
STRUCTURAL ANALYSIS OF THE

MECHANISMS UNDERLYING

RYANODINE RECEPTOR-MEDIATED

DYSFUNCTION LEADING TO CARDIAC

ARRHYTHMIAS 

PhD

2014

Peter Wilson



Acknowledgements 

First and foremost, I would like to thank my main supervisor, Prof. Anthony Lai for his

supervision, patience and very helpful mentoring during the entire project. I am also

grateful to my other supervisors, Dr. Matthias  Bochtler, Dr. Pierre Rizikallah and Dr.

Sarju Patel for their involvement, moral support, helpful comments, collaboration and

supervision of various aspects of this project. I would like to thank the British Heart

Foundation  and  the  MRC  for  funding  this  project,  and  for  making  this  project  a

possibility.

A special mention goes to the B23 CD-spectroscopy beamline scientists at Diamond

Synchotron, especially Dr. Giuliano Siligardi and Dr. Rohanah Hussain. I also would

like  to  acknowledge the  tireless  efforts  of  Dr.  Konrad Beck of  the  Dental  Institute,

Cardiff  University  for  the  initial  CD-spectroscopy  analysis  and  experimental  setup.

Further  CD  experiments  were  conducted  at  Prof.  Rudolf  Allemann’s  lab  at  the

Chemistry department,  Cardiff  University with  the  assistance  of  Dr.  Rob Mart.  My

colleagues  at  Dr.  Andy  Sewell’s  lab  were  very  helpful  in  the  crystallographic  and

functional assay aspects of the project, namely Dr. David Cole. 

The various plasmid vectors used in this project were a kind gift from the lab of Dr.

Matthias  Bochtler.  The  CaM clone  was  obtained from the  laboratory of  Dr.  Zenon

Grabarek, I am also grateful to him for helpful advice. I would like to thank Dr. Ian

Brewis for his kind assistance in mass spectroscopy and for advice on matters regarding

to  this  procedure.  Dr.  Athanasios  Papadopoulos  offered  assistance  on  chemical

denaturation. 

A whole list  of people contributed in one way or another to  the completion of this

project, but of special mention are Dr. Leon D'Cruz, Dr. Lynda Blayney, Drs. Michail

and Maria Nomikos, Dr. Spyros Zissimopoulos, Dr. Chris George, Dr. Lowri Thomas,

and Dr. Magda Lipka. I would like to acknowledge the staff of the WHRI, namely Dr.

Peter  Gapper,  Mrs.  Wendy Scaccia,  Mrs.  Christine Dennison and Mr. Ajay Sharma.

There may be a host of other people that I have not mentioned, this does not reflect in

any way their level of contribution or personal support that I received, those involved

know that  each  and everyone of  them played a  very important  role  in  my passage

through this dissertation.

2



Table of Contents

Summary..........................................................................................................................10
Abbreviations...................................................................................................................11
Chapter 1:........................................................................................................................15
1.1 Calcium and calcium channels..................................................................................16
1.2 Identification of ryanodine receptors.........................................................................18
1.3 Structure of the ryanodine receptor...........................................................................19
1.4 Muscle contraction....................................................................................................22
1.5 Excitation-contraction coupling................................................................................25

1.5.1 Action potential..................................................................................................26
1.5.2 Activation of LTCC/DHPR................................................................................30
1.5.3 EC coupling in RyR1.........................................................................................32
1.5.4 EC coupling in RyR2.........................................................................................32

1.6 Phosphorylation and the “stress” response................................................................34
1.7 Arrhythmia.................................................................................................................35

1.7.1 Mutations in ryanodine receptors.......................................................................38
1.7.1.1 RyR1...........................................................................................................38
1.7.1.2 RyR2...........................................................................................................38

1.7.2 Effect of catecholamines on the myocardium....................................................39
1.7.3 How a faulty RyR2 channel produces cardiac arrhythmias...............................40

1.8 Overview of the regulation of RyR channel..............................................................43
1.8.1 Domains and interaction sites within RyR.........................................................44

1.8.1.1 Calsequestrin, triadin and junctin...............................................................46
1.8.1.2 Mutation clusters........................................................................................46
1.8.1.3 Divergent regions.......................................................................................46
1.8.1.4 FKBP 12/12.6.............................................................................................47
1.8.1.5 Phosphorylation sites.................................................................................48
1.8.1.6 Interacting (I) domain................................................................................48
1.8.1.7 CaM Binding Site.......................................................................................49
1.8.1.8 Transmembrane domains...........................................................................50

1.8.2 CaM and RyR regulation...................................................................................50
1.8.3 CaMLD..............................................................................................................53

1.9 EF hand motifs...........................................................................................................54
1.10 Aims of project........................................................................................................62
Chapter 2:........................................................................................................................64
2.1 Materials....................................................................................................................65

2.1.1 General Laboratory Reagents and Chemicals....................................................65
2.1.2 General Biological Reagents..............................................................................65
2.1.3 Protein Biochemistry Reagents..........................................................................65

2.1.3.1 General reagents.........................................................................................65
2.1.3.2 Protein purification reagents and specific buffers......................................66

2.1.4 Bacterial Cell Culture Reagents.........................................................................67
2.1.5 Oligonucleotides................................................................................................67
2.1.6 Plasmid Vectors..................................................................................................68

2.1.6.1 pET15b expression vector..........................................................................68
2.1.6.2 pETMM Vectors.........................................................................................69
2.1.6.3 pGEX-6P-1 Vector.....................................................................................70

2.1.7 Antibodies..........................................................................................................70
2.1.8 Computer Software and Data Analysis..............................................................71

3



2.1.9 Health and Safety...............................................................................................72
2.2 Methods.....................................................................................................................72

2.2.1 Nucleic Acid Biochemistry Techniques.............................................................72
2.2.1.1 PCR amplification of DNA........................................................................72
2.2.1.2 Agarose gel electrophoresis........................................................................72
2.2.1.3 Cloning of DNA fragments........................................................................73
2.2.1.4 Bacterial cell culture..................................................................................73
2.2.1.5 Preparation of competent bacteria..............................................................74
2.2.1.6 Transformation of competent bacteria.......................................................74
2.2.1.7 Analysis of positive clones by PCR screening...........................................74
2.2.1.8 Quantification of DNA...............................................................................75
2.2.1.9 Point mutation of recombinant DNA constructs........................................75

2.2.2 Protein Biochemistry Techniques......................................................................76
2.2.2.1 SDS-polyacrylamide gel electrophoresis...................................................76
2.2.2.2 Transfer of proteins to membranes.............................................................76
2.2.2.3 Western blot analysis..................................................................................76
2.2.2.4 Determination of protein concentration.....................................................77
2.2.2.5 General expression and affinity purification of recombinant proteins.......77
2.2.2.6 Further stages of purification of recombinant proteins..............................79

2.2.2.6.1 Tag cleavage from fusion proteins......................................................79
2.2.2.6.2 Gel filtration.......................................................................................80

2.2.3 Functional Assay Techniques.............................................................................80
2.2.3.1 Pull down assays........................................................................................80
2.2.3.2 Circular Dichroism.....................................................................................81
2.2.3.3 Mass Spectrometry.....................................................................................81

Chapter 3:........................................................................................................................83
3.1 Introduction...............................................................................................................84

3.1.1 The role of the C terminus of RyR.....................................................................84
3.1.2 CaM Binding Domain and CaM Like Domain..................................................87

3.2 Results.......................................................................................................................92
3.2.1 In silico modelling of CaMLD and CaMBD regions of RyR2..........................92
3.2.2 In silico modelling of RyR2 between residues 3578-4085................................98

3.3 Discussion................................................................................................................117
Chapter 4:......................................................................................................................121
4.1 Introduction.............................................................................................................122

4.1.1 The problem of protein folding........................................................................122
4.1.2 Simulating protein folding...............................................................................130

4.2 Results.....................................................................................................................133
4.2.1 Computer simulated folding of RyR2 aa 3579-4085.......................................133
4.2.2 Molecular Dynamics........................................................................................153

4.2.2.1 Analysis of Molecular Dynamics files.....................................................153
4.2.2.2 Molecular Dynamics – Heating Step.......................................................156
4.2.2.3 Molecular Dynamics – Equilibration Step...............................................159

4.3 Discussion................................................................................................................166
Chapter 5:......................................................................................................................169
5.1 Introduction.............................................................................................................170

5.1.1 Design of CaMLD constructs..........................................................................171
5.1.2 Design of CaMBD constructs..........................................................................181

5.2 Results.....................................................................................................................184
5.2.1 Production of CaMLD constructs....................................................................184

4



5.2.1.1 Cloning and expression in pET15bmod vector........................................184
5.2.1.2 Cloning and expression in pETMM vectors............................................193

5.2.2 Production of CaMBD constructs....................................................................216
5.2.2.1 Cloning and expression in pGEX-6P-1 vector.........................................216
5.2.2.2 Purification of CaMBD recombinant protein...........................................224

5.2.3 Cloning and expression of CaM construct.......................................................227
5.3 Crystallography Trials.............................................................................................229
5.4 Discussion................................................................................................................230
Chapter 6:......................................................................................................................235
6.1 Introduction.............................................................................................................236
6.2 Results.....................................................................................................................238

6.2.1 Chemical denaturation.....................................................................................238
6.2.2 Pull Down Assays............................................................................................239

6.2.2.1 CaM agarose bead pull down assay.........................................................240
6.2.2.2 Pull down assays using CaMLD, CaMBD & CaM constructs................241

6.2.3 Circular Dichroism...........................................................................................245
6.2.3.1 Far UV region (170-260nm)....................................................................247
6.2.3.2 Near UV region (250-350nm)..................................................................255

6.3 Discussion................................................................................................................264
Chapter 7:......................................................................................................................271
General Discussion........................................................................................................271
7.1 General Discussion..................................................................................................272
7.2 Future directions......................................................................................................279
Bibliography..................................................................................................................282

5



List of Figures

Figure 1.1 3D reconstruction map of RyR1  20

Figure 1.2 Docked crystal structure of N terminal of RyR1 in cryo-EM map of RyR1  22

Figure 1.3 Components of muscle tissue  23

Figure 1.4 The “sliding filament” mechanism of muscle contraction                                      23

Figure 1.5 Regulation of contraction and relaxation in the muscle                                      24

Figure 1.6 Flowchart summarising events leading to opening of RyR channels                     25

Figure 1.7 Neurotransmission of signals to muscles                                                                 26

Figure 1.8 Action potential at the neuromuscular junction                                                   27

Figure 1.9 Action potential in the heart                                                                                29

Figure 1.10 Arrangement of myofibrils showing T-tubules                                                 31

Figure 1.11 Difference between activation of RyR in cardiac and skeletal muscle     33

Figure 1.12 Relationship of the cardiac action potential to the ECG                                       36

Figure 1.13 The hypothalamic-pituitary axis feedback circuit                                          37

Figure 1.14 Locations of CPVT mutations within RYR2                 39

Figure 1.15 Structure of Catecholamines                                                                                     40

Figure. 1.16 Possible way in which ectopic rhythms contribute to cardiac arrhythmias      41

Figure 1.17 How a leaky RyR2 channel leads to arrhythmia                                                42

Figure 1.18 ECG displaying polymorphic ventricular tachycardia                                          43

Figure 1.19 Key sequences and ligand binding sites of RyR                                                   45

Figure 1.20 I Domain controls RyR2 opening through conformational rearrangement      49

Figure 1.21 Proposed CaM binding locations within CaMBD for RyR1 and RyR2                53

Figure 1.22 EF hand motif                                                                                                        55

Figure 1.23 Canonical sequence of EF hand                                                                           56

Figure 1.24 Cardiac muscle troponin complex showing interaction of EF-hand  58

Figure 1.25 Alignment of RyR2 2nd EF hand motif against canonical EF hand motif             61

Figure 1.26a Proposed interactions between RyR2 central region and pore domain                   62

Figure 1.26b Proposed interactions between RyR2 central region and pore domain                   63

Figure 2.1.1 Vector map of pET15b (Novagen (Merck))                                     68

Figure 2.1.2 Vector map of pETMM 60 (NusA)                                                                       69

Figure 2.1.3 Vector map of pGEX-6P-1 (GE Healthcare)                                                     70

Figure 3.1.1 Proposed organisation of functional domains at the C-terminus of human RyR2  85

Figure 3.1.2 2o structure prediction of aa residues 3579 – 4085 of hRyR2 using SOPMA    87

Figure 3.1.3 Typical interaction between CaM and CaMBP                                                      88

Figure 3.1.4 Schematic representation of CaM with (CaMBP) from PDB entry 2BCX         89

Figure 3.1.5 Residues in the RyR having CaMLD and a corresponding CaMBD               90

Figure 3.1.6 Amino acid sequence alignment of CaM with CaMLD                                    91

Figure 3.1.7 Predicted secondary structure of CaM                                                                 91

Figure 3.2.1 DOPE scores per residue of CaMLD model 13                                                 95

6



Figure 3.2.2 Ramachandran plot of CaMLD model 13                                                            96

Figure 3.2.3 Phi and psi torsion angles within protein backbone                                              96

Figure 3.2.4 Structure of CaMLD model 13                                                                  97

Figure 3.2.5 Computer-generated model of RyR2 CaMBD                                           98

Figure 3.2.6 Sequence alignment between hRyR2 and 2BCX                                                99

Figure 3.2.7 Distances between CaMLD and CaMBD                                                             100

Figure 3.2.8 Scripting of helices                                                                                         101

Figure 3.2.9 Beta turns                                                                                                                102

Figure 3.2.10 Beta-turn residue preference and predicted beta-turns in RyR2                 103

Figure 3.2.11 Preliminary optimisation of structures                                                                 104

Figure 3.2.12 Evaluation of models by molpdf and DOPE scores                                              106

Figure 3.2.13 Ramachandran plots of selected models                                                     108

Figure 3.2.14 Ramachandran plots of model 2 after 1000 steps of SD minimisation                109

Figure 3.2.15 Ramachandran plot of model 2 after 5000 steps of CG minimisation              110

Figure 4.1.1 A triple Glycine repeat in three conformations that are sterically stable          117

Figure 4.1.2 The Anfisen experiment                                                                                         119

Figure 4.1.3 Example of section MD script referring CHARMM to use set of parameters      122

Figure 4.2.1a Initial models produced from homology modelling using MODELLER          124

Figure 4.2.1b Initial models produced from homology modelling using MODELLER         125

Figure 4.2.2 Energy minimisation of the various models generated using MODELLER   127

Figure 4.2.3 RMSD values following energy minimisation                                                       129

Figure 4.2.4 RMSD values following energy minimisation                                                       130

Figure 4.2.5 RMSD values following energy minimisation                                                       131

Figure 4.2.6a Composite of Ramachandran plots of models post-refinement (SD and CG)       132

Figure 4.2.6b Composite of Ramachandran plots of models post-refinement (SD and CG)       133

Figure 4.2.7a Ramachandran statistics for models post-refinement                                            134

Figure 4.2.7b Ramachandran statistics for models post-refinement                                            135

Figure 4.2.8 Example of the contents of an “*.ene” file following a CHARMM simulation    136

Figure 4.2.9 Example of the “*.ene” file after editing in preparation for data extraction         137

Figure 4.2.10 Example script of a CHARMM MD heating step                                                  138

Figure 4.2.11 The heating step during CHARMM MD analysis of model 2                               139

Figure 4.2.12 The heating step during CHARMM MD analysis of model 49                            140

Figure 4.2.13 Example of the CHARMM molecular dynamics equilibration step                      141

Figure 4.2.14 The CHARMM equilibration step of model 2                                                       142

Figure 4.2.15 The CHARMM equilibration step of model 49                                                     143

Figure 4.2.16 Structure of model 2 during equilibration at step 2500                                         144

Figure 4.2.17 Structure of model 2 at end of equilibration steps                                                 144

Figure 4.2.18 Structure of model 49 during equilibration at step 2000                                       145

Figure 4.2.19 Structure of model 49 during equilibration at step 6500                                       145

Figure 4.2.20 Structure of model 49 at end of equilibration steps                                               146

7



Figure 5.1.1 Map of predicted regions in earlier section of I domain including CaMLD          152

Figure 5.1.2 Sequence comparison between Ca2+-binding domain in RyR1 and RyR2    153

Figure 5.1.3 Exon boundaries mapped onto aa sequence of I domain of RyR2         154

Figure 5.1.4 Predicted secondary structure of I domain region downstream of CaMLD          155

Figure 5.1.5 Coordinates of 8 identified constructs within the I domain               156

Figure 5.1.6 Known CPVT mutations contained within region of 8 potential constructs         156

Figure 5.1.7 Predicted 2° structure of CaM binding site and flanking regions of RyR2           158

Figure 5.2.1.1 Agarose gel of PCR products of 8 initial potential constructs                           161

Figure 5.2.1.2 Agarose gel of cPCR of selected pET15bmod constructs                                     162

Figure 5.2.1.3 Expression of constructs in pET15bmod vector in Rosetta (DE3)                     163

Figure 5.2.1.4 NP40 treated purification of construct 4/pET15bmod/Rosetta (DE3)                 165

Figure 5.2.1.5 Amplimers of CaMLD and CIR                                                                            168

Figure 5.2.1.6 Restriction digests of CaMLD and CIR constructs in pETMM 20 and 60            169

Figure 5.2.1.7a SDS-PAGE analysis of expression of CaMLD constructs                                 170

Figure 5.2.1.7b SDS-PAGE analysis of expression of CaMLD constructs                                     171

Figure 5.2.1.8 Ni-chelate chromatography purification of CaMLD constructs                            172

Figure 5.2.1.9 Mass spec analysed SDS-PAGE samples from Ni-NTA purified 60-CaMLD       174

Figure 5.2.1.10 SDS-PAGE of increasing imidazole conc. on 60-CaMLD protein sample           175

Figure 5.2.1.11 SDS-PAGE of CaMLD 60mM imidazole lysis and 70mM wash   176

Figure 5.2.1.12 Trial of TEV protease cleavage of fusion tag from 60-CaMLD protein               177

Figure 5.2.1.13 CaMLD protein samples after 2nd pass through Ni NTA post TEV cleavage       178

Figure 5.2.1.14 Restriction digests of CaMLD DNA post mutagenesis                                         180

Figure 5.2.1.15 Sequencing chromatograms of mutated forms of CaMLD                                    181

Figure 5.2.1.16 SDS-PAGE and western blot of wt and mutant forms of CaMLD                        182

Figure 5.2.2.1 Restriction digests of CaM binding site constructs in pGEX-6P-1                       184

Figure 5.2.2.2 Expression trial of CaM binding constructs in pGEX-6P-1 vector         185

Figure 5.2.2.3 Western blot of expression trial of CaMBD probed with anti-GST antibody        186

Figure 5.2.2.4 Initial affinity purification of GST-CaMBD                                                       187

Figure 5.2.2.5 Affinity purified GST-CaMBD following buffer system listed in chapter 2         188

Figure 5.2.3.1 Expression trial of 60-CaM                                                                                    189

Figure 5.2.3.2 CaM protein sample post TEV cleavage and 2nd pass through Ni beads               190

Figure 5.3.1 Selection of trialled screen conditions from CaMBD crystallisation trial             191

Figure 6.2.1.1 Weighted average emission wavelength vs  conc of GndHCl                               199

Figure 6.2.2.1 Western blots of CaM bead pull down assay with wt and mutant CaMLD            201

Figure 6.2.2.2 Western blot of check of CaM interaction with affinity beads                              202

Figure 6.2.2.3 Western blot of GST tag incubated with Ni NTA 203

Figure 6.2.2.4 Western blot of CaMLD incubated with GST beads 204

Figure 6.2.2.5 Western blot of cross linking trial of CaMBD with CaM                                     205

Figure 6.2.2.6 Western blot of repeat cross linking of CaMBD with CaM                            206

Figure 6.2.3.1 Comparison of UV abs of purification buffer vs buffer system 207

8



Figure 6.2.3.2 Far UV range data collected for CaMLD, E4076K and CaMBD 209

Figure 6.2.3.3 Thermal denaturation spectra series for CaMBD                                                   211

Figure 6.2.3.4 Thermal denaturation  spectra for CaMBD incubated with E4076K CaMLD      212

Figure 6.2.3.5 Spectra of wt CaMLD and wt CaMLD with calcium                                             213

Figure 6.2.3.6  Spectra of E4076K and E4076K with calcium                                                      213

Figure 6.2.3.7 Spectra of N4104K and N4104K with Ca2+                                                           214

Figure 6.2.3.8 Spectra of CaMBD and CaMBD with calcium                                                      215

Figure 6.2.3.9 Near UV region spectra of CaMBD                                                                       216

Figure 6.2.3.10 Near UV region spectra of wt CaMLD and wt CaMLD with calcium                  217

Figure 6.2.3.11 Near UV range spectra of wt CaMLD incubated with CaMBD +/- Ca2+               218

Figure 6.2.3.12 Near UV range spectra of E4076K CaMLD incubated with CaMBD +/- Ca2+     219

Figure 6.2.3.13 Near UV range spectra of N4108K CaMLD incubated with CaMBD +/- Ca2+     220

Figure 6.2.3.14 Repeat near UV range spectra of wt CaMLD incubated with CaMBD +/- Ca2+   221

Figure 6.2.3.15 Spectra of CaMLD with CaMBD incubated with range of Ca2+ concs             222

Figure 6.2.3.16 Near UV region spectra of CaM incubated with CaMBD +/- Ca2+                       224

Figure 7.1 Hypothetical schematic model of cross-domain interaction in the RyR               234

List of Tables

Table 3.2.1 Assessment scores of generated CaMBD models                                          94

Table 3.2.2 Assessment scores for selected models                                                              105

Table 3.2.3 List of residues by Ramachandran analysis region                                                 107

Table 5.2.1.1 Primer sequence and amplimer sizes of CaMLD pET15b constructs                    160

Table 5.2.1.2 Primer sequence and amplimer sizes of CaMLD pETMM constructs                 167

Table 5.2.2.1 Primer sequence and amplimer sizes of CaMBD pGEX-6p-1 constructs               183

Table 6.2.1.1 Free energy (ΔG) of unfolding states of wt and mutant CaMLD proteins           200

Table 6.2.3.1 Predicted and experimental 2° structure for CaMLD, E4076K and CaMBD         210

9



Summary

The ryanodine receptor  (RyR) is  a  large (563 kDa) tetrameric  calcium channel  that

controls the efflux of calcium ions from the large internal stores within myofibrils called

the sarcoplasmic reticulum. The cytoplasmic domain is connected to the pore via an

"interacting-domain" (I domain) which plays  an important role in the mechanism of

channel regulation. Within the I domain is a calcium binding region which resembles a

lobe of calmodulin and is thus called the calmodulin-like-domain (CaMLD). CaMLD

has a binding partner region, the calmodulin-binding-domain (CaMBD) located in the

cytoplasmic domain. Mutations in the cardiac isoform of RyR have been shown to result

in  the  clinical  presentation  of  a  lethal  disease  condition  called  catecholaminergic

polymorphic ventricular tachycardia (CPVT). Thus, mutations proximal to the CaMLD

and CaMBD region are of particular interest, since if these mutations affect the binding

of calcium or result in any conformational change of the protein, then the role of the

mutation could be explained.

Computer simulation methods were employed to investigate the role of CaMLD and

CaMBD in the overall  biology of RyR. The individual  domains  and also the entire

section of RyR containing both domains were modelled. This latter model underwent a

simulated folding process to generate a tool to further investigate the role of CPVT

mutations within this region in the context of the structural changes brought about by

the changes in amino acid residues of the protein.

CaMLD and CaMBD were produced as  recombinant  proteins  and selected  CaMLD

CPVT mutants generated. The calcium dependent interaction of these two domains was

examined through a range of functional techniques, in particular circular dichroism. All

the studied mutants displayed a calcium induced conformational change associated with

the functional protein. However, one particular mutation was identified which appeared

to  significantly weaken the  structural  stability and have  reduced calcium sensitivity

when compared to the wild type recombinant protein. 
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The aim of this  thesis  is  to understand the importance of the ryanodine receptor in

excitation contraction coupling in normal and pathological disease states of skeletal and

cardiac muscle. In particular the role of calcium and calmodulin in regulation of RyR

activities.  The  ryanodine  receptor  is  situated  in  the  sarcoplasmic  reticulum  (SR)

membrane and acts as a calcium “release-channel” for the SR calcium store.  

1.1 Calcium and calcium channels

The calcium ion (Ca2+) is a vital signalling agent for a large number of events from a

cellular level upwards from the earliest  stages of life through to death.  These many

processes include the activation of oocytes at fertilisation to the death of cells, muscle

contraction,  synaptic  transmission,  energy  metabolism,  activation  of  transcription

factors,  and  apoptosis  and  necrosis  (Berridge  et  al.  1998),  (Bootman  et  al.  2001).

Although in lower concentrations than other ions, Ca2+ required careful treatment by the

earliest cells. Ca2+ interacts easily with biological molecules and, at high concentrations,

will precipitate with phosphates, weaken lipid membranes, and aggregate nucleic acids

and proteins.  As such, even the most basic of lifeforms maintain Ca2+ homoeostasis

retaining internal  concentration around 100nM, significantly lower than the external

micromolar concentration  (Case  et  al.  2007).  The  maintained  difference  in  internal

versus external concentrations generates a gradient which allows the cell to use Ca2+ in a

signalling role. 

To  permit  the  controlled  transfer  of  calcium  ions,  channels  were  required  in  the

membrane. It has been proposed that the first of these were not protein based, instead

relying on bacterially produced polymers to produce a channel which was sensitive to

ion  concentration  and  selective  for  divalent  cations.  Voltage-gated  protein  calcium

channels eventually evolved and various types are now found in bacteria and higher

organisms. Prokaryotic examples of these channels are simpler in structures involving

less domains than eukaryotic versions (Case et al. 2007). 

              

The development  of  the complexity of  the Ca2+ channels  produced several  types  of

influx channel;  these tend to  be  classified  by how they are activated.  Mechanically

triggered channels have been found in cells that need to respond to physical changes the
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cell experiences whereas store-operated Ca2+ channels (SOCCs) respond to a decrease in

internal Ca2+ concentration. The latter are thought to function through binding with a

cellular messenger produced with the decrease in Ca2+ levels or by direct interaction

with internal calcium release stores (Bootman et al. 2001). 

As  a  large  variation  of  cell  types  display  increased  calcium entry  on  depletion  of

internal stores, it is proposed that SOCCs may be the most common membrane calcium

channel.  Receptor  operated  calcium channels  (ROCCs)  are  activated  by binding  of

agonists  to their  extracellular domains.  These are located in large numbers at  nerve

endings  and  on  secretory  cells.  In  addition,  they  have  a  range  of  structural  and

functional differences (Bootman et al. 2001). 

Voltage  operated  calcium channels  (VOCCs)  are  activated  by  depolarisation  of  the

membrane. They are commonly located in muscle cells, neurons and other excitable

cells. VOCCs contain several protein subunits which function in the role of pore and its

gating.  Isoforms  of  these  subunits  have  been  identified  permitting  a  range  of

combinations  as  observed in  the tissue  specific  VOCCs that  are  found.  VOCCs are

commonly  characterised  by  their  response  to  pharmacological  agents  and  gating

behaviours  (Bootman et al. 2001). The L-type calcium channel (also referred to as a

dihydropyridine receptor) shown in figure 1.11 is a VOCC.

Another factor introduced by the development of eukaryotic cells was the inclusion of

organelles that amongst other functions would serve as calcium stores. Mitochondria,

with  their  bacterial  heritage  contain  a  calcium  channel  (calcium  uniporter)  and  a

Na+/Ca2+ exchanger  (NCX).  Hence,  they  were  able  to  adopt  to  this  role.  Increased

calcium concentration in the mitochondria promotes activity of enzymes in the citric

acid cycle leading to enhanced ATP synthesis (Case et al. 2007). 

Another example of an internal calcium store is within the endoplasmic reticulum (ER).

Here, they play a key role in protein synthesis, post-translational protein modification

and  transport  of  molecules  around  the  cell.  The  ER maintains  a  much  higher  Ca2+

concentration; in the range of several hundred micromolar, compared to the intracellular

space  (where  calcium concentration  is  normally around 1-2 mM).  This  intracellular

store serves as another source of calcium adding a further layer to calcium signalling.
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The release of Ca2+ from the ER stores is operated by three main sets of intracellular

channels;  NAADP controlled receptors,  inositol  1,4,5-triphosphate (InsP3)/Ca2+ gated

InsP3 receptors (IP3Rs), and calcium-gated ryanodine receptors (RyRs). Although RyRs

and IP3Rs share similar structure and function, the former is much more advanced down

the evolutionary process (Bootman et al. 2001), (Case et al. 2007).        

The increased concentration in Ca2+ can be used as a single signal per event such as in

muscle contraction. However, the rate and/or amount of increase can be controlled to

provide greater  finesse in signalling.  This mechanism of control  is  important as the

increase in the amplitude of the Ca2+ signal is thought to become less effective as cells

have reduced sensitivity to  increasing concentrations  of  Ca2+ (Berridge et  al.  1998).

Calmodulin dependent protein kinase II (CaMKII) is a commonly cited example of the

monitoring  of  the  frequency  of  Ca2+ signal.  The  subunits  of  the  kinase  respond

differently to the rate of signal. Therefore, allowing for a graduated response to the rate

of Ca2+ signal. 

Excitation-contraction coupling (ECC) in muscle cells is a prime example of the use of

Ca2+ for the regulation of a highly specified physiological function. The ECC process

involves compartmentalisation and many feedback loops to maintain Ca2+ homoeostasis.

Ca2+ itself directly regulates many of the key proteins and also acts indirectly through

the modulatory protein calmodulin (CaM). It should be noted that one of the pivotal

proteins involved in the regulation of ECC is RyR (Bers 2002).

1.2 Identification of ryanodine receptors 

Ryanodine receptors were first identified from images captured of striated muscle using

electron microscopy. The junctions between sarcoplasmic reticulum (SR) and transverse

(T) tubular system at the triad were examined. RyRs were seen as part of the “foot”

structures  at  these  junctions  (Franzini-Armstrong 1970),  (Campbell  et  al.  1980).  As

discussed above SR, smooth ER located in smooth and striated muscle, was known to

act as a calcium store and contain calcium channels. Electrophysiology experiments in

which  SR  membrane  extracts  were  incorporated  into  lipid  bilayers  displayed  the

presence of a channel behaving in the role of a Ca2+ release. 
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RyR was purified from the SR and demonstrated to be part of the previously observed

foot  structures.  This  extracted RyR was shown to be sensitive  to  the  plant  alkaloid

ryanodine when operating in  its  role  as a  conductivity channel.  Low concentrations

(submicromolar)  of  ryanodine  locked the  channel  in  an  open state  and reduced the

current passing through the “open” channel to about 40%. Ruthenium red was known to

close the channel but in this ryanodine open locked state this did not occur though there

was a further reduction in conductivity. Higher concentrations, 300μM, of ryanodine

closed the channel  (Nagasaki  & Fleischer  1988).  Work conducted in  rabbit  skeletal

muscle isolated RyR as an integral SR membrane protein and confirmed its role as a

Ca2+ release channel (Lai et al. 1988), (Lai et al. 1989), (Meissner et al. 1989). 

RyRs were subsequently identified across a range of tissue types and 3 clear types of

channel identified. RyR1 was found in rabbit skeletal muscle (Marks et al. 1989) and is

mainly found in skeletal muscle though does occur at lower levels in some brain tissues.

RyR2 was initially extracted from rabbit cardiac muscle (Otsu et al. 1990), where it is

the predominant isoform, and is also found in neurons. RyR3 was initially isolated from

rabbit brain (Hakamata et al. 1992) but has been found at low levels across a variety of

tissues.  Complementary  DNA was  cloned  for  the  3  isoforms  and  gene  sequences

determined for these 3 isoforms; RyR1  (Takeshima et al.  1989), RyR2  (Nakai et  al.

1990), (Otsu et al. 1990) and RyR3 (Hakamata et al. 1992). 

It  was  determined  that  there  was  approximately 65% amino  acid  sequence  identity

between the mammalian isoforms. Despite the range of tissues in which RyRs occur and

the variation between isoforms their major identified role is in ECC in muscle cells, the

process  of  converting  an  electrical  nerve  stimulus  into  the  mechanical  response  of

muscle contraction  (Endo 2011). This process is discussed in further detail in a later

section of this chapter. 

1.3 Structure of the ryanodine receptor

Continuing research has revealed more about the structure of the largest known ion

channel  (Capes  et  al.  2011).  Within  SR,  RyR  was  found  to  be  a  homotetramer
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containing a central pore, each subunit has a mass of ~560 kDa (Lai et al. 1988). The

size  of  the  channel  has  lent  itself  to  study  by  cryo-electron  microscopy.  With

advancements in microscopes and image processing algorithms the resolution of the

produced images have improved from ~30Å (Radermacher et al. 1994),  (Serysheva et

al. 1995), (Sharma et al. 1998) to ~10Å (Ludtke et al. 2005), (Samsó et al. 2005).  

Figure 1.1 3D reconstruction map of RyR1 (Radermacher et al. 1994).  

30Å  resolution  map  processed  from cryo-EM data  illustrating  the  “toadstool”  like

shape of RyR. Also shown is the numbering of putative domains as proposed by the

Wagenknecht group. TA relates to the transmembrane assembly and p to a feature of the

pore. 

Similar topological surface maps have been produced by the various techniques though

the increasing resolution has started to reveal more detail about the overall structure.

Analysis of these images has shown the 4-fold symmetry of the homotetramer and led

to the “toadstool” analogy model of the structure (see figure 1.1 above). The “stalk” of

this  structure equates to  the transmembrane portion of RyR, which acts  as the pore

section of the channel in the SR membrane. 

The “head” section, represents the region that sits facing the inner cytoplasmic space of

the SR. Discrete globular domains separated by solvent-accessible regions have been

observed in the cytoplasmic portion. The cytoplasmic head seems to be separated from

the transmembrane stalk by 4 columns (Samsó et al. 2005). 
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There appears to be differences in the transmembrane section if the channel is treated

with  ryanodine,  though  the  low-resolution  of  the  images  makes  this  difficult  to

determine. However, domain rearrangement is observed between the open and closed

states of RyR (Orlova et al. 1996a). This has lead to the suggestion of an iris lens-style

opening and closing mechanisms for the channel (Serysheva et al. 1999). The improving

image  resolution  combined  with  other  techniques  such  as  the  incorporation  and

subsequent monitoring of green-fluorescent-protein (GFP) has allowed for attempts to

map specific domains and binding areas onto the overall structure of RyR. 

Work conducted mainly on the N-terminal region of RyR has revealed the localisation

of domains containing known mutations within the quaternary structure of the protein

(Liu et al. 2002), (Liu et al. 2005), (Wang et al. 2007). This approach has illustrated the

potential  of  identifying  regulatory  regions  that  are  brought  together  through

conformational changes within RyR. However, the disruption caused by the insertion of

the GFP tag has to be considered. 

The increasing appearance of high resolution structures of regions of RyR has allowed

visualisation of mutations within the three-dimensional structure. The techniques of x-

ray crystallography and nuclear magnetic resonance (NMR) have been used to produce

these structures revealing the nature of the structural impact of the studied mutations.

Initially  a  short  stretch  of  the  RyR1  CaM binding  site  in  complex  with  CaM was

observed  (Maximciuc  et  al.  2006).  A more  detailed  discussion  of  this  structure  is

presented in chapter 3, also the CaM binding site is further explored later in this chapter.

Focus has been, primarily, on the N terminal domain region of RyR with a succession of

released structures containing more sequence and further studied mutations (Amador et

al. 2009), (Lobo et al. 2011), (Tung et al. 2010), (Kimlicka et al. 2013). Other regions of

RyR  are  being  investigated  by  these  techniques,  recently  structures  of  the  central

domain phosphorylation sites,  including likely CaM kinase II  interaction sites,  have

been published (Sharma et al. 2012), (Yuchi et al. 2012).     

Figure 1.2 shows the 10 Angstrom resolution electron microscopy topographical map of

the ryanodine receptor.  Van Petegem and colleagues have done an in silico docking of

the recently deduced N-terminal 3D crystallographic structure into this topographical

map, this data shows a strong possibility where the N-terminal “repeat-region” should
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be located  (see  figure  1.2).  Furthermore,  it  also  shows the  putative  location  of  the

central regions of phosphorylation. Maps such as these contain important information as

to  where  crucial  functional  domains  may be  located  and  provides  clues  as  to  how

mutations present on domain interfaces may cause disruption by disruption of domain-

domain interactions, thereby destabilising the channel.

Figure 1.2.  Docked crystal structure of N terminal of RyR1 in cryo-EM map of 
RyR1 (Tung et al. 2010).  

