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Chromatin remodelling in Saccharomyces 

cerevisiae by RSC 

Abstract 

RSC is a member of the multi-subunit SWI/SNF family of ATPase-

dependent chromatin remodelers and it is implicated in transcriptional 

regulation and DNA repair in Saccharomyces cerevisiae. The central ATPase 

subunit, Sth1, translocates nucleosomes in vitro and mutations in human 

RSC sub-unit orthologues are implicated in human disease. RSC is found in 

two isoforms, defined by the presence of either the Rsc1 or Rsc2 subunits, 

and these appear to confer distinct remodelling functions in different genomic 

contexts. At the MAT locus, Rsc1 and Rsc2 appear to mediate different forms 

of nucleosome positioning which are required for efficient mating type 

switching. Elsewhere in the genome, it has been suggested that RSC can 

create partially un-wrapped nucleosomes in order to facilitate transcription 

factor binding. This thesis uses indirect-end-label analysis and chromatin-

sequencing technologies to dissect the chromatin remodelling functions of 

RSC and to determine the roles of Rsc1, Rsc2 and their subdomains. 

 The work presented here suggests that four chromatin-remodelling 

outcomes arise from RSC activity. Firstly, RSC alters the positions of a tract 

of nucleosomes abutting HO endonuclease-induced double-strand DNA 

breaks both at MAT and non-MAT loci in a Rsc1-dependent manner. This 

activity can be transferred from Rsc1 to Rsc2 by swapping BAH domains. 

Secondly, RSC can aggregate nucleosomes into a large nuclease-resistant 

structure, termed an alphasome, in a Rsc2- and Rsc7-dependent manner. 

Thirdly, RSC positions nucleosomes at tRNA genes in a manner that requires 

both Rsc1 and Rsc2. Finally, chromatin particles consistent with previously 

described un-wound nucleosomes are confirmed to be present in specific 

promoter regions. Although Rsc1- and Rsc2- dependent subsets of these 

promoters could be identified, and associations with binding motifs for 

particular transcriptions factors were discovered, it was ultimately not 

possible to unambiguously define why some gene promoters depend on one 

RSC sub-unit rather than the other.  
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1 Introduction 

1.1 An overview of chromatin structure and function 

DNA is a long, charged molecule thus it has to be packaged within cells 

by proteins in order to compact it into the relatively small space of the 

nucleus. Packaging of DNA in eukaryotic cells is achieved by interactions 

with proteins called histones, which form an octamer consisting of two of 

each of the canonical histone forms; H2A, H2B, H3 and H4. 147bp of DNA 

wraps around the histone scaffold in two left handed superhelical turns to 

form a structure called the nucleosome (Chakravarthy et al., 2005; Luger et 

al., 1997).  DNA repeatedly wraps around histone cores to form chains of 

nucleosomes with intervening lengths of DNA between each nucleosome 

termed linker DNA (Kornberg, 1977). The nucleosomal DNA makes contact 

with the residues with the histone-fold α-helices to form the core nucleosome 

particle (Luger et al., 1997). The structure of DNA wrapped around sequential 

nucleosomes is often referred to as a “beads-on-a-string” structure or the 

“10nm” fibre and chains of nucleosomes are able to fold into a number of 

higher order superhelical structures to further condense DNA (Figure 1.1) (Li 

and Reinberg, 2011; Luger et al., 2012). 

The complex of DNA and proteins is termed chromatin and due to the 

nature of the close interactions of DNA and protein, chromatin consequently 

has the potential to regulate the access of DNA to factors, including those 

catalysing and regulating process such as transcription, replication, 

segregation and repair (Kouzarides, 2007; Rando and Winston, 2012). An 

area of intense research interest therefore surrounds processes in the 

eukaryotic nucleus that serve to remodel chromatin. 

 The subject of this thesis concerns the RSC (Remodels the Structure 

of Chromatin) complex of the budding yeast Saccharomyces cerevisiae that 

in many ways epitomises the complexity of chromatin remodelling processes. 

RSC is a large multi-subunit complex that is recruited to specific regions of 

chromatin; it brings to bear a catalytic activity that acts at the level of 

individual nucleosomes. Its activity is utilised to facilitate several distinct 

processes, in this case both transcriptional regulation and DNA repair (Cairns 
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et al., 1996; Floer et al., 2010; Kent et al., 2007; Ng et al., 2002). The broad 

aims of this thesis are to understand how the various subunits of RSC direct 

its chromatin remodelling activity to achieve specific mechanistic and 

functional outcomes. Human cells contain a RSC-like complex called PBAF, 

defects in which have recently been implicated in the progression of cancer 

(Brownlee et al., 2012; Goodwin and Nicolas, 2001; Varela et al., 2011). By 

working in the yeast model system, with its tractable reverse genetics and 

genome analysis methodologies, this thesis also aims to shed light on 

chromatin mis-regulation in oncogenesis.  

The remainder of this Chapter will introduce the yeast model system, 

the processes of DNA repair, chromatin structure, chromatin remodelling and 

the current state of knowledge concerning RSC. 
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1.2 Experimental model system: Saccharomyces cerevisiae 

1.2.1 Basic characteristics, genetic manipulation and analysis 

S. cerevisiae, often referred to as budding yeast, is a highly versatile 

and well studied eukaryotic organism, well suited for use as a model 

organism (Botstein and Fink, 2011). Each cell is approximately 3-4 

micrometres in diameter and surrounded by a cell wall composed of chitin. S. 

cerevisiae can exist in either a haploid form, with sixteen chromosomes or as 

a diploid (Herskowitz, 1988). As with other eukaryotic cells, yeast contains 

mitochondria with their own genetic information. Most yeast strains also 

contain the 2µm plasmid, with about 25 to 100 copies of the cell constituting 

approximately 4% of the entire DNA content of the cell (Futcher, 1988; 

Zakian et al., 1979).  

As budding yeast can be maintained stably as a haploid and has an 

extensively characterised and annotated genome 

(http://www.yeastgenome.org/), it is an ideal organism for genetic 

manipulation. Complete knock-outs of non-essential genes are easily 

engineered by replacing the targeted coding region with a selectable marker 

using homologous recombination. A nearly complete deletion set exists for 

every non-essential open reading frame (C. Guthrie, 1991; Giaever et al., 

2002; Oliver et al., 1998; Winzeler et al., 1999). An example of a selectable 

marker is the kanMX gene, which was obtained from the Tn903 transposon 

and confers resistance to the aminoglycoside antibiotic G418, also known as 

Geneticin (Guldener et al., 1996). Short-flanking homology for the targeted 

coding region is cloned alongside the selectable marker, normally using 

PCR, and the cassette is transformed into yeast. The cassette can integrate 

into the genome by homologous recombination. Integration events can be 

selected by growing on media containing the appropriate antibiotic and 

integration into the appropriate locus can be checked via PCR (Section 

2.2.8.4) (Kelly et al., 2001; Oliver et al., 1998; Winzeler et al., 1999) 

Temperature sensitive mutants also play an important part in yeast 

biology and have been used in the analysis of essential genes (Hartwell, 

1967). Temperature sensitive mutants are obtained in one of two ways: 
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firstly, they can be obtained by engineering a mutagenized version of the 

gene of interest into a plasmid with a selectable marker and transforming the 

plasmid into a heterozygous diploid deletion mutant for the gene of interest. 

These cells then undergo sporulation to form four haploid daughter cells. 

Haploid cells that contain the plasmid but are null mutants for the gene of 

interest can be obtained by growing on appropriate selective media for the 

plasmid and mutant markers. Secondly, a mutagenized version of the gene 

of interest can be directly integrated into the endogenous locus using flanking 

homology regions to the kanMX cassette. A selectable marker is cloned 

alongside the mutagenized gene within the kanMX flanking homology. This 

construct can be transformed into a diploid strain that is heterozygous for the 

gene of interest with one allele replaced by the kanMX cassette. The 

mutagenized version can then integrate into the null allele locus by HR with 

via homology with the kanMX cassette and transformants can be obtained by 

selective media for the selectable marker in the construct. Temperature 

sensitive mutants are then selected by growing at the permissive and non-

permissive temperature and selecting those colonies  that fail to grow at the 

non-permissive temperature (Ben-Aroya et al., 2010). 

 The plasmid shuffle technique is used to analyse protein function by 

reintroducing the endogenous gene, borne on a plasmid, to a strain with a 

mutant allele for the gene of interest. Plasmids carry a marker that is 

selectable in auxotrophic strains such as URA3 or LEU2 which can be 

selected for in the appropriate media (Brachmann et al., 1998; Forsburg, 

2001).  
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1.2.2 The MAT locus and mating-type switching 

Budding yeast, with sufficient nutrients, have a doubling time of 

approximately one hundred minutes. The mother cell replicates the 16 

chromosomes which are separated into two cells and the mother cell gives 

rise to an ellipsoidal daughter cell. In growth media poor in nutrients yeast will 

arrest in the unbudded G1 phase in which they survive well. Haploid cells 

undergo simple mitosis and divide by budding; however the diploid cells are 

also able to undergo meiosis and sporulate to form four haploid cells (Figure 

1.2). Homothallic yeast strains have life cycles which, via mating type 

switching, allow a single haploid cell to become a diploid cell capable of 

meiosis and spore formation (Haber, 2012; Herskowitz, 1988). Heterothallic 

strains in contrast do not switch mating types and consequently they can 

stably propagate as haploid cells that are unable to give rise to diploid cells 

(Herskowitz, 1988). The central control element for programming these 

mating-type specific cellular processes differences is the mating type (MAT) 

locus (Haber, 1998; Haber, 2012). 

The presence of yeast of the opposite mating type in close vicinity 

allows mating, and mating partners can transiently arrest each other’s cell 

cycle in in G1 phase to undergo cell fusion (Nasmyth, 1982). The haploids 

can exist in two specialised mating types, a or alpha, which result in primitive 

sexual differentiation, and can mate efficiently with each other to form an 

a/alpha diploid cell. The diploid cell is unable to mate but can undergo 

meiotic division to form four haploid daughter cells. Each mating type 

produces a distinct signalling pheromone to induce mating and mating-type 

specific genes (Haber, 1998; Haber, 2012; Herskowitz, 1988). 

The MAT locus is found on chromosome III of the S. cerevisiae 

genome and can encode two allelic variations for the mating type, the MAT 

locus is therefore transcriptionally active (Haber, 2012; Nasmyth, 1982). The 

two mating type alleles vary by 700bp, known as Yα and Ya respectively, and 

encoded within are promoters and open reading frames that, when 

transcribed, will regulate the cell’s sexual activity (Haber, 1998; Herskowitz, 

1988). The MAT locus can interconvert between the two mating types using 
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homologous recombination and the switching of genetic information from one 

genomic position to another (Figure 1.3) (reviewed by (Haber, 2012)) 
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1.2.2.1 Silencing of HMR and HML 

Both complete mating type alleles are also found in silent mating type 

cassettes at HMLα (MATalpha) and HMRa (MATa) respectively (though 

opposite variants do exist naturally) and are silenced by the SIR (Silent 

Information Regulator) genes (Herskowitz, 1988). Silencing is enforced by 

flanking sequences at HMR (HMR –E and HMR –L) and at HML (HML –E 

and HML –L), which are all cis-acting elements (Brand et al., 1985). There 

are a number of trans-acting factors that interact with the cis-elements which 

induce silencing by formation of heterochromatin across a 3kb region 

including the silent loci (Ravindra et al., 1999; Weiss and Simpson, 1998). Sir 

proteins are  recruited to HMR-E/HMR-E via ORC proteins, Rap1 and Abf1, 

which bind to elements of HMR-E/HML-E (Moretti et al., 1994) Sir1 recruits 

the Sir2-Sir3-Sir4 complex (Moazed et al., 1997) which deacetylates lysines 

on histone H3 and H4 via Sir2 NAD+-dependent HDAC activity (Imai et al., 

2000). Sir3-Sir4 bind and stabilise the position of the nucleosome and the 

process is repeated on the downstream neighbouring nucleosome and 

progresses in one direction to the second silencing element (Haber, 2012; 

Hecht et al., 1995). These heterochromatin regions are transcriptionally silent 

for both RNA Pol II and RNA Pol III transcribed genes (Brand et al., 1985). 

The spreading of silencing at HMR-I is blocked by the presence of a tRNA 

gene (Donze et al., 1999) but boundary elements at HML-I and HMR-E are 

yet to be fully characterised (Haber, 2012). Transition of the genetic 

information from one position to another does not alter the information found 

at the silent locus; therefore interconversion of mating types from the MAT 

locus with the opposite silent mating type is a nonreciprocal event known as 

gene conversion (Haber, 1998; Haber, 2012). Gene conversion is initiated by 

the formation of a double-strand DNA break at MAT by HO endonuclease 

(Haber, 2012) 

  



10 

 

1.2.2.2 HO endonuclease 

The difference between homothallic and heterothallic strains is the 

presence or absence of a single gene HO (homothallic) (Herskowitz, 1988). 

Homothallic strains have a functional version of the gene HO whereas 

heterothallic strains have a defective version ho, useful for laboratory strains 

to prevent mating type switching (Haber, 2012). The expression of HO is 

tightly regulated; expression only occurs at the G1 phase of a haploid mother 

cell (Nasmyth et al., 1987). The HO gene encodes a sight specific 

endonuclease that initiates mating-type switching by making a double-strand 

DNA break (DSB) at the MAT locus resulting in both strands having a four 

nucleotide long 3' overhang (Nickoloff et al., 1990; Russell et al., 1986). The 

HO endonuclease requires a minimum of 24 base pairs of a degenerative 

recognition site in vitro, and cleaves at the  MAT locus across the Y/Z 

boundary (Nickoloff et al., 1986). However, HO cannot cleave the sequence 

found in the silent HML or HMR due to the occlusion by nucleosomes 

(Connolly et al., 1988). The HO protein is rapidly degraded by the ubiquitin-

mediated SCF protein degradation complex (Kaplun et al., 2006) so the 

mother cell is only briefly exposed to HO activity. 

1.2.2.3 MAT Switching 

The HO-induced DSB at the MAT locus is subsequently processed by 

5’ to 3’ exonucleases that create long 3’-ended tails. A complex of Mre11, 

Rad50 and Xrs2 (the MRX complex), Sae2 and Exo1 is responsible for this 5’ 

to 3’ processing (Nicolette et al., 2010; Tsukuda et al., 2009). Rad51 

recombinase protein displaces the ssDNA-binding protein RPA, and 

assembles around the 3’ ended ssDNA to form a filament (Haber, 2012; 

Wang and Haber, 2004). Loading of Rad51 is dependent on Rad52 

(Sugawara et al., 2003) and the Rad51 filament will search for homology in 

the silent mating type loci (Haber, 2012; Kostriken et al., 1983) 

The Y region is not homologous between the cassette and its donor in 

the silent locus, so this is not involved in the early stages of recombination. In 

contrast there is extensive homology between the W/X sides but this is not 

used in the initiation of the copying of the donor sequence, rather, it is the 
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smaller Z region (Figure 1.3 and Figure 1.4) (Coic et al., 2011). New DNA 

synthesis is primed by the 3’ end of the strand invading the Z-region of the 

silent locus which will copy the Y region of the donor DNA (White and Haber, 

1990). The strand invasion creates a replication fork in which leading and 

lagging strand synthesis occurs as the newly synthesised strand will anneal 

back with the second broken end, a process known as synthesis-dependent 

strand-annealing (SDSA) (Ira et al., 2006). The second strand is then 

synthesised by lagging strand replication after the original Y region is 

removed (Lyndaker et al., 2008). The region switched is substantially longer 

than just the Y-region; both X and Z regions are replaced during MAT 

switching   (Figure 1.4) (Mcgill et al., 1989).  

Gene conversion requires a number of accessory proteins; Rad54 is 

required for the opening up of silent chromatin at the donor locus (Jaskelioff 

et al., 2003) a flap endonuclease of Rad1/Rad10, Msh2/Msh3 and Srs2 is 

required for the removal of the non-homologous Y region in the MAT locus 

before the second strand can be synthesised (Lyndaker et al., 2008) . Only a 

fraction of the proteins normally associated with origin-dependent DNA 

replication are required for the copying of donor sequences; RPA, PCNA, 

and DNA polymerases Δ and ε. (Lydeard et al., 2010). Due to DNA synthesis 

not using all the factors involved in normal DNA replication, gene conversion 

is more susceptible to mutation (Hicks et al., 2010).  

MAT switching is a conservative gene conversion process as the 

newly synthesised strand is displaced from the template and used as a 

template by the second end resulting in an unaltered donor (Haber, 2012). 

The SDSA mechanism is not expected to produce crossovers as there is no 

stable Holliday junction though MAT switching ensures avoidance of a 

crossing-over event by the action of the Sgs1 helicase complex. The complex 

acts as a disolvase to remove any double Holliday junctions that would 

become crossovers (Ira et al., 2003).  
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1.2.2.4 Donor preference 

The donor preference of the recombination event is highly accurate 

with MATα cells choosing HMRa and MATa cells choosing HMLα in up to 

90% of events. Selection of the donor is not dependent on the Y region, 

rather, it is the chromosomal location of the donor that leads to its selection 

(Weiler and Broach, 1992). Preferential donor selection is mediated by a 

recombination enhancer (RE) (Haber, 1998; Weiss and Simpson, 1997). In 

MATa cells the recombination enhancer activates the left arm of 

chromosome III to make HML the preferred donor, though HMR is still 

available as an emergency backup to repair the DSB. In MATalpha cells the 

recombination enhancer is absent and the left arm of chromosome III is 

inaccessible due to highly positioned nucleosomes so HMR becomes the 

preferred donor (Weiss and Simpson, 1997). This change is mediated by the 

MATα2 gene which forms a Matα2-Mcm1 complex that represses all MATa 

specific genes and binds and turns off the RE (Szeto and Broach, 1997) 
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HMLalpha

MATa

HMLalpha

MATalpha

HO induced DSB

5’ to 3’ resection, 
assembly of Rad51 
protein filament 
and homology 
search

Strand invasion in 
the Z region

Initiation of 
copying the donor 
template

Newly synthesised 
DNA strand is 
displaced and the 
removal of 3’ non-
homology

Second strand 
synthesis

Figure 1.4 –Mating type switching
The key steps in mating type switching – The Rad51 filament forms around the 3’ended ssDNA from the
5’ to 3’ resected HO-induced DSB. The Rad51 filament searches for homology in the Z region and
synthesis is initiated to copy the donor sequence. The newly copied strand anneals with the second end.
The non-homologous sequence is clipped off and the new 3’ end is a primer to extend and copy the
second strand.
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1.3 DNA damage and repair 

Environmental exposure, intracellular metabolites, and clinical therapies 

all have the potential to damage the DNA strand by either breaking the DNA 

backbone or chemically changing a DNA base (Lindahl, 1993b; Nyberg et al., 

2002). These sites of DNA damage must be repaired with high efficiency and 

fidelity to ensure the maintenance and stability of the genome (Kolodner et 

al., 2002). There are many different types of DNA damage that can alter the 

structure of the DNA strand or the underlying sequence. Consequently there 

are a number of specific pathways of detection and repair employed by 

organisms to ensure the health of their genomes (Boiteux and Jinks-

Robertson, 2013; Wood, 1996). The sections below will highlight the key 

types of DNA damage and the repair processes to ensure genomic stability. 

 

1.3.1 Types of DNA damage 

There are multiple different DNA damage types (Figure 1.5) and each 

has distinct mechanisms of recognition and repair. The types of DNA 

damage are highlighted below. 

1.3.1.1 Altered base 

Base modifications, particularly of guanine to 8-oxo-7,8-

dihydroguanine, are caused by endogenous oxidants such as free radicals 

and hydrogen peroxide reacting with the nucleotide base (Figure 1.5) 

(Grollman and Moriya, 1993). An oxidised guanine is mutagenic resulting in 

the GC to TA transversion (Boiteux et al., 2002; van der Kemp et al., 2009). 

Alkylating agents such as methyl methanesulfonate (MMS), result in the 

methylation of guanine to 7-methyl guanine or 1-methyladenine (Beranek, 

1990). Altered bases often lead to error prone replication and lead to a 

change in the DNA sequence, as altered bases change the interaction with 

DNA-binding proteins (Lindahl, 1993a; Sancar et al., 2004). 

1.3.1.2 Abasic site 

An abasic site is a location in the DNA strand which has neither a 

purine or pyrimidine base associated with the sugar backbone as a result 
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from hydrolytic cleavage of the N-glycosylic bond (Lhomme et al., 1999). This 

can be caused by reactive oxygen species, ionizing radiation, alkylating 

agents, and can happen spontaneously at a rate of approximately 10,000 

abasic sites per day. (Lindahl, 1993a). Guanine and adenine bases are 

cleaved most efficiently and lead to a loss of genetic information (Obeid et 

al., 2010) Unrepaired abasic sites can cause a stall in the replication fork and 

the insertion of a random base (Hubscher et al., 2002). In E. coli, adenine is 

preferentially inserted into an abasic site leading to a change in the 

underlying sequence, this preference for the adenine at abasic sites is 

termed the “A-rule” and most DNA polymerases comply with the A-rule. 

(Boiteux and Guillet, 2004; Obeid et al., 2010). 

1.3.1.3 Single strand break 

A single strand break (SSB) is the most common form of DNA damage 

and occurs at a frequency of tens of thousands per day. Reactive oxygen 

species endogenous to the cell such as hydrogen peroxide and ionizing 

radiation can result in DNA strand breaks of one of the strands by direct 

disintegration of oxidised sugars or indirectly during the DNA base excision 

repair pathway (Caldecott, 2008). Abortive activity of DNA topoisomerase 1 

(Top1) can occur if Top1 collides with RNA or DNA polymerases and can 

result in TOP1-linked SSBs (Caldecott, 2008; Pommier et al., 2003). The 

consequence of SSBs is the blockage or collapse of DNA replication forks 

(Zhou and Doetsch, 1993) which may lead to the formation of DSBs leading 

to genetic instability and cell death if repair pathways become saturated 

(Caldecott, 2008)  

1.3.1.4 Intrastrand cross links 

Neighbouring bases in the DNA strand may undergo attack by reactive 

oxygen species which result in purine base-centred secondary radicals which 

can attack neighbouring pyrimidine bases. Exposure to gamma-radiation can 

result in C8 of a guanine residue with the 5-methyl group of an adjacent 

thymine (Colis et al., 2008). A typical UVB induced DNA damage is a 

cyclobutane pyrimidine dimer (Figure 1.5) (Mouret et al., 2006). The DNA 

double helix becomes destabilised as a result of oxidative intrastrand cross-
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link lesions (Hong et al., 2007).  Platinum containing compounds also causes 

intrastrand cross links by mediating the crosslinking of two adjacent guanine 

bases (Poklar et al., 1996). This type of damage radically changes the three 

dimensional structure of the DNA strand and will antagonise DNA processes 

such as replication and transcription (Poklar et al., 1996). 

1.3.1.5 Bulky DNA adducts 

There are many compounds which bind reversible and irreversible to 

DNA but the most studied intercalating agents are acridine and its derivatives 

(Ferguson and Denny, 2007). Intercalating agents which can bind non-

covalently and covalently to DNA prevent proper replication by stalling 

replication forks (Minca and Kowalski, 2011). For example the commonly 

used laboratory DNA stain ethidium bromide is a well known carcinogen as it 

intercalates into the DNA helix and antagonises normal DNA processes 

(Cariello et al., 1988). The large class of planar polycyclic aromatic molecules 

that acridine belongs too can intercalate between two adjacent base pairs. 

Local structural changes to the DNA, including unwinding of the double helix 

and lengthening of the DNA strand all result from the act of intercalation 

(Ferguson and Denny, 1991). Intercalating agents such as acridine result in 

frame-shift mutagenesis due to the local structural changes in DNA 

increasing the propensity of DNA slippage during DNA replication (Denny et 

al., 1990; Ferguson and Denny, 2007) 

1.3.1.6 Base Mismatches, small insertions and deletions 

Cells have developed DNA polymerases that can replicate DNA with 

astonishingly high fidelity, for example studies of E. coli show that in vivo the 

rate of base substitution error is 10-7, with eukaryotic polymerases with a  

similarly low error rate (Iyer et al., 2006; Kunkel, 2004) . In E. coli single base 

mismatches are more often base transitions rather than base transversions, 

and base deletions often occur in runs of adjacent identical bases (Schaaper 

and Dunn, 1987). However, even though the rate of error during replication is 

very low, base nucleotide mis-incorporations result in a change in the DNA 

sequence causing dysfunction and disease (Li, 2008; Lindahl, 1993a). 
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1.3.1.7 Interstrand cross links 

It has been estimated that as few as 20 interstrand crosslinks in the 

bacterial or mammalian genome can lead to cell death (Lawley and Phillips, 

1996). This highly toxic DNA damage prevents DNA strand separation and 

results in an absolute block of DNA replication and transcription (Noll et al., 

2006; Sancar et al., 2004). Platinum compounds such as cis-platin, and  

alkylating agents, such as nitrogen mustard (Figure 1.5), can produce 

covalent adducts with bases on both strands resulting in an interstrand cross 

link (Noll et al., 2006). Nitrogen mustard reacts with guanine residues to form 

an alkylated guanine derivative (Falnes et al., 2002) which can react with a 

second guanine and result in an interstrand crosslink. As suggested by the 

example of cis-platin, this type of DNA damage is the mechanistic basic for a 

number of anti-cancer drugs as it prevents DNA replication and therefore cell 

proliferation (Noll et al., 2006; Poklar et al., 1996). 

1.3.1.8 Double strand break 

Double-strand DNA breaks (DSBs) occur three fold less than single 

stranded breaks but are likely the most dangerous type of DNA damage 

(Caldecott, 2008; Hefferin and Tomkinson, 2005; Jackson, 2002). They are 

caused by reactive oxygen species generated by normal cell metabolism or 

by exogenous and environmental agents such as ionizing radiation and UV 

light exposure. DSBs can also be caused if a replication fork encounters a 

single stranded break or other types of DNA lesions (Khanna and Jackson, 

2001; Polo and Jackson, 2011). DNA DSBs occur when two complementary 

strands of the DNA are simultaneously broken at sites that are sufficiently 

close to one another that base-pairing and chromatin is insufficient to keep 

the two DNA ends juxtaposed (Jackson, 2002) These lesions can 

compromise the integrity of the genome unless they are efficiently repaired 

by mechanisms highly specialised to contend with different types of break 

(Polo and Jackson, 2011). Joining of two previously non-continuous DNA 

ends can result in chromosomal translocations with tumorigenic potential 

(Jackson, 2002). 
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1.3.2 Repair mechanisms 

Mechanisms exist to detect DNA damage in bacterial and eukaryotic 

cells by epigenetic marks and specific signals at cell cycle stage progression 

checkpoints. There are four distinct responses elicited by DNA damage; DNA 

repair, transcriptional response, DNA damage checkpoints and apoptosis 

(Sancar et al., 2004; Wood, 1996). Recognition of damaged DNA is a 

complex process as the quantity of undamaged DNA in the cell far exceeds 

that which is damaged, therefore several strategies are employed the cell in 

the recognition process (Wood, 1996). Erroneous repair of DNA can lead to 

loss or amplification of chromosomal material or chromosomal 

rearrangement leading to an oncogenic protein (Khanna and Jackson, 2001). 

Different types of lesions are repaired by different pathways which are 

highlighted below: 

1.3.2.1 Direct repair 

Damage can be directly recognised by repair proteins that have an 

affinity for their repair substrate, for example the E. coli photolyase repairs 

cyclobutane pyrimidine dimers. The enzyme first interacts with the phosphate 

backbone and then will make specific contacts between the distorted DNA 

backbones. The enzyme, in a light dependent reaction, flips the dimer out of 

the DNA duplex into its active site and uses the energy of an absorbed 

proton to split the dimer back to two canonical pyrimidines (Sancar et al., 

2004). 

A second example of an enzyme that is able to directly repair the 

methylation of guanine by an alkylating agent is the yeast protein Mgt1, a 

methylguanine DNA methyltransferase (Boiteux and Jinks-Robertson, 2013). 

The enzyme can flip out the O6MeGua base into the active site where the 

methyl is transferred to a cysteine residue which inactivates the active site 

thus this enzyme is referred to as a suicide enzyme. Mice lacking 

methylguanine methyltransferase are highly susceptible to tumorigenesis by 

alkylating agents demonstrating the necessity of the enzyme in maintaining 

genomic stability (Boiteux and Jinks-Robertson, 2013; Sancar et al., 2004). 
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1.3.2.2 Base excision repair  

Bases damaged chemically by oxidation or alkylation are removed by 

base excision repair (BER) and is initiated by a DNA glycosylase that 

releases the modified base from the DNA strand to leave an abasic site; 

therefore BER is also the mechanism of repair for abasic sites (Boiteux and 

Jinks-Robertson, 2013). Individual DNA glycosylases can recognise and 

catalyse the removal of alkylated (methylated) bases, deaminated bases, and 

base mismatches (McCullough et al., 1999). DNA glycosylases are similar to 

DNA photolyase as they recognise small distortions in the DNA backbone 

which allows low affinity binding. This is followed by base flipping into the 

enzyme which results in a high affinity complex where multiple proof-reading 

mechanisms ensure high specificity (McCullough et al., 1999).  

Glycosylases can simply cleave the base to leave an abasic site or 

catalyse an AP (apurinic/apyrimidinic site) lyase reaction that results in a 5’-

phosphomonoester and a 3’-unsaturated sugar phosphate leaving a nick in 

the DNA strand. The 3’ sugar residue is then cleaved by an endonuclease 5’ 

to the abasic sugar resulting in a gap. This gap can then be filled by DNA 

polymerase β and ligated by DNA ligase III a process known as short patch, 

where the one nucleotide gap is replaced. Alternatively, after the 5’ incision to 

the AP site, 2-10 nucleotides 3’ to the nick are displaced and a patch of the 

same size is synthesised by DNA polΔ/ε with the aid of  PCNA and ligated by 

DNA ligase I (Boiteux and Jinks-Robertson, 2013; Memisoglu and Samson, 

2000). 

1.3.2.3 Nucleotide excision repair 

Bulky DNA lesions that distort the DNA helix are often caused by UV 

radiation producing 6-4 photoproducts or protein addition to the DNA (Boiteux 

and Jinks-Robertson, 2013) however the most common product of UV 

radiation is a cyclobutane pyrimidine dimer (Mouret et al., 2006). NER is 

subdivided into two classes depending on the recognition step; global-

genome NER is dependent on Rad7 and Rad16, in contrast transcription 

coupled NER is dependent on Rad26 and Rpb9. Following recognition the 

two pathways converge (Boiteux and Jinks-Robertson, 2013). Rad7 and 
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Rad16 form a stable complex with Abf1 and the binding of Abf1 to its DNA 

recognition sites promotes efficient GG-NER (Yu et al., 2009). Following 

recognition, a multi-subunit excision nuclease removes the damaged base or 

bases by making dual incisions in the DNA strand. After the recognition and 

excision of the damaged region the excised oligomer is released. In 

prokaryotes this oligomer is 12-13 nucleotides, in eukaryotes it is 24-32 

nucleotides. The resulting gap is then filled in by DNA synthesis and the 

newly synthesised strand is ligated by DNA ligases (Boiteux and Jinks-

Robertson, 2013). Recognition of the damaged region is ATP-independent; 

however the unwinding of the DNA duplex prior to nuclease excision is ATP-

dependent. (Prakash and Prakash, 2000; Sancar et al., 2004; Wood, 1996). 

Defects in the excision repair pathway cause a photosensitivity syndrome 

called xeroderma pigmentosum, characterised by a high incidence of light 

induced skin cancer.(Cleaver and Bootsma, 1975; Wood, 1996) 

1.3.2.4 Mismatch repair  

Mismatch repair (MMR) targets mismatched bases that occur in DNA 

synthesis or non-identical duplexes are exchanged during recombination 

(reviewed in (Boiteux and Jinks-Robertson, 2013). In E. coli, three dedicated 

proteins function to repair mismatches; MutS homodimer binds mismatches, 

MutL coordinates detection and downstream processes, and MutH nicks the 

nascent strand to initiate the removal of damaged bases. MutH nicks the 

new, unmethylated DNA strand which is then degraded via a helicase (UvrC) 

and a single strand exonuclease. The gap is then filled by DNA polymerase 

and a DNA ligase seals the remaining nick (Boiteux and Jinks-Robertson, 

2013). 

Two families of proteins, MutS homologs (MSHs) and MutL homologs 

(MLHs), form multi-protein heterodimers in yeast, MutH-like proteins are 

absent from eukaryotes. MSH1 is unique to yeast and functions exclusively in 

the mitochondria whereas MSH2 to MH6 are conserved from yeast to 

mammals (Boiteux and Jinks-Robertson, 2013). The heterodimer of 

MSH2/MSH6, known as MutSa plays a major role in the recognition of 

mismatched bases whereas the heterodimer of MSH2/MSH3, known as 

MutSb, primarily functions in the repair of insertion/deletion loops (Fleck and 
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Nielsen, 2004; Modrich and Lahue, 1996). MutS complexes are ATPases 

which require ADP-ATP exchange to convert a mismatch-bound complex into 

a sliding clamp (Hargreaves et al., 2010). 

