requires the longitudinal top and bottom edges are fixed in-plane,

i.e. in the solution of equation (5.33) all components of ui are forced to zero at

nodes i = 1 and i = n which represent the top and bottom edges respectively.

The free edge condition releases the constraints of vi, i.e. all components on ui
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Figure 6.4: Loads and edge assignments
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are required to be zero at nodes i = 1 and i = n. The straight edge condition

requires the top and bottom edges are kept straight therefore whilst vi0 at node

i = 1, i = n could be non-zero, the remaining components of ui are forced to zero

at the top and bottom edges. However in the actual analysis using the improved

postbuckling analysis, to avoid the rigid body movement one more constraint is

applied for the free edge condition and the straight edge condition, which is, the

component vi0 at the middle nodes of the plate are forced to zero.

6.2 Numerical study and contour plots of stress

distributions

VICONOPT assumes longitudinal invariance of stress and a sinusoidal postbuck-

ling mode which is believed to reduce the accuracy of stress and strain distribu-

tions in the postbuckling range. Therefore, one of the objectives of the improved

postbuckling analysis is to improve the prediction of stress distributions in the

postbuckling analysis. Illustrative results in this section show the numerical study

and contour plots of longitudinal and transverse stress (Nx and Ny) distributions

at different stages of the postbuckling analysis. The contour plots indicate the dis-

tribution of longitudinal stress Nx and transverse stress Ny, while the numerical

study compares the stresses on both the horizontal and vertical centre lines of the

plate (as shown in Figure 6.4) between the improved postbuckling analysis and

ABAQUS analysis. The stresses are compared by plotting the stress distribution

along the horizontal and vertical centre lines respectively. A correlation study

has been carried out between the improved postbuckling analysis and ABAQUS

analysis for three edge conditions, then the error evaluation and discussion has

been given. To avoid excessive duplication of figures, the numerical study com-

pares the stresses on the top surface of the plate only since the bottom surface

shows similar curves and trends as the top surface but in the opposite direction.

Three stages (i.e. cycle 1, cycle 5 and cycle 10) are chosen to represent the

entire postbuckling process. The comparison between improved postbuckling

analysis and VICONOPT results shows the improvement and development of
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6.2 Numerical study and contour plots of stress distributions

this new analysis, then the comparison between the improved postbuckling anal-

ysis and ABAQUS results validates the accuracy of the analysis. The contour

plots for the improved postbuckling analysis and old VICONOPT results are

obtained by a set of spreadsheets. The mode shape for a particular cycle en-

ables the corresponding stresses distributions to be plotted. The contour plots

of stress distribution are shown for both top surface and bottom surface of plate

respectively. Three different edge conditions including fixed edge condition, free

edge condition and straight edge condition are also illustrated in this section.

To provide an overall evaluation of the accuracy of the improved postbuckling

analysis, figures of total longitudinal load against longitudinal strain are plotted

and compared with those from ABAQUS analysis and old VICONOPT analysis

for three different edge conditions before the onset of investigation for particular

cycles. The dots on the curves denote the values for analysis cycle 1, 5 and 10

from right to left. Figure 6.5 shows a plot of the total longitudinal load against

longitudinal strain and indicates that the improved postbuckling analysis shows

close agreement with ABAQUS analysis while old VICONOPT results loses some

accuracy.

6.2.1 Stress distributions in cycle 1

The stress distributions of cycle 1 which represents the very beginning of post-

buckling behaviour are shown. When the longitudinal strain of cycle 1 in the

improved postbuckling analysis (4.0274 × 10−5) and ABAQUS (4.0266 × 10−5)

exceeded the critical buckling strain (4.0169 × 10−5) by 0.26% and 0.24%, the

out-of-plane displacement w and effective uniform stresses were saved and used

as input to the procedure described in Chapter 5. In the contour plots, blue

shading denotes increasing compression while red indicates decreasing compres-

sion (which usually results in regions of tension on the bottom surface). The units

of stresses in all contour plots in this chapter are in N/m. The contour plots of Nx

and Ny distributions across the top surface of the plate for fixed edge conditions

are shown in Figures 6.6 and 6.7 for comparison. Figures 6.8 and 6.9 show the

numerical comparison of stress Nx and Ny on both horizontal and vertical centre

line of plate. The error evaluation has been given in the tables in Figures 6.8 and
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6.2 Numerical study and contour plots of stress distributions

(a)

(b)

(c)

Figure 6.5: Total longitudinal load (N) against longitudinal strain for (a) fixed
edge, (b) free edge and (c) straight edge.
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6.9, where the mean error and root mean square (RMS) error have been calcu-

lated for comparison between improved postbuckling analysis, ABAQUS analysis

and VICONOPT analysis. Figures 6.10 and 6.11 show contour plots of the Nx

and Ny distributions across the bottom surface of the plate.

It is seen that the improved postbuckling analysis gives closer prediction of

stresses Nx and Ny to the ABAQUS results than VICONOPT results does, which

validates the improved postbuckling analysis. For the distribution of stress Nx

and Ny in cycle 1, improved postbuckling analysis does show improvement over

old VICONOPT although it is not apparent enough. It is believed that the

improvement would become apparent in the following cycle 5 and cycle 10. Owing

to the fixed edge condition applied on top and bottom edges, the stresses do not

vary much on these two edges. In Figure 6.8, the mean error and RMS error of

stress Nx across horizontal centre line and vertical centre line between improved

postbuckling analysis and ABAQUS analysis are 1.39% and 1.55%, and 2.41%

and 3.02% respectively, while for stress Ny the mean error and RMS error are

4.12% and 4.99%, and 3.52% and 4.33% respectively. Figure 6.8 also shows

the mean error and RMS error of Nx and Ny between ABAQUS analysis and

old VICONOPT analysis. The improved postbuckling analysis achieves good

agreement with ABAQUS analysis in prediction of stresses distribution hence

validates the accuracy of the analysis, while VICONOPT analysis also gives good

comparison due to it is currently cycle 1 in this stage. However, the improved

postbuckling analysis provides more accurate results in distribution of Ny than

VICONOPT analysis which starts to lose accuracy in Ny.

Figures 6.12 to 6.17 show the prediction of stresses Nx and Ny distributions

for free edge conditions. The mean error and RMS error of Nx across the hori-

zontal centre line and vertical centre line are 0.50% and 0.56%, and 0.20% and

0.22% respectively which are small enough to validate the accuracy of the im-

proved postbuckling analysis. While for the mean error and RMS error of Ny,

the errors increase up to 4.25% and 5.11%, and 5.02% and 5.87%. The improved

postbuckling analysis shows good agreement with the ABAQUS results for this

edge condition. Owing to the free edge condition which releases the constraints

on all components in vi, the stresses vary much more than those having fixed

edge condition.
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Figures 6.18 to 6.23 show the prediction of stresses Nx and Ny distributions

for straight edge conditions. The mean error and RMS error for stress Nx across

the horizontal centre line and vertical centre line are 1.88% and 2.38%, and 1.47%

and 1.70% respectively, and for stress Ny are 4.96% and 5.41%, and 2.95% and

3.58% respectively. The improved postbuckling analysis shows good agreement

with the ABAQUS results except for very small differences in the patterns near

the four corners of plate. The differences are caused by the slight differences in

the left and right edge conditions applied in improved postbuckling analysis and

ABAQUS analysis. In improved postbuckling analysis, the left and right edges

which are loaded by uniform compression are free to move. However, in ABAQUS

analysis both edges are forced to keep straight.

The improved postbuckling analysis shows very good comparison on distribu-

tion of longitudinal stress Nx and transverse stress Ny. It has been validated by

both contour plots of stress distributions and also a numerical study on particular

nodes of the plate. Although improved postbuckling analysis gives good outcomes

for cycle 1, the results in this section represent the very beginning of postbuck-

ling analysis. Therefore, it is essential to investigate the stresses distribution far

beyond the onset of postbuckling behaviour.
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(a) (b)

(c)

Figure 6.6: Variation of stress Nx across the top surface of plate for cycle 1 in (a)
improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.7: Variation of stress Ny across the top surface of plate for cycle 1 in (a)
improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a)

(b)

Figure 6.8: Comparison of stress (a) Nx and (b) Ny across the horizontal centre
line of top surface of plate for cycle 1 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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(a)

(b)

Figure 6.9: Comparison of stress (a) Nx and (b) Ny across the vertical centre
line of top surface of plate for cycle 1 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.10: Variation of stress Nx across the bottom surface of plate for cycle 1 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.11: Variation of stress Ny across the bottom surface of plate for cycle 1 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a) (b)

Figure 6.12: Variation of stress (a) Nx and (b) Ny across the top surface of plate
for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.

(a) (b)

Figure 6.13: Variation of stress (a) Nx and (b) Ny across the top surface of
plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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(a)

(b)

Figure 6.14: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate for cycle 1 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges free in-plane.
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(a)

(b)

Figure 6.15: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate for cycle 1 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges free in-plane.
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(a) (b)

Figure 6.16: Variation of stress (a) Nx and (b) Ny across the bottom surface of
plate for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.

(a) (b)

Figure 6.17: Variation of stress (a) Nx and (b) Ny across the bottom surface
of plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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(a) (b)

Figure 6.18: Variation of stress (a) Nx and (b) Ny across the top surface of plate
for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.

(a) (b)

Figure 6.19: Variation of stress (a) Nx and (b) Ny across the top surface of
plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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(a)

(b)

Figure 6.20: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate for cycle 1 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges straight in-plane.
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(a)

(b)

Figure 6.21: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate for cycle 1 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges straight in-plane.
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(a) (b)

Figure 6.22: Variation of stress (a) Nx and (b) Ny across the bottom surface of
plate for cycle 1 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.

(a) (b)

Figure 6.23: Variation of stress (a) Nx and (b) Ny across the bottom surface
of plate for cycle 1 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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6.2.2 Stress distributions in cycle 5

The stress distribution of cycle 5 has been selected to represent the state of the

panel further into the postbuckling analysis. To find the stress distribution at

a particular stage (e.g. cycle 5), the improved postbuckling analysis needs ide-

ally work with VICONOPT continuously to find the new mode shape in cycle 5.

However this will require full integration of the improved postbuckling analysis

into the VICONOPT code by others (which is not finished yet) to find the new

mode shape at each cycle, the old mode shape calculated by old VICONOPT

will be used in the following sections instead for presentation of cycles 5 and 10.