Looking down onto “head” of RyR from cytoplasmic side displaying 4 fold symmetry of

RyR  tetramer.  2.5Å  resolution  x-ray  crystallography  determined  structure  of  RyR1

amino  acid  residues  1-559 docked  in  9.6Å cryo-EM map of  RyR1.  The  N-terminal

structure  has  been  split  into  3  different  coloured  predicted  domains  that  interact.

Mutations have been observed in small clusters at the interfaces between the domain

boundaries.  

1.4 Muscle contraction

Each muscle fibre is  multinucleate and behaves as a single unit  (and therefore it  is

called a syncytium). It  contains  bundles of myofibrils,   surrounded by sarcoplasmic
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reticulum  (SR)  and  invaginated  by  transverse  tubules  (T  tubules).  Each  myofibril

contains interdigitating thick and thin filaments arranged longitudinally in sarcomeres.

Figure 1.3 Components of muscle tissue (Braunwald 2007). 

Schematic  diagram  showing  arrangement  of  muscle  fibres  in  bundles  (myofibrils)

surrounded by sarcoplasmic reticulum (SR) and T-tubules.

Skeletal and cardio-myocytes are made up of bundles of sarcomeres.  Sarcomeres are

bundles of myosin and actin that slide over each other.

Figure 1.4 The “sliding filament” mechanism of muscle contraction.  

The  sliding  filament  model  of  muscle  contraction  is  where  the  “thin-filaments”  of

muscle “slide-over” the “thick filaments”.

Briefly, the sliding-filament theory is where actin and myosin filaments slide over each

other, thus gradually shortening the length of the sarcomere. This is an active process

requiring ATP.
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The flood-like massive release of calcium ions from the SR via the RyR1 channels

allow calcium ions to flow into the cytoplasm. These large pools of calcium are now

capable  of  binding  to  Troponin  C.  This,  in  turn,  causes  the  troponin  complex  to

dissociate from tropomyosin. The role of tropomyosin is important to shield the myosin-

binding  site  preventing  the  binding  of  actin  and  the  formation  of  cross-bridges  in

absence of calcium. Myosin can then bind to the uncovered sites on actin, a crucial step

in  the  sliding  filament  theory",  see  figure  1.5.  Thus,  muscle  contraction  occurs  in

response to previous electrical events.

Figure 1.5 Regulation of contraction and relaxation in the muscle  (Davison et

al. 2000).

Schematic  view  showing  the  spatial  relationships  of  actin  (A),  troponin  T  (TnT),

tropomyosin (TPM), troponin C (TnC) and troponin I (TnI). In the relaxed state (on the

right),  tropomyosin  occupies  the  myosin  binding  site  on  the  actin  molecule.  This

therefore prevents actin from forming cross-bridges with myosin. The troponins; T, I

and  C  are  associated  with  each  other,  in  low  calcium  levels,  troponin  C  loosely

associates with troponin I via a single site. When there is a large release of calcium

ions, troponin I strongly associates with troponin C via two binding sites, so altering the

overall  conformation of the troponins and “pulling” tropomyosin out of the binding

cleft  on  actin.  This  then  allows  myosin  to  form  cross-bridges  with  actin  and  thus

commence muscle contraction. 
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1.5 Excitation-contraction coupling

Excitation-contraction  coupling (ECC)  is  the  process  by  which  an  electrical  signal

brings about a mechanical contractile event.  The events described for contraction in

skeletal muscle are different when it comes to cardiac muscle. Firstly, skeletal muscle is

under voluntary control. The intent to move a muscle begins first with a higher cortical

response  which  travels  down  the  cortico-spinal  tract  and  exits  at  the  appropriate

vertebral level via the ventral horn, finally ending as a motor end-plate (synaptic bulb)

on  a  muscle  where  calcium  channels  control  the  release  of  the  neurotransmitter

acetylcholine that trigger off the rest of the excitatory process (Braunwald 2007).

Cardiac  myocytes  near  the  sino-atrial  node  and  the  atrio-ventricular  nodes  have  a

property  called  automaticity.  This  is  an  important  property  of  these  cells  that  can

spontaneously generate periodic oscillations of electrical current and set off an action

potential. In the hearts of higher vertebrates, so-called “pacemaker” cells exist, these

cells  have  low  contractility  but  have  the  capacity  to  generate  periodic  electrical

oscillations. The generated action potential then spreads via the “Purkinje fibre” system

and the bundle of His, down the septum and upwards around the ventricles, spreading

the  excitatory  impulse  throughout  the  myocardium  to  the  individual  myocytes

(Braunwald 2007).

Figure 1.6 Flowchart summarising events leading to opening of RyR channels.  

The  various  events  from  the  propagation  of  the  action  potential  through  to  the

activation of the dihydropyridine receptors and finally the opening of the SR stores of

calcium via the RyR1 receptor.
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1.5.1 Action potential 

Figure 1.7 Neurotransmission of signals to muscles.  

(a) the mechanism by which ligand-gated Na+ channels work; when they bind to ACh,

the  channels  open  allowing  sodium  to  rush  into  the  muscle  cell,  depolarising  the

sarcolemma. 

(b) false colour scanning electron microscope of a presynaptic bulb of neuron (green),

ACh  molecules  are  coloured  in  blue  (SEM  image  from  www.brighthub.com,  with

permission).

A propagating action potential travels down towards the end of a motor neuron. There,

as  shown in  figure  1.7  (panel  A),  calcium ions  travel  down the  voltage-dependent

channels,  thus  gaining  entry  into  the  neuron.  The  calcium  ions  then  bind  to

synaptotagmin;  a  type  of  sensor  protein,  which  causes  the  release  of  the
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neurotransmitter acetylcholine (ACh) from the neuron into the synaptic cleft. ACh then

travels down the short space of the synapse (approximately 19 -20 nm), binding to the

receptors on the membrane of the muscle fibre (Braunwald 2007). 

The ACh receptors are in fact, ligand-gated nicotinic receptors. This means that, when

ACh (the "ligand") binds to these receptors (which also function as an ionic gate), the

gates "open", allowing entry of sodium ions into the muscle cells whilst allowing the

concomitant exit of potassium ions out of them.  The membrane of muscle cells at rest

are approximately between -90 mV to -70 mV. This relatively large negative polarity of

the muscle cell membrane is maintained by forcing three sodium ions out of the cell and

allowing two potassium ions in via an ATP driven pump leading to a net deficit of one

positive charge in the cell. The sudden large influx of sodium ions into the muscle cell

causes a shift towards positive values in membrane potential (towards +ve voltages). As

the sodium ions rush in, the sarcolemma depolarises rapidly and the membrane potential

gradually reach 30 mV (as shown in figure 1.8) (Braunwald 2007).

Figure 1.8 Action potential at the neuromuscular junction.  

The  rush  of  sodium  ions  into  the  myocytes  cause  a  rapid  depolarisation  of  the

sarcolemma. The initial sharp rise of depolarisation slows down towards the peak as

inward rectifying K+ channels open.  At stage 4,  the sodium potassium pumps begin

activating with the aid of ATP, restoring the resting membrane polarity. 
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At the resting membrane potential of –70 mV at the sinoatrial node, there is a steady

leak of potassium ions outward, and a slow trickle of sodium ions inward (the so-called

funny current of  If).  The gradual rise in potential  is also reached by the opening of

voltage-gated  calcium  channels  (L  type  calcium  channels)  and  this  allows  the

sarcolemma of the cardiac myofibrils to reach a threshold at –40 mV (Braunwald 2007).

The action potential curve of other myocytes has a slightly different shape than that of

the  pacemaker  cells  as  shown in  figure  1.9.  The  most  significant  difference  is  the

“plateau phase” in this action potential curve, where phase (1) is due to the deactivation

of the fast sodium channels. The notch observed in the plateau phase (figure 1.9 (b)) is

due to the efflux flow of potassium ions (I to1) and chloride ions  (I to 2) (going out of

the  cell).  The  notch  is  of  particular  significance,  without  these  transient  outward

currents, the repolarisation of the myocyte would not occur (Braunwald 2007). 
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Figure 1.9 Action potential in the heart.  

(a) the action potential  at  the sino-atrial node and (b) the action potential  and the

various phases at other cardiac myocytes (non-pacemaker cells).
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1.5.2 Activation of LTCC/DHPR 

The T-tubule system contains voltage-gated Ca2+ channels;  specifically,  these are the

dihydropyridine  receptors  which  are  also  referred  to  as  L  type  calcium  channels

(LTCC). The action potential described in figures 1.8 and 1.9, activates these receptors.

Dihydropyridines  are  compounds  that  contain  a  pyridine  (a  C5 heterocyclic)  group.

Clinically, drugs such as amlodipine, nifedipine and nimodipine are important calcium-

channel  blockers,  which  play  a  role  in  the  control  of  clinical  hypertension.  These

voltage  activated  dihydropyridine  receptors  then  trigger  and  activate  the  ryanodine

receptors that are present on the sarcoplasmic reticulum (SR). Once activated,  these

ryanodine receptors then open and release a flood of Ca2+ ions (Braunwald 2007).
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Figure 1.10 Arrangement of myofibrils showing T-tubules (Hayashi et al. 2009).  

(a) a schematic diagram showing the components of  the myofibril enveloped by the

plasma membrane (sarcolemma).  Tiny holes are apparent on the sarcolemma, these

“invaginations” lead to a tubular system down-beneath, called the T-tubules. 

(b) SEM photograph showing the triad (circled) amongst the SR (the sarcolemma has

been stripped off here). 

(c)  SEM  photograph  of  myofibrils  with  the  sarcolemma  intact,  showing  the

invaginations on the surface (arrowed in cyan).Scale bars 500 nm.
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1.5.3 EC coupling in RyR1 

A surge in the voltage causes a conformational change in DHPR which in turn causes an

allosteric  interaction  between  DHPR  and  RyR1  to  open  the  RyR1  calcium-release

channel, see fig 1.11 (a). It should be noted that the DHPR is only linked to every other

RyR1 and CICR may be responsible, in some way, for triggering these alternate RyR1

channels. RyR1, when isolated from the SR, can also be activated by Ca2+ but this is not

thought to be the direct physiological mechanism. When the stimulus for contraction

ceases, the cytosolic calcium is re-sequestered into the SR-Ca2+ store by the SERCA

pump (Blayney & Lai 2009). 

1.5.4 EC coupling in RyR2

The cardiac  DHPR itself,  when  it  is  activated  by voltage,  becomes  a  Ca2+ channel

allowing extra  cellular  Ca2+ to  flow into  the  cell  and activate  RyR2,  the  process  is

termed Ca2+ induced Ca2+ release (CICR). The influx of Ca2+ through the DHPR initially

flows into a confined space called the dyadic cleft.  Due to the small volume of this

space a small number of Ca2+ ions results in a rapid increase in concentration within the

dyadic  cleft  to  reach  the  threshold  of  RyR2  activation  (10-7umM)  (Bers  2002),

(Blayney & Lai 2009).  

As a result the RyR opens and the SR Ca2+ flows out to activate the myofilaments. In

order  for  relaxation  to  occur  the  systolic  Ca2+ is  re-sequestered  into  the  SR by the

SERCA pump and the proportion which corresponds to Ca2+ influx is returned to the

extra-cellular space via the Na/Ca exchanger. For this action to run to completion, the

RyR channel has to close. There a number of proposed mechanism for the closing of the

channel  including  reduced-luminal-calcium,  increased  calcium  in  the  dyadic-cleft

(which also contributes to the retrograde inhibition of the LTCC and the plateau phase

(2) of the action potential shown in figure 1.9), and mechanisms of inactivation within

the RyR itself. Thus, normally calcium homoeostasis is restored by returning calcium to

the store and extruding calcium (Bers 2002), (Blayney & Lai 2009).
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Figure 1.11 The difference between activation of RyR molecules in cardiac and

skeletal muscle.  

(A & B) In skeletal muscle, RyR1 molecules are coupled to the dihydropyridine receptor

(L  type  Ca2+ channel)  which  then  activates  the  opening  of  the  RyR1  molecule.  In

cardiac muscle, the influx of calcium ions via the L-type calcium channels drives the

opening of the ryanodine receptors via the process known as “calcium induced calcium

release” (CICR). The 10-12nm gap at the junction of the SR and T tubules in cardiac

muscle in referred to as the dyadic cleft. This is an important microdomain involved in

CICR with regards to increasing Ca2+ concentration.
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(C) The schematic arrangement of channels related to CICR mechanism. These include

voltage gated L-type calcium channels present in the T-tubule system, RyR2 in the SR

membrane,  and  also  the  SERCA and  NCX  (Na+/Ca2+ exchangers)  associated  with

repolarisation after CICR has occurred.  

1.6 Phosphorylation and the “stress” response

Phosphorylation has a number of roles related to the regulation of protein activity, often

a conformational change can be triggered in the target protein resulting in a change in

function or continuation of a signalling pathway. Serine is a commonly phosphorylated

amino acid with the addition of phosphate to the hydroxyl of the R group of the amino

acid. RyR2 has three clearly identified phosphorylation sites, all of which are serines.

These sites are acted upon by different combinations of kinase/phosphatase pairs; so

allowing for finer control of RyR through phosphorylation. 

The phosphorylation sites are usually referred to in conjunction with the kinase that is

thought to act upon that site, Ser 2809 (2843 in RyR1) and 2030 are associated with

protein  kinase  A (PKA)  and  Ser  2815  with  Ca2+/CaM-dependent  protein  kinase  II

(CaMKII)  (Niggli et al. 2013); amino acid numbers here are given for human RyR2.

There is still  some debate over the specificity of the kinases for these sites and the

precise effect that the phosphorylation of each site has on the function of the channel. It

is thought likely that there are additional phosphorylation sites throughout RyR which

may impact on the physiological activity that has been attributed to individual kinases in

some reports. 

A range of experiments, involving transgenic animals, indicates that CaMKII activity

leads  to  a  general  increase  in  activity  from  Ca2+ signalling  through  to  related

downstream events such as EC coupling. This increased response is more Ca2+ sensitive

and may occur through a response to increased Ca2+ levels (MacQuaide et al. 2007) but

operates in a less well regulated fashion than the non-phosphorylated state. It should be

noted that some of these effects are due to CaMKII having other targets in addition to

Ser 2815. These include the L type Ca2+ channel, linked to increased Ca2+ signalling, and

the  phospholamban  associated  with  SERCA,  found  to  increase  SERCA activity  in
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preparation for the next excitation-contraction event (Niggli et al. 2013). 

PKA appears to have a similar range of targets to CaMKII but its overall effects seen at

the cellular and above level maybe more subtle and, as such, are difficult to pinpoint

with conflicting data appearing in the literature. Generally there is an increase in heart

function activity, as observed with CaMKII activity, as PKA is activated by increasing

cAMP levels  caused  as  part  of  adrenergic  stimulation  through  the  flight  or  fight

response.  Hyperphosphorylation  of  Ser  2809  has  been  linked  to  heart  failure  by

promoting increased Ca2+ leak but analysis of more recent studies are suggesting Ser

2815  as  a  stronger  candidate  for  this  mechanism  (Valdivia  2012).  Part  of  this

mechanism may be linked to the apparent dissociation of FKBP12.6 from RyR seen in

some hyperphosphorylation models (Marx et al. 2000a).  

Phosphorylation  is  linked  to  up-regulation  of  ECC  in  response  to  beta-adrenergic

stimulation also known as the flight or fight response.  Essentially,  raised circulating

adrenaline  levels  activates  the  beta  1  adrenegric  receptors  on  the  myocyte  surface.

These G protein linked receptors activate adenyl  cyclase which converts  ATP to the

second messenger cyclic AMP which freely diffuses throughout the myocyte to activate

protein PKA. PKA is associated with a number of key proteins involved in ECC, these

include PLB which activates SERCA, LTCC, RyR and troponin (as shown in figure

1.11). The net effect is to up regulate calcium fluxes throughout the cell increasing heart

rate. 

1.7 Arrhythmia

RyR are  associated with arrhythmic events  which are triggered  by phosphorylation.

However, arrhythmias can arise from many causes as illustrated in figure 1.12 below.  
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Figure 1.12 Relationship of the cardiac action potential to the ECG.  

(a) The effect of sodium channel inhibitors, shows that the slope of phase O is shifted to

the right (as shown in the red slope) when sodium channel inhibitors are used.

(b) The lengthening of the ST segment can be achieved by potassium channel inhibitors

or even calcium channel inhibitors.   

In heart  failure,  low cardiac  output  due  to  weakened pumping activity of  the  heart

results  in  low  blood  pressure  and  impaired  tissue  perfusion.  This  is  sensed  by

baroreceptors in the circulation which feedback to the brain, increasing the sympathetic

tone  by  enhanced  sympathetic  activity.   This  also  results  in  enhanced  release  of

adrenaline, and therefore greater release of calcium ions from stores. However, as the

contractile  apparatus  is  damaged in  heart  failure,  even this  increased  calcium wave

would not have much of an effect on increasing contractile efficiency, conversely, it

would cause depletion of calcium stores in the SR, leading to lower circulating calcium

levels (Braunwald 2007). The increased sympathetic tone in damaged muscle, increased

circulating  catecholamines  and  the  low calcium levels  all  lead  to  increased  risk  of

arrhythmias in the myocardium.
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Figure 1.13 The hypothalamic-pituitary axis feedback circuit (Braunwald 2007).

As shown here, increased stress levels will elicit greater release of adrenaline into the

systemic circulation which will increase the heart rate, forcing more blood around the

circulation.

During intense exercise or when greater cardiac output is needed, feedback circuits to

the brain increase adrenaline release, which then encourage enhanced cardiac muscle

contractility  by  enhancing  greater  release  of  calcium  ions  from  stores  by  opening

ryanodine receptors. 
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1.7.1 Mutations in ryanodine receptors 

1.7.1.1 RyR1

Mutations  in  the  skeletal  isoform of  the  gene  (RyR1 gene)  are  associated  with  the

clinical manifestation of malignant hyperthermia (MH), encountered when these gene

carriers are administered volatile anaesthetics such as the commonly used halothane.

Malignant hyperthermia is a potentially fatal condition which if noted during surgery,

only a short window of time exists before the administration of life-saving dantrolene (a

muscle relaxant) can have an effect and prevent death  (Braunwald 2007).  Some MH

mutations  result  in  central  core  disease  (CCD)  which  manifests  as  disordered

myofilaments and muscle weakness. 

1.7.1.2 RyR2

Similar  point  mutations  in  RyR2  cause  an  arrhythmic  condition  termed

catecholaminergic polymorphic ventricular tachycardia (CPVT) or arrhythmogenic right

ventricular dysplasia/cardiomyopathy (ARVD/C) type 2, the latter typified by fibro-fatty

streaks in the right atrium (Norman & McKenna 1999). In addition, it should be noted

that some CPVT mutations are also found in calsequestrin (Mohamed et al. 2007). 

The heart beat is normal at  rest  but exercise or emotional stress (e.g. flight or fight

response i.e.  phosphorylation) can result in tachycardia leading to a potentially fatal

cardiac  arrhythmia.  The majority  of  identified  disease  causing  mutations  have  been

located in  3 cluster  regions  within RyR as  shown in figure 1.14 (below).  Sequence

analysis conducted on carrier families revealed the first set of known mutations in RyR2

(Priori et al. 2001). 

Equivalent clusters of mutations in the N and C terminal, and central regions are seen

for RyR2 (CPVT and ARVD2) and RyR1 (MH and CCD). With specific mention to

CPVT mutations in RyR2, the C terminal domain region is usually further split into the

cytoplasmic I domain and transmembrane domain which also includes the C terminal

region itself (Thomas et al. 2006). Selected CPVT mutations studied in the interacting

(I)  domain  were  seen  to  trigger  increased  signal  variability  in  Ca2+ release  and
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destabilise interdomain interaction (George et al. 2006).    

Figure 1.14 Locations of CPVT mutations within RYR2

Each  CPVT mutation  represented  by  vertical  bar,  these  mutations  can  be  seen  to

grouped into clusters. Selected mutations are shown throughout the RyR2 amino acid

sequence. 1136 marks the end of the N terminal mutation cluster, 1724-2534 the central

region cluster, and 3946 and 4076 are indicated within the I domain section of the C

terminal cluster.   

1.7.2 Effect of catecholamines on the myocardium

To  further  explain  CPVT,  the  nature  and  effects  of  catecholamines  have  to  be

considered. Figure 1.15 illustrates the chemical structure of some of the catecholamines

present in the body.  In post-infarct patients, the incidence of sudden cardiac death is

greatly  reduced  by  regular  intake  of  beta-blocking  drugs.  This  fact  highlights  that

ischemic  events  induce  enhanced  sympathetic  activation  (hence  local  catecholamine

activity)  and  this  leads  to  increased  arrhythmogenic  properties  of  the  myocardium

(Anon 1981), (Yusuf et al. 1985).
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Figure 1.15 Structure of Catecholamines.  

Catechols are naturally occurring chemicals (name originating from the extracts of the

tree  –  Acacia  catechu)  which  have  an  aromatic  ring  with  two  hydroxyl  groups.

Catecholamines  are  therefore  catechols  with  an  amine  group.  Naturally  circulating

catecholamines  in  the  body  such  as  dopamine,  noradrenaline  (norepinephrine)  and

adrenaline (epinephrine) are synthesised from tyrosine and phenylalanine.

1.7.3 How a faulty RyR2 channel produces cardiac arrhythmias 

Inherited or de novo mutations in the RyR2 gene or ischemic events, hypertrophy of the

heart  wall,  increased  sympathetic  tone  or  cardiac  failure;  all  these  mechanisms  can

cause a diastolic Ca2+ leak through the RyR2 channel. This leak of calcium ions can

produce transient increases in calcium currents via the heart muscle cells. The wave of

calcium ions released at inappropriate timings will reverse NCX thus extruding 2 Ca2+

and bringing in 3 Na+. This triggers delayed-after-depolarisations (as shown in figure

1.16). If sufficient DADs are generated within a certain space of time, this can cause the

depolarisation of heart muscles above the threshold limits. Since the excitation event is
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linked to contraction (EC-coupling), these sudden groups of DADs can result in either a

single  or  multiple  premature  heartbeats,  thus  resulting  in  arrhythmia.  The  events

described above are summarised in figure 1.17 (Iwasaki et al. n.d.).

Figure. 1.16 Possible  way  in  which  ectopic  rhythms  contribute  to  cardiac

arrhythmias (Iwasaki et al. n.d.).  

The above trace shows how a deviation from the normal action potentials can give rise

to an arrhythmogenic pathway,  namely delayed-after-depolarisations  (DAD).   AP =

action potential. 
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Figure 1.17 How a leaky RyR2 channel leads to arrhythmia (Braunwald 2007).  

The untimely wave of calcium ions trigger the inward activating NCX, thus activating

multiple DADs.  These then trigger an action potential that is asynchronous with the

rest of the heartbeats, triggering a premature heartbeat, thus throwing the rest of the

heart-beat rhythms into dysryhthmia.

The common arrhythmia  caused by faulty  RyR2 molecules  that  gives  rise  to  leaky

channels,  is  a  “polymorphic  ventricular  tachycardia”.  There  are  a  number  of  ways

ventricular tachycardia can evolve in a heart muscle although a thorough discussion of

these are beyond the scope of this thesis.  Whenever the heart rate is above 100 beats

per minute, a patient is termed clinically to be in tachycardia. This is usually measured

on an ECG trace by calculating the distance between subsequent R waves. Ventricular

tachycardia usually has a common morphology, broad QRS complexes (wide distances

between the Q and S wave) (Braunwald 2007).
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Figure 1.18 ECG displaying polymorphic ventricular tachycardia.  

Ventricular tachycardia is any tachy-rhythm that has an R-R rate of more than 100

beats per minute.   Untreated VT can quickly progress to life-threatening ventricular

fibrillation  and  once  noticed  on  a  heart  trace  or  cardiac  monitor  is  a  medical

emergency.  

It is clear from the morphology of the trace, that the peaks of the QRS complexes are

appearing to “dance” around the ECG-paper, hence giving it the old name of “torsade

de pointes” or the polymorphic nature of the QRS complexes. The rhythm is not in

sinus, as there are no atrial contraction peaks (P waves) seen at all and there is a clear

beat-to-beat variation between each QRS complex. This type of ventricular arrhythmia

is commonly seen when patients inherit a faulty RyR2 gene.  (note: patient names and

details are blackened out to preserve patient confidentiality).

1.8 Overview of the regulation of RyR channel 

The previous sections of this chapter have discussed the origin of the electrical impulse,

the  conversion  of  that  form of  energy to  mechanical  contraction,  and  subsequently

explored  the  genesis  of  normal  and  abnormal  rhythms.  The  focus  of  the  following

sections is now shifted onto the regulation of the ryanodine receptor itself. 
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1.8.1 Domains and interaction sites within RyR 

Analysis of the amino acid sequence combined with a range of experimental techniques

have located a number of domains and functional sites throughout RyR. In RyR2,  Ca2+

is the most important physiological regulator. In the absence of Ca2+ the channel does

not open. 

The RyR displays a bi-phasic response to cytoplasmic Ca2+, the threshold for activation

is between 10-8 and 10-7 M. Maximal activation at between 10-6 and 10-5M, inhibition at

10-3M. RyR is also regulated by luminal Ca2+ concentration. The Ca2+ activation site(s)

have not been definitively identified, one potential candidate is E 3885  (Chen et al.

1998).

There are other small molecules that a play a physiological regulation role such as ATP

which  opens  the  channel  and  Mg2+; which  in  millimolar  concentrations,  closes  the

channel. There is some suggestion that Mg2+ can compete for the Ca2+ activation site(s)

(Gillespie et al. 2012).

There  are  a  number  of  small  protein  modulators  which  predominantly  inhibit  the

channel such as FKBP12/12.6 and CaM that act upon the cytoplasmic region of the

channel. In addition, calsequestrin, triadin and junctin are associated with the luminal

portion  of  RyR  (MacKrill  1999).  These  proteins  are  discussed  below  and  CaM  is

examined in greater detail later in this chapter (see section 1.8.2).  In addition to these

sites of interaction there are organisational domains throughout RyR. Some of these

many sites and domains are shown in figure 1.19 and are discussed in the following

subsections.
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Figure 1.19 Key sequences and ligand binding sites of RyR 

(Upper) Locations shown on linear map of RyR (D’Cruz, L.G., Yin, C.C., Williams,

A.J., Lai 2009). 

(Lower) Detailed section of RyR2 amino acid sequence displaying locations of CPVT

mutations within this region and domains of interest to this thesis. 
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1.8.1.1 Calsequestrin, triadin and junctin

The role of calsequestrin in Ca2+ concentration sensitivity in ECC is mentioned earlier in

this  chapter.  With  this  Ca2+ binding  function,  calsequestrin  has  been  suggested  as

playing a role as part of a luminal Ca2+ sensor for RyR. Calsequestrin, which undergoes

a conformational change with Ca2+ binding, forms a complex with triadin and junctin,

which both have luminal and transmembrane regions. This complex appears to reduce

the open probability of the RyR channel when Ca2+ concentration is low, however, this

inhibition is reduces as the Ca2+ concentration increases (Györke et al. 2004). 

1.8.1.2 Mutation clusters

The majority of identified disease causing mutations have been located in  3 cluster

regions within RyR as shown in figure 1.14. Sequence analysis conducted on carrier

families  revealed  the  first  set  of  known  mutations  in  RyR2  (Priori  et  al.  2001).

Equivalent clusters of mutations in the N and C terminal, and central regions are seen

for RyR2 (CPVT and ARVD2) and RyR1 (MH and CCD). With specific mention to

CPVT mutations in RyR2, the C terminal domain region is usually further split into the

cytoplasmic I domain and transmembrane domain which also includes the C terminal

region itself (Thomas et al. 2006). 

1.8.1.3 Divergent regions

Within the  RyR amino acid  sequence,  3  areas  of  conspicuous variation were  found

which were labelled divergence regions D1, D2 and D3. These regions are, for RyR1

and RyR2 (in brackets), amino acids, D1 4254-4631 (4210-4562), D2 1342-1403 (1353-

1397), and D3 1872-1923 (1852-1890) (Sorrentino & Volpe 1993). It is thought that D2

plays  an important  role in  excitation-contraction coupling (ECC). In mutated mouse

skeletal  myocytes,  in  which  the D2 region had been deleted,  RyR was still  able  to

function as a Ca2+ release channel but ECC activity was lost. Expression of wild type

RyR1 restored ECC activity in these cells however, if RyR2 was expressed instead there

was no return of ECC function (Yamazawa et al. 1997). 
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D3 has  also  been  suggested  to  play  some  role  in  ECC.  Through  yeast  two-hydrid

experiments, D3 of RyR1 has shown to interact with a region of the L type Ca2+ channel.

When  D3  of  RyR2  was  substituted  occasional,  weak  interactions  were  observed

(Proenza et al. 2002). D1 appears to play a role in the channel's sensitivity to Ca2+ and

caffeine  concentrations.  Deletion  mutants,  and  chimeras  of  RyR  1  and  2  displayed

altered  responses  to  those  of  wild  type  channels  in  ryanodine  binding  experiments.

Complete  deletion  of  D1 did  not  remove caffeine  or  Ca2+ responses  in  the  channel

indicating that D1 does not contain binding sites for these molecules (Du et al. 2000).

Tagging the divergent regions with green fluorescent protein, subsequent cryo-EM and

comparison to the wild type during 3D reconstruction has suggested locations of these

regions on the model of RyR.    

1.8.1.4 FKBP 12/12.6

FK506 binding proteins (FKBP) are members of the immunophilin family which are

binding targets of immunosuppressive drugs, in this case tacrolimus (initially designated

FK506).  They  have  peptidyl-prolyl  isomerase  activity  catalysing  the  cis-trans

isomerisation of peptide bonds. As regards to RyR, FKBPs were first identified when

they were co-purified with RyR1. These FKBPs were named for their molecular masses,

FKBP12 and FKBP12.6. One FKBP12 was shown to interact with one RyR1 subunit

(Jayaraman  et  al.  1992),  so  that  four  FKBP  molecules  are  associated  with  the

functioning channel  homotetramer.  RyR1 associates  with both FKBPs though RyR2

appears to preferentially bind FKBP12.6. However, a recent study indicates that there

may  be  variation  in  FKBP  type  binding  preference  for  RyR2  across  species

(Zissimopoulos et al. 2012a). A FKBP12 binding site is shown in figure 1.19, this site

has  not  been  consistently  reported  in  the  literature  and  other  sites  within  the  RyR

sequence, in particular for RyR2, have been suggested  (Zissimopoulos & Lai 2005a),

(Zissimopoulos & Lai 2005b).  

Both FKBPs have high affinity binding with RyR in either the open or closed state,

however there is greater affinity for the closed channel (Jones et al. 2005). FKBP12.6

binding to RyR2 stabilises the closed conformation of the channel so inhibiting RyR2

activity. While there is some disparity in reported results, it is suggested that these may

be due to other effects on the EC coupling machinery, a reduction in FKBP12.6 levels
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leads to greater Ca2+ transients and more muscle contractions  (Xiao et al.  1997). As

expected,  an increase in  FKBP12.6 leads to  reduction of channel  activity shown by

decreased calcium spark frequency, amplitude and frequency (Gómez et al. 2004).

1.8.1.5 Phosphorylation sites

A number of phosphorylation sites, their interactions with PKA and CaMKII and the

associated changes in physiological function in RyR have been previously discussed in

section 1.6 of this chapter.

1.8.1.6 Interacting (I) domain

This  region has  been studied  in  RyR2 and proposed to  be involved in  interdomain

interaction  and,  as  such,  has  been  named  the  interacting  (I)  domain  (George  et  al.

2004a).  The  I  domain  of  RyR2  comprises  of  two  distinct  domains,  the  interaction

domain located between residues 3722-4353 and the modulatory domain,  containing

two putative TM domains located at residues 4353-4610 (George et al. 2004a), (George

et  al.  2006).  It  should  be  noted  that  this  region  contains  a  high  number  of  CPVT

mutations. Selected CPVT mutations studied in the interacting (I) domain were seen to

trigger  increased  signal  variability  in  Ca2+ release  and  destabilise  inter-domain

interaction (George et al. 2006).    

The interaction of the I domain may been through this region being able to behave like a

hinge. It has been shown that the regulatory events at the cytoplasmic domain are not

appropriately conducted to the pore domain following RyR2 mutations in the I domain

(George et al. 2004a), (George et al. 2006). It is thought that a number of hydrophobic

regions in the I domain are involved in the regulatory interactions that this section of

RyR2 performs (George et al. 2006). 

Homologous regions have been identified in RyR1 and RyR3. In addition, within the I

domain, a series of amino acid repeat sequences that are present in IP3Rs and RyR have

been identified. This region of repeats has been termed the RyR and IP3R homology

(RIH) associated domain, and has been proposed to possibly have protein binding or

related function  (Ponting 2000). Within the I domain a region containing 2 EF hand
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motifs has been identified. This region has been termed the CaM like domain (CaMLD)

and is discussed in later in this chapter. 

Figure 1.20 The RyR2 I  Domain  intrinsically  controls  RyR2 opening through

conformational rearrangement (Jundi 2010).  

Schematic diagram, showing that conformational re-ordering within the I domain is

associated  with  RyR2  channel  opening  and  closing,  based  on  data  obtained  from

fluorescence resonance energy transfer (FRET) studies of cytoplasmic (light grey) and

transmembrane  domain  (dark  grey)  interactions.  Functionally  distinct  sub-regions

within the I domain are predicted from experimental data and computational analysis.

1.8.1.7 CaM Binding Site 

A CaM binding site (CaMBD) has been identified in RyR1 between amino acids 3614-

3643. An equivalent,  highly conserved region was found in RyR2 between residues

3583-3603.  Further  details  of  this  site  and the  potential  significance  of  its  flanking

regions are discussed later in this chapter. 
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1.8.1.8 Transmembrane domains

The transmembrane domains are clearly the key region of the channel forming the pore

within  the  SR  membrane.  A  number  of  models  exist  predicting  the  number  of

transmembrane  segments  present  in  this  domain.  A site  directed  antibody approach

appeared  to  support  at  least  4  segments  of  proposed  models  and  considered  the

possibility of an even number up to a total of 10 segments. Additional data from this

experiment  indicated  that  the  transmembrane domain  was  supported  by a  relatively

short C terminal and longer N terminal cytoplasmic domains  (Grunwald & Meissner

1995). 

 

1.8.2 CaM and RyR regulation

CaM regulates the RyR channel both directly and indirectly. A CaM interaction of note

is  the  activation  of  CaMKII.  A range  of  experimental  techniques  reported  in  the

literature indicates that CaMKII activity leads to a general increase in activity from Ca2+

signalling through to related downstream events such as ECC. This increased response

is  more  Ca2+ sensitive  and  may occur  through  a  response  to  increased  Ca2+ levels

(MacQuaide et  al.  2007) but operates in a less well  regulated fashion than the non-

phosphorylated state. It should be noted that some of these effects are due to CaMKII

having other targets in addition to Ser 2815. These include the L type Ca2+ channel,

linked to increased Ca2+ signalling, and the phospholamban associated with SERCA,

found to  increase  SERCA activity  in  preparation  for  the  next  excitation-contraction

event (Niggli et al. 2013). 

The interaction of CaM with the CaMBD of RyR is of particular interest to this thesis.

CaM is known to inhibit the three RyR isoforms at Ca2+ concentrations greater than 1

μM. At submicromolar concentrations RyR1 and RyR3 are stimulated by Ca2+ (Tripathy

et al. 1995). However, at these lower concentrations RyR2 was either unaffected (Fruen

et al. 2000) or inhibited (Balshaw et al. 2001) by CaM. 

CaM is  known  to  bind  with  high  affinity  to  α  helical  sections  of  protein.  Several

variations of CaM interaction motifs have been proposed from this structure and lead to

the identification of CaM binding sites in a number of proteins that contain the “IQ
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motif”  (named  after  the  first  2  amino  acids  in  the  sequence  motif);  seen  in  many

proteins including RyR and myosin (Rhoads & Friedberg 1997). 

Tryptic  digests  on  RyR1  revealed  that  the  arginine  residues  3630  and  3637  were

protected by apo and Ca-CaM binding (Moore et al. 1999). Both forms of CaM were

shown to bind to a synthetic peptide matching amino acids 3614-3643. Deletion of the

last 9 residues removed the ability to bind apo-CaM but not Ca-CaM  (Rodney et al.

2001).  Fluorescence  resonance  energy  transfer  (FRET)  based  experiments  have

subsequently  agreed  with  the  3614-3643  location  of  a  CaM  binding  site  in  RyR1

(Cornea et al. 2009). A highly conserved site was identified in RyR2, amino acids 3583-

3603.  Deletion  of  this  region  resulted  in  the  prevention  of  CaM  binding  to  RyR2

(Naohiro Yamaguchi et al. 2003).

Mutational studies conducted on the CaM binding site of RyR1 and RyR2 indicated that

regulatory CaM binding is to the one highly conserved site (Naohiro Yamaguchi et al.

