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Abstract 

It is well acknowledged that molecular oxygen (O2) constricts vascular tissue under 
physiological conditions. In hypoxia, the decrease in partial pressure of O2 (pO2) within the 
tissue may be due to either a reduction in O2 supply or an increased O2 demand. The 
pulmonary circulation responds to a decrease in O2 by inducing vasoconstriction, whereas 
the systemic circulation induces vasorelaxation. Systemic vasorelaxation in hypoxia occurs 
by one of two presumed mechanisms, direct, in which smooth muscle cells can no longer 
sustain adequate contraction, or indirect, in which vasodilatory molecules are produced. 
Since the early 1990’s, several laboratories worldwide hypothesised that the vasodilatory 
molecules released under hypoxic conditions originated from the red blood cell (RBC). 
Several mechanisms have been proposed to date, including nitrite (NO2

-) reduction by 
haemoglobin (Hb) to nitric oxide (NO), S-nitrosation of Hb to S-nitrosohaemoglobin (HbSNO) 
and adenosine triphosphate (ATP) binding to P2Y receptors on the vascular endothelium. 
Although there has been extensive research within this field, a clear mechanism by which 
vasorelaxation occurs is yet to be fully elucidated. Therefore, the aims of this thesis were to 
determine the vasodilatory specie(s) released from RBCs and the mechanism by which 
vasorelaxation occurs.  

 Myography experiments were conducted using dissected rabbit thoracic aortae. 
Rings were equilibrated at various O2 concentrations, directly influencing tissue pO2. Bolus 
administration of oxygenated RBCs, isolated Hb or Krebs-Henseleit (KH) buffer to pre-
constricted hypoxic rings induced a transient relaxation which was immediately followed by 
a post-constriction of equivalent magnitude. Interestingly, oxygenated KH buffer alone 
could induce relaxation of aortic rings in a similar manner to RBCs and Hb, demonstrating 
that O2 itself relaxes hypoxic vascular tissue. In addition, the extent of vasorelaxation was 
inversely related to the tissue pO2. 

Oxygenated KH buffer alone induced vasorelaxation in hypoxic pre-constricted rings 
pre-incubated with NOS inhibitor, L-NMMA, indicating an endothelium-independent 
mechanism. Subsequent experiments investigated the role of soluble guanylate cyclase 
(sGC) in the context of these findings. A number of studies have shown that sGC does not 
bind O2. However, the results present herein demonstrate that O2 can stimulate an 
enhanced activity of soluble guanylate cyclase (sGC), increasing the production of cyclic 
guanosine monophosphate (cGMP). Importantly, this could occur in the absence of NO but 
was found to be dependent upon the presence of haem. 

In order to compare O2-induced vasorelaxation in a vessel with an alternative 
function, the left anterior descending (LAD) artery was dissected from porcine hearts. 
Hypoxic pre-constricted LAD rings relaxed 20% more to a bolus of oxygenated RBCs or KH 
buffer compared to rabbit aortic rings and this was not due to an increased expression of 
sGC within the smooth muscle. Further experiments aimed to show whether vessel size had 
an effect upon the magnitude of O2-induced vasorelaxation in hypoxia. O2 induced a greater 
vasorelaxation in rings of smaller inner diameter. In conclusion, the results within this thesis 
show a direct relaxant effect of O2 that is mediated via the sGC-cGMP pathway and suggest 
a role for O2 in response of vascular smooth muscle in acute hypoxia. 
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It is now well recognised that molecular oxygen (O2) constricts vascular smooth 

muscle under physiological conditions. When the partial pressure of O2 (pO2) within tissues 

decreases, pulmonary smooth muscle constricts, decreasing the surface area available for 

gaseous exchange. Conversley, the systemic circulation responds to a fall in pO2 by dilating 

the vasculature, encouraging the diffusion of O2 into the surrounding hypoxic tissue. The 

release of a red blood cell (RBC)-derived vasodilatory molecule which transiently dilates 

vascular tissue in order to match O2 demand is thought to underlie this response. Indeed, 

over the past twenty years or so, several groups have suggested molecules which could be 

involved in promoting vasorelaxation. The results chapters within this thesis focus on the 

influence of O2 on vascular tone in this setting.  

1.1 Control of O2 in the vasculature  

1.1.1 O2 sensing 

The body utilises several sensing mechanisms to assess the concentration of O2 within 

the blood and tissues in order to match supply with demand. These mechanisms will be 

discussed in more depth in the sections below. 

1.1.1.1  The carotid body 

Respiration is controlled by specialised chemoreceptors which have the capability to 

sense variation in pO2, partial pressure of carbon dioxide (pCO2) and hydrogen ions (H+) (1). 

For instance, two types of cells reside within the carotid body (located near the bifurcation 

of the carotid artery (2)), type I (glomus) and type II (sustentacular) (3). Such peripheral 

arterial chemoreceptors and other central chemoreceptors are the key sensory centres 
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which can facilitate homeostatic control of changes in O2 as well as drive hyperventilation 

responses during hypoxia (4) and metabolic acidosis (5). 

Glomus cells located in the carotid body are involved in cellular responses in hypoxia. 

The cells sense a change in arterial O2 tension and subsequently elicit a response via 

afferent neurons to the central nervous system (CNS).  Responsiveness of the carotid body 

to acute hypoxia relies on the inhibition of O2-sensitive potassium (K+) channels in the type I 

cells. This ultimately leads to cell depolarisation, calcium (Ca2+) entry and release of 

transmitters that activate afferent nerve fibres. (6). The mechanism of how a change in O2 

tension leads to a decrease in K+ conductance remains unknown however there has been 

some speculation as to how it occurs (7). For instance, one could speculate that several O2-

sensors coexist in the same cell or perhaps are distributed among the different O2-sensitive 

cell types. 

1.1.1.2   Haem oxygenase-2 (HO-2) 

HO-2, a constitutive form of HO, has been implicated as an O2 sensor in carotid body 

activation by hypoxia (8). This is an interesting concept considering the enzyme requires 

both nicotinamide adenine dinucleotide phosphate (NADPH) and O2 for the generation of 

carbon monoxide (CO), biliverdin and reduced iron (Fe2+) by the catabolism of haem. 

Williams et al (2004) proposed that under normoxia, HO-2 had the ability to control proteins 

which would normally be modulated by hypoxia, through the production of CO since O2 

availability was limited (9). Nevertheless, there has been data published in HO-2 knockout 

mouse models that have variable outcomes. Adachi and colleagues (2004) suggest that the 

response to hypoxia is blunted in knockout mice (10) however, data reported by Ortega-
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Saenz et al (2006, 2007) conclude that the response is unaffected (11, 12). Therefore the 

involvement of HO-2 in the hypoxic response during O2-sensing remains uncertain. 

1.1.1.3   Mitochondria 

The production of adenosine triphosphate (ATP) via the electron transport chain 

requires O2 to act as an electron acceptor. When hypoxia prevails, cells compromise by 

acquiring energy by glycolysis, leading to cessation of the electron transport chain. This 

demonstrates that the mitochondria have a profound ability to sense limited O2 within a 

cell. However, it is more difficult to answer whether mitochondria have the ability to detect 

changes in O2 within the physiological range (20-40 mmHg (13)). One suggestion states that 

alteration in redox state of the electron transport chain could contribute to the sensing of 

O2 by mitochondria (14). The Michaelis-Menten constant (Km) for O2 of cytochrome c 

oxidase has been reported to be < 1 μM, allowing pO2-independent mitochondrial 

respiration in state 3 of < 2 Torr (14). If electron transport is not limited by O2 supply under 

hypoxic conditions (pO2 5-50 Torr), it is difficult to see how mitochondrial redox could be 

affected by O2 concentration. However, it is possible that pO2 within cells could be lower 

than extracellular pO2 due to gradients between the cell membrane and mitochondrial 

membrane. It is also noteworthy that the Km calculation above is usually undertaken with 

isolated/purified enzyme and may not reflect the whole cell scenario. 

1.1.1.3.1   Mitochondrial-derived reactive O2 species (ROS) 

O2 is reduced to water (H2O) by cytochrome c oxidase during mitochondrial 

respiration, the resulting energy conserved during ATP synthesis. Early research in the 

1950’s estimated that ~3 % of the O2 consumed is not reduced effectively during 

mitochondrial respiration (15). Superoxide (O2
-) is generated from the electron transfer to 
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O2 and its generation is dependent on factors such as O2 availability, reduction state of the 

O2 carriers, as well as the membrane potential of the mitochondria (16, 17). It has been 

postulated that the decrease in maximum initial rate of cytochrome c oxidase catalysed 

reactions (Vmax of cytochrome c oxidase) (14) during hypoxia is attributable to the increased 

mitochondrial redox state which in turn leads to the enhancement of ROS production during 

anoxic conditions.  

1.1.1.4   O2 sensitive-K+ channels 

Lopez and Barneo (1988) discovered that in type I cells from the adult rabbit carotid 

body, hypoxia could inhibit a K+ current (18). Since then, a whole host of O2-sensitive K+ 

channels have been identified (19, 20). However, the mechanisms by which K+ channels can 

actually sense O2 are less certain. For instance, are the channels themselves responsive to 

changes in O2 or do they reflect a secondary response initiated by a primary O2 sensor? The 

idea of a secondary response has been supported by the fact that O2-sensitive channels are 

responsive to oxidising and reducing agents. For example, in 1999, Fearon and colleagues 

expressed a specific L-type Ca2+ channel subunit in human embryonic kidney-293 cells (HEK-

293) and established that recordings of Ca2+ currents by whole cell patch clamping were 

dampened by hypoxia (21). Oxidising agent p-chloromercuribenzenesulphonic acid 

abolished the response to hypoxia, suggesting that hypoxia may affect Ca2+ channel activity 

via redox alteration of thiol residues. This is still yet to be confirmed, however, assessment 

of responsiveness to hypoxia in the absence of other O2-sensing mechanisms could be 

demonstrated using a cloned O2-sensitive channel implanted into a secondary cellular 

membrane (21). 



Chapter 1  Introduction 

Page | 6  
 

1.1.1.5   NADPH oxidase 

NADPH oxidase is an enzyme which catalyses the production of O2
- from O2 and 

NADPH. The enzyme is made up of several components, two membrane and three cytosolic, 

in which activation involves the phosphorylation of one of the cytosolic components (22). In 

terms of O2 sensing, since the rate of ROS production appears to be dependent on the 

concentration of O2, this system could therefore act as a sensor. In a system which involves 

a membrane oxidase, O2
- could function as a second messenger, linking the oxidase sensor 

to the target, namely K+ channels (section 1.1.1.4). (23).  

Components of the NADPH oxidase system have been expressed in several cell types 

that are known to be O2-responsive such as type I cells of the carotid body (see section 

1.1.1.1) and pulmonary vascular myocytes (24). However, there is some disagreement as to 

whether NADPH oxidase possesses an O2 sensing capability. For example, patients with 

chronic granulomatous disease (CGD) suffer from a defect in one or more NADPH oxidase 

subunits (25). Based on the theory above, loss of part of this oxidase system would lead to 

loss of function of the enzyme. Nevertheless, patients with CGD are able to maintain normal 

erythropoietin (EPO) levels.  Under normal physiological circumstances, EPO plays a key role 

in O2 homeostasis where production of EPO is stimulated in the kidneys in response to 

hypoxia (7). This suggests that NADPH oxidase function is not required for O2-sensing in 

conjunction with production of EPO. It could be argued that perhaps O2 sensing in that 

setting could involve an isoform of NADPH oxidase which is not affected by the CGD. 

However, the non-selective electron transport inhibitor, diphenyleneiodonium (DPI) should 

mimic the effect of hypoxia by diminishing ROS production in normoxic conditions through 

the inhibition of NADPH oxidase (22).  
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NADPH has also been reported to play a role in O2 sensing that is fundamental to the 

mechanism of hypoxic pulmonary vasoconstriction (24) (discussed in more detail in section 

1.2.3). Similar to the mechanism mentioned earlier in this section, alveolar hypoxia would 

lead to a decrease in ROS production and subsequently shift the redox status of pulmonary 

artery smooth muscle cells (PASMC) to a more reduced state. In addition, this would also 

cause inactivation of redox-dependent K+ channels present on the plasma membrane 

leading to depolarisation, Ca2+ influx and smooth muscle cell contraction. In this setting, 

NADPH oxidase would act as the primary sensor of O2 and the K+ channels would function as 

the effectors, initiating the resultant vasconstrictive response.  

A study by Archer et al in 1999 disproved the notion that NADPH oxidase could sense 

O2 underlying hypoxic pulmonary vasoconstriction (26). Transgenic mice lacking the 

gp91phox subunit of NADPH oxidase displayed a decrease in the generation of ROS. 

However, the K+ current response to hypoxic conditions and lung vasoconstriction response 

were not inhibited. DPI in this system did not inhibit the constriction response in normoxia 

as opposed to hypoxia, perhaps ruling out the involvement of NADPH oxidase in O2 sensing 

of hypoxic pulmonary vasoconstriction.  

An interesting observation of the kinetics of NADPH oxidase is the Km for O2 (30-40 

μM), as calculated from cell models. This far outweighs the Km for nitric oxide synthase 

(NOS) which has been calculated at approximately (6-9 μM) (27). This would infer that at 

O2 concentrations between 10 and 30 μM, cells of the endothelium for instance, would 

maximally produce NO however the concentration of O2
- would be limited.  
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1.1.1.6   Hypoxia-inducible factor 1 (HIF-1) 

HIF-1 is present in most species which consume O2. It consists of both  and  

subunits, the  playing a role in O2 sensing and the  subunit possessing the ability to form 

complexes with other proteins of similar basic helix-loop-helix structure (28). Interestingly, 

the messenger ribonucleic acid (mRNA) for both subunits are detected under normoxic 

conditions. While the α subunit protein can be rapidly degraded by the 

ubiquitin/proteasome breakdown pathway, it is stabilised by hypoxia. Such an action leads 

to dimer formation, nuclear translocation and deoxyribose nucleic acid (DNA) binding.  

Activation of HIF-1 in hypoxia increases the levels of certain other proteins inside the cell 

such as inducible NOS (iNOS) and vascular endothelial growth factor (VEGF) among others, 

to promote cell survival in low O2 conditions.HIF acts by binding to HIF response elements 

(HRE) in the promoters of these genes. Increases in the levels of VEGF promote collateral 

expansion of endothelial cells to form new blood vessels under low O2 conditions (29). It is 

important to mention that the activation of HIF-1 and the processes aforementioned are 

part of the mechanisms which occur in response to adaptation to chronic hypoxia, such as 

tumour progression (30). 

1.1.2 Blood 

Blood is one of the most dynamic fluids within the body. Adult blood contains 4.5-5.8 x 

1011 cells/dL, males generally having a higher number of cells per volume than females (31) 

and this comprises ~45 % of total blood volume (haematocrit). The next sections will 

introduce the different components of the blood and their functional roles within the body. 
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1.1.2.1   Red Blood Cells (RBCs) 

1.1.2.1.1   Production, development & senescence 

Erythropoiesis, the process by which RBCs are produced, is primarily stimulated by 

EPO, a hormone which is synthesised by the kidneys. In neonatal development, the main 

site of RBC production is the liver however adult RBCs are formed within the bone marrow 

from precursor stem cells. Prior and immediately after their exit, RBCs are known as 

reticulocytes, and comprise a small proportion of circulating RBCs. Reticulocytes have the 

ability to form the polypeptide chains, α and β-globin, as well as protoporphyrin. The 

combination of these three elements with Fe2+ creates a functional adult haemoglobin 

(HbA) molecule. (32). 

The typical lifespan of RBCs is between 100 and 120 days (33). As the RBC ages, there 

are changes to the plasma membrane which render the cell more susceptible to recognition 

by scavenging macrophages. The scavenging activity by macrophages occurs at the same 

rate as RBC production thus the population of RBCs remains relatively constant (34).  

1.1.2.1.2   Structure 

RBCs are in abundance within blood, approximately 5 x 1011 cells/dL (35). Due to their 

biconcave shape, RBCs have dimensions of 8 µm in diameter, 2 µm depth on the outer edge 

and 1 µm inner depth.  Their unique structure enables efficient transport of O2 in the blood 

by an enhanced surface area. In addition, the membranes of these cells are extremely 

flexible. Although 8 µm in diameter, RBCs are able to travel through capillaries of only a 

third of this size. (Figure 1.1). (31). 
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Figure 1.1: Red blood cell structure. Reproduced with permission by Miss N Price. 

1.1.2.1.3   Haemoglobin (Hb) – O2 carrier 

Hb consists of haem and globin domains. The globin portion is made up of four 

polypeptide chains, two α subunits and two β subunits (~64,500 Da) (31). The haem portion 

of Hb is made up of four iron containing haem moieties, each of which can reversibly bind 

an O2 molecule. (Figure 1.2). 

 

Figure 1.2: Structure of Hb. The haem moieties present in each subunit bind O2. Adapted (36). 

The discovery that Hb was made up of 4 subunits which could change conformation 

in order to accommodate O2 binding (37, 38), lead to further investigation as to how Hb can 

alter its affinity for O2. Cooperative binding of each subunit ensures that the affinity to O2 

increases with subsequent oxygenation (39). This binding capacity with O2 originates from 

the two conformational states that Hb can adopt, T (tense) and R (relaxed) (40) (Figure 1.3). 

When O2 binds, Hb changes from T state to R state via a number of different stages. The 
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hydrogen bonding in both α1β1 and α2β2 variants of HbA is extensive and these quaternary 

structures allow little movement. However, α2β1 and α1β2 confers allosteric movement 

during the transition from T to R state, resulting in different properties compared to the 

ligand-bound state (41).   

  
 
Figure 1.3: O2 binding and transition from T to R state Hb. 4 O2 molecules are bound to R state 
oxyHb. An increase in levels of 2,3-diphosphoglycerate (2,3-DPG) or a fall in either pH or pO2 favours 
transition back to T state Hb. An increase in pO2 or CO favours transition back to R state Hb and 
subsequent O2 binding. Adapted (42).   
 

Brunori and colleagues discovered that the O2 affinity in T state was around 70 times 

lower than that of R state Hb (43). Later, in 1972, Perutz suggested that the low affinity of 

Hb in T state was possibly due to an increased tension at the haem site which draws the 

central iron further away from the plane of the porphyrin ring. This could ultimately resist 

movement into the ring upon O2 binding (40).  

1.1.3 O2 delivery 

The arrival of oxygenated blood to a respiring tissue bed initiates the exchange of O2 and 

CO2 across the vessel/tissue interface. A lower level of O2 in the tissues, coupled with a high 

level of CO2 permits the dissociation of O2 from Hb and subsequent diffusion to the tissue 
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bed.  The process of O2 dissociation from Hb is different in comparison to the association of 

O2 with Hb in the lungs, mainly due to the differences in tissue thickness (lung alveolar 

epithelium vs. tissues of the body). (44).  

Danish physiologist, August Krogh examined the relationship between the concentration 

of O2 in blood and the subsequent gradients of O2 which develop along the length of a 

capillary. Krogh’s model of O2 transport through tissues was based on the finding that in 

many tissues, capillaries are evenly spaced. Thus it was considered that capillaries supply O2 

to specific cylindrical regions which surround each capillary (Figure 1.4) (44, 45). 

 

Figure 1.4: Krogh cylinder model. The left hand diagram depicts the cross sectional area of the 
capillary and surrounding tissue, the right, a capillary through a cylindrical tissue bed. Half the 
distance between the centre of the two capillaries (Ro), capillary radius (Rc), distance along capillary 
(r), centre of capillary (z). Adapted (45). 

 

1.1.3.1 Normal distribution of O2 across a vascular bed 

Oxygenated blood is transported to tissues and organs to supply respiring cells with O2 

and nutrients to meet the metabolic demand. In skeletal muscle, an increase in metabolic 

rate decreases the tissue O2 saturation in the blood compartment. It is possible that this 

decrease in saturation signals vascular smooth muscle to relax by limiting the production of 

ATP required for contraction (46). Certainly, in health, decreases in blood O2 saturation can 
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in large be countered by increasing flow and tissue perfusion (i.e. the number of open 

arterioles/capillaries).  

As illustrated in Figure 1.5, pO2 generally decreases during an arterial to venous transit. 

The Krogh model (section 1.1.3) considers that most O2 that flows through a capillary 

network diffuses out in a cylindrical fashion to the adjacent tissue. For the most part, it is 

assumed that the majority of O2 is exchanged at this level, implying that large gradients exist 

between the pO2 of the blood and tissues. However, the capillary-tissue gradients in pO2 are 

much larger in the lung compared to the tissues (50 mmHg/μm vs. 0.5 mmHg/μm) (47). The 

oxygenation of blood within the capillaries is similar to that of the surrounding tissue, 

suggesting that the capillaries may not be the primary vessel for tissue oxygenation.  

 
 
Figure 1.5: Change in pO2 across a vascular bed.  Adapted (48). 
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1.1.3.2  The Bohr Effect 

This phenomenon was postulated by the physician, Christian Bohr, in 1904 (49). He 

stated that Hb affinity for O2 is inversely related to pH and CO2 concentrations within the 

blood. An increase in pCO2 (or decrease in blood pH) leads to a rightward shift of the O2 

dissociation curve and subsequent offloading of O2. Thus, a decrease in pCO2/increase in 

blood pH leads to the binding of O2 to Hb. (Figure 1.6).  

The mechanism by which the Bohr effect arises ultimately centres on ion transfer 

between the Hb subunits. In deoxyHb, the N-terminal amino groups of the α subunits and 

the C-terminal histidines of the β-subunit contribute to ion pairing. This leads to the binding 

of only one proton to every two O2 molecules that are released, causing a decrease in 

acidity. On the other hand, oxyHb lacks ion pairing interaction and thus the acidity increases 

(50).    

 

Figure 1.6: Effect of increasing CO2 (mmHg) on O2 saturation of Hb. Adapted (51).  
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Haldane first discovered that deoxygenation of blood increases its ability to carry CO2 

and this was later named the Haldane effect (52). The opposite is also true, oxygenated 

blood displays a lower affinity for CO2. Both of the effects mentioned in this section are 

relevant to the changes which occur with an increased metabolic activity where tissues of 

the body require more O2, yet the subsequent increase in CO2 needs to be removed 

efficiently. 

1.1.3.2.1   Metabolism 

The correct functioning of Hb and the integrity of the RBC membrane are key to the 

efficiency of RBC performance. Unique metabolic processes occur within the RBC in order to 

maintain these functions. This is regulated through the molecules ATP, 2,3-

diphosphoglycerate (2,3-DPG) and nicotinamide adenine dinucleotide (NADH) in particular 

(31). 

Glycolysis is the main metabolic pathway in RBCs. Glucose is converted into pyruvate 

and lactate which can then leave the cell and be further metabolised in the liver during 

gluconeogensis (53). The RBCs have a particularly high consumption of glucose (the main 

substrate of glycolysis), utilising 30-40 g per day (31). ATP is also highly consumed mostly by 

active ion channels in the cell membrane. When ATP is lacking, the ionic balance is 

disrupted, leading to cell swelling and accumulation of Ca2+ (54).   

NADH produced by the glycolytic pathway is an electron source for metHb reductase 

(31). The latter is an enzyme involved in the conversion of metHb back to Hb, using NADH as 

an electron donor to reduce the haem moieties from Fe3+ to Fe2+.  
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2,3-DPG is a metabolite only found within RBCs. At a concentration of between 4 and 5 

mM, it is in equimolar proportion to Hb. However, the quantity of free metabolite is 

dependent upon Hb saturation, deoxyHb contains as little as 0.5 mM (55). 2,3-DPG binds in 

a 1:1 ratio to deoxyHb (Lysine 82, Histidine 143 and N-terminal groups on β subunits) and 

decreases the affinity of Hb for O2. This occurs through binding of 2,3-DPG to T state Hb 

which ultimately leads to a preference in O2 offloading (31). 

1.1.3.3 Plasma 

The plasma component of blood comprises about 55 % of the total volume and 

accounts for the fluidity of whole blood. Plasma itself is made up of several constituents 

(Table 1.1). 

Table 1.1: Examples of plasma components. Adapted (56). 
 

 
Constituents 

 

 
Water 

 
~ 90 % of total plasma volume 

 
Salts, Ions, Electrolytes 

 

NaCl, HCO3
-, Ca2+, Mg2+, Cl-, Cu2+, Fe2+

 

NO2
-, NO3

- 

 
Low MW compounds 

 
Glucose, ATP, cAMP, vitamins, urea 

 
High MW compounds  

 

Peptides, GP, clotting factors, 
polysaccharides, DNA 

 
Gases 

 
O2, CO2, NO 

 



Chapter 1  Introduction 

Page | 17  
 

1.1.3.3.1   Distribution of ions 

Similar to other cells of the body, RBCs contain high intracellular K+ and low sodium 

(Na+) and chloride (Cl-) concentrations. Anions such as bicarbonate (HCO3
-) and Cl- are 

transported across the membrane by facilitated diffusion via the anion exchange protein, 

rendering the RBC much more permeable to anions than cations. Both Na+ and K+ are 

regulated by the Na+/K+-ATPase which transports 3 Na+ ions out and 2 K+ ions into the cell, 

utilising ATP as its energy source. Ca2+ which entered the plasma membrane of RBCs via 

store operated channels is transported out of the cell via Ca2+-ATPase. In RBC senescence, 

the activity of Ca2+-ATPase diminishes leading to an increase in intracellular Ca2+ that 

eventually initiates cell degradation in the spleen. Hb itself possesses a negative charge, 

therefore governing the movement of other anions (HCO3
- and Cl-) across the cell 

membrane. (31). 

1.1.4 CO2 in the blood 

CO2 from metabolising cells and tissues of the body diffuses into the blood and into the 

RBCs. A small proportion of CO2 can combine with Hb to form carbaminohaemoglobin, 

however the rest is converted to carbonic acid (H2CO3) by the enzyme carbonic anhydrase. 

This can further dissociate into H+ and HCO3
-. (57). 

1.1.5 pH 

The pH of the blood in a healthy individual is between 7.35 and 7.45. It is critical to keep 

the pH within this range and so the buffering capacity of the blood is very important. It is 

mainly the regulation of H+ which most affects the pH of blood therefore balancing reactions 

that consume or release this ion are the primary goals. (31). The equation below 

summarises the series of events which occur in the blood in order to buffer an increase in 
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H+. The intermediate H2CO3 is involved in a reversible reaction which leads to the formation 

of H2O and CO2. 

 

 

Several factors, for instance exercise, can have a marked influence on blood pH. During 

aerobic exercise, muscle cells release CO2 and H+ (produced during glucose metabolism) into 

the blood and this can lead to a lowering of the pH. If O2 supply does not match demand, 

anaerobic metabolism prevails and produces pyruvate and H+ during glycolysis. Subsequently 

lactate dehydrogenase can then convert pyruvate to lactic acid, again lowering blood pH. 

Importantly, the human body can efficiently deal with a reduction in pH via its innate 

buffering systems. Hb plays an essential role in “scavenging” the extra CO2 and H+ and the 

lungs and kidneys respond to pH changes by removing CO2, HCO3
-, and H+ (58). 

 

1.2 Hypoxia 

1.2.1 Supply vs. demand 

In the body, intracellular O2 ranges from 110 mmHg (16%) in the pulmonary alveoli to 

less than 20 mmHg (3%) in some areas of the heart, kidney and brain (28). The physiological 

concentration inside the cells is very much based on homeostasis, the balance between O2 

delivery and O2 consumption. The response to hypoxia is dependent on whether the insult is 

temporary (acute) or a chronic adaptation. 

1.2.2 Consequences of hypoxia 

There are several ways in which the body adapts to hypoxia. At the organismal level, an 

increase in alveolar ventilation occurs as a response to environmental hypoxia, which 
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involves the interaction of chemoreceptors, respiratory control centres in the medulla and 

respiratory muscles in the chest wall. At the tissue level, hypoxic pulmonary 

vasoconstriction manifests, as discussed in section 1.2.3. At the cellular level (section 1.1.1), 

neurotransmitters released by glomus cells of the carotid body signal driving hormonal 

responses which alter the rate of respiration. Production of EPO occurs by the liver and 

kidneys to encourage RBC production for enhanced O2 delivery to hypoxic cells. Vascular 

growth factors are also released as mentioned in section 1.1.1.6, promoting angiogenesis 

and increasing blood supply to tissues. 

1.2.3 Hypoxic pulmonary vasoconstriction 

Alveolar hypoxia is the primary determinant of pulmonary vasoconstriction. The process 

was first identified in 1894 as a rise in pulmonary arterial pressure upon asphyxia (59). Since 

then, it was confirmed that hypoxia in the absence of hypercapnia induced constriction 

within the pulmonary circulation (60). This mechanism is the opposite of the systemic 

response, where the manifestation of tissue hypoxemia leads to vasodilation in order to 

match perfusion to metabolic demand. A recent study conducted by a former colleague 

tested the effects of nitrite (NO2
-) on pulmonary vascular resistance (61). Healthy volunteers 

were infused with a low dose of sodium NO2
- (1 μmol/min NaNO2) during exposure to either 

normoxic (21 % O2) or hypoxic (12 % O2) conditions. Analysis of forearm blood flow revealed 

that infusion of NaNO2 under hypoxic condition caused both pulmonary and systemic 

vasodilatation. 

The threshold for hypoxic pulmonary vasoconstriction is approximately 60 mmHg and 

while it increases in proportion to the degree of hypoxia, it fails under anoxic conditions (~5 

mmHg) (62). The process is mediated by both smooth muscle and endothelial cells (Figure 
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1.7).   In the former, Ca2+ is released from the sarcoplasmic reticulum (SR) via ryanodine 

receptors. Such smooth muscle constriction is augmented through myofilament Ca2+ 

sensitisation (see Figure 1.7) following the release of an unidentified vasoconstrictor from 

the overlying endothelium. (63).  

 
 

Figure 1.7: Mechanism of hypoxic pulmonary vasoconstriction. The trace on the left depicts the 
phases observed during hypoxic pulmonary constriction of an isolated pulmonary arterial ring. 
Phases 1 and 2 enhance Ca2+ release from the smooth muscle sarcoplasmic reticulum (SR) via 
ryanodine receptors (RyR). Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) subtypes pump Ca2+ 
back into the SR. This imposes a positive inducement (via Ca2+/calmodulin) of myosin light chain 
kinase (MLCK) leading to phosphorylation of myosin light chain 20 (MLC20). Phase 3 involves 
vasoconstrictor release from the endothelium which affects Rho associated kinase (ROCK) leading to 
inhibition of myosin light chain phosphatase (MLCP) and Ca2+ sensitisation. Adapted (64).  

