1	A unified approach to measuring structures in orientated drill core
2	
3	Tom Blenkinsop ^{1,2*} , Mark Doyle ³ and Michael Nugus ³
4	
5	¹ School of Earth and Ocean Sciences,
6	Cardiff University,
7	Main Building, Park Place
8	Cardiff CF10 3AT
9	UK
10	² Economic Geology Research Centre (EGRU),
11	School of Earth and Environmental Science,
12	James Cook University,
13	Townsville, QLD 4811,
14	Australia
15	³ AngloGold Ashanti Ltd
16	Level 13, St Martins Tower
17	PO Box Z5046,
18	Perth, WA 6831
19	Australia
20	
21	*Corresponding author: Tom Blenkinsop (email: <u>BlenkinsopT@Cardiff.ac.uk</u>)
22	Number of words (text, references, tables and figure captions): 4541
23	Abbreviated Title: Structural Analysis of Drill Core
24	

25 **Abstract**

26

27 A unified system of collecting structural data from drill core is proposed. The system encompasses 28 planes and planar fabrics, lineations, fold hinges and hinge surfaces, faults and shear zones, 29 vorticity vectors, shear directions and shear senses. The system is based on standard measurements 30 of angles in the reference frame of the core (α and β angles), which are easily carried out by means 31 of core protractors or templates. The methods for dealing with folds and kinematic analysis of 32 shear zones have not been described previously, but they follow logically from the standard 33 methods for dealing with planes and lines. 34 35 36 Diamond drill core is arguably the most important source of data for mineral exploration and 37 development at the deposit scale. Since hydrothermal mineral deposits typically have strong 38 structural controls, analysis of structures from orientated drill core is critical for the successful 39 utilisation of such resources, as well as for understanding the geology of deposits. Many tens of km 40 of drill core may be acquired for a single deposit during exploration before any ore is mined, and 41 further drilling almost invariably occurs to investigate extensions of known mineralization once mining has started. An efficient method of structural data collection from drill core is essential to 42 43 deal with this volume of data. Standardisation of the approach in production logging environments 44 is a prerequisite for digital data capture, management and integration, improves the ability to 45 identify discrepancies, and facilitates training of personnel. Structural analysis from drill core may 46 be even more vital in future as exploration moves from well-exposed terrains into target areas 47 obscured under deep cover. 48

Once drill core has been analysed, mineralised sections of the core are typically cut: half of the coreis sent for assay. The remainder of the core is stored, commonly in an exposed manner where it can

rapidly deteriorate, especially if it contains sulphides. Such core will need to be re-analysed if the initial structural assessment is incomplete. This step is much more difficult from half core, more so if it is weathered. Structural data collection from drill core therefore needs to be thorough as well as efficient. A comprehensive structural analysis from the outset allows alternative ideas for deposit genesis to be tested as the deposit is mined, and has major benefits for resource estimation.

56

57 Core is orientated by a variety of techniques during drilling (e.g. Marjoribanks 2009), which 58 generally result in a point being marked at the lowest part of the core – the bottom-of-core (BOC) 59 mark. The BOC mark is made at intervals (typically after each core run of a few m), and intervening 60 core is orientated by aligning adjacent BOC marks so that a continuous line can be marked along 61 the bottom of the core – the orientation ("ori" in typical Australian vernacular) line. Arrows are 62 commonly marked on the orientation line to indicate the down-hole direction. Fragmentation of the 63 core may degrade the quality of orientation, and other factors may also contribute to poor or 64 erroneous core orientation (e.g. Davis & Cowan 2012). If limited drill core is available it may be 65 appropriate to mark an unconfirmed orientation line in a different colour and record structural data 66 collected from these intervals as unconfirmed. The minerals industry does not typically use 67 borehole imaging techniques (cf. Paulsen et al. 2002), so that core from vertical holes is difficult to 68 orientate; however, almost all exploration holes are inclined. The BOC mark and line is the basis of 69 all techniques used in this paper.