2003). Substitution of the non-conserved N and C terminal flanking regions to the CaM

binding site in RyR1 and RyR2 resulted in the Ca2+ concentration response to CaM as

expected for the opposite  isoform. This  result  suggested that  the Ca2+ concentration

response to CaM by the RyR isoforms is as a result of the difference in sequence in

these flanking regions. Further experimentation pointed to residues in the C terminal

flanking region being responsible for the CaM inhibition of RyR2  (Yamaguchi et al.

2004).    

S100A1, a member of the S100 protein family which contains two EF hand motifs, has

been shown to bind to the same site on RyR1 as Ca-CaM. This S100A1 binding site in

RyR  consists  of  12  residues  identified  in  the  highly  conserved  CaM  binding  site

discussed above. In RyR1 this site is amino acids 3616-3627. An NMR structure of Ca2+

bound S100A1 interacting with a peptide of this 12 amino acid RyR1 binding site (PDB

entry 2K2F) has been determined (Wright et al. 2008).

Comparison of this structure with Ca-CaM bound to a peptide of the RyR1 binding site

(PDB entry 2BCX, (Maximciuc et al. 2006)) indicates 6 residues within the 12 amino

acid peptide that have favourable interactions with S100A1 are involved with Ca-CaM

binding.  The  location  of  these  key  binding  residues  within  S100A1  binding  site
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contained within the CaM binding site of RyR supports the observation that Ca-CaM

can still bind if the last 9 residues of the CaM binding site are deleted  (Rodney et al.

2001). 

Cryo-EM studies have suggested 2 different neighbouring sites for apo-CaM and Ca-

CaM binding in RyR1. However, a 33 ± 5 Å distance between the centres of the 2 bound

forms of CaM was observed (Samsó & Wagenknecht 2002). A number of possibilities

were suggested by the authors to explain the distance between the 2 types of CaM that,

the previously discussed data suggests, share one conserved binding site in RyR. Most

of  these  suggestions  involved  the  movement  of  CaM  and/or  the  domains  involved

around the CaM binding site. Additional cryo-EM studies have been conducted which

suggests  that  there  are  2  overlapping  binding  sites  for  CaM,  in  RyR1,  within  the

reported 30 amino acid binding site. 

The  involvement  of  Ca2+ appears  to  play  a  key  role  in  the  binding  process.  The

conformational change triggered by Ca2+ binding to CaM appears to cause CaM to shift

in its binding position and orientation. It has also been suggested that the binding of

Ca2+ to RyR1 may well promote a conformational change in RyR that alters that the

CaM binding site. A mutant form of CaM unable to bind Ca2+ was found to consistently

bind to the apo-CaM position even in the presence of Ca2+. As regards to RyR2, only

one CaM binding location was observed by this set of cryo-EM experiments. Apo-CaM,

binding to RyR2, appears to bind in the equivalent location of Ca-CaM in RyR1 (Huang

et al. 2013). 

This data would appear to agree with the observation that CaM binding to RyR2 inhibits

the channel even at the lower Ca2+ concentrations that are non-inhibitory for the other

RyR isoforms. It was suggested that this may form the basis of a structural regulation

model in which there is an “inhibitory” and “activating” CaM binding location with the

conserved binding site. The inhibitory location only appears to be functional in RyR2; it

may well be that the flanking regions, particularly those downstream of the binding site,

reported  by  Yamaguchi  et  al  (Naohiro  Yamaguchi  et  al.  2003),  (Yamaguchi  et  al.

2004)are somehow involved in this process.    
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Figure 1.21 Proposed  CaM  binding  locations  within  CaMBD  for  RyR1  and

RyR2.

Schematic showing summary of literature for the proposed CaM lobe interaction sites

within conserved CaMBD of RyR1 and RyR2. Where known, sizes of locations given in

number of amino acids. 

1.8.3 CaMLD

A region of rabbit RyR1, amino acids 4064-4210, was found to have CaM like structure

containing  2  putative  EF  hands,  binding  Ca2+ and  displaying  a  Ca2+ induced

conformational change. Peptides of this region were found to interact with an identified

CaM binding site, 3614-3643, within RyR1. Owing to this behaviour the region was

termed the CaM-like domain (CaMLD) (Liangwen Xiong et al. 2006). Antibodies raised

against CaMLD and the CaM binding site both significantly inhibited ryanodine binding

to  RyR1  suggesting  interaction  between  the  two  domains  is  required  for  channel

activation.  Experiments  conducted in  which the CaM binding site  was fluorescently

labelled  displayed  a  Ca2+ dependent  interaction  with  CaMLD  (Gangopadhyay  &

Ikemoto  2008).  It  was  found  in  stimulated  neonatal  cardiomyocytes  that  CaM

dissociates  from  RyR  which  lead  to  an  increased  rate  of  Ca2+ release  events  and

eventually  hypertrophy  of  the  cells.  When  an  anti  CaM  binding  site  antibody,  so
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preventing the interaction of CaMLD with the binding site, was included these events

did not occur. It was suggested that the uncontrolled interaction between the 2 domains

could lead to the disease state of the cardiomyocytes (Gangopadhyay & Ikemoto 2011).

Due to the importance of this interaction, the focus of this thesis involves the study of

this calcium binding domain within the I domain of RyR2. Structural and functional

aspects of this domain are further examined in chapters 3 and 5 respectively.      

1.9 EF hand motifs

In  terms  of  RyR  function  the  importance  of  the  CaMLD/CaMBD  association  is

highlighted by the fact that the CaMLD portion of the molecule contains a number of

CPVT point mutations which are also prevalent in the sequence flanking this domain

(see figure 1.19, lower panel). As previously stated, within CaMLD two EF hand motifs

have been identified (Xiong, 2006). To further understand the potential mechanism of

interaction  between CaMBD and CaMLD, and the  potential  impact  of  CPVT point

mutations within the CaMLD region requires the EF hand motif to be examined. 

The  presence  of  Ca2+ binding  proteins  (CaBPs)  has  allowed  greater  control  in  the

propagation and site of effect of Ca2+ signalling (Case, 2007). It is probable that these

CaBPs act as Ca2+ sensors and they transduce their effect via the EF hand motif. This

motif enables the binding of Ca2+ to be converted into a functional output through the

binding protein (Grabarek 2005). 

The structure of a carp muscle CaBP protein, parvalbumin, was determined by x-ray

crystallography. Within this structure a helix-loop-helix motif with Ca2+ bound in the

loop was identified, a neighbouring repeat of this motif also containing Ca2+ was seen.

As this  motif  could be visualised by a  right  hand with the thumb and index finger

extended at a near right angle, the other fingers clenched (see Fig. 1.22), so the term EF

hand was coined (Kretsinger & Nockolds 1973).    
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Figure 1.22 EF hand motif (Haiech et al. 2011).

The second of the pair of EF hand motifs is formed by helices E and F, and the loop

between them. The index finger representing helix E points towards the N terminal of

the protein. The clenched fingers describe the loop to which Ca2+ is bound. The thumb

representing helix F points towards the protein C terminal. The first EF hand motif is

formed by the helices C and D containing a loop. The two motifs are separated by a

short linker.  

Since the discovery of parvalbumin, thousands of distinct EF hand sequences have been

reported. It is not clear how all these alterations between the sequences result in the

variations  in  properties  of  the  EF hands and the  function  of  their  associated CaBP.

However,  most  known functional  high affinity Ca2+ binding EF hands share a basic

overall sequence which relies on the attraction of Ca2+ to a number of side chain oxygen

molecules, commonly 6 or 7, present in the loop (Grabarek 2005), (Nelson et al. 2001).
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Figure 1.23 Canonical sequence of EF hand. 

Schematic image of helix-loop-helix motif displaying shared features of residues found

in  location  of  common  EF  hand.  Nomenclature  of  canonical  EF  hand  taken  from

parvalbumin where helix E is joined to helix F by a loop. Positions of hydrophobic

residues in the helices are shown by n. The * positions are non-conserved and can be

occupied by any amino acid. Commonly conserved amino acids, including variations,

are shown. In the loop there are six conserved residues as indicated by the numbered

residues.  These positions are sometimes labelled X, Y, Z, -Y, -X and -Z, this system is

based on the first three Ca2+ coordinating residues defining the axes of ligand geometry.

Positions 1 (X), 2 (Y), 3 (Z) and 6 (-Z) are side chain oxygen ligand amino acids. The -Y

position is indicated by a # symbol in the loop, this residue is a backbone carbonyl

ligand. There are two other shown residues in the loop. One of these is a glycine which

is not always conserved. The other is between positions 4 and 5, in earlier studied

examples this was often an isoleucine residue. 
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The canonical EF hand, as shown above (figure 1.23), consists of a twelve residue loop.

The first coordinating ligand, position 1 (X), is commonly an aspartate and the last,

position  6  (-Z),  is  predominantly a  glutamate  which  contributes  two  oxygen  atoms

serving as a bidentate ligand. In addition with positions 1 (X), 2 (Y), 3 (Z) and 6 (-Z),

the contributing two oxygen molecules from positions 4 (-Y)  and 5 (-X), mean that

bound Ca2+ is attached to 7 oxygen atoms in pentagonal bipyramid. 1 (X) and 5 (-X) act

as  the  cap  and  base  with  the  other  positions  forming  the  pentagon.  The  centrally

positioned 4 (-Y) residue binds with the main carbonyl chain oxygen atom as opposed

to a side chain oxygen. The immediate downstream residue is hydrophobic, prevailing

valine, leucine or isoleucine as shown in the figure. The 4 (-Y) residue and its neighbour

are part  of a short  β sheet.  In paired EF hands, as seen for parvalbumin, these two

residues form two hydrogen bonds with their  equivalent  residues in the matching β

sheet so connecting the two loops (Strynadka,  1989).  These two β sheets linked by

hydrogen bonding are referred to as the EF hand β scaffold (Grabarek 2005). 

There are examples of the 6 (-Z) position glutamate being substituted for another amino

acid however there is usually compensation by insertion of additional residues in the N

terminal  of  the  loop.  This  restores  the  coordination  geometry  of  the  Ca2+ binding

(Grabarek  2005).  Mutational  work  has  been  conducted  on  this  glutamate  residue

replacing it with an amino acid only able to provide 1 oxygen atom. The reduction of an

oxygen is thought to reduce the stability of the orientation of the binding Ca2+ which is

observed in a reduced affinity for Ca2+ (Maune et al. 1992). Mutations have been studied

in the other residues of the loop in calbindin D9K. Glutamate and aspartate residues

were replaced individually and in multiples by their amide equivalents glutamine and

asparagine. Individual mutations in both ligating and non ligating residues in the loop

caused  only  small  structural  differences  though  there  was  some  accumulation  for

multiple mutations. Non ligating mutations were found to reduce Ca2+ affinity as well as

those in coordinating positions (Linse et al. 1991).

Additional mutations in the hydrophobic residues, which have no direct contact with

bound Ca2+, in calbindin D9K have been studied. Mutations were selected to alter the

side chain volume of hydrophobic residues. Structural differences were only observed

when the mutated amino acid had grossly different structure to that of the wild type. The

mutations were found to significantly decrease Ca2+ affinity and increase the rate of
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release of bound Ca2+  (Kragelund et al. 1998).        

There are no known monomeric CaBPs, a large number of known CaBPs contain paired

EF hands, for example troponin C. Troponin T binding to troponin C provides a good

example of how a minimal  EF hand dimer connected by a helix  binds to a partner

protein, in this instance troponin I (see figure 1.24 below). 

Figure 1.24 Cardiac muscle troponin complex showing interaction of EF-hand

with partner proteins. 

The cardiac  muscle  troponin  structure  showing  the  acidic  residues  within  the  loop

region  of  the  EF hand in  Troponin  C (ochre  coloured)  holding  the  calcium ion  in

position. The TnI molecule is an extended helix, clamped between the helices of the EF

hand of troponin C. Troponin T is also an extended helix which swaps interactivity with

troponin I in the organisation of the thin-filament. (Figure generated in pymol using

coordinates from PDB: 1J1E).

In these structures there were two Ca2+  bound to the C terminal domain of the protein

while the two EF hand motifs of the N terminal were unbound. It was observed that the

two  domains  had  very  different  conformations.  The  C  terminal  was  in  an  open

conformation  which  presented  a  large,  solvent  exposed hydrophobic  pocket.  The N
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terminal had a closed conformation in which the domain helices were tightly packed

against  each  other  (Herzberg  &  James  1985).  It  was  proposed  that  Ca2+ binding

triggered the conformation from the closed to the open state. The exposed hydrophobic

pocket of the open conformation acting as the target binding site (Herzberg et al. 1986).

This transition model has been named the HMJ model, the name derived from the first

letter of the authors surnames, Herzberg, Moult and James. Subsequent biochemical and

structural data has supported this model. As structural data are required to fully confirm

this type of conformational change it is unknown how extensive this model is amongst

other EF hand CaBPs.

Other proteins, such as CaM, contain two pairs of EF hands. A few proteins contain odd

numbers of EF hands, for example parvalbumin contains three, one of which functions

in an ancillary role to the binding pair. As the EF hand motifs in the heterodimer have

variations in their amino acid content,  as shown in canonical EF hand motif  (figure

1.23),  this  confers  slightly  different  characteristics  upon  the  functioning  pair,  most

importantly  Ca2+ binding  affinity.  It  should  be  noted  that  under  conditions  of  high

concentration of magnesium ions (Mg2+) and low Ca2+, some EF hand motifs will bind

Mg2+. This binding impacts on the behaviour of the related CaBP though it is not known

what  component  of  the  sequence  of  the  binding  loop  confers  Mg2+ binding.  These

variances allowed for greater  control  of Ca2+ signalling through the development  of

domains with different Ca2+ conformation responses that had specific binding targets.

The N and C terminals of CaM are a well  researched example of this difference in

paired EF hand domains (Grabarek 2005), (Nelson et al. 2001). 

The EF hand motif heterodimers are linked by the hydrogen bonds in the short section

of β sheet and this linkage is further maintained by many hydrophobic contacts between

the helices from the residues in the n positions (as shown in figure 1.23). The Ca2+

bound form receives extra strengthening from Ca2+ ligand interactions and hydrogen

bonding between polar groups and closely surrounding water molecules  (Strynadka &

James 1989). The stability of the paired EF hand heterodimer has been compared to

synthetic  pairings  of  homodimers.  Chemical  denaturation  studies  combined  with

circular dichroism and NMR conducted on troponin C revealed that the heterodimer is

more easily formed and has greater stability (Shaw et al. 1994). The EF hand scaffold

structure  has  been found to occur  without  the  support  of  the  hydrophobic  contacts.
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However, the contacts between the helices greatly strengthen the overall structure of the

EF hand pair (Wójcik et al. 1997).

There are two general functional divisions within the EF hand CaBPs. Firstly, signal

modulators, including calbindin D9K and parvalbumin, which affect properties of the

Ca2+ signal.  These  CaBPs  do  not  undergo  Ca2+ binding  induced  structural

rearrangements  or  target  interaction.  This  class  is  usually  involved  in calcium

homoeostasis. The second type, of greater interest to this project, are calcium signal

sensors. This class, which includes CaM and troponin C, undergo a calcium induced

conformational changes that allows for binding to their target site (Nelson et al. 2001). 

As stated previously, CaM is a well studied example of an EF hand containing CaBP.

Crystal structures of CaM bound with calcium (Ca-CaM) and calcium free (apo-CaM)

have been obtained showing that CaM follows the HMJ transition model  (Finn et al.

1995), (Zhang et al. 1995). These structures combined with biochemical data display the

differences between the N and C terminal paired EF hand containing lobes of CaM. The

N lobe has been shown to dissociate Ca2+ more quickly than the C lobe. This has been

reflected in the binding affinity with the C terminal having a higher affinity than the N

terminal  (Black et  al.  2006).  The Ca2+ dissociation rate  and binding affinity can  be

affected by the target protein so further fine tuning the Ca2+ signal. Target proteins can

display preferential binding for Ca-CaM or apo-CaM. Those selecting Ca-CaM cause a

slower dissociation rate  of Ca2+ from the bound CaM. However,  proteins preferably

binding  apo-CaM  tend  to  release  CaM  as  the  Ca2+ concentration  increases.  It  is

proposed that in cardiac myocytes that the low intracellular Ca2+ concentrations may not

be sufficient to favour Ca-CaM over apo-CaM. As such apo-CaM may be bound near

local sources of calcium, as Ca2+ concentration increases so CaM is released and goes

onto bind Ca-CaM preferring sites (Saucerman & Bers 2012). Within cardiac myocytes

one of the major proteins that CaM interacts with is RyR as discussed earlier in this

chapter.

The use of mutational studies in examining the EF hand has been discussed. However,

functional mutations related to cardiac disease have been recently observed within CaM

including CPVT linked mutations (Nyegaard et al. 2012). Some of the studied mutations

are associated with a disruption of the CaM inhibition of RyR2 which results in more
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erratic Ca2+ release frequency and duration leading to impaired cardiac function. Cardiac

hypertrophy and earlier  than expected death has been observed in mouse models of

these  mutations  (Arnáiz-Cot  et  al.  2013),  (Yamaguchi  et  al.  2013).  Additional

mutations  associated  with  long  QT syndrome  and  cardiac  arrest  have  been  located

within the conserved residues of the EF hand loop of CaM (Crotti,  2013). As these

mutations are observed in CaM it is worth considering the locations of the known CPVT

mutations  with relation  to  the  EF hand motifs  of  RyR2.  The CPVT point  mutation

E4076K is contained in the loop of the 2nd EF hand motif of RyR2 (see figure 1.25

below)  when compared to  the  canonical  EF hand shown in  figure  1.22.  While  this

mutation is not in one the conserved positions of the loop it is not clear how it will

effect the function of the EF hand. During the time of this thesis this is the only known

CPVT mutation contained within the EF hand motifs of RyR2.    

Figure 1.25 Sequence alignment of RyR2 2nd EF hand motif against canonical EF

hand motif.

RyR2 amino acid sequence shown as top line with closest matching canonical sequence

underneath. Sequence within EF hand loop section is highlighted by box. CPVT point

mutation  E4076K location  is  shown in  red in  RyR2 sequence.  As  in  figure  1.23,  *

indicates non conserved position, n indicates predicted hydrophobic residue within α

helix either side of loop. Threonine residue present in RyR2 where ? symbol is used to

represent expected Ser (or Asp or Asn) residue in canonical amino acid sequence.   

As illustrated above, while there is increasing knowledge about RyR and the role of

mutations upon the channel's function there still much to be understood. Certain regions

within  RyR  have  undergone  more  scrutiny  than  others.  The  advancement  in

comprehending  the  role  of  these  regions  has  increased  as  shown by the  structures

obtained for the N terminal region of RyR. The I domain has been studied and shown to

be involved in domain interaction which is key for the function of the channel. Within

the I domain, a CaM like domain which interacts with a CaM binding site has been

identified. The interaction between these two domains is of particular interest to this

project.
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1.10 Aims of project

It is planned to focus upon the CaMLD which is proposed to interact with the CaM

binding site. Figure 1.26 (see below) summarises what is currently known and indicates

potential interactions between CaMLD and CaMBD, within the context of the proposed

model of I domain regulation of channel gating. To test the role of CaMLD and CaMBD

within  this  model  (working hypothesis),  it  is  intended to  adopt  a  structure/function

approach to  investigate  the  relationship  between the  two domains  and the  potential

effect of CPVT mutations within this region. Both regions will be made as recombinant

proteins and used in various interaction studies. The recombinant proteins will also be

characterised  and  used  for  crystallisation  studies.  Homology  modelling  of  the  two

individual domains, and also both domains and their linking region will be undertaken

to assess key residues essential to their interaction. 

Figure 1.26a Overview of proposed interactions between RyR2 central region and

pore domain. 

Magenta ovals and linker to pore represent I domain. Red pore section from KCSA pore

x-ray determined structure. CaMBD and CaMLD are labelled. 

(A) Basic overview of proposed interaction transitions of I domain, and CaMBD and

CaMLD as RyR2 channel goes from open to closed state.
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Figure 1.26b Overview of proposed interactions between RyR2 central region and

pore domain. 

Section of I domain (magenta) with indented region representing location of CaMLD.

Within CaMBD (blue), CaM lobe interaction location (yellow-green) and C terminus

flanking region (spotted orange) are shown. 

(B) Focus on interaction between CaMBD and CaMLD from panel a. Basic proposed

mechanism for disassociation of CaM from CaMBD with increasing Ca2+ concentration

and transfer to binding of CaMLD to CaMBD. In this figure the linking region between

the N and C terminal lobes of CaM is extended for graphical purposes to illustrate the

possibility of the two lobes of CaM interacting with different locations of RyR2.  
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Chapter 2:

Materials and Methods

64



2.1 Materials

2.1.1 General Laboratory Reagents and Chemicals

All  reagents  and  chemicals  were  of  suitable  or  higher  grade  for  the  conducted

experiments  and were obtained from Sigma,  Fisher or Calbiochem unless  otherwise

stated. Equipment for polyacrylamide gel electrophoresis (PAGE) was obtained from

BioRad unless otherwise stated. All solutions were stored at room temperature, unless

otherwise stated. All filter sterilization was through 0.2 μm filters (Sartorius).

2.1.2 General Biological Reagents

• CaCl2, 1M stock: a 1 M solution was filter sterilised and stored at 4°C.

• DNA loading buffer, 5X stock: 50% v/v glycerol, 0.25% w/v orange G, 5x TAE. 

• EGTA 1 M stock: Dissolved in H2O at pH 8.0. Filter sterilised and stored at 4°C.

• IPTG, 1 M stock: prepared and filter sterilised as required.

• Molecular weight DNA markers: obtained from NEB and Sigma

• TAE, 50X stock: 2 M Tris, 2 M acetic acid, 50 mM EDTA

2.1.3 Protein Biochemistry Reagents

2.1.3.1 General reagents

• Ammonium persulfate: 10% w/v.

• Molecular  weight  protein  markers:  pre-stained  Kaleidoscope  (Broad  Range)

markers  obtained  from  BioRad  and  pre-stained  Colorplus  (Broad  Range)

markers obtained from NEB.

• EDTA free protease inhibitor cocktail: obtained from Roche.

• Protein loading buffer, 5X stock: 0.2 M Tris, 10% w/v SDS, 40% v/v glycerol,

0.05% v/v 2-mercaptoethanol, 0.25% w/v bromophenol blue, pH adjusted to 6.8.

• Running buffer, 5X stock: 15 g/L Tris, 72 g/L glycine, 5 g/L SDS.

• Semi-dry transfer buffer: 48 mM Tris, 39 mM glycine, 0.0375% w/v SDS, 20%

v/v methanol.
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• TBS, 10X Stock: 0.2 M Tris, 1.37 M NaCl, pH adjusted to 7.5.

• TBS-T buffer: 1X TBS, 0.1% v/v Tween-20. 

• Tris, 0.5 M: a 0.5 M solution was pH adjusted to 6.8.

• Tris, 1.5 M: a 1.5 M solution was pH adjusted to 8.8.

• Coomassie stain: 48% v/v MeOH, 42% v/v H2O, 10% v/v glacial acetic acid,

0.2% w/v Coomassie brilliant blue R-250.

• Coomassie destain: 48% v/v MeOH, 42% v/v H2O, 10% v/v glacial acetic acid.

2.1.3.2 Protein purification reagents and specific buffers

• Ni tag standard buffer: 93.2 mM Na2HPO4, 6.8 mM NaH2PO4, 300 mM NaCl,

pH adjusted to 8. 

• Ni tag resuspension buffer:  93.2 mM Na2HPO4,  6.8 mM NaH2PO4,  300 mM

NaCl, 60 mM imidazole, 0.002% v/v 2-mercaptoethanol, pH adjusted to 8. 

• Ni tag bead wash buffer: 93.2 mM Na2HPO4, 6.8 mM NaH2PO4, 300 mM NaCl,

70 mM imidazole, 0.002% v/v 2-mercaptoethanol, pH adjusted to 8. 

• Ni tag bead elution buffer:  93.2 mM Na2HPO4,  6.8  mM NaH2PO4,  300 mM

NaCl, 250 mM imidazole, 0.002% v/v 2-mercaptoethanol, pH adjusted to 8. 

  

• GST tag resuspension buffer: 57.7 mM Na2HPO4, 42.3 mM NaH2PO4, 300 mM

NaCl, 2 mM DTT, pH adjusted to 7.

• GST tag bead wash buffer: 57.7 mM Na2HPO4, 42.3 mM NaH2PO4, 300 mM

NaCl, 2 mM DTT, 5 mM glutathione reduced, pH adjusted to 7.

• GST tag bead elution buffer: 100 mM Tris, 300 mM NaCl, 2 mM DTT, 20 mM

glutathione reduced, pH adjusted to 8.

• General assay buffer: 50 mM Tris, 300 mM NaCl, 2 mM DTT, pH adjusted to 8.

For all protein samples undergoing purification stages utilising a His tag, Ni sepharose

(6 fast flow, GE healthcare) beads were used.  

For all protein samples undergoing purification stages utilising a GST tag, glutathione

sepharose 4B (GE healthcare) beads were used. 
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2.1.4 Bacterial Cell Culture Reagents

Growth media was obtained from Fisher, for some culture work ready made powdered

LB media was purchased from Formedium. All glassware was washed in detergent-free

water prior to use and in some instances also autoclaved (121 C, 15 min). Growth

media  were  autoclaved  under  the  same  conditions  prior  to  antibiotic  addition.

Procedures were conducted in a sterile fume hood or with the use of a Bunsen burner

flame. All surfaces were cleaned with 70% v/v ethanol before and after use. 

• LB broth: 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl. Autoclaved. Medium

cooled to <50°C before antibiotic addition. Stored at 4°C.

• LB-agar medium: LB broth, 15 g/L agar. Autoclaved. Medium cooled to <50°C

before antibiotic addition. Stored at 4°C once poured.

• TB broth: 12 g/L tryptone, 24 g/L yeast extract, 4 ml/L glycerol made up to 900

ml with H2O. Autoclaved. Medium cooled to <50°C before addition of 100 ml

0.17 M KH2PO4 and 0.72 M K2HPO4, and antibiotic. 

• SOC medium: 20 g/L tryptone, 5 g/L yeast extract, 0.5 g/L NaCl, 0.18 g/L KCl,

0.95 g/L MgCl2. Autoclaved. Medium was cooled to <50°C and 2% glucose w/v

was added. Stored at -20°C.

• Ampicillin,  1000X  stock:  100  mg/ml,  dissolved  in  deionised  H2O,  filter

sterilised, stored at -20°C.

• Kanamycin,  1000X  stock:  30  mg/ml,  dissolved  in  deionised  H2O,  filter

sterilised, stored at -20°C.

• Chloramphenicol,  1000X stock: 40 mg/ml, dissolved in deionised H2O, filter

sterilised, stored at -20°C.

2.1.5 Oligonucleotides

Custom oligonucleotide primers were ordered from Sigma-Genosys and were obtained

as  lyophilised  pellets.  Pellets  were  resuspended  in  an  appropriate  volume of  sterile

deionised  H2O  to  give  stock  solutions  of  100  μM,  according  to  manufacturer’s

instructions. Working solutions of 20 μM or 3.2 μM, as appropriate, were prepared by

dilution with H2O and all primers stored at -20°C. The primers used in this study are

shown in chapter 5 accompanying the relevant construct.
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2.1.6 Plasmid Vectors

2.1.6.1 pET15b expression vector

A modified version of the pET15b vector (Novagen) was provided by Dr. M. Bochtler.

This modified version of the commercial vector retains the lac promoter, the N-terminal

His tag and allows for ampicillin selection. However the thrombin cleavage site has

been  removed  meaning  the  His  tag  cannot  be  cleaved  from the  expressed  protein

sequence.  

Figure 2.1.1 Vector map of pET15b (Novagen (Merck)). 

Note that modified version of vector used had thrombin cleavage site removed. 
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2.1.6.2 pETMM Vectors

The pETMM series of expression vectors were generated at EMBL Heidelberg. The

specific pETMM vectors used in this project were provided by Dr. M. Bochtler. The

used  vectors  shared  the  features  of  allowing  for  kanamycin  selection  and  a  TEV

cleavage site which allows for the removal of the N-terminal dual tag. The N-terminal

tags consisted of a His tag and a highly soluble protein. Solubility tags used included

thioredoxin (Trx) (pETMM20), maltose-binding protein (MBP) (pETMM41) and NusA

(pETMM60), an E. coli protein associated with transcription termination. As the vectors

are derived from pET vectors they share a common multiple cloning site (MCS) and the

lac promoter. 

 

Figure 2.1.2 Vector map of pETMM 60 (NusA).

Only  difference  from  other  pETMM vectors  used  is  the  solubility  tag.   Map  from

supplied information received with vector. 
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2.1.6.3 pGEX-6P-1 Vector

pGEX-6P-1  vector  was  obtained  from GE Healthcare.  The  vector  codes  for  an  N-

terminal glutathione-S-transferase (GST) tag, contains the lac promoter and allows for

ampicillin selection.

Figure 2.1.3 Vector map of pGEX-6P-1 (GE Healthcare). 

Expansion shows multiple cloning site of vector, demonstrating the frame of the GST

coding sequence.

2.1.7 Antibodies

The following antibodies were used in this study:

• Ab-103T,  rabbit  polyclonal,  raised  against  glutathione-S-transferase.  Used  at

1:10000 dilution for western blotting.

• Anti-NusA, mouse monoclonal.  Obtained from Santa  Cruz.  Used at  1:20000

dilution for western blotting.

• anti-His (penta His), mouse polyclonal. Obtained from Qiagen. Used at 1:2000

dilution for western blotting.
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• CaM (G-3), mouse monoclonal, raised against amino acids 1-149 human CaM.

Obtained from Santa Cruz. Used at 1:2000 dilution for western blotting. 

• Donkey  anti-mouse  IgG-HRP.  Obtained  from  Santa  Cruz.  Used  at  1:10000

dilution for western blotting.

• Donkey  anti-rabbit  IgG-HRP.  Obtained  from  Santa  Cruz.  Used  at  1:10000

dilution for western blotting.

2.1.8 Computer Software and Data Analysis

Stained protein gels and western blots were scanned at 600 dpi, when possible, using

various image scanners and a densitometer (GS-700, BioRad), image processing was

performed using Paint Shop Pro X (Corel).  Standard spreadsheet packages present in

office  software  (Microsoft  and Libreoffice)  were  used to  analyse  data  and generate

graphs.

DNA and protein sequence analysis  were performed using software available  at  the

ExPASy (http://www.expasy.ch/tools/dna.html), and European Bioinformatics Institute

(http://www.ebi.ac.uk/services)  websites.  In  addition,  protein  secondary  structure

sequence prediction was conducted using the network protein sequence analysis web

server  based  at  the  Pôle  Bioinformatique  Lyonnais  (http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?  page=/NPSA/npsa_server.html).  Open  reading frame analysis  of

DNA sequence was performed using the Chromas Lite 2.01  (Technelysium). 

In silico modelling and analyse software was used to generate the models shown in

chapter 3 and 4. Models were generated using MODELLER (academic licence, Salilab,

http://salilab.org/MODELLER/) was used with the Swift MODELLER GUI (Mathur,

http://www.bitmesra.ac.in/swift-MODELLER/swift.htm). Model simulation was run in

CHARMM  (Karplus,  http://www.charmm.org/),  models  were  prepared  in  Insight  II

(Accelrys)  prior  to  loading  into  CHARMM.  Model  analysis  was  conducted  using

Procheck  (EBI,  http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/)  and  VMD

(Humphrey,   http://www.ks.uiuc.edu/Research/vmd/).  Gnuplot

(http://www.gnuplot.info/) was used generate graphs from some of the data output from

CHARMM. Specific information to the operation of these programmes is detailed in the

relevant chapter. 
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2.1.9 Health and Safety

All reagents were handled and stored as recommended by manufacturer’s safety sheets.

All  experiments  were  carried out  in  accordance  with  COSHH regulations  and local

college regulations. 

All genetic manipulation was carried out following GMAG guidelines.

All bacterial cultures were disinfected with Haz-Tabs (Guest Medical) at manufacturer's

recommended concentrations (1 tablet/L of water) prior to disposal. 

2.2 Methods

Standard  molecular  and  biochemical  techniques  were  performed  according  to

procedures  described  in  Molecular  Cloning:  A Laboratory  Manual  (CSH) or  Short

Protocols  in  Molecular  Biology  (Wiley).  DNA purification  techniques  and  in  vitro

transcription/translation  protocols  were  carried  out  according  to  users’  manuals

provided by system manufacturers (Promega, Qiagen and Pierce), as detailed below.

2.2.1 Nucleic Acid Biochemistry Techniques

2.2.1.1 PCR amplification of DNA

PCR reactions were carried out according to reagent manufacturers’ instructions, using a

GeneAmp 9700 (Applied Biosystems) PCR machine. Taq DNA polymerase (Promega)

was used for diagnostic reactions only, whilst Phusion polymerase (NEB) was used for

generation  of  high  fidelity  PCR  products  for  cloning  purposes.  Standard  reaction

mixtures and thermal cycling conditions, including annealing temperature and extension

times, as recommended for the polymerase used were followed. 

Following analysis of PCR products by agarose gel electrophoresis, PCR products were

purified by excision from the agarose gel, using the QIAEX II Agarose Gel Extraction

Kit (Qiagen).

2.2.1.2 Agarose gel electrophoresis

DNA fragments were analysed by agarose gel electrophoresis and compared to DNA
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standard size markers. Agarose (Euorgentec), usually 1% w/v agarose, was added to

TAE buffer  (1X)  and heated  at  high  power in  a  microwave oven until  the  agarose

dissolved. The solution was allowed to cool to <50°C and ethidium bromide was added

to a final concentration of 0.2  μg/ml. The solution was cast in a gel tray, assembled

according to manufacturer’s instructions (BioRad), and a comb inserted to mould the

wells.  Once the gel had set,  DNA samples in 1X DNA-loading buffer were loaded,

along with standard DNA molecular weight markers (NEB). Electrophoresis was then

performed in a gel tank containing fresh 1x TAE at a constant voltage (70-120V). The

gel was visualised on a UV transluminator and the image acquired using Quantity One

software (BioRad). 

2.2.1.3 Cloning of DNA fragments

Plasmid DNA was digested with 100 U of predetermined endonuclease enzymes (NEB),

typically 100 μg DNA in 100 μl reactions for 2 hr at 37°C, in the appropriate buffer as

instructed  by the  enzyme manufacturer.  Primers  were  designed to  allow compatible

double digests within the same vector system. The digestion mixture was heat denatured

at 80°C for 20 minutes prior to treatment with alkaline phosphatase (~100 units CIP,

NEB) for 1 hr at 37°C. The digested product was purified using the QIAquick PCR

purification kit  (Qiagen) with the DNA eluted eluted in a minimal volume (<50 μl)

dH2O. Purified PCR products were digested following the same protocol except the heat

denaturing and phosphatase treatment steps were omitted.  

Ligations were carried out using a molar ratio of 3:1 or even 5:1 of insert to vector. The

ligation  was  performed  using  T4  DNA ligase  (NEB)  in  supplied  1X  buffer  and

incubated  at  4°C  overnight.  The  ligation  mixture  was  subsequently  used  for

transformation into chemically competent E. coli bacteria as described below.

2.2.1.4 Bacterial cell culture

Bacteria  were  cultured  under  aseptic  conditions  at  37°C  in  LB  medium,  either  in

suspension with rotation at 180 rpm (Innova 4300 shaker incubator, New Brunswick) or

on solid support medium on LB-agar plates (plate incubator, Heraeus). Where bacteria

were transformed with plasmid DNA, the growth medium was supplemented with the
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appropriate antibiotic.

For every positive clone, a glycerol stock of the host bacteria was prepared for long-

term storage; 1 ml of a saturated overnight culture wad pelleted by centrifugation at

10,000g  for  5  min  and  resuspended  in  1  ml  of  LB:glycerol  1:1,  containing  the

appropriate antibiotic. The glycerol stock was then snap frozen in liquid nitrogen and

stored at -80°C. Bacteria were revived from stock by streaking a sample of the frozen

stock on an LB-agar plate (containing the appropriate antibiotic) to produce individual

colonies.

The cell density of growing cultures, where required, was determined by measuring the

light absorbance of the suspension at a wavelength of 600 nm. 

2.2.1.5 Preparation of competent bacteria

Chemically competent TOP10, BL21 (DE3) and Rosetta (DE3) cells were made in the

laboratory using the CaCl2 method. Aliquots (120  μl) were flash frozen using liquid

nitrogen and stored at –80C for up to six months. 

Rosetta  2  (DE3)  (Novagen/Merck)  were  purchased  for  some  stages  of  the  project

involving mutant constructs.  

