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Summary 

The principal aim of this thesis was to investigate the contact and deformation of rough surfaces 

such as those found on the teeth of gears. Freshly manufactured surfaces undergo a process known 

as “running-in”, in which the surface geometry is altered as a result of contact under load. Plastic 

deformation can occur which induces significant residual stresses, and it has been suggested that 

these may have implications for the subsequent fatigue life of the surfaces. In this thesis, finite 

element analysis (FEA) has been used to perform full elastic-plastic contact analysis based on profiles 

from gear teeth which are used in micropitting tests in order to determine the detailed nature of 

deformation and the magnitude and distribution of the residual stresses. 

FEA was performed using Abaqus, and the techniques were first developed using known contact 

problems of smooth elastic bodies. Plastic behaviour was subsequently introduced, guided by 

previous studies in the literature. Profiles from real surfaces were then used to study the behaviour 

of typical gear surfaces under load. Experiments were carried out in which the rough surfaces of 

crowned steel discs were loaded together, with relocated profiles taken before and after loading. 

The aim was to provide experimental verification of the residual deformations predicted by FEA.  

Good agreement was found between the analysis and experiments carried out at different loads. 

Regions of surface and subsurface residual tensile stress were predicted to occur in proximity to 

heavily loaded asperity contacts. Greater plastic deformation resulted in increased magnitudes of 

residual stress. Significant residual tensile stresses were predicted in regions where crack initiation 

has been shown to occur in practice at depths typical of micropitting failures in gears. It is concluded 

that residual effects of initial plastic deformation taking place during running-in can be a significant 

factor in micropitting failures in gears. 
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Chapter 1  1 

Introduction 

1.1. Introduction 

This thesis is concerned with the contact and deformation of rough surfaces such as those found on 

the teeth of gears.  During the initial period of operation of these machine elements “running in” 

rapidly occurs in which the surfaces become somewhat smoother, and this is thought to be largely 

the result of plastic deformation and partial flattening of the most prominent asperity features.  The 

process is usually regarded as beneficial, but it has also been suggested that as a result of significant 

plastic strains the induced residual stresses may have an adverse influence on the subsequent 

fatigue life of the surfaces involved.  In order to gain a better understanding of the residual effects of 

running in of engineering surfaces the thesis therefore describes a full elastic-plastic contact analysis 

based on profiles from gear teeth which are used in micropitting tests.  This chapter introduces 

tribology and contact mechanics and briefly reviews the existing literature in the field of 

elastic/plastic contact simulation, which ranges from the study of single idealised contacts to 

surfaces on which roughness is present. 

1.2. A brief history of Tribology 

The origin of the term “tribology” is in classic Greek, deriving from τριβοσ, or tribos, meaning “to 

rub”. However, the coining of the term and its usage is a relatively modern occurrence. It is widely 

thought to have first appeared in a committee report from the UK Government Department of 

Education and Science in 1966, commonly referred to as the “Jost Report” after the committee chair, 

Peter Jost. The report identified the possible savings that could be achieved as a result of better 

tribological practices (Jost 1966). The committee’s report concluded that more than £500 million 

(approximately equivalent to £6.5 billion in 2012) could be saved by reducing maintenance, 
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replacements and breakdowns, increasing machine life, and reducing frictional losses, amongst 

others. The report officially defined tribology as: 

“The science and technology of interacting surfaces in relative motion and the practices 

related thereto.” 

While this may have been the birth of the terminology, to say that this was the birth of tribology 

itself would be untrue. Indeed, tribological concepts have been implemented by mankind over 

thousands, if not hundreds of thousands, of years. Ancestors of modern humans, for example, used 

heat generated by friction to create fire. Estimates of when this first occurred range from 200,000 to 

1.5 million years ago (James 1989). In more recent history, evidence of the use of tribological 

principles can be found in ancient Egypt, using lubrication (Dowson 1979a) and rolling elements 

(Carnes et al. 2005) to aid the transport of statues and blocks of stone. In Europe, some of the 

earliest evidence on the use of gears around the second century can be seen in the Antikythera 

mechanism (Freeth et al. 2006), while Roman ships from approximately AD50 have been found with 

evidence of tapered rolling element bearings (Hamrock and Anderson 1983). 

During the Middle Ages technological advancements slowed before the emergence of Leonardo da 

Vinci (1452-1519), a man of great artistic as well as technical genius. Da Vinci studied a number of 

the concepts and principles that are now considered as tribological, such as friction, wear and 

bearings (Dowson 1977). He was the first to discover laws of friction that are still recognisable today; 

the link between normal and frictional load, and the lack of dependence on apparent contact area. 

He also investigated wear patterns and designed bush and rolling element bearings, including the 

necessity of a cage to separate elements. 

It was almost two hundred years before advancements of da Vinci’s work occurred, with Guillaume 

Amontons (1663-1705) in France, where the development of machinery was gaining momentum. His 

interest was in machines and he even claimed to have designed an engine with the power of thirty-
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nine horses using air expansion to force water to rotate a wheel (Bowden and Tabor 1964). His 

research resulted in the defining of the laws of friction that we still recognise today (Amontons 

1699): 

Amontons’ 1
st

 Law - Frictional force is proportional to the normal load. 

Amontons’ 2
nd

 Law - Friction is independent of the apparent contact area. 

A third law, known as Coulomb’s Law is also still in use today (Teer and Arnell 1975a): 

Coulomb’s Law – Kinetic friction is nearly independent of the speed of sliding. 

Charles Augustin Coulomb (1736-1806) was one of many who followed Amontons’ work due to 

scepticism over his second law. Nonetheless, Coulomb’s work confirmed and strengthened these 

findings. Many of the friction theories in France depended upon contact and interaction of 

asperities, while in England, Jean Theophile Desaguliers (1683-1744) was a proponent of the idea of 

adhesion of surfaces causing friction, noting that polished surfaces do not slide more easily as might 

be expected. 

Later, almost simultaneously, Nikolai Petrov (1836-1920) and Beauchamp Tower (1845-1904) 

experimentally investigated lubricated bearings. Petrov (1883) found that viscosity was a crucial 

lubricant property, as well as the relationship between frictional force and bearing area and 

clearance as well as sliding speed. Meanwhile, experimentation by Tower (1883; 1885) proved for 

the first time that lubricant could completely separate surfaces moving relative to one another, i.e. 

full-film hydrodynamic lubrication. Just a few years later, Osborne Reynolds (1842-1912) used the 

Navier-Stokes equation to provide the theory behind the experimental findings (Reynolds 1886). This 

resulted in the following equation, known as the Reynolds equation:  

�
�� ��ℎ�

�
��
��	 + �

�� ��ℎ�
�

��
��	 = 6� ���ℎ�

�� + 12���ℎ���  

While such work in lubricated contacts was evolving, Heinrich Hertz (1857-1894), perhaps more 

widely known for his research on electromagnetic waves, published work on the dry contact of 
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elastic solids (Hertz 1882). Hertz used interference phenomena as a result of the change in geometry 

of glasses lenses to determine contact stresses and deformations. His work is based upon several 

assumptions; that the contact area is small compared to the radius of relative curvature, and the size 

of the contacting bodies, and that the contact is frictionless. The results of his research still provide 

the basis for studies on non-conforming contacts today. 

Developments in lubrication continued with widespread use of the Reynolds equation (Williams 

1994). Arnold Sommerfeld (1868-1951) gave an approximation for lubrication pressure distribution 

in journal bearings (Sommerfeld 1904) and Anthony Michell (1870-1959) and Albert Kingsbury 

(1863-1943) who independently, but concurrently developed thrust pad bearings (Michell 1950; 

Kingsbury 1914). 

The hydrodynamic lubrication effect in such bearings is considered to completely separate the 

surfaces. Sir William Bate Hardy (1864-1934) investigated “dry” or “greasy” surfaces (Hardy and 

Doubleday 1922) and was the first to coin the term “boundary lubrication” (Dowson 1979b). It was 

found that even the smallest amount of lubricant between surfaces could significantly reduce the 

friction between them. The effects of boundary lubrication on friction between bodies have since 

been studied extensively, and most famously, by Bowden and Tabor (1950; 1964). 

In the bearing applications that the Reynolds equation had been applied to, the contacts were highly 

conformal. In applying the same methods to non-conformal contacts such as those found in gear 

tooth contacts or in rolling element bearings, conditions suggested film thicknesses smaller than the 

scale of surface roughness, or even the size of lubricant molecules (Williams 1994). Despite this, 

components experiencing such conditions operated successfully with little evidence of surface 

distress. A solution to this apparent inconsistency was first proposed by Grubin and Vinogradova 

(1949) who combined the effects of pressure on lubricant viscosity and elastic deformation of 

surfaces into the earliest theory of elastohydrodynamic lubrication (Whomes and Halling 1975).  

Further significant developments of elastohydrodynamic lubrication theory were made by Dowson 
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and Higginson (1959).  More recently the subject has benefitted from the use of high speed 

computers which have enabled the introduction of the real effects of non-Newtonian lubricant 

behaviour and, most importantly, the presence of roughness which is present on real engineering 

surfaces.  An excellent review of the topic has recently been given by (Lugt and Morales-Espejel 

2011). 

1.3. Review of relevant literature 

1.3.1. Introduction 

One of the key issues facing tribology is the drive to reduce frictional losses as energy efficiency 

becomes more critical. As a result less viscous lubricants will be required in hydrodynamically 

lubricated bearings causing thinner lubricant films, resulting in bearings which no longer operate 

under full film conditions, but in a state of “mixed lubrication” in which there is a significant 

interaction, and possibly direct contact, between asperity features on the two opposed rough 

surfaces. Therefore, it will become increasingly important to consider the nature of such contacts 

and their potential effects on the condition of the surface, and the life of machine elements such as 

bearings and gears. Various techniques, both experimental and theoretical, can be used in the study 

of rough surfaces and their contact under both dry and lubricated conditions.   

The work described in this thesis was concerned with the detailed behaviour of asperity/asperity 

contacts under both elastic and elastic-plastic conditions using finite element (FE) simulations. The 

ultimate aim of this study was to investigate the effect of loaded contact on the residual stresses 

retained in the surface and subsurface material once the load was removed. Subsequent analysis to 

assess the relationship between residual deflection and residual stresses and the potential for 

connotations on surface fatigue life could then be considered. 

In this section, the literature relating to surfaces and their contact is reviewed, focussing upon areas 

particularly relevant to this work. This encompasses both tribological problems, and the methods 
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used to solve them. Currently, little work exists regarding the contact analysis of real rough surfaces. 

Many studies have been performed considering single asperity contacts, before being extended in 

statistical models, while idealised rough surfaces have also been studied. Neither of these gives a 

truly representative account of the interaction between asperity contacts of surfaces typically found 

on ground gears. The work in this thesis will therefore aim to develop robust contact analysis 

techniques, allowing this kind of situation to be analysed further. 

1.3.2. Individual contacts 

1.3.2.1. Circular and elliptical contacts 

The basis for contact mechanics theory originates from the research of Hertz on the elastic contact 

of semi-infinite bodies. When studying optical interference fringes, Hertz (1882) considered the 

deformation of the glass lenses under an applied load, as shown in Figure 1.1. He solved the problem 

of elastic non-conforming contacts, and obtained simple expressions for the contact stresses and 

deformations, subject to the following assumptions: 

• Contact surfaces are continuous and non-conforming. 

• The strains as a result of the loaded contact are small. 

• Each contact body can be considered as a perfectly elastic, infinite half space. 

• Contact surfaces are frictionless. 

• The shape of the surfaces in the region of their contact is paraboloidal. 

Hertz found that in general, contacts are elliptical in shape and the contact pressure distribution is 

semi ellipsoidal. This form of pressure distribution is now widely referred to as “Hertzian”. Much of 

the work in contact mechanics has essentially been directed towards eliminating the simplifications 

in Hertzian contact theory. 
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Figure 1.1 - Interference fringes at the contact of two equal cylindrical lenses with their axes 

inclined at 45°: a) unloaded, b) loaded (Johnson 1985). 

Much of the early research on single point contacts loaded beyond the elastic limit was driven by 

interest in the Brinell hardness test, in which a hard steel ball is pressed normally on the surface of 

interest. This resulted in a number of studies focussed upon the indentation of a soft half space by a 

harder, or rigid, spherically-tipped indenter. 

Ishlinksky (1944) solved the problem of a rigid sphere indenting a purely plastic half space, and a 

number of studies followed considering elastic-plastic behaviour (Hardy et al. 1971; Lee et al. 1972; 

Follansbee and Sinclair 1984; Sinclair et al. 1985; Hill et al. 1989). Finite element techniques were 

used to simulate the loading of a rigid sphere into an elastic-plastic half space, over a range of loads, 

using experimental results obtained by Tabor (1951) and Johnson (1968), but also from the 

experiments of the authors themselves. Several patterns in behaviour were found to occur in these 

early studies. As the load was increased, contact pressures were found to evolve from a Hertzian 

distribution to a flatter, more rectangular shape, as shown in Figure 1.2. The region of yielding 

material was found to grow, leaving a small region of elastic material at the surface in the centre of 
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the contact, surrounded by plastic material. This can be seen in Figure 1.3, where N/N* is the ratio 

of applied load to the load to cause initial yield, and in Figure 1.2 where σz/τyp is the contact pressure 

normalised by the yield point shear strength. After the load was removed residual negative 

deflections were found to occur, with positive displacements occurring just outside the contact 

region. 

 

Figure 1.2 - Pressure distribution in the contact area (Hardy et al. 1971). 

 

Figure 1.3 - Progressive yielding of the half space under loading conditions. The elastic zone is 

shown around the origin (Hardy et al. 1971). 
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Kral et al. (1993) used the commercially available finite element software package Abaqus to 

simulate a similar indentation problem, whilst also investigating the effect of varying elastic and 

plastic properties by changing the elastic modulus and strain hardening behaviour. Similar trends 

were found to occur as previously mentioned, while little difference was found to occur due to the 

changes made to the elastic properties. However, introducing strain hardening resulted in higher 

peak contact pressures and smaller contact areas. Also investigated was the effect of repeated 

loadings. The size and shape of the yielding areas were not found appreciably to change with 

subsequent loadings, although small amounts of further plastic strain were found to occur. The 

authors later extend the analysis to consider the indentation of layered materials (Kral et al. 1995a; 

Kral et al. 1995b). The additional, stiffer surface layers resulted in contact pressures peaking at the 

edge of the contact, and also resulted in increased stresses at the layer interface. Kulkarni et al. 

(1990; 1991) performed work investigating multiple rolling contacts, and it was found that most 

plastic behaviour occurred during the first load cycle. In their comparison of elastic-perfectly plastic 

and strain hardening materials, higher peak stresses were found to occur in the materials with strain 

hardening properties. 

As part of wider research into powder compaction, Mesarovic and Fleck (1999; 2000) investigated a 

wider range of axisymmetric contact scenarios. These included the contact of a deformable sphere 

with deformable and rigid spheres and half spaces, as well as the indentation of a deformable half 

space with a rigid spherical indenter as already discussed. The results show that the case of a rigid 

indenter contacting a deformable half space, and a deformable sphere pressed into a rigid flat, are 

different. As a result, the increasing research into elastic-plastic asperity contact for incorporation 

into Greenwood and Williamson (GW) stochastic-type models (Greenwood and Williamson 1966) 

has concentrated on the  contact of deformable spheres rather than rigid indentation. Chang et al. 

(1987) (CEB model), Chang (1997) and Zhao et al. (2000) (ZMC model) mathematically manipulated 

the behaviour in the elastic-plastic regime to complete the transition between classical purely elastic 

and plastic contact behaviour for implementation in statistical models of rough surface contact. This 
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section of the chapter is concerned with individual contacts, so aspects of these studies, and those 

to be discussed, focussing upon the statistical models, can be found in Section 1.3.3.1. 

An alternative commercially available finite element software package, ANSYS was used by Kogut 

and Etsion (2002) to study the contact of a deformable steel sphere with a rigid flat. The elastic-

plastic behaviour of the deformable steel was determined by the von Mises yield criterion, while the 

yield strength varied as a proportion of the elastic modulus, which was not explicitly stated. Load 

was applied in the form of a specified interference, or approach distance. The maximum 

interference applied was 110 times that for first yield (the critical interference). As previously found 

in indentation studies, as the load was increased, and the amount of plastic material increased, a 

small region of elastic material remained at the surface in the centre of the contact. This elastic 

region eventually disappeared at a sufficiently high interference. The authors then compared results 

of the study against the mathematically manipulated elastic-plastic regimes proposed by Chang et al. 

(1987) and Zhao et al. (2000) in their statistical models. The constant mean contact pressure of 

plastic contacts assumed in the CEB model was criticised, while the ZMC models results were found 

to provide a good approximation to the finite element analysis, but predict a fully plastic contact 

occurring at a lower load. Both models were found to overestimate contact size after a critical 

interference ratio of around 30. Based on curve fit data, two discontinuous empirical formulations 

were defined for the relationships between interference and contact load and contact dimension. 

In a subsequent study, Etsion et al. (2005) investigated the residual effects of loading single spherical 

asperities. Also investigated was a range of materials to determine the validity of normalising 

parameters against critical values at initial yield. In this study, a small amount of linear strain 

hardening was used to ensure better convergence of the solutions. The dimensionless model 

presented suggests a consistent behaviour across the materials tested. In the contact itself, the size 

of the residual indentation as result of the contact was smaller than the loaded contact dimension, 

as would be expected. Additional regions of yielding material were found to occur at the edge of the 
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contact at the surface after heavy loading. The authors also suggest that the unloading phase is fully 

reversible upon subsequent application of the same interference. Preliminary testing of repeated 

loading indicated that this was the case, but further investigation was proposed. 

A further investigation was carried out by Kadin et al. (2006a). It was found that the majority of 

plastic flow occurs during the first loading. For high values of interference, some yielding occurs in 

the first unloading as previously discussed. Subsequently, even in the second load cycle, the material 

remains fully elastic. A range of materials was tested as before, and this behaviour was found to be 

typical. Changing material properties such as Poisson’s ratio and strain hardening behaviour resulted 

in changes in material yield in the unloading phase. A suggestion of future work was the introduction 

of kinematic hardening behaviour rather than isotropic, which is thought to be a factor in reducing 

plasticity in subsequent load cycles. 

Two studies by Jackson and Green (2005) and Jackson et al. (2005) also investigated the loading and 

unloading of a single asperity contact, respectively. A similar finite element model was created using 

ANSYS, contacting a deformable sphere with a rigid flat using a specified interference. The sphere 

was then moved away from the rigid flat to obtain residual results. Typical elastic material properties 

of steel were used, with a range of yield strengths tested. Finite element results were found to 

follow Hertzian behaviour at small interferences, diverging once plastic behaviour became more 

dominant. Good agreement was generally found with the empirical formulations of Kogut and Etsion 

(2002), (KE), albeit with a discontinuity. As previously discussed, the ZMC model predicts a fully 

plastic contact prematurely. These comparisons can be seen in Figure 1.4. It was also found that the 

average contact pressure was limited to approximately 2.84σy as indicated by Williams (1994), or 

approximately 3σy as stated by  Tabor (1951). However, for higher yield strength materials, this limit 

was found to be lower, ranging from 2.7σy to 2.4σy as yield strength increased. The authors 

attributed this behaviour to the evolution of the contact geometry, as the deformable sphere 

tended towards a deformable blunt rod. Again, empirical formulations were determined for the 
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relationships between key parameters, interference, load and contact area as well as average 

contact pressure. 

 

Figure 1.4 – FEM predicted contact area (left) and contact force (right) (Jackson and Green 2005). 

In the study of residual effects (Jackson et al. 2005), the magnitude of negative residual 

deformations were found to be highly dependent on the loaded displacement, as would be 

expected. Furthermore, increased loaded displacement resulted in increased positive residual 

deformation, or pile up, at the contact edge. Also discussed were the residual stresses found in the 

material of the deformable sphere. Regions of tensile radial stresses were found to occur at the 

surface in the region of the contact edge, aligned with the regions of residual pile up. A region of 

subsurface tension was also found directly beneath the surface. Tensile axial stress was also found 

slightly beneath the surface at the edge of the contact. These stress distributions can be seen in 

Figure 1.5. 
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Figure 1.5 - Contour plots of the complete stress tensor for a hemispherical contact unloaded from 

ω*  = 3.92; a) radial stress σxx / σy, b) axial stress, σyy / σy, c) hoop stress, σzz / σy, d) shear stress, τxy 

/ σy (Jackson et al. 2005). 

Another group studying single spherical contacts looked more specifically at the effect of strain 

hardening (Shankar and Mayuram 2008a; 2008b). The first study directly compared results to those 

achieved by Kogut and Etsion (2002) and Jackson and Green (2005). Differences were found to occur 

primarily in the interferences required to cause the region of surface elastic core to emerge, and 

subsequently disappear. Aside from this, good agreement was generally found to occur, in particular 

with Jackson and Green. Upon introduction of linear strain hardening, contact pressures could 

exceed the proposed limits of 2.8σy to 3.0σy. Small differences in contact areas and the emergence 

and disappearance of the surface elastic core were also founded to occur. An experimental 

validation of the analysis techniques used was performed using a rigid indenter model (as opposed 
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to the deformable sphere model described). Aluminium and brass specimens were indented using a 

hard ball, and material properties imported to ANSYS. Good agreement was shown between 

experimental and finite element results, as shown in Figure 1.6. 

 

Figure 1.6 - a) Stress-strain curve for the tested base specimens, b) Comparison of the FEM and 

experimental contact load results (Shankar and Mayuram 2008b). 

Ovcharenko et al. (2007) performed an experimental study, contacting copper and stainless steel 

spheres against a sapphire flat. Testing of the materials showed that the materials approximated 

elastic-perfectly plastic and linear strain hardening materials respectively. A microscope and CCD 

camera set up allowed images to be taken in situ, giving images of contact areas during the loading 

and unloading phases. Loaded and residual results showed good agreement with results obtained by  

Kogut and Etsion (2002) and Etsion et al. (2005), respectively. When the spheres were first unloaded, 

discrepancies were founded to occur however. The authors attributed this to the change in the 

loading relationships in the residual study. However, the original relationship proposed a 

discontinuity in behaviour that seems counterintuitive, and so the revised relationship appears more 

appropriate. Under cyclic loading, the steel specimens took approximately five loadings before 

insignificant additional growth in residual contact area occurred. For copper specimens this took 

more than the ten cycles shown. This is in contrast to the findings of Kadin et al. (2006a). The 

authors proposed this difference to be in the perfect slip contact condition of the finite element 

study, although the defined plastic materials constants could also be a source of the differences. 
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Another experimental study was performed by Jamari and Schipper (2006b), who subsequently used 

the mathematically manipulated elastic-plastic regime proposed by Zhao et al. (2000) to study the 

loading and unloading of spherical contacts (Jamari and Schipper 2006a; 2007). Copper and 

aluminium spheres were loaded against a silicon carbide flat, with surface measurements taken by 

an optical interference microscope before and after loading. Loads were such that the results were 

predominantly in the plastic region only. Results were compared with model predictions of Abbott 

and Firestone (1933), Chang et al. (1987)and Jackson and Green (2005) (AF, CEB and JG). Agreement 

between these models and the experimental data was relatively poor, as can be seen from Figure 

1.7. The experimental data seem to show a constant mean contact pressure in agreement with that 

of the AF and CEB models. However, some reservations have been expressed by Jackson and Green 

(2007), concerning measurement of contact dimension from residual surface measurements and the 

calculation of the yield strength in the JG model. 

 

Figure 1.7 - a) Mean contact pressure versus contact area, b) Contact area as a function of normal 

load. Plotted points (▪) are experimental data (Jamari and Schipper 2006b). 

Jamari and Schipper (2006a) then developed a theoretical model based on the approach to the 

elastic-plastic regime of Zhao et al. (2000), using the experimental results of Chaudhri et al. (1984) 

for validation, rather than their own, to include contacts in the elastic and elastic-plastic regions. 

These experiments contacted phosphor-bronze and brass spheres with a flat of sapphire. For each 
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material the author’s model provided the best agreement with the experimental data. For the softer 

phosphor-bronze, the JG model had the best approximation of those considered. For the harder 

brass, each of the models considered were more tightly grouped, with the KE model providing the 

closest predictions. 

 

Figure 1.8 - Non-dimensional contact area versus non-dimensional contact load; a) phosphor-

bronze, b) brass. ○ and Δ are experimental data (Jamari and Schipper 2006a). 

In the residual study, Jamari and Schipper (2007) compared their theoretical residual results against 

those found in their own experimental study using copper and aluminium spheres. As before, better 

agreement was found in the comparisons between the proposed model and experimental results 

using the harder material, in this case aluminium, as can be seen in Figure 1.9. 
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Figure 1.9 - Plastic contact area versus interference of spheres; a) aluminium, b) copper. • and ▪ 

are experimental data (Jamari and Schipper 2007). 

The contact of a deformable sphere is essentially a special case of an elliptical contact whereby the 

two contact semi dimensions are equal. The problem of the contact of a deformable ellipsoid is 

significantly less frequented in the literature. When considering finite element analysis, this may be 

due at least in part to the requirement of modelling in three dimensions. A spherical contacting body 

can be modelled using two dimensional axisymmetric elements. At least ¼ of the ellipsoid surface 

must be modelled in three dimensions, with symmetrical boundaries along the major and minor 

axes. Therefore, significantly more elements and nodes are required to analyse the problem, 

increasing computational resource requirements. Nonetheless, the directionality of many machining 

processes means that asperities are unlikely to be ideally shaped point or lines contacts. Therefore, 

elliptical contacts should not be neglected. 

Lin and Lin (2006) first studied spherical contacts using ANSYS, and later extended their work to 

investigate the contact of ellipsoids (2007). Some of the findings are relatively intuitive. For example, 

for a more elongated elliptical body, the contact area is more elliptical too. However, at low 

interferences, the contact area was found to be more elliptical than the contacting body. For 

elliptical bodies of ratios 1 (spherical), 0.5 and 0.2, the ellipticity of the contact area was 1, 0.4 and 

0.126 respectively. With increasing load, the ellipticity of the contact tends towards that of the body. 
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Contact pressures are found to be higher in more spherical contacts, while larger interferences are 

required for more eccentric elliptical bodies to cause transition from elastic to elastic-plastic and 

elastic-plastic to fully plastic regimes. Chung (2010) shows the evolution of elliptical contacts, 

tending from spherical contacts to line contacts, as material yield initially occurs at larger depths in 

more eccentric elliptical contacts. 

Much of the research in this area has utilised the finite element method and commercially available 

finite element analysis software packages. Other methods have also been developed, such as those 

used by Hu et al. (1999) and Wang et al. (2010). Each of these studies used a numerical method 

based on fast Fourier transforms, minimisation of complementary energy and the conjugate gradient 

method. Initially, the method was tested using a purely elastic model, using known results from the 

Hertzian contact solution for contact pressure and subsurface stress distributions (Hu et al. 1999). 

Elastic-plastic behaviour was later considered, from finite element analysis results using Abaqus as a 

validation method. Good agreement was found between the numerical method and finite element 

for a variety of parameters including contact dimensions and pressures, loaded and residual von 

Mises stress distributions, and displacements. The largest discrepancies were found for elastic-

perfectly plastic material in regions of plasticity. 

Wang and Keer (2005) also developed a semi-analytical method, although this was used to 

investigate the indentation of a deformable half space by a rigid indenter. A range of strain 

hardening materials was used, and it was found that an increased tangent modulus resulted in 

increased stresses and reduced contact areas. Chen et al. (2008) extended the study to repeated 

indentations of a deformable half space. Kinematic hardening behaviour was defined. Most plastic 

deformation occurred in the first load cycle, with increasingly small additional plastic strain in 

subsequent load cycles. Details of the techniques used were published by Liu et al. (2000). 

A number of studies have also been performed examining sliding and rolling contacts of individual 

spherical bodies. These have used finite element analysis (Faulkner and Arnell 2000; Mulvihill et al. 
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2011), semi-analytical methods (Boucly et al. 2007) and combinations of the two (Jackson et al. 

2007). Common findings include asymmetric distributions of normal and shear forces when normal 

axes are aligned. Forces are typically found to be higher in the first half of the sliding cycle. 

Increasing friction coefficient increases shear forces, but normal forces remain relatively unchanged. 

1.3.2.2. Line contacts 

Circular point contacts and line contacts are the two extreme limits of elliptical contacts; one where 

the principal radii are equal, and the other where one radius is infinite. While much research has 

been performed on circular point contacts, as already discussed, contact of cylinders and line 

contacts have been less extensively researched. However, as previously stated, the directionality of 

many machining processes (such as grinding, extensively used to finish the teeth of gears) means 

that asperities of long elliptical shape are perhaps more applicable to the study of rough surface 

contacts in practice. A line contact is an approximation to a highly eccentric elliptical contact, but 

with simpler contact geometry and is less computationally intensive. This section will discuss studies 

that have focussed upon this contact configuration. 

Hertz (1882) considered a line contact to be the limiting case of an elliptical contact when the major 

axis contact dimension became very large compared to the minor axis contact dimension. Johnson 

(1985) considers the configuration as a problem in its own right, and solves the elastic problem, 

deriving formulae for contact dimension, contact pressure distribution and the subsurface stress 

distributions as in Figure 1.10. 
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Figure 1.10 - Contact of cylinders: a) subsurface stresses along the axis of symmetry, b) contours of 

principal shear stress (Johnson 1985). 

Similar indentation studies to those discussed for rigid spheres have also been performed 

considering a rigid cylinder in contact with a deformable half space, with researchers generally 

choosing to use the finite element method. Akyuz and Merwin (1968) were one of the first to do so, 

noting significant flattening of the contact pressure profile, deviating from the elliptical Hertzian 

distribution as the load was increased as shown in Figure 1.11. This is behaviour found also in 

spherical body contacts. However, the study only covered loads such that the plastically deforming 

region was confined beneath the surface.  
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Figure 1.11 - Load distribution and plastic zone in plane strain state for rigid circular punch of R = 

50 in (Akyuz and Merwin 1968). 

The indentation problem was also studied by Lee and Kobayashi (1970). Dumas and Baronet (1971) 

and Lin and Tseng (1998). Similar patterns of behaviour were found to those already discussed for a 

rigid spherical indenter. In the elastic-plastic regime, a small region of elastic material was found to 

remain at the surface at the centre of the contact. This was then found to disappear in materials 

with strain hardening behaviour. Strain hardening behaviour also resulted in relatively larger contact 

pressures and loaded stresses, but reduced contact areas and residual deformations and stresses.  

Tian and Saka (1991) extended the indentation problem by considering a multi layered deformable 

half space, consisting of layers of gold, nickel and copper as found in electrical contacts. The gold top 

layer and copper substrate thicknesses were maintained while the nickel interlayer thickness was 

varied. Contact pressures distributions were found to be dictated by the degree of plasticity, which 

in turn was found to depend upon the thickness of the interlayer. The distribution became flatter for 

increasing thickness, before becoming reduced again for the maximum thickness tested. For thinner 

layers, the layer interface faces act as stress raisers, and plastic strains can be seen to occur in their 
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vicinity. For the thickest interlayer, it is sufficiently far away that only small amounts of plasticity 

occur between the top two layers. 

For spherical contacts, Mesarovic and Fleck (2000) showed that the case of a rigid indenter and 

deformable half space differed from that of a deformable body and rigid flat. Unfortunately, no 

equivalent study for a line contact has been found but it would not be unreasonable to expect 

similar findings. Liu et al. (2001) initially studied the contact of a deformable cylinder with a rigid flat 

in order to validate their theoretical model, before analysis of rough surfaces. The Hertzian solution 

was used for elastic contact validation, while for elastic-plastic behaviour, finite element analysis 

was used. Good agreement was found for their model for elastic and elastic-plastic behaviour. 

Much of the analysis of the contact of cylinders is concerned with rolling contacts. One of the first of 

these studies was performed by Merwin and Johnson (1963), who investigated repeated loading of a 

rigid cylinder on an elastic-plastic half space. For loads below a defined shakedown limit, only small 

increases in residual stress were found to occur after the first loading cycle. For loads above this 

shakedown limit, larger increases were found to occur in subsequent cycles. However, these residual 

stress increases were restricted to a narrow band of the region in which they first occurred, as 

shown in Figure 1.12. 



 Introduction 

Chapter 1  23 

 

Figure 1.12 - Build-up of residual stress (σx)r and (σz)r with repeated passages of the load; a) p0 = 

4.0k (shakedown limit), b) p0 = 4.8k, c) p0 = 5.5k (Merwin and Johnson 1963). 

Two studies by Bhargava et al. (1985a; 1985b) also considered the rolling contact of cylinders, for 

single and multiple contacts, respectively. The Abaqus software was used to apply a Hertzian 

pressure distribution to a deformable half space. For single contacts (Bhargava et al. 1985a), the 

finite element analysis was first verified for elastic behaviour using the Hertz solution, and for 

elastic-plastic behaviour using the indentation work by Dumas and Baronet (1971) previously 

discussed. Rolling contact was simulated by translating the applied pressure distribution along the 

deformable half space. Figure 1.13 shows the initial (light lines) and residual (heavy lines) meshes 

used in one of the load cases in the study. As can be seen from the final shape of the half space, it 
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appears that a static indentation is a more severe form of loading than the rolling contact. The initial 

indentation occurs at the left side of the half space, with the applied pressure being translated 

across the surface to the right. When the pressure distribution is again stationary, larger 

displacements are again seen to occur. However, these displacements are smaller than the initial 

indentation as a result of “ploughing”; the pushing of material ahead of the rolling sphere. This 

behaviour is also reflected in the residual stress and plastic strain distributions. For single contacts, 

higher residual stresses are typically found than in equivalent results shown by Merwin and Johnson 

(1963). 

 

Figure 1.13 - The residual displacement with the load removed, mag. factor 117.8 (Bhargava et al. 

1985a). 

For repeated contacts (Bhargava et al. 1985b), direct comparisons to the results of Merwin and 

Johnson (1963) were made. A lower shakedown limit was found for the finite element analysis. As 

for the single loading, larger peak residual stresses were found to occur, although the trends in the 

distributions were similar. It was concluded that a steady state was achieved after typically two 

loading cycles. 

A criticism of each of these rolling contact studies is the use of an elliptical Hertzian pressure 

distribution for loads that results in material plasticity. It has already be discussed how contact 
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pressure distributions become somewhat “flattened” as a result of material yield and the contact 

pressure distributions used are therefore not ideal. However, at low loads where small amounts of 

plasticity occur, the Hertz distribution is relatively similar. But major discrepancies will occur at 

higher degrees of deformation. 

Vijaywargiya and Green (2007) used a commercially available finite element analysis software 

package, utilising 2D plane strain elements to investigate sliding contact of deformable cylinders. 

Similar to previously discussed studies, normal loading was performed by way of a vertical 

interference or approach distance. The interference at initial yield was that derived by Green (2005). 

Cylinders were offset in from one another before a specified translation moved one cylinder across 

the other. A schematic of the loading scheme can be seen in Figure 1.14. 

 

Figure 1.14 - Schematics of the sliding process (Vijaywargiya and Green 2007). 

As the interference was increased, the normal and tangential reaction forces also increased. The 

distribution of these forces became increasingly asymmetric also. Toward the end of the sliding 

contact, the tangential reaction forces changes direction. Initially positive, resisting the sliding 

contact, the reaction become negative essentially pushing the opposing cylinder past. The ratio of 

horizontal to normal reaction force also grows with increased interference. When friction was 

introduced the reaction forces increased. The normal reaction increased slightly and the tangential 
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reaction significantly.  Residual deflections were also found to be increased as a result of the 

introduction of friction. 

Mulvihill et al. (2011) also studied the problem of cylindrical sliding contact. However these authors 

chose to utilise 3D elements, allowing the use of a ductile material failure model in Abaqus. This 3D 

model was compared with an equivalent 2D plane strain model, and results were found to be 

essentially identical. Load distributions were again found to be asymmetric. 

Further contact phenomena were studied by Hu et al. (1999), who used their numerical model based 

on fast Fourier transforms and minimisation of complementary energy to simulate the contact of a 

cylinder of finite length. This resulted in increased contact pressures at the edge of cylinder. 

1.3.3. Rough contacts 

1.3.3.1. Stochastic contact models 

Zhuravlev (1940) provided an approximation of purely elastic contact of flat rough surfaces by 

proposing a random distribution of asperity heights, each with a constant radius. An almost directly 

proportional relationship was found to occur between the real contact area and the load. This 

statistical approach to the analysis of rough surface contact is often attributed to Greenwood and 

Williamson (1966), and is commonly referred to as the GW model. While the method had previously 

been proposed, they did introduce several new aspects not found in Zhuravlev’s work, such as the 

discussion of the transition from elastic to plastic contact and experimenting with the adoption of 

both exponential and Gaussian distributions of asperity heights. The exponential distribution was 

found to give an exactly proportional relationship between load and real contact area, although a 

Gaussian distribution was found to be more representative of the geometry of real rough surfaces. 

Subsequent experimental research has shown that within the range of elastic deformation, and 

considering quasi-isotropic surfaces, the GW model provides a good approximation of real rough 

surface contact behaviour (Handzel-Powierza et al. 1992). 
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Stochastic GW type models have subsequently been applied to other contact problems. Greenwood 

and Tripp (1967) extended the model to consider the contact of rough spherical surfaces, as did 

Mikic (1974), while Lo (1969) and later Gelinck and Schipper (1999) studied the contact of rough 

cylinders. Greenwood and Tripp (1970) again broadened their research in this area by considering 

the contact of two rough surfaces. It was found that models with both surfaces rough give 

indistinguishable results from single rough surface models. 

A limitation of these GW type models is the manner in which material plasticity is approached, 

considering asperities to be either elastic or plastic, with little transition behaviour. Furthermore, the 

plastic contact model adopted was based upon that of Abbott and Firestone (1933). This predicts the 

contact area to be calculated by truncating asperities at the intersection of the original surfaces, 

with uniform contact pressure equal to the hardness. This model of plasticity neglects volume 

conservation in the deformed material (Ford 1963). 

Studies by Williamson and Hunt (1972) and Pullen and Williamson (1972) actively investigated 

plasticity in rough contacts. Positive as well as negative deformation of the rough surface was 

discussed, as shown in Figure 1.15. Conservation of volume was proposed to occur by a uniform 

positive displacement across non-contacting regions of the rough surface. This resulted in a new 

non-linear approximation of the relationship between contact area and load. The proposed solution 

showed good agreement at low and high loads, where elastic and plastic behaviour dominate. 

However, the transitory state between elastic and plastic behaviour is poorly approximated. 



 Introduction 

Chapter 1  28 

 

Figure 1.15 - The manner in which metal is redistributed during the crushing of a rough surface by 

a flat (Pullen and Williamson 1972). 

A further limit is that these models each considered asperities to be spherically tipped, with constant 

radius of curvature. A study of surface topography by Whitehouse and Archard (1970) resulted in an 

alternative theory to describe asperity shape. The asperity distribution and radius assumptions were 

discarded, replaced by two new surface parameters to characterise asperity height and wavelength 

structure. Onions and Archard (1973) proceeded to use these parameters to create a stochastic 

model comparable to the GW model. This resulted in slightly different behaviour between load and 

contact area, as shown in Figure 1.16, and very different mean contact pressures, as shown in Figure 

1.17. Bush and Gibson (1975) also modified the shape of asperities, considering elliptical paraboloid 

tips, rather than spherical. 
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Figure 1.16 - Comparison of Greenwood Williamson model and Whitehouse and Archard model; a) 

Area of contact as a function of separation, b) Relation between the area of contact and the load 

(Onions and Archard 1973). 

 

Figure 1.17 - Mean pressure at the real area of contact as a function of a) separation, b) load 

(Onions and Archard 1973). 

More recently, a similar type of model has been used for a number of other problems. McCool 

(1986) compared the standard GW model to other isotropic and anisotropic models, before later 

introducing more deviations in the form of skewed asperity distributions to represent different 

finishing techniques as well as studying coated surfaces (McCool 2000). 

As discussed, the original GW model and subsequent refinements provide a good solution for rough 

surface contact for predominantly elastic or plastic behaviour. The transitory region in between is 
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not accurately represented. As a result, significant research has been performed investigating 

elastic-plastic behaviour. Many of the authors discussed hereafter have performed work on single 

contacts, before introducing their suggested elastic-plastic regime into a GW type model. The single 

contact aspects of these studies have previously been discussed in Section 1.3.2; this section focuses 

on the stochastic implementation. 

One of the first models to attempt to bridge this transition range was proposed by Chang et al. 

(1987), which is commonly referred to as the CEB model. Based on work by Tabor (1951), a critical 

interference, or approach distance was calculated at which material yield first occurs. Until this 

critical value is reached, purely elastic Hertzian contact is assumed, while afterwards, a model based 

upon volume conservation over a region dependent on the interference is used to simulate plastic 

behaviour. Hertzian contact pressures were assumed for elastic contacts, while plastically deforming 

asperities were subject to constant contact pressures proportional to the hardness. This effectively 

tied together the purely elastic and plastic models, while doing little to describe any transitory 

regime in between, leading to discontinuities in the results of the rough surface contact. Horng 

(1998) performed a related study, considering elliptical contacts with a range of asperity tip radii, 

with the trends in behaviour found similar to that found by the CEB model. However, discontinuities 

between elastic and plastic behaviour were still present, with nothing done to address the transition. 

Evseev et al. (1991) proposed an alteration to the contact pressure distribution where only the 

pressure at the centre of the contact remained constant. The pressure at the edges of the contact 

followed a Hertzian distribution. This removed the discontinuity found in previously discussed 

models, but the authors recommended further investigation after comparison with experiment. 