70

There are several methods of collecting structural data from orientated drill core (e.g. Marjoribanks 2009). Probably those most widely employed use various devices (template, rat-trap, core protractor: Fig. 1) that specify the orientation of structures by measuring angles relative to the core axis and the BOC line. Subsequently these measurements must be combined with data from the down hole survey of hole orientation to retrieve the true orientation of structures. Because of the universal tendency of drillholes to deviate, accurate survey data, specific for the depth of the

77 measurement, must be used. The aim of this paper is to propose a systematic and unified system of 78 collecting a comprehensive suite of structural data from orientated drill cores using angles measured in the core frame of reference. The basic methods for planes and lines are described first to show 79 80 how new methods dealing with folds and shear zones can be developed logically from them. 81 The paper does not address the merits of various techniques of measuring structures in cores 82 (described in Vearncombe and Vearncombe 1998), problems of core orientation, or procedures for 83 reorientation of structures to a geographic frame of reference (e.g. Holcombe 2013; Stanley and 84 Hooper, 2003)

- 85
- 86

87 α-β Method – Planes and Planar Fabrics

88 The α - β method for measuring planar features is in widespread use (e.g. Vearncombe and 89 Vearncombe 1998; Marjoribanks 2009). The angles α and β characterise the orientation of a planar 90 feature. α is defined as the angle between a line parallel to the length of the core (the core axis) and 91 the plane (Fig. 2). β is the angle measured clockwise looking down core from the BOC line to the 92 down-core axis of the ellipse formed by the intersection of the plane and the core (Fig. 2). The 93 whole process of extracting a piece of core from a core tray, measuring α and β , and returning the 94 core to the tray can be carried out in less than a minute, and is not subject to errors due to magnetic 95 minerals that affect compasses.

96

97

98 β and γ Methods – Lineations

99 Lineations can be measured in two ways, both requiring the lineation to be interpolated through the 100 centre of the plane in which it lies. A γ measurement is similar to measuring the pitch of a lineation 101 in a plane (Fig. 3), but the measurement is made with reference to the down-core end (long axis) of 102 the plane ellipse (cf. Holcombe 2013; γ is defined differently in some literature e.g. Laing 1977; 103 Vearncombe & Vearncombe 1998, but the Holcombe definition is used here). Alternatively, the 104 location of the lineation on the ellipse defined by the plane in which it lies can be used to define the 105 lineation orientation (Fig. 4). The point where the lineation, interpolated through the centre of the 106 ellipse, intersects the circumference of the ellipse can be measured by a β angle (clockwise looking 107 downhole from the BOC mark) (Marjoribanks 2009), which is referred to as δ by Vearncombe & 108 Vearncombe (1998). This measurement is distinguished here by the suffix L (β L) to distinguish it 109 from the simple β measurement for a plane. This notation is introduced to avoid any possible 110 confusion with other Greek symbols, and to maintain consistency with the following methods. The 111 β L measurement can be combined with the α and β measurements of the pane in which the lineation 112 lies, and the downhole survey data, to solve for the true orientation of the lineation. 113 114 There are two advantages to this method of measuring lineations: firstly, no additional equipment is 115 needed beyond the template/rat-trap/core protractor, compared to the γ measurement that 116 additionally requires a conventional protractor. Secondly, as shown below, the β method can be 117 extended to other lines (fold hinges, the vorticity vector), making it part of a unified way to collect 118 structural measurements from core. 119

120

121 **Folds**

Folds can have a complex expression on the cylindrical surface of a core, but typically they will consist of a closed shape formed by the intersection of the core and the folded surface (Fig. 5). A method for core analysis is required that can measure the orientation of both the hinge and the hinge surface (axial plane). The hinge surface is simply dealt with by the α - β method for planes. Because the hinge surface may not have a direct physical expression in a fold, it is useful to mark the surfaceon the core to measure it accurately (Fig. 5b).