The four MutL homolog in yeast, MLH1-MHL3 and PMS1, form three 

MutL-like dimeric complexes with Mhl1 being the common component: Mhl1-

Pms1, Mhl1-Mhl2, and Mhl1-Mhl3, referred to as MutLα, MutLβ, and MutLγ 

respectively. MutLα physically interacts with MutSa and MutSb to coordinate 

MMR as well as a exonuclease (Exo1), a DNA N-glycosylase/lyase (Ntg2), 

and a helicase (Sgs1) (Boiteux and Jinks-Robertson, 2013). MutSa, MutSb 

and Mlh1 are all associated with the proliferating cell nuclear antigen (PCNA) 

which aids the detection and affinity to newly synthesised mismatched DNA 

bases. In yeast, ExoI, a 5’ to 3’ exonuclease, is physically associated with 

MSH2 and MLH1. Like prokaryotes, the eukaryotic yeast cell uses 3’ to 5’ 

and 5’ to 3’ exonuclease activity for base correction however the 

discrimination of the nascent strand for the initial DNA nick has yet to be 

elucidated. PCNA and RFC (Replication Factor C) can regulate 3’ to 5’ 

excision activity of ExoI. Once the damaged strand is removed surrounding a 

mismatched base, DNA synthesis occurs by DNA polymerase d, in the 

presence of PCNA and RPA. The remaining nick is then repaired by a DNA 

ligase. (Boiteux and Jinks-Robertson, 2013; Jun et al., 2006; Modrich and 

Lahue, 1996) 

1.3.2.5 Recombinational repair and Double-Strand Break Repair 

Double strand breaks can be the result of ionizing radiation or reactive 

oxygen species (Hefferin and Tomkinson, 2005; Karpenshif and Bernstein, 

2012), and also the normal result of Mating Type switching in budding yeast 

or in the V(D)J immunoglobulin class-switching process (Haber, 2012). DSBs 

may also be formed as a consequence of replication fork arrest. There are 

however two key mechanisms of repair pathway that are utilised in repairing 

DSBs; homologous recombination (HR) and non-homologous end-joining 

(NHEJ) are the principle mechanisms used interstrand crosslinks and double-

strand DNA breaks (Hefferin and Tomkinson, 2005; Peterson and Cote, 

2004) 
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HR can be further sub divided into single strand annealing, gene 

conversion or break-induced replication, with the MAT locus being a model 

for homologous recombination in yeast (Haber, 2012). The initial step of HR 

requires 5’ to 3’ strand resection by the Mre11/Rad50/Xrs2 (MRX) complex 

and the Sae2 endonuclease to leave long 3’ tails.  Invasion of the ssDNA into 

a homologous duplex requires binding by RPA which is then displaced by 

Rad52-dependent loading of Rad51 which displaces RPA (Haber, 2012; 

Sugiyama et al., 1997). The Rad51 filaments are essential for all subsequent 

homology searching; 16bp of homology are required for pairing  and 80bp 

are required for strand exchange (Karpenshif and Bernstein, 2012). Once 

homologous double-stranded DNA is found, the Rad51 filament facilitates the 

invasion of the ssDNA displacing one strand of the duplex DNA leaving the 

complementary strand to serve as a template for repair. This recombination 

structure is known as the displacement-loop (D-loop); the invading strand of 

the D-loop can be extended to repair any missing information. (Karpenshif 

and Bernstein, 2012). Resolution of the D-loop structure can be resolved by 

two different mechanisms; synthesis dependent strand annealing (SDSA) 

and resolution of double-Holliday junctions. In SDSA the invading strand is 

displaced and re-anneal to the other broken chromosome end.  Alternatively 

the second end of the DSB can be captured resulting in the two recombining 

duplexes being covalently joined by single strand crossovers. These 

junctions are resolved by a family of enzymes termed resolvases to separate 

the two duplexes. Resolution can result in a crossover or non-crossover 

product (Agmon et al., 2011; Karpenshif and Bernstein, 2012). 

Non-homologous end joining (NHEJ) binds the two ends of a double 

strand break back together and is a repair mechanism is conserved during 

evolution (Hefferin and Tomkinson, 2005). In S. cerevisiae the Ku70/Ku80 

(Hdf1/Hdf2) heterodimer binds to the two ends of the breaks and recruits the 

Mre11/Rad50/Xrs2 complex to form an end bridging complex between the 

two ends. The NHEJ-specific ligase, Dnl4, associates to the break with the 

associated factor Lif1 which promote Rad27 endonuclease and Pol4-

dependent processing and gap-filling (Hefferin and Tomkinson, 2005). 

Because of this non-specific nature of NHEJ previously unlinked DNA 
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molecules mat be joined resulting in gross chromosomal rearrangements 

(Hefferin and Tomkinson, 2005). Therefore, HR is the more error free 

mechanism for repairing physical breaks in the DNA strand, however NHEJ 

is more common in human cells (Daley et al., 2005). 

 

1.3.3 DNA damage cell cycle checkpoints 

Cell cycle progression can be delayed or arrested at a number of DNA 

damage checkpoints when the integrity of the DNA is ‘checked’ before 

progression is permitted (Hartwell and Weinert, 1989). Eukaryotic cells have 

four distinct phases within the cell cycle, G1, S, G2, and M, with one outside 

the cell cycle G0  (Longhese et al., 1998). DNA damage checkpoints are not 

activated by DNA damage, rather the checkpoint pathways operate under 

normal growth conditions and they are upregulated in response to DNA 

damage to prevent cell cycle progression The proteins that are involved in 

the DNA checkpoint pathways are therefore the same as those that regulate 

the tightly controlled transition between G1/S, G2/M and S phase 

progression. (Nyberg et al., 2002).  The checkpoint pathway has four 

conceptual stages, DNA damage sensing, signal mediators, signal 

transducers, and effectors. Many of the proteins involved are shared at each 

checkpoint and may have more than one role in the signalling pathway 

(Houtgraaf et al., 2006).  

Sensors of DNA damage are required to initiate subsequent steps and 

in S. cerevisiae these are Rad9, Rad17, Rad24, Mec3 and Ddc1 (Durocher 

and Jackson, 2001; Paulovich et al., 1998). These proteins recognise or 

modify DNA damage and activate signal transducers (Paulovich et al., 1998). 

The transducers can be can be split into two checkpoint-specific damage 

sensors: the phosphoinositide 3-kinase-like kinase (PIKK) family members; 

Mec1 and Tel1 in budding yeast (ATR and ATM in mammals), and the 

RFC/PCNA-like proteins; Rad24 in budding yeast (Houtgraaf et al., 2006; 

Longhese et al., 1998). Mec1 is essential whereas the loss of Tel1 does not 

result in a checkpoint phenotype however overexpression of Tel1 can 

suppress the phenotype of Mec1 suggesting some functional overlap (Carr, 

1997). Mec1 has significant sequence homology to phosphoinositide kinase 
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and upon sensing of DNA damage Mec1 hyperphosphorylates the signal 

transducer Rad9 (Emili, 1998)  

Mec1, with the aid of Rad9, phosphorylates proteins such as Chk1 and 

Rad53 and these effectors regulate the transcription of cyclins that are 

required for cell cycle progression (Carr, 1997). The G1/S checkpoint 

recognizes the presence of damaged DNA during G1 and will delay the onset 

of S phase and DNA replication and the intra-S phase checkpoint will stall 

ongoing replication and initiation of late firing replication origins (Siede et al., 

1994). Detection of DNA damage at the G2/M cell cycle checkpoint will delay 

mitosis to prevent segregation of chromosomes (Weinert et al., 1994). 

 

1.4 Eukaryotic transcription 

The basic mechanism of transcription, not taking account chromatin, is 

similar between prokaryotes and eukaryotes; the RNA polymerase binds a 

specific promoter region with specificity provided by accessory DNA binding 

factors (the basal transcription factors in eukaryotes and the sigma factor in 

prokaryotes). In eukaryotic protein-coding genes RNA polymerase II (Pol II) 

will bind upstream of the transcriptional start site of the open reading frame 

(ORF) mediated through recruitment by general transcription factors (GTFs) 

TFIID, TFIIA, and TFIIB that place Pol II at the core promoter, to form a 

molecular aggregate termed the preinitiation complex (PIC). RNA synthesis 

is initiated by TFIIH, a helicase, which denatures approximately 15bp of DNA 

that can be bound by Pol II. Phosphorylation of the Pol II C-terminal domain 

(CTD) by TFIIH results in the dissociation of the PIC as it proceeds into the 

elongation stage of synthesis (Li et al., 2007). This process is complicated 

upon addition of nucleosomes and other chromatin particles as these 

antagonise the binding of the transcriptional machinery (Figure 1.6) (Li et al., 

2007; Rando and Winston, 2012). 

Generally, histone modifications that are associated with active 

transcription are termed euchromatin modifications whereas those 

associated with inactivation of genes or regions of DNA are termed 

heterochromatin modifications (Berger, 2007; Kouzarides, 2007). The 
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location of the modification (5’ and 3’ of the ORF, the core promoter and the 

upstream region) is tightly regulated as to ensure the desired effect on 

transcription, (Li et al., 2007). These modifications are driven by highly 

specific enzymes that add or remove moieties to change the interaction 

between DNA and histone proteins (Rando and Winston, 2012).  
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1.5 Chromatin structure 

The repeating unit of chromatin is the nucleosome, 147 base pairs of 

DNA wrapped 1.65 times around a histone octamer formed by two dimers of 

H3-H4 that form a stable tetramer, and flanked by two separate H2A-H2B 

dimers Histone proteins interact through a hydrophobic core termed the 

globular domain and histone fold domain (Figure 1.7) (Luger et al., 1997)..  

Nucleosomes interfere with access to DNA of other proteins in the 

nucleus, for example transcription factors, as the histones tightly bind DNA to 

their surface (Chodaparambil et al., 2006). Protein-DNA interactions occur 

through salt links and hydrogen bonds. The bulk of the DNA-protein 

interactions are between basic and hydroxyl side groups of histones and 

phosphates in the DNA backbone (Richmond and Davey, 2003). The 14 

histone/DNA interactions that are present in the nucleosome form a highly 

stable protein-DNA structure that is well suited for the packaging function of 

chromatin (Peterson and Laniel, 2004; Richmond and Davey, 2003). 

Chromatin structure has to be dynamic to allow protein-DNA 

interactions to occur and to allow nuclear processes such as transcription 

and repair to proceed (Chodaparambil et al., 2006). Each histone protein has 

an approximately 35 amino acid tail protruding from the nucleosome core of 

globular domains. These tails are rich in basic residues and are key targets 

for post-translational modifications that may alter histone/DNA interactions 

(Peterson and Laniel, 2004). The histone scaffold can also be altered by the 

exchange of histone proteins in the nucleosome core. In general the dimer of 

H2A and H2B is easily exchanged in and out of the nucleosome core and 

under certain conditions the entire histone octamer can be exchanged 

(Sarma and Reinberg, 2005). There are two basic modes of chromatin 

regulation; residues on the histone proteins can be modified to alter 

DNA/protein interactions or ATPase dependent complexes can evict, 

reposition, slide or exchange histones to regulate access to chromatin. Each 

mode of chromatin modification requires its own subset of enzymes, however 

many of the pathways overlap and in reality most modifications require a 

combination of the two (Zentner and Henikoff, 2013).  
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1.5.1 Covalent histone modification 

Histone proteins form direct interactions with the DNA strand which 

can be reversibly modified as to alter the local chromatin environment and to 

result in a biological function. With one exception (histone methylation) 

histone modifications result in a change in the net charge of the nucleosome, 

this may strengthen or weaken the histones interaction with the negatively 

charged DNA (Strahl and Allis, 2000). Histone modifications also alter the 

interaction between the histone proteins which facilitates histone protein 

displacement (Peterson and Laniel, 2004).  Histone modifications imprint the 

chromatin code which influences chromatin structure, such as further 

condensation, for example the acetylation of H4K16 that antagonises the 

formation of a 30nm fibre. Modifications also recruit other nonhistone proteins 

that modify chromatin dynamics and function such as ATP-dependent 

remodelling enzymes. (Shogren-Knaak et al., 2006; Strahl and Allis, 2000).  

At least 11 types of post-translational modification have been identified 

on 60 different residues of histone proteins and the modifications are 

dynamic so both enzymes that add and remove the modification have been 

identified (Bannister and Kouzarides, 2011; Tan et al., 2011; Zentner and 

Henikoff, 2013). There are functionally distinct chromatin environments, 

however modifications are context dependent and their effect on DNA 

processes vary (Berger, 2007) The full spectrum of modifications that occur 

in budding yeast and mammals vary. Because this thesis concerns work in 

budding yeast, only those modifications found in this organism are discussed 

in detail below (Figure 1.8): 

1.5.1.1 Acetylation 

Histone acetyltransferases (HATs) are divided into three main families, 

GNAT (including yeast Gcn5 (Sternglanz and Schindelin, 1999)), MYST 

(including yeast Sas2 (Sutton et al., 2003)), and CBP/p300 (including yeast 

Rtt109 (Bazan, 2008)). Gcn5, like all those in the GNAT (Gcn5-like N-

acetyltransferases) acetylates conserved amino acids by transferring an 

acetyl group from a bound acetyl CoA onto a primary amino group, for 

example the ε-amino group of lysine which neutralises the lysines positive 

charge (Sternglanz and Schindelin, 1999). The MYST protein lysine 
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acetyltransferases are conserved throughout eukaryotes and include Sas2, 

the catalytic subunit of the SAS complex and Esa1, the catalytic subunit of 

the NuA4 complex (Shia et al., 2005). 

Acetyltransferases are invariably associated with the activation of 

transcription, and most acetylation occurs in the N-terminal tail of histones 

and generally acetyltransferases modify more than one lysine residue (Tan et 

al., 2011). In yeast the NuA4 histone acetyltransferase (HAT) is responsible 

for the acetylation of H4 and H2A. The catalytic subunit of NuA4, Esa1, is the 

only essential HAT in yeast, and is required for cell cycle control and 

transcriptional regulation (Allard et al., 1999) The SAS complex however 

specifically acetylates H4 lysine 16 to antagonize the spreading of a 

repressive chromatin structure at silent loci (Shia et al., 2005) 

Acetylation of lysine residues of H3K9, and H3K14 and histone H4 by 

the transcriptional coactivator NuA4 histone acetylase (HAT) are found in 

nucleosomes surrounding transcriptional start sites (Doyon and Cote, 2004; 

Liu et al., 2005; Roh et al., 2004; Zentner and Henikoff, 2013).  

Phosphorylation of H3S10 by the kinase Snf1 regulates gene activation by 

the recruitment of the histone acetylase complex, SAGA, which acetylates 

H3K14 through its catalytic subunit Gcn5 (Lo et al., 2001).  In yeast, the level 

of acetylation of H3 and H4 are proportional to the level of transcription 

(Pokholok et al., 2005) and this acetylation is provided by the histone acetyl 

transferases (HATs) Gcn5 and Esa1 which are generally recruited to 

promoters (Robert et al., 2004). 

1.5.1.2 Deacetylation 

Opposing transcriptional activation by acetylation, histone 

deacetylases (HDACs) remove acetyl groups from amino acids restoring the 

positive charge. HDACs are generally non-specific and are present in 

numerous repressive chromatin complexes. HDACs fall into four distinct 

classes of enzymes, with yeast Rpd3 and Hda1 defining classes I and II 

respectively. Class III HDACs are homologous to yeast Sir2 and require a 

coactivator for activity, NAD+ (Bannister and Kouzarides, 2011). HDAC11 is 

the unique member of class IV HDACs suggesting it has an  non-redundant 

function however it is found all eukaryotes with the exception of fungi 
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suggesting other HDACs perform these functions in yeast (Minucci and 

Pelicci, 2006). 

1.5.1.3 Phosphorylation 

Histone phosphorylation takes place on serine and threonine residues 

predominantly in the N-terminus of histone tails. The level of phosphorylation 

is a dynamic balance between kinases and phosphatases that are 

responsible for the modifications (Zentner and Henikoff, 2013). ATP is 

required for the reaction as inorganic phosphate from the ATP molecule is 

added to the hydroxyl side group of a targeted amino acid and addition of a 

phosphate group adds a significant negative charge to the histone (Bannister 

and Kouzarides, 2011). Snf1 is a threonine/serine specific kinase activated 

by AMP, and is required for the regulation of glucose-repressible genes by 

phosphorylating histone protein H3. Snf1 belongs to a highly conserved 

family of threonine/serine kinases, AMP-activated protein kinases (AMPK) 

(Amodeo et al., 2010).  

In S. cerevisiae phosphorylation of histone protein H2A occurs on 

Ser129 in response to a double-strand DNA break in order for efficient repair 

of the chromosomal lesion. (Harvey et al., 2005; Zentner and Henikoff, 2013). 

A similar modification can also be seen in mammalian cells where histone 

protein H2A.X is phosphorylated at the C-terminus on Ser139 and the 

phosphorylation of the mammalian histone protein is dependent upon the 

DNA-dependent protein kinases (DNA-PK), ataxia-telangiectasia mutated 

(ATM) and AT-related (ATR) kinases (Zentner and Henikoff, 2013). Yeast 

contains ATR/ATM homologues Mec1 and Tel1 which phosphorylate yeast 

H2A which is required for repair of DSBs by non-homologous end joining 

(NHEJ) (Cheung et al., 2005). 

An early signal of DNA damage is the extensive phosphorylation of the 

histone variant γ-H2AX (mammalian cells) or H2AX (yeast) and histone 

phosphorylation is extensive and covers many kilobases surrounding the site 

of damage. Double-strand DNA breaks can be repaired via two mechanisms, 

non-homologous end joining (NHEJ) and homologous recombination. Mec1-

dependent phosphorylation of H2AS129 and Casein kinase II 
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phosphorylation of H4S1 play a role in NHEJ of DSBs (Cheung et al., 2005; 

Downs et al., 2000). 

1.5.1.4 Lysine and arginine methylation 

Lysine methyltransferases have enormous specificity compared to 

acetyltransferases, having just a single target residue on a single histone 

however this modification does not alter the charge of the histone protein 

(Zentner and Henikoff, 2013). This is a more complex modification as the 

amino group of lysine can be mono-, di- or tri methylated. In yeast lysine 

methylation is found on histone H3 and histone H4 which suppresses histone 

exchange and is mediated by the methyltransferase Set2. Set2 actively 

methylates lysine residues in the wake of transcribing RNA Pol II to recruit 

histone deacetylases in order to restore normal chromatin after transcription 

and to inhibit inappropriate initiation within coding regions (Lee and 

Shilatifard, 2007).  

Protein arginine methyltransferases (PRMTs) are recruited to 

promoters by transcription factors and can fall into four classes depending on 

their action. Asymmetric- and symmetric-dimethylation are catalysed by the 

type-I or type-II class respectively whereas the type III class catalyses mono-

methylation. To date class IV is unique to S. cerevisiae and catalyses the 

methylation of the Δ-nitrogen atom of the guanidine group. Methylation of 

arginine involves the addition of one or two methyl groups to the guanidine 

group by the transfer of a methyl group from SAM (S-Adenosyl methionine). 

In budding yeast the enzyme Hmt1 is a type I PRMT and catalyses the 

formation of mono- and asymmetric di-methylarginine and is conserved 

throughout eukaryotes though there are differences in biological function. In 

budding yeast arginine methylation of histone proteins is associated with 

transcriptional repression however in higher eukaryotes the converse is true 

(Low and Wilkins, 2012). 

Methylation of lysine residues have different effects transcription, 

histone 3 lysine 4 (H3K4) by the methylase Set1 functions to activate 

transcription (Zentner and Henikoff, 2013). Methylation of H3K4 occurs on a 

gradient across the gene with the 5’ being tri-methylated which shifts to mono 

and di methylated when moving towards the 3’ (Liu et al., 2005). Methylation 
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H3K36 by Set2 also correlates with active gene expression (Krogan et al., 

2003b). In fission yeast (S. pombe) and higher eukaryotes variable levels of 

methylation of H4K20 lead to different downstream responses; mono- and di-

methylation is required for the recruitment of repair factors in response to 

DNA damage  (Sanders et al., 2004; Southall et al., 2014) whereas tri-

methylation is a mark of heterochromatin (Schotta et al., 2004). Methylation 

of arginine residues on H3 occurs in mammalian cells to activate transcription 

(Li et al., 2007). 

1.5.1.5 Demethylation 

It was originally believed that histone methylation is a stable and static 

modification however a number of pathways have been discovered that can 

reverse the modification. There are two distinct demethylase domains with 

distinct catalytic reactions; the LSD1 (lysine-specific demethylase 1) domain 

which uses FAD as a co-factor, and the JmjC (Jumonji) domain found in the 

yeast protein JmjD2. Demethylases have a high level of substrate specificity 

and are sensitive to the level of methylation (Bannister and Kouzarides, 

2011). 

1.5.1.6 Ubiquitylation 

This is a large covalent modification in which ubiquitin, a 76-amino 

acid polypeptide, is attached to lysines of the histone proteins (Zentner and 

Henikoff, 2013). Ubiquitylation occurs in three steps by distinct enzymes, 

activation, conjugation and ligation. The complexes have substrate specificity 

and catalyse varying degrees of ubiquitylation, either mono- or poly-

ubiquitylated (Hershko and Ciechanover, 1998). In yeast the enzyme Ubp8 is 

responsible for the process of deubiquitylation and falls into the family of 

isopeptidases which are important in gene activity and silencing. 

Ubiquitination is a modification that is more extensively observed in 

mammalian systems however this modification is facilitated in budding yeast 

by the Rad6 ubiquitin ligase of H2B K123 (Robzyk et al., 2000) and can 

result directly in gene repression (Turner et al., 2002). It must be noted 

however that Rad6 can also indirectly result in gene activation through its 
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ubiquitinating activity on proteins involved in the DNA damage response 

pathway (Fu et al., 2008). 

1.5.1.7 Sumoylation 

In a mechanistically similar process to ubiquitylation, modifier 

enzymes covalently attach ubiquitin-like small molecules, SUMO, to histone 

proteins (Seeler and Dejean, 2003). Specific sites for sumoylation have been 

identified on histones H4, H2A, and H2B and it is known to take place on H3. 

Sumoylation antagonises acetylation and ubiquitylation modifications as 

these occur on the same residues (Nathan et al., 2006). 

1.5.1.8 Deimination (citrullination) 

This modification involves the conversion of an arginine residue to a 

cirtulline; this reaction removes the positive arginine as it is replaced by the 

neutral citrulline (Takahara et al., 1985). This modification antagonises the 

effect of arginine methylation as citrulline cannot be methylated (Cuthbert et 

al., 2004).  

1.5.1.9 ADP Ribosylation 

Arginine and glutamate residues can be mono- and poly- ADP 

ribosylated by the poly-ADP-ribose polymerase (PARP) family of enzymes. 

This reaction can be reversed by the poly-ADP glycohydrolase family of 

enzymes. Histone mono-ADP-ribosylation is performed by mono-ADP-

ribosyltransferases and the modification increases the negative charge of the 

histone changing the chromatin structure (Zentner and Henikoff, 2013).  This 

modification significantly increases upon DNA damage and poly-ADP 

ribosylation is greatly increased over heat shock genes and is linked with 

nucleosome eviction (Hassa et al., 2006; Zentner and Henikoff, 2013). 

1.5.1.10 Proline Isomerization 

Prolines in the tail of H3 can undergo a conformational change from a 

cis to trans conformation changing the dihedral angle of the peptidyl peptide 

bond by 180º. Proline isomerases catalyse this interconversion and a 

conformational change in the proline will severely distort the polypeptide 
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backbone (Schmid, 1995). The budding yeast proline isomerase Fpr4 

belongs to the family of FK506-binding protein (FKBP) family of peptidyl 

prolyl iosomerases (Gothel and Marahiel, 1999; Monneau et al., 2013). Fpr4 

was identified as a histone chaperone protein (Xiao et al., 2006) and further 

investigation has shown that Fpr4 isomerises histone protein H3 P38 in order 

to inhibit the methylation of H3K36 by Set2 in order to regulate transcription 

(Nelson et al., 2006) 
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1.5.2 Histone variants 

Another method for altering the direct physical structure of the 

nucleosome is by incorporation of histone variants (Sarma and Reinberg, 

2005). The genes expressing canonical histones H2A, H2B, H3 and H4 are 

normally present in multiple copies in eukaryotic genomes and are expressed 

in a highly regulated process during S phase (Gunjan et al., 2005). However, 

single copy histone variant genes are also present in many eukaryotes and 

are expressed, and incorporated into chromatin in a DNA-replication 

independent manner (Linger and Tyler, 2006). Differences between the 

canonical histone proteins and the variants are found in the histone tails and 

the histone fold domains though sites of modification are often conserved 

suggesting that variants are readily interchangeable with the canonical 

proteins and chromatin regulatory proteins with equal affinity (Eriksson et al., 

2012; Linger and Tyler, 2006). ATPase-dependent reactions are required to 

catalyse the exchange of histone proteins in the histone core (Bruno et al., 

2003). Mammalian systems have a variety of histone variants such as that  of 

H3, H3.3 which activates transcription by incorporation into the transcribing 

region that allows elongation during RNA synthesis (Ahmad and Henikoff, 

2002). Similarly H2A has four variants each with a distinct function that 

prevent nucleosome sliding, repress initiation and transcription, and used to 

inactivate the X chromosome (Kamakaka and Biggins, 2005). Interestingly 

however the canonical H2A protein in S. cerevisiae is more similar to the 

mammalian H2A.X variant and instead has a variant that is more similar to 

H2AZ called Htz1 (Malik and Henikoff, 2003). High resolution maps of the 

yeast genome reveal that Htz1-containing nucleosomes flank the NFR and 

are resistant to elongation modifications and remodelling. However, upon 

transcriptional activation it is readily evicted from the promoter which either 

allows for the mobilization of other nucleosomes or to make the DNA 

sequence completely accessible (Zhang et al., 2005). Incorporation of Htz1 is 

required to prevent the spreading of silent chromatin in telomeric regions 

(Krogan et al., 2003a) 
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1.5.3 ATP-dependent chromatin remodelers  

The second class of enzymes require an ATPase subunit to disrupt 

nucleosome/DNA contacts, reposition nucleosomes or exchange histone 

proteins forming DNA loops that alter the accessibility of transcription factors 

to DNA (Li et al., 2007; Narlikar et al., 2013). Many of these complexes are 

essential for viability in both yeast and mammalian cells highlighting their 

essential role on cellular processes (Flaus and Owen-Hughes, 2011; Narlikar 

et al., 2013). The first of these ATP-dependent chromatin remodelers was 

identified in mutant yeast strains defective in mating-type switching and 

defective in growth on sucrose media. As a result they were named SWI 

(SWItching deficient) and SNF (Sucrose NonFermenting) and were shown to 

alter chromatin structure (Hargreaves and Crabtree, 2011; Narlikar et al., 

2013). The genes containing these mutations were identified to be SWI2 and 

SNF2, part of the multi-subunit complex named SWI/SNF. SWI/SNF is 

required for transcription by sequence-specific transcription factors such as 

GAL4. Therefore SWI/SNF is a general activator of transcription in 

coordination with sequence specific trans-activating factors (TFs) and the 

histone acetylase Gcn5 (Rando and Winston, 2012). The SWI/SNF family 

has now been shown to be evolutionary conserved in flies, plants and 

mammals and all of the complexes contain an ATPase subunit that belongs 

to the SNF2 superfamily. Since then 17 ATPases have been added to the 

Snf2 superfamily with 4 separate complex families of ATP-dependent 

chromatin remodelers have been identified (Clapier and Cairns, 2009; Flaus 

and Owen-Hughes, 2011; Narlikar et al., 2013)  

In yeast there are defined nucleosome free regions (NFR) of 

approximately 200bp at promoter regions of coding regions. These regions 

are flanked by positioned nucleosomes and the maintenance of the NFR by 

ATP-dependent remodelers is essential for transcriptional regulation, as 

highlighted at a number of yeast promoters (Burns and Peterson, 1997; Kent 

et al., 2001; Moreira and Holmberg, 1999) Nucleosomes antagonise the 

passage of RNA Pol II along the DNA strand and evidence is emerging that 

ATP-dependent chromatin complexes help RNA Pol II pass through 

nucleosomes (Li et al., 2007). For example it has been demonstrated that the 
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ATPase dependent chromatin remodeler RSC (Remodels the Structure of 

Chromatin) helps RNA Pol II continue after stalling at a nucleosome (Carey 

et al., 2006). Interestingly this reaction is promoted by histone acetylation, a 

noteworthy observation as the RSC complex contains multiple 

bromodomains in a number of subunits as detailed later in this chapter. 

1.5.3.1 Mechanism of ATP-dependent chromatin remodelling 

The structure of the RSC-nucleosome complex shows that the 

nucleosome binds into a central cavity within the RSC complex. The 

nucleosomal DNA appears to bulge out away from the complex whereas the 

RSC-nucleosome complex appears stable (Chaban et al., 2008). This is 

consistent with the hypothesis that RSC translocates DNA around the histone 

octamer rather than displacing the histone octamer (Chaban et al., 2008; 

Saha et al., 2005). It has since been shown that,  in an ATP-dependent 

manner, DNA is uncoupled from the histone forming small DNA loops which 

can propagate around the surface of the octamer leading to repositioning (Liu 

et al., 2011; Lorch et al., 2010).  

 

1.5.4 ATP-dependent chromatin remodeler families 

1.5.4.1 SWI/SNF Family 

The SWI/SNF family has two complexes in yeast; SWI/SNF and RSC. 

Both are multi-subunit complexes containing a highly conserved ATPase 

subunit belonging to the Snf2 superfamily; Swi2/Snf2, and Sth1 (Flaus and 

Owen-Hughes, 2011). Yeast SWI/SNF complex contains 11 subunits and 

has been shown to be involved in transcriptional regulation (Rando and 

Winston, 2012). RSC (Remodels the Structure of Chromatin) is a highly 

related complex, and many subunits are homologues of SWI/SNF complex 

and indeed the complexes share two subunits. RSC is far more abundant 

than SWI/SNF and is essential for viability (Mohrmann and Verrijzer, 2005). 

In general, SWI/SNF complexes appear to destabilise histone/protein 

interactions (Clapier and Cairns, 2009). RSC is described in further detail 

later in this section (Section 1.6). Humans contain two highly similar 

SWI/SNF-like multisubunit complexes defined by unique subunit composition 
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and the DNA-dependent ATPase/helicase subunits, hBRG1 or hBRM, both 

highly homologous to Swi2/Snf2 (Wang, 2003). Both complexes share at 

least 7 subunits, though SWI/SNF-A, also known as BAF contains either 

BRG1 or hBRM and BAF250 whereas SWI/SNF-B, also known as PBAF 

contains only BRG1 and three unique subunits, BAF200, BAF180 and BRD7. 

The complex PBAF is also known as polybromo due to the six 

bromodomains found in the subunit BAF180. (Mohrmann and Verrijzer, 

2005). This single subunit has surprising homology to three of the yeast RSC 

complex subunits, Rsc1, Rsc2, and Rsc4, which between them contain 6 

highly homologous bromodomains and two bromo-adjacent homology 

domains (Brownlee et al., 2012; Mohrmann and Verrijzer, 2005).  

In yeast, RSC is essential and highly abundant in contrast to the non-

essential SWI/SNF complex. The two complexes have distinct targets in 

transcriptional regulation and are involved in cell cycle progression; the 

functions of RSC are described in extensive detail below (Section 1.6) 

(Mohrmann and Verrijzer, 2005). Origins of DNA replication in S. cerevisiae 

are characterised by short (approximately 11bp) essential DNA sequences 

called autonomously replicating sequences or ARS elements. DNA 

replication is initiated by the recruitment of the origin replication complex 

(ORC) and the chromatin structure around ARS elements is dependent on 

SWI/SNF (Brown et al., 1991; Flanagan and Peterson, 1999). SWI/SNF is 

recruited to acetylated histones through bromodomains and is important for 

histone eviction in transcriptional activation and in transcriptional elongation 

(Chatterjee et al., 2011; Schwabish and Struhl, 2007) 

1.5.4.2 INO80/SWR1 Family 

The INO80 subfamily, including INO80, SWR1 and Fun30 complexes, 

is characterized by a split ATPase domain in the core ATPase subunit and 

the presence of two RuvB-like proteins (Bao and Shen, 2007b). The INO80 

complex consists of 15 principal subunits including Rvb1 and Rvb2, proteins 

conserved from yeast to mammals, Ino80 is the ATPase/helicase domain of 

the complex and is the largest subunit (Bao and Shen, 2007b; Udugama et 

al., 2011). INO80 is important for transcriptional activation of a number of 

genes and was originally identified by mutants that affect inositol biosynthesis 



43 

 

(Ebbert et al., 1999; Shen et al., 2000). The chromatin remodelling activity of 

INO80 can mobilise nucleosomes in an ATP-dependent manner (Shen et al., 

2003) and is recruited to double-strand breaks sites by phosphorylated H2AX 

and for nucleosome eviction prior to DNA repair by homologous 

recombination (Morrison et al., 2004; van Attikum et al., 2004) INO80 is also 

required to maintain proper chromatin structure at centromeres in order to 

maintain proper ploidy within cells (Chambers et al., 2012b). In yeast, H2A.Z 

nucleosomes are mislocalized in the absence of INO80 as INO80 has a 

histone exchange activity to which replaces nucleosomal H2A.Z/H2B with 

free H2A/H2B dimers in order to promote genomic stability (Papamichos-

Chronakis et al., 2011). 

 The SWR1 complex contains 14 proteins and four of these subunits 

are also found In INO80, the ATPase subunit is the Swi2/Snf2-related 

ATPase Swr1 (Mizuguchi et al., 2004). Budding yeast has two main histone 

variants Htz1 and centromeric H3 (Cse4); Htz1-H2B dimer is a exchanged for 

the H2A-H2B dimer by the SWR1 complex in order to promote transcription 

by preventing chromatin silencing (Mizuguchi et al., 2004; Raisner and 

Madhani, 2006) Htz1 is enriched in promoter regions of chromatin, in a 

replication independent manner,  to mark promoters for proper activation 

(Bao and Shen, 2007b; Li et al., 2005; Meneghini et al., 2003). 