2.2.1.6 Transformation of competent bacteria

5 μl of ligation reaction mixture was added to chemically competent E. coli as soon as

they started to  thaw. The cells  were then incubated on ice for 30 minutes  and then

subjected to ‘heat-shock’ by being placed at 42°C in a water bath for 45 sec and then

returned to ice for a further 3-5 minutes. Cells were then suspended in 800  μl  SOC

medium and incubated at 37°C for one hour with shaking at 225 rpm. Unequal volumes

of the cell culture (commonly the equivalent of 100 μl and 800 μl) were plated on LB-

agar  containing  the  appropriate  antibiotic  and  incubated  overnight  at  37°C.  Culture

plates were then stored for a maximum of 4 weeks at 4°C.

2.2.1.7 Analysis of positive clones by PCR screening

From the  transformation  culture  plates  a  number  of  colonies  were  screened for  the
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presence of the recombinant plasmid. Colonies of interest were picked from the plate

and transferred to a PCR reaction containing primers specific to the subcloned insert.

Following  cycling,  the  PCR reactions  were  analysed  by  agarose  electrophoresis  as

above.  The  selected  colonies  were  also  used  to  innoculate  10  ml  of  LB  medium

containing any appropriate antibiotic which was grown overnight at 37°C with shaking

at 225 rpm. Plasmid DNA was purified from any culture that the parent colony that had

a given a positive result  from PCR screening. Purification was performed using the

Wizard SV Minipreps plasmid purification kit (Promega) following the manufacturer’s

recommended protocol except DNA was eluted with 30 μl dH2O per kit spin column.

Some of the colonies were further tested by restriction digest following the protocol

described above. 

The presence and correct orientation of the subcloned insert was confirmed by DNA

sequencing of the plasmid DNA. Sequencing samples were prepared using the BigDye

Terminator  v3.1  cycle  sequencing  kit  (Applied  Biosystems)  following  the

manufacturer’s instructions. The prepared sample was sent for sequence reading and the

returned  chromatograms  compared  against  predicted  sequence.  Samples  of  plasmid

DNA from sequencing confirmed colonies were stored at -20°C.

2.2.1.8 Quantification of DNA

DNA concentration was determined by spectrophotometric  quantification of  a  1:100

dilution sample (in duplicate) by measuring the absorbance at 260 nm (A260) in a quartz

cuvette  using  a  Perkin-Elmer  MBA2000  spectrophotometer.  The  concentration  was

calculated using the equation: 1unit A260 = 50 g/ml of double stranded DNA.

2.2.1.9 Point mutation of recombinant DNA constructs

Mutation of recombinant DNA constructs was performed using the QuikChange  II XL

Site-Directed  Mutagenesis  Kit  (Stratagene)  according to  manufacturer’s  instructions.

Complementary primers incorporating the desired mutation were designed for use with

the kit for which manufacturer’s instructions were followed.  

Post the thermal cycling step, 1 μl of DpnI was added to digest the methylated template

DNA and  the  reaction  incubated  for  1  hr  at  37°C.  5  μl  of  the  reaction  was  then

transformed into the supplied XL10-Gold competent cells. Recombinant colonies were
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screened by PCR and restriction digest, and the presence of the mutation confirmed by

DNA sequencing. 

2.2.2 Protein Biochemistry Techniques

2.2.2.1 SDS-polyacrylamide gel electrophoresis

Protein sample quality was assessed by comparison to standard molecular weight (MW)

markers by running SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Gels were

made,  assembled  and  run  according  the  instructions  in  the  Mini-Protean  tetra  cell

manual  (Bio-Rad).  The  acrylamide/Bis  percentage  of  the  separating  gels  were

determined by the MW of the proteins to be assessed. The separating gels were covered

with  water  until  set  which  was  removed  using  blotting  paper  prior  to  pouring  the

stacking gel.  Wells  were flushed with water  then filled with running buffer prior to

sample loading. Samples were heated treated at  80°C for 10 minutes in 1X loading

buffer. Electrophoresis was conducted at constant voltage (usually 150V) until the dye

front had travelled far enough to allow visualisation of the protein samples. Gels were

visualised by staining with Coomassie stain followed by several washes of destain. Gels

were stored in water prior to scanning. 

2.2.2.2 Transfer of proteins to membranes

Proteins from SDS-PAGE gels were transferred to a polyvinylidene difluoride (PVDF)

(Immobilon-P, Millipore) membrane using a semi-dry transfer apparatus (BioRad). The

SDS-PAGE gel and membrane were pre-equilibrated in semi-dry transfer buffer for 20

minutes at  room temperature (PVDF membranes were pre-soaked in methanol for 1

minute).  The  transfer  apparatus  was  assembled  according  to  the  manufacturer’s

instructions,  with  the  membrane between the  gel  and the  anode.  The proteins  were

transferred by electrophoresis at a constant voltage (15 V) for 45-60 minutes, dependent

on protein size, at room temperature. 

2.2.2.3 Western blot analysis

After protein transfer,  the membrane was incubated in TBS-T buffer  containing 5%

(w/v)  skimmed  milk  powder  (Marvel)  (TBS-T/milk)  overnight  at  4°C  with  gentle

mixing. Primary antibodies were added in the appropriate dilution in TBS-T/milk for 60
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minutes at room temperature with gentle mixing. The membrane was then washed three

times (10 minutes/wash) with TBS-T/milk. The secondary antibody was added in an

appropriate dilution in TBS-T/milk and incubated at room temperature for 60 minutes

with gentle mixing. The membrane was then washed three times (10 minutes/wash)

with  TBS-T.  The membrane was then  sprayed with  a  single  step  chemiluminescent

substrate, ECL reagent (Calbiochem/Merck). The reagent was allowed to work for 3-5

minutes prior to exposure to film (Kodak) for various periods of time as required for

visualisation of immunoreactive bands. The exposure and subsequent film development

(Compact X4 developer, Xograph) was conducted in a darkroom. 

2.2.2.4 Determination of protein concentration

Protein concentration was mainly determined by application of the Beer-Lambert law.

Absorbance  readings  were  taken  at  280  nm  using  a  MBA 2000  (Perkin  Elmer)

spectrophotometer with a 1 cm light path. The theoretical molar extinction coefficients

used  in  the  calculation  were  generated  by  amino  acid  sequence  analysis  by  the

ProtParam tool (ExPASy site tool). 

For some protein samples protein concentration was determined using the BCA assay

kit (Pierce) according to manufacturer’s instructions. The assay was performed in a 96-

well plate and the absorbance read at 560 nm in a Multiscan EX (Labsystems) plate

reader using the Genesis (Labsystems) software program. Sample measurements were

taken  in  duplicate  for  three  appropriate  dilutions.  These  were  then  compared  to  a

standard  curve  produced by measurement  of  various  known concentrations  of  BSA

(62.5 μg/ml – 2 mg/ml) using the same method.

2.2.2.5 General expression and affinity purification of recombinant proteins

E.  coli Rosetta (DE3)  bacteria  were  transformed  with  appropriate  recombinant  tag-

fusion vector as described above. A 25 ml culture of LB containing the appropriate

antibiotic for the selected vector and chloramphenicol, to select for the Rosetta, was

inoculated with one colony of transformed bacteria and grown at 37°C overnight in a

shaking incubator. A 500 ml culture of TB containing both the vector selection antibiotic

and chloramphenicol was inoculated with 5 ml of the overnight culture. This culture

was then grown at 37°C and 180 rpm in a shaking incubator until the optical density
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(OD), measured by absorbance at 600 nm reached 0.7-0.8 at which point the incubator

was set to cool to 16°C.  The OD and temperature were then closely monitored, the OD

commonly reached 1.0 by the time the temperature had fallen to below 20°C. At this

stage expression was induced by addition of 100 μg/ml (final concentration) IPTG, and

the culture medium incubated at 16°C for a further 12-14 hrs. 

The culture medium was then centrifuged at 7000g (JLA-8.1000, Beckman) for 15 min

at 4°C to pellet the bacteria. The pellet was transferred to universal tubes and stored at

-80°C until  usage.  Stored pellet  was commonly resuspended in 20 ml/L (relative to

original culture volume), occasionally larger volumes were required, of the respective

buffer  for  the  tag  system to  be  used  for  purification.  EDTA free  protease  inhibitor

cocktail  tablets (Roche), 1 per 50 ml, were added to the resuspended pellet mixture

which was then left to mix by rolling for 1-2 hrs at 4°C. A pressure cell homogeniser

(Stansted)  was  pre-chilled  to  4°C and  flushed  through  with  water  followed  by the

appropriate  resuspension  buffer.  The  pellet  mixture  was  processed  through  the

homogeniser a minimum of two times in 50 ml batches with processed sample being

collected on ice. Lysed pellet was centrifuged at 50,000g (JA-25.50, Beckman) for 30

min 4°C. The supernatant was mixed with the appropriate affinity beads, which had

been pre-washed in resuspension buffer,  for the tag system being used.  Beads were

allowed to mix by rolling at 4°C for a minimum of two hours though more usually for

14 hours. Post this incubation phase, the mixed slurry was poured into small (less than 2

cm diameter) columns (Bio-Rad) allowing the beads to pack under gravity. Once all the

liquid from the slurry had flowed through the column then the beads were washed with

2 column volumes of appropriate resuspension buffer. Beads were then further washed

with 10-20 column volumes of bead specific wash buffer as required. Protein elution

from the column was monitored using the basic protein assay, stated above, with no

further wash buffer being used once no further blue colour was observed in the assay. 1

ml fractions were eluted using the relevant elution buffer, once again these fractions

were monitored using the basic protein assay.  Fractions were analysed for purity by

SDS-PAGE. 

It should be noted that for the pETMM60 CaM protein that the Ni tag buffer systems

were modified so that the harvested pellet was lysed in 20 mM imidazole, the incubated

beads washed with 40 mM imidazole and the CaM fusion protein eluted with 100 mM
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imidazole. These modifications were also applied for the production of the NusA-6His

tag control protein. 

If no further purification steps were required for the protein sample prior to downstream

application use, predominantly functional assays, then affinity purified protein samples

underwent dialysis. Desired protein fractions were pooled and loaded into SnakeSkin

dialysis  tubing (Pierce/Thermo Scientific),  either  10K or  3K MWCO depending  on

protein size. Dialysis tubing was placed in an excess volume (min x500 volumes) of the

appropriate downstream assay starting buffer, usually the general assay buffer, which

was left at 4°C overnight with gentle stirring. If required then the dialysis tubing was

transferred to a similar excess of buffer and left for an additional 3-4 hr period under the

same conditions. Dialysed protein samples were concentrated using Vivaspin (Sartorius)

centrifugal  concentrators  (PES membrane,  relevant  MWCO to  protein  sample)  until

suitable concentration for the downstream application was achieved. 

2.2.2.6 Further stages of purification of recombinant proteins 

The  affinity  purified  protein  samples  underwent  further  purification  stages  prior  to

certain experiments described in chapters 5 and 6. 

2.2.2.6.1 Tag cleavage from fusion proteins

Fusion tags were cleaved from recombinant protein samples by incubation with the 

appropriate protease, TEV for pETMM and 3C for pGEX based constructs. Commonly

the cleavage was combined with the post  affinity purification dialysis  step with the

protease added to the respective dialysis tubing usually in the concentration range 1:20

to  the  fusion  protein.  The  protease  and  cleaved  fusion  tag  was  removed  by  an

incubation,  30  minutes  at  4°C with  rolling,  with  an  equivalent  amount  of  relevant

affinity bead as used in the purification step for that batch of protein. The slurry was

passed through a gravity drip column and the follow through, containing the cleaved 

protein, was retained. Recombinant 3C and TEV were produced in the laboratory using

the procedures described above except that the Ni tag standard buffer was used to lyse

the TEV harvested pellet and the affinity purification wash step was omitted for both

proteases. 
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2.2.2.6.2 Gel filtration

A sephacryl HR-300 column (GE healthcare) was pre-washed with the general assay

buffer  using  an  ÄKTA FPLC  system  running  Unicorn  software  (GE  healthcare).

Affinity purified protein was concentrated, usually 1-5 mg/ml, and a sample of less than

10 ml was injected onto the column. A constant flow rate of <0.5 ml was maintained,

elution was monitored by UV absorbance and fractions were collected during the course

of the run. Elution peaks of interest were analysed by SDS-PAGE.     

2.2.3 Functional Assay Techniques

2.2.3.1 Pull down assays

Protein  and  antibody  concentrations  were  tested  to  allow  sufficient  detection  of

potential interactions by western blot analysis. A slight excess of protein, commonly 20-

30 μg per protein per assay, was subsequently used in the pull down assays. To allow

detection by western blot the tagged fusion proteins were used except for CaM which

had its tag removed. Some experiments were conducted with commercially obtained

CaM-agarose beads (Stratagene). An excess of affinity beads, min vol 30 μl, were used

to immobilise the bait protein. The beads had been previously washed in general assay

buffer containing the desired Ca2+ for the experiment. The pull down assay Ca2+ and

EGTA buffers were made by addition of the relevant stock solution to general assay

buffer, the Ca2+ buffers were not chelated. The potential binding partner protein was

added with pull down assay buffer, to give a total volume of x10 the bead volume used,

and allowed to incubate with mixing for a minimum of 20 minutes. Post incubation the

beads were centrifuged <100 g to remove liquid from the beads. This was followed by 3

further washes of x3-4 volume of beads using the specific pull down assay buffer. Post

the final centrifuge step the beads were resuspended in x2 volume protein loading buffer

prior to SDS-PAGE and western blot analysis.    

   

For a limited number of the interaction experiments glutaraldehyde cross linking was

used. The protocol as above was followed except 0.25% v/v glutaraldehyde solution

(Sigma) was added during the incubation phase.  Post  the incubation stage 20% v/v

hydrazine solution (Sigma) was added to prevent further cross linking.   
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2.2.3.2 Circular Dichroism

Purified  protein  samples  were  dialysed  into  a  buffer  system  suitable  for  circular

dichroism (CD), commonly 20 mM Tris, 300 mM NaF, pH adjusted to 8 using H2SO4

rather than HCl. Post dialysis the samples were concentrated, if possible into the range

1-2 mg/ml, and then checked for UV absorbance in the wavelength range 190-250 nm if

the sample was to be tested for secondary structure features. CD data was collected in

the  far  (190-250  nm)  and  near  (250-350  nm)  UV  regions  using  a  DSM20

Monochromator (Olis) using a range of sample cell lengths, dependent on the protein

sample quality, on the B23 beamline at the Diamond Light Source synchrotron. Data

were analysed using Globalworks software (OLIS). Additional data was collected using

a Chirascan CD spectrometer (Applied Photophysics), these data were directly entered

into a spreadsheet package for analysis. On both systems data collection rates (scan

speed,  nm/sec)  were optimised to  provide best  signal  quality against  noise within a

practical time frame. Multiple data sets were collected per experiment and experiments

were conducted across several batches of purified protein.      

Ca2+ sensitivity and potential interaction experiments were mainly conducted in the 250-

350 nm range monitoring changes in the 3ry structure of aromatic residues of the tested

protein  samples.  Although  the  protein  samples  being  tested  had  different  relative

contributing signal strengths; data was recorded using 1:1 concentrations for interaction

studies. Experimental Ca2+ concentrations were achieved by addition of stock CaCl2 and

EGTA solutions. Volumes were pre-calculated to minimize dilution effects on protein

signal strength with H2O used as an equivalent volume when no stock solutions were

added. Variations in protein concentrations between purification batches were also taken

into account to allow comparison across the data collected.    

2.2.3.3 Mass Spectrometry

Gel plugs (1.5 mm diameter) were manually excised, placed in a 96-well plate and 

peptides recovered following trypsin digestion using a slightly modified version of the 

(Shevchenko et al. 1996) method. Sequencing grade modified trypsin (Promega UK 

Ltd) was used at 6.25 ng/μl in 25mM NH4HCO3 and incubated at 37ºC for 3 hours. 

Finally the dried peptides were resuspended in 50% (v/v) acetonitrile in 0.1% (v/v) 

trifluoroacetic acid (TFA; 5 μl) for mass spectrometry (MS) analysis and an aliquot 
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corresponding to 10% of the material (0.5 μl) was spotted onto a 384 well MS plate. 

The samples were allowed to dry and the overlaid with α-cyano-4-hydroxycinnamic 

acid (CHCA, Sigma, Dorset, UK; 0.5 μl prepared by mixing 5mg matrix with 1ml of 

50% (v/v) acetonitrile in 0.1% (v/v) TFA). 

Mass spectrometry was performed using a MALDI TOF/TOF mass spectrometer 

(Applied Biosystems 4800 MALDI TOF/TOF Analyzer; Foster City, CA, USA) with a 

200 Hz solid state laser operating at a wavelength of 355nm (Medzihradszky et al. 

2000), (Bienvenut et al. 2002), (Brennan et al. 2009). MALDI mass spectra and 

subsequent MS/MS spectra of the 8 most abundant MALDI peaks were obtained 

following routine calibration. Common trypsin autolysis peaks and matrix ion signals 

and precursors within 300 resolution of each other were excluded from the selection and

the peaks were analysed with the strongest peak first. For positive-ion reflector mode 

spectra 800 laser shots were averaged (mass range 700-4000 Da; focus mass 2000). In 

MS/MS positive ion mode 4000 spectra were averaged with 1 kV collision energy 

(collision gas was air at a pressure of 1.6 x 10-6 Torr) and default calibration. 

Combined PMF and MS/MS queries were performed using the MASCOT Database 

search engine v2.1 (Matrix Science Ltd, London, UK) (Perkins et al. 1999) embedded 

into Global Proteome Server (GPS) Explorer software v3.6 (Applied Biosystems) on the

Swiss-Prot database. Searches were restricted to proteins of human  and E.coli origin, 

with digestion-profiles limited to tryptic fragmentation.  The tolerances were set for 

peptide identification searches at 50 ppm for MS and 0.3 Da for MS/MS.  Cysteine 

modification by iodoacetamide was employed as a fixed modification with methionine 

oxidation as a variable modification. Search results were evaluated by manual 

inspection and conclusive identification confirmed if there was high quality tandem MS 

(good y-ion) data for ≥2 peptides (E value p < 0.05 for each peptide; overall p < 0.0025)

or one peptide (only if E value was p < 0.0001).
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Chapter 3:

Computational modelling of human

RyR2
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3.1 Introduction 

3.1.1 The role of the C terminus of RyR 

As discussed in chapter 1 there are a number of key regions within RyR related to

function. The carboxy-terminal, ~ 1000 amino acids of RyR, is a very important region

for the functioning of the protein as a channel. It contains the pore that is responsible for

the exit of calcium ions from the sarcoplasmic reticulum (SR) (Bhat et al. 1997), (Xu et

al.  2000),  a  number  of  calcium interaction  sites  (Du  et  al.  2001) and  the  site  for

ryanodine binding  (Callaway et  al.  1994),  (Witcher et  al.  1994). This region is  also

critical for the tetrameric organisation and assembly of the intact RyR channel (Gao et

al. 1997), (Stewart et al. 2003). As described in Chapter 1, the disruption of the amino-

acid  sequence  in  key regions  of  the  RyR  contributes  to  the  pathology observed  in

malignant hyperthermia (or malignant hyperpyrexia) and in stress induced polymorphic

ventricular  tachycardia  (George  et  al.  2003),  (Marx et  al.  2000b),  (McCarthy et  al.

2000),  (Thomas  et  al.  2007).  It  is  believed  that  the  activation  of  the  RyR channel

depends on the rotation of the C-terminal transmembrane assembly and the important

changes to the conformation at the  N-terminal cytoplasmic domains  (el-Hayek et al.

1995),  (Orlova  et  al.  1996b),  (Sharma et  al.  2000).  The organisation  of  this  region

according to the current literature is shown below.
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Figure 3.1.1 Proposed organisation of functional domains at the C-terminus of
human RyR2. 
Regions of interest in this section of RyR2 are highlighted in the amino acid sequence. 

Conflicting results from colleagues have demonstrated that residues 3900-4450 in RyR2

is a span of hydrophobic residues that facilitate the transduction of modulatory events

from the cytoplasmic domain to the pore region at the carboxy-terminus (George et al.

2004b). Experiments using GFP-tagged RyR2 fragments corresponding to the 4TM and

10TM assemblies of RyR (aa 4485-4967 and aa 3722-4967, respectively) have indicated

intra-RyR  interaction  between  these  regions  and  a  dsRed-tagged  cytoplasmic  (N-

terminal) RyR2 fragment, detected by FRET technology (George et al. 2004b). This is

in contrast to the reported transmembrane regions that lie in this region as reported by

other  laboratories  (Bhat  et  al.  1997),  (Brandt  et  al.  1992),  (Wagenknecht  &

Radermacher 1995). 

Nevertheless, this region constitutes important domains that denote the functionality of

the protein as a calcium channel. Thus, knowledge of the 3D structure of the various

domains  and  its  interaction  is  important  to  understand  how  these  various  regions

communicate  with each other  to  function  as  a  channel.  The experimental  structural

determination of this region is under way in the laboratory and chapter 5 details the role

of this project in that operation. However this process is fraught with experimental and
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technical difficulties. Since there are multiple domains within this region as shown in

figure 3.1.1,  it  is  possible  to  construct  a  theoretical  model  of this  region,  partly by

homology  modelling.  Comparative  modelling  relies  on  the  assumption  that  protein

domains of sufficiently matching sequence homology will share equivalent structural

similarity. If suitable amino acid sequence alignment can be made between a potential

3D template and a protein of interest then a homology model can be generated. The cut

off point for the shared similarity between two protein sequences is generally accepted

to be a 30% match. Ideally 40% or greater homology yields a more accurate modelled

structure in which 90% of main chain atoms are modelled with an RMSD (root mean

square distance) error of about 1 Angstrom. 30% homology corresponds to a RMSD

error of 3.5 Angstrom for about 80% of main chain backbone atoms. Loops and side-

chains mainly contribute to the structural difference which is amplified by insertions

and  deletion  regions  as  the  sequence similarity  diminishes.  Under  30%  homology

usually severely limits  the detection  of  homologue structures  as  alignment  becomes

further  reduced  so  drastically  increasing  insertion  and deletion  regions  between  the

compared sequences (Sánchez & Sali 1997), (Xiang 2006). 

As  such  it  is  important  to  achieve  at  least  30%  sequence  homology  between  the

experimentally  determined  3D  template  sequence  and  the  protein  sequence  of  yet

undetermined structure (Hill et al. 2002), (Park et al. 1998). In the case of modelling a

multi-domain protein thus, it is possible to use multiple templates structures (Carpenter

et al. 2007),  (Fraternali & Pastore 1999). When there are intervening regions between

identified  domains  which  cannot  be  modelled  directly  using  a  3D-template,  the

secondary structure of these regions can be predicted using well-known computational

methods (eg. Chou-Fassman algorithms, SOPMA) (Chou & Fasman 1974),  (Geourjon

& Deléage 1995). These can be folded as helices or sheets using modelling-software

methods (Insight Software, Accelrys) or within MODELLER itself (Reddy & Kaznessis

2007). Subsequent molecular dynamics runs coupled with energy minimisation methods

can be carried out to obtain a theoretical 3D fold of the domain. The secondary structure

prediction of the amino acid residues 3579-4085 in RyR2 using SOPMA (Geourjon &

Deléage 1995) is shown below.
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Figure 3.1.2 Secondary structure  prediction of  the amino acid  residues 3579 –

4085 of human RyR2 using SOPMA 

The boxed residues are the calmodulin binding domain and calmodulin like domain,

respectively.  The regions outside (between) these two boxed domains will be modelled

using the above secondary-structure predicted results.

3.1.2 CaM Binding Domain and CaM Like Domain

Studying elements of the role of calmodulin (CaM) in relation to RyR aids with the

understanding of the CaM binding domain (CaMBD) and CaM like domain (CaMLD)

in  the  process  of  modelling  these  domains.  As  discussed  in  chapter  1,  CaM  is

universally recognised as  a  major  calcium sensor  and regulator  of  cell-cycle  events

through its role in a diverse group of cellular proteins. Due to this important role, there

is a need to define the region of interaction between CaM and its cellular targets, and

the action of CaM on target protein function.
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CaM binds with high affinity to a short α helical region found in many proteins. The

interaction of CaM to its target protein sequence mainly consists of a single amino acid

that acts as a hydrophobic anchor point and this residue characteristically reaches into

the N-lobe core, thus the CaM binding protein or peptide (CaMBP) typically is encased

between both lobes of CaM (Ikura, Barbato, et al. 1992), (Ikura, Clore, et al. 1992). In

many CaM-CaMBP complexes, the CaM molecule almost engulfs the entire binding

region, reducing the solvent accessible area of the binding motif to less than 20%. This

typical interaction is illustrated schematically below. 

Figure 3.1.3 Typical  interaction  between  calmodulin  (CaM)  and  a  calmodulin

binding peptide or protein (CaMBP).  

A key hydrophobic residue in the CaMBP acts as anchor, reaching into the core of CaM.

A few hydrophobic residues (in this example from PDB entry 1G4Y) also serve to clamp

onto the binding motif.

The CaMBP consensus sequence is conserved through evolution (see figure 3.1.4) and

the presence of such a sequence in a previously uncharacterised protein would serve to

identify it as one that would interact with CaM to varying degrees.
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Figure 3.1.4 Schematic representation of CaM with a calmodulin binding peptide

(CaMBP) from PDB entry 2BCX.

(a) A side-on view of CaM with the binding region shown as a helix in magenta.  

(b) View showing the C-terminal end of the CaMBP proximal to the reader. 

(c) View showing the N-terminus of CaMBP proximal to the reader, both these views

demonstrate  the  interaction  of  side  chains  of  CaMBP with  the  “clamp-like” cavity

generated by CaM.  

(d) the conservation of residues of the CaMBP of the ryanodine receptor across the

animal  kingdom,  minor  residue  changes  in  organisms  imply  that  those  residues  if

mutated within the human isoform may be tolerated with little implication to function.
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The CaMBP region in RyR1 and equivalent CaMBD in RyR2, residues 3583-3603, (N.

Yamaguchi et al. 2003) have been identified. It is the CaMBP from RyR1 that is shown

in  figure  3.1.4.  Previous  studies  on  skeletal  muscle  RyR  (RyR1)  have  shown  an

important segment resembling the structure of CaM within aa 4064-4210 of the rabbit

sequence, resembling the structure of CaM containing possible Ca2+ binding sites. This

region has also been shown to interact with CaMBP in RyR1 and has been termed the

CaM like domain (CaMLD) (L. Xiong et al. 2006).  

Figure 3.1.5 Residues in the  ryanodine receptor having a calmodulin like domain

(CaMLD) and a corresponding calmodulin binding domain (CaMBD).  

(a)  Sequence  homology  between  a  known  EF  hand  domain  of  the  experimentally

determined structure – 2BCX. 

(b) shows sequence alignment between rabbit RyR1 and RyR2 and comparisons with

corresponding  sequences  from  human  RyR1  and  RyR2  further  illustrating  the

conservation of residues in this region. The region boxed in red shows the sequence that

is implicated in binding to CaM. The conserved residues boxed in blue when mutated in

previous studies have shown dramatic reduction of Ca2+ binding properties. 

It should be noted that the EF hand domain shown in (a) figure 3.1.5 is from CaM as

shown  in  figure  3.1.4  reflecting  the  CaM  “like”  structure  of  CaMLD.  A  major

component of this similarity is a result of the 2 EF hand motifs associated with Ca2+
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binding contained with CaMLD. The two lobes of CaM contain 2 EF hands each which

lead to comparison of CaMLD to a lobe of CaM both in structure and proposed function

(Liangwen Xiong et al. 2006). Although there are amino acid variations within different

types of EF hand, there is a high conservation of residues critical to the Ca2+ binding

function of the domain within EF hand families (Grabarek 2005). 

Figure 3.1.6 Amino acid sequence alignment of CaM with CaMLD.

The region of match between the two sequences relates to the area of the 2 EF hand

motifs within CaMLD. The 2nd matching region is located a few residues downstream of

the 2nd EF hand motif. 

The immediate surrounding regions, including portions of α helix, to the EF hands have

been identified in the “clamp like” binding of CaM to CaMBP (Kawasaki & Kretsinger

2012).   

Figure 3.1.7 Predicted secondary structure of CaM.

Boxed section is the 2nd matching region of CaM in figure 3.1.6. This boxed section

overlaps 2 predicted sections of α helix which are predicted to play a role in binding to

CaMBP.      

There are a range of disease mutation sites located throughout RyR including the CPVT

mutations with CaMLD as discussed in chapter 1. Studying the nature of the interaction
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between CaMLD and CaMBD will aid with the understanding of the pathophysiology

of CPVT and, in the case of RyR1,  malignant hyperthermia. Intuitively, it is envisaged

that such minute changes in interaction between two domains may be brought about by

small changes to the overall structure. 

3.2 Results

To aid the further study of the interaction between the CaMBD and CaMLD domains, a

primary aim of the earlier stages of the  in-silico work was to produce a model of the

overall region of RyR2 containing the two domains. As this process would consist of

several  stages  so  initially  models  of  the  two separate  domains  were  made  prior  to

commencing the construction of the larger planned model.

The  following  sections  detail  the  process  of  homology  modelling  of  human  RyR2

CaMBD and CaMLD, and the subsequent computations that were performed to refine

the models.   

3.2.1 In silico modelling of CaMLD and CaMBD regions of RyR2

To generate the models of the domains the homology modelling software MODELLER

(A Sali  & Blundell  1993) was  used,  all  models  were  generated  with  MODELLER

v9.10. A front end GUI (graphical user interface), swift MODELLER v2.0 (Mathur et

al. 2011), was used to run MODELLER in automated mode so that sequence alignment

and  model  generation  were  controlled  by  the  software.  Discrete  Optimised  Protein

Energy (DOPE) scores are used in MODELLER to evaluate how the model compares

with the template structure used in homology modelling. Briefly, this method estimates

the positions of non-interacting atoms in an artificial sphere. The radius of the sphere is

calculated based on the extents of the native structure of the entire template molecule.

Thus, the difference between the calculated artificial sphere encasing the new model

and the volume of the sphere containing the entire template molecule is the basis of the

DOPE score (Shen & Sali 2006). The lowest DOPE scores in a collection of models is

desirable. Another method of assessment is the GA341 scores, these always range from

0.0 (worst) to 1.0 (native like).  Molecular PDF energy (molpdf) scores are also used for

assessment of models, these report the restraint energies in the model structure. Lower

92



energies indicate less strain on the structure so lower molpdf scores are desirable. 

CaMLD shares  the high sequence homology with other  members  of  other  EF hand

families  as  described  in  chapter  1.  In  terms  of  the  identification  of  a  template  for

CaMLD, none of the more closely matched EF hand structures  were present  in  the

Protein Data Bank (PDB). Structures of other members of other less closely sequence

related  EF  hand  families  have  been  solved.  Initially  trials  of  modelling  CaMLD

focussed on using the highest percentage sequence homology match template possible.

However  it  was  not  possible  to  gain  matches  to  the  secondary  structure  predicted

regions of α helix, associated with CaMBD binding, with these templates. Small regions

of structures were identified that could be used as donors for these few α helical regions.

While multiple template modelling can be performed the use of these very small donor

sections was impractical. While CaM does not have such a close match to CaMLD it

still  falls  above  the  required  30%  homology  threshold  and  contains  the  predicted

required  secondary structure  elements  as  discussed  in  the  introduction.  There  are  a

variety of of available CaM structures, including the CaM component of 2BCX which

was selected as the template for modelling CaMLD.

Twenty models of CaMLD were generated by the process stated above using the CaM

component of 2BCX. Models were evaluated by DOPE scores. 
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CaMLD model no. molpdf DOPE GA341

1 436.78894 -6067.64014 0.56606

2 482.53687 -6239.92725 0.44066

3 474.44733 -5858.98779 0.63272

4 473.14145 -6116.59668 0.26535

5 447.55273 -5871.44971 0.40209

6 360.47827 -5984.33252 0.53040

7 445.15585 -6048.05908 0.51714

8 394.35928 -5980.94629 0.49276

9 532.34747 -5981.55469 0.22836

10 446.59985 -5960.28857 0.48357

11 413.00021 -6165.89990 0.66968

12 398.90665 -5993.46191 0.36087

13 450.62045 -5849.70117 0.65303

14 370.50214 -6035.63623 0.51170

15 484.21292 -5692.58838 0.57380

16 372.79172 -6271.97900 0.39410

17 471.26294 -5904.84521 0.65400

18 438.81503 -6157.76025 0.53179

19 449.60641 -5992.08203 0.55847

20 373.29279 -5954.35742 0.29167

Table 3.2.1 Assessment scores of generated CaMBD models.

Model  13  is  highlighted  as  having the  lowest  DOPE score  and one  of  the  highest

GA341 scores. 
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Figure 3.2.1 DOPE scores per residue of CaMLD model 13.

The CaM template is shown by the green trace and the CaMLD model shown in red.

Usually  better  models  are  produced  when  there  is  template  structure  covering  the

entirety of the model sequence as in this case. As expected the DOPE score per residue

of the template is lower than the model, the closer the model scores are to the template

indicates lesser deviation from the template structure in the model. 
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Figure 3.2.2 Ramachandran plot of CaMLD model 13.

Most favourable areas are shown in green, next most favourable in orange. The better

the model the more residues (black spots) that are expected within the most favourable

areas. Poor models or those requiring further improvement would have a number of

residues outside of the favourable regions.  For this  model  only one such residue is

observed.  

The Ramachandran plot provides a visual measure of the limits of the movement of the

bond angles that are present in the backbone of the protein molecule. The Phi (Φ) and

Psi (Ψ) angles describe these torsion angles between the atoms. 

Figure 3.2.3 Phi and psi torsion angles within protein backbone. 
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Analysis of known structures provides a reference of tolerances of the torsion angles.

The favourable areas include phi and psi angles that are observed within this reference

set. Residues with bonds falling outside of these areas can indicate an “unlikely” angle

for a valid protein structure. The Ramachandran plot provides a tool for the location of

these residues so that the model structure can be analysed. Issues such as kinks in the

structure and overlapping bonds can be seen though in some cases an outlying residue is

not considered a problem if the structure appears viable.      

Figure 3.2.4 Structure of CaMLD model 13.

While not having as much α helix content as CaM (see figure 3.1.4) there are clear

areas of conserved secondary structure within this model. The overall structure seems

viable with no obvious structural deviations. 

As already shown the PDB entry 2BCX contains a section of RyR1 CaMBP which has

very  close  homology  to  the  equivalent  region  of  interest  in  RyR2,  so  was  used  a

template for modelling CaMBD. The process as described above for the CaMLD model

was followed. As the CaMBP structure is a simpler, tube of magenta α helix (figure

3.1.4),  so  an  even  closer  model  to  the  template  with  no  associated  problems  was

produced. 
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Figure 3.2.5 Computer-generated model of RyR2 CaMBD.

The CaMBD region folds naturally as a helical segment as shown here.

3.2.2 In silico modelling of RyR2 between residues 3578-4085

The  CaMLD  and  CaMBD  regions  were  folded  by  homology  modelling   in

MODELLER. However,  the regions between these two were subsequently modelled

using  information  that  had  been  rationally  deduced  from  the  secondary  structure

bioinformatic analysis.    
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Figure 3.2.6 Sequence alignment between human RyR2 (labelled here as CMBD)

and the experimentally determined template sequence of 2BCX.  

The sequence alignment is presented in the “PIR” format. For simplicity of coding in

the scripts, the actual amino acid residue numbers of RyR2 are not used (ie: proline

3578 is represented as proline 1; lysine 4085 is represented as lysine 507). The asterisks

at the end of each line denote the “end” of the sequence.

To ensure  that  the  CaMBD segment  is  positioned  “beneath”  the  CaMLD segment,

several force restraints; rsr (real space residuals: where in xray crystallography, rsr is a

measure of the agreement between an electron-density map calculated directly from a

structural model and one calculated from experimental data) were applied as follows. 

99



Figure 3.2.7 Distances between CaMLD and CaMBD.  

To position  the  CaMLD of  RyR  above  CaMBD during  the  modelling  process,  rsr-

distance restraints were applied. 

(a) Firstly, the distances (in Angstroms) between 2 residues in CaMLD and 3 residues in

CaMBD were measured using the measuring tool in Pymol.  

(b) These distances were compared to the equivalent residues in the RyR2 segment, and

the script file for MODELLER is shown here incorporating these distance restraints.

As evident from the alignment in figure 3.2.6, the middle portion of the sequence bears

no  resemblance  to  2BCX,  there  was  less  than  30%  homology  to  other  structures

deposited in the PDB. Thus this region was analysed using SOPMA, as shown earlier in

figure 3.1.2.  Helices were modelled ab initio within MODELLER using the following
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script segment.

Figure 3.2.8 Scripting of helices.  

