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Abstract: West Nile virus is a human pathogen which is rapidly expanding worldwide. It is a member of the 

Flavivirus genus and it is transmitted by mosquitos between its avian hosts and occasionally in vertebrate 

hosts. In humans, the infection is often asymptomatic, but the most severe cases result in encephalitis or 

meningitis. Around 10% of cases of neuroinvasive disease are fatal. To date there is no effective human 

vaccine or effective antiviral therapy available to treat WNV infections For this reason, research in this field 

is rapidly growing. In this article we will review the latest efforts in the design and development of novel 

WNV inhibitors from a medicinal chemistry point of view, highlighting challenges and opportunities for the 

researchers working in this field. 
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INTRODUCTION 

West Nile Virus (WNV) is a member of the genus Flavivirus, a group of enveloped viruses with 

a positive-sense RNA genome. This genus contains many important human pathogens (e.g.: 

Dengue, Japanese Encephalitis and Yellow Fever viruses), which together infect millions of people 

worldwide and are the cause of tens of thousands of fatalities annually [1]. The West Nile virus has 

been reported in dead or dying birds of at least 326 species [2]. In humans, it was first isolated in 

the West Nile province of Uganda in 1937 from the blood of a woman suffering from a mild febrile 

illness [3]. 

WNV is an emerging human pathogen with an expanding geographical distribution, spreading 

rapidly in recent years throughout North America [4, 5]. It has been the cause of an increasing 

number of human infections with associated sever disease and fatalities. WNV is transmitted by 

mosquitoes within its avian host populations and to incidental vertebrate hosts, including humans 

and horses. Infection in humans is generally asymptomatic or causes a mild febrile disease in about 

20-30% of cases. The most severe cases of WNV infection result in encephalitis or meningitis. 

Around 10% of cases of neuroinvasive disease are fatal while the survivors may suffer from long-

term cognitive and neurological impairment [6]. The most important risk factors for these more 

serious complications are aging and a compromised immune system [7]. Although vaccines are 

available against some flaviviruses, unfortunately there is no effective human vaccine or effective 

antiviral therapy available for WNV, indeed their development remains an high priority for the 

World Health Organization [8, 9]. 

The present review will concentrate primarily on the medicinal chemistry effort in the 

development of potential inhibitors of WNV. Other aspects of flavivirus infections, including 

WNV, are covered in excellent elsewhere [10-12]. 

 

WEST NILE VIRUS PROTEIN TARGETS 

WNV contains a single-stranded positive sense RNA genome, which encodes three structural 

proteins, capsid, pre-membrane and envelope (C, prM, E), and seven non-structural proteins (NS1, 

NS2A, NS2B, NS3, NS4A, NS4B, and NS5). Non-structural protein 1 (NS1) has been implicated 

in host immune response evasion, likewise the function NS2A is poorly defined. NS2B functions as 

cofactor protein in the protease function of NS3, which is a multifunctional protein, consisting of 

the N-terminal protease domain and C-terminal helicase, nucleoside triphosphatase and RNA 

triphosphatase activities [13]. The function of NS4A is a matter of debate while NS4B membrane 

protein is thought to anchor and target the replication complex to the endoplasmic reticulum (ER) 

membrane. NS5 is the largest of the non-structural proteins and it contains a classic RNA-

dependent RNA polymerase domain as well as methyltransferase and guanylyltransferase domains 

for mRNA capping necessary for virus that replicates its mRNA in the cytoplasm [14]. 
 
 

E protein inhibitors 

Wang et al. from Novartis performed a virtual screening using a 586,000 compounds library (a 

subset of the corporate compound collection) revealing a hydrophobic pocket in the DENV-2 strain 

S1 envelope protein. The top-ranked compounds were also docked in the crystal structure of the 

WNV E protein [15, 16], which contain a hydrophobic pocket that is presumably important for 

low-pH mediated membrane fusion. After performing a high-throughput docking within this 
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hydrophobic pocket, compound 1 was evaluated in cell-based assays showing an EC50 of 

0.564±0.17 µM [17]. 

An in silico screening of the Maybridge chemical database was performed on the dengue E 

protein structure. The biological evaluation of the most promising compounds obtained from the 

computer-based simulation revealed two hit structures with low micromolar antiviral activity 

against dengue virus. Interestingly, one of these compounds (2) also has antiviral activity against 

both WNV and YFV [18]. 