Kucharski et al. (1994) used a finite element method to solve the contact of an elastic-plastic, 

spherically tipped, single asperity, as discussed in Section 1.3.2. The behaviour found for the single 

contact was then used in a statistical model as in the GW and CEB formulations, and the results 

compared, as in Figure 1.18. While none of the three shown models provides particularly good 
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agreement with experimental results, it can be seen that the results achieved using the finite 

element model give the closest approximation. 

 

Figure 1.18 - a) Dimensionless approach vs. dimensionless load for sand-blasted surface, b) real 

contact area vs. dimensionless load for sand-blasted surface (Kucharski et al. 1994). 

While considering coated surfaces, Chang (1997) returned to further develop the CEB model to 

remove the previous discussed discontinuity between elastic and plastic behaviour. A linear 

transition between the onset of plasticity and fully plastic behaviour was introduced, using a 

function of the interference. Zhao et al. (2000) used mathematical manipulation to smooth the 

transition between elastic, elastic-plastic and fully plastic behaviour. Comparisons were made with 

the original GW and CEB models. All three models showed good agreement when elastic behaviour 

dominated the contact. Despite the improvements, the new model showed results similar to those 

of the original CEB model even with increased levels of plasticity. The authors attributed this to 

inaccuracies in the CEB model cancelling to provide a good approximation. 

Kogut and Etsion (2003) and Jackson and Green (2006) both implemented the results of their finite 

element studies of single contacts (Kogut and Etsion 2002; Jackson and Green 2005) in GW type 

statistical models. Both found good agreement with the CEB model where elastic behaviour 

dominates the contact. For increasing levels of plasticity, both diverge from the CEB model, but 

maintain good agreement with each other. It is only at high levels of plasticity, where large 

deformations occur, that the two models differ. Jackson and Green proffer that their individual 
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contact model is more valid, considering material and geometric effects not accounted for by Kogut 

and Etsion. Abdo and Farhang (2005) present a mathematical model that shows good agreement 

with the experimental results from Kucharski et al. (1994) previously discussed. 

Ciavarella et al. (2008) attempted to include asperity interaction in a statistical model that 

considered only elastic behaviour. At low loads, asperity interaction was assumed to be negligible. At 

high loads, asperity interaction was introduced with the assumption that asperity contacts are 

uniformly distributed and uniformly deformed. The results of the new model were presented 

alongside a discrete implementation of the model (Ciavarella et al. 2006) and the original GW model, 

showing the effect of asperity interaction. The authors highlight sealing as being particularly affected 

by asperity interaction, with smaller contact areas predicted for a given separation.  

A number of studies have been performed considering different aspects to those so heavily 

investigated. Greenwood et al. (2011) and Franse et al. (1985) each considered cylindrically tipped 

asperities rather than the traditional spherically tipped, resulting in significantly reduced contact 

pressures. The latter also investigated the effect of the coefficient of friction of sliding surfaces. 

Faulkner and Arnell (2000) tackled this problem also, comparing the results from Franse et al. (1985) 

with those obtained using spherically tipped asperities. They performed finite element analysis, as 

others did for static contacts, of an individual asperity contact, before incorporating the behaviour 

into a statistical model. Overall coefficients of friction were found to depend upon asperity shape, 

with smaller values found for spherically tipped asperities. Mulvihill et al. (2011) also applied the 

results of the finite element analysis of sliding cylindrical contacts to a statistical model, finding 

similar trends in behaviour to those of Franse et al. 1985). 

Kadin et al. (2006) appear to be one of the few groups to have considered the residual state of a 

surface in a GW type model. They investigated the effect of the applied load of the distribution of 

asperity heights, finding that the larger the degree of plasticity, the larger amount of skewness was 

found in the residual asperity distribution. 
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1.3.3.2. Idealised contacts 

One of the earliest idealised models of rough surface contact was that of Westergaard (1939) who 

considered the contact of smooth surfaces with a two dimensional sinusoidal form. At low loads, the 

contact pressure distribution followed Hertzian theory; at higher loads it became sinusoidal, 

reflecting the form of the surface. This approach is further discussed by Johnson (1985), who 

examines the development of the ratio of real contact area to apparent contact area with increasing 

load. Each of these phenomena can be seen in Figure 1.19. 

 

Figure 1.19 - Contact of a one-dimensional wavy surface with an elastic half space; a) unloaded, b) 

complete contact, c) partial contact (adapted from Johnson 1985). 

Vergne et al. (1985) examined how neighbouring asperity features on such a surface can interact 

with one another during contact, considering a two dimensional elastic sinusoidal profile of two 

peaks in close proximity in contact with a rigid plane. At low loads, the asperities did not interact, 

resulting in Hertzian pressure and stress distributions. As the load was increased, interaction 

between neighbouring contacts was seen to occur. Pressures and stresses were “drawn” towards 
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each other as seen in Figure 1.20. This illustrates one of the problems with statistic models of rough 

surface contact, such as the GW model in which interaction between asperities is not accounted for. 

 

Figure 1.20 - a) Comparison between pressure fields, b) τmax / Pmax for c / λ = 0.497 (Vergne et al. 

1985). 

Seabra and Berthe (1987) superimposed a range of two-dimensional sinusoidal profiles onto a 

cylindrical surface and thereby analysed the contact of elastic cylinders having a wavy surface with a 

plane. Under load, the contact pressure distributions of the two separate problems became 

combined, as illustrated in Figure 1.21. The effects of including this idealised roughness can be seen 

in both the peak contact pressures and in the contact dimensions. In each case, the peak pressure 

exceeds that of the equivalent smooth cylinder, whilst the location of local profile peaks results in 

the edges of contact moving. This can result in either smaller or larger contacts, or a translation of 

the contact centre. 
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Figure 1.21 - Pressure for elastic wavy cylinder/plane contact (Seabra and Berthe 1987). 

Nowell and Hills (1989) attempted to approximate a cylinder with a ground surface by 

superimposing a periodic array of two dimensional asperities of constant height and radius onto a 

smooth cylinder. The distance between asperities was varied and the load was increased, resulting in 

additional asperities contacting and interaction occurring. It was shown that asperity interaction 

occurred predominantly at the surface. In the subsurface region, stress distributions were similar to 

those found in smooth cylinder contacts. 

Komvopoulos and Choi (1992) used Abaqus to model a periodic array of rigid cylindrical asperities of 

equal radius, with the number of asperities, and distance between asperity centres, varied. This was 

loaded against a deformable elastic half space by applying a range of vertical displacements, or 

interferences, to the rigid surface. As previously discussed, contacts under small interferences 

followed Hertzian theory closely, with little interaction between neighbouring asperities and their 

associated stress fields. At higher interferences, increased interaction was found to occur. For more 

closely grouped asperities, interaction was more apparent in regions closer to the surface. When 

spaced further apart, interaction could be seen at greater depths. Additionally for more closely 

group asperities, the subsurface material showed increased magnitudes of stress. 

Sundaram and Farris (2009) performed a similar study using a numerical method based on singular 

integral equations. A number of idealised rough surface contact problems were discussed, including 
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an eight degree polynomial surface punch as well as a sinusoidally rough cylinder and a flat punch 

with rounded edges. Similar patterns were seen to occur in the contact pressures as previously 

described, with peak contact pressures exceeding those of equivalent smooth contacts. Interaction 

of stress fields of neighbouring asperities can be seen in Figure 1.22. 

 

Figure 1.22 - Normalised subsurface stresses σxx / pHz
max

 for the rough cylinder (left) and smooth 

cylinder (right) for the same applied load, material properties and cylinder radius (Sundaram and 

Farris 2009). 

Gao et al. (2006) introduced elastic-plastic behaviour to the problem of a two dimensional sinusoidal 

contact, using Abaqus to simulate contact with a rigid flat. The amplitude and wavelength of the 

sinusoidal surface were varied to assess the differences in behaviour for differently shaped features. 

The ratio of elastic modulus to yield strength was varied also to test a range of material properties. 

By varying these parameters an indentation map detailing contact behaviour was created. The 

model schematic and indentation map can be seen in Figure 1.23. 
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Figure 1.23 - a) Schematic illustration of a sinusoidal rough surface by a rigid indenter, with 

notation and sign convention, b) A schematic map showing the behaviour of a sinusoidal elastic-

perfectly plastic surface under contact loading (Gao et al. 2006). 

It was found that for most partial contact situations the normalised mean pressure was limited to 

approximately 3σy, as proposed by Tabor (1951) and Williams (1994). However, as complete contact 

was approached, and yielding regions began to interact, contact pressures increased rapidly, to 

approximately twice this proposed limit, 6σy. The authors report this to be due to the interactions 

preventing lateral expansion of the plastic zone. This behaviour was most pronounced in the case of 

small amplitude, large wavelength surfaces, of relatively low yield strength materials. However, the 

proposed limit was still exceeded for more practical engineering material properties, but not to the 

same extent. After the contact was unloaded, cases of complete contact result in predominantly 
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compressive residual stresses. For more realistic degrees of contact, regions of tensile direct stress in 

the tangential direction were found to occur both at the surface and in the subsurface material. 

Manners (2008) further discussed this seemingly higher mean contact pressure, using upper and 

lower bound solutions to conclude that the predicted behaviour is acceptable. Contact pressure is 

limited to approximately 3σy, until the proportion of the area in contact is approximately two thirds. 

Further increase in area results in a sharp increase in the contact pressure limit, as shown in Figure 

1.24. This is as material beneath the surface is under a state of hydrostatic stress. 

 

Figure 1.24 - Contact pressure and contact area (Manners 2008). 

In two studies, Krithivasan and Jackson (2007) and Jackson et al. (2008) considered a similar 

sinusoidal surface elastic-plastic contact, only in three dimensions rather than two. Their finite 

element model was compared with analysis by Johnson et al. (1985) and Tripp et al. (2003), who 

determined the contact pressure and stress distributions for contact of a purely elastic three-

dimensional sinusoidal surface. Good agreement was found between these results and those from 

the finite element analysis for elastic behaviour. As previously found, at high contact area ratios the 

average contact pressure was found to exceed the limit of approximately 3σy. This limit was 

exceeded at lower contact ratios for lower yield strength materials. Lower yield strength materials 
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also exceeded the proposed limit the most when complete contact was achieved, at just over 6σy, 

similar to that previously found by Gao et al. (2006). Finite element results were subsequently used 

in a comparison against several analytical models that predicted higher average contact pressures as 

the yield strength was further reduced. 

The elastic-plastic regime was also studied in work by Sabelkin and Mall (2007). Using a two 

dimensional finite element model created using Abaqus, the contact of a multi asperity cylinder was 

considered. This cylinder was contacted with a deformable counter face by itself, as with up to six 

additional cylindrical asperities superimposed onto its surface. Relationships between total contact 

area and contact load were examined. These were found to be complex, depending upon the 

number of asperities, the shape of asperities and their location relative to the contact. These factors 

also affect the amount of interaction between asperities under load. 

Gong and Komvopoulos (2003) created a similar finite element model using Abaqus to simulate a 

contact of layered media as in Figure 1.25. While considering a magnetic recording disk as the 

motivation for the study, the effects of multiple layers of materials with different mechanical 

properties is relevant to the study of gear contacts. Gears are typically subject to a wide range of 

treatments that alter the surface properties in particular, such as carburising or nitriding, which 

could have potentially result in differences to an isotropic material. This study considered surfaces 

with both squared features and a sinusoidal profile. The squared features were used as a surface 

representative of patterned media for high density magnetic recording. In this study, the rigid curved 

body, labelled asperity, was slid across the rough surface. Contact pressures were found to be raised 

at the trailing edge of the squared roughness features. This effect was exacerbated by increasing the 

height of the features. Contact pressures were also found to increase as a result of an increase in the 

amplitude of the sinusoid, as a result of reduced contact areas. Due to the continuity of the surface, 

no such stress raisers cause such dramatic changes in the contact pressure distribution. Similar 
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patterns were found to occur in the stresses found to occur at the surface. As in previous studies of 

contact of layered bodies, the interface between layers acted as a stress raiser. 

 

Figure 1.25 - Schematics of layered media with a) meandered and b) sinusoidal surfaces (Gong and 

Komvopoulos 2003). 

As well as sliding contacts, rolling contacts have been considered by Ismail et al. (2010), who aimed 

to investigate running in. Using Abaqus, a rigid cylinder was displaced vertically into a deformable 

rough surface of cylindrical asperities. This rigid cylinder was then rolled across the surface before 

being removed. This load cycle was repeated a total of five times. Plastic deformation was found to 

be limited to the first two cycles. However, as the load was applied in the form of a defined 

displacement, after the plastic deflection of the first load cycle, it is though that the load would be 

inconsistent between cycles. As a result of the rolling contact, the lateral residual displacements are 

different to the pure static loading. In a static loading, lateral displacements were symmetrical, while 

in rolling contact, the displacements were larger in the direction of rolling. 
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The idea of superimposing cylindrical asperities on a cylindrical body is a basic form of a fractal 

surface. Fractal geometry is based on the assumption that surface features repeat themselves at a 

range of scales. The models already discussed have only considered fractal geometry of an “order” 

of two, i.e. two levels of cylinders. However, larger orders have been considered in an attempt to 

simulate real surface geometry. Work by Archard (1957) was one of the earliest such studies, 

considering a number of fractal surfaces (although Archard did not use the term “fractal”), as shown 

in Figure 1.26. This investigation considered up to three levels of fractals, with equidistant spherical 

asperities of radius R1, which have asperities of a smaller radius R2, which in turn have asperities of a 

smaller radius of R3. The relationship between contact area and load tended to converge towards a 

linear relationship as the “order” or asperities was increased, i.e. A ∝ W. 

 

Figure 1.26 - Models used in the theory under zero load; The deduced relations between A and W 

for these models are a) A ∝∝∝∝ W26/27
, b) A ∝∝∝∝ W4/5

, c) A ∝∝∝∝ W14/15
, d) A ∝∝∝∝ W44/45

  (Archard 1957). 

Majumdar and Bhushan (1990) examined three-dimensional surface profiles measured via 

profilometry and used a Weierstrass-Mandelbrot wave function to provide fractal approximations. 

Majumdar and Bhushan (1991) then used an analytical model to simulate the elastic-plastic contact 
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of these surfaces. Both the fractal surface model and the GW model were compared against a range 

of experimental results (Yamada et al. 1978; Bhushan 1985; Bhushan and Dugger 1990). The fractal 

approximation of a rough surface was found to agree better with experimental results, particularly 

at relatively low loads. More deviation occurred as load was increased. The authors suggest this 

difference to be attributable to the lack of consideration of asperity interaction in the fractal model. 

The linear relationship between contact area and load in the GW model is not seen experimentally, 

and is not seen in the fractal analysis either. 

Weierstrass profiles of superimposed sinusoidal wave functions of different amplitude and 

wavelength have been considered by Ciavarella et al. (2000) in a linear elastic contact model to 

determine contact areas and contact pressure distributions. This model was extended to determine 

the contact stiffness and electrical contact resistance. A similar surface contact model was created 

by Wilson et al. (2010), with several key differences. Rather than consider a two dimensional 

perfectly fractal surface, the authors modified the methodology to consider a three dimensional 

measured surface. This measured surface was then approximated using a Fourier series, giving a 

surface that is not perfectly fractal. 

A number of other studies of elastic-plastic fractal surface contact have been performed, such as 

those by Warren and Krajcinovic (1996) and Larsson et al. (1999), using experimental work by 

Handzel-Powierza et al. (1992) and Kucharski et al. (1994), respectively as means for comparison. 

Warren and Krajcinovic (1996) found good agreement at low levels of applied vertical displacements. 

Deviation appeared to grow at increased displacements, but the theoretical model failed to cover 

the same range as the experimental results. Larsson et al. (1999) also show good agreement at lower 

loads, as illustrated in Figure 1.27. Agreement is seen across a wider range of nominal pressures for 

the rougher surface, (E30). 
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Figure 1.27 - Relative contact area, Ar, versus dimensionless nominal pressure, p0 / σ0, from 

experimental observations by Kucharski et al. (1994) for two different surface, E30 (○) and E60 (*), 

in comparison with prediction of fractal theory (solid) and Kucharski et al. (dashed) (Larsson et al. 

1999). 

Hyun et al. (2004) considered the elastic contact of three dimensional fractal surfaces using the finite 

element method, before extending the analysis to include elastic-plastic behaviour (Pei et al. 2005). 

Despite nonlinearity of the material properties, the contact area was found to increase linearly with 

load. As the surface initially contacts in relatively few locations, only small loads were found to be 

required to cause plastic deformation in asperity contacts. More asperity contacts were found to 

occur once a material yield strength was determined, as the surface could not maintain the 

pressures found in the elastic analysis. This load was distributed between other asperities. 

A number of methods for generating rough surfaces similar to those created by manufacturing 

processes, with Gaussian or non-Gaussian distributions are available. Two studies in particular have 

been adopted by those performing contact analysis, using linear transformations on random 

matrices (Patir 1978) or digital filter techniques (Hu and Tonder 1992). 

Yu and Bhushan (1996) generated nine surfaces based upon the methods of Patir (1978). It was 

found that at small loads, asperity contacts act as point loads on the surface. The maximum von 

Mises stress was found to occur at or near the surface, exceeding that beneath the surface. 
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Therefore, as load increases, it is found that plastic deformation first occurs at the surface, causing 

residual asperity deflection. 

Mihailidis et al. (2001) considered the contact of two rough cylinders, each with generated surface 

roughness, to evaluate the subsurface stress fields. The stress distributions for the rough surface 

contact significantly differed from those for the equivalent smooth contact. Local maximum shear 

stresses were found to occur just beneath the surface of loaded asperity features, coexisting with 

the subsurface maximum associated with Hertzian contact theory. As the load was increased, the 

maximum shear stress associated with asperities exceeded the subsurface maximum. This is found 

to occur at lighter loads for rougher surfaces. The depth of these maximum stresses is found to 

correlate with the typical depth of micropitting failures.  

Kim et al. (2006), using the surface generation methods of Hu and Tonder (1992), also investigated 

subsurface stresses in rough surface contact. They too found that local maximum stresses occurred 

near the surface of loaded asperities. Lower peak stresses were found to occur when the kurtosis of 

the surface was reduced, due to less aggressive peaks. Introducing a larger friction coefficient at the 

surface resulted in the local maximum stresses moving closer towards the surface. It was proposed 

that it is impossible to define the typical behaviour of rough surfaces in contact, as each surface and 

each asperity contact are unique. 

1.3.3.3. Real rough surface contacts 

Early studies of analysis of real rough surfaces used elastic behaviour, with validation based on 

comparison with smooth Hertzian theory, before introducing measured two dimensional roughness 

profiles. Webster and Sayles (1986) were among the first to do this, followed later by Seabra and 

Berthe (1987) and Snidle and Evans (1994), who each used numerical methods to investigate rough 

surfaces. Contact pressures were found to differ significantly from the smooth case, as shown in 

Figure 1.28. Peak pressures are achieved that are often several times that of Hertzian theory. 

Nonetheless, the general trend can still be seen to loosely follow the Hertzian pressure distribution, 
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and contact dimensions are similar. Nominal contact area was found to be approximately 

proportional to applied load. 

 

Figure 1.28 - Results of simulated contact between a run-in, ground elastic surface and a rigid flat. 

Radius of relative curvature = 19 mm; E'  = 227.3 GPa; load = 600 kN/m; ordinate spacing 1.25 µm. 

Lower graph shows the original, undeformed rough surface relative to a straight line datum. Note 

that Hertzian pressure is also shown (Snidle and Evans 1994). 

Bailey and Sayles (1991) and Cole and Sayles (1992) later extended the work of Webster and Sayles 

(1986) to consider sliding friction and layered bodies, respectively. As previously discussed for 

generated rough surfaces, maximum stresses were found to occur in close proximity to the surface, 

as shown in Figure 1.29. For the range of rough surfaces considered, the rougher surfaces showed 

these stresses to be larger in magnitude, with stresses exceeding the yield strength commonplace in 

the elastic material. Introducing a surface shear with a defined friction coefficient resulted in the 

peak stresses moving towards the surface, while the bulk subsurface stresses deviated in a similar 
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manner as in smooth contact. In considering layered bodies, it was found that the introduction of a 

thin surface layer had a greater effect on contact behaviour for rough contact than smooth. 

 

Figure 1.29 - Distribution of subsurface principal shear stress for elastic contact; a) smooth - 

normal load, b) rough - normal load, c) smooth - normal load and surface shear (µ = 0.1), d) rough - 

normal load and surface shear (µ = 0.1) (Bailey and Sayles 1991). 

Considerations of three dimensional geometry and material plasticity were subsequently introduced 

by Poon and Sayles (1994a; 1994b). The two dimensional roughness surface profiles were extruded 

over a finite length before being contacted with a smooth sphere. Plasticity was introduced by 

limiting the contact pressure to the material hardness, with contact pressures truncated. A total of 

110 different rough surfaces were created, considering a range of Rq values. It was found that 

smoother surfaces, with smaller Rq values, tended towards completely elastic contact. Increasing the 

roughness of the surface resulted in increased plasticity. 

Jackson and Green (2011) considered the elastic contact of as-measured roughness using a FFT-

based deterministic model based on the methods of Stanley and Kato (1997). Investigating three 

surfaces with different surface finishes, a near linear relationship between contact area and load was 

found. Some agreement was seen in the comparisons made with stochastic models, such as the 

Greenwood and Williamson (1966) model. However, the authors comment that real rough surfaces 
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do not appear to follow any proposed mathematical structures and so these types of models should 

not be expected accurately to predict contact behaviour. While this may imply that deterministic 

models are more suitable, they too have their drawbacks. The authors particularly highlight the 

effect of mesh density. In their assessment of the effect of mesh density, the general trends in 

behaviour can be found regardless, but the mesh density can affect the details. It was found that a 

coarser mesh density resulted in a prediction of larger contact areas, and thus reduced contact 

pressures, than those obtained with a finer mesh. 

In a series of studies, the plastic contact of rough surfaces was investigated (Jamari et al. 2007; 

Jamari and Schipper 2007a; 2008). The methods were based on those used for the single spherical 

contact work already discussed in Section 1.3.2.1. A smooth silicon carbide ball was used as an 

indenter in a contact with a rough aluminium surface. The rough surface was measured using an 

optical interference microscope before and after application of the load. Good agreement between 

the proposed model and experiment was found to occur, as illustrated in Figure 1.30. Also, a 

relationship was developed to determine the nature of a contact. This described whether a contact 

will be dominated by asperity or bulk deformation. 

 

Figure 1.30 - Profile of the matched and stitched isotropic surface: a) x profile at y = 195 µm and b) 

y profile at x = 171 µm (Jamari et al. 2007). 
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Repeated stationary contact of rough surfaces was also considered (Jamari and Schipper 2008). As 

has been discussed already when considering other contact configurations, the majority of residual 

asperity deflection occurs in the first loading cycle. The rough surface is changed such that the 

developed contact area supports the applied load elastically. This can be seen in Figure 1.31, where 

the profiles for additional load cycles are essentially indistinguishable from the first. 

 

Figure 1.31 - Profile of the matched and stitched isotropic aluminium surface: a) x-profile at y = 

120 µm and b) y-profile at x = 129 µm; n = number of load cycles (Jamari and Schipper 2008). 

Wang et al. (2009) also used a development of their techniques used for single contacts to consider 

the contact of rough surfaces. Using an integration based on a multi-level contact model, the elastic-

plastic contact of a smooth sphere and machined surface was investigated.  It was found that during 

contact that the applied load was predominantly carried by the asperity tips, and that the mean 

contact pressure was highly dependent on the radius of the asperity peaks. In comparison with the 

stochastic models of Greenwood and Williamson (1966) and Chang et al. (1987), better agreement 

with the experimental results of Kucharski et al. (1994) was found to occur. The differences that did 

occur were attributed to the elastic-perfectly plastic behaviour assumed in the model by the 

authors. 

As a result of the increasingly powerful computational resources available, some groups have 

attempted to model the contact of three dimensional real rough surfaces using finite element 
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analysis (Yastrebov et al. 2011; Olshevskiy et al. 2012). Each of these groups of authors focus on the 

intensive computational requirements of these models, with each model consisting of several 

hundreds of thousands of nodes and taking hundreds of hours to complete, even with modern 

computers. A special focus on mesh transition away from the contact surface can be seen in Figure 

1.32, as well as von Mises stress distributions and displacements at the surface. 

 

Figure 1.32 - Full finite element analysis: a) representation of the transition mesh allowing an 

efficient refinement from 1 to 9 elements; b) mesh of the rough surface 54 x 63 µm
2
; c) 

distribution of the von Mises stress for a contact area of 6%; d) distribution of the vertical 

displacement for a contact area of 6% (blue regions correspond to contact area) (Yastrebov et al. 

2011). 

1.3.4. Lubricated contacts 

In the previous sections, dry contacts have been the focus. In practice, the overwhelming majority of 

rolling/sliding engineering surfaces are lubricated in some shape or form. In general terms, three 

types of lubrication can be considered: boundary, mixed and hydrodynamic lubrication as shown in 

Figure 1.33. Boundary lubrication refers to situations where a lubricant is present between 

contacting surfaces, but does not act hydrodynamically in any way (BP 1969). In hydrodynamic 

lubrication, the geometry and motion of the surfaces combined with the lubricant viscosity combine 

to generate a lubricant film that completely separates the surfaces. In between these regions is 

mixed, or partial lubrication, where a lubricant film is present but is insufficient to separate the 

surfaces effectively, resulting in asperity contact (Teer and Arnell 1975b). This may be through 
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design or during starting up or shutting down, where the speed is insufficient to generate the 

required film thickness. Much research has been done investigating these lubrication regimes and 

the principles involved. However, much of the work on boundary and full film hydrodynamic 

lubrication is outside of the scope of this thesis. Therefore, the focus of this section will be 

predominantly on the mixed lubrication regime, the transition region between lubrication regimes, 

where both load carrying films and asperity contacts occur. 

 

Figure 1.33 - The Stribeck diagram for a journal bearing. η is the lubricant viscosity, ω the rate of 

rotation, and p the nominal bearing pressure (Williams 1994). 

In ideal conditions, the combination of load, speed, lubricant viscosity and surface roughness may 

allow surfaces to operate under full elastohydrodynamic films. The film thickness can be determined 

from the seminal work of Dowson and Higginson (1959). As previously stated however, in practice 

this is not always the case, and the scale of surface roughness features can be of the order of, or 

greater than, the predicted film thickness and asperity interaction can occur (Chow and Cheng 1976; 

Snidle et al. 1984). Furthermore, when analysis of EHL has taken place, it has been shown that “side-

leakage” can result in thinner lubricant films than predicted (Karami et al. 1987; Barragan de Ling et 

al. 1989). 

Some of the earliest work in tackling the mixed lubrication problem were studies by Zhu and Hu 

(1999; 2001a; 2001b) and Hu and Zhu (2000) who developed a numerical model for lubricated 
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contacts with thin films. Their results showed a considerable amount of direct contact occurring 

between the two surfaces. The model was later extended to consider the wear of surfaces operating 

under such lubrication regimes, assuming that wear took place at locations of direct contact as a 

form of running-in (Zhu et al. 2007). The modification of surface geometry was shown to reduce the 

subsurface elastic stresses. No material yielding behaviour was considered. 

Jiang et al. (1999) created a numerical EHL model that considered the contact of asperities. Three 

dimensional roughness was taken from an as-manufactured surface and the contact behaviour of 

the lubricated contact investigated. A self-admitted crude form of elastic plastic behaviour was used 

for the asperity contacts, with contact pressures limited by the hardness. No asperity deformation 

was considered in the analysis. The amount of direct surface contact was found to vary dependent 

upon the contact conditions. This was expressed in terms of a non-dimensional velocity, U*, a 

function of rolling speed, lubricant viscosity, elastic material properties and surface curvature. The 

variation of contact area ratio can be seen in Figure 1.34. 

 

Figure 1.34 - Effects of non-dimensional velocity on performance characteristics of mixed 

lubrication with pure rolling mode (Jiang et al. 1999). 

Tao et al. (2003) performed numerical analysis using roughness profiles taken from standard steel 

FZG (Forshungsstelle für Zahnräder und Getriebebau - The Gear Research Centre at the Technical 
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University of Munich) test gears. Profiles were taken from the gear surface at multiple load stages to 

investigate the lubrication behaviour as the surface geometry evolved. It was found that with 

increased running time and increased applied load, the roughness of the surface reduced, and also 

resulted in reduced instances of direct asperity contact. In the penultimate load stage, no instances 

of contact occurred. In the final load stage considered, evidence of micropitting was found on the 

portion of the surface recorded. As a result, the roughness of the surface increased once more, 

resulting in direct surface contact again. As well as surface contact, the possibility of lubrication 

cavitation was investigated. The authors speculate that this may be of significance to micropitting. 

Holmes et al. (2005) also considered surfaces with various loading and running histories. Surfaces 

were subject to lubricated contact analysis with a range of slide/roll ratios, ξ. It was found that 

increased sliding velocities resulted in reduced counts of contact events, as shown in Figure 1.35a. 

This would suggest high sliding speeds are preferential for the reduction of direct surface contact, 

although the authors warn that the effect of this on other phenomenon was not considered. It was 

found that reduced surface roughness resulted in significantly less contact events also. It can be seen 

in Figure 1.35b that the regions where high frequency of direct surface contact has occurred 

correspond strikingly with the dark region of surface scuffing in the corresponding experiment. As 

lubricant passes through the contact, roughness features transverse to the entrainment direction 

cumulatively degrade the EHL film until complete breakdown, and localised dry surface contact 

occurs. This correlates with typically regions in where scuffing occurs, towards the end of the active 

contact (Snidle and Evans 2009). 
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Figure 1.35 - a) Contours of contact count rate Q/ms for the transient analysis of two surface 

having Profile (C). The heavy curve indicates a Hertzian dry contact area. b) A photograph from the 

experimental scuffing program shown a track subject to scuffing damage. Also shown in the 

Hertzian contact ellipse for the operating load at which scuffing occurred (Holmes et al. 2005). 

1.3.5. Implications for surface operating life 

1.3.5.1. Running-in 

Running-in is a process that most contacting surfaces undergo at the beginning of their operating 

life. The most prominent asperities are subject to combinations of normal and tractive loadings that 

exceed the elastic limit. This loading results in the modification of the surface by what is reported to 

be a combination of wear and plastic deformation (Teer and Arnell 1975; Johnson 1995; Hutchings 

2003). The resulting finish has a significantly skewed height distribution, with valley features 

retained and asperity peaks less prominent and more rounded. Subsequent changes to the surface 

may occur as a result of mild wear processes that take place on a longer timescale. The interest in 

running-in for this project is the effect of the process on residual stresses at, or near, the surface 
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that could be a significant factor in fatigue damage calculations and thereby affect the life of the 

surfaces. 

Barber et al. (1987) performed experimental testing aimed at investigating the running-in process as 

well as scuffing, on a number of surfaces, with a range of Ra values achieved using honing and 

polishing techniques. In the running-in tests, piston rings were contacted with cylinder liner 

materials under a constant nominal contact pressure for a period of two hours. It was found that the 

majority of the surface modification occurred within the first ten minutes of running, with the 

roughness reduced and increased skew of the surface height distributions. The progress of the Ra 

value can be seen in Figure 1.36. In these tests, the coefficient of friction between the surfaces was 

found to decrease alongside the reduction in roughness. Throughout the study, no reference to 

plastic deformation was made. 

 

Figure 1.36 - Ra versus time of running in "normal" wear test for GI specimens (Barber et al. 1987). 

Using a ring-on-flat test and a mathematical model, Liang et al. (1993) considered asperity plasticity 

in relation to the contact pressures. Plastic flow was considered to occur in an asperity if the contact 
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pressure exceeded 0.6H (Tabor 1951). The frequency of asperities with such contact pressures was 

found to decrease across the time period of five hours considered. As such, it was proposed that the 

proportion of the surface undergoing plastic behaviour reduced with running time. The largest 

reduction was found to occur quite early in the operating period. 

Nonetheless, in recent work by Horng et al. (2002), running-in is still predominantly referred to as a 

wear process, with little reference to plastic deformation. Experimental disk on block tests were 

performed, using a range of loads and surface finishes. Figure 1.37 shows the effect of different 

loads on the same surface finish. It can be seen that a higher applied load results in a larger change 

in surface geometry, while also achieving a steady state after less operating time. The disk, or upper 

specimen, was finished to a significantly smaller average roughness and was found to undergo little 

to no change in surface geometry. With increased running time, the contact width and real contact 

area was found to increase, while at the same time the friction coefficient was found to decrease. 

Contact resistance was also found to increase, which alongside the reduction in friction coefficient, 

suggested improved lubrication between the surfaces. 

 

Figure 1.37 - Variation of average roughness value of both specimens at initial roughness of 1.10 

µm with different applied loads (Horng et al. 2002). 
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Jeng et al. (2004) also offer little explanation of running-in as a result of plastic deformation. Figure 

1.38 shows an SEM photograph of a worn engine bore. Jeng et al. (2004) suggest that as no smear 

phenomenon are evident and the honing manufacturing marks are still visible, no significant plastic 

deformation has occurred. However, these manufacturing marks are local valley features, while 

previous discussion of rough surface contact has shown most plastic deformation to occur at the 

asperity tips. The lack of smearing phenomenon means little tangential deflection of asperities has 

occurred. But this does not rule out normal deformation which would be expected to occur under 

lubricated conditions. 

 

Figure 1.38 - SEM photo of  worn engine bore, x2000 (Jeng et al. 2004). 

Bosman et al. (2011) use both an elastic-plastic contact solver and a friction model in their semi-

analytical method to describe the running-in process. However, the authors state how the model is 

based upon the assumption that the plastic deformations are small, and so the results of the semi-

analytical method are unreliable for large plastic strains. 

1.3.5.2. Surface failure 

In discussing the running-in process, the early stages of the operating life of a contacting component 

have been covered. In this section, the end of the operating life will be considered by looking at 

work that investigates the causes of surface failures, such as surface fatigue, surface cracking, pitting 
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and micropitting. Relatively modern reviews that cover a wide range of these failure mechanisms 

can be found in work by Höhn and Michaelis (2004) and Olver (2005). 

Early investigations of these types of surface failure mechanisms were performed by Way (1935), 

Dawson (1961; 1962; 1968) and later Onions and Archard (1974). One of the dominant themes in 

these studies was that lubricant film thickness and surface roughness affect the operating life of a 

surface. Thicker lubricant films, and thus reduced asperity contact, and smoother surface finishes 

were found to prolong surface life (Way 1935). Dawson (1962) showed that the number of cycles 

before pitting failure occurred was linked to a non-dimensional parameter, D, where: 

� = ��������	�� !"��	 ��#ℎ����
$�� ��"��	!�$�	�ℎ��%����  

Onions and Archard (1974) evaluated the use of disk testing machines, as used in previous studies, 

to determine the life cycles of real gear surfaces. For this purpose, both a gear rig and disk rig were 

used to perform experiments on surface operating life. Each showed similar trends in behaviour to 

those previously found, that rougher surfaces and thinner lubricant film thicknesses adversely affect 

surface life, as illustrated in Figure 1.39. However, it was also found that the disk test rig was found 

to overestimate surface operating life, and that surfaces of gears were found to fail earlier than 

predicted. This difference was attributed to the dynamic loading experienced by gear tooth surfaces. 
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Figure 1.39 - Comparison of pitting tests on gears and on disks. The graph shows values of D2 as a 

function of N. For clarity the experimental points have been omitted and the regression lines only 

plotted (Onions and Archard 1974). 

Miller et al. (1985) used numerical and analytical methods to assess surface cracking from a fracture 

mechanics perspective. The authors highlight a number of simplifications in their analysis, choosing 

not to include such factors as material plasticity. Crack growth was found to occur in two phases, the 

slow propagation phase, followed by rapid growth to failure. Between the surface stresses and 

subsurface stresses, caused by asperity and Hertzian contact effects respectively, a “quiescent zone” 

was found. Failure was found to occur when this zone was bridged somehow, in this study by 

inclusions in the material, leading to accelerated crack growth and pit formation. 

The progression of crack growth was investigated by Zhou et al. (1989) in rolling and sliding contacts. 

An analytical model was used to superimpose asperity contact stresses on Hertzian contact stresses, 

and crack initiation and propagation were investigated alongside fatigue life and micropitting. 

Increased contact pressure resulted in earlier crack initiation and swifter crack propagation, resulting 

in reduced operating life. This is illustrated in Figure 1.40. The effect on crack initiation is particularly 

pronounced, so much so that the propagation of the crack becomes the dominant factor in the 

fatigue life of the surface. 
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Figure 1.40 - Contact fatigue life from crack initiation to crack propagation (Zhou et al. 1989). 

Beghini et al. (1992) used finite element analysis to determine the residual stresses in an elastic-

plastic axisymmetric body, with an additional hemispherical “bump” at the centre of the contact to 

model a single asperity. The geometry of this asperity bump was altered in height and the residual 

stresses used in an elastic fatigue analysis based on that of Ioannides and Harris (1985). A range of 

different configurations were considered including the smooth and asperity geometry body with and 

without residual stress to determine the effects on fatigue life. The fatigue life was found to be most 

affected when the elastic stresses in the fatigue analysis interacted with the residual stresses from 

the elastic-plastic contact. Significantly smaller differences were found where little interaction 

occurred. Larger, sharper asperity features and increased contact pressures were found to reduce 

the fatigue life of the surface in comparison to the smooth surface. 

Abudaia et al. (2005) also used finite element software to investigate the loaded and residual 

stresses of a spherical indentation. At the contact edge, the hoop stress under load was found to be 

compressive, and tensile once removed. Both the loaded and residual radial stress was found to be 

tensile. An experimental study of indentations was performed alongside this analysis to link these 

results to formation of surface cracks at the contact edge. Both ring and radial cracks were found to 
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occur, with the former occurring more frequently at lower loads. Both were commonplace at higher 

loads. This difference may be attributable to the cyclic nature of the hoop stress at the surface as 

load is applied and removed. Both types of cracks were found to be more severe in depth and length 

as a result of increased loads. The effect of shot peening on crack formation was investigated in this 

experimental study, with the induced compressive stresses thought to be protective. Shot peened 

surfaces were found to have fewer cracks. 

The results of these studies have shown how surface cracks can initiate and propagate. Pitting and 

micropitting surface failures are associated with the growth of these cracks until small sections of 

the surface are detached. As the name of each failure suggests, the mechanisms are similar. 

Micropitting is generally limited to the surface region, of the order of up to 10 µm (Höhn et al. 1996), 

while pitting is typically of the order of the contact dimension (Olver 2005). Micropitting has come to 

forefront of modern gear research as a result of improvements in material production as well as gear 

manufacture. These developments have resulted in reduced frequency of stress raisers such as 

material inclusions that had previously resulted in gear failure. As these have been reduced so 

significantly, other forms of failure have become more prominent, in particular micropitting. 

Oila and Bull (2005) performed a comprehensive experimental study of the contact of two disks, 

investigating the effect of a number of factors on micropitting. The factors considered were 

material, surface finish, lubricant, load, temperature, speed, and slide/roll ratio. The applied load 

was found to be the dominating factor on the initiation of micropitting. Speed and the slide/roll ratio 

were found to be the factors that most affected the propagation of micropitting failure. Also 

investigated was the effect of martensite decay (Swahn et al. 1976), where heat generated due to 

plastic deformation results in a phase transformation of material. This results in regions of stress 

concentrations and preferential sites for crack initiation and propagation. The steel which exhibited 

a greater degree of martensite decay in the experiments showed greater propensity to micropitting, 

suggesting a link between the two phenomena. 
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A factor that was not included in this study was the chemistry of the lubricant, rather than just the 

properties. Townsend et al. (1986) performed spur gear endurance tests that suggested that 

different types of additives used for the same purpose could affect the surface fatigue life in 

different ways. Phosphorous-type additives used to improve the load carrying ability of the lubricant 

were found to significantly improve the fatigue life of the surface. Sulphur-type additives also 

specified to increase the load carrying ability showed no effect. More modern work by Benyajati et 

al. (2003), Lainé et al. (2008) and Meheux et al. (2010) also considered the effects of additives the 

lubricants applied to such surfaces. It was found that additives that are included to reduce wear or 

reduce foaming in the lubricant can have a negative effect of the lubrication mechanism, and in turn 

promote micropitting. Micropitting can be seen as highly dependent on surface chemistry (O’Connor 

2005). 

Ahlroos et al. (2009) also performed a study of factors influencing micropitting and frictional 

performance, considering material, surface treatment and roughness, and lubricant types. Surface 

roughness was found to have a large effect on the amount of micropitting observed. Throughout the 

investigation, micropits did not occur on any of the polished surfaces (Ra ≈ 0.04 µm). Surface 

treatments were also found to affect micropitting performance. Three treatments were considered: 

carburising, carbonitriding as well as a diamond-like-carbon (DLC) coating. The DLC coated surfaces 

were found to have low coefficients of friction, and during the experiments effectively polished 

themselves, resulting in no micropits. Carbonitrided surfaces performed better than carburised 

surfaces, despite each being hardened to the same approximate hardness. The authors attribute this 

to the reduction of martensite decay of the surfaces subject to carbonitriding. The alloying nitrogen 

gives the material increased tempering resistance, resulting in reduced martensite decay and 

micropitting. 

Bull et al. (1999) also found nitrided surfaces to improve micropitting performance. Carburised and 

nitrided gears were run against each other and the surface failure mechanism determined. The 
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contact fatigue strength of each type of gear can be seen in Figure 1.41. The carburised gears 

showed reduced life in comparison with nitrided gears. However, the failure mechanisms differed. 