Segment from the script that ensures specific residues predicted by SOPMA (secondary

structure  algorithm)  as  shown  in  figure  3.1.2  were  modelled  as  helices  within

MODELLER.  Without  this  segment  of  scripting,  the  regions  between  CaMBD  and

CaMLD (that bear < 30% sequence homology to any PBD data) would be modelled as

one long extended piece of amino acid residues. 

From the SOPMA analysis in figure 3.1.2, the region between the CaMBD and CaMLD

of human RyR2 contains 6 beta-turns. A beta-turn is a type of non-regular secondary

structure in proteins causing a change in direction of the polypeptide chain. These beta-

turns are important in nature since it renders most proteins a globular shape instead of

being linear molecules.

101



Figure 3.2.9 Beta turns.  

In a beta turn, a hydrogen bond is formed between the backbone carbonyl oxygen of

one residue (i) and the backbone amide NH of the residue three positions further along

the chain (i + 3).
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There is another type of structural turn, called a “g-turn”, which has a (i) to (i + 2)

hydrogen bond.  Two thirds of all beta turns that occur in nature are either type I or type

II beta-turns.  The difference between these turns are, as such, shown below.

Figure 3.2.10 Beta-turn residue preference and predicted beta-turns in RyR2.  

(a)  The  various  residue  preferences  in  beta-turns  that  occur  in  nature  are  shown.

However,  these  are  not  definitive  and  exceptions  to  these  residues  do  occur.  The

SOPMA algorithm incorporates various parameters to identify uncommon residues that

are involved.  

(b) The predicted beta-turns in the RyR2 segment between CaMBD and CaMLD with

the residue numbers given (note the residue numbers refer to the simplified residue

numbers corresponding to those in figure 3.2.6).  

(c) As beta-hairpin turns are ubiquitous in nature, an example of this was taken from

PDB entry 1HPV {Kim, 1995 #25}. The sequence between residue 49-52 (Gly-Ile-Gly-

Gly) was chosen as the template for modelling beta-hairpins in the RyR2 sequence.   

Following  the  above  analysis  of  the  sequence  between  the  CaMBD  and  CaMLD

domains, models were generated using the MODELLER software. For this process a

script was written to run directly in MODELLER as opposed to using an automated
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front end GUI. This script was initially run without  optimisation which generated a

number of clashes and erroneous structures as shown below. 

Figure 3.2.11 Preliminary optimisation of structures.  

(a) When structures were generated within MODELLER without energy minimisation,

erroneous  structures  were  obtained.  Examples  of  these  show  where  loops  traverse

within helices and loops occur within loops, both instances are not possible in nature.

Such examples also highlight the need for visualisation and examination of structures

by eye. 

(b) To circumvent and prevent erroneous structures occurring, optimisation using the

Variable  Target  Function  Method (VTFM) that  incorporates  the  conjugate  gradient

(CG) method was used. The script for this is shown here. The molecular dynamics (MD)

optimisation step incorporates a simulated annealing (SA) protocol for optimisation.

As with the modelling of the CaMBD and CaMLD regions, DOPE scores are used to

evaluate  the  model  quality.  DOPE  score  analysis  requires  comparison  to  known

structures, since a large proportion of this model does not have any sequence identity to

any  known  experimental  structure  so  DOPE  score  is  not  entirely  relevant  as  an
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assessment tool for the models generated. Despite this issue the DOPE scores can be

used as guide towards indication of better quality models. As previously, lower DOPE

and low molpdf scores, and GA341 scores closer to 1 are desirable. The evaluation of a

selection of the better models generated is shown below. 

Table 3.2.2 Assessment scores for selected models.  

The various computer-generated models are shown here with the MOLPDF and DOPE

scores.   Models that have a combination of the lowest molpdf values and the lowest

(more negative) DOPE scores were desirable
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Figure 3.2.12 Evaluation of models by molpdf and DOPE scores.  

Models that were successfully generated and had molpdf values less than 1x106 are

shown above.  Models that have a combination of the lowest molpdf values and the

lowest (more negative) DOPE scores were desirable. 

However, following optimisation by conjugate gradients (CG) minimisation and MD-

SA, the models were evaluated by Ramachandran analysis for any deviations of the phi-

psi torsion angles. 

Ramachnadran plots were generated for the 4 models, selected from the table below,

which  had  no  residues  in  the  disallowed  regions,  so  considered  potentially  better

models.   

106



Table 3.2.3 List of residues by Ramachandran analysis region.

Models with no residues in disallowed regions are highlighted in the table.
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Figure 3.2.13 Ramachandran plots of selected models.

Models with no residues in disallowed regions are shown. 

Although no residues were present in the disallowed regions for these model indicating

reasonable models, further energy minimisation steps were run on the selected models

to  see  if  it  was  possible  to  increase  the  quality  of  the  model.  Steepest  descent

minimisation was used to try to improve models 2, 10, 25 and 41. Each model was run

through 1000 steps of steepest descent and then evaluated by Ramachandran analysis. 
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Figure 3.2.14 Ramachandran plots of model 2 after 1000 steps of steepest descent

minimisation. 

Residues in disallowed regions are shown in red.

Prior to the 1000 steps of steepest descent energy minimisation model 2 had no residues

in the disallowed region, post this step there were 8. A similar increase in residues in

disallowed regions was observed for the other selected models after the steepest descent

minimisation.  This  indicates  that  the  quality  of  the  models  has  decreased.  As  the

steepest  descent  minimisation  is  a  relatively  rapid  means  of  decreasing  the  overall

energy state of the model this may be a too rapidly drastic technique for these models.

The loop region of these models contains a number of residues which may be prone to

unfavourable conformations when exposed to steepest descent minimisation. While the
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overall energy state of the model may appear to be decreasing bonds within these amino

acids have been forced into unrealistic positions so actually worsening the model. 

Conjugate  gradient  minimisation  unlike  steepest  descent  allows  for  an  a  potential

increase in energy within the model per step while trying to reach an overall  lower

energy state, usually after many steps. This approach potentially allows more freedom

of movement of the residues which may have the possibility of reducing the number of

unfavourable residue positions.  To reduce computing time model  2 underwent  5000

steps  of  conjugated  gradient  minimisation  and  the  resulting  model  was  tested  by

Ramachandran analysis.

Figure 3.2.15 Ramachandran  plot  of  model  2  after  5000  steps  of  conjugate

gradient minimisation. 

Residues in disallowed regions are shown in red.
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As with the steepest  descent  approach a  clear  increase  in  the  number  of  resides  in

disallowed regions can be observed. 24 residues were in disallowed regions post the

conjugate gradient minimisation. 

3.3 Discussion

The aim of this  chapter  was to  simulate  regions of the C terminal  of human RyR2

following two main stages. Firstly, the production of suitable quality models of CaMLD

and CaMBD regions. If this stage was successful, secondly,  model the entire region

between and including the two domains and then attempt to improve the quality of this

model. 

The first step of stage one was the selection of existing known structures to serve as

templates to the models. As discussed the percentage matching homology between the

amino acid sequence to be modelled and those of published structures has to be >30% to

be able to produce a model of acceptable accuracy. In the case of CaMBD there are

structures of CaM binding proteins in the PDB. For this project the CaM binding protein

region of RyR1,  equivalent  to  CaMBD in RyR2, in PDB entry 2BCX served as an

excellent donor template. The CaMLD region of RyR2 proved to be more of a challenge

to find a suitable matching structure. As CaMLD is meant to be, to some extent,  a CaM

mimic in  terms of  binding function  to  CaMBD, so it  was  decided to  use the  CaM

structure in the PDB entry 2BCX. CaM meets the 30% homology requirement and also

includes  all  the  secondary  structure  elements  assumed  to  be  required  for  CaMLD

binding to CaMBD. The use of these templates allowed models to be generated that met

the requirements of stage one.

Stage 2, the modelling of the region 3578-4085 proved to contain a significant number

of technical challenges. Primary of these was the strategy required to model the region

between the two known domains as there was no available template for this region. If

this region has been modelled completely ab initio without defining sections within the

area then it  is  likely that  a  long string of  undefined structure with the two defined

domains at either terminal would have been produced. The first step to correct this was

to set distance restriction limits on how far away CaMBD and CaMLD could be from
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each other. As 2BCX, the donor template for the domains, consists of CaM interacting

with a CaMBP so the distances between selected residues were measured and these

distances applied to the equivalent residues in the RyR2 sequence. The second step was

to analyse the predicted secondary structure of the region between the domains. Areas of

α helix and beta turns were identified and the amino acid coordinates of these areas

logged. Scripts were written to tell the MODELLER software of these logged areas so

they would be produced in the models of the region.

It was initially thought that the two steps described above would be sufficient for the

generation of reasonable quality models  of the region.  However  examination of  the

produced models revealed a number of problems, as seen in panel A in figure 3.2.11,

including  physically  impossible  structural  elements.  To  address  these  issues  short

energy minimisation and molecular dynamics steps were added to the modelling script.

The  use  of  these  steps  was  aimed  to  generate  models  in  which  were  in  a  more

favourable energy state. While a wide range of possibilities were expected with this

approach including models with potentially even more flawed structures it was hoped to

produce some models which had reduced overall energy states while also having viable

structures. Initially 50 models were generated using the revised script. As expected a

number of these models had worse structures which was reflected in high molpdf scores

indicating  that  they  were  less  energetically  probable  as  viable  models.  The  models

which appeared to be potential solutions were analysed by Ramachandran plot, of these

4 had no residues in disallowed regions.  

It was decided to attempt to increase the quality of these models by using further energy

minimisation  steps.  Energy  minimisation  steps  can  be  conducted  using  a  solvated

molecule.  Water  shells  or a  water  box is  placed around the molecule simulating an

environment closer physiological conditions than a vacuum. Boundaries can be placed

to  limit  the  size  of  the  solvent  area  that  is  simulated  around  the  molecule  though

solvent-solvent interactions are modelled within these boundaries. Even with increasing

available  computing  power  these  calculations  can  be  very taxing on the  simulating

system and severely slow down the minimisation stages of refinement. As the models

produced by this project it  would have meant that a relatively very large volume of

water would have had to been simulated to solvate the model. As such it was decided to

conduct the minimisation stages in a vacuum to reduce processing time. 
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At first steepest descent was trialled by use of 1000 steps. Steepest descent applies a

simpler  algorithm  than  other  minimisation  techniques.  This  algorithm  moves  the

coordinates of the model towards energetically lower states and allows for the most

rapid  convergence  to  an  achievable  minimum  energy  state.  This  technique  tends

converge  to  an  overall  minimum  for  the  whole  molecule  with  little  tolerance  for

localised structure. This can force the model into unrealistic localised structures which

although  appearing  to  reduce  the  overall  energy state  of  the  molecule  in  that  step

actually adversely limit the progress towards the potential minimum. It is likely that this

is the outcome that was observed with the 4 models trialled with this method as their

overall structures were shown to worsen. Steepest descent is commonly used in limited

steps to improve new models. While a rapid step, on reflection this may not have been a

good choice as an approach as the models had already undergone limited minimisation

steps during the modelling process. 

        

Conjugate gradient minimisation was subsequently used on model 2. This method is

iterative taking into account the previous steps as well as progression towards an energy

minimum in determination of the next step. As a result this technique tends to have

better  convergence  characteristics  towards  an  energy  minimum  state  than  steepest

descent. However this method can become limited in attempts to move coordinates with

no real overall  improvement of the energy state  over  several  steps and still  enforce

worse structures upon the model. Some protein conformations are more prone to suffer

these problems and it is likely that the modelled region is one of those structures. As a

result  it  was  decided  to  not  trial  any  of  the  other  models  with  this  technique.

Improvements to the basic conjugate gradient method are included in the CHARMM

software. Mostly these rely on closer step based monitoring of the structure and can

place boundaries of acceptable movement for regions within the molecule which can be

updated  in  a  series  of  blocks  of  steps  rather  than  step  by  step  potential  variation.

However owing to the overall loop shape of the modelled region of RyR2 it is unlikely

that these alterations to the method would result in an improved structure.  

     

Although  there  are  other  minimisation  algorithms  available  within  the  CHARMM

software  as  the  two methods  trialled  have  both  led  to  an overall  decreasing  of  the

quality  of  the  model  it  was  not  viewed  as  being  worthwhile  to  pursue  further

minimisation  techniques.  The  improved  modelling  process  already  contains  some
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limited minimisation, and also molecular dynamics, steps so further minimisation does

not appear to yield any further benefits. Selected models generated from this modelling

process  already have  no  residues  present  in  disallowed  regions  when  examined  by

Ramachandran analysis. This meets the basic criteria of the second stage of the chapter

and  the  overall  aim which  was  to  produce  a  model  suitable  to  undergo  molecular

dynamics to enable further analysis of the function of CaMBD and CaMLD regions of

RyR2.    
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Chapter 4:

Refinement of the computational model

of human RyR2
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4.1 Introduction

The region of human RyR2 between amino acid residues 3579 – 4085 is an important

region that has a putative regulatory role influencing the function of the overall protein

as a calcium channel. Thus, studying how the structure of this region contributes in this

regulatory role would aid in the understanding of the function of the channel and the

impact of disease related mutations within this area.  

The tertiary folding of  secondary structure elements  into domains  is  a  key stage in

attaining the functional conformation of a protein. The tertiary structure of a domain

often facilitates the function of that domain. The loop model generated in chapter 3 was

processed to a state in which it contained relevant secondary elements and the overall

structure could not be further energy minimised. However to understand the regulatory

role of this region the structure needs to be folded into a three dimensional state. This

chapter explores the in silico theoretical folding of the protein. 

4.1.1 The problem of protein folding 

There are numerous ways that a polypeptide chain can possibly fold but there are certain

steric limitations where if two atoms were too close together, they would face large

opposing forces preventing that conformation from being stable in nature.  Normally

three conformations within polypeptide chains persist in nature that connects one amino

acid to two others (one at the N-terminus and the other at the C-terminus). These are the

extended conformation, cis-configuration and the trans-configuration as shown in the

figure below.
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Figure 4.1.1 A triple Glycine repeat (Gly-Gly-Gly) in three conformations that

are sterically stable.

a) extended conformation

b) cis configuration

c) trans configuration

Assuming these 3 states are the only ones allowed in nature, and bearing in mind that

the  first  and the  last  amino  acid  only connect  with  one  other  amino  acid,  so  in  a

polypeptide chain of “n”, where “n” is the number of amino acids in the chain, n-2

amino acids are able to exist in any of the 3 conformations as shown in figure 4.1.1.

Thus, for the length of the section of RyR2 protein that has been modelled, between

amino acids 3579-4085, giving a polypeptide length of 506 residues, there are (506-2)

or 504 residues that can exist in 3504 or 2.945 x 10240 different conformations. 

If protein folding were a completely random process in nature, then each protein being

synthesised  in  the  cell  would  undergo  random  perturbations  in  conformation.  For

example a 506 amino acid residue would undergo 2.945 x 10240 conformational changes

until it arrived at the final “desired one”, this would logically take a very long time.

Hypothetically, if a million conformations could be tried in a second, a polypeptide of

this length would take:

2.945 x 10240 /106 = 3.4 x 10229 days
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However, it is know that in nature, from experiments on the folding of large proteins

such as  cytochrome C that  proteins  fold in  millisecond time-scales  (Yang & Smith

1997).  The rationalisation  of  the protein folding  problem is  not  a  new concept,  the

apparent incredulity at the speed at which proteins fold in nature unlike the predicted

theoretical time it would take if it were a random process was first discussed by Cyrus

Levinthal in 1969 (Levinthal 1969). This apparent disagreement of the theoretical rate

of folding with that observed in nature is known as “Levinthal’s paradox” (Zwanzig et

al. 1992), (Ben-Naim n.d.).

It could be logically predicted that the end conformation after so many attempts would

differ each time if the folding process were truly random. Of course, each polypeptide

chain would not have to undergo every change and the criteria to stop trying different

conformations would include a random stop command. This does not happen in nature.

Each polypeptide chain folds to a destined shape, thus there has to be a set of predefined

rules that guides the folding process.

Early research into folding proposed that the code for tertiary folding must be somehow

included in  the  amino acid  sequence  of  the  protein  itself.  Nobel  laureate,  Christian

Anfisen had conducted a historic experiment to test this theory (Anfinsen 1973).
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Figure 4.1.2 The Anfisen experiment.  

Ribonuclease (124 aa) contains four disulphide bridges. When ribonuclease was treated

with 8M urea + β-mercaptoethanol, the protein linearised and lost enzymatic activity.

When this linearised, denatured protein was allowed to oxidise in the presence of urea

(as shown in the control experiment above), the sulphydryl (SH) groups randomly pair,

forming four disulphide bridges.  Despite the formation of the S-S bonds, enzymatic

activity was still extremely weak or lost.  However, when the 8M urea was completely

dialysed out, and the S-S bridges were then allowed to form, enzymatic activity was

restored. 

The  Anfinsen  experiment  proposed  support  for  what  became  known  as  the

“thermodynamic hypothesis”. This hypothesis  states that the native folded state of a

protein in nature is the one where the Gibb’s energy of the whole system is the lowest.

The Anfinsen experiment supported the concept that the information which determines

the way a protein folds is contained within the amino acid sequence.  The unknown

nature of this information which influences the tertiary folding of a polypeptide chain is

the essence of the “protein folding problem”. 

Further  research  has  been  conducted  on  this  problem.  Martin  Karplus  and  workers

proposed  the  “diffusion-collision-adhesion  model”  to  address  the  protein  folding
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problem  (Karplus  &  Weaver  1994).  In  this  model  a  polypeptide  chain  was

computationally simulated in which micro-domains of the polypeptide were encouraged

to  move  diffusively  and  repeatedly  collide.  Another  model  is  the  “hydrophobic

collapse” model (Dill 1985). In this model, the various hydrophobic stretches of amino

acids  gradually eliminate  water  from their  vicinity bringing about  a  collapse  of  the

structure, thereby two previously distant hydrophobic regions gradually migrate towards

each other. Many other proposed models of protein folding exist but it is likely that

many of these models are in fact working together in nature to enable the complex

folding process.

4.1.2 Simulating protein folding

In terms of structure, very little data was available pertaining to the protein sequence

between amino acid residues 3579 – 4085 of human RyR2. As discussed in Chapter 3,

this  region is  known to  contain  a  domain  (CaMBD) that  interacts  with  calmodulin

(CaM),  subsequent  mutation  studies  of  these  regions  have  demonstrated  loss  of

interaction with calcium (N. Yamaguchi et al. 2003). Additional studies have implicated

another domain (CaMLD) with similar structure and function to CaM (L. Xiong et al.

2006),  (Gangopadhyay & Ikemoto 2006),  (Zhu et  al.  2004).  As little information is

known  about  the  intervening  region  between  the  two  domains,  so  this  region  was

subjected to a secondary structure prediction using the SOPMA algorithm (Geourjon &

Deleage 1995).  Afterwards the region was folded in MODELLER (A. Sali & Blundell

1993) using the secondary structure prediction as demonstrated in figure 3.2.8.

In this chapter, the tertiary fold of all  the section in this region were encouraged to

evolve using molecular dynamics software within CHARMM (Brooks et al. 2009). The

PDB model files generated in MODELLER (A. Sali & Blundell 1993) were imported

into INSIGHT 2000 (Accelrys) in order to convert the coordinates to the CHARMM

format and to generate the protein structure files (PSF). Based on the findings of chapter

3,  the  models  were  then  subjected  to  closely  monitored  energy minimisation  using

improved algorithms. The minimised structures were then subjected to 1000 steps of

“heating” from 240 K to 800 K.  The final structure from this heating step was then fed

into an “equilibration” cycle where the temperature was gradually reduced from 800 K
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down to 310 K.  The temperature values quoted are not to be literally interpreted as a

protein  heated  to  800 K (527°C)  would  obviously have  denatured  well  before  this

temperature  was  reached.  Temperature  in  molecular  dynamics  is  a  reference  to  a

statistical quantity. 

To fully appreciate the contribution of temperature in molecular dynamics (MD), the

following discussion is necessary.   

Newton’s first law of motion is stated as “objects at rest remain at rest and a moving

object remains in motion with the same speed and direction unless an unbalanced force

acts  upon  the  object  either  changing  its  direction  or  altering  the  speed”.  This  is

represented as follows:

F = ma

Where F = force, m = mass of the object and a = acceleration.  

Acceleration can also be represented as dv/dt where v = velocity and t = time.

An adiabatic system is one where thermodynamic energy or heat cannot enter or escape

the  system.  Observing  energy  changes  in  such  a  system  is  fortuitous,  since  one

confounding variable (namely heat) is eliminated, therefore any change in energy would

have to be due to either changes in intra-molecular forces or changes in kinetic energy.

Within an adiabatic system, it is possible to observe changes in potential and kinetic

energies with no change in the total energy. Within such an adiabatic system, Boyle’s

law for perfect gasses applies, this is summarised as below:

PV = nRT or PV = nkT         

            

Where  P  =  pressure,  V  =  volume  of  the  system,  n  =  number  of  moles  of

molecules/atoms in the system, R = gas constant, k = Boltzmann’s constant and T =

temperature.

From the equipartition theorem, for a system in thermal equilibrium (such as in a closed

adiabatic  system) all  matter  in  such a  system has  the  following average degrees  of
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freedom (degrees of freedom meaning independent ways in which matter can move):

 kT / 2  

Where k = Boltzmann constant and T = temperature.

Since there are 3 coordinate axes specifying three directions of possible motion (hence 3

directions for the degrees of freedom), the total kinetic energy of the system can be thus

represented as:

E kinetic = 3 x kT/2

But kinetic energy can also be represented as follows:

E kinetic  = ½ mv2

Thus the previous two equations can be represented as follows:

3kT/2  = ½ mv2 

and therefore the relationship of “temperature” and “velocity” in the previous equation

can be thus represented as follows:

T ≈ v2

So “increasing the temperature” in a molecular dynamics simulation is a computational

way of increasing the velocity of atoms/molecules in a computer model. Obviously, the

amount  of  kinetic  energy  provided  to  the  system  should  not  result  in  abnormal

fluctuations in the bond-lengths or bond-angles. 

Figure 4.1.3 Example of section MD script referring CHARMM software to use

set of parameters.   

In an MD system the bond-lengths, angles etc. are kept to within empirically determined

parameters  (shown  in  italics  and  underlined)  by  the  code  above  in  the  molecular

dynamics script.
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Otherwise, the molecules can also be restrained within empirical parameters using the

SHAKE algorithm (16). Thus in summary, “movement” of molecules in a computer

system can be simulated  at  different  kinetic  energy levels  using  the  relationship  of

kinetic  energy  to  heat  energy.   This  way,  there  can  be  an  audit  trail  of  various

fluctuations of energy within the system.

4.2 Results

4.2.1 Computer simulated folding of RyR2 aa 3579-4085

The final configuration of the models following  in silico folding by MODELLER, as

described in Chapter 3, is shown below.
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Figure 4.2.1a The  initial  models  produced  from  homology  modelling  using

MODELLER as described in chapter 3.  

The CAMLD and the CAMBD domains are both highlighted in red.
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Figure 4.2.1b The  initial  models  produced  from  homology  modelling  using

MODELLER as described in chapter 3.  

The CAMLD and the CAMBD domains are both highlighted in red.
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Various  conformations  are  present  between  the  2  domains  since  the  loop  regions

(regions of high entropy and disorder) may adopt any conformation and thus influence

the overall shape of the molecule. As discussed in chapter 3, large portions of the RyR2

region amino acids 3579-4085 had to folded using  de novo methods. Minimal energy

minimisation was carried out within MODELLER itself (using the conjugate gradient

method). These models were used as a starting point for subsequent simulation.  

Each of the models shown in figure 4.2.1 were subjected to  1000 steps of steepest

descent and 1000 steps of conjugate gradient energy minimisation using CHARMM.

Each energy minimisation run was scripted to produce a detailed log file. Figure 4.2.2

shows the gradual minimisation of overall energies using both methodologies on the

various models that were generated.
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Figure 4.2.2 Energy  minimisation  of  the  various  models  generated  using

MODELLER.  

The first  concave curve portion signifies the energy minimisation using the steepest

descent protocol. The second concave curve shows the minimisation carried out using

the conjugate gradients protocol. The data was extracted from the log files using the

following  script:  awk  '/MINI>/  {print  $2,  $3;}'  name_of_logfile.log  >

energy_output.txt., the graphs were plotted using gnuplot.  

127



The composite figures in figure 4.2.2 show that both methodologies of minimisation

were necessary to achieve a final structure that had all the bond angles, bond lengths

and erroneous distances between atoms corrected according to empirically determined

values contained in the CHARMM parameter files. The first hyperbolic curve portion

signified the minimisation carried out using the steepest descent protocol, this method

quickly corrects any gross problems with the structure but does not approach minima

easily.  Subsequent  minimisation,  indicated  by  the  second  hyperbolic  curve  portion,

using the conjugate gradients method, further corrected any problems and reduced the

overall energy to that one of a more stable structure.

Between each minimisation step, there would be changes to the overall structure and

this can be monitored by evaluating the root-mean square deviation (RMSD) of the

positions of the C-alpha carbon atom chain between the starting model and that of the

final refined structure. If there were no difference between the two compared structures,

the RMSD value would be zero. Lower values of RMSD indicate a lesser degree of

deviation of the geometry of the compared structure against the starting model. Figures

4.2.3-5 show the RMSD deviations of the various models following ab initio folding by

MODELLER,  then  refinement  using  steepest  descent  minimisation  followed  by

conjugate gradients minimisation. Also shown in these figures are the structures of the

domains CAMLD and CAMBD. 
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Figure 4.2.3 RMSD values following energy minimisation.   

The difference between the original model and the refined model after steepest descents

(SD) and conjugate gradient (CG) minimisation are given above. A value of 0 indicates

that there is no difference between the compared structure and the original model. The

larger the value, the greater the difference between the two compared structures. 

Cyan = original model, Green = SD refined, Magenta = CG refined.
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Figure 4.2.4 RMSD values following energy minimisation. 

The difference between the original model and the refined model after steepest descents

(SD) and conjugate gradient (CG) minimisation are given above. A value of 0 indicates

that there is no difference between the compared structure and the original model. The

larger the value, the greater the difference between the two compared structures. 

Cyan = original model, Green = SD refined, Magenta = CG refined.

130



Figure 4.2.5 RMSD values following energy minimisation.   

The difference between the original model and the refined model after steepest descents

(SD) and conjugate gradient (CG) minimisation are given above. A value of 0 indicates

that there is no difference between the compared structure and the original model. The

larger the value, the greater the difference between the two compared structures. 

Cyan = original model, Green = SD refined, Magenta = CG refined.  

Ramachandran analysis of the models post these stages of minimisation was conducted.
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Figure 4.2.6a Composite  of  Ramachandran plots of  models post-refinement (SD
and CG).
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Figure 4.2.6b Composite  of  Ramachandran plots of  models post-refinement (SD
and CG).
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Figure 4.2.7a Ramachandran statistics for models post-refinement.  

The various values following the Ramachandran analysis of the structures following

energy minimisation of  SD followed by CG methods.  The ramachandran plots were

calculated using PROCHECK. 
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Figure 4.2.7b Ramachandran statistics for models post-refinement.  

The various values following the Ramachandran analysis of the structures following

energy minimisation of  SD followed by CG methods.  The ramachandran plots were

calculated using PROCHECK. 

From evaluation of the results in figure 4.2.7, model 49 showed the highest percentage

of residues in most favoured regions compared to the others. Model 2 did not have any

residues  in  the  disallowed  regions  post-refinement.  Thus,  it  was  decided  to  pursue

molecular dynamics analysis on these two models. 
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4.2.2 Molecular Dynamics

4.2.2.1 Analysis of Molecular Dynamics files

Each  molecular  dynamics  run  using  CHARMM  generates  an  “*.ene”  file,  which

contains all the energy output data.  

An example content from an "*.ene" file is as follows.

Figure 4.2.8 Example of the contents of an “*.ene” file following a CHARMM
simulation.

The  objective  was  to  plot  the  time-steps  or  the  time  (in  picoseconds)  against  the

energies.  To preserve  the  original  file,  in  case  of  any error  in  data  processing,  the

original file is copied and renamed. Subsequently, the new file is edited and the lines

coloured in red (as shown above) are deleted. In their place, the following three lines (in

green) are substituted in the file as shown below. 

136



Figure 4.2.9 Example  of  the  “*.ene”  file  after editing  in  preparation  for data

extraction. 

The starting few header lines are deleted in the original file and replaced with three

“dummy” lines, which will serve as null-strings in subsequent data extraction steps. 

The  newly  edited  file  is  then  saved  under  a  different  filename,  such  as

“new_ene_file.ene”.

In order to extract the kinetic energy values from this huge data file, without having to

manually scan through the entire file, the following command was typed at the Linux

prompt.

 awk '{print $1, $4;}' new_ene_file.ene > 2column_energyfile_steps_vs_kineticE.txt

 

This command grabs the 1st and the 4th column from the file, and then places it in a new

file (2column_energyfile_steps_vs_kineticE.txt) containing two columns of data.

However, as the data needed is contained in every 4th line of these columns, the other

lines contain data that pertains to other parameters. Thus, in order to grab every 4 th line

and output  this  into  a  new file,  the  following command was  invoked at  the  Linux

prompt.

awk '0 == NR % 4'  2column_energyfile_steps_vs_kineticE.txt > every4th_line.txt

This newly generated file (“every4th_line.txt)  contains  data  that can be plotted in  a

standard  x,y coordinate  system,  using  any graphical  program.  Gnuplot  was  used  to

generate the graphs for this section of the project.
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4.2.2.2 Molecular Dynamics – Heating Step

The heating step of the molecular dynamics run served to “mobilise” the molecule, so

relieving any residues that are tethered to one another by virtue of van der walls forces,

protein-protein interaction or ionic charges. The heating step in a molecular dynamics

script is typically written as follows:

Figure 4.2.10 Example script of a CHARMM MD heating step.

In the above script, it can be seen that the time-step-size is fairly small, (0.001). Larger

step  sizes  would  allow  the  simulation  to  run  much  faster  as  there  would  be  less

sampling steps. However, larger step sizes also mean that for the “in-between” steps,

there would be a certain amount of data that is not recorded and therefore lost. There is

also a danger that simulations would crash with larger step sizes, this is primarily when

there is a loss of recording of data. If there is a need to reference a particular point

during the simulation which points to a time step not present in the data file, then the

simulation would crash.
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In addition, the heating step is taken from 240 K to 800 K. As discussed previously in

section 4.1.2, these values are related to kinetic energy and allows a means to provide

the appropriate amount of translational movement to a molecule in computation.

Figure 4.2.11 The heating step during CHARMM MD analysis of model 2.  

The linear line shows a gradual rise in kinetic energy with the number of steps. 

Since there is no sudden dip in the line, the overall starting structure must have been

adequately refined (minimised) to relieve any erroneous strain that may have prevented

parts of the molecule from mobilising appropriately.
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Figure 4.2.12 The heating step during CHARMM MD analysis of model 49.  

The linear line shows a gradual rise in kinetic energy with the number of steps. 

Both models, 2 and 49, show a stable and gradual heating step. It is difficult to assess

what the maximal heating step should be for molecules. This is usually performed on a

trial by error method, gradually increasing the maximal heating step in a simulation

empirically  until  a  point  is  reached  where  the  molecule  then  totally  unfolds  or

disintegrates, or the system crashes. Thus, a slightly lower temperature from that point

would be normally used. In this instance, however, a consensus temperature commonly

used was applied whilst carrying out the heating step. 

4.2.2.3 Molecular Dynamics – Equilibration Step

The subsequent process in the molecular dynamics simulation is the equilibration step.

In this process, the molecule is gradually cooled down to a stable temperature, at which

it is know that the molecule would be stable in a liquid state. This is usually selected at

normal physiological body temperature 310 K (37°C) although any temperature above O

K (-273°C) would suffice. 
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Figure 4.2.13 Example of the CHARMM molecular dynamics equilibration step.  

In this script, the molecule is slowly cooled from the final temperature of the previous

heating step (800 K) down to 310 K. The idea is to continue the equilibration until the

kinetic energy fluctuations of the molecule are minimal, whereby the molecule is at its

most stable conformation.

The kinetic energy at each step of this stage of the equilibration is recorded allowing for

this data to be plotted as seen in figures 4.2.14 (model 2) and 4.2.15 (model 49). A

protein  structure  file  (.psf)  and  a  trajectory  file  (.dcd)  of  the  changes  of  spatial

positioning of each amino acid are also generated. When these two files are both loaded

into suitable software, VMD  (Humphrey et al. 1996) was used, the movement of the

model as it undergoes conformational changes during equilibration can be viewed as a

film. This allows for clear observation of movement within the structure including the

reduction in movement,  as the kinetic energy decreases,  as a stable conformation is
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adopted. Figures 4.2.16-17 (model 2) and 4.2.18-20 (model 49) show images captured

at points selected based on the kinetic energy from the graphs below.  

Figure 4.2.14 The CHARMM equilibration step of model 2. 

Wide fluctuations in kinetic energy are seen below 4500 steps, above which, the system

starts to equilibrate, albeit minor fluctuations. These fluctuations continue to diminish

approximately at 15000 steps.  
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Figure 4.2.15 The CHARMM equilibration step of model 49. 

Two large groups of  wide fluctuations in kinetic  energy are seen below 7000 steps,

above which, the system starts to equilibrate, albeit minor fluctuations.

The following images are aligned, for both models, so that CaMLD in close proximity

to CaMBD is shown in the lower centre of the images. Also images at the different step

stages are taken from the same viewpoint allowing for easier observation of the change

in conformation. 
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Figure 4.2.16 Structure  of  model  2  during  equilibration  at  high  kinetic  energy

fluctuation point (step 2500).

Figure 4.2.17 Structure of model 2 at end of equilibration steps.
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Figure 4.2.18 Structure  of  model  49  during  equilibration  at  first  high  kinetic

energy fluctuation point (step 2000).

Figure 4.2.19 Structure of model 49 during equilibration at second high kinetic

energy fluctuation point (step 6500).
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Figure 4.2.20 Structure of model 49 at end of equilibration steps.

In  the  above  structure  images  the  movement  of  the  regions  towards  the  stable

conformation adopted at  the end of the equilibration stage can be observed.  This is

clearer  for  model  49 were two snapshots  have been taken during the  two zones  of

kinetic energy fluctuation allowing for clearer comparison with the stable conformation.

For both models CaMLD stays in close proximity with CaMBD, so not greatly differing

from the input structure for these parts of the models. The majority of movement is

observed in the loop between the two RyR2 domains. 

4.3 Discussion

The aim of this chapter was to improve the models generated at the end of chapter 3 so

they could offer greater potential as a tool for the study of human RyR2 between amino

acid residues 3579-4085. Within this area of RyR2, two domains with known structures

had been identified, CaMBD and CaMLD. The PDB entry 2BCX served as a template

for both domains as it contained the structure of two equivalent proteins interacting. At

the end of chapter 3 models had been generated containing CaMBD and CaMLD which
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had been positioned relative to each other based on distances obtained from 2BCX.

However, the remainder of the loop region between these two domains only had a basic

overall structure including predicted secondary structure elements. As discussed in the

introduction of this chapter, the tertiary structure of a domain has significant influence

on its  function.  Therefore,  to  improve  the  quality  of  the  models  it  was  decided  to

simulate the folding of the model structure into a three dimensional state. 

   

To enable the in silico theoretical folding of the protein a number of processes had to be

performed. An additional round of energy minimisation was conducted on the models 

from chapter 3. This was to confirm that these models were in the lowest achievable

energy  state  prior  to  the  simulated  folding.  Ramachandran  analysis  post  energy

minimisation revealed that model 2 had no residues present in disallowed regions and

that model 49 had the highest percentage of residues within the most favoured regions.

Thus, these two models were selected for further improvement. 

As discussed in the introduction there are various theories postulated about how the

amino acid translates into a tertiary folded protein structure. Within current computing

limitations the best simulation of a folding process is through a molecular dynamics

approach.  This  is  achieved  by  a  theoretical  heating  and  then  cooling  phase.  The

relationship  between  temperature  and  velocity  (kinetic  energy)  within  molecular

dynamics  has  been  discussed.  Basically  the  process  involves  increasing  the  energy

available (heating) to the molecule which allows movement within the structure. The

energy level  is  gradually  reduced  (cooling)  from this  high  energy state  so  that  the

structure adopts an energetically stable conformation. As mentioned, this process does

not contain the complexity or finesse of nature and, as a result, the final conformation

obtained represents a probable likelihood of the structure of the modelled region. 

Analysing the equilibration phase revealed that the majority of movement within the

structures to achieve the stable conformation occurred in the loop region between the

two identified domains. The CaMLD and CaMBD domains remained closely together

as in the input model structure. These two domains were already folded as based on

their respective template structures. The two domains were placed at distances observed

in the structure of PDB entry 2BCX. Thus, as the folding and positioning of these two
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domains was based on known structure, i.e. the result of protein that had undergone

folding in nature, these parts of the model structure were expected to be least affected

by the simulated folding. However, the region between the two domains was modelled

ab  intio as,  unlike  the  two  domains,  no  template  was  available.  Thus,  this  region

contained  less  structural  information  so  was  likely  to  be  most  influenced  by  the

simulated folding process. 