 

NS2B/NS3 protease inhibitors 

Historically, WNV NS3 protease and the NS2B cofactor have always been indicated as 

attractive targets for drug development, due to their essential catalytic activity [19, 20]. The WNV 

NS2B-NS3 is a serine-like protease, important for viral replication. Viral proteases in general are 

proving to be successful antiviral targets (e.g. for HIV) and inhibitors of serine protease in 

particular look promising for treating flaviviruses (e.g. hepatitis C [21]). Several homology models 

for WNV NS2B/NS3 protease were reported [22-24], unfortunately all these structures were 

significantly different from the subsequent crystal structures of the active protease (PDB id: 2FP7 

[25], PDB id: 2IJO [26]) due to the unusual binding mode of the NS2B cofactor which encircles 

and stabilizes the protease structure [27]. 

 

Peptide-like inhibitors. A common strategy used for the inhibition of the NS2B/NS3 protease 

involved covalent inhibitors that compete with the substrate for the catalytic site. Such peptide-

based inhibitors have their C-terminal carboxyl group chemically modified into reactive 

electrophilic “warheads”.
 
A popular warhead is the aldehyde functional group and peptide-

aldehydes have been shown to inhibit the WNV NS2B/NS3 protease at submicromolar 

concentrations [28]. In this study peptidomimetics containing a P1 decarboxylated arginine 

(agmatine) compound (4-phenyl-phenacetyl-Lys-Lys-agmatine) showed potent inhibition of the  

WNV protease (IC50 4.7±1.2 µM). This inhibitor does not bind covalently to the catalytic serine in 

the active site but instead competes with the natural substrate for the active site with a binding 

affinity of Ki 2.05±0.13 µM. Selectivity for WNV NS2B/NS3 protease was demonstrated using 

thrombin, a mammalian serine protease involved in blood clotting that is selective for peptide 

substrates with a P1 Arg. The compound did not inhibit thrombin at concentration of 100 µM, 

showing a good selectivity towards the WNV NS2B/NS3 protease [29]. In 2013 the same research 

group has reported thirty-seven novel agmatine dipeptides [30]. The most potent inhibitor 

displayed an IC50 of 2.6 ± 0.3 μM against the West Nile virus NS2B/NS3 protease, a two-fold 

improvement over the inhibitor described previously. 

Recently a series of new substrate analogues of NS2B/NS3 protease based on trans-(4-

guanidino)cyclohexylmethylamide (GCMA) were identified. These GCMA inhibitors are stable, 

readily accessible, and have a better selectivity profile than the previously described agmatine 

analogues. Furthermore, they possess negligible affinity for the trypsin-like serine proteases 

thrombin, factor Xa, and matriptase. A crystal structure in complex with the WNV protease was 

determined for one of the most potent inhibitors, 3,4-dichlorophenylacetyl-Lys-Lys-GCMA 

(Ki=0.13 μM) [31].  
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It should be noted that, despite their potency, warhead peptidomimetics have several undesirable 

characteristics, including lack of selectivity over other trypsin-like proteases due to their high 

reactivity and low chemical stability, limiting their potential for drug development [32]. 

 

Non-peptide inhibitors. Recently, different non-peptidomimetic inhibitors have been reported in 

literature. Compound 3 has been identified by automatic fragment-based docking of about 12,000 

compounds and is able to inhibit WNV protease NS3 with an IC50 of 183 µM [33].  

A more potent compound, the sultam thiourea TYT-1 (4), was identified by screening a 3,500 

molecules library in a in a cell based assay that measured the compound ability to protect the cells 

from WNV-induced cytopathic effects (CPE). Compound 4 proved to one on the most potent WNV 

NS3 inhibitor reported to date (IC50 = 0.7 M) [34]. 

Exploratory studies, using a combinatorial approach based on the 1-Oxo-1,2,3,4-

tetrahydroisoquinolinee scaffold, have led to the identification of an hit (5), which inhibited WNV 

protease at (IC50 = 30 µM) [35]. The design rationale for this compound is based on the observation 

that molecules containing the aforementioned scaffold are substrate of chymotrypsin, hence a 

problem of selectivity might arise for compound 5 and related analogues. 

 Compounds 6 and 7, two 8-hydroxyquinoline (8-HQ) derivatives, exhibited inhibition of WNV 

protease in vitro, with a Ki of 3.2±0.3 µM and 3.4±0.3 µM respectively [36]. In further studies, 15 

compounds having 8-HQ scaffold were biologically tested as WNV protease inhibitor and 

compound 7 proved to be the most potent of the series with an IC50 of 2.01±0.08 µM. It is 

noteworthy that the compound containing the naphthalene-1-ol moiety instead of the 8-HQ group 

showed a significantly reduced activity, underlying the importance of this heterocyclic ring for the 

inhibition of WNV NS2B/NS3 protease by this class of compounds [37].
 