 Fun30 is closely related to SWR1 and INO80, Fun30 also genetically 

interacts with four subunits of the SWR1 complex suggesting a functional 

connection (Durr et al., 2006; Krogan et al., 2003a). Fun30, like INO80, can 

promote non-specific histone dimer exchange and therefore contributes to 

the global distribution of H2A.Z in the genome (Papamichos-Chronakis et al., 

2011). Fun30 is also enriched over centromeres and positions nucleosomes 

flanking centromeres and the core centromere nucleosome (Durand-Dubief 

et al., 2012). Fun30 also has an ATP-dependent nucleosome sliding activity 

that has a role in specific gene repression of functionally grouped genes  by 

positioning the -1, +2, and +3 nucleosomes (Byeon et al., 2013). Fun30 also 

has a redundant role in promoting resection of DNA double-strand break 

ends by remodelling nucleosomes to facilitate Exo1-mediated strand 

resection (Chen et al., 2012)  
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1.5.4.3 ISWI family 

The ATPase subunit of these related complexes is the ISWI proteins 

Isw1 and Isw2 (Imitation SWI) (Mellor and Morillon, 2004). Remodelers are 

further characterised by C-terminal SANT domains and SLIDE domains: 

putative DNA and nucleosome binding motifs (Corona and Tamkun, 2004; 

Eberharter and Becker, 2004). In flies there are three complexes in this 

family, ACF (ATP-utilising chromatin assembly and remodelling factor), 

NURF (nucleosome remodelling factor) and CHRAC (chromatin accessibility 

complex) (Vignali et al., 2000). S. cerevisiae has two non-essential 

homologs, Isw1 and Isw2, which appear in distinct complexes (Corona and 

Tamkun, 2004). Isw1 either forms a complex with loc3 (Isw1a complex) or 

loc2 and loc4 (Isw1b complex). Isw2 interacts with ltc1 to form the Isw2 

complex (Mellor and Morillon, 2004).  

The Isw1 and Isw2 complexes interact with DNA and nucleosomal 

arrays to space nucleosomes in an ATP-dependent manner (Mellor and 

Morillon, 2004). Mutations in Isw1 result in the derepression of a number of 

genes, ISWI can repress transcription through spacing and sliding activity 

(Hughes et al., 2000; Kassabov et al., 2002). Isw1 represses transcription by 

remodelling chromatin in the mid-coding region whereas Isw2 maintains 

repressive chromatin at gene ends (Goldmark et al., 2000; Tirosh et al., 

2010). Isw1 remodelling complex may be involved in silencing gene 

expression involving the Sir2 deacetylase by binding over coding regions and 

preventing histone exchange (Mellor and Morillon, 2004; Smolle et al., 2012).  

1.5.4.4 CHD (Mi-2) family 

The CHD (Chromodomain Helicase DNA-binding) family is 

characterised by the presence of tandem chromodomains in the N-terminal 

region and the SNF2-like ATPase domain in the central region of the protein 

structure (Marfella and Imbalzano, 2007). The CHD family has three 

subfamilies; Chd1-Chd2, Chd3-Chd4 and Chd5-Chd9 families however  

budding yeast contains a single CHD family remodeler, the monomeric Chd1 

remodeler and belongs to the Chd1-Chd2 subfamily (Marfella and Imbalzano, 

2007).  
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The chromodomain (chromatin organisation domain) serves to mediate 

interactions between the complex and DNA, RNA and methylated histone H3 

(Marfella and Imbalzano, 2007). CHD1 in budding yeast functions, in a 

similar way to the Isw1a and Iswb complexes, to slide nucleosomes along 

DNA in a highly directional manner (McKnight et al., 2011; Stockdale et al., 

2006). The CHD1 complex is required to space nucleosomes within coding 

regions and deletion of Chd1 results in the loss of regular spacing between 

nucleosomes in coding regions (Gkikopoulos et al., 2011; Narlikar et al., 

2013). Chd1 interacts with transcription elongation factors suggesting it has a 

role in mediating the passage of RNA polymerases through the coding region 

(Simic et al., 2003). Similar to ISWI, the loss of Chd1 results in an increase of 

histone exchange, an increase in  histone acetylation over the coding region, 

and an increase in transcription (Smolle et al., 2012) 
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1.6 The RSC complex 

The RSC (Remodels the Structure of Chromatin) complex is an 

essential  ATPase dependent chromatin remodeler in S. cerevisiae and is 

part of the SWI/SNF family, initially discovered in 1996 (Cairns et al., 1996). 

The SWI/SNF (SWItch deficient/Sucrose Non Fermenting) family is defined 

by the presence of a Snf2 superfamily ATPase subunit, in RSC this is Sth1. 

RSC shares subunits with the SWI/SNF complex, a second SWI/SNF family 

chromatin complex in yeast but RSC is much more abundant in the cell 

(Cairns et al., 1996). 

RSC is a 17 subunit protein complex that exists in two functionally 

different isoforms defined by the presence of either the Rsc1 or Rsc2 protein 

(Chambers et al., 2012a; Kent et al., 2007). As shown in Figure 1.9 RSC 

contains a core structure with Sth1, Rsc8, Rsc6, Rsc4, Rsc1 or Rsc2, Sfh1, 

Arp7, Arp9, Rsc58, and Rsc9 (Cairns et al., 1999; Chambers et al., 2012a). 

RSC also contains a fungal specific module containing Rsc7/Npl6, 

Ldb7/Rsc14, Rsc3, Rsc30 and Htl1 (Wilson et al., 2006). Some evidence 

suggests that approximately 10-20% of the RSC complexes found in yeast 

exist without the Rsc3/Rsc30 heterodimer termed RSCa (Cairns et al., 1996; 

Chambers et al., 2012a)  

 

1.6.1 RSC subunits and function 

The subunits of the RSC complex have been studied in isolation, 

though two subunits (Arp7 and Arp9) are shared between RSC and SWI/SNF 

complex (Tang et al., 2010). Each of the subunits and their functions are 

reviewed below: 

 

Sth1  

Each RSC complex contains a single Sth1 molecule; Sth1 (Snf Two 

Homolog) is the essential ATPase dependent subunit of RSC and is part of 

the Snf2 superfamily of ATPases and is essential for mitotic growth in yeast. 

(Du et al., 1998; Laurent et al., 1992; Tsuchiya et al., 1998). Both Sth1 and 

Snf2 have nucleoside triphosphate-binding sites and helicase motif 

sequences that are conserved amongst other eukaryotic proteins (Laurent et 
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al., 1992). Sth1 contains a 75 amino acid C-terminal bromodomain which is 

essential for the interaction with histones and is distinct from the 

bromodomain of Snf2 (Du et al., 1998). Temperature sensitive mutants of 

Sth1 have been extensively used to interrogate the local and global function 

of RSC in budding yeast. At restrictive temperatures there are changes in 

chromatin structure surrounding the centromere and the expression profile of 

meiotic genes suggesting that RSC has essential functions distinct from 

SWI/SNF (Du et al., 1998; Tsuchiya et al., 1998; Yukawa et al., 1999). 

Through the hydrolysis of ATP via the Sth1 subunit, RSC remains 

bound to a histone octamer and translocates the DNA strand around the 

octamer (Saha et al., 2002). Models of RSC-dependent translocation suggest 

that RSC forms an intranucleosomal DNA loop which allows the nucleosome 

to translocate approximately 20bp along the DNA strand (Fischer et al., 2007; 

Zhang et al., 2006) 

 

Rsc1/Rsc2 

Rsc1 and Rsc2 are likely to have occurred through a genome 

duplication event thus are highly similar in amino acid sequence and they 

share the same domain organisation but they exist in two separate isoforms 

of the RSC complex and have distinct functions. Loss of either Rsc1 or Rsc2 

does not affect cell growth but loss of both causes lethality suggesting Rsc1 

and Rsc2 have related but non-identical function. (Cairns et al., 1999; 

Chambers et al., 2012a). Both have two bromodomains, a bromo-adjacent 

homology domain, an AT hook. Both also have a C terminal tail which is 

required for recruitment of Rsc1 and Rsc2 into the RSC complex (Cairns et 

al., 1999). Homologous complexes such as PBAF in humans contain an AT 

hook in the ATPase subunit but the ATPase subunit of RSC, Sth1, does not. 

It is therefore suggested that the AT hook in Rsc1 and Rsc2 may perform the 

function of the AT hook, normally found in the ATPase subunit (Cairns et al., 

1999). The AT-hook is associated with transcription factors and proteins that 

affect chromatin structure and is a short DNA-binding motif and prefers to 

bind with the minor groove of DNA (Huth et al., 1997) 
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One of the bromodomain-2 (BD2) is essential for the survival of yeast, 

this may be BD2 of either Rsc1 or Rsc2, whereas bromodomain-1 (BD1) is 

non-essential (Cairns et al., 1999). Little evidence exists of Rsc1/Rsc2 BDs 

binding preference but some research suggests that they have a binding 

preference for H3K14ac (Zhang et al., 2010). The approximate 130 amino 

acid bromo-adjacent homology (BAH) domain was named because it was 

originally discovered adjacent to bromodomains through the vertebrate 

protein PBAF (polybromo) and the yeast protein Rsc2 (Callebaut et al., 1999; 

Goodwin and Nicolas, 2001). Searches then revealed the presence of the 

BAH domains in a number of chromatin-associated complexes and can be 

subdivided into two categories by amino acid sequence analysis; the RSC-

like BAH domains including Rsc1, Rsc2 and the higher eukaryote homologue 

BAF180, and the Sir3-like class comprising of Orc1 homologues and the 

budding yeast protein  Sir3 (Chambers et al., 2013; Goodwin and Nicolas, 

2001; Hickman and Rusche, 2010). The BAH domain of Orc1 and Sir3 are 

essential for Orc1 and Sir3-mediated silencing at telomeres and HML/HMR 

(Norris and Boeke, 2010). Orc1 and Sir3 bind directly to nucleosomes with 

interactions with dimethylated histone H4K20 (Kuo et al., 2012b) and the 

LRS region (from histone H3 and H4) respectively (Armache et al., 2011; 

Norris et al., 2008). Rsc2-BAH binds specifically to histone H3 and has a 

distinct structure to the Sir3-like BAH domains suggesting a distinct 

mechanism of binding to chromatin (Chambers et al., 2013). 

Conflicting data has shown that Rsc1 (Kent et al., 2007) or Rsc2 

(Shim et al., 2007) is required for remodelling of chromatin in response to a 

double-strand DNA break at the MAT locus to ensure efficient repair.  Rsc2 is 

also required to set the chromatin structure at MATalpha prior to mating-type 

switching to ensure efficient cleavage by HO (Kent et al., 2007). Rsc1 and 

Rsc2 have functional differences controlling the expression of sporulation 

specific genes (Bungard et al., 2004; Yukawa et al., 2002) though chromatin 

immunoprecipitation analysis has shown that Rsc1 and Rsc2 equally bind to 

the same genes (Ng et al., 2002). Rsc2 is also required to maintain silencing 

of rDNA on chromosome XII by interacting with chromatin along the length of 

the rDNA repeats (Chambers et al., 2013) 



49 

 

Rsc4 

Rsc4 has two adjacent bromodomains (BD) that have been 

extensively studied. BD2 has a strong binding affinity of H3K14ac, the 

product of histone acetylase Gcn5 (Kasten et al., 2004). RSC also binds 

directly to all three of the DNA polymerases found in yeast through Rsc4 

which interacts through its C terminus with Rpb5, a subunit common to all 

three nuclear RNA polymerases (Soutourina et al., 2006). Rsc4 is acetylated 

at K25 in the second BD by Gcn5 which inhibits binding to H3K14ac as BD1 

of Rsc4 binds acetylated K25 in BD2 (VanDemark et al., 2007). As Rsc4 

binds to DNA polymerases and Rsc4 BD mutations results in a genome wide 

decrease in transcription, it is suggested RSC translocates along the DNA 

with RNA polymerases remodelling nucleosomes by interacting with 

acetylated histone H3 through the Rsc4 subunit (Choi et al., 2008; 

Soutourina et al., 2006). 

 

Rsc6/Rsc8 

 Both Rsc6 and Rsc8 are essential subunits of the RSC complex but 

both subunits share homology with subunits of the SWI/SNF complex; Rsc8 

shares homology with Swi3 and Rsc6 is homologous to Swp73. Rsc6 and 

Rsc8 have a direct interaction and together interact with Sth1 to form a 

structural core for the RSC remodelling complex and the homologous 

subunits performing a similar function in the SWI/SNF complex (Treich and 

Carlson, 1997; Treich et al., 1998b). 

 

Sfh1 

Sfh1 (Snf 5 homology 1) is essential for viability and directly interacts 

with Sth1 within the RSC complex (Treich et al., 1998a). A temperature 

sensitive sfh1 allele arrests cells in the G1 phase (Cao et al., 1997). Sfh1 

contains a 200 amino acid homology to the human hSNF5/INI1 tumour 

suppressor gene, however this SNF5 homology domain is thought to confer 

species specific function (Bonazzi et al., 2005). 

 

 



50 

 

Rsc9 

 Rsc9 is an essential DNA-binding protein with genome-wide 

localisation at rRNAs and genes regulated by the stress-inhibited TOR 

pathway suggesting a role in transcriptional control in stress-activated 

pathways. This suggests a role for RSC in remodelling chromatin in signalling 

cascades from environmental stimuli to result in changes in transcriptional 

control (Damelin et al., 2002) 

 

Arp7/Arp9/Rtt102 

Arp7 and Arp9 (Actin Related Proteins) form an essential dimeric 

module found in both yeast SWI/SNF and RSC complexes (Szerlong et al., 

2003). Similarly Rtt102 is present in both complexes but little is known about 

its function (Lee et al., 2004). The actin-related regions are used for 

heterodimerisation and the C-terminal domains are essential for incorporation 

into RSC. Evidence suggests that the Arp7/9 dimer function with DNA 

bending proteins to facilitate chromatin remodelling functions (Szerlong et al., 

2003). 

 

Rsc58 

Rsc58 is also an essential component of the complex but with the 

exception of the C-terminus required for assembly into the complex it seems 

to have limited function. Interactions between Rsc58 and the transcription 

cofactor Swi6 suggest that it may have a role in recruiting the complex to 

sites of transcriptional initiation (Taneda and Kikuchi, 2004).  

 

The following subunits form a fungal specific module of the RSC complex 

(Wilson et al., 2006): 

 

Rsc3/Rsc30 

RSC contains two paralogous zinc cluster domain proteins Rsc3 and 

Rsc30, with both proteins also containing leucine zipper domains. The zinc 

cluster domain of Rsc3 and Rsc30 have shown to be essential for function 

and the C-terminus of Rsc3 is essential for assembly into the RSC complex 
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(Angus-Hill et al., 2001). When Rsc3 and Rsc30 occur in RSC they occur 

concurrently, however some evidence suggests that another isoform of RSC 

exists without either Rsc3 or Rsc30, termed RSCa (Cairns et al., 1999). 

Even though the proteins are highly similar, the RSC3 gene is 

essential whereas the Δrsc30 null mutant shows few phenotypic defects. To 

study Rsc3, temperature sensitive mutants of RSC3 were identified. 

Temperature sensitive rsc3 mutants display G2/M arrest due to activation of 

the spindle checkpoint pathway. Overexpression of RSC30 is sufficient to 

suppress temperature sensitive rsc3 mutants but Δrsc30 mutants with a Rsc3 

Ts- mutant are not viable whereas overexpression of RSC3 mostly 

suppresses Δrsc30 null mutants. Taken together, this suggests that Rsc3 can 

perform most Rsc30 functions and Rsc30 interacts with Rsc3 but is not 

required for all its functions (Angus-Hill et al., 2001). Rsc3 and Rsc30 have 

been shown to be involved in the transcriptional control of a number of genes 

by excluding nucleosomes from promoters and are potentially recruited 

through their respective zinc-binger DNA binding domains (Badis et al., 2008; 

van Bakel et al., 2013); this is discussed in detail in Section 1.6.2. 

 

Rsc7 (Npl6)/Rsc14 (Ldb7) 

Rsc7 is a paralog to Swp82 of the SWI/SNF complex, both containing 

a central conserved region which are conserved in fungi but not found in 

higher eukaryotes Similarly Rsc14 is conserved in yeast species but is not 

present in higher eukaryotes. (Wilson et al., 2006). Rsc7 and Rsc14 form a 

heterodimer in RSC and null mutants are lethal in combination suggesting 

both have an essential role in the RSC complex. Rsc7 contributes to the 

general assembly of RSC and taken together Rsc7/Rsc14 are required for 

proper assembly of Rsc3/Rsc30 into the RSC complex, though Rsc7 and 

Rsc14 bind to RSC independently of each other (Wilson et al., 2006).  

Evidence shows that Rsc7 confers a highly specific chromatin 

remodelling function of the RSC complex at the MAT locus when in the 

MATalpha conformation only (Kent et al., 2007) Null mutants of Δrsc7 and 

Δrsc14 show increased sensitivity to genotoxic agents and some evidence 
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has suggested that Rsc14 has a role in controlling transcription at a subset of 

genes (Conde et al., 2007).  

 

Htl1 

Htl1 (High Temperature Lethal 1) is a factor that interacts with the 

yeast complex through interactions with the scaffold protein Rsc8 (Florio et 

al., 2007; Romeo et al., 2002) Deletion of HTL1 leads to the derepression of 

the RSC target CHA1 indicating that Htl1 influences RSC function. Evidence 

also shows that Δhtl1 mutants also display cell wall defects, temperature 

sensitivity and ploidy maintenance defects, mediated by the change in 

expression of a MAP kinase signalling pathway intermediate (Wang and 

Cheng, 2012).  
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1.6.2 RSC and transcription 

The loss of the ATPase subunit of RSC, Sth1, results in the loss of 

nucleosome positioning at RNA Pol II genes and loss of nucleosome density 

at RNA Pol III genes suggesting a role in transcriptional control (Parnell et al., 

2008). Previous work has identified the setting of the chromatin pattern in the 

upstream region of the open reading frame of a number of genes dependent 

on RSC, for example CHA1 and PHO8 (Moreira and Holmberg, 1999; Wippo 

et al., 2011). Other work has shown that the loss of RSC subunits results in a 

change in transcriptional activity of a small subset of genes but does not 

suggest a mechanism (Conde et al., 2007; Wang and Cheng, 2012) As 

described above RSC contains two zinc finger binding proteins, Rsc3 and 

Rsc30. Microarray analyses of rsc3 and rsc30 mutants show variable effects 

on the expression levels of ribosomal and cell wall genes. (Angus-Hill et al., 

2001). The consensus binding motif of Rsc3 and Rsc30 has been determined 

by systematic microarray analysis and there are potentially over 700 binding 

sites for Rsc3 at RNA Pol II and RNA Pol III dependent genes (Badis et al., 

2008; Parnell et al., 2008). At many RNA polymerase II promoters, RSC is 

required to maintain a nucleosome free region (NFR) and RSC prevents 

nucleosomes encroaching over the NFR by remodelling nucleosomes away 

from the predicted thermodynamically stable histone/DNA site (Badis et al., 

2008; Hartley and Madhani, 2009). Genome wide location analysis (ChIP-

chip) has also confirmed that RSC binds to RNA pol III- dependent genes, 

and loss of RSC function results in increased nucleosome occupancy and 

decreased transcription (Ng et al., 2002; Parnell et al., 2008).  RSC is also 

required to maintain a non-canonical histone structure, most likely a partially 

unwound nucleosome, over the GAL1/10 divergent regulatory region. This 

structure is required to facilitate the binding of the transcription factor Gal4 

(Floer et al., 2010). 

RSC also controls transcription elongation; RSC is directly connected 

to all three RNA polymerases in the cell through the Rsc4 subunit 

(Soutourina et al., 2006). RSC is required for the passage of RNA Pol II 

through positioned nucleosomes, likely as a result of Rsc4 bromodomains  

interacting with  acetylated histone H3, acetylated by Gcn5, and RSC 
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remodels nucleosomes to allow passage of RNA Pol II (Carey et al., 2006; 

Choi et al., 2008; Ginsburg et al., 2009). Gcn5 regulates the binding of Rsc4 

to acetylated histone H3 by acetylating the bromodomain of Rsc4 

(VanDemark et al., 2007) 

For this thesis it was necessary to define genomic sites to which RSC 

is likely to bind; Ng et al. (2002) used chromatin immunoprecipitation with 

DNA microarray technology to identify 429 intergenic regions that 

significantly bind Rsc1, Rsc2, Rsc3, Rsc8 and Sth1 (p<0.001) (Ng et al., 

2002). The authors however concede that the cross-linking efficiency of RSC 

subunits is 5- to 10-fold less than that of specific DNA-binding proteins and 

therefore this analysis may not reveal all RSC physiological targets. Badis et 

al. (2008) have identified the binding motif of the zinc-finger-containing Rsc3 

subunit of the RSC complex using microarray based analysis. These binding 

sites are 16-fold more likely to occur in the NFR (-130 to -75 from TSS) rather 

than in genic regions, approximately 708 genes have a significant motif 

threshold. At the most liberal P-value cut-off (p=0.003), of the 5171 yeast 

genes with well-defined TSSs, 2325 have a match to the Rsc3 motif. Of the 

RSC 667 targets with a P-value of <0.01 defined by Ng et al (2002), 416 are 

found in the Rsc3-motif list. Therefore, due to the likelihood of RSC not being 

defined at all targets due to poor cross-linking efficiency, the list of 2325 

genes with a Rsc3 binding motif was used in this study as list of genes that 

potentially bind RSC upstream of the TSS (Badis et al., 2008). 

 

1.6.3 RSC and DNA damage 

RSC is implicated in the initial processing of DNA damage and the 

consequent repair pathways: RSC has an early role at the processing of the 

HO induced double-strand DNA break and facilitates Rad59-dependent 

homologous recombination (Oum et al., 2011; Shim et al., 2007). Analysis 

shows that RSC remodels nucleosomes at double-strand DNA breaks 

formed as part of mating-type switching (Kent et al., 2007; Shim et al., 2007). 

Using a budding yeast strain with an inducible HO endonuclease, the 

chromatin surrounding a double-strand DNA break (DSB) was analysed prior 

to and after a DNA lesion event at the MAT locus (Connolly et al., 1988; Kent 
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et al., 2007; Shim et al., 2007). Nucleosomes are rapidly repositioned (within 

30 minutes) in response to the DNA damage, as shown in Figure 1.3.  These 

sliding events occur prior to the histone eviction event mediated by the 

INO80 complex which occurs 60-180 minutes after lesion formation (Tsukuda 

et al., 2005). Insertion of HO cleavage sequences into non-MAT loci show 

that nucleosome remodelling occurs outside of the highly specialised MAT 

locus suggesting RSC has a genome wide role in responding to DNA 

damage (Kent et al., 2007). Using isogenic null mutants of RSC subunits, 

conflicting studies have identified Rsc1 or Rsc2 as being essential for the 

sliding of nucleosomes in response to DNA damage (Kent et al., 2007; Liang 

et al., 2007; Shim et al., 2007).  

RSC-dependent nucleosome remodelling is required for the efficient 

phosphorylation of H2A on Ser129 by Mec1, this histone mark is essential for 

strand resection during homologous recombination (Downs et al., 2004; 

Harvey et al., 2005). However, blocking H2AX phosphorylation by mutation of 

Ser129 does not abolish the recruitment of RSC, indicating the RSC complex 

is one of the first complexes to respond to this damage (Kent et al., 2007). 

Repair by homologous recombination and end joining is delayed in a Δrsc1 

mutant when nucleosome remodelling in response to the DSB is thought to 

be abolished (Kent et al., 2007). 

 Double-strand breaks are preferentially repaired via homologous 

recombination which uses a homologous chromosome or sister chromatid as 

a template for repair (Aylon and Kupiec, 2004). RSC interacts with the 

recombination protein Rad59 by a physical interaction with Rsc1 and Rsc2 

subunits. RSC is essential for the maximum loading of cohesion at DNA 

breaks, a process that is required for sister chromatid cohesion and 

subsequent repair by recombination between sister chromatids (Oum et al., 

2011) 
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1.6.4 Distinct Rsc2/Rsc7 function at the MATalpha locus 

Kent et al (2007) have shown that there is a large MNase resistant 

structure immediately on the MAT locus side of the HO cleavage site in 

MATalpha (Figure 1.10). This structure is not remodelled in response to the 

formation of a DSB in contrast to the nucleosomes on the other side of the 

lesion. Analysis of isogenic null mutants of RSC complex subunits revealed 

that the large MNase resistant structure is both Rsc2- and Rsc7-dependent. 

In Δrsc2 or Δrsc7 null mutants this large structure has a MNase cleavage 

pattern that is suggestive of three individually positioned nucleosomes (Kent 

et al., 2007).  

 

 

Taken together, previous investigations have determined that S. 

cerevisiae contains two isoforms of RSC which are distinct by the presence 

of either Rsc1 or Rsc2, and the two isoforms have similar but non-identical 

functions throughout the genome. 
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Figure 1.10 – Chromatin is remodelled in response to DSB formation by HO
Kent et al. (2007) have used MNase digestion and indirect end labelling to map nucleosomes before and
40 minutes after DSB formation by HO induction. At both MAT  and LEU2 this remodelling is dependent
on Rsc1, a subunit of the RSC complex. Six nucleosomes slide away from the break site allowing for
efficient histone H2A phosphorylation to signal for DNA damage.
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1.7 Thesis Aims 

As described above, the RSC complex has been shown to remodel 

nucleosomes at the HO-induced double-strand break at the MAT locus in a 

manner required for efficient DNA processing and repair. However the model 

system utilised in these studies has exclusively used the alpha form of MAT. 

The first aim of this thesis (described in Chapters 3 and 4) is to use indirect-

end-label type analysis to provide an in-depth characterisation of the 

chromatin structure at the alternate MATa form of the locus and HO cleavage 

sites engineered into non-MAT loci and to test whether or not the same RSC 

subunit dependencies apply. 

Chromatin remodelling by RSC requires the presence of two 

homologous subunits, Rsc1 and Rsc2, which both contain bromo-, bromo-

adjacent-homology (BAH) and AT-hook domains hypothesised to mediate 

chromatin binding. There is debate in the literature whether remodelling of 

nucleosomes at HO-induced double-strand DNA breaks is dependent on 

Rsc1 or Rsc2. The second aim of this thesis (Described in Chapter 3 and 5) 

is to test, using domain-swap experiments and isogenic null mutants, which 

components of Rsc1 and Rsc2 are required for specific RSC chromatin 

remodelling events during DSB formation and chromatin setting at 

MATalpha.  

 As described above, the RSC complex is also implicated in chromatin 

remodelling at a variety of gene regulatory locations. The final aim of this 

thesis (described in Chapter 6) is to test the chromatin remodelling roles of 

Rsc1 and Rsc2 in the wider genome by applying a chromatin-seq 

methodology to compare nucleosome positions and/or chromatin structure 

changes between wild-type cells and Δrsc1 and Δrsc2 mutants. 

 Taken together this work aims to define the modes of chromatin 

remodelling brought about by the RSC complex, the RSC subunits required 

to mediate them, and the biological roles that they play. 
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2 Materials and Methods 

2.1 Materials 

With the exceptions of those listed below, general chemicals used in 

the following methods were obtained from Fisher Scientific. 

2.1.1 Growth media 

Agar, peptone and yeast extract were purchased from Formedium. D-

glucose was purchased from Fisher Scientific, glycerol and lactic acid was 

purchased from Sigma-Aldrich. Luria Broth Base and Luria Broth Base with 

agar were obtained from Formedium. 

2.1.2 Antibiotics 

Geneticin (G418) was purchased from Melford Laboratories and 

hygromycin was purchased from Formedium. 

2.1.3 Restriction enzymes 

Unless otherwise indicated restriction enzymes were purchased from 

New England Biolabs along with the enzyme specific digestion buffer. 

Micrococcal nuclease which was purchased from Affymetrix and stored at 

15u/µl in 20µl aliquots at -20ºC in 10mM Tris-HCl pH7.5, 10mM NaCl, 

100mg/ml BSA. 

2.1.4 DNA molecular weight marker 

All gels were run with 5µl of Full Ranger 100bp DNA Ladder, 

purchased from Geneflow. Purified marker DNA was obtained by 

phenol/chloroform extraction for random priming radiolabelling for use in the 

indirect end labelling experiments. 

2.1.5 Haemocytometry and Microscopes 

Yeast culture density was calculated by haemocytometry using a 

Neubauer Improved haemocytomer and Leitz-Wetzlar SM Lux microscope. 

2.1.6 Oligonucleotides 

All oligonucleotides were purchased from Sigma-Aldrich 
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2.1.7 PCR 

All PCR amplification reactions were performed using a Techne – TC 

312 thermocycler. 

2.1.8 Plasmids 

All plasmids were purchased from the European Saccharomyces 

Cerevisiae Archive for Functional analysis (EUROSCARF)  

2.1.9 Yeast Strains 

Yeast strains used in this thesis are described in Table 2.1 
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Name Description Genotype Source

JKM179 This strain allows for the inducible 
induction of HO and prevents the MAT 
locus from repairing by HR by removal of 
the silent mating loci

MAT, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO

Moore and Haber
(1996)

YNK179-177 Isogenic to JKM179 except for RSC1 
replacement by KanMX

MAT, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc1::KanMX

Kent et al (2007)

YNK179-190 Isogenic to JKM179 except for RSC2 
replacement by KanMX

MAT, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc2::KanMX

Kent et al (2007)

YNK179-101 Isogenic to JKM179 except for RSC7 
replacement by KanMX

MAT, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc7::KanMX

Kent et al (2007)

YSD179-182 Isogenic to JKM179 except for RSC14 
replacement by KanMX

MAT, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc14::KanMX

This study

YSD179-191 Isogenic to JKM179 except for HTL1 
replacement by KanMX

MAT, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, htl1::KanMX

This study

YLO-1 Isogenic to JKM179 except for RSC30 
disruption by KanMX

MAT, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc30::KanMX

This study

The following strains are isogenic to JKM179 except for replacement of RSC1 and RSC2 by KanMX. The plasmid description and plasmid columns 
describes the plasmid construct used to rescue the otherwise inviable double mutant

Name Plasmid description Plasmid Source

JDY786 RSC1 pRSC1 Chambers et al (2012)

JDY768 RSC2 with the BAH domain of RSC1 pRSC2 BAH-RSC1 Chambers et al (2012)

JDY767 RSC2 with the bromodomain-2 of RSC1 pRSC2 BD2-RSC1 Chambers et al (2012)

JDY765 RSC2 pRSC2 Chambers et al (2012)

JDY793 RSC2 with the bromodomain-1 of RSC1 pRSC2 BD1-RSC1 Chambers et al (2012)

JDY794 RSC1 with a bromodomain-1 mutation pRSC1 N88A Chambers et al (2012)

JDY801 RSC2 with a bromodomain-1 mutation pRSC2 N96A Chambers et al (2012)

JDY803 RSC2 with a bromodomain-2 mutation pRSC2 Y315A Chambers et al (2012)

JDY805 RSC2 with the bromodomain-1 of RSC1 and 
a bromodomain-2 mutation

pRSC2BD1-RSC1 Y315A Chambers et al (2012)

JDY807 RSC2 with a mutated bromodomain-1 of 
RSC1 and a bromodomain-2 mutation

pRSC2BD1 N88A-RSC1 Y315A Chambers et al (2012)

JDY824 RSC2 with a bromodomain-1 and 
bromodomain-2 mutation

pRSC2 N96A Y315A Chambers et al (2012)

Table 2.1 – Yeast strains used in this study

Name Description Genotype Source

BY4741 A wild type reference strain MATa his3∆0 leu2∆0 met15∆0 ura3∆0 Brachmann et al 
(1998)

YO4686 Isogenic to BY4741 except for RSC1 
replacement by KanMX

MATa his3∆0 leu2∆0 met15∆0 ura3∆0, rsc1::KanMX EUROSCARF

YO5266 Isogenic to BY4741 except for RSC2 
replacement by KanMX

MATa his3∆0 leu2∆0 met15∆0 ura3∆0, rsc2::KanMX EUROSCARF

JKM139 As JKM139 except MAT a MATa, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO

Moore and Haber
(1996)

YTB38-9 Isogenic to JKM139 except for RSC1 
replacement by KanMX

MATa, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc1::KanMX

Beacham, T. This 
laboratory

YTB65-34 Isogenic to JKM139 except for RSC2 
replacement by Hph

MATa, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc2::KanMX

Beacham, T. This 
Laboratory

YSD139-141 Isogenic to JKM139 except for RSC7 
replacement by KanMX

MATa, ade1-100, leu2-3, 112, lys5, trp1::hisG, ura3-52, ho, 
hml, hmr, ade3::GAL1pro::HO, rsc7::KanMX

This study

YFP17 A strain with a 117bp HO cleavage site in 
the open reading frame of LEU2 and HO 
under a galactose-inducible promoter

mataΔ::hisG, ade1, lys5, trp1::hisG, ura3-52, leu2::HOcs, 
hoΔ, hmlΔ, hmrΔ, ade3::GAL1pro::HO

Paques et al. (1998)

YNKFP17-20 Isogenic to YFP17 except for RSC7 
replacement by KanMX

mataΔ::hisG, ade1, lys5, trp1::hisG, ura3-52, leu2::HOcs, 
hoΔ, hmlΔ, hmrΔ, ade3::GAL1pro::HO, rsc1::KanMX

Kent et al (2007

YNKFP17-25 Isogenic to YFP17 except for RSC7 
replacement by KanMX

mataΔ::hisG, ade1, lys5, trp1::hisG, ura3-52, leu2::HOcs, 
hoΔ, hmlΔ, hmrΔ, ade3::GAL1pro::HO, rsc2::KanMX

Kent et al (2007

YNKFP17-10 Isogenic to YFP17 except for RSC7 
replacement by KanMX

mataΔ::hisG, ade1, lys5, trp1::hisG, ura3-52, leu2::HOcs, 
hoΔ, hmlΔ, hmrΔ, ade3::GAL1pro::HO, rsc7::KanMX

Kent et al (2007

MK205a A strain with a 39bp HO cleavage site in 
the open reading frame of URA3 and HO 
under a galactose-inducible promoter

MATa-inc, ura3::HOcs, ade3::GALHO, ade2-1, leu2-3,112, 
his3-11,15, trp1-1, can1-100

Aylon et al. (2003)

YSD205-101 Isogenic to MK205a except for RSC1 
replacement by KanMX

MATa-inc, ura3::HOcs, ade3::GALHO, ade2-1, leu2-3,112, 
his3-11,15, trp1-1, can1-100, rsc1::KanMX

This study

YSD205-204 Isogenic to MK205a except for RSC2 
replacement by KanMX

MATa-inc, ura3::HOcs, ade3::GALHO, ade2-1, leu2-3,112, 
his3-11,15, trp1-1, can1-100, rsc2::KanMX

This study

YSD205-405 Isogenic to MK205a except for RSC7 
replacement by KanMX

MATa-inc, ura3::HOcs, ade3::GALHO, ade2-1, leu2-3,112, 
his3-11,15, trp1-1, can1-100, rsc7::KanMX

This study
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2.2 General Methods 

2.2.1 Yeast growth media 

All strains were grown at 29ºC in either a static incubator for solid 

media growth, or a shaking incubator for liquid media growth. Media was 

made with analytical grade water (Fisher Scientific). 