Micropitting, leading to pitting was seen to occur in the carburised surfaces, while the nitrided 

surfaces failed by case crushing. This failure was at least partly attributed to the relatively shallow 

case depth of the nitriding process. 

 

Figure 1.41 - Comparison of the surface contact fatigue strength of nitrided and carburised steel of 

4.2 mm module gears. The nitrided steel contained a white layer and failed by case crushing. The 

carburised steel failed by pitting, believed to have developed from previously formed micropits 

(Bull et al. 1999). 

D’Errico (2011) also studied the effect of different treatments on micropitting, looking at three 

different combinations of steel: hardened and tempered, nitrided, and carburised. Each material was 

tested to failure to determine characteristic mechanisms for each specification. The more ductile 

material, the hardened and tempered steel, exhibited micropitting. Cracks then extended deeper 

into the subsurface materials that the failure mechanism was classified as pitting. The carburised 

steel also showed micropits, with cracks initiating at oxides at grain boundaries, i.e. the most brittle 

regions. Cracks occurred in the surface layer, or white layer, of the nitrided material, but extended 

no further, resulting in only superficial cracks. This shows agreement with the previous study where 

the additional alloying nitrogen improves micropitting resistance. 

Moorthy and Shaw (2013) performed gear tests and observed that the features of the rough surface 

can be a factor in micropitting. The occurrence of micropits was found to align with the location of 
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local valley features. These local valley features act as stress concentrations that can lead to the 

initiation of cracks and result in micropitting failure. The shape and orientation of the valleys in 

relation to the sliding direction can also be factor. Polishing of surfaces or surface coatings can 

reduce the severity of valley features, offering some protection against micropitting. 

1.4. Summary 

A thorough survey of the current literature has been performed. It has been show that in lubricated 

surfaces, asperity contact can still be remarkably common place, and that these contacts can 

significantly affect operating life. While a wide range of contact configurations has been considered, 

including single contacts and stochastic and idealised models of rough surfaces, the analysis of real 

rough surface contacts is, relatively, still in its infancy. The growing availability of computational 

resources is making finite element analysis of such problems increasingly viable. 

The work in this thesis is part of ongoing research within the research group, investigating contacts 

operating in mixed lubrication regimes. The aims were to develop finite element analysis techniques, 

initially verified using single contact results available in the literature. These methods will be 

developed to allow modelling of rough surface contacts enabling the determination of residual 

stresses as a result of surface geometry changes due to asperity contact and deformation. These 

residual stresses are thought to be significant in the fatigue life of gear tooth surfaces, contributing 

to such failure mechanisms as micropitting. 

The closest collection of work to these objectives has been published by Jamari and colleagues 

(Jamari and Schipper 2006a; 2006b; 2007a; 2007b; Jamari et al. 2007; Jamari and Schipper 2008). 

Using the contact of single hemispheres and experiments to verify their methods, the contact of 

rough surfaces was investigated. Good agreement was found between their analysis and 

experiment. However, to date no detailed discussion of residual stresses as a result of these changes 

has been discussed by the authors. 
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Finite element analysis of the contact of 

smooth surfaces 

2.1. Introduction 

This chapter describes the methods used for elastic-plastic contact modelling using the Abaqus Finite 

Element (FE) package. Initially, a purely elastic contact model was created for comparison with 

Hertzian theory as a check on modelling techniques. A review of the existing literature revealed 

multiple finite element studies of single point contacts (contact of a deformable hemisphere), with 

either rigid or deformable counter surfaces. Some of this work was used to verify the correct use of 

the software in the current project. The verification study was performed using an axisymmetric 

model of the nominal point contact between a deformable elastic-plastic hemisphere and a rigid flat 

for direct comparison with the work of Jackson and Green (2005). The study was then extended to a 

plane strain model of a line contact between a deformable elastic-plastic half cylinder and a rigid flat 

(Bryant et al. 2012). Early studies of elastic-plastic indentation of a deformable half-space using FE 

methods were reported by Hardy et al. (1971) and Lee et al. (1972) for the case of indentation by a 

rigid sphere, and by Dumas and Baronet (1971) for indentation by a rigid cylinder. More recently, the 

contact of deformable spheres and cylinders has also been subject to further scrutiny (Kogut and 

Etsion, 2002; Jackson et al, 2005; Green, 2005; Shankar and Mayuram, 2008), albeit with more focus 

on the axisymmetric problem. In contrast this research focuses upon two dimensional, line contacts. 

This approach to modelling contact is more relevant to ground gears where the surface finish is 

generally consistent with a two dimensional, plane strain simplification. A sinusoidal surface contact 

model was used as the first foray into simulating more complex contacts whereby neighbouring 

contacting features can give interacting stress distributions and deformations. The elastic sinusoidal 

surface contact was first verified by comparison with analytical solutions by Westergaard (1939) and 

Johnson (1985) before elastic-plastic material properties were introduced. 
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2.2. Introduction to Abaqus contact modelling 

2.2.1. Using Abaqus/CAE (v6.10) 

Figure 2.1 shows the graphical user interface of Abaqus/CAE version 6.10 upon initial start up of the 

software. Abaqus has a number of ways in which modelling and presentational tools can be utilised 

and these are explained in more detail in the Abaqus User’s Manuals (Abaqus 2010a). As with the 

majority of Windows programs, across the top of the window is the tool bar. In Abaqus, this is 

content sensitive and the options presented change depending on the current task that the user is 

trying to achieve. This is dependent on which module is currently selected. The modules are listed in 

the drop-down menu in Figure 2.1, as well as in Table 2.1, which details the function and key 

features of each module. When a different module from this drop-down menu is selected, the 

options available on the tool bar change. However, most of the basic modelling options can be 

achieved by using the buttons directly alongside the modelling viewport. At the left of the screen is 

the model tree. This can be navigated by expanding the available options and clicking the relevant 

title to access the appropriate modelling tool menus.  
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Figure 2.1 - Graphical user interface of Abaqus/CAE v6.10 upon start up. 

Table 2.1 lists the modules available in Abaqus/CAE v6.10 and explains their basic functions and key 

features. There are significantly more tools and settings available within the program, and those 

used within the work of this thesis are detailed when their use is discussed.  
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Table 2.1 - Outline of Abaqus/CAE v6.10 modules. 

Module Description Key Features 

Part 

Used to define geometry of 

parts. Simple CAD functions 

are available, but files can 

be imported from more 

advanced CAD packages 

such as SolidWorks. 

Create Part 
Create deformable and rigid 2D 

and 3D parts. 

Regenerate 

Features 

If changes are made to a part, 

assembly, etc, the features must 

be regenerated for the changes to 

take effect. 

Create Partition 

Split created parts into regions 

which can make applying 

properties, loads, boundary 

conditions simpler, and give more 

control over meshing. 

Property 

Used to create materials 

and sections, and apply 

them to created parts. 

Create Material Define material properties. 

Create Section Define cross sectional properties. 

Assign Section 
Each part or region must have a 

section assigned to it. 

Assembly 

Insert parts into an 

assembly as “instances”, 

which can then be 

manipulated individually. 

Instance Part 
Insert instances of created parts 

into the assembly. 

Translate/Rotate 

Instance 

Position each instance as required 

within the assembly. 

Step 

Steps are essentially 

intermediate points within 

the simulation where 

parameters can be altered. 

Create Step 

Create intermediate steps within 

the simulation and define the way 

each one will be solved. 

Create Field 

Output 

Choose which outputs are 

required in each step of the 

simulation. 

Interaction 

Define interactions between 

parts in the assembly, such 

as contact interactions. 

Create 

Interaction 

Select potentially interacting 

surfaces and define how the 

simulation will treat them. 

Create 

Interaction 

Property 

Define the details of the 

interactions of part surfaces. 

Contact Controls Advanced contact settings. 

Load 
Used to create loads and 

boundary conditions. 

Create Load 
Define type of loading and 

application region. 

Create Boundary 

Condition 

Define type of boundary condition 

and application region. 

Mesh 
Create finite element 

meshes on parts. 

Seed Part 

Instance 

Sets a global mesh seed that is 

applied to all edges on the 

selected part. 

Seed Edge 
Define a mesh seed on a selected 

edge. 

Mesh Part 

Instance/Region 

Create mesh based on currently 

applied mesh seeds. 

Assign Mesh 

Controls 

Select element shape and meshing 

technique for selected part or 

region. 
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Mesh 

(continued) 

Create finite element 

meshes on parts. 

Assign Element 

Type 

Choose type of elements to be 

used in selected part or region. 

Verify Mesh 

Assess mesh quality based on 

element shape and size. Check for 

potential analysis problems. 

Job 

Create jobs for submission, 

write input files and monitor 

running simulations. 

Create Job Create jobs for analysis. 

Monitor 
Check progress of currently 

running job. 

Visualization 

Show requested field 

outputs after (or during) a 

simulation. 

Plot Contours on 

Deformed Shape 

Quickest and simplest way of 

viewing results of a simulation. 

Sketch 

Similar to the part module, 

but just the CAD drawing 

tool. 

Create Sketch 

Opens the CAD drawing tool, 

without subsequently creating a 

part. Sketches can be opened in 

the Part module. 

 

2.3. Hertzian single point contact 

2.3.1. Material elasticity and elastic contact 

Elasticity is concerned with the determination of stresses and strains in bodies as a result of applied 

loads, such that the body reverts to its original state upon load removal (Barber 2002). Hooke’s Law 

provides a general description of elasticity where stress is proportional to strain. 

� ∝ �  

 

Eq. 2.1 

The constant of proportionality in this equation is the elastic modulus, or Young’s modulus, E. 

� = �	�  

 

Eq. 2.2 

This equation describes the relationship between direct stresses and strains. The relationship 

between shear stresses and strains is expressed using a similar constant of proportionality, the shear 

modulus, G (Ford 1963). 

� = �		   

 

Eq. 2.3 

Both the elastic modulus and shear modulus are inherent material properties, and, in isotropic 

materials, are related by Poisson’s ratio, ν (Callister 2003). 
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� = 2	��1 + ��  
 

Eq. 2.4 

Poisson’s ratio is defined as the ratio between strains in the transverse and axial directions. For 

example, in a simple uniaxial tensile test, a positive strain is observed in the axial (z) direction; the 

direction of the applied load. Simultaneously, strains proportional to the axial strain are produced in 

the directions normal to the applied load (Ford 1963). 

�	��� = −��� = −���  

 

Eq. 2.5 

� = − ������ = − ������   

 

Eq. 2.6 

Contact of purely elastically behaving bodies was comprehensively studied by Hertz (1882). While 

much of this work focussed upon elliptical contacts, solutions for line contacts have also been found 

(Johnson 1985). A summary of the formula to calculate key contact details for both point and line 

contacts are shown in Table 2.2. 

Table 2.2 - Elastic contact formula for point and line contacts. 

 Point Contacts Line Contacts 

Contact Dimension, a 
� = �32	�	��′�

 � = �8 	�	�′�′  

Max. Contact 

Pressure, p0 

!" = 3	�2	 	�# !" = 2	�′ 	�  

Elastic Approach 

Distance / 

Interference, ω 

$ = �#�  

$ ≅ 1.31	�' �#
�	�′#(�

 

N/A 

Where 

2�′ = 1 − �)#�) + 1 − �##�#  
1� = 1�) + 1�# 
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2.3.2. Modelling details 

Familiarity with the basic tools and functions of Abaqus was gained by performing some basic 

contact modelling. In the Abaqus Benchmarks Manual (Abaqus 2010b), a Hertzian contact problem is 

available (Section 1.1.11). It provides a guide to creating and running simple contact problems. Using 

the benchmark problem as a reference, a study was performed to assess two properties crucial to 

creating accurate contact models. The suitability of linear and quadratic elements for contact 

problems and the choice of node-to-surface and surface-to-surface surface discretisation were also 

assessed. While both linear elements and surface-to-surface contact are recommended by the Users 

Manuals, the study was performed to provide a greater appreciation of these recommendations. 

The results of each of the simulations were compared with the Hertzian theory for the defined 

geometry and material properties. 

Figure 2.2 shows a representation of two dimensional linear and quadratic elements, with nodes 

depicted by black circles. The linear element has nodes located at the corners, while the quadratic 

elements have corner nodes and nodes at the midpoint between corners. Linear elements 

approximate variables over the element linearly, whereas quadratic elements use a quadratic 

approximation, allowing a nonlinear variation of output variables across a single element. In general 

applications, quadratic elements are recommended as they provide a higher accuracy than linear 

elements (Abaqus 2010a). Geometric features are better represented, and stress concentrations 

more effectively analysed using quadratic elements. However, for more complex problems, such as 

those than consider contact, impacts, or severe element distortions, linear elements are 

recommended. Quad4 (linear) and Quad8 (quadratic) elements will both be used in the analysis to 

determine the effect of choice of element. 



Finite element analysis of the contact of smooth surfaces 

Chapter 2  72 

 

 

Figure 2.2 - Two dimensional linear (left) and quadratic (right) elements. 

The contact discretisation method determines how Abaqus applies constraints at surface locations 

to effectively simulate contact between surfaces. Two options exist for contact discretisation; node-

to-surface and surface-to-surface. Each method requires the definition of the two contacting 

surfaces to be defined as either the master or slave surface. Contact in Abaqus is based upon the 

interactions and constraints applied to master and slave surfaces and unreasoned designation can 

give incorrect results. While further reference should be sought from the Abaqus User’s Manual 

(Abaqus 2010a) , in general it is recommended that the master surface be assigned to the larger 

body, the stiffer surface (including structural considerations, not only material) or the surface that 

consists of the coarser mesh. 

Node-to-surface contact is where an individual node on the slave surface interacts with a point of 

projection on a nearby facet on the master surface. The contact direction is determined only by the 

normal of the master surface, and the shape and normal of the slave surface are not relevant to the 

contact formulation. Slave nodes are restricted from penetrating into the master surface, while 

master nodes are not explicitly restricted from penetrating the slave surface. This can be mitigated 

to some extent by ensuring that the slave surface mesh density is sufficiently fine, preventing larger 

magnitude penetration.  
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Surface-to-surface contact takes into account the shape of both the master and slave surfaces in the 

contact formulation. The contact conditions are enforced in an average sense over regions of the 

contact. Contact at an individual node is still predominantly focused on the node in question, but 

also considers neighbouring slave nodes. Small penetration is still possible, but the likelihood of large 

localised penetrations is reduced as penetration is resisted in an average sense across a region of the 

surface. 

Table 2.3 summarises the specifications of the Hertzian point contact model. The model consisted of 

a deformable 50 mm radius half hemisphere, created using an axisymmetric model, loaded against a 

rigid flat plane. Typical elastic properties of steel were applied to the half hemisphere; E = 200 GPa 

and ν = 0.3. Boundary conditions were applied in the “Initial” analysis step required by the software. 

This step is reserved for applying boundary conditions only; no loads can be applied during set up of 

the model. In this step the rigid flat plane was restrained in all directions. No boundary conditions 

were required for the hemisphere. By defining the part as axisymmetric, Abaqus implements 

appropriate restraints to the part corresponding to the defined rotational axis of symmetry. In the 

subsequent analysis step, contact was initiated by applying a pressure to the top free edge of the 

deformable hemisphere. 
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Table 2.3 - Hertzian point contact model summary. 

Part 
Axisymmetric 2D Quarter Circle; Radius, r = 50 mm → Half Hemisphere 

Line Segment → Rigid Flat Plane 

Property E = 200 GPa, ν = 0.3 

Assembly Lines of axisymmetry aligned. Parts on the verge of contact 

Step Initial (required), Contact 

Interaction 

Frictionless 

Small Sliding 

Node-to-Surface and Surface-to-Surface 

Load 1 MPa pressure acting on top edge of hemisphere  

Boundary 

Conditions 
Rigid Flat Plane - Encastre (Ux = Uy = Uz = URx = URy = URz = 0) 

Mesh 

Partitioned around contact area 

Axisymmetric Stress Elements 

Linear and Quadratic Elements 

 

2.3.3. Loaded result comparisons 

Table 2.4 shows the results of the initial elastic study, comparing the contact area, a, and maximum 

contact pressure, p0, obtained using the two different element types and surface discretisation 

methods. The contact dimension and maximum contact pressure calculated by using Hertzian theory 

are also shown. The contact pressure profiles for each combination are shown in Figure 2.3. 

Table 2.4 - Summary of results comparing element type and surface discretisation methods. 

 

Contact 

Dimension, 

a / mm 

Contact 

Dimension 

Difference 

Maximum 

Contact Pressure, 

p0 / GPa 

Maximum 

Contact Pressure 

Difference 

Hertzian Theory 1.103 - 3.090 - 

Node-to-

surface 

Quad4 1.194 8.3% 4.112 33.1% 

Quad8 1.180 7.0% 0.051 98.3% 

Surface-to-

surface 

Quad4 1.194 8.3% 3.035 1.8% 

Quad8 1.180 7.0% 25887.2 837673.5% 
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Figure 2.3 - Contact pressure plots for node-to-surface and surface-to-surface contact 

discretisation methods for a) Quad4 elements, and b) Quad8 elements. 

The contact dimension was determined as the first node in which the contact pressure was found to 

be zero. The maximum potential error in determining the contact dimension is therefore the 

distance between the nodes at the contact edge. The mesh seedings were manipulated such that 

the same number of nodes was in contact for each simulation regardless of element type. It can be 

seen that the choice of surface discretisation method has little effect on determining the contact 

dimension. The result given for each method is identical when the same element type is selected. 

The element type and surface discretisation method both have a significant effect on determining 

the contact pressure. In Figure 2.3 it can be seen that the node at the centre of the contact causes 

problems for each simulation except surface-to-surface contact using Quad4 elements, which 

accurately predicts the maximum contact pressure. It also matches the theoretical contact pressure 

distribution across the contact very well. Node-to-surface contact using Quad8 elements 
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overestimates the contact pressure at the contact centre. However, away from the centre, the 

pressure distribution closely follows the surface-to-surface contact results. 

Similar behaviour is seen when combining surface-to-surface contact and Quad8 elements, although 

the contact pressure spike at the contact centre is several orders of magnitude greater, exceeding 

the scale plotted in Figure 2.3b. Aside from this node however, the contact pressure profile matches 

the theory reasonably well. The simulation combining node-to-surface contact with Quad4 elements 

underestimates the contact pressure at the contact centre. Unlike other simulations however, the 

contact pressure profile does not agree well across the contact. The profile alternates between over- 

and underestimating the contact pressure at the mid and corner nodes, respectively. 

As a result of this study, it became clear why both surface-to-surface surface discretisation and 

Quad4 elements are recommended for contact problems, and as such, each of these was carried 

forward into the subsequent contact modelling. 

2.4. Elastic-plastic single point contact 

2.4.1. Material plasticity and plastic contact 

In Section 2.3.1, Hooke’s Law and elastic material properties were discussed, as well as contact 

theory based on purely elastic bodies. However, in practice, considering bodies as purely elastic is 

rarely sufficient. For most metals, elastic deformation continues only to strains of approximately 

0.5% (Callister 2003). 

Further loading results in strain that is no longer proportional to stress and is permanent. This 

nonrecoverable strain is known as plastic deformation. The point at which deformation changes 

from elastic to plastic deformation in a uniaxial test is known as the yield strength, σy.  

While the yield strength of a material can be determined relatively simply using a uniaxial tensile 

test, and plotting the results on a graph of stress against strain, in more complex problems, the 
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states of stress are generally complicated (bi-axial or tri-axial). This has resulted in the development 

of several different yield criterion to determine the state of a material (Ford 1963). For isotropic 

plasticity, two of the most commonly used yield criteria are the Tresca (1864), and von Mises (1913) 

criterion.  

The Tresca criterion is also known as the maximum shear theory, and it assumes that material yield 

will occur when the maximum shear stress reaches the value of maximum shear stress at yield under 

simple tension (Mendelson 1968). The maximum shear stress is given by half of the greatest 

difference between the principal stresses and as σ2 = σ3 = 0, the maximum shear stress is given by 

half the yield strength. The Tresca yield criterion can be stated as shown in Equation 2.7. 

)#max�|�) − �#|, |�# − �/|, |�/ − �)|� = �� = )#��  Eq. 2.7 

The von Mises yield criterion is also known as the distortion energy theory, and predicts that 

material yield will occur when the distortion energy reaches the distortion energy at yield in simple 

tension (Mendelson 1968). The von Mises yield criterion can be expressed in terms of direct stresses 

or principal stresses as shown in Equations 2.8 and 2.9 respectively. 

0)# 	12��� − ���3# + 2��� − ���3# + ���� − ����# + 62���# + ���# + ���# 35 = ��  
Eq. 2.8 

0)# 	6��) − �#�# + ��# − �/�# + ��/ − �)�#7 = ��  
Eq. 2.9 

Experimental studies have found that the von Mises yield criterion gave more accurate results for a 

range of materials, under a combined loading of tension and torsion, (Lode, 1926; Ros and Eichinger, 

1929; Taylor and Quinney, 1931) and so the von Mises yield criterion is widely used today and is the 

basis for isotropic plastic material behaviour in Abaqus. 

The von Mises yield criterion can be used to determine when material yield first occurs in point and 

line contacts. The maximum shear stress occurs at a depth of z = 0.48a and z = 0.70a for point and 

line contacts, respectively, with magnitudes of 0.62p0 and 0.56p0, respectively (Johnson, 1985). By 
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setting the maximum stress to be equal to the yield strength, σy, the maximum contact pressure at 

yield can be determined to be 1.60σy and 1.79σy for point and line contacts. By rearranging the 

elastic contact equations in Table 2.2, the load required to cause material yield can be found. Each of 

these equations can be found in Table 2.5. 

Table 2.5 - Plastic contact formula for point and line contacts using the von Mises yield criterion. 

 Point Contacts Line Contacts 

Maximum Stress 
0.62!"	@	: = 0.48� 0.56!"	@	: = 0.70� 

Max. Contact 

Pressure at Yield, 

(p0)y 

�!"�� = 1.60�� �!"�� = 1.79�� 

Load at Yield, 

wc, w’c 

�? = 2	 	�#3 �!"�� ≅ 3.75	�#	��	
�? = 2	 /	�#3	�′ �!"��/ ≅ 118.6	 �#�′ 	��/ 

�@? =  	�2 �!"�� ≅ 2.81	�	��	
�′? = 2	 	��′ �!"��# ≅ 20.1	 ��′	��# 

Where 

2�′ = 1 − �)#�) + 1 − �##�#  
1� = 1�) + 1�# 

 

2.4.2. Modelling details 

Having verified that basic modelling techniques were in place and that the model using elastic only 

material properties gave results in line with Hertzian theory, the next step was to introduce material 

plasticity. Jackson and Green (2005) performed a finite element study of contact of a deformable 

elastic-plastic hemisphere with a rigid flat plane, investigating the contact loads and dimensions, as 

well as the transitional behaviour from elastic to plastic material behaviour. Jackson and Green 

primarily used ANSYS for finite element modelling, although it is stated that it was found that 

Abaqus produced the same results. In the finite element software, contact was initiated by applying 

a displacement to the free edge of the deformable hemisphere towards the contact plane. This was 

defined as the interference. An interference of zero corresponds to the initial contact of the 

undeformed hemisphere at zero load. This study was used as a benchmark in order to test whether 
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the modelling techniques being used could generate results comparable with those already 

published. 

In a single point contact, the approach distance, or critical interference can be calculated as in 

Equation 2.10. 

$? = A 	B	��2	�@ C
# 	� 

 

Eq. 2.10 

Where: 

B = 1.295�".D/E	F� 
 

Eq. 2.11 

By substitution of the elastic contact formula, it can therefore be shown that the critical load and 

contact area are given respectively Equations 2.12 and 2.13. 

�? = G/ 	HIJKL# 	HM# 	 	��L/   
Eq. 2.12 

N? =  / 	HM	O�	I#	JK L#  
Eq. 2.13 

Following Jackson and Green, these critical values were then used to normalise the results for 

comparison. The normalised parameters are defined as: 

$∗ = QQR  

 

Eq. 2.14 

�∗ = STR   Eq. 2.15 

N∗ = UUR    Eq. 2.16 

The model itself was set up to replicate the conditions used by Jackson and Green, subject to 

differences in the two programs, including boundary conditions, material properties, and the range 

of interferences applied. However, rather than the hemisphere radius of 1 µm, the radius modelled 

was 50mm. This was primarily to avoid scaling issues through creating such a small model. In the 

study by Jackson and Green, a range of plastic behaviours were examined by performing analyses 
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using five different values for the yield strength; ranging from 0.210 GPa to 1.619 GPa. This 

verification model only compared one of the yield strengths; σy = 1.265 GPa. Table 2.6 summarises 

the specifications of the elastic-plastic point contact model. 

Table 2.6 - Elastic-plastic single point contact model summary. 

Part 
Axisymmetric 2D Quarter Circle; Radius, r = 50 mm → Half Hemisphere 

Line Segment → Rigid Flat Plane 

Property E = 200 GPa, ν = 0.3, σy = 1.265 GPa (perfectly plastic) 

Assembly Lines of axisymmetry aligned. Parts on the verge of contact 

Step Initial (required), Contact 

Interaction 

Frictionless 

Small Sliding 

Surface-to-Surface 

Load None applied 

Boundary 

Conditions 

Vertical displacement applied to top edge of hemisphere 

Rigid Flat Plane - Encastre (Ux = Uy = Uz = URx = URy = URz = 0) 

Mesh 

Partitioned around contact area 

Axisymmetric Stress Elements 

Linear Elements 

 

2.4.3. Loaded results 

As can be seen from Figure 2.4, Figure 2.5 and Figure 2.6, excellent agreement can be seen between 

the results achieved by Jackson and Green and the verification model. Figure 2.4 shows the 

relationship between dimensionless interference, ω* , and dimensionless contact area, A*. At low 

loads, where material behaviour is elastic, a linear relationship on the logarithmic scale is shown, 

agreeing with the theoretical solution that A*/ω* = 1. This relationship develops through the elastic-

plastic region, transitioning beyond a relationship of A*/ω* = 2 for plastic contact, as predicted by 

Abbott and Firestone (1933). Jackson and Green (2005) report that this is not unreasonable to 

expect, as the Abbott and Firestone model considers the truncation of asperities, and does not take 

into account asperity deformation. 



Finite element analysis of the contact of smooth surfaces 

Chapter 2  81 

 

 

Figure 2.4 - Dimensionless contact area versus dimensionless interference. 

Figure 2.5 shows the relationship between dimensionless interference, ω* , and dimensionless load, 

w*. Good agreement between the theoretical behaviour and the analysis are again seen at low loads 

with elastic material behaviour. From the figure, it can be found that w*/ (ω* 3/2
) = 1 as can be 

derived from the equations in Table 2.2. As Jackson and Green (2005) report, as the contact 

becomes more dominated by plastic behaviour, the behaviour tends towards the model proposed by 

Abbott and Firestone (1933). 
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Figure 2.5 - Dimensionless load versus dimensionless interference. 

Figure 2.6 shows the relationship between dimensionless load, w*, and dimensionless contact area, 

A*. As would be expected from the discussion of the results from Figure 2.4 and Figure 2.5, good 

agreement between the results of the analysis and theoretical elastic behaviour is seen at low loads, 

A∝w2/3
. Beyond the point of initial yield, elastic-plastic behaviour begins. Initially, elastic behaviour 

dominates, with the gradient of the line staying close to 2/3. As the load is increased, plasticity 

becomes more of a factor as the relationship tends towards A*/w* = 1, and a gradient of unity. 
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Figure 2.6 - Dimensionless contact area versus dimensionless load. 

2.5. Elastic-plastic single line contact 

2.5.1. Modelling details 

Once the modelling techniques had been verified using a single point contact model, a new single 

line contact model was created. The model consisted of a 50 mm radius quarter cylinder, loaded 

against a rigid flat plane. The model used the same elastic material properties as before: E = 200 GPa 

and ν = 0.32, whilst two different yield strengths were investigated; σy = 210 MPa and σy = 1.619 

GPa, the lowest and highest yield strengths used in the study by Jackson and Green (2005). Unlike 

the single point contact, the interference could not be calculated theoretically. Instead, critical 

parameter values were calculated by considering the maximum von Mises stress and contact 

pressure in a Hertzian line contact. The maximum von Mises stress occurs at a depth of z = 0.70a, of 

magnitude 0.56p0. Sub-surface yielding in a line contact first occurs when the maximum contact 

pressure is p0 = 1.79σy. These values assume contact of a semi-infinite body, whereas the model 

considered is of finite size and is a finite element approximation. Through experimentation, it was 

found that the first sub-surface yielding occurred at a maximum contact pressure of p0 = 1.82σy. The 

parameter values at this load case were taken as the critical conditions. The maximum contact 
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pressure in elastic contact theory can be given by Equation 2.17. By rearranging, the load can be 

found in terms of the maximum contact pressure as shown in Equation 2.18. 

!" = 0JKSK
#	X	I  

Eq. 2.17 

�@ = #	X	I	YZ[J@    Eq. 2.18 

By substituting the maximum contact pressure at the initiation of sub-surface yielding, p0 = 1.82σy, 

the critical load can be shown to be: 

�@? = 20.8	 IJK 	��  Eq. 2.19 

Similarly, the contact dimension as given by elastic contact theory can be given by Equation 2.20. By 

substitution of the load, the critical contact dimension can be found as in Equation 2.21. 

� = 	 2	�′ 	!" 
Eq. 2.20 

�? = 7.28	 I	O�JK    Eq. 2.21 

The normalised parameters were calculated as previously stated in Section 2.3. 

Where possible, the quarter cylinder was meshed using linear quadrilateral plane strain elements.  

Use of these elements alone resulted in undesirable corner angles in some elements as highlighted 

by the mesh verification tool within Abaqus. As a result, a small number of compatible linear 

triangular elements were used in order to ensure a valid mesh.  Abaqus documentation (Abaqus 

2010a) recommends that the stiffer of two contact bodies be defined as the master surface, and so 

the rigid flat plane was defined as such. The rigid flat plane was meshed using elements sized slightly 

larger than on the corresponding slave contact surface on the quarter cylinder, again as 

recommended by Abaqus documentation. 

The tangential behaviour at the contact interface was defined as frictionless, while the normal 

behaviour used the augmented Lagrange constraint enforcement method as opposed to the default 
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Penalty method used before. The Penalty method is the default method for “hard” contact, whereby 

contact pressure is proportional to overclosure, or penetration. The alternative, “softened” contact, 

also permits overclosure, but also allows contact pressure to occur at small surfaces clearances too 

(i.e. when surfaces are not yet in contact).  The augmented Lagrange method alters the sequence 

that occurs in each increment as follows: 

1. Abaqus uses the Penalty method to find a converged solution. 

2. If a slave node penetrates the master surface by more than the penetration 

tolerance, the contact pressure is “augmented” (increased) and further iterations 

are performed to find convergence. 

3. The contact pressure is further augmented and the solution iterated until the actual 

penetration is less than the penetration tolerance. 

Choosing this method allows the more advanced contact controls to be used in Abaqus, such as 

controlling the penetration tolerance. The default setting for penetration tolerance is proportional 

to element size; 0.1% of the characteristic element length. As is later discussed, the mesh at the 

contact surface was modified throughout the study, ensuring a consistent number of elements 

across the contact as the load was increased. By setting an absolute penetration tolerance of 10
−15

m, 

consistency of the contact interaction could be assured throughout the study.  

The constraint enforcement method can be defined by the user in the Interaction Module. When 

defining the normal behaviour in the Interaction Properties, a drop down menu allows the user to 

specify the constraint enforcement method. To alter the penetration tolerance, the user can select 

Contact Controls, either from the model tree or the task bar. Under the Augmented Lagrange tab, 

either an absolute or relative penetration tolerance can be selected and specified. The final step to 

introduce the new contact controls is in the Edit Interaction menu. At the bottom of the window, 

two drop down menus allow the selection of created interaction properties and contact controls. 
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The load was defined by applying a constant displacement in the z-direction to the flat rigid plane. 

The displacement applied corresponded to the specified interference. Each load case was achieved 

by increasing the interference in a number of small increments. The size of each increment was 

governed by the need to maintain numerical convergence of the iterative solution process embodied 

in the software to solve the non-linear contact with elastic-plastic material properties. The unloading 

process was performed in a similar manner. 

For each simulated interference, the model was remeshed to suit the deformation expected. These 

meshes were created using an iterative process, whereby more generalised meshes were initially 

tested across the range of interferences to obtain the approximate contact dimension. With this 

information, the mesh could be tailored for each interference, without incurring an excessive 

computational penalty associated with increasing the number of elements in the model. Examples of 

two of the meshes used within the study are shown in Figure 2.7. 

 

Figure 2.7 - Example of fine mesh used for smaller interferences (left), and coarser mesh used for 

larger interferences (right). 

For similar reasons, the quarter cylinder model was divided using the partitioning tool. This allowed 

different mesh densities to be more effectively implemented in various regions of the model. For 
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example, a finer mesh was implemented around the contact area, whilst a coarser mesh was used in 

areas remote from it. The transition between these different regions was kept smooth in order to 

avoid discontinuity in results from occurring at partition boundaries. The total number of elements 

in the deformable quarter cylinder ranged from 7003 to 80360. The number of elements in the 

contact region was kept within a relatively narrow range. From the smallest contact to the largest, 

the number of elements in actual contact ranged from 33 to 71, giving a contact dimension precision 

of from 0.73% to 1.47%, with an average of 0.91%. The precision values were calculated by dividing 

half the element size at the contact edge by the nominal contact dimension. Table 2.7 summarises 

the specifications of the elastic-plastic single line contact model. 

Table 2.7 - Elastic-plastic single line contact model summary. 

Part 
2D Quarter Circle; Radius, r = 50mm → Half Cylinder 

Line Segment → Rigid Flat Plane 

Property E = 200 GPa, ν = 0.32, σy = 210 MPa and σy = 1.619 GPa 

Assembly Lines of symmetry aligned. Parts on the verge of contact 

Step Initial (required), Contact, Removal 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Small Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 10
−15

m 

Load None applied 

Boundary 

Conditions 

Vertical displacement applied to rigid flat plane 

Top edge of quarter cylinder: Restrained (Ux = Uy = 0) 

Side edge of quarter cylinder: Symmetry in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 
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2.5.2. Loaded results 

The results given in Table 2.8 show the non-dimensional parameters obtained for each of the finite 

element analysis simulations performed using the smooth quarter cylinder contact model. 

Table 2.8 - Elastic-plastic single line contact results. 

Case 
Dimensionless 

Interference, ω* 

Dimensionless 

contact dim., a* 

Dimensionless 

contact load, w’* 
a/R 

1 0.23 0.46 0.19 0.012 

2 0.47 0.66 0.42 0.017 

3 0.70 0.82 0.66 0.021 

4 0.93 0.96 0.91 0.025 

5 1.40 1.23 1.42 0.032 

6 1.86 1.53 1.92 0.040 

7 2.33 1.82 2.41 0.047 

8 3.26 2.38 3.33 0.062 

9 4.66 3.17 4.57 0.082 

10 6.99 4.30 6.34 0.112 

11 9.32 5.25 7.83 0.137 

12 14.0 6.82 10.35 0.177 

13 21.9 9.05 13.82 0.235 

14 32.6 11.29 16.61 0.293 

15 50.3 14.31 19.40 0.372 

 

Figure 2.8 shows both the dimensionless contact dimension, a*, and dimensionless contact load, 

w’* , plotted as functions of dimensionless interference, ω* . It can be seen that both contact 

dimension and contact load increase linearly until the onset of material plasticity at ω* = 1. While no 

exact theoretical solution exists for the relationship of the interference and load or contact 

dimension, this behaviour agrees with the approximation as reported by Hamrock et al. (2005). Little 

deviation from this linear behaviour is seen to occur until the amount of subsurface yielding 

increases. Significant departure from the elastic behaviour becomes apparent for a* at ω* ≈ 2 and 

for w’* ≈ 3. 
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Figure 2.8 - Dimensionless contact dimension and contact load versus interference. 

 

 

Figure 2.9 - Dimensionless contact dimensions versus dimensionless load. 

Figure 2.9 shows a* plotted as a function of w’*  together with the equivalent result for an elastic 

Hertzian contact, which is a straight line with a gradient of 0.5. As before, the expected linear 

behaviour is exhibited, in the case of both yield strength values, before yielding occurs. Deviation 

from the dashed elastic Hertzian results is not seen to occur immediately as w’*  becomes greater 
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than unity. Divergence begins to become significant once w’* ≈ 2. As w’*  increases further, the 

gradient of the line changes from 0.5 to 1 on the logarithmic plot as the material behaviour 

transforms from elastic to fully plastic behaviour. Under very heavy loads, the gradient tends to 

exceed unity. For contact of a semi-infinite body, this behaviour would be unexpected. In the current 

model, this behaviour occurs in simulated load cases where the leading edge of the yielding material 

approaches the boundaries of the finite-size model. This progression of the boundary, or “plastic 

front”, is demonstrated in Figure 2.10. Each contour line shows the boundary between elastic and 

plastic material for a particular labelled interference. By considering the proximity of the contours to 

the model boundaries, it is clearly questionable as to whether the semi-infinite assumption holds up 

once the dimensionless interference exceeds much beyond 10. 

 

Figure 2.10 - Progression of "plastic front" with increased interference (leading edge of plastic 

zone only shown for clarity) 
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Figure 2.11 shows the average contact pressure to yield strength ratio (w’/2 a σy), calculated from 

the finite element results. For relatively lightly loaded contacts where a/R is small, this value is 

expected to approach a constant value similar to the flow pressure as the contact becomes fully 

plastic. Williams (1994) uses an approximate upper bound method to calculate this value to be 2.83 

for a line contact. It is also stated that despite variation for different geometric configurations and 

frictional conditions that this value is “always close to the value 3”. The σy = 0.21 GPa, results 

achieved by Jackson and Green (2005) for small a/R (approximately 0.05) in a single point contact 

agree with this theoretical value, while results for the higher yield strength of σy = 1.619 GPa 

approached a maximum value of around 2.4. Results from this single line contact model gave 

maximum values of approximately 2.6 and 2.2 for the lower and higher yield strength materials, 

respectively. The distinct reduction in the average contact pressure at the two largest interferences 

shown in Figure 2.11 is believed to be due to the finite nature of the model. The two load cases in 

question have ω* = 32.6, a/R = 0.29 and ω* = 51.3, a/R = 0.37 respectively. In each of these cases, 

the yielded material extends towards the boundary of the quarter cylinder model, as previously 

shown in Figure 2.10. This invalidates the semi-infinite assumption that is applied to calculate the 

theoretical maximum value. Jackson and Green (2005) have provided an explanation of this 

phenomenon in terms of the behaviour in the limiting case where a/R→1. 
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Figure 2.11 - Variation of mean contact pressure / yield strength with contact dimension / quarter 

cylinder radius. 

2.5.3. Loaded stress distributions 

As the contact load is increased beyond the elastic limit, the stress distributions deviate from those 

predicted using purely elastic Hertzian theory and the area of peak von Mises stress and this results 

in localised material yield. This region of yielding material grows with increasing interference, but 

initially remains beneath the surface as previously shown in Figure 2.10. As the interference is 

increased, this area of yielding material grows and expands towards the contact surface. This is 

illustrated in Figure 2.12 which shows the normalised von Mises stress distribution for four load 

cases, ω* = 3.26, 6.99, 14.0 and 32.6. Plastic behaviour is first seen at the surface at a dimensionless 

interference of 3.26. At the same time, the von Mises stress at the centre of the contact increases 

until surface yielding occurs at ω* = 6.99. Further loading causes the surface plastic zone at the 

contact centre to grow, while the plastic zone located at the edge of the contact remains constant in 

size relative to the contact area. The two zones meet at an interference of around 50, where the 

entire contact is plastic at the surface. It should be noted that as the geometry is normalised by the 

loaded contact dimension, which increases with applied load, that the curvature outside of the 



Finite element analysis of the contact of smooth surfaces 

Chapter 2  93 

 

contact (x / a > 1.00) differs greatly between each of the load cases shown. This phenomenon is also 

seen i Figure 2.14Figure 2.15, Figure 2.16. 

 

Figure 2.12 - Contours of normalised von Mises stress for interference values, a) ω* = 3.26, b) ω* = 

6.99, c) ω* = 14.0, d) ω* = 32.6. 
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The normalised von Mises stress distributions in Figure 2.12 were produced using nodal output 

values from Abaqus. The nodal values are produced by averaging the neighbouring element values 

at each node. An element experiencing plastic behaviour will have a normalised von Mises stress of 

1, but when averaged with the neighbouring element’s value, the nodal value will be less than unity. 

Consequently, in order for the normalised von Mises stress contours to show plastic behaviour, 

three adjacent surface elements must be in the plastic state. Yielding at the contact surface is 

typically found to occur in one or two elements and as such, the normalised von Mises stress 

contours cannot clearly illustrate the behaviour. The additional heavy lines in the figure indicate 

which surface elements are yielding. 

The way in which the von Mises stress grows, and the surface material at the contact centre line 

begins to yield is shown in Figure 2.13. Four load cases are shown, ω* = 0.23, 1.40, 3.26 and 14.0, as 

well as the theoretical result for the critical elastic condition where the material is on the verge of 

yielding. For ω* = 1.40 and, the plastic zone is confined to the subsurface material, as can also be 

seen in Figure 2.10 for ω* = 1.86. For increasing heavy load cases, the stress found at the contact 

centre line increases, approaching the yield stress. For the load case ω* = 14.0, the contact surface 

at the centre line is plastic. However, in this case a subsurface elastic zone is encapsulated by 

yielding material. The phenomenon can also be seen in Figure 2.12. 
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Figure 2.13 - Normalised von Mises stress as a function of z / a on the contact centre line, x = 0. 

Theoretical critical elastic behaviour illustrated by a dashed line. 

