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Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models
induced by an initial prolonged status epilepticus associated with substantial cell death. In these models,
neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase,
we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model
of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not
cause status or, inmost cases, detectable neuronal loss.We found a 4.5 times increase in BrdU labeling (estimating
precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7 days) in
dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the
rats experienced 112±24 seizures, lasting 88±11 s each, over a period of 8.6±1.3 days from the first
electrographic seizure. On the first day of seizures, their durationwas amedian of 103 s, and themedian interictal
period was 23 min, confirming the absence of experimentally defined status epilepticus. The total increase in cell
proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I;
7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-
expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are suffi-
cient to promote increased hippocampal neurogenesis in the absence of status epilepticus.

© 2013 Elsevier Inc. All rights reserved.
Introduction

The generation of new neurons, neurogenesis, in the adult brain
continues in mammals, including humans, throughout life (Eriksson
et al., 1998; Gage et al., 1998). Neurogenesis is regulated by a variety
of physiological stimuli and newly born dentate gyrus neurons inte-
grate into the circuitry of the adult hippocampus, leading to theories
for roles in learning and memory (Deng et al., 2010).
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In animal models, hippocampal neurogenesis is affected by a
wide range of pathological conditions including of focal epilepsies,
in particular those induced by initial status epilepticus (Bender et al.,
2003; Bengzon et al., 1997; Gray and Sundstrom, 1998; Jessberger
et al., 2005, 2007; Nakagawa et al., 2000; Parent et al., 1997). Despite
the difficulties in assessing neurogenesis in adult humans, where
robust controlled methods for detection cannot be implemented eth-
ically, evidence from surgically excised human tissue supports the pres-
ence of altered neurogenesis in clinical temporal lobe epilepsy (TLE)
(Blumcke et al., 2001; Crespel et al., 2005; Fahrner et al., 2007; Parent
et al., 2006) especially in patients with poor memory performance
preoperatively (Coras et al., 2010). In animal models, which allow the
detection of changes with a greater temporal fidelity, hippocampal
neurogenesis is initially enhanced following the induction of status
epilepticus (Bengzon et al., 1997; Gray and Sundstrom, 1998;
Jessberger et al., 2005, 2007; Parent et al., 1997) and later declines
in some (Hattiangady and Shetty, 2008) but not all models (Bonde
et al., 2006). However, while previous studies have examined the
differential effects of severe convulsive versus less severe status
epilepticus on hippocampal neurogenesis (Bouilleret et al., 1999;
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Hung et al., 2012; Mohapel et al., 2004; Yang et al., 2008), there
have been no studies to our knowledge examining the effects of
repeated spontaneous seizures without a prior status. The fully convul-
sive status epilepticus basedmodels of TLE used previously (induced by
kainate, pilocarpine or electrical stimulation) are typically associated
with substantial morphological changes, in the form of neuronal
loss and sprouting of axonal collaterals. Few studies have demon-
strated seizure-induced cell proliferation and/or neurogenesis in
the absence of status epilepticus. Bengzon et al. (1997) found single
evoked afterdischarges could increase neurogenesis 3-fold and a
rapid kindling protocol (40 stimuli at 5 min) increased it 6-fold, in both
cases with a concomitant increases in apoptosis (TUNEL staining) of
newly generated neurons/precursor cells. Smith et al. (2005) found in-
creased neurogenesis for at least 21 days (respectively) following rapid
amygdala kindling, without neuronal loss, in contrast with Bengzon
et al. (1997). Conventional kindling, with daily or twice-daily stimulation,
increased neurogenesis for several days following stage 5 seizures,
but not in the earlier stages of kindling or after single afterdischarges
(Nakagawa et al., 2000; Scott et al., 1998, 2010). Ferland et al. (2002)
observed a transient increase in BrdU labeled cells 3 days after a sin-
gle flurothyl seizure or up to 7 days after 8 daily seizures, in this case
without evidence of neuronal death. Single febrile seizures at P10
did not induce increased neurogenesis, although more prolonged
seizures induced by kainic acid did (Bender et al., 2003). However,
none of these paradigms can model the effect of spontaneous onset
seizures on neurogenesis of potential relevance to the 60% of patients
with TLE in whom there is no antecedent history of prolonged febrile
seizures (Waruiru and Appleton, 2004).

