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ABSTRACT 

Lay perceptions of risk appear rooted more in heuristics than in reason. A major concern of 

the risk regulation literature is that such “error-strewn” perceptions may be replicated in 

policy, as governments respond to the (mis)fears of the citizenry. This has led many to 

advocate a relatively technocratic approach to regulating risk, characterised by high reliance 

on formal risk and cost-benefit analysis. However, through two studies of chemicals 

regulation, we show that the formal assessment of risk is pervaded by its own set of 

heuristics. These include rules to categorise potential threats, define what constitutes valid 

data, guide causal inference, and to select and apply formal models. Some of these 

heuristics lay claim to theoretical or empirical justifications, others are more back-of-the-

envelope calculations, whilst still more purport not to reflect some truth but simply to 

constrain discretion or perform a desk-clearing function. These heuristics can be understood 

as a way of authenticating or formalising risk assessment as a scientific practice, 

representing a series of rules for bounding problems, collecting data, and interpreting 

evidence (a methodology). Heuristics are indispensible elements of induction. And so they 

are not problematic per se, but they can become so when treated as laws rather than as 

contingent and provisional rules. Pitfalls include the potential for systematic error, masking 

uncertainties, strategic manipulation, and entrenchment. Our central claim is that by 

studying the rules of risk assessment qua rules, we develop a novel representation of the 

methods, conventions, and biases of the prior art. 

Keywords: science-policy, risk-regulation, governance, model evaluation, inference rules. 
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1. INTRODUCTION: THE FALL OF HOMO ECONOMICUS AND THE RISE OF 

TECHNOCRATIC RISK REGULATION 

“For regulation of the risks associated with particulate matter or acid deposition, it makes no 

sense to consult heuristic-based judgments. The best approach is instead highly quantitative, 

based on an analysis of the costs and benefits of various possible approaches.” (Cass 

Sunstein, 2008) (1)  

A substantial body of research suggests that lay perceptions of risk are rooted more in 

cognitive heuristics than in reason; homo economicus is no longer with us. (2-4) In short, 

when forming judgements under uncertainty people often answer complex, time consuming 

questions (e.g. what is the risk posed by nuclear power?) by substituting them with simpler 

ones (e.g. how do I feel about nuclear power?). Although such heuristics are argued by some 

to be efficient and often accurate tools for dealing with bounded rationality, (e.g. 5) the focus 

of the risk regulation literature has been on the systematic and predictable errors that arise 

from their application. (4, 6-9)  The concern is that such “erroneous” risk perceptions may be 

replicated in law, policy and regulation, as democratic governments respond to the 

(mis)fears of the citizenry. This has catalysed an influential school of thought which 

prescribes a relatively technocratic approach to regulating risk, characterised by a high 

degree of deference to formal risk and cost-benefit analysis in the policy-making process. 

(e.g. 4, 10-13) These methodologies are intended to serve as “institutional safeguards” (8) that 

screen out the malign influence of heuristic-based judgments, and thus help ensure rational 

risk regulation (i.e. utility maximising). In short, the argument is that “even if many heuristics 

mostly work well in daily life, a sensible government can do much better than to rely on 
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them.” (Sunstein, 2002 (4)) This school of thought – and its close cousin the Nudge agenda (14) 

– has intimately shaped policy debates and practices throughout the West.  

Nevertheless, the basic argument has been challenged on a variety of fronts. It has been: 

critiqued as paternalistic or even undemocratic, in that it fails to respect citizen preferences; 

(15) portrayed as placing too much emphasis on the role of heuristics and biases in shaping 

risk perceptions to the neglect of factors such as culture; (16) and accused of downplaying 

the value judgements embedded within technical analysis. Yet the overarching premise – 

that reliance on risk and cost-benefit analysis is a viable means for screening out heuristic 

influences from risk regulation – remains broadly unchallenged. To be sure, several scholars 

(e.g. 17) have emphasised that risk assessors are unlikely to be free of cognitive quirks, yet this 

tu quoque argument rather misses its target. After all, Sunstein and his fellow travellers are 

not suggesting that policy-making should rely on expert perceptions of risk, but on expert 

analyses. For a tu quoque argument to have any force, it must be directed at the 

methodology and practice of formal risk assessment, not at how experts perform in 

psychometric tasks.  

Through two studies of chemicals regulation, this paper takes up that challenge. It shows 

that the technical assessment of risk is structured and pervaded by its own set of heuristics, 

which are used to categorise potential threats, define what constitutes valid data, guide 

causal inference, and select and apply formal models. Some of these heuristics lay claim to 

theoretical or empirical justification, others are more back-of-the-envelope style 

calculations, whilst still more purport not to reflect some truth but simply to constrain 

discretion or perform a sort of desk-clearing function.  The tu quoque critique turns out to 

have some mileage, although in a different direction than initially conceived. Of course, a 
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collective reliance on heuristics does not imply that lay and expert analyses of risk are on 

the same footing, at least if we are to take the idea of expertise at all seriously. Indeed, the 

central theme of the paper is that heuristics are not problematic per se – induction 

necessarily depends on procedures of inference that cannot be fully justified in a formal 

sense (18) – but rather that they have certain structural features that carry significant 

implications for how we think about and design risk assessment processes. 

 We emphasize that the heuristics we identify are rather different in character from the lay 

rules of thumb à la Danny Kahneman, (e.g. 2) which are intuitive, fuzzy (i.e. based on linguistic 

rather than mathematical terms), and domain-general. Our rules have more in common 

with another school of thought on heuristics, which traces its (modern) origins to the work 

of Polya. (19) Polya saw heuristics as provisional methods and principles of discovery that fell 

short of demonstration, yet that were indispensible for domains that did not admit of 

formal logic or proofs. His notion of heuristics heavily influenced the (then) emerging fields 

of artificial intelligence and expert systems, including pioneers such as Simon, (20) Pearl (21) 

and Lenat. (22) In these fields, heuristics are conceived and modelled as one of the 

foundational elements of expert knowledge. They are generally represented as sets of if-

then rules that guide and structure inferences, decisions, and problem-solving in systematic 

ways. Their functions range from interpreting data, to predicting system behaviour, and to 

system control. (23) These sorts of rules are typically domain specific rather than general 

purpose, often represented in formal language rather than linguistic variables, and work by 

leveraging empirical facts or causal relations that are more or less accepted or understood. 

Although they do not guarantee correct solutions or optimal outcomes, they offer useful 

guidance through drawing on incomplete or imperfect knowledge and making problems 
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tractable (e.g. through ignoring information or options). These basic properties – formalism, 

domain-specificity, a focus on induction rather than proof, and explicit justification – 

suggest that this tradition is a useful framework to bring to the analysis of technical or 

expert practices such as formal risk assessment. And so we draw on some of its key insights.  