For solid agar media, all strains were grown on YPD or drop out media 

(synthetic complete media lacking one or more amino acid). YPD was 1% 

yeast extract, 1% bacto-peptone, and 2% D-glucose (YPD) media (all % are 

w/v). Drop out media was 0.67% yeast nitrogen base, 2% D-glucose (all% 

are w/v), and a mixture of all the amino acids, 10 mg/l adenine, 50 mg/l 

arginine. 80 mg/l aspartic acid, 20 mg/l histidine, 50 mg/l isoleucine, 100 mg/l 

leucine, 50 mg/l lysine, 20 mg/l methionine, 50 mg/l phenylalanine, 100 mg/l 

threonine, 50 mg/l tryptophan, 50 mg/l tyrosine, 20 mg/l  uracil, 140 mg/l 

valine, less one or more indicated. For solid media 10g/l of agar was added 

and media was sterilised by autoclaving. 

Kanamycin solid agar media plates (YPDG418) were made by adding 

200µg/µl of G418 and hygromycin solid media were made by adding 

300µg/µl hygromycin, both antibiotics were added after autoclaving. 

Yeast were stored on solid agar plates for up to 6 months. Longer term 

storage was achieved by suspending 500µl of an overnight 5ml culture in 

500µl 100% glycerol (sterilised by autoclaving) and incubating at -80ºC 

indefinitely. 

For liquid media, yeast strains were grown in YPD, YPGL, or YPD plus 

antibiotic. YPD was 1% yeast extract, 1% bacto-peptone and 2% D-glucose. 

YPGL was 1% yeast extract, 1% bacto-peptone (sterilized by autoclaving), 

1% glycerol, and 1% D-lactic acid (sterilized by filter sterilization at 0.22µm). 

Media containing antibiotics was prepared by adding either 200µg/µl G418 or 

300µg/µl hygromycin after autoclaving. 

2.2.2 Bacterial media 

Bacterial strains (Escherichia coli) were grown at 37ºC in either a 

stationary incubator (solid media) or in a shaking incubator (liquid media) 
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L-Broth (Luria Broth) is 10g/l tryptone, 5g/l yeast extract and 0.5g/l NaCl and 

was purchased as a pre-mix from Formedium. For solid plates a pre-mix was 

purchased from Formedium with the previous formula with the addition of 

15g/l agar. 

2.2.3 Gel electrophoresis 

Standard agarose gel electrophoresis for the separation of chromatin 

particles (“check gels”), PCR products and restriction enzyme digestions was 

performed using 1.5% agarose gels in 1x TBE (89mM Tris-borate, 2.5mM 

EDTA) buffer stained with 0.01% (v/v) ethidium bromide. DNA for purification 

was separated on TAE (0.04M Tris- acetic acid, 1mM EDTA) buffered gels. 

2.2.4 The Polymerase Chain Reaction 

PCR reactions were all performed on 10-50ng of template DNA with 

1mM dNTPs, Taq DNA Polymerase (New England Biolabs), and 1mM each 

of forward and reverse primers (Sigma-Aldrich) in 20µl reactions in 0.2ml thin 

walled tubes. Reactions were initially denatured at 95ºC for 5 minutes and 

the following cyclic conditions followed: 95ºC for 45 seconds, 52ºC for 45 

seconds and 72ºC for 1 minute per kbp being amplified.  

2.2.5 Restriction enzyme digestion 

Restriction enzyme digestions were performed using enzymes 

supplied by New England Biolabs and the supplied digestion buffer and 

according to manufacturer’s instructions. 

2.2.6 Gel DNA purification using GeneClean Kit ® (Biogene) 

To purify DNA fragments between 100bp and 10 kb, DNA was 

separated on a 1.5% agarose, 0.01% ethidium bromide, and TAE buffered 

agarose gel. The slice of gel containing the DNA of interest was cut from the 

TAE gel (after detection under UV light or Safeviewer) and transferred to a 

microfuge tube. 4 volumes (weight:volume) of 6M NaI were added to the 

slice, and incubated at 55C with mixing every 20 seconds to dissolve the gel 

slice into the NaI solution. Once the gel slice had dissolved the tube was 

placed on ice for 1 minute to allow the DNA ends to re-anneal.  GlassMilk 
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was resuspended by vortexing and 10µl added to the NaI/gel solution. After 

mixing the GlassMilk/gel solution was incubated for 10 seconds (~75% 

binding) – to 5 minutes (~99% binding) at room temperature. The 

GlassMilk/DNA was pelleted by centrifugation at 14500g for 1 minute and the 

NaI discarded. The pellet was then washed twice in 600µl NEW Wash 

(prepared according to manufacturer’s instructions). After all the NEW wash 

buffer was removed the glass pellet was allowed to dry for 3 minutes at room 

temperate. The GlassMilk was resuspended in 10µl of AR water and 

incubated at room temperature for 30 minutes. The non-DNA bound glass 

milk was pelleted by centrifugation at 14500g for 1 minute and the 

supernatant containing the DNA fragment was collected. 

2.2.7 Using Escherichia coli for plasmid manipulation 

2.2.7.1 Preparation of transformation competent DH5α cells 

Iml of a stationary phase DH5α culture (5ml L-Broth, grown overnight 

at 37ºC with vigorous shaking) was added to 50ml L-broth that had been pre-

warmed at 37ºC. The remaining 4ml of stationary phase culture was stored in 

glycerol (50% glycerol, 50% culture), at -80ºC. The 50ml culture was grown 

to mid-log phase at 37ºC in a shaking incubator (typically 1 hour of growth). 

Cells were cooled at on ice for 15 minutes and subsequently harvested by 

centrifugation at 3000g for 7 minutes at 4ºC. The cells were resuspended in 

30ml cold 100mM CaCl2 and incubated at 5ºC for 30 minutes. Cells were 

again harvested by centrifugation at 3000g for 7 minutes at 4ºC and cells 

resuspended in 1ml cold 100mM CaCl2. Cells were then stored for 2-18 

hours at 4ºC to achieve maximum competency. 

2.2.7.2 Transformation of DH5α 

100µl of transformation competent cells were placed on ice with 10ng 

of plasmid DNA. The reaction was incubated on ice for 10 minutes and then 

underwent heat shock at 42ºC for 2 minutes. The reaction was immediately 

placed back on ice for 2 minutes and then made up to 1ml with L-broth. Cells 

were then incubated at 37ºC in a shaking incubator for 1 hour. 
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10µl of transformed cells were plated onto L-broth agar as a non-selective 

control and the remaining cells were plated onto L-broth agar containing 

ampicillin for selection. Both were grown overnight at 37ºC. 

2.2.7.3 Boil-lysis plasmid extraction 

E. coli colonies from transformation plates were picked using a sterile 

micro-pipette tip and grown in 2ml L-broth with ampicillin (100µg/ml) at 37ºC 

for 4 hours in a shaking incubator. Cells were harvested by micro-

centrifugation at 12500g for 15 seconds and resuspended in 100µl sterile 

water. Cells were then boiled for 15 minutes. The lysed cells were 

centrifuged at 12500g for 5 minutes and the supernatant containing plasmid 

DNA was aspirated to a fresh microcentrifuge tube.  

2.2.7.4 Alkaline-lysis plasmid extraction (Mini-Prep)  

E.coli colonies from transformation plates were grown overnight in 5ml 

L-broth with ampicillin (100µg/ml) at 37ºC. 1.4ml of cells were harvested at 

14500g for 2 minutes and resuspended in 100µl ice cold 50mM D-glucose, 

25mM Tris-HCl (pH8), 10mM EDTA. Cells we lysed by addition of 200µl 0.2M 

NaOH, 1% SDS and mixed gently until the solution became transparent. The 

mixture was centrifuged at 12500g for 5 seconds and incubated at room 

temperature for a further 2 minutes. 150µl ice-cold potassium acetate was 

then added to form a precipitate. The reaction was incubated at 5ºC for 1 

minute. The aqueous phase was collected by centrifugation at 14500g for 5 

minutes and a volume of 400µl was collected. Plasmid DNA was extracted by 

addition of 1 volume of phenol (buffered in 10mM Tris-HCl pH 8.0 and 1mM 

EDTA)/chloroform (1:1 ratio), an emulsion formed by vortexing for 10 

seconds, and the aqueous layer separated by centrifugation at 14500g for 5 

minutes. The aqueous phase was collected and subjected to digestion by 5µl 

RNase A (10mg/ml) for 30 minutes at 37ºC. The resulting mixture underwent 

a second phenol/chloroform extract, 1 volume phenol/chloroform (1:1 ratio) 

and the aqueous layer separated by centrifugation at 14500g for 5 minutes. 

The plasmid DNA was precipitated by addition of 800µl 100% propan-2-ol 

and a pellet formed by centrifugation at 14500g for 10 minutes. The pellet 
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was washed in 70% ethanol, dried, and resuspended in 20µl TE buffer 

(10mM Tris [pH7.5], 1mM EDTA). 

2.2.8 Creation of isogenic yeast knockout strains 

All knockouts, unless otherwise stated, were created by the disruption 

of the coding region by replacement of the entire coding region with either: 

kanMX4 gene from Tn903 that confers resistance to the aminoglycoside 

antibiotic Geneticin (G418) of transformed yeasts or the hph gene from 

Klebsiella pneumoniae encoding hygromycin B phosphotransferase and 

confers resistance to the antibiotic hygromycin B of transformed yeasts. 

Unless indicated, the kanMX cassette with 200bp of flanking homology 

region was amplified by PCR from a strain containing the knockout mutant of 

interest purchased from the EUROSCARF deletion collection. 

In the case of YTB66-34 (MATa Δrsc2) the coding sequence was 

replaced by the hph gene amplified from the plasmid pAG32 with flanking 

homology regions by PCR using overhanging primers with flanking RSC2 

homology. 

In the case of RSC30 the promoter region and first 500bp of the 

coding region were replaced using the kanMX cassette amplified by PCR 

from pUG6 using overhanging primers with RSC30 homology. This variation 

was used due to the location of the ARS180-associated repetitive sequence 

close to the RSC30 coding region which prevents total gene replacement by 

homologous recombination. 

2.2.8.1 Integration cassette purification  

kanMX based integration cassette constructs were amplified using 

standard PCR from purified genomic DNA of knockout strains purchased 

from EUROSCARF. The resulting product was separated by gel 

electrophoresis on a 1.5% agarose TAE and purified using the Gene Clean 

Kit ©. 5µl of the resuspended purified fragment was re-amplified by PCR 

using the same primers in order to create 10-20µg of DNA for transformation. 

To improve the efficiency of transformation, 10µl salmon sperm DNA 

(10mg/ml) was added as a carrier to the cassette fragment. The 

transformation cassette/salmon sperm DNA was purified by phenol-
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chloroform extraction; 1 volume of phenol and chloroform were added in a 

1:1 ratio and the emulsion centrifuged at 14500g for 5 minutes. The aqueous 

phase was aspirated to a new microfuge tube and the DNA precipitated with 

40µl 7.5M ammonium acetate and 260µl 100% propan-2-ol. The precipitate 

was pelleted by centrifugation at 14500g for 10 minutes and the resulting 

pellet washed in 70% ethanol. The dried pellet was resuspended in 10µl AR 

water. 

2.2.8.2 Yeast transformation  

The general protocol was based on that described by Guthrie (1991) 

(C. Guthrie, 1991) Cells were grown overnight in 100ml YPD media in a 

conical flask at 29°C in a shaking incubator to a density of 2x107 cells/ml. 

2x108 cells were harvested by centrifugation at 2500g for 3mins in a swing 

out rotor. The media was discarded and the cells were resuspended in 30ml 

sterile AR H20 and centrifuged at 2500g for 3mins. The water was discarded 

and the cells were resuspended in 800µl LiAc/TE buffer (0.1M Lithium 

acetate, 10mM Tris-HCl [pH 7.5], 1mM EDTA) and transferred to a 1.5ml 

microfuge tube. Cells were centrifuged at 12500g for 15 seconds, the 

LiAc/TE buffer discarded and the cells resuspended in 100µl of LiAc/TE 

buffer. Aliquots of 50µl of cells were transferred to a microfuge tube 

containing only carrier DNA as a control and to microfuge tubes containing 

5µl of vector/cassette/carrier DNA. A further 300ul of PEG/LiAc/TE buffer 

(40% PEG (v/v), 0.1M LiAc, 10mM Tris-HCl [pH 7.5], 1mM EDTA) was added 

and tubes were incubated at 29°C for thirty minutes in a stationary incubator. 

A further 35µl of 100% DMSO was added and carefully mixed and the cells 

incubated at 42°C for 15 minutes. Immediately afterwards the cells were 

incubated on ice for a further 2 minutes. The transformed cells were collected 

by centrifugation at 10500g for 15 seconds and plated onto non-selective 

YPD agar plates and incubated at 29°C for approximately 8 hours in a 

stationary incubator. Transformant micro-colonies were replica plated onto 

the appropriate selective media (YPD G418 or YPD Hyg) and then incubated 

at 29°C for 48 hours. Colonies on the selective media plate were picked and 

streaked on selective media to isolate cell clones as single colonies. 
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2.2.8.3 Yeast genomic DNA preparation 

Yeast were grown overnight in 5ml YPD media at 29ºC in a shaking 

incubator, those containing the kanMX gene, were grown under selection in 

YPD with kanamycin (200µg/ml). 1.8ml of cells were harvested by 

centrifugation at 12500g for 30 seconds and the supernatant discarded. Cells 

were resuspended in 200µl yeast lysis buffer (2% Triton X-100, 1% SDS, 

0.1M NaCl, 1mM EDTA, 10mM Tris-HCl [pH8.0]) as described previously 

(Hoffman and Winston, 1987), 200µl phenol (buffered in 10mM Tris-HCl 

pH8.0, 1mM EDTA, 200µl chloroform, and 0.3g acid-washed 0.22µm glass 

beads were added to the mixture and then vigorously vortexed for 3 minutes 

using a Disruptor Genie (Scientific Industries). 200µl of TE buffer (10mM 

Tris-HCl [pH 7.5], 1mM EDTA) was added and the solution vortexed again to 

reform an emulsion. The aqueous phase was separated by centrifugation at 

14500g for 5 minutes and collected to a fresh microcentrifuge tube. Nucleic 

acid was precipitated by addition of 1ml of 100% ethanol, mixing, and then 

centrifugation at 14500g for 1 minute. The supernatant was discarded and 

the nucleic acid pellet was allowed to dry and then resuspended in 400µl TE 

buffer and digested with 7µl RNase A at 37ºC for 30 minutes. Following 

digestion the mixture was subjected to a second phenol/chloroform reaction 

and the resulting aqueous phase was collect. DNA was then precipitated with 

40µl 7.5M ammonium acetate and 260µl 100% propan-2-ol and a pellet 

formed by centrifugation at 14500g for 10 minutes. The pellet was allowed to 

dry and resuspended in 50µl TE buffer (pH 7.5). 
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2.2.8.4 Confirmation of integration events after yeast transformation by PCR 

Amplification of the region 700 base pairs outside the targeted reading 

frame and the inserted antibiotic resistance cassette by PCR was used to 

confirm a successful recombination event. Genomic DNA of yeast colonies 

that had grown on selective media was prepared as previously detailed 

(2.2.9.3). 
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Figure 2.1 – Cassette insertion checked by PCR of cassette/locus junctions
To create knock-out null mutants the entire coding region was replaced using the KanMX cassette via
homologous recombination and successful events were checked by production of a PCR production from
primers downstream (-700 GOI) and upstream (+700 GOI) of the gene of interest locus with internal
KanMX primers. PCR products were separated by gel electrophoresis to determine presence of the
locus/junction DNA sequence in the strain,
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2.3 Nucleosome mapping by indirect end labelling of 

micrococcal nuclease digested chromatin 

Micrococcal nuclease (MNase) is a non-specific endo-exonuclease 

derived from Staphylococcus aureus. MNase is unique as it produces single 

stranded nicks on nucleosome bound DNA, whereas in the linker regions it 

produces double stranded cleavage with 3' phosphates. This means when 

MNase is incubated with chromatin bound DNA it will cleave in DNA in the 

linker regions, leaving relatively intact DNA-duplexes surrounding 

nucleosomes (Brogaard et al., 2012). Chromatin in yeast cells can be made 

accessible to MNase by the enzymatic removal of the yeast cell wall to form 

spheroplasts. Spheroplasts can be further permeabilised by the addition of 

buffer containing a small amount of detergent. These semi-permeabilised 

cells can then be incubated with increasing amounts of MNase which will 

diffuse into the nucleus and digest chromatin. This fast, in vivo approach 

allows snapshots of chromatin structure to be taken. 

Semi-permeabilised yeast cells are briefly incubated with MNase and 

the resulting DNA fragments purified. The fragments are digested to 

completion by restriction enzyme digestion to produce a common end. These 

fragments can then be separated by gel electrophoresis and be blotted onto 

a nylon membrane in a process termed Southern Blotting.  A radiolabeled 

probe specific to a gene or region in the genome is then hybridised to the 

Southern blot and a MNase chromatin footprint is produced. Deproteinized 

DNA is also digested and labelled so that nucleosome positions can be 

inferred where there are protected regions of DNA. 

2.3.1 In vivo chromatin digestion of semi-permeabilised budding yeast 

using micrococcal nuclease  

The general method described by Kent et al (1993) and Kent and 

Mellor (1995) was used (Kent et al., 1993; Kent and Mellor, 1995). Yeast 

cells were grown overnight at 29ºC in a shaking incubator in 100ml YPGL in 

a conical flask to a density of 2x107 cells/ml. 6x108 cells were harvested by 

centrifugation at 3000g in a swing out rotor for 3 minutes and the cells 

transferred to a 2ml microcentrifuge tube in the remaining media. The cells 
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were pelleted by centrifugation at 12500g for 15 seconds and the remaining 

medium was discarded. The cells were spheroplasted (removal of cell wall) 

with Athrobacter luteus yeast lytic enzyme (MP-Bio at 10mg/ml in 1M 

sorbitol/5mM β-mercaptoethanol) for one to two minutes at RT. 

Spheroplasted cells were pelleted by centrifugation at 12500g for 15 seconds 

and the yeast lytic enzyme was discarded or recycled for reuse. Cells were 

washed in 800µl of 1M sorbitol and the cells re-pelleted. The cells were 

resuspended in 600µl spheroplast digestion buffer containing igepal (SDBI) – 

(10mM Tris-HCl [pH7.4], 50mM NaCl, 5mM MgCl2, 1mM CaCl2, 0.5mM 

spermidine, 1mM β-mercaptoethanol, 0.075% v/v igepal in 1M sorbitol). 

200µl aliquots of semi-permeabilised cells were added immediately to 

microcentrifuge tubes containing either 1µl MNase, 2µl MNase (MNase 

concentrations 75units/ml and 150units/ml respectively), or 20µl STOP buffer 

(250mM EDTA, 5% SDS). Digestions were incubated at 37ºC for 2 minutes, 

immediately followed by the addition of 20µl STOP buffer (5% SDS, 250mM 

EDTA). 

2.3.2 DNA purification 

STOP lysed MNase digested and undigested chromatin was purified 

by phenol/chloroform DNA extraction. One volume of phenol (buffered 

in10mM Tris-HCl [pH 8.0], 1mM EDTA)::chloroform in a 50:50 ratio was 

added and mixed by vortexing to form an emulsion. The emulsion was 

separated by centrifugation at 14500g for 5 minutes and the aqueous phase 

was aspirated to a new 1.5ml centrifuge tube. 7µl of RNase A (10mg/ml) was 

added to the aqueous phase and incubated at 37ºC for 30 minutes. The 

resulting DNA was purified by phenol/chloroform extraction by the addition of 

1 volume of phenol and chloroform (1:1 ratio) and an emulsion formed by 

vortexing. The aqueous phase was separated by centrifugation at 14500g for 

5 minutes. The resulting aqueous phase was transferred to a new tube and 

the DNA precipitated by the addition of 40µl of 7.5M ammonium acetate and 

260µl 100% propan-2-ol. The DNA was pelleted by centrifugation at 14500g 

for 10 minutes. The resulting pellet was washed in 70% ethanol, air dried, 

and resuspended in 18 or 20µl AR water  
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2.3.3 Deproteinized (“Naked”) DNA digestion 

Phenol/chloroform purified DNA from STOP lysed cells to which 

MNase had not been added was used as a deproteinized DNA control 

sample. This purified DNA was diluted in 300µl SDBI to maintain a common 

digestion buffer and the DNA digested for 10 seconds with 1.5units MNase in 

1M sorbitol. One volume of phenol/chloroform (1:1 ratio) was immediately 

added to stop the reaction and an emulsion formed by vortexing. Phases 

were separated by centrifugation at 14500g for 5 minutes and the aqueous 

phase was transferred to a new centrifuge tube and the DNA precipitated 

with 60µl ammonium acetate and 520µl 100% propan-2-ol and pelleted by 

centrifugation at 14500g for 10 minutes. The DNA pellet was washed in 70% 

ethanol, dried, and resuspended in 18 or 20µl AR water. 

2.3.4 Restriction Enzyme digestion for indirect-end-labelling analysis 

of chromatin particle position 

Purified DNA samples (either from chromatin or deproteinized DNA 

MNase digests) was digested to completion with the appropriate restriction 

enzyme in a final volume of 25µl using the buffer and instructions supplied by 

the manufacturer. 

2.3.5 Southern Blotting for indirect-end-label analysis  

The resulting purified and digested chromatin and naked DNA were 

run on a 1.5% agarose/0.01% Ethidium bromide TBE buffered gel. The 

resulting gels were denatured by two incubations in 5 gel volumes of 1.5M 

NaCl, 0.5M NaOH for 15 minutes. The gels were twice further treated with 

1.5M NaCl, 0.5 Tris-HCl, 1mM EDTA. The DNA was transferred overnight 

onto 0.45µm nylon membrane (Osmonics) against 20X SSC (3M NaCl, 

300mM tri-sodium citrate [pH7.0]) by capillary blotting. Blots were briefly 

washed in 2X SSC before being baked at 80ºC for 2 hours. 

2.3.6 Preparation of indirect end label probes 

The Prime It II ® Random Priming Kit (Stratgene) was used to label 

PCR synthesised and gel purified DNA probes for indirect-end-label analysis. 

This was also used to label phenol/chloroform purified marker DNA (Norgen 
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FullRanger 100bp DNA Ladder). A mixture of 50-100ng of template DNA in a 

volume of 5µl and 2µl of random 9mers buffer was denatured at 95ºC for 2 

minutes and allowed to anneal at room temperature for a further 2 minutes. 

2µl of nucleotide mix lacking dCTP was added followed by the addition of 

dCTP [α-32P] (Amersham) equating to an activity of 0.37MBq, and 2.5units 

DNA polymerase I – Klenow fragment (New England Biolabs). The reaction 

was incubated at 37ºC for 10 minutes. The reaction was stopped by the 

addition of TE buffer to a total volume of 100µl and the mixture was passed 

through a TE buffered Sephadex G-50 medium spin column to remove 

unincorporated nucleotides. 

2.3.7 Hybridisation 

Blots were placed in a hybridisation bottle (Hybaid) and soaked in 

20ml hybridisation buffer (2x SSC, 5x Denharts reagent, 0.1% SDS) and pre 

warmed at 64ºC for 20 minutes in a rotisserie-oven system. 500µl of non-

specific DNA blocking agent, (salmon sperm DNA – 2.5mg/ml) was added to 

the prepared radiolabelled probe and radiolabel marker DNA and the mixture 

boiled for 5 minutes and immediately quenched by placing on ice for two 

minutes. The denatured probe/DNA/marker was added to the hybridisation 

bottle and hybridised overnight at 64ºC. 

2.3.8 Washing of blots 

Blots were washed twice in 2x SSC, 0.1% SDS at 64ºC for 15 minutes 

and for a further 20 minutes in the same buffer but at 61ºC. Blots were heat 

sealed in thin plastic bags and autoradiographed using Fuji RX and a 

Chronex intensifying screen at -80ºC for 48 hours to 14 days. Films were 

processed by hand using Redichem Developer and Redichem Fixer (PLH 

Medical). 
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2.4 Chromatin-SEQ: Chromatin Particle Spectrum Analysis  

The general method was as described by Kent et al. (2011) (Kent et al., 

2011). A summary work flow chart for this analysis is shown in Figure 2.2. All 

PERL scripts used in this analysis and size-specific frequency distribution 

files (.sgr) are available on the supplied CD-ROM.  

2.4.1 Chromatin digestion and size selection 

Yeast cell cultures were grown overnight to an exact density of 2x107 

cells per ml in YPD at 29ºC. 1.2x109 cells were harvested by centrifugation at 

3000g for 3 minutes in a swing out rotor and the harvested cells transferred 

to a 2ml microcentrifuge tube. The cells were pelleted by centrifugation at 

12500g for 15 seconds and the remaining media discarded. Cells were 

resuspended in 500µl Arthrobacter luteus yeast lytic enzyme (MP-Bio - 

10mg/ml in 1M sorbitol, 5mM β-mercaptoethanol) for 1 minute 30 seconds at 

22ºC. Cells were pelleted by centrifugation at 12500g for 15 seconds and 

washed in 800µl 1M sorbitol. Cells were pelleted by centrifugation at 12500g 

for 15 seconds and resuspended in 1.2ml SDBI (as described in Section 

2.3.1). 400µl of spheroplasted yeast cells in SDBI were added to 150u/ml 

micrococcal nuclease for 2 minutes 15 seconds at 37ºC. After digestion the 

samples were immediately centrifuged at 14500g for 15 seconds to pellet cell 

debris and high-molecular weight genomic chromatin fragments and the 

supernatant was transferred quickly to a fresh microfuge tube containing 40µl 

STOP buffer (250mM EDTA, 5% SDS).  

2.4.2 DNA purification 

DNA was extracted by phenol/chloroform extraction as described 

previously (Section 2.3.2) with the following modifications: 400µl 

phenol/chloroform was added (1:1 ratio), the first aqueous phase was 

digested with 15µl RNase A for 30 minutes at 37ºC, DNA was precipitated 

with 60µl ammonium acetate (7.5M) and 520µl propan-2-ol (100%). Three 

replicate samples from each strain were pooled in a final volume of 84µl AR 

water. 



77 

 

2.4.3 End processing 

To remove the 3’ phosphates from the DNA fragments left by MNase 

(Johnson et al., 2006), 80µl of purified DNA was incubated with 100units of 

T4 polynucleotide kinase (New England Biolabs) at 37ºC for 30 minutes in a 

100µl reaction volume. DNA was purified by phenol/chloroform extraction 

and precipitated with sodium acetate (7.5M) and propan-2-ol (100%). The 

resulting pellet was washed in 70% ethanol and the pellet was resuspended 

in TE (pH7.5). 

2.4.4 Paired-end mode Next Generation Sequencing 

All sequencing chemistry including library preparation was undertaken 

by the Exeter University Sequencing Service. Briefly, Illumina adapters were 

ligated to 4μg of DNA fragments using the NEBNext DNA sample prep 

master mix set 1 and size selected on polyacrylamide gels to preserve the 

size distribution of input DNA fragments. Ligated products were amplified 

using Phusion DNA polymerase and adaptor-specific primers (Illumina) for 12 

cycles and then purified using AMPure XP beads (Agencourt). 7 pM DNA 

was hybridized to each lane of an Illumina flowcell (1 flow cell per yeast 

strain) resulting in a clusters density of ~700 K/mm2. DNAs were sequenced 

using 100 nucleotide paired-end mode on an Illumina HiSeq 2000 using 

TruSeq SBS reagents version 3. The HiSeq pipeline software calculated a Q-

score (quality score) for each base sequenced. The Q-score is derived using 

the Phred algorithm (Ewing and Green, 1998; Ewing et al., 1998) which 

defines the Q-score as being logarithmically related to the probability of the 

base being incorrectly called by the sequencer. Sequence was outputted with 

a Q-score of ≥30 i.e. a probability of 1 in 1000 bases being incorrectly called. 

Outputted sequence is therefore of high quality. 
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Purified chromatin fragments

Aligned sequences to reference genome and 

calculation of insert size between pairs of reads for a 

fragment

Pairs of sequenced reads representing each end of the 

fragment

Insert size sorting to define particle class sizes

Paired read mid-point frequency histograms across the 

genome divided into 10 base pair bins

Yeast cell culture

MNase digestion, 

phenol/chloroform extraction

(2.4.1-2.4.3)

Illumina HiSeq paired 

end mode sequencing

(2.4.4)

Bowtie alignment to yeast 

genome

(2.4.5)

Perl: SAMparsre.pl script 

(2.4.6)

Perl: histogram.pl script 

(2.4.7)

Figure 2.2 Chromatin Particle Spectrum Analysis Flow Chart
Five processes are required to obtain a chromatin landscape of the yeast genome from a growing yeast
culture. Each input and output is contained within the closed boxes and the processes required are
contained within the arrows with each number relating to the section in the text.
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2.4.5 Sequence Alignment 

Sequences were aligned to the Saccharomyces cerevisiae March 

2012 NCBI RefSeq build genome using Bowtie v0.12.7. (Langmead et al., 

2009) running under a UNIX operating system. An example of the command 

line flags is shown below: 

 

./bowtie -v 2 --trim3 64 --maxins 5000 --fr -k 1 -p 1 --sam 

indexes/S_cer_full_refseq -1 NK-RSC2_ACAGTG_L003_R1_001.fastq -2 

NK-RSC2_ACAGTG_L003_R2_001.fastq RSC2_6_full36bp.sam 

 

./bowtie; directs the operating system to use the program “Bowtie” found in 

that directory 

 -v 2; allowed up to and including two mismatches in each alignment 

--trim3 64; removes 64 base pairs from the 3’ end of each fragment to be 

aligned (i.e. only 36bp was aligned) 

--maxins 5000;  paired fragments that were more than 5000bp away from 

each other on the DNA strand were ignored,  

--fr; paired fragments were paired on the same chromosome. 

 –k 1; only outputted one alignment for each read pair, 

 -p 1; the program used only 1 processing core of the CPU,  

--sam;  the outputted data should was in the .sam format (Li et al., 2009),  

indexes/S_cer_full_refseq; the reference sequence called “S_cer_full_refseq” 

was used for the alignment,  

- NK-RSC2_ACAGTG_L003_R1_001.fastq; the named file contained the first 

read of a pair, 

 -2 NK-RSC2_ACAGTG_L003_R2_001.fastq; the named file contained the 

second read of a pair,  

RSC2_6_full36bp.sam; the name to call the output file. 

 

The .sam file output contained a list of all the read pairs which Bowtie 

had aligned to the genome as shown in Figure 2.3  The important data 

values , with respect to the CPSA process, are those that refer to the NCBI 

(National Centre for Biotechnology Information) reference code to which 
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chromosome the read pairs have aligned [3], the base pair positioning of the 

5’ end of the read on that chromosome [4], and the distance in base pairs to 

the 3’ end of its paired read i.e. the insert size (ISIZE) [9]. 
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2.4.6 Chromatin particle definition, size selection and mid-point 

mapping 

The SAM file from Bowtie was sorted into chromosome-specific reads 

(output in SAM format but without headers and with a .txt file end) using the 

UNIX “grep” command via the shell script; chgrep.sh. Mitochondrial DNA was 

designated chromosome 17 and the 2µ-plasmid was designated 

chromosome 18.  

Each of the individual chromosome-specific .txt files were then 

processed using the Perl script SAMparser,plx which further sorts the paired 

reads into ISIZE classes representative of known and putative MNase-

resistant chromatin species/particles. Particle size were defined as ISIZE 

values of  50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300 and 450bp 

plus/minus a particle window size ($pwind) of 0.2 (+/-20%). Thus reads 

deriving from nucleosomes (approximately 150bp MNase-resistant DNA 

fragments) would occur in the 150bp size class and this size class would 

contain reads with ISIZE values ranging from 120bp to 180bp. This window 

allows for discrimination of smaller particle size classes and prevents 50-, 

100-, 150-, 300-, and 450bp size classes from overlapping. 

To define a single and simple genomic position for each chromatin 

particle SAMparser calculates the mid-point of each paired read. For 

nucleosomes this position is equivalent to the DNA “dyad” position (Luger et 

al., 1997) . 
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2.4.7 Calculation of paired-read mid-point frequency histograms 

The Perl script histogram.pl was used to calculate frequency 

distributions for paired read insert size mid-points binned at 10 base pair 

intervals. The input files were the individual chromosome specific, particle 

size defined .txt files output by SAMparser. The histogram.pl script outputs 

the frequency distribution histogram in files of .sgr format for output into the 

Integrated Genome Browser (IGB) (Nicol et al., 2009). The file type contains 

three columns of information: chromosome identification, the base pair 

positions of each bin start, and the frequency of paired-read mid-point values 

falling within that bin, smoothed to a 3 bin moving average. Chromosome-

specific .sgr files were finally concatenated to yield a series of histograms for 

the entire genome at each size class. This file was then rendered in the IGB 

to visualise particle class size distribution relative to genomic features such 

as open reading frames. 
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2.4.8 Normalised cumulative frequency graphs of chromatin particle 

distribution surrounding specific genomic sites 

To determine whether or not common patterns of chromatin 

organisation exist surrounding particular genomic feature sites (e.g. 

transcriptional start sites, trans-acting protein binding sites) the Perl script 

“SiteWriter” was used (Kent et al., 2011). This script calculates normalized 

cumulative frequency values for chromatin particle positions in a dataset in 

the bins surrounding a list of user-defined genomic feature sites. Sites were 

defined in a four column tab-delimited text file (chromosome name, site 

identification, string, chromosome position, and DNA strand i.e. forward or 

reverse) and chromatin particle information was provided by the .sgr format 

files described in Section 2.4.7.  

