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Introduction

The compressive strength and inelastic deformation of particulate
materials, such as soils, fractured rocks, grains, and powders, are
dependent on the effective hydrostatic pressure. This behavior is
characteristic of media where the mechanics are dominated by
frictional forces. The linear elastic-perfectly plastic Mohr-Coulomb
(M-C) model is one of the most widely used pressure-sensitive
constitutive models, which can capture this behavior in an ideal-
ized way. Although originally expressed in terms of the major and
minor principal stresses, the M-C criterion was recast in terms of all
three principal dresses by Shield (1955). With zero friction, the M-C
model reduces to the pressure-invariant Tresca formulation as a
special case. That model has been extensively used when analyzing
the elastoplastic behavior of metals [see, for example, Ewing and
Griffiths (1971) and Griffiths and Owen (1971)].

A number of common geotechnical problems, such as footing
displacement, embankment stability, and cavity expansion, lend
themselves to two-dimensional plane-strain analysis. Such analyses
can provide a useful approximation of the structural behavior while
requiring only modest computational expenditure (when compared
with three-dimensional analyses).

This paper presents the rational relationship between the relative
magnitude of the intermediate principal stress (b, subsequently de-
fined) and the hydrostatic pressure (j) for the M-C and Tresca
constitutive models under plane-strain conditions. This relationship

expresses the principal stress locus that elastoplastic states are re-
quired to follow over the M-C yield surface.

Isotropic constitutive formulations (such as, the M-C and Tresca
models) allow the relationships to be described using principal stress
and strain quantities, providing a clear geometric interpretation of
the material state. All of the findings are presented using principal
stresses and strains with a tension positive notation. The principal
stress ratio is defined here as

b ¼ s12s2

s12s3
2 ½0,1� (1)

where s1 and s3 are the major (most tensile) and minor (most com-
pressive) principal stresses, respectively, such that s1 $s2 $s3. The
hydrostatic stress is defined as j5 trð½s�Þ= ffiffiffi

3
p

5ðs1 1s2 1s3Þ=
ffiffiffi
3

p
,

where tr([×]) denotes the trace of [×]. j is not the mean stress, it cor-
responds to the distance along the hydrostatic axis from the origin in
Haigh-Westergaard stress space. The principal stress ratio is related to
the Lode angle, u, through

b ¼ 1þ ffiffiffi
3

p
tan ðuÞ

2
, where

u ¼ 1
3
arcsin

 
23

ffiffiffi
3

p
2

J3

J3=22

!
2 ½2p=6,p=6� (2)

The deviatoric stress invariants are given by J2 5 trð½s�2Þ=2
and J3 5 trð½s�3Þ=3, where the traceless deviatoric stress matrix ½s�
5½s�2 j½I�= ffiffiffi

3
p

, and [I] is the third-order identity matrix.
The layout of the paper is as follows. Initially, the M-C consti-

tutive relationships are presented, including the isotropic linear
stress-elastic strain law, yield criterion, and plastic flow direction.
The next section restricts the M-C constitutive model to the case of
plane-strain analysis and derives the relationship between the hy-
drostatic stress, j, and the principal stress ratio, b. The limiting cases
of triaxial compression (b5 0; s2 5s1) and extension (b5 0;
s2 5s3) are also considered. The simplification of theM-C j versus
b relationship for the Tresca constitutive model is given, and the
rational relationship is extended to account for inelastic straining
in the out-of-plane direction induced by the corners present in the
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yield envelopes. After this, a simple material point investigation is
used to investigate the assumption that the out-of-plane stress is
indeed the intermediate principal stress. Three finite-element
investigations using the M-C model are then presented: (1) a sim-
ple two-element simulation, (2) an analysis of a rigid strip footing
bearing onto a weightless soil, and (3) a finite-deformation cavity
expansion simulation. These simulations provide numerical veri-
fication of the j-b relationship for the M-C model. Conclusions are
drawn in the final section.