Our paper’s main contribution is to show that by studying the heuristics of risk assessment 

qua heuristics – that is, by thinking about the particular justifications, functions, and 

problems of rule-based reasoning – we develop important insights on the form, strengths, 

and limits of the prior art. Put another way, it offers a novel representation of the methods, 

conventions, and biases of formal risk assessment, and one that offers practical insights on 

how to improve this crucial process. The body of the paper is split into two parts. Study I 

offers a detailed but largely theoretical analysis of the heuristics that structure the United 

States Environmental Protection Agency’s (EPA) risk assessment methodology for industrial 

chemicals. Study II offers a brief empirical proof of concept that such heuristics are applied 

and interpreted in significant and interesting ways across various policy domains, drawing 

on judicial reviews of agency decisions.  

2. STUDY I: METHODOLOGY 

2.1 Case Selection and Rationale 

This section of the paper examines the risk assessment of industrial chemicals, focussing on 

the practices of the EPA. The main logic of this choice was that the four-stage chemical risk 

assessment paradigm (Figure 1) – or its close cousins – underpins a range of policy-domains 

(e.g. pharmaceuticals, food additives, hazardous waste site evaluations, microbiological risk 

assessment, etc.), and so the findings would lend themselves to generalisation. The second 
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logic was that the EPA’s practices are relatively transparent and well documented. Thirdly, 

the EPA has pioneered risk assessment across a range of environmental and public health 

domains, and so can be seen as something of a “hard case” from which to build the thesis. 

Broadly speaking, the aim of the research was to uncover and critically evaluate the 

heuristics embedded within the EPA’s approach to chemical risk assessment. The narrow 

goal was to question the claim that a sensible government can do better than rely on rules 

of thumb, although the broader ambition was to develop insights into the practice of risk 

assessment by studying those rules qua rules.  

2.2 Methods and Definitions 

Data was collected from various sources describing, evaluating, and providing context or 

background on the EPA’s practices, including: a) risk assessment statutes, guidelines, 

procedures and outputs; b) critiques and evaluations of those practices from within the 

scientific and policy communities; and c) primary research papers and reviews providing 

detail and background on the relevant theories, methods, and assumptions adopted by the 

agency. The data was then inspected to identify the heuristics embedded within the risk 

assessment process. The heuristics were next grouped into categories according to the 

functions they performed (e.g. causal inference, weighting lines of evidence, etc.). Heuristics 

are defined here as rules of thumb for inference and choice. There are three key elements 

to this definition: heuristics are rule-like, in the sense that there is a presumption in favor of 

following them (i.e. they structure or constrain judgment); they are rules of inference or 

choice (i.e. if-then), not simply assumptions; and finally, they are simple, frugal approaches 

to problem solving which ignore relevant information rather than seeking to optimize. 

Although heuristics are treated rather differently across and even within different 
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disciplines – in terms of their normative status, where they reside, and whether they are 

implicit or explicit – this definition seems to capture a shared understanding of what they 

are. As we are concerned with the practice of technical risk assessment it should be clear 

that we do not – in contrast to the mainstream risk literature – see heuristics solely as 

intuitive tools residing primarily at the subconscious level. Instead, our focus shall be on 

those heuristics that are socially and scientifically constructed, reside within institutions, 

and are applied deliberatively. 

3. STUDY I: RESULTS AND DISCUSSION 

 This section places the heuristics identified within the context of a functional typology, and 

includes discussion of their basic form, origins, and characteristics. 

3.1 Screening and Categorisation Heuristics 

3.1.1. Context and Heuristics 

A basic problem in chemicals regulation is that not all substances of potential regulatory 

interest can be subject to comprehensive risk assessment, and so some approach has to be 

devised to search and prioritise the problem space. And so the EPA adopts a tiered 

approach to evaluation, where the type and degree of scrutiny is matched to the nature and 

extent of the risk that each chemical poses. For new chemicals, this process involves 

categorising substances according to shared properties and characteristics, and matching 

these groups to particular test and assessment requirements. In doing so, the agency draws 

on a range of evidence, such as physico-chemical properties, (expected) production 

volumes, existing toxicity or environmental fate and behaviour studies, etc. The logic is that 

these provide cues as to the degree of risk posed by a particular chemical, and to their 
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expected environmental and biological properties.  Historically, the EPA conducted this 

threat categorisation through what we might be called a factors-based approach.  Here, the 

factors to be considered in making a judgment are pre-defined, perhaps along with the 

relevant sources of evidence, although their relative weights or summing rules are 

constructed on an ad hoc or implicit basis. However, more recently the agency has moved to 

formalise elements of the process into a set of heuristics. Perhaps most significant are the 

set of classification rules (essentially decision trees) found in the agency’s “chemical 

categories program.” (24) Here, if a chemical is deemed to be a member of a broader class 

with shared properties, it is matched to generic hazard concerns, “boundaries” which set 

out any constraints surrounding those concerns, and finally to particular test strategies. One 

of these decision trees is detailed below, followed by two similar categorisation heuristics 

found in other agency programs:  

 If chemicals pass threshold measures of persistence (e.g. greater than 6 months 

transformation half-life) or bioaccumulation (e.g. > 5000 BAF* or BCF) they are 

matched with specific agency actions (e.g. “ban pending testing”) and test strategies 

(e.g. biodegradability tests). 

 Polymers with high molecular weights (> 1,000 daltons), as well as strong mineral 

acids and bases, are categorised as unlikely to be hormonally active and thus 

excluded from test requirements under the endocrine disruptor screening program. 

(25) 

                                                           
*
 BAF is the ratio of a chemical’s concentration in an organism to that in the ambient environment at a steady 

state, whilst BCF is the ratio of a chemical’s concentration in fish to that in water. 
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 If a new chemical meets one of several criteria that suggest significant or substantial 

exposure (e.g. expected production volume of 100,000 kg/yr), then the agency has 

the statutory authority to require certain toxicity tests (e.g. the Ames test). (26)  

3.1.2. Analysis 

These heuristics can be seen as an attempt to codify a body of knowledge and to leverage it 

in a way that reduces the problem space to a more tractable size, and avoids repeat 

enquiries into similar facts. The rules draw on two different sorts of justifications. The first is 

to use the identifying properties of a class to categorise chemicals into groups (e.g. using the 

existence of particular functional groups to classify substances). The second sort involves 

causal knowledge, for example relating to how particular properties of chemicals (e.g. 