 

1.3 The vascular endothelium 

1.3.1 Structure & function 

The endothelium is a monolayer of cells that forms the inner lining of blood vessels. 

Structural and functional integrity of endothelial cells is imperative for maintenance of 
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vascular homeostasis and inflammatory status (65). Although endothelial cells line all blood 

vessels across the entire body, there is geographical variation with regard to their innate 

responses to the same stimulus (66). This emphasises the multi-faceted functions of these 

cells and their varied roles in endocrine, paracrine and autocrine processes (65). Several 

functions of the endothelium are summarised in Figures 1.8 and 1.9. 

 

Figure 1.8: Secreted mediators released by endothelial cells that have a profound influence over 
cellular processes within the body. Adapted (65). 
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Figure 1.9: Structure and signalling processes of the vascular endothelium. The cells are associated with the extracellular matrix by integrins and proteins 
including vitronectin and fibronectin.   Individual endothelial cells are connected by tight junctions, gap junctions and adherens. Gap junctions permit the 
rapid transport of Ca2+ and inositol triphosphate (IP3) between endothelial cells. Large molecules such as albumin are transported through the endothelium 
by caveolae however smaller molecules can migrate between the gaps between adjacent cells. Angiotensin converting enzyme (ACE) catalyses the 
conversion of Angiotensin 1 (Ang-I) to Angiotensin 2 (Ang-II) causing vasoconstriction. Stimulation of eNOS, which itself is regulated by calmodulin, NADPH 
and 5, 6, 7, 8-tetrahydrobiopterin (BH4), catalyses the conversion of L-arginine to L-citrulline, liberating the vasoactive gas, nitric oxide (NO). vWF contained 
within WPB plays a critical role in platelet adhesion and haemostasis. Adapted (67).  
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Endothelial cells form a semi selective barrier that governs movement of certain 

molecules between the blood and interstitium (68, 69). In order for this to occur efficiently, 

the endothelial cells maintain a non-thrombogenic surface (65). Antithrombotic factors (see 

Figure 1.8) inhibit various coagulation cascades which would normally lead to platelet 

aggregation (70, 71).  

1.3.2 Inflammation 

Inflammation is a response within the body to local injury, infection or antigen 

stimulation (72).  Under physiological conditions, inflammation is a key part of our innate 

immune response to invading pathogens. Endothelial cells are actively involved in 

inflammation and the subsequent immune response in several ways. Firstly, endothelial 

cells play a role in antigen presentation and recruitment of inflammatory cells (73). 

Secondly, they express a variety of adhesion molecules and release chemotactic factors 

which facilitate the adherence and migration of cells within the blood.   
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Figure 1.10: Examples of pro and anti inflammatory mediators which affect the vascular system. 
Abbreviations not defined in text: interleukin (IL), interferon gamma (IFN-γ), nuclear factor kappa B 
(NF-κB), interleukin adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1, tumour 
growth factor beta (TGF-β), fibroblast growth factor 1 & 2 (FGF-1 & 2), high density lipoprotein 
(HDL), peroxisome proliferator-activated receptor gamma (PPAR-γ), b cell lymphoma 2 (Bcl-2). 
Adapted (72, 74-76). 
 
 

1.3.3 ROS & oxidative stress 

The definition of a free radical is ‘any species capable of independent existence that 

contains one or more unpaired electrons’ (77). ROS are very important in the maintenance 

of homeostasis in certain cell types. For example, within the mitochondria, ROS production 

at complex I (NADH dehydrogenase) and complex III (ubiquinone cytochrome bc1) initiates 

the signals that control the response to changes in O2 tension (78). 

The activity of NOX oxidases, NOS, xanthine oxidase (XO), cytochrome P450, 

cyclooxygenase (COX) and mitochondria contribute to the generation of oxy radical species 

within the vasculature (79) (Figure 1.11). These oxidases are of low activity under 

physiological conditions in order to maintain vascular homeostasis.  

Overproduction of such species, including ROS and reactive N2 species (RNS), or the 

failure of antioxidant mechanisms within the body can eventually lead to cellular and tissue 
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damage (80). For instance, in the endothelium, both responses to shear stress and receptor-

mediated activation have been linked to COX, cytochrome P450 and mitochondrial 

generation of vasoactive levels of hydrogen peroxide (H2O2) (81). It has also been 

documented that the uncoupling of eNOS results in free radical generation (82). In addition, 

the most detrimental action of free radical species and particularly ROS, is the reaction with 

NO. These reactions ultimately lead to a decreased bioavailability of NO and endothelial 

dysfunction.  

 

Figure 1.11: Generation and inactivation of ROS. An overproduction of ROS results in vascular 
oxidative stress. NADPH oxidases, XO, uncoupled eNOS and activated O2 from mitochondria during 
oxidative respiration have been implicated as sources of O2

- in the vascular system. O2
- is converted to 

H2O2 by superoxide dismutase (SOD). Fenton chemistry propagates the conversion of H2O2 to hydroxyl 
radicals (OH-) which are very damaging to cells. H2O2 can be detoxified by glutathione peroxidase, 
catalase or peroxiredoxin to H2O and O2. Myeloperoxidase (MP) utilises H2O2 to oxidise Cl- to the 
oxidising agent hypochlorous acid (HOCl) which chlorinates and subsequently deactivates molecules 
such as L-arginine. MP also has the ability to oxidise NO to nitrite (NO2

-) in the vascular system. 
Adapted (83).  
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1.4 NO in the vascular system 

1.4.1 Endothelial bioavailability of NO 

Extensive production of free radical species results in cell damage, particularly of the 

vascular endothelium (80). The presence of free radicals can also lead to changes in the 

vasodilatory capacity of blood vessels since certain radicals (O2
- in particular) interact rapidly 

with NO, thus inactivating it. 

In the vascular system, NO is one of the most important free radicals, while ROS and 

other related derivatives of O2 such as H2O2 (which does not possess an unpaired electron) 

play key roles in oxidant stress.  NO and O2
- radicals have the capacity to instigate oxidant 

stress and cell damage (84). Importantly, the vascular endothelium produces intracellular 

O2
- and H2O2 from enzymes such as XO and NADH/NADPH oxidases and has the ability to 

release these species into the lumen. However, it is not yet apparent whether the 

endothelial cells produce these radicals constitutively or post-insult, for instance, exposure 

to cytokines or ischaemia reperfusion. Nevertheless, the equilibrium between the 

concentrations of NO and O2
- is pathologically vital (see equation below). 

O2
- + NO → ONOO- 

An excess of O2
- leads to vasoconstriction due to the increased formation of the 

cytotoxic species, peroxynitrite (ONOO-). The latter can oxidise methionine residues and 

thiol (-SH) groups on cellular proteins and as such, is very damaging to cells (82).  

In terms of antioxidant mechanisms in place to deal with O2
- in particular, SOD enzymes 

present in the extracellular and intracellular compartments govern the extent of NO/O2
- 
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interaction. SOD enzymes all have the capacity to generate H2O2 as an end product which 

can then be further broken down by catalase: 

O2
- + O2

- + 2H+ → H2O2 + O2 

2H2O2 → 2H2O + O2 

Of course in high concentrations, H2O2 is cytotoxic to all cell types and can also react 

with iron in endothelial cells to produce hydroxyl (OH-) radicals, causing further cellular 

damage.  

1.4.2 NOS 

NOS enzymes were first identified in 1989 and during the early 1990’s, three major 

isoforms of the enzyme were cloned, purified and characterised (85-88). The enzymes are 

dimers, however once activated, require calmodulin (CaM) binding and therefore adopt a 

more tetrameric structure (89). NOS enzymes require several essential cofactors for the 

catalysis of L-arginine to L-citrulline and subsequent liberation of NO (90). These processes 

are highlighted below (Figure 1.12). 
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Figure 1.12: Schematic structure of the NOS dimer and overview of cofactor interactions. Electrons   
(e-) donated by NADPH to the reductase domain of the enzyme are transported to the oxygenase 
domain of the enzyme via flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). This 
flow of electrons can only occur in the presence of Ca2+-bound CaM. Once in the oxygenase domain, 
the electrons interact with the haem iron and tetrahydrobiopterin (BH4) at the active site of the 
enzyme to catalyse the reaction of O2 with L-arginine to release NO. Adapted (89). 

 

The three NOS isoforms discovered are: nNOS (neuronal, Type I, NOS-1), iNOS 

(inducible, Type II, NOS-2) and eNOS (endothelial, Type III, NOS-3) (91). nNOS and eNOS are 

constitutive and dependent upon the on/off binding nature of Ca2+ whereas iNOS is 

inducible, binding CaM very tightly, rendering the enzyme to long term activation (89). The 

next section considers the inhibition of these enzymes. 

1.4.2.1 Inhibition of NOS 

Pharmacological agents can inhibit NO actions by several routes. Arginine-derived 

analogues such as NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine methyl 
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ester (L-NAME) compete with arginine for NOS; such compounds have been useful clinical 

and in vitro tools. The effect of L-NMMA infusion into the body is largely dependent on the 

route of administration. Infusion into the brachial artery induces vasoconstriction due to the 

local inhibition of basal NO without influencing systemic blood pressure. However, L-NMMA 

given intravenously elevates blood pressure and causes vasoconstriction in renal, cerebral, 

mesenteric and striated muscle resistance vessels (92).  

The chemical structures of the main inhibitors of NOS are summarised in Figure 1.13. 

These compounds show varying degrees of selectivity for the three NOS isoforms and so 

their use in experimental science needs to be considered.  

 

Figure 1.13: Chemical structures of a variety of NOS inhibitors. Adapted (89). 

1.4.3 NO metabolites 

NO is highly reactive and its metabolism can lead to the formation of several by-

products within the body. The most frequent reactions of NO are the gain or loss of an 
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electron, forming NO- or NO+, respectively. More specifically, nitrite (NO2
-), nitrate (NO3

-) 

and S-nitrosothiols (RSNO) are metabolites that have been the subjects of particular interest 

in NO research. These are described in more detail below.   

1.4.3.1 NO2
- 

NO2
-
 is an inorganic compound found in various foods within our diet including cured 

and processed meats (93). In terms of the human body, NO2
- has been implicated in several 

physiological processes. In 1953, Furchgott demonstrated that sodium nitrite (NaNO2) 

induced relaxation of rabbit aortic strips (94). However, the concentrations of NO2
- within 

these studies (100 μM-1 mM) were not representative of those within the human body 

(healthy range 100-500 nM). Subsequently, a number of groups have shown that a large 

dose of inorganic NO2
-
 (~3-15 mg/kg body weight) given to spontaneously hypertensive rats 

lead to a decrease in systemic blood pressure, implying a reduction of NO2
- to NO (95-97). 

Interestingly, Tsuchiya and colleagues demonstrated that intake of NO2
- within the diet lead 

to rapid increases in nitrosyl haemoglobin (HbNO) levels, again suggestive of systemic 

conversion of NO2
- to NO (98).  

The oxidoreductase enzyme, XO has been shown to reduce NO2
- under anaerobic 

conditions when in the presence of NADH or xanthine as a substrate (99). This was 

demonstrated by detection of stoichiometric levels of NO versus substrate depletion 

through ozone based chemiluminescence (OBC).  

eNOS is fully functional at a Km of 6-9 μM O2. Therefore, when O2 availability decreases 

below these levels, usually due to disease such as ischaemic heart disease, eNOS cannot 

convert L-arginine to L-citrulline and NO. Gautier and colleagues have demonstrated that 

under anoxic conditions but physiological pH, eNOS can function to reduce NO2
- to NO 
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(100). Moreover, this reduction was shown to occur at the oxygenase domain of the enzyme 

and proceeds independently of BH4, suggesting a new mechanism for the rapid delivery of 

NO in hypoxia. 

Under such conditions, it is also thought that Hb within RBCs has the capacity to 

function as a NO2
- reductase, releasing NO which transiently dilates local vessels, 

reoxygenating the surrounding tissue (101).  Indeed, this process has been implicated as the 

primary mechanism underlying vascular smooth muscle relaxation in hypoxia (see section 

1.9.1.2. for more detail).  

1.4.3.2 NO3
- 

NO3
- is a constituent of leafy green vegetables such as spinach, as well as the root 

vegetable beetroot (93). Like NO2
-, NO3

-
 has also attracted recent attention in the field of 

vascular biology. In 2006, Larsen and colleagues conducted a randomised clinical study in 

which 17 healthy volunteers were administered a 3-day dietary supplementation of sodium 

nitrate (NaNO3) (0.1 mmol/kg body weight) or NaCl placebo to examine the effects on blood 

pressure (102). Importantly, decreased diastolic blood pressure was observed in the NO3
- 

group suggesting a role for short term NO3
- supplementation in hypertensive patients. 

Further investigation by Alhuwalia’s group in London in 2008, also demonstrated that a 

dietary NO3
- load attenuated endothelial dysfunction caused by an acute ischaemic insult in 

the human forearm, as well as reduced ex vivo platelet aggregation in response to agonists, 

collagen and adenosine diphosphate (ADP) (103). While mammals themselves do not have 

the capacity to convert NO3
- back to NO2

- and NO, unlike NO2
-, it has recently been reported 

that bacteria in the oral microflora possess NO3
- reductase enzymes which can reduce 
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saliva-derived NO3
- to NO2

- (104). This provides an important additional mechanism of NO 

production in man. 

1.4.3.3 RSNO 

RSNOs are formed through the generation of NO+ or other N-oxides such as dinitrogen 

trioxide (N2O3) (105). RSNOs exert their biological effects by either transnitrosation of NO+ 

to various other proteins and also through S-nitrosation of cysteine residues on proteins and 

can often be dependent on the presence of transition metals and pH (106). S-nitrosation of 

thiols can have a substantial influence on protein function and subsequent signal 

transduction (107). To date, an abundance of proteins that can be S-nitrosated have been 

discovered including heat shock protein 90 (Hsp90) and eNOS (108). 

RSNOs have longer half lives than NO and are therefore more stable. It has been 

proposed that the S-nitrosylation of cysteine thiols signifies a route through which NO can 

exert its biological effects. Several studies in the late 1990’s/early 2000’s provided evidence 

for the existence of protein-linked SNOs in tissue under basal conditions (105, 106, 109-

111).  More specifically, Mathews and Kerr identified roles for several RSNO compounds in 

vascular and gastrointestinal smooth muscle relaxation as well as activation of platelet sGC 

and inhibition of collagen-induced aggregation (112). The study confirmed that the 

functional group (‘R’) of each compound affected the potency of relaxation (EC50) in vascular 

tissue experiments (ranging from 4 nM for S-nitroso-galactopyranose to 220 nM for S-

nitroso-N-acetylpenicillamine (SNAP)). Moreover, the biological activity of each compound 

varied between bioassays, with the order of potency for the compounds being different for 

each experiment. Collectively, these observations suggest that the functional group can 

affect both the potency and tissue selectivity of RSNO’s.  



Chapter 1  Introduction 

Page | 33  
 

1.4.4 NO in blood 

Once NO leaves endothelial cells, it can either diffuse basally into adjacent smooth 

muscle cells to bind sGC or apically into the blood vessel lumen. The latter results in NO 

binding to Hb within RBCs or other interactions with various plasma components as 

described below. 

1.4.4.1 NO in Plasma 

Almost all NO in plasma is oxidised to NO2
-, a compound that is biologically stable for a 

relatively long period (113, 114): 

2NO  +  O2  →  2NO2
- 

NO2
-  +  NO  →  N2O3 

The products formed in the equations above are largely hydrolysed into NO2
- and NO3

-, 

respectively.  

Much interest has been focussed on the interaction of NO and its metabolites in plasma, 

with respect to proteins such as albumin (106, 115), which like other proteins possesses a 

free thiol group that can bind NO to form RSNO (106). Using methods established and 

characterised in our laboratory, typical values for plasma NO metabolites are displayed in 

Table 1.2. 
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Table 1.2: Concentration of NO metabolites in plasma. 

Metabolite Concentration in plasma Reference 

NO3
- 20-30 μM (116) 

NO2
- 150-300 nM (116, 117) 

RSNO 10-100 nM (116, 118) 

1.4.4.2 NO in RBCs 

Extensive research has now been conducted with regard to the interaction of NO and 

Hb. The first examination of the conformation, co-operativity and ligand binding of NO with 

Hb (Fe2+) was by Cassoly in 1975 (119). NO reacts with oxyHb to form metHb and NO3
- 

shown by the equation below: 

HbFe2+O2   +   NO →  HbFe3+ (metHb)   +   NO3
- 

NO also has the capacity to bind to free haem (deoxyHb, T state) to form nitrosylated Hb 

(HbNO): 

Fe2+  +  NO →  Fe2+NO 

The reaction of NO with oxyHb leading to NO3
- formation ultimately renders NO inactive and 

is not conducive to preservation of NO bioavailability. However, the interaction of NO with 

free Hb forms a nitrosylated form of Hb (HbNO) so NO activity can be somewhat preserved 

(120). HbNO as a source of NO is very controversial due to its long half life in blood (~40 

minutes) (121). This prolonged release of NO renders the molecule more susceptible to 

scavenging by other Hb within the blood. 
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Both of the reactions described above have been reported to occur at a rate of around 

107 M-1 s-1, which is indeed very rapid (122). However, the dissociation of NO from HbNO is 

substantially slower, at a rate of around 10-5 M-1s-1 (123). 

 In the late 90’s, Gow and Stamler published a letter in Nature emphasising the 

importance of Hb allostery in initiating the conversion of T state Hb into the oxygenated R 

state. This research was driven by the fact that in vivo, Hb is only partially nitrosylated (124), 

whereas earlier studies had only considered the metabolism of fully nitrosylated Hb. It was 

suggested that partially nitrosylated Hb could release NO upon transition to the R state, 

which subsequently bind to cysteine residues at position 93 on the β-chain of Hb forming S-

nitrosylated Hb (HbSNO) (125). They confirm an 80% formation of HbSNO upon oxygenation 

under physiological conditions.  

It has also been demonstrated that NO2
- can bind to oxyHb, but this is a slower process 

than the binding of NO (126). Kosaka et al confirmed the equation for the reaction of NO2
- 

with oxyHb (127):  

4HbO2  +  4NO2
-  +  4H+  →  4Hb+  +  4NO3

-  + O2  +  2H2O 

Zavodnik (1999) used metHb formation as a measure of NO2
- uptake by RBCs and 

demonstrated that the rates were comparable between RBCs and RBC haemolysates (128).  

While this suggests that the membrane does not hinder NO2
- entry into the RBC cytoplasm, 

the mechanism by which NO2
- enters the RBC is yet to be fully elucidated. To this end, a 

stopped-flow spectrofluorometric study conducted by Shingles et al demonstrated that NO2
- 

efflux in RBC ghosts (intact membrane post-haemolysis) was inhibited by 4,4'-

diisothiocyano-2,2'-stilbenedisulphonic acid (DIDS), which is a specific inhibitor of anion 



Chapter 1  Introduction 

Page | 36  
 

exchanger 1 (AE-1) found in the RBC membrane (129). This suggests that there may be a 

need for a specific transporter for NO2
- to cross the cell membrane. 

Doyle and colleagues illustrate that the reaction of NO2
- with deoxyHb is multifaceted 

(130). A series of equations were formulated to describe how this interaction is dependent 

upon pH and nitrous acid formation (HONO): 

 

The product of NO2
- reduction shown in red is predicted to produce NO and H2O in a 

subsequent reaction (130) and could therefore have a significant role in the control of 

vascular tone. 

Using methods established and characterised in our laboratory, typical total NO 

metabolites within RBC is ~ 100-250nM, with around 30-60nM being NO2
-. 

1.5 Control of vascular tone 

1.5.1 Regulation of tone 

1.5.1.1   Myogenic response 

In 1902, Sir William Bayliss discovered the myogenic response (‘Bayliss effect’) in the 

vasculature (131). This effect is simply the response of the vascular smooth muscle cells to a 

stretch stimulus that is independent of neuronal influences. In vivo, this would involve 
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vasoconstriction in response to an increase in blood pressure and equally, a vasodilatory 

response to a reduction in pressure (132). In arteries and veins, the force generated by 

myogenic tone is not substantial enough to significantly affect the diameter of the vessel 

however, arteriolar diameter is considerably reduced (132).  

1.5.1.2   Contractile response 

Vascular smooth muscle is one of 6 types of smooth muscle found in the body 

(vascular, respiratory, urinary, reproductive, gastrointestinal and ocular) (133). Unlike 

skeletal and cardiac muscle, smooth muscle is not striated in appearance and can be 

innervated by the autonomic nervous system. Contraction of smooth muscle is controlled by 

local paracrine/autocrine messengers as well as secreted hormones (92). In addition to this, 

smooth muscle can also develop contractions in response to changes in load or length. 

Regardless of the stimulus for contraction, contractile force by smooth muscle cells is 

generated through formation of actin-myosin cross bridges, utilising Ca2+ ions as the 

initiating driver. Changes in membrane potential in response to action potentials or 

activation of stretch-sensitive ion channels can also bring about smooth muscle contraction. 

All muscle contraction relies on an increase in extracellular Ca2+. In smooth muscle 

however, the process is not solely dependent on changes in membrane potential. Agonists 

such as phenylephrine activate the phosphatidylinositol cascade to cause an increase of Ca2+ 

release from the SR. This rise in intracellular Ca2+ enhances the binding to CaM and 

subsequent activation of MLCK to phosphorylate the MLC of myosin II (134). The degree at 

which MLC is phosphorylated determines the extent of smooth muscle contraction; 

dephosphorylation therefore leads to relaxation of smooth muscle.  
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1.5.1.3   Ca2+ 

As mentioned above, a rise in intracellular Ca2+ triggers the mechanisms which 

generate smooth muscle cell contraction. Activation of the Ca2+/calmodulin complex leads 

to the activation of myosin light chain kinase (MLCK). Phosphorylation of myosin light chain 

(MLC) renders the chains more sensitive to Ca2+, allowing for the initiation of contraction 

even if Ca2+ is lacking. Cross bridge formation in smooth muscle involves the association and 

disassociation of ATP to myosin heads, leading to the sliding movement of actin filaments 

(135) (Figure 1.14). 

 

 

 
Figure 1.14: Actin-myosin cross bridge formation involved in mechanical contraction of smooth 
muscle. ADP and inorganic phosphate (Pi) are liberated following each working stroke. Adapted 
(136). 

 

Levels of intracellular Ca2+ are tightly controlled despite extremely high extracellular 

concentrations of Ca2+. Vascular smooth muscle contracts due to a net influx of Ca2+
 as a 

result of inositol 1,4,5-trisphosphate (IP3) induced release from the SR  (137, 138). 
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  Several mechanisms are involved in Ca2+ influx such as voltage-dependent L-type 

Ca2+ channels, the reverse mode of the Na+/Ca2+ exchanger and non-selective cation 

channels. On the other hand, Ca2+ efflux from intracellular stores occurs via IP3-regulated 

channels or by Ca2+-induced Ca2+ release, regulated by ryanodine receptor-regulated 

channels (139).  

1.5.1.4   Rho Signalling 

The GTPase, Rho, has also been implicated in the mechanism of smooth muscle 

contraction. Importantly, the interaction of Rho with Rho kinase has been shown to be Ca2+-

independent, modulating the degree of phosphorylation of MLC of myosin II by inhibiting 

myosin phosphatase. This has been shown to contribute to agonist-induced Ca2+-

sensitisation in smooth muscle contraction (140).  

Two signalling pathways have been implicated in the inhibition of myosin phosphatase. 

The first of which involves the phosphorylation of regulatory subunit, MYPT1 at Thr696 and 

Thr853 via G12/13/Rho-Rho kinase pathway. Phosphorylation at both of these residues has 

been shown to suppress phosphatase activity. The second mechanism involves the 

phosphorylation of smooth muscle-specific myosin phosphatase inhibitor protein, CPI-17. 

Specifically, the phosphorylation at Thr38 enhances the inhibitory effect of CPI-17 on 

myosin phosphatase by 1000-fold. (141).   
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Figure 1.15: Summary of Rho-mediated smooth muscle contraction. Agonists that also stimulate Gq-
linked increases in Ca2+ can stimulate Rho activity. Rho, which is activated by the binding of 
guanosine triphosphate (GTP), activates Rho kinase which in turn, phosphorylates the myosin 
binding subunit (MBS) of myosin phosphatase, inhibiting its activity. Rho kinase also has the ability to 
phosphorylate the myosin light chain (MLC) directly, mediating further contraction. Adapted (140).  
 

1.6 Endothelium-dependent smooth muscle relaxation 

1.6.1.1 NO-mediated smooth muscle relaxation 

NO is a relatively inert diatomic gas and has the ability to diffuse through the 

phospholipid bilayer of cell membranes where it then forms a nitrosyl complex with the 

haem of sGC in the cytosol. Very small amounts of NO (nM) are required to fully activate 

sGC in this environment, which in turn promotes the conversion of guanosine triphosphate 

(GTP) to cyclic guanosine monophosphate (cGMP) (142). Interestingly, a study by Mergia 

and colleagues (2006) demonstrated that the α2 isoform of guanylate cyclase (GC), which 

represents only 6 % of total GC within mouse aortic tissue, could elicit a full biological 

response albeit at higher concentrations of NO (143). This study suggested that in fact most 
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guanylate cyclase NO ‘receptors’ function as spare receptors which increase sensitivity to 

NO in vivo. In addition, the large pool of unbound GC (not bound to primary ligand, NO) 

could advocate a secondary mechanism of GC stimulation/activation.  

The mechanism by which endogenous NO induces endothelium-derived smooth muscle 

relaxation is illustrated in Figure 1.16. 
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 Figure 1.16: Endothelium-mediated smooth muscle relaxation via the NO-cGMP signalling pathway. NO is synthesised in endothelial cells by the conversion 
of L-arginine to L-citrulline in response to shear stress or receptor-mediated activation. NO diffuses across the endothelial cell membrane into adjacent 
smooth muscle cells where it binds and activates sGC, increasing intracellular levels of cGMP from GTP. cGMP activates cGMP-dependent protein kinase G 
(PKG), which in turn regulates a number of important proteins such as Ca2+ activated K+ channels, L-type Ca2+ channels, Ca2+-ATPase pump and MLCP,  
leading to a fall in the intracellular Ca2+ concentration and smooth muscle relaxation. cGMP is degraded by phosphodiesterases (PDEs) into guanosine 
monophosphate (GMP). Endothelial cells are connected to smooth muscle cells by myoendothelial gap junctions. Adapted (144). 
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1.6.1.2 Prostacyclin (PGI2) 

Eicosanoid, PGI2, is one of the main products of arachidonic acid (AA) metabolism. 

Various enzymes are involved in the production of PGI2 as illustrated in Figure 1.17. 

Metabolite 6-keto PGF1α is a product of PGI2 hydrolysis and has subsequently been used in 

several studies as an index of PGI2 production (145-147). 

 

 

Figure 1.17: PGI2 production. Phospholipase A2 (PLA2) releases AA directly from membrane 
phospholipids. Prostaglandin H2 (PGH2) synthase and cyclooxygenase (COX) 1 and 2 catalyse the 
conversion of AA to PGH2 and subsequently PGI2. Unstable PGI2 has the capacity to spontaneously 
hydrolyse into the stable product, 6-keto PGF1α. Adapted (148). 

 

PGI2 functions in a similar manner to NO, preventing platelet plug formation and 

inducing vascular smooth muscle relaxation. However, PGI2 induces these effects by 

stimulating the enzyme adenylate cyclase (AC) which in turn, stimulates a rise in the second 

messenger, cyclic adenosine monophosphate (cAMP) (148).  
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1.6.1.1 Endothelium-derived hyperpolarising factor (EDHF) 

Vascular smooth muscle relaxation may also be elicited following the release of 

endothelium-derived hyperpolarising factor (EDHF) (Figure 1.18).  While this mediator is not 

fully characterised, there are many suggestions as to its identity including CO and hydrogen 

sulphide (H2S), as well as H2O2, cytochrome P450 products such as the epoxyeicosatrienoic 

acids (EETs), the vasodilator peptide, C-type natriuretic peptide and small increases in 

extracellular K+ resulting from the opening of endothelial cell intermediate conductance  

calcium activated potassium channel (IKCa) and small conductance (SKCa) channels (149). In 

addition to the uncertainty of the mediator(s) involved in this phenomenon, the mechanism 

of action by which EDHF exerts its effects has also been extensively researched. Griffith and 

colleagues made a significant contribution to the field of EDHF and myoendothelial gap 

junction communication (150-154). The observations that endothelial hyperpolarisation 

depends on the opening of KCa channels and its subsequent travel through myoendothelial 

gap junctions contrasts with the idea above that EDHF-type relaxations are mediated by a 

freely transferable entity that activates smooth muscle KCa channels such as EETs (152). 

Further investigation into the morphology of myoendothelial gap junctions have shown 

their differences from homocellular gap junction and hypotheses suggested that two 

junctions border each smooth muscle cell in small arteries and thus contribute to the 

increased sensitivity of these cells to hyperpolarising stimuli (155).  

 Hyperpolarisation of the plasma membrane is resistant to inhibitors of COX and NOS 

and thus does not lead to an increase in cyclic second messengers such as cAMP or cGMP 

(156).  EDHF-mediated vasorelaxation is likely to occur in small, resistance vessels (157) 
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however, in coronary and renal vascular beds, EDHF can also exert its effects in conduit 

vessels (158).  

 

 

Figure 1.18: The EDHF response. Binding of agonists such as acetylcholine (ACh) and bradykinin (BK) 
to the endothelium stimulates a rise in intracellular Ca2+, leading to membrane hyperpolarisation. 
This hyperpolarisation in turn, spreads through to the vascular smooth muscle and leads to a 
decrease in intracellular Ca2+  and vasorelaxation. Vascular smooth muscle cell (VSMC); endothelial 
cell (EC). Adapted (159). 

 

1.7 Endothelium-independent smooth muscle relaxation 

As previously mentioned in section 1.6.1.1, endothelium-derived NO can diffuse across 

the endothelial cell membrane into neighbouring smooth muscle cells to stimulate sGC. 

However, sGC can also be stimulated directly within the smooth muscle by exogenous NO 

derived from a range of NO donating compounds.  