Intrahippocampal tetanus toxin induces epilepsy with spontane-
ous and recurrent seizures but without major morphological changes
(Jefferys et al., 1992; Jiruska et al., 2010; Mellanby et al., 1977), and
notably without status epilepticus at any stage (Finnerty et al., 2000;
Hawkins and Mellanby, 1987; Jiruska et al., 2010). While the majority
of rats gain seizure remission in this model after 6–8 weeks, they retain
abnormal cellular pathophysiology (Vreugdenhil et al., 2002), perma-
nent cognitive and other behavioral impairments (Brace et al., 1985;
Mellanby, 1982), and a minority continues to seize (Mellanby, 1993).
This model provides a means of testing the effect of early repeated
spontaneous seizures on cell proliferation and neurogenesis indepen-
dently of prolonged status epilepticus.

Materials and methods

Animals

Sixteen adult male Sprague-Dawley rats weighing approximately
250 g were housed under standard conditions in a room with con-
trolled temperature (22±1 °C) and 12/12 h light/dark cycle. The
animals had ad libitum access to food and water. All animal proce-
dures were licensed and performed in strict accordance with the
Animal Scientific Procedures Act (1986) of the United Kingdom and
with Institutional Ethical Review.

Surgery, recording and BrdU injections

Surgical preparation was performed under ketamine/methibromide
or isoflurane anesthesia. Small trephine openings were drilled symmet-
rically over both hippocampi at coordinates 4.1 mm caudal to bregma
and 3.9 mm either side of the midline using the atlas of Paxinos and
Watson (1998). Using a Hamilton microsyringe and infusion pump
(KD Scientific Inc., USA) 1 μl of tetanus toxin (Sigma-Aldrich, UK) solu-
tion was injected into the stratum radiatum of the right hippocampal
CA3 area. Tetanus toxin solution contained 25 ng of tetanus toxin in
1 μl of 0.05 M phosphate buffered saline (PBS; Sigma-Aldrich, UK) and
2% bovine serum albumin (Sigma-Aldrich, UK). Tetanus neurotoxin
solution was injected at 200 nl/min. The microsyringe was left in
hippocampus for 5 min after the injection ended to avoid the solution
leaking back through the injection track. Control animals were injected
with 1 μl of 0.05 M PBS with 2% bovine serum albumin. Following the
injections, silver ball electrodes were inserted into both openings
epidurally over both cortices and fixed to the skull using dental acrylic.
Electrodes were connected to single channel bipolar telemetric trans-
mitters (Data Sciences International, s'Hertogenbosch, Netherlands)
which were implanted subcutaneously over the dorsal aspect of the tho-
rax and secured with sutures. Following surgery, animals were housed in
single cages and allowed to recover for two days. Continuous synchro-
nized video-electrocorticography monitoring started on the 4th day,
which precedes the onset of spontaneous seizures (Jefferys and
Walker, 2006) and continued until the end of the experiments.
Electrocotricography was recorded using Dataquest A.R.T. 4.3
aquisition system (Data Sciences International, s'Hertogenbosch,
Netherlands) and sampled at 100 Hz. Video was recorded synchro-
nously using digital infra-red cameras (Y-cam Solutions Ltd, Rich-
mond, UK) and Spike2 software (Cambridge Electronic Design,
Cambridge, UK). Recorded signals were exported, reviewed and ana-
lyzed using Spike2, to verify the development of spontaneous seizures
and to determine seizure frequency and duration. Seizures were classi-
fied as secondary generalized when they progressed into falls followed
by generalized convulsions.