functional groups) shape environmental and biological behaviour. Often rules draw on both 

types of justification. For example, the second rule uses the threshold of > 1,000 daltons as 

the identifying property to class a substance as heavy. And it is also based on causal 

assumptions, namely that heavy polymers are unlikely to reach molecular receptors or other 

target tissues, and that highly reactive chemicals (strong mineral acids and bases) will 

destroy tissue at the point of entry leading to toxic effects other than through the endocrine 

system. (25)  On the other hand, these heuristics also emerged under pressure from the 

regulated industry and the courts, who had called for greater predictability, transparency, 

and consistency in the prioritisation process. (26) From this perspective, the rules serve to 

discipline the process and make it explicit. Heuristics, then, can have multiple origins or 

types of justifications: ways of justifying specific rules, and also ways of justifying rules qua 

rules.  
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However, these rules – by virtue of being generalisations – may lead to misclassification in 

certain instances. Consider the first decision tree. Here, the criterion for classifying 

chemicals as “very bioaccumulative” or not (> 5000 BAF or BCF) is based on the logic that 

BCF and BAF are proxies for the potential for a chemical to accumulate within organisms 

and concentrate up the food-chain. Although this generalisation has theoretical and 

empirical verification, it stems from work on lipophilic, non-ionic, organic substances that 

undergo minimal metabolism. (27) For substances that do not share those properties, BCF or 

BAF may not be reliable indicators for bioaccumulation (e.g. chemicals where sorption does 

not depend on hydrophobic interaction). These, then, are the scope conditions under which 

the heuristic is valid, and by explicitly stating them – in apparent contrast to other regimes 

(28) – the EPA guards against misclassification. This cannot, however, skirt the arbitrariness 

inherent in using thresholds to classify chemicals according to interval (rather than 

categorical) variables, a problem compounded by the often substantial uncertainty 

surrounding measurements of these properties. (28) 

3.2. Gatekeeping Heuristics 

3.2.1. Context and Heuristics 

A key challenge of risk assessment is to winnow down the mass of data that might serve as 

inputs to the process, whether relating to a chemical’s toxicological mode of action, the 

form of its dose-response curve, or its environmental fate and behaviour. Two evaluation 

tests are generally applied: is the data relevant, and is it of sufficient quality/validity; our 

focus is on the latter. One approach to this evaluation is to establish rules for excluding 

studies deemed to be wholly inadequate in protocol, conduct, or reporting (i.e., gatekeeping 

rules). For example: 
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  EPA risk assessors are encouraged to exclude toxicity studies whose test protocols 

use either excessively or insufficiently high dose selections, according to specified 

criteria (e.g. if neither toxicity nor weight gain is observed in the test population, 

then the maximum dose is generally considered to have been insufficiently high). (29) 

However, such a rule-like approach to determining technical validity is very much the 

exception at the EPA. This is likely due to the rise of weight-of-evidence approaches in the 

agency’s approach to risk assessment, and the associated principle that even imperfect 

studies might serve as inputs, albeit with appropriately low weights. This brings with it a 

focus on weighting the quality or strength of different lines of evidence, rather than a 

reliance on categorical tests for accepting or rejecting data. However, one long-established 

and highly significant gatekeeping rule resists this Zeitgeist:  

 Toxicity studies funded or conducted by industry are deemed invalid for regulatory 

purposes if they do not adhere to Good Laboratory Practices (GLP) and EPA 

approved test methods (the “GLP heuristic”). (30) 

This heuristic plays a rather more complex function than simply discriminating between 

valid and invalid research, as we see below. 

3.2.2. Analysis 

The GLP heuristic acts to exclude, for the purposes of risk assessment, industry toxicity 

studies that do not conform to the mix of general quality requirements and technical 

prescriptions contained in GLP and the relevant test methods (e.g. covering the care of 

laboratory animals, instrument calibration, test protocols, and the collection and storage of 

raw data). Crucially, the principle is not that studies which do not conform to these 
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requirements are necessarily invalid, as can be seen from the fact that it applies only to 

industry rather than academic research. Indeed the concept of GLP emerged in response to 

sloppy research practices, research misconduct, and even outright fraud on the part of 

private research companies operating free from the checks and balances of academic peer 

review. (31, 32) And so the GLP heuristic was intended as a way of controlling any incentives 

that industry might have to downplay the risks associated with their products, and to serve 

as a surrogate for peer review to ensure a basic level of methodological quality. Yet the rule 

carries with it some unintended consequences. For example, given that the approved test 

methods are subject to detailed validation and interlaboratory reliability studies, they may 

come to represent relatively insensitive and outdated methodologies when compared to 

cutting edge or novel research techniques or protocols. (33) In such instances, the heuristic 

can serve to ensure that industry studies don’t follow state-of-the-art methods, and so 

might impede the resolution of questions that lie at the centre of risk assessment 

controversies. (32) 

Citing concerns about the reproducibility and validity of research conducted via non-

standardized methodologies, some toxicologists (including industry scientists) have implied 

that academic research should be subject to the same GLP heuristic. (33) The explicit claim is 

that only GLP compliant work is sufficiently robust and rigorous to serve as a basis for 

quantitative risk assessment. (e.g. 34)  This has been fiercely resisted by some scientists – on 

the grounds of the high costs of compliance, the fact that academic peer review acts as an 

analogous (or superior) form of quality control, and the concern that it would exclude novel 

experimental designs from consideration in risk assessment. (32) The defence, in short, is that 

such a scope-extension would have little basis in the original justification of the heuristic, 
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and that in some instances, it may represent a strategic effort on the part of industry to 

exclude research that may threaten their commercial interests (i.e. an attempt to game or 

bend the rule). Whatever the merits of this dispute, these efforts at scope-extension appear 

to have found isolated success in other policy domains, with the US Food and Drug 

Administration’s recent evaluation of BPA excluding academic toxicology studies that were 

not GLP-compliant. (32) 

3.3. Causal Inference 

Causal inference is broadly concerned with determining whether an association should be 

treated as causal (i.e. “true”), rather than as non-existent or spurious. It can be classed into 

two categories depending on whether it focuses on the interpretation of a discrete signal, or 

on the weighting and aggregation of multiple lines of evidence.  

3.3.1. Signal vs. Noise 

3.3.1.1. Context and Heuristics 

The need to discriminate between a signal from a target and noise from a distracter 

underlies various elements of chemical risk assessment. For example, is an apparent 

increase in tumour incidence in laboratory animals likely due to exposure to the test 

chemical, or does it represent random variation; and does the response of an analytical 

instrument (i.e. an apparent “detection”) indicate the presence of a substance or rather 

stem from interference? A standard approach to resolving such questions is to focus on the 

statistical properties of the signal. One classic version of this is significance testing, which 

often takes the form of the following heuristic:  
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 A finding or association is treated as “true” (or chance is rejected as a plausible 

explanation) if it meets a predefined level of statistical significance (typically, a p-

value of 0.05).  