1.7.1   NO donors & mimetics 

In pathophysiology, NO bioavailability is often reduced. The processes outlined in 

section 1.4.1 describe how oxidative stress can affect NO bioavailability, leading to impaired 
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vasorelaxation. Endothelial dysfunction is a main factor in cardiovascular diseases such as 

atherosclerosis, hypertension and coronary artery disease (160). Compounds such as 

organic nitrates have been used as therapies to treat these diseases however issues such as 

tolerance and adverse effects due to their metabolism, initiated the search for improved 

alternatives (160). There is also a question as to whether compounds such as glyceryl 

trinitrate (GTN) or isosorbide dinitrate (ISDN) actually release NO or a related species to 

induce relaxation. Alternative NO donors have been developed (NONOates, SNO) which 

improve the therapeutic half-life and reduce tolerance in patients (161). These drugs can 

spontaneously release NO (direct NO donors) forming species such as NO+, NO- or NO●.  

Direct NO donors tend to contain either a nitroso or nitrosyl functional group within 

their chemical structure. Three of the most common types are NO gas, sodium 

trioxodinitrate (Angeli’s salt) and sodium nitroprusside (SNP). NO gas is freely soluble but 

has a very short half life in vivo (3-5 s (162)) and is highly reactive with molecular O2. In 

therapeutic terms, NO gas has been used in clinical practise to treat pulmonary vascular 

disease, especially persistent pulmonary hypertension of the newborn (PPHN) (163). 

However, in most cases such therapy has been rendered unsuitable due to the nature of NO 

and its biochemical properties (164).  

The group of compounds known as the diazeniumdiolate ions (Figure 1.19) or NONOates 

spontaneously donate NO under physiological pH conditions, with half lives ranging from 2 

seconds to 20 hours depending on their chemical structure (165). This makes them ideal for 

controlled release of NO under tight experimental conditions.    
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Figure 1.19: Examples of direct NO donor compounds. Left – diethylamino (DEA [N(O)NO]) 
NONOate, right – Spermine NONOate. Adapted (160). 

 

NO donor drugs such as SNO (Figure 1.20 and section 1.4.3.3) have advantages over 

other similar drugs due to the limited development of tolerance in vivo. These compounds 

are also naturally occurring and in reality release NO+. Evidence suggests that they are 

transported into the intracellular compartment through plasma membrane-bound 

disulphide isomerise and related transnitrosation reactions (166).  

 

Figure 1.20: SNO structure. Members of the SNO class of compounds include SNO-glutathione, SNO-
albumin and SNAP. Adapted (160). 
 

1.8 Soluble Guanylate Cyclase (sGC) 

1.8.1  Structure  

In mammals, sGC is expressed in the cytoplasm of most cell types and was first purified 

in the early 1980’s from bovine lung (167, 168). It is an αβ heterodimer, the molecular 

weight reported as ~72-80 kDa for the α subunits and ~70 kDa for the β subunits (169). A 

total of four polypeptides have been characterised to date: α1, α2, β1 and β2 (170).  sGC also 
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possesses a haem moiety which is bound to the N-terminal region of the β chain. Catalytic 

regions of the enzyme consist of components originating from both the α and β subunits 

and reside within the C-terminus.  These can also be found in the membrane bound 

particulate guanylate cyclase (pGC), as well as AC (171). The α and β subunits of sGC also 

possess a predicted Per/Arnt/Sim (PAS)-like domain, as well as a putative amphipathic helix 

(172). 

Although the enzyme has been purified from tissues of various species for many years, 

the crystal structure of the whole enzyme is yet to be completed. To this end, much focus 

has been centred on the development of bacterial expression systems for haem and 

catalytic domains of sGC (173-176). Moreover, rat β1 and β2 homodimers have also been 

expressed and completely characterised in Escherichia coli (177). While the catalytic domain 

of the αβ heterodimer has also been expressed, the haem domain has been of considerable 

interest due to its NO binding capacity. Figure 1.21 illustrates the main crystal structure of 

the haem binding domain of sGC.  

 

Figure 1.21: Crystal structure of the haem binding domain of human sGC. The enlarged image 
highlights the three main residues within the haem-binding motif. Adapted (178). 
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1.8.1.1   NO binding 

The primary role of sGC is to act as an NO sensor (179). Investigation by Buechler et al  

confirmed that both α1 and β1 subunits are required for basal enzyme activity as well as 

activation by NO (180). This was determined through the deletion of the N-terminal 

sequence of either the α1 or β1 subunits. Deletions of the β subunit lead to a loss of 

sensitivity to NO whereas deletion of the α subunit did not alter the response to NO. 

However, the binding of the haem moiety to the enzyme requires the presence of both 

subunits, illustrating the importance of the α1 subunit in haem-related processes such as 

activation (181). Specific investigation into the location of the haem binding region of the 

enzyme established that the N-terminus of the β1 subunit (approximately 190 amino acids) 

was imperative for NO binding. Moreover, residue Histidine105 was revealed to be the 

proximal haem ligand for the enzyme, allowing for full enzymatic activation by NO (182).  

Evidence from Electron Paramagnetic Resonance (EPR) spectroscopy determined that 

NO binds to the haem moiety of sGC forming a 6-coordinate nitrosyl complex which then 

breaks to form a 5-coordinate complex through two different means (183, 184). Figure 1.22 

shows the model proposed by Stone and Marletta for NO-sGC binding. The model suggests 

that ~28 % of the haem is converted rapidly to the 5-coordinate complex whereas the 

remaining haem is converted slowly to the 5-coordinate species and is dependent upon the 

interaction of NO with a non-haem site.   
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Figure 1.22: Mechanism for NO binding to sGC. This model suggests that NO binding to the enzyme 
has both a haem-dependent binding site as well as a haem-independent site. Both the top and 
bottom diagrams show that the initial relocation of NO to the haem is an irreversible reaction. The 
top mechanism illustrates the binding nature of 28% of haem, whereby there is a quick transition 
from the 6-coordinate nitrosyl complex to the 5-coordinate complex. The remaining 72% is a much 
slower process, requiring yet more NO to interact with a non-haem site. Adapted (184). 
 

Recent research by Tsai and colleagues has investigated the subsequent binding of 

further NO molecules, in particular, the second NO to associate with the enzyme. They 

conducted an EPR study using two isotopes of NO, 14NO and 15NO, to establish whether the 

haem iron is the site at which the second NO binds. Bioinformatics was used to confirm that 

the second NO binds at a different site to the first and that this binding occurs 

simultaneously with the dissociation of the proximal His-105 ligand (185). This work 

provided evidence for the formation of the 5-coordinate species after the binding of the 

second NO to the enzyme. 

1.8.2 NO-independent stimulation of sGC 

1.8.2.1   Carbon monoxide (CO) binding 

CO is mainly produced by the initial cleavage of haem into CO and biliverdin by HO 

(186). Two forms of HO exist, the oxidative stress-inducible protein (HO-1) and the 

constitutive isoform, HO-2 (187). 
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CO has a high affinity for sGC and binds in the same way as NO, to the prosthetic haem 

moiety (188). CO binding however, only catalyses a 4 to 6-fold activation of purified sGC and 

therefore deemed as a relatively poor activator of the enzyme (181, 188). The binding of CO 

is thought to form only a 6-coordinate species and thus no disruption to the histidine-iron 

(His-Fe) bond. Since the breakage of this bond is thought to be crucial in how sGC is 

activated, Kharitonov et al and Deinum et al suggested that a 5-coordinate intermediate 

may be formed when CO dissociates from the enzyme which closely resembles the nitrosyl-

haem complex (189, 190) allowing the observed 4-fold activation of the enzyme. 

1.8.2.2   Synthetic activators/stimulators 

As mentioned in section 1.7.1, patients receiving various compounds which donate NO 

and other organic nitrates have been found to develop tolerance to these drugs following 

chronic use. This required the development of new pharmacological compounds which 

reduce these effects. In particular, the German pharma company, Bayer, have developed 

several compounds which activate/stimulate sGC and are either dependent or independent 

of NO, some of which are commercially available. YC-1, BAY 41-2272 and BAY 60-2770 

discussed in more detail in section 4.1.2.  

In addition, compound A-350619 (Figure 1.23, top left) was also found to activate sGC. 

Studies conducted on this activator in combination with YC-1, revealed that A-350619 would 

likely share the same binding site (191). Interestingly, the activation of sGC by A-350619 was 

only partially inhibited by [1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ), suggesting 

that this compound has the ability to activate sGC via an allosteric site. Protoporphyrin IX 

(Figure 1.23, top right) has also been reported to activate the sGC (176, 192, 193) in a haem-

independent manner (194, 195). Both haem and protoporphyrin IX bind to an identical site 
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on the enzyme (196). Data on HMR-1766 (Ataciguat) Figure 1.23, bottom left) was initially 

published in 2004 and was planned as a treatment for cardiovascular disease associated 

with either oxidative stress (197) or pulmonary hypertension (198). It specifically binds to 

the oxidised form (Fe3+) of sGC (199). However, there has still not been any extensive 

investigation into the role of this compound clinically. The development of compound, CFM-

1571 (Figure 1.23, bottom right) was based on the structure of YC-1 (178). It displays a weak 

activation of sGC but effectively synergises with NO to fully activate the enzyme (200).  

                                                                          

 

 

 

 

 

 

               

 

Figure 1.23: Structures of sGC activators. A-250619 (top left), protoporphyrin IX (top right), Ataciguat 
(bottom left) and CFM-1571 (bottom right). Adapted (178, 199, 201). 
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The activators and inhibitors described above have the ability to stimulate the enzyme 

in either a haem dependent/independent manner and in the absence/presence of NO. This 

thesis aimed to reveal whether sGC could be directly affected by O2 to initiate relaxation of 

vascular smooth muscle. The binding of O2 in sGC has been a topic of debate in this field and 

will be now introduced in more detail in section 1.8.2.3. 
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1.8.2.3   O2 binding? 

Using various spectral techniques Marletta’s group have presented data to suggest 

that O2 does not bind to human sGC (174, 192, 202, 203). Indeed the ligand discrimination 

between NO and O2 by sGC has been thought to evolve due to the high O2 concentrations 

(µM) in the body in contrast to lower NO concentrations (nM) (204). However, a particular 

subunit of sGC in the nematode, Caenorhabditis elegans, has been shown to have a haem 

binding domain that has the capacity to form a complex with O2 (173). In addition to this, 

sGC of the bacterium, Thermoanaerobacter tengcongensis, exhibits high affinities for both 

diatoms, perhaps playing a role in O2 sensing. Subsequently, the presence of a Tyrosine-140 

residue in the haem pocket of sGC has been identified as an essential component for 

successful O2 binding (205, 206). Domains such as these which can function as an isolated 

protein have now been termed the ‘haem-nitric oxide and O2 binding’ cohort (H-NOX). It is 

thought that mammalian sGC as opposed to bacterial sGC does not contain this residue in 

the haem pocket therefore limiting O2 binding. 

In 2007, Marletta’s group published evidence that the insect, Drosophila 

melanogaster, possessed an O2-binding haemoprotein called Gyc-88E that could also bind 

NO and CO (207). These properties were found to be unique to GCs and may underlie a 

possible O2-sensing role in Drosophila. More recently, a study on sGC purified from bovine 

lung, conducted by researchers in Japan demonstrated that when frozen at 77 Kelvin (-

196.15 °C), the high spin haem of the ferrous enzyme (Fe2+) converted to a low spin 

oxyhaem (Fe2+-O2). This ligation was confirmed using EPR spectroscopy with a cobalt-

substituted enzyme (208). The O2-binding form of the enzyme could also be produced under 

solutions maintained at -7 °C (266.15 Kelvin) however; O2 was shown to have a low enzyme 
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affinity in conformational studies by x-ray absorption due to the weak formation of the His-

Fe bond. This therefore illustrates that the formation of an O2-sGC species can be formed 

even though the affinity for this gas is relatively weak.  

1.8.3 S-nitrosation/nitrosylation 

Recently, there has been much interest in s-nitrosation of sGC. The use of organic 

nitrates such as GTN and donor compounds such as SNOs to stimulate relaxation via the 

sGC/cGMP pathway is widespread. However, as explained in section 1.7.1, the use of GTN in 

patients has led to NO3
- tolerance. Interestingly, Beuve and colleagues demonstrate that in 

vivo, NO3
- tolerance is partly mediated by the desensitisation of sGC through GTN-

dependent S-nitrosylation (209). 

NO has the capacity to bind to sGC in the Fe2+ ferrous state to produce cGMP. However, 

sGC is desensitised to NO when the haem iron is oxidised to the Fe3+ state and this facet has 

since emerged as a potential therapeutic target for cardiovascular related disease. Within 

this setting, Fernhoff and colleagues provide evidence that the reductive S-nitrosylation of 

sGC is linked to the S-nitrosation of cysteines within the protein (210). Furthermore, the 

SNO formation occurs at cysteines 78 and 122 on the sGC β1 subunit, rendering the enzyme 

desensitised to NO.  

1.8.4 Inhibitors of sGC 

Inhibitors of sGC have been used extensively as tools for examining the role of the 

enzyme in specific events. One of the main inhibitors used is ODQ (Figure 1.24, top left). 

When isolated, sGC possesses a Fe3+ haem moiety which is a 5-coordinate species, as 

previously reported in section 1.8.1.1. In the presence of ODQ, the Soret peak 
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(spectroscopy) shifts from 431 nm to 392 nm which subsequently leads to a reduction in 

NO-induced enzyme activity (211-213). The shift in Soret band is in agreement with 

oxidation of the ferrous haem to Fe3+. Zhao and colleagues also confirmed that ODQ in fact 

inhibited other haem-containing proteins through oxidation, using Hb as an example (211).   

6-anilino-5,8-quinolinedione (LY-83583) (Figure 1.24, top right) has also been used to 

inhibit sGC (214). Mülsch and colleagues discovered that LY-83583 could inhibit sGC activity 

in a purified enzyme assay, as well as inhibit endothelium-dependent relaxation in rabbit 

aortic strips in response to ACh or calcium ionophore A23187 (214).   

Methylene blue (Figure 1.24, bottom) has been used over a number of years to inhibit 

sGC (215, 216). However, the use of methylene blue has also presented an issue due to the 

production of O2
- radicals which of course can have a damaging affect to cells and tissues 

(217). More recently, the use of methylene blue as an inhibitor of sGC has diminished due to 

its indirect effects, including the inhibition of NOS (218). Methylene blue is therefore 

thought of as an unspecific inhibitor of sGC which is potentially less potent than first 

assumed. 
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Figure 1.24: Structures of sGC inhibitors. ODQ (top left), LY-83583 (top right) and methylene blue 
(bottom).  Adapted (201).  
 

1.8.5 cGMP 

The identification of cGMP was made after the discovery of cAMP in the late 1950’s 

(219). Since then, an abundance of studies have aimed to characterise the role of cGMP 

within the cardiovascular system.  

The main outcome of endothelial dysfunction is the decreased bioavailability of NO. It 

has been suggested that when the NO-sGC-cGMP pathway has been compromised, cGMP 

production via natriuretic peptides could supplement this reduced activity (220). Figure 1.25 

highlights the broad spectrum of physiological effects arising from increased cGMP 

production. 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=6O5jLW-z24g--M&tbnid=Ur2OjbP7rMjCAM:&ved=0CAUQjRw&url=http://www.lclabs.com/PRODFILE/L-P/O-1666.php4&ei=wZ6LUbWUDKfL0AWstoHQCw&psig=AFQjCNFdtx-gnjDkeAYRdUyLjBLxir8Xaw&ust=136819
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Figure 1.25: Summary of the cGMP signalling pathway. BNP: B-type Natriuretic peptide; IRAG: IP3 

receptor associated cGKI substrate; VASP: vasodilator-stimulated phosphoprotein. The BAY 
compounds in blue target the NO binding site of sGC, leading to an elevation in cGMP production. 
Adapted (221). 

 

1.8.5.1  cGMP-dependent protein kinases 

Three types of cGMP-dependent protein kinases have been acknowledged in 

mammals: cGK type I (cGKI) and cGK type I (both found within the cytosol) and cGK type 

II (cGKII) which is membrane bound. In terms of cardiovascular function, the cGKI subtype is 

of great importance as this mediates the responses subsequent to elevations in cGMP (222).  

Investigations into the role of cGKI in vascular regulation led to the development of 

cGKI mutant mice. Due to the mutant genotype, these mice were unable to utilise the 

enzyme myosin phosphatase efficiently, leading to impaired vascular smooth muscle cell 
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growth. With this evidence, it was therefore acceptable to conclude that cGKI has the 

ability to dilate blood vessels through vascular smooth muscle cell myosin phosphatase 

activity (221).  

Research into cGKI proposed a specific communication with inositol 1, 4, 5-

triphosphate receptor I associated protein (IRAG), consequentially inhibiting intracellular 

Ca2+ release. Data from a mouse model expressing mutant IRAG that therefore could not 

interact with the IP3 receptor illustrated little relaxation of the aorta. Interestingly, mice 

with the dysfunctional IRAG did not develop hypertension, highlighting the significance of 

the cGKI-IRAG-Ca2+ pathway in smooth muscle function and not blood pressure regulation 

(223).  

Furthermore, IRAG has been shown to be implicated in the anti-platelet function of 

exogenous NO. Studies established that the adhesion of vasodilator-stimulated 

phosphoprotein (VASP)-deficient platelets to the endothelium in vivo was increased after 

vessel damage; moreover, they were impassive to an NO stimulus. This indicates the 

association of the VASP pathway in the mechanism of platelet inhibition. (224).  

1.8.5.2  Cyclic nucleotide phosphodiesterases (PDEs) 

PDE activity was discovered in 1962 by Butcher and Sutherland (225). Since then, in 

excess of 100 variants of the enzyme have been identified and all are capable of hydrolysing 

the 3’ cyclic phosphate bond of both cAMP and cGMP. Increased levels of cGMP can modify 

cAMP through altered PDE activity (226), presenting scenarios whereby cGMP pathways 

may act independently of signal transduction kinases.  
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Studies regarding the localisation and function of PDEs within specific cell types have 

revealed that several different enzyme family members can be expressed in any given cell. 

For instance, PDE 3A is expressed in vascular smooth muscle cells and has the capacity to 

modulate contraction. In addition, PDE 3A has also been implicated to play a vital role in 

oocyte maturation both in vitro and in vivo (227).  PDEs are regulated in a variety of ways 

including phosphorylation, binding of cGMP/cAMP and binding of Ca2+/CaM (227). Inhibiting 

PDE function has been of interest for a number of years for the treatment of various 

cardiovascular-related disorders such as pulmonary hypertension and erectile dysfunction 

(228). Newer drugs have been developed which are selective for certain PDEs, for example, 

PDE 5 has been a target for the development of several erectile dysfunction interventions 

including sildenafil, avanafil and zaprinast, among others (229, 230).   The action of these 

compounds increases the half life of tissue cGMP, subsequent to inhibiting its degradation, 

thus prolonging cGMP-mediated effects/responses. 

1.8.5.3 Measurement of cGMP 

Since the 1970’s, radioimmunoassay (RIA) and enzyme immunoassay (EIA) have been 

used to detect cGMP in tissue and fluid samples (231-233). RIA was first developed by 

Rosalyn Kalow in the early 1960’s (234) in order to examine insulin concentrations within 

plasma samples in control versus early diabetic subjects.  

EIA or enzyme-linked immunosorbent assay (ELISA) has a similar concept to that of 

RIA. However, there is no use of radioactive labels within this assay and so it has somewhat 

superseded the use of RIA due to safety. The label used within this system is an enzyme 

which is conjugated to primary or secondary antibodies or both (235).  
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As mentioned, ELISA usage has superseded RIA in many laboratories due to the 

potential hazards involved in using radioisotopes. In terms of sensitivity, ELISA and RIA are 

very similar. However theoretically, ELISA could possibly be more sensitive as each enzyme 

molecule has the potential to generate many colour products which can then be directly 

measured, whereas a radioisotope can only be decayed once. (236). 

1.9 RBC-induced vasodilation in hypoxia 

As detailed in section 1.4, NO has the ability to participate in a host of biochemical 

reactions in order to facilitate important biological actions. The preservation of NO in blood 

has been of particular interest since the early 1990’s, when Stamler’s group demonstrated 

that free thiols contained within certain proteins such as albumin (106) could react with NO 

to form SNO species that act as biological ‘carriers’ of NO in the circulation (237). More 

importantly, these SNO species were found to be biologically active in their own right and 

can inhibit platelet activation and induce vasodilation at sites distal to where they are 

produced/administered. Further investigation by Jia and colleagues, led to the discovery 

that the cysteine residue at position 93 of the β chain of Hb (Cysβ93) was a site at which 

SNO-Hb could be formed (110). Moreover, Jia confirmed that RSNOs behaved very 

differently from NO itself, demonstrated by the inability of RSNO compounds to react with 

either deoxy or oxy Hb. The RSNO compounds were said to possess NO+ characteristics, 

thereby distinguishing it from the activity exerted by NO itself.  Several other species have 

been implicated to serve in the preservation of NO bioactivity including lipids such as linoleic 

acid (238), found in RBC membranes and plasma. Nitrated lipid derivatives have been shown 

to mediate cGMP-dependent and independent signalling pathways (239).  
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The discovery that low O2 tension facilitated the release of a bioactive species of NO 

from RBC/Hb led to further study into the local regulation of blood flow. This regulation was 

termed ‘hypoxic vasodilation’ by a number of groups. Most importantly, this refers to 

smooth muscle relaxation in hypoxic conditions as opposed to smooth muscle relaxation 

brought about by hypoxia. To date, several theories have been proposed. These theories 

centre on the ability of RBCs to release a mediator which transiently dilates hypoxic vessels 

in order to increase blood flow to match O2 demand. Therefore, the mediator(s) involved 

must have the ability to cross the RBC membrane to act acutely upon the vascular 

endothelium or vascular smooth muscle. In addition to this, the relaxatory mediator must 

be impervious to the scavenging capacity of Hb to ensure its actions are executed outside of 

the RBC. The different theories and mediators published in the literature will now be 

introduced in more detail. 

1.9.1 Proposed mechanisms 

1.9.1.1 HbSNO 

The formation of HbSNO has been extensively researched by Stamler and colleagues. 

This theory centres on Hb allostery and the conformational changes adopted during the 

respiratory cycle (240). Venous blood is only partially oxygenated (T state) and therefore has 

the ability to bind NO to form HbNO (see Figure 1.26).  
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Figure 1.26: Interaction of NO and Hb during an arterial to venous transit. SNO and O2 are released from Hb in the R state to vasodilate hypoxic vessels. 
Adapted (241). 
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The pulmonary circulation encompasses a change in saturation of blood in the lungs, 

leading to the displacement of NO by O2 (T to R transition). Consequently, NO has the ability 

to bind to cysteine residues on the β chain of Hb to generate the R state conformation 

(HbSNO). After exit from the lungs, fully saturated RBCs carrying HbSNO deliver O2 and SNO 

to respiring tissue, favouring the switch from R state Hb back to T state. Cysβ93 has been 

pinpointed to facilitate the release of SNO under low O2 conditions (124, 242, 243) and is 

therefore essential to this theory.  

The remaining questions regarding the SNO theory are centred on the ability of the NO 

species to exit the RBC on encountering areas of low tissue pO2 without being recaptured by 

Hb. Pawloski and colleagues first reported that the anion transporter protein, AE-1, could be 

involved in transnitrosation reactions to transfer NO across the RBC membrane (244). They 

demonstrated that the interaction of HbSNO with this protein promoted the formation of 

the deoxygenated structure of Hb and subsequent dissociation of NO to the RBC membrane. 

Pawloski also demonstrated that the AE-1 inhibitor, DIDs, reduced the export of NO to the 

membrane. This was confirmed by a hypoxic rabbit aortic ring bioassay in which DIDs and 

NO were pre-incubated with RBCs before being introduced to pre-constricted rings. The 

DIDs treated RBCs produced a significantly reduced relaxation of hypoxic aortic rings 

compared with RBCs treated with NO alone. 

Subsequent in vivo studies have also provided data to support this theory (124). In 

order to eliminate arterial to venous gradients of O2, rats were exposed to 3 atmospheres of 

absolute pressure whilst inhaling 100 % O2 in a hyperbaric chamber. Levels of both HbNO 

and HbSNO were then measured in cerebral blood from these animals. As reported by Jia a 

year earlier (110), there was an abundance of HbSNO present in arterial blood whereas a 
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higher proportion of HbNO was found in venous blood. This suggested that transnitrosation 

across the RBC membrane led to the differences between arterial and venous blood. In 

addition, Palmer et al used N-acetylcysteine (NAC) as an inducer of NO transfer reactions in 

blood in order to examine the effects of this transfer in vivo (245). A high dose of NAC 

administered to mice was converted to NAC-SNO and following a 3-week period, led to a 

subsequent decrease in RBC SNO concentration. Interestingly, high dose NAC treated mice 

developed pulmonary arterial hypertension, comparable to the effects witnessed in mice 

exposed to hypoxia alone for 3 weeks. In light of these observations, Palmer suggested that 

in NAC treated mice, oxyHb desaturation lead to NAC-SNO formation in systemic blood 

flowing back to the lungs. Taken together, these findings demonstrate the interaction of 

HbO2 saturation with the formation of RSNO in blood and subsequent vascular effects upon 

the pulmonary circulation. 

The SNO theory suggests that together with the release of O2 to match demand of 

local tissue beds, the RBCs have the ability to release SNO from Hb which has a direct effect 

upon vascular tone and local blood flow.       
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1.9.1.2   NO2
- 

In the early 1950’s, Furchgott discovered the importance of NO2
- in altering vascular 

tone during experiments administering 100 µM NaNO2 to strips of rabbit aortic tissue (94). 

Since then, a vast amount of research has been conducted on NO2
- both in vitro and in vivo. 

In vitro, Zweier and colleagues demonstrated that NO can be generated in an ischaemic 

heart through the reduction of NO2
- due to low pH (246). Furthermore, this production of 

NO from NO2
- was not abrogated by NOS inhibitors and continued to occur during 

prolonged ischaemia. This non-enzymatic reduction of NO2
- ultimately lead to a loss of 

contractile function of the heart.  In addition, XO was shown to reduce NO2
- to NO under 

anaerobic conditions in the presence of either NADH or xanthine (99).  In vivo, Gladwin and 

colleagues devised an experiment examining the roles of both endothelial-derived NO and 

NO species on forearm blood flow, as well as levels of NO2
-, low molecular weight SNOs, and 

high molecular weight SNOs in plasma and HbSNO (247). The results of this study 

demonstrated a gradient of plasma NO2
- from artery to vein, indicative of a novel source of 

NO delivery to the vasculature. Moreover, Gladwin found that the consumption of NO2
- 

increased significantly during forearm exercise and post NOS inhibition. Production of 

albumin-SNO was largely centred in the venous blood and was even formed during NOS 

inhibition, suggesting that albumin does not have the capacity to deliver NO from the lungs 

to the body. All of the aforementioned studies imply that NO2
- is bioactive in its own right 

and in vivo could be reduced to NO to control vascular tone during metabolic stress (low 

pO2).  

In 2003, a clinical study tested the effects of a 5 minute NaNO2 infusion on forearm 

blood flow measurements, with and without exercise and L-NMMA. The outcome of the 
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study demonstrated a rise in NO2
- across the arm before and during exercise, which was also 

present in subjects that received L-NMMA (248). Cosby reported that the concentrations of 

NaNO2 used in these studies were ‘near physiological’. The in vitro portion of this study 

illustrated that a fall in pO2 was potentiated by NO2
- in the presence of Hb. However, in 

contradiction, a later study by the same group showed that addition of NO2
- under hypoxic 

conditions in the presence of Hb did not affect the extent of relaxation compared to control 

rings (249). Moreover, Dalsgaard described that cell free deoxyHb enhanced the NO2
--

mediated response in hypoxic rat aortic rings however this was solely due to the presence of 

the allosteric effector, inositol hexaphosphate (IHP) (similar effect to 2,3-DPG, section 

1.1.3.2.1) (250). It is noteworthy to mention that hypoxia alone  potentiates NO2
-- induced 

vasorelaxation in the absence of Hb, therefore questioning the role of deoxyHb as a NO2
- 

reductase in this paradigm. 

Huang and colleagues further investigated the role of Hb allostery in NO2
- reduction as 

well as the ability of Hb to carry out this enzymatic function (251). Data collated from aortic 

ring bioassays illustrated that the reductase function of Hb and therefore NO-mediated 

vasodilation of tissue, is maximal at a HbO2 saturation of 50 % (P50) (tissue pO2 20-40 

mmHg). It was proposed that the reaction of NO2
- with deoxyhaem involved the formation 

of two conformations of Hb, due to the ability of deoxyHb to display both T and R state 

characteristics. The reaction of NO2
- with deoxyhaem in T state decreases as the deoxyhaem 

is consumed. However, this is balanced by the enhancement in the reaction between NO2
- 

and R state deoxyhaem (forming methaem and iron nitrosyl haem). In addition, comparison 

between the addition of NO2
- to deoxyHb and deoxymyoglobin (deoxyMb) highlighted that 

the rate constant for myoglobin (Mb) did not change, however the rate constant for 
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deoxyHb with NO2
- increased exponentially. This finding supports the notion that reductase 

activity of deoxyHb increases as the reaction proceeds.  

Collectively, the data presented implies that the level of HbO2 saturation and 

subsequent cycling between T and R states as opposed to tissue pO2 accounts for O2 sensing 

under hypoxia. A recent study by Totzeck and colleagues in 2012 also implicated the role of 

Mb in the reduction of NO2
- to NO (252). They provide evidence supporting the presence of 

Mb in vascular smooth muscle which contributes to hypoxic vasodilation in vivo and ex vivo. 

Furthermore, the use of Mb knockout mice models confirmed that Mb had a role in NO2
--

induced hypoxic vasodilation in these animals. 

Similar to the HbSNO theory, the validity of the NO2
- reduction hypothesis has also 

been questioned. For instance, it is well known that exercise increases O2 debt to the 

muscles and therefore some tissues may have a low PO2. However, the body has means to 

counteract the effects of local tissue hypoxia; increased respiration ensures O2 requirement 

matches demand. Secondly, there has been some debate over the levels of NO that can exit 

the RBC and diffuse across the vascular wall to the smooth muscle cells. Hb has an 

extraordinary capacity to scavenge NO and therefore the levels that can escape the blood to 

act upon sGC when physiological levels of NO2
- are present have been questioned. In 

addition, NO2
- itself has the ability to induce relaxation under hypoxic conditions, regardless 

of the presence of Hb, suggesting that Hb and therefore RBCs per se, are not necessary for 

mediating vascular tone in this instance. Moreover, this relaxation is slow and gradual 

occurring over minutes, whereas the relaxation attributed to hypoxic vasodilation by RBCs is 

an immediate and transient response.  
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To date, the published data for both the SNO and NO2
- theories have provided 

convincing evidence to support mechanisms contributing to hypoxic vasodilation. Yet 

neither completely fulfils the criteria that allow for rapid production and release of the 

relaxing species, that the mediator itself is easily replenished (as shown by RBC O2 cycling 

experiments using bioassays), or whether these are relevant at physiological 

levels/conditions. Angelo et al goes some way to addressing this by providing evidence for 

the function of Hb as a SNO synthase, which appears to be dependent on the local 

concentration of NO2
- (253). They demonstrate that physiological concentrations of NO2

- 

with deoxyHb rapidly form a HbSNO precursor, producing HbSNO upon oxygenation. 