The new stress calculations in the improved postbuckling analysis will be used to

calculate the stresses and corresponding contour plots using the spreadsheets. A

comparison of stress distributions between the improved postbuckling analysis,

ABAQUS analysis and the old VICONOPT analysis is made to show the improve-

ment of the improved postbuckling analysis. Although the results of improved

postbuckling analysis for cycle 5 do not provide a truly complete presentation

of the new analysis, the difference between the old mode shape in VICONOPT

and new mode shape in improved postbuckling analysis is small enough to give a

good indication of the improvement to be made using the new method. Reference

[131] shows that the maximum difference in mode shape between improved post-

buckling analysis and old VICONOPT is 0.09779% for cycle 5 in postbuckling

analysis. When the longitudinal strain of cycle 5 in the improved postbuckling

analysis (4.6199×10−5) and ABAQUS (4.6212×10−5) exceeded the critical buck-

ling strain (4.0169× 10−5) by 15.01% and 15.04%, the out-of-plane displacement

w and effective uniform stresses were saved and used as input to the procedure

described in Chapter 5. In the contour plots, blue shading denotes increasing

compression while red indicates decreasing compression (which usually results

in regions of tension on the bottom surface). The contour plots of Nx and Ny

distributions for fixed edge conditions are shown in Figures 6.24 and 6.25 for

comparison. Numerical comparison of both Nx and Ny are given in Figures 6.26

and 6.27 to show the differences between improved postbuckling analysis and

ABAQUS analysis. Figure 6.28 and 6.29 show contour plots of the Nx and Ny

distributions across the bottom surface of the plate.
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The plots in Figures 6.24 to 6.29 are shown for the improved postbuckling

analysis, ABAQUS analysis and old VICONOPT analysis for comparison. The

value of stresses for both Nx and Ny across horizontal and vertical centre line of

plate are also given. The improved postbuckling analysis shows good agreement

with ABAQUS results, but the old VICONOPT results start to lose accuracy in

the prediction of stress distribution especially in Ny. Owing to the assumption

of longitudinal stress invariance in old VICONOPT results for simplification in

postbuckling analysis, the distribution of transverse stress Ny loses accuracy and

shows similar prediction with longitudinal stress Nx.

Figures 6.30 to 6.35 show the distribution of longitudinal stress Nx and trans-

verse stress Ny for both top surface and bottom surface of the plate in postbuck-

ling cycle 5, with in-plane longitudinal edges free. The stress distribution for the

free edge condition shows more stress variation than the fixed edge condition.

Moreover, the stress distribution of the free edge condition in the ABAQUS re-

sults shows more stress variation than that of the improved postbuckling analysis

along the longitudinal edges.

Figures 6.36 to 6.41 show the distribution of longitudinal stress Nx and trans-

verse stress Ny for both top surface and bottom surface of the plate in postbuck-

ling cycle 5, with in-plane longitudinal edges straight. The improved postbuckling

analysis shows good agreement with ABAQUS results for both longitudinal and

transverse stress on both top surface and bottom surface. The small difference in

pattern is believed to be due to the slightly different transverse edge conditions

between improved postbuckling analysis and ABAQUS analysis.
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(a) (b)

(c)

Figure 6.24: Variation of stress Nx across the top surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.25: Variation of stress Ny across the top surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a)

(b)

Figure 6.26: Comparison of stress (a) Nx and (b) Ny across the horizontal centre
line of top surface of plate for cycle 5 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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(a)

(b)

Figure 6.27: Comparison of stress (a) Nx and (b) Ny across the vertical centre
line of top surface of plate for cycle 5 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.28: Variation of stress Nx across the bottom surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.29: Variation of stress Ny across the bottom surface of plate for cycle 5 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a) (b)

Figure 6.30: Variation of stress (a) Nx and (b) Ny across the top surface of plate
for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.

(a) (b)

Figure 6.31: Variation of stress (a) Nx and (b) Ny across the top surface of
plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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(a)

(b)

Figure 6.32: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate for cycle 5 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges free in-plane.
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(a)

(b)

Figure 6.33: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate for cycle 5 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges free in-plane.
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(a) (b)

Figure 6.34: Variation of stress (a) Nx and (b) Ny across the bottom surface of
plate for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.

(a) (b)

Figure 6.35: Variation of stress (a) Nx and (b) Ny across the bottom surface
of plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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(a) (b)

Figure 6.36: Variation of stress (a) Nx and (b) Ny across the top surface of plate
for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.

(a) (b)

Figure 6.37: Variation of stress (a) Nx and (b) Ny across the top surface of
plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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(a)

(b)

Figure 6.38: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate for cycle 5 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges straight in-plane.
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(a)

(b)

Figure 6.39: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate for cycle 5 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges straight in-plane.
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(a) (b)

Figure 6.40: Variation of stress (a) Nx and (b) Ny across the bottom surface of
plate for cycle 5 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.

(a) (b)

Figure 6.41: Variation of stress (a) Nx and (b) Ny across the bottom surface
of plate for cycle 5 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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6.2.3 Stress distributions in cycle 10

The stress distributions at cycle 10 have been selected to represent the state at

a point much further into postbuckling stage. When the longitudinal strain of

cycle 10 in the improved postbuckling analysis (5.4232 × 10−5) and ABAQUS

(5.3218 × 10−5) exceeded the critical buckling strain (4.0169 × 10−5) by 35.01%

and 32.49%, the out-of-plane displacement w and effective uniform stresses were

saved and the stress distribution calculated and plotted in the spreadsheet. In

the contour plots, blue shading denotes increasing compression while red indicates

decreasing compression (which usually results in regions of tension on the bot-

tom surface). Numerical comparisons are also given for stresses across both the

horizontal centre line and the vertical centre line to validate the improved post-

buckling analysis numerically. The contour plots of Nx and Ny distributions and

numerical comparisons (Figures 6.42 to 6.47) for fixed edge conditions for both

top and bottom surfaces in three different analyses are shown for comparison.

The improved postbuckling analysis shows good agreement with ABAQUS

results in the distribution of longitudinal stress Nx and transverse stress Ny for

both top surface and bottom surface. However, it loses some accuracy in mean

error and RMS error of Ny across both horizontal centre line and vertical centre

line. Old VICONOPT also shows good agreement with ABAQUS results for

distribution of longitudinal stress Nx although it is less accurate than improved

postbuckling analysis. For prediction of transverse stress Ny, old VICONOPT

shows an inaccurate distribution which is improved by the improved postbuckling

analysis. It is believed, as mentioned in section 6.2.2 that this is due to the

assumption of longitudinal stress invariance in the old VICONOPT analysis. The

improved postbuckling analysis improves the accuracy of the stress distributions

and shows good agreement with FE analysis.

Figures 6.48 to 6.53 show distribution of longitudinal stress Nx and transverse

stress Ny for both top surface and bottom surface of the plate in postbuckling

cycle 10, with in-plane longitudinal edges free. Improved postbuckling analysis

shows a very small stress variation along the longitudinal edges in the prediction

of longitudinal stress Nx, while ABAQUS analysis shows more obvious stress

variation. Improved postbuckling analysis shows small tension at the middle
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of the longitudinal edges in the prediction of longitudinal stress Ny, but the

ABAQUS results show no tension at this stage.

Figures 6.54 to 6.59 show the distribution of longitudinal stress Nx and trans-

verse stress Ny for both top surface and bottom surface of the plate in postbuck-

ling cycle 10, with in-plane longitudinal edges straight. The improved postbuck-

ling analysis shows good agreement with ABAQUS results for both longitudinal

and transverse stress on both top surface and bottom surface. The improved

postbuckling analysis shows small tension on both transverse edges and only tiny

tension on both longitudinal edges for distribution of Nx. ABAQUS results show

small tension on all four edges and a more symmetric pattern for distribution of

Nx. This is due to the tiny difference between the ’straight edge condition’ in

improved postbuckling analysis and ABAQUS analysis. In ABAQUS analysis,

all four edges are kept straight and therefore the pattern of stress distribution

is more symmetric. However, in improved postbuckling analysis, the transverse

edges are simply supported and the longitudinal edges are kept straight.

This section demonstrates one of the improvements achieved by improved

postbuckling analysis, which is enhancing the accuracy of stress distribution in

postbuckling analysis. Improved postbuckling analysis shows good agreement

with ABAQUS analysis for distribution of longitudinal stress Nx and transverse

stress Ny on both top and bottom surface. Improved postbuckling analysis has

been validated in the sense that it gives close prediction with FE results for longi-

tudinal stress distribution. Moreover, it corrects the inaccurate prediction in old

VICONOPT for transverse stress distribution. However, improved postbuckling

analysis loses some numerical accuracy (e.g. prediction of transverse stresses Ny

across both horizontal and vertical centre line in cycle 10). Therefore, the errors

have been evaluated in the following section to discuss possible reasons for errors

and to propose further improvements in future work.
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(a) (b)

(c)

Figure 6.42: Variation of stress Nx across the top surface of plate for cycle 10 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.43: Variation of stress Ny across the top surface of plate for cycle 10 in
(a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VICONOPT
analysis, with all edges simply supported against out-of-plane deflection and the
longitudinal edges fixed in-plane.
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(a)

(b)

Figure 6.44: Comparison of stress (a) Nx and (b) Ny across the horizontal centre
line of top surface of plate for cycle 10 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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(a)

(b)

Figure 6.45: Comparison of stress (a) Nx and (b) Ny across the vertical centre
line of top surface of plate for cycle 10 in improved postbuckling analysis, ABAQUS
analysis and VICONOPT analysis, with longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.46: Variation of stress Nx across the bottom surface of plate for cycle
10 in (a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VI-
CONOPT analysis, with all edges simply supported against out-of-plane deflection
and the longitudinal edges fixed in-plane.
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(a) (b)

(c)

Figure 6.47: Variation of stress Ny across the bottom surface of plate for cycle
10 in (a) improved postbuckling analysis, (b) ABAQUS analysis and (c) old VI-
CONOPT analysis, with all edges simply supported against out-of-plane deflection
and the longitudinal edges fixed in-plane.
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(a) (b)

Figure 6.48: Variation of stress (a) Nx and (b) Ny across the top surface of plate
for cycle 10 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges free in-plane.

(a) (b)

Figure 6.49: Variation of stress (a) Nx and (b) Ny across the top surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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6.2 Numerical study and contour plots of stress distributions

(a)

(b)

Figure 6.50: Comparison of stress (a) Nx and (b) Ny across the horizontal centre
line of top surface of plate for cycle 10 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges free in-plane.
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6.2 Numerical study and contour plots of stress distributions

(a)

(b)

Figure 6.51: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate for cycle 10 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges free in-plane.
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6.2 Numerical study and contour plots of stress distributions

(a) (b)

Figure 6.52: Variation of stress (a) Nx and (b) Ny across the bottom surface
of plate for cycle 10 in improved postbuckling analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges free in-plane.

(a) (b)

Figure 6.53: Variation of stress (a) Nx and (b) Ny across the bottom surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges free in-plane.
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(a) (b)

Figure 6.54: Variation of stress (a) Nx and (b) Ny across the top surface of plate
for cycle 10 in improved postbuckling analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges straight in-plane.