Mohr-Coulomb Constitutive Formulation

The constitutive laws for (and the algorithmic treatment of) the
isotropic linear elastic-perfectly plastic M-C model are widely
available in the literature [for example, see the papers by Clausen
et al. (2006, 2007) and references cited therein]. Here, to aid clarity,
the basic equations required in the later sections are reviewed briefly.

Linear Isotropic Elasticity

The following is the isotropic linear elastic stiffness matrix�
De� ¼ E

ð1þ nÞð12 2nÞ
�ð12 2nÞ½I� þ n½1�� (3)

which provides the relationship between the vectors containing the
principal Cauchy stresses, {s}, and the principal elastic strains, {ɛe}

fsg ¼ ½De�fɛeg (4)

In Eq. (3), E is Young’s modulus, n is Poisson’s ratio, and [1] is the
third-ordermatrix populatedwith ones. The total strain vector is split
into elastic (recoverable) and inelastic (irrecoverable) components
as follows: fɛg5 fɛeg1 fɛpg.

Inelasticity

The M-C criterion assumes that plastic frictional sliding will occur
once the minor principal stress, s3, falls below some proportion of

the major principal stress, s1. This can be defined using the fol-
lowing yield function

f ¼ ks12s32sc ¼ 0, where

k ¼ 1þ sinðfÞ
12 sinðfÞ and sc ¼ 2c

ffiffiffi
k

p
(5)

where f5 internal friction angle, c5 cohesion, and sc defines the
uniaxial compressive yield strength. TheM-C yield surface is shown
in Fig. 1 using (1) a deviatoric section viewed down the hydrostatic
axis and (2) an isometric view of the principal stress space.

The nonassociated plastic flow direction is given by

fg,sg ¼ � kg 0 21
�T

, where kg ¼
1þ sin

�
fg

�
12 sin

�
fg

� (6)

and fg 2 ½0, f� 5 plastic dilation angle, such that the rate of in-
elastic straining is given by

�
_ɛ p
� ¼ _g fg,sg (7)

where _g 5 plastic consistency parameter. This multiplier is subject
to the following Kuhn-Tucker-Karush conditions: _g$ 0, f # 0, and
_gf 5 0 (i.e., a stress state can only lie on, or within, the perfectly
plastic yield envelope).

Hydrostatic Stress versus Principal Stress
Ratio Relationship

In the following sections, it is assumed that once the material point
has reached yield, the intermediate principal stress is in the out-of-
plane direction. The validity of this assumption is subsequently
examined. Combining this assumption with the direction of plastic
flow from Eq. (6), the following relationship between the principal
values of stress and elastic strain is obtained

Fig. 1.Mohr-Coulomb yield surface: (a) deviatoric section (including the Tresca yield criterion); (b) principal stress space including the plane-strain
stress relationship [Eq. (14)]
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�
s
� ¼ �De�� ɛe1 0 ɛe3

�T
(8)

Inverting the elastic stiffness matrix and using the plane-strain
condition in Eq. (8), the following relationship between the prin-
cipal stresses is obtained

s2 ¼ nðs1 þ s3Þ (9)

Using the definition of j and Eq. (9), the intermediate principal
stress can be expressed as

s2 ¼
ffiffiffi
3

p
jn

ð1þ nÞ (10)

Given Eq. (5), the minor principal stress may now be written as

s3 ¼ ks12sc (11)

FromEqs. (10) and (11) and j, the major principal stress is obtained
as

s1 ¼ sc þ
ffiffiffi
3

p
j=ð1þ nÞ

ð1þ kÞ (12)

Eqs. (10)–(12) show that the values of s1, s2, and s3 are each
determined by j. The locus traced by these equations is shown on the
M-C yield surface in the principal stress space forf5p=9, n5 0:2,
and c5 100 kPa in Fig. 1(b). Substituting Eqs. (10)–(12) into
Eq. (1), the principal stress ratio becomes

b ¼
ffiffiffi
3

p
j½12 nð1þ kÞ� þ scð1þ nÞ�
12 k

� ffiffiffi
3

p
j þ 2scð1þ nÞ (13)

or, alternatively

j ¼ scð1þ nÞð12 2bÞffiffiffi
3

p ½bð12 kÞ þ nð1þ kÞ2 1� (14)

Eq. (14) provides an injective function between b and j.