Contours of the direct stress component in the tangential direction, σxx, normalised by σy, are shown 

in Figure 2.14 for the four load cases ω* = 3.26, 6.99, 14.0, 32.6. Tensile values of σxx can be 

significant in consideration of surface cracking under fatigue conditions. At the lowest load shown 

(ω* = 3.26) σxx is tensile at the surface immediately outside the contact with a maximum value of 

around 0.1σy. This stress pattern continues as the interference increases, with the magnitude rising 

to 0.25σy for ω* = 14.0. The magnitude then decreases for the highest interference shown, ω* = 

32.6, as a result of the increased plastic flow at the surface. This reduction may also partly be due to 

the direction of the stress component σxx becoming progressively less aligned with the surface 

tangential direction as more deformation occurs. 
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Figure 2.14 - Contours of normalised direct stress in tangential direction under load, σxx / σy for 

interference values, a) ω* = 3.26, b) ω* = 6.99, c) ω* = 14.0, d) ω* = 32.6. 
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2.5.4. Residual stress distributions and deformations 

As a result of material yielding at interferences greater than ωc, significant residual stresses 

remained following unloading of the model. Contours of the normalised direct stress components in 

the tangential and normal direction are shown in Figure 2.15 and Figure 2.16, respectively. The load 

cases shown are the same as in Figure 2.12 and Figure 2.14, illustrating the residual effects of the 

stress under load shown. High tensile values of σxx, the tangential component of direct stress, are 

generally seen at and near the contact boundary. The highest of these stresses is seen at the lowest 

of the displayed interferences, ω* = 3.26, at a magnitude of over 0.5σy. As the amount of residual 

plastic deformation at the surface increases with interference, the magnitude of this tensile stress 

falls, until σxx is generally compressive for ω* = 32.6. The magnitude of the normal component of 

direct stress, σzz, is lower for all the load cases shown. For ω* = 3.26, tensile values can be seen in 

the contact zone, while compressive values exist below the surface at the contact edge. The highest 

observed surface stresses of ±0.02σy are seen for the ω* = 14.0 load case, with significant 

compressive stress in the plastic zone beneath the surface. A further increase of the interference to 

32.6 results in a reduction of the residual normal stress. The same colours are used to represent the 

magnitudes of stress for each load case. The load case shown Figure 2.15d, ω* = 32.6, appears 

different to the remaining load cases due to the nature of the stresses found. For ω* = 32.6, the 

magnitude of tensile stress found is reduced, while compressive stresses are more commonplace. 
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Figure 2.15 - Contours of normalised residual direct stress in tangential direction, σxx / σy for 

interference values, a) ω* = 3.26, b) ω* = 6.99, c) ω* = 14.0, d) ω* = 32.6. 
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Figure 2.16 - Contours of normalised direct stress in normal direction under load, σzz / σy for 

interference values, a) ω* = 3.26, b) ω* = 6.99, c) ω* = 14.0, d) ω* = 32.6. 
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Figure 2.17 presents the residual normal deformations, Uz, normalised against the critical 

interference, ωc, for a range of load cases from ω* = 1.40 to 21.9. This deformation corresponds to 

the change in asperity height when considering a rough surface contact. Additionally, each curve is 

normalised in the tangential direction against its own contact dimension to allow for easier 

comparison. The figure shows how the deformation increases in the contact zone as the load is 

increased. It also shows how build up occurs at the edge of the contact as material is pushed away 

from the contact. It should be noted that for the larger shown values of ω* , the deformations in the 

z-direction, as shown, are no longer normal to the surface because of the high a/R value for these 

load cases. 

 

Figure 2.17 - Residual normal deformations at normalised interferences, ω* , from 1.40 to 21.9. 

Arrow indicates sense of increasing ω*. 
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2.6. Sinusoidal contact 

2.6.1. Modelling details 

Having modelled single point and line contacts, the first step in modelling a multiple contact 

problem was the case of elastic-plastic contact between a deformable sinusoidal surface and a rigid 

flat plane. The behaviour of this configuration differs from that of a single contact because of the 

possibility of interaction of the deformation and stress fields of adjacent features. Theoretical 

solutions for the elastic only sinusoidal surface contact have been given by Westergaard (1939) and 

Johnson (1985). The model was therefore run in both elastic only and elastic-plastic material 

definitions to allow comparison. The sinusoidal contact model is illustrated in Figure 2.18. 

 

Figure 2.18 - Sinusoidal surface contact model (z-axis magnified 20:1). 

The amplitude and wavelength chosen for the sinusoidal surface were 0.2 µm and 20 µm, 

respectively. In Figure 2.18, the z-axis has been scaled in the ratio 20:1 to the x-axis for clarity. The 

theoretical solutions use a semi-infinite body assumption, and so to approximate this, the model was 

extended 100 µm from the contact surface to the upper boundary AB. For a simple cyclic sinusoid, 

both the z-axis and the line BC are lines of symmetry, and as such, only the positive sector was 
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modelled to reduce computational requirements. The model was created and set up in a similar way 

to the previous smooth point and line contact models. The sinusoidal surface was defined either as 

an elastic or elastic-perfectly plastic deformable body, with mechanical properties of E = 200GPa, ν = 

0.32 and, where appropriate, σy = 1.619GPa. This deformable body was brought into contact with a 

rigid flat plane, coincident with the x-axis in Figure 2.18. In order to replicate the lines of symmetry, 

the boundaries at OA and CB were restrained in the x-direction, while the upper boundary AB was 

restrained in both the x- and z-directions. The model was loaded by applying a constant 

displacement in the z-direction, δ, to the rigid flat plane. Table 2.9 summarises the specifications of 

the sinusoidal surface contact model. 

Table 2.9 - Sinusoidal contact model summary. 

Part 2D Sinusoidal Surface; A = 0.2 µm, λ = 20 µm 

 Line Segment → Rigid Flat Plane 

Property E = 200 GPa, ν = 0.32, σy = 1.619 GPa 

Assembly Lines of symmetry aligned. Parts on the verge of contact 

Step Initial (required), Contact, Removal 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Small Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 10
−15

m 

Load None applied 

Boundary 

Conditions 

Vertical displacement applied to rigid flat plane 

Top edge of sinusoidal part: Restrained (Ux = Uy = 0) 

Side edges or sinusoidal part: Symmetry in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 
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2.6.2. Elastic results 

In order to validate the application of the single contact modelling techniques to multiple contacts, 

results were obtained for the sinusoidal surface contact model using elastic only material properties. 

These results were then compared to the corresponding analytical solution of Westergaard (1939). 

The displacement of the rigid flat plane was specified such that contact between the two bodies 

occurred, and the contact pressure distribution at increasing degrees of contact, including complete 

contact, was compared to the Westergaard result. The left side of Figure 2.19 shows the comparison 

of contact pressure distributions from the finite element simulation to the analytical solution, 

showing good agreement between the two. 

 

Figure 2.19 - Contact pressure plots for elastic solution (left) and equivalent elastic-plastic (right) 

at different stages of contact. Westergaard pressure distribution shown as dashed lines. 

In the Westergaard theory the contact pressure distribution which is required to completely 

“flatten” the sinusoidal surface is itself sinusoidal. The smallest amplitude of pressure distribution to 

cause complete contact therefore has a minimum value of zero in each of the valleys of the sinusoid. 



Finite element analysis of the contact of smooth surfaces 

Chapter 2  104 

 

The mean pressure in this state is denoted as p*, and the displacement applied to achieve this 

pressure distribution at complete surface flattening is defined as δc. The ratio of the applied 

displacement to the critical displacement is defined in Equation 2.22. 

\∗ = ]
]R  Eq. 2.22 

Figure 2.19 shows three pressure distributions for three different load cases, δ* = 0.3, 0.6 and 1.0. 

Agreement is generally good between the simulated and analytical results, although the best 

agreement occurs at the lower value of δ* = 0.3. 

Further comparisons can be made with work by Johnson (1985) as shown in Figure 2.20. This figure 

shows the variation of the real area of contact, 2a, with the mean pressure, p . The real contact 

area is normalised by the apparent area of contact, or wavelength, λ, while the mean pressure is 

normalised by p*. Again, good agreement generally occurs throughout, although it is best at smaller 

loads as previously seen in Figure 2.19. Gao et al. (2006) suggested that in their 2D sinusoidal 

contact study that as contact tended towards being complete, that the non-dimensional contact 

pressure could exceed the limit previously discussed by Williams (1994). This phenomenon was not 

observed in these simulations. 
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Figure 2.20 - Real / apparent contact area ratio versus non-dimensional pressure amplitude. 

2.6.3. Elastic-plastic results 

The material properties were then altered from purely elastic to elastic-perfectly plastic, with a yield 

strength of 1.619 GPa. The same range of load cases was simulated and the contact pressure plots 

can be seen on the right side of Figure 2.19. Each of the three load cases shown resulted in some 

plastic deformation occurring. As expected, the introduction of plasticity resulted in lower peak 

contact pressures than in the corresponding elastic analysis. The elastic-plastic pressure is generally 

lower than the elastic pressure across the contact. However, in the complete contact case, the 

elastic-plastic pressure exceeds the elastic pressure in the valley features, indicating interaction 

between adjacent sinusoidal “asperity” features. For low δ* , the plastic effects are limited to the 

contact zone. As δ*  is increased, the degree of interaction increases, causing the rise in contact 

pressure. 
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2.7. Conclusions 

This chapter has shown the development of contact modelling using Abaqus. Initially, modelling 

techniques were verified using an elastic only point contact model, using Hertzian theory for 

comparison. Material plasticity was introduced and results verified by using existing published work 

(Jackson and Green 2005). A plane strain line contact model was then created. The directionality of 

common gear finishing techniques makes a two dimensional assumption for surface features 

applicable. It was found that areas of significant residual tensile stress occurred at the surface 

following contact loading sufficient to give material yielding (Bryant et al. 2012). A sinusoidal surface 

contact model showed how idealised asperity features affect stress fields of adjacent features, and 

as such cannot be considered as isolated independent contacts. 
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Development of modelling techniques 

suitable for real rough surface contacts 

3.1. Introduction 

This chapter describes the techniques employed and the results obtained in the simulation of elastic-

plastic contact between rough surfaces using profile measurements taken from the surfaces of 

ground gears. The surfaces of gear teeth tend to have a random distribution of surface heights, and 

when such surfaces are loaded together multiple asperity contacts that are at varying stages of 

localised elastic-plastic behaviour occur. Complex interactions between the stress fields of adjacent 

local contacts can occur, and this affects the resulting loaded and residual local displacement and 

stress behaviour. Rough surface profile information was obtained from both run and unrun gear 

teeth measured using a Talysurf profilometer.  The gears were of helical form used in micropitting 

tests at the Design Unit, Newcastle University. The raw Talysurf profiles were digitally filtered (using 

a standard Gaussian filter) to remove wavelengths in excess of 0.25 mm and imported into Abaqus 

to create contact models. For the initial modelling attempt, profiles taken from gears which had 

been loaded together and run were superimposed on flat surfaces. Subsequently both the run and 

unrun (i.e. freshly-prepared) profiles were superimposed onto a smooth roller to simulate the 

contact of a pair of disks with one surface superfinished and the other having the gear roughness 

profile. In elastic-plastic contact of such un-run surfaces it was found that local contact pressures 

well in excess of the hardness of the material were predicted, and clearly indicating the need for a 

detailed consideration of plastic behaviour, particularly as this may determine the residual effects of 

the initial “running in” process undergone by gears. As a result, a study of further advanced contact 

modelling techniques was performed to evaluate their effect on such complex contact simulations. 
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3.2. Flat rough surface contact modelling 

3.2.1. Profilometry 

Profiles were taken from both the run and unrun tooth surfaces, from root to tip, parallel to the gear 

face, at the midpoint of the face width, as shown by the red line from point A to point B in Figure 

3.1. These profiles were taken in the transverse direction, rather than the lead direction, in order to 

take advantage of the directionality of the grinding process. While grinding occurs in a circular form, 

the radius of the grinding wheel is large compared to the gear. The recorded profiles were 

approximately perpendicular to the grinding direction. This allows the approximation of a plane 

strain module to represent the rough surface in the finite element analysis. The raw profiles were 

then filtered using a Gaussian filter with a cut off of 0.25 mm, which removed the involute form of 

the gear but retained the surface roughness profile. 

 

Figure 3.1 - Gear tooth profile location. 

 

 



Development of modelling techniques suitable for real rough surface contacts 

Chapter 3  109 

The run and unrun profiles were clearly distinguishable by the shape of the asperity peaks; those of 

the run surface exhibited wider, flatter peaks due to plastic deformation, resulting in a more 

negative skew in the surface height distribution in comparison to the unrun surface. Sections of the 

surface roughness profiles of the run and unrun surfaces can be seen in Figure 3.2. For each surface, 

a number of surface roughness parameters are also displayed; Ra, Rz and Rsk. In industry, surfaces 

are typically specified using a Ra, or roughness average, value, at least partly due to its ease of 

measurement. In this case, the surfaces have a Ra of between approximately 0.30 µm and 0.37 µm. 

These are appropriate surfaces to consider, as ground gears used in aerospace typically have a Ra of 

up to 0.4 µm. In some cases, Rz is the average height difference between the five highest peaks, and 

five lowest valleys, and may be used to restrict any extreme behaviour in the surface profile after 

finishing. It can be seen for the unrun and run surfaces that while each of these parameters differs, 

that they are still somewhat similar. By considering the skewness of the surface, Rsk, a more 

pronounced difference can be seen as the run surface is significantly negatively skewed as a result of 

running, resulting in multiple flat lands where the surface has been deformed or worn. 
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Figure 3.2 - Filtered unrun (top) and run (bottom) surface roughness profiles from gear teeth. 

3.2.2. Run surface contact modelling details 

Having taken roughness profiles from the gear teeth, 100 µm sections of the filtered run gear 

surface profile were imported to Abaqus using a Python script, to create a 2D deformable part. The 

model used for the sinusoidal surface contact discussed in Chapter 2 was modified. The sinusoidal 

surface was replaced with sections of the filtered run roughness profile, creating five models in total, 

each corresponding to a different section of the (run) roughness profile. The boundary conditions 

were defined such that the rough surface was effectively infinitely repeated, as illustrated in Figure 
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3.3. The vertical edges of each rough surface part, as shown by the dashed lines AB and CD, were 

restrained in the x-direction, producing lines of symmetry in which the rough surface was reflected. 

This ensured that edge effects did not distort the results of the simulations. The depth of the model 

was found to be appropriate through experimentation. Plasticity was found to be limited to less than 

20 µm from the surface, while stresses at the boundary AC were found to be less than 1 MPa. 

 

Figure 3.3 - Infinitely reflected boundary condition. 

The material properties of the sinusoidal surface contact model were maintained, while 

improvements to the modelling details which were necessary in the case of the more complex and 

finely detailed nature of real roughness were made. In the earlier models described in the previous 

chapter, contact loading was performed by applying a specified displacement, or interference, to 

one of the contacting bodies. This technique was adopted because the simulations failed when 

distributed loads were applied. For the rough surface contact models this approach was modified. A 

small initial displacement was applied, initiating the contact. This displacement was small enough to 

result in only very low elastic stresses in the material. It was found that once the contact had been 

established distributed loads could then be applied in the following step without encountering 

numerical difficulties. In the subsequent step, this displacement was removed while simultaneously 
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applying a distributed load. Over the duration of the analysis step, the distributed load was 

increased to 900 N/mm, resulting in material plasticity for multiple asperity contacts. In the final 

step, the distributed load was removed to obtain the residual results. Details of the run surface 

contact model are given in Table 3.1. 

Table 3.1 – Run Surface Contact Model Summary. 

Part 
2D Roughness – Imported Run Gear Surface Profiles 

Line Segment → Rigid Flat Plane 

Property E = 200 GPa, ν = 0.32, σy = 1.619 GPa 

Assembly Lines of symmetry aligned. Parts on the verge of contact 

Step Initial (required), Contact, Load, Removal 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Small Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 1x10
−15

m 

Load Up to 900 N/mm distributed load acting on top edge of rough surface parts 

Boundary 

Conditions 

Small vertical displacement applied to top edge of rough surface to initiate contact 

Reference point of rigid flat plane restrained (Ux = Uy = URz = 0) 

Side edges of rough surface parts: Symmetry in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 

 

3.2.3. Run surface contact model results 

Figure 3.4 shows the von Mises stress distributions for one of the run surface contact model 

simulations. Figure 3.4a shows the stress contours for the loaded state, with the maximum applied 

distributed load of 900 kN/m. This load was applied in incremental stages, and as such the 

development of the contact could be observed. As the load was increased, interaction between 

neighbouring asperities became more apparent as each individual feature became more heavily 

loaded. New asperity contacts were created with increasing load, existing contacts grew in size, and 

some merged with neighbouring contacts. 
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Figure 3.4 - Run surface contact normalised von Mises stress distributions; a) loaded, b) residual. 

Figure 3.4b shows the residual von Mises stress distributions of the same run surface contact 

simulation following removal of the 900 kN/m load. The areas of highest stress were found to occur 

where the surface has been most heavily loaded. The region between x = 12 µm and 27 µm has 

three individual contacts when the surface is lightly loaded. These contacts develop to create a 

single large contact at the final load, but these three regions, corresponding to the earlier contact 

stage, can be observed in the residual stress fields. Figure 3.5 shows the residual deformation that 

occurred due to the applied loading in this region, showing both the initial and residual profiles. It 

can be seen that in this case, the shape change of the asperity is limited to the contact itself and 

does not noticeably extend to the neighbouring valley features. As has been stated, the roughness 

profile adopted in these simulations was taken from an already run gear surface and as such the 

asperities had already undergone some plastic deformation. 
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Figure 3.5 - Comparison of surface profiles before and after loading. 

3.3. Rough roller contact modelling 

Having tested the model creation techniques for rough surface contact models, the surface 

roughness profiles were superimposed onto smooth rollers to include a curvature of the surface in 

the simulations that would be found in gear contacts. Both run and unrun profiles were 

superimposed onto a profile of a smooth roller of radius 38.1 mm, as shown in Figure 3.6. This 

specific radius was chosen as it matches the size of the specimens used in a two-disc test rig that was 

to be used subsequently to compare real life measured deformations with those obtained using 

finite element simulation techniques, as described in Chapter 5. 
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Figure 3.6 - Rough roller model construction method; a) Unrun surface roughness profile, b) 

smooth roller profile, c) rough roller profile. 

3.3.1. Rough roller contact modelling details 

The run and unrun rough roller profiles were imported to Abaqus using a Python script, and used to 

create 2D deformable parts. These parts were assigned the same elastic-plastic material properties 

as previous models. In some cases, the rough rollers were assigned elastic only material properties 

for comparison. The models were developed to simulate the interaction of two contacting bodies. 

The other contacting body in each of the simulations was a deformable, elastic only, smooth roller of 

the same radius. These were the first simulations undertaken in which the opposing contact surface 
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was allowed to deform as well as the surface of interest. A distributed load of 75 N/mm was applied 

to the bottom edge of the smooth surface roller, having initiated contact with a small vertical 

displacement. The applied load was subsequently removed in order to obtain residual deformation 

and stress fields. Hertzian contact theory was used to estimate the nominal contact dimension, and 

each roller was assigned a finer mesh in this predicted contact region. The details of the rough roller 

contact models can be seen in Table 3.2. 

Table 3.2 - Rough Roller Contact Model Summary. 

Part 
2D rough roller – Imported run and unrun gear surface profiles 

2D smooth roller 

Property 
Rough: E = 200 GPa, ν = 0.32, σy = 1.619 GPa (for elastic-plastic simulations only) 

Smooth: E = 200 GPa, ν = 0.32 

Assembly Model boundaries aligned. Parts on the verge of contact 

Step Initial (required), Contact, Load 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Small Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 1x10
−15 

m 

Load 75 N/mm distributed load acting on bottom edge of smooth roller 

Boundary 

Conditions 

Small vertical displacement applied to bottom edge of smooth surface to initiate 

contact 

Top edge of rough roller restrained (Ux = Uy = 0) 

Side edges of rough and smooth roller restrained in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 
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3.3.2. Rough roller contact model results 

Figure 3.7 shows the contact pressure distributions for the run and unrun rough roller simulations 

respectively, for rough surface elastic and elastic-plastic material properties loaded against a smooth 

counterface which was assumed to remain elastic. Also plotted is the theoretical Hertzian contact 

pressure distribution for the same geometrical, material and loading specifications. The contact 

pressure plots have been normalised against the yield strength, σy, of the elastic-plastic material 

model. It can be seen that the introduction of roughness to the contact surface results in 

significantly higher contact pressures. In a smooth contact, the load applied is insufficient to cause 

subsurface plasticity, whereas multiple asperities deformed plastically in rough roller contact models 

for both the run and unrun surface roughness profiles. In the elastic simulations, the von Mises 

stress has no limit, and as such neither does the contact pressure. This is particularly pronounced in 

the unrun rough roller model shown in Figure 3.7b, where contact pressures approach 7.5σy at 

several asperities. This phenomenon is not seen in the run surface rough roller simulation, as the 

loading history of the surface has resulted in modifications to the surface that allow it to distribute 

the applied load more effectively, resulting in lower peak contact pressures. 
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Figure 3.7 - Contact pressure distribution for elastic and elastic-plastic rough roller simulations. a) 

Run surface, b) Unrun surface (Hertzian smooth contact pressure distribution also shown). 

For the elastic-plastic simulation results, the von Mises stress is limited by the specified yield 

strength and it is then expected that the contact pressure is limited to approximately three times the 

yield strength (Williams 1994). In the unrun surface model shown in Figure 3.7b, this limit is 

exceeded. The observed maximum contact pressure is 4.8σy at approximately x = 0.074 mm, but the 

limit is also exceeded at x = 0.092 mm. As the aim of the research was to investigate the residual 

deformations and stresses as a result of contact in as-manufactured surfaces, it was decided that the 

results obtained were open to doubt and that the modelling techniques required further 

development to provide reliable solutions for such contacts with the maximum contact pressures 

conforming more closely to the expected maximum value of approximately 3σy. 
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3.4. Advanced modelling techniques 

The rough roller contact models were examined at the locations where the normalised contact 

pressure exceeded the theoretical limit. It was found that the slave surfaces were penetrating the 

master surfaces more than the user defined limit in the model and that elements were distorting 

significantly due to the relatively large local deformations occurring at the asperity level. It was 

thought these surface penetrations were linked to the element distortion, and that if this could be 

reduced then the model would produce more reliable results. A number of modelling techniques 

and options aimed at reducing the element distortion were tested using a flat, unrun surface model. 

A flat surface model was chosen as opposed to a roller for simplicity and reduced computational 

time, an important factor when testing a wide range of different techniques. 

3.4.1. Techniques 

Each of the techniques tested in order to reduce element distortion and improve the accuracy of the 

unrun surface rough roller simulations are summarised below. It should be noted that greater detail 

is available in the Abaqus Users Documentation (Abaqus 2010a), and it is recommended that these 

are consulted before implementation of any advanced options. 

3.4.1.1. Hourglass Control 

Abaqus uses a numerical technique called Gaussian quadrature to integrate quantities over each 

element. Each element has a number of internal points, known as integration points, or Gauss 

points, where the reactions to the applied conditions are calculated. Fully integrated elements 

consist of sufficient integration points to exactly solve each of the terms, assuming that the element 

is undistorted. Reduced integration uses less integration points, reducing the accuracy, but also 

reducing computational requirements at the same time. Each of these element types are illustrated 

in Figure 3.8. 
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Figure 3.8 - Full and reduced integration, first order, quadrilateral elements (Abaqus 2010a). 

By default, Abaqus utilises reduced integration when quadrilateral elements are selected. Under 

bending loads, reduced integration elements can allow deformations to occur that cause no strain to 

occur at the integration point. This is illustrated in Figure 3.9 which shows that despite the change in 

shape, the horizontal and vertical broken lines have remained unchanged. As a result, no stresses or 

strains can be seen to occur at the integration point at the element centre. This is known as a zero 

energy mode, and in this case results in a phenomenon called “hourglassing”. Hourglassing is 

particularly severe in first order quadrilateral elements (Abaqus 2010c). By default, Abaqus combats 

this by introducing an additional artificial stiffness to the element. However, it is suggested that 

caution be used in particularly nonlinear problems, as the default hourglass controls are not always 

effective. An enhanced control option is also available, which is suggested as mitigation in these 

circumstances. This enhanced hourglass control option is activated in the Mesh module, by choosing 

the Element Type menu. From here, the hourglass control can be switched from the default to an 

enhanced setting. 

 

 

Figure 3.9 - Deflection of a first order, reduced integration quadrilateral element subject to 

bending. 
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3.4.1.2. Element integration scheme 

Fully integrated elements are not without issues however. Figure 3.10 shows the ideal deflection of 

an element subject to bending, while Figure 3.11 shows the deflection of a fully integrated element. 

In ideal bending, the intersections of the dashed lines remain perpendicular to one another. These 

angles change in fully integrated elements, resulting in shear strains and stresses observed and 

evaluated at the integration points. This behaviour is known as “shear locking”. This severity of this 

behaviour can be reduced by refining the mesh; smaller elements can more closely approximate 

ideal behaviour. 

 

 

 

 

Another locking phenomenon associated with fully integrated elements is volumetric locking. This 

occurs in incompressible materials, or materials tending towards incompressibility, such as perfectly 

plastic materials. The values of strain at each integration point cannot combine effectively to 

conserve the volume of the element, causing the element to lock. This can be combated by utilising 

reduced integration, and Abaqus does this automatically. Fully integrated first order elements 

Figure 3.10 - Ideal deflection of a quadrilateral element subject to bending. 

Figure 3.11 - Deflection of a first order, fully integrated quadrilateral element subject to bending. 
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actually utilise a selectively reduced integration whereby the integration point volume changes are 

replaced by the average volume change of the element (Abaqus 2010c). The element integration 

type can be chosen within the Mesh module, in the Element Type menu. The relevant tick box can 

then be chosen. Reduced integration is the default selection. 

3.4.1.3. Arbitrary Lagrangian-Eulerian (ALE) adaptive meshing 

ALE Meshing is an adaptive meshing technique that is detailed in the Abaqus Users Manual in 

Section 12 – Adaptivity Techniques (Abaqus 2010a), and illustrated in Figure 3.12. It provides a 

method to control mesh distortion by allowing the mesh to move independently of the underlying 

material. In purely Lagrangian formulations, the finite element mesh is “attached” to the underlying 

material, while in a purely Eulerian analysis, the mesh is fixed in space, and the underlying material 

can move freely relative to it. ALE adaptive meshing is a combination of these two formulations. The 

nodes at the edge of the defined regions are fixed to the material, allowing accurate tracking of the 

region boundaries. The nodes inside the region are free to move relative to the material to ensure 

element shapes are maintained. 

In Abaqus, ALE adaptive meshing is only available when using fully integrated elements. It is 

activated within the Step module, by selecting Other from the tool bar. The regions in which the ALE 

adaptive meshing is applied are chosen by selecting ALE Adaptive Mesh Domain and then Edit. The 

regions can then be chosen from the viewport. After selecting the regions in which ALE adaptive 

meshing is applied, the least number of parameter settings that must be defined are the frequency 

and sweeps. The frequency defines, in terms of solution increments, how often the mesh smoothing 

will take place. The default setting is for mesh smoothing operations to take place every ten 

increments. The number of sweeps determines the number of mesh sweepings the ALE adaptive 

mesh region will be subject to.  Each mesh sweep allows nodes to be relocated to reduce element 

distortion. Further options are available and information can be found in the Abaqus Users Manual. 
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Figure 3.12 - Use of ALE adaptive meshing to control element distortion (Abaqus 2010a). 

3.4.2. Modelling details 

The model used for the investigation was similar to the flat run rough surface simulations discussed 

in Section 3.2. Unrun rough surface profiles were imported using a Python script. The rough surface 

part was given elastic-plastic material properties, with a yield strength, σy, of 1.619 GPa. The 

contacting body was a smooth flat surface of the same width, with elastic only material properties. 

The parts were arranged to be on the verge of touching and then a small vertical displacement was 

applied to initiate the contact. This small displacement was then replaced by a distributed load, 

before being removed again to identify residual shape and stress results. The interaction properties 

were defined as before, except where detailed in italics in Table 3.3. These were the subject of the 
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investigation and as such were varied across a number of simulations. These are listed in Table 3.4 

where the settings for each of the tested techniques are shown. 

Table 3.3 - Modelling Techniques Model Summary. 

Part 
2D flat rough surface – Imported unrun gear surface profiles 

2D flat smooth surface 

Property E = 200 GPa, ν = 0.32, σy = 1.619 GPa 

Assembly Model boundaries aligned. Parts on the verge of contact 

Step 
Initial (required), Contact, Load, Removal 

ALE adaptive meshing 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Small Sliding 

Surface-to-Surface 

Range of penetration tolerances 

Load 750 N/mm distributed load acting on bottom edge of smooth surface part 

Boundary 

Conditions 

Small vertical displacement applied to bottom edge of smooth surface to initiate 

contact 

Top edge of flat rough surface restrained (Ux = Uy = 0) 

Side edges of rough and smooth parts restrained in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 

Enhanced hourglass control 

Reduced and fully integrated elements 

 

  



Development of modelling techniques suitable for real rough surface contacts 

Chapter 3  125 

Table 3.4 - Jobs Summary. 

Job Name 
Integration 

Scheme 

Hourglass 

Control 

Penetration 

Tolerance 

ALE meshing 

Frequency Sweeps 

Standard Reduced Default 

Default 

(Rel. = 0.001 

equiv. to 

Abs. = 2.5x10
−7

) 

- - 

ContactControl Reduced Default Abs. = 2.5x10
−10

 - - 

ContactControl1 Reduced Default Abs. = 2.5x10
−15

 - - 

HourControl Reduced Enhanced Abs. = 2.5x10
−10

 - - 

HourControl1 Reduced Enhanced Abs. = 2.5x10
−15

 - - 

FullInteg Full - Abs. = 2.5x10
−10

 - - 

FullInteg1 Full - Abs. = 2.5x10
−15

 - - 

ALE Full - Abs. = 2.5x10
−10

 10 1 

ALE1 Full - Abs. = 2.5x10
−15

 10 1 

ALE1_Freq Full - Abs. = 2.5x10
−15

 1 1 

ALE1_Freq_Sweep Full - Abs. = 2.5x10
−15

 1 10 

 

3.4.3. Investigation results 

Table 3.5 shows the maximum contact pressures found in each of the jobs simulated. The contact 

pressures were then normalised against the yield strength, and compared against the theoretical 

maximum proposed by Williams (1994). It should be emphasised that the contact pressures shown 

are the maximum observed contact pressures across the entire contact, and that not all asperity 

features are found to have such contact pressures. These regions of excessively high contact 

pressure are relatively infrequent. 
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Table 3.5 - Contact pressure results from modelling techniques investigation. 

Job Name 

Max. Contact 

Pressure,  

p0 / GPa 

Max. Normalised 

Contact Pressure 

Percentage over 'expected' 

max. contact pressure (3σy) 

of worst asperity feature 

Standard 5.441 3.361 12.0% 

ContactControl 5.418 3.347 11.6% 

ContactControl1 5.381 3.324 10.8% 

HourControl 6.660 4.114 37.1% 

HourControl1 6.447 3.982 32.7% 

FullInteg 5.480 3.385 12.8% 

FullInteg1 5.475 3.382 12.7% 

ALE 5.432 3.355 11.8% 

ALE1 5.364 3.313 10.4% 

ALE1_Freq 5.246 3.240 8.0% 

ALE1_Freq_Sweep 5.230 3.230 7.7% 

 

It can be seen that employing tighter control over the penetration tolerance reduces the observed 

“overpressures”. This behaviour was found using each of the techniques tested. However, when the 

penetration tolerance was reduced further still, the simulations either failed to complete, or resulted 

in a larger overpressure. These jobs were discarded and are not included in the results shown. Jobs 

utilising the default hourglass controls (Standard, ContactControl and ContactControl1) each 

exhibited deformed elements in heavily loaded regions, as shown in Figure 3.13. These were found 

to occur both at the surface and subsurface. It appears that in the regions where contact 

overpressures are observed, the elements at the surface are distorted and penetrate the opposing 

master surface. Using the enhanced hourglass control resulted in better element shape in the 

contact areas, removing the hourglassing seen to occur in the subsurface region, and reduced the 

amount of surface penetration. Conversely, not only were significantly higher overpressures found 

to occur but the number of asperity contacts that resulted in overpressures increased when 

enhanced hourglass control was implemented. Changing from reduced integration elements, to fully 

integrated elements also resulted in a reduction in element distortion, but still gave slightly larger 
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overpressures compared with more default settings. However, selecting fully integrated elements 

allows ALE adaptive meshing to be utilised, and development of this technique resulted in the 

contact pressures being the closest to the theoretical limit. ALE adaptive meshing also significantly 

improved element shape in areas where the most distortion was originally seen to occur. Increasing 

both the frequency and number of sweeps was found to give the most satisfactory results as can be 

seen from Figure 3.13. 

 

Figure 3.13 - Element shape at surface contact; a) Standard, b) ContactControl1, c) HourControl1, 

d) FullInteg1, e) ALE1, f) ALE1_Freq_Sweep. 

Contact pressures from three of the tested modelling techniques can be seen in Figure 3.14. These 

three simulations were the jobs named Standard, HourControl1 and ALE1_Freq_Sweep from Table 

3.4 and Table 3.5. While the contact pressures for the job Standard did not reach the magnitudes on 

the unrun rough roller shown in Figure 3.7, the limit of 3σy proposed by Williams (1994) is still 

slightly exceeded in a number of locations as seen in Figure 3.14a. This behaviour is shown in more 

detail for one asperity feature in Figure 3.14b. This shows that while the introduction of hourglass 

control resulted in less distorted elements in Figure 3.13c, this resulted in a higher frequency of 

pressures exceeding 3σy, as well as increasing the magnitude by which is was exceeded. However, 
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the introduction of ALE adaptive meshing both reduced the amount of element distortion as shown 

by Figure 3.13f, but also reduced the frequency and magnitude of contact pressures exceeding the 

limit of 3σy.  

 

Figure 3.14 - Contact pressure distribution for elastic-plastic unrun rough surface roller 

simulations; a) Whole surface, b) Between x = −0.009 and x = −0.003. 

3.4.4. Unrun rough roller contact model 

In order to check the validity of the new modelling techniques for application to other rough surface 

contact models, the new modelling techniques used for ALE1_Freq_Sweep were applied to the 

unrun rough roller contact model as previously described in Section 3.3. Figure 3.15 shows the 

normalised contact pressures for the unrun rough roller contact model as in Figure 3.7. It can be 

seen that the contact pressures exceeding the limit of 3σy (Williams 1994) using the old techniques 

have been significantly reduced. The maximum contact pressure has been reduced from 4.75σy to 

3.25σy, or from 58.4% over the proposed limit, to 8.5%, for this particular surface and associated 

features. It is therefore recommended that the use of fully integrated elements and ALE adaptive 
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meshing be used to reduce the degree of element distortion and to reduce the contact pressures to 

the accepted physical limits. 

 

Figure 3.15 - Comparison of old and new modelling techniques on unrun rough roller contact 

model, as previously shown in Figure 3.7. 

3.5. Conclusions 

During initial attempts at simulating rough surface contact using unrun gear surface profiles, it was 

found that the contact pressures significantly exceeded the accepted limit proposed by Williams 

(1994) of approximately 3σy. Upon examination of the strained FE meshes, it was found that 

noticeable element distortion and surface penetration was found to occur. This surface penetration 

was seen in regions where elements were distorting at the surface. A number of alternative 

modelling techniques were therefore investigated to assess their effectiveness in reducing this 

erroneous behaviour. ALE adaptive meshing emerged as the most effective way of reducing the 

element distortion, both below and at the surface. This resulted in the reduction of the penetration 

of the slave surface into the master surface and the degree of overpressure observed in the contact 

simulation. The method was found to be most effective when the FE package settings were altered 

from the default, increasing both the frequency and number of sweeps performed in the adaptive 

meshing smoothing process. 
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Repeated load contact modelling of real 

rough surfaces and the effect of 

tangential loading 

4.1. Introduction 

The previous chapter described the FE modelling methods which were specially developed for 

simulating the contact of rough surfaces.  This chapter describes the application of these methods in 

a study of rough surface contact including the effect of multiple loadings and different linear strain 

hardening material properties. Tangential loading is also considered for a series of defined friction 

coefficients. The simulation of multiple loadings of the same surface was specified to approximate 

the running-in process which takes place when new surfaces are first brought into contact and put to 

work in gears, for example. Numerical comparisons were performed using multiple applications of 

the same loads, and the order in which different loads were applied. Strain hardening was also 

introduced in these simulations to assess its effect. It was found that at a given load the majority of 

the plastic deformation occurred in the first loading cycle. Subsequent applications of the same load 

resulted in insignificant additional plastic deformation. It was also found that the final residual 

profile depended only upon the largest load applied to the surface. Little difference was seen when a 

lower load was applied prior to a larger load when compared to the application of the larger load 

alone. Additionally, when strain hardening was introduced, the only effect seen was in the 

magnitude of the plastic deformation. As the material behaviour deviated further from elastic-

perfectly plastic, the amount of residual deformation observed decreased. However, the majority of 

this deformation was still found to occur in the first loading, with little further deformation after 

subsequent repeat applications of the same load. 

In the tangential loading simulations, a series of friction coefficients were defined, and once the 

normal load was in place, a tangential load was applied simultaneously. For each model considered 
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the surface was loaded tangentially in both the positive and negative x-direction for comparison. The 

tangential load varied in proportion to the normal load, with the maximum tangential load taking 

the surface to the verge of slipping (F/R = 0.95µ). It was found that, even for high practical 

coefficients of the friction, the tangential loading had only a small effect on the residual shape of the 

surface and the residual stresses in the material. In order to observe significant effects, the 

coefficient of friction had to be increased to an unrealistic level.  

4.2. Introduction of new modelling components 

4.2.1. Strain hardening 

In the models described in Chapters 2 and 3, the elastic-plastic behaviour was defined as elastic-

perfectly plastic and the von Mises stress did not exceed the yield strength. This model assumes a 

constant plastic flow stress, whereby any strain can then be achieved. In practice, no materials 

exhibit elastic-perfectly plastic properties. The simplest extension of elastic-plastic behaviour in the 

FE model is to introduce linear strain hardening. In this approach, elastic behaviour is assumed up to 

the yield strength as before and the tangent modulus, ET, characterises the stress-strain relationship 

post-yield as illustrated in Figure 4.1, where the elastic and elastic-perfectly plastic limits are shown, 

together with three intermediate linear strain hardening behaviours. Kogut and Etsion (2002) state 

that most practical materials have a tangent modulus of less than 0.05E, and so the characteristics 

illustrated in this figure exaggerate the range to be implemented in the simulations where a lower 

value of ET is specified. The stress-strain relationship for a real alloy steel is shown in Figure 4.2 

(Callister 2003). This highlights the differences between the elastic-perfectly plastic behaviour 

assumed and real life behaviour, which exhibits a more complex relationship. 
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Figure 4.1 - Stress-strain relationship for a range of elastic-plastic materials. 

 

Figure 4.2 - Tensile stress-strain behaviour for an alloy steel (Callister 2003). 
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Strain hardening behaviour is defined in Abaqus by using the Property module, and is specified in 

the Edit Materials menu in almost the same way as the yield strength value is specified for elastic-

perfectly plastic behaviour. A further option is obtained by “right clicking” on the existing plastic 

properties. Here the stress and strain behaviour can be defined, as shown in Figure 4.3. Figure 4.3a 

shows the input properties for elastic-perfectly plastic material, while Figure 4.3b shows the 

properties for an elastic-plastic material with linear strain hardening behaviour of ET / E = 0.250. The 

corresponding stress-strain relationships for each material are shown in Figure 4.3c and Figure 4.3d, 

respectively. 
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Figure 4.3 - Abaqus/CAE 6.10 "Edit Materials" menu for a) elastic-perfectly plastic, b) linear strain 

hardening (ET / E = 0.250), and stress-strain relationships for c) elastic-perfectly plastic, d) linear 

strain hardening (ET / E = 0.250). 

Abaqus requires the true stress and strain to be defined rather than the nominal stress and strain, 

which is particularly important if, for example, the user is importing stress-strain data from a uniaxial 

test.  True stress and strain are required to more accurately represent the material response to load 

as a result of evolving geometry. Using nominal stress uses an approximation that will be fairly 

accurate under small strains. However, by defining plastic behaviour, large strains are expected to 

occur, and geometry is expected to change to relatively large extent. Therefore true stress and strain 
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are required. In the table, the amount of plastic strain that occurs at a specific stress is inserted in 

the right and left columns, respectively. This is illustrated in Figure 4.3b, where a strain of 0.18689 

will be achieved when the von Mises stress is 10.0 GPa. Until the yield strength is achieved, no 

plastic strain occurs. Abaqus interpolates the stress-strain relationship between these two states. In 

previous simulations, the plastic behaviour table consisted of the yield strength in the left column 

and zero strain in the right. Abaqus assumes elastic-perfectly plastic behaviour when no additional 

information has been given, and so previous simulations have required no further data. In order to 

define the plastic behaviour the user must therefore calculate the stress-strain relationship for the 

required tangent modulus subsequent to initial material yield. It is recommended to choose a 

particularly high stress value that the loading conditions of the simulation are unlikely to exceed in 

order to ensure the required plastic behaviour is observed throughout. The required strain input can 

then be calculated given the following relationship. 

� = �	� Eq. 4.1 

However, these stress and strain values cannot immediately be input to the left and right columns 

respectively. Abaqus uses the true stress and strain, rather than the nominal stress and strain. The 

true stress and strain can be calculated as follows. 