(a) (b)

Figure 6.55: Variation of stress (a) Nx and (b) Ny across the top surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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(a)

(b)

Figure 6.56: Comparison of stress (a) Nx and (b) Ny across the horizontal centre
line of top surface of plate for cycle 10 in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges straight in-plane.
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6.2 Numerical study and contour plots of stress distributions

(a)

(b)

Figure 6.57: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate for cycle 10 in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges straight in-plane.
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6.2 Numerical study and contour plots of stress distributions

(a) (b)

Figure 6.58: Variation of stress (a) Nx and (b) Ny across the bottom surface
of plate for cycle 10 in improved postbuckling analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges straight in-plane.

(a) (b)

Figure 6.59: Variation of stress (a) Nx and (b) Ny across the bottom surface of
plate for cycle 10 in ABAQUS analysis, with all edges simply supported against
out-of-plane deflection and the longitudinal edges straight in-plane.
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6.3 Error evaluation and discussion

6.3 Error evaluation and discussion

The illustrative results shown in this chapter provide plenty of evidence which

validates the improvement made by the improved postbuckling analysis. The im-

proved postbuckling analysis shows very good comparison with ABAQUS results

in the majority of cases. However, it does lose some accuracy in some particular

cases. In this section, the possible reason for the inaccuracy in some cases will

be discussed and further improvement will also be proposed.

First of all, the errors (both mean error and RMS error) between improved

postbuckling analysis and ABAQUS analysis in cycle 1 are basically tiny. The

errors are almost less than 5% and in some particular cases the errors are even less

than 1%. However, in cycle 10 the errors grow up to around 7% for most cases but

are greater than 10% in some particular cases. This is believed to be due to the

number of strips used in improved postbuckling analysis. In all cases, the plate has

been divided into 10 strips for analysis while in ABAQUS each edge of plate has

been divided into 30 elements in the transverse direction. The reduced number of

strips therefore is believed to be a possible reason which may reduce the accuracy

of the improved postbuckling analysis especially in cycle 10 rather than cycle 1.

To show evidence, the distribution of longitudinal stress Nx across the horizontal

centre line of plate with fixed edge condition in cycle 5 has been chosen for testing.

Figure 6.60 shows curves of Nx for ABAQUS analysis and improved postbuckling

analysis with 10 strips and 30 strips respectively. Moreover, the quantitative

comparison of stress Nx between improved postbuckling analysis with 30 strips

and ABAQUS analysis gives the mean error and the RMS error 1.24% and 1.37%

respectively, which is smaller than those of improved postbuckling analysis with

10 strips (1.39% and 1.55%).

Secondly, the errors for free edge condition are generally less than those of the

other two edge conditions. Owing to the limitation in old VICONOPT that no

fixed edge condition and straight edge condition are available, the initial buckling

mode from VICONOPT which is used in improved postbuckling analysis is calcu-

lated with longitudinal edges free in-plane. Therefore, the postbuckling analysis

for fixed edge condition and straight edge condition actually start from the initial

buckling mode of free edge condition. This is believed to be another reason which
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6.3 Error evaluation and discussion

Figure 6.60: (a) Curves and (b) quantitative comparison of stress Nx for
ABAQUS analysis and improved postbuckling analysis with 10 strips and 30 strips.

increases the overall error for the improved postbuckling analysis of fixed edge

condition and straight edge condition.

Thirdly, the biggest errors (e.g. stress Ny across the vertical centre line for

fixed edge condition in cycle 10) always appear on the first and last nodes on the

vertical centre line (i.e. the middle points of the longitudinal top and bottom

edges). This is due to the small differences in the edge conditions applied on

longitudinal top and bottom edges between improved postbuckling analysis and

ABAQUS analysis. For example, in the fixed edge condition, all components of u

are forced to be zero in the improved postbuckling analysis. However, this cannot

be achieved in ABAQUS analysis as u has been used as a perturbation factor for

postbuckling nonlinear analysis. The release of constraint in ABAQUS analysis

leads to more free redistribution of stresses than improved postbuckling analysis.

Hence the ABAQUS results give a greater peak value at the middle and edge

of plate, which is believed to increase the error between improved postbuckling

analysis and ABAQUS analysis.

Lastly, the numerical comparison shows that stress Ny loses more accuracy

than stress Nx in each case. In section 6.2, the old VICONOPT results have been
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6.3 Error evaluation and discussion

proved to be inaccurate in the prediction of the Ny distribution, which is due

to the assumption of a sinusoidal buckling mode in the longitudinal direction.

Therefore, the enhanced expressions of in-plane displacements and stresses are

assumed to provide more accurate analysis. However, stress Ny still loses more

accuracy than Nx which is also due to the assumption of a sinusoidal buckling

mode in the longitudinal direction.
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Chapter 7

Illustrative results and discussion

for other cases

In the previous chapter, a quantitative study of longitudinal and transverse stress

distributions has been performed in detail for both top and bottom surface of a

square isotropic plate with three different edge conditions. The results of the im-

proved analysis have been compared with ABAQUS results and old VICONOPT

results. The improved analysis largely shows good agreement with ABAQUS

analysis and demonstrates considerable improvement on the existing technique.

Hence the improved analysis has been validated to be able to provide more ac-

curate results for the distribution of stresses in the postbuckling range. In this

chapter, more cases including a rectangular isotropic plate, a plate under pure

shear load and an anisotropic composite plate will be investigated to validate the

improved analysis in more general cases. To avoid duplicating plots and results in

this chapter, only stress distributions at the top surface of the plate for the fixed

edge condition in cycle 5 will be analyzed and discussed. Quantitative analysis

of stresses is also carried out across both the horizontal centre line and vertical

centre line of the plate. Similarly to previous chapter, blue shading denotes in-

creasing compression while red indicates decreasing compression (which usually

results in regions of tension on the bottom surface). The units of stresses in all

contour plots in this chapter are in N/m.
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7.1 Investigation of isotropic plate with different aspect ratios

7.1 Investigation of isotropic plate with differ-

ent aspect ratios

7.1.1 Introduction

In this section, a rectangular isotropic plate with different aspect ratios 0.5 and

1.5 will be investigated to compare with a square isotropic plate. For better

comparison with a square plate, the material properties and applied compressive

load have been defined exactly as the square isotropic model in the previous

chapter. The width of the plate will also be kept and the only change will be

the different length of the plate. The plate had width 0.3m, thickness 0.001m,

Young’s modulus 110kNmm−2 and Poisson’s ratio 0.3. For the model with aspect

ratio 0.5 the length of plate is 0.15m, while for the other one with aspect ratio

1.5 the length of the plate is 0.45m.

7.1.2 Results and discussion for isotropic plate with as-

pect ratio 0.5

Figure 7.1 shows the distribution of longitudinal stress Nx and transverse stress

Ny on the top surface of the plate in postbuckling cycle 5. In contrast to the

square plate which has a square pattern in the contour plot of stress distribution,

Figure 7.1 shows a rectangular pattern which is basically due to the shortening

of the length of the plate. Figures 7.2 and 7.3 show the quantitative evaluation

of stresses Nx and Ny across the horizontal centre line and vertical centre line

respectively. The contour plots in Figure 7.1 show good agreement of stress

distribution in the postbuckling range between improved postbuckling analysis

and ABAQUS analysis. The mean errors and square root mean errors in Figures

7.2 and 7.3 are basically lower than 10% and some are even lower than 5%, which

validates the accuracy of improved postbuckling analysis for a rectangular plate

with aspect ratio 0.5.

For the rectangular plate with aspect ratio 0.5 which is ’shorter’ than the

square plate, the critical buckling load (2071.2N/m) is much higher than that of
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7.1 Investigation of isotropic plate with different aspect ratios

(a) (b)

(c) (d)

Figure 7.1: Variation of stress Nx across the top surface of plate in (a) Nx in
improved postbuckling analysis, (b) Nxin ABAQUS analysis, (c) Ny in improved
postbuckling analysis and (d) Ny in ABAQUS analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges fixed in-plane.
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7.1 Investigation of isotropic plate with different aspect ratios

(a)

(b)

Figure 7.2: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.
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7.1 Investigation of isotropic plate with different aspect ratios

(a)

(b)

Figure 7.3: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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7.1 Investigation of isotropic plate with different aspect ratios

Figure 7.4: Comparison of stress Nx across the horizontal centre line of top
surface of plate between square plate and rectangular plate with aspect ratio 0.5
in improved postbuckling analysis

the square plate (1325.6N/m). Therefore, for the plates with the same material

properties and applied loading, the ’shorter’ rectangular plate has greater in-plane

stresses than the square plate (see Figure 7.4).

7.1.3 Results and discussion for isotropic plate with as-

pect ratio 1.5

Figure 7.5 shows the distribution of longitudinal stress Nx and transverse stress

Ny on the top surface of the rectangular plate with aspect ratio 1.5. Figures

7.6 and 7.7 provide a quantitative comparison of stress Nx and stress Ny across

the horizontal centre line and vertical centre line. Improved postbuckling analy-

sis gives good agreement with ABAQUS results and the improved postbuckling

analysis has therefore been validated for the analysis of a rectangular plate with

aspect ratio 1.5.

In contrast to the square plate and the rectangular plate with aspect ratio 0.5,

the plate with aspect ratio 1.5 shows two rectangular patterns on the surface.

The critical buckling load was found with half-wavelength λ equal to half the

length of the plate. For the plate with aspect ratio 1.5, the critical buckling

load has been calculated as 1438.4N/m which is greater than that of the square
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7.1 Investigation of isotropic plate with different aspect ratios

(a)

(b)
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7.1 Investigation of isotropic plate with different aspect ratios

(c)

(d)

Figure 7.5: Variation of stress Nx across the top surface of plate in (a) Nx in
improved postbuckling analysis, (b) Nx in ABAQUS analysis, (c) Ny in improved
postbuckling analysis and (d) Ny in ABAQUS analysis, with all edges simply sup-
ported against out-of-plane deflection and the longitudinal edges fixed in-plane.
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7.1 Investigation of isotropic plate with different aspect ratios

(a)

(b)

Figure 7.6: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.
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7.1 Investigation of isotropic plate with different aspect ratios

(a)

(b)

Figure 7.7: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

Figure 7.8: Comparison of stress Nx across the horizontal centre line of top
surface of plate between square plate and rectangular plate with aspect ratio 1.5
in improved postbuckling analysis

plate (1325.6N/m) but much lower than that of the rectangular plate with aspect

ratio 0.5 (2071.2N/m). Figure 7.8 gives the quantitative comparison of stress

Nx across the horizontal centre lines of the square plate and the rectangular

plate with aspect ratio 1.5. It is apparently seem that for rectangular plate with

aspect ratio 1.5, the maximum compressive stress appears at 1/4 of length while

the minimum stress appears at 3/4 of length. This is because the stress on the

top surface is dominated by the through-thickness effects, which are compressive

over the first half of the length and tensile over the remainder. However, for

the square plate with whatever edge condition, the maximum compressive stress

always appears at the middle of the plate.