Compression and Extension Meridians

In Eq. (13), b attains a value of zero at the following hydrostatic
stress:

jb¼0 ¼ scð1þ nÞffiffiffi
3

p ½nð1þ kÞ2 1� (15)

that is, at Point C in Fig. 1(b). For hydrostatic stresses less than
this value, Eqs. (13) and (14) are no longer valid, because the stress
point is situated on the compression meridian (s1 5s2 .s3).
For Poisson’s ratio n$ 1=ð11 kÞ, the stress state will never reach
the compression meridian, and instead a limit is imposed on the
minimum attainable principal stress ratio given by

lim
j→2‘

b ¼ 12 nð1þ kÞ
12 k

n2 ½1=ð1þ kÞ, 0:5� (16)

The hydrostatic stress associated with b5 1 is given by

jb¼1 ¼ scð1þ nÞffiffiffi
3

p ½k2 nð1þ kÞ� (17)

shown by Point B in Fig. 1(b). The stress will be located on the
extension meridian (s3 5s2 ,s1) for hydrostatic pressures

jb51 #j#jc, where jc 5
ffiffiffi
3

p
c cot ðfÞ identifies where the yield

surface intersects the hydrostatic axis [Point A in Fig. 1(b)].
To investigate the limits further, the M-C constitutive model was

subjected to one-dimensional straining until reaching yield.
Young’s modulus of E5 10 GPa and Poisson’s ratio of n5 0:3
were used for the material’s elastic properties. In this simple il-
lustration, theM-Cmodel had a friction angle off5p=9 ð20�Þ and
an apparent cohesion of c5 100 kPa. Under compression, the
constitutive model reached yield at the following normalized stress
state:

fsg
c

¼ f29:724 29:724 222:690 gT

with a normalized hydrostatic pressure of ðj=cÞ5 224:33. This
state agrees with the compressive theoretical limit provided by
Eq. (15). Under extension, the stress path reaches yield at a nor-
malized hydrostatic pressure of ðj=cÞ5 1:90, again agreeing with
the theoretical limit when b5 1, given by Eq. (17). Therefore, the
limits provided by Eq. (15), for b5 0 on the compression meridian,
and Eq. (17), when b5 1 on the extension meridian, define the
intersection of the stress path with the M-C yield surface for this
uniaxial strain case.

Special Case of Tresca (Frictionless) Yielding with
Associated Flow

In the limiting case where f5 0 (i.e., Tresca plasticity), the yield
criterion Eq. (5) and the direction of associated plastic flow Eq. (6)
become

f ¼ s12s32 2c ¼ 0 and fg,sg ¼ f 1 0 21 gT (18)

because kðf5 0Þ5 1. Following the same steps as the M-C case,
the principal stresses are obtained as

s1 ¼
ffiffiffi
3

p
j

2ð1þ nÞ þ c, s2 ¼
ffiffiffi
3

p
jn

ð1þ nÞ, and s3 ¼ s12 2c (19)

The principal stress ratio then becomes

b ¼
ffiffiffi
3

p ð12 2nÞ
4cð1þ nÞ j þ 1

2
¼ avj þ 1

2
or j ¼ b2 1=2

av
(20)

where the definition of av is self-evident. Thus, for the plane-strain
analysis using the Tresca yield criterion, a linear relationship exists
between j and b. Similar to the M-C relationship, the limits on
Eq. (20) are obtained as

jb¼0 ¼ 2cð1þ nÞffiffiffi
3

p ð2n2 1Þ and jb¼1 ¼ 2cð1þ nÞffiffiffi
3

p ð12 2nÞ (21)

with jb50 5 2 jb51. Beyond these limits, the stress state will be
located on the compression (j# jb50) or extension meridian
(j$ jb51).