The difference in final structures obtained for the two models reflects the limitations of

the process. The conformation at the end of the equilibration phase is a product of the

molecular dynamics process upon the input model structure. As stated previously, this

process is a best possible simulation, and as the input models varied, it is to be expected

that variation in the final conformations would be observed. However, the process of

emulating some of the aspects of tertiary structure through simulated folding of the

models has increased their structural quality. As a result, the products of this process are

better tools with which to study this region of RyR2. 

It is assumed that some of the disease mutations within the human RyR2 region 3579-

4082 would disrupt the structure so impacting on the predicted regulatory role of this

region within the calcium channel. It is proposed that the disruption to structure would

be reflected in the energy states observed in relevant simulated models. As shown by the

generation of the two models of wild type RyR2, the tools exist to simulate this region

and monitor the energy state of the structure during this process. Further information

about  the  structural  impact  of  mutations  in  this  region  can  be  gained  by  the

computational simulation and manipulation of models containing studied mutations.  
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Chapter 5:

Cloning and expression of the

recombinant RyR-fragments and

Calmodulin.
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5.1 Introduction

As discussed in chapter 1 the interaction between various domains within the ryanodine

receptor (RyR) are known to play a crucial role in the regulation of the channel acting as

a calcium release store. As further elaborated in chapter 3 the calmodulin like domain

(CaMLD) and CaM binding domain (CaMBD) within RyR are indicated to be involved

in one of  these key interactions.  The binding of  these two domains  along with the

association of CaM is believed to play a role in the response of the channel to increasing

calcium concentration leading to channel opening. The presence of some of the known

catecholaminergic  polymorphic  ventricular  tachycardia  (CPVT) mutations  within

CaMLD is  postulated  to  disrupt  the  mechanism of  the  interaction  of  the  two  RyR

domains and hence affect channel opening leading to arrhythmia.

As the binding of these two domains and the involvement of CaM with this interaction

was targeted for this study so constructs of these regions were required. Chapters 3 and

4 discuss the computer based modelling of these regions.  While chapter 4 describes

simulating a much larger region of RyR linking the two domains of interest  for the

purposes of generating recombinant protein a similar approach to the smaller modelling

of the domains as followed in chapter 3 was adopted. A number of the initial studies of

these  regions,  as  described  in  the  literature,  were  conducted  in  RyR1.  This  study

identified  equivalent  regions  in  RyR2 for  the  basis  of  construct  design,  subsequent

additions to the literature regarding the CaMLD region in RyR2 have followed a similar

approach. The specifics of the construct domain boundaries are discussed further in the

relevant sections below.

The RIH associated domain was identified as a series of amino acid repeat sequences

present in IP3Rs and RyR that it was proposed may have possible protein binding or

related function (Ponting 2000). Studies conducted by colleagues indicate that residues

3722-4353 of the I domain of RyR2 are sufficient for interdomain interaction (George et

al.  2004a). It is possible that the RIH associated domain may be involved with this

process. While this may separate to CaMLD function, the RIH associated domain may

play a role in supporting the binding of CaMLD with CaMBD. It is because of this

possibility that the RIH associated domain has been identified as a region for potential
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further study.

The aim of this section of the project was to produce the required recombinant proteins,

including CaMLD constructs containing known CPVT mutations, required for further

experimentation to study the domain interactions. To enable this to occur so structurally

stable soluble recombinant protein has to be produced; the construct design phase is a

key stage in this  process.  A variety of factors as discussed in  chapter 1 have to  be

considered. With consideration to the regions of RyR being studied in this project the

identification  of  stable  “pieces”  that  can  be  independently  lifted  from  the  whole

molecule is required. Commonly complete domains and active regions are targeted, in

this case potential sections have already been identified in the literature. However to

enable the production of recombinant protein to the quantities and quality required for

structural  biology studies  then  further  work is  usually  needed to  determine  suitable

domain boundaries, and a number constructs and expression variables need to be tested.

    

5.1.1 Design of CaMLD constructs

As stated above RyR2 based CaMLD constructs have been reported in the literature.

This study used the RyR1 based Xiong, 2006 (Liangwen Xiong et al. 2006) paper as a

basis for identifying domain boundaries for RyR2 CaMLD constructs. The basis of most

CaMLD  constructs  are  designed  around  the  two  predicted  EF  hand  motif  regions

contained within the earlier section of the interacting (I) domain. 
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Figure 5.1.1 Map of  predicted regions in earlier section of  I  domain including

CaMLD.

Amino acid  coordinates  are  given  for  the  relevant  regions.  RIH associated  domain

determined from Ponting, 2000 (Ponting 2000). CaMLD coordinates in RyR2 derived

from Xiong, 2006 (Liangwen Xiong et al. 2006). Two EF hand motifs contained within

CaMLD from Pfam predictive software. Location of CaMBD relative to CaMLD within

RyR2 also shown.

As stated the initial coordinates for the domain boundaries for CaMLD constructs were

derived from the Xiong, 2006 paper (Liangwen Xiong et al. 2006). This paper reported

interaction  between  a  CaM  binding  motif  and  Ca2+-binding  domain,  4064-4210,  in

RyR1. The sequence homology of the relevant amino acid sequences between RyR1 and

2 were compared.  
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Figure 5.1.2 Amino acid homology sequence comparison between reported Ca2+-

binding domain in RyR1 and equivalent region in RyR2.

Sequence 1 is 4064-4210 section of RyR1. Sequence 2 is 3950-4150 region of RyR2 

As can be seen in figure 5.1.2 the potential matching region of RyR2 to the reported

RyR1 sequence is  slightly longer than the given coordinates in figure 5.1.1.  This is

because these residue numbers were determined by further analysis of the sequence in

the  surrounding  region  of  RyR2.  Initially  the  exon  boundaries  of  the  nucleotide

sequence were mapped to the amino acid sequence to try to identify complete coding

sequences within RyR2. 
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Figure 5.1.3 Exon  boundaries  mapped  onto  amino  acid  sequence  of  earlier

section of I domain of RyR2

Amino  acid  sequence  number  of  RyR2  is  shown  to  right  of  sequence.   The  exon

boundaries are illustrated by  a vertical separator ( |). The  Regions mapped in figure

5.1.1 including coordinates: 3826-3959 (RIH associated domain – boxed in red); 4019-

4126 (CaMLD -boxed in blue) and the EF hand motifs  lie between 4027-4055 and

4062-4090 (highlighted in ochre). Selected CPVT mutations shown in bold. 

Based on the analysis of the exon boundaries 4 potential construct start locations were

identified,  3 prior to  the start  of  the RIH associated domain and 1 before CaMLD.

However  using  the  end  point  of  the  exon  encoding  CaMLD  would  result  in  an

impractically  long  recombinant  protein  with  increased  technical  difficulties  for

expression and downstream experiments. To determine potential C termini of potential

constructs the predicted secondary structure of the I domain was examined.   
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Figure 5.1.4 Predicted  secondary  structure  of  I  domain region  downstream of

CaMLD.

Top line is  amino acid sequence of RyR2 including and immediately downstream of

CaMLD,  end  section  of  CaMLD  sequence  highlighted  in  turquoise.  Lowest  line  is

consensus  sequence  of  predicted  secondary  structure  generated  from  3  algorithms.

Location of potential C termini residue selections highlighted in green.  

A number  of  secondary  structure  prediction  algorithms  were  used  to  generate  a

consensus sequence so increasing the likelihood that the selected amino acid had the

predicted  secondary  structure  feature.  As  discussed  above  candidate  residues  were

searched for in regions of random coil that were clearly downstream of helix regions

that may be associated with the Ca2+ interaction region. The role of supporting helical

regions around EF hands to aid binding to target sites is discussed further in chapter 1.

The first identified C terminus site, amino acid 4163, also met the additional criterion of

being a proline residue. A second site, 4228, was also selected to test if better quality

recombinant protein required a longer sequence. 

Based  on  the  coordinates  derived  from  the  analysis  of  the  exon  boundaries  and

predicted secondary structure so 8 potential constructs were identified. Within these; 2

were identified as potentially preferred constructs. Firstly, the region encompassing the

matching Ca2+-binding domain of  RyR1,  construct  7  below,  this  construct  was later

referred to as the Ca2+ interacting region (CIR). Secondly, the construct containing the
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RIH associated domain in addition to the Ca2+-binding domain, construct 5 below, later

referred to as CaMLD. 

Figure 5.1.5 Coordinates of 8 potentially identified constructs within the earlier

section of the I domain.

The  locations  of  known  CPVT mutations  within  these  8  potential  constructs  was

identified with a view to generating mutant forms of the constructs.  

Figure 5.1.6 Known  CPVT  mutations  contained  within  region  of  8  potential

constructs.

Location of mutation when present within identified domain of early I domain is given. 
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Within these mutations, 4 were selected of particular interest for further investigation.

G3496S owing to its position within the RIH associated domain. E4076K because of its

presence within the predicted EF hand motifs  and also because it  is  a  charge swap

mutation with the loss of the glutamic acid in this location. The potential importance of

the change of a negative to positive charge within an EF hand is discussed in further

length in chapter 1. N4104K is located in a surrounding α helix adjacent to the EF hand

motif believed to be important in supporting binding to CaMBD. Also this mutation

results in the gain of a positive charge from neutral with the change to a lysine residue.

Although H4108Q is not included in the predicted α helical regions downstream of the

EF hand motifs it may have some overlap as seen in the modelling conducted in chapter

3. Also this mutation results in the removal of a positive charge introducing a neutral

glutamine.

5.1.2 Design of CaMBD constructs

There are PDB entries containing CaMBD structures, 2bcx is cited in chapter 3 of this

thesis,  these  involve  a  short  peptide  with  an  α  helical  tube  like  structure.  For  the

purposes of this project it was decided to make a longer recombinant protein based on

human RyR2. Constructs were designed around the N and C terminal flanking regions

of RyR1, linked with CaM concentration response in RyR, and CBD2 as identified by

Yamaguchi et al (Yamaguchi, 2004). The CBD2 is a CaM binding site of RyR, this

region has high homology between the RyR isoforms and is located within the region

marked  CaMBD  in  figure  5.1.1.  Initially  4  constructs  were  designed  all  of  which

contained the CaM binding site of RyR2 in addition to the following specified regions.

The construct labelled “full” included both flanking regions, “N1” the N terminal and

“C1” the C terminal. The construct initially designated “short” and later referred to as

CaMBD was designed to include the CaM binding site and short sections of the N and

C terminal flanking regions. The domain boundaries of the construct, which determined

the amount of content of the flanking regions, were selected with reference to predicted

2rt structure using the same criteria as used in the design of the CaMLD constructs. 
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Figure 5.1.7 Predicted  secondary  structure  of  CaM  binding  site  and  flanking

regions of RyR2.

Top line is amino acid sequence of region of RyR2 containing CaM binding site. Section

highlighted  in  turquoise  is  equivalent  region  to  CBD2  and  both  flanking  regions

identified in RyR1.  Lowest line is consensus sequence of predicted secondary structure

generated from 3 algorithms. 

Based on location of proline residues relative to areas of conserved predicted helical

sections the following amino acids were identified as domain boundaries for construct

design: E3545 and K3646.
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This  design  process  resulted  in  4  potential  constructs  with  the  following  domain

boundaries in RyR2:

1) Full (includes both flanking regions) 3536-3691

2) Short (based on predicted secondary structure) 3545-3646

3) N1 (CBD2 + N term flanking region) 3536-3646

4) C1 (CBD2 + C term flanking region) 3545-3691

As  discussed  in  chapter  1  there  have  a  number  of  studies  examining  the  role  of

mutations in the regions flanking CaMBD particularly in reference to the difference in

calcium  sensitivity  between  the  RyR  isoforms  (Yamaguchi,  2004,  2005,  2009).

However, at the time of this project there are no published CPVT mutations within the

region of CaMBD being examined. 

5.2 Results

5.2.1 Production of CaMLD constructs

5.2.1.1 Cloning and expression in pET15bmod vector

Initially all 8 potential constructs were selected for cloning and expression trials prior to

further selection.  pET15b was chosen as a cloning vehicle because it contained a very

short  linker  sequence  downstream  of  the  hexa-histidine  (6His)  encoding  sequence

within the plasmid. This would mean that there would be that fewer non-specific amino

acids  are  incorporated  into  the  final  expressed  recombinant  protein. The  pET15b

plasmid is shown in figure 2.1.1.

Using the complimentary DNA (cDNA) of the human Ryanodine receptor isoform 2

(RyR2) as a  template,  the polymerase chain reaction (PCR) was used to  generate  a

number  of  different  synthetic  amplimers  that  were  then  ligated  into  pET15bmod (a

modified  derivative of pET15b (+)). These were transformed into TOP10 cells.  The

primers used to generate the amplimers are shown below.
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Construct ID Primer sequence Amplimer
size
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1 EcoRI
5'- CCGAATTCGGTGAAACTGGACC -3' (1F)

XhoI
5'- CCTCTCGAGCTACTCTTCCGGCC -3' (1R)

1.25 kb

2 EcoRI
5'- CCGAATTCGGTGAAACTGGACC -3' (1F)

XhoI
5'- CTCCTCGAGCTAGGGCTTCTCCC -3' (2R)

1.44 kb

3 EcoRI
5'- CGGAATTCAGTGTCCTTGACCTAAATGC -3' (2F)

XhoI
5'- CCTCTCGAGCTACTCTTCCGGCC -3' (1R)

1.09 kb

4 EcoRI
5'- CGGAATTCAGTGTCCTTGACCTAAATGC -3' (2F)

XhoI
5'- CTCCTCGAGCTAGGGCTTCTCCC -3' (2R)

1.28 kb

5 EcoRI
5'- CGGAATTCGGAGAAAAGGTTCTGC -3' (3F)

XhoI
5'- CCTCTCGAGCTACTCTTCCGGCC -3' (1R)

1.01 kb

6 EcoRI
5'- CGGAATTCGGAGAAAAGGTTCTGC -3' (3F)

XhoI
5'- CTCCTCGAGCTAGGGCTTCTCCC -3' (2R)

1.21 kb

7 EcoRI
5'- CGGAATTCGATTCCAGTCAAATTGAGC -3' (4F)

XhoI
5'- CCTCTCGAGCTACTCTTCCGGCC -3' (1R)

0.61 kb

8 EcoRI
5'- CGGAATTCGATTCCAGTCAAATTGAGC -3' 4F)

XhoI
5'- CTCCTCGAGCTAGGGCTTCTCCC -3' (2R)

0.80 kb

Table 5.2.1.1 Primer sequence and amplimer sizes of CaMLD pET15b constructs. 

All forward primers contained the EcoRI restriction site whereas the reverse primers

contained the XhoI restriction site. The restriction sites are underlined in the primers.

The  amplimers  were  double  digested  using  these  enzymes  prior  to  ligation  into

pET15bmod plasmid that had been digested similarly earlier. 
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Figure 5.2.1.1 Agarose gel of PCR products of 8 initial potential constructs.

Size of expected products by construct number.

1) 1.25 kb

2) 1.44 kb

3) 1.09 kb

4) 1.28 kb

5) 1.01 kb

6) 1.21 kb

7) 0.61 kb

8) 0.80 kb

PCR products of the expected size were generated for all  8 potential  constructs. As

detailed in chapter 2 the digested PCR products were ligated into pET15bmod vector.

Colony PCR (cPCR) was conducted on a range colonies from antibiotic selection agar

plates.
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Figure 5.2.1.2 Agarose gel of cPCR of selected pET15bmod constructs.

Bands of expected size observed for colonies of constructs 2 (1.44kb), 4 (1.28kb), 6

(1.21kb) and 7 (0.61kb).

Initially only positive cPCR results were observed for colonies of constructs 2, 4, 6 and

7.  While  not  all  potential  constructs  had  given  positive  results  the  majority  of  the

designed domain boundaries could be tested. Construct 7 was the only positive one to

feature the residue 4163 C terminus, however as identified by the analysis conducted

during the construct design phase construct 7 was targeted as a key construct to test. It

was decided to run protein expression trials with these constructs.   
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Figure 5.2.1.3 Expression of constructs in pET15bmod vector in Rosetta (DE3). 

The 6His constructs 2, 4 and 6 were lysed, and the entire protein lysate was subjected to

SDS-PAGE  alongside  protein  expressed  from  native  pET15bmod  (without  cloned

inserts). This figure shows that the constructs labelled 2, 4 and 6 gave strong protein

bands  in  the  expected  sizes.  Lanes  labelled  (a)  were  the  lysates  from  the  cells

transformed with native pet15b, in comparison, these control lanes do not show strong

protein bands as in the lanes labelled 2,4 and 6.

Expected size of constructs including tag from pET15bmod vector:

2) 56.0 kDa

4) 50.5 kDa

6) 47.9 kDa

Expression bands of the expected size were observed for constructs 2,4 and 6. Although

not shown similar expression levels were observed for construct 7 in later trials. To

observe the soluble protein content the lysate was centrifuged then applied to Ni-chelate

chromatography.  The  amount  of  recombinant  protein  that  remained  in  the  pellet

following  lysis  was  compared  to  the  amount  of  recombinant  protein  that  was
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successfully eluted from Ni-chelate chromatography. The eluate fraction represented the

soluble portion of  the protein preparation whereas  those that  remained in the pellet

following lysis  represented the insoluble fraction of the protein preparation.  By this

quick  screening  method,  it  was  possible  to  determine  which  constructs  had  higher

probability  to  deliver  good  soluble  protein  that  would  be  useful  and  amenable  to

downstream purification processes.

Upon  analysis  of  the  above  samples  it  was  noted  that  no  soluble  expression  was

obtained with the protein occurring in inclusion bodies. A number of variables within

the growth and induction phase were trialled. These included alterations to the timings,

temperatures  and  IPTG  concentration  stated  in  chapter  2.  A  range  of  additives

associated with reported increase in soluble expression including alcohol and glycerol

were included with the growth media. Additional Ca2+ in the growth media was also

trialled in case the presence of the EF hand motifs in the expressed constructs were

disrupting the Ca2+ homeostasis of the expressing cells. The addition of glycerol and

Ca2+, and also variations within the stated lysis buffers were tested. None of these tested

variables made an observable difference in the quantity of soluble protein.  

The only tested variable that made any observable difference to the amount of soluble

protein was the addition of detergent to the lysis buffer. As an initial trial NP40 lysis

buffer (Pierce) was added into the existing lysis buffer. The growth, induction and Ni

affinity purification protocols as detailed in chapter 2 were followed with the exception

that the basic Ni affinity protocol was used which omits the 60mM imidazole lysis and

70mM imidazole wash steps. As a result few of the contaminant bands, as observed in

the crude lysate preparation in figure 5.2.1.3, were removed from the sample. To try to

improve the purity of  the  sample,  ion  exchange chromatography (Q sepharose with

NaCl gradient) followed by gel filtration, as per chapter 2 protocol, was used. Samples

of the selected pooled fractions from the NP40 containing preparation of construct 4 are

shown in the figures below. 
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Figure 5.2.1.4   NP40 treated purification of construct 4/pET15bmod/Rosetta (DE3)

(Upper):  Coomassie  stain  of  equivalent  SDS-PAGE  to  Western  blot  of  NP40

purification of construct 4/pET15bmod/Rosetta (DE3).

(Lower): Western blot of NP40 preparation of construct 4/pET15bmod/Rosetta (DE3). 

Construct 4 expected size 50.5 kDa.
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Whilst  the  majority  of  protein  remained  in  the  insoluble  fraction  during  the  NP40

preparation sufficient material  was obtained to track a band of the expected size by

SDS-PAGE through the purification  stages  (upper  panel).  The Western  blot  showed

several bands for the imidazole fractions though the strongest signal is observed for the

band above the 32 kDa marker (lower panel). This was the only band seen after ion

exchange chromatography but is not clearly observable after gel filtration. It should be

noted  that  unlike  the  other  eluted  peaks  the  gel  filtration  fractions  were  not

concentrated.

Although only shown for construct 4, the above experiments were repeated for the other

constructs  including  7.  As  observed,  the  other  constructs  displayed  no  significant

increase in soluble protein content.   

5.2.1.2 Cloning and expression in pETMM vectors

In order to address the solubility issues observed with the expression of the recombinant

protein when using a hexa-histidine tag a range of other tags were selected to address

the solubility issue. The pETMM series of vectors contains the same multiple cloning

site (MCS) but with different tags that will be expressed at the N terminus of the cloned

insert. This allows the same set of primers to be used to generate insert suitable for the

chosen vectors in the range. The dual tag vectors pETMM 60 (NusA-6His), see figure

2.1.2, and pETMM 20 (Trx-6His) were initially selected owing to the reported increased

solubility of their associated tags. 

To further increase the speed of testing for the expression of soluble protein; 2 of the

initial 8 constructs were selected to be inserted into the pETMM vector series. These

were  constructs  5  (CaMLD)  and  7  (CIR).  Despite  failing  to  show  clear  soluble

expression  with  the  6His  tag  these  constructs  were  selected,  as  of  all  the  designed

constructs,  their  domain  boundaries  most  closely  matched  the  predicted  internal

domains within the region of the I domain being studied. 

Using the complimentary DNA (cDNA) of the human Ryanodine receptor isoform 2

(RyR2) as a  template,  the polymerase chain reaction (PCR) was used to  generate  a

number of different synthetic amplimers that were then ligated into either pETMM20 or
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pETMM60. These were transformed into TOP10 cells. The primers used to generate the

amplimers are shown in the table below.

Construct

ID

Primer sequence Amplimer

size
CaMLD EcoRI

5'-GAGCGAATTCGGGAGAAAAGGTTCTGCAGG-3'

(CaMLD_F)

SalI

5'- CGTCGTCGACTCAGGGCTTCTCCCACTGGGTTCG

-3' (PET_R1)

1.01 kb

CIR EcoRI

5'- GAGCGAATTCGGATTCCAGTCAAATTGAGCT-3'

(CIR_F)

SalI 

5'- CGTCGTCGACTCAGGGCTTCTCCCACTGGGTTCG-3'

(PET_R1)

0.61 kb

Table 5.2.1.2 Primer sequence and amplimer sizes of CaMLD pETMM constructs.

All forward primers contained the EcoRI restriction site whereas the reverse primers

contained the SalI restriction site. The restriction sites are underlined in the primers. 

The amplimers were then double digested with these enzymes and ligated into either

pETMM20 or pETMM60 plasmid vectors that had been digested similarity earlier. The

regions that were being amplified did not host these restriction sites prior to them being

engineered in. 
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Figure 5.2.1.5 Amplimers of CaMLD and CIR.

Bands of the expected size (CaMLD 1.01 kb and CIR 0.61 kb) were observed on an

agarose gel from samples run from the PCR used to generate the amplimers.

PCR products of the expected size were generated for all  8 potential  constructs. As

detailed in chapter 2 the digested PCR products were ligated into pET15bmod vector.

Colony PCR (cPCR) was conducted on a range colonies from antibiotic selection agar

plates.  These PCR products  were  digested  and ligated  into  the  pETMM 20 and 60

vectors. Restriction digests were conducted on plasmid DNA prepared from 2 selected

colonies per vector post ligation transformation. 
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Figure 5.2.1.6 Restriction digests of  CaMLD and CIR constructs in pETMM 20

and 60.

Bands of the expected size were observed for the tested colonies (CIR 0.61kb, CaMLD

(1.01kb) except for one of the CIR pETMM 20 colonies. No colonies were obtained for

CaMLD in pETMM20 so this construct was not tested at this time. 

 

The positive colonies from the restriction digest were transformed into TOP10 cells and

from these plasmid DNA prepared. This DNA was sequenced and the presence of the

desired inserts confirmed. The successful plasmid constructs were then transformed into

BL21(DE3) and Rosetta(DE3) E.coli cells for protein expression trials. The growth and

induction conditions as described in chapter 2 were followed. Cells were lysed and the

expression levels examined by SDS-PAGE.
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Figure 5.2.1.7a SDS-PAGE  analysis  of  expression  of  CIR  and  CaMLD

constructs in pETMM 20 and 60 vectors.

IPTG concentrations were varied in testing for the construct and vector combinations

in both BL21 (DE3) and Rosetta (DE3) cells. Cell pellets were lysed and analysed by

SDS-PAGE alongside protein expressed from the native non-recombinant vector (shown

on left of gels). This figure shows that the CIR construct in both vectors gave strong

protein bands in the expected sizes. However weak expression was observed for the 60-

CaMLD construct. No apparent differences were observed between the expression cell
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line used.  (Expected band sizes : 60-CIR -80 kDa; 20-CIR -42 kDa)

Figure 5.2.1.7b SDS-PAGE  analysis  of  expression  of  CIR  and  CaMLD

constructs in pETMM 20 and 60 vectors.

IPTG concentrations were varied in testing for the construct and vector combinations

in both BL21 (DE3) and Rosetta (DE3) cells. Cell pellets were lysed and analysed by

SDS-PAGE alongside protein expressed from the native non-recombinant vector (shown

on left of gels). This figure shows that the CIR construct in both vectors gave strong

protein bands in the expected sizes. However weak expression was observed for the 60-

CaMLD construct. No apparent differences were observed between the expression cell

line used.  (Expected band sizes : 60-CIR -80 kDa; 20-CIR -42 kDa; 60-CaMLD 99

kDa)

Despite the low level of expression seen for the 60-CaMLD construct it was decided to

include samples from this  construct  when testing for  soluble expression.  As for the

pET15bmod constructs the Ni-chelate chromatography approach was adopted.
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Figure 5.2.1.8 Ni-chelate  chromatography  purification  of  CIR  and  CaMLD

constructs in pETMM20 and 60 vectors.

Protein bands of the expected size were observed for the all the constructs tested. The

lysed band lane shows the lysed cell pellet material that was loaded onto Ni-chelate

affinity beads. The unbound lane is a sample of the material that was washed off the

beads. The eluted lane is the material eluted from the beads representing the soluble

partially purified content obtained from the cell pellet. Expected size of construct bands

including tag from pETMM vectors: 60-CIR -80 kDa; 20-CIR -42 kDa; 
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60-CaMLD -99 kDa

As discussed in the construct design section of this chapter the CaMLD construct had

been identified as the construct offering most possibility for further research. Despite

the  lower  yield  relative  to  the  other  constructs,  the  apparent  lesser  number  of

contaminants offered more potential for higher purity samples downstream. It has to be

acknowledged that usually higher yielding proteins are selected owing to the expected

loss at each stage of handling. Also the contaminants for 60-CaMLD appear to be at a

similar  concentration  to  the  desired  protein  which  can  often  mean  separating  a

meaningful amount of wanted material can be more difficult.  

Later  further  colonies  of  60-CaMLD were  tested  for  expression  levels,  from these,

colonies in Rosetta (DE3) cells that had similar expression levels to those seen for the

CIR constructs were identified. Subsequently these colonies gave matching yields from

Ni-chelate  chromatography.  Despite  concerns  that  an increase in total  protein might

result in an increase in the number of contaminants, only the 2 major contaminant bands

observed in figure 5.2.1.8 still remained though were present at obviously higher levels.

Once the initial apparent issue of low protein yields had been solved so 60-CaMLD

expressed in Rosetta (DE3) was selected for further work in this project.   

 

To aid the identification of the bands observed post Ni-chelate chromatography for 60-

CaMLD so mass spectrometry was conducted. Enzymatically digested samples from the

bands were run on an ABI 4800 MALDI TOF/TOF Analyzer and the generated peptide

fingerprint maps analysed.
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Figure 5.2.1.9 Mass  spectrometry  analysed  SDS-PAGE  samples  from  Ni-chelate

chromatography purified 60-CaMLD.

This figure illustrates the increased protein yield from 60-CaMLD as described above.

Samples from the numbered bands were analysed by mass spectrometry. Band 2 was the

only sample identified to a high probability confidence level. 

Band 1: fragments of NusA and RyR2 

Band 2: bi-functional polymyxin resistance protein ArnA (75 kDa E.coli protein)

Band 3: insufficient ions produced to give clear result

 

The mass-spectrometry data of band-1 correlated best with the known fingerprint tryptic

digest of the 60-CaMLD protein, hence confirming that the correct protein was being

purified.  Band  2,  the  ArnA protein,  is  an  E.coli protein  associated  with  antibiotic

resistance and lipid metabolism. It does not have any obvious connection to RyR2 and is

expected to be present to some extent in all the expressed construct protein samples.

Band 3 appears to be selected during purification with the 60-CaMLD protein. Although

not identified by mass spectrometry it is proposed that it may be part of the fusion tag

from the vector, the band appears close to the expected size of the NusA-6His tag.  
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Purification optimisation trials were conducted to remove bands 2 and 3, seen in figure

5.2.1.9, from 60-CaMLD samples. Following manufacturer recommendations initially

increasing concentrations of imidazole used as a series of wash steps was tested. 

  

Figure  5.2.1.10 SDS-PAGE  of  increasing  imidazole  concentration  wash  steps

during Ni-chelate chromatography on 60-CaMLD protein sample.

The numbered  lanes  indicate  the  concentration  (mM) of  imidazole  wash  used.  The

elution lanes represent 2 samples taken during the standard 250mM imidazole elution

step. The strong band at the top of the elution lanes is the 60-CaMLD protein. While

there is a small amount of the contaminant bands 1 and 2 present, the amount is much

reduced  compared  to  the  previous  Ni-chelate  purification  trials  shown.  The  20mM

imidazole wash step does remove some of the contaminant material but the 60mM step

is much more effective. The increase to 80mM does not bring any obvious increase in

sample purity while removing 60-CaMLD protein from the beads.

Prior to to these increasing imidazole concentration wash steps being conducted, cell

pellet had been lysed in 20mM imidazole and washed in 40mM imidazole. As a result of

this trial pellet was lysed in 60mM and washed with 70mM imidazole prior to elution

with 250mM imidazole as previously.  
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Figure  5.2.1.11 SDS-PAGE  of  Ni-chelate  chromatography  purified  60-CaMLD

protein samples using 60mM imidazole lysis and 70mM wash. 

Samples  of  differing  concentrations  of  two purification  preparations  of  60-CaMLD.

While a few minor lower weight contaminants remain, the 2 major contaminant bands

have been removed using the increased imidazole concentration modification to the Ni

affinity purification protocol. For all further experiments requiring tagged 60-CaMLD,

protein of this purification quality was used.

As part of the purification process N terminal dual tag was cleaved from the fusion

protein. The pETMM vectors contain a TEV cleavage site downstream of the tag before

the expressed insert enabling the removal of the tag. 
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Figure  5.2.1.12 Trial  of  TEV protease  cleavage  of  fusion  tag  from 60-CaMLD

protein.

SDS-PAGE in  figure  shows  purified  in  house  produced  TEV that  was  used  for  tag

cleavage digests. A low concentration sample of 60-CaMLD protein, uncut lane, was

incubated with TEV for 2 hours and a concentrated sample from the digest mixture

loaded onto the gel, digest lane. A band, at the size of cleaved CaMLD (39 kDa), was

present in the digest lane indicating cleavage of the tag from the fusion protein.    

A 2nd pass through Ni affinity beads  was used to  remove the cleaved tag and TEV

protease,  TEV  used  was  expressed  with  6His  tag  allowing  for  purification  and

subsequent removal from sample post digest. 
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Figure 5.2.1.13 CaMLD protein samples after 2nd pass through Ni affinity beads

post TEV protease tag cleavage.

The beads lane is a sample of the Ni beads after the flow through was collected. This

lane contains CaMLD (middle band), also present are cleaved NusA tag (top band) and

TEV protease  (lowest  band).  The lane  marked flow indicates  material  that  was the

collected flow through from Ni beads, this sample only contains the cleaved CaMLD

protein.

Initial  tag  cleavage  trials  were  conducted  on  material  that  had  yet  to  undergo  the

increased imidazole wash steps hence the presence of the contaminant  bands in  the

samples shown. A higher yield of CaMLD protein was obtained from later samples that

had  been  purified  using  the  increased  imidazole  concentration  steps.  Also  in  these

preparations the dialysis step, to reduce the imidazole concentration, was combined with

the TEV cleavage step. Although TEV had lower activity in the dialysis buffer than

TEV specific buffers, sufficient activity was obtained when TEV was used at higher

amounts, 1:10 - 1:20 ratio range to CaMLD, that >90% tag cleavage was observed. This

level of TEV activity was observed when the protease was added to the dialysis samples

and left  overnight  at  4°C,  as  the  standard  protocol  involved  overnight  dialysis  this

allowed two purification steps to be conducted in the same time frame. The excess TEV

179



was removed during the 2nd pass with Ni beads. The initial incubation time with the

beads  had  been  1  hour  however  this  was  reduced  to  30  minutes  which  improved

recovery of the CaMLD protein from the beads while the TEV and cleaved NusA tag

remained behind. 

Cleaved protein was combined and stored at 4°C. Examination of the pooled sample

after  overnight  storage revealed a  large amount of aggregation.  SDS-PAGE analysis

showed that the aggregate was composed of the cleaved protein, losses of ~80% of the

soluble material were observed. Increased NaCl concentration in the dialysis/cleavage

buffer was found to increase the storage time. As a result all buffers from lysis onwards

contained 300mM NaCl, as listed in the purification protocol in chapter 2. Storage of

smaller  aliquots,  rather  than  one  pooled  sample,  and  keeping  concentrations  below

2mg/ml also helped to reduce losses due to aggregation. All these measures combined

provided a window of less than 48hrs with which to work with the cleaved protein.

Uncleaved protein could be stored for 5 days at 4°C prior to usage. 

Once soluble purified CaMLD protein could be produced then work to produce the

mutant forms of CaMLD was conducted.  As discussed in the chapter introduction 4

CPVT mutations had been identified for further study, G3496S, E4076K,  N4104K

and H4108Q. Mutation of recombinant wild type (wt) CaMLD DNA was performed

using the QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene) to generate 4

clones each containing one of the single mutations listed. The mutated plasmids were

used to transform TOP10 cells and fresh mutated plasmid DNA produced. Restriction

digests  were conducted to check for the presence of inserts of the correct size after

mutagenesis.
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Figure 5.2.1.14 Restriction digests of CaMLD DNA post mutagenesis.

Lanes 1 and 2 contain wt  CaMLD that  was checked prior  to  mutagenesis.  Lane 2

contains a band of the incorrect size so was rejected for further use. The other lanes

contain DNA post mutagenesis which is of the expected size.

Lane 3: G3496S

Lane 4: E4076K

Lane 5: N4104K

Lane 6: H4108Q

181



Figure 5.2.1.15 Sequencing chromatograms of mutated forms of CaMLD.

Figure is split into 4 sections, one per mutation. In each section there are 2 panels

showing  the  region  of  DNA in  which  the  mutation  listed  occurs.  The  upper  panel

contains the chromatogram from the wt CaMLD and the lower displays the mutant

sequence. In the DNA sequence shown above each chromatogram the location of the

single nucleotide mutation required to generate the mutant form is highlighted. For all

4 mutant forms created the correct mutation is found.

Once the correct mutations has been confirmed by sequencing then the mutant plasmid

DNA was  used  to  transform Rosetta  (DE3)  cells.  Expression  and  purification  was

conducted as for the wt CaMLD following the protocols listed in chapter 2. A batch of

the wt and mutants forms of CaMLD was prepared. Post tag cleavage these samples

underwent gel filtration to give very pure samples. A western blot probing with an anti-

NusA antibody was conducted to check the detection of the wt and mutant forms of

CaMLD.
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Figure 5.2.1.16 SDS-PAGE and western blot of wt and mutant forms of CaMLD.

Forms of CaMLD are referred to by amino acid single letter code of mutation. Left

hand side of SDS-PAGE shows Ni affinity purified material which was used for the

western blot. As no antibody was available to the RyR2 CaMLD region the western blot

was probed using an anti-NusA antibody.  Only a single  band is  observed for  each

sample in  the western blot  which indicated the use of the anti-NusA antibody as a

detection tool. The right hand side of the SDS-PAGE displays CaMLD samples that had

gone through gel filtration after the fusion tag removal process. As can be seen very

pure samples were produced by these final steps however only a very small of protein

could be practically produced this way.    

5.2.2 Production of CaMBD constructs

5.2.2.1 Cloning and expression in pGEX-6P-1 vector

Initially all 4 potential constructs were selected for cloning and expression trials prior to

further selection. pGEX-6P-1 was chosen as a cloning vehicle because it contained an N

terminal GST tag, mainly this system was selected as this tag was not present in any of

the pETMM vectors used so avoiding potential downstream problems when working

with tagged CaMLD proteins. The presence of the tag would also allow for affinity
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purification of the expressed protein. The pGEX-6P-1 plasmid is shown in figure 2.1.3. 