����	 = �
��	
1 + �
��� Eq. 4.2 

����	 = ln	
1 + �
��� Eq. 4.3 

The true strain must then be converted into the true plastic strain. 

����	
��

= ����	 −
����	

�
 Eq. 4.4 

The true stress and true plastic strain are then input into the plastic properties table in the left and 

right columns, respectively. Abaqus interpolates between zero and defined strain for any stress 

between the yield and maximum stresses. Upon completion of the simulation a check is made to 
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ensure that the proposed maximum stress has not been exceeded, as perfectly plastic behaviour will 

be exhibited beyond it. 

4.2.2. Friction and tangential loading 

In previous simulations, the contact was defined as frictionless, i.e. the surfaces were allowed to 

slide relative to one another with no resistance. In practice friction resists relative tangential motion 

between the two surfaces. According to Amontons’ classical laws of friction, the tangential force 

required to overcome friction is proportional to the applied normal force. 

� = �	� Eq. 4.5 

In dry, metal on metal contact, the coefficient of friction can range from µ = 0.5-1.0 (Bowden and 

Tabor 1964). In lubricated surfaces, the coefficient of friction where surfaces come into contact can 

typically range from µ ≈ 0.1 in boundary lubrication, to as low as µ ≈ 0.005 in hydrodynamic or mixed 

lubrication conditions (Williams 1994). 

Friction is implemented in Abaqus using the Interaction module. When creating the interaction 

properties, the normal and tangential behaviour are defined. In previous simulations, the tangential 

properties were defined as frictionless. The most basic form of friction behaviour which can be 

specified is the “penalty” method. Upon selecting this option, the user can then enter the required 

friction coefficient. 

A tangential force can be applied to the model in the same way as a normal force. Normal forces in 

the previous simulations were applied as pressures, i.e. as a force per unit area. As a plane strain 

assumption has been made throughout, this is effectively a force per unit length perpendicular to 

the model acting on the edge to which it has been applied. In the Load module, a mechanical 

category load is created and the surface traction option selected. The application region and 

magnitude of the tangential force per unit area can then be defined in the same manner as the 

normal load has been applied previously. A difference between the normal loading and tangential 
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loading is the requirement to specify a vector which defines the direction of the tangential force. 

This is created by clicking the edit button next to “vector” in the Edit Load menu. The first and 

second point of the desired vector can then be selected in the viewport to specify the friction force 

direction. 

4.3. Multiple load contact modelling 

4.3.1. Modelling details 

Two 0.1 mm sections of un-run surface roughness were imported to Abaqus using a Python script 

and used to create 2D deformable parts. The node spacing at the surface for each part was specified 

to be 1.0 µm. This spacing was chosen to provide results at a similar resolution to that used by the 

research group at Cardiff in EHL analysis. Additional discussion of the effect of element sizing can be 

found in Chapter 5, in Section 5.4.2.1. 

The parts extended 0.5 mm (five times the width of the surface) above the rough surface to provide 

an approximation to a semi-infinite body. The opposing contacting body for each rough part was an 

identical 2D deformable part, except that the rough surface was replaced by a smooth one. The 

elastic material properties were defined as before for each contacting body. The rough part was also 

given plastic properties, with a yield strength, σy, of 1.619 GPa. The effect of introducing strain 

hardening behaviour was to be assessed and so two different characteristics were simulated for 

comparison with the typical elastic-perfectly plastic model. Tangent modulus, ET, values of 25 GPa 

and 50 GPa were chosen for evaluation, giving ET / E ratios of 0.125 and 0.250 respectively. While 

practical materials typically have ET / E ≤ 0.05 (Kogut and Etsion 2002), the aim of implementing a 

more pronounced strain hardening behaviour was to judge its effects, thus providing more 

information for an assessment of the suitability of the assumption of elastic-perfectly plastic 

behaviour. 
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Previously three steps had been created in each simulation; one to initiate contact with a small 

displacement, one to apply the required load, and one to remove it. In the series of analyses 

described here, these steps were then duplicated a further five times, creating a simulation with six 

independent loading stages. These steps could then be suppressed if fewer loadings were required. 

Two different loads were applied in the form of a pressure to the top free edge of the rough part. 

Given the 2D simplification of the contact, these were effectively distributed line loads of 350 N/mm 

and 700 N/mm respectively. Each surface was subject to two load schemes defined as follows. Load 

scheme 1 was a simulation with three applications of the lower load, followed by three applications 

of the higher load. Load scheme 2 was a separate simulation with just three applications of the 

higher load. This procedure was used to test the effects of the loading history of a surface. Boundary 

conditions were applied at the sides of each part to simulate an infinitely repeated mirrored surface, 

while the bottom free edge of the smooth part was restrained against vertical and horizontal 

displacement. The remaining modelling details were specified in accordance with the contact 

modelling developments for rough surface contact described in Chapter 3 and can be seen in Table 

4.1. 
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Table 4.1 - Multiple loading contact model summary. 

Part 
2D rough surface – Imported unrun gear surface profiles 

2D smooth surface 

Property 

Rough: E = 200 GPa, ν = 0.32, σy = 1.619 GPa, ET / E = 0 (elastic-perfectly plastic), 

0.125, 0.250 

Smooth: E = 200 GPa, ν = 0.32 

Assembly Model boundaries aligned. Parts on the verge of contact 

Step 
Initial (required), Contact, Load, Removal (repeated for number of loadings) 

ALE Adaptive Meshing – Frequency = 1, Re-meshing sweeps = 10 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Finite Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 1x10
−15

m 

Load 300 N/mm or 700 N/mm distributed load acting on top edge of rough surface part 

Boundary 

Conditions 

Small vertical displacement applied to top edge of rough surface to initiate contact 

Bottom edge of smooth surface part restrained (Ux = Uy = 0) 

Side edges of rough and smooth surface parts restrained in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 

Fully integrated elements 

 

4.3.2. Loaded results 

Figure 4.4 shows the contact pressure distribution obtained at the final loading application of 700 

N/mm for both of the simulated load schemes. Figure 4.4a, Figure 4.4b and Figure 4.4c show the 

results obtained for the different material models assumed. It can be see that the two distributions 

in each figure are essentially the same for the two different loading schemes but significant 

differences are seen to occur in some locations. These differences occur at the edge of asperity 

contacts, where slight differences in asperity contact areas may result in a node being outside of the 

contact in one load scheme, and in contact in the other. The first scenario results in zero contact 

pressure, while the latter results in a finite contact pressure. In plastic contacts, contact pressure 

increases rapidly at the contact edges further highlighting the differences.  Across the remainder of 



Repeated load contact modelling of real rough surfaces and the effect of tangential loading 

Chapter 4  141 

the contacts, excellent agreement is seen to occur. Including the previously described larger 

differences, the average difference in contact pressures between load schemes for each set of 

material properties was approximately 16 MPa, or one percent of the yield strength. This strongly 

suggests that only the highest load to which a surface is subjected is important when considering the 

behaviour of a surface under load. 

 

Figure 4.4 - Contact pressure distributions for final 700 N/mm loading for loading schemes 1 and 2; 

a) elastic-perfectly plastic, b) ET / E = 0.125, c) ET / E = 0.250. 
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Figure 4.5 - Contact pressure profiles for each 350 N/mm load application; a) elastic-perfectly 

plastic, b) ET / E = 0.125, c) ET / E = 0.250. 

Figure 4.5 shows the contact pressure profiles for each 350 N/mm load application in load scheme 1. 

Each figure shows three pressure profiles, and Figure 4.5a, Figure 4.5b and Figure 4.5c show results 

for the different material models. Figure 4.6 shows the contact pressure profiles for each 700 N/mm 

load application in load scheme 2, with Figure 4.6a, Figure 4.6b and Figure 4.6c again showing the 

results for different material models. For each material model it is clear that there is no significant 

difference in the contact pressure obtained for repeated applications of the same load. However, 

comparing them against one another, clear differences can be seen. In Figure 4.5a and Figure 4.6a it 
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can be seen that the elastic-perfectly plastic behaviour limits the contact pressure to approximately 

three times the yield strength. Upon introducing strain hardening however, the limit is exceeded, 

and the contact pressure can be seen to exceed this value in numerous locations. The maximum 

contact pressure observed increases as ET / E increases from 0.125 to 0.250 as the material 

properties allow the surface to carry more of the load in smaller, more concentrated regions. 

 

Figure 4.6 - Contact pressure profiles for each 700 N/mm load application; a) elastic-perfectly 

plastic, b) ET / E = 0.125, c) ET / E = 0.250. 

Figure 4.7 and Figure 4.8 show detailed contact pressure plots for two asperity features, at loads of 

350 N/mm and 700 N/mm, respectively. With elastic-perfectly plastic material properties, it can be 
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seen that the contact pressures do not exceed three times the yield strength, as previously 

discussed, and that a higher ET / E ratio results in increasingly higher contact pressures. It can also 

be seen that this increase in contact pressure is associated with a reduction in the contact area. 

 

Figure 4.7 - Contact pressure plot for first load application of 350 N/mm. 

 

Figure 4.8 - Contact pressure plot for first load application of 700 N/mm. 
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Figure 4.9 shows contours of the normalised von Mises stress for each of the materials when subject 

to the final loading of 700 N/mm for a 40 µm section of the rough surface. The von Mises stress was 

normalised against the assumed material yield strength of 1.619 GPa. Three large contact regions 

can be seen, between x = 0.010 mm and x = 0.013 mm, x = 0.021 mm and x = 0.025 mm and x = 

0.032 mm and x = 0.034 mm, with a smaller contact region at x = 0.029 mm, each resulting in 

significant subsurface stresses. It can be seen that the stresses in the bulk material are consistent 

across each of the materials simulated; it is in the heavily loaded asperity regions that differences 

become apparent. In the elastic-perfectly plastic material in Figure 4.9a, the von Mises stress is 

limited by the yield strength. In the materials exhibiting linear strain hardening behaviour in Figure 

4.9b and Figure 4.9c, this limit is removed, and so regions of higher stress are apparent, particularly 

around x = 0.011 mm, and x = 0.022 mm. This illustrates the way in which the load is carried by the 

rough surface in each case. As the stress is limited in the elastic-perfectly plastic material, the 

contact is slightly larger, as more material is required to carry the asperity load. Without the limit of 

perfectly plastic behaviour, the surface carries the load in smaller, more concentrated regions. In 

comparing the two materials with linear strain hardening, it can be seen that a higher peak von 

Mises stress is found to occur in the material where ET / E = 0.250. 
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Figure 4.9 - Contours of normalised von Mises stress for final 700 N/mm loading; a) elastic-

perfectly plastic, b) ET / E = 0.125, c) ET / E = 0.250. 

Figure 4.10 shows contours of normalised direct stress in the tangential (x) direction for each of the 

materials when subject to the final loading of 700 N/mm for a 40 µm section of the rough surface. It 

can be seen that the majority of the material is in a compressive state of stress. The same three large 

contact regions are highlighted by larger magnitude stresses. These can be found between x = 

0.010mm and x = 0.013 mm, x = 0.021 mm and x = 0.025 mm and x = 0.032 mm and x = 0.034 mm, 

with a smaller contact region at x = 0.029 mm. As with the von Mises stress contours, the general 

forms of the distributions are similar between each of the materials, albeit with small differences. In  
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Figure 4.10 - Contours of normalised direct stress in the tangential direction for final 700 N/mm 

loading; a) elastic-perfectly plastic, b) ET / E = 0.125, c) ET / E = 0.250. 

comparison with the elastic-perfectly plastic material, increasing ET / E results in the higher 

magnitude stress regions being smaller and more concentrated around the asperity contacts.  Small 

regions of tensile stress can be found outside of the contact regions, in the local valley features, for 

each of the materials. These stresses may be contributing factors to micropitting failures, as it has 

been found that micro-cracks can initiate in local valleys, depending on the orientation of the valley 

relative to the sliding direction. (Moorthy and Shaw 2013). These can be seen at the edges of the 

plotted section, increasing in size as ET / E is increased. In the elastic-perfectly plastic material, some 
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subsurface tensile stresses can be seen at x = 0.011 mm, z = 0.004 mm and at x = 0.022 mm, z = 

0.007 mm. This is possibly due to the incompressibility of the material after yielding resulting in 

material being forced from beneath the asperity contacts to the surrounding areas to the sides. 

4.3.3. Residual results 

Figure 4.11 shows the residual profiles following the final loading application for load scheme 1 and 

load scheme 2 which are indistinguishable. Each figure includes results for each set of material 

properties. Results for elastic-perfectly plastic, ET / E = 0.125 and ET / E = 0.250 materials are shown 

in Figure 4.11a, Figure 4.11b and Figure 4.11c, respectively. It can be seen that for each material 

definition, very little difference can be seen between the residual profiles resulting from the two 

loading schemes; that is, the order of loading is unimportant. These differences can be quantified by 

comparing the co-ordinates of the surface nodes following each load scheme. The maximum and 

mean differences calculated are given in Table 4.2. Also shown are the maximum and mean 

differences expressed as a percentage of the maximum deflection of the surface. For each material 

model, the maximum deflection occurred for the asperity located at x = 0.022 mm.  

For each material model, the profile deformation is limited to the tips of the asperities. Across the 

whole 0.1 mm profile, five contact regions occur, at approximately x = −0.042, −0.009, 0.012, 0.023 

and 0.033 mm. The different material models lead to different results for the residual profiles in the 

vicinity of the loaded asperities, with the magnitude of deformations decreasing as the strain 

hardening behaviour is increased. As with the contact pressure results previously discussed in 

Section 4.3.2, this suggests that little difference is seen in the surface subsequent to the initial 

application of a given load, further suggesting that the running-in process is limited to the very early 

life of a surface when initial contact occurs. Further changes would be expected to occur in the event 

of an increased load being applied to the surface. Increasing loads may occur as part of the start up 

process of a machine, extending the running-in process to the time it takes for the largest load to be 

applied. Subsequently, the running-in process could be expected to occur very quickly. 
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Figure 4.11 - Residual profiles following load schemes 1 and 2; a) elastic-perfectly plastic, b) ET / E 
= 0.125, c) ET / E = 0.250. 

 

Table 4.2 - Maximum and mean differences in surface node locations between load schemes 1 and 

2. 

Material 

Properties 

Maximum 

difference / nm 

Max. difference as 

percentage of max. 

deflection 

Mean 

difference / nm 

Mean difference 

as percentage of 

max. deflection 

Elastic-perfectly 

plastic 
3.05 2.72% 0.25 0.22% 

ET / E = 0.125 3.29 4.62% 0.24 0.34% 

ET / E = 0.250 3.23 6.30% 0.24 0.47% 
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Figure 4.12a shows the residual shape change for each of the sets of material properties tested, as 

well as the initial roughness profile. The location where deformation has occurred is consistent 

across each of the materials tested, while the magnitude decreases as the ratio of ET / E increases.  

It can be seen that the largest residual deformations occur in the elastic-perfectly plastic material, 

and the least in the ET / E = 0.250 model. This can be seen in more detail in Figure 4.12b, which 

shows the residual deformation of one asperity. This figure also shows how the elastic-perfectly 

 

Figure 4.12 - Initial and residual profiles after final 700 N/mm loading; a) Whole profile, b) Larger 

scale view of the asperity at x ≈ 0.0225 mm. 
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plastic material behaviour also results in more positive residual deformation outside the contact. As 

elastic-perfectly plastic materials are incompressible once the yield strength has been reached, 

when a compressive load, and therefore strain, is applied in the z-direction, to conserve volume, the 

region must expand in the x-direction, as a plane strain assumption has been used. Therefore 

material is pushed towards the sides of an asperity feature, or towards neighbouring valley features. 

This results in some positive deformation in the z-direction outside of the contact region. This can be 

seen in Figure 4.13a and particularly in Figure 4.14a. The additional plastic strain after yielding is 

permanent, and so the plastically deformed material maintains its shape, unless elastic recovery of 

surrounding material applies sufficient load to deform the material. 

Figure 4.13 and Figure 4.14 show the residual changes in shape between three individual load 

applications. Figure 4.13 shows the results after three applications of 350 N/mm, while Figure 4.14 

shows results for three applications of 700 N/mm. Each figure shows the change in shape for elastic-

perfectly plastic material properties, ET / E = 0.125, and ET / E = 0.250. Each plotted curve shows 

the difference in shape after each load; the red curve shows the difference between the initial 

profile and the residual profile after the first load, the blue curve shows the difference between the 

residual profiles after the first and second loadings, and the green curve is the difference between 

the residual profiles after the second and third loadings. It can be seen that for each magnitude of 

loading, and for each set of material properties, the overwhelming majority of residual shape 

changes occur after just one load application. The additional shape change during the subsequent 

load applications is significantly less. As a result, only the red curve is visible in each of the figures. 

The blue and green curves effectively lie on the x-axis at the scale plotted and the additional 

deflection after the second and third load applications are so small relative to the first. This is 

particularly pertinent when considering elastohydrodynamic lubrication of the contact of two rough 

surfaces. EHL performance depends on the gap between the two contacting surfaces, which is turn is 

related to the shape of each surface. If a surface  runs-in, i.e. be subject to no further surface plastic 

deformation, after only a few load applications of the maximum operating load, then the predictive 
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analysis of EHL can assume purely elastic contact behaviour subsequently, and the maximum contact 

pressure that can be developed on plastically deformed asperities will be given by the yield strength 

which may be enhanced by strain hardening effects. 

 

Figure 4.13 - Change in height of rough surface after three repeated loadings of 350 N/mm. a) 

elastic-perfectly plastic, b) ET / E = 0.125, c) ET / E = 0.250. 
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Figure 4.14 - Change in height of rough surface after three repeated loadings of 700 N/mm. a) 

elastic-perfectly plastic, b) ET / E = 0.125, c) ET / E = 0.250. 

The difference between the material properties specified is seen in the magnitude of residual 

deformation which occurs. The greatest amount of deformation occurred with elastic-perfectly 

plastic materials. As the ET / E ratio was increased the magnitude of residual deformation reduced. 

The general form of the residual displacements was consistent throughout. Locally, the largest 

magnitude displacements occurred where each individual contact first occurred under loading. 

These displacements were negative in nature. Outside of the immediate contact region, positive 

displacements, or “pile up” occurred, as the loading of the contact forced material to flow away 
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from the loaded region. The displacements are consistent with the descriptions of pile up by Tabor 

(1951) and Johnson (1985), who also indicates that materials with properties closer to an “ideal” 

plastic material will exhibit more extensive pile up, as shown here. The form of the residual 

deformations are also comparable to those found experimentally by Johnson (1968) and by others 

using finite element analysis, albeit in spherical  contacts (Beghini et al. 1992; Kral et al. 1993; Taljat 

and Pharr 2004; Jackson et al. 2005). The work in each of these studies considers contacts of single 

symmetrical bodies, whereas in the example shown here neighbouring contacts can interact with 

each other. This can be seen in particular between x = 0.012 mm and 0.020 mm where significant 

positive deformation can be seen to occur. 

Figure 4.15 shows the residual von Mises stress distributions for the same 40 µm section of the 

rough surface as previously shown in Figure 4.9 after the final loading of 700 N/mm had been 

removed. Residual stresses occur when the material tries to recover elastically to its original shape, 

but is prevented from doing so by plastically deformed material. Higher magnitude peak values of 

stress as well as a larger stress-affected region can be seen to occur in the elastic-perfectly plastic 

material. In an elastic-perfectly plastic material, once the yield strength is reached, the additional 

plastic strain that can be achieved is, in theory, limitless. As previously discussed, as the von Mises 

stress is limited by the yield strength, neighbouring material is forced to carry more of the load, 

leading to further material yield. As more plastic strain is allowed to occur in the elastic-perfectly 

plastic material for a specific stress compared to the materials with linear strain hardening, larger 

and more widespread residual stress is observed. 

Knowledge of residual stresses in run-in surfaces could be particularly useful as an aid to the 

prediction of fatigue in mixed EHL modelling (Evans et al. 2012). The techniques outlined by Holmes 

et al. (2003a; 2003b) use the time dependent Reynolds equation and elastic deflection equation to 

determine the film thickness and pressures applied to a surface operating under EHL. In turn, 

equivalent loading cycles and fatigue damage can then be calculated using a rainfall counting 
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method (Amzallag et al. 1994) and a shear strain-life model (Fatemi and Darrell 1988). In previous 

fatigue prediction work it has been assumed that the unloaded surfaces were stress-free. Results of 

the present work can allow the inclusion of initial residual stress effects which will influence fatigue 

behaviour. In this way the effect of the running-in process on subsequent fatigue life can be better 

understood. 

 

Figure 4.15 - Contours of normalised residual von Mises stress after final 700 N/mm loading; a) 

elastic-perfectly plastic, b) ET / E = 0.125, c) ET / E = 0.250. 

Figure 4.16 shows contours of normalised residual direct stress in the tangential direction for each of 

the materials after the final loading of 700 N/mm for a 40 µm section of the rough surface. As 



Repeated load contact modelling of real rough surfaces and the effect of tangential loading 

Chapter 4  156 

previously seen in Figure 4.15 with the von Mises stress, the general stress distributions are similar 

across each of the tested materials. The difference between the materials is in the magnitude of the 

stress observed, with the elastic-perfectly plastic material typically exhibiting the highest stresses, 

and materials with ET / E = 0.250 giving the lowest stresses. It can be seen that for each asperity 

contact region tensile stresses occur both at the surface and subsurface. These two regions are 

separated by a region of compressive stress.  

 

Figure 4.16 - Contours of normalised residual direct stress in the tangential direction after final 700 

N/mm loading; a) elastic-perfectly plastic, b) ET / E = 0.125, c) ET / E = 0.250. 
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By considering the loaded and residual direct stresses shown in Figure 4.10 and Figure 4.16 

respectively, it can be seen that the surface undergoes cyclic loading whereby the tangential stress 

varies between compression and tension. At the surface, this may lead to the initiation and 

propagation of cracks. Subsurface, the region of maximum tensile stress occurs at a depth between 

5.0 µm and 10.0 µm, which is the characteristic depth of micropits (Höhn et al. 1996). 

4.4. Tangential loading with frictional contact modelling 

4.4.1. Modelling details 

The assemblies of the two 0.1 mm sections of unrun surface roughness used in the multiple loadings 

contact modelling were also used in the study of friction effects. The multiple load stages were 

suppressed and a new intermediate step between the load application and removal was created 

during which the tangential load was applied. The tangential load was applied as a surface traction, 

which is analogous to an applied pressure in the normal direction. The units of are therefore 

typically a force per unit area. However, as previously described, because a 2D simplification is being 

utilised, this effectively becomes a distributed line load in the tangential direction. This was applied 

to the same top, free edge of the rough surface part; the same application region as the applied 

pressure. The magnitude of the tangential load applied was dependent upon the coefficient of 

friction, µ, specified in each simulation. By definition, the coefficient of friction defines the maximum 

tangential load that can be applied before the surfaces move relative to one another. For each of the 

simulations, the applied normal load was 700 N/mm. The friction coefficients used were 0.15, 0.25, 

0.50, 0.75 and 1.00. For lubricated steel on steel contacts, even µ = 0.15 is somewhat high. More 

realistic coefficients of friction range from µ ≈ 0.1 to µ ≈ 0.005 for effective boundary and mixed 

lubrication regimes respectively. However, the aim of this study is to investigate the effect of 

introducing significant friction into the simulations, and so the exaggerated behaviour can be useful 

for analysis and comparison. The limiting tangential load for each friction coefficient, Fmax, was 105 
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N/mm, 175 N/mm, 350 N/mm, 525 N/mm and 700 N/mm, respectively. A series of tangential loads 

was applied for each coefficient of friction to assess the behaviour as the surfaces came closer to 

slipping. These were a proportion of the maximum tangential load, denoted as F/Fmax, and each load 

cases in summarised in Table 4.3.  

Table 4.3 - Series of tangential loads /Nmm
-1

 applied. 

Friction 

coefficient, µ 

Fmax / 

N/mm 
F/Fmax = 0.25 F/Fmax = 0.50 F/Fmax = 0.75 F/Fmax = 0.95 

0.15 105.00 26.25 52.50 78.75 99.75 

0.25 175.00 43.75 87.50 131.25 166.25 

0.50 350.00 87.50 175.00 262.50 332.50 

0.75 525.00 131.25 262.50 393.75 498.75 

1.00 700.00 175.00 350.00 525.00 665.00 

 

Previous models have utilised boundary conditions that simulate an infinitely reflected surface, in 

which the part edges are the axes of symmetry. When applying a tangential loading, this 

configuration is no longer acceptable, as the direction of the force would also be mirrored, resulting 

in the situation illustrated in Figure 4.17a. In order to combat this, the boundary conditions at the 

sides were removed, and a new modelling technique was introduced known as surface ties. As is the 

case when defining surface contact, surface ties require the selection of a master and slave surface. 

Applying a surface tie allows the two surfaces to be tied together for the duration of the simulation, 

constraining each of the nodes of the assigned slave surface to have the same variable values as the 

equivalent node on the assigned master surface. In the tangential loading model, this replaced the 

infinitely reflected simulation, with a more appropriate infinitely tiled simulation, as shown in Figure 

4.17b. 
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Figure 4.17 – Rough surface contact boundary conditions; a) infinitely reflected boundary 

condition, b) infinitely tiled surface tie boundary condition. 

Surface ties are defined in Abaqus using the Interaction module, either by selecting Constraint from 

the taskbar or model tree. Abaqus presents a list of options, from which the user must select Tie. 

The master and slave surfaces are then selected using the modelling viewport as when defining 

contact interactions. Once the surfaces are defined, Abaqus provides the user with a list of options 

for the surface tie. For the infinitely repeated boundary condition, a number of changes to the 

default settings were performed. The position tolerance was specified to be the horizontal distance 
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between the two surfaces to be tied together. The tick box to Adjust slave surface initial position 

was unchecked, and the surface tie restraint completed. 

For the purpose of comparison, the majority of the simulations were performed using a single 

material, namely elastic-perfectly plastic steel, with E = 200 GPa, ν = 0.3 and σy = 1.619 GPa. 

However, in order to assess the effect of tangential loading on materials with strain hardening 

properties, a small number of load cases were tested with strain hardening behaviour implemented. 

Unlike the multiple loadings study, a more practical range of materials were tested (Kogut and Etsion 

2002). Elastic-perfectly plastic properties were compared with strain hardening properties of ET / E 

= 0.01 and ET / E = 0.05. The effects of tangential loading were only tested using the lowest of the 

friction coefficients, µ = 0.15, the closest value to that found to occur in boundary or mixed 

lubrication regimes. 

The remainder of the model details are summarised in Table 4.4. 
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Table 4.4 - Summary of tangential loading and frictional contact model. 

Part 
2D rough surface – Imported unrun gear surface profiles 

2D smooth surface 

Property 

Rough: E = 200 GPa, ν = 0.32, σy = 1.619 GPa, ET / E = 0 (elastic-perfectly plastic), 

ET / E = 0.01, ET / E = 0.05 (for µ = 0.15 only) 

Smooth: E = 200 GPa, ν = 0.32 

Assembly Model boundaries aligned. Parts on the verge of contact 

Step 
Initial (required), Contact, Load, Traction, Traction Removal, Removal 

ALE Adaptive Meshing – Frequency = 1, Remeshing sweeps = 10 

Interaction 

Range of friction coefficients - µ = 0.15, 0.25, 0.50, 0.75, 1.00. 

Augmented Lagrange Constraint Enforcement Method 

Finite Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 1x10
−15

m 

Surface ties applied to vertical sides of parts – tiled boundary condition 

Load 

 

700 N/mm distributed normal load acting on top edge of rough surface part 

Range of distributed tangential loads, proportional to friction coefficient, acting on 

top edge of rough surface part 

Boundary 

Conditions 

Small vertical displacement applied to top edge of rough surface to initiate contact 

Bottom edge of smooth surface part restrained (Ux = Uy = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Fully integrated elements 

 

4.4.2. Results 

4.4.2.1. Loaded results 

Figure 4.18 shows the roughness profiles when under both normal and tangential loading, for three 

different coefficients of friction, µ = 0.15, µ = 0.25 and µ = 0.50. In each case the load was 700 N/mm 

in the normal direction, and 0.95 times Fmax in the tangential direction, and so the surfaces were 

close to complete slip, i.e. the surfaces sliding across one another. The corresponding simulations for 

µ = 0.75 and µ = 1.00 could not be completed. The magnitude of the tangential load resulted in 

severe element distortion at the contact surface, before errors resulted in job failure. This loading 

combination was chosen to highlight the effect the tangential loading had upon the surface in 
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comparison with the purely normal loading. The difference found to occur for smaller proportions of 

Fmax was smaller than those shown. 

Each figure shows results for a profile subject to a purely normal load, in blue. Results for a 

combination of the normal load plus a tangential load applied in the positive and negative x-

directions are shown in red and green, respectively. It can be seen that for µ = 0.15, the effect of the 

tangential load is small, even when the contact is on the verge of slipping. As the coefficient of 

friction was increased, the maximum allowable tangential load, Fmax, before complete slip occurred 

increased proportionally, and as a result, more deformation was seen to occur. It can also be seen 

that the tangential load direction can produce significantly different results at higher coefficients of 

friction. In Figure 4.18a, the directionality results in asperities being slightly deflected in the positive 

or negative x-direction. However, Figure 4.18c shows how neighbouring asperities can interact with 

one another if the frictional force is high. When tangentially loaded in the negative x-direction, the 

two asperities at x = 0.020-0.025 mm and x = 0.029-0.035 mm remain separate from one another, 

although the local valley between them is greatly reduced in width and depth in comparison with a 

purely normal load. When tangentially loaded in the positive x-direction, the two asperities are 

effectively merged into one wide and flat asperity via plastic deformation. This is marked in Figure 

4.18c. 
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Figure 4.18 - Loaded roughness profiles for surfaces on the verge of complete slip (F/Fmax = 0.95); 

a) µ = 0.15, b) µ = 0.25, c) µ = 0.50. Elastic-perfectly plastic material was used in each load case. 

Figure 4.19 and Figure 4.20 show the contours of normalised von Mises stress for the combined 

normal and tangential loading. The normal load was 700 N/mm, and the tangential load was 0.95 

times the maximum tangential force before complete slip would occur, Fmax. For each of the friction 

coefficients shown, µ = 0.15, µ = 0.25 and µ = 0.50, this corresponded to 99.75 N/mm, 166.25 N/mm 

and 332.50 N/mm, respectively. In Figure 4.19 the tangential loading is in the negative x-direction, 

while Figure 4.20 shows the results for tangential loading in the positive x-direction. Also shown in 

each figure are the von Mises stress distributions for purely normal loading of the surface. 
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Figure 4.19 - Contours of normalised von Mises stress under a) normal loading only, and combined 

normal and negative x-direction tangential loading, F/Fmax = 0.95; b) µ = 0.15, c) µ = 0.25, d) µ = 

0.50. Elastic-perfectly plastic material was used in each load case. 
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Figure 4.20 - Contours of normalised von Mises stress under a) normal loading only, and combined 

normal and positive x-direction tangential loading, F/Fmax = 0.95; b) µ = 0.15, c) µ = 0.25, d) µ = 

0.50. Elastic-perfectly plastic material was used in each load case. 
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In comparison with a purely normal loading the regions in which the highest magnitudes of stress 

are seen to occur are similar. These regions are located beneath the surface of the heavily loaded 

asperity contacts. As the friction coefficient, and applied tangential load, is increased, the highest 

levels of stress migrate closer to the surface and towards the direction of the tangential load, as 

reported by Johnson (1985) and Williams (1994). Additionally, these regions appear more elongated 

and deeper in the subsurface material. Outside these highly stressed regions, the stress observed in 

the bulk material is generally of higher magnitude. At the top of each figure, at z = 0.015 mm, more 

of the material is within a higher contour band, and thus closer to plastic behaviour. 

The direction of the tangential loading can be seen to make a significant difference even at the 

lowest friction coefficient shown, µ = 0.15, with the stress being “dragged” in the direction of the 

tangential loading at the surface. These regions of high stress are then orientated in similar way to 

the way surface cracks are found to initiate (Olver et al. 2004; Oila et al. 2005) A larger effect is seen 

to occur at the two asperity contacts at the edges; at approximately x = 0.011 mm and especially at x 

= 0.034 mm, while the effect at the central contact at x = 0.022 mm is less pronounced. The 

difference between these asperity contacts is due to the neighbouring features. At x = 0.022 mm, 

the contact is locally neighboured by contacts to either side, while no local contact occurs to the left 

of x = 0.011 mm or to the right of x = 0.034 mm, which illustrates how surface features can interact. 

Figure 4.21 and Figure 4.22 show the contours of normalised direct stress in the tangential direction 

for the combined normal and tangential loading. The load cases shown are the same as previously 

discussed in Figure 4.19 and Figure 4.20, with F/Fmax = 0.95 for friction coefficients of µ = 0.15, µ = 

0.25 and µ = 0.50. Figure 4.21 shows the stress contours for a negative tangential load while those 

for a positive tangential load are shown in Figure 4.22. Each figure also shows the stress contours 

under normal loading only for comparison. 

The figures show that the direct stress in the tangential direction remains predominantly 

compressive as the friction coefficient and magnitude of tangential load is increased. The regions in 
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which the largest compressive stresses are found remain at the surface of contacting asperity 

features. In the application of a normal load only, a small zone of tensile stress occurs in the local 

valley feature between x = 0 mm and x = 0.002 mm. When a negative tangential load is applied to 

the surface as in Figure 4.21, this tensile stress disappears, but another region of tensile stress 

develops between x = 0.036 mm and x = 0.04 mm, which increases in magnitude with the tangential 

load applied. For the largest tangential load shown in Figure 4.21d, another region of tensile stress 

occurs at x = 0.016 mm. Furthermore, for the normal load application, two small regions of 

subsurface tensile stress occur. When a tangential load is applied, this tensile stress no longer 

occurs. 

In Figure 4.22, the tangential load is applied in the positive x-direction. As the friction coefficient and 

the magnitude of the tangential are increased, the region of tensile stress between x = 0 mm and x = 

0.002 mm grows, both in size and magnitude of stress. As with the negative tangential load 

application, for the largest magnitude tangential load, an additional region of tensile stress occurs at 

the surface at x = 0.017 mm, on the opposite side of the same local valley feature, highlighting the 

difference in the surface response as a result of the direction of load application. The subsurface 

tensile stresses do not immediately disappear upon the application of a positive tangential load. 

Each grows slightly in size in Figure 4.22b and Figure 4.22c, although each stays within the same 

stress contour band. In Figure 4.22d, one of these regions no longer occurs, while the other merges 

with the growing surface tensile stress between x = 0 mm and x = 0.002 mm. 
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Figure 4.21 - Contours of normalised direct stress in the tangential direction for a) normal loading 

only, and combined normal and negative x-direction tangential loading, F/Fmax = 0.95; b) µ = 0.15, 

c) µ = 0.25, d) µ = 0.50. Elastic-perfectly plastic material was used in each load case. 
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Figure 4.22 - Contours of normalised direct stress in the tangential direction for a) normal loading 

only, and combined normal and positive x-direction tangential loading, F/Fmax = 0.95; b) µ = 0.15, 

c) µ = 0.25, d) µ = 0.50. Elastic-perfectly plastic material was used in each load case. 
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4.4.2.2. Residual results 

Figure 4.23 shows the residual roughness profiles following loading with normal and tangential 

loads. The profiles are shown for a range of friction coefficients; µ = 0.15, µ = 0.25 and µ = 0.50. Also 

shown for comparison are the initial roughness profile in black and the residual profile after normal 

loading only in blue. The red and green lines show the residual surface as a result of the normal load 

in combination with a tangential load in the positive and negative x-directions respectively. As with 

the loaded results shown, the applied normal load was 700 N/mm and the tangential load applied 

was 0.95 times Fmax. This fraction of the limiting tangential load was chosen to highlight the effect of 

the tangential load. At lower levels of tangential loading, differences were more difficult to 

distinguish. 

As with the loaded profiles previously shown, only small differences between the normal only and 

combined loadings can be seen when µ = 0.15; small deflections occur in the direction of the tractive 

force at asperity features. The magnitude of this deflection is larger when µ = 0.25. In both cases, 

the magnitude of the vertical deflection remains almost identical to that found when subject to 

purely normal loading. When µ = 0.50, significant deflection in the direction of the tractive force can 

be seen to occur. Furthermore, the vertical deflection of the asperity features has significantly 

increased. Interaction between asperities can also be seen to occur, and this depends on the 

direction of the tractive force. For a tractive force in the positive x-direction, separate asperity 

features between x = 0.070 mm and x = 0.084 mm are merged into single features. For a tractive 

force in the negative x-direction, these features remain separated by a local valley feature. 
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Figure 4.23 - Initial and residual roughness profiles for surfaces on the verge of complete slip 

(F/Fmax = 0.95); a) µ = 0.15, b) µ = 0.25, c) µ = 0.50. Elastic-perfectly plastic material was used in 

each load case. 

Figure 4.24 and Figure 4.25 show the contours of normalised residual von Mises stress following 

combined normal and tangential loading. The results shown are those corresponding to the loaded 

cases shown in Figure 4.19 and Figure 4.20, and so have the same friction coefficients and loading 

combinations as previously discussed. Figure 4.24a and Figure 4.25a show the results for the 

application of the normal load only for comparison. 
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Figure 4.24 - Contours of normalised residual von Mises stress after a) normal loading only, and 

combined normal and negative x-direction tangential loading, F/Fmax = 0.95; b) µ = 0.15, c) µ = 

0.25, d) µ = 0.50. Elastic-perfectly plastic material was used in each load case. 
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Figure 4.25 - Contours of normalised residual von Mises stress after a) normal loading only, and 

combined normal and positive x-direction tangential loading, F/Fmax = 0.95; b) µ = 0.15, c) µ = 

0.25, d) µ = 0.50. Elastic-perfectly plastic material was used in each load case. 
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Comparing the residual stresses for purely normal loading to the combined load, similar distributions 

can be seen, especially for the lowest friction coefficient, µ = 0.15. This was not unexpected as it has 

previously been shown that little difference occurs in the residual roughness profile between the 

normal loading and combined loadings. With higher friction coefficients and tangential loads, more 

prominent effects of the combined loading again occurred at the asperities at x = 0.011 mm and 

0.032 mm without contacting features to the left and right respectively. It can also be seen that the 

number of zones of high von Mises stress at the surface is reduced with higher friction coefficient 

and tangential load. This has also been reported by Vijaywargiya and Green (2007) who compared 

sliding contacts with and without friction. In normal only loading, and for low friction combined 

loading, regions of this kind often exist where the asperity feature has been deformed as a result of 

direct contact with the counterface. In results obtained using higher coefficients of friction, the 

regions of peak von Mises stress occur in the valley features between loaded asperities. A typical 

example of this phenomenon can be seen in Figure 4.25d, at x = 0.0155 mm. 

Figure 4.26 and Figure 4.27 show the contours of normalised residual direct stress in the tangential 

direction for the same 40 µm section of the rough surface as previously discussed. Figure 4.26 shows 

the residual stress after the negative tangential load application, while contours for the positive 

tangential load application are shown in Figure 4.27. In each figure, the results for three different 

friction coefficients are shown, µ = 0.15, µ = 0.25 and µ = 0.50, and in each case, F/Fmax = 0.95. 

Additionally, the stress contours for a normal only load application are shown for comparison. 

Similar behaviour is seen to occur in the material as a result of the tangential load in either direction. 

As previously discussed, residual tensile stresses occur both at the surface and subsurface. These are 

separated by a band of compressive residual stress. As the friction coefficient and magnitude of 

applied tangential load is increased, the surface tensile stress moves along the surface in the 

direction of the tangential load. The tensile stress migrates towards the edge of each asperity 

contact, towards the neighbouring local valley feature. In Figure 4.26 this can be seen as the peak 
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surface tensile stress moves from approximately x = 0.021 mm to x = 0.026 mm in Figure 4.26a, to x 

= 0.018 mm to x = 0.024 mm. In Figure 4.27d, the asperity features at x = 0.021-0.025 mm and x = 

0.029-0.034 mm have merged as previously shown in Figure 4.23, and so the two regions of surface 

tensile stress at x = 0.021 mm to x = 0.026 mm and approximately x = 0.032 mm merge on the 

asperity-valley “boundary” between x = 0.03 mm to x = 0.036 mm.  