However, high NO2
- concentrations inhibit the formation of HbSNO.  This data connects the 

two theories together to some extent however the formation of this SNO precursor is not 

yet fully understood.     

1.9.1.3  ATP 

In 1992, Bergfeld and Forrester established that exercise-induced hypoxia led to a rise 

in RBC-derived ATP release (254). In most cells of the body, mitochondria consume ~85 % of 

O2 present to allow for the process of oxidative phosphorylation which is the primary 

pathway for the production of ATP (255). It is thought that the ATP released from the RBC in 

hypoxia bind to P2Y receptors on the endothelium (256), stimulating the release of NO and 

PGI2. More recently, Sprague and colleagues conducted a study on rabbit skeletal muscle 

arterioles, examining the effect of ATP and O2 release from RBCs following reduced tissue O2 

tension (257). The data illustrated that ATP release increased in proportion to the decrease 

in O2 tension as hypothesised. In addition, a further experiment investigated the role of 

rabbit RBCs in the response of hamster cheek retractor arterioles to decreased extra-luminal 
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O2 tension (~32 mmHg). The inclusion of rabbit RBCs in the buffer resulted in a dilation of 

the arterioles compared with buffer alone, supporting the hypothesis that RBCs contribute 

in delivery of ATP and O2 to metabolically active skeletal muscle.    

Experiments conducted by Stamler’s group demonstrate that hypoxic vasorelaxation 

occurs in endothelium denuded vessels (258), suggesting that endothelium-dependent NO 

release by ATP may not be necessary here. Further investigation into this hypothesis 

illustrated that the levels of ATP in the blood rise relatively slowly in relation to a decreasing 

HbO2 saturation. In relation to this paradigm, this change in mediator levels does not 

correspond to the transient resultant relaxation observed in the experimental models and in 

vivo, perhaps indicating that ATP may have more of a role in chronic hypoxia as opposed to 

hypoxia in the acute setting (254). Moreover, several groups agree that presence of L-

NMMA in any experimental model does not affect the transient relaxation in response to 

hypoxia, confirming NOS is not a key player (101). 
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1.10   Thesis rationale  

The mechanisms of local regulation of blood flow detailed in sections 1.9.1.1, 1.9.1.2 

and 1.9.1.3, propose several ways in which RBCs are involved in the relaxation response to 

low O2 tension. The main characteristics underlying the mechanisms described above can be 

summarised by the following: 

 RBC-induced relaxation in hypoxia is largely sGC-mediated and endothelium-

independent. 

 Relaxation is dependent upon the HbO2 saturation of RBCs. 

The work contained within this thesis aims to address these findings and further investigate 

the mechanism behind the RBC-induced transient relaxation observed in hypoxia. These 

studies have centred on an in vitro myograph model utilising hypoxic rabbit aortic rings to 

demonstrate how RBCs affect vascular tone. Together with the notion that HbO2 saturation 

is an important factor in this setting, as well as the lack of suitable oxygenated controls in 

previous experiments, Chapter 3 of this thesis aims to show the importance of O2 itself on 

the control of vessel tone in hypoxia. In all experiments, buffer controls were equilibrated 

with 95 % O2/5% CO2 in order to mimic the O2 carrying capacity of RBCs within blood.  

Chapter 4 of this thesis further investigates the mechanism in terms of its sGC-

dependence. As previously stated (section 1.8.1.1), NO is the primary ligand of sGC, 

catalysing the production of cGMP. However, sGC can also be activated via other haem-

dependent and independent ligands which are also independent of NO. Much of the 

literature to date has argued against the interaction of sGC with O2. The data within Chapter 

4 further explores the interaction of O2 with purified human sGC and whether O2 influences 

other ligand binding.  
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Previous studies have used rabbit aortic rings to investigate mechanisms of RBC-induced 

relaxation in hypoxia. Physiologically, a conduit vessel such as the aorta is unlikely to 

experience hypoxia, since oxygenated blood deriving from the lungs flows into it. Chapter 5 

addresses this by adopting a porcine coronary artery model, similar to the experimental 

model in Chapter 3. These vessels are more suitable for experimentation since blockages 

within coronary arteries, due to disease such as atherosclerosis, can cause local ischaemia 

distal to the site of occlusion.  

1.11 Thesis Aims 

The overall aim of this thesis is to study the acute effects of O2 itself on vascular tone 

under hypoxic conditions. Specifically, this thesis aims to examine the following: 

 The role of RBCs in mediating vasorelaxation in hypoxia, particularly focussing on the 

influence of O2. This work will be conducted using the rabbit aortic ring model to 

study changes in isometric tension post introduction of O2 to tissue under varied O2 

tensions.  

 

 The role of O2 in mediating sGC activation. The α1β1 purified form of human sGC will 

be utilised in a model that will be utilised under normoxic and hypoxic conditions 

using the InVivo2 hypoxia workstation (Ruskinn) to determine the effects of O2 on 

enzyme activity. cGMP will be quantified by ELISA as a measure of sGC activity. 

 

 Influence of vessel size and function on O2-induced vasorelaxation by comparing 

studies conducted in both porcine coronary vessels and the rabbit aortic ring models. 
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1.11.1   Hypothesis 

O2 itself represents the mediator released by oxygenated RBCs that can induce 

relaxation of hypoxic vascular tissue. 
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2.1 Reagent & Chemicals List 

Table 2.1: Reagents and chemicals used. 

Product Company 

Sodium chloride (NaCl) 
Potassium chloride (KCl) 

Potassium dihydrogen orthophosphate (KH2PO4) 
Magnesium sulphate (MgSO4) 

Sodium hydrogen carbonate (NaHCO3) 
Glucose (C6H12O6) 

Calcium chloride (CaCl2) 
Glacial acetic acid 
Hydrochloric acid 

DMSO 

Fisher Scientific UK 

Acetylcholine (ACh) 

Phenylephrine (PE) 

Indomethacin 

Glibenclamide 

1H [1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) 

Potassium iodide (KI) 

Iodine (I2) 

Potassium hexacyanoferrate (K3FeIII(CN6)) 

Sulphanilamide 

Mercury Chloride (HgCl2) 

Antifoam 

PBS (tablet form) 

Sigma Aldrich UK 

S-nitrosoglutathione (GSNO) 

MAHMA NONOate (NOC9) 

NG-monomethyl-L-arginine (LNMMA) 

Alexis Biochemicals 

U46619 Tocris UK 

Soluble guanylate cyclase (sGC) - human α1β1  Axxorra 
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2.2 Myography 

Male New Zealand white rabbits (2-2.5 kg) were euthanised by lethal injection 

(sodium pentobarbitone, 120 mg/kg, i.v). The thoracic aorta was removed carefully and 

placed in fresh Krebs-Henseleit (KH) buffer on ice (Composition mM: NaCl 109.2, KCl 2.7, 

KH2PO4 1.2, MgSO4 1.2, NaHCO3 25, Glucose 11, CaCl2 1.5). Excess adipose tissue was 

removed from the aorta and typically 8 rings of 2mm in width were prepared; care was 

taken not to damage the endothelium or smooth muscle.  

The rings were mounted in baths containing 5 ml KH buffer at 37C gassed with 95% 

O2/5% CO2. Resting tension was set to 2 g (94). Signals from the transducer were amplified 

and visualised on the Powerlab/Chart 4 for Windows software. Tissues were allowed to 

equilibrate for 60 minutes prior to experimentation.   

Constriction-relaxation responses to 1M PE and 10M ACh, respectively, were 

performed to establish both smooth muscle and endothelial integrity. In most cases, three 

repeats established stable constriction-relaxation profiles. Figure 2.1 is a schematic of the 

myograph set up and typical curve generated by constriction-relaxation exercises. 
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Figure 2.1: A schematic representation of an 8-channel myograph set-up. (BL – baseline). 

 

2.2.1 Equilibration to varying O2 concentrations 

To equilibrate the rings to hypoxia (~0% O2), the gas was switched to 95% N2/5% CO2 for 

10 minutes. Other concentrations of O2 used were 1, 5, 10 and 21%. The gas mixes (with 5% 

CO2) were purchased from BOC UK and were similarly bubbled into the baths for 10 minutes 

to establish equilibrium. 

Previous analysis of the O2 content within the baths were made using O2 electrodes and 

when equilibrated with 95% N2/5% CO2 under similar experimental conditions, confirmed 

this to be 0.9% O2 (259). This represented the lowest possible O2 concentration attainable in 

the open bath configuration. For the purpose of clarity only, this will be referred to as “zero” 

or “0%” for the remained of this thesis. Rings equilibrated to 0, 1 and 5% O2 were 

constricted with 3 M PE to achieve an equivalent sub-maximal constriction as normoxic 

rings (~95% O2). 

2.2.2 KH buffer samples 

For certain myography experiments, bolus additions of 0, 21 or 95 % O2 were added to 

the hypoxic vascular rings. These samples were prepared by bubbling N2 (0 %) or 95 % O2 
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into small septum-sealed bottles for 5 minutes. Air (21 % O2) samples were allowed to reach 

ambient O2 conditions by leaving open to the room conditions for at least 30 minutes.  

2.2.3 KH buffer myography sample volumes 

Samples were equilibrated for 5 minutes with 0, 21 or 95 % O2 as outlined in section 

2.2.2. Table 2.2 illustrates the relative final O2 concentrations of each bath with respect to 

an addition of 200 µl of each sample (see ‘Units Conversion’ – XVII). 

Table 2.2: Final bath O2 concentration for 0, 21 and 95 % O2 KH buffer samples. 

Volume added to bath 

(µl) 

Final bath O2 concentrations of KH buffer samples (µM) 

0 % 21 % 95 % 

200 0 8.4 38 

 

2.3 Blood Collection 

Healthy participants gave their consent to have blood samples taken. These samples 

were taken by trained members of staff and in agreement with the Cardiff and Vale 

University Health Board and only where permitted by the Local Ethics Committee.  

Blood was drawn from the median cubital vein or cephalic vein into vacutainers 

(K3EDTA, Vacuette Greiner Bio-OneTM). After sample collection, the vacutainers were 

inverted to ensure adequate mixing with ethylenediaminetetraacetic acid (EDTA) to prevent 

clotting. 
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2.3.1 Blood Processing 

Figure 2.2 below outlines the steps taken to isolate both the RBC and haem fractions. A 

former PhD student in our group, Dr Andrew Pinder, altered the O2 saturation of RBC (as 

measured by the blood gas analysis (OSM3 Hemoximeter, Radiometer)) using a thin film 

rotating tonometer. This equipment required a relatively high dilution and volumes of RBC 

to be purged with gases of varying O2 content. Therefore, in the studies conducted in this 

thesis, the O2 saturation of RBCs held at physiological haematocrit was modulated by simply 

mixing with oxygenated PBS to achieve the target HbO2 saturation. 

 

Figure 2.2: Human blood processing – separating whole blood into RBC and Hb fractions. 

2.3.2 Blood and Hb myography sample volumes 

In order to achieve a final bath O2 concentration equal to that of KH buffer (section 2.2.3), 

the Hb concentration in each sample was factored in. The total Hb content (tHb in g %) was 

used from the OSM3 Hemoximeter data for each sample. It is noteworthy to mention that 
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this figure was higher than normal since the RBCs were taken from centrifuged blood and 

not whole blood. Purified Hb sample volumes were also calculated using the tHb. Each 

sample volume was calculated by working back from the Hb concentration to achieve a final 

bath concentration of 38 µM:Example: 

tHb (g %) = 36.9 

36.9 g % = 369 g/l 

MW of Hb = 64,500 Da 

369/64500 = 0.0057 M = 5.72 mM Hb 

Volume in bath = 5000 µl (5 ml) 

1 µl added to bath = 5.72/5000 = 1.144 µM Hb 

4 O2 molecules per Hb = 4 x 1.144 = 4.58 µM O2 in 1 µl of RBCs 

38 µM O2 = 8.30 µl RBCs added 
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2.4 Purified enzyme experiments 

Purified human sGC (10 µg) was reconstituted in 1 ml of enzyme buffer (personal 

communication, Professor John Garthwaite), divided into aliquots and stored at -80°C until 

use. Table 2.3 lists the buffer recipes used for all enzyme experiments. 

All experiments were performed in an InVivo2 Hypoxia Workstation 400 (Ruskinn). 

Normoxic experiments were carried out at 37C and 20% O2/5% CO2 (maximum oxygenation 

for the hypoxia workstation) via a 25% O2/5% CO2 gas cylinder. Hypoxic experiments were 

maintained at 37C and ~0% O2/5% CO2. Reagents were allowed to equilibrate for 1 hour 

before all tests were completed.  

The reconstituted sGC enzyme was diluted 1 in 200 in assay buffer. GTP, dissolved in 

equimolar MgCl2, was then added to a final concentration of 1 mM to start the reaction.  All 

reactions were incubated for 10 minutes at 37C immediately following GTP/MgCl2 addition, 

after which boiling inactivation buffer was added in 4 times excess. Samples were then 

heated to boiling point before storage at -20C for further analysis. 
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Table 2.3: Buffers used in sGC experiments. 

Buffer Constituents Content pH 

Enzyme Tris 

DTT 

BSA 

50 mM 

1 mM 

0.5 % 

7.4 

Assay Tris 

EGTA 

MgCl2 

BSA 

50 mM 

100 µM 

0.3 mM 

0.045 % 

7.4 

Inactivation Tris 

EDTA 

50 mM 

4 mM 

7.5 

DTT: dithiothreitol; BSA: Bovine serum albumin; EGTA: ethylene glycol tetraacetic acid; MgCl2: 
magnesium chloride.  

 

2.5 EPR Spectroscopy 

EPR is a technique which detects species with unpaired electrons. The EPR 

phenomenon observed is the transition (resonance absorption of energy) between 2 energy 

states that can occur in an unpaired electron system in a magnetic field. An electron is a 

negatively charged spinning particle which possesses angular momentum (rotation due to 

inertia and velocity) (260).  Subsequently, this angular momentum accounts for an electron 

possessing a magnetic moment.  The momentum of the rotating electron produces a 

magnetic field and the axis of each spinning electron has an associated dipole moment.   

When an external magnetic field is applied to the sample, unpaired electrons are forced to 

take up specific orientations, governed by spin quantum number (S), either aligning with, or 

against, the direction of the external field.  An electron has a S value of ½, allowing two 
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possible spin rotations; which are parallel (ms = +1/2) and anti-parallel (ms = −1/2) to the 

magnetic field (Zeeman’s effect - see Figure 2.3) (261). In the absence of an external 

magnetic field, electrons are in random orientation and have an average energy state.  In 

the presence of a magnetic field, parallel orientation (ms = +1/2) occurs when the electron 

magnetic properties spin parallel to the external magnetic field (low energy) in comparison 

to anti-parallel (ms = −1/2) where electron spin direction is opposed to the magnetic field 

(high energy). (261).  

 

Figure 2.3: Zeeman’s effect. Adapted (262). 

When we supply an external magnetic field, the paramagnetic electrons can either 

orient in a direction parallel or anti-parallel to the direction of the magnetic field which 

creates two distinct energy levels for the unpaired electrons, in turn allowing the detection 

and measurement as electrons are driven between the two energy levels (Figure 2.4). 
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Figure 2.4: The excitation of electrons between energy levels during an applied magnetic field (262).   

 
Therefore in the presence of a magnetic field (H) are two potential energy levels for an 

unpaired electron.  ‘h’ represents the difference between the energy at the two levels (∆E).   

2.5.1 Oximetry 

EPR oximetry relies on the fact that the ground state of molecular O2 has 2 unpaired 

electrons. These two electrons will interact with other unpaired electron species and the 

extent of this interaction will be a function of the amount of O2 present. This is reflected by 

the direct broadening of the ESR peak observed (263). This effect occurs with all 

paramagnetic materials although it is much larger in some materials than others and these 

are selected for oximetry. The spectral line width (measured in Gauss, G) (peak to peak 

splitting along the magnetic field axis) is measured and converted to pO2 or concentration of 

O2 using an appropriate calibration curve. It is crucial that the probe chosen for any 

oximetry studies does not affect the local O2 present within the sample being tested, and 
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this is true for EPR oximetry because there is no physical or chemical interaction between O2 

and the probe – it simply recognises the presence of a secondary spin species. 
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Figure 2.5: Incremental Y sweep (magnetic field) for a sample recorded in N2 and then the perfusion 
gas switched to 95 % O2 immediately after the first scan. Each scan had a 41 second duration and 10 
scans were completed. The dashed lines represent the line width at low O2 and the solid lines 
represent the line width at 95 % O2. 
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The EPR machine used to conduct each experiment was the Bruker escan. Table 2.4 

outlines the conditions set for oximetry. The modulation amplitude should be no more than 

one third of the expected line width (as a general rule) to ensure no artificial broadening of 

the peak to machine conditions (such as power). 

Table 2.4: Experimental conditions for EPR oximetry.  

 0 % 21 % 95 % 

MW (dB) 18.00 18.00 18.00 

Receiver Gain 2.24 x 103 4.48 x 103 4.48 x 103 

Modulation 

Frequency (kHz) 

 

86.00 86.00 86.00 

Modulation 

Amplitude (G) 

 

0.06 0.10 0.20 

Modulation Phase 

(degrees) 

 

17.37 17.37 17.37 

Offset (%) 51.00 51.00 51.00 

Conversion (msec) 81.92 81.92 81.92 
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2.5.2 Standard curve  

The soluble oximetry probe, N15 per-deuterated tempone (PDT) (5 mM) was diluted 1 in 

10 in double distilled water (d.H2O) (500 µM). Three standards were prepared: 0, 21 and 95 

% O2. The air (21 %) standard was equilibrated to atmospheric O2 by leaving open to the 

room conditions for at least 30 minutes prior to analysis. The diluted probe was even further 

diluted in order to detect O2 accurately for each standard; 4 µl of diluted probe (500 µM) 

was added per 100 µl of distilled water used for each standard (1 in 25 dilution). The 0 and 

95 % standards were achieved by drawing up the diluted probe (20 µM) into gas permeable 

tygon tubing and placing into a narrow hollow quartz tube used for EPR spectroscopy. The 

tube was perfused with either N2 or 95 % O2 to equilibrate to 0 or 95% O2, respectively 

(Figure 2.6). The point at which the spectral line width no longer changed was taken as the 

standard. Figure 2.7 shows the typical data achieved for a standard curve over a 4 day 

period. 

 

 
Figure 2.6: Standard curve preparation for EPR oximetry. 
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Figure 2.7: Standard curve for EPR oximetry (n=4) Linear regression. 

2.5.2.1 EPR validation: Myography samples 

In order to ascertain the O2 content of the KH buffer samples that were added to each 

experiment (see section 2.2.2), EPR was used to determine the exact O2 content present 

using the N15 PDT probe (20 µM). This was also to verify that the perfusion time of 5 

minutes was enough to sufficiently deoxygenate (0 %) or oxygenate (95 %) the samples. 

After each time point, a glass capillary was used to draw up each sample and the fluid was 

contained by sealing each end with an air-tight sealant. The 0 % O2 sample was drawn up in 

the hypoxic chamber to limit any contamination with air. The 95 % O2 sample was taken as 

quickly as possible to limit gas escape. Figure 2.8 illustrates the line widths of each time 

point chosen. 
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Figure 2.8: Validation of O2 content in samples added to hypoxic vascular ring experiments. The 
bottom right graph is a summary of all O2 samples analysed. Statistically, there was no difference in 
line width between those samples perfused for 10 minutes or 30 minutes with those perfused for 5 
minutes. (n=4-6). One-way ANOVA + Dunnett’s post hoc test.  
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2.5.2.2 EPR validation: Hypoxic chamber samples 

Similarly to the myograph samples, the assay buffer utilised in the sGC experimental 

samples also needed to be tested to ensure that the buffer was of low O2 and essentially 

hypoxic. Thus, identical volumes of assay buffer as those used in the experiments were 

added to vials and allowed to equilibrate for between 1 and 4 hours in the hypoxic chamber 

at 37°C (Figure 2.9).  
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Figure 2.9: Validation of O2 content in hypoxic chamber samples. Assay buffer samples were 
incubated for between 1 and 4 hours and analysed via EPR spectroscopy. There was no significant 
difference in the line width of each time point compared to a 1 hour incubation period. (n=5). One-
way ANOVA + Dunnett’s post hoc test. 

 

2.6 cGMP ELISA 

The kit used for all cGMP detection within this thesis was the ‘R & D Systems 

ParameterTM cGMP Assay Kit’. This particular kit was chosen as it had a wide range of 

detection (0-500 pmol/ml). This ELISA kit is based on competitive binding of the substrate 

(see Figure 2.10).  
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Figure 2.10: Direct competitive ELISA. A 96 well plate coated with an antigen secures the cGMP 
polyclonal antibody on to the plate. The cGMP-HRP conjugate directly competes with the cGMP in 
the sample for binding to the cGMP antibody already bound to the plate. S: substrate; E: enzyme. 
Adapted from piercenet.com 

2.6.1 Kit constituents: 

 Goat anti-rabbit microplate 

 cGMP conjugate 

 cGMP Standard 

 Primary Antibody Solution 

 Calibrator Diluent RDS-5 

 Cell Lysis Buffer 5 Concentrate 

 Wash Buffer Concentrate 

 Colour Reagent A 

 Colour Reagent B 

 Stop Solution 

 Adhesive Plate Sealers 
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2.6.2 Kit preparation 

The wash buffer concentrate was diluted 1 in 25 in dH2O. The cGMP standard was 

reconstituted in 1 ml of d.H2O. This was then mixed and allowed to stand for a minimum of 

15 minutes before the diluted standards were prepared. 

2.6.3 Kit considerations 

 All reagents must be allowed to equilibrate to room temperature before use. 

 Opened kits are stable for up to 1 month at 4°C. 

 Reagents must be kept away from light. 

 Correct diluent was used – for enzyme experiments the Calibrator diluent was used. 

2.6.4 Enzyme Sample Preparation 

Samples collected from previous experiments in the hypoxic chamber (sGC diluted in 

enzyme assay buffer) were defrosted on the day of the cGMP assay and kept on ice. Each 

sample was allowed to equilibrate to room temperature and mixed thoroughly before being 

added to the plate. 

2.6.5 Assay Procedure 

2.6.5.1 Standard Preparation 

 The reconstituted cGMP standard produced a stock solution of 5000 pmol/ml.  

 900 µl of Calibrator Diluent was added to a tube labelled 500 pmol/ml. 600 µl was 

added to each tube labelled 167, 56, 18.5, 6.2 and 2.1. 

 100 µl of the standard stock solution (5000 pmol/ml) was added to the 900 µl in the 

tube labelled 500 pmol/ml. A serial dilution was then carried out as shown in Figure 

2.11 below. Standards were used within one hour of preparation. 
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Figure 2.11: Process of cGMP standard serial dilutions. 

 Quantification 

 150 µl of Calibrator Diluent was added to the non-specific binding wells (NSB) and 

100 µl was added to the zero standard wells. 

 100 µl of standard or sample was added to the wells. 

 50 µl of cGMP conjugate was added to each well which gave the wells a slight red 

colour. 

 50 µl of Primary Antibody Solution was added to each well, excluding the NSB wells. 

The addition of Primary Antibody caused the wells to turn a slight purple colour. The 

plate was covered with an adhesive strip. 

 The plate was placed on a microplate shaker at 500 ± 50 rpm for 3 hours at room 

temperature. 

 After the 3 hour incubation, the contents of the wells were aspirated and replaced 

with 400 µl of diluted wash buffer. This process was repeated for a total of 4 wash 

steps. After the final wash, the plate was blotted on clean paper towels to remove 

any excess fluid from the wells.  
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 Sufficient volumes of Colour reagents A and B (tetramethylbenzidine (TMB)/H2O2) 

were mixed together in equal quantities and protected from light. This solution was 

used within 15 minutes. 

 200 µl of prepared substrate solution was added to each well. 

 The plate was then incubated for 30 minutes at room temperature. The plate was 

covered in foil to protect it against light. 

 50 µl of Stop solution (acidic solution – H2SO4) was added to each well after which 

the solution inside each well turned from a blue colour to yellow. Gentle tapping on 

the side of the plate ensured adequate mixing of the Stop solution with the contents 

of the wells. 

 The absorbance of the plate was read at 450 nm within 30 minutes of adding the 

Stop solution. The wavelength was also corrected at 550 nm to account for any 

imperfections in the plate material. These readings, as well as the absorbance for the 

NSB wells were then subtracted from all standards and sample absorbances. 
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Figure 2.12: A typical standard curve achieved for the R & D parameter assay. 
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2.7 Ozone Based Chemiluminescence (OBC) 

2.7.1 Background 

OBC has been adopted by several laboratories worldwide, including our laboratory, to 

accurately measure a variety of NO species (116, 264, 265). The technique can detect NO 

species with a sensitivity of less than 1 pmol NO. Despite the potential for studying a wide 

range of NO concentrations, there has been many discrepancies over the levels of NO in 

whole blood. This may perhaps be due to the laboratory to laboratory variation in nitric 

oxide analysis (NOA) set-up or indeed the levels of NO2
- contamination due to insufficient 

washing of equipment, in particular the Hamilton syringes used for injection. In plasma, the 

levels of NO2
- and RSNO/RNNO are present in the nM range compared with a µM range for 

NO3
-.  This 1000-fold difference is due to the vast amount of NO3

- obtained from the diet we 

eat and subsequent absorption into the bloodstream. 

As explained, there have been several inconsistencies in the quantification of NO, a large 

proportion of which has been due to contamination and general laboratory practise. Our lab 

has minimised this by adopting specific protocols to ensure the consistency of 

measurements. For instance, we limit NO2
- contamination by using HPLC grade water for 

washing equipment and diluting reagents/chemicals. This has been found to reduce 

standard error by around 5% (116). The timings of samples are also important, especially 

when dealing with patient blood; therefore it is crucial to keep this consistent. Blood 

samples are centrifuged immediately after being drawn from the patient/volunteer and the 

plasma snap frozen in liquid N2. Samples are subsequently stored at -80°C until future 

analysis. In terms of freezing, our laboratory has shown that there were no differences in 

signal between samples run on the NOA fresh or stored at -80°C over six months. This was 
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on the proviso that the samples were thawed at 37°C (water bath) in the dark for 3 minutes 

(116). 

2.7.2  Protocol: Tri-iodide 

Figure 2.13 summaries the general NOA set up. The cleavage reagent, tri-iodide, was 

made up by dissolving 650 mg of iodine crystals with 70 ml glacial acetic acid under a fume 

hood. Another solution was made consisting of 1 mg potassium iodide dissolved in 20ml 

HPLC grade water. This was then added to the acid mix under the fume hood. The tri-iodide 

solution was then place on a stirrer for at least 30 minutes prior to use. Tri-iodide is used to 

reduce NO2
- to NO and the presence of the acidic environment in the process is crucial for 

optimum cleavage of the thiol group.  

A beaker of water was allowed to equilibrate to 50°C on the magnetic stirrer. The N2 

carrier gas was set at a flow rate of 200 ml/min. 5 ml of tri-iodide reagent was placed in the 

purge vessel and the glassware connected to the gas inlet and NaOH trap via Nalgene® 

tubing. 20 µl of anti-foam was used when injecting samples of plasma or RBCs to prevent 

the foaming of proteins within the samples. Hamilton syringes were used to inject samples 

into the purge vessel via the injection site. Sections 2.7.2.3 and 2.7.2.4 outline the specific 

protocols used to analyse various NO species. 
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Figure 2.13: Schematic of the NOA set up. 

2.7.2.1 NO2
-
 standard curve 

A 10 mM standard of NaNO2 was made adding 69 mg NaNO2 to 100 ml HPLC grade 

water. The 10 mM NaNO2 stock was then further diluted to make the following standards (in 

nM): 62.5, 125, 250, 500 and 1000. 200 µl of each standard were injected. The linear 

standard curve was generated by plotting the NaNO2 concentration versus area under the 

curve (Figure 2.14). 



Chapter 2  General Methods 

Page | 98  
 

 

0 200 400 600 800 1000
0

1000

2000

3000

4000

NaNO2 (nM)

A
re

a 
u

n
d

e
r 

cu
rv

e

 
 
Figure 2.14: Standard curve achieved for NO2

- in tri-iodide reagent. The top graph is the raw data 
plotted on the analysis program, Origin. The figures above each peak represent the concentrations 
of NO2

- in nM. A typical standard curve of this data is shown underneath (n=3, r2= 0.9703). Linear 
regression.  
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2.7.2.2 Reagents 

Table 2.5: Reconstitution of reagents used in tri-iodide experiments. 

Reagent Method  

5% Acidified Sulphanilamide 

 

500 mg sulphanilamide + 10 ml 1N HCl, 

kept in the dark at room temperature. 

Sulphanilamide water 

 

1 ml 5% acidified sulphanilamide + 10ml 

HPLC grade water, kept in the dark at 

room temperature. 

HgCl2 

 

67.9 mg HgCl2 + 5 ml HPLC grade water, 

kept in the dark on ice. 

 

 

The reagents listed above have been widely used in OBC in order to quantify the 

individual concentrations of NO-derived species within a biological sample. For the 

detection of species concerned herein, pre-incubation with acidified sulphanilamide 

removes NO2
- over a relatively short period of time and the use of mercuric chloride 

selectively removes SNO (116).  
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2.7.2.3 Plasma  

Table 2.6: Specific methods used for plasma samples.  

Species Method 

RSNO/RNNO 

 

9 parts plasma diluted in 1 part acidified 

sulphanilamide and incubated for 15 

minutes in the dark. 200 µl injection into 

purge vessel. 

 

NO2
-/RSNO/RNNO 

 

200 µl injection of plasma into purge vessel. 

 

 
 

2.7.2.4 RBCs 

Table 2.7: Specific methods used for RBC samples. 

Species Method 

HbNOx RBC diluted in acidified sulphanilamide.  

200 µl injection into purge vessel. 