The SiteWriter script produces four output files: the first contains the 

cumulative frequency values (outputted in a tab-delimited text file with the 

ending CFD.txt) which are normalised by dividing the cumulative frequency 

value in each bin by the average cumulative read frequency across the whole 

window for that feature list: the second file (with ending C3.txt) contains a 

matrix of all the individual bin values surrounding the sites rendered in a 

format that can be inputted into the Cluster 3.0 program 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm): the final two 

files render the individual bin value data set in .sgr format for either the 

forward or reverse strand features so that the chromatin particle distributions 

at each site can be visualised using the IGB. The values in the .CFD.txt 

output files were rendered as graphs in either Excel or LibreOffice Calc. 

2.4.9 Particle position marking, counting and comparison 

To compare the number of chromatin particles of a particular size class 

present in two datasets the Perl script PeakMarkCompare.plx was used. This 

script marks peaks in the mid-point frequency histogram data for a particular 

particle size class in both datasets that pass a read frequency threshold. The 

threshold is set to filter out low level noise in the histogram data. The 

comparison dataset is scaled to the control dataset by an estimate in the 

difference in read depth and peaks which pass the same threshold in the 

comparator dataset are then marked. Marked peaks are then compared 

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
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between the two datasets to determine which match (in A AND B) and which 

are unique to one dataset (In A NOT B or In B NOT A). A boundary score is 

given to bins which fall within a defined percentage of the threshold for a 

peak in order that during peak comparison these bins are not marked as ‘not’ 

if they are over the threshold in one dataset but just under the threshold in 

the comparator. The script also identifies read frequency differences above a 

user defined fold-difference between matching peaks in the two datasets and 

can add these to the NOT output files.  

2.5 Amino acid sequence alignments 

Amino acid sequence alignments were performed using the ClustalW 

method in the GUI LaTeX based program ‘Strap’ (Gille and Frommel, 2001; 

Thompson et al., 2002). Secondary structures of amino acid sequences were 

predicted using the SOPMA method (Geourjon and Deleage, 1995) in the 

Strap interface. Graphical outputs of the alignments and secondary 

structures were generated using the LaTex extension TeXshade which 

exports the graphical results into a *.pdf format (Beitz, 2000)  
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3 Chromatin is remodelled by Rsc1 at MAT and 

non-MAT HO induced double-strand DNA 

breaks 

3.1 Aims of the chapter 

1. To validate indirect-end-label chromatin mapping technology to 

investigate nucleosome positions surrounding an HO-induced double-

strand break. 

 

2. To compare chromatin structure and DSB-dependent remodelling at 

MATa and MATalpha forms of the MAT locus   

 

3. To characterise the RSC-dependency of chromatin structure and 

DSB-dependent remodelling at a HO-induced DSB in a non-MAT 

locus context 

3.2 Chromatin is remodelled asymmetrically at MATalpha 

after DSB formation  

In order to validate the use of indirect-end-label nucleosome mapping 

technology for the analysis of chromatin structure surrounding HO-induced 

DSBs used extensively in this thesis, the original observations of Kent et al., 

(2007) were repeated. The authors used the haploid yeast strain JKM179 

(MAT, ade1-100, leu2-3 112, lys5, trp1::hisG, ura3-52, ho, hml, hmr, 

ade3::GAL1pro::HO), originally created in the Haber laboratory (Moore and 

Haber, 1996). In this strain the expression of the homothallic (HO) 

endonuclease gene is controlled by the GAL promoter allowing for rapid 

induction of expression by addition of galactose to the media. HO 

endonuclease creates a specific double strand DNA break (DSB) at the 

MATalpha locus and cleavage in more than 80% of the cell population is 

observed within 40 minutes of induction (by addition of galactose to the 

media). The DSB is sustained because this strain lacks the silent mating-type 

loci thus preventing the DSB from being repaired by homologous 
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recombination. Repair of the break is dependent upon NHEJ however HO 

endonuclease is continually produced which sustains the break. Figure 3.1 

shows a map of the MATalpha locus indicating the HO cleavage site, the 

TAF2 gene, downstream of the MAT α1 open reading frame and the two 

unique restriction sites that allow the indirect-end-label mapping of chromatin 

on both sides of the HO cleavage site. 

Figure 3.2 shows an indirect-end-label analysis of chromatin at the 

TAF2 side of the MATalpha HO site in strain JKM179 before and after 

induction of the DSB by HO. Comparison of the MNase cleavage pattern of 

chromatin associated DNA to the MNase cleavage pattern of deproteinized 

DNA (compare lanes 3 and 4 with lane 1 respectively) reveals MNase 

protected regions at the MATalpha locus before HO cleavage suggestive of 

an organised chromatin structure. The sizes of these protected regions were 

calculated by plotting the distance migrated against log fragment size for 

bands indicated on the analysis shown in Figure 3.2 (calibration curve shown 

in Appendix A.1) 
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Bsp E1

α2
α1

TAF2

HOBan II

Figure 1 Map of the MAT α locus: 

The alpha form of the MAT locus (MAT α) consists of two divergently transcribed genes α1 and α2 located next to 

the TAF2 gene on chromosome III. The HO endonuclease cleavage site is located within the 3’ end of the MATa1 

gene. Two unique restriction sites (Ban II and Bsp EI) occur within this region and allow indirect-end-label 

nucleosome mapping of both sides of  the HO site.

Figure 3.1 – Map of the MATalpha locus
The alpha form of the MAT locus (MATalpha) consists of two divergently transcribed genes α1 and α2
located next to the TAF2 gene on chromosome III. The HO endonuclease cleavage site is located within
the 3’ end of the MAT α1 gene. Two unique restriction sites (Ban II and Bsp E1) occur within this region
and allow indirect-end-label nucleosome mapping of both sides of the HO cleavage site.

Bsp EI
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Figure 3.2 Chromatin is remodelled at an HO-induced DSB on the TAF2 side of MATalpha
2x108 cells were harvested before (t=0) and 40 minutes after HO induction (t=40). The cell wall was
enzymatically removed, and spheroplasts were permeabilised and incubated with increasing amounts of
MNase, 75u/ml or 150 u/ml (indicated by sloped triangle), for 2 minutes. DNA fragments were purified,
separated by gel electrophoresis on a 1.5% agarose gel, transferred to a nylon membrane, and probed
with the probe indicated. Deproteinized “naked” DNA was digested with MNase as a control (labelled as
DNA) A – Chromatin associated DNA has protected regions when compared with deproteinized DNA
(compare lanes 3 and 4 with lane 2). A strong band at approximately 1800bp indicates the formation of a
DSB at t=40 (indicated by arrow). 40 minutes after induction of HO the pattern of protected regions has
changed on the TAF2 side of the DSB. B – Inferred nucleosome structure. Regions that are protected from
MNase cleavage are approximately 150bp in size inferring positioned nucleosomes. Up to five inferred
nucleosomes from the (open circles) move to new positions away from the HO cleavage site subsequent
to the formation of the DSB at MATalpha. This is shown in the cleavage pattern as bands 1 – 6 migrate
further whilst maintaining 150bp separation.
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DSB
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The MNase protected regions as demarcated by MNase cleavage 

sites 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 in lanes 3 and 4 have an average size of 

180bp which is consistent with the presence of an array of positioned 

nucleosomes labelled A-F  abutting the HO cleavage site and stretching into 

the TAF2 coding region (Figure 3.2B). A much larger region of MNase 

protected DNA is demarcated by band 0-1 with a size of approximately 

500bp indicating that the alpha1 coding region is apparently protected by a 

much larger particle than a single nucleosome. Both the tract of positioned 

nucleosomes on the TAF2 side of the HO site and the large MNase resistant 

structure abutting the HO cleavage site on the MAT locus side are consistent 

with the analyses of MATalpha chromatin as previously described (Kent et 

al., 2007; Weiss and Simpson, 1997). 

Figure 3.2 also confirms the presence of a DSB-dependent 

nucleosome remodelling event that occurs on the TAF2 side of the HO-

induced DSB as previously described (Kent et al., 2007). 40 minutes after the 

induction of HO in JKM179, the DSB is clearly visible as a strong band 

migrating at 1750bp in Lanes 4 – 6. The MNase cleavage fragments of 

chromatin-associated DNA on the TAF2 side of the DSB have migrated 

further into the gel when compared to those prior to HO cleavage (compare 

lanes 4 and 5) but the deproteinized DNA pattern is not altered (compare 

lanes 2 and 7). This shows that new regions of DNA are protected from 

MNase digestion and is consistent with nucleosomes A – E remaining 

associated with the locus but having moved away from the DSB as indicated 

in Figure 3.2B. 

 In contrast, Figure 3.3 shows that, unlike the repositioning of 

nucleosomes observed on the TAF2 side of the DSB, the large MNase 

resistant structure on the MAT side of the break is not altered in response to 

an HO-induced DSB. The cleavage pattern produced prior to induction of HO 

does not change when compared to the pattern produced 40 minutes after 

the addition of galactose to the growth media (compare lanes 3 and 4 with 5 

and 6). This asymmetrical remodelling of nucleosomes in response to a DSB 

at the MATalpha locus is therefore consistent with previous observations 
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(Kent et al., 2007). Figure 3.4 summarises the inferred chromatin structure at 

MATalpha before and after cleavage by HO. 

  



94 

 

  

BanII

α
2

α
1

TA
F2

HO

2.0

1.5

1.0

0.5

D
N

A

D
N

A

Chromatin

M
a
rk

e
r

JKM179

HO

0 min

HO

40 min

Figure 3.3 Chromatin is not remodelled on the MAT side of a HO-induced DSB at MATalpha
Similar analysis was performed as in Figure 3.2 with the exception of a different combination of
restriction enzyme and probe (as indicated) to allow the investigation of the chromatin on the MAT locus
side of a HO-induced DSB. As in Figure 3.2, comparison of chromatin-associated and deproteinized DNA
reveals MNase protected regions inferring the positions of chromatin particles bound to the DNA
(compare lanes 3 and 4 with lane 2). The MNase resistant region immediately neighbouring the HO
cleavage site is approximately 450bp – 500bp indicating a non-canonical nucleosomal organisation
(indicated by bracket). The MNase resistant region is followed by a disordered region of MNase cleavage
indicating non-positioned nucleosomes but the pattern seen at t=0 is not altered at t=40 by the formation
of an HO-induced DSB (compare lanes 3 and 4 with lanes 5 and 6)
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Figure 3.4 A summary of the response to an HO-induced DSB at MATalpha
Chromatin is remodelled asymmetrically in response to a HO induced DSB. MATalpha has a defined
pattern of positioned nucleosomes on the TAF2 side of the HO cleavage site and a large MNase resistant
structure followed by a disordered region of nucleosomes on the MAT side of the HO cleavage site.
Formation of a DSB by endonuclease HO results in extensive remodelling of five nucleosomes on the
TAF2 side away from the site of the DSB but the chromatin structure on the MAT locus side of the break
is unchanged.

Wild-type MATalpha cells
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3.3 Chromatin structure at MATalpha is RSC dependent 

Kent et al. (2007) previously reported that various components of RSC 

(Remodels the Structure of Chromatin), described in Section 1.6, are 

required for normal chromatin structure at MATalpha and for subsequent 

remodelling in response to a HO-induced DSB. To confirm that the MATalpha 

chromatin structure is dependent on RSC subunits, RSC subunit knock-out 

null mutants were created in the strain JKM179. Figure 3.5 shows the 

indirect-end-label analysis of MATalpha in Δrsc1, Δrsc2 and Δrsc7 strains 

before and after the induction of DSB by HO. Chromatin remodelling, similar 

to that seen in wild-type cells on the TAF2 side of the DSB, is observed in 

Δrsc2 and Δrsc7 40 minutes after the induction of HO (compare with Figure 

3.2). Post-DSB remodelling however is almost completely abolished in Δrsc1 

(Figure 3.5C compare lanes 3 and 4 with 5 and 6). This result is identical to 

that previously obtained by Kent et al. (2007) and suggests that chromatin 

remodelling on the TAF2 side of a HO-induced DSB at MATalpha is 

dependent on Rsc1. 

 

3.4 MATa and MATalpha have different chromatin structures 

The analysis presented above confirms the work of Kent et al. (2007) 

and shows that the chromatin environment surrounding the HO cleavage site 

at MATalpha consists of a large MNase resistant region on the MAT side of 

the locus and an array of positioned nucleosomes on the TAF2 side of the 

locus. These data suggest that in response to the creation of a DSB by the 

HO endonuclease the array of nucleosomes on the TAF2 side slide away 

from the DSB. This nucleosome remodelling event influences normal histone 

H2A phosphorylation and strand resection and is therefore required for 

efficient break repair (Kent et al., 2007; Shim et al., 2007). However the MAT 

locus can exist in two possible conformations, MATalpha and MATa (see 

Section 1.2.2). Hence chromatin structure was analysed in JKM139, a MATa 

strain otherwise isogenic to JKM179 (see Section 2.1.9), to determine 

whether similar RSC-dependent chromatin remodelling is observed at MATa.  
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Figure 3.6B shows indirect-end-label analysis of JMK139 before and 

after induction of HO. The analysis shows that prior to cleavage by HO the 

chromatin environment abutting the HO cleavage site on the MAT locus side 

is cleaved three times by MNase revealing three regions of MNase protection 

of approximately 150bp (lanes 3 and 4). This pattern is suggestive of three 

positioned nucleosomes occupying the a1 region of the MATa locus in 

contrast to the large MNase resistant structure observed in the similar 

position in MATalpha. This analysis shows that the chromatin environments 

surrounding the HO cleavage site in MATa and MATalpha are very different. 
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3.5 Nucleosomes at MATa are remodelled in an identical 

manner to MATalpha on in response to an HO-induced 

DSB 

Indirect-end-label analysis was performed on JKM139 before and after 

induction of HO as described above. Figure 3.6A shows that at 40 minutes 

after induction of HO some of the fragments produced by MNase cleavage of 

chromatin-associated DNA migrate further into the gel showing that 

nucleosomes are remodelled on the TAF2 side of a HO induced DSB formed 

in MATa (compare lanes 3 and 4 with lanes 5 and 6).  Figure 3.6B shows that 

chromatin on the MAT locus side of the HO-induced DSB remains 

unchanged. This shows that chromatin is remodelled at both MATalpha and 

MATa only on the TAF2 side of the break in response to a HO-induced DSB 

3.6 DSB-dependent nucleosome remodelling at MATa is 

Rsc1 dependent 

As shown above, DSB-dependent nucleosome remodelling at 

MATalpha is dependent on Rsc1. In order to investigate the dependency on 

RSC subunits for remodelling at MATa, RSC subunit knock-out null mutants 

were created in JKM139.  Figure 3.7 shows the indirect-end-label analysis of 

the chromatin on the TAF2 side of a HO-induced DSB in MATa. Remodelling 

of nucleosomes similar to that found in wild-type cells is observed in the 

analysis of Δrsc2 and Δrsc7 (Panel B and C) however activity is almost 

abolished in Δrsc1. As previously observed at MATalpha, very little change is 

observed in the cleavage pattern of MNase after 40 minutes after induction of 

HO in the Δrsc1 strain (Figure 3.7C).  Together these two observations show 

that Rsc1 is generally required to remodel chromatin in response to the HO-

induced DSB at the MAT locus. 

In contrast to the chromatin structure at MATalpha, the chromatin 

structure immediately abutting the MAT side of the HO cleavage site of MATa 

is independent of RSC. Comparing the MNase cleavage patterns 

immediately flanking the HO cleavage sites before HO-induction in the three 

RSC-subunit mutants analysed here shows the same pattern of three 
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positioned nucleosomes as observed in the wild-type strain (compare Figures 

3.6 and 3.7). Taken together the DSB-dependent nucleosome remodelling 

event at MATa requires Rsc1 but there is no detectable dependency on the 

Rsc1, Rsc2, or Rsc7 subunits of RSC for the normal (pre-DSB) chromatin 

structure. 
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3.7 Chromatin is remodelled in response to an HO-induced 

DSB in a non-MAT locus 

The MAT locus is a highly specialised region of the genome used for 

mating type switching. To study the effect of an HO-induced DSB on 

chromatin structure in a different chromosomal context i.e. outside the 

mating-type locus, chromatin was analysed in the strain YFP17. YFP17 has a 

117bp HO cleavage site inserted at +251 in the open reading frame of LEU2 

on chromosome III (Paques et al., 1998). YFP17 was also derived from a 

background in which HO is placed under a galactose-inducible promoter and 

had been integrated into the ADE3 locus (Moore and Haber, 1996).  

Figure 3.8 shows the indirect-end-label analysis of YFP17 prior to and 

40 minutes after the induction of the DSB. Comparing the MNase cleavage 

pattern of chromatin-associated DNA and of deproteinized DNA shows 

MNase resistant structures protecting regions of 150bp inferring that there is 

a tract of positioned nucleosomes in the reading frame of LEU2 (compare 

lanes 2 with 3 and 4). After 40 minutes HO cleavage is observed as a distinct 

band at 1800bp. Comparing lanes 3 and 4 with lanes 5 and 6 shows a 

change in the MNase cleavage pattern of chromatin-associated DNA as the 

bands have migrated further into the gel. This is indicative of repositioning of 

nucleosomes after the formation of the DSB. The presence of a Ty element 

immediately 5’ to LEU2 prevents analysis of the nucleosomes on both sides 

of the DSB so it cannot be shown whether this is remodelling event is 

asymmetrical. These observations are again consistent with those of Kent et 

al., (2007) and suggest that DSB-dependent nucleosome sliding adjacent to 

an HO-induced DSB occurs independently of HO site chromosomal context. 
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Figure 3.8 Chromatin is remodelled at a HO induced DSB in LEU2
Analysis of the chromatin surrounding a DSB in LEU2. Indirect end labelled analysis of MNase digested
chromatin and deproteinized DNA using the restriction enzyme and probe indicated in the strain YFP17
which contains a HO cleavage sequence of LEU2. As in the JKM179/JKM139 strains, HO is induced by the
addition of galactose to the media and subsequently HO forms a DSB in the LEU2 protein coding region.
An upstream Ty element precludes analysis of both sides of the DSB. Comparing digested chromatin with
digested deproteinized DNA shows protected regions of 150bp indicating positioned nucleosomes.
Lanes 3 and 4 show that the coding region of LEU2 has highly positioned nucleosomes. Comparing lanes
3 and 4 at t=0 with lanes 5 and 6 at t=40 shows that after the formation of a HO-induced DSB (indicated
by arrow) the nucleosomes on the protein coding region side are extensively repositioned (as indicated
by the bracketed region).
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3.8 DSB-dependent nucleosome remodelling at LEU2 is 

Rsc1-dependent 

It has been shown above that DSB-dependent nucleosome remodelling 

at both MATalpha and MATa is dependent on the RSC subunit Rsc1. To 

determine whether any of the RSC subunits were required for remodelling at 

an HO-induced DSB knock-out strain null mutants of RSC subunits were 

created in YFP17. Figure 3.9 shows the indirect-end-label analysis of the 

chromatin on the open reading frame side of the HO cleavage site in Δrsc1, 

Δrsc2 and Δrsc7 knock-out null mutants. Comparing lanes 3 and 4 with 5 and 

6 in both panels B and C show that, 40 minutes after the induction of a DSB 

by HO, the MNase cleavage pattern from chromatin-associated DNA has 

significantly changed in both Δrsc2 and Δrsc7 strains showing nucleosome 

remodelling. In contrast, comparison of lanes 3-4 with 5-6 of Panel A shows 

that there is little change in the MNase cleavage patterns of chromatin-

associated DNA 40 minutes after DSB induction. Therefore the positions of 

nucleosomes on the open reading frame side of the LEU2 break are 

unchanged after the formation of a DSB. This shows that DSB-dependent 

nucleosome remodelling at an HO cleavage site in LEU2 is also dependent 

on Rsc1. 
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3.9 Summary 

Using indirect end labelling of in vivo MNase digested chromatin in HO 

inducible strains, nucleosome remodelling has been confirmed to occur in 

response to a double-strand DNA break at MATalpha. Using isogenic null 

mutants of subunits of the ATPase-dependent complex RSC, it has been 

shown that this remodelling is dependent on Rsc1. These data are consistent 

with previous work by Kent et al., (2007) but contrast that of Shim et al., 

(2007) who suggest that remodelling is Rsc2-depedent (Kent et al., 2007; 

Shim et al., 2007). 

This analysis has investigated this remodelling activity in the second 

conformation of the highly specialised MAT locus when in the MATa form and 

shows that remodelling of nucleosomes also occurs to the TAF2 side of the 

HO induced double-strand DNA break. Using isogenic knock out null mutants 

it has been shown that this remodelling activity is also dependent on Rsc1. 

The MAT locus is a highly specialised and regulated locus on the 

chromosome so it was important to investigate whether this Rsc1-dependent 

remodelling activity was unique to the MAT locus or whether it was a 

genome-wide function of RSC at sites of chromosomal lesions. The results 

presented above reveal that nucleosomes are remodelled in a Rsc1-

dependent manner at a non-MAT HO induced DSB in LEU2. Interestingly 

there was no change in the chromatin structure surrounding the HO cleavage 

site in LEU2 prior to cleavage in any of the RSC null mutants.  

These observations, therefore, demonstrate that RSC generally 

remodels nucleosomes away from HO-induced double-strand DNA breaks in 

a Rsc1 dependent manner. However these results presented above also 

uncovered a difference between the two MAT locus conformations in terms of 

their chromatin structure prior to HO cleavage. The MATalpha locus exhibited 

a large MNase protected region on the MAT gene side of the HO site, 

whereas this region in MATa appeared to be associated with canonically-

sized nucleosomes. The nature of this difference is explored in the next 

Chapter. 
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4 Rsc2 and Rsc7 set the chromatin structure 

surrounding the HO cleavage site in 

MATalpha 

4.1 Aims of the chapter 

1. To investigate the nature of the large MNase resistant chromatin 

structure at MATalpha  

 

2. To determine the RSC subunit dependency in setting chromatin 

structure at the MAT locus  

4.2 Rsc2 and Rsc7 maintain a specific chromatin structure at 

MATalpha but not MATa 

The work presented in the previous chapter demonstrated a difference 

between MATa and MATalpha with respect to the chromatin structure 

surrounding the HO cleavage site prior to cleavage.  

Close inspection of Figure 3.5 shows that in the absence of either 

RSC2 or RSC7 the large MNase resistant structure at MATalpha becomes 

more accessible to MNase and resolves to a similar pattern to that observed 

at MATa.  Figure 4.1 shows a more direct comparison of the pre-HO 

cleavage MATalpha chromatin structure in RSC subunit mutants presented 

on the same indirect-end-label blot. These results are consistent with those 

reported by Kent et al. (2007) and confirm that RSC has dual functionality at 

the MATalpha locus in defining chromatin structure both before and after 

DSB formation with each distinct function mediated by different subunits 

within the complex. Kent et al (2007) were able to show in that in the 

absence of the large structure at MATalpha the efficiency of cleavage by HO 

endonuclease decreases slightly (Kent et al., 2007).  

Figure 4.2 shows that this function of RSC does not apply to the MATa 

form of the MAT locus. MNase cleavage sites on the MAT side of the HO site 

are similar when compared with wild type in both Δrsc2 and Δrsc7 mutants. 

Thus it appears that Rsc2 and Rsc7 are involved in the formation of a 
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specific chromatin configuration at the MATalpha locus, whereas there is no 

function at MATa. It also appears that the wild-type chromatin structure at 

MATa is essentially identical to the MATalpha structure in a Δrsc2 or Δrsc7 

mutant background. Therefore the chromatin surrounding the HO site at MAT 

is context dependent. Next, I examined whether HO sites placed into non-

MAT chromatin contexts showed any dependence on Rsc2 or Rsc7 to set 

chromatin structure. 

 



111 

 

2.0

1.5

1.0

0.5

Figure  4.1 - Chromatin at MATalpha is dependent on Rsc2 and Rsc7
MATalpha has a chromatin structure that is dependent on Rsc2 and Rsc7. Chromatin was digested
increasing concentrations of MNase (triangles) in permeabilised JKM179 spheroplasts at 37ºC for 2
minutes without the induction of HO. Deproteinized DNA was digested with 5u/ml MNase at 22ºC for 10
seconds. Similar analysis was performed in isogenic null mutants of rsc1, rsc2 and rsc7. The Southern blot
shows the indirect-end-labelling analysis, using the restriction enzyme and probe indicated. In the control
a large MNase resistant structure is observed (bracket region) immediately on the MAT locus side to the
HO cleavage site (lanes 3 and 4). This structure protects approximately 500bp of DNA indicating the
presence of a non-canonical nucleosomal environment. The same structure is observed in Δrsc1 (lanes 6
and 7). In Δrsc2 and Δrsc7 null mutants the chromatin pattern on the MAT locus side of the HO cleavage
site resolves into separate cleavage sites consistent with the presence of three positioned canonical
nucleosomes (lanes 9 and 10 and 12 and 13).

1         2         3          4          5          6          7         8         9         10      11      12       13 
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Figure 4.2 - MATa chromatin is not dependent on RSC
The chromatin environment surrounding the HO cleavage site at MATa is not dependent on Rsc1, Rsc2 or
Rsc7. Chromatin was digested by increasing concentrations of MNase (triangles) in permeabilised
JKM139 spheroplasts without the induction of HO as in Figure 4.1. Deproteinized DNA was digested with
MNase as a control. Similar analysis was performed in isogenic null mutants of rsc1, rsc2, and rsc7. The
Southern blot shows indirect-end-label analysis of the MAT locus. Lanes 3 and 4 show that there is a
highly ordered nucleosome pattern at MATa but the area immediately to the MAT locus side of the HO
cleavages site resolves as three nucleosomes. This pattern is similar to that observed in Δrsc2 and Δrsc7 in
Figure 4.1. Analysis of the RSC mutants show that the positioning of nucleosomes prior to cleavage by HO
is independent of Rsc1, Rsc2, or Rsc7 (lanes 6,7, lanes 9, 10 and lanes 12 and 13 respectively).

2.0

1.5

1.0

0.5

1         2         3          4          5          6          7         8         9       10      11      12       13 
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4.3 RSC does not set pre-cleavage chromatin structure at 

HO cleavage sites engineered within non-MAT loci 

Indirect-end-label analysis was performed on RSC mutant strains, 

isogenic with YFP17 and MK205a. YFP17 has an 117bp HO cleavage 

sequence inserted into the protein coding region of LEU2 (as described in 

Chapter 3) and MK205a has a galactose-inducible 39bp HO cleavage site on 

chromosome V at +206 in the URA3 protein coding region (Aylon et al., 

2003). Figure 4.3 shows the indirect-end-label analysis of the chromatin 

structure in LEU2 surrounding the engineered HO cleavage site. LEU2 has 

positioned nucleosomes flanking either side of the HO cleavage site and 

these nucleosomes all protect 150bp of DNA indicating canonical 

nucleosomes. No dependency on Rsc2 or Rsc7 to set the nucleosome 

pattern surrounding the recognition site prior to cleavage is observed in this 

analysis. Similarly, Rsc1 is not required for the setting of chromatin structure 

around the HO cleavage site. 

Figure 4.4 shows the indirect-end-label analysis of the basal chromatin 

in the yeast strain MK205a which contains an HO cleavage site in URA3. 

Indirect-end-label analysis of URA3, using the probe indicated, show that 

URA3 has positioned nucleosomes flanking either side of the HO cleavage 

site. However, there is no large MNase resistant structure as indicated by the 

MNase cleavage pattern of chromatin associated DNA (compare lane 2 with 

lanes 3 and 4). Analysis of knock-out null mutants of RSC1, RSC2 and RSC7 

shows that the nucleosome pattern surrounding the URA3 HO cleavage site 

is not dependent on these RSC subunits. These analyses show that the 

chromatin structure surrounding the two HO sites chosen above both behave 

like those at MATa rather than MATalpha and are independent of Rsc2 and 

Rsc7.  

In order to understand why the MATalpha HO chromatin behaves 

differently, I next examined the large MNase resistant structure to determine 

whether it is a large single protecting unit or a complex made up of smaller 

subunits such as nucleosomes. 
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Figure 4.3 - RSC-independent nucleosome positioning at a non-MAT HO site in LEU2
LEU2::HOcs has a defined nucleosome structure which is not dependent on RSC. YFP17 contains an HO
cleavage site in the open reading frame of LEU2. Cells were spheroplasted, permeabilised, and chromatin
digested at 37ºC for 2 minutes with increasing concentrations of MNase (triangles). Deproteinized DNA
was digested with 5u/ml MNase at 22ºC for 10 seconds as a control. The Southern blot shows the
indirect-end-label analysis performed with the probe abutting the indicated restriction enzyme site. The
HO cleavage site in LEU2 is indicated and is flanked on both sides by positioned canonical nucleosomes as
well as positioned nucleosomes within the coding region (lanes 3 and 4) Similar analysis was performed
on isogenic null mutants of rsc1, rsc2 and rsc7 and the analyses show that there is no dependency on
these subunits to set the chromatin structure prior to cleavage as the pattern does not change in
comparison to the control (compare lanes 6-7, 9-10 and 12-13 respectively with lanes 2-3).

1         2         3          4          5       6        7       8          9         10      11      12       13 
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Figure 4.4 – RSC-independent nucleosome positioning at a non-MAT HO site in URA3
URA3::HOcs has a defined nucleosome structure which is not dependent on RSC. MK205a contains a HO
cleavage site in the open reading frame of URA3. Cells were spheroplasted, permeabilised, and chromatin
digested at 37ºC for 2 minutes with increasing concentrations of MNase (triangles). Deproteinized DNA
was digested with 5u/ml MNase at 22ºC for 10 seconds as a control. The Southern blot shows the
indirect-end-label analysis performed with the probe abutting the indicated restriction enzyme site. The
HO cleavage site in URA3 is indicated and is flanked on both sides by positioned canonical nucleosomes as
well as positioned nucleosomes within the coding region (lanes 3 and 4) Similar analysis was performed
on isogenic null mutants of rsc1, rsc2 and rsc7 and the analyses show that there is no dependency on
these subunits to set the chromatin structure prior to cleavage as the pattern does not change in
comparison to the control (compare lanes 6-7, 9-10 and 12-13 respectively with lanes 2-3).

1         2         3          4          5         6        7        8          9         10      11      12       13 
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4.4 The large MNase-resistant structure, the “alphasome”, at 

MATalpha is consistent with being three aggregated 

nucleosomes  

The analyses presented above show that a large chromatin particle 

protecting approximately 500bp of DNA, and abutting the HO cleavage site, 

is a unique feature of the MATalpha locus. Figure 4.1 shows that the MNase 

pattern in the absence of the RSC subunits Rsc2 and Rsc7 suggest the 

presence of three positioned nucleosomes occupying the similar position and 

suggesting that Rsc2 and Rsc7 may have a role in aggregating nucleosomes 

at the MATalpha locus. In order to test this model further, an alternative 

method of MNase-accessibility mapping of in vivo chromatin to indirect-end-

labelling was employed. In this assay MNase-resistant DNA species created 

by nuclease digestion of yeast cell chromatin were directly visualized as 

“nucleosome ladders” after agarose gel electrophoresis, and then blotted and 

probed with small DNA fragments from specific regions of the MAT locus. 

Figure 4.5 shows MNase-resistant DNA species generated by digestion with 

a range of MNase concentrations in JKM179 and JKM139, MATalpha and 

MATa strains respectively. The DNA fragments were separated on a gel and 

probed with a fragment complementary to the MAT region abutting the HO 

site. Figure 4.5A shows that a MNase-resistant complex of approximately 

500bp in size is observed at MATalpha as predicted from the previous 

indirect-end-label experiments. However, at increasing concentrations of 

MNase, this complex is broken down into three regions of 150bp protection 

suggesting that the alphasome comprises three separate nucleosomes but in 

close proximity and/or with relatively inaccessible linker regions. When a 

similar analysis is performed in JKM139, a MATa strain, three nucleosomes 

are observed with a low concentration of MNase indicating that these 

nucleosomes are not similarly aggregated. 

Using this analytical approach to test RSC knock-out null mutants, it 

shows that in the absence of Rsc1, an MNase resistant structure similar to 

the wild-type is present at the MATalpha HO cleavage site again, which 

breaks down to a lesser extent with increasing concentrations of MNase 

when compared to the other RSC mutants. The structure of MATa, in 
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contrast, is not affected by the loss of Rsc1 (panel A4). In the absence of 

Rsc2 or Rsc7 the chromatin structure of MATalpha is digested to three 

separate nucleosomes with the lowest concentration of MNase but no 

change is observed at MATa (panels A2 and A3). This result supports the 

model that Rsc2 and Rsc7 have a role in the aggregation of nucleosomes at 

MATalpha but not at MATa. Since this aggregated structure appears to be 

unique to the alpha form of the MAT locus, it will be referred to below as the 

“alphasome”. 
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4.5 Rsc7 has a direct function in alphasome formation at 

MATalpha  

RSC exists in two isoforms defined by the presence of either Rsc1 or 

Rsc2 (see Section 1.6). The requirement of either Rsc2 or Rsc7 to create a 

normal chromatin structure at MATalpha is therefore intriguing as Rsc7 is 

present in both isoforms of RSC as part of the fungal specific module (Wilson 

et al., 2006). The fungal specific module contains the dimers of Rsc7/Rsc14, 

Rsc3/Rsc30 and Htl1 which interact with the main core of the RSC complex. 