The subsurface regions of tensile stress remain across the range of tangential loads applied, in either 

direction, although the magnitude of the stress reduces slightly, as does the area of the peak 

subsurface tensile stress. In both Figure 4.26d and Figure 4.27d, the band of compressive stress 

separating the surface and subsurface tensile stress regions is narrowed at approximately x = 0.027 

mm, z = 0.003 mm and x = 0.03 mm, z = 0.003 mm, respectively. These regions are at an angle of 

approximately 30-45° to the surface, against the tangential loading direction, which is, interestingly, 

in line with experimental observations of the initiation and propagation of surface cracks in the 

formation of micropitting by Moorthy and Shaw (2013). It was also found that cracks tend to initiate 

from valleys orientated against the sliding direction. This also correlates well with the behaviour of 

the valley feature between x = 0.014 mm and x = 0.019 mm, where significantly larger von Mises 

stress is found to occur when orientated against the sliding direction than with it. This high stress 

could have connotations for the fatigue life of this section of the surface once cyclic loading is 

applied. 
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Figure 4.26 - Contours of normalised residual direct stress in the tangential direction after a) 

normal loading only, and combined normal and negative x-direction tangential loading, F/Fmax = 

0.95; b) µ = 0.15, c) µ = 0.25, d) µ = 0.50. Elastic-perfectly plastic material was used in each load 

case. 
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Figure 4.27 - Contours of normalised residual direct stress in the tangential direction after a) 

normal loading only, and combined normal and positive x-direction tangential loading, F/Fmax = 

0.95; b) µ = 0.15, c) µ = 0.25, d) µ = 0.50. Elastic-perfectly plastic material was used in each load 

case. 
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4.4.3. Effect of strain hardening 

4.4.3.1. Loaded results 

Figure 4.28 shows the contours of normalised von Mises stress under load. Figure 4.28a shows the 

stress under normal load application only, while Figure 4.28b shows the stress under combined 

normal and tangential load in the negative x-direction for the elastic-perfectly plastic material 

previously shown in Figure 4.24b. Figure 4.28c and Figure 4.28d show the stresses as a result of 

combined normal and tangential loading for the ET / E = 0.01 and ET / E = 0.05 materials, 

respectively. The difference between the normal load only and combined load applications has 

already been discussed, and the introduction of strain hardening follows the same pattern as 

previously found in the multiple load applications study. In the bulk subsurface material, the stress 

distributions are similar for each of the combined loading material simulations. However, as the limit 

in the von Mises stress no longer restricts the stress in the material, the magnitudes of the stress in 

heavily loaded regions is higher in the materials with strain hardening behaviour. Examples of this 

behaviour can be seen at approximately x = 0.0118 mm and x = 0.0222 mm. As previously discussed 

in Section 4.3.2, the introduction of strain hardening results in the surface carrying the load in 

smaller, more concentrated regions. 
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Figure 4.28 - Contours of normalised von Mises stress under a) normal loading only, and combined 

normal and negative x-direction tangential loading, µ = 0.15, F/Fmax = 0.95; b) elastic-perfectly 

plastic, c) ET / E = 0.01, d) ET / E = 0.05. 
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Figure 4.29 shows the contours of the direct stress in the tangential direction for each of the load 

applications and material properties as discussed previously in relation to Figure 4.28. As ET / E is 

increased, a similar progression as previously observed in Figure 4.10 is obtained, with the general 

distribution remaining similar, but with some reduction in the magnitude of subsurface stresses. 

However, with strain hardening introduced, some characteristics of the normal load application only 

can be observed, for example, the slightly larger magnitude compressive stress in the subsurface 

region from x = 0 to x = 0.01 mm, for z > 0.005 mm. In comparison with elastic-perfectly plastic 

material under combined loading, the high magnitude compressive stresses regions at the surface 

are smaller than previously seen. The main difference is seen in the regions of surface tensile stress 

found to occur in the valley feature at x = 0.027 mm. This tensile stress occurred under the normal 

loading for elastic-perfectly plastic material, but was not found under the combined loading. 

Introducing strain hardening behaviour resulted in the surface tensile stress returning, and 

increasing in extent and magnitude from ET / E = 0.01 to ET / E = 0.05. The subsurface tensile stress 

regions found at x = 0.0105 mm, z = 0.004 mm and x = 0.022 mm, z = 0.007 mm for the each of the 

elastic-perfectly plastic simulations are no longer found to occur in either strain hardening material 

simulation. 
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Figure 4.29 - Contours of normalised direct stress in the tangential direction under a) normal 

loading only, and combined normal and negative x-direction tangential loading, µ = 0.15, F/Fmax = 

0.95; b) elastic-perfectly plastic, c) ET / E = 0.01, d) ET / E = 0.05. 
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4.4.3.2. Residual results 

Figure 4.30 shows a close up on an individual asperity feature between x = 0.015 mm to x = 0.030 

mm after loading. The initial profile and the residual shape of the surface is shown for a normal load 

application, as well as combined normal and tangential load application for each of the material 

properties considered. Figure 4.30a shows the loaded profile under negative x-direction tangential 

loading, while Figure 4.30b shows the loaded profile under positive x-direction tangential loading. 

As previously shown in Figure 4.12, introducing strain hardening behaviour results in less residual 

deflection at the asperity tips. Introducing the tangential loading to the elastic-perfectly plastic 

model results in larger residual deflections, as was previously shown in Figure 4.23. The introduction 

of strain hardening behaviour results in less residual deflection, both at the asperity tips and the 

neighbouring valleys.  

 

Figure 4.30 - Initial and residual profiles after normal loading only, and combined normal and 

tangential loading, µ = 0.15, F/Fmax = 0.95; a) negative x-direction, b) positive x-direction. 
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Figure 4.31 shows contours of the normalised residual direct stress in the tangential direction for 

each of the load cases and material properties as previously shown in Figure 4.28 and Figure 4.29. As 

previously shown in Figure 4.15, the residual von Mises stress becomes more concentrated in 

smaller regions at the surface as ET / E is increased. This can be seen in particular for the region 

between x = 0.010 and x = 0.013 mm in Figure 4.31b, which becomes more concentrated at 

approximately x = 0.0116 mm in Figure 4.31d. In the local valley features at the surface, the von 

Mises stress is also seen to decrease in magnitude. An example of this behaviour can be seen at x = 

0.026 mm. In the bulk of the subsurface material, the residual von Mises stress can be seen to 

reduce in magnitude as strain hardening is introduced and as ET / E increases. This can be seen at x 

= 0.034 mm, z = 0.005 mm where a region of elevated von Mises stress is present for elastic-

perfectly plastic behaviour, but not for either of strain hardening materials. 
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Figure 4.31 - Contours of normalised residual von Mises stress after a) normal loading only, and 

combined normal and negative x-direction tangential loading, µ = 0.15, F/Fmax = 0.95; b) elastic-

perfectly plastic, c) ET / E = 0.01, d) ET / E = 0.05. 
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Figure 4.32 shows the contours of residual direct stress in the tangential direction for the load cases 

shown in Figure 4.31. As shown in Figure 4.16, increasing ET / E results in a reduction in the 

magnitude of the residual stress. This occurs in both the regions of subsurface tension, and in the 

band of compressive stress separating the subsurface and surface tensile stresses. The addition of 

the tangential load resulted in the surface tensile stresses, which occur as a result of the normal load 

only, to reduce. However, when strain hardening is introduced, these surface tensile stress regions 

increased in extent. As ET / E is increased from 0.01 to 0.05, this trend continues. This can be seen in 

particular between x = 0.021 mm and x = 0.026 mm in Figure 4.32b, which then grows both in width 

and depth in Figure 4.32d. The compressive stresses surrounding this tensile region at the surface 

also reduce in magnitude as is ET / E increased. From a fatigue life perspective, this maybe suggest 

that as cyclic loading is applied, that a surface of a material with a higher ET / E is more susceptible 

to micropitting. Larger, higher magnitude regions of tensile stress at the surface potentially makes 

surface cracking more likely. With reduced compressive stress beneath the surface, these cracks are 

not prevented from propagating as effectively as in material with lower ET / E. 
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Figure 4.32 - Contours of normalised residual direct stress in the tangential direction under a) 

normal loading only, and combined normal and negative x-direction tangential loading, µ = 0.15, 

F/Fmax = 0.95; b) elastic-perfectly plastic, c) ET / E = 0.01, d) ET / E = 0.05. 
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4.5. Conclusions 

This chapter has applied the techniques developed and discussed previously to model an unrun 

rough surface contact. Three variables have been examined in two simulation studies; multiple load 

applications incorporating strain hardening and tangential loading with a user specified friction 

coefficient. It was found that the loaded and residual characteristics of a loaded surface depend 

primarily upon the largest magnitude load to which it has been subjected. Contact pressures and 

subsurface stresses under load, and residual deformations and subsurface stresses were found to be 

almost identical in spite of different loading history. This was the case for both elastic-perfectly 

plastic and strain hardening materials. The difference between materials lay in the magnitude of the 

quantities measured. Peak contact pressures and loaded stresses were found to rise as the ratio ET / 

E increased. As the restrictions of elastic-perfectly plastic behaviour were removed, the surface 

carried the applied load in smaller, more concentrated regions. Conversely, in the residual results, 

the deformations and residual stresses were found to decrease as ET / E increased, due to less 

plasticity. A smaller proportion of the strain in the material under load was plastic. More elastic 

recovery took place and the surface returned closer to the initial state after the load was removed. 

In the tangential loading study, sufficient load was applied such that the surfaces were on the verge 

of slipping.  The tangential load applied was 0.95 times the maximum tangential force, Fmax, for a 

range of friction coefficients. The friction coefficients assumed were rather high bearing in mind the 

observed net friction in boundary or fluid film lubrication, but were chosen to illustrate some 

measureable effects of friction. Under load, it was found that the combined normal and tangential 

loading, moved the region of highest von Mises stress closer to the surface, and also in the direction 

of the tractive force. This behaviour was more pronounced as the friction coefficient and applied 

tangential load were increased.  For friction coefficients more typical of lubricated contacts only 

small differences were found between the normal loading and combined loading results. Upon 
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raising the friction coefficient further, larger differences were seen to occur, with significant residual 

deformations taking place. 

When realistic levels of strain hardening behaviour were introduced into the tangential loading 

model, the differences in the surface under and after loading were found to be similar to those 

following the application of purely normal loading. Under load, the individual asperity contact areas 

were smaller, and more heavily loaded. This was due to the limit of the yield strength under elastic-

perfectly plastic behaviour being removed. This was also reflected in the contours of von Mises 

stress, with less difference seen in the direct stress in the tangential direction. Upon removal of the 

combined loading, the magnitude of the residual deflections was seen to decrease as ET / E 

increased, as more of the deflection under load was able to recover elastically. The residual stresses 

were distributed in a similar way, albeit peak magnitudes of stress were generally found to be 

reduced. However, the possibly troublesome regions of tensile stress at the surface remained with 

increasing ET / E, even increasing slightly in size and this may have important implications for the 

development of micropitting cracks. 
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Experimental validation of finite 

element analysis of real rough surface 

contacts 

5.1. Introduction 

This chapter describes the experimental work performed in parallel with the finite element analysis 

discussed in previous chapters. The primary aim was to provide experimental verification of the 

residual deformations obtained using the modelling techniques developed. The rig used was a twin-

disk testing machine, originally designed at the Cardiff University School of Engineering by Dr. M. 

Alanou (2006) to investigate micropitting. The test rig was developed using similar principles as in a 

pre-existing machine at the university, designed by Dr. M. Patching (1994) to investigate 

elastohydrodynamic lubrication and scuffing in aerospace gear contacts. The micropitting rig was 

subsequently modified by Dr C. Davies (2005) for research into the running-in process. This rig was 

used to perform static, loaded contacts of a ground and a superfinished disk, each of which were 

crowned, at three different circumferential positions, at nominal Hertzian contact pressures of 1.0 

GPa, 1.5 GPa and 2.0 GPa, respectively. An array of surface roughness profiles was taken at each 

contact position before and after loading. To correlate the initial and residual profiles, a Vickers 

hardness indentation was created on the circumferential surface of the ground disk, outside of the 

contact region. This allowed nominal relocation of profiles, before identifiable local valley features 

were then used to accurately correlate profiles, allowing assessment of the residual deformation as 

a result of the applied load. A finite element 2D plane strain model incorporating the geometric and 

material properties was created, and appropriate loading parameters applied. Residual profiles from 

both the experimental and finite element analysis could then be compared. Excellent correlation 

was found, providing confidence in the results. Subsequently, further in-depth analysis of the 

residual stresses caused by the contact was performed. 
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5.2. Twin-disk test rig 

5.2.1. Rig details 

The design of the twin-disk machine was based upon the principles outlined by Merritt (1935), and 

was initially designed by Alanou (2006) to study contact fatigue and micropitting in aerospace gear 

contacts. The disks are mounted on hardened steel test shafts which are flexibly coupled to driven 

input shafts. The input shafts are connected by spur gears that can be changed in order to alter the 

relative speeds of the shafts.  This functionality was not necessary as the current investigation using 

static loading so the couplings between the test and input shafts were removed. The shafts 

previously described in work by Alanou (2006) and Davies (2005) as the “fast” and “slow” shafts will 

therefore be referred to as Shafts A and B, respectively. Shafts A and B were mounted with a test 

disk, with different material properties and surface finishes. Mounted to Shaft A was a disk that had 

been nitrided and superfinished, resulting a relatively hard and smooth contact surface. Shaft B had 

a carburised and ground disk, providing a slightly softer and rougher surface. Each of these disks is 

labelled in Figure 5.1. 

In the micropitting experiments, the test shafts were mounted in the rig using rolling element 

bearings, restrained by bolted split housings. In the static load tests, these bearings were replaced 

with solid steel collars, which prevented rotation of the shafts once inserted into the test rig. Careful 

alignment of the desired contact regions was required, before the shafts were secured into place. 

The bearing housings for Shaft A were mounted directly to the base of the test rig, while the bearing 

housings for Shaft B were mounted to a swinging yoke. This allowed the shaft to move in an arc 

about the pivot located on the test rig base. This is labelled as a rotating bearing housing in Figure 

5.1. Load was applied by a hydraulic ram and push rod, which loaded the ground disk mounted on 

Shaft B against the superfinished disk mounted on Shaft A. This arrangement ensured that the load 

was transferred through the disks alone, and was applied in a smooth manner. The maximum force 

that could be applied to the contact between the disks was 8.0 kN. 
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Figure 5.1 - Isometric view of test head, showing the disks, shafts and bearing housings. 

5.2.2. Disk specification 

5.2.2.1. Disk geometry 

The disks used in the static contact loadings were of a standard geometry used within the research 

group at Cardiff for scuffing and running-in research. The disks have a diameter of 76.2 mm (3 

inches), and have a crown radius of 304.8 mm (12 inches). When loaded elastically, this gives a 

Hertzian elliptical contact with an axis ratio of 3.91. The major axis of the contact, a, is in the axial 

direction of the disk, while the minor axis of the contact, b, is in the circumferential direction. The 

geometry of the disks is shown in Figure 5.2. 
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Figure 5.2 - Drawing of test disk (all dimensions in mm). 

 

5.2.2.2. Disk material 

The disks were manufactured from case-carburising Nickel-Chromium alloy steel previously supplied 

by Rolls-Royce, to their specification RR6010, for previous work in the research group at Cardiff 

University. The composition of RR6010 steel is given in Table 5.1. 

Table 5.1 - Composition of RR6010 steel (% mass). 

Element C Si Mn P S Ni Cr Mo 

Max. 0.18 0.35 0.55 0.015 0.012 4.30 1.40 0.30 

Min. 0.14 0.10 0.25 0.0 0.0 3.80 1.00 0.20 

 

The disks were heat treated to a typical aerospace gears specification, the details of which are 

shown in Table 5.2. 
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Table 5.2 - Heat treatment specification. 

• Normalise @ 930°C ± 10°C for 3 hours ± 15 minutes 

• Harden @ 850°C ± 10°C for 3 hours ± 15 minutes 

• Temper @ 530°C ± 10°C for 3 hours ± 15 minutes 

• Carburise @ 927°C ± 10°C to yield a carburised case depth (Rc 50) of 0.036″ to 0.042″,  with 

a surface carbon (second 0.002″ cut) of 0.65% to 0.95% carbon 

• Cool to room temperature after carburising 

• Stress relieve @ 566°C to 621°C for 4 hours ± 15 minutes, then air cool 

• Harden @ 788°C to 829°C for 30 minutes, then oil quench (24°C to 60°C) 

• Subzero treat, within 60 minutes of quenching, for 3 hours minimum at -79°C or lower 

• Temper @ 160°C ±5°C for 3 hours ± 15 minutes 

• Final carburised surface hardness to be HRC 60 to 63 

• Case depth (HRC 50) to be 0.036″ to 0.042″ 

• HRC 60 depth to be 45% of 0.036″ (0.016″ of case) 

• Core hardness to be HRC 36 to 41 

 

This ended the treatment of the carburised disks, which were subsequently ground to an Ra of 

approximately 0.4 µm. The radius of the grinding wheel was large in comparison to the size of the 

circumferential face of the disks, and so the grinding lay was assumed to consist of purely axial 

features. The opposing disk was nitrided before being superfinished in house using the Abral 

process, whereby the disk was immersed in a bed of small zinc chips, water and aluminium oxide 

powder. The container is then vibrating for several hours, while the fineness of the aluminium oxide 

powder is increased in several stages, ultimately producing a superfinished component with an Ra of 

approximately 0.05 µm. As this surface finish was so smooth relative to the ground surface, it was 

assumed to be perfectly smooth in the finite element analysis. 

In order to test and verify the yield strength of the disk material, two ground, carburised disks and a 

superfinished nitrided disk were subject to Vickers hardness testing. The results of the hardness 

tests are shown in Table 5.3, Table 5.4 and  

Table 5.5. Each disk was tested in three different locations. At each location, each diagonal 

dimension of the diamond indentation was measured and recorded. The Vickers hardness was then 
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found from the appropriate chart. Also shown in the tables is the equivalent Rockwell hardness, for 

comparison against the specification previously shown in Table 5.2. It can be seen that each of the 

disks show hardness values exceeding the specification in some locations. The variation was not 

deemed significant enough to affect the results. The approximate yield strength was calculated by 

multiplying the Vickers hardness values by standard gravity, g, and dividing by 3 (Meyers and Chawla 

2009). Upon averaging the results across each of the ground, carburised disks, this gave an 

approximate yield strength of the disk material of 2.55 GPa, which was subsequently used in the 

finite element analysis. The superfinished, nitrided disk showed a yield strength of approximately 

2.86 GPa, greater than that of the ground, carburised disks. The superfinished disk was assumed to 

act purely elastically in the finite element analysis. 

Table 5.3 - Vickers hardness testing of disk RR6010B-26. 

Location Dimension  
/ mm 

Vickers Hardness  
/ kgf / mm2 

Rockwell  
Hardness 

Yield Strength  
/ GPa 

1 
0.272 752 62.1 2.46 

0.265 792 63.7 2.59 

2 
0.276 730 61.5 2.39 

0.263 804 64.2 2.63 

3 
0.274 741 61.8 2.42 

0.277 725 61.2 2.37 

Average 0.271 757 62.4 2.48 

 

Table 5.4 - Vickers hardness testing of disk RR6010B-51. 

Location Dimension  
/ mm 

Vickers Hardness 
/ kgf / mm2 

Rockwell 
Hardness 

Yield Strength  
/ GPa 

1 
0.257 842 65.3 2.75 

0.265 792 63.7 2.59 

2 
0.265 792 63.7 2.59 

0.262 810 64.4 2.65 

3 
0.260 823 64.8 2.69 

0.271 757 62.3 2.48 
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Average 0.263 803 64.0 2.62 

 

Table 5.5 - Vickers hardness testing of disk EN40BAB. 

Location Dimension / mm Vickers Hardness / kgf / mm2 Yield Strength / GPa 

1 
0.256 849 2.78 

0.252 876 2.86 

2 
0.254 862 2.82 

0.252 876 2.86 

3 
0.252 876 2.86 

0.247 912 2.98 

Average 0.252 875 2.86 

 

5.2.3. Load calibration 

The load cell in the test rig was first calibrated against a known load. The rig was designed with an 

attachable lever arm to which known masses could be attached, applying a known force in turn to 

the load cell. The magnitude of the force at the load could be calculated by the ratio of the lever arm 

dimensions between the mass and the pivot, and the pivot and the load cell. These were 500 mm 

and 47 mm respectively. Mass was added in 5 kg increments and the reading from the load cell was 

allowed to settle before being recorded. This was repeated until a final mass of 70 kg was attached, 

corresponding to a force on the load cell of 7303 N. This force applied to the disks would result in a 

nominal Hertzian contact pressure of just over 2.0 GPa. The mass was removed in 5 kg increments in 

a similar manner. The recorded load cell results can be seen in Table 5.6. 
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Table 5.6 - Load cell calibration results. 

Mass / kg Force / N 
Theoretical Force 

at Load Cell / N 

Loading Unloading Loading x 0.9 Unloading x 0.9 

Force / N Error Force / N Error Force / N Error Force / N Error 

5 49.0 521.6 568 8.9% 586 12.3% 511.2 -2.0% 527.4 1.1% 

10 98.1 1043.3 1120 7.4% 1137 9.0% 1008.0 -3.4% 1023.3 -1.9% 

15 147.1 1564.9 1677 7.2% 1688 7.9% 1509.3 -3.6% 1519.2 -3.0% 

20 196.1 2086.5 2247 7.7% 2258 8.2% 2022.3 -3.1% 2032.2 -2.6% 

25 245.2 2608.2 2823 8.2% 2826 8.4% 2540.7 -2.6% 2543.4 -2.5% 

30 294.2 3129.8 3398 8.6% 3395 8.5% 3058.2 -2.3% 3055.5 -2.4% 

35 343.2 3651.4 3993 9.4% 3994 9.4% 3593.7 -1.6% 3594.6 -1.6% 

40 392.3 4173.0 4593 10.1% 4598 10.2% 4133.7 -0.9% 4138.2 -0.8% 

45 441.3 4694.7 5190 10.6% 5198 10.7% 4671.0 -0.5% 4678.2 -0.4% 

50 490.3 5216.3 5791 11.0% 5800 11.2% 5211.9 -0.1% 5220.0 0.1% 

55 539.4 5737.9 6408 11.7% 6408 11.7% 5767.2 0.5% 5767.2 0.5% 

60 588.4 6259.6 6992 11.7% 6996 11.8% 6292.8 0.5% 6296.4 0.6% 

65 637.4 6781.2 7580 11.8% 7590 11.9% 6822.0 0.6% 6831.0 0.7% 

70 686.5 7302.8 8162 11.8% 
  

7345.8 0.6% 
  

           

   
Mean 9.7% Mean 10.1% Mean -1.3% Mean -0.9% 

   
Max. 11.8% Max. 12.3% Max. 0.6% Max. 1.1% 

   
Min. 7.2% Min. 7.9% Min. -3.6% Min. -3.0% 
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It can be seen from the table that the readings taking directly from the load cell overestimate the 

load being applied to the disks, with an average error of around 10% in both the loading and 

unloading phase. To counter this, the measured force from the load was multiplied by a factor of 

0.9, which significantly reduces the error across the range tested, reducing the average error to 

around 1% in the loading and unloading phases. The force read from the load cell, and the factorised 

force are shown in Figure 5.3, showing the reduction in error. This allowed the applied load to be 

more accurately controlled, which was important for comparisons with the finite element analysis.  

 

Figure 5.3 - Applied mass versus force at load cell and calibrated force. 
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5.3. Experimental 

5.3.1. Profile measurement 

In order to compare experimental results with the finite element analysis, the surface roughness 

profiles before and after loading were required. Profiles were taken using a standard stylus 

profilometer made by Taylor-Hobson, with the Talysurf probe highlighted in green in Figure 5.4. 

Profiles were recorded by moving the probe in the x-direction, as shown by the blue arrow. A 

moveable stage was utilised, that allowed movement perpendicular to the probe measurement 

direction, in the transverse, or y-direction. This allowed measurement of an array of surface 

roughness profiles across the contacting edge of the ground disk. The disk was mounted upon a test 

shaft, and a bespoke jig was made using v-blocks to fix the disk and shaft to the moveable stage.  

 

Figure 5.4 - Talysurf and moveable stage with ground disk mounted on test shaft with solid 

bearing replacements. Circumferential location markings are indicated by red arrows. 

An array of profiles ensured that the entire contact was detected and that profiles from outside the 

contact region (axially) could be used to relocate the initial and residual profiles in the 

circumferential direction. To simplify this process, each disk had a number of circumferential 

positions marked on the face of the disk, as seen in Figure 5.4, indicated by the red arrows. These 
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marked locations would be lined up to contact in the test rig so the approximate circumferential 

location is known. On the contacting edge, a Vickers hardness test indentation was made outside of 

the contact area lined up with the face markings, as shown in Figure 5.5. The Vickers indentation 

allowed a greater level of accuracy in the relocation than the circumferential markings. The 

circumferential offset to relocate the profile with the Vickers indentation could then be applied to 

the profiles within the contact region, before local valley features unaffected by the contact loading 

were used to fine tune the profile relocation. 

 

Figure 5.5 - Illustration of Vickers indentation location used for profile relocation. 

The crown of the disk was found in both the x- and y-directions (circumferential and axial) using the 

appropriate function within the Taylor Hobson Talysurf Ultra software. The stylus was then offset 5 

mm in the x-direction and 4.75 mm in the y-direction. An array of 10 mm long profiles in the x-

direction was then taken, spaced 0.5 mm apart in the y-direction. The array of profiles is shown in 

Figure 5.6, as presented in the TalyMap presentational software. The Vickers indentation used for 

profile relocation can be clearly seen between y = 8.0 mm and y = 8.5mm at approximately x = 

4.5mm, and is circled for clarity. 
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Figure 5.6 - 3D representation of the array of surface roughness profiles taken from ground disk. 

Vickers indentation used for profile relocation is circled. 

5.3.2. Loading of disks 

Once the array of initial surface roughness profiles had been measured using the Talysurf, the shaft 

mounted disks were secured in the test rig, with the required circumferential locations aligned for 

contact. For a nominal Hertzian contact pressure of 1.0 GPa, a load of approximately 900 N was 

required. The load was increased slowly until the specified load was achieved, and was maintained 

while the gauge readout was allowed to settle. The load was then slowly reduced to zero, before the 

disks were separated from contact and the shafts removed from the test rig. The ground disk was 

then returned to the Talysurf and another array of surface roughness profiles was measured. For 

nominal Hertzian contact pressures of 1.5 GPa and 2.0 GPa, loads of approximately 3.0 kN and 7.2 

kN were required, respectively. 
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5.3.3. Profile relocation 

Following loading, the raw profiles were filtered using a Gaussian filter with a cut-off of 0.25 mm. 

This removed the underlying form of the disks. To relocate the profiles such that the surface 

roughness was aligned, the profile with the Vickers hardness indentation was first used to provide a 

general relocation offset in the x-direction. The unfiltered and filtered profiles with the Vickers 

hardness indentation can be seen in Figure 5.7a and b, where the red and blue curves give the 

surface profile measurement before and after loading respectively. Also shown in Figure 5.7b are the 

roughness parameters Ra, Rz and Rsk for the measured profile before and after loading. Due to the 

presence of the Vickers indentation, the parameters were calculated for two sections of the profile; 

up to 4.5 mm and after 6.0 mm. This ensured that the Vickers indentation did not distort the 

calculations. The Ra value found of between 0.357 µm and 0.394 µm is similar to that of the 

measured gear teeth profiles from Chapter 3, showing that the techniques used are appropriate for 

recreating such components. What can also be seen in these parameters is the similarity of the 

parameters for each section before and after loading, showing that the surfaces have not undergone 

any significant surface deformation between measurements. 
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Figure 5.7 - Surface roughness profile including Vickers hardness indentation; a) raw, b) filtered. 

The arrays of profiles before and after loading were then assessed to find the profiles in which 

plastic deformation had occurred. Those profiles with residual shape change were deemed to have 

been within the contact region, while those without were discarded. This gave an approximate size 

of the contact in the y-direction, determining the major axis length of the contact, a. The contact size 

in the x-direction, the minor axis length of the contact, b, could be estimated by measuring the 

distance between the first and last deformed asperities in the x-direction using the profile whose y-

coordinate was in the centre of the contact. This gave a contact with approximate dimensions of a = 
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1.250 mm and b = 0.591 mm. For an elliptical contact with a nominal Hertzian contact pressure of 

1.0 GPa, the approximate contact dimensions are a = 1.349 mm and b = 0.337 mm, while for a line 

contact with the same pressure the approximate contact dimension is given by a = 0.342 mm 

(equivalent to b in an elliptical contact). It can be seen by comparing the theoretical results that 

approximate an elliptical contact with a line contact results in an overestimate of the contact 

pressure. However, the approximate contact dimensions predicted by the finite element analysis still 

differ from theory fairly noticeably. In the y-direction, considering the major contact dimension a, 

profiles were taken every 0.50 mm, and could therefore only measure the overall contact size, 2a, to 

a precision of 1.0 mm. Therefore the precision of a is 0.5 mm, and so the difference between the 

finite element analysis and theory is within the expected margin of error. For the minor contact 

dimension, b, the uncertainty is a result of the difference in geometry and material properties in 

comparing the finite element analysis and theory. The rough surface results in asperity features far 

above the smooth surface in Hertzian theory. The precision of measurement of the minor contact 

dimension is proportional to the distance between prominent asperity features that result in 

residual deflection, which is unique to each rough surface. 

Figure 5.8a shows the relocated initial and residual profiles from the approximate centre line of the 

contact region. The 2.0 mm length of surface roughness shown, from x = −1.0 mm to x = 1.0 mm, 

was the surface roughness imported into Abaqus for analysis. For the 1.5 GPa and 2.0 GPa models, 

widths of 2.5 mm and 3.0 mm were imported to allow for the increased contact size. Figure 5.8b 

shows a magnified view of the surface roughness, which illustrates the profile relocation and plastic 

asperity deformation more clearly. 
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Figure 5.8 - Initial and residual profiles after relocation; a) complete profile, b) magnified view 

showing asperity deflection. 

5.4. Finite element modelling 

5.4.1. Model details 

For the nominal Hertzian contact pressure of the 1.0 GPa model, the 2.0 mm length of surface 

roughness from the carburised, ground disk previously shown in Figure 5.8 was superimposed onto a 

smooth surfaced roller of radius 38.1 mm (the radius of the test disks) as illustrated in Figure 5.9. 

This rough surfaced roller data was then imported into Abaqus using a Python script, and a 2D 
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deformable part created. For the 1.5 GPa and 2.0 GPa nominal Hertzian contact pressure models, 

the length of roughness imported was 2.5 mm and 3.0 mm, respectively to allow for the increase in 

expected contact size, whilst maintaining distance between the contact and the model boundaries. 

The counter surface was assumed to be a smooth, purely elastic body, due to the relative roughness 

and hardness of the surface of the superfinished, nitrided disk as previously described in Section 

5.2.2.2. 

In contrast to previous models, each contacting body consisted of three separate parts that were 

assembled to create each contacting roller. Each constituent part was the same width, and the side 

boundaries aligned within the Assembly module. Where each part contacted another, the surfaces 

were joined using surfaces ties. This can be seen in Figure 5.10. Figure 5.10a shows the constituent 

parts before final assembly with surfaces to be tied highlighted in red. Once the surface ties had 

been applied, the parts were then assembled as in Figure 5.10b to create the final rough roller parts. 

The reason behind this choice was to reduce the overall number of elements within the relatively 

large model, thus reducing computational time, without compromising the number of elements at 

the contact surface, and affecting the accuracy of the simulation. In previous modelling, biased mesh 

seeds had been used to increase element size remote from the contact surface; the use of surface 

ties allows for more rapid transitions. The Abaqus User’s Manual (Abaqus 2010) specifically 

recommends surface ties for this purpose. Given the relatively large size of the contact and 

associated model, a large number of elements are required to solve the problem with a sufficient 

degree of accuracy. The number of elements at the surface is particularly important as this defines 

the accuracy at each asperity contact and the stresses in the surrounding material. However, the 

stresses within the bulk material remote from the immediate subsurface material are of relatively 

little interest, and so a much lower mesh density in these regions is desirable to reduce computation 

time. It was found that by utilising separate parts with tied surface constraints, a smaller number of 

elements could be used in the model compared to smooth transitioning of element sizes away from 

the contact. The discontinuous mesh used for the nominal Hertzian contact pressure of 1.0 GPa 
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model can be seen in Figure 5.10, with three separate sections of height 0.05 mm, 0.75 mm and 1.2 

mm shown in Figure 5.10a. These dimensions were determined as a resulting of experimentation. 

For the load cases considered, the highest stresses and material plasticity was limited to the surface 

layer of 0.05 mm. Stresses in the remaining layers were significantly less, significantly below the 

yield strength. The middle layer had some stress variation, while the final top layer was essentially in 

uniaxial compression. As the material was specified to have a hardness of HRC 60 to a minimum of 

0.183 mm, it was therefore decided that varying material properties with material depth was 

unnecessary. The mesh in the smallest section at the surface is hidden, because at the scale shown 

in the figure the elements are too small to be seen. 
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Figure 5.9 - Creation of rough surface roller; a) Filtered test disk roughness profile, b) Smooth 

roller profile, c) Filtered test disk roughness profile superimposed on smooth roller profile. 
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Figure 5.10 - Screenshot of rough roller contact model, showing mesh discontinuities and surface 

ties (red); a) before final assembly, b) after final assembly. All dimensions in millimetres. 

For each of the combined rough and smooth rollers, the total minimum depth was 2.0 mm above 

the rough surface, as shown in Figure 5.10b, in order to avoid interaction between the field outputs 

around the surface and the effects of the model boundary. The size of the elements for the rough 

surfaced roller was approximately 1.0 µm at the contact, resulting in an accuracy of ± 0.5 µm at the 

edges of each asperity contact. The elements used were fully integrated elements, and the ALE 

Adaptive Meshing settings were continued from the model experimentation study. Due to 

computational resource limits, the absolute penetration tolerance was increased from previous 

models, allowing maximum penetration of 10
-9

 m. Surface elements were assessed for distortion and 

excess penetration to ensure model validity. This was trailed through comparison of a single load 

case, and differences between the results were found to be negligible. 

The plastic materials properties used the yield stress estimated experimentally in Section 5.2.2.2, 

giving a yield strength, σy, of 2.550 GPa. Initially, the material properties were defined to be elastic-

perfectly plastic, but difficulties were encountered in getting the model to complete successfully due 

to the numerical difficulties caused by the incompressibility of elastic-perfectly plastic material. This 
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material definition can result in volumetric locking as previously described in Chapter 3, Section 

3.4.1.2. The plastic behaviour was modified from the elastic-perfectly plastic case used previously to 

include linear strain hardening behaviour of ET / E = 0.01; which gave a close approximation to 

elastic-perfectly plastic behaviour without the numerical difficulties of incompressibility, which lead 

to solution problems at asperity contacts. These material properties were also varied to test the 

effects on the results. The yield strength was modified by ± 10%, giving additional yield strengths of 

2.295GPa and 2.805GPa while the linear strain hardening behaviour was changed to ET / E = 0.05 for 

each yield strength too. This range of strain hardening behaviour reflects those typically found in 

engineering steels (Kogut and Etsion 2002). The remaining modelling details are similar to those 

used in previous models. The summary of the test disk contact model can be seen in Table 5.7. 
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Table 5.7 - Test disk contact model summary. 

Part 

2D rough roller – Imported test disk surface profiles 

2D rough roller middle section 

2D rough roller end section 

2D smooth roller 

2D smooth roller middle section 

2D smooth roller end section 

Property 

Rough: E = 200 GPa, ν = 0.3,  

σy = 2.295GPa, 2.550 GPa, 2.805 GPa 

ET / E = 0.01, 0.05 

Smooth: E = 200 GPa, ν = 0.3 

Assembly Model boundaries aligned. Parts on the verge of contact 

Step 
Initial (required), Contact, Load, Removal 

ALE Adaptive Meshing – Frequency = 1, Remeshing sweeps = 10 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Finite Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 1x10
−9

m 

Surface ties applied to adjacent surfaces of constituent roller parts 

Load 
800 N, 2700 N, 6480 N total load, applied as a distributed load acting on bottom 

edge of smooth surface part 

Boundary 

Conditions 

Small vertical displacement applied to bottom edge of smooth surface part to 

initiate contact 

Top edge of rough surface part restrained (Ux = Uy = 0) 

Side edges of rough and smooth surface parts restrained in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 

Fully integrated elements 

 

In order to validate the finite element analysis of each full contact, the residual profiles from the 

measured disk and numerical model were correlated and compared. For each contact, the profiles 

were correlated by aligning the measured initial and residual profiles from outside of the contact 

region, using the Vickers hardness indentation as a reference. The profiles inside the contact region 

were then adjusted using identifiable local valley features. 
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For simplicity, the application of nominal Hertzian contact pressures of 1.0 GPa, 1.5 GPa, and 2.0 GPa 

will be referred to in the text as Load Case 1, 2 and 3 respectively, while each of the surfaces subject 

to these load cases will be referred to as Surface 1, 2 and 3. It would be impractical to show and 

discuss results for the entire contact for each load case, so three sections of each surface have been 

selected for presentation. These sections have been chosen to both to show a range of asperity 

contacts that occur in each load case, and to show sections of the surface from across the entire 

contact region. Typically sections were chosen from around the contact centre line, and one from 

either side, to illustrate the agreement under a range of loading conditions. 

For Load Case 1 and Surface 1, these sections are from x = −0.29 mm to x = −0.19 mm, from x = 

−0.13 mm to x = −0.03 mm, and from x = 0.25 mm to x = 0.35 mm. These sections will subsequently 

be referred to as Sections 1a, 1b and 1c respectively. For Load Case 2 and Surface 2, these sections 

are from x = −0.36 mm to x = −0.26 mm, from x = −0.10 mm to x = 0.00 mm, and from x = 0.32 mm 

to x = 0.42 mm. These sections will subsequently be referred to as Sections 2a, 2b and 2c 

respectively. For Load Case 3 and Surface 3, these sections are from x = −0.26 mm to x = −0.16 mm, 

from x = −0.06 mm to x = 0.04 mm, and from x = 0.43 mm to x = 0.53 mm. These sections will 

subsequently be referred to as Sections 3a, 3b and 3c, respectively. 

5.4.2. 1.0 GPa nominal Hertzian contact pressure model results 

5.4.2.1. Resolution results 

Surface 1 was simulated with Load Case 1 with mesh resolutions of both 0.5 µm and 1.0 µm, in order 

to check the dependency of the results on the resolution. Figure 5.11a, b and c show the residual 

profiles for each of the resolution models for Sections 1a, 1b and 1c respectively, as well as the initial 

and measured profiles. It can be seen that for each of the sections shown that the 0.5 µm and 1.0 

µm resolutions show good agreement with each other, and good agreement with the measured 

residual profile. Small differences between the measured residual profile and each of the simulated 

results are noticeable in some locations however, primarily in local valley features where material 
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has been forced into a valley as a result of the plastic flow in the vicinity of the loaded contact. This 

can be seen in Figure 5.11a, Figure 5.11b and Figure 5.11c at x = −0.228 mm, x = −0.072 mm and x = 

0.277 mm respectively. 

 

Figure 5.11 - Residual profiles for sections of the rough roller, also showing effect of resolution; a) 

Section 1a, b) Section 1b, c) Section 1c. Also shown are the initial and residual measured profiles. 

σy = 2.550 GPa and ET / E = 0.01 for each resolution. 

Figure 5.12 shows the residual von Mises stress contours for each of the 1.0 µm and 0.5 µm 

resolution models, for Section 1b. It can be seen that over most of the zone shown the von Mises 

stress values in the subsurface material follow the same distribution in both models. The main 

difference between the two models is in the region of high magnitude stress at the surface of the 
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deformed asperity between x = −0.083 mm and x = −0.071 mm. At approximately x = −0.0745 mm, a 

small region of slightly higher magnitude stress is seen to occur in the 1.0 µm resolution model.  The 

difference between the peak stresses at this location is relatively small, at 0.22σy. 

 

Figure 5.12 - Contours of normalised residual von Mises stress for Section 1b; a) 1.0 µm resolution, 

b) 0.5 µm resolution. σy = 2.550 GPa and ET / E = 0.01 for each resolution. 

Figure 5.13 shows the contours of normalised residual direct stress in the tangential direction for the 

1.0 µm and 0.5 µm resolution models, for Section 1b. As with the contours of residual von Mises 

stress, the stress distributions in the subsurface material are generally similar between each of the 

models. The main differences occur in the size of the regions of subsurface tension at x = −0.123 

mm, z = 0.005 mm and x = −0.103 mm, z = 0.005 mm. In each case, these regions are larger in the 

0.5 µm resolution model. At the surface, for the heavily loaded asperity between x = −0.083 mm and 

x = −0.071 mm, the region in which the highest stress occurs is slightly larger in the 0.5 µm 

resolution model. Slightly higher magnitude stresses are also seen to occur at the asperities at 

approximately x = −0.103 mm and x = −0.095 mm. 
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Figure 5.13 - Contours of normalised residual direct stress in the tangential direction for Section 

1b; a) 1.0 µm resolution, b) 0.5 µm resolution. σy = 2.550 GPa and ET / E = 0.01 for each resolution. 

As a result of the study of the mesh resolution, it was decided that a 1.0 µm resolution was sufficient 

to model the contacts accurately, whilst maintaining reasonable computation times. Additionally, 

surfaces using a 0.5 µm resolution were found to have more element distortion. This did not appear 

to introduce any error in this particular case, but in order to maintain a robust methodology, 

reduced element distortion was preferable. Therefore, the remainder of the results discussed, both 

for this surface and Surfaces 2 and 3, therefore utilised a mesh resolution of 1.0 µm. 

5.4.2.2. Residual results 

Figure 5.14, Figure 5.15 and Figure 5.16 show the residual profiles of Sections 1a, 1b and 1c of 

Surface 1 after simulations assuming yield strengths of σy = 2.295 GPa, σy = 2.550 GPa, and σy = 2.805 

GPa. Also shown are the measured initial and residual profiles. Each yield strength was tested for 

both ET / E = 0.01 and ET / E = 0.05, which covers the practical range for engineering steels (Kogut 

and Etsion 2002). Also shown are magnified views of individual asperity features, showing the 
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difference between each of the material property sets in greater detail. As previously found in 

Chapter 4, increasing ET / E results in smaller magnitude residual deflections, because a greater 

proportion of the loaded strain is elastic. This is most evident at the asperity tips, where the residual 

deflections are greatest. 