On day 10 (while still being continuously monitored), rats received
the first of seven daily intraperitoneal injections of bromodeoxyuridine
solution (BrdU, 50 mg/kg, 10 mg/ml in 0.007 M NaOH/0.9% sterile
saline; Sigma-Aldrich, UK). On day 17, 24 h after the last BrdU injec-
tion, animals were humanely overdosed with ketamine and then
perfused using 0.9% saline followed by 4% paraformaldehyde. Brains
were extracted and postfixed in 4% paraformaldehyde.

Immunohistochemistry

The brains were sectioned along the coronal plane at 40 μm inter-
vals through the entire hippocampus on a vibratome (Leica VT1000M,
Leica Microsystems Ltd, Milton Keynes, UK). Each slice was transferred
to an individual well (of a 24 well plate) containing PBS for storage. All
immunohistochemistry was performed on systematically sampled tis-
sue, with the initial section selected randomly and subsequent sections
being taken at constant intervals thereafter, ensuring the entire dentate
gyrus was sampled. BrdU immunostaining was performed on 12 sec-
tions per animal. Caspase-3 labeling and doublecortin (Dcx) labeling
were performed on 6 systematically sampled sections from each ani-
mal. For double stain immunohistochemistry of BrdU and Dcx, sections
were incubated in 2 M HCl at 37 °C for 30 min, followed by washing
and incubation with 3% H2O2–10% methanol for 30 min. Saturation of
non-specific binding sites was achieved in 5% donkey serum in 0.25%
TritonX-100 (1 h). Thiswas followed byovernight incubation of prima-
ry antibodies to BrdU (rat monoclonal 1:1000; Oxford Biotech, UK) and
Dcx (goat polyclonal 1:200; Santa Cruz, CA, USA). The final step was
incubation with secondary antibodies Alexa 448/594 raised in donkey
(1/500, Invitrogen).

Rabbit polyclonal cleaved caspase-3 primary antibody was used at
1:200 (NewEngland Biolabs, Hitchen, UK). Triple immunohistochemistry
studies for BrdU, Sox2 (1:500 Goat polyclonal Santa Cruz Biotechnology,
CA, USA) and anti-rabbit GFAP (1/500, DAKO) were also conducted to
look at the proliferation of both type I and type II/III precursor cells in
subgranular zone (Encinas et al., 2006). Secondary antibodies were
Alexa 488, Alexa 594, and Alexa 647 (1:500, Invitrogen, Life Technologies
Ltd, Paisley, UK) allwere raised in donkey andmatched the primary com-
binations. Finally the slices were mounted on glass microscope slides
with Mowiol mounting medium (Harlow Chemicals, Harlow, Essex, UK)
and stored in the dark at 4 °C to delay damage from exposure to ultravi-
olet light. Non-specific secondary antibody binding was excluded by the
lack of immunostaining in control experiments omitting the primary
antibody.
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Cell quantification

A blind counting methodology was employed for all quantification.
Masks of the subgranular zone and granule cell layer were generated
with the contour tool in StereoInvestigator™ (Ver. 5.0;Microbrightfield
Inc., Williston, VT) software package on each dentate gyrus. Counting
of cells utilized the StereoInvestigator system (Microbrightfield Inc.)
interfaced through a Dialux 22 Leitz microscope equipped with a color
camera (Optronics Inc., Muskogee, OK). Using a 100× oil immersion
lens, the BrdU positive cells (BrdU+)were counted from 60 to 400 ran-
domly and systematically selected frames (each measuring 40×40 μm,
0.0016 mm2 area) in every 12th section. In brief, the contour of the
subgranular zone regionswasmarked (two cell layer zone at the border
of the granule cell layer and hilus) (Hattiangady et al., 2004) in every
section through the tracing function of the StereoInvestigator. The opti-
cal fractionator componentwas then selected and the number and loca-
tion of counting frames and the counting depth for that section were
ascertained via entering parameters such as the grid size, the thickness
of the top guard zone (4 μm) and the optical dissector height (8 μm). A
computer driven motorized stage then facilitated the section to be ana-
lyzed at each of the counting frame locations. All BrdU+ cells that were
present within the 8 μm section depths in each location were counted.