Rsc3 and Rsc30 are zinc finger DNA binding proteins with a consensus 

sequence found at MATalpha but not in MATa (Figure 4.7). However, their 

incorporation into the complex is partially dependent on the Rsc7/Rsc14 

dimer (Wilson et al., 2006). Therefore one hypothesis is that the Δrsc7 null 

mutant phenocopies the Δrsc2 null mutant due to the inability of the full RSC 

complex to form i.e. it therefore lacks the zinc-finger binding domains present 

in the Rsc3/Rsc30 dimer. This could prevent the RSC complex from being 

recruited to the MATalpha locus via the zinc-finger domains and therefore 

RSC2 would not form the large nucleosome structure. This hypothesis was 

tested by analysing further RSC subunit mutants for the formation of the 

alphasome at the MATalpha locus. 

Null mutants of Δrsc7, Δrsc14, and Δhtl1 were made by replacing the 

entire coding region with the kanMX cassette. Due to repetitive DNA 

elements occurring downstream of RSC30, the region 216325 to 217884 on 

chromosome VIII (1500bp of coding region and 50bp upstream of TSS of 

RSC30) were replaced with the kanMX cassette. As RSC3 is an essential 

gene it was not analysed. 

Figure 4.6 shows the indirect-end-label analysis of the HO cleavage site 

of the MATalpha locus in different RSC subunit mutants, using the restriction 

enzyme and probe shown. Consistent with previous analysis the alphasome 

is digested with a pattern that suggests that it comprises three positioned 

nucleosomes in the Δrsc7 mutant. However, the Δrsc14, Δhtl1 and Δrsc30 

mutants exhibited the presence of an alphasome similar to that seen in the 

wild type. The loss of the Rsc7 binding partner Rsc14 therefore does not 
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disrupt the formation of the alphasome structure and neither does the loss of 

the zinc finger binding protein Rsc30 or Htl1 suggesting that Rsc7 has a 

specific function at MATalpha. 
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Figure 4.6 - Rsc7 has a specific function at MATalpha
Rsc7 functions independently of other fungal specific subunits of RSC. Chromatin analysis was performed
in isogenic mutants in the JKM179 strain of the fungal specific subunit of the RSC complex; Δrsc7, Δrsc14,
Δrsc30, Δhtl1. The Southern blot shows the indirect-end-label analysis performed with the probe abutting
the indicated restriction enzyme site. In Δrsc7 the DNA on the MAT locus side of the HO cleavage site is
protected by three canonical nucleosomes, resembling the structure observed at the MATa locus. In the
analysis of Δrsc14, Δhtl1 and Δrsc30 mutants the alphasome is observed protecting this region, similar to
that seen at the WT MATalpha locus.

1         2         3          4          5         6        7        8          9         10      11      12       13 
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4.6 Summary 

The results presented in this Chapter show that the asymmetrical 

chromatin structure at the MAT locus is unique to MATalpha. Nucleosomes 

are remodelled in a Rsc1-dependent manner from the site of a DSB 

exclusively on the TAF2 side of the break both at MATalpha and in MATa. 

However this chapter demonstrates that Rsc2 and Rsc7 function to create a 

specific chromatin structure at MATalpha alone which has been termed the 

alphasome. This function is dependent on the presence of both the Rsc2 and 

Rsc7 subunits in the RSC complex and appears to involve the aggregation of 

three nucleosomes in a manner that reduces the MNase-sensitivity of the 

linker DNAs between them. The loss of alphasome forming activity observed 

in the Δrsc7 mutant is not due to the loss of integrity of the RSC complex 

because mutants of the other fungal specific subunits do not lead to a loss of 

the activity even though more than one of these factors is required for 

efficient assembly of the RSC complex. 

Previous mutant analysis (Kent et al., 2007) suggests that the presence 

of the alphasome is required for efficient cleavage by HO. Interestingly this 

structure is not required at MATa and there is no RSC dependency for 

chromatin remodelling suggesting that the chromatin structure should be less 

susceptible to cleavage by HO. Alphasome-like structures were not observed 

at HO cleavage sites that have been engineered into non-MAT loci. For 

example there is no RSC dependency for the nucleosome structure 

surrounding HO cleavage sites in LEU2 or URA3. With regards to LEU2, 

there appears to be no decrease in efficiency of HO cleavage in either Δrsc2 

or Δrsc7 null mutants since the level of HO site cleavage is the same in the 

experiments described in Chapter 3, suggesting that a RSC-dependent 

nucleosome structure is not a pre-requisite for efficient HO cleavage.  

Interestingly, the DNA sequence of the Y/Z boundaries of MATalpha 

and MATa are quite different (Figure 4.7 and Chapter 1.2.2).  The Y 

sequence is unique to each mating type whereas the Z sequences are 

conserved between the two mating types. Across the Y/Z boundary in 
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MATalpha is the sequence 5’ CGCGC 3’, the putative consensus binding 

sequence for the zinc finger DNA binding protein Rsc3  (Badis et al., 2008) 

suggesting that Rsc3 may be recruited at this binding sequence at 

MATalpha. This consensus sequence is not present in MATa suggesting that 

the RSC complex would not be recruited via Rsc3 to remodel chromatin at 

MATa. 

Consistent with this hypothesis, the oligonucleotides that were 

inserted into the coding regions of LEU2 and URA3 were both originally 

obtained from the MATa locus (Paques et al., 1998; Sweetser et al., 1994). 

These HO cleavage sites do not contain the Rsc3 binding sequence and 

therefore the RSC complex would not be recruited to these sites via Rsc3. 

This would therefore preclude recruitment of RSC to these HO cleavage sites 

and remodelling of chromatin would not take place. 
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5 The Rsc1 BAH domain confers nucleosome 

sliding function in response to HO-induced 

DSBs at MATalpha 

5.1 Aims of this chapter  

1. To determine the domains required for Rsc1-dependent nucleosome 

remodelling at DSBs 

 

2. To determine the domains required within Rsc2 for alphasome 

formation at MATalpha 

5.2 Rsc1 and Rsc2 are homologous proteins 

As previous chapters have shown, chromatin remodelling occurs in 

response to DNA damage induced by the endonuclease HO, both at the 

specialised MAT locus and at HO sites artificially placed in non-MAT locus 

chromosomal contexts. Previous research has shown that nucleosome 

remodelling surrounding a DSB is an essential prerequisite for efficient H2A 

phosphorylation and subsequent DNA repair (Kent et al., 2007). These 

analyses and those presented above have also shown that there is a specific 

chromatin structure at MATalpha, that is important for efficient cleavage of 

the locus by HO (Kent et al., 2007). Both of these functions are mediated 

through the RSC chromatin remodelling ATPase complex albeit through 

different subunits. 

As described in Section 1.6, RSC is a 17 subunit SWI/SNF related 

complex (Figure 1.4). Seven of the RSC subunits are essential for cell 

viability including Sth1 that contains an ATPase motif, and this gene is 

homologous to SNF2. RSC however is unlikely to be a monolithic complex as 

evidence suggests that it exists in two isoforms, one containing Rsc1 and the 

other Rsc2. Rsc1 and Rsc2 are closely related; both contain two sequential 

bromodomains (BD), a bromo-adjacent homology (BAH) domain, and an AT 

hook (Figure 5.1). It has been shown that these domains do not play a role in 
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complex assembly but that they are essential for RSC function (Cairns et al., 

1999).  

Bromodomains bind directly to proteins, specifically to histone proteins 

and there is evidence that suggests that the bromodomains have some 

specificity for acetylated lysines (Section 1.6.1). It has been shown previously 

that the bromodomains of Rsc4, a subunit of the RSC complex, have a 

binding specificity for acetylated lysine residues (VanDemark et al., 2007). 

Therefore it is hypothesised that BDs recruit the RSC complex to specifically 

marked chromatin environments and that the different BDs present in Rsc1 

and Rsc2 confer different binding activities and therefore have different 

functions. BAH domains were identified by their proximity to bromodomains 

but further investigation has revealed that this is not a universal definition of a 

BAH domain and little is known of BAH domain function (Goodwin and 

Nicolas, 2001). The AT hooks found in Rsc1 and Rsc2 potentially perform a 

function for the ATPase subunit, Sth1, as homologous ATPases in similar 

chromatin remodelling complexes contain an AT hook whereas Sth1 does 

not. Therefore it is predicted that the bromodomains or BAH domains confer 

the specific and distinct functions of Rsc1 and Rsc2. Null mutations of RSC1 

or RSC2 are viable whereas and Δrsc1 Δrsc2 double mutants are not, 

showing some functional redundancy of these proteins (Cairns et al., 1999; 

Goodwin and Nicolas, 2001). Single mutants are sensitive to genotoxic 

agents, have decreased telomere length, and show an altered cell cycle 

(Cairns et al., 1999). Rsc1 and Rsc2 are highly similar proteins and they 

share a highly similar domain organisation but analysis has shown they have 

distinct functions (Section 1.6). 

The results presented in Chapters 3 and 4 show that Rsc1 is involved in 

RSC nucleosome remodelling activity in response to a DSB whereas the 

highly similar subunit Rsc2 is not. Conversely, Rsc2 is involved in alphasome 

formation at the MATalpha locus, whereas Rsc1 is not. Thus, even though 

the subunits are similar they have very distinct functions at the level of 

chromatin remodelling. Figure 5.1 shows an alignment of the Rsc1 and Rsc2 

amino acid sequences as translated from the protein coding regions of their 

respective open reading frames. Identical and similar residues have been 
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highlighted which show a high degree of conservation between these two 

functionally distinct proteins. The domains common to both proteins are 

highlighted. Bromodomain 1 is highly conserved between Rsc1 and Rsc2; it 

is 77% similar and 60% identical, whereas bromodomain 2 is only 63% 

similar and 45% identical. The AT hook is conserved between the two 

proteins apart from a single conservative change in the amino acid 

sequence. The BAH domain is also highly conserved between these 

proteins, with 87% similar and 79% identical amino acid residues.  

The presence of Rsc1 or Rsc2 defines the functionality of the RSC 

complex and the differences in the functional domains in these proteins are 

ideal targets for genetic studies to determine whether their function is defined 

by any of their domains. The work in this Chapter seeks to dissect the 

differences between Rsc1 and Rsc2 by swapping bromo and BAH domains 

and observing the resulting effects in terms of chromatin-remodelling at MAT. 
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BD1

AT-hook

BD2

BAH domain

Figure 5.1 - Rsc1 and Rsc2 have a similar primary structure
The translated amino acid sequence of the coding regions of YGR056W (RSC1) and YLR357W (RSC2) were
aligned using the ClustalW algorithm. Identical residues are in blue and labelled with “!”, similar residues
are in purple and labelled “*”. Rsc1 and Rsc2 have a similar domain organisation and the four key
functional domains are contained within open boxes; the bromodomains in green, the AT-hook in orange,
and the BAH domain in black. The homologous region that is C – terminal of the BAH domain is required
for incorporation into the RSC complex. The percentage of identical and similar amino acids for each
domain was calculated; BD1 77% similar, 60% identical, BD2 60% similar and 43% identical, AT-hook
100% similar and 86% identical, and BAH domain 87% similar and 79% identical.
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5.3 The Rsc1 BAH domain can confer DSB-dependent 

nucleosome sliding ability at the MAT locus to Rsc2 

Plasmid constructs expressing Rsc1 or Rsc2 proteins in which 

bromodomains were swapped with the counterparts of the opposing protein 

were utilised to test whether or not specific domains could singularly confer 

nucleosome sliding activity at MATalpha after introduction of a DSB at the 

HO site. All strains were made in a Δrsc1 Δrsc2 double null mutant rescued 

with RSC2 expressed from a CEN/ARS yeast expression vector pRS415 as 

Δrsc1 Δrsc2 double null mutants are inviable. These plasmids also contain a 

URA3 marker. This plasmid was then shuffled out with either a plasmid 

containing RSC1, RSC2, or one of the following domain swap constructs: 

pRSC2BD1 has the Rsc2 BD1 coding sequence (amino acids 18-130) 

swapped with the Rsc1 BD1 coding sequence (amino acids 10-122); 

pRSC2BD2 has the Rsc2 BD2 coding sequence (amino acids 281-377) 

swapped with the Rsc1 BD2 coding sequence (amino acids 242-337); and 

pRSC2BAH has the Rsc2 BAH coding sequence (amino acids 431-536) 

swapped with the Rsc1 BAH coding sequence (amino acids 391-496). 

 

5.3.1 RSC1 and RSC2 expressed from a plasmid can rescue chromatin 

remodelling 

As a control experiment, Figure 5.2A shows that DSB-dependent 

nucleosome remodelling after DSB induction at MATalpha occurs normally 

when a Δrsc1 Δrsc2 double deletion mutant is rescued with a plasmid 

construct expressing RSC1. Consistent with the lack of Rsc2 activity in this 

strain, the alphasome region appears to dissociate into three nucleosomes. 

The converse control experiment shown in Figure 5.2B shows the analysis of 

a Δrsc1 Δrsc2 double deletion mutant rescued with a plasmid construct 

expressing RSC2 and shows that although chromatin remodelling in 

response to a DSB is not restored, the formation of the alphasome at the HO 

site is. Thus both Rsc1 and Rsc2 behave in this system exactly as expected 

and as described in the previous Chapters. 
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5.3.2 Bromodomains from Rsc1 cannot confer DSB-dependent 

nucleosome remodelling activity to Rsc2 

Figures 5.3A and 5.3B shows analysis of chromatin surrounding the 

MATalpha locus, in Δrsc1 Δrsc2 double deletion mutants harbouring a 

plasmid expressing Rsc2 but containing domain swaps of the Rsc1 BD1 or 

BD2 respectively. Both strains are unable to fully remodel chromatin in 

response to a DSB at MATalpha but correctly assemble the alphasome. 

Therefore both strains behave identically to a strain expressing an 

unmodified form of Rsc2 as shown in Figure 5.1B. 

 

5.3.3 The Rsc1 BAH domain can confer DSB-dependent nucleosome 

remodelling activity to Rsc2 

Figure 5.4 shows that the strain expressing Rsc2 with a Rsc1BAH 

domain swap has both normal alphasome structure immediately proximal to 

the HO cleavage site at MATalpha and interestingly, the ability to partially 

rescue Rsc1-dependent nucleosome sliding in response to formation of a 

DSB by HO endonuclease. This shows that the Rsc1 BAH domain confers 

some specificity to the Rsc1 protein and may define Rsc1-dependent 

chromatin remodelling in the RSC complex. 
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Figure 5.2 – pRSC1 plasmid rescues DSB-dependent chromatin remodelling activity at MATalpha
Chromatin remodelling in response to an HO-induced DSB is rescued by pRSC1 but not by pRSC2. Double
Δrsc1/Δrsc2 mutants were created in JKM179 and rescued by shuffling a plasmid harbouring either RSC1
or RSC2. Permeabilised spheroplasts were digested with increasing concentrations of MNase (triangles)
for 2 minutes at 37ºC before (t=0) and after (t-40) induction of HO by addition of galactose to the media.
DNA fragments were separated by electrophoresis, blotted onto nylon membrane and probed with a
probe abutting the indicated restriction enzyme site. A - pRSC1 rescues nucleosome remodelling in
response to a HO-induced DSB at MATalpha. Nucleosomes are remodelled on the TAF2 side of the DSB
(bracketed region), similar to that seen in the wild type. Before the induction of the DSB, three positioned
nucleosomes immediately flank the HO cleavage site on the MAT locus side. B - pRSC2 does not rescue
remodelling activity after the formation of a HO-induced DSB. pRSC2 does restore the alphasome
immediately on the MAT locus side of the HO cleavage.
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Figure 5.3 – Rsc1-bromodomains do not confer Rsc1 DSB-dependent remodelling activity at HO-
induced DSBs at MATalpha to Rsc2
Swapping either of the Rsc1 BDs into Rsc2 does not rescue chromatin remodelling in response to an HO-
induced DSBs. Double Δrsc1/Δrsc2 mutants were rescued by shuffling a plasmid harbouring RSC2
containing a swapped BD1 or BD2 from RSC1. Indirect-end-label analysis of chromatin was performed
before and after induction of HO as in Figure 5.2. A - Analysis shows that swapping BD1 of Rsc1 into RSC2
does not confer nucleosome remodelling activity in response to an HO-induced DSB as the nucleosome
pattern observed after 40 minutes of HO induction is very similar to that prior to induction (compare
lanes 3-4 with lanes 5-6). The alphasome is present immediately to the MAT locus side of the HO cleavage
site prior to induction B - similar observations are made when BD2 of Rsc1 is swapped into RSC2.
Nucleosome remodelling in response to the formation of a DSB by HO at MATalpha does not occur
however the alphasome immediately flanking the HO cleavage site, which is specific to MATalpha, is
retained.

1        2       3       4      5      6       7
1       2     3      4      5      6       7
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Figure 5.4 – The Rsc1-BAH domain confers nucleosome DSB-dependent chromatin remodelling at
a HO-induced DSB at MATalpha to Rsc2
Swapping Rsc1 BAH domain into Rsc2 at least partially rescues nucleosome remodelling in response to an
HO-induced DSB. Double Δrsc1/Δrsc2 mutants were rescued by shuffling a plasmid harbouring RSC2
containing the BAH domain of RSC1. Indirect-end-label analysis was performed as described previously. A
– Indirect-end-label analysis shows that there is nucleosome remodelling in response to the formation of
a DSB by HO at MATalpha on the TAF2 side of the break (compare lanes 3-4 with lanes 5-6). B – The
inferred nucleosome pattern shows that nucleosome A – D are remodelled away the DSB, which is similar
to what is observed in the wild type. The alphasome immediately flanking the HO cleavage site is retained.
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5.4 Are bromodomain residues in the RSC complex required 

for alphasome maintenance? 

Given that the experiments described above have identified the Rsc1-

BAH domain as conferring DSB-dependent nucleosome remodelling activity 

to the RSC complex, I next tested whether or not bromodomains within the 

RSC complex were required for the remodelling activity specific for creating 

the alphasome structure at MATalpha. Figures 5.2 and 5.3 show that the 

Rsc2 activity can be complemented by either of the Rsc1 BDs inserted into 

Rsc2 suggesting that functional residues in the bromodomains must be 

common to Rsc1 and Rsc2. Interestingly RSC employs a third bromodomain-

containing subunit, Rsc4, which specifically binds to acetylated lysine 

residues on nucleosomes (Kasten et al., 2004; VanDemark et al., 2007).  

Figure 5.5 shows the sequence and predicted secondary structure of 

the Rsc1 (amino acids 1-380), Rsc2 (amino acids 1-420) and Rsc4 (amino 

acids 51-340), aligned according to their respective bromodomains. The 

bromodomains of Rsc1 and Rsc2 are shown in green boxes and the tandem 

bromodomains of Rsc4 are underlined in blue, predicted alpha helices are 

indicated in red and beta-sheets indicated in yellow. 

The predicted secondary structure of Rsc4 is very similar to that of the 

previously published crystal structures (VanDemark et al., 2007). The 

resulting analysis shows that there is a high degree of amino acid sequence 

similarity between all three proteins and there is a striking similarity of the 

secondary structures. Rsc4 contains two tandem bromodomains whereas 

Rsc1 and Rsc2 contain intervening sequences that contain the AT hook. 

Previous analysis has shown that the bromodomains found in Rsc4 require 

two pairs of asparagine residues and two tyrosine residues (highlighted with 

red stars) to have binding specificity with acetylated lysine (VanDemark et al., 

2007). The amino acids in Rsc4 that are required to bind to acetylated lysines 

of bromodomain-1 (BD1), Y92, Y93 and N134 are conserved in all three 

proteins. Similarly Y225 and Y226 of Rsc4 bromodomain-2 (BD2) are also 

conserved in all three proteins in both the primary and secondary structure. 

As these residues are conserved between Rsc1, Rsc2 and Rsc4 and are 



135 

 

essential for Rsc4 activity they were good candidates to study whether these 

residues are essential for Rsc2 chromatin remodelling activity.  

Thus a number of plasmid constructs were made harbouring 

bromodomain mutations within RSC2 at asparagine and tyrosine residues 

that are conserved between Rsc1, Rsc2 and Rsc4. Plasmids harbouring 

mutated bromodomains were shuffled into the Δrsc1 Δrsc2 null mutant strain 

as described above. Figure 5.6 shows that a neither a single mutation of 

Rsc2 N96A in BD1 (lanes 6-7), a single mutation of Y315A in BD2 (lanes 9-

10), nor a combination of both mutations (lanes 12-13) was able to abolish 

normal alphasome formation.  

To investigate whether a mutated BD2 of RSC2 could maintain the 

alphasome with the BD1 of Rsc1, a plasmid was made harbouring the Y315A 

RSC2 BD2 mutation and the replacement of BD1 with the entire BD1 of 

RSC1. A plasmid harbouring a BD1 RSC1 N88A mutation together with the 

Y315A RSC2 mutation was also constructed. These plasmids were shuffled 

into Δrsc1 Δrsc2 null mutants to determine the effect of these mutations on 

Rsc2-specific activity at MATalpha. Figure 5.7 shows that the alphasome is 

still formed by Rsc2 with the BD1 of RSC1 and the BD2 Y315A mutation 

(lanes 6 and 7). Similarly the Rsc2-dependent formation of the alphasome is 

not abolished with when BD1 is replaced with Rsc1 BD1 with the N88A 

mutation of the RSC1 bromodomain and the Y315A mutation of BD2 (lanes 

9-10). Therefore the conserved residues essential for Rsc4 function are not 

required for the alphasome function of Rsc2. 
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Figure 5.6 – Conserved bromodomain residues do not individually confer Rsc2-dependent
alphasome formation at MATalpha
Mutating conserved residues found between Rsc2 and Rsc4 does not abolish alphasome formation.
Double Δrsc1/Δrsc2 mutants were rescued by shuffling a plasmid harbouring RSC2 containing mutations
in conserved residues between Rsc2 and Rsc4; N96A, Y315A, or N96A/Y315A. Permeabilised
spheroplasts were digested with 75u/ml and 150u/ml MNase for 2 minutes at 37ºC. DNA fragments were
separated by electrophoresis, blotted onto nylon membrane and probed with a probe abutting the
indicated restriction enzyme site. The analysis shows that mutation of the Rsc4-essential asparagine, N96,
does not abolish formation of the MATalpha specific alphasome when compared to the wild-type control
(compare lanes 3-4 with lanes 5-6 bracket region). Similar observations are made with the Y315A
mutation (lanes 9-10) and in the double mutant N96A/Y315A (lanes 12-13).

1          2          3          4        5         6         7         8         9        10       11      12      13
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Figure 5.7 – The Rsc2-dependent alphasome formation is independent of Rsc2-BD1
Mutating conserved residues found between Rsc2 and Rsc4 in BD2 alongside replacement of Rsc2-BD1
with that of Rsc1 does not abolish alphasome formation. Double Δrsc1/Δrsc2 mutants were rescued by
shuffling a plasmid harbouring RSC2 containing a mutation in the conserved residues between Rsc2 and
Rsc4; Y315A, alongside the replacement of BD1 with that of Rsc1. A second plasmid contains the same
construct except that the BD1 from Rsc1 has a mutation at N88A, a conserved residue between Rsc1, Rsc2
and Rsc4. Indirect-end-label analysis was performed as described previously. Analysis shows that
mutation of the Rsc4-essential Y315A alongside the replacement of the entire of BD1, does not abolish
formation of the MATalpha specific alphasome when compared to the wild-type control (compare lanes
3-4 with lanes 5-6, bracketed region). The alphasome is present immediately to the MAT locus side of the
HO cleavage site in both. Similar observations are made when the Y315A mutation is combined with a
mutated BD1 from Rsc1 (lanes 9-10)

1          2          3          4        5         6         7       8        9        10
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5.5  Summary 

The data presented here and published previously (Kent et al., 2007; 

Shim et al., 2007) has shown that the ATPase-dependent chromatin 

remodelling complex RSC is required for both DSB-dependent chromatin 

remodelling and for setting the chromatin structure at MATalpha prior to 

efficient cleavage by HO. These activities are dependent on two different 

isoforms of RSC as defined by the presence of either Rsc1 or Rsc2 in the 

RSC complex. Rsc1 and Rsc2 are highly similar proteins that are likely to 

have occurred a result of the genome duplication event (Kellis et al., 2004). 

These proteins have an identical domain organisation; both proteins contain 

two bromodomains, an AT-hook, and a bromo-adjacent homology (BAH) 

domain. However, despite their similarity, it has been shown here that Rsc1 

and Rsc2 have distinct and non-redundant functions. 

 Further investigation here showed that the bromodomains of Rsc1 and 

Rsc2 are very similar to Rsc4 both in primary and secondary structure. 

Previous work has shown that the bromodomains of Rsc4 have specificity for 

particular acetylated lysines which also confer specific function (VanDemark 

et al., 2007). This Chapter therefore tested the hypothesis that BDs or BAH 

domains within the RSC complex would confer distinct and specific 

chromatin-remodelling functions. Plasmid constructs were made in which the 

domains of Rsc1 and Rsc2 were interchanged and mutated. These plasmids 

were shuffled into Δrsc1 Δrsc2 double mutants to see if they could rescue 

Rsc1- or Rsc2-dependent chromatin remodelling activity. 

 Neither BD1 nor BD2 inserted into Rsc2 conferred DSB-dependent 

nucleosome remodelling activity. However, the swapping of the BAH 

domains did partially confer Rsc1-specific activity onto Rsc2. A recent study 

has shown that the BAH domain of Rsc2 has a distinct structure in 

comparison to the BAH domain of Sir3 and that the Rsc2 BAH domain can, in 

vitro, bind recombinant histone H3 protein (Chambers et al., 2013). As the 

Rsc1- and Rsc2-BAH domains have very similar amino acid sequence it 

would be predicted they would have similar structure however the data 

presented here would suggest that only the Rsc1-BAH domain can interact 

with histones in the context of DNA damage. 



140 

 

 Previous work on Rsc4 has revealed that there are a number of 

residues that are essential for the binding activity on particular acetylated 

lysine residues (VanDemark et al., 2007). An alignment of the Rsc1, Rsc2 

and Rsc4 bromodomains reveals that the essential residues in Rsc4 are 

conserved between all three proteins. Plasmids were constructed containing 

Rsc2 with the Rsc4-essential residues mutated. Then, the chromatin 

surrounding the MATalpha locus was analysed to determine whether Rsc2-

dependent formation of the alphasome was lost as a consequence of the 

mutations. The analysis presented here has shown that the mutations that 

should abolish Rsc4 binding activity, do not prevent formation of the 

alphasome. 

 These data suggest that the BAH domain of Rsc1 is required for 

chromatin remodelling activity. However, it is possible that the other domains 

of Rsc1 are required for the extensive remodelling observed in the wild type.  

The remodelling activity observed in Rsc2 is not dependent on a single 

domain of the protein as the swapping of a single domain of Rsc2 with that of 

Rsc1 does not abolish activity. Similarly, introducing mutations into the 

residues predicted to be required to bind to acetylated lysine does not abolish 

the Rsc2-dependent alphasome. This suggests that there may be some 

functional overlap in the bromodomains of Rsc2 or that the activity is 

independent of the domains tested above. The latter would support the 

hypothesis that Rsc7 has a distinct function to form the alphasome at 

MATalpha even though it bears little sequence homology with, and contains 

none of the domains found in, Rsc2. 
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6 Determination of genome wide Rsc1- and 

Rsc2-dependent sites of chromatin 

remodelling using Chromatin particle 

spectrum analysis (CPSA) 

6.1 Aims of this chapter 

 

1. To compare the chromatin landscape of the S. cerevisiae genome 

in wild type cells and Δrsc1 and Δrsc2 mutants. 

 

2. To determine sites and modes of Rsc1 and Rsc2-dependent 

chromatin-remodelling in the yeast genome. 

6.2 Chromatin Particle Spectrum Analysis of yeast 

chromatin 

In the previous Chapters I have shown that the Rsc1 and Rsc2 bromo- 

and BAH domain containing subunits of the RSC ATPase complex conferred 

context dependent nucleosome remodelling functions to the MAT locus DSB 

formation and repair process. Both Rsc1 and Rsc2 have been implicated in a 

variety of other functional systems (Section 1.6.1); therefore this chapter 

aims to uncover whether chromatin remodelling is involved in these 

processes by extending the analysis of the Rsc1 and Rsc2 subunits to the 

wider genome. Here, I employed a method in which the entire MNase 

protected DNA ladder from chromatin is subjected to Illumina paired-end 

mode sequencing (Kent et al., 2011). This technique recovers the size of the 

nuclease protected particle as the map distance between the read-pairs in 

addition to mapping its absolute genomic position. This methodology, 

referred to as Chromatin Particle Spectrum Analysis (CPSA) can be used to 

map not only canonical nucleosome positions but both actively remodelled 
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nucleosomes and trans-activating factor bound DNA motifs (Kent et al., 

2011). 

CPSA was performed on the wild-type strain BY4741, as described in 

Methods 2.4 and the isogenic strains YO4686 and YO5266 that are Δrsc1 

and Δrsc2 mutants respectively. Figure 6.1 shows the ladder of MNase 

resistant DNA species derived from chromatin digestion of each strain (each 

is a pooled triplicate sample), and the resulting paired-end sequence read 

frequencies plotted according to read-pair distance. Bands visible in the input 

DNA (present at 150bp, 300bp, and 450bp indicating protected regions 

corresponding to mono-, di- and tri- nucleosomes) are recapitulated as peaks 

in the sequence read frequency. The graph shows that the distribution of size 

particles between the wild type and mutant samples is very similar 

suggesting that direct comparison between the samples should be valid. 
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Figure 6.1 – Frequency of CPSA read-pair insert size reflects sizes of input DNA
A– Ethidium-stained agarose gel with 1μg of each CPSA input DNA shows intense bands at 150bp, 300bp,
and 450bp indicating DNA protected from MNase cleavage by mono-, di-, and tri- nucleosomes. B – Graph
of sequence read number versus the log of read-pair end-to-end distance/insert size for aligned
sequences derived by CPSA of MNase –digested chromatin in wild-type, Δrsc1, Δrsc2 yeast cells. Peaks at
insert sizes of 150bp, 300bp, and, to a lesser extent, 450bp reflect the presence of mono-, di-, and tri-
nucleosomes respectively. A shoulder on the 150bp peak indicates particles of a size less than 100bp
potentially indicating the binding footprint of trans-activating factors or other chromatin particles.
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6.3 Localised sequence read discrepancy in the CPSA 

dataset in Chromosome XII suggests a change in rDNA 

copy number in Δrsc1 and Δrsc2 strains 

Rsc2 has been implicated in genomic stability with suggestions that 

Δrsc2 mutants can exhibit aneuploidy or polyploidy (Baetz et al., 2004; Hsu 

et al., 2003). Aneuploidy in particular would complicate the analysis of the 

relative contribution of chromatin particle sequence reads between data sets 

described in this Chapter. Figure 6.2, therefore, shows an analysis of the 

number of reads obtained for each chromosome in each of the strains to test 

(with the assumption that each chromosome sequenced with comparable 

general efficiency) whether aneuploidy could be observed as regions of 

relative sequence read over- or under-representation. Figure 6.2A shows the 

total number of aligned reads obtained for each chromosome in the CPSA 

experiment and shows that approximately 3-fold more reads were obtained 

for the Δrsc2 strain when compared to WT and Δrsc1. The gross difference is 

likely to represent variability in Ilumina sequencing performance (K. 

Paszkiewicz, personal communication) but a complete change in ploidy in the 

Δrsc2 mutant cannot be ruled out. Ploidy could be further determined by 

FACS analysis. 

Figure 6.2B shows the ratio of reads obtained for each chromosome 

compared to the whole genome against the relative length of the 

chromosome. For example, if a chromosome represents 10% of the total 

genome then 10% of read-pairs obtained from CPSA would be expected to 

align to the chromosome and would have a chromosome read-pair value of 

1. This graph shows that all chromosomes in the three strains, with the 

exception of chromosome XII, exhibit a normalised relative sequence read 

frequency of 1. Interestingly the normalised relative sequence read 

frequencies observed for chromosome XII in the Δrsc1 and Δrsc2 mutants 

were both different from each other and by non-integer values with respect to 

the wild-type dataset. This result is not therefore compatible with a simple 

change in chromosome XII ploidy in the mutant strains. Chromosome XII has 

the unique feature of encoding the highly repetitive/high copy number rRNA 

genes; therefore I tested to see whether the presence of these repeats 
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contributed to the increased representation of read-pairs aligning to 

Chromosome XII in the wild-type and mutant datasets. 

The ribosomal RNA gene is a large repeat of approximately 1.5MBp 

occupying 60% of chromosome XII. In wild type cells there are approximately 

150 copies which produce 80% of the total RNA content of the cell. There are 

two populations of rDNA genes; those described as non-nucleosomal and 

transcriptionally active, and those described as nucleosomal and described 

as inactive. The ratio of active and inactive rDNA genes can change during 

the cell cycle and in different growth conditions (Fahy et al., 2005). Copies 

are lost by deleterious recombination events; the high copy number of rDNA 

is maintained in S. cerevisiae by gene amplification, a process that is 

dependent on the replication fork barrier protein Fob1and RNA Pol I 

(Kobayashi et al., 1998). The systematic sequencing of this region includes 

only two repeats of the rDNA so when the aligned read-pairs are rendered to 

this region in the integrated genome browser (IGB), as shown in Figure6.3A, 

the region is massively overrepresented in comparison to the non-rDNA 

region. 

 The normalised read frequency for aligned read-pairs for each of the 

three strains within the rDNA co-ordinates and read-pairs outside these 

coordinates are plotted in Figure 6.3B. The graph shows that the relative 

number of reads for the non-rDNA region of Chr XII is similar between the 

three samples. However, for the rDNA region, a 1.3 fold and 2.1 fold 

decreases is observed in the Δrsc1 and Δrsc2 strains respectively. The 

normalised read frequency compared to the relative length of the region in 

comparison to the whole genome suggests an rDNA copy of 113 for the WT, 

85 for the Δrsc1 strain and 52 for the Δrsc2 strain. Taken together these 

results suggest that the main discrepancy in relative sequence-read depth 

between the three experiments is restricted to the rDNA repeat region. 