 

Figure 5.14 - Residual profiles for Section 1a showing effect of yield strength; a) ET / E=0.01, b) ET 
/ E = 0.05, c) Magnified view of ET / E = 0.01 for x = −0.230 to x = −0.215 mm, d) Magnified view 

of ET / E = 0.05 for x = −0.230 to x = −0.215 mm. Also shown are the initial and residual measured 

profiles. 
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Figure 5.15 - Residual profiles for Section 1b showing effect of yield strength; a) ET / E = 0.01, b) 

ET / E = 0.05, c) Magnified view of ET / E = 0.01 for x = −0.085 to x = −0.070 mm, d) Magnified 

view of ET / E = 0.05 for x = −0.085 to x = −0.070 mm. Also shown are the initial and residual 

measured profiles. 
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Figure 5.16 - Residual profiles for Section 1c showing effect of yield strength; a) ET / E = 0.01, b) ET 
/ E = 0.05, c) Magnified view of ET / E = 0.01 for x = 0.265 to x = 0.280 mm, d) Magnified view of 

ET / E = 0.05 for x = 0.265 to x = 0.280 mm. Also shown are the initial and residual measured 

profiles. 

It can be seen in each figure that for each ratio of ET / E, a closely related family of profiles are 

produced for the range of yield strengths tested. The largest magnitude residual deflections are seen 

to occur for the lowest of the yield strengths tested, σy = 2.295GPa, while the smallest deflections 

are seen for the largest tested yield strength, σy = 2.805GPa. This is not unexpected, as for a given 

magnitude of stress, a larger proportion of the strain is plastic for the lowest yield strength, and vice 

versa for the highest yield strength.  
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Whilst each of the choices of yield strength and linear strain hardening behaviour offer good 

approximations to the residual deflections seen across the contact, some combinations more closely 

reflected the residual profile measured from the disk itself. In Figure 5.14a, for ET / E = 0.01, the 

closest profile to the measured residual profile is given by σy = 2.805 GPa. This is not only 

significantly over the disk specification outlined in Table 5.2 of a surface hardness of HRC 60 to 63 (σy 

= 2.21GPa to σy = 2.65GPa), but above any of the measured hardness values in Table 5.3 and Table 

5.4. While the lower value of yield strength tested, σy = 2.295GPa, is lower than those measured, it is 

within the specification of the disks. It is therefore suggested that either σy = 2.295 GPa or σy = 2.550 

GPa be considered in preference to σy = 2.805 GPa. By examining the profiles of the ET / E = 0.05 

material in Figure 5.14b, it can be seen that the deflections predicted for the two lower yield 

strengths provide a more accurate approximation to the measured residual profile. Similar 

behaviour can be seen in Figure 5.15, where for ET / E = 0.01 in Figure 5.15a, the profile for σy = 

2.805 GPa provides the closest agreement. However, by considering the results for ET / E = 0.05 in 

Figure 5.15b, the residual profiles for the materials with σy = 2.295 GPa and σy = 2.550GPa provide 

better agreement with the experimental result. In Figure 5.16, the same trend of behaviour is seen 

for the asperity between x = 0.271 mm and x = 0.276 mm, where the most accurate approximations 

are provided by σy = 2.805 GPa for ET / E = 0.01 in Figure 5.16a, and σy = 2.295 GPa and σy = 2.550 

GPa for ET / E = 0.05 in Figure 5.16b. However, for the asperity between x = 0.326 mm and x = 0.331 

mm each of the tested material combinations underestimates the magnitude of residual 

deformation. As this position of the profile is near the edge of the predicted contact area for a 

nominal Hertzian contact pressure of 1.0 GPa, it is thought that this may be attributable to slight 

discrepancies in loading, or imprecise location of the contact centre when creating the finite 

element model. It is therefore suggested that the material combination which gives the best 

agreement with the experimental results is either σy = 2.295 GPa or σy = 2.550 GPa with linear strain 

hardening behaviour of ET / E = 0.05. 
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Figure 5.17 shows contours of normalised residual von Mises stress for the three sections of Surface 

1. Figure 5.17a, b and c show the contours for Section 1a, 1b and 1c respectively. It can be seen that 

larger residual deflections result in larger regions of high magnitude residual stress. This can be seen 

in particular in Figure 5.17b for the asperity feature between x = −0.082 mm and x = −0.070 mm, 

which experienced the largest residual deflection of the asperities shown. The surrounding region 

shows the largest region of high magnitude von Mises stress, of the order of the yield strength, 

shown in red. Additionally, the subsurface material beneath this asperity feature experiences 

residual stress to a larger depth, with residual von Mises stress above 0.10σy at a depth of z = 0.019 

mm. Asperities with less residual deflection still experience regions of high magnitude residual 

stress. This can be seen in Figure 5.17a between x = −0.272 mm and x = −0.266 mm, in Figure 5.17b 

between x = −0.104 mm and x = −0.101 mm and in Figure 5.17c between x = 0.270 mm and x = 0.275 

mm. However, the effect on subsurface material is less pronounced, with stresses of above 0.1σy 

limited to depth of approximately z = 0.010 mm for each of these regions. One instance of a very 

lightly loaded asperity can be seen in Figure 5.17a, at x = −0.253 mm. Little residual deflection can be 

seen in the roughness profile at this location in Figure 5.14. However, the residual stress contour 

suggests a lightly loaded contact, as residual stresses occur. Figure 5.17a also shows how contact of 

neighbouring asperity features can result in interaction of stress contours, which can be seen 

between contacts x = −0.234 mm and x = −0.231 mm and between x = −0.226 mm and x = −0.222 

mm, with a region of increased magnitude “linking” the two contact regions at approximately x = -

0.227 mm, z = 0.004 mm. 
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Figure 5.17 - Contours of normalised residual von Mises stress; a) Section 1a, b) Section 1b, c) 

Section 1c. σy = 2.550 GPa and ET / E = 0.05 for each section. 

Figure 5.18 shows contours of the normalised residual direct stress in the tangential direction for the 

three sections of Surface 1. Figure 5.18a, b and c show the contours for Section 1a, 1b and 1c 

respectively. As in the von Mises stress contours, the heavily loaded asperity feature between x = 

−0.082 mm and x = −0.070 mm in Figure 5.18b shows the largest region of surface tensile stress, and 

it could be suggested that the surface stress is related to the amount of residual deflection of the 

asperity. However, asperity features between x = −0.234 mm and x = −0.231 mm, and between x = 

−0.226 mm and x = −0.222 mm in Figure 5.18a, and between x = 0.272 mm and x = 0.275 mm, and 
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between x = 0.326 mm and x = 0.330 mm in Figure 5.18c each experience similar magnitudes of 

residual deflection, whilst exhibiting different levels of surface tensile stress, suggesting that the 

residual change in asperity height is not the only factor to be taken into account. 

 

Figure 5.18 - Contours of normalised residual direct stress in the tangential direction; a) Section 1a, 

b) Section 1b, c) Section 1c. σy = 2.550 GPa and ET / E = 0.05 for each section. 

In the subsurface material a band of compressive stress separates these surface tensile stresses from 

subsurface regions of tension found to occur beneath asperity contacts. As with the surface tensile 

stress, this appears to be related to the amount of residual deflection occurring for each asperity. 

This can be seen beneath the heavily loaded asperity feature between x = −0.082 mm and x = −0.070 
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mm, where the largest region of high magnitude tensile stress in the sections shown can be seen. 

However, with other asperity features that experience similar residual deflections, differences can 

be seen in the subsurface tensile stresses as well as those at the surface. It is suggested that this is 

related to the proximity of other asperity contacts. The more isolated asperity contacts between x = 

−0.272 mm and x = −0.266 mm in Figure 5.18a and between x = 0.270 mm and x = 0.275 mm in 

Figure 5.18c result in single “peaks” of subsurface tensile stress. In Figure 5.18a, the two 

neighbouring asperity features between x = −0.234 mm and x = −0.231 mm and between x = −0.226 

mm and x = −0.222 mm cause interaction in the stress contours, resulting in two subsurface “peaks” 

at approximately x = −0.236 mm and x = −0.216 mm at a depth of z = 0.01 mm, separated by a 

region of compressive stress. Additionally, the magnitude of residual deflection seems to be 

reflected in the depth at which the peak residual tensile stress occurs. In Figure 5.18b, the peak 

surface tensile stress occurs at a depth of approximately z = 0.018mm beneath the heavily loaded 

asperity feature. In Figure 5.18b and Figure 5.18c it occurs at approximately z = 0.01 mm. The 

subsurface tensile stresses shown do extend beyond the depth shown in each of the figures, but are 

typically restricted to the bottom layer of the model previously shown in Figure 5.10. This is a depth 

of approximately 50 µm. The peak subsurface tensile stresses are found to occur in the material 

depth plotted. 

5.4.2.3. Loaded results 

Figure 5.19 shows contours of normalised von Mises stress for the three sections of Surface 1. Figure 

5.19a, b and c show the contours for Section 1a, 1b and 1c respectively. Each of the asperity contact 

regions previously discussed are apparent in the form of high magnitude von Mises stresses, 

showing plastic material behaviour. From the residual results, it can be seen that the majority of the 

residual von Mises stresses greater than 0.1σy are in regions with von Mises stress greater than 

0.95σy whilst under load. In the residual von Mises stress contours, only contact for which plasticity 

had occurred were detectable. However, under load, contacts resulting in elastic stress can be seen. 

Examples of these contacts can be seen in Figure 5.19b between x = −0.048 mm and x = −0.042 mm, 
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and between x = 0.298 mm and x = 0.300 mm in Figure 5.19c. Interaction can again be seen to occur 

between the two neighbouring asperity features between x = −0.234 mm and x = −0.231 mm and 

between x = −0.226 mm and x = −0.222 mm in Figure 5.19a. This interaction results in yielding 

material at similar depths (z = 0.016mm) to the heavily loaded asperity feature in Figure 5.19b 

between x = −0.082 mm and x = −0.070 mm.  

 

Figure 5.19 - Contours of normalised von Mises stress; a) Section 1a, b) Section 1b, c) Section 1c. σy 

= 2.550 GPa and ET / E = 0.05 for each section. 

Figure 5.20 shows contours of the normalised direct stress in the tangential direction for each of the 

three sections of Surface 1. Figure 5.20a, b and c show the contours for Section 1a, 1b and 1c 
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respectively. It can be seen that while the surface is under load, the direct stresses in the tangential 

direction are predominantly compressive. The largest magnitude compressive stresses can be found 

to occur at the surface, in the regions in which contact occurs. As previously shown in Figure 5.18, 

these regions have tensile stresses after loading, and so under repeated loading undergo cyclic 

variation between compressive and tensile stress, potentially leading to surface crack initiation and 

propagation. 

 

Figure 5.20 - Contours of normalised direct stress in the tangential direction; a) Section 1a, b) 

Section 1b, c) Section 1c. σy = 2.550 GPa and ET / E = 0.05 for each section. 
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In the subsurface material, the magnitude of compressive stress reduces in regions away from the 

direct contact zone. In some locations, small regions of tensile stress can also been found to occur. 

This can be seen in Figure 5.20a at x = −0.269 mm, z = 0.009 mm, in Figure 5.20b at x = −0.076 mm, z 

= 0.016 mm and in Figure 5.20c at x = 0.272 mm, z = 0.010 mm. These regions correlate with the 

regions of highest magnitude residual tensile stress shown in Figure 5.18. The small magnitude 

compressive stresses (0.00σy to -0.25σy) in the subsurface material also following similar contours to 

the regions of residual tensile stress. However, while the highest magnitude of tensile stress under 

load can be seen in Figure 5.20c at x = 0.272 mm, z = 0.010 mm, the largest residual tensile stress is 

found in Figure 5.18b at x = −0.005 mm, z = 0.017 mm. 

5.4.3. 1.5GPa nominal Hertzian contact pressure model results 

5.4.3.1. Residual results 

Figure 5.21 shows the residual profiles of the three sections of Surface 2 after loading with Load 

Case 2. Figure 5.21a, b and c show the residual profiles for Section 2a, 2b and 2c, respectively. Each 

figure shows the as-measured initial and residual profiles from the ground disk, as well as the 

residual profile created using the present modelling techniques. The plastic material properties used 

for the simulation were a yield strength, σy, of 2.550 GPa, and strain hardening behaviour of ET/E = 

0.05. These properties were chosen as a result of the range of properties tested in Section 5.4.2. 

Good agreement is found between the present model and the measured residual profile across a 

number of locations, although in some places discrepancies can be found. Overall, the agreement 

between the finite element analysis and the experimental results is not as consistent as was 

previously found for Load Case 1 in Section 5.4.2. An example of this can be seen in Figure 5.21a 

between x = −0.357 mm and x = −0.351 mm where the present model overestimates the deflection 

of the asperity. However, in Figure 5.21b, the present model underestimates the deflection of the 

asperity between x = −0.047 mm and x = −0.044 mm. This kind of variation between over- and 

underestimating the magnitude of asperity deflections occurs throughout the contact region. This 
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deviation is evident in the difficulty in consistently aligning local valley features. For example, in 

Figure 5.21a, good agreement is seen between all profiles in the unloaded section of roughness 

between x = −0.306 mm and x = −0.280 mm. However, from approximately x = −0.280 mm to x = 

−0.260 mm, the present model profile can be seen to be beneath both measured profiles, and in 

some instances, the measured residual profile is above the initial measured profile.  

 

Figure 5.21 - Residual profiles for sections of the rough roller; a) Section 2a, b) Section 2b, c) 

Section 2c. Also shown are the initial and residual measured profiles. σy = 2.550 GPa and ET / E = 

0.05 for each section. 
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This is not an isolated incident, and a larger discrepancy between measured profiles can be seen 

between x = −0.097 mm and x = −0.094 mm in Figure 5.21b. It is thought that these issues may 

originate in the way the raw roughness profiles are treated using a Gaussian filter. For a higher load, 

there is a greater change in the measured roughness profile and so there will be a bigger change 

between the mean surface heights produced by the filter for the two profiles. Another potential 

cause for difference is in the contact counter face. In the experiments, the case-carburised, ground 

disks were opposed by a nitrided, superfinished disk. In the finite element analysis, this disk was 

idealised as a perfectly smooth, elastic surface. Although relatively small in comparison to the 

ground disk, the superfinished disk will still have rough features. The stress in the disk may also be 

sufficient to cause material yield. Using hardness tests as in Table 5.5, the yield strength of the 

nitrided disk was found to be approximately 2.86 GPa. While plasticity at lower loads is restricted to 

asperity features, at higher loads, plasticity in the counter surface may be significant, and be a factor 

in the discrepancies between the analysis and experimental results. 
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Figure 5.22 - Contours of normalised residual von Mises stress; a) Section 2a, b) Section 2b, c) 

Section 2c. σy = 2.550 GPa and ET / E = 0.05 for each section. 

Figure 5.22 shows contours of residual normalised von Mises stress for each of the three sections of 

Surface 2. Figure 5.22a, b and c show the contours for Section 2a, 2b and 2c, respectively. As 

previously shown in Figure 5.17, the majority of the high magnitude residual von Mises stress occurs 

in close proximity to the surface, with the highest magnitudes occurring as a result of heavily loaded 

contacts, and large plastic deflections. In comparison to the results from Load Case 1, asperity 

contacts are more frequent and have less space between them, as a result of the increased load. 

Therefore, more interaction between contacts occurs. This is evident in Figure 5.22a and Figure 
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5.22b, where no surface material shows a level of von Mises stress less than 0.1σy, with only a small 

section between x = 0.320 mm and x = 0.325 mm in Figure 5.22c showing such low levels of von 

Mises stress. The depth in which von Mises stress less than 0.1σy  occurs is similar to that found in 

Load Case 1, limited to approximately z = 0.02 mm beneath the surface. Micropits are typically found 

to have characteristics depths of around 10 µm (Oila and Bull 2005; Cardoso et al. 2009), which is 

the depth to which higher magnitude stresses (>0.48σy) are found to occur. 

Figure 5.23 shows contours of residual normalised direct stress in the tangential direction for each of 

the three sections of Surface 2. Figure 5.23a, b and c show the contours for Section 2, 2b and 2c, 

respectively. The contours follow a similar pattern to those seen in Figure 5.18 for Load Case 1. 

Regions of tensile stress are found to occur at the surface in locations where the surface has been 

loaded and has experienced residual deflection. A band of compressive stress separates these 

regions of tensile stress at the surface from regions of tensile stress in the subsurface material. 

Despite the increase in nominal Hertzian contact pressure, the magnitude of the stresses remains 

similar to that previously found in Figure 5.18. At the surface, the regions of tensile stress extend no 

more than approximately 2.0 µm into the material, while the subsurface peak tensile stresses occur 

at depths between z = 0.010 mm and z = 0.020 mm. 
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Figure 5.23 - Contours of normalised residual direct stress in the tangential direction; a) Section 2a, 

b) Section 2b, c) Section 2c. σy = 2.550 GPa and ET / E = 0.05 for each section. 

5.4.3.2. Loaded results 

Figure 5.24 shows contours of normalised von Mises stress for each of the three sections of Surface 

2. Figure 5.24a, b and c show the contours for Section 2a, 2b and 2c, respectively. In comparison to 

the results obtained for Load Case 1, a larger proportion of the rough surface is in contact, resulting 

in material yield. The maximum depth in which plastic behaviour occurs is approximately z = 

0.014mm at x = −0.352 mm in Figure 5.24a. Only very heavily loaded asperity features showed 

plasticity beyond this depth in Figure 5.19. As before, in comparison to the residual results for Load 
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Case 2, it can be seen that residual von Mises stresses of 0.1σy are found in regions where yielding 

has occurred, with the von Mises stress exceeding 0.95σy in Figure 5.24. 

 

Figure 5.24 - Contours of normalised von Mises stress; a) Section 2a, b) Section 2b, c) Section 2c. σy 

= 2.550 GPa and ET / E = 0.05 for each section. 

Figure 5.25 shows contours of normalised direct stress in the tangential direction for each of the 

three sections of Surface 2. Figure 5.25a, b and c show the contours for Section 2a, 2b and 2c, 

respectively. As previously shown for Load Case 1, the majority of the direct stress in the tangential 

direction is compressive whilst under load. The highest magnitude compressive stresses are found to 

occur at the surface of contacting asperity features. While previously in Figure 5.20, some regions of 
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tensile stress were found to occur in the subsurface material directly above these contacting 

asperities, in the sections shown in Figure 5.25, this does not occur. However, these regions show 

the smallest magnitude compressive stresses found to occur. This is a common trend as a result of 

the increase in load from Load Case 1 to Load Case 2. Stresses are typically found to be more 

compressive. This is particularly true for the section shown in Figure 5.25b, where the majority of 

the stress is between −0.50σy and −1.00σy. At a nominal Hertzian contact pressure of 1.0 GPa, the 

majority of the stress was in the two contour bands between 0.00σy and −0.50σy. 

 

Figure 5.25 - Contours of normalised direct stress in the tangential direction; a) Section 2a, b) 

Section 2b, c) Section 2c. σy = 2.550 GPa and ET / E = 0.05 for each section. 
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5.4.4. 2.0GPa nominal Hertzian contact pressure model results 

5.4.4.1. Residual results 

Figure 5.26 shows the residual profiles of the three sections of Surface 3 after loading with Load 

Case 3. Figure 5.26a, b and c show the residual profiles for Section 3a, 3b and 3c, respectively. Each 

figure shows the as-measured initial and residual profiles from the ground disk, as well as the 

residual profile created using the present modelling techniques. As with Load Case 2, the plastic 

material properties used for the simulation were a yield strength, σy, of 2.550 GPa, and strain 

hardening behaviour of ET/E = 0.05. These properties were chosen as a result of the range of 

properties tested in Section 5.4.2. 

As with Load Case 2, good agreement between the experimental residual profile and the residual 

profile from the present model can be seen, although some differences are present in some 

locations. As before, the present model can be seen to both underestimate and overestimate the 

residual deflections in neighbouring locations of the surface after loading. Examples of 

underestimating the deflection can be seen in Figure 5.26a from x = −0.232 mm to  x = −0.226 mm 

and x = −0.209 mm to x = −0.204 mm, and in Figure 5.26c from x = 0.511 mm to x = 0.514 mm. 

Overestimating can be seen to occur in Figure 5.26a from x = −0.191 mm to x = −0.189 mm, and x = 

−0.181 mm to x = −0.178 mm, and in Figure 5.26c from x = 0.444 mm to x = 0.447 mm, and x = 0.462 

mm to x = 0.466 mm. More consistent agreement can be found in Figure 5.26b, although still not to 

the extent as found with Load Case 1. Figure 5.26b also shows instances of apparent positive 

deflection in the measured residual profile. This can be seen from x = −0.039 mm to x = −0.036 mm, 

and x = −0.016 mm to x = −0.010 mm where the measured residual profile can be seen above the 

measured initial profile. As previously discussed, it is thought that the Gaussian filter may be a factor 

in these differences, although debris or vibrational interference with the measuring equipment may 

also contribute, as well as the idealisation of the contact counter surface. When repeated were 
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measurements were made of the same surface profile, the results were found to be near identical, 

further suggesting that the filtering process may be the source of the discrepancies. 

 

Figure 5.26 - Residual profiles for sections of the rough roller; a) Section 3a, b) Section 3b, c) 

Section 3c. Also shown are the initial and residual measured profiles. σy = 2.550 GPa and ET / E = 

0.05 for each section. 
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Figure 5.27 shows contours of residual normalised von Mises stress for each of the three sections of 

Surface 3. Figure 5.27a, b and c show the contours for Section 3a, 3b and 3c, respectively. The stress 

contours follow similar trends to those already seen for Load Case 1 and 2. The highest magnitude 

von Mises stresses are found to occur in regions at the surface where heavily loaded asperity 

contacts have occurred. With the increased load, a larger proportion of the asperity features 

experienced contact, and as a result more interaction between stress fields has occurred. In Load 

Case 1, some regions of the surface have von Mises stress of less than 0.1σy. In Load Case 2, the 

surface has von Mises stresses greater than 0.1σy throughout. In Figure 5.27, the von Mises stress at 

the surface increases further still, with the von Mises stress exceeding 0.19σy across each of the 

sections of roughness shown. The depth to which the residual von Mises stress is greater than 0.1σy 

is similar to that found to occur in previous load cases. In both Figure 5.27b and Figure 5.27b, all the 

von Mises stress zone exceeding 0.1σy is limited to a depth of approximately z = 0.02mm. This depth 

is exceeded only between x = −0.245 mm and x = −0.215 mm in Figure 5.27a. This feature, shown in 

Figure 5.26a between x = −0.235 mm and x = −0.223 mm, shows the largest residual deflection of 

any feature shown from any of the specified load cases, at approximately 1.5 µm, so it is not 

unexpected for this extreme to be found. 
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Figure 5.27 - Contours of normalised residual von Mises stress; a) Section 3a, b) Section 3b, c) 

Section 3c. σy = 2.550 GPa and ET / E = 0.05 for each section. 
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Figure 5.28 shows contours of residual normalised direct stress in the tangential direction for each of 

the three sections of Surface 3. Figure 5.28a, b and c show the contours for Section 3a, 3b and 3c, 

respectively. As before, the stress contours follow similar patterns to those previously seen in Load 

Cases 1 and 2. Regions of tensile stress at the surface where asperity contacts have occurred are 

separated from subsurface regions of tension by a band of compressive stress. The peak magnitudes 

of these subsurface tensile stresses occur directly above where asperity contacts occur, with more 

heavily loaded contacts resulting in larger regions of tensile stress of higher magnitudes. As a result 

of the increase in load, several differences are noticeable in the subsurface stresses found in the 

sections of roughness shown. For previous loads, the band of compressive stresses of the order 

−0.075σy and above are typically restricted to depths of approximately z = 0.012 mm. While this is 

true for Figure 5.28c, the highly compressive band in Figure 5.28b and Figure 5.28a extends to z = 

0.014 mm and z = 0.016 mm, respectively. These peak stresses within the subsurface tensile regions 

can also be found deeper in the material as a result of the heavy loading. While previously the peak 

subsurface tensile stresses have been found to occur between z = 0.01 mm and z = 0.02 mm, Figure 

5.28 shows the peak tensile stress occurring at a depth of approximately z = 0.024 mm. However, 

despite the increase in load, the magnitude of the stress remains similar across each of the load 

cases tested. 
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Figure 5.28 - Contours of normalised residual direct stress in the tangential direction; a) Section 3a, 

b) Section 3b, c) Section 3c. σy = 2.550 GPa and ET / E = 0.05 for each section. 

5.4.4.2. Loaded results 

Figure 5.29 shows contours of normalised von Mises stress for each of the three sections of Surface 

3. Figure 5.29a, b and c show the contours for Section 3a, 3b and 3c, respectively. Patterns observed 

in Load Cases 1 and 2 can again be found to occur. With the increase in pressure, a larger proportion 

of the asperity features are in contact, with the more prominent asperities carrying a greater load. 

This can be seen in Figure 5.29, where a larger proportion of the section width experiences von 

Mises stress greater than 0.95σy, and to a greater depth. In previous load cases, the extent of the 

plastically deforming materials is limited to approximately z = 0.016 mm. However, in Figure 5.29a, 
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plastic material can be seen a depth of z = 0.024 mm at x = −0.230 mm. As has previously been 

discussed, these regions of yielding material correlate with the regions of residual von Mises greater 

than 0.1σy in Figure 5.27. Outside of these plastically deforming regions, it can be seen that the bulk 

subsurface material exhibits a higher magnitude of von Mises stress than lighter load cases. For Load 

Cases 1 and 2, a significant proportion of material had von Mises below 0.38σy . The only major 

region of stress less than 0.38σy in each of the sections shown in Figure 5.29 can be seen in Figure 

5.29c between x = 0.472 mm and x = 0.496 mm at depths greater than z = 0.005 mm. 

 

Figure 5.29 - Contours of normalised von Mises stress; a) Section 3a, b) Section 3b, c) Section 3c. σy 

= 2.550 GPa and ET / E = 0.05 for each section. 
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Figure 5.30 shows contours of normalised direct stress in the tangential direction for each of the 

three sections of Surface 3. Figure 5.30a, b and c show the contours for Section 3a, 3b and 3c, 

respectively. As previously shown for lighter load cases, the stresses are predominantly compressive, 

with the highest magnitude compressive stresses located at the surface of loaded asperity contacts. 

Increasing the load from Load Case 1 to Load Case 2 resulted in small regions of tension no longer 

occurring, and this trend continues in that the stresses generally become more compressive. The 

bulk of the subsurface material has a compressive stress between 0.5σy and 1.0σy. Above each 

asperity contact, regions of compressive stress between 0.25σy and 0.50σy can be found as the 

tensile regions previously found have been replaced by the lower compressive stresses. At the 

surface, the regions of high magnitude compressive stress, greater than 2.00σy, extend to greater 

depths than previously found. An example of this behaviour can be seen at x = −0.214 mm where 

this magnitude of stress extends to a depth of z = 0.017 mm, whereas for lighter loads this level of 

stress did not typically extend beyond z = 0.010 mm. 
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Figure 5.30 - Contours of normalised direct stress in the tangential direction; a) Section 3a, b) 

Section 3b, c) Section 3c. σy = 2.550 GPa and ET / E = 0.05 for each section. 

5.5. Conclusions 

This chapter has detailed the experimental procedure used to acquire the initial and residual surface 

profiles from a ground disk subject to three different loads in contact with a nitrided superfinished 

disk. This twin disk test rig arrangement was used to approximate the contact of two gear teeth. 

These profiles were then used to create rough surfaced roller parts using Abaqus and loaded against 

a smooth elastic counter face before the load was subsequently removed. These models were 

created using the techniques tested in Chapter 3 and used for multiple load applications and 
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tangential loading simulations in Chapter 4. Residual profiles from the models were then generated 

and compared with the results achieved by experiment. In general, good agreement was found 

between the current modelling techniques and the results obtained from experiment. Load Case 1 

was used to simulate a range of material properties, testing both the yield strength and linear strain 

hardening behaviour. As a result of this investigation, the most suitable material properties were 

selected and carried forward for heavier load cases. It was in these heavier loading models that 

some discrepancies were found to occur. For Load Case 2 and Load Case 3, the simulations were 

found to both slightly underestimate and overestimate the residual deflection of neighbouring 

asperity contacts. Additionally, some instances of the measured residual profile being above the 

measured residual profile suggested a positive deflection. This is thought to be a result of the 

processing of the profiles using a Gaussian filter or factors such as debris or vibrational interference 

in the experimental procedure, and time constraints have meant that no work in this area has been 

performed. A further cause for discrepancies may be as a result of the idealised approximation of 

the nitrided, superfinished contact counter face. While the counter face is a smoother, harder body, 

some roughness features will exist. These may result in an alternative distribution of the loading 

across the surfaces that may result in an altered pattern of stresses and deformations. Furthermore, 

while the yield strength of the counter face may be higher, the loading may result in plasticity that 

the current assumptions associated with the model do not account for. 

Under load, the von Mises stress contours showed that yield occurred as a result of heavily loaded 

asperity contacts. The regions of plastic behaviour grew in size and depth as the nominal Hertzian 

contact pressure was increased, with further interaction between asperities. The von Mises stress 

outside of the plastic regions was found to be of higher magnitude in the larger nominal Hertzian 

contact pressure models. Upon removal of the load, the regions where plasticity occurred were 

found to result in elevated residual von Mises stress.  
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As previously discussed in Chapter 4, the contours of direct stress in the tangential direction showed 

residual tensile stresses occurring both at the surface and subsurface. These tensile regions of stress 

were aligned with heavily loaded asperity contacts, with larger magnitude stresses occurring as a 

result of larger plastic deformations. Peak subsurface tensile stresses were found to occur between 

approximately 10 µm to 20 µm beneath the surface. Whilst under load, the overwhelming majority 

of the material is under a compressive state of stress. When a surface is subject to repeated load 

applications, this cyclic loading between compressive and tensile stress may potentially lead to the 

initiation and propagation of fatigue cracks at the surface, and could be a significant factor in 

initiating micropitting failures.  
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Further analysis of real rough surface 

contacts and asperity level contact 

modelling 

6.1. Introduction 

This chapter details the study of individual asperity contacts within the entire contact region of the 

experimental disk contacts discussed in Chapter 5. This analysis consists of three sections. The first 

section analyses and discusses in detail the residual stress found as result of the contacts modelled 

previously in Chapter 5. In Chapter 1, a review of the literature revealed experimental studies of 

surface crack initiation, propagation and micropitting failures. This section of the chapter attempts 

to determine trends in the residual stresses that may explain the findings in these studies. 

The second section of the chapter is a parametric analysis of the rough surfaces previously studied in 

Chapter 5. The aim of this analysis is to provide a tool that can approximately predict the residual 

stresses at the surface of an asperity subject to a measured residual deflection. Each of the 

circumferential positions, referred to as Surfaces 1, 2 and 3, were loaded at nominal Hertzian 

contact pressures of 0.5 GPa, 1.0 GPa, 1.5 GPa, and 2.0 GPa, and the loaded rough surface profiles 

and stress field outputs extracted. Subsequently, the loads were removed and the residual surface 

profiles and stress field outputs extracted. Relationships between changes in asperity geometry, 

applied loading and surface stresses were explored. The geometric parameters considered were 

derived from the initial, loaded, and residual rough surface profiles. These included the maximum 

asperity deflection normal to the surface and the residual land width. Combinations of these 

parameters were investigated, looking for relationships between them and the residual stresses 

found at the surface. The stress components considered were the von Mises stress, the maximum 

principal stress and the direct stress in the tangential direction.  
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The final part of the chapter examines 0.1 mm sections of the rough surfaces and compares the 

results to those found from the whole contact analysis from Chapter 5. Each section of roughness 

was loaded with the equivalent distributed load to that applied in the complete contact model. This 

aimed to evaluate to what extent smaller, less computationally intensive, simulations could provide 

similar solutions to those obtained from the whole contact models. 

6.2. The implications of residual stress on operating life 

6.2.1. Introduction 

In Chapter 1, the research of the causes of several phenomena found to occur in the operating life of 

surfaces was discussed. This covered running-in, which happens in the early stages of operating life, 

as well as causes of surface failure such as surface cracking and micropitting. Factors that affect 

these surface failures are varied, including material properties, the magnitude of the contact 

pressure, the surface finish or roughness, the sliding velocity or slide/roll ratio, the lubricant 

properties or additives and temperature (Oila and Bull 2005). In this section, the apparent 

connections between the residual stresses as a result of initial contact and the findings found in the 

literature will be examined. 

6.2.2. Discussion 

Micropitting and pitting failures are distinguished by the scale of the failure characteristics. Micropits 

are typically considered to be up to around 10 µm deep (Höhn et al. 1996), while pitting failures are 

typically larger, of the order of several millimetres, as shown in Figure 6.1 (Olver 2005). While both 

phenomena occur as a result of surface cracks, pitting occurs as these cracks propagate further into 

the depth of the material, while micropitting occurs as a result of cracks remaining relatively near 

the surface (Höhn and Michaelis 2004).  Therefore, the stresses at both the surface and in the 

subsurface region of asperity contacts will be considered to determine possible causes. Crack 

initiation is thought to occur as a result of some kind of stress concentration (Callister 2003). 
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Figure 6.1 - Pitting due to rolling contact fatigue of helical gear tooth (Olver 2005). 

Figure 6.2 shows the vector plots of the normalised residual maximum principal stress at, and just 

below, the surface for three asperities from Surfaces 1, 2 and 3 as defined in Chapter 5. The plots 

show only positive (tensile) maximum principal stress values. In areas where no vector is shown the 

maximum principal stress is compressive. The sections of roughness of which these asperities are 

part have been previously discussed in Chapter 5 as part of Sections 1b, 2a and 3c. These asperity 

features are located at x = −0.0850 mm to x = −0.0650 mm, x = −0.3625 mm to x = −0.3425 mm, and 

x = 0.4350 mm to x = 0.4550 mm on each surface respectively, and are shown in Figure 6.2a, b and c. 

Figure 6.2 shows tensile stresses only for clarity. Compressive stresses have been suppressed. It can 

be seen that elevated magnitudes of maximum principal stress can be seen to occur at the surface 

for each of the asperities shown. Furthermore, the peak stress occurs towards the edge of the 

heavily deformed regions. This can be seen at approximately x = −0.075 mm in Figure 6.2a, x = 

−0.351 mm in Figure 6.2b, and x = 0.446 mm in Figure 6.2c. 
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Figure 6.2 - Normalised positive residual maximum principal stress vectors at the surface; a) 

Surface 1, b) Surface 2, c) Surface 3. σy = 2.550 GPa and ET / E = 0.05 for each surface. 

In previous chapters, the surface stresses have been discussed in terms of von Mises stress and 

direct stress in the tangential direction. By examining the principal stress at the surface, the direction 



 Further analysis of real rough surface contacts and asperity level con

Chapter 6 
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cracking and micropitting as a characteristic relationship has been found.

growth, micropitting cracks are usually shallowly inclined to the surface 

illustrated in Figure 6.3. The angle of these crack

the tangent at the surface, orientated against the sliding direction, originating at the edge of loaded 

asperities and the neighbouring valley features

However, Bull et al. (1999) and D’Errico (2011)

tangent. 

Figure 6.3 - Cross section of typically micropitted surface in

crack inclination to direction of friction force

It can be seen that the maximum principal stress vectors act at angles perpendicular

proposed range. Vectors perpendicular to the proposed range of 35° to 55° are more typically found 

at the centre of asperities, while the shallower angles

the edges. If crack initiation/propagation is

similar to a Mode I crack opening 

asperities shown, that cracks would grow from the edge of the 

this can be seen in Figure 6.3, at

seen to have occurred in both Figure 6.

propagate until they come across the surface, or another crack, resulting in a progressively larger 
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area becoming covered with micropits, resulting in a stained or frosted appearance on the surface 

(Ahlroos et al. 2009). 

 

Figure 6.4 - Micrograph of a section taken through a region of micropits showing the crack path 

taken during the micropitting process (Bull et al. 1999). 

 

Figure 6.5 - Formation of a) micropits and b) macro pits from the growth of micro-cracks and the 

subsequent fracture of ligaments above the cracks in an uncoated gear subjected to contact 

fatigue (Moorthy and Shaw 2013). 

Another phenomenon seen both in Figure 6.4 and Figure 6.5b is the development of a crack further 

into the subsurface material beyond the depth of typical micropitting failures. This increasing depth 

of the cracks may develop the micropitting into a larger scale pitting failure. It also has the potential 
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to extend across the surface, perhaps linking to an adjacent micropit, covering more of the surface 

area with micropitting features. Figure 6.6, Figure 6.7 and Figure 6.8 show the vector plots of the 

normalised residual maximum principal stress in the subsurface material for the three asperities in 

Figure 6.2a, b and c, respectively.  As a result of the different scale, these figures now show the 

roughness from x = −0.0900 mm to x = −0.0600 mm, x = −0.3675 mm to x = −0.3375 mm, and x = 

0.4300 mm to x = 0.4600 mm from Surfaces 1, 2, and 3, respectively. As before, only tensile stresses 

are shown; compressive stresses have been suppressed to improve clarity. Annotations have been 

made to each of these figures that suggest the direction in which cracks could initiate and 

propagate. The initiation arrows correspond well with the micropitting features previously 

discussed, while the propagation arrows show the two ways in which these cracks can progress; 

either deep into the subsurface material as can be seen occurring in Figure 6.4, or in a direction 

closer to parallel with the surface as in Figure 6.5. It can be seen that for each asperity that at depths 

between approximately z = 12 µm and z = 22 µm, the maximum principal stress vectors are oriented 

approximately tangential to the surface, encouraging vertical crack growth into the subsurface 

material. At depths less than z = 10 µm the principal stress vectors are more perpendicular to the 

surface encouraging crack propagation tangential to the surface and a progressive development of 

micropitting features across the surface as cracks meet one another. 
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Figure 6.6 - Normalised positive residual maximum principal stress vectors in the subsurface 

material for asperity feature on Surface 1. σy = 2.550 GPa and ET / E = 0.05. 

 

Figure 6.7 - Normalised positive residual maximum principal stress vectors in the subsurface 

material for asperity feature on Surface 2. σy = 2.550 GPa and ET / E = 0.05. 



 Further analysis of real rough surface contacts and asperity level contact modelling 

Chapter 6  253 

 

Figure 6.8 - Normalised positive residual maximum principal stress vectors in the subsurface 

material for asperity feature on Surface 3. σy = 2.550 GPa and ET / E = 0.05. 

The relative magnitude of the stresses in each region should also be noted. Those found at the 

surface are typically found to be of the order of the yield strength. The difference between asperities 

is noticeable, with greater plastic deformation resulting in larger magnitudes of stress at the surface. 

This is illustrated by the fact that the greatest magnitude stress is found in Figure 6.6. In the 

subsurface material, the stresses are significantly smaller, with peak stresses around half the yield 

strength. However, the magnitude of the subsurface stresses seems to be less sensitive to the 

degree of plastic deformation. 

In work by Zhou et al. (1989), a model based on accumulated strain energy was created that 

proposed that increasing the load applied to the surface reduced the time taken for cracks to initiate 

and propagate, as illustrated in Figure 6.9. It can be seen that crack initiation life significantly 

reduces as a result of increased contact pressure, and this may be as a result of the increased 

magnitude of stress found at the surface as seen in Figure 6.6. Conversely, the crack propagation life 
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is less sensitive to the increased pressure, decreasing significantly less as the pressure is increased. It 

could be suggested that the crack initiation and propagation is proportional to the magnitude of the 

maximum principal stress, with relatively early crack initiation occurring as a result of high stress 

from large amounts of plastic deformation. Crack propagation then proceeds relatively slowly as a 

result of the smaller magnitude stresses found in the subsurface material. This can be seen in Figure 

6.9 as the crack propagation life becomes an increasingly large proportion of the total contact 

fatigue life at higher contact pressures. 

 

Figure 6.9 - Contact fatigue life from crack initiation to propagation (Zhou et al. 1989). 

It should be noted that these links are predominantly speculative, while also ignoring many other 

aspects that are thought to be factors in cracking and micropitting failures. For example, the effect 

of rolling/sliding contact and trapping pressurised lubricant within cracks Bower (1988), the effect of 

heat generated by plastic deformation resulting in the metallurgical phase change of gear material 

known as martensite decay (Oila et al. 2005), or the effect the chemical interactions between the 

contacting surfaces and the lubricant, or additives included in the lubricant (O’Connor 2005). These 

factors have not been considered when considering the potential effects of the residual stress found 

to occur as a result of initial surface contacts, as may be expected to occur in the running-in process. 
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6.3. Parametric analysis of real rough surface contact 

6.3.1. Model details 

The complete contact models described in Section 5.4.1 were carried forward for further 

simulations. The aim of this further analysis was to determine characteristic behaviour that linked 

the magnitude of residual deflection of asperity features and the residual stresses found at the 

surface. In determining this relationship, the magnitude of residual stress at the surface would be 

able to be predicted from measuring the surface profile, and in turn be used in fatigue analysis of the 

surface. In Chapter 5, a combination of a yield strength of σy = 2.550 GPa and linear strain hardening 

behaviour of ET / E = 0.05, were found to provide the most accurate solutions in comparison with 

the experimental residual deflections. These material properties were therefore used for the 

parametric analysis simulations. The only changes made were in the applied load. The remainder of 

the model settings remained consistent with those previously detailed. Previously, each surface was 

loaded only with the equivalent load from the twin-disk test rig. Surface 1, Surface 2 and Surface 3 

were loaded with nominal Hertzian contact pressures of 1.0 GPa, 1.5 GPa and 2.0 GPa respectively. 

For this study, each of these surfaces was tested with a range of loads, simulating nominal Hertzian 

contact pressures of 0.5 GPa, 1.0 GPa, 1.5 GPa, and 2.0 GPa for each of the surfaces. This equates to 

total applied loads of 220 N, 800 N, 2700 N, and 6480 N, respectively. These loads were then applied 

as distributed loads by dividing the total load by the application length, the width of the rough roller 

parts. The remainder of the model details remain as previously discussed in Chapter 5. These are 

summarised in Table 6.1.  
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Table 6.1 - Test disk parametric analysis contact model summary. 