HbNO 9 parts of the acidified sample further 

diluted with 1 part HgCl2. 200 µl injection 

into purge vessel. 

Total RBC NOx RBCs diluted 1 in 5 with medical grade 

water. 200 µl injection into purge vessel. 

 

The total RBC NO was diluted in medical grade water as opposed to injecting neat 

RBCs into the purge vessel. The cells were diluted for experimental accuracy of the 

quantification of NO. Using neat RBCs, a proportion of the sample was confined to the sides 
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of the purge vessel and as the RBC fraction was very viscous, the cells did not easily travel to 

the tri-iodide at the base of the tube. Simply attempting to inject neat RBCs directly into the 

tri-iodide proved fairly problematic. Therefore, diluting the RBCs by a fifth and correcting 

this dilution when calculating the concentration resulted in an overall more accurate result. 

2.8 Statistics 

The methods section of each results chapter summarises the statistical tests used. 

Individual experimental analyses are included in each figure legend. 
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3.1 Introduction 

It is well understood that O2 is generally a constrictor of systemic vascular tissue. In 

disease where O2 may be limited, systemic vessels dilate in an attempt to increase the flow 

of blood to surrounding metabolically stressed tissue (266). In contrast, pulmonary vessels 

constrict under such conditions to prevent a decline in alveolar pO2. This maintains the fine 

balance between the perfusion of O2 across tissue beds and respiratory responses to 

hypoxia (267).   

In terms of the local vasculature, the phenomenon of hypoxic vasorelaxation has been 

of interest for the past 20 years (258, 268-273). RBCs are thought to release a mediator 

which causes relaxation to dilate local hypoxic vessels (270). This would generally occur in 

the absence of disease, during an arterial to venous transit, where saturation of Hb with O2 

is high but the tissue pO2 is low. As mentioned in Chapter 1, SNO release from the Hb 

moiety of RBCs has attracted much attention as well as NO2
- reduction to NO by Hb (101, 

110, 124, 274). However, investigation in our laboratory disputes these claims (275, 276). 

Certainly, NO2
-
 in its own right has the capacity to dilate hypoxic tissue regardless of the 

presence of Hb, however, the kinetics of this relaxation is not coherent with the transient 

relaxation associated with hypoxic vasorelaxation.  

The mediators proposed above as well as others (254, 277) have been extensively 

investigated in terms of mechanism and how they might be released from the RBCs to 

induce such a response. Nevertheless, none of these mediators fully satisfy the definition of 

acute hypoxic vasorelaxation and therefore the body of work displayed in this chapter aims 

to demonstrate how O2 may not only be an important stimulus, but could be the mediator 

itself.  
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3.1.1 Aims 

Based on pilot studies conducted by a previous PhD student, Dr Andrew Pinder (see 

Andrew George Pinder, PhD thesis, 2009), my aim was to investigate the role of O2 in 

hypoxic vasorelaxation utilising the established rabbit aortic tissue model system.  

The specific aims of this chapter were to: 

 Compare vessel relaxation between RBCs, Hb and oxygenated KH buffer. 

 Introduce varying quantities of O2 to hypoxic aortic rings. 

 Deduce the mechanism by which O2 may be influencing vasorelaxation under 

hypoxic conditions. 

3.1.2 Hypothesis 

O2 released from RBCs can cause relaxation of hypoxic vascular rings via the sGC-cGMP 

pathway. 
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3.2 General Methods 

3.2.1 Myography 

Rabbit thoracic aortae were excised and mounted as described in Chapter 2. All rings 

were equilibrated for 1 hour at a tension of 2 g before initial PE (1 µM) and ACh (10 µM) 

exercises. In order to equilibrate rabbit aortic rings to various O2 tensions, the gas was 

switched to the appropriate mix and bubbled for 10 minutes in the baths. Normoxic studies 

referred to rings held at 95% O2/5% CO2 and hypoxic studies referred to rings held at 0% 

O2/5% CO2.   

3.2.2 Human blood preparation 

Blood was drawn from the antecubital vein as described in Chapter 2 and separated into 

RBC and Hb fractions (see section 2.3). 

3.2.3 KH buffer sample preparation 

Samples of KH buffer were prepared as described in Chapter 2 (see section 2.2.2) just 

before addition to the myograph. 

3.3 Specific Methods 

3.3.1  RBC-induced vasorelaxation 

Dr Andrew Pinder performed an experiment during his PhD study within our group 

which highlighted the importance of RBC saturation and thus Hb allostery on this 

phenomenon (See Andrew George Pinder, PhD thesis, 2009). Briefly, blood was drawn from 

healthy volunteers into EDTA vacutainers and centrifuged at 1200 x g for 5 minutes at 4°C. 

The RBC fraction was diluted by approximately 1 in 10 to 3 g/dL in saline solution (0.9% w/v) 

and gassed with 95% O2. The fully saturated RBCs were loaded into a thin film rotating 
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tonometer to achieve a range of HbO2 saturations. 20 µl of each desired RBC sample was 

then carefully injected into the baths containing pre-constricted hypoxic aortic rings. Table 

3.1 illustrates the extent of HbO2 saturation as measured by the OSM3 Hemoximeter 

(Radiometer, Copenhagen). 

Table 3.1: Summary of HbO2 saturations of RBCs used in experiments by Dr Andrew Pinder.  

Saturation HbO2 (%) N 

High 98.22 ± 0.45 13 

Partial 51.43 ± 6.16 4 

Low 20.40 ± 5.28 13 

Samples were gassed with 95 % O2 and/or 95 % N2 to achieve the desired HbO2 reported above. 

3.3.2 A comparison of RBC, Hb and O2 

Rabbit aortic tissue was mounted in the myograph as described in Chapter 2. Following 

10 minutes of equilibration to hypoxia, RBC, Hb or KH buffer samples were added to pre-

constricted (3 µM PE) hypoxic vascular rings to induce relaxation (2 rings per treatment). 

The samples were added in a volume which would expose the hypoxic tissue to 38 µM O2. 

sGC has been reported to function at concentrations between 20 and 40 µM O2 (173), 

indicative of the ability of sGC to distinguish between ligands.  

3.3.3 Addition of increasing O2 to hypoxic tissue 

In order to further investigate the effect of O2 on vascular tone in hypoxia, it was key to 

confirm whether the effects observed were dependent upon the amount of O2 exposed. 

Therefore, an experiment was conducted whereby KH buffer samples equilibrated at either 

0 % O2, 21 % O2 or 95 % O2 after which 200 µl was added to pre-constricted hypoxic aortic 

rings.  
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3.3.4 Inhibition of eNOS 

Unless stated, all experiments involving rabbit aortic rings possess fully functioning 

endothelium. In order to ascertain if RBC-induced hypoxic vasorelaxation was NOS 

dependent, the inhibitor, L-NMMA (which competitively inhibits the generation of NO from 

its derivative, L-arginine) was used. L-NMMA was added to give a final concentration of 300 

µM in the bath (278) and incubated with the rings for 20 minutes prior to switching the gas 

to favour hypoxic conditions. This particular concentration has been shown to effectively 

inhibit NOS function (278). The volume added did not have an effect on the baseline tension 

recorded. The N2/CO2 gas was then bubbled for 10 minutes which meant the total L-NMMA 

incubation time was 30 minutes. In order to verify that the inhibitor was functioning 

correctly, parallel experiments tested ACh-induced relaxation on rings incubated with L-

NMMA. As expected, no relaxation was observed by these rings due to the inhibition of 

eNOS function (data not shown). After 10 minutes of equilibrating the rings to hypoxia, 3 

µM PE was added to each bath and the developed tension was allowed to reach a plateau 

(approximately 6 minutes post addition). A bolus of KH buffer (200 µl) equilibrated with 95% 

O2/5% CO2 gas was then carefully added to the pre-constricted rings. The extent of 

vasorelaxation was calculated as in section 3.3.11.  

3.3.5 Inhibition of sGC 

To further investigate the intracellular mechanisms underlying hypoxic vasorelaxation, 

an experiment was conducted utilising the selective and irreversible haem moiety inhibitor 

of sGC, ODQ (213). ODQ has the ability to inhibit cGMP production initiated by endogenous 

and exogenous NO, however it does not inhibit the activity of pGC or AC (212, 213). ODQ (10 

µM) was incubated with the vascular rings for 20 minutes plus a further 10 minutes whilst 
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the tissue equilibrated to hypoxic conditions. Following exposure to PE (3 µM), a bolus of 

95% O2 KH sample was added to the hypoxic rings. 

3.3.6 Variation in tissue O2 tension 

A previous member of our group, Dr Stephen Rogers, carried out an experiment 

whereby fully saturated RBCs (~98% O2) were added to isolated rabbit aortic rings pre-

incubated at varied levels of ambient O2 (unpublished work). This experiment aimed to 

address whether or not the extent to which vascular tissue dilates to introduction of O2 

bolus is directly related to the extent of tissue hypoxia. The results of this study are also 

included below and are considered critical for comparison.  

3.3.7 Concentration response to NO donors 

NO donors are used widely in vascular experiments to investigate the role of NO in 

cardiovascular physiology and pathophysiology. In this study, both NOC9 and GSNO were 

used as NO donors that are independent of endothelium. As detailed earlier, NOC9 has a 

very short half life compared to that of GSNO. The final concentrations of NOC9 used were 

(in M): 1 x 10-8, 1 x 10-7, 1 x 10-6 and 1 x10-5. The final concentrations of GSNO used were (in 

M): 1 x 10-9, 1 x 10-8, 1 x 10-7, 1 x 10-6 and 1 x10-5. Both donor compounds were introduced 

in increasing concentrations into the myograph once the rings had reached a constricted 

plateau. The response to each concentration was allowed to reach a plateau before the next 

one was added.  

3.3.8 ROS 

The main experiment reported in this chapter is one which introduces O2 into an 

essentially hypoxic environment. Although the period of hypoxia is short, the reperfusion of 
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O2 into this environment may be sufficient to result in oxidative stress of the tissue, a 

phenomenon that has been studied at length in the context of ischaemia-reperfusion injury. 

To test this, a series of scavengers were used that act upon both extracellular and 

intracellular forms of ROS (Table 3.2).  
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Table 3.2: Summary of scavengers used. 

Scavenger Concentration Site of action 
Mechanism of 

action 

SOD 100 U/ml Extracellular 

Catalyses the 

dismutation of 

O2
- to H2O2 + O2 

PEG-SOD 100 U/ml Intracellular/Extracellular 

SOD conjugation 

to polyethylene 

glycol allows for 

passage through 

the cell 

membrane 

MnTMPyP 10 µM Intracellular/Extracellular 

Permeates 

cellular 

membranes to 

catalyse 

dismutation of 

O2
-
 and scavenge 

ONOO- 

PEG-CAT 250 U/ml Intracellular/Extracellular 

CAT conjugation 

to polyethylene 

glycol allows for 

passage through 

the cell 

membrane 

  

All scavengers were incubated with the tissue for a total of 60 minutes, a pre-incubation 

time used by others (279, 280).  

3.3.9 COX 

With a view to understanding the mechanism of the hypoxic vasorelaxation observed, a 

thorough investigation of other potential pathways that could contribute to vasodilation 

was required. The main pathway considered here was COX. COX product, PGI2 enhances 
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vasodilation by binding AC which leads to an increase in cAMP (148).   Consequently, rabbit 

aortic rings were incubated for 30 minutes with the non-selective COX 1 and 2 inhibitor, 

indomethacin (10 µM), prior to constriction with PE.  

3.3.10  Post-relaxation vasoconstriction 

A characteristic feature of the raw data our group and others (258) obtained from 

hypoxic vasorelaxation experiments is that immediately following the induced period of 

relaxation, a vasoconstriction above that of the original constriction to PE is observed. To 

investigate this overshoot further, the ATP-sensitive K+ (KATP) channel inhibitor 

glibenclamide (10 µM was incubated for 30 minutes with the aortic rings prior to 

experimentation. 

3.3.11   Statistical Analysis 

Hypoxic vasorelaxation was calculated by taking the maximum relaxation (see Figure 

3.1) and expressing it as a percentage of the peak constriction induced by PE exposure to 

individual rings. Vasoconstriction was calculated in a similar manner; however the maximum 

constriction was expressed as a percentage of the peak constriction induced by PE. Raw 

data were presented as developed tensions from baseline values. Aortic rings which 

displayed impaired vascular function in terms of the curves achieved for PE/ACh exercises 

were not included in data analysis for that day.  

Statistical analyses between different groups of data were compared either by using a 

Student’s t test (paired or unpaired where applicable) or one-way ANOVA followed by a 

suitable post-hoc test (GraphPad PrismTM version 5.0). An n number of 1, for the majority of 
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experiments, is the average data of 2 paired rings. These analyses are described in complete 

detail within each figure legend.  
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Figure 3.1: A typical raw data curve for hypoxic vasorelaxation.  
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3.4 Results 

3.4.1 Hb Allostery 

The data obtained by Dr Andrew Pinder is displayed in Figure 3.2. RBCs that were 

comprised of mainly R-state Hb relaxed hypoxic aortic rings significantly more than RBCs at 

low saturation (T-state Hb) and those that were partially saturated (a combination of R and 

T-state Hb). The results indicate the Hb allostery is a significant factor in the extent of 

relaxation displayed by hypoxic rabbit aortic rings.  
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Figure 3.2: A comparison of highly saturated RBCs, partially saturated RBCs and RBCs at low 
saturation. Highly saturated RBCs relaxed hypoxic tissue to a greater extent than partially saturated 
RBCs and RBCs at low saturation (12.00 ± 1.00 % vs. 5.38 ± 1.42 % and 4.11 ± 0.51 %, respectively) 
(**p<0.01, ***p<0.001). One-way ANOVA + Bonferroni’s multiple comparison test. Reproduced with 
the permission of Dr A Pinder. 
 

3.4.2 Comparison of RBC, Hb and O2 

Data obtained by our group as well as others have shown that RBC can relax hypoxic 

vascular rings (101, 106, 248, 251, 254, 259, 271, 281). Since the RBCs that were being 

introduced to the hypoxic tissue were fully oxygenated, i.e. ~ 98 % HbO2 saturation, a 

positive control would be needed to match the amount of O2 within the RBCs, without the 
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RBCs physically present. Therefore, the rationale for the experiments in this section aimed 

to include an appropriately oxygenated control in the form of KH buffer equilibrated at ~ 

95% O2. As illustrated in Figure 3.3a, RBCs, Hb and KH buffer injected into the myograph 

with equivalent O2 contents produced comparable relaxations. Figure 3.3b shows the same 

data in graphical form and is an average of 4 experiments. 
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Figure 3.3a: Raw data curves depicting the relaxation and post-relaxation vasoconstriction to RBCs 
(top), Hb (middle) or KH buffer (bottom). All samples exposed the aortic rings to 38 µM O2. 
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Figure 3.3b: Graphical summary of the raw data curves shown in Figure 3.3a. There was no 
difference in the magnitude of relaxations produced (n=4, p>0.05) One-way ANOVA + Tukey’s 
multiple comparison test. 
 

3.4.3 Effect of increasing O2 on relaxation 

The data shown in Figure 3.2 suggested the importance of Hb allostery in the degree of 

relaxation induced by RBCs. To examine whether this effect was a RBC effect or rather was 

proportional to the extent of O2 delivery per se, KH buffer samples containing increasing O2 

contents were added to hypoxic aortic rings. Figure 3.4 illustrates that a similar effect is 

seen with KH buffer alone when appropriately oxygenated and ensuring delivery of the 

same package of O2 to hypoxic tissue.  

This experiment was completed in parallel with an equivalent number of rings in 

normoxia (95% O2). The addition of these KH buffer samples to an already normoxic bath 

did not relax the tissue.  
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Figure 3.4: Relaxations produced by increasing O2 content in KH buffer samples. As the KH buffer 
sample O2 content increased, the relaxations produced also increased. Significant differences were 
observed between 0% and 95% samples (**p<0.01) and 21% and 95% samples (*p<0.05) (n=6) One-
way ANOVA + Tukey’s multiple comparison test.  
 

3.4.4 Variation in tissue O2 tension 

As described above, Dr Stephen Rogers conducted an experiment whereby tissue O2 

tension of the rings was varied within the myograph, followed by the addition of fully 

oxygenated RBCs to the system. 
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Figure 3.5: Effect of increasing tissue O2 content on the magnitude of relaxation to RBCs. As the O2 

tension of the tissue increases, the relaxation induced by RBCs decreases. Significant differences in 
relaxation are observed for 1, 2 and 5% O2 compared to 95% O2 (***p<0.001, **p<0.01 and *p<0.05, 
respectively) (n=6) One-way ANOVA + Newman Keuls post hoc test. Reproduced with the permission 
of Dr S Rogers. 
 

The data displayed in Figure 3.5 shows that the ability of fully oxygenated RBCs to induce 

relaxation of hypoxic rabbit aortic rings depends on the amount of O2 already present within 

the tissue/surrounding milieu. Therefore, the less ‘hypoxic’ the tissue to begin with, the 

more diminished the effect induced by RBCs. 

 

3.4.5 Pharmacological inhibition of eNOS 

To ascertain whether endothelial-derived NO had an influence on the relaxation driven 

by O2-containing samples, L-NMMA was pre-incubated with the aortic rings prior to 

experimentation as described in section 3.3.4. Figure 3.6 portrays the effects of this 

inhibitor on vasorelaxation of hypoxic aortic rings. 



Chapter 3                                                         Influence of O2 on vascular smooth muscle 

Page | 119  
 

0 21 95
0

5

10

15

20

**

O2 content (%)

R
e

la
xa

ti
o

n

(%
 o

f 
3


M
 P

E-
in

d
u

ce
d

 t
o

n
e)

 

Figure 3.6: Relaxations produced by increasing O2 content in KH buffer samples in the presence of 
300 µM L-NMMA. A significant difference was observed between 0% and 95% samples (**p<0.01) 
(n=3-4) One-way ANOVA+ Tukey’s multiple comparison test. 

 

L-NMMA appears to have no effect on the relaxations induced by the KH buffer samples 

suggesting that endothelial-derived NO (from NOS) is unlikely to be involved in the 

mechanism of hypoxic vasorelaxation.  

3.4.6 sGC 

Previous literature has suggested that the enzyme, sGC, plays a major role in mediating 

hypoxic vasorelaxation. Therefore, in order to confirm the role of sGC in these experiments, 

an inhibitor of the catalytic haem moiety, ODQ (10 μM), was pre-incubated with the aortic 

rings as described in section 3.3.5.  
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Figure 3.7: The effect of sGC haem inhibitor, ODQ, on O2-mediated relaxation. The inhibition by ODQ 
(10 μM) almost abolished the effect of O2 on the hypoxic aortic rings (17.51 ± 1.90 % vs. 0.72 ± 0.28 
%) (***p<0.001) (n=7) Paired t test.  
 

The results illustrated in Figure 3.7 confirm the importance of sGC in the relaxation 

induced by O2 alone. The pre-incubation of ODQ (10 μM) with the aortic rings inhibited the 

relaxation by around 95% of the paired control. This data also suggests that the mechanism 

largely involves the smooth muscle as opposed to the vascular endothelium. 

3.4.7 Effect of NO donors on normoxic and hypoxic tissue 

This study also aimed to characterise the effect of hypoxia on the release of NO from 

two NO donors, NOC9 and GSNO. 
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Figure 3.8: Concentration response curves to NOC9 (top) and GSNO (bottom). Evaluation of the pEC50 values (negative log of EC50) for normoxia and hypoxia 
show that both NOC9 and GSNO show no significant differences (see Table 3.3) (p>0.05) (NOC9 n=3-8, GSNO n=4) Non-Linear regression. 
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Figure 3.8 presents the concentration response curves to NOC 9 (top) and GSNO 

(bottom). The calculated % relaxation data is shown on the left and the raw data is shown 

on the right. 

Table 3.3: pEC50 values for each NO donor under normoxic and hypoxic conditions. 

Conditions 

pEC50 (M) from % 

relaxations 

pEC50 (M) from raw tension in g 

NOC9 GSNO NOC9 GSNO 

Normoxia 7.28 6.95 7.51 6.91 

Hypoxia 7.59 7.07 7.60 7.10 

  

The pEC50 values presented in Table 3.3 confirm that the comparison of NOC9 or GSNO in 

normoxia and hypoxia are not significantly different.  
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3.4.8 Inhibition of ROS 

Inhibitors of O2
- and H2O2 were pre-incubated with rabbit aortic rings in order to 

determine if the level of sGC activity (as measured by changes in cGMP level) was altered by 

these compounds. 
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Figure 3.9: Vasorelaxation to 95% O2 KH samples in the presence of various ROS inhibitors. Top: PEG-
CAT (250 U/ml) had no effect on relaxation however the SOD mimetic, MnTMPyP (10 μM) 
significantly reduced the relaxation (n=5, *p<0.05). Bottom: PEG-SOD (100 U/ml) had no effect 
however in the combination with ODQ almost abolished any relaxation observed (n=3, *p<0.05) 
One-way ANOVA + Dunnett’s multiple comparison test. 
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Pre-incubation with PEG-CAT, PEG-SOD or the combination of the two scavengers had 

no effect on the magnitude of the relaxation compared to control rings. Prior incubation 

with MnTMPyP dampened the relaxatory effect of KH samples. Furthermore, rings 

incubated with ODQ in addition to PEG-SOD displayed little relaxation to KH buffer samples 

(Figure 3.9).  

 

3.4.9 Inhibition of COX 

Aortic rings were exposed to indomethacin (10 µM) for a total of 30 minutes, in which 

during final 10 minutes, rings were exposed to hypoxic conditions as described previously 

(section 3.2.1).  

 

Figure 3.10: Vasorelaxation of hypoxic aortic rings in the absence and presence of COX inhibitor, 
indomethacin (10 µM). The drug had no effect on the magnitude of relaxation compared to the 
control (11.20 ± 2.75 % vs. 11.62 ± 3.39 %) (p>0.05) (n=4) Paired t test. 
 

The results of this study show that inhibiting COX and therefore vascular effects of PGI2 

had no effect upon the relaxation induced by KH buffer samples (Figure 3.10).  
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3.4.10   Post-relaxation vasoconstriction – Inhibition of KATP channels 

In hypoxic vascular experiments (section 3.4.2) a post-relaxation vasoconstriction above 

that of the maximum PE-induced constriction was consistently achieved in each experiment. 

Glibenclamide was pre-incubated with the vascular rings in an attempt to inhibit the 

potential role of KATP channels in this phenomenon.  

Figure 3.11 illustrates the results of this experiment. Glibenclamide almost completely 

eliminates any post-relaxation constriction elicited by the hypoxic vascular rings. 
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Figure 3.11: Post-relaxation vasoconstriction in the absence and presence of KATP channel inhibitor, 
Glibenclamide (10 µM). Glibenclamide reduced the degree of constriction ~9-fold compared to the 
control (13.59 ± 3.71 % vs. 1.45 ± 0.97 %) (p=0.0144) (n=3-4) Unpaired t test. 
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3.5 Discussion 

3.5.1 Summary 

The main findings of this chapter are: 

I. RBCs with a high O2 saturation induced a greater relaxation of hypoxic aortic rings 

than RBCs with a low O2 saturation. 

II. Purified oxygenated Hb induced relaxation of hypoxic aortic rings to a similar extent 

as RBC. 

III. Oxygenated KH buffer induced relaxation of hypoxic aortic rings. When normalised 

for O2 content, KH buffer exhibited equal relaxation capacity. 

IV. The relaxations observed were sGC-dependent and endothelial NO-independent. 

V. The magnitude of the relaxation was also inversely proportional to the tissue PO2. 

3.5.2 Chapter Review 

Hypoxic vasorelaxation has attracted considerable interest in the NO field over the past 

two decades. A number of groups globally have suggested several mediators, none of which 

fully address the fundamental physiology of this response. The results obtained by Dr 

Andrew Pinder, (included in this chapter for illustration purposes), demonstrate Hb allostery 

to be of significance in terms of the magnitude of relaxation displayed by hypoxic aortic 

rings. Previously, similar experiments by Stamler’s group have interpreted the increase in R 

state Hb to translate to an enhanced formation of HbSNO, leading to an increased level of 

free NO+ in the bloodstream upon deoxygenation (124). Whilst this is physiologically 

feasible, there are two main caveats as to why this may not be the primary method of 

vasodilation. Firstly, Stamler and colleagues investigated the levels of T state bound HbNO 

versus R state bound HbSNO in this experiment (258). There was no observed decrease in 
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the level of HbNO upon oxygenation. This is somewhat surprising considering the shift in Hb 

allostery following RBC oxygenation. Secondly, Patel and colleagues conducted a knockout 

mouse study whereby the cysteine residue at position 93 on the β chain of Hb was replaced 

by an alanine residue (101). As highlighted earlier, this is the primary residue thought to 

release SNO from Hb to promote relaxation. In vitro myography experiments conducted 

with aortae from these knockout mice revealed that hypoxic vasorelaxation was still elicited 

in these vascular rings, demonstrating that SNO release from the RBC at this residue may 

not contribute to hypoxic vasorelaxation. This does not escape the fact that RSNO, including 

HbSNO, exhibit direct vasorelaxant properties. Rather, they are unlikely to mediate the 

acute hypoxic vasorelaxation studied herein. 

The NO2
- reduction theory proposed by Gladwin and colleagues (101, 248) has also been 

debated (258). Although the possibility exists for transnitrosation reactions to allow the free 

NO produced to leave the RBC, the levels of NO that could potentially escape are 

questionable. In addition, the theory was based on experimental conditions that were non-

physiological. Supraphysiological concentrations of NO2
- were used in vitro as well as a low 

haematocrit of Hb, promoting high rates of NO2
- reduction and relatively low Hb scavenging 

of NO (248). Consequently, the conditions of the experiments used would need to be 

reconsidered in order to justify the theoretical claims. A recent study conducted by our 

laboratory further disputes Gladwin’s hypothesis. As mentioned, their main study involved 

relatively large doses of NaNO2
-
 administered to human subjects, resulting in enhanced 

vasodilation and increased levels of HbNO (248). In our hands (116), administration of 

physiological concentrations of exogenous NO2
- (100-300 nM) does not affect the levels of 

HbNO within RBCs under both hypoxic and normoxic conditions, indicating that perhaps 
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little NO reaches the inside the cell.  These inconsistencies in data clearly present an issue 

for studies conducted using non-physiological concentrations of NO2
-. 

In order to investigate the nature of the mediator(s) involved, RBCs were first diluted 

and haemolysed before being loaded on a Sephadex column to purify the Hb. Importantly, 

our group (259), as well as others in early studies (124, 272), did not account for the O2 

content of the RBCs and so in the present studies the O2 content was equalised in the form 

of a quantity of oxygenated buffer to act as a positive control. The degree of vasorelaxation 

was remarkably similar for RBCs, Hb and buffer of equalised O2 content. These findings 

questioned the existing theories behind hypoxic vasorelaxation that perhaps were 

overshadowing a more simple answer. In order to address this, all further studies largely 

focussed on utilising oxygenated buffer as the primary method of inducing vasorelaxation.  

As detailed earlier in this discussion, RBC samples containing an increased HbO2 

saturation promoted a greater degree of relaxation of hypoxic aortic rings. To test whether 

controlling the O2 content of oxygenated buffer had the same effect, KH buffer was gassed 

to 0, 21 and 95% O2 and added to hypoxic aortic rings. The samples produced very 

comparable relaxations to that of RBCs and corresponding purified Hb samples, indicative of 

an O2-mediated influence over smooth muscle tone under hypoxic conditions. 

Dr Stephen Rogers conducted an experiment to illustrate that varying tissue O2 tension 

alters the effect of RBC samples on hypoxic vascular smooth muscle. Increases in tissue 

oxygenation lead to a reduction in relaxation responses. Physiologically, this certainly seems 

reasonable since tissues that already have a supply of O2 do not need to dilate to the same 

extent in order to acquire an increased O2 supply from the bloodstream.  



Chapter 3                                                         Influence of O2 on vascular smooth muscle 

Page | 129  
 

A role for ATP-dependent release of endothelium-derived NO in mediating  hypoxic 

vasorelaxation (254) would also seem to be refuted by the data presented in this thesis and 

in past literature (258). While a slight decrease in the maximum relaxation to 95 % O2 

compared to controls (~14% vs. 17%) in the presence of L-NMMA  may suggest a small 

influence of endothelial-derived NO, however this seems unlikely since L-NMMA was pre-

incubated with the rings in excess. L-NMMA incubation eliminates the possibility of all types 

of NOS, in mediating this relaxation and therefore is not just limited to endothelial 

dependent mechanisms. Indeed experiments performed with endothelium-denuded 

vascular rings further demonstrate that the mechanism underlying hypoxic vasorelaxation is 

solely limited to the vascular smooth muscle (258). That blood ATP concentration rises 

relatively slowly in relation to a decline in HbO2 saturation and as such does not mirror the 

observed transient relaxation response described above, suggests that ATP may play a more 

significant role in chronic hypoxia as opposed to the acute RBC-induced relaxation.  

The NO-sGC-cGMP pathway is the primary mechanism of vasodilation in vascular 

smooth muscle (170). To confirm that sGC was the principal enzyme acting in these hypoxic 

studies, experiments using the haem inhibitor, ODQ, were performed. The data confirmed 

that the sGC pathway did indeed mediate the vasodilation described herein. Interestingly, 

numerous studies in past literature suggest that O2 does not bind to sGC (181, 202, 203). NO 

is widely regarded as the primary activator (168, 202, 282), though CO (283) can also bind 

but does not fully activate the enzyme. However, the data presented here clearly indicates 

that there may be an influence of O2 upon sGC activity and that this interaction must be 

directly or indirectly related to the haem site of sGC since ODQ almost completely abolished 

vasorelaxation.  
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It is possible that the ability of O2 to stimulate sGC depends on the concentration of O2 

already present at the tissue level.  Indeed, lack of O2 may alter (increase) the sensitivity of 

sGC to its primary activator, NO.  Comparison of the concentration response curves for 

NOC9 and GSNO in normoxic and hypoxic conditions illustrated that there was not a 

significant difference between the release of NO at various O2 tensions. However, analysis 

of the pEC50 in hypoxia shifted to the left compared to normoxia. Such an action may be due 

to a higher affinity/sensitivity of sGC to NO under hypoxic conditions compared to normoxic 

conditions where O2 may be occupying ‘free’ sGC (143) and so partially prevents NO from 

binding. This represents a totally novel action for O2 in the regulation of sGC activity with far 

reaching consequences in both health and disease. The experiments performed in this 

chapter could be seen as replicating a non-pathological form of reperfusion injury, in which 

essentially normal hypoxic vessels are reperfused with highly oxygenated blood (284). 