128

Hinges pose a more difficult problem than lineations, because the hinge surface in which they lie is generally not exposed in the same way that lineations are seen on a foliation surface, and a hinge is commonly a discrete line that does not pass through the centre of the core. This problem was recognised by Scott & Berry (2004), who proposed a method that uses three angles measured from a transparent template to define the orientation of a fold hinge.

135 Here, a new method to measure fold hinges is proposed that uses β angles, and a single length 136 measurement on the core (Fig. 6). βU is defined as the β measurement of the up-hole intercept (U) 137 of the fold hinge with the core. βD is similar for the down-hole intercept (D). The distance UD is 138 defined as the distance between U and D measured parallel to the core axis (Fig. 6). These 139 measurements can be combined to solve for the orientation of the hinge. Advantages of this method 140 are that it can be executed with a template/rat-trap/core protractor and a simple ruler, that it extends 141 the unified method developed here, and that it is simpler than the Scott and Berry (2004) method 142 that requires a special template. The method can be applied to any cylindrical fold defined by a 143 single layer, but disharmonic folds, and refold structures on the scale of the core, are difficult to deal 144 with.

145

146 Shear Zones

147 Structural analysis of shear zones requires measurements of foliations, lineation, shear plane, and 148 shear direction in mylonites, and determination of shear sense (Fig. 7). Foliations and shear planes 149 are readily measured using the α - β method, and lineations by the β L method outlined above. The 150 shear direction was commonly taken as approximately parallel to the stretching direction as

represented by the lineation, but particularly following the work of Tikoff and co-workers (e.g.

152 Tikoff & Fossen 1993, Tikoff & Teyssier 1994), it has been realised that this approximation is not

153 generally true, and that the relation between the shear direction and the lineation is a function of the

154 relative amounts of pure and simple shear, or the vorticity number (Fig. 7). Therefore a complete

analysis of shear zones requires measurement of the shear direction independently from the

156 lineation.

157

158 The key to making a comprehensive kinematic analysis of shear zones in core is the concept of the 159 vorticity vector. The vorticity vector is the axis about which internal rotation occurs in a shear zone 160 (e.g. Means et al. 1980; Xypolias 2010), which is perpendicular to the shear direction within the 161 shear plane (Fig. 7). The vorticity vector can be identified in a shear zone as the direction 162 perpendicular to the plane containing the maximum asymmetry of shear sense indicators, such as 163 winged porphyroclasts, asymmetric boudins, quarter structures, pressure fringes and shadows and 164 S-C fabrics (Fig. 8). This plane is also referred to as the Shear Sense Observation Plane, the 165 Vorticity Profile Plane, or the Vorticity Normal Section (Robin & Cruden 1994; Jiang and Williams 166 1998).

167

Here core analysis has a significant advantage over outcrop geology. A single piece of core intersecting a shear zone generally affords a complete view of the shear plane through 360°. It is therefore possible to identify the vorticity vector relatively accurately compared to many outcrop situations where this level of exposure does not exist. The vorticity vector can be identified as a point on the core surface within the shear plane, and it can be measured by a single β measurement (β V: Fig. 9). This allows the shear direction to be calculated as the normal to the vorticity vector and within the shear plane.

175

S-C and S-C' fabrics offer an alternative method for shear direction determination. The intersection
between S and C or S and C' surfaces is perpendicular to the shear direction (Fig. 10). These

surfaces can be measured by the α-β method, from which it is possible to calculate the shear
direction (SD), which lies in the C or C' plane perpendicular to the intersection of the planes (Fig.
9).

181

Shear sense can be specified in several ways, depending on the orientation of the shear zones and drill core, and user preference. The ideal situation is when the true orientation of the shear plane and shear direction is known. In this case, the shear sense can be classified by qualitative kinematics i.e. dip slip (normal, reverse), strike slip (dextral, sinistral), or oblique slip (dextral normal etc.). This determination can commonly be made by holding the core in the approximate orientation that it was drilled, and making a visual inspection.