Yield Condition at the Corners

Whenmaterial states are on the compression or extensionmeridians,
the direction of plastic flow is no longer uniquely defined. However,
given a total strain increment, the plastic strain increment (and
therefore the elastic strain and stress increments) can be obtained
using the method proposed by Koiter (1953). The nonuniqueness of
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the plastic strain direction can lead to inelastic deformation in the
out-of-plane direction.

For the case when ɛe2 � 0, the principal Cauchy stresses are
given by

fsg ¼ ½De��ɛe1 ɛe2 ɛe3
�T (22)

Subtracting the intermediate elastic strain from each component of
the principal strain vector and adding the equivalent hydrostatic
pressure, se, to the right side of Eq. (22), gives rise to the following
relationship

fsg ¼ ½De���ɛe12 ɛe2
�

0
�
ɛe32 ɛe2

��T þ sef1g (23)

where se 5 ɛe2E=ð12 2nÞ and {1} indicate a three-component
vector populated with ones. Following the same procedure for
deriving Eq. (13), the principal stresses can be expressed as

s1 ¼
ffiffiffi
3

p
j2 ð12 2nÞse þ ð1þ nÞsc

ð1þ kÞð1þ nÞ ,

s2 ¼
ffiffiffi
3

p
jn þ ð12 2nÞse

ð1þ nÞ , and s3 ¼ ks12sc

(24)

Substituting Eq. (24) into Eq. (1), the following relationship for the
principal stress ratio is obtained

b ¼
ffiffiffi
3

p
j½12 nð1þ kÞ�2 ð12 2nÞð2þ kÞse þ scð1þ nÞ� ffiffiffi

3
p

j2 ð12 2nÞse
�ð12 kÞ þ 2scð1þ nÞ (25)

When ɛe2 5 0, Eq. (25) reduces to Eq. (13). Eq. (25) is bounded
between the following levels of hydrostatic stress

jb¼0 ¼ scð1þ nÞ2 ð12 2nÞð2þ kÞseffiffiffi
3

p ½nð1þ kÞ2 1� and

jb¼1 ¼ scð1þ nÞ þ ð12 2nÞseffiffiffi
3

p ½k2 nð1þ kÞ�

(26)

Examination of the Orientation of s2

Before presenting the results for plane-strain M-C elastoplasticity,
the authors examine the validity of the assumption that the in-
termediate principal stress,s2, is the out-of-plane stress,sz. The first
condition that should be considered is when the principal elastic
strains in the in-plane directions are equal. In this case, the stress in
the out-of-plane direction (szz) is either the major (s1) or the minor
(s3) principal stress (depending on the sign of ɛe2). The resultant
stress state will be located on the compression (b5 0, for positive ɛe2)
or extension (b5 1, for negative ɛe2) meridians with hydrostatic
stresses less than Eq. (15) or greater than Eq. (17), respectively.

A more interesting case to consider is an unstressed single ma-
terial point subjected to a stress increment of Dsx 5 2200 kPa,
followed by a strain increment of Dɛy 5 213 1023. In this il-
lustrative example, thematerial ismodeled by aYoung’smodulus of
100 MPa, Poisson’s ratio of 0.3, friction angle and dilation angle of
p=9, and an apparent cohesion of 100 kPa. The principal stress
variation with ɛy and normalized hydrostatic stress (j=c) is shown in
Figs. 2(a and b), respectively.

Application of Dsx causes the stress to move from States 1 to 2
(Fig. 2) with sz 5s2. From State 2, the stress in the x-direction
remains constant, during which a strain in the y-direction is applied.