Although it cannot be determined from this analysis whether or not either of 

the mutants may have changed genome ploidy (e.g. become fully diploid), it 

can be concluded that aneuploidy was not likely to be present and analyses 

of the data sets was continued.  
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Figure 6.2 – The distributions of CPSA sequence reads from each chromosome in the wild-type and
rsc mutant data-sets reveals a read depth discrepancy specific to chromosome XII
A - The total number of aligned paired end reads for the wild type (WT), Δrsc1 mutant, and Δrsc2 mutants
were plotted for each chromosome showing that a similar number of reads were obtained for WT and
Δrsc1 mutant. Approximately 3 fold more reads were obtained in the Δrsc2 strain. B – the relative number
of reads per chromosome is the ratio of the relative number of reads per chromosome over the relative
size of the chromosome. The expected value for each chromosome in a haploid genome would therefore
be 1. The graph shows that, with the exception of chromosome XII, the relative read depth is equal for
each chromosome in all three samples. Chromosome XII is relatively over-represented and is more so in
the WT compared with the Δrsc1 and Δrsc2 mutants

A

B
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Figure 6.3 – The CPSA sequence read discrepancy at chromosome XII is RSC-dependent and
associated with the rDNA repeat
Yeast rDNA is located on Chr XII and consists of tandem repeats to which all read-pairs from CPSA are
aligned within the coordinates 451450 and 468780. A – Rendering the rDNA region of Chr XII shows that
the rDNA is overrepresented as 100-200 copies of the region are aligned to two sequence copies in the
reference genome B – The frequency of reads with a read-pair centre within 451450 and 468780 (rDNA)
and reads with centres outside these coordinates (non-rDNA) were normalised by read depth and plotted
for the WT, Δrsc1, and Δrsc2 strains. This shows that the number of reads for non-rDNA is similar
between WT and mutant however there is a decrease in rDNA reads of 1.3-fold decrease in Δrsc1 and 2.1-
fold in Δrsc2 when compared to WT.

BY4741 
150bp 
particles

Two tandem rDNA repeats

Chr XII

A

B
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6.4 CPSA data successfully maps the highly defined 

chromatin structure surrounding transcriptional start 

sites in Saccharomyces cerevisiae 

The read-pair datasets were separated into ranges of end-to-end 

distance (50bp to 450bp in 25bp steps) and the frequency distributions of the 

mid-points between read-pairs were determined across the yeast genome. 

This procedure treats all chromatin derived read-pairs as representing ends 

of DNA molecules protected from micrococcal nuclease digestion by putative 

chromatin particles. The mid-point of each read-pair describes a single 

genomic position equivalent to the eukaryotic nucleosome dyad (Luger et al., 

1997). Peaks in the chromatin sequence read mid-point distributions 

therefore represent the presence of a positioned, nuclease-resistant 

chromatin particle at a specific location in the genome (Kent et al., 2011). For 

sake of simplicity, chromatin derived sequence read mid-point positions from 

the CPSA method will be referred to as “particle positions”, and the sequence 

read end-to-end distance as chromatin particle “size class”. 

To test that the sequence data was correctly mapping nucleosomes 

and other MNase-resistant chromatin particles in the genome, particle 

position cumulative frequency – or “trend” – graphs at and surrounding yeast 

protein-coding gene transcriptional start sites (TSSs) were plotted. Using 

wild-type cell data, the normalised cumulative frequency of 150bp particle 

positions (nucleosome positions) surrounding all TSSs as defined by Xu et al. 

(2009) over a 2400bp window (1200bp upstream and downstream) in 10bp 

bins shows a defined nucleosome structure (Figure 6.4A). The characteristic 

nucleosome free region (NFR) between 0 and -200bp relative to the TSS is 

observed, together with positioned nucleosomes running into the coding 

region (Mavrich et al., 2008). 

Plotting particle frequencies for all size classes describes the entire 

chromatin landscape surrounding a site (Kent et al., 2011; Maruyama et al., 

2013). Figure 6.4B shows normalised cumulative particle position 

frequencies for size classes from 50-450bp in 25bp increments plotted 

against the distance relative to TSSs as described above. The landscape 

shows the NFR from 0 to -200bp relative to TSSs which can be visualised as 
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a deep “valley” in the landscape. Again positioned nucleosomes are 

observed both in the open reading frame and upstream from the TSS. 

Additionally, a large peak of approximately 100bp from the TSS in the 50-

75bp size classes suggests the presence of small MNase-resistant particles 

within the NFR. Previously these species have been shown to represent 

DNA-bound transcription factors (Kent et al., 2011). It can therefore be 

concluded that the CPSA protocol employed here is mapping chromatin 

structure successfully and yielding results that are comparable with 

previously published studies.  
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6.5 Chromatin particle landscapes surrounding protein-

coding gene TSSs are altered in both Δrsc1 and Δrsc2 

mutants 

To gain a general overview of any Rsc1- or Rsc2-dependent changes in 

chromatin environment at yeast protein-coding genes, chromatin landscapes 

of the type described above (Figure 6.4) were plotted comparing the wild-

type, Δrsc1 and Δrsc2 datasets. Figure 6.5 A-C shows that nucleosome 

structure at protein-coding gene TSSs is broadly similar between wild-type, 

Δrsc1 and Δrsc2 mutants. The chromatin structure for larger chromatin 

particles such di- and tri-nucleosomes remains similar between the three 

samples indicating that there is little change in the accessibility to linker 

regions. Strikingly there is a large apparent decrease in peak height in sub-

nucleosome sized particles in the Δrsc1 and Δrsc2 samples when compared 

to wild-type. These results suggest that there may be a loss of DNA-bound 

transcription factors at TSSs in the absence of Rsc1 or Rsc2.  

As described in the introduction (Section 1.6.2), RSC has been 

proposed to bind to DNA upstream of protein-coding TSSs via its Rsc3 

subunit (Angus-Hill et al., 2001; Ng et al., 2002) Taking the most liberal 

definition of RSC binding, Badis et al (2008) defined 2325 of the protein 

coding genes to having a known TSS as having putative RSC binding 

potential through the CGCGC Rsc3-binding motif. Figure 6.5 D-I shows 

similar landscapes to those described above, but plotted for the 2325 genes 

identified by Badis et al (2008) as having putative Rsc3-binding motifs and for 

the remaining genes not containing the Rsc3-binding motif. These landscape 

plots show that the Rsc1- and Rsc2-dependent decrease in peak heights for 

sub-nucleosome sized particles does not appear to depend on the presence 

of a Rsc3-binding motif. In order to analyse these differences in more detail 

the datasets were broken down into individual chromatin particle size 

classes. 
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6.6 Occupancy of the +1 and -1 nucleosomes surrounding 

TSSs is decreased in Δrsc1 and Δrsc2 mutants but is not 

dependent on the presence of the Rsc3 binding motif 

To determine nucleosome-specific changes at yeast protein-coding 

genes in the Δrsc1 and Δrsc2 mutant strains, normalised cumulative 

frequency graphs of chromatin particle positions surrounding all protein-

coding gene TSSs were compared using the 150bp size class CPSA data. 

Figure 6.6 A. confirms that the average positioning of nucleosomes at 

protein-coding gene TSSs is broadly similar in the absence of Rsc1 or Rsc2 

compared to the wild-type. However, a modest, but significant (p<0.001, 

Wilcoxon Mann-Whitney test), decrease in median peak particle position 

frequency values comprising the +1 and -1 nucleosome cumulative 

frequency peaks suggests that there is some decrease in average 

nucleosome occupancy, or change in nucleosome position at these locations. 

Panel B shows the 150bp particles surrounding ALG5 and NEW1 rendered in 

the integrated genome browser (IGB) and illustrates the decrease in the peak 

height of the +1 and -1 nucleosome in the Δrsc1 and Δrsc2 samples when 

compared to the wild-type. This result is consistent with the average 

observation shown for TSSs in Panel A and suggests that the -1/+1 

nucleosome occupancy rather than positioning is altered in the rsc mutants. 

 As described above, RSC has been proposed to bind to DNA 

upstream of protein-coding TSSs via its Rsc3 subunit and the CGCGC motif 

(Badis et al., 2008; Ng et al., 2002). Figure 6.7 shows the cumulative 

frequency graph of nucleosome positions surrounding TSSs both containing 

and lacking the Rsc3-binding motif as defined by Badis et al (2008). A 

significant Rsc1- and Rsc2-dependent decrease in the median peak particle 

position frequency values corresponding to the +1 and -1 nucleosome 

(p<0.001) occurs with both sets of genes suggesting that this effect of RSC is 

independent of the presence of the Rsc3-motif upstream of protein coding 

gene TSSs. 
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Figure 6.6 – Changes in the distribution of 150bp chromatin particles/nucleosomes surrounding 
protein-coding gene TSSs suggest a loss of occupancy at the +1 and -1 nucleosomes in rsc mutants
Normalised cumulative frequencies of 150bp particles at TSSs (n=5171) were plotted for the WT, Δrsc1,
and Δrsc2 mutants to compare nucleosome trends A – the cumulative frequency graphs show a significant
(asterix - p<0.001 by WMW test) decrease in frequency for 150bp particles at the +1 and -1 nucleosome
position surrounding TSS in both RSC subunit mutants B – rendering histograms of 150bp read-pairs in
the integrated genome browser (IGB) shows a decrease in reads at the position of +1 and -1 nucleosomes
at TSSs of protein coding regions indicating that the change in the average trend is also seen in the raw
data at an individual loci
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Figure 6.7 – Loss of occupancy of the +1 or -1 nucleosome at TSSs is independent of the presence of 
a RSC3 binding motif.
The normalised cumulative frequency of 150bp chromatin particles was plotted at (A) TSSs containing
the RSC3 consensus binding motif (n=2325) and at (B) remaining TSSs that do not (n=2846). The trend
graphs show that there is a significant drop (p<0.001) in the occupancy of the +1 and -1 nucleosome both
at TSSs containing the RSC3 binding motif and those that that don not. The trend also shows subtle
changes in the upstream nucleosomes in respect of the TSSs containing Rsc3-motifs.
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6.7 Sub-nucleosomal MNase resistant particles associated 

with TSSs are dependent on Rsc1 and Rsc2 

The results shown in Figure 6.5 suggest that the presence of MNase 

resistant chromatin particles that are smaller than nucleosomes show a 

change in distribution surrounding a protein-coding gene TSSs in the Δrsc1 

and Δrsc2 mutants. Figure 6.8 shows normalised cumulative frequency 

graphs for the non-overlapping sub-nucleosome particle size classes, 

comparing wild-type to Δrsc1 and Δrsc2 mutants.  Previously, the 50bp size 

class in CPSA data has been shown to represent DNA species protected 

from MNase digestion by the binding of sequence specific DNA binding 

proteins such as transcription factors (Kent et al., 2011). Figures 6.8 A-C 

show a decrease in peak height at a position approximately -150bp relative to 

the TSS which is more pronounced in the Δrsc2 mutant than the Δrsc1 

mutant when compared to wild-type. This result would be consistent with a 

decrease in occupancy of transcription factors at motifs upstream of certain 

or all TSSs occurring in the Δrsc1, and to a greater extent the Δrsc2 mutants. 

A similar decrease is seen at TSSs either containing or lacking a putative 

Rsc3-binding motif suggesting that the potential loss of DNA-bound 

transcription factors is independent of the presence of a Rsc3-binding motif 

at the TSS. 

 Previous CPSA studies have been able to resolve individual 

transcription factor bound motifs at specific genes (Kent et al., 2011). 

However, when the 50bp size class sequence read frequency data sets from 

this study were plotted at the single locus level it was found that read 

numbers were too low to achieve a comparison between individual loci 

(Figure 6.9). Therefore, it was not possible to take this part of the study any 

further. Nevertheless it can be concluded that loss of either Rsc1 or Rsc2 is 

likely to affect the transcription factor binding profiles upstream of protein-

coding gene TSSs. 

Although the CPSA dataset did not provide sufficient sequence read 

coverage to map individual 50bp MNase-resistant chromatin particles, there 

were sufficient reads to plot positions of 100bp particles. Figure 6.8 shows 

that a change is observed in the 100bp particle cumulative frequency profile 
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in the Δrsc1 and Δrsc2 mutants, and is dependent on the presence of a 

Rsc3-binding motif. This change is further explored at the individual locus 

level below. 
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6.8 An RSC-dependent 100bp chromatin particle is observed 

at the GAL1/10 UAS 

Floer et al., (2010) have previously described an apparent non-

canonical nucleosome associated with the upstream activation sequence 

(UAS) of GAL1/GAL10 that is dependent on the RSC complex. In a rsc3-ts 

mutant a canonical nucleosome was observed to replace this structure, 

encroaching over the UAS to compete with Gal4 for binding (Floer et al., 

2010). The DNA within the implied non-canonical RSC-remodelled 

nucleosome appeared to be more extensively cleaved by MNase in vivo to 

create fragments smaller than 150bp, and more typically in the region of 100-

120bp. 

Figure 6.10 shows a genome browser trace of the GAL1/10 promoter 

with both 150bp (canonical nucleosome) and 100bp chromatin particle 

frequencies derived from wild-type, Δrsc1 and Δrsc2 data sets. Consistent 

with the observation of Floer et al (2010), a peak of sequence reads in the 

100bp size class data is observed within the UAS region in the wild-type 

dataset. A similar sized peak is observed in the rsc2 data set, but a smaller 

peak is observed in the Δrsc1 dataset. One interpretation of this observation 

might be that the RSC-dependent non-canonical nucleosome, that this peak 

of reads might represent, specifically requires the activity of the Rsc1 subunit 

in the RSC complex. However, it should be noted that a concomitant 

increase in sequence reads at this location in the 150bp size class data is not 

observed in the Δrsc1 mutant dataset. This result is therefore not consistent 

with the idea that this MNase-resistant region of DNA is a remodelled 

nucleosome, and may be more consistent with the presence of a Rsc1-

dependent transcription factor complex that specifically protects 100bp of 

DNA from MNase cleavage. A similar result was observed at the DNF2 locus, 

shown in Figure 6.11, except that in this UAS region the large 100bp peak 

observed in the wild-type data set is lost in both Δrsc1 and Δrsc2 mutants. 
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6.9 100bp chromatin particles show a variable dependency 

on Rsc1 and Rsc2  

Figure 6.8 D-F show the particle cumulative frequency surrounding 

protein-coding gene TSSs for the 100bp CPSA data size class. The trend of 

100bp particles surrounding all protein coding gene TSSs is largely similar in 

distribution to that of the 150bp particles with similarly positioned particles 

both upstream and downstream relative to the TSS and an intervening 

particle free region. This result suggests that the in vivo MNase digestion of 

nucleosomes also produces DNA fragments of 100bp±20bp where MNase 

has accessed the histone-bound DNA of the nucleosome-DNA complex. 

Figure 6.8D also shows that DNA bound to nucleosomes downstream of 

protein coding gene TSSs are more accessible to MNase in a Δrsc1 or Δrsc2 

mutant and therefore relatively more 100bp particles are seen compared to 

wild-type. In contrast, the DNA bound to the particle in the “-1” position 

relative to the TSS is less accessible to MNase in the mutant strains. A 

similar pattern is observed at TSSs containing a Rsc3-motif;  DNA bound to 

the -1 particle is less accessible in the mutant strains compared to wild-type, 

however Rsc1- or Rsc2-depedent MNase accessibility is not observed at the 

-1 particle of TSSs lacking a Rsc3-motif. This result shows that the Rsc1- or 

Rsc2-dependent increase in MNase accessibility of nucleosomes 

downstream of the TSS is independent of the Rsc3-motif whereas the Rsc1- 

or Rsc2-dependent MNase accessibility of the -1 particle is dependent on the 

Rsc3-motif. This suggests that there are a number of protein-coding genes 

with a Rsc3-motif that have a Rsc1- or Rsc2-dependent particle upstream 

from the TSS that produces a 100bp DNA fragments after MNase digestion 

in the wild-type, similar to GAL1/10 and DNF2 shown above.  

 In order to determine the precise distribution of 100bp particles in the 

genome and their dependency on Rsc1 or Rsc2 a peak marking and 

comparison procedure (described in Methods 2.4.9) was applied to the 

100bp particle size class datasets. The process, implemented by using a Perl 

script PeakMarkCompare.plx outputs three lists from a pair-wise comparison 

of two datasets A and B: an A_AND_B list; an A_NOT_B list; a B_NOT_A 
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list. An example of the output of the process is shown graphically in Figure 

6.12A for the GAL1/GAL10 locus showing the expected marking of the 

positions of the 100bp particle present in the wild-type dataset but not the 

Δrsc1 mutant dataset. A second example (Figure 6.12B) shows a section of 

chromosome II where 100bp particles are present between the open reading 

frames of RAD18 and CYC8 in the wild-type but not in Δrsc2 and a 100bp 

particle between the open reading frames of TLK2 and LYS2 that is seen in 

both datasets. 

Table 6.1 presents the total number of 100bp-particle-peaks that were 

identified using this approach when comparing wild-type to Δrsc1 or to Δrsc2 

in each of the three categories; those in wild-type and mutant, those in wild-

type but not mutant, and those in mutant but not wild-type. The number of 

100bp particles located in proximity to an open reading frame is also shown. 

The definition for “Near ORF” was defined as an intergenic particle within 

400bp of the ‘ATG’ coordinates of a Rsc3-motif associated open reading 

frame, protein-coding or non-coding. A distance of 400bp was chosen as the 

Rsc1- or Rsc2-dependent 100bp particle at TSSs with Rsc3-motifs is -200bp 

relative to the TSS (Figure 6.8) with an additional 200bp added to account for 

the difference between the TSS and the ‘ATG’ codon of a gene (Xu et al., 

2009; Zhang and Dietrich, 2005). For example the ATG of the GAL1 ORF 

has the coordinates of 279021 however the TSS is mapped to 278856, a 

difference of 165bp. 

There are fewer 100bp particles which are located upstream of open 

reading frames that match between the wild-type and Δrsc2 datasets in 

comparison to wild-type and Δrsc1 datasets.  In compliment to this, the table 

shows that there are more 100bp particles only found in the wild-type in the 

absence of Rsc2 when compared to an absence of Rsc1 suggesting more 

100bp particles upstream of ORFs are dependent on Rsc2 in comparison to 

Rsc1. The analysis has shown a total of 713 100bp particles upstream of 

ORFs when comparing wild-type to Δrsc1 and 717 when comparing wild-type 

to Δrsc2 showing consistency in the analysis. These data suggest that there 

are approximately 566 Rsc2-dependent 100bp particles compared to 357 

Rsc1-dependent particles that are upstream of ORFs, however it will further 
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be examined how many of these 100bp particles overlap. Previous studies 

have estimated that RSC has approximately 700 physiological targets in the 

yeast genome (Ng et al., 2002) which is similar to the 566 Rsc2-dependent 

100bp particles shown here. 
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6.10 Rsc1- and Rsc2-dependent 100bp chromatin particles 

occur upstream of ribosomal protein genes and tRNA 

genes 

Rsc1- and Rsc2-dependent 100bp particles were identified in Table 6.1 

at a number of open reading frames in the genome. Figure 6.13 shows the 

number of identified Rsc1- or Rsc2-dependent open reading frames that 

have a 100bp particle which overlap or are unique to one dataset. Nearly all 

Rsc1-dependent 100bp particles at open reading frames are also found in 

the Rsc2-dependent 100bp particle dataset with a further 223 which are 

unique to the Rsc2-dependent dataset. This result suggests that Rsc1 and 

Rsc2 have a highly similar function in setting the chromatin structure for a 

similar group of genes. 

 To determine whether these genes could be grouped functionally, GO 

Term analysis was performed on the open reading frames that have Rsc1- or 

Rsc2-dependent particles. The GO Term analysis for similar functional 

ontology is summarised in Table 6.2 and shows that a significant number of 

Rsc1- or Rsc2-dependent 100bp particles are adjacent to genes grouped by 

triplet codon-amino acid adaptor activity and structural components of the 

ribosome. These groups of genes consist of tRNA and ribosomal protein 

genes. These targets are consistent with previously published studies that 

identify ribosomal protein genes and tRNA genes as targets of the RSC 

complex (Angus-Hill et al., 2001; Damelin et al., 2002; Ng et al., 2002; 

Parnell et al., 2008). 

 Figure 6.13 shows that there are 223 uniquely Rsc2-dependent 100bp 

particles suggesting that there may be a subset of tRNA or protein coding 

genes that are only dependent on Rsc2. Figure 6.14 shows the normalised 

cumulative frequency graph of 100bp particles surrounding the 223 Rsc2-

depedent sites split into tRNA genes and protein coding genes. The graphs 

show that even though there is a greater dependency on Rsc2 to set the 

chromatin structure at these loci, there is also a dependency on Rsc1. This 

suggests that Rsc1 or Rsc2 have overlapping functions at the 580 unique 

genes identified in Figure 6.12 which include tRNA and ribosomal protein 
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genes. Next I examined the role of Rsc1 and Rsc2 in setting the chromatin 

structure specifically at tRNA and ribosomal protein genes. 
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GO Term Function 
ontology

Rsc1-dependent Triplet codon-amino acid adaptor 
activity (75 of 357 p<0.001)

Structural component of ribosome
(44 of 357 p<0.001)

Rsc2-dependent Triplet codon-amino acid adaptor 
activity (162 of 566 p<0.001)

Structural component of ribosome
(73 of 566 p<0.001)

Table 6.2 – 100bp particles are found within 350bp of tRNAs and ribosomal protein genes
The gene IDs of ORFs with Rsc1- or Rsc2- dependent 100bp particles were searched for similar Function
GO Terms using the Sacchromyces Genome Database. Rsc1- and Rsc2- dependent 100bp particles are
significantly associated with structural components of the ribosome and genes with triplet codon-amino
acid adaptor activity.
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22334314

Rsc2-
dependent

Rsc1-
dependent

Figure 6.13– Rsc1- and Rsc2-dependent 100bp particles overlap
Open reading frames which have a Rsc1- or Rsc2- dependent 100bp particle within 400bp of the ‘ATG’
were compared to show genes that overlap and those that are unique to one dataset. Most of the Rsc1-
dependent 100bp particles are also Rsc2-dependent and a number of particles are uniquely Rsc2-
depedent.
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Figure 6.14 – Rsc1 and Rsc2 have similar function at 100bp particles at TSSs and at tRNA genes
Rsc1- and Rsc2-dependent 100bp chromatin particles are found at a number of overlapping genes
however 223 are shown to be dependent on Rsc2. The trend of 100bp particles is shown for the protein-
coding and tRNA genes with an Rsc2-dependent 100bp particle. The trends show that, even though there
is a larger decrease in the peak height in the absence of Rsc2, there is still a decrease in peak height in the
absence of Rsc1 suggesting overlapping function.
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6.11 tRNA gene chromatin structure is Rsc1- and Rsc2-

dependent 

S. cerevisiae has 274 intact  tRNA genes which are approximately 73-

95 nucleotides in length (Hani and Feldmann, 1998).The chromatin structure 

of tRNA genes is regulated by three chromatin remodelling complexes 

ISWI1, ISWI2, and RSC; ISWI2 positions upstream nucleosomes, ISWI1 

maintains the gene body as a nucleosome free regions and RSC targets the 

downstream nucleosomes (Kumar and Bhargava, 2013). Furthermore, 

Valenzuela et al. (2009) have presented data that suggest that in the 

absence of Rsc2 there is a decrease in RNA pol III transcription factors. This 

may also interplay with the tRNA-HMR barrier which prevents Sir2-mediated 

chromatin silencing from spreading (Valenzuela et al., 2009). Alongside 

these observations, the data presented above suggest that the RSC complex 

targets tRNA genes in order to modify the chromatin structure.  

Figure 6.15 shows normalised cumulative frequency graphs for 100bp 

and 150bp particles in a 1200bp window centred on the TSS of yeast tRNA 

genes that have a Rsc1 or Rsc2-dependent 100bp particle as determined in 

Section 6.9. It is important to note that the tRNA gene body will lie between 0 

and +100 relative to the TSS due to the short nature of the coding region. A 

significant decrease in the peak height of 100bp particles over the TSS of the 

tRNA between the wild-type and mutant strain suggests that there is a 

decrease in the binding of a particle at the TSS in the Δrsc1 and Δrsc2. A 

significant decrease in 100bp particles over the gene body was only 

observed in the absence of Rsc2. In the nucleosome size class data there is 

no change in the pattern of ISWI2-dependent upstream nucleosomes 

between the wild-type and mutant strains however there is a slight, but 

significant, shift of the RSC-dependent downstream nucleosomes towards 

the TSS in the Δrsc1 mutant. No significant change is observed in the Δrsc2 

mutant. The small 150bp peak that lies across the tRNA gene body may be 

attributed to a combined cleavage product of the two 100bp complexes that 

border the TSS and sit across the gene body. 

Figure 6.16 shows the 100bp and 150bp size class particle histograms 

rendered in IGB showing a decrease in 100bp particle peak heights upstream 
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and over the body of the tRNA gene in the Δrsc1 and Δrsc2 datasets. This 

shows that the loss of 100bp chromatin particles is observed at the individual 

locus level. In the absence of Rsc1, the downstream nucleosome at 

tT(AGU)N1 (Figure 6.16A) is closer to the tRNA gene in comparison to wild-

type (indicated by arrow). 
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Figure 6.15 – Rsc1 and Rsc2-dependent 100bp particles are found at the TSS of tRNAs
Trend graphs of normalised cumulative frequency of 100bp and 150bp were plotted in a 600bp
surrounding the TSS of yeast tRNAs (n=274) for wild-type (blue), Δrsc1 (red) and Δrsc2 (green) datasets.
The trends show a significant change in peak heights for 100bp particles upstream of the body of tRNAs
(black asterix) and a significant in the peak height of 100bp particles in the body of tRNAs in the Δrsc2
datasets (green asterix). A significant loss of 150bp particles is seen in the Δrsc2 dataset (green asterix)
and a significant shift in nucleosomes towards the tRNA gene body is seen in the Δrsc1 dataset (red
asterix).
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6.12 A 100bp particle associated with Fhl1 binding sites is 

dependent on Rsc1 or Rsc2  

Using the S. cerevisiae GO database to search for proteins of similar 

function, it is evident that Rsc1 and Rsc2 have an overlapping function in 

setting a 100bp chromatin particle upstream of the TSS of ribosomal protein 

genes. Many studies have identified the RSC complex as being bound at 

ribosomal protein genes but little is understood of the function of the RSC 

complex in this environment (Angus-Hill et al., 2001; Ng et al., 2002; Parnell 

et al., 2008). Fhl1 is a transcription factor that regulates expression of 

ribosomal protein genes, and Leinschmidt et al (2006) have suggested that 

Fhl1 binding is dependent on the RSC complex (Kasahara et al., 2007; 

Kleinschmidt et al., 2006).  

Figure 6.17 shows the normalised cumulative frequency graphs of 

100bp, and 150bp particles in a 2400bp window centred on Fhl1 binding sites 

comparing wild-type, Δrsc1, and Δrsc2 datasets. The peak height in the 

100bp particle size class is lower over the Fhl1 binding site in both Δrsc1 and 

Δrsc2 dataset with a larger, and significant, decrease only seen in the latter. 

A significant decrease is also seen in the 100bp particles from +100 to +250 

relative to the Fhl1 binding site in both mutant datasets compared to wild-

type. The trend of nucleosomes downstream of Fhl1 binding sites is similar to 

that of the average trend of TSSs shown in Figure 6.4. This suggests that 

Fhl1-bound ribosomal protein genes generally have a similar chromatin 

environment to canonical transcriptional start sites with positioned 

nucleosomes downstream of the binding region and a nucleosome free 

region over the Fhl1 binding site. 

  



178 

 

  

Figure 6.17 –Rsc1 and Rsc2-dependent 100bp particles are found at Fhl1 binding sites
Normalised cumulative frequency graphs of 100bp and 150bp were plotted in a 2400bp window
surrounding the Fhl1 binding sites as determined by MacIsaac et al (2006) (n=78) for wild-type (blue),
Δrsc1 (red) and Δrsc2 (green) datasets. The graphs show a large decrease in peak height in 100bp
particles over the Fhl1 binding site with a larger and significant decrease observed in the Δrsc2 dataset in
comparison to a small and insignificant decrease in Δrsc1 (green asterix). There is a further significant
decrease in 100bp particles +100bp to +250bp relative to the Fhl1 binding site in both mutant strains
(black asterix). The trend of 150bp particles shows that the nucleosomes at Fhl1 sites are positioned
downstream relative to the Fhl1 binding site but a disorganised chromatin structure upstream of the
binding site.

*
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WT 

Δrsc1 

Δrsc2 

 

WT 
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6.13 Underlying DNA sequence shows a number of 

transcription factors associated with Rsc1 or Rsc2-

dependent 100bp particles 

Figure 6.17 shows that Rsc1 and Rsc2 are necessary to assemble 

100bp chromatin particles at Fhl1 binding sites. To determine whether 100bp 

particles are located at other transcription factor binding motifs throughout 

the genome, DNA sequences surrounding the locations of Rsc1- or Rsc2-

dependent 100bp chromatin particles were extracted and common motifs 

within them determined using the motif discovery software DREME (Bailey, 

2011). Table 6.3 shows conserved motifs (Enrichment pvalue <0.001) that 

were determined using the motif discovery software, occurring within the 

surrounding 200bp underlying DNA sequence of Rsc1- and Rsc2-depedent 

100bp chromatin particles. The conserved DNA motifs were compared to 

conserved binding motifs for transcription factors (allowing for one 

substitution) using Yeast Search for Transcriptional Regulators And 

Consensus Tracking (Abdulrehman et al., 2011) and the results are shown in 

Table 6.3. There are 3 associated motifs with Rsc1-dependent 100bp 

particles compared with 11 with Rsc2-dependent 100bp particles. However a 

number of transcription factors overlap between the two, for example Rsc1- 

and Rsc2-dependent 100bp chromatin particles are found at Fkh1 and Fhk2 

binding sites. This suggests that Rsc1 and Rsc2 may have functional 

redundancy at setting chromatin structure at these transcription factor binding 

motifs. 

 To investigate this possibility further, I examined the trend in genome-

wide chromatin structure at, and surrounding, the TF binding sites that were 

generated in the previous analysis. Figure 6.18 shows the normalised 

cumulative frequency of 100bp particles comparing wild-type to Δrsc1 and 

wild-type to Δrsc2 in a 2400bp window centred on the binding sites of 

transcription factors that are potentially associated with Rsc1- and Rsc2-

dependent chromatin particles (Figure 6.18 - Gcr1, Mot3, Msn4 and Xbp1, 

Appendix A.2 and A.3 Ash1, Azf1, Fkh1, Fkh2, Msn2, Pho4, Rtg3, Stb5, and 

Swi4). A pronounced peak in the trend of 100bp particles at the transcription 
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factors binding sites of Gcr1, Msn4 and Swi4 (Appendix A.3) is lost in the 

Δrsc1 and Δrsc2 datasets. 100bp particles surrounding transcription factors 

which are not associated with Rsc1- or Rsc2-dependent 100bp particles 

according to the analysis above only show a modest decrease in 100bp 

particles in the absence of Rsc1 or Rsc2 (Figure 6.19). These results suggest 

that some transcription factor binding sites have strongly positioned 100bp 

particles which are dependent on Rsc1 or Rsc2. 
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Rsc1-dependent Rsc2-dependent

MOTIF Transcription Factors MOTIF Transcription Factors

DTATATAW Fkh1, Fkh2 GGWTCGA Ash1, Gcr1, Rtg1, Rtg3, Stb5, 
Xbp1

GGWTCGA Ash1, Gcr1, Rtg1, Rtg3, Stb5, 
Xbp1

MAARAAA Swi4

RAAAAAGA Cup2 ACTBGGCC Hac1, Skn7, Stb5, Xbp1, Rim101

DATATA none

ACCACKA Fkh1, Fkh2, Gis1, Msn2, Msn4, 
Nrg1, Rph1, Stb5, Xbp1

BTAAGGCG Gcr1, Gis1, Msn2, Msn4, Nrg1, 
Rph1, Stb5

AAGARA Mot3

CGMGCTAC Hac1, Rtg1, Rtg3, Stb5

TGGCGYAA Gcn4, Stb5

CCATCGTK Gcr1, Hac1, Mot3, Nrg1, Pho4, 
Stb5, Xbp1

ATACTGAM Ash1, Fkh1, Fkh2, Rtg1, Rtg3, 
Stb5

Table 6.3 – Rsc1- and Rsc2-dependent 100bp chromatin particles are associated with similar
transcription factors
The 200bp underlying DNA sequence surrounding Rsc1- or Rsc2-dependent 100bp particles was
extracted and common motifs were searched for using DREME as described by Bailey (2011). Those with
an Expected pvalue <0.001 are shown. Transcription factors with similar binding motifs (allowing one
substitution) are shown alongside each conserved motif.
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Figure 6.18 – 100bp particles are generally lost at TF binding sites in the absence of Rsc1 or Rsc2
The trend graphs for 100bp particles surrounding a 2400bp window centred on the transcription factor
binding site (Gcr1 n=10, Msn4 n=161, Mot3 n=63, Xbp1 n=37) that are associated with Rsc1- and Rsc2-
dependent 100bp particles show that in the wild-type a strongly positioned 100bp particle is found over
(i.e. Msn4) or bordering (i.e. Gcr1) the binding site. The trends show that this peak height decrease in the
absence of Rsc1 (red) or Rsc2 (green) with a greater decrease seen in the latter. A decrease of 100bp
particles is generally seen at all transcription factor binding sites.
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6.14 Summary 

In this chapter I have used CPSA (Kent et al., 2011) to map the 

chromatin landscape in Δrsc1 and Δrsc2 mutants. The RSC complex has 

been shown previously to be associated with many sites in the genome, 

preferentially in intergenic regions and in close proximity to protein coding 

regions (Parnell et al., 2008). Rsc3 is a subunit of the RSC complex and 

contains a zinc-finger domain with a predicted DNA binding motif which also 

occurs preferentially in intergenic regions and in close proximity to protein 

coding regions. Therefore the RSC complex may be recruited to the genome 

through the Rsc3 subunit (Badis et al., 2008). Analysis shown in this Chapter 

indicates that the landscape of nucleosomes at genes with a predicted Rsc3 

binding site within the promoter region is not distinctly different in comparison 

with the average chromatin landscape around a TSS with the exception of a 

decrease in +1 and -1 nucleosome occupancy. However, there is a loss of 

sub-nucleosome sized particles at Rsc3-motif-associated TSSs and the 

presence of 100bp chromatin particles is dependent on the presence of the 

Rsc3-motif. 