188

189 However, in cases where shear planes are either approximately horizontal or vertical, it becomes 190 difficult to distinguish dextral from sinistral and reverse from normal without accurate reorientation 191 of the core, because the dip direction is uncertain. A second method can deal with these situations. 192 The uphole side of a shear zone can be unambiguously identified for all shear planes except those 193 through the core axis (Fig. 11). The shear sense can then be recorded as, for example: "The uphole 194 side has moved to the north" etc. Subsequently this record can be interpreted in kinematic terms 195 when the data is plotted on a stereonet: the uphole side is readily distinguished on a stereoplot as the 196 area that does not contain the core axis (Fig. 11). For planes that are parallel to the core axis, it is 197 usually possible to identify the two halves of a core in a third way: geographically. Thus it is 198 possible to state, for example: "the east side of the shear zone has moved north" etc. These 199 comments on determining shear sense also apply to faults.

200

In all three cases above, an alternative to describing movement directions is to specify the rotation sense of the vorticity vector (clockwise or anticlockwise). It is essential to view the vorticity vector in consistent direction: the convention of a downplunge direction is recommended. However, this

204	direction can be difficult to establish for shear planes that are approximately horizontal. In such
205	cases a downhole direction can be more readily established. The sense of rotation of the vorticity
206	vector can be simpler to record than the shear sense as specified by movement directions.
207	

209 Half Core

210 Core is commonly cut relatively soon after drilling for assaying. In some cases the half of the core 211 with the orientation mark is regrettably sent for assay, in which case it is only possible to use the 212 remaining half if some sort of reconstruction can be attempted from the adjacent core. Even if the 213 orientation mark is preserved, however, it may not be possible to use the α - β method, because one 214 or both ends of the ellipse formed by the intersection of the plane and the core are not preserved. A 215 method that uses two linear measurements and one angle, on core of a specified diameter cut at a 216 known angle to the orientation mark, has been developed to allow accurate measurements of planar 217 orientations (Blenkinsop & Doyle 2010).

218

219

220 **Discussion**

The most common industrial method of collecting structural data from core currently uses α and β angles measured in a core frame of reference. The unified system for collecting structural data suggested here is based on these angles, with the addition in some cases of a length measurement. Therefore it can be taught easily, and readily incorporated into a standard structural measurement routine that enables efficient digital data capture and integration. A photographic method for collecting structural measurements (https://www.groundmodellingtechnologies.com/) utilises an image of core in a core tray: it remains to be seen how this could be utilised for vorticity vectors and fold hinges.

229

230 The early adoption of the unified system proposed here, while full core is available before it has 231 been cut for assay, may pay dividends at later stages of a mining project. Otherwise such core may 232 need to be revisited for additional structural measurements, particularly as new structural models 233 are developed. While it is possible to make measurements on half core by the methods in 234 Blenkinsop & Doyle (2010), it is more time consuming, and there is less information available 235 compared to full core. In addition there is the risk of destroying core that contains the orientation 236 mark. The demand for larger sampling volumes in deposits with a high nugget effect (e.g. Dominy 237 et al. 2000) or for geometallurgical studies may necessitate complete destruction of core. 238 239 In response to the cost of obtaining drill core, new technologies are being developed that may 240 replace some of the functions of core collection, by for example downhole logging and imaging 241 (http://detcrc.com.au/about/goals/). Coiled tubing drilling is also being investigated as an 242 exploration tool in the minerals industry (http://detcrc.com.au/programs/program-1/project-1-1/), 243 entailing no core retrieval. These developments reinforce the importance of utilising what may be 244 very limited core to the fullest extent, and therefore the advantages of the system advocated here. 245 246 One potentially serious problem of using a core frame of reference is the possibility that structural 247 measurements are collected but not processed until a later time when the core is no longer 248 accessible. This means that the geologist has no ready appreciation of the geographical orientations 249 of the features being measured while collecting data. Such a divorce between structural data 250 collection and appraisal has several adverse consequences. Hypothesis development and testing is 251 precluded until later. Anomalous observations or variations in orientations are not recognised, and