At the EPA, variants of this rule are used to: 

 Determine whether chance, rather than a treatment-related effect, is a plausible 

explanation for an apparent increase in tumour formation (during hazard 

identification); (29) 

 Inform the derivation of the no-observed-adverse-effect-level (NOAEL) in dose-

response analysis (a statistically significant response is sufficient, but not necessary, 

to reject an exposure level as representing the NOAEL); (35) and  

 To discriminate between “true” detections of a chemical substance (analyte) and 

detections that cannot be reliably distinguished from instrument error or noise (i.e. 

the limit of detection). (36) 

3.3.1.2. Analysis 

The statistical significance heuristic is a long-standing and controversial approach to causal 

inference. General critiques of its application within risk assessment have centred on: (37, 38) 

1) The fact that it focuses entirely on statistical considerations to the neglect of other 

relevant factors; 

2) The arbitrariness of (typically) selecting a p-value of 0.05 as the threshold that 

demarcates “true” from “false” associations (i.e. that it is a mere convention); and, 

relatedly 
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3) A perception that a p-value of 0.05 – whilst perhaps justified in “basic” science (given 

the preference for false negatives over false positives) – places too high an 

evidentiary burden on “proving” an effect in a regulatory context (the 

“conservatism” charge). 

In other words, it is not just the content or form of the heuristic that has been seen as 

problematic; instead, it has been criticised as a rule. That is, it has been critiqued as 

neglecting information that often turns out to be crucial, portrayed as being ritualistically 

and uncritically adhered to, and attacked as having been adopted in a context where its 

original justification no longer holds true. These are all general critiques of rules qua rules. 

However, the third element of this critique – the charge of “conservatism” – has limited 

traction where the EPA’s practices are concerned. This is because, for the three variants of 

the rule listed above, a failure to meet the threshold of statistical significance does not 

mean that the finding or association is treated as chance or as noise (which would err on the 

side of under-estimating risk). For example, in exposure assessment, where observed values 

(concentration levels) are deemed to be too low to be reliably distinguished from 

instrument error or noise, they are not treated as zero. Instead, procedures are applied to 

substitute for this “censored” data (e.g. proxy measures are used), to guard against under-

estimation. (36) This is broadly analogous to what Pearl (21) called “recovery schemes” – 

safeguards built into a heuristic’s application designed to ensure that it doesn’t function in 

perverse or undesirable ways. This suggests a fairly subtle appreciation of the biases that 

are intrinsic to rule-based reasoning. Although, as we shall see, this appreciation is 

sometimes lacking. 

3.3.2. Weight of Evidence Heuristics 
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3.3.2.1. Context and Heuristics  

Weight of evidence (WoE) approaches are increasingly prominent at the EPA, following the 

logic that there are often multiple lines of evidence that bear on a particular causal 

inference (e.g. is a chemical a human carcinogen), which need to be weighted and 

aggregated prior to making a final determination. This process may in principle be guided by 

some formal algorithm or set of rules (as proposed in (39)), though in practice typically takes 

the form of factors-based judgments. A classic example is Bradford-Hill’s list of criteria for 

determining whether a chemical causes disease in a given population, variants of which are 

set out across EPA guidelines. Here, the factors to be considered in interpreting evidence 

are pre-defined (e.g. the strength of any epidemiological association, its biological 

plausibility, etc.), yet generally without rules for weighting or summing them. (e.g. 29)  As an 

exception to this rulelessness, the agency has set out heuristics that classify the relative 

strength of different sources of animal and epidemiological evidence: 

 In evaluating whether a chemical is potentially mutagenic, the agency places greater 

weight on tests conducted in germ cells than somatic cells, on in viva rather than in 

vitro tests, on tests in eukaryotes rather than prokaryotes, and on mammalian rather 

than sub-mammalian species. (40)  

 A similar set of rules exists to guide the evaluation of potential endocrine disruptors 

(e.g. in vitro results from assay systems with metabolic capacity outweigh results 

from those without, etc.). (41, 42) 

 In cancer risk assessment, human data is given greater weight than animal data in 

hazard characterization and dose-response assessment (provided it is of high quality and 



18 
 

adequate power), and amongst epidemiological studies, greater weight is given to those 

having more specific and precise exposure estimates. (29) 

3.3.2.2. Analysis 

Most of these hierarchies† are based on principle that particular sources of evidence (e.g. 

specific toxicity test systems) generate data of broadly similar accuracy, reliability or 

relevance. For example, mammalian test systems are given greater weight than bacterial 

ones because of major differences in their cells (e.g. membrane structures, DNA repair 

capabilities, etc.), with the former of course being closer analogues to humans. However, 

one blindspot of this approach is that it neglects the question of how well designed, 

conducted, and reported the individual studies were. A second blindspot is that such 

hierarchies don’t accommodate the idea that the specific hypothesis under question might 

alter the strength to be afforded to a particular line of evidence. For example, a particular 

study on a particular test system may rank poorly on existing hierarchies (because the test 

system, in general, has modest sensitivity and specificity), yet nevertheless be best suited to 

resolve a question regarding a chemical’s mode of toxicological action. The point – by now 

perhaps laboured – is that rules are generalisations and thus abstract away from or ignore 

details that may in some contexts prove critical.  It is an open question whether the ceteris 

paribus qualifications that the agency attaches to these heuristics – e.g. “assuming 

appropriate dose and route of exposure” (42) and “provided it is of high quality and adequate 

power” (29) – sufficiently clarify this point. This is not an issue restricted to evidence 

hierarchies. It is the broader problem of clarifying the nature and extent of evidence 

required to depart from heuristics in particular instances. We return to this later. 

                                                           
†
 The latter hierarchy is based on the statistical properties of the study outputs, the idea being that studies 

with high precision (or low variance) are more informative (e.g. typically having larger sample sizes, etc.). 
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3.4. Modelling 

The heuristics discussed so far have dealt with tasks of classification; we now turn to 

heuristics involved in the selection and application of dose-response models, looking at both 

carcinogens and non-carcinogens (Figure 2), and focussing on the use of animal rather than 

epidemiological data. The EPA adopts different modelling approaches for interpolation and 

extrapolation, so we address each separately before providing a joint analysis. 