 In Sections 6.9 and onwards, 100bp MNase-resistant particles were 

shown to occur throughout the genome in intergenic regions and at certain 

locations within 400bp of open reading frames that have a Rsc3-motif. 

Normalised cumulative frequency graphs show that there is a dependency on 

Rsc1 or Rsc2 to set the chromatin structure at these loci however individual 

loci may show a greater dependency on Rsc1 or Rsc2 as shown with the 

GAL1 and DNF2 examples. Extraction of the underlying DNA sequence at 

Rsc1- or Rsc2-dependent 100bp chromatin particles reveals a set of 

transcription factor binding motifs that associate with Rsc1 or Rsc2 function 

in creating 100bp chromatin particles. However it was not possible to identify 

a specific transcription factor of sub-set of such factors that would uniquely 

define whether a Rsc1- or Rsc2-dependent chromatin structure would arise 

in the genome. 
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7 Discussion 

7.1 RSC remodels nucleosomes at HO-induced double 

stranded DNA break in a Rsc1-dependent manner 

RSC is an abundant and essential complex in S. cerevisiae for 

maintaining genomic stability when presented with genotoxic agents such as 

MMS (methylmethane sulphate) and ionizing radiation (Bennett et al., 2001; 

Cairns et al., 1996). In this respect RSC is similar to INO80, another ATPase-

dependent chromatin remodelling complex found in budding yeast. INO80 is 

required to promote the removal of UV lesions by the nucleotide excision 

repair pathway by remodelling chromatin (Jiang et al., 2010) and is recruited 

to double stranded DNA breaks (DSBs) within 1-2 hours of their formation by 

HO endonuclease at the MAT locus (Conaway and Conaway, 2009). INO80 

is required to remodel chromatin in the region surrounding the DSB to allow 

the Mre11-Rad50-Xrs2 (MRX) complex to perform 5’ strand resection to 

facilitate the formation of single-stranded DNA which signals to activate DNA 

damage checkpoint pathways (Bao and Shen, 2007a). 

RSC has also been identified as facilitating end joining repair of DSBs 

and RSC also interacts at least with Mre11 of the MRX complex (Kent et al., 

2007; Shim et al., 2005). Investigations at the highly specialised MAT locus 

show that nucleosomes are rapidly remodelled away from the site of DNA 

damage after the induction of the DSB by the HO endonuclease (Kent et al., 

2007; Shim et al., 2007). These independent studies show that the formation 

of a histone depleted region is required for the efficient phosphorylation of the 

histone protein H2A and the loading of the MRX complex to complete strand 

resection (Downs et al., 2004). Data presented by Kent et al. suggests that 

this remodelling event requires the RSC subunit Rsc1 whilst Shim et al. and 

Liang et al (2007) present contradictory data that suggest that Rsc2 is 

required for this DSB-dependent remodelling activity (Kent et al., 2007; Liang 

et al., 2007; Shim et al., 2007). 

Chapter 5 shows that Rsc1 and Rsc2 are highly similar proteins as they 

have very similar amino acid sequences and a conserved domain profile. 

Data obtained from co-immunoprecipitation and mass spectrometry has 
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shown that Rsc1 and Rsc2 are present in two separate isoforms of the RSC 

complex (Cairns et al., 1999; Chambers et al., 2012a). A Δrsc1 or Δrsc2 

mutant show growth defects and sensitivity to genotoxic agents suggesting 

they are required in DNA repair pathways and double Δrsc1 Δrsc2 mutants 

are inviable suggesting that there is some functional overlap (Bao and Shen, 

2007a; Bennett et al., 2001; Cairns et al., 1999; Chambers et al., 2012a) 

Data presented in Chapter 3 and Chapter 5 show indirect end-label 

analysis of MNase digested chromatin of both wild type and RSC subunit 

mutants. These analyses show that the loss of the Rsc1 subunit results in the 

loss of DSB-dependent chromatin remodelling on the TAF2 side of the HO 

cleavage site at the MAT locus in both the MATalpha and MATa locus. This 

remodelling activity is rescued by plasmid-borne RSC1 but not by plasmid-

borne RSC2. Data presented in Chapter 3 also shows that nucleosomes are 

remodelled at a HO-induced DSB at LEU2 and that this remodelling event 

also requires Rsc1 and is independent of Rsc2 or Rsc7.  

The data presented in Chapter 3 leads to three conclusions; firstly, 

chromatin remodelling observed at the MAT locus within 30-40 minutes after 

the induction of a DSB precedes remodelling which is dependent on INO80 

(Morrison et al., 2004; van Attikum et al., 2004). Secondly it can be 

concluded that the remodelling of nucleosomes that is seen exclusively on 

the TAF2 side of the HO-induced DSB at MATalpha is dependent on Rsc1 

and independent of Rsc2. Thirdly, nucleosome remodelling is observed at 

both MATa and non-MAT HO cleavage sites, such as LEU2, and that the 

remodelling at both types of loci is Rsc1-dependent. These results contrast 

those of previous observations by Liang et al and Shim et al who concluded 

nucleosome remodelling at DSBs is Rsc2-dependent. Shim et al. used qPCR 

to determine the presence of positioned nucleosomes at MAT before and 

after induction of HO. However, they do show that 1 hour after HO induction 

a reduction of nucleosome is seen in a Δrsc2 mutant compared to wild-type 

though this reduction is delayed (Shim et al., 2007). Liang et al. used indirect-

end-label analysis to determine nucleosome positions before and after HO-

induction at the MAT locus. However chromatin was digested for 5 to 15 

minutes with MNase resulting blots that do not even show the large band that 
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wold represent a DSB or any remodelling in the wild-type strain (Liang et al., 

2007). Therefore the work presented here suggests that the Rsc1-isoform of 

the RSC complex has a functional role distinct from the Rsc2-isoform of RSC 

in the repair pathway for DSBs in the context of the genome. Data showing 

that Rsc1 mutants are generally sensitive to genotoxic agents that cause 

double strand DNA breaks (Bennett et al., 2001; Oum et al., 2011), suggests 

that the interaction of RSC with HO-induced DSBs is independent of HO 

endonuclease or the underlying HO cleavage site sequence. Similar data 

also shows that rsc2 mutants, and other non-essential subunit mutants, are 

sensitive to genotoxic agents but this may be due to mis-regulation of stress-

induced genes (see below) or that rsc2 mutants are defective in later stages 

of repair pathways (Chai et al., 2005; Oum et al., 2011) 

Little is understood about how RSC is recruited to a DSB, though it has 

been suggested that RSC directly interacts with the MRX complex through an 

interaction with the Rsc1 and Mre11 subunits (Papamichos-Chronakis and 

Peterson, 2013; Shim et al., 2005). However, wild-type nucleosome 

remodelling at MATalpha is observed in mre11 and rad50 mutants 

suggesting recruitment of RSC is independent of the MRX complex (Kent et 

al., 2007). Both Tel1 and Mec1 are also recruited to HO-induced DSBs and 

repair of DSBs is defective in mec1 mutants. (Chai et al., 2005; Lisby et al., 

2004). Mec1 and Tel1 phosphorylate H2A in order to recruit further repair 

proteins however this phosphorylation is a process downstream of RSC 

complex recruitment (Downs et al., 2004; Liang et al., 2007). Therefore, the 

recruitment mechanism of RSC to DSBs is still elusive, though a number of 

hypotheses remain to be tested: RSC may be recruited to the MAT locus 

DSB via the HO endonuclease. A yeast two-hybrid screen could be used to 

determine whether the RSC complex and HO endonuclease physically 

interact; RSC may bind directly to broken DNA ends. Electrophoretic mobility 

shift assays (gel shift assays) could test whether RSC binds to DNA ends 

produced by HO endonuclease cleavage. 
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7.2 The BAH domain of Rsc1 confers DSB-dependent 

nucleosome remodelling to the RSC complex 

Both Rsc1 and Rsc2 contain two bromodomains and a domain named 

a bromo-adjacent homology domain as it was first identified as an adjacent 

domain to bromodomains, though this has been shown to be not the only 

definition of this domain (Cairns et al., 1999; Goodwin and Nicolas, 2001). 

Bromodomains bind acetylated lysines as a way of recruiting complexes to 

other proteins or to promote or antagonise enzyme activity whereas little is 

currently known on the function of BAH domains (VanDemark et al., 2007). 

For the budding yeast cell to be viable it must contain two of the four 

bromodomains found in Rsc1 and Rsc2 but none are essential on their own 

suggesting that the bromodomains have overlapping function (Cairns et al., 

1999). 

 The data presented in Chapter 3 shows that, despite their similarity, 

Rsc1 is required for DSB-dependent nucleosome remodelling, a function that 

cannot be complemented by Rsc2. The analysis presented in Chapter 5 

shows the results of swapping the bromodomains and BAH domains of Rsc1 

with the equivalent domains in Rsc2 and determining whether DSB-

dependent nucleosome remodelling occurs at the MATalpha locus. The data 

shows that swapping either of the two bromodomains of Rsc1 into the similar 

positions of Rsc2 does not confer remodelling activity to Rsc2. Interestingly, 

swapping the BAH domain of Rsc1 into Rsc2 does restore DSB-dependent 

nucleosome remodelling as observed at the MAT alpha. These results 

provide further evidence that remodelling of nucleosomes at DSBs is Rsc1-

dependent. 

 The importance of the BAH domain has recently been highlighted by 

observations of the human pBAF (polybromo) complex which contains a 

subunit BAF180 that contains six bromodomains and two BAH domain. 

There is a high prevalence of mutations in these domains in cancer 

demonstrating the importance of these domains in genome stability (Xue et 

al., 2000). BAF180 protein has been likened to an amalgamation of the three 

RSC subunits Rsc1, Rsc2, and Rsc4 suggesting functionality of these 

domains may be conserved (Brownlee et al., 2012; Goodwin and Nicolas, 
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2001).  The BAH domain of metazoans Orc1 (origin of replication) binds 

histone H4 dimethylated lysine showing the BAH domain can specifically bind 

to proteins (Kuo et al., 2012a). However, a recent study has elucidated the 3-

dimensional structure of the Rsc2–BAH domain and has shown that, in vitro, 

both Rsc1 and Rsc2 BAH domains are capable of binding histone H3 

(Chambers et al., 2013). The Rsc2 structure is different to the Sir3-like BAH 

domain structure and interacts with histone proteins with distinct structural 

differences. Though the structure of the Rsc1-BAH domain has not been 

examined, it has been shown that, in vitro, the Rsc1-BAH domain is also 

capable of binding histone H3 (Chambers et al., 2013). After recruitment to 

the site of DNA damage, the RSC complex may interact with the local 

nucleosomes through interaction with histone H3 proteins in the nucleosome 

core through the Rsc1-BAH domain. Even though the Rsc1 and Rsc2 BAH 

domains have very similar amino acid sequence and the H3 binding residues 

appear to be conserved (Chambers et al., 2013), the evidence in Chapter 5 

would suggest that the Rsc2 BAH domain is unable to perform the same 

function as the Rsc1-BAH domain. This may suggest that, in vivo, the Rsc1-

BAH domain has a stronger binding affinity for histone proteins and allows 

Rsc1-RSC to interact with histones in the context of DNA damage whilst in 

competition with many other histone modifying enzymes. This could be 

investigated using gel shift assays and the prediction would be that the Rsc1-

BAH can compete with the Rsc2-BAH domain for histone H3 binding. 
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7.3 Rsc2 remodels nucleosomes to form the alphasome at 

MAT alpha 

The MATing (MAT) type locus is a highly specialised region of the S. 

cerevisiae genome which allows the cell to change mating type by a 

specialised form of homologous recombination called gene conversion 

(Haber, 2012). The process is initiated by the highly regulated homothallic 

(HO) endonuclease which creates a double-strand DNA break within the 

MAT locus at the boundary of the mating type specific Y region and the 

mating type conserved Z region (Wang et al., 1997). This chromosome lesion 

is then repaired using the silenced mating type cassette as a donor by 

homologous recombination involving both leading and lagging strand 

synthesis resulting in an intrachromosomal gene conversion event. 

Preference to use the opposing mating type cassette as a donor is achieved 

in 90% of mating type switching events by the alteration of the chromatin 

structure of chromosome III to make the opposite mating type the preferred 

donor (Haber, 1998; Haber, 2012).  

 As shown in Chapter 4, the MATalpha locus contains a chromatin 

particle that has a much larger DNA footprint than a canonical nucleosome. 

In a Δrsc2 or Δrsc7 mutant the large chromatin particle immediately flanking 

the HO cleavage site at MATalpha becomes less resistant to micrococcal 

nuclease.  As shown in Chapter 4, the chromatin structure of MATalpha in a 

Δrsc2 or Δrsc7 strain becomes very similar to that observed at the similar 

position in MATa.  Kent et al. (2007) demonstrated that this MATalpha 

chromatin particle is required for efficient cleavage of the MATalpha locus by 

HO endonuclease and consequently efficient mating type switching. Chapter 

4 however shows that this large chromatin particle is not observed at MATa 

or the engineered LEU2::HOcs or the URA3::HOcs and therefore this particle 

is unique to the MATalpha locus. Hence, this large chromatin particle has 

been named the alphasome.  

Further analysis of the chromatin particle shows that in the absence of 

Rsc2 or Rsc7 this region in MATalpha is occupied by three nucleosomes in 

contrast to the wild-type or Δrsc1 mutant where the alphasome is observed. 

This suggests either that the RSC complex remodels three nucleosomes into 



192 

 

a MNase-resistant structure that protects 450bp of DNA or that an unknown 

MNase resistant structure binds to this region to protect DNA from MNase 

cleavage. 

 From the data presented in Chapter 4 showing that there is no 

dependency on RSC subunits to set the chromatin structure at MATa prior to 

cleavage by HO, it can be  suggested that the chromatin structure of the 

MATa does not antagonise the cleavage of the DNA strand by HO. The HO 

site occurs in both MAT loci within a linker region suggesting that the 

nucleosome remodelling observed at MATalpha is not required to promote 

accessibility. HO cleaves at the same relative position in MATalpha and 

MATa even though the Y-regions of the different loci have no sequence 

similarity, and MATalpha has a much higher GC content than MATa  (Wang 

et al., 1997). The increased GC content of MATalpha may alter the local 

persistence length of the HO cleavage site at MATalpha and the alphasome 

is required to alter this persistence length to increase the cleavage by HO 

(Hormeno et al., 2011). A small increase in DNA tension can completely 

inhibit cleavage by two-site endonucleases (Gemmen et al., 2006) thus the 

alphasome may function to reduce DNA tension and increase DNA looping to 

increase cleavage efficiency by HO. This hypothesis could be tested by 

treating a MATalpha Δrsc2 mutant strain with hydrogen peroxide to reduce 

negative DNA supercoiling to see if HO cleavage returns to wild-type levels  

 As discussed below, a binding motif has been identified for the RSC 

subunit Rsc3 which contains a zinc-finger DNA binding domain. The motif, 

CGCGC is found at the HO cleavage site in MATalpha but not in MATa. Of 

note, the cleavage sites in the strains containing LEU2::HOcs or 

URA3::HOcs were originally obtained from MATa sequence. Consequently 

the potential Rsc3-binding site is not present at these non-MAT cleavage 

sites and consistent with this hypothesis, the alphasome is not observed at 

these loci. Wang et al. (1997) have shown that a large protein specifically 

binds to the MAT alpha cleavage sequence but not to MATa (Wang et al., 

1997). One hypothesis is therefore that RSC is recruited to MATalpha via 

Rsc3 to remodel chromatin to ensure efficient cleavage (Weinstein-Fischer et 

al., 2000).  
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As shown in Chapter 4, this remodelling is dependent on both Rsc2 

and Rsc7, RSC subunit proteins that neither share sequence similarity nor 

similar domains. Previous research has shown that the loss of Rsc7 results in 

RSC from being improperly assembled and Rsc3/Rsc30 are not present in 

the complex (Wilson et al., 2006). Despite using all viable RSC subunit 

knockouts of the fungal specific module, a phenocopy for the Δrsc7 mutant 

was not found. Despite this, and alongside the evidence that Rsc2 can 

interact with histones through the BAH or bromodomains, there is little 

evidence that Rsc7 would interact directly with a nucleosome. An alternative 

explanation is that the loss of Rsc7 results in the loss of Rsc3 from the RSC 

complex and therefore precludes binding to the MATalpha locus. This 

hypothesis may be tested by electromobility shift assays to test whether a 

purified RSC complex without Rsc2 can bind the MATalpha DNA sequence 

in comparison to a RSC complex lacking Rsc7. Similarly, a system could be 

used to tether a RSC complex lacking the Rsc7 subunit to the MATalpha 

locus to test whether alphasome formation is restored in a Δrsc7 mutant 

strain. 

 In conclusion these data shows that there is a MATalpha specific 

chromatin structure, the alphasome, likely to represent three aggregated 

nucleosomes that is required for efficient cleavage by HO endonuclease. 

This remodelling may be required to ensure the DNA strand is in the correct 

conformation for cleavage by HO endonuclease but is not required at MATa 

due to a different GC content and therefore not at the other HO cleavage 

sites investigated. The loss of Rsc7 is likely to result in Rsc3/Rsc30 not being 

assembled into the RSC complex and therefore the loss of remodelling at 

MATalpha prior to HO cleavage. 
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7.4 The bromodomains of Rsc2 do not confer alphasome 

formation at MAT alpha 

 Rsc2, like Rsc1 and Rsc4, contains two bromodomains but specific 

binding targets for the bromodomains of Rsc1 and Rsc2 have yet to be 

found. The tandem bromodomains of Rsc4 however have been shown to 

specifically target Gcn5 and itself in an autoregulation process showing that 

bromodomains have an important in vivo function in recruiting the RSC 

complex to functional targets (VanDemark et al., 2007). The binding of the 

bromodomains of Rsc4 to their targets depends on pairs of tyrosine residues, 

Y92/Y93 and Y225/Y226, and asparagine residues, N134 and N268 which 

are conserved in the Rsc1 and Rsc2 proteins (VanDemark et al., 2007). This 

suggests that the bromodomains of Rsc2 may be involved in specific protein-

protein interactions to facilitate the Rsc2-specific chromatin remodelling 

observed at MATalpha. 

 Chapter 5 presents the indirect end-label analysis of bromodomain 

mutants of the Rsc2 protein to determine alphasome formation at MATalpha. 

None of the mutants tested affected the formation of the alphasome at 

MATalpha suggesting that, individually, these residues within the 

bromodomains are not required for alphasome formation. Further 

investigation is required to determine whether the bromodomains of Rsc2 are 

functioning to facilitate nucleosome remodelling at MATalpha or indeed that 

Rsc2, like Rsc1, functionally interacts with nucleosomes through the BAH 

domain. Further analysis would use Rsc2 bromodomain and BAH domain 

mutants to determine non-functional mutants. 
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7.5 Deletion of rsc1 and rsc2 genes reveal both specific and 

overlapping sites of chromatin-remodelling function in 

the wider genome 

Chromatin particle spectrum analysis was first described by Kent et al. 

(2011) as a technique to map a range of chromatin particles, with a range of 

DNA footprint sizes, back to the genome. This allows for base pair accurate 

positions of nucleosomes and transcription factors and allows the chromatin 

landscape of particular genomic features such as transcriptional start sites 

and centromeres to be determined and compared between wild type and 

mutant cell samples. (Durand-Dubief et al., 2012; Kent et al., 2011).  

 Chapter 6 describes CPSA analysis of the whole S. cerevisiae 

genome comparing a wild type reference strain BY4741 and two RSC 

subunit mutant strains YO4686 (Δrsc1) and YO5266 (Δrsc2). One initial 

surprise in Chapter 6 was that in the absence of Rsc1 or Rsc2, a decrease in 

the number of CPSA read-pairs that align to the rDNA repeats was observed 

on chromosome XII. This result can be interpreted to suggest that there is a 

decrease in the copy number of the rDNA repeats in the absence of Rsc1 or 

Rsc2. It has previously been shown that the loss of Rsc2 results in the loss of 

rDNA silencing and that Rsc2 is significantly  enriched in chromatin across 

the rDNA repeats through direct interaction with histone H3 through the BAH 

domain (Chambers et al., 2013). It has been suggested that the yeast cell 

keeps a fraction of the 35S rRNA genes in a transcriptionally inactive state in 

order to maintain rDNA copy number and genomic stability (Ide et al., 2010). 

As shown in this thesis, and discussed below, RSC is required for chromatin 

structure at tRNA genes (Kumar and Bhargava, 2013) and the chromatin 

structure of tRNA genes has been shown to be a barrier to heterochromatin  

(Donze and Kamakaka, 2001). This tRNA gene chromatin structure restricts 

Sir-mediated heterochromatin silencing at the silent mating-type HMR locus 

and this heterochromatin-barriers function has shown to be dependent on 

Rsc2 (Jambunathan et al., 2005; Simms et al., 2008). The rDNA silencing 

chromatin is dependent on Sir2 only and a tRNA (tRNAGLN) prevents the 

spreading of silencing along chromosome XII (Biswas et al., 2009). Taken 
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together it can be suggested that the loss of Rsc1 or Rsc2 results in a 

change in both the heterochromatin barriers and chromatin structure of the 

rDNA repeats of chromosome XII. This would result in an open chromatin 

state that leads to the loss of silencing and the direct destabilisation of the 

rDNA repeats or selection pressure for rRNA down-regulation, both of which 

might result in a decrease in rDNA copy number. To analyse this further I 

would use pulse field gel analysis and Southern Blotting, as in previous 

studies (Houseley and Tollervey, 2011), to determine rDNA copy number in a 

Δrsc2 strain compared to wild-type. I would also analyse if there is a change 

in ratio of active to inactive rDNA genes in an rsc mutant compared to WT 

which would suggest a change in the chromatin structure in this region and 

therefore may lead to instability. If copy number does decrease it would be 

predicted that this phenotype would not be rescued by plasmid borne RSC2 

containing the RSC1 BAH domain but would be rescued by normal RSC2, 

unless Rsc1-BAH and Rsc2-BAH have similar histone H3 binding affinities 

(See Section 7.2). 

The CPSA procedure allows a landscape of chromatin particle size to 

be plotted relative to classes of genomic features. Chapter 6.6 showed that 

the average chromatin landscape surrounding TSSs of genes containing a 

Rsc3-binding motif in their promoter region was similar to that observed 

generally. However, a significant decrease in +1 and -1 nucleosome 

occupancy is observed in the absence of Rsc1 or Rsc2, and was 

independent of the presence of an Rsc3-motif at the TSS. A decrease in the 

transcription factor size class (50bp) was observed in Δrsc1 and Δrsc2 

mutants, a loss which, like the loss of +1 and -1 nucleosomes, does appear 

to be dependent on Rsc3-binding motifs. It has previously been shown that 

the RSC complex is associated with nucleosome positioning and nucleosome 

density at RNA Pol II and Pol III promoters respectively (Parnell et al., 2008). 

The data presented here suggest that the RSC complex is required for 

maintaining a stable +1 and -1 nucleosome at promoter regions throughout 

the genome and the consequence of a loss of +1 and -1 nucleosome 

occupancy is a decrease of transcription factor binding. Due to the relatively 

low depth of read-pairs in the 50bp size class obtained in this experiment it is 
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difficult to draw conclusions from this dataset. Therefore, I would repeat the 

experiment in Chapter 6 to obtain more 50bp read-pair depth in a wild-type, 

Δrsc1 and Δrsc2 mutant. To further demonstrate that there is a decrease in 

+1 and -1 nucleosome occupancy I would use MNase digestion of cross-

linked chromatin and qPCR of regions that are protected by a +1 or -1 

nucleosome in a wild-type strain (Bryant, 2012). In a Δrsc1 or Δrsc2 strain it 

would be expected that there would be less +1 and -1 nucleosome-DNA 

protection. 

 Floer et al. (2010) suggested that the RSC complex has a novel role in 

remodelling nucleosomes in the promoter regions of open reading frames to 

facilitate the binding of transcriptional activators. The RSC complex was 

suggested to binds to a nucleosome to partially unwind the DNA thereby 

facilitating access to the sequence for activator proteins. In the absence of 

core RSC complex proteins such as Sth1 and Rsc3 then the partially 

unwound nucleosome is lost and canonical nucleosomes encroach over the 

region. Chromatin-seq data to support this idea showed an MNase-resistant 

chromatin particle of smaller size than a canonical nucleosome in the 

divergent promoter region of GAL1/GAL10 which also contains Rsc3 binding 

motifs suggesting a recruitment mechanism for RSC (Floer et al., 2010). A 

chromatin particle in the 100bp CPSA size class was observed at GAL1/10. 

However, the CPSA in Chapter 6 shows that the loss of Rsc1 or Rsc2 results 

in the loss of this particle but does not result in the encroachment of 

canonical nucleosomes over the region. The study by Floer et al utilised sth1 

and rsc3 mutants which prevent the formation of the RSC complex or remove 

the zinc-finger DNA-binding domain respectively. One hypothesis is that the 

loss of Rsc1 or Rsc2 results in the loss RSC function to maintain a non-

canonical nucleosome but does not prevent the RSC complex from binding to 

the locus. RSC bound at the locus may prevent nucleosomes from 

encroaching over this region correlating with the function of RSC to maintain 

NFRs (Parnell et al., 2008). This hypothesis could be tested using EMSA to 

see if a Δrsc1 or Δrsc2 RSC complex can bind the underlying DNA sequence 

at the GAL1/10 locus. 
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Further 100bp particles were shown to be present within 400bp of open 

reading frames which contain an Rsc3-binding motif in the promoter region. 

These 100bp particles show variable dependency on Rsc1 and Rsc2. The 

underlying DNA sequence shows that these 100bp particles are associated 

with certain transcription factors and trends of these sites show a loss of 

100bp particles in Δrsc1 and Δrsc2 mutants. The 100bp particles observed at 

some transcription factor binding sites may be RSC-remodelled nucleosomes 

required to promote transcription factor binding similar to the example shown 

previously at GAL1/10. RSC may be recruited to the site via Rsc3 to the 

Rsc3-binding motif and RSC interact with the nucleosome to disrupt 

histone/DNA interactions to promote transcription factor binding (Figure 7.4). 

Previous studies of the transcriptome of rsc3, rsc30 and sth1 mutants have 

shown varying effects on the level of transcription of individual groups of 

genes, such as ribosomal protein genes, with almost an equal number up-

regulated and down-regulated (Angus-Hill et al., 2001; Parnell et al., 2008). A 

key observation is that these studies have utilised mutants of essential RSC 

subunits, therefore potentially ablating essential RSC activity in transcription 

elongation rather than a change in chromatin structure (Section 1.6). 

Therefore, key and necessary further work would be to complete 

transcriptome analysis in a rsc1 or rsc2 mutant. It would be very interesting to 

see how Rsc1- and Rsc2-dependent 100bp chromatin particles correlate with 

levels of transcription. 

Previous studies have identified RSC as maintaining chromatin at RNA 

Pol III dependent genes including tRNAs in order for expression of tRNA 

genes and maintaining silencing boundaries (Dubey and Gartenberg, 2007; 

Good et al., 2013; Kumar and Bhargava, 2013; Parnell et al., 2008). RSC 

functions to position nucleosomes downstream of the tRNA coding region in 

order to maintain the nucleosome free region over the coding region (Kumar 

and Bhargava, 2013). Chapter 6 shows that tRNA coding regions are 

associated with the presence of 100bp chromatin particles. However, the loss 

of Rsc1 or Rsc2 results in the loss of MNase-protected 100bp regions at 

tRNA genes. The loss of Rsc1 results in a significant shift of downstream 

nucleosomes towards the coding region, a shift is seen in the Δrsc2 data but 
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this is not significant. As the coding region of tRNA is a nucleosome free 

region it is unlikely that this 100bp particle is a remodelled nucleosome, 

rather this 100bp particle may represent the footprint of the transcriptional 

machinery at the tRNA coding region.  Assembly of RNA polymerase III (Pol 

III) is initiated by the binding of two units of the TFIIIC transcription factor 

which in turns recruits TFIIIB and Pol III (Bartholomew et al., 1993; Schramm 

and Hernandez, 2002). The TFIIIB-TFIIIC complex has been shown to 

protect approximately 150bp DNA from MNase cleavage but MNase can also 

cleave between TFIIIB and TFIIIC to leave shorter MNase fragments which 

are the approximate size of the tRNA gene i.e. 75-95 base pairs (Kassavetis 

et al., 1990; Nagarajavel et al., 2013) The loss of either Rsc1 or Rsc2 may 

result in the mis-remodelling of downstream nucleosomes that antagonises 

the binding of TFIIIC and precludes the assembly of the transcriptional 

machinery at tRNAs (Figure 7.3). This would be consistent with the 

observations in Chapter 6 of the loss of 100bp particles at tRNA genes in 

Δrsc1 and Δrsc2 datasets and previous data that show a general decrease in 

transcription of tRNA genes in essential RSC subunit mutants (Kumar and 

Bhargava, 2013; Parnell et al., 2008). To test whether the loss of Rsc1 or 

Rsc2 prevents TFIIIC from binding tRNA genes I would use chromatin 

immunopreciptation to determine which DNA sequences TFIIIC is bound. 

The prediction would be to expect that the interaction of TFIIIC with tRNA 

genes to be lost in Δrsc1 or Δrsc2 mutants. 
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7.6 Concluding remarks 

This thesis has analysed the abundant ATPase-dependent chromatin 

remodelling complex RSC in S. cerevisiae. I have identified four distinct 

outcomes of remodelling by the RSC complex in different genomic contexts 

which answer some of the key questions in Chapter 1: firstly the RSC 

complex remodels nucleosomes away (nucleosome sliding) from DSBs a 

process that is dependent on the BAH domain of RSC; secondly the Rsc2 

and Rsc7 subunits of RSC complex can aggregate nucleosomes in order to 

change the metabolism of DNA at the MATalpha locus, showing distinct 

chromatin structures of the two forms of the MAT locus; thirdly genome wide 

analysis of Δrsc1 and Δrsc2 mutants has shown that the RSC complex 

generally remodels chromatin in promoter regions throughout the genome in 

an Rsc1- and Rsc2- dependent manner. This activity remodels chromatin in 

the promoter region, potentially to promote transcription factor binding but 

whether this remodelling activity affects transcriptional activity is a question 

that will require further investigation; fourthly RSC sets the chromatin 

structure at tRNA genes in an Rsc1- and Rsc2-dependent manner, 

potentially to facilitate the binding of transcriptional machinery. 

 As described in Chapter 1, S. cerevisiae contains a host of ATPase-

dependent chromatin remodelling factors of which RSC is just one. These 

complexes have redundant, opposing and synergistic functions showing that 

chromatin is both highly dynamic and tightly controlled. This thesis 

demonstrates that RSC has unique and important functions in ensuring 

processes involving DNA and contributes to both genome stability and cell 

regulation. 
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Appendix 

 

  

Frag size Log frag Distance migrated

2000 3.301029996 42.8

1500 3.176091259 60.5

1000 3 89.5

900 2.954242509 97.5

800 2.903089987 105.5

700 2.84509804 115

600 2.77815125 125.5

500 2.698970004 136.6

Fragment Distance migrated Calculated size

1 52.5 168.8845432

2 59.5 162.4759233

3 67.1 167.7156077

4 76.1 157.7650253

5 86 238.998826

6 105 166.5447463

7 123

Average size 177.0641119

Appendix A.1 – Calibration curve to calculate size of MNase protected regions
The distance migrated by the marker fragments was plotted against the log size of the fragment to
produce a calibration curve. By applying the formula of y=mx+c, the size of the fragments was calculated
and the difference between neighbouring fragments calculated to give a size of the MNase protected
region. For the MNase protected regions in Figure 3.1, there is an average size of 177bp,, approximately
the size of a nucleosome.
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Appendix A.2 – Rsc1 and Rsc2 dependent 100bp particles at TF binding sites
Trend graphs of normalised cumulative frequency of 100bp were plotted in a 2400bp surrounding the
binding sites of TFs Ash1 (n=30), Pho4 (n=24), Azf1 (n=4), and Swi4 (n=166) as determined by MacIsaac
et al (2006) for wild-type (blue), Δrsc1 (red) and Δrsc2 (green) datasets. The trends show that these
transcription factor binding sites do not have a dependency on Rsc1 or Rsc2 to set chromatin structure to
the same extent as transcription factors with an associated conserved binding motif.
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Appendix A.3 – Rsc1 and Rsc2 dependent 100bp particles at TF binding sites
Trend graphs of normalised cumulative frequency of 100bp were plotted in a 2400bp surrounding the
binding sites of TFs Msn2 (n=183), Rtg3 (n=74), Stb5 (n=19) and Fkh1 (n=88) as determined by MacIsaac
et al (2006) for wild-type (blue), Δrsc1 (red) and Δrsc2 (green) datasets. The trends show that these
transcription factor binding sites do not have a dependency on Rsc1 or Rsc2 to set chromatin structure to
the same extent as transcription factors with an associated conserved binding motif.