252 cannot be allowed for in a data collection strategy. Therefore potential errors, including core

253 orientation problems as well as incorrect data measurement, cannot be checked. These problems can

254	be solved by immediate (real time) processing of core angle measurements on site. Ideally,
255	measurements should be entered directly into a logging form or spreadsheet that calculates the true
256	geographic orientations, and preferably plots them on a stereonet as the core is being logged. In
257	addition, the use of a "rocket launcher" is strongly advocated for occasional pieces of core, as a
258	check on the core angle measurements, and to convey a realistic picture to the geologist
259	(Vearncombe & Vearncombe 1998).
260	
261	This study has been based on core from structurally controlled hydrothermal mineral deposits.
262	However it is clear that petroleum cores also have a variety of interesting structural features (e.g.
263	Hesthammer 1998; Hesthammer & Henden 2000; Porter et al. 2000; Hillier & Cosgrove 2002).
264	With the availability of orientated and inclined core (e.g. Follows 1997), the techniques suggested
265	above could also be applicable in the hydrocarbon industry.
266	
267	

268 **Conclusions**

269

270 A unified system of structural observations in core is proposed, based on angles and lengths 271 measured in a core frame of reference. The system relies on the generalised use of β angles, 272 combined with some linear measurements. It is capable of measuring planes, lines within planes, 273 fold hinges and hinge surfaces, and comprehensive analysis of shear zones and faults. Core is 274 particularly useful for the analysis of shear zones. The vorticity vector can be readily located, more 275 conveniently than in many outcrops, because of the full view of the shear plane afforded in core. All 276 the methods described for full core can be adapted for half core. Widespread use of, and familiarity 277 with, angular measurements on core makes for ready adoption of this unified method with modest 278 training requirements. Structural measurements from core may become even more important in the

270	C .	1	1	1.1 .	,	· 1
)/9	fuffure as exi	nioration moves	under cover	and there is	pressure to ac	anne less core
21)	Tuture us en	protucion moves	under cover,	und there is	pressure to ac	quite 1655 6010.

2	0	Ω
4	0	υ

282	Anglogold Ashanti A	Australia are a	cknowledged	for access to t	the core on which	ch this method was
	00		0			

- 283 developed. George Case provided some very helpful comments on a first draft.
- 284
- 285
- 286 References
- 287
- 288 BLENKINSOP, T. G., & DOYLE, M. G. 2010. A method for measuring the orientations of planar
- structures in cut core. *Journal of Structural Geology*, **32**, 741–745.
- 290 DAVIS, B., & COWAN, J. 2012. Oriented Core-What the...In: Vearncombe, J. (ed) Structural Geology
- and Resources, Australian Institute of Geoscientists, Bulletin 56, 61-63.
- 292 DOMINY, S. C., ANNELS, A. E., JOHANSEN, G. F., CUFFLEY, B. W. 2000. General considerations of
- sampling and assaying in a coarse gold environment. *Applied Earth Science*, **109**, 145-167.
- Follows, E. 1997. Integration of inclined pilot hole core with horizontal image logs to appraise an
- aeolian reservoir, Auk Field, Central North Sea. *Petroleum Geoscience*, **3**, 43–55.
- 296 HESTHAMMER, J. 1998. Integrated use of well data for structural control of seismic interpretation.
- 297 *Petroleum Geoscience*, **4**, 97-109.
- 298 HESTHAMMER, J., & HENDEN, J. O. 2000. Fault orientation from unoriented cores. American
- 299 Association of Petroleum Geologists Bulletin, 84, 472-488.
- 300 HILLIER, R. D. & COSGROVE, J. W. 2002. Core and seismic observations of overpressure-related
- 301 deformation within Eocene sediments of the Outer Moray Firth, UKCS. *Petroleum Geoscience*,
- **8**, 141–149.
- 303 HOLCOMBE, R., 2013. Oriented drillcore: measurement, conversion and QA/QC procedures for
- 304 structural and exploration geologists. <u>http://www.holcombecoughlinoliver.com/</u>.