The aminobenzamide scaffold was also utilized in the synthesis of a series of structurally diverse 

meta and para-substituted derivatives [38]. The four analogues that exhibited activity against WNV 

protease, all have a (pehnoxy)phenyl group present in the meta or para position. The most potent 

aminobenzamide derivative is compound 8, which showed a low micromolar NS3/NS2B protease 

inhibition (IC50 = 5.5±0.08 M). These compounds showed also activity against the DENV 

protease. 

 Recently, Tiew et al. have identified a series of triazolic compounds active on both Dengue 

virus and WNV NS2B/NS3 protease [39]. The compounds were obtained from the 

benz[d]isothiazol-3(2H)-one scaffold using a click-chemistry derived library. The most interesting 

molecules (9-10) display weak inhibitory activity toward the NS2B-NS3 protease. 

 3-Aryl-2-cyanoacrylamides were identified as a new class of nitrile-containing inhibitors of the 

NS3/NS2B protease by Nitsche et al. [40]. The most relevant structural features required for 

activity are: a para-substituted aromatic system with high electron density; an amide or acid 

residue; a planar geometry. Consequently, the most active molecule was the hydroxyl derivative 

(11), with a Ki of 44.6 M. 

The 5-amino-1-(phenyl)sulfonyl-pyrazol-3-yl based inhibitors seems to interfere with the 

binding of the  NS2B cofactor with the NS3 protease. The hit compounds (12-13), which showed a 

sub-micromolar activity, were obtained by high throughput screening (HTS), using the National 

Institutes of Health's 65,000 compound library [41]. However, these derivatives were rapidly 

hydrolyzed in an aqueous buffer (pH 8) to the corresponding pyrazol-3-ol and, for this reason, the 

authors designed and synthesized a new series of analogues with improved chemical stability. The 
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two ester isosteres derivative, compound 14, which contain alkene group, and compound 15, an 

amide analogue, while less potent than the original hits (IC50 of 13.8 M and 16.0 M 

respectively), are highly stable inhibitors of WNV NS2B/NS3 proteinase with an degradation time 

of 13 and 96 h. [42]. 

 

NS5 – RNA-dependent RNA polymerase inhibitors 

Puig-Basotti et al. reported the results of an HTS study, which was performed by screening 

nearly 100,000 compounds in WNV replicon assay [43]. From this exercise, five novel inhibitors 

have been identified with EC50 (50% effective concentration) values of <10μM and TI (therapeutic 

index) values of >10. Viral titer reduction assays, using various flaviviruses and nonflaviviruses, 

showed that the compounds have distinct antiviral spectra. One compound (16) suppresses both 

viral translation and RNA synthesis (EC50 = 12 μM), while the other four compound suppress only 

RNA synthesis. Examination of the antiviral spectrum revealed unspecific profile for compounds 

17-19 with an EC50 of 0.2, 8 and 0.7 μM respectively. Compound 20, appear to be the only one 

able to block RNA synthesis by selective inhibition of WNV NS5 (EC50 = 14 μM). 

 

NTPase/Helicase inhibitors 

Compound 21 exhibited helicase inhibitory activity against WNV NTPase/ Helicase with an 

IC50 value of 3-10 g/ml when a RNA substrate was employed. However no inhibition could be 

detected when the same experiment was repeated using a DNA substrate [44]. Interestingly, 

compound 22, the ribose analogue of compound 21, showed activity against NTPase/helicase of 

WNV when DNA substrate was employed (IC50=23M), but no inhibition could be detected when 

the same experiment was repeated using an RNA substrate[45]. As flaviviridae are RNA viruses, 

the observed results are surprising, especially considering that the 2-deoxyribose analogue 21 has 

shown activity against the NTPase/helicase of WNV only when using a RNA substrate. The 

significance and implications of these results are not clear at the moment. There are several reports 

that demonstrate non-covalent, tight-binding interactions of analogues of nucleobases, nucleosides, 

and nucleotides, to major or minor grooves of DNA or RNA double helices [46, 47].
 
However, 

preliminary studies show that compound 22 does not form a tight complex with either an RNA or a 

DNA substrate, suggesting that its mechanism of action may involve direct interaction with the 

enzyme. Related ribose analogues 23 and 24 were also found to inhibit the WNV NTPase/helicase 

with an IC50 of approximately 50 and 3 μM respectively [48, 49]. 

 

Other Inhibitors  

Many investigators have noted the broad antiviral properties of ribavirin (25) [50], currently a 

mainstay of therapy in combination with IFN-a for the treatment of HCV. Although ribavirin 

shows some activity against WNV in vitro (EC50 ~ 200 μM), in vivo studies have been less 

promising, with reports of ribavirin treatment increasing mortality in Syrian golden hamsters 

infected with WNV New York strain CDC996625 [51]. 