The StereoInvestigator program then calculated the total number of
BrdU+ cells per subgranular zone by the optical fractionator formula:

N ¼ 1
ssf

⋅ 1
asf

⋅ 1
hsf

⋅EQ2

where ssf represents the section sampling fraction, whichwas 12 in this
study as every 12th section was sampled; asf symbolizes the area
sampling fraction, which is calculated by dividing the area sampled
with the total area of the subgranular zone (i.e., the sum of subgranular
zone areas sampled in every 12th section); hsf stands for the height
sampling fraction, which is calculated by dividing the height sampled
(i.e., 8 μm in this study) with the section thickness at the time of analy-
sis (i.e., 20–25 μm); EQ2 denotes the total count of particles sampled for
the entire DG. Ipsilateral and contralateral BrdU+ cells were counted in
all animals.

For triple immunohistochemistry (Sox2, GFAP, and BrdU), 100
BrdU+ cells were counted from at least 4 representative sections
per brain. The proportion of BrdU+ cells that expresses Sox2, GFAP or
both was measured: the image from each stain was obtained sequential-
ly, taking care to avoid bleed-through between the emission spectra for
the respective fluorophores. All imaging was performed on a Leica SP5
laser scanning confocal microscope (Leica DMI600 inverted microscope
frame), generating Z-stacks of 1 μm per image; all three-dimensional
images were analyzed.

Statistical analysis

Results were statistically analyzed using SPSS (IBM Software
Group, IBM Corporation Armonk, USA) and GraphPad Prism (GraphPad
Software, Inc., La Jolla, CA) software. The following statistical tests
were used: t-test, one-way ANOVA with post hoc comparisons, Mann–
Whitney, Kolmogorov–Smirnov, and Pearson correlation. All results are
shown as mean±S.E.M. unless otherwise stated.

Results

Spontaneous recurrent seizures after tetanus toxin injection

Repeated spontaneous seizures started between 5 and 14 days
after tetanus toxin injection (median 6 days). Seizures were classified
as complex partial seizures characterized by behavioral arrest, staring
and oroalimentary or sniffing automatisms. These seizures progressed
into unilateral or bilateral forelimb jerks, rearing, falling and secondary
generalized tonic–clonic seizures. Seizures usually ended with repeated
wet-dog shakes. Electrocorticogram activity between seizures was char-
acterized by spikes or sharp-wave discharges (Fig. 1B), and during
seizures by prolonged rhythmic discharges (Fig. 1C).

Radiotelemetry revealed that the rats experienced 112±24 sei-
zures in total and 76±14 during the BrdU application (Figs. 1D,E).
Average seizure frequency was 11.4±2.4 day−1 over the whole ex-
perimental protocol and 9.8±2 day−1 during the BrdU application.
Mean seizure duration was 88.0±10.6 s during the whole protocol
and 78.3±10.8 s during BrdU administration period. Total duration
of seizure activity recorded throughout the protocol was 9439±
1841 s, and 5703±1356 s during BrdU application. A distinguishing
feature of the tetanus toxin model is that it is not characterized by an
initial episode of experimental status epilepticus (Cavalheiro et al.,
2006; Dudek et al., 2006; Turski et al., 1987). To check whether that
was the case in this series of rats we measured all the seizures on the
first day they appeared and found that the median between-seizure in-
terval was 23.3 min andmedian of seizure durationwas 103 s. The lack
of behavioral status in this model has been extensively documented
(reviewed in Jefferys and Walker, 2006), and evident from routine
post-operative care following every injection. In a separate study we
performed long-term telemetry recordings of hippocampal activity
startingwithinminutes of injecting tetanus toxin into the hippocampus
and found that there was no status epilepticus during the first 3 days,
covering the gap at the start of the recordings reported here (W-C
Chang and J G R Jefferys, unpublished data), and consistent with previ-
ous work (Hawkins and Mellanby, 1987).
Spontaneous recurrent seizures increase dentate gyrus cell proliferation/
survival in the tetanus toxin model of TLE