- JIANG, D., WILLIAMS, P. F. 1998. High-strain zones: a unified model. *Journal of Structural Geology*20, 1105-1120.
- 307 LAING, W. B. 1977. Structural interpretation of drill core from folded and cleaved rocks. *Economic* 308 *Geology*, 72, 671-685.
- 309 MEANS, W. D., HOBBS, B. E., LISTER, G. S. AND WILLIAMS, P. F. 1980. Vorticity and non-coaxiality
- in progressive deformation. *Journal of Structural Geology*, 2, 371-378.
 MARJORIBANKS, R. W. 2009. *Geological methods in mineral exploration and mining*. Berlin; New York: Springer.
- 311 PAULSEN, T. S., JARRAD, R. D., & WILSON, T. J. 2002. A simple method for orienting drill core by
- 312 correlating features in whole-core scans and oriented borehole-wall imagery. *Journal of*
- 313 *Structural Geology*, **24**, 1233-1238.
- 314 PORTER, J. R., KNIPE, R. J., FISHER, Q. J., FARMER, A. B., ALLIN, N. S., JONES, L. S., PALFREY, A. J.,
- 315 GARRETT, S. W. & LEWIS, G. 2000. Deformation processes in the Brittannia Field. UKCS.
- 316 *Petroleum Geoscience*, **6**, 241-245.
- 317 ROBIN, P. Y. F., CRUDEN, A. R. 1994. Strain and vorticity patterns in ideally ductile transpression
- 318 zones. *Journal of Structural Geology* **16**, 447-466.
- 319 SCOTT, R. J., & BERRY, R. F. 2004. A new method for obtaining and quantifying the reliability of
- 320 structural data from axially-oriented drill core using a fabric of known orientation. Journal of
- 321 *Structural Geology*, **26**, 643-658.
- 322 STANLEY, C. R., & HOOPER, J. J. 2003. POND: an Excel spreadsheet to obtain structural attitudes of
- 323 planes from oriented drillcore. *Computers and Geosciences*, **29**, 531-537.
- 324 TIKOFF, B., & FOSSEN, H. 1993. Simultaneous pure shear and simple shear: The unifying
- deformation matrix, *Tectonophysics*, **217**, 267–283, doi:10.1016/0040-1951(93)90010-H.
- 326 TIKOFF, B., & TEYSSIER, C. 1994. Strain modeling of displacement-field partitioning in
- 327 transpressional orogens. Journal of Structural Geology, 16, 1575–1588, doi:10.1016/0191-
- 328 8141(94)90034-5.

- 329 VEARNCOMBE, J., & VEARNCOMBE, S. 1998. Structural data from drill core. In: Davis, B. and Ho,
- 330 S.E. (eds) More meaningful sampling in the Mining Industry, Australian Institute of
- 331 Geoscientists, Bulletin **22**, 67-82.
- 332 XYPOLIAS, P. 2010. Vorticity analysis in shear zones: A review of methods and applications. Journal
- 333 *of Structural Geology* **32**, 2072-2092. doi:10.1016/j.jsg.2010.08.009