7.2 Investigation of anisotropic composite plates

7.2.1 Introduction

In the previous chapter and sections above, the accuracy of the improved post-

buckling analysis for a square isotropic square plate with different edge conditions

and for a rectangular plate with different aspect ratios has been validated by com-

paring with ABAQUS results. However, the isotropic plate model leads to the
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7.2 Investigation of anisotropic composite plates

absence of out-of-plane components wic, ψic, stiffness A16, A26 and all stiffness

Bij, and all components of εxyij in the stiffness matrix. Therefore, the test of an

isotropic plate is only a partial evaluation of the improved postbuckling analy-

sis. To test the improved postbuckling analysis fully, it is necessary to test an

anisotropic composite plate which enables these variables to be non-zero in the

analysis. In this section, two composite laminates are tested including a sym-

metric, balanced laminate and an unsymmetric, unbalanced laminate. The first

composite model enables involvement of the out-of-plane components wic, ψic and

εxyiS, while the second composite model leads to all previously absent variables

being non-zero. The composite plates which will be used in this section are square

plates under compressive loading with top and bottom edges fixed. The length

of the plate is 0.3m and the compressive load (50000N/m) is applied on the left

and right edges. For both tests, only the distributions of longitudinal stress Nx

and transverse stress Ny on the top surface of the plate in calculation cycle 5 will

be evaluated.

7.2.2 Results and discussion for symmetric balanced lam-

inate

A symmetric balanced composite plate is used for analysis in this section. The

length of the square plate is 0.3m and the thickness is 0.002m. The compos-

ite plate has eight symmetric layers (with equal thickness 0.25mm) which have

ply angles [0, 45, -45, 90, 90, -45, 45, 0] respectively. The ply properties of the

laminate are given as E11=131kNmm−2, E12=6.41kNmm−2, E22=1.30kNmm−2,

G13=6.41kNmm−2, G23=6.41kNmm−2 and ν12 = 0.38. Uniform compressive

stresses are applied on both left and right edges of the plate.

Figures 7.9 and 7.10 show the distribution of longitudinal stresses Nx and

transverse stresses Ny on the top surface of the plate. In the ABAQUS results,

the distribution pattern is skewed and so the pattern is less symmetric than that

of the isotropic plate. However, in improved postbuckling analysis the pattern

remains symmetric, like that of the isotropic plate and shows slight skewing which

is not apparent from the plot but can only be seen from stress values. Figures
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7.2 Investigation of anisotropic composite plates

(a) (b)

Figure 7.9: Variation of stress Nx across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.

(a) (b)

Figure 7.10: Variation of stress Ny across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

(a)

(b)

Figure 7.11: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.

152



7.2 Investigation of anisotropic composite plates

(a)

(b)

Figure 7.12: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

7.11 and 7.12 give the quantitative comparison of stresses Nx and Ny which shows

good agreement between improved postbuckling analysis and ABAQUS analysis.

However these figures show the stress distributions across the horizontal and ver-

tical centre lines and therefore not much skewing is seen in the ABAQUS results.

To explore the skewing in ABAQUS analysis, Figure 7.13 plots the distribution

of stress Nx along a horizontal line at a quarter width of plate. The curve of

stress distribution for ABAQUS analysis shows an apparently unsymmetric pat-

tern while for improved analysis the curve keeps symmetric. This clearly reveals

that ABAQUS has some apparent skewing in the stress distributions whereas

the improved analysis does not. The reasons for less skewing in improved post-

buckling analysis will be analysed and discussed in Section 7.4. Figure 7.12 gives

the quantitative comparison of stresses Nx and Ny which shows good agreement

between improved postbuckling analysis and ABAQUS analysis.

7.2.3 Results and discussion for unsymmetric unbalanced

laminate

To test the accuracy of the improved postbuckling analysis fully, an unsymmetric

unbalanced composite plate has been tested in this section. The length and thick-

ness of the square plate are 0.3m and 0.002m respectively, and the plate has eight

layers with equal thickness 0.25mm for each one. The compressive stresses are

applied on the left and right edges of plate and the amount of stress is 50000N/m

which is the same as for the symmetric balanced composite. The ply angles are [0,

45, -45, 90, 90, 0, 0, 45] respectively for each layer from the top to the bottom of

plate. The ply properties for this composite plate are given as E11=131kNmm−2,

E12=6.41kNmm−2, E22=13kNmm−2, G13=6.41kNmm−2, G23=6.41kNmm−2 and

ν12 = 0.38.

Figures 7.14 and 7.15 shows a comparison of the distribution of stresses Nx

and Ny on the top surface of the plate between the improved postbuckling analy-

sis and ABAQUS analysis. The contours of stress distribution from both analyses

are similar, and therefore improved postbuckling analysis shows good correlation

with ABAQUS results. Figures 7.16 and 7.17 show the quantitative comparison
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7.2 Investigation of anisotropic composite plates

(a)

(b)

Figure 7.13: Comparison of stress (a) Nx across the horizontal line at a quarter
along the width of top surface of plate in improved postbuckling analysis and
ABAQUS analysis, with longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

(a) (b)

Figure 7.14: Variation of stress Nx across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.

(a) (b)

Figure 7.15: Variation of stress Ny across the top surface of plate in (a) improved
postbuckling analysis and (b) ABAQUS analysis, with all edges simply supported
against out-of-plane deflection and the longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

(a)

(b)

Figure 7.16: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

(a)

(b)

Figure 7.17: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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7.2 Investigation of anisotropic composite plates

of stresses Nx and Ny which validates the accuracy of improved postbuckling

analysis for a fully anisotropic plate. Further discussions for the unsymmetric

unbalanced composite plate and comparison with analysis of the symmetric bal-

anced composite plate will be made in Section 7.4.
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7.3 Investigation of isotropic square plate with shear load

Figure 7.18: Geometry of plate and in-plane shear load assignment

7.3 Investigation of isotropic square plate with

shear load

7.3.1 Introduction

To evaluate the postbuckling capacity of improved postbuckling analysis for vari-

ous load conditions, an isotropic square plate with shear loading on both left and

right edges has been tested in this section. Figure 7.18 shows the geometry of

the isotropic plate and in-plane shear load on its left and right edges. The plate

had width and length 0.3m, thickness 0.001m, Young’s modulus 110kNmm−2,

Poisson’s ratio 0.3 and the amount of shear load is 50kN/m for both edges with

opposite directions as shown.

7.3.2 Results and discussions for isotropic square plate

with shear load

Figures 7.19 and 7.20 show the distribution of longitudinal stress Nx and trans-

verse stress Ny on the top surface of the plate for both improved postbuckling

160



7.3 Investigation of isotropic square plate with shear load

analysis and ABAQUS analysis. The contour plots of Nx and Ny show poor

agreement between improved postbuckling analysis and ABAQUS analysis. The

maximum values of Nx and Ny appear in the middle of the plate in improved

postbuckling analysis, however ABAQUS analysis shows a skewed patten in both

Nx and Ny and therefore the maximum and minimum values of stress appear on

the corner of the diagonals. Figures 7.21 and 7.22 show the quantitative evalua-

tion of stresses between improved postbuckling analysis and ABAQUS analysis.

ABAQUS analysis shows more complex variation in both Nx and Ny. In Figure

7.21 which demonstrates the stress distribution across the horizontal centre line,

the ABAQUS stresses decrease a small amount then increase from the edge to the

middle of the plate. But in the improved postbuckling analysis, the stresses in-

creases monotonically from the edge to the middle of the plate. This is due to the

constraints on the left and right edges of plate in ABAQUS that both edges are

forced to keep straight throughout the analysis. However, in improved postbuck-

ling analysis these constraints are released. In Figure 7.22 which demonstrates

the stress distributions across the vertical centre line, the ABAQUS analysis also

shows a more complex variation of stresses than improved postbuckling analy-

sis. Stress Ny reaches its maximum value at around 1/4 and 3/4 width of the

plate, then decreases a small amount to the middle. But in improved postbuck-

ling analysis, stress increases from the edge to the middle like the variation of

stress Nx. The values of error in Figures 7.21 and 7.22 indicate that improved

postbuckling analysis gives acceptable agreement with ABAQUS results in Nx,

but poor agreement in Ny. Overall, the comparison of isotropic square plate in

shear load is not acceptable and unsatisfied. The evaluation and discussion for

the poor agreement for this type of problem will be given in the following section.
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7.3 Investigation of isotropic square plate with shear load

(a) (b)

Figure 7.19: Variation of stress Nx across the top surface of plate with shear
loading in (a) improved postbuckling analysis and (b) ABAQUS analysis, with all
edges simply supported against out-of-plane deflection and the longitudinal edges
fixed in-plane.

(a) (b)

Figure 7.20: Variation of stress Ny across the top surface of plate with shear
loading in (a) improved postbuckling analysis and (b) ABAQUS analysis, with all
edges simply supported against out-of-plane deflection and the longitudinal edges
fixed in-plane.
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(a)

(b)

Figure 7.21: Comparison of stress (a) Nx and (b) Ny across the horizontal cen-
tre line of top surface of plate in improved postbuckling analysis and ABAQUS
analysis, with longitudinal edges fixed in-plane.
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(a)

(b)

Figure 7.22: Comparison of stress (a) Nx and (b) Ny across the vertical centre line
of top surface of plate in improved postbuckling analysis and ABAQUS analysis,
with longitudinal edges fixed in-plane.
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7.4 Error evaluation and further discussion of

results

In this chapter, other cases including isotropic rectangular plate with different

aspect ratios, a symmetric balanced composite plate, an unsymmetric unbalanced

composite plate and an isotropic square plate with shear have been tested and

analysed. These results and plots provide a full investigation and validation of

improved postbuckling analysis. The improved postbuckling analysis shows good

agreement in these different cases. However, the quantitative study of these cases

also shows some error and inaccuracy of the improved analysis which are now

evaluated and discussed.

For an isotropic rectangular plate with different aspect ratios, improved post-

buckling analysis shows good agreement with ABAQUS results in both contour

plots of stress distribution and quantitative comparison of stresses. In improved

postbuckling analysis, the isotropic plate problem leads to non-zero terms wis,

ui(0,C), vi(0,C), Nxi(0,C) and Nyi(0,C). The absence of all the other terms simplifies

the governing equilibrium equation (5.22) and gives a symmetric pattern about

the horizontal centre line for both stresses Nx and Ny. The results in section 7.1

indicated that for an isotropic plate with the same material properties, edge con-

ditions and applied load, the two rectangular plate give greater critical buckling

load than the square plate, particularly in the case of the plate with aspect ratio

0.5. The evidence can be found from classic literature by Timoshenko and Gere

[32], who gave the solution of critical buckling load for isotropic plate with uniaxi-

ally load in one direction. In the literature, the critical buckling load σcr has been

given as σcr = π2D(b/a+ a/b)2/tb2, therefore for the plates with the same mate-

rial properties, thickness and width, the critical buckling load is determined only

by aspect ratio. For square plate (a/b=1), rectangular plate with aspect ratio 0.5

and 1.5, the coefficients (b/a + a/b)2=4, 6.25 and 4.69 respectively which shows

the agreement with results in this study. Moreover, the results for the square

plate show a square pattern in contour plots of stress distribution. However, the

results for the plate with aspect ratio 0.5 show a rectangular pattern in contour

plots of stress distribution which fit the shape of the plate, while for the plate
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7.4 Error evaluation and further discussion of results

with aspect ratio 1.5, the contour plots of stress distribution show two rectangu-

lar patterns. One of the patterns indicates the maximum stress distribution and

the other indicates the minimum stress distribution.