At Stage I, the relative proportions of the principal stresses change
such that sz is no longer the intermediate principal stress. Between
Stage I andStage III,sz is greater than bothsx andsy. Along this path,
sy is initially the intermediate principal stress. Between Stages II and
III,sx is the intermediate principal stress. The ordering changes again
at Stage III, where sz becomes the intermediate principal stress.
Thereafter, sx . sz .sy. The material yields at State 3, with the
stresses remaining constant under continuous deformation. The di-
rection of the principal stresses is shown schematically by the cuboids
at the top of Fig. 2, where the dashed gray and the solid unshaded
cuboids show the original and final deformed shapes, respectively.

This example shows that even for simple linear isotropic elas-
ticity, the direction of the intermediate principal stress in plane-strain
analyses is not necessarily directed out of the plane. However, in this
example, following yielding, s2 is the out-of-plane stress. In the
exampleswhich follow, the intermediate principal stresses is the out-
of-plane stresses at the point of yielding.

Finite-Element Simulations

Two-Element Simulation

A simple finite-element simulation using just two four-noded fully-
integrated quadrilateral elements is now considered (Fig. 3). Two upper
surface nodeswere subjected to vertical displacements of v52 0:01 m
in 100 equal increments. A Young’s modulus of E5 100 MPa and
Poisson’s ratio of v5 0:3 were used for thematerial’s elastic properties.
As in the previous example, the associated flow M-C model had
a friction angle of p=9 and a cohesion of 100 kPa.

Fig. 3 shows the j=c versus b paths for the integration points that
underwent elastoplastic deformation during the analysis (i.e., seven
out of a total of eight integration points). The initial states are
identified by the white symbols, and the states corresponding to a
displacement of 10 mm are shown by the gray shaded symbols. On
commencing inelastic straining, the Gauss point j versus b paths
reach the analytical solution provided by Eq. (14), as shown by the
thick light gray line in Fig. 3. Under increasing deformation, the
stress states continue to move along that locus.

To highlight the differences between the true M-C yield surface
and M-C formulations where the local curvature is introduced near
the compression and extensions meridians, this simple two-element
simulation was analyzed using the C2 continuous M-C surface of
Abbo et al. (2011). Before presenting the numerical results, the
following disadvantages associatedwith rounding corners are noted:
• Implicit stress integration (e.g., backward Euler) of a smoothed

M-C yield surface will generally require multiple iterations to
converge. Thus, the rounded version of the M-C is computa-
tionally more expensive in terms of both the material point stress
integration and the global solution scheme. There are also
potential stability issues when returning near the tensile apex
on a smoothed yield surface. This is unlike the true M-C
envelope, which will always return in one step.

• Rounding corners introduces errors into the stress-integration
procedure, whereas the true M-C envelope with sharp corners
gives an exact stress-integration solution (provided that the
corners are dealt with appropriately). Introducing rounding
can prohibit the convergence toward established analytical sol-
utions (e.g., Prandtl solution).
Introducing local curvature destroys the unique relationship be-

tween hydrostatic stress and the principal stress ratio, as shown in
Fig. 4. The smoothed M-C model of Abbo et al. (2011) requires a
transition Lode angle, ut, where the M-C yield surface is smoothed
for ∣u∣. ut. Here, ut was set to p=9 ð20�Þ, corresponding to
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transition principal stress ratios, bt, of 0.185 and 0.815. Once a stress
state moves into the rounded region in the vicinity of the com-
pression or extension meridians, the numerical j=c versus b paths
disagree with the analytical solution [Eq. (14)].

As previously mentioned, if appropriately constructed, an im-
plicit stress-integration routine for the true M-C envelope will al-
ways return in a single step. However, to achieve this, simple
geometric rules must be formulated to identify the appropriate return
position based on the trial stress state (Clausen et al. 2006). By
operating in principal stress space, it is possible to identify which of
the following return locations applies: either on the planar surface or
at the intersection of two or more surfaces. In the latter case, the
intersection may occur on the compression meridian, on the ex-
tensionmeridian, or at the tensile apex. This process circumvents the
instability issues potentially associated with iterative approaches.