335

337	Figures
338	
339	Fig. 1. Some common tools for measuring structures in core.
340	a) Rocket launcher
341	b) Template (Scott and Berry 2004 version)
342	c) Rat-trap
343	d) Core protractor
344	
345	Fig. 2. α - β method for measuring the orientation of planes or planar fabrics in orientated drill core.
346	α is the angle between the core axis and the long axis of the ellipse formed by the intersection of a
347	plane with the core. β is the angle measured from the bottom-of-core mark to the ellipse long axis,
348	measured clockwise looking down core. The lower hemisphere, equal area stereoplot shows the
349	construction needed to find the true orientation of the plane using α and β , and the orientation of the
350	core. The plotting procedure is described in detail in Holcombe (2013).
351	
352	Fig. 3. γ method for measuring the orientation of a line within a plane. γ is the angle from the
353	ellipse long axis to the lineation. Stereoplot shows γ measurement.
354	
355	Fig. 4. β L method for measuring the orientation of a lineation in a plane. β L is the angle from the
356	bottom of core mark to the lineation within the plane, which can be measured readily with a core
357	protractor. Stereoplot shows angular relationships and how to find the true orientation of the
358	lineation from the βL measurement and the orientation of the plane and core axis.
359	
360	Fig. 5. Appearance of folds in core. a) Multiple folds in gneiss, expressed as figure of eight and
361	ellipses on the core surface. Folded surfaces marked in red dashed lines; fold hinge surfaces in
362	yellow. b) Fold hinges (yellow dots) and hinges surfaces (red lines) on adjacent folded surfaces.

363 Both cores from Tropicana gold deposit, courtesy of Anglogold Ashanti Australia Ltd.

364

365 Fig. 6. Measurements needed to find fold hinge orientations from the intersections of a fold hinge 366 on core. U, D are the up- and down-hole intersections of the hinge with the core. They are 367 characterised by angles βU and βD measured from the bottom of core mark (BOC). UD is the 368 distance from U to D parallel to the core axis, measured positive downhole. 369 370 Fig. 7. Appearance of two types of shear zone in core, with varying relationships between lineation 371 and vorticity vector. The shape and orientation of the porphyroclasts are shown to be approximately 372 representative of the shape of the finite strain ellipsoid. a) Simple shear dominant (sensu Tikoff and 373 Fossen 1993). Lineation (vellow lines) is parallel to the shear direction. b) Pure shear dominant. 374 Lineaton is parallel to the vorticity vector and perpendicular to the shear direction. 375 376 Fig. 8. Shear zones and shear sense indicators in core. a) Shear plane (yellow line on core) can be 377 measured by the α - β method. The vorticity vector (purple line) and shear sense (yellow half-arrows) 378 are identified within the shear plane by the σ clast. The vorticity vector can be located by the angle 379 βV from the Bottom of Core mark (BOC). b) S-C fabrics and vorticity vector in core. 380 381 Fig. 9. Measurement of the vorticity vector in core. The vorticity vector is located by the βV 382 measurement from the Bottom of Core (BOC) measured clockwise looking down hole. The shear 383 direction (SD) is perpendicular to the vorticity vector. Stereoplot shows angular relationships and 384 construction necessary to locate the vorticity vector from the βV measurement, and the shear 385 direction 90° from the vorticity vector in the shear plane. The vorticity is anticlockwise (looking 386 down plunge), which implies a reverse sinistral sense of shear. 387

388 Fig. 10. Appearance of S-C structures in core, and their use to find the vorticity vector, shear

389 direction (SD) and sense of shear. The S and C planes can be measured by the α - β method. The S-C 390 intersection is parallel to the vorticity vector, and perpendicular to the shear direction. The sense of 391 shear is given by the sense of rotation from the S fabric to the C fabric. Similar relationships exist 392 for S and C' planes.

393

Fig. 11. Two situations in which kinematics are difficult or ambiguous to specify using typical

kinematic terms. a) It is difficult to specify the hangingwall of a near vertical shear plane. The

396 uphole side is unambiguous. b) It is difficult to know the exact dip direction of a near horizontal

397 surface, and therefore to evaluate whether it is dextral or sinistral. Again, the uphole side of the

398 shear is unambiguous.

a) Simple shear dominant

b) Pure shear dominant