3.4.1. Interpolation (analysis in the observed range) 

3.4.1.1. Context and Heuristics 

The determination of a (potential) causal link between a chemical and harm is the precursor 

to building formal models of the relationship between dose and response. Interpolation 

involves structuring and regimenting the raw test data into a dose-response curve (typically 

covering moderate-high dose levels), with the purpose of deriving a “point of departure” 

(POD) from which extrapolation to the low-dose range can then be made. (35, 43, 44) This is a 

complex task with numerous possible approaches. For example, which species and endpoint 

should be used as the basis for the dose-response relationship? Should a biological or 

statistical model be used for interpolation? And which parameter estimation technique 

should be used to apply it (e.g. maximum likelihood vs. non-linear least squares)? Or should 

the dose-response data simply be plotted by hand, and formal modelling eschewed (e.g. 

where the NOAEL or LOAEL are taken as the POD)? These are the classic dilemmas of 

modelling-for-policy, where model selection is typically underdetermined by the raw data, 

underlying theories may be contested, and any choice involves a mixture of science and 

policy judgment. Rather than leave these decisions entirely up to the discretion of risk 
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assessment teams, the EPA is famous for having adopted presumptive rules to structure the 

process. (43-45) One such rule, generally perceived to be precautionary, is that: 

 The “critical effect”‡ is the preferred basis for constructing the dose-response model, 

in situations where there are several datasets to choose from (e.g. datasets relating 

to different endpoints, such as carcinogenic vs. neurotoxic, and perhaps of different 

species). (35)  

Moreover, there are simple rules applied to adjust dose-response data prior to model 

construction: 

 The cross-species scaling heuristic for  oral exposure,§ wherein animal doses are 

scaled by ¾ power of body-weight to derive the toxicologically equivalent human 

dose (to account for differences in size and lifespan across species); (46) and  

 A special-form of Haber’s Rule – where identical products of dose concentration and 

exposure time are presumed to lead to equivalent biological responses (C × t = k) – is 

used, where necessary, to adjust from intermittent laboratory exposures to “real 

world” continuous exposure conditions. (47, 48) 

The above two are rules setting out how to adjust the raw dose-response data, and are 

empirically rooted in the sense that they purport to represent relationships that exist in the 

real-world, rather than being justified on policy grounds. They embody truth claims, in other 

words, rather than being mere conventions or value judgments, and these claims can be 

                                                           
‡
 “The first adverse effect, or its known precursor, that occurs to the most sensitive species as the dose rate of 

an agent increases.” 
§
 This applies to carcinogenic risk assessment (Figure 2). For non-carcinogens, cross-species extrapolation is 

achieved through applying an adjustment factor (discussed later), although the EPA has recently moved to 
harmonise the two. Pharmacokinetic modelling is an alternative approach to cross-species scaling, although 
rarely possible in practice. 



21 
 

held to account. Accordingly, their empirical bases have been subject to critical scrutiny, (46, 

48) and indeed one long-standing critique of Haber’s Rule is that it has at times been 

interpreted by toxicologists as a causal law, rather than as a statistical approximation 

subject to certain scope conditions. (49)  

We now turn to model selection and implementation, which is largely a curve-fitting 

exercise, in the sense that there is typically little mechanistic basis to the models being 

considered. (50) For model implementation – or parameter estimation – the EPA relies on 

factors-based judgments rather than explicit rules. For example, the factors that may 

influence the selection of parameter estimation techniques are discussed in the more 

technically-oriented guidelines, (e.g. 50) although no default method is established, nor is a 

rule or algorithm established for choosing between them.  For model selection, the EPA 

tends not to rely on default procedures per se.** That is to say that there is typically no 

default model recommended, nor an explicit hierarchy of preferred models, in part because 

different study designs and datasets shape dose-response patterns. (50) But the agency does 

use heuristics to guide the process of model selection. (50) 

 In benchmark dose-response modelling, α = 0.1 is recommended as measure of 

adequate fit, along with a less formal “eyeballing” test.  

 Should multiple models pass the above tests, the minimum score on a measure that 

balances complexity with fit – Akaike’s Information Criterion (AIC) – is recommended 

to select the best model. 

3.4.2. Extrapolation (analysis outside the observed range) 

                                                           
**

 An exception is that the multi stage model is the preferred approach to analysing cancer bioassay data, 
which is a relatively flexible modelling framework.  



22 
 

3.4.2.1. Context and Heuristics 

Extrapolation involves the construction of new data points, and, in our context, refers to 

analysis in the low-dose region. It is the most significant stage of the modelling process, as 

the low-dose region is relevant to real-world human exposure levels and is thus the basis for 

regulatory decisions. Perhaps the most controversial heuristics are those guiding the 

selection of model structure at low doses: (44)  

 If a chemical is carcinogenic, then a linear non-threshold dose-response model is 

adopted. The exception to this rule is cases where a) the chemical’s mode-of-action 

is established and b) that mode of action is thought to be non-linear at low doses 

(e.g. cytotoxicity);  

 If a chemical is non-carcinogenic, then a threshold dose-response model is applied 

(i.e. below a certain exposure, no response is expected). 

The non-threshold linearity assumption for carcinogens originated in radiation biology, and 

– although there are of course significant differences in how the two types of exposure are 

absorbed by and interact with organisms – was later mapped across to chemicals regulation. 

(51) This was on the grounds that it was both theoretically plausible – the idea being that 

even a single “molecular event” can initiate malignant or neoplastic cell transformation, and 

so might lead to cancer – and likely to be health protective. (51) By contrast, the presumption 

of a threshold for non-carcinogens follows the idea that below a certain dose, clearance 

pathways, cellular defences, and repair processes can minimize damage and thus render 

exposure practically negligible. (44) However, these rules have been critiqued for retaining a 

certain ambiguity about when they can be overturned, which we return to later.  
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The above, then, are rules for selecting the fundamental assumptions or basic structures of 

the models to be adopted. Let us now turn to rules for applying those model structures to 

the data. In linear extrapolation, the goal of the modelling exercise is to derive the slope of 

the dose-response curve, as this (combined with exposure) is the basis for the subsequent 

risk estimate. The relevant heuristic is as follows:   

 The slope is derived by simply drawing a straight line from the point of departure 

(POD) to the intersect of the two axes, correcting for background.†† 

By contrast, for threshold models, the goal is to derive a “safe” level of human exposure (i.e. 

the threshold for humans, known as the reference dose or reference concentration). This is 

done through applying a series of uncertainty and adjustment factors (conventionally a 

value of 10 is used for each, where applicable) to the POD to account for: (52) 

 Inter-species variability; 

 Variations in susceptibility within the human population; 

 The difference in sensitivity between chronic and sub-chronic toxicity studies (in the 

case where sub-chronic studies are the basis for deriving a threshold for a chronic 

effect); 

 The difference between LOAEL and NOAEL (if LOAEL is used as the POD); and 

 Gaps or uncertainties in the toxicity database. 