The cost of the numerical analysis is now considered. The model
with local curvature in the yield surface required 250 global iter-
ations, whereas the true M-C yield surface only required 181. Also,
the smoothed M-Cmodel required multiple material point iterations
to obtain convergence in the stress-integration routine during each of
these global iterations. The combination of these two factors resulted
in a 255% increase in the overall run time when using the smoothed
M-C approximation.

Footing Analysis

This section presents the numerical analysis of a 1-m-wide rigid strip
footing bearing onto aweightless soil using theM-Cmodel. Because
of symmetry, only one-half of the 5 by 10 m domain was discreti-
zed using 135 eight-noded quadrilateral elements with reduced

Fig. 2. Material point analysis: principal stresses against (a) vertical strain and (b) normalized hydrostatic stress, j=c
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four-point Gaussian quadrature (as shown to the right of Fig. 5,
where the lower inset figure shows the global discretization and the
upper figure shows the mesh refinement detail around the footing).
This is the same mesh adopted by de Souza Neto et al. (2008) and
later used by Coombs et al. (2010) for the small-strain analysis of
frictional cone models. A Young’s modulus of E5 100 MPa and
Poisson’s ratio of n5 0:3 were used for the material’s elastic
properties. The M-C model again had a friction angle of p=9 and
a cohesion of 100 kPa. The analysis was performed using both
associated (fg 5p=9) and nonassociated (fg 5p=18) plastic flow
rules. The rigid strip footing was subject to a uniform vertical
displacement of 100 mm in 100 equal steps. The normalized pres-
sure versus displacement response is shown in Fig. 5.

The theoretical limit pressure for the M-Cmodel, as given by the
Prandtl (and Reissner) solution [see Yu (2006) among others for
details] is

p ¼ c
h
tan2ðp=4þ f=2Þexpp tanðfÞ 2 1

i
cotðfÞ (27)

This equation gives the limit pressure for a rigid footing bearing
onto a weightless soil for the case of zero surface surcharge. For
a friction angle of p=9, the normalized theoretical limit pressure
is ðp=cÞ5 14:84. Both the associated and nonassociated flow

simulations agree rather well with this theoretical limit load, having
errors of just 0.46 and 0.74%, respectively.

Fig. 6(a) shows the principal stress ratio versus normalized
hydrostatic stress for the nonassociated finite-element simulation at
the end of the analysis (circular discrete points), the path taken to
reach that state (fine gray lines), and the analytical j versus b solution
(thick solid black line). Two Gauss point stress paths have been
identified by fine black lines, starting at the gray squares (G and H)
and finishing at the white circular symbols on the analytical solution
locus. The final stress states and the elastoplastic stress paths agree
with the analytical solution, verifying the unique relationship be-
tween j and b provided by Eq. (14).

To highlight the special nature of the M-C constitutive formu-
lation, the elastoplastic j versus b points (at the end of the finite-
element analysis) for a isotropic linear elastic-perfectly plastic
Drucker-Prager (D-P) model (Drucker and Prager 1952) have been
plotted in Fig. 6(b). The nonassociated flow D-P model used here
had the same elastic properties as the M-C model. The conical D-P
model has a circular deviatoric section with the yield surface cen-
tered on the hydrostatic axis. This yield envelope provides a sim-
plified smooth approximation to the M-C yield criterion. In this
analysis, the D-P cone was chosen to coincide with the M-C surface
on the compression meridian. The square symbols in Fig. 6(b) show
that, unlike theM-Cmodel, there is no unique j versus b plane-strain
relationship for the D-P model.