For anisotropic problems, two composite plates have been tested in this section

including a symmetric balanced composite plate and an unsymmetric unbalanced

composite plate. For the symmetric balanced problem, improved postbuckling

analysis gives non-zero terms wi(c,s), ui(0,C,S), vi(0,C,S), Nxi(0,C,S), Nyi(0,C,S). In the

results for the symmetric balanced composite plate, the improved postbuckling

analysis shows slight disagreement with ABAQUS analysis in prediction of stress

distribution. From Figures 7.9 and 7.10, ABAQUS analysis shows a skewed pat-

tern in stress distribution for both Nx and Ny, however the improved postbuckling

analysis shows less skewing. The contour plots of stress distribution for improved

postbuckling analysis are very close to a symmetric pattern which is similar to

that of the isotropic plate, and the slight skewing in the improved postbuckling

analysis can be only seen in the value of stresses. The ABAQUS analysis is be-

lieved to give more convincing results and the improved postbuckling analysis

appears to lose some accuracy in stress distribution. The first reason for losing

accuracy is the absence of stiffness A16 and A26 for a symmetric balanced prob-

lem, which leads to non-zero terms for only Nx(0,C,S) and Ny(0,C,S). However, 0

and C terms in Nx and Ny give a symmetric pattern about the horizontal centre

line of the plate, and only S terms give a skewed distribution. In the calculation

of stresses, the S term is found to be much smaller than the 0 and the C terms

which leads to slight skewing because the symmetric distribution 0 and C are

dominating. The second, and more significant, reason is believed to be that the

out-of-plane mode w used from VICONOPT is not accurate enough. For any

problem with skewed mode shape, VIPASA analysis can only give approximate

results because the simply supported end conditions are not satisfied. To sat-

isfy the end conditions, VICON analysis would have to be used to give accurate

results. However, VICON analysis is currently not available for postbuckling

analysis and therefore VIPASA analysis had to be used for postbuckling analysis

for anisotropic problems in this section. VIPASA analysis provides an approxi-

mate out-of-plane mode w which loses some accuracy and has a lack of skewing.

Therefore, the postbuckling analysis of a symmetric balanced composite problem

166



7.4 Error evaluation and further discussion of results

in improved postbuckling analysis can only be regarded as an approximate alter-

native to FE analysis. And because lack of skewing in stress distribution does

not have much effect on the accuracy of uniform stress resultants, so improved

postbuckling analysis can be still believed to be accurate for postbuckling anal-

ysis. For the unsymmetric unbalanced problem, improved postbuckling analysis

gives non-zero terms for all components of displacements and stresses, i.e. wi(c,s),

ui(0,c,s,C,S), vi(0,c,s,C,S), Nxi(0,c,s,C,S), Nyi(0,c,s,C,S). The results of unsymmetric un-

balanced composite plate show good agreement between improved postbuckling

analysis and ABAQUS results. The presence of c terms in Nx and Ny provides

a more skewed distribution which makes the results skewed enough for more

accuracy. The test of an unsymmetric unbalanced problem is actually a full

investigation of improved postbuckling analysis because all the components of

displacements, strains and stresses are non-zero. The good comparison between

improved postbuckling analysis and ABAQUS analysis validates the accuracy of

the new postbuckling analysis and hence it is recommended for implementation

into VICONOPT as a new capacity.

For the isotropic square plate with shear load, the agreement of both stress

distributions and values is poor between improved postbuckling analysis and

ABAQUS analysis. The most significant reason for the bad comparison is due

to the incorrect mode shape provided by VICONOPT. As mentioned above, for

a buckling problem which involves a skewed buckling mode, VIPASA analysis

cannot provide an accurate mode shape due to the simply supported edge condi-

tions not being satisfied. To ensure the satisfaction of the edge condition, VICON

analysis is necessary for this type of problem. However, the existing postbuck-

ling capacity is not available for VICON analysis and hence it cannot provide

the postbuckling mode shape which is needed in improved postbuckling analysis.

Therefore, the results of improved postbuckling analysis use the mode shape from

VIPASA analysis. From the quantitative comparison in Figures 7.21 and 7.22,

the improved postbuckling analysis failed to reveal the skewed pattern in the

shear problem which is incorrect. Moreover, the mean value of stresses across the

horizontal and vertical centre lines of the plate show a great amount of difference

in both Nx and Ny which indicates the inaccuracy in not only stress distribution

but also the quantities of stress. The error evaluation in Figures 7.21 and 7.22
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7.4 Error evaluation and further discussion of results

shows acceptable agreement in Nx but unacceptable agreement in Ny, but the

error is expected to increase a great amount if the stresses along the edges are

evaluated. Thus the improved postbuckling analysis for buckling problems of

plates under shear loading is unsatisfied at present and is expected to be so until

a more accurate postbuckling mode shape can be provided by VICONOPT.
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Chapter 8

Conclusions and future work

8.1 Conclusions

Exact strip postbuckling analysis provides an efficient approach to postbuckling

analysis of isotropic plate assemblies for industrial and academic purposes in the

preliminary design of aircraft structures. This thesis contributes to a theoretical

improvement to the existing exact strip postbuckling analysis, which improves

the accuracy of mode shape, stress and strain distributions in the postbuckling

range. Illustrative results are shown for isotropic and anisotropic plates with com-

bined edge and load cases, improvements are validated by comparing with finite

element results. The improved analysis will be implemented into the exact strip

analysis software VICONOPT which enables an efficient and accurate procedure

for postbuckling analysis of plates and panels.

The improved exact strip postbuckling analysis is inspired by the work done

by Stein who provided an analytical solution for isotropic and orthotropic plates

in compression and shear. It is assumed that the in-plane and out-of-plane dis-

placements are varying with half-wavelength λ/2 and λ respectively. However,

the improved analysis assumed that the in-plane displacements are varying with

half-wavelength λ and λ/2 which enables the accurate mode shape to be pre-

sented. Based on Von Kármán plate theory, the improved governing equilibrium

169



8.1 Conclusions

equations have been derived and solved. Numerical techniques have been applied

which ensure three different edge conditions can be assigned to the plate model.

Illustrative numerical results are presented for both isotropic metal plates and

anisotropic composite plates respectively with different edge and load conditions.

The results of the improved postbuckling analysis are validated by comparing

with ABAQUS results and generally show good agreement. The results are also

compared with old VICONOPT results in Chapter 6 to show the improvement.

The old VICONOPT postbuckling analysis shows good comparison of load ver-

sus end shortening in the initial postbuckling range, while accuracy is lost in

the postbuckling range for mode shape and stress and strain distribution. The

improved analysis derives the improved governing equations and enhances accu-

racy in mode shape, stress and strain distributions in the postbuckling range,

and hence improves the postbuckling mode shape and stress distribution in VI-

CONOPT.

Implementation of the improved analysis into VICONOPT enables a more

efficient procedure for postbuckling analysis. The improved analysis utilizes the

out-of-plane displacements for initial buckling results from VICONOPT to cal-

culate effective uniform stress resultants and their derivatives, which are used

to obtain new out-of-plane displacements for the next cycle of the postbuckling

analysis. Implementation of the improved analysis ensures the enhanced post-

buckling mode shape and distribution of stress and strain can be obtained and

accurate postbuckling analysis can be performed using VICONOPT.

The objective of this thesis has been achieved by introducing the improved

exact strip postbuckling analysis which will be implemented into software VI-

CONOPT in the future. The thesis starts with an introduction of the research

background of the area and then lists the objectives of this project in Chapter

1. Reviews of buckling and postbuckling phenomena with classic plate theory

are introduced in Chapter 2. Moreover, two key papers from Stein on the post-

buckling behaviour of plates are briefly reviewed and postbuckling analysis from

other researchers in past few decades is also reviewed. In Chapter 3, the exact

strip method and Wittrick-Williams algorithm are reviewed as a preparation for

a preview of the software VICONOPT. In Chapter 4, the exact strip analysis

and optimum design software VICONOPT has been introduced explicitly, and
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8.2 Further development

the theory and analysis of two earlier programs, VIPASA and VICON, have been

described. The postbuckling capacity of VICONOPT and its optimum design

capacity have also been introduced in this chapter to show the entire analysis

properties of this software. Chapter 5 starts to introduce the so called ’improved

postbuckling analysis’ in detail. The introduction begins with the assumptions

that have been made in this analysis, then the in-plane and out-of-plane displace-

ment modes have been given. Then the explicit expression of strain and stress

are derived for the equilibrium equation of this analysis. After the expression of

the improved governing equilibrium equation has been given, the solution of the

equilibrium equations has been obtained at the end of this chapter. In Chapter 6,

the illustrative results for an isotropic square plate under compression with three

different edge conditions are shown. The improved postbuckling analysis shows

good agreement with ABAQUS results which validates the postbuckling analysis

capacity for an isotropic square plate. To fully test the new analysis, Chapter 7

provides more cases for testing including an isotropic plate with different aspect

ratios, symmetric balanced and unsymmetric unbalanced composite plates and

an isotropic square plate with shear load. The results also show good comparison

with ABAQUS results except for the isotropic plate with shear load. It is believed

that is due to the inaccurate postbuckling mode from VICONOPT. Finally the

thesis is summarised and concluded in this chapter.

The improved postbuckling analysis has been demonstrated to be able to

provide more accurate postbuckling analysis than the previous version of VI-

CONOPT. The improvement in this analysis may further affect the optimum

design capacity in VICONOPT so that more accurate and explicit design work

can be achieved. It is believed that further extension of the improved analysis

and application on optimum design can provide additional efficient and accurate

compatibilities for aircraft engineers and designers.

8.2 Further development

Implementation of the improved exact strip postbuckling analysis provides addi-

tional capabilities in VICONOPT for aircraft analysis and design, increasing its
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8.2 Further development

accuracy whilst maintaining the benefits of reduced computational effort when

compared to alternatives such as FEA modelling. Further improvements have

however been identified throughout the course of this study which may bring

additional benefits and which should be considered for implementation in the

future. Some recommendations for future development based on the improved

analysis are discussed below.

The improved analysis is currently applied to isotropic and anisotropic single

plates only, and it is essential to further extend it to the analysis of stiffened

panels. This extension would ensure the improved analysis can be used for the

postbuckling analysis of complex aircraft structures. To achieve this task, pre-

vious experience of stiffened panel assembly in VICONOPT can be referred to.

Dealing with the displacements at the junction of different plates is crucial for

this task.

From the results of the improved postbuckling analysis, it is suspected that

the analysis loses some accuracy due to the assumption of sinusoidal variation

of stress with coupling of half-wavelengths λ and λ/2. It is recommended that

the coupling of more different half-wavelengths can provide more accuracy in the

analysis. However, the increase of the number of different half-wavelengths will

lead to a significant increase in the number of unknown variables, and hence in

the number of equilibrium equations for each node and the order of matrix H in

equation (5.33).