Importantly, free radicals are often formed under these conditions. Therefore, SOD, CAT and 

MnTMPyP were used as pharmacological tools to investigate the role of such species in the 

observed hypoxic relaxation responses. The data collected following pre-incubations with 

SOD and CAT suggested that there was no influence of O2
- or H2O2 respectively, on 

vasorelaxation. However, in contrast pre-incubation with the cell permeable SOD mimetic, 

MnTMPyP, substantially diminished the relaxation responses and as such would indicate a 

significant influence of intracellular O2
- or H2O2 in hypoxia. Evidence from the literature 

would suggest otherwise, given that MnTMPyP can in fact directly inhibit the function of 

sGC in the smooth muscle (285). In retrospect, it is therefore considered highly unlikely that 

free radicals underlie the O2-mediated relaxation responses described herein. Potentially 

several other free radical scavengers could have been investigated including 5,10,15,20-

tetrakis-[4-sulfonatophenyl]-porphyrinato-fer[III] (FeTPPS), a ONOO- scavenger and 
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decomposition catalyst (286) or histidine, which acts as a singlet O2 scavenger (287). 

However, the concentrations of SOD and CAT investigated here have been widely used in 

similar experiments (279, 280) and therefore it is unlikely that other oxy radicals could have 

altered the cGMP levels achieved. 

The results outlined in this chapter undoubtedly support sGC activation as the main 

pathway of vasorelaxation under hypoxic conditions. However, to rule out the possibility of 

further pathways being involved, namely COX-mediated PGI2 signalling, experiments were 

performed in the presence of indomethacin. There was no significant difference between 

indomethacin treated and control tissues, confirming that the relaxations observed were 

not PGI2-mediated. 

The raw tension traces presented herein consistently exhibited (Fig 3.3a) two different 

components; acute vasorelaxation and post-relaxation vasoconstriction. As discussed, the 

central premise is that O2 alone can relax the hypoxic vessels, a fact that is supported by the 

use of KH buffer controls. With regard to the mechanism underlying the post-relaxation 

vasoconstriction, Stamler and colleagues (1992) have previously suggested that this is due 

to the scavenging of NO by Hb which ultimately leads to constriction through decreased NO 

bioavailability. However, the results within this chapter suggest an alternative explanation 

involving ATP-sensitive potassium (KATP) channels. In the presence of intracellular ATP these 

channels are closed (288, 289). However, in hypoxia, mitochondria in the vascular smooth 

muscle have a suppressed ability to turnover ATP and in the presence of lower intracellular 

levels of O2, some of the KATP channels may remain open, leading to hyperpolarisation and 

vasodilation. Exposure to O2 would initiate the formation of ATP and subsequent closure of 

KATP channels, leading to vasoconstriction. Interestingly, in the presence of glibenclamide, 
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which inhibits KATP channels leading to their closure, the post-relaxation vasoconstriction is 

reduced. Therefore it is likely that O2 directly affects the closure of KATP channels on the 

smooth muscle cell membrane during this phase. 

3.5.3 Conclusions 

The results presented in this chapter provide substantial evidence for an O2-mediated 

mechanism underlying hypoxic vasorelaxation.  Convincing arguments, supported 

experimentally, propose an alternate view to the theories previously put forward. 

Importantly, much of this data has recently been published (290) and supports the findings 

of all the chapters in this thesis. Taken together, the myography experiments have shown 

that oxygenated KH buffer alone can relax hypoxic rabbit aortic rings in an endothelial NO-

independent, sGC-dependent mechanism. The magnitude of the relaxation to O2 produced 

is dependent upon the tissue pO2 and the amount of O2 provided to the tissue.  
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4.1 Introduction 

4.1.1 sGC  

sGC is central to the main pathway for regulating smooth muscle tone as described in 

Chapter 1. NO is the primary ligand for the enzyme (168) however other diatomic molecules 

such as CO can also enhance the activity of sGC (291). 

 The conclusions drawn from the experiments detailed in Chapter 3 provide substantial 

evidence for an O2-mediated sGC-dependent mechanism underlying RBC-induced 

vasorelaxation. In order to further investigate this potential interaction between O2 with 

sGC, experiments were designed to investigate how O2 affects cGMP production following 

stimulation of sGC with various activators and stimulators.  

4.1.2 Stimulators & Activators of sGC 

A comprehensive review by Evgenov and colleagues (2006) explained that novel drugs 

developed to enhance the activity of sGC fall broadly into two categories, stimulators and 

activators (178). Stimulators were defined in the following terms, ‘stimulate sGC directly and 

enhance sensitivity of the reduced enzyme to low levels of bioavailable NO’. Activators, 

‘activate the NO-unresponsive, haem oxidised or haem free enzyme’. Three types of NO-

independent drugs will now be considered in more detail as they were utilised in this study 

to provide very different modes of sGC activation/modulation. 

4.1.2.1 YC-1 

YC-1, a benzyl indazole derivative, was first discovered by Yoshina and colleagues in 

1978 (292) and initially utilised as a potent inhibitor of platelet aggregation (293). Since 

then, YC-1 has been shown to stimulate sGC independently of NO as well as having the 
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capacity to potentiate the effect of CO on the enzyme (294). Interestingly, spectra resulting 

from soret band analysis of unstimulated and stimulated sGC were not altered by the 

presence with YC-1 (294). This suggests that YC-1 activates via an allosteric site distal to the 

classic ligand binding site. YC-1 has also been shown to bind to haem-free sGC which further 

supports this hypothesis.  

YC-1 was used in the studies presented herein in order to gain more clarity into the 

site at which O2 affects the activity of sGC. YC-1 has been shown to potentiate the effect of 

CO on sGC and therefore, experiments reported here aimed to investigate O2 in a similar 

manner. 

4.1.2.2 BAY 41-2272 

In the late 1990’s to early 2000’s, pyrazolopyridine, BAY 41-2272 was developed and 

shown to stimulate Cys238 and Cys243 regulatory sites on the α-subunit of sGC (295). 

Importantly, BAY 41-2272 stimulates the enzyme via an NO-independent mechanism while 

retaining the ability to potentiate NO and CO activity at the haem site (295). Furthermore, 

Stasch and colleagues also discovered that BAY 41-2272 was not able to stimulate haem free 

enzyme, illustrating that the compound acts in a haem-dependent manner. Soret band 

analysis of sGC in the presence or absence of NO demonstrated that there was no change in 

the spectral peak for NO in the presence of BAY 41-2272, suggesting that although haem-

dependent, the compound does not directly bind the haem moiety. In terms of its clinical 

use, BAY 41-2272 reduces mortality in the low NO hypertensive rat model as well as 

lowering blood pressure and also has profound anti-platelet effects (178). BAY 41-2272 was 

used in the studies reported in this chapter in order to determine the haem-dependence of 

the effect of O2 on sGC. 
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4.1.3 Aims 

Having established that O2 in the form of an oxygenated KH buffer bolus could relax 

vascular hypoxic rings via the sGC pathway, subsequent experiments aimed to further 

characterise the mechanisms by which O2 influences sGC. 

The specific aims of this chapter were to: 

 Characterise the influence of O2 upon sGC activity in the presence of various direct 

activators and modulators. 

 Investigate the interaction of NO with sGC under normoxic and hypoxic conditions. 

4.1.4 Hypothesis 

Purified sGC can be stimulated directly by O2 to stimulate cGMP production. 

4.2 General Methods 

4.2.1 Purified enzyme experiments 

As outlined in Chapter 2 (section 0), the human α1β1 form of the enzyme was 

reconstituted in ‘enzyme buffer’ before being diluted as appropriate for each sample. All 

experiments were performed at 37°C inside the hypoxic chamber (Ruskinn). Reagents and 

experimental vials were equilibrated in hypoxic conditions for at least 60 minutes prior to 

initiating the reaction with GTP/MgCl2. All reactions were terminated by the addition of 

boiling inactivation buffer. 

4.2.1.1 Enzyme Assay validation 

Various sGC/buffer ratios were initially tested however the sGC/buffer ratio used in all 

experiments reported here was 1 in 200 (personal communication, Prof. Garthwaite, UCL, 
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London). Analysis of cGMP using the R&D ELISA system at this sGC/buffer meant that all 

tests (controls and stimulated samples) were within the range of the supplied standards. 

4.2.2 cGMP ELISA 

The R&D Parameter kit was used to measure the activity of sGC throughout all the 

experiments in this chapter. The main method is summarised in Chapter 2 (section 2.6). 

4.2.3 Nitric Oxide Analyser (NOA) 

The NOA was set up as described in section 2.7. In this case, PBS was used in place of a 

cleavage reagent (typically tri-iodide), given that NOC9 spontaneously liberates NO under 

neutral pH (1 mol NOC9 liberates 2 mols NO) with a t1/2 of ~ 3 mins.  

4.3 Specific Methods 

4.3.1 Activity of sGC under normoxic and hypoxic conditions 

In order to observe the direct effects of O2 upon sGC, the enzyme was diluted 200 times 

in assay buffer in 1 ml glass vials. It was then incubated in the Invivo2 hypoxic chamber for 

60 minutes at either 20 % O2/5 % CO2 (‘normoxia’) or 0 % O2/5 % CO2 (‘hypoxia’) at 37°C. The 

initiation mix of GTP and MgCl2 at equimolar concentration (1 mM) was then added to each 

vial and after gentle mixing, the samples were incubated for a further 10 minutes. Boiling 

inactivation buffer was added in 4 times excess to each vial and heated until the samples 

reached boiling point. The samples were then placed on ice and divided into aliquots and 

snap frozen in liquid N2. Samples were stored at -20°C if not assayed on the day of 

experimentation. All frozen samples were assayed within 1 week of collection. 
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4.3.1.1 Activity of sGC under hyperoxic conditions 

As an extension to the experiments described above (section 4.3.1) and to relate the 

findings to myography studies already completed, sGC was also incubated at 95 % O2/5 % 

CO2 (hyperoxia) for 10 minutes, in the presence of GTP/MgCl2. A 0 % sample was also 

prepared as the hypoxic control. This experiment was performed in a water bath (outside 

the hypoxic chamber) sustained at 37°C.  

4.3.2 O2 consumption by sGC in vitro  

To investigate whether the purified sGC utilised O2, EPR spectroscopy was used to assess 

any changes in O2 over time. As highlighted in detail in section 2.5.1, the spectral line width 

is used to report on the presence of O2 within a sample. sGC was diluted in assay buffer to 

concentrations of either 50 µM (identical concentration used in all other experiments within 

this chapter) or 100 µM, as well as N15-PDT (20 µM) and GTP/MgCL2 (1 mM). A control of 

assay buffer of N15-PDT (20 µM) and GTP/MgCl2 (1mM) was used as a control. All samples 

were initially at atmospheric O2 levels (~21 %) until the sample tube was sealed and quickly 

transferred to the cavity of the EPR spectrometer. A scan was then performed (Bruker 

escan) every 10 minutes over a period of 60 minutes for each sample. The settings for EPR 

were as described in Table 2.3 for 21 % O2 equilibrated samples.  

4.3.3 Inhibition of free radicals 

In a similar approach to the in vitro myography experiments detailed in Chapter 3, it was 

also important to verify that free radical interactions with sGC did not account for the 

changes in cGMP production. As such sGC was incubated with SOD (100 U/ml), CAT (250 

U/ml) or the two inhibitors combined for 60 minutes prior to the addition of GTP/MgCl2. 
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Samples were then inactivated and tested for the presence of cGMP by ELISA in the same 

way as previous experiments. 

4.3.4 Effect of NOC9 upon sGC activity in normoxia and hypoxia 

As described above, NO is the primary ligand for sGC and potently activates the enzyme 

to increase the production cGMP. To examine how O2 affected the production of cGMP 

following exposure to a NO donor, sGC was incubated for 10 minutes in normoxia or 

hypoxia with the following concentrations of NOC9 (in µM): 0; 0.118; 1.118; 11.8 and 118. 

After incubation, samples were immediately inactivated with inactivation buffer and 

analysed for cGMP by ELISA. 

4.3.5 Release of NO from NOC9 under normoxic and hypoxic conditions 

The experiment summarised in section 4.3.4 examined how O2 affected the sGC-

mediated cGMP production following exposure to a NO donor. In order to appropriately 

account for how O2 might affect NO release from NOC9 per se, PBS at pH 7.4 was kept at 

37C in a reaction vessel purged with a flow of N2 gas feeding into a NOA for on-line OBC 

detection of NO. NOC-9 was reconstituted in sodium hydroxide (NaOH) (0.1 M) to give a 

final stock concentration of 24 mM and kept on ice in the dark. For the experimental 

samples, the NOC-9 was further diluted in 1 ml of PBS (protected from light in a sealed 

vessel) to give the following final concentrations (in µM): 2.4; 1.2; 0.24; 0.12 and 0.024. In 

order to compare NO release under different conditions, the PBS was either pre-

equilibrated to 0% or 95% O2 by vigorous bubbling. Samples were incubated for 10 minutes 

at 37C, after which 200 µl of the gas layer was drawn up using a Hamilton syringe and 

injected immediately into the purge vessel for OBC analysis. After the signal trace returned 
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to baseline values, 200 µl of the corresponding PBS sample was drawn up and injected into 

the purge vessel.   

4.3.6 sGC activation 

4.3.6.1 YC-1 

YC-1 was used to investigate where on sGC that O2 exerts its effects. The experiment 

was set up as described in section 4.2.1. YC-1 was added to each vial to achieve a final 

concentration of 100 µM. GTP/MgCl2 was then added to initiate the reaction. After a 10 

minute incubation, boiling inactivation buffer was added to terminate the reactions and 

these samples were then tested for the presence of cGMP by ELISA. 

4.3.6.2 BAY 41-2272 

Bayer healthcare have developed several activators/stimulators of sGC, some of which 

are used within the clinic. Riociguat® (BAY 41-2272) administered in tablet form is used to 

treat pulmonary hypertension (296-298).  Following personal correspondence with Dr 

Andreas Knorr in Wuppertal, Germany, samples of BAY 41-2272 (available commercially) 

were obtained. Concentration response curves to these agents were produced in the 

isolated enzyme system in order to acquire a better understanding of how O2 may be 

affecting sGC activity in their presence. Subsequently, the basic experiment was set up as 

outlined in section 0. BAY 41-2272 was utilised at the following concentrations based on 

previous methods (299, 300): 100 µM; 10 µM; 1 µM; 100 nM; 10 nM and 1 nM. This 

compound was added prior to the 10 minute incubation with GTP/MgCl2. Following 

incubation, samples were inactivated as described in previous sections and analysed for 

cGMP content. 
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4.3.7 Statistical Analysis 

cGMP was quantified as a measure of sGC activity. Chapter 2, section 2.6.5.1, shows a 

typical standard curve obtained from an assay. The concentrations of cGMP in the unknown 

samples were interpolated from the non-linear standard curve (GraphPad PrismTM version 

5.0). A new standard curve was generated for each experimental day. The cGMP content 

within samples was compared by an unpaired Student’s t test. All data is expressed as the 

mean ± standard error. Differences were considered significant where p < 0.05. 

The data generated by EPR oximetry was analysed by recording the spectral line width 

(the difference between peak maximum and minimum in magnetic field units (mG) – see 

Figure 2.5) and comparing to the standard line widths obtained from this probe in N2 and 

O2. 

The OBC signal was analysed by quantifying the area under the curve for each peak using 

the ‘Liquid’ software program (Analytix Ltd).  
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4.4 Results 

4.4.1 Effect of O2 on sGC 

The data analysed from the cGMP assay confirmed that O2 alone enhanced the activity 

of sGC and subsequent production of cGMP (Figure 4.1). These experiments were 

undertaken without addition of classic sGC stimulators. Perfusing the enzyme with 95 % 

O2/5 % CO2 (hyperoxia) further enhanced this production hyperoxia (411.50 ± 56.30 

pmol/ml) in comparison to normoxic levels. 
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Figure 4.1: Effect of O2 upon sGC activity. cGMP production was significantly greater for normoxia 
(108.40 ± 10.78 pmol/ml) and compared with hypoxia (24.34 ± 6.52 pmol/ml) following a 10 minute 
incubation post GTP/MgCl2 addition (***p<0.001) (n=4-6) Unpaired t test. 
 

4.4.2 Change in O2 consumption over time by sGC – An EPR study 

EPR was used to measure the O2 change in a buffer solution containing sGC (plus 

GTP/MgCl2) over time. Figure 4.2 presents the control samples for this study which 

contained either assay buffer alone (GTP) or assay buffer containing GTP/MgCl2 (+GTP) (1 

mM). As shown, the line widths of three separate samples for each test were comparable. 
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Figure 4.2:  Measurement of line width following a 10 minute incubation in the presence or absence 
of GTP/MgCl2 without sGC. The presence of GTP/MgCl2 did not affect line width in the absence of the 
enzyme. (p>0.05) (n=3) Paired t test. 

 

Following on from the control experiment with GTP, sGC was then introduced at 50 µM 

and 100 µM to investigate whether sGC can in fact ‘consume’ O2 within the assay buffer 

(~21 % O2), over a 60 minute time period. The results are displayed in Figure 4.3.  
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Figure 4.3: Effect of sGC on EPR spectral line width. The top graph represents the absolute raw 
values attained, the bottom graph is normalised for the line width at 0 minutes. The line width of the 
controls (210 μM O2) were consistently stable over a 60 minute period (n=7). For both sGC 
concentrations, the line width decreased over time (n=3). There was a difference between the tests 
and controls when comparing the averaged data sets. Linear regression.    

 

Figure 4.3 shows that the presence of sGC within an oxygenated sample decreases the 

line width of the spectrum obtained for O2 sensitive spin-label, N15-PDT. Samples containing 

both 50 and 100 μM sGC decreased the line width over time however, when comparing EC50 

data, only samples containing 100 μM sGC were deemed statistically significant compared 

to control samples (p = 0.0136) (Figure 4.4). 
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Figure 4.4: Change of line width over the 60 minute incubation during EPR spectroscopy. Samples 
containing 100 μM sGC displayed the largest decline in line width and therefore represented the 
greatest consumption of O2 compared to the buffer controls (210 μM O2) (n=3-6) (*p < 0.05) One 
way ANOVA + Tukey’s multiple comparison test. 

 

In terms of the amount of O2 consumed, both samples containing sGC with oxygenated 

buffer displayed a reduction of between 20-25 mG. Based on the standard curves achieved 

for EPR oximetry (section 2.5.2), this would equate to around a 20 μM O2 consumption.  
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4.4.3  Inhibition of Free Radicals 

Experiments conducted for this section of work utilised SOD (100 U/ml) and CAT (250 

U/ml) to inhibit potential generation of O2
-
 and H2O2, respectively. cGMP was measured as 

described previously. 
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Figure 4.5: Inhibition of O2

- and H2O2. There were marked differences across all groups between 
normoxia and hypoxia (***p < 0.05) however there was no difference in cGMP production within 
groups (n=3-4) Two-way ANOVA + Bonferroni post test. 

 

As the data in Figure 4.5 suggests, there was no difference in cGMP production 

between control and test samples. 
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4.4.4 Influence of NOC9 on sGC activity 

sGC was incubated with various concentrations of NOC9 under either normoxic or 

hypoxic conditions. The results are displayed in Figure 4.6. 
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Figure 4.6: Effect of NOC9 on sGC activity in normoxia and hypoxia. Lower concentrations of NOC9 in 
hypoxia (0.118 and 1.18 μM NOC9) induced a greater production of cGMP than in normoxia, except 
in the absence of NOC9 (*p<0.05, **p<0.01) (n=3-6) Two-way ANOVA + Bonferroni post test. 

 

NOC9 stimulated sGC to maximal activity in hypoxia even at the lowest concentration 

tested. In contrast, similar concentrations of NOC9 added in normoxia demonstrated 

increased cGMP with increased NOC9 added. However, it is important that whereas 

maximal activity was recorded at 0.118 μM in hypoxia, only 50 % activity was observed at 

this concentration in normoxia. At the highest concentration of NOC9 tested, maximal cGMP 

production was also observed in normoxia. 
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4.4.5 NOA: Release of NO by NOC9 in normoxia and hypoxia 

Figure 4.7 illustrates that NO release from NOC9 increases in a linear fashion as the 

concentration of NOC9 in the sample increases. There were no differences between the 

slopes when normoxic and hypoxic data was compared. 
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Figure 4.7: Release of NO from NOC9 under normoxia and hypoxia. Samples taken from both the 
gaseous phase (top) and liquid phase (bottom) following 10 minute incubation at 37 °C with NOC9 
demonstrated a clear increase in the area under the curve with increasing NOC9 concentrations. The 
amount of NO released did not change between normoxic and hypoxic conditions for both gas and 
liquid samples (p>0.05) (n=3) Linear regression. 
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4.4.6 Effect of YC-1 on cGMP production 

As explained in section 4.1.2.1, YC-1 binds to sGC via an allosteric site, promoting the 

stimulation of cGMP. Figure 4.8 depicts the levels of cGMP obtained for sGC incubated in 

the presence of YC-1 versus controls. 

- YC-1 + YC-1
0

50

100

150

200
Normoxa

Hypoxia
*

*

cG
M

P
 (

p
m

o
l/

m
l)

 
Figure 4.8: The effect of YC-1 on cGMP production under normoxic and hypoxic conditions. YC-1 
enhanced the production of cGMP under both experimental conditions. Control samples (- YC-1) 
contained a significant amount more cGMP under normoxia compared with hypoxia (105.70 ± 6.23 
pmol/ml vs. 39.82 ± 2.50 pmol/ml) (*p<0.05). The presence of YC-1 increased the cGMP production 
in normoxia versus hypoxia (*p<0.05) (n=4) Two-way ANOVA + Bonferroni post test. 
 
 

Under both normoxic and hypoxic conditions, the presence of YC-1 enhanced the 

production of cGMP by approximately 50 pmol/ml. This suggests that the mechanism of 

action of YC-1 was independent of the presence of O2. Moreover, in terms of the percent 

gain in cGMP levels, YC-1 in hypoxia increased 100% compared to the control. However, in 

normoxia, the presence of YC-1 increased the level of cGMP by 50% compared to the 

relative control value. 
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4.4.7 BAY 41-2272  
 

BAY 41-2272 developed by Bayer® was used in this study in order to investigate how and 

where O2 may be exerting its influence on sGC. Figure 4.9 displays the cGMP produced from 

samples stimulated with BAY 41-2272 under normoxic and hypoxic conditions. BAY 41-2272 

stimulated a concentration-dependent increase in cGMP under hypoxic conditions. However 

in normoxia, even the weakest concentration of the drug maximally stimulated the enzyme. 

This suggests BAY 41-2272 activity is enhanced by O2.  
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Figure 4.9: Concentration response curves to BAY 41-2272 in normoxia (top) and hypoxia (bottom). 
In hypoxia, BAY 41-2272 stimulates a concentration-dependent increase in cGMP; the lower 
concentrations between 1 nM and 1 µM stimulating significantly less cGMP production than 100 µM 
of the drug (***p<0.001) (n=3 for all) One-way ANOVA + Tukey’s multiple comparison test.  
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4.5 Discussion 

4.5.1 Summary 

The main findings of this chapter are summarised below: 

I. O2 alone can increase the activity of sGC leading to a subsequent increase in cGMP 

production. 

II. The level of cGMP produced is proportional to the amount of O2 supplied to the 

enzyme. 

III. sGC appeared to consume/utilise O2 from the oxygenated assay buffer (as measured 

by EPR oximetry). 

IV. Under hypoxic conditions, sGC was more sensitive to activation by NOC9 compared 

to normoxia. 

V. YC-1 enhanced the production of cGMP to a similar extent in normoxia and hypoxia 

relative to control levels. 

VI. BAY 41-2272 displayed a concentration-dependent increase in cGMP production 

under hypoxic conditions yet under normoxic conditions, the lowest concentration 

of BAY 41-2272 maximally activated the enzyme. 

4.5.2 Chapter Review 

As a progression of the work described in Chapter 3, the experiments detailed within 

this chapter aimed to  determine whether O2 alone had the capacity to stimulate/activate 

sGC directly. In previous literature, the interaction of sGC and O2 has largely been dismissed 

(202, 301-304). These studies suggested that in order for human sGC to interact with O2, a 

tyrosine residue needs to be present within the haem binding pocket of the enzyme. In 

contrast, the obligate anaerobe (killed by normoxic (21 %) levels of O2), 
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Thermoanaerobacter tengcongensis, possesses a haem domain which can bind O2 (304), 

much like a variety of other H-NOX family members (172, 305). Based on these findings, it 

would seem as though direct binding to the haem moiety of human sGC by O2 as a direct 

ligand was unlikely. Nonetheless, O2 could still potentially interact with the enzyme via an 

allosteric binding site or perhaps indirectly influence the activity of the haem site. Bearing 

this in mind, the experiments conducted aimed to address the haem-dependence of the O2 

effect, as well as show how O2 affected the interaction of a variety of sGC stimulators and 

activators. 

The novel experiments reported here were conducted with purified sGC enzyme 

equilibrated to hypoxic or normoxic conditions within a hypoxia workstation. The O2 content 

within these samples was validated by EPR oximetry (see Chapter 2) in order to verify that 

hypoxic samples contained little or no O2. sGC incubated under normoxic conditions (~21 % 

O2) produced a significantly higher yield of cGMP compared to samples equilibrated to 

hypoxic conditions. Furthermore, an additional experiment was performed which gently 

introduced 95 % O2/5 % CO2 to the sample to test whether this effect of O2 on sGC activity 

may be further enhanced by additional increases in O2 content. The results achieved 

confirmed that there was a concentration-dependent increase in cGMP production with O2, 

disputing the current understanding within this field of research and confidently 

demonstrating that the O2 can affect the activity of the enzyme.  

Having confirmed that O2 brings about a direct and proportional increase in production 

of cGMP, the next step was to investigate whether sGC consumes the O2 within the sample. 

sGC incubated at either 50 or 100 µM caused a decrease in the line width of the O2-sensitive 

probe, N15-PDT, over time, confirming that sGC in fact consumed or used the O2 within the 
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sample. A study by Friebe provided evidence for the activation of sGC by SOD (306). In order 

to eliminate the possibility of any free radical species contributing to the mechanism of sGC 

activation/modulation, the scavengers SOD and CAT were pre-incubated with sGC in 

normoxia and hypoxia. No differences were observed in the analysis of cGMP levels of SOD 

or CAT incubated samples compared to controls. Overall, this data implied that O2 does not 

enhance the formation of radical species in the presence of sGC in either of these 

experimental conditions.  

NOC9 was chosen as the NO donor in these studies due to its short half life (~2 minutes 

at pH 7.4) (307). Under hypoxic conditions, the lowest concentration of NOC9 (0.118 µM) 

stimulated a significant rise in cGMP production from ~30 pmol/ml to ~500 pmol/ml, 

equivalent to that stimulated by the highest concentration of NOC9 in the normoxic studies. 

This would therefore suggest that catalytic saturation of the enzyme occurred with the 

lowest concentration of NOC9 as the primary ligand under hypoxic conditions. Normoxic 

data displayed a NOC9 concentration-dependent rise in cGMP. Given that 1 mol NOC9 is 

equivalent to 2 mols NO, 23.6 µM NO under normoxic conditions stimulated a rise in cGMP 

equivalent to that produced by 100-fold less NO in hypoxia. Thus the exclusion of O2 

decreases basal cGMP produced as well as rendering the enzyme more sensitive to lower 

concentrations of NO.  

Aware that NO can be oxidised by O2, a study was performed which aimed to determine 

the characteristics of NO release from NOC9 in hypoxia and normoxia. For both gaseous and 

liquid samples, there were no differences reported in the area under curve and thus the 

total amount of NO. In terms of the data acquired during this experiment, a much higher 

yield of NO was detected in the gaseous phase of each sample compared to the liquid 
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phase. This may well have been due to saturation of the buffer with NO and its subsequent 

release as a gas. 

The next step taken was to investigate whether O2 had an effect on NO-independent 

activators of sGC. Pre-incubation with YC-1 increased the total cGMP detected over control 

values. Moreover, the pmol/ml increase was parallel in normoxic and hypoxic samples 

indicating that the mechanism of YC-1 activation is not likely to be governed by O2. This 

infers that the mechanism by which O2 brings about sGC-dependent increases in cGMP 

production is by influencing a separate allosteric site, which is neither that of YC-1 binding 

or the haem moiety. 

Bayer® compound, BAY 41-2272 was utilised to yield concentration response curve in the 

enzyme model to uncover potential differences in hypoxic and normoxic sGC activity. As 

described, this activator works independently of NO and is haem-dependent. A 

concentration-dependent response to BAY 41-2272 was observed in hypoxic conditions 

however this same effect was not achieved in normoxia, where cGMP was produced 

maximally. Collectively, the data presented within this chapter demonstrated that O2 can 

directly stimulate sGC at a similar site as BAY 41-2272 and that this stimulation is 

independent of NO. 

4.5.3 Conclusions 

The novel results within this chapter confirm that O2 can stimulate cGMP production by 

sGC in the absence of NO. Furthermore, the data suggests that O2 can modulate the effects 

of NO on enzyme activation, a finding that is not due to the oxidation of NO by O2. 

Experimental evidence using NO-independent activators of sGC have confirmed that the 

mechanism of YC-1 is not dependent on O2 however cGMP production stimulated by BAY 
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41-2272 was potentiated under normoxic conditions. Taken together, the most coherent 

mechanism by which O2 influences sGC would seem to be either directly via the haem 

moiety or an indirect involvement with the haem site via a separate secondary allosteric 

site.  
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5.1 Introduction 

In the heart, epicardial coronary arteries (left and right coronary arteries) serve as 

conduit vessels to transport blood to the entire myocardium. In addition, smaller 

intramyocardial coronary arterioles regulate the flow of blood according to the needs of the 

myocardium (308). Under normal conditions, blood flow through the epicardial coronary 

arteries is slightly higher than subendocardial arteries (309). However, when coronary flow 

becomes obstructed, frequently due to disease such as atherosclerosis, the variation in flow 

between epicardial and subendocardial arteries is significantly increased (310). Local arterial 

hypoxia dilates the epicardial coronary arteries in an attempt to increase flow and perfuse 

the surrounding tissue and subendocardial arteries and arterioles (311). 