A recent paper has reported weak anti-WNV activity of the tetracycline antibiotic minocycline 

(26) in a cytopathic effect assay in Vero cells, with an IC50 of approximately 20 μM [52]. Olivo et 

al. have also disclosed a series of aminoquinoline compounds that possess antiviral activity against 

a range of viruses, including WNV, although no details on the  mechanism of action have been 
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provided. Compound 27 has activity against a DENV-2 sub-genomic replicon cell line with EC50 5 

μM and against a WNV sub-genomic replicon cell line with an EC50 of 1.9 μM [53]. 

 

CONCLUSION 

WNV virus is rapidly spreading worldwide and, despite viral infection could lead to severe 

encephalitis, neither a vaccine nor an antiviral therapy is currently available. In this paper we have 

provided a summary of the current medicinal chemistry efforts in identifying small molecule 

inhibitors of WNV. Indeed, several interesting lead are now appearing in literature. However, we 

believe there are still areas that require a more intense investigation. In particular, it is easy to 

notice that researchers have been focused their attention mainly on the NS3 protease, while, in 

comparison, little has been reported on the inhibition of the NS5 polymerase and methyltransferase. 

Interestingly, several crystal structures of the latter have become available in the last few years 

(Table 1) and they could be used in virtual screening simulations or other structure-based drug 

design methodologies.  For this reason, it is possible to foresee an increase interest around this 

target in the near future. It should be mentioned that the research around the development of 

antiviral compounds active against Dengue virus is at a more advanced stage compared to WNV 

[54, 55]. Given the close similarity between these two viruses, it is likely that some of the anti-

Dengue molecules reported in literature could be also useful against WNV. Indeed, several of the 

compounds reported in this review show activity against both viruses. Furthermore, the knowledge 

and the insight gained with the dramatic development of novel anti-HCV agents could also be used 

as foundation for the identification of suitable WNV inhibitors. Finally, it should not be overlooked 

that the most severe cases affect the central nervous system, thus the future antiviral therapy agents 

should be able to cross the blood-brain barrier. This clearly represents one of the biggest challenges 

for the researchers in the field. 
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ABBREVIATIONS 

8-HQ  = 8-hydroxyquinoline 

DNA  = Deoxyribonucleic acid 

EC50  = 50% effective concentration 

HTS  = High Throughput Screening 

IC50  = 50% inhibitory concentration 

RNA  = Ribonucleic acid 

WNV  = West Nile Virus 
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Table 1. Crystallographic structures of WNV proteins available in the Protein Data Bank. 

Code Ligands Technique Resolution (Å) Protein Reference 

3J0B - Electron Microscopy 10.3 E 2012 - 

3IYW CR4354 Fab Electron Microscopy 13.7 E 2010 [56] 

3LKZ AdoMet X-ray 2.00 NS5 2010 [57] 

3I50 - X-ray 3.00 E 
2009 [58] 

3IXX E53 Fab Electron Microscopy 15.0 E 

3E90 Naph-KKR-H X-ray 2.45 NS3 2009 [59] 

2P5P - X-ray 2.80 E 2008 - 

2QEQ - X-ray 3.10 NS3 2007 [60] 

2IJO - X-ray 2.30 NS2B/NS3 2007 [26] 

2OF6 - Electron Microscopy 24.0 E 2007 [61] 

2OY0 SAH X-ray 2.80 NS5 2007 [62] 

2GGV - X-ray 1.80 NS2B/NS3 2007 [26] 

2HCN - X-ray 2.35 NS5 

2007 [63] 2HCS - X-ray 2.50 NS5 

2HFZ - X-ray 3.00 NS5 

2I69 - X-ray 3.10 E 2006 [15] 

2HG0 - X-ray 3.00 E 2006 [16] 

2FP7 Peptide X-ray 1.68 NS2B/NS3 2006 [25] 

1ZTX E16 Fab X-ray 2.50 E 2005 [64] 

1SFK - X-ray 3.20 C 2004 [65] 

1S6N - NMR - E 2004 [66] 
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Fig. (1). The RNA genome of West Nile virus. 
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Fig. (2). Chemical structures of WNV E protein inhibitors. 
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Fig. (3). Chemical structures of WNV NS2B/NS3 protease inhibitors. 
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Fig. (4). Chemical structures of WNV NS5 inhibitors. 
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Fig. (5). Chemical structures of WNV NTPase/Helicase inhibitors. 
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Fig. (6). Chemical structures of inhibitors with a non-specific or unknown mode of action. 

 
 