A limitation of the improved analysis is concerned with the fact that only

three different edge conditions which are fixed edge, straight edge and free edge

respectively have been implemented. These can be used directly in an improved

analysis, while the flexible edge conditions can not be applied by user. To enable

flexible application of edge conditions in improved analysis, rows and columns

corresponding to the constraints defined by the user will be eliminated auto-

matically so that the stiffness matrix for the particular edge conditions can be

established. Furthermore, unsymmetrical edge conditions can be achieved which

may then be helpful for analysis of stiffened panels.

Another limitation is that the old postbuckling capacity in VICONOPT is

not available for VICON analysis, which leads to inaccurate postbuckling mode

shapes for buckling problems with skewed modes. This is the main reason for
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8.2 Further development

incorrect analysis for isotropic plates with shear load in section 7.4. To enable

the accurate postbuckling analysis of shear problems in improved postbuckling

analysis, the availability of VICON analysis in postbuckling is necessary.

Since improved analysis brings benefits in terms of efficiency and accuracy in

the postbuckling range, it may provide additional advantages to optimum design

capacity in VICONOPT. The multi-level optimization of an aircraft wing incorpo-

rates postbuckling effects which can be improved by using improved postbuckling

analysis.
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Appendix A

Derivative calculations in

VICONOPT

The implementation of improved exact strip postbuckling analysis into VICONOPT

requires derivatives of stresses at each node with respect to all the components

of out-of-plane displacement w at each node.

In section 5.5, the expression of stress is written as form below

Ni
′ = Āiε0

′ (wi) + B̄iκ0
′ (wi) +

1

b
Āiε1ui

′ + Āiε2ui
′′ (A.1)

Therefore the derivative with respect to out-of-plane displacement w can be writ-

ten
∂Ni

∂wi
= Āi

∂ε0(wi)

∂wi
+ B̄i

∂κ0(wi)

∂wi
+

1

b
Āiε1

∂ui
∂wi

+ Āiε2
∂u′i
∂wi

(A.2)
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∂ε0(wi)
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=
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Equilibrium equation 1:

∂G(wi)

∂wic
= −


A12π2

2λ2
ψic + A26

4λb
(6ψis − 4ψi+1,s + ψi+2,s)

A12π2

2λ2
ψic + A26

4λb
(−ψi+1,s + ψi−1,s)

A12π2

2λ2
ψic + A26

4λb
(−6ψis + 4ψi−1,s − ψi−2,s)

(A.5)

∂G(wi)

∂wis
= −


A12π2

2λ2
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4λb
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2λ2
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A12π2
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(A.6)
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∂ψic
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4b


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2
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4λb


−6wis + 4wi+1,s − wi+2,s

wi+1,s − wi−1,s

6wis − 4wi−1,s + wi−2,s

(A.7)
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
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(A.8)

Equilibrium equation 2:
∂G(wi)

∂wic
= 0 (A.9)

∂G(wi)

∂wis
= −B16π

3

λ3
(A.10)
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∂G(wi)

∂ψic
= −2π2B66

λ2
+


2B22

b2
−2B22

b2
2B22

b2

− B12π
2

λ2
(A.11)

∂G(wi)

∂ψis
= −


−9B26π

2λb

0
9B26π

2λb

(A.12)

Equilibrium equation 3:
∂G(wi)

∂wic
=
B16wiπ

3

λ3
(A.13)

∂G(wi)

∂wis
= 0 (A.14)
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Equilibrium equation 4:

∂G(wi)

∂wic
= −A26π

4λb
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∂G(wi)

∂wis
= −A26π

4λb


−6ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

6ψic − 4ψi−1,c + ψi−2,c

+
π2A12

2λ2
ψis +

A16π
3

λ3
wic +

A66π
2

λ2
ψis

(A.18)
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∂G(wi)

∂ψic
=− A22
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Equilibrium equation 5:
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∂G(wi)
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Equilibrium equation 6:
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− π2A16

2λ2
wic (A.33)

− A26

4b


−6ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

6ψis − 4ψi−1,s + ψi−2,s

(A.34)
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Equilibrium equation 7:

∂G(wi)

∂wic
= 0 (A.35)

∂G(wi)

∂wis
=
π3B11

λ3
(A.36)

∂G(wi)

∂ψic
=
B26

b2


2
−2
2

− 3B16π
2

λ2
(A.37)

∂G(wi)

∂ψis
=


−3(πB66

λb
+ B12π

2λb
+ B66π

λb
)

0
3(πB66

λb
+ B12π

2λb
+ B66π

λb
)

(A.38)

Equilibrium equation 8:

∂G(wi)

∂wic
= B11

π3

λ3
(A.39)

∂G(wi)

∂wis
= 0 (A.40)

∂G(wi)

∂ψic
=


3(B12π

2λb
+ B66π

λb
)

0
−3(B12π

2λb
+ B66π

λb
)

(A.41)

∂G(wi)

∂ψis
=
B26

b2


2
−2
2

− 3B16π
2

λ2
(A.42)
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Equilibrium equation 9:

∂G(wi)

∂wic
= −A66π

4λb


−6ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

6ψis − 4ψi−1,s + ψi−2,s

+
A16π

2

2λ2
+
A16π

2

λ2
ψic +

A11π
3

λ3
wis

(A.43)

∂G(wi)

∂wis
= −A66π

4λb


−6ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

6ψic − 4ψi−1,c + ψi−2,c

− A16π
2

2λ2
− A16π

2

λ2
ψic +

A11π
3

λ3
wis

(A.44)

∂G(wi)

∂ψic
=− A26

4b


−6ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

6ψic − 4ψi−1,c + ψi−2,c

− A66π

4λb


−6wis + 4wi+1,s − wi+2,s

wi+1,s − wi−1,s

6wis − 4wi−1,s + wi−2,s

(A.45)

+
3A16π

2

2λ2
wic −

A12π

λ
ψis (A.46)

∂G(wi)

∂ψis
=
A26

4b


−6ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

6ψis − 4ψi−1,s + ψi−2,s

− A66π

4λb


−6wic + 4wi+1,c − wi+2,c

wi+1,c − wi−1,c

6wic − 4wi−1,c + wi−2,c

(A.47)

− 3A16π
2

2λ2
wis −

A12π

λ
ψic (A.48)

Equilibrium equation 10:

∂G(wi)

∂wic
=
A66π

4λb


−3ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

3ψic − 4ψi−1,c + ψi−2,c

+
3A16π

2

2λ2
ψis −

A11π
3

π3
wic (A.49)
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∂G(wi)

∂wis
= −A66π

4λb


−3ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

3ψis − 4ψi−1,s + ψi−2,s

+
3A16π

2

2λ2
ψic +

A11π
3

π3
wis (A.50)

∂G(wi)

∂ψic
=− A26

4b


−6ψis + 4ψi+1,s − ψi+2,s

ψi+1,s − ψi−1,s

6ψis − 4ψi−1,s + ψi−2,s

− A66π

4λb


3wic
0
−3wic

(A.51)

+
3A16π

2

2λ2
wis +

A66π

λ
ψic +

A12π

λ
ψic (A.52)

∂G(wi)

∂ψis
=− A26

4b


−6ψic + 4ψi+1,c − ψi+2,c

ψi+1,c − ψi−1,c

6ψic − 4ψi−1,c + ψi−2,c

− A66π

4λb


−3wis
0
3wis

(A.53)

+
3A16π

2

2λ2
wic −

A66π

λ
ψis +

A12π

λ
ψis (A.54)

∂Gi+1

∂wi
(A.55)

(A.56)

1<i<n

Equilibrium equation 1:

∂G(wi+1)

∂wic
= −A26π

4λb
ψi+1,s (A.57)

∂G(wi+1)

∂wis
=
A26π

4λb
ψi+1,c (A.58)

∂G(wi+1)

∂ψic
=
A22

4b
ψi+1,c +

A26π

4λb
wi+1,s (A.59)
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∂G(wi+1)

∂ψis
=
A22

4b
ψi+1,s −

A26π

4λb
wi+1,c (A.60)

Equilibrium equation 2:

∂Gi+1

∂wic
= 0 (A.61)

∂Gi+1

∂wis
= 0 (A.62)

∂Gi+1

∂ψic
=
B22

b2
(A.63)

∂Gi+1

∂ψis
= −B26π

λb
− B26π

2λb
(A.64)

Equilibrium equation 3:

∂Gi+1

∂wic
= 0 (A.65)

∂Gi+1

∂wis
= 0 (A.66)

∂Gi+1

∂ψic
=
B26π

λb
+
B26π

2λb
(A.67)

∂Gi+1

∂ψis
=
B22

b2
(A.68)
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Equilibrium equation 4:

∂Gi+1

∂wic
=
A26π

4λb
ψi+1,s (A.69)

∂Gi+1

∂wis
=
A26π

4λb
ψi+1,c (A.70)

∂Gi+1

∂ψic
=
A22

4b
ψi+1,c +

A26π

4λb
wi+1,s (A.71)

∂Gi+1

∂ψis
= −A22

4b
ψi+1,s +

A26π

4λb
wi+1,c (A.72)

Equilibrium equation 5:

∂Gi+1

∂wic
= 0 (A.73)

∂Gi+1

∂wis
= 0 (A.74)

∂Gi+1

∂ψic
=
A22

4b
ψi+1,s −

A26π

4λb
wi+1,c (A.75)

∂Gi+1

∂ψis
=
A22

4b
ψi+1,c +

A26π

4λb
wi+1,s (A.76)
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Equilibrium equation 6:

∂Gi+1

∂wic
= −A66π

4λb
ψi+1,s (A.77)

∂Gi+1

∂wis
=
A66π

4λb
ψi+1,c (A.78)

∂Gi+1

∂ψic
=
A26

4b
ψi+1,c +

A66π

4λb
wi+1,s (A.79)

∂Gi+1

∂ψis
=
A26

4b
ψi+1,s −

A66π

4λb
wi+1,c (A.80)

Equilibrium equation 7:

∂Gi+1

∂wic
= 0 (A.81)

∂Gi+1

∂wis
= 0 (A.82)

∂Gi+1

∂ψic
=
B26

b2
(A.83)

∂Gi+1

∂ψis
= −4(B66 +B12)π

2λb
(A.84)
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Equilibrium equation 8:

∂Gi+1

∂wic
= 0 (A.85)

∂Gi+1

∂wis
= 0 (A.86)

∂Gi+1

∂ψic
=

(B12 + 2B66)π

2λb
(A.87)

∂Gi+1

∂ψis
=
B26

b2
(A.88)

Equilibrium equation 9:

∂Gi+1

∂wic
=
A66π

4λb
ψi+1,s (A.89)

∂Gi+1

∂wis
=
A66π

4λb
ψi+1,c (A.90)

∂Gi+1

∂ψic
=
A26

4b
ψi+1,c +

A66π

4λb
wi+1,s (A.91)