5.1.1 Coronary autoregulation 

Normal resting coronary blood flow is ~250 ml/min and this increases 4 to 5 fold during 

vasodilation (312). Autoregulation maintains coronary blood flow over a wide range of 

coronary artery pressures when the determinants of myocardial O2 consumption are kept 

constant, thereby matching supply with demand. This occurs via alterations in coronary 

vascular resistance which are mediated by a number of factors including the accumulation 

of local metabolites, endothelial-derived substances, autonomic innveration and paracrine 

factors (313). However, the dilatory capacity of coronary resistance arteries is exhausted 

when coronary pressure decreases below the lower autoregulatory limit. At this point, 

coronary blood flow becomes pressure dependent and further reductions in pressure will 

likely lead to the onset of ischaemia. The lower autoregulatory limit has been estimated 

from pre-clinical and clinical studies showing that coronary blood flow cannot be maintained 

at coronary pressure < 40 mmHg (314). This lower autoregulatory pressure limit increases 
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during tachycardia because of the increase in flow required as well as a reduction in the 

duration of diastole/perfusion time. 

The resistance offered by large epicardial coronary conduit arteries is one of the major 

components in coronary blood flow. Under normal physiological circumstances, these 

vessels offer negligible resistance to flow as evidenced by the lack of a measurable drop in 

blood pressure in this section of the circulation (312). However, the contribution of this 

component to total coronary resistance increases in the presence of haemodynamically 

significant epicardial artery stenoses (> 50 % reduction in diameter) and may even reduce 

resting flow when the artery becomes severely narrowed (> 90%). A second component of 

coronary blood flow can be attributed to the resistance arteries and arterioles between 20-

200 μm in diameter. The changes in coronary smooth muscle tone results from vasoactive 

signals arising in response to physical forces (shear stress – flow mediated dilatation (315)), 

endothelium-derived factors and changes in metabolic demand imposed by the tissue. A 

third component affecting coronary blood flow arises from extravascular compressive 

resistance brought about by a rise in contraction-mediated left ventricular pressure. This 

elevation during systole also increases coronary backpressure, which ultimately limits the 

driving pressure for coronary flow. (316). 

5.1.2 Mechanisms of coronary vasodilation 

Although the precise mechanisms underlying the regulation of coronary blood flow have 

not been clearly defined, several mediators that accumulate when myocardial metabolic 

activity is increased have been implicated. For instance, adenosine has attracted a lot of 

attention in terms of mediating vasodilation of resistance coronary arteries/arterioles via 

binding to A2A receptors residing on the vascular smooth muscle. This leads to an increased 
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production of cAMP and the opening of calcium-dependent potassium channels (Kca) 

channels (317). Even though adenosine does not directly dilate the larger conduit arteries, 

these vessels display flow mediated dilatation in response to local shear stress as arteriolar 

resistance decreases. It is important to note that the production of adenosine is directly 

related to the metabolic state of the cell (317) and therefore it would be very likely that it 

could function as a mediator of local vasodilation in response to change in metabolic 

demand.  

NO derived from the vascular endothelium also plays an important role in coronary 

vascular tone. NO-mediated vasodilation in the coronaries is enhanced by shear stress and 

eNOS can also be activated during intermittent elevations in coronary blood flow, such as 

during exercise (318). However, although NO-mediated coronary vasodilation of both 

epicardial and resistance vessels occurs in response to increased blood flow in vitro and in 

vivo (319-321), data from studies using L-arginine analogues suggests that this response is 

not mandatory for exercise-induced increases in coronary blood flow to occur (322). 

Importantly, endothelial cells produce PGI2 and other prostanoids via the metabolism of AA 

(323). These substances stimulate coronary vasodilation via an increase in smooth muscle 

cAMP and subsequent opening of KATP channels. 

In addition to the endothelium-derived species described above, other substances have 

also been identified as mediators of coronary vasodilation. Similar to prostanoids, these 

substances have been found to hyperpolarise vascular smooth muscle cells and have 

therefore been termed as endothelium-derived hyperpolarising factors (EDHFs). To date, 

the exact identity of these EDHFs remains unknown, however, compounds such as 
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cytochrome P450-dependent metabolites of AA metabolism as well as H2O2 have been 

suggested (81, 324).  

As documented above, there are several factors that regulate and modulate coronary 

vascular tone. The most important outcome of coronary vasodilation is adequate perfusion 

of the myocardium in order to supply respiring cells and tissues with O2 and other nutrients. 

Importantly, it has been suggested that coronary vessels have the ability to sense changes in 

O2. The fact that the O2 gradient across coronary blood vessels within the myocardium is 

larger than any other vascular bed within the body (~98 % O2 coronary arteries versus ~30-

35 % coronary sinus), could suggest that the coronary vasculature require enhanced O2 

sensitivity compared to other tissues. Therefore, experiments within this chapter were 

designed to examine the effects of O2 on coronary vascular tone in vitro.  

5.1.3  Aims 

The studies documented in this thesis so far have utilised rabbit aortic rings to 

determine the effects of O2 on vascular tone. Having established that O2 can (a) directly 

vasodilate in proportion to the extent of hypoxia, (b) directly stimulate sGC and (c) 

modulate sGC response to other stimuli, further studies focussed on assessing these actions 

in vessels that are more likely to encounter hypoxia in vivo. As such, porcine coronary 

vessels were chosen to study O2-induced relaxation and vessel function across the vascular 

network. Sections of artery ≤ 2.0 mm in diameter were used and responses to O2 

administration, as well as endothelium-dependent and independent stimulation were 

investigated under different tissue pO2. 
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The specific aims of this chapter were to: 

 Characterise the effects of O2 on isolated hypoxic porcine left anterior descending 

(LAD) coronary artery and compare this to the results obtained with rabbit aortic 

tissue. 

 Investigate the effect of O2 on hypoxic porcine coronary vessels of varying size. 

5.1.4 Hypotheses 

Given that the heart requires a large O2 supply in order to meet the metabolic demand 

of the myocardium in supplying the body, in this in vitro model, coronary arterial rings 

would display a greater relaxatory effect to O2 than conduit arteries (such as the aorta). 

Moreover, smaller coronary vessels would exhibit the greatest relaxation responses. 

5.1.5 Acknowledgments 

Prior to undertaking the studies outlined in this chapter, an undergraduate student 

project (conducted by Miss Natalie Price, BSc Medical Pharmacology) collated useful 

preliminary data for this body of work. 

5.2 General Methods 

5.2.1 Myography: Rabbit aortic tissue 

The methods and experiments reported in this chapter have been previously described 

in detail in Chapter 3. Selected results are also included here for illustration purposes and to 

compare the responses of the two vessel types to O2 under hypoxic conditions.  
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5.2.2 Myography: Porcine coronary tissue 

5.2.2.1 Vessels > 2 mm diameter 

Porcine hearts were collected from a local abattoir and immediately submerged in ice 

cold saline solution (0.9 % w/v). The LAD arteries were carefully dissected in 95% O2/5 % 

CO2-bubbled KH buffer (see section  2.2 for composition) and excess fat and minor vessels 

were removed. Any surplus dissected LAD vessels were stored in  HEPES buffer (pH 7.4) 

(composition in mM: HEPES 25.0; NaCl 120.5; KCl 4.8; KH2PO4 1.5; MgSO4.7H2O 1.2; C6H12O6 

11.1 and CaCl2.2H2O 1.4) at 4°C. These vessels were kept for a maximum of 3 days, during 

which time the HEPES buffer was changed daily.  

On the day of experimentation, the vessels were cut into 2 mm wide rings. These were 

then mounted in baths containing 5 ml Krebs maintained at 37C and gassed with 95% 

O2/5% CO2 (as previously described for rabbit aorta (section 2.2). The appropriate hypoxia 

level being tested was established as described in section 2.2.1. Preliminary studies were 

first carried out to establish a suitable resting tension for the porcine coronary rings. Tissues 

were set at either 2, 3 or 4g tension (95 % O2/5 % CO2) and exposed to 90 nM U46619 

(thromboxane A2 agonist). U46619 was used instead of PE since the porcine coronary LAD 

rings did not contract to this 1 adrenergic receptor agonist. This observation was also made 

by Horst and colleagues in 1985 (325). The resting tension at which the maximum agonist-

induced contraction response was achieved (in this case 3 g, see Figure 5.1) was then used 

for all further experiments. 
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Figure 5.1: Determination of LAD resting tension. 3 g was used as the resting tension for all future 
coronary experiments as there was no statistical difference between the constriction generated at 3 
and 4 g (p>0.05) (n=4). 

 

For all further experiments, the established EC80 was used to constrict the LAD rings. 

Concentration response curves to U46619, in normoxia and hypoxia are displayed in Figure 

5.2. An increased concentration of U46619 was required to constrict hypoxic rings to 80% of 

maximum (150 nM vs. 90 nM), to achieve an equivalent constriction to normoxic rings. 
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Figure 5.2: Concentration response curve to U46619. (n= 3-7) Non-linear regression. 

 
Prior to daily experimentation, porcine coronary rings were ‘exercised’ with U46619 

(90 nM) and BK (10 µM) to establish both smooth muscle and endothelial integrity. BK was 

used in place of ACh (rabbit aortic experiments) due to the reported lack of muscarinic 

receptors on porcine coronary endothelium (326, 327). The majority of rings required 3 

exercises to establish a stable and repeatable response in constriction (this is similar to the 

experimental set up for aortae). 

5.2.2.2 Vessels < 2 mm diameter 

Hearts were collected as described in section 5.2.2.1. Septal and diagonal coronary 

vessels deriving from the LAD were carefully exposed under a dissection microscope and 

removed from the surrounding muscle and adipose tissue. These smaller vessels were 

harvested only on the day of heart collection and were not preserved overnight. Rings < 

2mm in width were cut and the diameter recorded using callipers. The rings were then 
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mounted onto a DMT® myograph 610 M (pin mounts - see Figure 5.3) containing gassed KH 

buffer (95 % O2/5 % CO2). Resting tension was maintained at 5 mN as established by 

previous members of our group. 

 

Figure 5.3: DMT® Wire Myograph 610M mounting pin set up. The red arrow indicates the location 
where the tissue is positioned within the bath.  
 

5.2.2.2.1  Hypoxic chamber 

Validation studies were performed whereby the chambers (see Figure 5.3) were 

gassed with 95 % N2/5 % CO2 for 10 minutes. Analysis of bath O2 content by EPR 

demonstrated that the KH buffer did not decrease in O2 content and therefore was not 

effectively ‘hypoxic’. With the technical aid of Ruskinn Ltd, a protocol was developed that 

enabled the myograph to be placed inside the hypoxic chamber (Invivo2), to prevent 

atmospheric air interfering with equilibration of KH buffer to hypoxia.  

Once tissue rings were mounted on to the pins, the baths were placed in the hypoxic 

chamber and equilibrated to normoxic conditions (~21 % O2) by purging O2 and CO2 into the 
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chamber. Individual baths were bubbled with 95 % O2/5 % CO2 from a gas source outside of 

the chamber. To achieve hypoxic conditions the chamber was set to 0 % O2/5 % CO2 and 

each bath was also gassed via the standard bubbling with 95% N2/5% CO2. 

5.2.3 Western Blotting – sGC α1 and β1 subunits 

5.2.3.1 Sample Preparation 

Previous literature has stated that sGC subunits α1 and β1 are the most prevalent in 

vascular tissue for a range of animal species (328), therefore expression levels of these two 

subunits were investigated in further detail.  

Tissue samples previously frozen at -80°C (rabbit aorta and porcine coronary artery 

denuded of endothelium) were removed from the freezer and placed into 1.5 ml Eppendorf 

tubes. Denuded rings were used here since the majority of sGC protein resides within the 

vascular smooth muscle. Immediately, 200µl of ice cold lysis buffer (20 mM Tris-HCl, pH 7.5) 

containing protease/phosphatase inhibitors (Roche) were added, plus 1.4 mm diameter 

stainless steel homogenising beads (at an equal bead to tissue weight ratio). The tissue 

samples were homogenised for 8 minutes at speed 8 on the ‘Bullet Blender’ (Next Advance). 

Subsequently, samples were centrifuged at 21,913 x g at 4°C for 30 minutes. The resulting 

supernatant was removed and placed into labelled 0.5 ml Eppendorf tubes. Samples were 

then stored on ice for use the same day or frozen and stored at -20°C.  

5.2.3.2 Bradford Assay 

The assay used to analyse total protein content within tissue samples was the Bradford 

assay which utilises a Coomassie reagent for colorimetric quantification. The assay is based 

on the binding of Coomassie dye to protein; in the presence of an acid there is a shift in 
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absorbance maximum from 465 nm to 595 nm and an associated colour change from brown 

to blue (329). BSA was used as the standard (Table 5.1). All standards and samples were 

diluted in 0.9 % w/v NaCl (Fresenius Kabi). 

Table 5.1: Preparation of Bradford Assay BSA standards. 

Tube Volume of NaCl (µl) Volume of BSA (µl) [BSA] (µg/ml) 

A 0 10 2000 

B 20 60 1500 

C 20 20 1000 

D 20 20 of B 750 

E 20 20 of C 500 

F 20 20 of E 250 

G 20 20 of F 125 

H 80 20 of G 25 

I 10 0 0 

 

5.2.3.2.1   Protocol 

The tissue homogenates were prepared as outlined in section 5.2.3.1. 5 µl of the BSA 

standard or unknown sample were added to a 96-well plate. 250 µl of Coomassie reagent 

was added to each well and then mixed on an orbital shaker for 30 seconds. The plate was 

then removed from the shaker, sealed and incubated on the bench for 10 minutes at room 

temperature. Following removal of the adhesive cover, the plate was then read at a 

wavelength of 595 nm.  
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Figure 5.4: Typical standard curve achieved by the Bradford assay. 

5.2.3.3 SDS-PAGE 

Before loading on to the gel (see Table 5.2), the protein in the samples had to be 

denatured. This was accomplished by diluting the sample 1:1 with Laemmli buffer (see Table 

5.2) followed by heating for 10 minutes at 95°C. The gel and running buffer constituents are 

detailed in Tables 5.2 and 5.3, respectively. 
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Table 5.2: SDS PAGE constituents. 

Constituent *Resolving Gel (ml) *Stacking Gel (ml) 

dH2O 2.375 3.4 

30% acrylamide mix 1.225 0.83 

1.5M Tris (pH 8.8) 1.30 **0.63 

10% SDS 0.05 0.05 

10% APS 0.05 0.05 

TEMED 0.004 0.005 

*based on 5ml volume (resolving gel 7.5%), **1.0M Tris (pH 6.8), Acrylamide/Bis-acrylamide 
30 % solution (37.5:1 ratio). 

 

 Table 5.3: Running buffer (x10) constituents. 

Constituent Amount 

Tris 30.3 g 

SDS 10 g 

Glycine 143 g 

dH2O 1 L 

Diluted 1 in 10 before use 

Standards and samples were loaded on to wells within the stacking gel to ensure each 

sample contained an equivalent protein concentration (determined by Bradford method). 

The gel was run at 200 V for 30 minutes or until the bands migrated to the base of the gel.  

5.2.3.4 Transfer 

After SDS-PAGE, the gel was placed in a transfer ‘sandwich’ as illustrated in Figure 5.5. 

The transfer cassette was filled up with cold transfer buffer (Table 5.4) and run at 100 V for 

2 hours. This process encourages the movement of protein on to the PVDF membrane. 
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Figure 5.5: Schematic of the order of transfer in Western blotting.      

 

After transfer, the gel was discarded and the membrane placed in blocking solution 

(5 % non-fat milk in wash buffer – see Table 5.5) on a rotator in a cold room overnight (~4 

°C).  

 
Table 5.4: Transfer buffer constituents. 

Constituent Amount 

Tris 1.5 g 

Glycine 7.2 g 

Methanol 100 ml 

dH2O 400 ml 

25 mM Tris, 192 mM Glycine, 20 % Methanol 
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Table 5.5: Wash buffer (Tris buffered saline + Tween 20 (TBST)) constituents. 

Constituent Amount 

Tris 6.1 g 

NaCl 8.8 g 

Tween-20 1 ml 

pH to 7.6 prior to Tween-20 addition. Blocking solution was made by adding 5 g non-fat milk 
powder to 100 ml of wash buffer. 

 

5.2.3.5 Incubation with antibodies 

After cold incubation overnight, the membrane was removed from the blocking 

solution and incubated with the primary antibody (sGC mouse monoclonal or β-actin, 1 in 

200 in 5 % milk-TBST) for one hour at room temperature. After incubation, the membrane 

was washed 3 x 10 minutes in 5% milk-TBST at room temperature. The secondary antibody 

(goat anti-mouse) was added at a concentration of 1 in 1000 made up in 5% milk-TBST and 

incubated on the rocker for 1 hour at room temperature. Again, the membrane was washed 

however, the 3 x 10 minute washes were in TBST only. Following the washes, the membrane 

was incubated in luminol reagent (Santa Cruz) for 5 minutes with agitation. 

5.2.3.6   Dark room procedure 

X-ray film was exposed to the membrane for 5 minutes in the dark, after which the 

film was developed and bands quantified by densitometry.  

5.2.4 Western Blotting 

Tissue homogenates were prepared as described in section 5.2.3.1. Table 5.6 states the 

specific antibodies used for these experiments.  
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Table 5.6: Antibodies used for Western Blotting. 

 
Antibody 

 

 
Details 

 
Source 

 
Dilution 

 
Primary 

 
sGC α1 mouse monoclonal 
sGC β1 mouse monoclonal 
β-actin mouse monoclonal 

 

 
Abcam 

Santa Cruz 
Santa Cruz 

 

 
 

1:200 

 
Secondary 

 

 
Goat anti-mouse 

 
Abcam 

 
1:1000 

 

5.3 Specific Methods 

Most experiments within this chapter replicated as close as possible the studies 

completed using rabbit aortic rings. Porcine coronary rings were used to highlight any 

differences in responses which may be due to the vessel type and its specific function. 

5.3.1 O2-induced relaxation in LAD rings 

In order to establish whether O2-mediated relaxation occurs in large epicardial porcine 

coronary vessels in the same way as rabbit aortic rings, LAD rings were mounted in the 

myograph as described in section 5.2.2.1. Following 10 minute incubation under hypoxic 

conditions, rings were pre-constricted with 150 nM U46619. Once a plateau was established 

(~15 g tension), a bolus of KH buffer was administered to give final bath O2 concentrations 

of 0 (‘0 %’), 8.4 (‘21 %’) or 38 µM (’95 %’). RBCs were also prepared as outlined in section 2.3 

and administered in the same way as the KH buffer bolus.   
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5.3.2 Inhibition of eNOS and sGC 

L-NMMA (300 μM) and ODQ (10 μM) were pre-incubated with LAD rings for 30 minutes 

prior to experimentation to inhibit both eNOS and sGC, respectively. Bolus injections of 

either KH buffer or RBCs were administered to give a final bath O2 concentration of 38 µM.  

5.3.3 Effect of O2 on the response to GSNO 

Concentration responses (1 nM to 10 μM) to GSNO were performed on porcine LAD 

rings under various O2 conditions. Baths were equilibrated either at 0, 10, 21 or 95 % O2 by 

bubbling appropriate gases mixed with 5 % CO2. The response to each concentration was 

allowed to reach a plateau before the next one was added.  

5.3.4 Vessel size 

5.3.4.1 Concentration response to U46619 

The EC80 concentration of U46619 was established for large epicardial coronary vessels 

in the same way as rabbit aorta (section 5.2.2.1). The next stage was to investigate whether 

vessel size had an influence on the extent of O2-mediated vasorelaxation. Second and third 

order branches originating from the LAD were dissected and prepared for isometric tension 

studies as outlined in section 5.2.2.2. Concentration responses (0.1 nM to 10 μM) to U46619 

were then carried out for vessel rings between 0.5 mm and 1.0 mm diameter in order to 

establish an EC80 under hypoxic conditions for each size ring. This concentration would then 

be used in future experiments for rings of equivalent size. 

5.3.4.2 O2-induced relaxation in < 2mm porcine coronary rings 

Porcine coronary rings between 0.5 mm and 1.0 mm inner diameter were equilibrated 

under hypoxic conditions as described in section 5.2.2.2.1. The appropriate EC80 of U46619 
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(1 nM to 10 μM) was applied to each ring. Once a contraction plateau was established a 

bolus injection of KH buffer containing 38 µM O2 was administered. RBCs were also 

prepared as outlined in section 2.3 and administered in the same way as the KH buffer 

bolus. 

5.3.5 Statistical Analysis 

O2-induced vasorelaxation was calculated by taking the maximum relaxation and 

expressing it as a percentage of the peak constriction induced by U46619. In general, an n 

value of 1 was an average of 2 paired rings. The majority of concentration response curves 

presented in this chapter are analysed by comparison of pEC50 values. Group data was 

compared using a Student’s t test (paired or unpaired as appropriate) or one-way ANOVA 

followed by a suitable post hoc test (GraphPad PrismTM version 5.0). The exact statistical test 

used is stated in each figure legend. A p value < 0.05 was deemed statistically significant. 

Western blotting analysis was expressed as a ratio of the density units of the test band 

and respective actin control. Since separate blots were used to probe control and test 

proteins, an unpaired t test was performed to calculate any statistical differences in band 

density. P values of < 0.05 were taken as statistically significant.    

5.4 Results 

5.4.1 O2-induced vasorelaxation 

Having confirmed that introducing a bolus of O2, regardless of source, can influence 

vascular tone in rabbit aortic rings, KH buffer (oxygenated to various levels) was also 

introduced to hypoxic porcine coronary rings. Figure 5.6 illustrates that exposure of hypoxic 
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coronary rings to 95 % O2 induced greater relaxation compared to little or no O2 (0 %) (37.28 

± 2.37 % vs. 1.43 ± 0.69 %).  
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Figure 5.6: Porcine coronary vasorelaxation in hypoxia produced by increasing O2 content in KH 
buffer samples. Significant differences were observed between 0 % and 21 % samples (*p<0.05), 0 % 
and 95 % samples (***p<0.001) and 21 % and 95 % samples (***p<0.001) (n=5-7) One-way ANOVA + 
Tukey’s multiple comparison test.  
 
 

As explained previously in Chapter 3, section 3.4.2, a bolus injection of either RBCs, Hb 

or KH buffer to hypoxic rabbit aortic rings induced a transient vasorelaxation followed by a 

rebound constriction, the latter having been shown to be of equal magnitude to the 

relaxation (see Andrew George Pinder, PhD Thesis, 2009). As shown in Figure 5.6, porcine 

LAD coronary rings were also shown to relax to a bolus of oxygenated buffer. An example 

trace of the raw data is depicted in Figure 5.7, along with the data for rabbit aortic rings 

from Chapter 3. Porcine LAD rings appear to display a much greater relaxation to O2 than 

rabbit aortic rings. In addition, porcine LAD rings do not appear to constrict post-relaxation, 

in contrast to rabbit aortic rings.     



Chapter 5  Effect of vessel size & function 

Page | 176  
 

-4

-3

-2

-1

0

1

1 2 3

KH

Time (minutes)R
e

la
ti

ve
 T

en
si

o
n

 (
g)

 
 
 

1 2 3

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25
KH

Time (minutes)R
e

la
ti

ve
 T

en
si

o
n

 (
g)

 
 
 

Figure 5.7: Raw data curves illustrating the relaxation induced by KH buffer equilibrated at 95 % O2 
(38 μM O2 final bath concentration). The top trace represents the relaxation induced in porcine 
coronary tissues. The bottom trace represents data from rabbit aortic ring studies (from Chapter 3, 
section 3.4.2) and is shown here for comparison. 

 

To compare the effects of the oxygenated KH buffer (control) to RBC-induced hypoxic 

vasorelaxation, paired rings received 38 µM O2 in the form of either KH buffer or fully 

oxygenated isolated human RBCs. Figure 5.8 demonstrates that there was no difference in 

the magnitude of relaxation induced.  
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Figure 5.8: Comparison of relaxation induced by either KH buffer or RBCs (95 % O2 delivery). There 
was no difference in the extent of relaxation by the two modes of delivery (n=3-4, p>0.05) Unpaired 
t test. 
 

5.4.2 Post-relaxation vasoconstriction 

The tension recordings post O2 addition show coronary arteries did not exhibit a post-

relaxation vasoconstriction (section 5.4.1, Figure 5.7). In Chapter 3, an experiment aimed to 

investigate the involvement of KATP channels in the post-constriction observed in the 

myograph model with rabbit aortae. Data presented in Figure 3.11 demonstrated that there 

was a ~15 % increase in constriction above that of the maximum PE-induced tone. The raw 

traces displayed in section 5.4.1 of this chapter suggest that porcine coronary vessels 

subjected to O2 do not display a post-relaxation vasoconstriction, a fact further confirmed 

on repetition (Figure 5.9).  
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Figure 5.9: Post-relaxation vasoconstriction following addition of oxygenated (95 % O2) KH buffer to 
either rabbit aortic rings or porcine coronary rings. Porcine coronary rings displayed a significantly 
reduced constriction compared to rabbit aortic rings (n=3, *p<0.05) Unpaired t test. 
 
 

5.4.3 Inhibition of eNOS and sGC 

Having shown that both KH buffer and RBCs of identical O2 concentrations relax large 

epicardial porcine coronary tissue to the same extent, subsequent experiments aimed to 

establish the mechanism by which the relaxations occured. As with rabbit aorta ring 

experiments, L-NMMA and ODQ were used to investigate the involvement of eNOS and sGC 

in this relaxation process, respectively. Pre-incubation with L-NMMA (300 μM) did not affect 

the relaxation to KH buffer or RBCs (Figures 5.10 and 5.11, respectively). Moreover ODQ (10 

μM) abrogated the relaxation to both KH buffer and RBCs (Figures 5.10 and 5.11, 

respectively) as in the rabbit aorta. These data would suggest that like rabbit aortic rings, 

the O2-induced relaxation of large epicardial porcine coronary arteries under hypoxic 

conditions does not involve eNOS and is largely mediated via activation of vascular smooth 

muscle sGC.  
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Figure 5.10: The effect of eNOS and sGC inhibitors on relaxation induced by an oxygenated KH buffer 
bolus (95 % O2). No difference in the extent of relaxation (compared to control) was observed in 
rings incubated with L-NMMA (p>0.05). Conversely ODQ almost completely abolished RBC-induced 
vasorelaxation (n=4-5, ***p<0.001) One-way ANOVA + Dunnett’s multiple comparison test. 
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Figure 5.11: The effect of eNOS and sGC inhibitors on relaxation induced by RBCs (95 % O2). No 
difference in the extent of relaxation (compared to control) was observed in rings incubated with L-
NMMA (p>0.05). Conversely ODQ almost completely abolished RBC-induced vasorelaxation (n=4-5, 
**p<0.01) One-way ANOVA + Dunnett’s multiple comparison test. 
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5.4.4 Effect of O2 on NO donor response 

GSNO was administered to endothelium-intact LAD coronary rings equilibrated at 

various O2 concentrations. This was an important experiment to investigate whether the 

smooth muscle sGC response to exogenous NO was affected by the amount of O2 present in 

the tissue. In the presence of endothelium (Figure 5.12), no differences between the GSNO 

pEC50 or indeed maximum relaxation were observed. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.12: Concentration response curves to GSNO. No significant difference in potency of GSNO 
(pEC50) to endothelium intact rings was witnessed under 0, 10, 21 or 95 % O2 bathing solutions (n=4-
6) (p = >0.05).  
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5.4.5 Rabbit Aorta vs. Porcine coronary artery 

Table 5.7 summarises the key experiments performed with both rabbit aortic rings and 

large epicardial porcine LAD coronary rings. The results report a degree of disparity between 

the responses in hypoxia to both RBCs and oxygenated KH buffer. In particular porcine 

tissues relaxed ~20 % more than tissues to KH buffer or RBCs of equal O2 content.  

Since porcine coronary rings displayed a greater relaxation, one possible explanation 

could be related to the level of expression of sGC in porcine coronary tissue. The results 

displayed in Figure 5.13 clearly confirm that there was no marked difference in expression 

of either sGC subunit between porcine and rabbit vascular tissue after normalising for β-

actin content. 
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 Table 5.7: Comparison of main experimental results for rabbit aorta and porcine coronary tissue experiments. 

Conditions 

 
Rabbit Aorta 

 
Porcine Coronary 

Difference in response? 
 

Mean ± SEM 
 

n Mean ± SEM n 

KH buffer  (95 % O2) 10.25 ± 0.73 % 4 33.57 ± 2.79 % 4 

 
~ 23 % > relaxation by porcine 

rings 
 

RBCs (95 % O2) 9.69 ± 1.86 % 4 33.43 ± 2.79 % 3 

 
~23 % > relaxation by porcine 

rings 
 

+ ODQ  (10 µM) 0.72 ± 0.28 % 7 0.83  ± 0.42 % 4 
 

No difference 
 

 
+ L-NMMA (300 µM) 

 
13.38 ± 2.91 % 4 25.64  ± 4.19 % 5 

 
No difference between each 

group and respective controls 
 

 
sGC α1 

 

 
0.31 ± 0.08 ODu 

 
3 0.36 ± 0.11 ODu 3 No difference 

 
sGC β1 

 
0.31 ± 0.01 ODu 3 0.25 ± 0.07 ODu 3 No difference 
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Figure 5.13: Comparison of the relative levels of sGC α1 and β1 subunits in rabbit aortic and large 
epicardial porcine coronary tissues. No differences in the amount of either subunit were observed 
between vessel types (n=3, p>0.05) Unpaired t test.  

 

5.4.6 Effects of vessel size 

Initial concentration response curves to U46619 were performed in order to ascertain 

whether the difference in coronary diameter affected the contractility to this agonist. Only a 

small number of vessels were tested and for this reason no statistical analysis could be 

performed. However, the data in Figure 5.14 suggest that pEC50 to U46619 was not different 

between vessel sizes. 

  BK and GSNO were administered to rings of various inner diameters under hypoxic 

conditions to compare the effects on endothelium-dependent and independent relaxation 

responses. Figure 5.15 as well as the pEC50 data displayed in Table 5.8, clearly indicate that 

BK had a greater relaxatory effect compared to GSNO.   
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Figure 5.14: Concentration response curves to U46619 under hypoxic conditions (~0 % O2) in porcine 
LAD coronary branch rings of varying internal diameter. The pEC80 values are shown in Table 5.8 
(n=2-5 per vessel diameter) Non linear regression.  
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Figure 5.15: Concentration response curves to BK and GSNO for hypoxic  porcine coronary rings with inner diameters of (A) 0.9 mm (B) 0.70 mm (C) 0.6 mm 
and (D) 0.5 mm. BK induced a greater relaxatory response than GSNO. (n=2 -3) Non-linear regression.
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In terms of pEC50 (Table 5.8 and Figure 5.16), there were no large differences across 

a range of inner vessel diameters for both BK and GSNO. 