Immunohistochemistry demonstrated significantly more cells
incorporating BrdU in animals with recurrent spontaneous seizures
(Fig. 2). Our BrdU labeling paradigm reflects a combination of both cell
proliferation and subsequent survival at the time of killing. Ipsilateral
to the toxin injection the dentate gyrus contained a mean of 80,532±
11,052 BrdU+ cells (8 rats), while in control animals it contained
18,292±1658 cells (8 rats), demonstrating a 4.4 times greater number
of BrdU+ cells in epileptic animals than in controls (pb0.001; Mann–
Whitney test). Contralateral to the injection the dentate gyrus contained
4.5 times more BrdU+ cells in epileptic rats (58,604±12,506; 5 rats)
than in controls (13,095±1521; 4 rats; pb0.05; Mann–Whitney test).
Therewere no significant differences in numbers of BrdU+cells between
injected and contralateral sides in either the tetanus toxin or control ani-
mals. The majority of BrdU+ cells were located in the subgranular zone
of dentate gyrus (Fig. 2B).
Spontaneous recurrent seizures increase the proliferation of both type I
and type II/III precursor cells in the adult DG

Having demonstrated an increase in cellular BrdU incorporation
after recurrent spontaneous seizures, we determined the phenotype
of the BrdU positive cells in the dentate gyrus. We identified a signif-
icant increase in the number of type I precursor cells incorporating
BrdU (expressing Sox2, GFAP and BrdU) with a radial glial-like
morphology (Fig. 3). In control animals the total number of type I
precursors was 2117±368 cells (4 rats), increasing in epileptic ani-
mals by 7.2 times to 15,860±2267 (Fig. 5; 3 rats; pb0.05, Mann–
Whitney test). Moreover, the proliferation and subsequent survival
of type II/III precursors, expressing Sox2 but not GFAP (Fig. 3), and
thus classified as amplifying neural progenitors and neuroblasts, also
increased significantly from 8119±1372 cells/DG in control conditions
(4 rats) to 45,860±6555 cells/DG in epileptic animals (Fig. 5; 3 rats;
pb0.05; Mann–Whitney test).



Fig. 1. Electrographic epileptic activity and seizure profile. A) Example of electrocorticographic recording from the epileptic animal, characterized by interictal discharges (B) and
spontaneous seizures (C). D) Graph showing temporal profile of mean seizure duration (8 animals). Gray area marks days during which BrdU was injected. E) Temporal profile of
mean seizure frequency (8 animals).
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Neurogenesis is increased in the tetanus toxin model of TLE

The next question was whether spontaneous recurrent seizures
affect newly born neurons (neuroblasts) and thus neurogenesis.
Using double immunohistochemistry for doublecortin (Dcx, immature
neuronal marker) and BrdU (Fig. 4), we demonstrated that total number
of BrdU-labeled immature neurons andneuronally committed precursors
was 5.1 times greater in epileptic dentate gyrus (31,080±4443; 3 rats)
than in controls (Fig. 5; 6078±1027, 4 rats; pb0.05; Mann–Whitney
test). Neither proliferation nor neurogenesis was significantly correlated
with measures of seizure duration or frequency.
Fig. 2. Increase in dentate gyrus cellular BrdU incorporation in the tetanus toxin model of ep
control animal. B) Increased number of BrdU+ cells in dentate gyrus of epileptic animals. Brd
also dispersed in hilus of the dentate gyrus. C) Counts of BrdU positive cells in dentate gyrus
cells in epileptic rats (***pb0.001; 8 animals in each group). Significant difference in BrdU+
animals in each group).
Activated caspase-3 immunostaining in the dentate gyrus is not increased
17 days after toxin injection