These “safety factors” are essentially back-of-the-envelope style heuristics designed to 

accommodate the various forms of uncertainty – both in terms of variability and ignorance – 

and adjustments required to extrapolate from the findings of a specific laboratory protocol 

                                                           
††

 Model-based approaches to low dose extrapolation may also be performed (e.g. in biologically based dose 
response modelling), but theoretical and empirical limitations generally preclude this. 
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to derive results meaningful for human populations. A slightly more refined approach is the 

use of chemical-specific adjustment factors, where, for example, empirical data on 

interspecies differences in the uptake or metabolism of a chemical are used to depart from 

the conventional value of 10. (53) 

3.4.3. Analysis 

There exist a rich range of modelling heuristics, from those selecting what is to be modelled 

in the first instance (e.g. which endpoint, which species), to those adjusting or laundering 

the raw data to make it fit-for-purpose (e.g. adjusting measures of exposure), and even 

those selecting the fundamental assumptions (e.g. threshold vs. non-threshold) and specific 

functional form of the model to be applied. Of course rules being rules, they inevitably will 

have their exceptions, yet one major issue is the lack of clarity about what sort of evidence, 

and how much, is required to depart from them. This has led to several instances when the 

EPA has been reluctant to depart from them their heuristics even in the face of substantial 

contradictory empirical evidence. For example, the agency retained the default linear 

approach to low dose extrapolation in its risk assessment of dioxin, despite clear evidence 

suggesting that the substance promoted cancer via receptor-mediated pathways that are by 

nature non-linear. (53) This not only led to a skewed estimate of risk, but also understated 

uncertainty, as the assessment failed to explore how departing from this particular default 

would have influenced the analysis outcomes. The very same problem – a lack of clarity on 

what constitutes “sufficient showing” for departures – is found with the default safety 

factors. (54) And again, this ambiguity has led EPA risk assessors to rigidly adhere to the 

default values in cases, such as with dioxin and formaldehyde, where a wealth of data 

seems to justify departing from them and using chemical-specific adjustment factors. (54)  
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A second common thread is the tension between adopting heuristics that have a reasonable 

theoretical and empirical basis on the one hand, and the desire to have rules that are health 

protective on the other. This is a conflict lying at the heart of many debates over method 

and policy in risk regulation – when does it make sense to attempt to regulate on the basis 

of “best” estimates of risk (e.g. mean, or median) vs. more precautionary approaches? Thus, 

critical analyses of these modelling rules have focused not simply on their accuracy or 

generality, (e.g. 46, 48) but more broadly on their perceived tendency to exaggerate risk – 

particularly when compounded. (e.g. 55) This has led the EPA to articulate (in different levels 

of detail) the circumstances or evidence that might justify departures from some rules 

generally perceived to be precautionary (e.g. specifying the factors that may justify using 

the species that most resembles humans as the basis for dose-response modelling, rather 

than the “critical effect”), and to establish one other reform that holds particular conceptual 

interest: (52) 

 A safeguard against the excessive compounding of uncertainty and adjustment 

factors has been established – specifically, they must not combine beyond a value of 

10,000 in deriving the safe level of human exposure.¶ 

The above has some parallels with Pearl’s notion of recovery schemes, which traditionally 

serves as an “escape valve” from the rigid application of rules when they are perceived to 

lead in unhelpful or perverse directions. However, in the above case, the logic is that a 

compounding of factors to 10,000 and beyond – whilst sometimes required by a strict 

interpretation of the rules – would lead to significant exaggerations of the “true” risk posed 

by the chemical. And so the distinction is that departures from the rules are justified out of 

                                                           
¶
 The safeguard of 10,000 applies to oral doses; a safeguard of 3,000 is applied to inhaled doses. 
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concern for the interaction of rules, rather than a concern with rules operating in isolation. 

This is distinct from the usual scope restrictions and “recovery schemes” that come with 

heuristics, and suggests the importance of analysing heuristics as systems or chains of rules, 

rather than merely as independent objects. (c.f. 56) 

Also worth reflecting on is the distinction between the EPA’s mix of factors-based guidance 

and heuristics for selecting and applying models for interpolation of the dose-response data, 

compared to the rather more prescriptive and rule-bound approach to extrapolation. In 

extrapolation, heuristics set out the default model structures to be adopted, and set out in 

detail the particular rules to be followed in implementing those models. In contrast, in 

interpolation, model implementation is factors-based rather than rule-bound. And model 

selection is a mixture of clear rules and informal tests (e.g. “eyeballing”). And the rules focus 

on the processes by which models should be selected (e.g. measures of goodness of fit and 

AIC), rather than prescribing particular outcomes (i.e. default models). At first glance this 

contrast appears surprising or perhaps even incoherent, as the low-dose region is the very 

area in which theories are most contentious and data largely lacking. Yet an explanation 

comes to light when we consider that alternative plausible approaches to low dose 

extrapolation lead to risk estimates that may differ by several orders of magnitude. (57) In 

other words, the analysis outcomes are particularly sensitive to the choices made during 

extrapolation, rather than interpolation. The assumption and model-laden nature of 

extrapolation, and the extent to which it determines outcomes, has long been recognised. 

And given the general lack of scientific agreement over the most appropriate assumptions, it 

historically fed concerns about both inconsistency in risk assessment, and that outcomes 

may even be tailored to meet policy objectives. (54)  And so the introduction of ruleness in 
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this case appears to represent not so much an attempt to codify or formalise existing (albeit 

provisional) bodies of knowledge, nor simply a desire to err on the side of precaution, but 

rather an attempt to narrow or constrain the inferences open to risk assessors, and thus 

enforce a degree of consistency, transparency, and predictability in both process and 

outcomes. Critics argue that this pursuit of consistency has brought with it blindspots, such 

as the neglect or marginalisation of low-dose phenomena that do not cohere with the 

extrapolation rules (e.g. hormetic responses characterised by low-dose stimulation and 

high-dose inhibition, (58) and postulated mechanisms of endocrine disruption where 

conventional dose-response assumptions are held to be invalid (59)). The claim here is not 

just that rules have exceptions, but that they can become entrenched in ways that make it 

difficult to displace or circumvent them in practice. For example, as a consequence of the 

very existence of the low-dose extrapolation rules – and the way that they shape the 

underlying paradigms of toxicity testing – there is rarely case-specific evidence available to 

question or indeed support their validity (i.e. empirical data within the low-dose region is 

simply not part of conventional test requirements). On this reading, rules can shape 

practices in the real world in ways that make it less likely for them to be challenged. 

4. STUDY II: PROBLEMS WITH RULES IN PRACTICE 

The foregoing analysis has is in a sense been largely theoretical, focussed more on the 

content, structural features, strengths and potential problems of the heuristics of risk 

assessment, rather than on how they are interpreted and applied in concrete settings. We 

now turn to make the case that some of those structural features and potential limitations 

play out in real-world settings in interesting and important ways, and that this is not an 

issue restricted to industrial chemicals regulation. We do so by analysing six cases of judicial 
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review of regulatory risk assessments in the United States, in policy domains ranging from 

air pollution, to water quality standards, to waste management. We identified these cases 

through entering various search strings intended to reflect or relate to our previously 

discussed expert heuristics (e.g. “risk assessment” AND “default assumptions;” “risk 

assessment” AND “safety factors”), and scrutinizing the results for relevance. The idea was 

not to recover a comprehensive listing of all such disputes, but rather to identify those cases 

which had turned in significant measure on the regulatory agency’s application or 

interpretation of heuristics.  