Using the complimentary DNA (cDNA) of the human Ryanodine receptor isoform 2

(RyR2) as a  template,  the polymerase chain reaction (PCR) was used to  generate  a

number of different synthetic amplimers that were then ligated into pGEX-6p-1. These

were transformed into TOP10 cells. The primers used to generate the amplimers are

shown below.

Construct
ID

Primer sequence Amplimer
size

Full EcoRI
5'- GGACGAATTCAACAGGACTGATGATACCTCAG -3'
(1F)

XhoI
5'-  GCCACTCGAGTCAATAGGCCATATATAAAAAATC  -3'
(1R)

0.46 kb

Short
(CaMBD)

EcoRI
5'- CCTCGAATTCGAGAAGACGGTAGAAAGAG -3' (2F)

XhoI
5'- GGTCCTCGAGTCATTTTGCTAAATCTTCTATCAG -3'
(2R)

0.3 kb

N1 EcoRI
5'- GGACGAATTCAACAGGACTGATGATACCTCAG -3'
(1F)

XhoI
5'- GGTCCTCGAGTCATTTTGCTAAATCTTCTATCAG -3'
(2R)

0.33 kb

C1 EcoRI
5'- CCTCGAATTCGAGAAGACGGTAGAAAGAG -3' (2F)

XhoI
5'- GCCACTCGAGTCAATAGGCCATATATAAAAAATC -3'
(1R)

0.44 kb

Table 5.2.2.1 Primer sequence and amplimer sizes of CaM binding site pGEX-6p-

1 constructs. 

All forward primers contained the EcoRI restriction site whereas the reverse primers

contained the XhoI restriction site. The restriction sites are underlined in the primers.

The amplimers were double digested using these enzymes prior to ligation into pGEX-

6P-1 plasmid that had been digested similarly earlier. 
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Restriction  digests  were  conducted  on  plasmid  DNA  prepared  from  selected

transformed colonies grown after ligation.

Figure 5.2.2.1 Restriction digests of CaM binding site constructs in pGEX-6P-1.

2 colonies were selected from each potential construct and double digested.

Lane 1: pGEX 6P-1 (vector reference)

Lanes 2 + 3: Full, 460 bp

Lanes 4 + 5: Short, 300 bp

Lanes 6 + 7: N1, 330 bp

Lanes 8 + 9: C1, 440 bp 

Lane 10: negative control colony not containing insert

Bands of the expected size were observed for the tested colonies of the short, N1 and C1

constructs. No insert was observed for the full construct colonies. 

The presence of the short (CaMBD) and N1 inserts were later confirmed by sequencing.

185



Expression trials  were conducted for the  short,  N1 and C1 constructs using Rosetta

(DE3) cells.   

Figure 5.2.2.2 Expression trial of CaM binding constructs in pGEX-6P-1 vector in

Rosetta (DE3). 

Lanes  are  headed with  appropriate  construct,  U indicates  uninduced sample  and I

induced sample.

There is a clear increase in an induced band of the expected size for the short and N1

constructs.  A much weaker  equivalent  band is  seen  for  C1 suggesting  much lower

expression of this construct. The GST tag is 26kDa, it is thought that the presence of the

large band at this size in all the induced lanes is GST.   

Expected size of constructs including tag from pGEX-6P-1 vector:

GST-short 38 kDa

GST-N1 39 kDa

GST-C1 47.9 kDa
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A western blot was conducted to analyse the expression from these samples. The blot

was  probed  using  an  anti-GST antibody as  this  would  confirm the  presence  of  the

tagged protein and possibly also the identity of the lower size band.

Figure 5.2.2.3 Western  blot  of  expression  trial  of  CaM  binding  site  constructs

probed with anti-GST antibody.

Bands of expected size are observed for all the constructs but as seen in the SDS-PAGE

there is very small amount of the C1 construct. Very heavy bands are observed at the

size expected of the GST tag for the N1 and C1 constructs, there is a much weaker band

at this size for the short construct. 

Based on the  comparison of  the SDS-PAGE and western  blot  there appeared  to  be

slightly more short (CaMBD) protein with much less GST present. As such the CaMBD

construct  appeared  to  be  a  better  selection  for  continuation  into  purification  and

downstream applications.  

 

5.2.2.2 Purification of CaMBD recombinant protein

Post  cell  lysis,  GST-CaMBD was first  affinity purified following the manufacturer's

recommended  protocol  buffer  system  for  the  glutathione  sepharose  4B  beads  (GE

healthcare). 
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Figure  5.2.2.4 Initial  affinity  purification  of  GST-CaMBD  following  bead

manufacturer protocol buffer system.

Expected size of GST-CaMBD, 38kDa.

Lane 1: Unbound material from beads

Lane 2: Binding buffer wash

Lanes 3a-e: 0.5 column volume elution fractions

Lane 4: Bead sample post elution step

Although some GST-CaMBD is eluted from the beads the vast majority remains on the

beads. However some of the GST tag contaminant material is removed by the elution

step. 

The manufacturer recommended protocol uses a 10mM reduced glutathione in TRIS at

pH 8 elution step, this glutathione concentration was found to be insufficient to elute the

GST-CaMBD. Through a series of trials, modifications were made to the recommended

protocol. This lead to the buffer system described in chapter 2. It was found that a 5mM

reduced glutathione wash step in phosphate buffer at pH 7 was sufficient to remove a

large quantity of the contaminant GST tag material without eluting the GST-CaMBD

protein.  A higher concentration of reduced glutathione could have been used in this

buffer without eluting the GST-CaMBD but this was found not to be necessary. The
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transfer to TRIS buffer at pH 8 was required to elute the GST-CaMBD, 20mM reduced

glutathione was found to be sufficient for this purpose.   

Figure 5.2.2.5 Affinity  purified  GST-CaMBD  following  buffer  system  listed  in

chapter 2.

Samples  from 2 preparations  of  GST-CaMBD using buffer  system described above.

Using this protocol high purity GST tagged CaMBD protein could be prepared. This

material could be stored at 4°C for 1 week prior to further usage. 

The pGEX-6P-1 vector contains a 3C protease site allowing for the cleavage of the GST

tag. 3C protease was found to have sufficient activity when used in combination with

the dialysis allowing a similar protocol to that used for the CaMLD constructs to be

adopted. The 2nd pass through glutathione sepharose beads was not as successful for

CaMBD as the equivalent step for the CaMLD constructs. It proved to be not possible

to practically remove a large amount of the cleaved GST tag which remained in the

CaMBD sample.  Similar  aggregation  problems  to  cleaved  CaMLD constructs  were

observed for cleaved CaMBD. As with CaMLD, cleaved CaMBD had a storage life of

<48 hrs.  
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5.2.3 Cloning and expression of CaM construct

A human CaM clone was obtained in the plasmid pAED4 (gift from Z. Grabarek). This

plasmid was transformed into Rosetta (DE3) cells and expression trials conducted. The

growth and early stages of purification were followed as described by Tan (Tan, 1996).

Although CaM protein was produced the reported levels could not be matched. Owing

to the successful use of the pETMM vectors with the CaMLD constructs, CaM was sub-

cloned into the pETMM60 vector. The 60-CaM plasmid was transformed into Rosetta

(DE3) and expression trials performed. 

Figure 5.2.3.1 Expression trial of 60-CaM.

60-CaM expected size 76kDa

Lane labelled U is uninduced pellet sample. Lanes P1-P8 are samples from induced cell

pellets, induced expression can be observed for all these lanes except P2. Pellets P1,

P3-P8 were stored for in preparation for purification. 

60-CaM was purified following the CaM specific protocols listed in chapter 2. 
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Figure 5.2.3.2 CaM protein  sample  post  TEV cleavage  and  2nd pass  through  Ni

beads.

The SDS-PAGE illustrates the purity to which CaM protein samples could be prepared.

This material could be stored at 4°C for 1 week prior to further usage. 

5.3 Crystallography Trials

Crystallisation trials of were conducted for CaMBD. The protein used in this trial was

concentrated  to  8mg/ml  after  a  gel  filtration  purification  step  following  affinity

purification.  Owing  to  the  small  amount  of  protein  that  could  be  produced  in  this

concentration range only 4 crystallisation screens could be trialled. 

200 nl protein with 200 nl screen condition sitting drops were set up in 96 well Intelli-

Plate (Art Robbins) using an Art Robbins Phoenix crystallisation robot (Alpha Biotech

UK). The PACT (pH, anion and cation crystal trial testing pH within PEG/ion), JCSG

(PEG and salt conditions devised for Joint Centre for Structural Genomics), and CSS

(clear strategy screen) I and II screens (all Molecular Dimensions) were used. Plates

were observed on a  regular  basis  for  the formation of aggregates and any potential

crystals.  
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Figure 5.3.1 Selection of trialled screen conditions from CaMBD crystallisation

trial.

A few conditions in both screens tested had silt like residues develop in the plate wells. 

The presence of silt like residues may be a result of protein and/or salt aggregation. As

the screens tested are sparse matrix screens so a wide range of possible conditions are

tested within one screen. As such wells with silt like residues are considered for further

trials using finer screening conditions based around the original condition. No obvious

crystal formation was observed in the screens trialled.  

5.4 Discussion

As discussed in the introduction to this chapter the aim of this section of the project was

generate the protein tools required to examine the binding between the CaMLD and

CaMBD regions of RyR2, and also the involvement of CaM within this interaction.

Previous  constructs  of  the  regions  of  the  RyR domains  have  been described in  the

literature. This project designed constructs in the equivalent areas of RyR2 based around

the reported regions in RyR1. 
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In the case of the CaMLD region the identification of a CaM like domain (Xiong, 2006)

was used to locate an equivalent region in RyR2. This strategy has subsequently been

reported  in  the  literature  where  an  equivalent  region  in  RyR2  (4020-4166)  was

described (Gangopadhyay, 2011). The equivalent construct designed in this project had

amino acid coordinates 3961-4163. While having a similar C terminal, more residues

are included at the N terminal as exon boundaries were considered beyond a straight

match to the RyR1 reported region. The selected CaMLD construct of this project also

included  the  RIH associated  domain  which  has  been  suggested  may play a  role  in

domain interaction in RyR (Ponting 2000).  

pET15bmod  was  selected  as  an  initial  expression  vector  for  the  CaMLD  based

constructs as only an N terminal 6His tag with a short linker was expressed with the

recombinant protein. This strategy was adopted with a view towards crystallography

work so that as little as possible extra amino acids were included with the protein of

interest  while  still  allowing  for  an  affinity  purification  step.  In  addition  short  (<5

residue) linker regions between co-expressed tags have been identified as increasing the

likelihood of crystal formation as the potential movement of the tag is assumed to be

limited relative to the protein of interest so reducing disorder within the forming crystal

structure (Smyth et al. 2003). Unfortunately there were major solubility issues with the

expressed protein using this  vector. The addition of detergent to the lysis  buffer did

increase  the amount  of  soluble  protein  this  approach was not  followed for  2  major

reasons. Firstly,  as detergent would need to be present in all  downstream buffers to

maintain  solubility  this  would  almost  certainly hinder  downstream experiments  and

would  also  severely limit  the  number  of  crystallisation  screens  that  could  be  used.

Secondly, while the loss of protein is expected with every additional handling step when

working with the sample, the yield obtained by the time the protein was sufficiently

pure was so low that it would have been impractical to continue with this approach. 

Based on the solubility issues observed with the CaMLD constructs it was decided that

co-expressing a solubility tag may offer  a better  solution than additives to  the lysis

buffer. The pETMM series of vectors offered a dual tag system consisting of a range of

proven solubility tags with a 6His tag for affinity purification which could be removed

using the included protease site located between the dual tag and the insert. This series
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of vectors also shared the same MCS allowing a range of solubility tags to be trialled

using the same cloning strategy (Dümmler et al. 2005). As it was unknown if any of

the solubility tags would be beneficial; only 2 constructs were used to increase the speed

of the trials. As discussed in the chapter introduction these constructs were CIR and

CaMLD as it was felt that these offered most further experimental options. The CaMLD

construct when joined with the NusA tag proved to be the most successful combination

tested. With optimisation to the purification protocol it proved possible to produced high

purity  CaMLD protein  though  obviously  serious  stability  issues  remained  once  the

NusA tag had been removed. From the observations in this chapter it appears this region

of RyR2 is unstable. This instability may well be increased further when trying to make

larger pieces of the I domain beyond the strictly identified CaM like domain of RyR1.

Even production of this piece resulted in expression predominantly in inclusion bodies

and had to utilise a refolding step (Liangwen Xiong et al. 2006). Through conversations

with colleagues working on the I domain section 3722-4353 (George et al. 2004a) this

region was found to be  particularly unstable  and difficult  to  produce  even in  small

quantities. As such this CaMLD construct may be one of the first soluble expressed

proteins in this region produced above small scale quantities.  

Although the CaM binding domain of RyR2 has been identified (Naohiro Yamaguchi et

al. 2003) it was decided to attempt incorporate sections of the N and C terminal flanking

regions associated with CaM concentration response in the different isoforms of RyR.

These regions were described in relation to CaMBD in RyR1 (Yamaguchi et al. 2004),

and it was from these coordinates that an equivalent region was identified in RyR2. The

inclusion of the N and C terminal flanking regions would allow potential testing of CaM

and Ca2+ concentration responses. However the primary aim of the CaM binding domain

constructs was to produce stable protein that contained the α helical tube structure as

identified in PDB entries such as 2bcx that would allow for CaM and, presumably,

CaMLD binding to this region. 

Based on assessment of the SDS-PAGE (figure 5.2.2.2) and accompanying western blot

(figure 5.2.2.3) the short (CaMBD) and N1 constructs both appeared to be expressed at

similar levels. However the CaMBD construct had a much weaker signal at the band

size  linked  to  GST indicating  a  much  lower  concentration  of  GST in  this  sample

compared to the N1 construct. As observed in both images the C1 construct is present at
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low levels so was rejected for further use. Owing to the large amount of GST material

seen for the N1 and C1 constructs it is considered that these constructs may be less

stable than the CaMBD construct. If these constructs were less stable and degrading

during expression then large amounts of GST compared to the construct protein would

be  observed.  The  CaMBD  construct  was  selected  owing  to  this  apparent  greater

stability. It would appear that trying to express the CaM binding site with either flanking

region attached reduces the stability of the produced protein. It is difficult to compare

against  the literature as whole RyR was expressed in  HEK cells  in the papers used

during construct design (Naohiro Yamaguchi et al. 2003), (Yamaguchi et al. 2004). Most

other  experiments  involving  the  CaM  binding  domain  reported  in  the  literature

commonly use a synthesised peptide of shorter length than the CaMBD construct. 

CaM is a well characterised protein and can be easily commercially obtained. For the

potential  scale  of  protein  required  by  this  project  it  was  decided  to  recombinantly

produce  the  protein.  Following the  accompanying protocol  supplied  with  the  donor

plasmid  as  described  by  Tan  (Tan  et  al.  1996) could  not  be  repeated  to  generate

sufficient CaM. As optimisation conditions for use of the pETMM60 vector had already

been  established  so  this  allowed  for  larger  scale  production  of  CaM.  The  tag  was

successfully removed from the fusion protein and high purity samples generated. This

approach allowed production of relatively pure CaM protein above the levels required

for the project. 

Crystallography  trials  were  conducted  for  GST-CaMBD  however  they  provided

inconclusive results. The presence of silt like residues in some of the wells indicated

that  some  conditions  may  be  worth  pursuing  in  further  trials.  As  expected  with

crystallography based work a much greater number of trials involving a larger range of

crystallisation  screens  is  required  for  progression  in  this  area.  A significantly  large

amount of protein would have been required to enable these trials to be conducted. This

would represent a major investment in time and resources with the possibility of little

advancement  of  the  project.  These  concerns  would  be  amplified  when  considering

CaMLD owing to the greater instability of the cleaved purified protein that would be

required. While there are examples citing successful crystallography projects in which

crystals have been grown with a solubility tag still attached to the protein, these are rare

and usually involve a short linker between the tag and expressed protein (Smyth et al.
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2003).  Also  these  examples  cite  use  of  MBP,   Trx  and GST tags,  use  of  NusA is

commonly limited to that of purely a solubility tag which is removed as part of the

purification process. This approach was adopted in the trial with CaMBD, it was hoped

that  the presence  of  the  GST tag  would  not  prove detrimental  to  the  crystallisation

process while being beneficial in aiding protein stability and allowing a purer sample to

be used. Although a sufficiently pure sample of CaMLD with the NusA tag removed can

be produced there  were  serious  concerns  about  the  stability of  the  cleaved protein.

While not trialled the initial expectation was that the CaMLD protein would rapidly

aggregate out of solution prior to sufficient time for crystal formation.

Further time could have been spent within this project with the aim to produce more

stable and higher quality protein. However, as discussed, for a number of reasons this

would be very difficult and may not be practically achievable. A compromise between

optimised protein quality and sample suitability for further work had to be reached to

allow the project to continue. As the aim of this section of the project was to generate

protein to investigate domain interaction it was felt that this point had been reached with

the work described in this chapter.      
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Chapter 6:

Functional Studies of the Calmodulin

Like Domain of Human RyR2
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6.1 Introduction 

The primary aim of  this  chapter  was to  examine the interaction  between the  RyR2

domains of CaMBD and CaMLD. As previously discussed there are examples of this

interaction in the literature and the PDB contains structures of CaM bound to CaMBD.

This project aims to further understand the interaction between CaMLD, CaMBD and

CaM, and gain insight into any potential mechanism leading between the transition of

binding of CaM and CaMLD to CaMBD. The role of calcium within this interaction

mechanism is believed to play a key role and, as such, is a studied factor. In addition,

selected known CPVT mutations within CaMLD have been studied to see if further

knowledge can be gained at  a molecular level towards why these mutations lead to

arrhythmia.  

Two main types of analytical technique were employed to conduct this investigation.

Firstly the interaction between the domains was examined using pull down assays. This

technique has been successfully used by colleagues investigating other potential binding

and interaction  sites  within  RyR  (Zissimopoulos  et  al.  2006),  (Zissimopoulos  et  al.

2012b). This established technique offered a means of testing the interaction between

the recombinant protein constructs of RyR2 used in this project.  

The second technique employed was circular dichroism (CD). Initially this technique

was  approached  to  see  if  folded  recombinant  protein  had  been  produced.  Further

examination  in  the  far  UV  region  (170-260nm)  would  allow  assessment  of  the

secondary structure of the produced protein. If sufficient data was collected then the

specific percentage components of secondary structure could be assigned (Kelly et al.

2005),  (Greenfield  2006).  A repeat  of  the  change  observed  in  secondary  structure

composition by the addition of Ca2+ to wt CaMLD (Liangwen Xiong et al. 2006) could

be conducted and extended to examination of the CPVT mutant forms of CaMLD.

The rearrangement of secondary structure elements within CaMLD would expected to

be  accompanied  by  a  conformational  change  within  the  protein  which  may  not

necessarily  observed  in  the  far  UV  region.  The  near  UV  region  (250-350nm)  is

commonly  used  to  look  at  changes  in  3ry structure  through  comparison of  spectra
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recorded under different conditions. This allows analysis of the impact of variations in

reagent  concentration  and  the  presence  of  binding  partners  by  examination  of

divergence in the obtained spectra. The spectra are generated from a combination of the

signals given by the aromatic amino acid content of the studied protein. Tryptophan is

the main contributor to the signal with a peak close to 290nm. Tyrosine residues provide

a smaller addition peaking between 275-282nm. Phenylalanine has a weak contribution

between 250-270nm. Disulfide bonds may give very weak contributions throughout the

entire wavelength range. The differences observed in spectra under varying conditions

result from the changing of conditions in the local environment of the aromatic residues

altering  the  strength  of  signal  given  by  the  affected  amino  acid.  This  means  that

alterations  in 3ry structure which do not affect  aromatic  residues  are  unlikely to be

observed in the near UV. The signal strength in the near UV region is weaker than the

far  UV requiring  more  concentrated  protein  samples  to  compensate  for  the  drop in

signal. However the near UV can be more sensitive for detecting subtle differences in

conformation that would not always be seen by far UV (Kelly et al. 2005). 

As stated the aromatic acid composition of the studied protein plays a key role in the

spectra  obtained  in  the  near  UV  region.  Trytophan  and  tyrosine  are  the  main

contributors to the signal though the absence of tryptophan residues usually indicates

that  a  very  weak  signal  will  be  obtained  from a  protein.  As  such  the  amino  acid

composition  of  the  studied  proteins  by  number  of  residues  and  overall  percentage

component has to be considered. 

CaMLD:

Trp (W)  3 0.9%

Tyr (Y) 11 3.3% 

CaMBD:

Trp (W) 2 2.0%

Tyr (Y) 4 3.9%

CaM:

Trp (W) 0 0%

Tyr (Y) 2 1.3%
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Based on the analysis of amino acid content, both CaMLD and CaMBD are potential

good candidates for examination using near UV however CaM may provide a weak

signal.   

6.2 Results

6.2.1 Chemical denaturation

Chemical denaturation studies were conducted on wt and mutant CaMLD protein that

had been affinity purified, and the NusA tag cleaved and removed. The unfolding state

of protein was monitored by fluorescence spectroscopy while the sample was denatured

by addition of guanidine hydrochloride (GndHCl). 

Figure 6.2.1.1 Weighted average emission wavelength versus the concentration of

guanidine hydrochloride (GndHCl), plots for wt and mutant CaMLD proteins.
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ΔGN-I

(cal/mol)

[GndHCl]

50%

ΔGI-D

(cal/mol)

[GndHCl]

50%

ΔGN-D

(cal/mol)

WT -2214 1.21 -7207 3.46 3 state

HQ -2416 2.07 -13511 3.63 3 state

NK -2597 1.38 -12200 3.05 3 state

GS -3695 1.80 -11960 2.99 3 state

EK -2874 2 state

Table 6.2.1.1 Free  energy  (ΔG)  of  unfolding  states  of  wt  and  mutant  CaMLD

proteins.

The information from the denaturation was analysed and a 2 or 3 state denaturation

process  accordingly  fitted  to  the  data.  The  shape  of  the  plots  (figure  6.2.1.1)  is

indicative  of  this  2  or  3  state  denaturation  process.  The  ΔG (calories/mole)  values

required for the transfer from native (N) to intermediate (I) and denatured (D) states are

shown  in  the  above  table.  The  three  mutations,  G3946S,  N4104K  and  H4108Q,

increased the wt stability with respect to an intermediate state. On the other hand the

E4076K mutation severely affected the stability profile of the CaMLD construct and

decreased its stability with respect to the fully unfolded state. 

6.2.2 Pull Down Assays

The majority of protein used in  the pull  down assays  was affinity purified samples

which had the tags attached. Limited trials with cleaved tag material using SDS-PAGE

for detection were conducted. It was found that smaller amounts of protein could be

used with better detection rates when using the more sensitive western blot technique

for detection of potential interaction. For the western blots to work, with the exception

of CaM, it was only possible to probe against the co-expressed tags of the CaMLD and

CaMBD constructs. Using the tagged protein reduced some of the issues surrounding

the stability of the protein samples though the western blot technique was sensitive

enough to detect degradation in some of the samples. Pull down assays were performed
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following the protocol described in chapter 2.  

6.2.2.1 CaM agarose bead pull down assay

The first  set of pull  down assays performed examined in there as was any potential

interaction between CaM and CaMLD, and, if so, did the CPVT mutations affect this

interaction. For the purposes of this experiment CaM agarose beads were used.  

 

Figure 6.2.2.1 Western blots of CaM agarose bead pull  down assay with wt and

mutant CaMLD.

Western blot probed with anti-NusA antibody.  

Control sample present in left lane to show detection of sample. Without (middle) and

with (right) Ca2+ pull down assay samples. 

wt RyR2 CaMLD construct and its mutants except E4076K displayed CaM binding in

Ca2+ dependent manner. NusA fusion tag, which served as a negative control for this

experiment, did not display CaM binding.

The binding of the CaMBD construct with CaM agarose beads was also tested, weak

Ca2+ independent interaction was observed. Within this experiment the binding of wt

CaMLD was also re-tested, CaMLD displayed the same interaction profile as seen in the
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above figure showing stronger interaction than CaMBD.

6.2.2.2 Pull down assays using CaMLD, CaMBD & CaM constructs

As recombinant protein could be produced for the potential interactions to be tested so

the CaM agarose beads were no further used. This decision was also because bovine

CaM  was  used  for  the  beads  whereas  all  human  versions  of  RyR2  had  been

recombinantly made  allowing  for  the  examination  of  human-human versions  of  the

proteins. 

Initially the recombinant purified CaM protein was tested for any potential unwanted

interactions with either set of the affinity beads that could be used to immobilise the bait

protein. 

Figure 6.2.2.2 Western blot of check of CaM interaction with affinity beads.

Membrane probed with anti-CaM antibody. Left hand contains detection control sample

of CaM protein. CaM protein incubated with listed affinity bead in assay conditions

containing shown concentration (μM) of calcium.   

 

As the CaM protein did not display any interaction with either set of potential affinity

beads the decision to use tagged protein material in the assays initially appeared to offer

a range options regarding towards bait and capture protein variations. However control

condition  testing  revealed  a  number  of  unwanted  interactions  between  the  affinity
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media, used to immobilise the bait protein, and potential capture sample. 

Figure 6.2.2.3 Western  blot  of  GST tag  incubated  with  Ni  affinity  beads  under

increasing Ca2+ concentrations. 

Membrane probed with anti-GST. Left hand lanes contains detection control sample of

GST tag. Signal detected for presence of GST across Ca2+ range.

The apparent binding of the GST tag to Ni affinity beads meant that Ni beads could not

be  used  to  immobilise  CaMLD  protein  to  test  binding  with  CaMBD.  Glutathione

sepharose beads were then tested with CaMLD, this was with the aim of immobilising

CaMBD protein. 
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Figure 6.2.2.4 Western  blot  of  CaMLD  incubated  with  glutathione  sepharose

affinity beads under increasing Ca2+ concentrations. 

Identity of bands based on comparison with size markers on companion gel stained with

Coomassie R250. 

As CaMLD appeared to bind with glutathione sepharose affinity beads this  severely

limited the range of experiments that could be conducted using the pull down assay

technique. To bypass the issues related the affinity beads cross linking experiments were

run.  The  interaction  reaction  was  run  in  the  presence  of  a  cross  linking  agent,

glutaraldehyde.  The cross  linking  reaction  was  stopped prior  to  introducing  affinity

beads  to  pull  down one of  the  reaction  components.  The  detection  of  cross  linked

products was conducted by western blot analysis as previously.  

As the interaction of the CaM binding site with CaM has been reported in the literature

so the binding of CaMBD with CaM was selected to test the cross linking technique.
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Figure 6.2.2.5 Western blot of cross linking trial of CaMBD with CaM.

Membrane probed with anti-CaM antibody. GST-CaMBD incubated with CaM reaction

sample in right hand lane. GST and BD included as negative control samples in their

respective lanes. GST tag incubated with CaM as further negative control. 

Expected sizes of proteins:

GST 26kDa

BD 40kDa

CaM 17kDa

BD + CaM 57kDa 

Bands were expected for CaM (17kDa) in the GST tag with CaM lane, and BD + CaM

(57kDa)  and  possibly  also  CaM  in  the  CaMBD  with  CaM  lane.  As  the  expected

unbound CaM signal from the GST tag incubated with CaM reaction was not detected

so the reaction mixtures were repeated and timed samples collected. 
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Figure 6.2.2.6 Western blot of repeat cross linking of CaMBD with CaM.

Membrane  probed  with  anti-CaM  antibody.  GST  tag  with  CaM  incubation  run  as

negative control to GST-CaMBD with CaM test condition. Timed samples were taken

from both incubation reaction mixtures.

An increasing strength CaM signal is detected for the GST tag with CaM reaction. A

similar signal is observed for the CaMBD with CaM incubation but only for the first 2

samples taken.  

Repeats  of  the  cross  linking  experiments  were  conducted  with  further  inconclusive

results. 

6.2.3 Circular Dichroism

Some early CD data was collected using cleaved tagged material that had been further

purified  by  gel  filtration  however  the  majority  of  data  was  collected  using  tagged

protein. All samples collected in the far UV range underwent dialysis into CD suitable

buffer prior to data collection. Most samples required concentration so that sufficient

detectable  signal  was  generated  from  the  sample.  As  a  precautionary  measure  all

samples were briefly centrifuged prior to data collection to remove any aggregates from
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solution. While samples were monitored during data collection owing to the time taken

to  collect  the  spectra  there  was  degradation  of  samples  during  this  process  which

adversely affected the quality of the recorded spectra. Baseline data was recorded for

the  buffer  used  for  each  data  set  which  was  subsequently  subtracted  from protein

spectra during analysis. It should be noted that data was collected on 2 CD instruments.

Data sets collected on the monochromator system on beamline 23 could be processed in

the  accompanying  Globalworks  software  (OLIS)  which  allowed  for  more  complex

manipulation  of  the  raw  data  during  analysis.  Data  collected  on  the  Chirascan

spectrometer (Applied Photophysics) had to processed in spreadsheet software owing to

the data output format. 

 

Figure 6.2.3.1 Comparison of UV absorbance of purification buffer against buffer

system designed for CD data collection.

Black trace for H2O. Blue trace for buffer system used for latter stage of purification.

Red  trace  for  CD  buffer  system.  CD  buffer  has  much  lower  absorbance  than

purification buffer below 210nm, this difference is greatly amplified as the wavelength

shortens.  However  CD  buffer  still  has  noticeably  higher  absorbance  than  H2O

reference. 

208



6.2.3.1 Far UV region (170-260nm)

Some data in this region was obtained for early batches of CaMLD construct protein.

The data were of poor quality and it was not possible to collect lower wavelength data

however  the  protein  signal  appeared  to  be  influenced  by more  than  one  secondary

structure element. The further work conducted on CD buffer and protein sample quality

optimisation  allowed  use  of  this  technique  for  further  investigation  of  the  RyR2

domains.  Despite  these  optimisation  steps,  although  the  spectrometer  systems  were

capable of collecting data within the specified range, it was not possible to record viable

data in the shorter wavelengths owing to protein sample and buffer constraints.

The spectra  of  cleaved  protein  samples,  so  there  was  no  tag  influence  on  the  data

collected, were recorded for CaMBD, and wt and EK CaMLD.  
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Figure 6.2.3.2 Far UV range data collected for CaMLD (top), E4076K (middle) and

CaMBD (lower).

secondary structure fit analysis fitted with CDSSTR algorithm using the SP43 reference

set.

Red spectrum are averaged experimental data with buffer baseline subtracted.

Turquoise spectrum are fitted data for secondary structure prediction showing deviation

required for fit against experimental data. 
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CaMLD E4076K CaMBD

Predicted Experimental Predicted Experimental Predicted Experimental

α helix 42.9% 52% 42.3% 46% 56.9% 45%

β sheet 19.5% 22% 19.5% 18% 12.8% 18%

other 37.6% 26% 38.2% 36% 30.3% 37%

Table 6.2.3.1 Predicted  and  experimentally  derived  secondary  structure  for

CaMLD, E4076K and CaMBD

Experimentally  derived  secondary  structure  obtained  from fit  analysis  generated  in

above figure.

Other  category  in  table  includes  turns  and  random  coils,  category  outputs  differ

between predictive software and CD spectral analysis software. 

Although there is a difference between the experimental spectra and the fitted data this

is  mainly in  the  signal  strength  (given in  millidegrees).  The key component  of  the

spectra, the shape of the curve which is defined by the secondary structure elements of

the sample,  is  closely mirrored in  the fitted structure.  The E4076K CaMLD mutant

protein  has  a  close  match  between  the  predicted  secondary  structure  and  the

experimentally derived values. CaMBD and wt CaMLD show variance between these

two sets of values.    

As  the  chamber  holding  the  sample  in  the  monochromator  could  be  temperature

regulated  so  it  was  possible  to  conduct  thermal  denaturation  studies  of  the  protein

samples. The temperature at which the protein lost its secondary structure characteristics

was considered to be the point at which the sample had denatured. Samples were heated

to 90°C in 5°C increments from 10°C and returned to 20°C to observe if they was a

return to a folded state with cooling. Tag cleaved CaMBD was initially tested.
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Figure 6.2.3.3 Thermal denaturation spectra series for CaMBD.

Spectra from 10°C to 55°C shown. Change in spectra observed for 45°C (light pink),

50°C (dark pink) and 55°C (light green). These spectra are 3 weakest (highest points)

at 210nm and noticeably dip down much earlier at 200nm.

The change in the shape of the spectra for CaMBD between 45°C and 55°C indicates a

decrease in secondary structure content as the spectra becomes flatter when compared to

lower temperature spectra.  For the purposes of comparison the thermal  denaturation

series for CaMBD that had been incubated with E4076K CaMLD was recorded.   
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Figure 6.2.3.4 Thermal denaturation  spectra for CaMBD incubated with E4076K

CaMLD. 

Spectra from 10°C to 55°C shown. Change in spectra observed for 45°C (light pink),

50°C (dark pink) and 55°C (light green). These spectra are 3 weakest (highest points)

at 210nm and noticeably dip down much earlier at 200nm. 

Observed  spectra  are  very  similar  to  just  CaMBD  thermal  denaturation  spectra,

temperature at which spectra change shape are matching.

Ca2+ induced spectral change, predominantly a change in α helix content, was reported

for wt CaMLD in the literature. This experiment was repeated with the recombinant

proteins produced for this project including CaMBD and two of the mutant forms of

CaMLD. 1mM Ca2+ was added in the relevant samples as per the original  trial  and

dilution factors were taken into account for the spectra recorded without added Ca2+. For

all figures shown below red spectrum is averaged data for protein sample and turquoise

spectrum is averaged data for Ca2+ added sample. Variance in spectra below 200nm is

likely to be attributed to protein sample quality. 
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  Figure 6.2.3.5 Spectra of wt CaMLD and wt CaMLD with calcium.

Figure 6.2.3.6  Spectra of E4076K and E4076K with calcium.
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Figure 6.2.3.7 Spectra of N4104K and N4104K with Ca2+.
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Figure 6.2.3.8 Spectra of CaMBD and CaMBD with calcium.

For the above spectra the wavelength region 208-220 associated with α helix is being

examined. For most of the samples there are appears to be very little variation in the

shape of the spectra in this region with or without added calcium. 
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6.2.3.2 Near UV region (250-350nm)

Initially spectra of individual proteins recorded in the near UV region to allow for later

comparison.

Figure 6.2.3.9 Near UV region spectra of CaMBD. 
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Figure  6.2.3.10  Near  UV region  spectra  of  wt  CaMLD  and  wt  CaMLD  with

calcium.

Red spectrum is averaged data for wt CaMLD.

Turquoise spectrum is averaged data for wt CaMLD Ca2+ (1mM) added sample.

 

Change in spectral shape observed in 260-270nm range between wt CaMLD with or

without 1mM Ca2+ samples.  The sample with Ca2+ present shows dip in this  region

compared  to  sample  without  Ca2+ added.  Less  clear  spectra  were  recorded  for  the

CaMLD mutants N4104K and E4076K, any potential dip is lost in signal noise.  

 

Owing to the clear difference between the spectra for CaMBD and the CaMLD proteins

it was decided to monitor the interaction between the 2 domains in the near UV region.

218



Figure 6.2.3.11 Near UV range spectra of wt CaMLD incubated with CaMBD with

and without presence of calcium.

Red spectrum is averaged data for wt CaMLD and CaMBD incubated without Ca2+.

Turquoise  spectrum  is  averaged  data  for  wt  CaMLD  and  CaMBD  incubated  with

200μM Ca2+.

Mixture of wt CaMLD with CaMBD has spectrum resembling that of just CaMLD.

Presence of Ca2+ in this incubation triggers change to spectrum observed for CaMBD.
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Figure 6.2.3.12 Near UV range spectra of E4076K CaMLD incubated with CaMBD

with and without presence of calcium.

Red spectrum is averaged data for E4076K CaMLD and CaMBD incubated without

Ca2+.

Turquoise spectrum is averaged data for E4076K CaMLD and CaMBD incubated with

200μM Ca2+.

Difference between spectra is not as pronounced as for wt CaMLD however change to

more CaMBD like spectra, with addition of Ca2+, is observed.
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Figure  6.2.3.13 Near  UV  range  spectra  of  N4108K  CaMLD  incubated  with

CaMBD with and without presence of calcium.

Non-averaged data is  shown for  NK mutant.  A few of the spectra recorded for the

incubation  containing  Ca2+ show the  spectral  shape more  associated  with  CaMBD

however when the data is averaged the influence of these spectra is minimal.  