 
Table 5.8: Average pEC50 values calculated from concentration response curves shown in Figure 5.15. 

 
Inner diameter (mm) 

 
Average pEC50 (nM) 

 

 
BK 

 

 
GSNO 

 
0.9 

 
7.72 6.90 

 
0.7 

 
7.62 6.77 

 
0.6 
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0.5 

 
7.66 6.88 
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Figure 5.16: Correlation analysis between inner vessel diameter and average pEC50 for BK and GSNO. 

Pearson r = -0.37 (BK) and -0.06 (GSNO), p = 0.63 (BK) and 0.94 (GSNO).  
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Figure 5.17 presents a correlation analysis of percent relaxation versus vessel sizes. A 

negative correlation between the extent of relaxation and vessel size is demonstrated 

across the dataset indicating that smaller vessels are more sensitive to the administration of 

O2. 
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Figure 5.17: Correlation analysis between inner vessel diameter and average % relaxation to a 38 µM 
O2 KH buffer bolus. Pearson r = -0.73, n=4-6, *p = 0.024.  
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5.5 Discussion 

5.5.1 Summary 

The main findings of this chapter are listed below: 

I. Porcine coronary arterial rings display vasorelaxation in response to O2 and this 

relaxation is largely sGC-mediated. 

II. Hypoxic porcine LAD rings relaxed ~20 % more than rabbit aortic rings to a matched 

O2 bolus. 

III. There is no difference in sGC α1 and β1 subunit expression between rabbit aortic 

and porcine coronary tissue when normalised for actin. 

IV. The magnitude of O2-mediated vasorelaxation in hypoxia was inversely related to 

the vessel diameter for porcine coronary rings originating from the LAD. 

5.5.2 Chapter Review 

In vitro isometric tension studies in Chapter 3 characterised O2-induced relaxation under 

hypoxic conditions in rabbit aortic tissue. Given that in vivo the aorta would be highly 

unlikely to encounter hypoxic conditions, this chapter focussed on characterising the 

phenomenon in porcine coronary arteries.  

Previous literature regarding the study of RBC-induced vasorelaxation in hypoxia have 

typically utilised rabbit aortic tissue (249, 258). The data reported within this thesis show 

that rabbit aortic rings display around a ~15 % relaxation to oxygenated RBCs and an 

equivalent buffer control which contained an equal content of O2. In comparison, tension 

recordings with porcine LAD rings displayed an enhancement of 20 % relaxation in response 

to an identical O2 bolus. This would seem to support the hypothesis outlined at the start of 
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this chapter which proposed that porcine coronary arterial rings would display a greater 

relaxation to O2 compared to rabbit aortic rings. Indeed the vessels within the heart, even 

under normal physiological conditions, are exposed to RBCs at various saturations of O2, 

with a gradient that ranges from 95% in coronary artery to ~25% in the coronary sinus, 

representing the greatest physiological tissue O2 gradient (330, 331). Therefore the 

relevance of this finding could be key to understanding how coronary vascular tone is 

maintained under areas of low pO2. In terms of the kinetics of the response, this occurs over 

seconds and is therefore relevant to the acute and rapid response of the vessel. In relation 

to physiology, the myocardium needs to maintain an adequate supply of oxygenated blood 

in order for the heart to sustain efficient delivery of blood to the circulation and peripheral 

tissues (332). Failure of the vasculature to supply highly O2-saturated blood could lead to 

local myocardial ischaemia. Therefore, the enhanced ability for the coronaries to respond to 

O2 at low pO2 would lead to a transient vasodilation allowing an increased perfusion of 

blood.  

Initial experiments with ODQ and L-NMMA demonstrated that like rabbit aortic rings, 

porcine coronary arteries relaxed in hypoxia to a bolus of O2 and this process was shown to 

be largely sGC-dependent and endothelium-independent. Porcine coronary arterial rings 

relaxed significantly more than rabbit aortic rings to an identical O2 bolus. To investigate the 

underlying reasons for this disparity between blood vessels, the expression of sGC protein in 

both tissue types was undertaken. Western blot analysis confirmed that there were indeed 

no differences in the relative expression of either α1 or β1 subunits, perhaps ruling out the 

possibility that an increase in the amount of enzyme potentiated the relaxation response to 

O2. However, upon examination, porcine coronary tissue is much more muscular than rabbit 
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aorta. This could suggest that even though the western blot data is expressed per mg of 

protein, the porcine coronary tissue could have an overall increased amount of protein 

relative to the vessel size, potentially accounting for the enhanced vasorelaxatory response 

to O2.  

Assessment of the raw traces for porcine coronary artery and rabbit aorta revealed clear 

differences, with porcine coronary arteries not exhibiting a post-relaxation vasoconstriction. 

In Chapter 3, further investigation with rabbit aortic rings lead to the proposal that this 

constriction may be accounted for by the closure of KATP channels post-O2 addition. 

Coronary vascular smooth muscle cells express KATP channels which have been identified in 

the regulation of coronary metabolic and autoregulatory state (316). This concept has been 

supported by the evidence that inhibition of KATP channels by glibenclamide, causes 

constriction of coronary vessels which reduces coronary flow (333). Therefore, this suggests 

that in this setting, the introduction of O2 to hypoxic coronary vessels leads to a further 

enhancement in vasodilation which dampens any constrictive effects caused by the 

immediate availability of ATP.  

Experiments detailed in Chapter 4 of this thesis concluded that sGC was more sensitised 

to NO under hypoxic conditions compared to normoxia. In this chapter, further experiments 

aimed to examine the effects of vessel size on vasorelaxation to endothelium-dependent 

and independent substances. Vessel size did not alter the vasodilatory profiles of BK or 

GSNO, however, the coronary rings were an order of magnitude more sensitive to BK. There 

is evidence to suggest that NO has a greater effect on larger epicardial vessels whereas 

EDHF and adenosine affects smaller resistance coronary arteries (321, 334, 335). The 

smallest coronaries used in these studies had diameters of ~0.5 mm. Even though small 
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coronaries of < 0.2 mm (312) are most responsive to EDHF, clearly the results presented 

here indicate that BK might stimulate an enhanced vascular smooth muscle cell 

hyperpolarisation when compared to GSNO stimulation exclusively via sGC. However, the 

data displayed within this chapter suggest a sGC-dependent response due to the inhibitory 

effects of ODQ. 

 Further experiments examined the effect of vessel size on the magnitude of O2-induced 

vasorelaxation under hypoxic conditions. Coronary rings with a smaller inner diameter 

relaxed ~30 % more than those with the largest inner diameter. This suggests that smaller 

coronaries are more responsive to O2 under hypoxic conditions through increased sensitivity 

to sGC. One possibility for the enhanced relaxation to O2 by porcine coronary rings 

compared to rabbit aortic rings could be accounted for by the response of O2-sensitive KATP 

channels and subsequent hyperpolarisation of smooth muscle cells, but this remains to be 

elucidated in further studies.  

5.5.3 Conclusions 

The results within this chapter suggest that the porcine coronary artery displays an 

enhanced hypoxic vasodilatory response to the administration of O2, either as RBCs or an 

equivalent oxygenated KH buffer, when compared to rabbit aortic tissue. Relaxations 

observed in hypoxia by coronary and aortic tissue are largely sGC mediated, as confirmed by 

the attenuation of the response by ODQ. Smaller coronary vessels were found to relax 

considerably more to a defined O2 bolus, indicating that smaller coronary vessels may 

display a greater sensitivity to O2 under hypoxic conditions. 
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6.1 Introduction 

Patients with sickle cell disease possess the variant HbS, characterised by the 

substitution of glutamic acid (negatively charged) by valine (neutral charge) at position 6 of 

the β-globin chain (336). Importantly, the severity of the disease is very much dependent 

upon genotype. For instance, homozygous sickle cell haemoglobin (HbSS) leads to the 

severe disease phenotype of sickle cell anaemia, whereas heterozygous genotypes (HbS/C, 

HbS/βo, HbS/β+, HbS/HPHP, HbS/E) present varying clinical symptoms. The more rarely 

occurring HbS/βo-thalassemia is phenotypically indistinguishable from homozygous HbSS 

(337).  

The substitution of residues on the β-globin chain renders RBCs susceptible to 

‘sickling’ in areas of low O2 tension, hindering their capacity to carry O2 efficiently. This 

sickling process, known as HbS polymerisation, is caused by hydrophobic interactions by 

adjacent amino acids with the substituted valine residue. Consequently, HbS forms rigid, rod 

like structures which results in the production of deformed RBCs. Even under normal pO2 

these cells often maintain low saturation, leading to symptoms of anaemia. Moreover, 

homozygous patients are frequently affected by painful ‘vaso-occlusive crises’ which occur 

due to the conformational changes of RBCs into sickle shaped cells, leading to vessel 

obstruction and ischaemic injury (338).  

Decreased NO bioavailability has been implicated in the vasculopathy associated with 

sickle cell disease (339). Despite an observed upregulation of NOS (340), this reduced 

bioavailabilty is thought to arise as a consequence of the rapid scavenging of NO by cell-free 

Hb (341) and oxy radicals (342), as well as low levels of L-arginine (343). In addition to this, 
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the fact that sickle RBCs have an impaired ability to deliver O2 could also contribute to this 

vasculopathy. 

The O2 dissociation curve for sickle cell disease is shifted to the right compared with 

normal Hb (P50 relates to a pO2 of ~21 mmHg for normal Hb compared to ~45 mmHg for 

HbSS (344)). As a result, affected individuals are characterised by a reduced ability to deliver 

O2 efficiently under low pO2. Importantly, the extent of this dysfunction correlates to the 

severity of the disease, and that for heterozygous patients is not as profound as the shift 

observed in homozygotes (344). Based on this knowledge, the main rationale for conducting 

the pilot study reported here was to investigate whether the extent of RBC-induced 

relaxation under hypoxic conditions was altered by the presence of HbS.  

6.1.1 Aims 

Patients with disorders such as sickle cell disease possess Hb which displays a reduced 

ability to deliver O2 efficiently under low partial pO2. The specific aim of this study was to 

examine the effect of abnormal Hb on O2-induced hypoxic vasorelaxation of porcine 

coronary rings held at various O2 tensions.  

6.1.2 Hypothesis 

RBCs containing abnormal HbS would display an impaired ability to relax pre-constricted 

hypoxic porcine coronary rings compared to normal Hb.  

6.1.3 Acknowledgements 

I would like to thank Dr Alison May for all her advice in setting up this pilot study. I am 

indebted to Mr Lawrence King and staff within the haemoglobinopathy diagnostic 

laboratory at UHW for assisting with sample collection and performing HPLC analyses. 
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6.2 Methods 

6.2.1 Sample collection & preparation 

Venous blood was collected from appropriate patients and immediately stored at 4°C. 

Samples were transferred to the laboratory, on ice and then centrifuged at 1200 x g for 5 

minutes at 4°C. Control venous blood was collected from healthy volunteers within the 

Wales Heart Research Institute and centrifuged in the same way. After centrifugation, 

surplus RBCs and plasma samples from both cohorts were snap frozen in liquid N2 and 

stored at -80°C until required for NO analyses. RBCs to be used in myograph studies were 

washed in an equivalent volume of oxygenated PBS and centrifuged for a second time and 

the PBS fraction discarded prior to use. 

6.2.1.1  Sample criteria 

Included: 

 Untransfused patients with sickle cell disorder caused by either homozygous HbS or 

heterozygous HbSβo. 

Excluded: 

 Transfused patients. 

 Blood from patients receiving hydroxyurea/carbamide due to the increased synthesis 

of HbF (345).  

6.2.2 Myography 

Porcine coronary rings (~2 mm diameter) were dissected and mounted as described in 

section 5.2.2. Rings were incubated with L-NMMA (300 μM) for 20 minutes, followed by a 
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further 10 minute incubation at 0, 1 or 5 % O2/5 % CO2. Initial experiments also included 10, 

21 and 95 % O2 however, O2-induced relaxation in hypoxia could only be observed at 5 % O2 

or lower and therefore a relaxation curve to O2 under a full range of tissue pO2’s could not 

be presented. RBCs were added into each bath to expose tissue to 38 μM O2 in concurrence 

with previous experiments in Chapters 3 and 5. Relaxation data reported are averaged from 

two rings receiving identical treatment. 

6.2.3 Ion Exchange HPLC 

Ion Exchange HPLC was carried about by staff in the haemoglobinopathy diagnostic 

laboratory at UHW immediately after sample collection. The method followed was the 

‘VariantTM II β-thalassemia Short Program’ (Bio-Rad) in order to determine the content of 

adult Hb variant A2 (HbA2) and foetal Hb (HbF). A brief description of the method is outlined 

below. 

Healthy adult Hb consists mostly of HbA, < 3.5 % HbA2 and < 2 % HbF. Carriers of β-

thalassemia have increased levels of both HbA2 (> 3 %) and sometimes, HbF (> 2 %) (346). 

Ion exchange HPLC separates molecules based on their charge. The sample to be analysed is 

injected into the mobile phase (solvents) which runs through the column (stationary phase 

comprising of solid particles such as silica). Local ionic interactions occur between the 

stationary phase and the sample, which ultimately determine the retention time of each 

analyte. Ions of the same charge do not interact with the stationary phase and therefore 

pass through the system quickly. (347). Using the Variant β-thalassemia short program, HbE 

which is present in a high proportion in blood is eluted within the HbA2 retention time 

window and subsequent presumptive identification of the variants is made from the area 
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percent from the sample report (348).  Full identification is made following cellulose acetate 

electrophoresis at alkali pH 8.6 and citrate gel electrophoresis at acid pH 6.4. 

6.2.4 OBC 

Total plasma and RBC NO metabolites were measured as outlined in section 2.7.2. Most 

of the samples collected were of small sample volume and therefore only total RBC 

measures were made instead of individual measures of RBC-associated NO2
- and Hb bound 

NO.  

6.3 Results 

6.3.1 Hb composition 

Control blood samples were drawn from volunteers as described in section 6.2.1. The 

average total Hb for the 5 samples analysed was 14.66 ± 0.41 g/dL-1. Table 6.1 displays the 

composition of HbA2 and HbF in samples from diseased patients. Each patient was either 

homozygous or heterozygous for sickle cell disease. It is noteworthy to mention that the 

HbA2 present on HPLC on these patients, includes glycated components of HbS, so is always 

overestimated. This is one of the reasons HbA2 levels on sickle cell carriers/disorders are not 

usually reported.  
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Table 6.1: Hb variant composition in patient samples. 

 
Patient 

 
Gender HbF (%) HbA2 (%)** 

 
Hb (g/dL-1) 

 
1 
 

M 15.1 4.2 
 

10.2 

 
2* 

 
F 0.2 4.1 

 
6.7 

 
3* 

 
F 0.3 3.9 

 
11.8 

 
4 

 
M 7.6 4.0 

 
10.8 

 
5 

 
F 5.5 5.0 

 
10.4 

*HbSS. All other patients heterozygous HbS/ β-thalassemia, ** % includes glycated HbS.  

RBCs were added to the myograph in appropriate volumes to give a final bath 

concentration of 38 μM (see section 2.3.2).  
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6.3.2 OBC 
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Figure 6.1: NO metabolite levels as measured by OBC. A – Plasma NO2
- levels, B – Plasma 

RSNO/RNNO, C – Total RBC NO (all nM). No statistical differences were observed between normal 
and abnormal Hb for both plasma NO2

- and RSNO/N-nitrosamine (RNNO) (p>0.05). Total RBC NO was 
significantly raised in RBCs containing abnormal Hb compared with control RBCs (366.90 ± 20.52 nM 
vs. 701.80 ± 85.63 nM) (**p=0.0052) (n=5) Unpaired t test.  
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Plasma NO2
- and RSNO/RNNO levels were not statistically different in patients with 

sickle cell disease/sickle cell trait compared to normal plasma. However, measurement of 

the total RBC-associated NO revealed elevated levels of metabolite species in abnormal 

blood samples compared to control blood. However, it is important to mention that in both 

cohorts, plasma RSNO/RNNO and total RBC NO were present at levels far greater than 

reported in the literature (349, 350). 

6.3.3 O2-induced vasorelaxation 

Administration of both normal and abnormal RBC samples into porcine coronary rings 

held at various O2 tensions transiently relaxed rings held at 0, 1 and 5 % O2 (Figure 6.2). 

Preliminary testing of normal RBCs revealed that rings held higher than 5 % O2 did not relax 

to oxygenated RBCs and therefore are not presented here.  
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Figure 6.2: Effect of increasing tissue O2 content on O2-induced vasorelaxation. An increase in tissue 
O2 content decreased the magnitude of porcine coronary relaxation to RBC-derived O2. There were 
no statistical differences between the extent of relaxation induced by administration of abnormal 
RBCs compared with healthy RBCs (p>0.05) (n=5) Two-way ANOVA + Bonferroni post test. 
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In order to establish whether sample Hb content influenced the observed 

relaxations, data from Figure 6.2 was normalised for the Hb content of each sample (Figure 

6.3). Statistically, no such association was observed. 
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Figure 6.3: Effect of increasing tissue O2 content on O2-induced vasorelaxation. Data from normal 
and abnormal samples (Figure 6.2) were normalised for Hb content. There were no differences in 
relaxation at each tissue O2 between groups (p>0.05) Two-way ANOVA + Bonferroni post test. 
  



Chapter 6  Pilot Study 

Page | 202  
 

6.4 Discussion 

Chapters 3 and 5 of this thesis provide convincing evidence for the role of O2 in 

mediating relaxation in acute hypoxia. The data within this pilot study suggests that venous 

RBCs originating from sickle cell disease patients do not display an impaired ability to relax 

vascular smooth muscle under hypoxic conditions compared with healthy RBCs. As such, the 

hypothesis proposed in this chapter is rejected.  

In this study, there were five different patient blood samples, each with an individual 

genetic variation of sickle cell disease. The rationale behind sample preparation allowed for 

the oxygenation of RBCs prior to sample administration in order to encourage a fully 

saturated state of Hb (R state (40)). Thus, any differences in the relaxations produced by 

porcine coronary rings would be due to the sickling effect of patient Hb upon administration 

into the hypoxic tissue baths. Clearly, the occurrence of a transient relaxation of coronary 

tissue under hypoxic conditions suggests that the transient contact of sickle cells with 

hypoxia (seconds) does not allow sufficient time for HbS polymerisation and inhibition of 

the relaxatory response. In addition, considering sickle cells have a lower affinity for O2 

(351), one would have anticipated that perhaps during the oxygenation of samples, sickle 

cell RBCs would not be able to become as saturated as normal Hb, therefore minimising the 

amount of O2 available for offloading and subsequent mediation of relaxation of vascular 

tissue. However, the volume of RBCs administered to each bath was calculated on the basis 

that mutated HbS would bind O2 to a similar extent as HbA and therefore have the potential 

to offload an equivalent amount of O2. Given that the experiments conducted here only 

studied one patient sample per sickle cell genotype, the correlation between the extent of 

relaxation and haemoglobinopathy could not be elucidated.  
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NO analyses of patient and control samples revealed high levels of both plasma 

RSNO/RNNO and total RBC NO. Such measurements, made by several different techniques, 

have received close scrutiny, not least because of the inconsistency in values published by 

different research groups (106, 350, 352). Compared to data published by Marley and 

Nagababu, the levels of RSNO achieved here were approximately 2 to 4 fold greater (118, 

350). Conversely the levels of plasma NO2
- for both normal and abnormal samples were 

approximately 275 nM which compares favourably with previously published values (248, 

275). A likely explanation for the elevated levels of plasma RSNO/RNNO could be the lack of 

patient/control fasting prior to blood collection. Since dietary intake is well known to 

increase plasma metabolite levels, the latter is a significant cofounder of the present study 

(353).  

Interestingly, total RBC associated NO was significantly elevated in abnormal RBC 

samples. Moreover, both normal and abnormal sample levels deviated substantially from 

previously from published data (248). A study by Pawloski and colleagues reported a 

decreased level of Hb bound SNO in sickle cell RBCs compared to controls (354). Further NO 

analysis of the samples collected would have verified the distribution of NO inside the RBC 

and confirmed whether Hb associated NO2
- as well as other unbound metabolites 

contributed to the overall rise in the total RBC NO measured.  

In summary, this pilot study has shown that sickle cells have the capacity to relax 

hypoxic vascular tissue. This is likely to be due to the fact that transient exposure of low 

levels of O2 does not affect hydrophobic interaction between HbS chains and therefore the 

O2 offloading capacity of mutated Hb. 
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The main aims of this thesis were to further investigate the role of O2 in the 

relaxation of hypoxic vascular smooth muscle. Building on the work of previous and more 

recent findings within our research group, the experiments described herein were designed 

to establish the mechanism underlying O2-induced relaxation and to explore how this is 

related to the phenomenon of hypoxic vasorelaxation by RBCs.  

The biochemical role of NO within RBCs as a mediator of this effect has been 

intensely debated over the past two decades (244, 248, 355). In particular, research 

interests have focused on two interactions of NO with Hb. Firstly, thiol bound NO forming 

HbSNO and secondly, the capacity of Hb (in deoxy state) to function as a NO2
- reductase. 

With regard to HbSNO, it is well recognised that released SNO has the capacity to promote 

vasorelaxation (270). However the research presented within this thesis, and previously 

within our laboratory, suggests that SNO may not be the direct cause of vascular relaxation 

in hypoxia.  

The interest in NO2
- and its subsequent reduction by Hb (247, 274, 356), originated 

from the evidence that there is an arterial to venous gradient of plasma NO2
- present in 

blood (248), suggestive of the utilisation of NO2
- across a vascular bed. In the context of 

RBC-induced vasorelaxation, our group has demonstrated that NO2
- can directly relax 

hypoxic vascular tissue in the absence of Hb (357) in vitro, suggesting that Hb may not be 

necessary to facilitate changes in vessel tone. In addition, an in vivo NO2
- infusion study 

confirmed that Hb has little effect on NO2
- reduction, providing further evidence to reject 

this theory (275). The latter in vivo experiment was performed with physiological 

concentrations of NO2
- in contrast to several studies that draw rigid conclusions on the basis 

of supraphysiological concentrations of NO2
-. Our group has also provided evidence that 
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differences in NO metabolite levels in various compartments in the body are due to 

reapportionment of metabolites as opposed to a net loss/gain from that compartment. 

Most importantly, the overall level of NO (in terms of total NO metabolites measureable) in 

blood remains consistent. This is likely due to the difference in utilisation of tissue NO2
- 

compared to NO2
- contained within the plasma compartment which can also be augmented 

in the face of hypoxia (275). 

Both of the theories outlined above are dependent upon the allosteric state of Hb 

and the level of tissue oxygenation, which allows for the release of vasoactive forms of NO, 

leading to vasorelaxation. Important data emerged from the previous project which shaped 

the work within this thesis. Most importantly, this data illustrated that the vasorelaxant 

species released from RBCs was replenishable upon re-oxygenation. Therefore, such a 

mediator would be completely restored during T to R cycling. It is important to mention that 

the mechanism of hypoxic vasorelaxation cannot be mistaken for the series of events which 

occurs during the adaptive response to chronic/prolonged hypoxia but instead serves to 

quickly deliver O2 to local tissue which may have a reduced blood supply.  

The novel work reported within this thesis provides convincing evidence for the 

direct role of O2 in the relaxation of hypoxic vascular tissue. The initial rationale for 

investigation with O2 in this setting came about by the inclusion of an appropriate control 

for classical RBC hypoxic vessel studies. O2, in the form of an oxygenated buffer bolus 

(comparable to RBC HbO2 saturation), was able to induce a transient relaxation of hypoxic 

rabbit aortic rings which was of identical magnitude to that induced by RBCs, illustrated in 

Chapter 3 of this thesis. Our lab has previously reported a rise in O2 concentration in hypoxic 

myograph experiments post-administration of oxygenated RBCs, as measured by an O2 
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electrode (259). Interestingly, the post-relaxation vasoconstriction attributable to RBC-

induced relaxation was also present for O2 alone. Moreover, the content of O2 within the 

buffer sample was directly correlated to the extent of vessel relaxation. This finding is 

closely related to the relationship between HbO2 saturation and the extent of vessel 

relaxation illustrated in Chapter 3. In addition, further analysis of this correlation suggests 

that the line of regression runs through the origin therefore if no relaxation occurs, no post-

constriction results. This questions the proposed theory of Hb scavenging of NO, since a 

prior vasorelaxation is not essential. A study presented in Chapter 3 demonstrates that the 

KATP channel inhibitor, glibenclamide, almost completely abolishes the post relaxation 

vasoconstriction induced in rabbit aortic rings. This suggests the role of O2 in this setting 

could be partly attributed to the turnover of energy source, ATP. All tissue experiments in 

Chapter 3 utilised an increased concentration of PE due to the relaxant effect of hypoxia on 

basal vascular tone. Thus, a second mechanism of vasoconstriction could be limited to the 

effect of O2 upon cellular respiration and subsequent turnover of mitochondrial ATP, giving 

rise to an increased energy store for further constriction by excess PE present within the 

tissue bath.  

The simple idea that molecular O2 could cause relaxation in hypoxia was one which 

posed many research questions, the most significant being, what is the mechanism by which 

O2 acts? Our laboratory and others (250, 258) have shown that RBC-induced vasorelaxation 

in hypoxia can be largely inhibited by ODQ. This is also true for O2-induced vasorelaxation 

presented in Chapter 3 and signifies a sGC-dependent mechanism.  

The data presented in Chapter 4 are the first to provide evidence for the stimulation 

of purified human sGC by O2. Numerous publications have stated that human sGC cannot 
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bind O2 (283, 301, 303), mainly due to its primary function in NO signalling. However, levels 

of cGMP detected by ELISA were significantly increased by atmospheric levels of O2 

compared to hypoxia and more importantly, this occurred in the absence of preferential 

ligand, NO. In addition, the activity of hypoxic sGC was ‘sensitised’ to lower concentrations 

of NO compared to the normoxic enzyme. The question remains as to the physiological or 

indeed pathological role of this action. 

In terms of conditions such as coronary heart disease, where myocardial tissue 

oxygenation is limited distal to the site of occlusion (358), NO donors  are extremely 

beneficial to enhance vasodilation. Chronic treatment with drugs such as GTN are associated 

with developed tolerance in patients (359) and the search for alternative treatments is 

ongoing.  Looking from a different perspective, an unexpected mechanism by which NO 

donor treatment could improve vascular function is through this increased sensitivity of 

sGC. Although the work within this chapter did not confirm the location of O2 stimulation of 

sGC, it is likely that O2 has a direct influence upon the haem moiety of the enzyme in a site 

similar to that where BAY 41-2272 acts. This is a completely novel finding which is important 

to the field of sGC biochemistry and could benefit the development of sGC-targeted 

therapeutics. In the clinic today, O2 therapy has vastly improved the well-being of patients 

with acute coronary syndromes by improving the saturation of Hb and subsequent tissue 

oxygenation (360). The theory we propose is that O2 delivery in this setting could lead to 

enhanced vasodilatory functions which are not attributable to NO. Excessive O2 exposure 

however does lead to negative effects due to the increased formation of radical species 

(360) which would need to be taken into consideration prior to therapy.   
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The research conducted for this thesis, as well as other publications (258, 271), used 

the isolated rabbit aortic ring model to explore the mechanisms underlying hypoxic 

vasorelaxation. However, in vivo the aorta is unlikely to experience such hypoxic conditions 

and the aim of Chapter 5 was to characterise these findings in porcine coronary artery. This 

particular subset of vessels was chosen due to the relative diameter of the vessels in 

relation to human coronary vessels as well as rabbit aortic vessels used in previous 

experiments within this thesis. Coronary vessels and the myocardial tissue which surround 

them can become ischaemic when myocardial O2 supply does not meet demand (358). Since 

coronary blood flow is ~250 ml/min-1 at rest (312), it is imperative that the blood can flow 

freely to the heart to meet this demand (332). Coronary thrombosis and conditions where 

blood flow to the heart muscle is compromised leads to a decreased perfusion of the 

myocardium and subsequent myocardial ischaemia (361). These studies therefore had 

direct pathological significance. O2-induced vasorelaxation in porcine coronary LAD rings 

produced significantly enhanced relaxations compared with rabbit aortic rings of the same 

inner diameter. Since O2 could enhance the activity of sGC, the sGC α1 and β1 content in 

both tissue types was examined and shown to be similar in porcine coronary and rabbit 

aortic tissue per mg of protein. Although of similar size in terms of inner diameter, porcine 

coronary vessels possess a thicker vessel wall than rabbit aorta. Thus the amount of total 

sGC protein in porcine coronary vessels was higher, allowing more O2 to bind sGC. In vivo 

this increased O2 binding to sGC and subsequent vasorelaxation could benefit patients with 

endothelial dysfunction, where NO bioavailabilty is lacking (362). Further investigation into 

the effect of O2-induced vasorelaxation of porcine coronary vessels of different size 

illustrated that smaller porcine coronary rings (~0.5 mm inner diameter) deriving from the 

LAD, demonstrated an enhanced relaxatory response compared to vessels of a larger inner 
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diameter. This finding is important in understanding how various coronary vessels supplying 

the myocardial tissue bed respond to O2. For instance, in a clinical setting, vessels and 

myocardial tissue downstream from the site of occlusion would benefit from increased O2 

sensitivity post-bypass surgery.  

In summary, through the use of in vitro techniques, the data within this thesis 

provides convincing evidence to support the role of O2 in mediating relaxation under acute 

hypoxic conditions. In comparison with the classical RBC-induced vasorelaxation bioassay 

performed by ourselves and others, this data supports the hypothesis that O2 is the 

mediator released from RBCs to transiently dilate hypoxic tissue. Our myograph studies 

utilise RBCs at a < 0.5 % haematocrit and still we see ~15 % relaxation induced in rabbit 

aortic rings and ~30 % relaxation in porcine coronary tissue. In vivo, where the haematocrit 

is ~40 %, this could have a significant effect upon matching O2 supply with demand, 

especially in the heart where myocardial O2 supply is vital. Further evidence is needed to 

support the studies presented here with regards to the direct interaction of sGC with O2. 

Structural studies conducted to date have focussed on the binding of NO to sGC under de-

gassed conditions, mainly due to the rapid oxidation of NO by O2. However, in order to 

confirm whether O2 binds sGC, structural studies would need to be attempted under 

conditions where O2 concentration is strictly controlled and in the absence of NO.     
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