The particular disputes recovered focussed on such things as the application of default 

model structures, on the use and neglect of safety factors, and on the reasoning behind 

departing from hierarchies of evidence (Table 1). They reveal instances of the unthinking 

reliance on rules, such as when an emission standard for an air pollutant was based on a 

default model that assumed the substance to be a gas, when in fact it was known to be a 

solid at the relevant temperatures. They highlight examples of the dubious interpretation of 

rules, such as where the EPA relied on ad hoc justifications to retain the default linearity 

assumption in modelling the risk of a carcinogen, despite having earlier concluded that it 

followed a nonlinear mode of action (cytotoxic rather than genotoxic). They show instances 

of unreasoned departures from rules, such as where the EPA and OSHA failed to justify 

deviating from safety factors designed to account for sensitive populations, which again 

highlights the dangers of not clarifying what constitutes “sufficient showing” for departures. 

And they point towards the interpretive flexibility associated with linguistically defined 

rather than mathematical rules, such as in the dispute over whether a particular toxicology 

experiment was unethically conducted and so should not be relied on.  Taken as a whole, 
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the cases show that heuristics play important roles in risk assessment across various policy 

domains, that they are sometimes applied or interpreted in problematic and contested 

ways, and that authoritative actors (e.g. courts) take these issues seriously. 

5. CONCLUSIONS 

Psychological research has cast doubt on the idea that laypeople use formal logic or 

statistical approaches to reason about risk issues, suggesting instead that they rely on 

simple and error-prone rules of thumb. Many scholars have drawn a sharp-distinction 

between this heuristic-reasoning and the rigour and reliability of formal risk assessment, 

and by extension called for relatively technocratic approaches to risk regulation as a way of 

ensuring that policies conform to rational ideals. (1, 4, 7-8, 10-13) Yet as we have seen here, 

formal risk assessment is structured and pervaded by its own set of heuristics. As a 

preliminary typology, we distinguished between classification rules that inform priority 

setting and test strategies; gatekeeping heuristics that filter problematic studies away from 

the risk assessment process; rules that structure and guide causal inference; and heuristics 

for model selection and application. Some of these rules lay claim to empirical or theoretical 

justifications, whilst others are more back-of-the-envelope style estimations, and still more 

serve policy goals beyond that of simply codifying knowledge. This is not to imply an 

equivalence between lay and expert risk assessment. Instead, we have tried to suggest that 

significant aspects of risk assessment can be represented as heuristics, and to use this 

insight to work towards a useful analytical framework for characterising the process. 

Put another way, our basic argument is that by analysing the rules of risk assessment qua 

rules, we generate important insights about the nature, strengths, and limits of the prior art, 

and insights that offer practical ways of improving it. We suggest that the heuristics of risk 
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assessment are not just an unruly collection of tools. When viewed as an approach to 

governing risk assessment, heuristics serve to close down or constrain interpretive 

possibilities, thus conferring a modicum of stability, consistency, and transparency upon a 

process that might otherwise be (seen as) highly sensitive to the choices of individual 

analysts. They can be understood as a way of authenticating or formalising risk assessment 

as a scientific practice, (60, 61) representing as they do a series of rules for bounding 

problems, collecting data, and making sense out of it (i.e. a methodology). There are, of 

course, substantive critiques of heuristics qua rules, including that they generate systematic 

error, may create a veneer of consistency by masking uncertainties, can be manipulated for 

strategic purposes, and have a tendency to become entrenched. These critiques can be 

partially offset by ensuring that the scope conditions of rules are specified, that the nature 

and extent of evidence required to justify a departure from them are made clear, that 

programs exist to periodically re-evaluate the empirical and theoretical support of particular 

heuristics, that recovery schemes are in place to correct for when they go awry, and that 

“escape valves” are in place to guard against perverse outcomes stemming from the 

interaction of rules. The critical idea here is that heuristics are not problematic per se, but 

they can become so when we treat them as laws by neglecting their rough and contingent 

nature. This principle may sound almost self-evident, but as our empirical evidence shows, 

at times it is more honoured in the breach than the observance. However, regardless of 

whether these ideals are met in practice, rule-based reasoning has certain intrinsic 

characteristics, strengths, and weaknesses, and tensions remain between the virtues served 

by relying on rules compared with those furthered by alternative species of reasoning (e.g. 

factors-based judgments).  
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A concern with the rules of risk assessment raises questions for future research. One 

involves developing a set of criteria and methods for evaluating individual heuristics, and 

this seems in principle possible to do within a formal decision theoretic framework. (e.g. 62) 

Another relates to how heuristics function in the wild (c.f. 63) – how are they selected, 

interpreted, applied or neglected in practice? We have taken tentative steps in this 

direction, but more systematic work could follow. And what rules might exist in the real-

world of risk assessment, but not on the books? A complicating issue is that expert 

heuristics are often not directly accessible or known to the expert themselves, and require 

dedicated approaches to knowledge elicitation. (64) Another avenue is the question of 

whether and why there are significant differences in the degree of ruleness, and in the 

particular rules relied upon, across regimes and jurisdictions? And other stages of the 

regulatory process – such as economic analysis and the decision-making process itself – are 

ripe for exploration. Finally, there is the more general normative issue of when or in what 

contexts it makes sense to rely on heuristics, versus alternative species of reasoning (e.g. 

factors based judgments, complex algorithms, probabilistic approaches, unconstrained 

discretion, etc.)? (63) In the meantime, our present analysis has revealed the pervasive 

influence of heuristics in structuring formal risk assessment, and cast light on the 

significance of this for understanding and designing risk regulation regimes. 
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Case Description Comments 

Chemical 

Manufacturers 

Association vs. EPA 

(1994), United States 

Court of Appeals, 

District of Columbia 

Circuit.  

28 F.3d 1259 

EPA’s rule designating Methylene diphenyl diisocyanate a high risk air pollutant 

was challenged on various grounds. One was that the emission standard was 

based on the agency’s default model, which assumed the substance would be 

emitted as a gas and disperse as such, when in fact it is solid at the (most) relevant 

temperatures, has a low vapour point, and typically disperses as an aerosol. The 

decision was overturned as the default, generic model “bore no rational 

relationship” to the air pollutant in this case. 

The court acknowledged trade-off between accuracy and 

efficiency in risk assessment, but critiqued the EPA for rigid, 

unthinking adherence to default procedures for model 

selection (heuristics) when faced with overwhelming 

evidence that they were unsound in a particular instance. 

Leather Industries of 

America, Inc. et al. 

vs. EPA (1994), 

United States Court 

of Appeals, District 

of Columbia Circuit.  