 The role of Ca2+ concentration was further explored with relation to the interaction of

CaMLD and CaMBD. It should be noted that at this point that the system used to collect

the CD data was changed, this system allowed data to be collected over a wider range of

wavelengths  however  had reduced signal  sensitivity  as  a  result.  A repeat  of  the  wt

CaMLD with CaMBD incubation was conducted with new protein material as a check

of recordable data.
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Figure 6.2.3.14 Repeat of near UV range spectra of wt CaMLD incubated with

CaMBD with and without presence of calcium. 

Blue trace is wt CaMLD with CaMBD. 

Red trace is a repeat of the same incubation but with 200μM Ca2+ added.

Although the spectra are slightly different in appearance to the previously recorded data,

similar  characteristics of  spectral  shape change can be observed.  The distinctive 2nd

peak, though shifted in wavelength, associated with the CaMBD spectrum is observed

when Ca2+ is added to the incubation.   

A range of Ca2+ concentrations were tested to investigate the required concentration to

trigger the swap between spectral shapes observed in the above figure.
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Figure 6.2.3.15 Spectra of CaMLD with CaMBD incubated with range of calcium

concentrations.  

Ca2+ concentrations (μM) shown in key in lower right corner. 

Ca2+ concentration increase was achieved by serial addition of stock Ca2+  solution to

same sample.

There is no clear shift in spectra shape as observed with the incubation with a single

Ca2+ concentration. There is a slight shift down in the spectra in the 250-270nm range. A

dilution effect would be expected to shift the spectra up towards the x axis, with the

suggestion of a 2nd peak for the 200μM Ca2+ trace. A smaller partial shift may have

occurred for the 100μM Ca2+ trace but this is not clear. 
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Repeats  of  this  experiment  were  conducted  using  individual  samples  for  each  Ca2+

concentration tested so that no dilution effects were involved. As previously the swap

between spectral types was observed for 200μM, and higher, Ca2+ concentrations. The

presence of 100μM Ca2+ did not produce a conclusive result, in different experiments a

range of  spectral  shapes  between  those  associated  with  CaMLD and  CaMBD were

observed. Ca2+ concentrations below 100μM did not result in a spectral shape change,

the trace remained the same as a CaMLD sample. 

These experiments were conducted using the CaMLD mutants E4076K and N4108K

and as previously it was difficult to obtain consistent results. As seen in earlier data

200μM Ca2+ seemed to start a trigger towards a change in spectra shape. However use of

higher Ca2+ concentrations did not consistently result in the level of difference seen for

wt CaMLD.  

As these experiments were conducted using tagged protein, the tags were separately

tested against the presence and absence of Ca2+, and in control trials in which one of the

RyR2 proteins was replaced with just its associated tag. In all these cases the tags were

not observed to influence the recorded spectrum in any significant manner.  

The interaction of CaM with CaMBD was also tested.
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Figure  6.2.3.16 Near  UV  region  spectra  of  CaM  incubated  with  CaMBD  in

presence and absence of calcium. 

Blue trace is CaM with CaMBD. 

Red trace is a repeat of the same incubation but with 200μM Ca2+ added.

No change in spectral shape observed between the two conditions. 

For this experiment spectrum without Ca2+ was recorded. Ca2+ was then added to this

sample and allowed to incubate before recording with Ca2+ spectrum. Addition of Ca2+

solution  to  sample  will  have  diluted  protein  concentration  which  is  reflected  in

reduction in protein signal seen as shift of spectrum closer to x axis. 
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6.3 Discussion

The aim of  this  chapter  was to  examine the binding of  the studied RyR2 domains,

further the understanding of the involvement of CaM within this interaction and also

how Ca2+ concentrations affected the binding in these instances. In addition, this chapter

also shows how the selected CPVT mutations in CaMLD would disrupt these processes.

Initially chemical denaturation was used to examine the structural stability differences

between wt and mutant CaMLD. As the proteins were denatured the ΔG values are

negative  though with differences  between the  wt  and mutant  forms.  This  technique

revealed that, apart from the E4076K mutation, the mutant forms of CaMLD had similar

structural integrity to the wt with all of them having an intermediate, partially unfolded,

state between folded and fully denatured states. The three mutations, G3946S, N4104K

and H4108Q, increased the wt stability with respect to an intermediate state, though this

may not increase the overall stability of the protein. The lower ΔG values seen for the

mutants for the transfer from the intermediate to unfolded state, compared to the wt,

means that less energy would be released from this transfer so implying greater stability

in  the  intermediate  state  than  the  wt.  The  E4076K  mutant  does  not  share  the

intermediate  state  rather  going directly to  an unfolded state.  This  mutation severely

affects  the  stability  profile  of  the  CaMLD region.  Interestingly,  the  absence  of  the

intermediate state indicates that the E4076K mutant is less likely to destabilise than the

wt and other mutants, though under conditions favouring denaturation the EK mutant is

expected to be much less stable.   

The pull down assays initially offered an established method of analysing the interaction

between the RyR domains and CaM. The use of western blots for detection over just

SDS-PAGE provided greater sensitivity within the technique though this caused some

issues  with  clarity  of  data  as  protein  degradation  products  were  also  seen.  The

unspecific interactions with the affinity beads limited the potential range of experiments

that could be conducted. Attempts to saturate the beads binding sites were unsuccessful

and doubts remained about the validity of the results produced. Despite these issues,

data of interest was generated using this technique.
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The  use  of  CaM  agarose  beads  with  the  CaMLD  constructs  appeared  to  show

predominantly Ca2+ dependent interaction between CaMLD and CaM. This interaction

is not reported in the literature with only CaMBD binding to either CaM or CaMLD. To

initially explain this potential interaction it was proposed that there may be some partial

interaction between CaM and CaMLD during the transfer on binding with CaMBD.

Based on CaM binding mechanisms described in the literature and the absence of a

probable CaM binding site  in the structure of CaMLD this is  unlikely.  Experiments

conducted under  the same conditions  showed weaker  binding between CaMBD and

CaM than were observed for CaMLD with CaM. It is more probable that there was a

flaw with this pull down assay than a genuine interaction between CaM and CaMLD.

Subsequent repeats using the recombinantly produced human CaM that did not display

any interaction between CaM and CaMLD reinforce this idea.    

The use of cross linking reagents addressed some of the above problems described for

the pull down assays. Based on cross linking operating on that any genuine interacting

proteins would be close enough for long enough to cross link whereas random contact

between non-interacting protein in solution would not produce significant detectable

amounts of x-linked product. The resultant cross linked product would also be of greater

mass so removing it  from the regions  of the blot  affected by degradation products.

Glutaraldehyde, a bi-functional cross linking reagent that reacts with lysine residues on

the exterior of proteins, was used for these experiments. The use of glutaraldehyde can

results in the formation of large aggregates. This may explain the large size band seen

for  the  CaM  with  CaMBD  incubation  (figure  6.2.2.5)  but  not  the  absence  of  the

expected CaM signal for GST with CaM incubation. There were also unexplained CaM

signals produced from the timed sample incubations (figure 6.2.2.6). A constant strength

signal  was  expected  for  the  unbound  CaM in  the  incubation  with  the  GST tag  as

opposed to an increasing signal with time. For the CaM with CaMBD incubation an

increase  in  CaM-CaMBD product  signal  was  expected  with  a  decrease  in  unbound

CaM. It is possible that some of the issues with cross linking could have been resolved.

The use of other cross linking reagents was being trialled as the initial data from CD

experiments  was  obtained.  As  CD  appeared  to  have  greater  potential  for

experimentation, the pull-down assays were not pursued.   
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For work in the far UV region the buffer composition used played a major factor. Owing

to the stability issues found with the RyR2 domain proteins so limitations were placed

on buffer components that could be used. The CD buffer  system used in this project

served as a direct replacement for purification buffer in an attempt to maintain protein

stability while  removing as  many of the far  UV absorbing components  as possible.

Chloride  has  a  strong  absorbance  below  200nm  so  was  replaced  with  fluoride.

Imidazole has a strong absorbance around 210nm which made thorough dialysis and/or

the  use  of  gel  filtration  extremely  important  in  sample  preparation.  Obviously  this

approach did not produce an ideal CD buffer, data collection was limited to >190nm

(figure 6.2.3.1) even when there was a high protein concentration giving good signal

strength. However as the main data wanted from the CD experiments was for the α helix

regions (>190nm, mainly 200-220nm) then this was viable solution.   

Initially  CD  in  the  far  UV  region  was  used  as  a  tool  to  assess  folding  of  the

recombinantly produced proteins. As can be seen in figure 6.2.3.2, spectra for folded

protein  was  obtained  for  all  the  tested  samples.  The  accompanying  table  reveals

potential differences in the structure between wt and E4076K CaMLD. The secondary

structure predictions show wt CaMLD and EK as very similar in expected structure

however  this  not  observed in the experimentally derived values.  The EK values  are

close to the predicted but wt has higher α helical content with a matching reduction in

other components, β sheet content is similar to predicted. It is possible that wt CaMLD

has more defined secondary structure than under predicted conditions. The presence of

the EK mutation may disrupt this structure so resulting in more random coil (included in

other) in the structure.  The experimental values for CaMBD show less α helix than

predicted, and increased β sheet and other content. It is not clear why this occurs. It is

possible, that as with wt LD, experimental conditions differ from those of predicted

resulting in variance between the two sets of values. Also the algorithm used to fit the

secondary structure values to the experimental spectra may cause differences in values.

As data could not collected below 190nm this limited the choice of algorithms that

could  be  selected  and increased  the  deviation  between the  fitted  and recorded  data

(figure 6.2.3.2). The CDSSTR program (Sreerama & Woody 2000) combined with SP43

(reference set containing 43 soluble protein examples) was considered to be the most

accurate option available with the data obtained.       
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The thermal denaturation experiments were trialled as companion data to the chemical

denaturation  work.  Owing  to  the  equilibration  time  delay  required  at  each  new

temperature point the programme to run thermal denaturation was several hours long.

This limited the amount of data that could be collected within allocated B23 beamtime

sessions. As no denaturation data was held for CaMBD so this protein was tested first.

The flattening of BD spectra (figure 6.2.3.3) indicates loss of secondary structure, this

indicates that the protein is denaturing, probably structure is lost somewhere between

50-55°C. There is no real observable difference between the just CaMBD and complex

with E4076K CaMLD spectra. Admittedly further data, in particular with wt CaMLD,

would need to be recorded to allow full comparison. Owing to the time taken to collect

data  and  the  initial  unclear  data  it  was  decided  not  to  further  pursue  the  thermal

denaturation experiments. 

One  of  the  experiments  conducted  in  the  far  UV region  was  to  repeat  the  spectra

recorded for CaMLD with and without Ca2+ reported in the literature (Liangwen Xiong

et al. 2006). This data is shown using ellipticity rather than millidegrees, ellipticity is

the millidegree values corrected for protein concentration, however this difference in

units does not change the shape of the spectra which is the examined component when

assessing  condition  variables.  The  experimental  data  from this  project  reveals  little

difference between the presence or absence of 1mM Ca2+ for wt and mutant CaMLD.

Possibly a slight difference can be seen for wt and NK protein though the EK sample

appears unchanged (figures 6.2.3.5-8).  Based on the expectation of the affect of the

mutations, EK is thought to be less Ca2+ sensitive though 1mM Ca2+ should be well

above any triggering  threshold.  The literature example represents  somewhere in  the

region  of  a  5%  change  in  α  helix  content,  while  this  represents  an  important

rearrangement of the structure of the protein it is not a huge difference in terms of CD

signal and maybe easily lost due to signal noise in a non perfect sample. An illustration

of the impact of signal variation is shown by the CaMBD sample appearing to show a

difference  between conditions.  This  is  not  expected  as  CaMBD does  not  contain  a

known Ca2+ binding site. 

The  quality  of  data  collected  could  have  possibly  been  improved  by  using  more

concentrated protein samples. The increase in signal strength would have also allowed

for a shorter path length cell to be used potentially enabling data collection at shorter
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wavelengths despite the buffer imposed limitations. These experiments were conducted

using cleaved tag protein samples, the problems associated with handling this material

and achieving higher concentrations are discussed in chapter 5. 

As the expected conformational change with CaMLD was difficult to observe within the

far UV region is was decided to collect readings in the near UV region as this offered a

great chance of detection. As discussed in the chapter introduction the RyR2 domain

proteins  appeared  to  be  good candidates  for  work  in  this  region.  Commonly when

working in this region the relative contributions to the spectra based on their percentage

aromatic  acid  composition  is  determined  and  the  concentrations  in  the  CD  sample

altered to provide matching signal strength of the proteins involved. It was calculated

that CaMLD gives a stronger signal than CaMBD. Experiments were conducted using

these corrected concentrations alongside samples using 1:1 concentrations as would be

expected if there was direct binding between the two proteins. No obvious difference

was observed so all further experiments were conducted using 1:1 concentrations. The

only issue from this approach was that the signal contribution from CaMBD might be

diminished compared to CaMLD but the observed changes in spectrum shape indicated

that this was not a problem. 

The repeat of the addition of Ca2+ to wt CaMLD (figure 6.2.3.10) revealed a difference

in spectra  indicating  a  conformational  change in  the CaMLD structure  triggered  by

addition of Ca2+. This result was less clear for the N4104K and E4076K mutants. The

wavelength of the spectra where variation was observed is attributed to phenylalanine

residues  within  the  protein.  There  are  several  Phe  residues  located  in  CaMLD;  2

upstream of 1st EF hand motif,  2 per EF hand motif and 1 downstream of 2nd EF hand

motif. It is plausible that there could be a Ca2+ induced conformational change which

alters the environment around the Phe residues, this is almost certainly the case for the

amino acids in the EF hand motifs, which resulted in the observed spectral change. 

It should be noted that 200μM Ca2+ was used instead of 1mM for this experiment and all

subsequent work involving the triggering of a conformational change in CaMLD. The

CaMLD region in RyR1 was reported to have an apparent Ca2+ binding affinity of 60

(±12) μM. It is assumed that the conformational triggering threshold concentration is

somewhere in this region. The switch to 200μM Ca2+ in experimental conditions was an
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attempt to use a value closer to this threshold and set a lower top concentration for

experiments attempting to discover this threshold concentration.

Based  on  the  successful  observation  of  a  Ca2+ induced  conformational  change  in

CaMLD, the interaction between CaMLD and CaMBD was investigated using near UV

region CD. For the wt CaMLD a clear change in the shape of the spectra is observed

(figure 6.2.3.11). This indicates that a clear conformational change is occurring which

suggests binding with CaMBD. As previously found 200μM Ca2+ is sufficient trigger

conformational change, as this structural rearrangement in CaMLD is considered to be

required  prior  to  CaMBD  binding  so  it  is  not  surprising  that  this  concentration  is

sufficient. As the change in spectra is different to that observed for just the addition of

Ca2+ so it is likely that the difference is a result of the presence of CaMBD.  As the

change in spectrum shape transfers between that associated for CaMLD to CaMBD it is

even more suggestive that CaMBD binding is the cause. What is not so clear is why the

spectra should so clearly differentiate between these two component associated spectra.

This difference suggests that in the absence of Ca2+ CaMLD is the dominant protein

signal. The addition of Ca2+ triggers the conformational change in CaMLD which is

assumed to adopt the “wrap round” binding of CaMBD, as observed for CaM in the

PDB structures, so making CaMBD, or a CaMBD like, signal the dominant observed

component of the spectrum. This potential CaMBD binding result is not so clear for the

NK and EK mutants but appears to occur to some extent suggesting possibly weaker or

a lower percentage of the CaMLD population binding with CaMBD, as thought to be

seen in the NK spectra (figure 6.2.3.13), than compared to wt.

With the change of CD equipment so the CaMLD binding to CaMBD experiment was

repeated. As expected a very similar result is observed with the shift to the CaMBD

associated  spectra  with the  addition  of  Ca2+.  Although the  2nd peak  of  the  CaMBD

spectrum appears  to  be  shifted  closer  to  250nm (figure  6.2.3.14),  appears  closer  to

260nm for previous data sets, this is an artefact produced by the change in x axis scaling

resulting from the change in frequency of data points collected.   

To determine the CaMLD conformational trigger Ca2+ concentration threshold a series

of Ca2+ concentrations were tested (figure 6.2.3.15). The data from this experiment is

unclear, it appears that 200μM Ca2+  is required, though 100μM may be sufficient. The
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use of serial additions of Ca2+ may well skew the results in this experiment. Repeats

using individual Ca2+ concentrations seem to confirm these observations, 100μM Ca2+

may be close to the threshold for this recombinant wt CaMLD under these experimental

conditions.  A 200μM  Ca2+ concentration  is  required  to  start  to  observe  a  similar

triggering  of  conformational  change  for  the  EK  and  NK  mutants.  As  no  Ca2+

concentrations were tested between 100 and 200μM a closer threshold value cannot be

assigned  to  these  mutations  beyond stating  that  the  assumed  required  concentration

>100μM. This difference in required Ca2+ concentrations suggests towards lesser Ca2+

sensitivity for E4076K and N4104K mutants.       

The experiment including the incubation of CaMBD with CaM in the presence and

absence of Ca2+ was conducted as a check against previously observed results using the

CaMBD construct protein. The only difference seen in the spectra (figure 6.2.3.16) is as

a result of a dilution factor of the addition of Ca2+ to the sample to record the with Ca2+

spectrum. Based on the mechanism of CaM binding so any observable conformational

change would be expected in CaM rather than CaMBD. Previously tested CaM samples,

although  generating  spectra,  had  shown no discernible  difference  in  the  absence  or

presence of Ca2+, as discussed in the chapter introduction this was expected. Owing to

this lack of signal change CaM was not further used within CD experiments.     

The data obtained in this chapter indicates that the recombinant CaMLD and CaMBD

proteins bind. This process may first require a Ca2+ induced conformational change in

CaMLD. The interaction between domains occurs for the mutant forms E4076K and

N4104K  though  may  be  affected  by  the  possible  lesser  Ca2+ sensitivity  of  these

mutations. In addition the E4076K mutation severely weakens the stability profile of the

CaMLD protein, this may be reflected in the decrease of α helix and β sheet content

seen in the experimentally derived secondary structure.     
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Chapter 7:
General Discussion
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7.1 General Discussion

The aim of this thesis was to examine the interaction between the CaMBD and CaMLD

of RyR2 and the impact that certain CPVT point mutations within CaMLD have upon

this interaction.  A number of computational,  structural  and functional  techniques,  as

discussed in previous chapters, were applied to this study. The data collected from these

methods is now discussed with regards to the studied domain interaction within RyR2

and how certain CPVT mutations may disrupt this mechanism of interaction. 

The amino acids 3545-4163 of the human RyR2 contains the CaMBD and the CaMLD.

Work carried out previously in this lab using FRET technology have shown that the

cytoplasmic domain of the ryanodine receptor communicated with the inner pore region

(membrane –embedded channel pore segment) via  an interacting domain (I-domain)

consisting of amino acids 3722-4610 (George et al. 2004a). The majority of residues of

this region are expected to traverse through the inner regions of the channel, thus apart

from the CaMLD and CaMBD regions, they are not expected to be solvent exposed.

Recently,  discussion  and  the  presence  of  this  region  in  modulating  the  interaction

between  the  cytoplasmic  domain  and  that  of  the  inner  pore  region  has  also  been

suggested by the Van Petegem group as shown in the figure below.
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Figure 7.1 Hypothetical  schematic  model  of  cross-domain  interaction  in  the

RyR.

Model showing the possible interaction between the N-terminal region of RyR and the

transmembrane pore region. Regions labelled A, B and C are the interacting domains

within the N-terminal segment of the RyR. The segment shaded in green represents the

region in RyR encoded by exon 3, seen in severe CPVT phenotypes where the entire

exon is deleted. Figure adapted from (Lobo et al. 2011).

The current accepted model of allosteric interaction between the cytoplasmic domain

and the pore region is that multiple modulatory interactions exist between these two

important domains. It is thought that the normal gating of the RyR as a channel occurs

via allosteric regulation between the mutation hotspot region in the N-terminal domain

and the pore region, where the N-terminal region plays an important role in slowing

down the opening of the pore. Domain A (as shown in figure 7.1) interacts with the pore

via a helical segment within it (Lobo et al. 2011).

The region encoded by this area of interest which incorporates the CaMLD and CaMBD

region contains a high proportion of amino acids that are highly hydrophobic in nature,

as examined in the computational modelling work in chapter 3. This is to be expected of

a set of amino acid residues that lie buried within a structure, largely hydrophilic amino

acids are usually found at the solvent exposed surfaces of a protein molecule. As such, it

is  extremely  difficult  to  generate  recombinant  versions  of  such  highly  hydrophobic

proteins  since  the  purification  methods  rely  on  the  use  of  water  based  buffers  and

separation media reliant on aqueous conditions.
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Experiments with CaMBD and CaMLD required the production of recombinant protein.

The design of both constructs relied heavily on the identification of secondary structure

elements believed to play important roles in the interaction of the RyR2 domains. The

constructs designed for CaMBD were based around a section of protein that had well-

established  structures.  CaMLD  posed  more  problems.  Traditionally  when  trying  to

produce  stable  protein  then  whole  proteins  or  clearly identified  domains  within  the

protein of interest are targeted. There are published reports of a CaMLD area within

RyR1 and RyR2 that interact (Liangwen Xiong et al. 2006) (Gangopadhyay & Ikemoto

2008) (Gangopadhyay & Ikemoto 2011) which are all  based on the initial  report  in

RyR1 by Xiong and colleagues (Liangwen Xiong et al. 2006). While CaMLD appears to

offer an identifiable domain, it is not entirely clear from a structural viewpoint where

the  domain  begins  and  ends.  When  compared  to  a  lobe  of  CaM  then  portions  of

predicted  α  helix  that  are  proposed  to  play  a  role  in  binding  to  CaMBD  can  be

identified. It is probably around these residues, close to the published coordinates, that

CaMLD starts and finishes. 

Various recombinant constructs of CaMBD and CaMLD were tested as explained in

chapter  5,  however,  only  few  were  marginally  soluble.  The  expression  of  such

hydrophobic constructs is also not conducive to the growth and propagation of  E.coli,

thus protein recovery from E.coli is also a major factor to be considered. Furthermore,

to protect itself from the recombinant protein, E.coli frequently sequester the protein as

soon as it  is  translated into inclusion bodies,  enveloping it  with various  heat  shock

proteins so that it does not interfere with the cytoplasmic milieu of the bacteria. Thus,

when bacteria are first lysed and the broken cell membrane portions are centrifuged as a

pellet for removal, the inclusion body sequestered protein also aggregates with the pellet

fraction. Isolating the inclusion body sequestered proteins is possible but the method

involves  denaturing  the  tight  interaction  between  the  recombinant  protein  from the

inclusion  body  and  heat  shock  proteins  using  strong  denaturants  such  as  urea  or

detergents as detailed in chapter 5. The downside of this  method is  that the tertiary

folding of a protein is often lost upon these treatments. While refolding protocols can be

applied there is no guarantee that the functional folded protein will be obtained and, as

such, the recovery of the protein of interest at the end is very poor at best. 
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To combat these issues various affinity tags were also used to encourage the solubility

of the recombinant protein. The NusA protein is one of a complex of proteins that is

used  by  bacteriophage  lambda  to  prevent  the  early  termination  of  an  RNA

transcriptional  step.  Thus,  with  the  use  of  these  “anti-termination”  proteins,  RNA

transcription can be coaxed to continue for longer than intended. The NusA protein is

also a highly soluble protein molecule,  which is  also used as a recombinant protein

expression modifier. Proteins that poorly expressed were highly hydrophobic and not

amenable  to  standard  purification  methods  usually  were  “workable”  again.  These

proteins  showing  better  expression  profiles,  enhanced  purification  and  yield  from

recovery steps when expressed as a fusion partner with the 495 amino acid NusA tag at

the  N-terminus.  However,  upon cleavage  of  the  solubility  tag  such as  NusA,  these

proteins frequently started to form insoluble aggregates and dropped out of solution.

Examples of this phenomena are related in chapter 5.  

Other solubility tags tried and used for improving expression of recombinant proteins

were the Trx tag (thioredoxin tags), MBP tags (maltose binding protein tags) and the

GST tag (glutathione S-transferase tag). However, as shown in chapter 5, none of these

tags  were as  effective at  attempting to  gain the large milligram scale  production of

recombinant proteins that is necessary for the production of crystals for determination of

structure by x-ray crystallography.

There is some evidence in the literature that disulphide bonds are possible and present

within the RyR molecule  (Favero et al. 1995), however it is not certain if the region

encoded by aa  3545-4163 contains  any disulphide  bridges  in  the  intact  whole  RyR

molecule  in vivo. The cytoplasm of  E.coli is a very strong reducing environment and

recombinant proteins that are normally stabilised by disulphide bridges would not be

correctly folded as these disulphide bonds would be broken within E.coli using enzymes

such as thioredoxin and glutaredoxin. Such proteins would then be randomly folded,

form  aggregates  within  the  cytoplasm  of  E.coli and  be  sequestered  into  inclusion

bodies. If disulphide bonds are crucial for the maintenance of protein structure, then

there are  E.coli strains, such as the commercially available Origami strains, that have

oxidising  properties  in  the  cytoplasm  which  allow  the  maintenance  of  disulphide

linkages.  Since it  is  unknown if  disulphide bonds are crucial  for the folding of this

region of the RyR, so no steps were taken to preserve those S-S bonds.
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Certain additives can be used to increase the expression of highly hydrophobic proteins

and to encourage their presence within the aqueous milieu of the cell extract following

lysis. These additives, namely the osmolytes such as betaine have been used but to little

effect  in  this  thesis.   Various  growth  conditions,  low temperatures  for  induction  of

protein from the plasmid, different formulations of media and other techniques have

been tried but to little effect as described in chapter 5. Due to this, the production of

large quantities of recombinant protein were not feasibly possible, and thus the initial

aims of producing adequate amounts of protein for the purpose of obtaining protein

crystals to try to solve the 3D structure of the regions of interest, was not met.

Since it was not possible within the time frame of this research study to persevere with

the ultimate goal of crystallisation, it was decided to obtain some preliminary answers

by  theoretical  and  homology  modelling.  The  computational  based  work  produced

models of the studied region. These models contained both domains of interest and the

predicted secondary structure elements in the proposed loop region between the two

domains.  The  theoretical  modelling  was  carried  out  using  the  homology modelling

software,  MODELLER  (A Sali  & Blundell  1993).  Within MODELLER, it  was also

possible  to  force  the secondary folding  of  regions  of  the protein based on the data

obtained from secondary structure prediction software. Thus, after the CaMBD-CaMLD

regions were folded using a homologous template, MODELLER was used to force the

folding of stretches of protein with unknown structure by  ab-initio folding methods.

Following this, the model was refined to incorporate bond lengths and angles that were

within the prescribed values that have been empirically established.

Having finished the theoretical modelling using first principles (ab initio modelling),

the  model  was  coaxed to  fold  further  by the  interaction  of  proximal  molecules.  In

molecular  simulations,  usually  the  non-bond  values  of  molecules  are  specified  to

approximately 12-15 Å. In reality, two atoms that are not bonded to each other would

still exert at attractive force on each other that tails off to infinity, the force of attraction

may be minuscule  at  infinite  distance  but  is  still  present.  In  a  computer  simulation

however, due to the enormous amounts of computation required should the non-bond

values be specified to infinity, it is common to specify them to approximately 12-15 Å.

In the conducted simulations, to coax the molecule to fold in 3D-space, the non-bond
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value was set to the largest dimension between two atoms placed furthest from each

other. In the time taken for the simulation to run, the structure was observed to become

more  compact,  however,  for  a  simulated  folding  to  occur  in-silico,  this  would  be

expected to take a much longer time and require much greater computational processing

power. It is interesting that protein folding  in-vivo takes place in an extremely short

period of time, as described in chapter 4.  The structure presented in chapter 4 therefore

is best taken as a structure that is still in the process of folding.

Although  various  energy  parameters,  bond-distances  and  angles  were  analysed

exhaustively in chapter 4, one of the most remarkable observations is that despite the

high mobility of the molecule during the simulations, the CaMBD and CaMLD domains

did not migrate very far away from each other. This shows that the non-bond interacting

forces (such as Van der Waals forces, ionic-interaction, etc) are sufficient to keep the

two domains proximal to each other. Thus, there is a natural propensity for these two

domains to interact with each other.

The  functional  assays  that  were  conducted  displayed  interaction  between  the

recombinant protein of CaMBD and CaMLD constructs. As the interaction was also

observed when the solubility tags had not been removed this addressed some of the

issues  raised  above.  This  suggested  that  functional  structure  of  RyR2  domain

recombinant proteins is not affected by the presence of the tags either at the level of

steric  hindrance  or  through  unwanted  interaction.  The  tags  were  shown  not  to  be

responsible for potential false positive binding in control experiments. 

A calcium induced conformational change was observed in CaMLD which seemed to be

required before interaction with CaMBD. While a specific threshold concentration to

trigger the conformational change, for these construct proteins, was not not found, data

suggested in the range 100-200 μM calcium. This value is higher than the 60 ±12μM

calcium binding with CaMLD concentration reported from fluorescence binding assays

by Xiong (Liangwen Xiong et al. 2006). While this concentration is above the sub μM

calcium concentrations observed for RyR2 activation it  is  below the mM inhibitory

levels (Lamb, 2000). As CaM is expected to unbind from CaMBD with the increasing

calcium levels during RyR2 channel activation, it is plausible that the conformational

change required for CaMLD binding to  CaMBD could be triggered in the range of
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100μM calcium. The same set of experiments indicated that the CPVT point mutations

E4076K and N4104K may decrease calcium sensitivity as CaMLD construct protein

containing these mutations appeared to require higher calcium concentrations than the

wt for binding with CaMBD. 

The requirement for a calcium induced conformational change prior to binding further

strengthens the comparison between CaMLD and CaM. CaMLD is seen to share very

similar structure and functional response to a lobe of CaM. However, beyond showing

CaM interaction with the recombinant CaMBD protein this project did not address the

potential competition between CaM and CaMLD for binding to CaMBD. Competition

assays between CaM and CaMLD under varying calcium concentrations were attempted

but with no clear data produced. Part of this was due to the low CaM signal given in

near UV CD experiments as discussed in chapter 6. As such, it is not possible to discuss

the conditions required for CaM to dissociate from CaMBD so that CaMLD will bind

using results from this project. It is known that this transition in binding occurs as part

of  the  channel  function,  the  impact  of  calcium concentrations  are  discussed  in  the

literature (Balshaw et al. 2001) (Naohiro Yamaguchi et al. 2003).

The mutation, E4076K was found to significantly weaken the structural integrity of the

CaMLD domain. The other mutations studied, G3946S, N4104K and H4108Q had a

similar  denaturation  profile  to  that  of  the  wt  sharing  an  intermediate  stage  before

becoming unfolded. However, these three mutations were less likely to transfer to this

intermediate  state  than  the  wt.  This  would  appear  to  link  to  work  conducted  by

colleagues which showed that mutations in the I domain caused variation in calcium

release that were not observed for central domain mutations. N4104K was one of these

studied  mutations  and  was  implicated  in  causing  conformational  instability  in  the

functional channel (George et al. 2006). If the ability of the protein to undergo a calcium

induced conformational  change is  reflected in  the ease of  a  transfer  from native  to

intermediate  state,  i.e.  internal  rearrangement,  then the data  obtained in  this  project

would  start  to  explain  the  structural  and  functional  impact  of  the  CPVT mutation

N4104K. The wt version would respond to a lower calcium concentration and then have

a lower energy requirement to undergo a conformational change as part of the channel

opening in response to increasing calcium levels. 
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E4076K was identified at the start of the project as a CPVT point mutation of particular

interest  in RyR2. Its  position within the EF hand loop, although not in a conserved

position, lead to speculation that this mutation would disrupt the function of CaMLD

though it was not clear to what extent this mutation would disrupt function. The data

from this  thesis,  as  discussed above,  indicated  a  structural  weakness  and a  reduced

calcium sensitivity compared to the wt recombinant protein when this mutation was

present. However it would appear, that from the studies conducted in this thesis, that

even with this mutation present CaMLD is still able to function in its expected CaMBD

interaction role. This is consistent with the understanding of CPVT in that the condition

does not present until the heart is in a “stressed” state as described in relation to the

phosphorylation state of RyR in chapter 1.  As such, this  thesis  has provided further

understanding  of  the  possible  mechanism  by  which  certain  CPVT point  mutations

within CaMLD disrupt the interaction with CaMBD and so lead to the manifestation of

CPVT symptoms. 

7.2 Future directions

One of the main concerns with the functional experiments conducted in this project was

the quality of protein. High throughput studies for crystallisation work are increasingly

generating a large number of potential constructs which test a large range of domain

boundaries  encompassing  the  region  of  interest.  A range  of  vectors  and  expression

systems are also trialled. This approach, because of its required scale, may not be fully

applicable  within  the  scale  of  a  project  such  as  this  but  smaller  versions  can  be

attempted  and external  laboratories  offer  this  as  a  service.  However,  for  reasons  as

discussed above, even this approach may not find a noticeably improved solution to the

issue  of  CaMLD  based  construct  protein  stability.  As  discussed  in  chapter  5,  a

compromise for the production of usable protein has to be reached at some point. 

The use of other techniques in functional assays would allow further investigation into

the interaction between the two RyR2 domains and CaM. A number of techniques were

considered  though  it  was  considered  that  isothermal  titration  calorimetry  (ITC)  or

surface plasmon resonance (SPR) would offer the most possibilities. The use of SPR

had been considered for the purposes of competition assays. This technique would allow
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CaM or CaMLD to be flowed over CaMBD, bound to a chip,  under changing Ca2+

concentrations  to  monitor  binding  affinities.  Once  these  had  been  established  then

competition between CaM and CaMLD under varying conditions could be examined.

There were some concerns over the methods to attach the protein to the chip. Most of

the  chemical  binding  options  as  the  acidic  conditions  required  would  denature  the

proteins.  One of the tagged based systems would probably provide the solution,  the

presence of tags did not appear to affect the interaction between CaMLD and CaMBD

though this could be test more fully be examination of binding affinities under control

condition  experiments  using  SPR.  It  may  also  be  possible  to  examine  if  the  RIH

associated domain plays any role in binding for CaMLD with this technique by the use

of the range of CaMLD constructs generated for this project.  

Structural biology was planned as a significant content of the original thesis. Prior to

commencement cryo-EM structures of RyR with predictions of the locations of domains

had been published. During the course of the project a number of papers containing

crystal x-ray derived structures were published. Notable amongst these were the work of

the Van Petegem group examining the N terminal of RyR and the structural implications

of mutations within this region (Lobo & Van Petegem 2009), (Tung et al. 2010). These

papers  illustrate  the  additional  level  of  understanding  that  can  be  gained  when  the

physical impact of a mutation can be seen upon the structure. It was hoped that further

progress to equivalent result in the domains studied in this project could be made but as

discussed in chapter 5 this did not prove possible. This is clearly an area for further

exploration  beyond  this  project.  Gaining  a  structure  of  CaMLD bound  to  CaMBD

would further help to see any similarities with CaM binding and help to clearly identify

key residues involved in CaMLD binding. Comparison of structures involving mutant

forms of CaMLD would greatly aid in the understanding of CPVT mutations in this

region. While likely to be resource and time heavy this approach would offer potentially

great benefits. 

One of the techniques that can be used to identify more likely crystallisation buffer

conditions is the thermal shift assay. The strength of a fluorescent signal is monitored as

the protein sample is heated in a variety of buffer conditions. As the protein unfolds so

the signal is quenched, the more stable the protein is in a certain condition then the

higher the temperature as which it denatures. This technique was trialled, using sypro
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orange (Sigma) in a qPCR system, for the cleaved tag proteins of CaMLD and CaMBD

in attempt to identify better storage buffers. Unfortunately owing to the existing stability

issues  of  CaMLD it  did  not  prove  possible  to  identify an  improved  buffer  system.

With regards to crystallography work, if a protein sample is more stable under a certain

condition then there is more probability that it may crystallise in that condition than one

in which it degrades though this is not guaranteed. However it should be noted that

minor degradation, particularly the loss of N and/or C terminal residues, may result in a

more  stable  form of  protein.  This  is  same  theory  behind  limited  tryptic  digests  of

potential crystallisation target proteins as the aim is to remove away “flappy” amino

acids on ends of protein. This refers back to the ideas regarding domain boundaries and

may offer an additional layer of identification. 

Part  of  the  process  to  identify  further  mutations  to  study  could  be  addressed  by

development of the model system shown in chapter 4. This approach could potentially

offer a quicker way of identifying the potential impact of mutations on the structure so

identifying more likely targets prior to the commencement of laboratory based studies.

Single or multiple mutation models could be produced as required and the impact on

model structure and energy levels examined. The limitations of this approach are the

capabilities of the software,  which are steadily increasing as additional experimental

data is accrued, the users interpretation and choice of route to direct the software, and

the processing power and time required. The latter concern is becoming less of an issue

though  as  increased  computing  power  becomes  available  then  more  complex,  and

potentially realistic, simulations may be performed. 
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