It was shown previously that hippocampal sclerosis is present only
in 10% of animals and affects mainly CA1 (Jefferys et al., 1992; Jiruska
et al., 2010). To examine whether apoptotic cell death occurred in the
present study, sections from the ipsilateral hippocampi from five
epileptic animals (six sections from each animal) and four control
animals were stained for caspase-3. Caspase-3 is a member of the
cysteine–aspartic acid protease (caspase) family, activation of which
plays a central role in the execution-phase of cell apoptosis. We found
ilepsy. A) Immunohistochemical detection of BrdU+ cells in ipsilateral dentate gyrus of
U+ cells are located mainly in subgranular zone and granule cell layer. Several cells are
of the injected (“ipsilateral”) hippocampi show significantly more BrdU incorporating
cell count was also observed dentate gyrus contralateral to the injection (*pb0.05; 5

image of Fig.�2


Fig. 3. Increased precursor cell proliferation and survival in the adult DG after seizures.
A) GFAP labeling. B) BrdU immunolabeling. C) Sox2 immunostaining. D) Combined triple
immunolabeling identifies type I precursor cells (yellow arrows) and type II/III precursors
(white arrow) in epileptic dentate gyrus. E) Detail of type I and type II/III precursors.
F) Detail of triple labeling in different slices with examples of each precursor subtypes.
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no difference in the number of activated caspase-3 positive cells be-
tween epileptic (1524±92 cells; 5 rats) and control animals (1545±
143 cells; 4 rats), at the time of killing.
Fig. 4. Neurogenesis in the adult DG after seizures. A,B) Doublecortin positive cells (Dcx, red
(A) and higher magnification (B; arrow).
Discussion

The central results from this study are that the spontaneously-seizing
tetanus toxin model of temporal lobe epilepsy in the absence of status
epilepticus results in a ~5-fold increase in BrdU labeled cells in both the
injected and contralateral hippocampi during the second week after
induction. Increases in neurogenesis (Dcx+ cells) and in type I (with
radial glial-like morphology) and type II/III (amplifying neural progeni-
tors) precursor cells matched those in BrdU labeling. Previous work
using lesional chronic models of TLE showed that neurogenesis is altered
in epilepsy in ways that depend on the severity of the initial insult
or injury that causes epilepsy, i.e. convulsive or non-convulsive status
epilepticus (Hung et al., 2012; Mohapel et al., 2004; Yang et al., 2008),
the time after the initial status epilepticus (Bonde et al., 2006; Cha et al.,
2004; Hattiangady et al., 2004) and on the model used.

It has been suggested that one of the mechanisms up-regulating
neurogenesis in TLE is neuronal cell loss (Kuruba et al., 2009), and
given that the relationship between status epilepticus and neuro-
nal loss is well documented, this provides a potential reason for
the increased neurogenesis in chronic epilepsies induced by status
epilepticus. Kindling-type stimulations have little or no impact on neu-
ronal numbers, however an early study showing increased neurogenesis
after repeated afterdischarges evoked by rapidly-repeated kindling-type
stimulations was associated with evidence of neuronal precursor
death (Bengzon et al., 1997), although other reports of conventional
kindling describe increased neurogenesis during later (after several
stage 5 seizures) and not earlier stages (Nakagawa et al., 2000; Scott
et al., 1998, 2010). The chronic epilepsy induced by tetanus toxin used
in the present study is not associated with status epilepticus, as con-
firmed in the present study by quantification of the first day's seizures,
which revealed brief seizures separated by relatively long interictal pe-
riods, and is categorically different from experimental status epilepticus
(Cavalheiro et al., 2006; Dudek et al., 2006). We found no increases in
activated caspase-3 positive cells, consistent with previous studies on
the tetanus toxin model which showed absence of neuronal loss in the
majority (~90%) of rats (Jefferys et al., 1992; see also Discussion in
Jiruska et al., 2010), or bilateral selective loss of about one third of hilar
somatostatin-positive neurons, but not evident until 8 weeks after injec-
tion of tetanus toxin (Mitchell et al., 1995).