40 F.3d 392 

Various petitioners challenged EPA’s decisions on sludge sewage disposal. The 

court critiqued the agency’s reliance on default, conservative assumptions about 

the use and application of heat-dried sludge, when it had specific, empirical data 

on these variables that were of quite a different order. Also critiqued the agency’s 

use of highly conservative exposure assumptions (high child exposure model), 

when in fact a high proportion of sewage sludge application is done at sites with 

limited potential for public (and child) contact. Key elements of the ruling were 

overturned by the court. 

Critique once more focussed on blanket reliance on 

conservative modelling assumptions and practices when, 

crucially, there was empirical data available that suggested 

them to be problematic. A central concern of the court was 

the lack of justification or explanation given by the agency 

for relying on heuristics that seemed, on face value, to be 

unreasonable. 

International Union 

et al. vs. OSHA 

(1994), United States 

Court of Appeals, 

District of Columbia 

Circuit.  

878 F.2d 389 

Several unions challenged OSHA’s emission standards on formaldehyde in the 

workplace as insufficiently stringent. Central issue was whether the agency 

adequately explained its reasons for departing from the default assumption of 

linearity at low doses for the carcinogen (the linearity heuristic). The rule was 

remanded. 

Court held that the agency had not given a properly 

reasoned basis for departing from the heuristic, and so 

overturned the rule. As a subsidiary issue, court found no 

issue with the agency departing from another default rule – 

when they favoured animal studies rather than 

epidemiological data in standard setting – on the grounds 

that this was a reasoned departure from the rule. For 
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 example, they cited difficulties in getting precise exposure 

data, and controlling for possible confounders, etc.  

Chlorine Chemistry 

Council, et al. vs. EPA 

(2000), United States 

Court of Appeals for 

the District of 

Columbia Circuit  

206 F.3d 1286 

Industry groups challenged EPA for retaining a maximum contaminant level goal 

(MCLG) of zero for chloroform. The level had originally been set based on the 

assumption of linearity in the low dose range (the default heuristic for 

carcinogens), combined with statutory mandate to set MCLG at level where no 

known or anticipated adverse effects occur. The groups challenged EPA for failing 

to revise the MCLG despite having more recently concluded that the substance 

exhibited a nonlinear mode of carcinogenic action (cytotoxic rather than genotoxic 

mode of action). EPA deployed various ad hoc arguments for why they had not 

revised the standard (e.g. that it was waiting for deliberations with its advisory 

board before departing from a long held policy). Court sided with the petitioners. 

EPA’s decision was overturned on the grounds that it had 

failed to adhere to one of its own rules of risk assessment. 

That is, the agency’s own guidelines state that when 

“adequate data on mode of action show that linearity is not 

the most reasonable working judgment and provide 

sufficient evidence to support a nonlinear mode of action," 

the default (heuristic) assumption of linearity should be 

departed from. 

Northwest Coalition 

et al. vs. EPA (2008), 

United States Court 

of Appeals for the 

Ninth Circuit 

F.3d 1043, 1052 

Environmental groups challenged EPA’s tolerances for seven pesticides. 

In particular, they challenged EPA’s deviation from default safety factors (the back 

of the envelope heuristics) designed to be protective of infants and children for 

acetamiprid, mepiquat, and pymetrozine. The governing statute states that the 

EPA is allowed to “use a different margin of safety for the pesticide chemical 

residue only if, on the basis of reliable data, such margin will be safe for infants 

and children.” However, the court found that the EPA had not clearly argued or 

articulated the link between the underlying toxicological evidence, and the (non-

default) safety factors that were ultimately adopted. The decision was remanded 

on this basis. 

The dispute, as the court saw it, turned on whether the 

EPA’s evidence constituted “reliable data” for inferring that 

the lower margins of safety would be sufficiently 

protective. The agency had explicitly stated its reasoning 

behind deviating from (and lowering) its default safety 

factors when it set the tolerances (e.g. claiming data 

showed no evidence of greater sensitivity to the young, nor 

of abnormalities in development of foetal nervous system).  

However, the court found this inadequate, holding that the 

particular deviations – e.g. from a safety factor of 10 to one 

of 3 for pymetrozine – seemed chosen arbitrarily. This 

perhaps seems a rather high standard of evidence to 
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demand – safety factors are by their nature rather 

arbitrarily chosen. However, what is interesting is that the 

court emphasised that what constitutes “reliable data,” in 

other words, what constitutes reasonable grounds for 

departing from the default rules, is not explicitly defined in 

the relevant statute. This is the common problem of 

neglecting to define the nature and extent of evidence that 

constitutes “sufficient showing” to depart from heuristics.   

National Resources 

Defense Council 

(NRDC) vs. EPA 

(2011), 

United States Court 

of Appeals for the 

Second Circuit 

658 F.3d 200 

NRDC challenged EPA’s dichlorvos risk assessment on several grounds. The risk 

assessment itself had various components, with some relying on a study of human 

subjects (the “Gledhill study”), and some relying on animal toxicology studies. 

NRDC claimed that the agency’s departure from the presumptive tenfold 

children’s safety factor (the heuristic) was unsound. The court agreed in part, 

finding that in some components of the risk assessment the agency had failed to 

explicitly justify this departure. These portions of the risk assessment were 

vacated. By contrast, in the portions of the risk assessment that relied on animal 

studies, the EPA provided explicit reasons for departing from the default (e.g. “no 

evidence for increased susceptibility of the rat and rabbit offspring to prenatal or 

postnatal exposure to dichlorvos”). These portions were upheld. 

Another grounds for NRDC’s challenge was that the EPA’s reliance on the Gledhill 

study violated its own gatekeeping heuristic. The rule, which is restricted to 

pesticides regulation, forbids the EPA (and FDA) from relying on data from 

research on human subjects initiated prior to April 7, 2006 in cases where there is 

“clear and convincing evidence that the research was either: 

Once more, (portions of) a risk assessment were overturned 

in court due to unreasoned departures from heuristics. 

However, unreasoned here should be interpreted in the 

literal sense of a failure to provide explicit justifications, 

rather than necessarily being unwise.   

The (unresolved) dispute over the gatekeeping rule is 

interesting in that it highlights the interpretive flexibility 

contained within linguistically formulated (rather than 

mathematical) rules. 
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[1] fundamentally unethical (e.g., the research was intended to seriously harm 

participants or failed to obtain informed consent), or 

[2] significantly deficient relative to the ethical standards prevailing at the time the 

research was conducted.” 

This dispute turned on whether the human subjects could be considered to have 

given their informed consent. For example, in parts of the consent forms the 

pesticide was referred to as a drug. However, the EPA countered that its 

independent experts found the consent forms “clearly advised subjects that this 

was a study involving consuming an insecticide.” Court declined to resolve this 

dispute. 

Table 1: Data showing contested or problematic applications of heuristics in agency decision making, drawn from judicial reviews. 

 