∂Gi+1

∂ψis
= −A26

4b
ψi+1,s +

A66π

4λb
wi+1,c (A.92)
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Equilibrium equation 10:

∂Gi+1

∂wic
= 0 (A.93)

∂Gi+1

∂wis
= 0 (A.94)

∂Gi+1

∂ψic
=
A26

4b
ψi+1,s −

A66π

4λb
wi+1,c (A.95)

∂Gi+1

∂ψis
=
A26

4b
ψi+1,c +

A66π

4λb
wi+1,s (A.96)

∂Gi−1

∂wi
(A.97)

(A.98)

1<i<n

Equilibrium equation 1:

∂Gi−1

∂wic
=
A26π

4λb
ψi−1,s (A.99)

∂Gi−1

∂wis
= −A26π

4λb
ψi−1,c (A.100)

∂Gi−1

∂ψic
= −A22

4b
ψi−1,c −

A26π

4λb
wi−1,s (A.101)
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∂Gi−1

∂ψis
= −A22

4b
ψi−1,s +

A26π

4λb
wi−1,c (A.102)

Equilibrium equation 2:

∂Gi−1

∂wic
= 0 (A.103)

∂Gi−1

∂wis
= 0 (A.104)

∂Gi−1

∂ψic
=
B22

b2
(A.105)

∂Gi−1

∂ψis
=

3B26π

2λb
(A.106)

Equilibrium equation 3:

∂Gi−1

∂wic
= 0 (A.107)

∂Gi−1

∂wis
= 0 (A.108)

∂Gi−1

∂ψic
= −3B26π

2λb
(A.109)

∂Gi−1

∂ψis
=
B22

b2
(A.110)
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Equilibrium equation 4:

∂Gi−1

∂wic
= −A26π

4λb
ψi−1,s (A.111)

∂Gi−1

∂wis
= −A26π

4λb
ψi−1,c (A.112)

∂Gi−1

∂ψic
= −A22

4b
ψi−1,c −

A26π

4λb
wi−1,s (A.113)

∂Gi−1

∂ψis
=
A22

4b
ψi−1,s −

A26π

4λb
wi−1,c (A.114)

Equilibrium equation 5:

∂Gi−1

∂wic
= 0 (A.115)

∂Gi−1

∂wis
= 0 (A.116)

∂Gi−1

∂ψic
= −A22

4b
ψi−1,s +

A26π

4λb
wi−1,c (A.117)

∂Gi−1

∂ψis
= −A22

4b
ψi−1,c −

A26π

4λb
wi−1,s (A.118)
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Equilibrium equation 6:

∂Gi−1

∂wic
=
A66π

4λb
ψi−1,s (A.119)

∂Gi−1

∂wis
= −A66π

4λb
ψi−1,c (A.120)

∂Gi−1

∂ψic
= −A26

4b
ψi−1,c −

A66π

4λb
wi−1,s (A.121)

∂Gi−1

∂ψis
= −A26

4b
ψi−1,s +

A66π

4λb
wi−1,c (A.122)

Equilibrium equation 7:

∂Gi−1

∂wic
= 0 (A.123)

∂Gi−1

∂wis
= 0 (A.124)

∂Gi−1

∂ψic
=
B26

b2
(A.125)

∂Gi−1

∂ψis
=

(4B66 +B12)π

2λb
(A.126)
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Equilibrium equation 8:

∂Gi−1

∂wic
= 0 (A.127)

∂Gi−1

∂wis
= 0 (A.128)

∂Gi−1

∂ψic
=

(2B66 +B12)π

b2
(A.129)

∂Gi−1

∂ψis
=
B26

b2
(A.130)

Equilibrium equation 9:

∂Gi−1

∂wic
= −A66π

4λb
ψi−1,s (A.131)

∂Gi−1

∂wis
= −A66π

4λb
ψi−1,c (A.132)

∂Gi−1

∂ψic
= −A26

4b
ψi−1,c −

A66π

4λb
wi−1,s (A.133)

∂Gi−1

∂ψis
=
A26

4b
ψi−1,s −

A66π

4λb
wi−1,c (A.134)
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Equilibrium equation 10:

∂Gi−1

∂wic
= 0 (A.135)

∂Gi−1

∂wis
= 0 (A.136)

∂Gi−1

∂ψic
= −A26

4b
ψi−1,s +

A66π

4λb
wi−1,c (A.137)

∂Gi−1

∂ψis
= −A26

4b
ψi−1,c +

A66π

4λb
wi−1,s (A.138)

∂Gi+1

∂wi
(i = n) (A.139)

(A.140)

Equilibrium equation 1:

∂Gi+1

∂wic
= −A26π

λb
ψi+1,s (A.141)

∂Gi+1

∂wis
=
A26π

λb
ψi+1,c (A.142)

∂Gi+1

∂ψic
=
A22

b
ψi+1,c +

A26π

λb
wi+1,s (A.143)
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∂Gi+1

∂ψis
=
A22

b
ψi+1,s −

A26π

λb
wi+1,c (A.144)

Equilibrium equation 2:

∂Gi+1

∂wic
= 0 (A.145)

∂Gi+1

∂wis
= 0 (A.146)

∂Gi+1

∂ψic
= −5B22

b2
(A.147)

∂Gi+1

∂ψis
= −6B26π

λb
(A.148)

Equilibrium equation 3:

∂Gi+1

∂wic
= 0 (A.149)

∂Gi+1

∂wis
= 0 (A.150)

∂Gi+1

∂ψic
=

6B26π

λb
(A.151)

∂Gi+1

∂ψis
= −5B22

b2
(A.152)
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Equilibrium equation 4:

∂Gi+1

∂wic
=
A26π

λb
ψi+1,s (A.153)

∂Gi+1

∂wis
=
A26π

λb
ψi+1,c (A.154)

∂Gi+1

∂ψic
=
A22

b
ψi+1,c +

A26π

λb
wi+1,s (A.155)

∂Gi+1

∂ψis
=
A22

b
ψi+1,s −

A26π

λb
wi+1,c (A.156)

Equilibrium equation 5:

∂Gi+1

∂wic
= 0 (A.157)

∂Gi+1

∂wis
= 0 (A.158)

∂Gi+1

∂ψic
=
A22

b
ψi+1,s −

A26π

λb
wi+1,c (A.159)

∂Gi+1

∂ψis
=
A22

b
ψi+1,c +

A26π

λb
wi+1,s (A.160)
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Equilibrium equation 6:

∂Gi+1

∂wic
= −A66π

λb
ψi+1,s (A.161)

∂Gi+1

∂wis
=
A66π

λb
ψi+1,c (A.162)

∂Gi+1

∂ψic
=
A66π

λb
wi+1,s (A.163)

∂Gi+1

∂ψis
= −A66π

λb
wi+1,c (A.164)

Equilibrium equation 7:

∂Gi+1

∂wic
= 0 (A.165)

∂Gi+1

∂wis
= 0 (A.166)

∂Gi+1

∂ψic
= −5B26

b2
(A.167)

∂Gi+1

∂ψis
= −(8B66 + 2B12)π

λb
(A.168)
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Equilibrium equation 8:

∂Gi+1

∂wic
= 0 (A.169)

∂Gi+1

∂wis
= 0 (A.170)

∂Gi+1

∂ψic
=

(4B66 + 2B12)

λb
(A.171)

∂Gi+1

∂ψis
= −5B26

b2
(A.172)

Equilibrium equation 9:

∂Gi+1

∂wic
=
A66π

λb
ψi+1,s (A.173)

∂Gi+1

∂wis
=
A66π

λb
ψi+1,c (A.174)

∂Gi+1

∂ψic
=
A66π

λb
wi+1,s +

A26

b
ψi+1,c (A.175)

∂Gi+1

∂ψis
=
A66π

λb
wi+1,c −

A26

b
ψi+1,s (A.176)
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Equilibrium equation 10:

∂Gi+1

∂wic
= 0 (A.177)

∂Gi+1

∂wis
= 0 (A.178)

∂Gi+1

∂ψic
= −A66π

λb
wi+1,c +

A26

b
ψi+1,s (A.179)

∂Gi+1

∂ψis
= −A66π

λb
wi+1,s +

A26

b
ψi+1,c (A.180)

∂Gi−1

∂wi
(i = 1) (A.181)

(A.182)

Equilibrium equation 1:

∂Gi−1

∂wic
= −A26π

λb
ψi−1,s (A.183)

∂Gi−1

∂wis
=
A26π

λb
ψi−1,c (A.184)

∂Gi−1

∂ψic
= −A26π

λb
wi−1,s −

A22

b
ψi−1,c (A.185)
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∂Gi−1

∂ψis
=
A26π

λb
wi−1,c −

A22

b
ψi−1,s (A.186)

Equilibrium equation 2:

∂Gi−1

∂wic
= 0 (A.187)

∂Gi−1

∂wis
= 0 (A.188)

∂Gi−1

∂ψic
= −5B22

b2
(A.189)

∂Gi−1

∂ψis
=

6B26π

λb
(A.190)

Equilibrium equation 3:

∂Gi−1

∂wic
= 0 (A.191)

∂Gi−1

∂wis
= 0 (A.192)

∂Gi−1

∂ψic
= −6B26π

λb
(A.193)

∂Gi−1

∂ψis
= −5B22

b2
(A.194)
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Equilibrium equation 4:

∂Gi−1

∂wic
= −A26π

λb
ψi−1,s (A.195)

∂Gi−1

∂wis
= −A26π

λb
ψi−1,c (A.196)

∂Gi−1

∂ψic
= −A22

b
ψi−1,c −

A26π

λb
wi−1,s (A.197)

∂Gi−1

∂ψis
=
A22

b
ψi−1,s −

A26π

λb
wi−1,c (A.198)

Equilibrium equation 5:

∂Gi−1

∂wic
=
A26π

λb
ψi−1,c (A.199)

∂Gi−1

∂wis
= −A26π

λb
ψi−1,s (A.200)

∂Gi−1

∂ψic
= −A22

b
ψi−1,s +

A26π

λb
wi−1,c (A.201)

∂Gi−1

∂ψis
= −A22

b
ψi−1,c −

A26π

λb
wi−1,s (A.202)
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Equilibrium equation 6:

∂Gi−1

∂wic
=
A66π

λb
ψi−1,s (A.203)

∂Gi−1

∂wis
= −A66π

λb
ψi−1,c (A.204)

∂Gi−1

∂ψic
= −A66π

λb
wi−1,s (A.205)

∂Gi−1

∂ψis
=
A66π

λb
wi−1,c (A.206)

Equilibrium equation 7:

∂Gi−1

∂wic
= 0 (A.207)

∂Gi−1

∂wis
= 0 (A.208)

∂Gi−1

∂ψic
= −5B26

b2
(A.209)

∂Gi−1

∂ψis
=

4B66π

λb
+

2B12π

λb
(A.210)
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Equilibrium equation 8:

∂Gi−1

∂wic
= 0 (A.211)