Several studies have dissociated seizure-related neurogenesis from
neuronal death using models of symptomatic seizures, induced by
flurothyl (Ferland et al., 2002). Single electrically-evoked afterdischarges
(Bengzon et al., 1997) led to both the proliferation and apoptosis of
) that incorporated BrdU (green) in the subgranular zone of an epileptic animal at low

image of Fig.�3
image of Fig.�4


Fig. 5. Quantification of precursor cell proliferation/survival and neurogenesis. The number of BrdU+ type I, type II/III increased significantly in animals with spontaneous recurrent
seizures (*pb0.05). Cell counts of Dcx+ and BrdU+ positive cells demonstrate significant increase in their number in epileptic dentate gyrus.
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neuronal precursors and differentiated neurons,which contrastswith our
repeated spontaneous seizures which cause neurogenesis without in-
creased activated caspase-3 staining. However, our examination of apo-
ptosis was late, and does not at all exclude the possibility of increased
apoptosis of precursors or newly born granule cell neurons at the time
of the initial spontaneous seizures, which would have been cleared by
the time of death. Rapid kindling stimulation in the hippocampus led
to greater increases in both apoptosis and neurogenesis. Amygdalar
kindling in mice and rats (Nakagawa et al., 2000; Scott et al., 1998,
2010; Smith et al., 2005) demonstrated the expected chronic reductions
in seizure threshold without spontaneous recurrent seizures, and led to
transiently increased neurogenesis, peaking at 2–7 days and subsequent-
ly disappearing, without evidence of neuronal death.

In addition to the increased number of immature neurons, we ob-
served increases in precursor cells (Bonaguidi et al., 2011; Encinas
et al., 2006; Kempermann, 2011), including type I (radial glial) precur-
sors. This is consistent with previous reports of increased proliferation
of this cell type after status epilepticus (Huttmann et al., 2003; Steiner
et al., 2008). This significant increase may suggest either self renewal of
this sub-population of cells, due to symmetric cell proliferation, and/or
recruitment from a quiescent pool (Bonaguidi et al., 2011). Cells that
expressed Sox 2 but not GFAP (type II/III precursors) increased more
thanfive times in response to spontaneous recurrent seizures. In addition,
the numbers of BrdU positive doublecortin positive cells increased more
than five times in this tetanus toxin model. Thus, more neuronal precur-
sors proliferate and subsequently survive across all sub groups.

Our study shows that precursor cell dynamics and short-term
neurogenesis are altered after the onset of spontaneous temporal lobe
seizures in a manner not dissimilar to that after status epilepticus. The
demonstration here of altered short-term neurogenesis after the onset
of spontaneous seizures may be relevant to the 60% of patients who
present with TLE without a history of status, suggesting that their hip-
pocampal neurogenesis may be altered by initial spontaneous seizures.
Whether or not this alteration in neurogenesis after the onset of spon-
taneous seizures is long-lasting remains to be investigated, but if it
is, it may be relevant to long-term cognitive impairment which is
found in the intrahippocampal tetanus toxin model (Brace et al.,
1985; Mellanby et al., 1982). Long-term cognitive impairments are as-
sociated with abnormal human neurogenesis under in-vitro conditions
(Coras et al., 2010; Kempermann et al, 2004), and pharmacological
strategies to reverse learning and memory deficits in TLE may operate
by modulating neurogenesis (Barkas et al., 2012).
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