The major difference between the M-C and the D-P models is
that, for the D-P model, the yield surface

f ¼ r þ aðj2 jcÞ ¼ 0 (28)

Fig. 3. j=c versus b paths for the two-element simulation for
v# 10 mm using the true Mohr-Coulomb surface

Fig. 4. j=c versus b paths for the two-element simulation for
v# 10 mm using the C2 continuous smoothed Mohr-Coulomb surface
of Abbo et al. (2011)
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has a dependence on the intermediate principal stress; thus, the as-
sociated direction of the plastic flow contains a component in the
intermediate principal strain direction. The combination of these two
features means that it is not possible to write a unique plane-strain
relationship between the hydrostatic stress and the principal stress
ratio for theD-Pmodel. InEq. (28),a is the opening angle of the D-P
cone, here set to a5 tanðfÞ, r5 ffiffiffiffiffiffiffi

2J2
p

is a scalar measure of the
deviatoric stress, and jc 5

ffiffiffi
3

p
c cotðfÞ identifies where the yield

surface intersects the hydrostatic axis.

Finite-Deformation Cylindrical Cavity Expansion

In this section we present an analysis of the expansion of a cylin-
drical soil cavity under internal pressure. Although this can be
analyzed as a one-dimensional axisymmetric problem, the two-
dimensional plane-strain finite-deformation finite-element code is
used to make comparisons with an analytical solution and provide
further verification of the j-b relationship. Only a 3� segment of the
structure (with an internal radius of 1 m and a fixed outer boundary
of radius 2 km) was discretized using 50 four-noded plane-strain
quadrilateral elements. The size of the elements was progressively
increased by a factor 1.12 from the inner to the outer surface.
Young’s modulus of E5 100MPa and Poisson’s ratio of n5 0:2
were used for the material’s elastic properties. The associated flow
M-C model had a friction angle of p=6 and a cohesion of 100 kPa.
The internal radiuswas expanded to 5musing 80 equal displacement
increments.

Because of this large change in the internal radius, the effects of
geometric nonlinearity cannot be ignored. The M-C model de-
scribed was implemented within a Lagrangian finite-deformation
finite-element code. The use of a logarithmic strain-Kirchhoff
stress formulation, combined with an exponential map of the plas-
tic flow, allows the incorporation of existing small strain constitutive
algorithms without modifying their stress-integration routine. This
method is one of the most successful and straightforward ways of
accounting for the additional geometric complexities inherent in
finite-deformation analyses when implementing large-strain elas-
toplasticity (Kim et al. 2009). The Kirchhoff stress, [t] is defined as

½t� ¼ J½s� (29)

where [s]5 Cauchy stress, and J 5 determinant of the deformation
gradient. This volume ratio, J, is a measure of the change in volume
between the current (deformed) configuration and the original
reference state. See Coombs and Crouch (2011) and the references
contained within for further information on the finite-deformation
finite-element formulation.

Fig. 7 shows the normalized internal pressure ( p=c) versus ex-
pansion ratio (a=a0) response from the M-C finite-deformation
finite-element simulation (solid line), where a0 and a are the orig-
inal and current internal radii, respectively. The numerical results
display good agreement with the analytical solution (discrete points)
provided by Yu and Houlsby (1991).

The unique j versus b relationship still holds for the finite-
deformation analysis provided that the Cauchy hydrostatic stress
in Eq. (13) and (14) is replaced by the equivalent Kirchhoff stress
measure, namely

jt ¼ trð½t�Þ=
ffiffiffi
3

p
(30)

This is demonstrated in Fig. 8, where the numerical elastoplastic
normalized Kirchhoff hydrostatic stress versus principal stress ratio
points, at the end of the analysis, have been plotted alongside the
analytical relationship (solid line). Additional stress states exist on
the compression meridian where jt=c, 220. However, for clarity,
the abscissa has been limited to jt=c2 ½220, 5�. All of the finite-
element Gauss points lie on the line described by the rational re-
lationship [Eq. (13)].