∂Gi−1

∂wis
= 0 (A.212)

∂Gi−1

∂ψic
= −4B66π

λb
− 2B12π

λb
(A.213)

∂Gi−1

∂ψis
= −5B26

b2
(A.214)

Equilibrium equation 9:

∂Gi−1

∂wic
= −A66π

λb
ψi−1,s (A.215)

∂Gi−1

∂wis
= −A66π

λb
ψi−1,c (A.216)

∂Gi−1

∂ψic
= −A26

b
ψi−1,c −

A66π

λb
wi−1,s (A.217)

∂Gi−1

∂ψis
=
A26

b
ψi−1,s −

A66π

λb
wi−1,c (A.218)
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Equilibrium equation 10:

∂Gi−1

∂wic
=
A66π

λb
ψi−1,c (A.219)

∂Gi−1

∂wis
= −A66π

λb
ψi−1,s (A.220)

∂Gi−1

∂ψic
= −A26

b
ψi−1,s +

A66π

λb
wi−1,c (A.221)

∂Gi−1

∂ψis
= −A26

b
ψi−1,c −

A66π

λb
wi−1,s (A.222)

∂Gi+2

∂wi
(i = n) (A.223)

(A.224)

Equilibrium equation 1:

∂Gi+2

∂wic
=
A26π

4λb
ψi+2,s (A.225)

∂Gi+2

∂wis
= −A26π

4λb
ψi+2,c (A.226)

∂Gi+2

∂ψic
= −A22

4b
ψi+2,c −

A26π

4λb
wi+2,s (A.227)
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∂Gi+2

∂ψis
= −A22

4b
ψi+2,s +

A26π

4λb
wi+2,c (A.228)

Equilibrium equation 2:

∂Gi+2

∂wic
= 0 (A.229)

∂Gi+2

∂wis
= 0 (A.230)

∂Gi+2

∂ψic
=

4B22

b2
(A.231)

∂Gi+2

∂ψis
=
B26π

λb

B26π

2λb
(A.232)

Equilibrium equation 3:

∂Gi+2

∂wic
= 0 (A.233)

∂Gi+2

∂wis
= 0 (A.234)

∂Gi+2

∂ψic
= −B26π

λb
− B26π

2λb
(A.235)

∂Gi+2

∂ψis
=

4B22

b2
(A.236)
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Equilibrium equation 4:

∂Gi+2

∂wic
= − A26π

4lambdab
ψi+2,s (A.237)

∂Gi+2

∂wis
= −A26π

4λb
ψi+2,c (A.238)

∂Gi+2

∂ψic
= −A22

4b
ψi+2,c −

A26π

4λb
wi+2,s (A.239)

∂Gi+2

∂ψis
=
A22

4b
ψi+2,s −

A26π

4λb
wi+2,c (A.240)

Equilibrium equation 5:

∂Gi+2

∂wic
=
A26π

4λb
ψi+2,c (A.241)

∂Gi+2

∂wis
= −A26π

4λb
ψi+2,s (A.242)

∂Gi+2

∂ψic
= −A22

4b
ψi+2,s +

A26π

4λb
wi+2,c (A.243)

∂Gi+2

∂ψis
= −A22

4b
ψi+2,c +

A26π

4λb
wi+2,s (A.244)
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Equilibrium equation 6:

∂Gi+2

∂wic
=
A66π

4λb
ψi+2,s (A.245)

∂Gi+2

∂wis
= −A66π

4λb
ψi+2,c (A.246)

∂Gi+2

∂ψic
= −A66π

4λb
wi+2,s (A.247)

∂Gi+2

∂ψis
= −A66π

4λb
wi+2,c (A.248)

Equilibrium equation 7:

∂Gi+2

∂wic
= 0 (A.249)

∂Gi+2

∂wis
= 0 (A.250)

∂Gi+2

∂ψic
=

4B26

b2
(A.251)

∂Gi+2

∂ψis
=
B66π

λb
+
B12π

2λb
(A.252)
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Equilibrium equation 8:

∂Gi+2

∂wic
= 0 (A.253)

∂Gi+2

∂wis
= 0 (A.254)

∂Gi+2

∂ψic
= −B66π

λb
− B12π

2λb
(A.255)

∂Gi+2

∂ψis
=

4B26

b2
(A.256)

Equilibrium equation 9:

∂Gi+2

∂wic
= −A66π

4λb
ψi+2,s (A.257)

∂Gi+2

∂wis
= −A66π

4λb
ψi+2,c (A.258)

∂Gi+2

∂ψic
= −A26

4b
ψi+2,c −

A66π

4λb
wi+2,s (A.259)

∂Gi+2

∂ψis
=
A26

4b
ψi+2,s −

A66π

4λb
wi+2,c (A.260)
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Equilibrium equation 10:

∂Gi+2

∂wic
=
A66π

4λb
ψi+2,c (A.261)

∂Gi+2

∂wis
= −A66π

4λb
ψi+2,s (A.262)

∂Gi+2

∂ψic
= −A26

4b
ψi+2,s +

A66π

4λb
wi+2,c (A.263)

∂Gi+2

∂ψis
= −A26

4b
ψi+2,c −

A66π

4λb
wi+2,s (A.264)

∂Gi−2

∂wi
(i = 1) (A.265)

(A.266)

Equilibrium equation 1:

∂Gi−2

∂wic
= −A26π

4λb
ψi−2,s (A.267)

∂Gi−2

∂wis
=
A26π

4λb
ψi−2,c (A.268)

∂Gi−2

∂ψic
=
A22

4b
ψi−2,c +

A26π

4λb
wi−2,s (A.269)
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∂Gi−2

∂ψis
=
A22

4b
ψi−2,s −

A26π

4λb
wi−2,c (A.270)

Equilibrium equation 2:

∂Gi−2

∂wic
= 0 (A.271)

∂Gi−2

∂wis
= 0 (A.272)

∂Gi−2

∂ψic
=

4B22

B2
(A.273)

∂Gi−2

∂ψis
= −B26π

λb
− B26π

2λb
(A.274)

Equilibrium equation 3:

∂Gi−2

∂wic
= 0 (A.275)

∂Gi−2

∂wis
= 0 (A.276)

∂Gi−2

∂ψic
=
B26π

λb
+
B26π

2λb
(A.277)

∂Gi−2

∂ψis
=

4B22

b2
(A.278)
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Equilibrium equation 4:

∂Gi−2

∂wic
=
A26π

4λb
ψi−2,s (A.279)

∂Gi−2

∂wis
=
A26π

4λb
ψi−2,c (A.280)

∂Gi−2

∂ψic
=
A22

4b
ψi−2,c +

A26π

4λb
wi−2,s (A.281)

∂Gi−2

∂ψis
= −A22

4b
ψi−2,s +

A26π

4λb
wi−2,c (A.282)

Equilibrium equation 5:

∂Gi−2

∂wic
= −A26π

4λb
ψi−2,c (A.283)

∂Gi−2

∂wis
=
A26π

4λb
ψi−2,s (A.284)

∂Gi−2

∂ψic
=
A22

4b
ψi−2,s −

A26π

4λb
wi−2,c (A.285)

∂Gi−2

∂ψis
=
A22

4b
ψi−2,c +

A26π

4λb
wi−2,s (A.286)
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Equilibrium equation 6:

∂Gi−2

∂wic
= −A66π

4λb
ψi−2,s (A.287)

∂Gi−2

∂wis
=
A66π

4λb
ψi−2,c (A.288)

∂Gi−2

∂ψic
=
A66π

4λb
wi−2,s (A.289)

∂Gi−2

∂ψis
= −A66π

4λb
wi−2,c (A.290)

Equilibrium equation 7:

∂Gi−2

∂wic
= 0 (A.291)

∂Gi−2

∂wis
= 0 (A.292)

∂Gi−2

∂ψic
=

4B26

b2
(A.293)

∂Gi−2

∂ψis
= −B66

λb
− B12π

2λb
(A.294)
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Equilibrium equation 8:

∂Gi−2

∂wic
= 0 (A.295)

∂Gi−2

∂wis
= 0 (A.296)

∂Gi−2

∂ψic
=
B66

λb
+
A12π

2λb
(A.297)

∂Gi−2

∂ψis
=

4B26

b2
(A.298)

Equilibrium equation 9:

∂Gi−2

∂wic
=
A66π

4λb
ψi−2,s (A.299)

∂Gi−2

∂wis
=
A66π

4λb
ψi−2,c (A.300)

∂Gi−2

∂ψic
=
A26

4b
ψi−2,c +

A66π

4λb
wi−2,s (A.301)

∂Gi−2

∂ψis
= −A26

4b
ψi−2,s +

A66π

4λb
wi−2,c (A.302)
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Equilibrium equation 10:

∂Gi−2

∂wic
= −A66π

4λb
ψi−2,c (A.303)

∂Gi−2

∂wis
=
A66π

4λb
ψi−2,s (A.304)

∂Gi−2

∂ψic
=
A26

4b
ψi−2,s −

A66π

4λb
wi−2,c (A.305)

∂Gi−2

∂ψis
=
A26

4b
ψi−2,c +

A66π

4λb
wi−2,s (A.306)

∂Gi+3

∂wi
(i = n) (A.307)

(A.308)

Equilibrium equation 1:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= 0 (A.309)

Equilibrium equation 2:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= −B22

b2
,
∂Gi+3

∂ψis
= 0 (A.310)

Equilibrium equation 3:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= −B22

b2
(A.311)
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Equilibrium equation 4:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= 0 (A.312)

Equilibrium equation 5:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= 0 (A.313)

Equilibrium equation 6:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= 0 (A.314)

Equilibrium equation 7:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= −B22

b2
,
∂Gi+3

∂ψis
= 0 (A.315)

Equilibrium equation 8:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= −B22

b2
(A.316)

Equilibrium equation 9:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= 0 (A.317)

Equilibrium equation 10:

∂Gi+3

∂wic
= 0,

∂Gi+3

∂wis
= 0,

∂Gi+3

∂ψic
= 0,

∂Gi+3

∂ψis
= 0 (A.318)
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∂Gi−3

∂wi
(i = 1) (A.319)

(A.320)

Equilibrium equation 1:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= 0 (A.321)

Equilibrium equation 2:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= −B22

b2
,
∂Gi−3

∂ψis
= 0 (A.322)

Equilibrium equation 3:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= −B22

b2
(A.323)

Equilibrium equation 4:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= 0 (A.324)

Equilibrium equation 5:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= 0 (A.325)

Equilibrium equation 6:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= 0 (A.326)
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Equilibrium equation 7:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= −B22

b2
,
∂Gi−3

∂ψis
= 0 (A.327)

Equilibrium equation 8:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= −B22

b2
(A.328)

Equilibrium equation 9:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= 0 (A.329)

Equilibrium equation 10:

∂Gi−3

∂wic
= 0,

∂Gi−3

∂wis
= 0,

∂Gi−3

∂ψic
= 0,

∂Gi−3

∂ψis
= 0 (A.330)
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