Ewing and Griffiths (1971) investigated elastoplastic stress
concentrations around a notch for an isotropic elastic-perfectly
plastic Tresca constitutive model. Their study was based on the
plane-strain numerical analysis of Griffiths and Owen (1971). They
found that the maximum stress was “attained inside the plastic zone
surrounding the notch, not at its edge” (Ewing and Griffiths 1971).
This was because of plastic strains, comparable with the in-plane
strains, being induced in the out-of-plane direction at material points
where the stress state was located on the compression or extension

Fig. 5. Rigid strip footing: p=c versus the displacement response and the finite-element discretization
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Fig. 6. Rigid strip footing: (a) nonassociated Mohr-Coulomb j=c versus b stress path response and (b) stress states at the end of the analysis for the
Mohr-Coulomb and Drucker-Prager models
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Fig. 7. Cavity expansion: p=c versus a=a0

Fig. 8. Cavity expansion: jt=c versus b response at the end of the analysis
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meridians. Prompted by these findings, Fig. 9 presents the nor-
malized pressure versus expansion response of the cylindrical cavity
following loading to an internal pressure of approximately 3 MPa
(corresponding to an expansion of a=a0 5 2) and then unloading.
The load-controlled numerical analysis was conducted using 100
steps in both the loading and unloading phases. The same material
parameters used in the previous cavity expansion simulation were
used in this analysis. The elastic and elastoplastic sections of the
structural response are identified by the dashed gray and solid black
lines, respectively. The analysis starts at I and is loaded to III. The
structure unloads elastically between III and IV until the reoccur-
rence of elastoplastic deformation at IV, which continues to V.

The normalized hydrostatic stress versus the principal stress
ratio path of a Gauss point, located at an initial radial coordinate
of 1.626 m, is shown in Fig. 9(b). Upon loading, the material point
intersects with and moves along the locus described by Eq. (13).
At II, the stress state reaches the compression meridian. On the
compression meridian, the direction of plastic flow is no longer
uniquely defined. However, the constitutive model’s plastic strain
increment (when subjected to a total strain increment) can be
obtained using the method proposed by Koiter (1953). The non-
uniqueness of the plastic strain direction leads to inelastic de-
formation in the out-of-plane direction when loading between II
and III. That is, the assumption that ɛ p

2 5 0 is invalidated, and instead
the condition ɛ p

2 5 2ɛe2. The effect of this nonzero out-of-plane
elastic strain can be seen in Fig. 9(b). Upon unloading, the stress state
moves from III to IV, where it again encounters the yield surface.
However, because of the nonzero ɛe2, the unloading elastoplastic j=c
versus b response (between IV and V) does not agree with the
analytical solution [Eq. (13)]. This solution is restricted to cases
where the stress states do not move on to and subsequently away
from the corner or apex regions.

Fig. 9(b) shows that the analytical solution when ɛe2 � 0 agrees
with the elastoplastic stress path between IV and V. Along this path,
the Gauss point had an out-of-plane elastic strain of ɛe2 5 20:0032.
Eq. (25) allows an analytical relationship between j and b to be
defined for material points that have nonzero elastic strain in the
out-of-plane direction. It also supports the findings of Ewing and
Griffiths (1971), in that, for a given principal stress ratio, the

hydrostatic stress (and hence {s}) can change in magnitude for
material points undergoing inelastic straining in the out-of-plane
direction.

Conclusions

This paper has shown that when the out-of-plane stress is the in-
termediate principal stress, a unique relationship exists between
the hydrostatic pressure and the principal stress ratio (or equivalently
the Lode angle) for isotropic M-C and Tresca linear elastic-perfectly
plastic models in plane-strain analyses. This finding is verified using
three numerical simulations, including the analysis of a rigid strip
footing bearing onto a weightless soil and the finite-deformation
simulation of a cylindrical cavity expansion.

The single-valued function [Eq. (13)] and the extension to the
case of ɛ p

2 � 0 [Eq. (25)] provide new insight into the role of the
intermediate principal stress in the M-C and Tresca plane-strain
analyses.

In this paper, the authors have made use of established proce-
dures for dealing with nonsmooth yield surfaces [e.g., see Clausen
et al. (2006, 2007)], which build on the work of Koiter (1953). Some
workers have introduced local curvature near the compression and
extension meridians, when approximating the M-C model, to
remove the corners (Abbo et al. 2011). The authors believe that this
is quite unnecessary.
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