Part 

2D rough roller – Imported test disk surface profiles 

2D rough roller middle section 

2D rough roller end section 

2D smooth roller 

2D smooth roller middle section 

2D smooth roller end section 

Property 
Rough: E = 200 GPa, ν = 0.3, σy = 2.550 GPa, ET / E = 0.05 

Smooth: E = 200 GPa, ν = 0.3 

Assembly Model boundaries aligned. Parts on the verge of contact 

Step 
Initial (required), Contact, Load, Removal 

ALE Adaptive Meshing – Frequency = 1, Remeshing sweeps = 10 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Finite Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 1x10
−6

m 

Surface ties applied to adjacent surfaces of constituent roller parts 

Load 
220 N, 800 N, 2700 N, 6480 N total load, applied as a distributed load acting on 

bottom edge of smooth surface part 

Boundary 

Conditions 

Small vertical displacement applied to bottom edge of smooth surface part to 

initiate contact 

Top edge of rough surface part restrained (Ux = Uy = 0) 

Side edges of rough and smooth surface parts restrained in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 

Fully integrated elements 

6.3.2. Parametric analysis 

The aim of the parametric analysis was to investigate the relationship between residual stresses 

found at the surface of asperities subjected to a measured residual deflection. This would provide a 

tool for approximating the residual stresses in other work in the research group on fatigue life of 

rough surface contacts. After each simulation was completed, a number of outputs were extracted 

from the results. These outputs were used to characterise the change of shape experienced by each 

asperity as a result of the load applied to it, and the surface residual stresses that occurred as a 
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result. The region over which stresses were considered extended to 1 µm (one node spacing) outside 

of the deflected region. It was found that the peak stresses were typically confined to this region for 

each asperity contact. In order to distinguish between differently shaped asperities experiencing 

similar residual deflections, the width over which residual deflection normal to the surface occurred 

was also recorded. Also calculated were the peak and average height differences between the initial 

and residual asperity profiles. Each of the parameters considered is defined below for an asperity 

subject to plastic contact. 

• Residual asperity land width, Lresidual – The width over which residual deflection 

normal to the surface occurs for the asperity. 

• Maximum residual deflection, ∆zmax – The maximum residual deflection normal to 

the surface for the asperity. 

These two parameters are illustrated in Figure 6.10. 

 

Figure 6.10 - Initial and residual asperity, showing asperity shape parameters Lresidual and ∆zmax. 

The following parameters were calculated using field outputs obtained from the Abaqus 

contact analyses. 

• Average residual deflection, Δzavg – The average height difference between the initial 

asperity, and the residual asperity. Calculated by dividing the sum of the asperity 

deflections normal to the surface by the residual asperity land width.  
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• Peak residual von Mises stress, σvM – Peak residual von Mises stress at the surface for 

each asperity considered. 

• Peak residual maximum principal stress, σ1 – Peak normalised residual maximum 

principal stress at the surface for each asperity considered. 

• Peak residual direct stress in the tangential direction, σxx – Peak normalised residual 

direct stress in the tangential direction for each asperity considered. 

Each of the stress components was normalised by the yield strength, σy. 

6.3.3. Parametric analysis results 

6.3.3.1. Von Mises stress 

Figure 6.11 shows the relationship between the peak normalised residual von Mises stress at the 

surface, and the peak residual asperity deflection in the z-direction for each of the surfaces and 

loads combined. As the results are plotted on logarithmic scales, it follows that if the relationship 

between the two parameters was a standard power law function, then a linear trend would be 

expected. As can be seen, in the figure there is a linear trend, albeit with some scatter, so the 

relationship can accurately be defined approximately using a power law. Large amounts of variation 

can be seen to occur for small amounts of asperity deflection, but these are not significant as 

interest is focussed on high values of von Mises stress. 

 

Figure 6.11 - Normalised peak residual von Mises stress at the surface vs. maximum normal 

deflection for all surfaces using logarithmic axes. 
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This variation in the results for the large number of asperities with small residual deflections distorts 

the trendline found by using a least squares power law, as shown in Figure 6.11. This is also shown in 

Figure 6.12, which plots the same results but on linear axes and highlights the difference between 

the trendline and the results found for large asperity deflections. A large number of data points exist 

in the region where ∆zmax is less than 0.25 µm. The least-squares trend line attempts to reduce the 

distance from the trendline to each data point and so places undesirable weighting on these data 

points, when greater interest is in those having experienced larger residual deflections, as these 

asperities are more prone to surface failure. As a result, it can be seen that the least-squares trend 

line in Figure 6.12 is particularly poor at predicting behaviour of asperities with ∆zmax greater than 

approximately 0.5 µm. Therefore, a trendline will be manually created in order to approximate 

trends in behaviour. A curve will be defined of the form in Equation 6.1. 

� = �	�� Eq. 6.1 

Where the constant K, and index n, will be manually manipulated to qualitatively provide a trendline 

to the set of data that captures the large stress values correctly. 

 

Figure 6.12 - Normalised peak residual von Mises stress at the surface vs. maximum normal 

deflection for all surfaces using linear axes. 
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Figure 6.13 shows the relationship between the normalised peak residual von Mises stress at the 

surface, and the peak residual asperity deflection in the z-direction for Surface 1, 2 and 3, and also 

for the combined data, in Figure 6.13a, b, c and d respectively. Also shown in each of the figures is 

the manually manipulated power law shown in Equation 6.2. 

��	

�

= 2.2	Δ����

�.� Eq. 6.2 

It can be seen that this manually manipulated power law offers a better representation of the 

behaviour for each of the surfaces. The manipulated power law closely follows the least squares 

trendline for small asperity residual deflections, but deviates as residual deflection increases. This 

manipulated trendline more accurately represents the behaviour of these asperities. 

In comparing Figure 6.13a, b and c, differences in how each surface reacts to the same set of loads 

can be seen. In particular, Surface 2 appears to carry the load differently to Surfaces 1 and 3, with 

only one asperity exceeding ∆zmax of approximately 0.51 µm. This suggests that Surface 2 carries the 

load over a larger number of asperities, carrying less load, resulting in less residual deflection. This is 

further supported in that 278 asperities are plotted in Figure 6.13b for Surface 2 in comparison to 

234 and 192 asperities in Figure 6.13a and c for Surfaces 1 and 3. Therefore, on average, each 

asperity in Surfaces 1 and 3 carries more of the load, and would be expected to deflect more. 
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Figure 6.13 - Normalised peak residual von Mises stress at the surface vs. maximum residual 

normal deflection; a) Surface 1, b) Surface 2, c) Surface 3, d) Combined results. Both the least 

squares and modified trendlines are also plotted. 

Similar analysis was performed to investigate the relationship between the normalised peak residual 

von Mises stress at the surface and the average residual normal deflection of asperities. However, it 
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became apparent that the results achieved were similar to those already discussed for the maximum 

residual deflection and that the mount of scatter was not reduced. The manually manipulated power 

law relationship between the normalised peak residual von Mises stress at the surface and the 

average residual deflection is shown in Equation 6.3. The power remains the same as that for the 

maximum residual deflection. The difference between the relationships is only found in the different 

constant. 

��	

�

= 2.8	Δ����

�.� Eq. 6.3 

 

6.3.3.2. Maximum principal stress 

Figure 6.14 shows the relationship between the normalised peak residual maximum principal stress 

at the surface, and the peak residual asperity deflection in the z-direction for each of the surfaces 

and loads combined. The results are plotted on logarithmic scales, and suggest an approximate 

power law relationship due to the general linear trend. Again there is scatter in the data, but this is 

somewhat smaller than previously shown in Figure 6.11. 

 

Figure 6.14 - Normalised peak residual maximum principal stress at the surface vs. maximum 

normal deflection for all surfaces. 

This variation in the results for asperities with small residual deflections distorts the trendline found 

by using a least squares power law, as shown in Figure 6.14. This is also shown in Figure 6.15, which 
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plots the results on linear axes. This highlights the difference between the trendline and the results 

found for large asperity deflections. As before, the majority of asperities can be found in the region 

where ∆zmax is less than 0.25 µm, distorting the least squares trendline. It can be seen that the least 

squares trend line in Figure 6.15 is poor at predicting behaviour of asperities with ∆zmax greater than 

approximately 0.3 µm. Therefore, a trendline will be manually created in order to approximate 

trends in behaviour. A curve will again be defined of the form as previously shown in Equation 6.1. 

 

Figure 6.15 - Normalised peak residual maximum principal stress at the surface vs. maximum 

normal deflection for all surfaces using linear axes. 

Figure 6.16 shows the relationship between the normalised peak residual maximum principal stress 

at the surface, and the peak residual asperity deflection in the z-direction for Surface 1, 2 and 3, and 

for the combined data, in Figure 6.16a, b, c and d respectively. Also shown in each of the figures is 

the manually manipulated power law shown in Equation 6.4. 

��

�

= 1.2	Δ����

�.� Eq. 6.4 

It can be seen that this manually manipulated power law offers a better representation of the 

behaviour for each of the surfaces. It follows the least squares trend line closely for small asperity 

residual deflections, but deviates as residual deflection increases and represents the behaviour of 

these asperities more accurately. Similar differences between the surfaces can be observed as 

previously discussed. Surface 2 carries the applied set of loads over a larger number of asperities 

that typically deflect less than those found in Surfaces 1 and 3. 
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Figure 6.16 - Normalised peak residual maximum principal stress at the surface vs. maximum 

residual normal deflection; a) Surface 1, b) Surface 2, c) Surface 3, d) Combined results. Both the 

least squares and modified trendlines are also plotted. 

Similar analyses were performed to investigate the relationship between the normalised peak 

residual maximum principal stress at the surface and the average residual normal deflection of 
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asperities. It also became apparent that the results achieved were similar to those already discussed 

for the maximum residual deflection. The manually manipulated power law between the normalised 

peak residual maximum principal stress at the surface and the average residual deflection is shown 

in Equation 6.5. The power remains the same as that for the maximum residual deflection. The 

difference between the relationships is only found in the different constant. As with the von Mises 

stress, the constant was found to increase approximately 26% when considering the average 

residual deflection in comparison to the maximum residual deflection. 

��

�

= 1.6	Δ����

�.� Eq. 6.5 

 

6.3.3.3. Direct stress in the tangential direction 

Similar analysis was performed to examine the relationship between the normalised peak residual 

direct stress in the tangential direction and the maximum residual deflection of asperities normal to 

the surface. However, little correlation was seen to occur between the two parameters in 

comparison to those already discussed for the von Mises and maximum principal stresses. Given the 

links between the maximum principal stress vectors and crack initiation, propagation and 

micropitting discussed previously in Section 6.2.2, it is therefore proposed that the direct stress in 

the tangential direction is not a critical parameter in determining these surface failures. Maximum 

principal stress appears to be more significant and it is recommended that this is considered for 

future work. 
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6.4. Asperity contact modelling 

6.4.1. Model details 

In Chapter 5, for each nominal Hertzian contact pressure, three sections of the rough surface were 

examined in further detail.  For Surface 1, these sections were for x = −0.29 mm to x = −0.19 mm, x = 

−0.13 mm to x = −0.03 mm and x = 0.25 to x = 0.35 mm and were first shown in Section 5.4.2.1. in 

Figure 5.10. For Surface 2, the sections were for x = −0.36 mm to x = −0.26 mm, x = −0.10 mm to x = 

0.00 mm and x = 0.32 to x = 0.42 mm and were first shown in Section 5.4.3.1. in Figure 5.20. For 

Surface 3 the sections were for x = −0.26 mm to x = −0.16 mm, x = −0.06 mm to x = 0.04 mm and x = 

0.43 to x = 0.53 mm and were first shown in Section 5.4.4.1. in Figure 5.25. Each of these nine 

sections of roughness, including the form of the 38.1 mm radius roller, was used to create individual 

rough surface contact models of widths of 0.1 mm. For the opposing counterface in each model, the 

corresponding section of the smooth roller was used, ensuring that the radius of relative curvature 

was the same in the 0.1 mm section models as in the complete contact models. 

Parts were then created in a similar manner to the complete contact models. For each rough and 

smooth surface roller, two constituent parts were created and connected using surface ties. This 

allowed a more rapid transition in element size, reducing computational cost, as was previously 

utilised in the complete contact models in Chapter 5. Where possible, the meshes from the 

complete contact models were replicated. Meshing seeding was used in order to control the 

element sizes at the surface and boundaries. Model boundaries were then aligned, and the parts 

adjusted to be on the verge of contact. The top edge of the rough surface roller was restrained in 

both the x- and y-axis directions, while the sides were restrained in the x-axis direction only. To 

initiate contact, a small vertical displacement was applied, before being removed in the subsequent 

load application step. A distributed load was then applied in place of the displacement. For each 

asperity contact model, the load was equivalent to the load experienced by the section of roughness 

in the experimentally verified simulation. This was determined by requesting the contact force 
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output in the complete contact model simulations and summing the forces at each of the 

appropriate nodes in each section. This total load was then divided by the width of the asperity 

model, in this case 0.1 mm, to achieve the required distributed load. In the final removal step, this 

distributed load was then removed, leaving the residual results. 

The remainder of the asperity contact model details were consistent with those used in previous 

models, based upon the methods tested in Chapter 3. These details are summarised in Table 6.2. 

Table 6.2 - Asperity contact model summary. 

Part 

2D rough roller – Imported test disk surface profiles 

2D rough roller end section 

2D smooth roller 

2D smooth roller end section 

Property 
Rough: E = 200 GPa, ν = 0.3, σy = 2.550 GPa, ET / E = 0.05 

Smooth: E = 200 GPa, ν = 0.3 

Assembly Model boundaries aligned. Parts on the verge of contact 

Step 
Initial (required), Contact, Load, Removal 

ALE Adaptive Meshing – Frequency = 1, Remeshing sweeps = 10 

Interaction 

Frictionless 

Augmented Lagrange Constraint Enforcement Method 

Finite Sliding 

Surface-to-Surface 

Absolute Penetration Tolerance = 1x10
−6

m 

Surface ties applied to adjacent surfaces of constituent roller parts 

Load 
Total loads determined from experimentally verified complete contact models, 

applied as a distributed load acting on bottom edge of smooth surface part 

Boundary 

Conditions 

Small vertical displacement applied to bottom edge of smooth surface part to 

initiate contact 

Top edge of rough surface part restrained (Ux = Uy = 0) 

Side edges of rough and smooth surface parts restrained in y-axis (Ux = 0) 

Mesh 

Partitioned around contact area 

Plane Strain Elements 

Linear Elements 

Fully integrated elements 
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6.4.2. Loaded results 

6.4.2.1. Surface 1 

Figure 6.17 shows the loaded roughness profile and normalised contact pressure distributions for 

both the complete contact model and asperity contact model for the section of roughness between 

x = −0.29 mm and x = −0.19 mm. The load applied to the section of roughness in the asperity contact 

model was equivalent to that found to be applied to the same section of roughness in the complete 

contact model subject to a nominal Hertzian contact pressure of 1.0 GPa. 

 

Figure 6.17 - Comparison of complete contact model and asperity contact model for section of 

roughness from x = −0.29 mm to x = −0.19 mm; a) loaded surface roughness profile, b) normalised 

contact pressure. σy = 2.550 GPa and ET / E = 0.05 for each model. 

Figure 6.17a shows the loaded roughness profiles for both the complete contact and asperity 

models. Whilst agreement is generally good, noticeable differences can still be seen. Most 

prominent is the way in which the asperity contact model profile exhibits more of the form of the 

surface, the 38.1 mm radius disk, in the results. This can be seen at the edges of the profiles, 
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between x = −0.29 mm and x = −0.28 mm where the asperity contact model profile is beneath the 

complete contact model, and between x = −0.20 mm and x = −0.19 mm where it is above. In the 

complete contact model, the surfaces first contact at approximately x = 0.00 mm. As the load is 

increased, the surfaces outside of the contact begin to conform more as a result of the contact. As 

such, when the section of roughness shown in Figure 6.17a is in contact, the radius of relative 

curvature is larger (i.e. “flatter”) than before any contact occurs. 

This phenomenon can also be seen in the contact pressure distributions in Figure 6.17b. As a result 

of the evolved contact geometry of the complete contact model, an asperity contact can be found 

between x = −0.277 mm and x = −0.272 mm which does not occur in the asperity contact model. 

Higher peak pressures can be found to occur in the asperity contact model at x = −0.231 mm and x = 

−0.237 mm, illustrating how the two different models result in variations in the way the surface 

carries the applied load. 

Figure 6.18 shows the loaded normalised von Mises stress contours for the section of roughness 

between x = −0.29 mm and x = −0.19 mm in the complete contact model and in the asperity contact 

model previously shown in Figure 6.17. The stress distributions again show the small differences in 

how the two models carry the applied load. The largest region of high von Mises stress (> 0.95σy) 

occurs between approximately x = −0.240 mm and x = −0.215 mm, to a depth of z = 0.016 mm in the 

complete contact model in Figure 6.18a. In the asperity contact model in Figure 6.18b, this region 

extends to an increased depth of z = 0.023 mm, suggesting heavier loading of the asperity feature at 

the surface. The high stress regions between x = −0.272 mm and x = −0.266 mm and at x = −0.252 

mm however reduce in size in comparing the complete contact model to the asperity model, 

suggesting reduced loading of these asperity features. This further confirms the explanation 

regarding the change in shape of the contact geometry in the complete contact model. 

Aside from the differences that are attributable to differences in contact geometry, differences are 

seen close to the asperity contact model boundaries, at x = −0.29 mm and x = −0.19 mm. In the 
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asperity contact model, a larger proportion of the material at these boundaries can be seen to be at 

a von Mises stress of 0.19σy or less. In the complete contact model the majority of this material has a 

von Mises stress between 0.19σy and 0.29σy. It is suggested that this difference is due to the 

interaction of the stresses with those due to neighbouring asperity contacts. In the asperity contact 

model, these boundaries are effectively lines of symmetry. In the complete contact model, unique 

asperity contacts occur beyond these boundaries, accounting for the differences. 

 

Figure 6.18 - Contours of normalised von Mises stress for section of roughness from x = −0.29 mm 

to x = −0.19 mm; a) complete contact model, b) asperity contact model. σy = 2.550 GPa and ET / E 

= 0.05 for each model. 

Figure 6.19 shows the contours of loaded normalised direct stress in the tangential directions for the 

section of roughness between x = −0.29 mm and x = −0.19 mm in the complete contact model and in 

the asperity contact model first shown in Figure 6.17. In general, good agreement can be seen to 

occur between the complete contact model and the asperity contact model, albeit with some small 

differences. The majority of the material in each model is in a compressive state, with the highest 

magnitude compressive stresses occurring at the surface where asperity contacts occur. The main 
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differences occur at the model boundaries, primarily at x = −0.29 mm, and in the regions of 

subsurface tensile stress. In the complete contact model, only one region of subsurface tensile stress 

can be found, at approximately x = −0.269 mm, z = 0.009 mm in Figure 6.19a. For the asperity 

contact model in Figure 6.19b, the peak magnitude of this region of tensile stress increases from > 

0.00σy to > 0.10σy. An additional region of subsurface tensile stress can also be found to occur at x = 

−0.228 mm, z = 0.023 mm. 

 

Figure 6.19 - Contours of normalised direct stress in the tangential direction for section of 

roughness from x = −0.29 mm to x = −0.19 mm; a) complete contact model, b) asperity contact 

model. σy = 2.550 GPa and ET / E = 0.05 for each model. 

6.4.2.2. Surface 2 

Figure 6.20 shows the loaded roughness profile and normalised contact pressure distributions for 

both the complete contact model and asperity contact model for the section of roughness between 

x = −0.10 mm and x = 0.00 mm. The load applied to the section of roughness in the asperity contact 

model was equivalent to that found to be applied to the same section of roughness in the complete 

contact model subject to a nominal Hertzian contact pressure of 1.5 GPa. 
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Good agreement is found to occur for both the loaded surface roughness profile shown in Figure 

6.20a and the contact pressure distribution in Figure 6.20b. Small differences can been seen to occur 

in the contact pressure distributions in proximity to the asperity contact model boundaries at x = 

−0.10 mm and x = 0.00 mm. Examples of this can be found at x = −0.10 mm, x = −0.09 mm and x = 

−0.05 mm. In contrast to behaviour discussed in Section 6.4.2.1, the contact geometry of the 

complete contact model does not change significantly in comparison with the asperity contact 

model. This is because the section of roughness shown is located at the centre of the contact, 

resulting in little difference between the two models. 

 

Figure 6.20 - Comparison of complete contact model and asperity contact model for section of 

roughness from x = −0.10 mm to x = 0.00 mm; a) loaded surface roughness profile, b) normalised 

contact pressure. σy = 2.550 GPa and ET / E = 0.05 for each model. 

Figure 6.21 shows the loaded normalised von Mises stress contours for the section of roughness 

between x = −0.10 mm and x = 0.00 mm in the complete contact model and in the asperity contact 

model previously shown in Figure 6.20. Better agreement between the two models is seen to occur 

for this section of roughness than previously shown in Figure 6.18. As previously discussed, this is 
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thought to be due to the location of the section of roughness relative to the centre of the contact. As 

this section is close to the centre, the contact geometry has not changed when the section of 

roughness is brought into contact. As a result, the asperity contact model provides a better 

approximation to the complete contact model conditions. Nevertheless, some differences in the 

stress distributions can still be observed. Two examples of these difference can be seen between x = 

−0.090 mm and x = −0.082 mm and between x = −0.05 mm and x = −0.02 mm at a depth of 

approximately z = 0.012 mm. The residual von Mises stress in these locations is higher in the asperity 

contact model than the complete contact model. Each region of yielding material, σvM > 0.95σy, 

extends slightly deeper into the subsurface material in the asperity contact model. As previously 

discussed, the model boundaries of the asperity contact model again affect the results nearby. For 

example, the region of high von Mises stress between x = −0.004 mm and x = 0.000 mm in Figure 

6.21a extends to a depth of approximately z = 0.004 mm. In Figure 6.21b, this region extends to a 

depth of z = 0.008 mm. As a result of the line of symmetry at x = 0.000 mm in the asperity contact 

model, a neighbouring asperity contact occurs in close proximity, and the interaction results in a 

significant change in localised von Mises stress. 
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Figure 6.21 - Contours of normalised von Mises stress for section of roughness from x = −0.10 mm 

to x = 0.00 mm; a) complete contact model, b) asperity contact model. σy = 2.550 GPa and ET / E = 

0.05 for each model. 

Figure 6.22 shows the contours of loaded normalised direct stress in the tangential directions for the 

section of roughness between x = −0.10 mm and x = 0.00 mm in the complete contact model and in 

the asperity contact model first shown in Figure 6.20. The pattern of high compressive stresses at 

the surface where asperity contacts occur is found in each model, with reduced magnitude 

compressive stresses in the subsurface material. The region of small magnitude compressive stress 

in the valley feature between x = −0.017 mm and x = −0.006 mm in the complete contact model 

results in Figure 6.22a becomes a small region of surface tensile stress in the asperity contact model 

shown in Figure 6.22b. This trend towards tensile stresses or smaller magnitude compressive 

stresses is seen to occur in the bulk subsurface material. The majority of the subsurface material is 

between −0.50σy and −1.00σy in the complete contact model, and between −0.25σy and −0.50σy in 

the asperity contact model. However, the contours plotted are slightly unrepresentative of the 
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differences between the two models. The stresses are predominantly just under and just over 

−0.50σy in Figure 6.22a and b respectively. 

 

Figure 6.22 - Contours of normalised direct stress in the tangential direction for section of 

roughness from x = −0.10 mm to x = 0.00 mm; a) complete contact model, b) asperity contact 

model. σy = 2.550 GPa and ET / E = 0.05 for each model. 

6.4.2.3. Surface 3 

Figure 6.23 shows the loaded roughness profile and normalised contact pressure distributions for 

both the complete contact model and asperity contact model for the section of roughness between 

x = 0.43 mm and x = 0.53 mm. The load applied to the section of roughness in the asperity contact 

model was equivalent to that found to be applied to the same section of roughness in the complete 

contact model subject to a nominal Hertzian contact pressure of 2.0 GPa. 

Reasonable agreement in the loaded roughness profiles in Figure 6.23a can be seen, although 

relatively large differences still occur. The profiles were aligned using the clearly identifiable local 

valley features at approximately x = 0.453 mm, x = 0.469 mm and x = 0.481 mm. Despite this, other 
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local valley features do not align, such as the one at x = 0.439 mm and that between x = 0.519 mm 

and x = 0.524 mm, suggesting the section of roughness as a whole deflects differently in each model. 

Asperity deflections appear to be of larger magnitude in the asperity model, such as between x = 

0.459 mm and x = 0.466 mm, although some of the difference may be attributable to the differences 

previously discussed across the whole section of roughness. 

Figure 6.23b shows the contact pressure distributions for each of the models. Good agreement can 

be seen between the models, especially in the centre of the section of roughness, between 

approximately x = 0.440 mm and x = 0.510 mm. Differences are seen between the models outside of 

this region. Between x = 0.430 mm and x = 0.440 mm, the contact pressures in the asperity contact 

model can be seen to exceed those in the complete contact model. In contrast, for x = 0.510 mm to x 

= 0.530 mm, the contact pressures in the asperity contact model are less than those in the complete 

contact model. This illustrates the difference in the way the two models carry the applied load. Due 

to the boundary conditions used in the asperity contact model, it is effectively mirrored at x = 0.430 

mm. This is not reflective of the conditions in the complete contact model. The asperity contact 

model boundary conditions are less applicable the further away from the contact centre. As the 

section of roughness shown in Figure 6.23 is the farthest from the contact centre of the sections 

considered, it could be expected that the largest differences between the models would occur for 

this case. 
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Figure 6.23 - Comparison of complete contact model and asperity contact model for section of 

roughness from x = 0.43 mm to x = 0.53 mm; a) loaded surface roughness profile, b) normalised 

contact pressure. σy = 2.550 GPa and ET / E = 0.05 for each model. 

Figure 6.24 shows the loaded, normalised von Mises stress contours for the section of roughness 

between x = 0.43 mm and x = 0.53 mm in the complete contact model and in the asperity contact 

model previously shown in Figure 6.23. This section of roughness shows the least agreement 

between the two models. In particular, the stress distributions at all depths between x = 0.430 mm 

and x = 0.480 mm are significantly different. Between x = 0.480 mm and x = 0.520 mm, differences 

are noticeable, but the stress results are comparable. Finally, between x = 0.520 mm and x = 0.530 

mm, larger differences are again found. These differences can be attributed to the differences in the 

boundary conditions at x = 0.43 mm and x = 0.53 mm. As previously discussed, the contact pressures 

in the asperity contact model between x = 0.430 mm and x = 0.440 mm exceed those in the 

complete contact model, so a larger region of material plasticity, and von Mises stress greater than 

0.95σy, is not unexpected. However, this is furthered by the symmetrical boundary condition 

effectively creating a cylindrical line contact, with the centre at x = 0.43 mm, elevating subsurface 
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stresses. The surface form at this point is not continuous as in a cylinder, creating a point at the 

centre of the contact, acting as a further stress raiser. For x = 0.520 mm to x = 0.530 mm, the 

asperity contact model has lower contact pressures than in the complete contact model, and this is 

reflected in the differences in the stress distributions. In the complete contact model, von Mises 

stress higher than 0.95σy is found at the surface between x = 0.522 mm and x = 0.530 mm, extending 

to a depth of z = 0.008 mm at x = 0.530 mm. In the asperity contact model, this region is split into 

two distinct regions of stress greater than 0.95σy at approximately x = 0.526 mm and x = 0.530 mm. 

Neither of these regions extends beyond a depth of z = 0.002 mm. In between these regions, from x 

= 0.480 mm to x = 0.520 mm, the stress distributions are not dissimilar. Regions of high von Mises 

stress, greater than 0.95σy, are in similar locations and of similar width. However, they extend 

deeper into the subsurface material. This is a trend seen both in Figure 6.18 and Figure 6.21. 

 

Figure 6.24 - Contours of normalised von Mises stress for section of roughness from x = 0.43 mm 

to x = 0.53 mm; a) complete contact model, b) asperity contact model. σy = 2.550 GPa and ET / E = 

0.05 for each model. 



 Further analysis of real rough surface contacts and asperity level contact modelling 

Chapter 6  279 

Figure 6.25 shows the contours of loaded normalised direct stress in the tangential directions for the 

section of roughness between x = 0.43 mm and x = 0.53 mm in the complete contact model and in 

the asperity contact model first shown in Figure 6.23. In comparison with the major differences seen 

in the von Mises stress distributions, relatively good agreement can be seen in the direct stress in 

the tangential direction. The main differences again occur towards the boundaries of the section of 

roughness. The region between x = 0.430 mm and x = 0.440 mm has higher contact pressures in the 

asperity contact model, and the region between x = 0.430 mm and x = 0.480 mm has higher 

magnitudes of von Mises stress. In the contours of direct stress in the tangential direction, this 

region is found to have higher magnitudes of compressive stress at the surface, and in the 

subsurface region close to the surface (z < 0.01 mm). 

The region between x = 0.520 mm and x = 0.530 mm has lower contact pressures in the asperity 

contact model and lower magnitudes of von Mises stress than in the complete contact model. In the 

contours of direct stress in the tangential direction, this is reflected in lower magnitudes of 

compressive stress, both at the surface and to depths of approximately z = 0.01 mm in the 

subsurface material. Nonetheless, some similarities are still seen between the two models. 

Subsurface regions of low magnitude compressive stress are found to occur directly beneath 

moderately loaded contacts. Examples of these can be seen at approximately x = 0.488 mm and x = 

0.502 mm. These regions have been eliminated from the subsurface region in the more heavily 

loaded regions as previously discussed. 
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Figure 6.25 - Contours of normalised direct stress in the tangential direction for section of 

roughness from x = 0.43 mm to x = 0.53 mm; a) complete contact model, b) asperity contact 

model. σy = 2.550 GPa and ET / E = 0.05 for each model. 

6.4.3. Residual results 

6.4.3.1. Surface 1 

Figure 6.26 shows the residual roughness profile for both the complete contact model and asperity 

contact model for the section of roughness between x = −0.29 mm and x = −0.19 mm. The load 

applied to the section of roughness in the asperity contact model was equivalent to that found to be 

applied to the same section of roughness in the complete contact model subject to a nominal 

Hertzian contact pressure of 1.0 GPa. The load profiles were previously shown in Figure 6.17. 

Three distinct regions of residual deflection can be seen to occur in both the complete contact and 

asperity contact models. These can be seen between x = −0.271 mm and x = −0.268 mm, x = −0.235 

mm and x = −0.230 mm and x = −0.228 mm and x = −0.219 mm. Good agreement between the two 

models can be seen to occur for the first region of residual deflection, although the asperity contact 
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predicts increased deflection in comparison to the complete contact model. This is not unexpected 

as the profile under load was found to predict larger deflections. It was suggested that this increased 

deflection was due to a difference in the way the surface carried the load in each model, as a result 

of the contact geometry in the complete contact model changing for sections of roughness away 

from the contact centre. This difference is not so apparent in the residual profiles for this section of 

roughness, except for the small difference in magnitude of residual deflections for the two 

asperities. 

 

Figure 6.26 - Comparison of residual surface roughness profiles from complete contact model and 

asperity contact model for section of roughness from x = −0.29 mm to x = −0.19 mm. σy = 2.550 

GPa and ET / E = 0.05 for each model. 

Figure 6.27 shows the residual normalised von Mises stress contours for the section of roughness 

between x = −0.29 mm and x = −0.19 mm in the complete contact model and in the asperity contact 

model previously shown in Figure 6.26. In each model, the regions of von Mises stress greater than 

0.1σy align well with regions of material yield under the applied load shown in Figure 6.18. As 

previously discussed, these regions of plasticity extend deeper into the subsurface material in the 

asperity contact model than the complete contact model, and this is reflected in the residual 

stresses. Von Mises stresses greater than 0.1σy extend to a subsurface depth of z = 0.016 mm in the 

complete contact model in Figure 6.27a, while this region extends to a depth of z = 0.023 mm in the 

asperity contact model in Figure 6.27b. The effects of the asperity contact model boundaries can 

also be seen. At depths less than z = 0.010 mm, the residual von Mises stress exceeded 0.1σy at each 
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of the model boundaries in the asperity contact model. This did not occur in these locations in the 

complete contact model. 

 

Figure 6.27 - Contours of normalised residual von Mises stress for section of roughness from x = 

−0.29 mm to x = −0.19 mm; a) complete contact model, b) asperity contact model. σy = 2.550 GPa 

and ET / E = 0.05 for each model. 

Figure 6.28 shows the contours of residual normalised direct stress in the tangential direction for the 

section of roughness between x = −0.29 mm and x = −0.19 mm in the complete contact model and in 

the asperity contact model previously shown in Figure 6.26. Both models show regions of tensile 

stress at the surface where asperity contacts have occurred, and beneath the surface, with the 

highest magnitude tensile stresses typically occurring directly beneath these contacts. These two 

regions of tensile stress are separated by a band of compressive stress. As previously discussed, the 

asperities between x = −0.235 mm and x = −0.230 mm and x = −0.228 mm and x = −0.219 mm carry 

more of the applied load and deflect more in the asperity contact model than in the complete 

contact model. As a result of this a larger region of high magnitude subsurface tensile stress can be 

found at approximately x = −0.227 mm, z = 0.023 mm in Figure 6.28a in comparison to the complete 
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contact model in Figure 6.28b. In contrast, the region of tensile stress at x = −0.269 mm, z = 0.009 

mm in the complete contact model is reduced in size and magnitude in the asperity contact model. 

Furthermore, in the asperity contact model, less interaction between the subsurface tensile stress 

regions in seen to occur, with the two regions separated by compressive stress. At the surface, 

because of the reduction in load carried by the asperity at approximately x = −0.269 mm, no tensile 

stress is found to occur at the surface, whilst increased magnitude tensile stresses are found for the 

asperities between x = −0.235 mm and x = −0.230 mm and x = −0.228 mm and x = −0.219 mm. The 

symmetrical boundaries of the asperity contact model result in a deeper, higher magnitude band of 

compressive stress between the surface and subsurface tensile stress regions. 

 

Figure 6.28 - Contours of normalised residual direct stress in the tangential direction for section of 

roughness from x = −0.29 mm to x = −0.19 mm; a) complete contact model, b) asperity contact 

model. σy = 2.550 GPa and ET / E = 0.05 for each model. 
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6.4.3.2. Surface 2 

Figure 6.29 shows the residual roughness profile for both the complete contact model and asperity 

contact model for the section of roughness between x = −0.10 mm and x = 0.00 mm. The load 

applied to the section of roughness in the asperity contact model was equivalent to that found to be 

applied to the same section of roughness in the complete contact model subject to a nominal 

Hertzian contact pressure of 1.5 GPa. 

Seven regions of significant residual deflection can be seen to occur in each of the models, at 

approximately x = −0.093 mm, x = −0.081 mm, x = −0.057 mm, x = −0.045 mm, x = −0.035 mm, x = 

−0.026 mm, and x = −0.002 mm. Good agreement is observed in the magnitude of the residual 

deflections seen at each of these locations, and in the shape of the residual profile for this section of 

the rough surface. As previously discussed, this section of roughness is at the centre of the contact, 

and as a result the contact geometry in the complete contact model does not change before the 

section of roughness is loaded. As a result, the agreement between the two models is excellent. 

 

Figure 6.29 - Comparison of residual surface roughness profiles from complete contact model and 

asperity contact model for section of roughness from x = −0.10 mm to x = 0.00 mm. σy = 2.550 GPa 

and ET / E = 0.05 for each model. 

Figure 6.30 shows the residual normalised von Mises stress contours for the section of roughness 

between x = −0.10 mm and x = 0.00 mm in the complete contact model and in the asperity contact 

model previously shown in Figure 6.29. As found previously, the regions of residual von Mises stress 

greater than 0.1σy align well with the regions of material plasticity under load, von Mises stress 
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greater than 0.95σy, in Figure 6.21. Whilst under load, it was found that for the asperity contact 

model, material yielded to a slightly lower depth. This can be seen in the residual stress distributions 

where a stress of between 0.1σy and 0.19σy can be found at a depth of z = 0.010 mm in the asperity 

contact model in Figure 6.30b. In the complete contact model, this stress extends to a depth of z = 

0.008 mm, but less often. Whilst under load, the most prominent difference between the two 

models occurred at the surface between x = −0.004 mm and x = 0.000 mm. The region of von Mises 

stress greater than 0.95σy was significantly larger in the asperity contact model than in the complete 

contact model. In the residual results this was found to occur once more as the magnitude of von 

Mises stress in this location is significantly greater. Von Mises stress greater than 0.1σy is also found 

to occur to a greater depth in this location in the asperity contact model. A further effect of this 

difference is in the interaction of von Mises stress fields in the region between x = −0.02 mm and x = 

−0.01 mm at depths up to z = 0.01 mm. In the complete contact model, the majority of this material 

has a von Mises stress of 0.19σy or less. In the asperity contact model, a significant amount of the 

material has von Mises stress greater than 0.19σy, and in some cases exceeds 0.29σy. As previously 

discussed, this is thought to be due to the boundary of the asperity contact model occurring at x = 

0.00 mm. 
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Figure 6.30 - Contours of normalised residual von Mises stress for section of roughness from x = 

−0.10 mm to x = 0.00 mm; a) complete contact model, b) asperity contact model. σy = 2.550 GPa 

and ET / E = 0.05 for each model. 

Figure 6.31 shows the contours of residual normalised direct stress in the tangential direction for the 

section of roughness between x = −0.10 mm and x = 0.00 mm in the complete contact model and in 

the asperity contact model previously shown in Figure 6.29. As has previously been shown, regions 

of tensile stress at the surface are separated from regions of subsurface tensile stress by a band of 

compressive stress. In the complete contact model in Figure 6.31a, the regions of surface tensile 

stress are fairly small, and yet in the asperity contact model Figure 6.31b, these regions of tension 

disappear almost entirely. This is not dissimilar to what was seen previously in Figure 6.28 at x = 

−0.269 mm. A similar trend is seen in that the band of compressive stress is found to be thicker and 

extends to a greater depth in the asperity contact model. However, the regions of peak subsurface 

tensile stress remain consistent in each model. In particular, this can be seen at approximately x = 

−0.046 mm, where the peak tensile stress differs in depth by approximately 0.002 mm. Some 

seemingly large differences occur in the subsurface material, for example between x = −0.10 mm 
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and x = −0.08 mm and a depth greater than z = 0.02 mm, where the stress is found to be tensile in 

the complete contact model, but compressive in the asperity contact model. These stresses are of 

very small magnitude, and as such the difference is actually very small. 

 

Figure 6.31 - Contours of normalised residual direct stress in the tangential direction for section of 

roughness from x = −0.10 mm to x = 0.00 mm; a) complete contact model, b) asperity contact 

model. σy = 2.550 GPa and ET / E = 0.05 for each model. 

6.4.3.3. Surface 3 

Figure 6.32 shows the residual roughness profile for both the complete contact model and asperity 

contact model for the section of roughness between x = 0.43 mm and x = 0.53 mm. The load applied 

to the section of roughness in the asperity contact model was equivalent to that found to be applied 

to the same section of roughness in the complete contact model subject to a nominal Hertzian 

contact pressure of 2.0 GPa.  

Partial agreement can be seen to occur across the residual profile. It has previously been discussed 

how the asperity contact model has larger contact pressures than the complete contact model 
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between x = 0.430 mm and x = 0.440 mm, and a larger amount of material yield occurs between x = 

0.430 mm and x = 0.480 mm. Therefore it is unsurprising that larger asperity deflection can be seen 

to occur for asperities in these regions in the asperity contact model. This can be seen for the 

asperities from x = 0.440 mm to x = 0.448 mm and x = 0.460 mm to x = 0.465 mm. Across the 

remainder of the section of roughness, good agreement is seen to occur between the two models. 

 

Figure 6.32 - Comparison of residual surface roughness profiles from complete contact model and 

asperity contact model for section of roughness from x = 0.43 mm to x = 0.53 mm. σy = 2.550 GPa 

and ET / E = 0.05 for each model. 

Figure 6.33 shows the residual normalised von Mises stress contours for the section of roughness 

between x = 0.43 mm and x = 0.53 mm in the complete contact model and in the asperity contact 

model previously shown in Figure 6.32. Better agreement is found to occur for the section of 

roughness than was found whilst under load. However, the effects of the extended regions of 

material plasticity in the asperity contact model whilst under load are evident in the residual stress 

contours. In the complete contact model, beneath a depth of approximately z = 0.014 mm, the von 

Mises stress is below 0.1σy. However, as a result of the extended region of material yield between x 

= 0.43 and x = 0.48 mm under load, larger residual stresses remain over the corresponding region in 

Figure 6.33b. This can be seen in particular between x = 0.43 mm and x = 0.45 mm where the von 

Mises stress is between 0.19σy and 0.29σy at a depth of z = 0.03 mm. Despite this major difference, 

the stress distributions throughout the rest of the material display reasonable agreement between 

models. The main difference is the depth to which stresses of between 0.1σy to 0.19σy extend. For 
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example, at x = 0.516 mm stresses of this magnitude extend only to a depth of approximately z = 

0.007 mm in the complete contact model. But to a depth of approximately z = 0.025 mm in the 

asperity contact model. Residual stresses of higher magnitudes, greater than 0.48σy are restricted to 

similar depths of approximately z = 0.005 mm. However, as previously discussed, regions of plasticity 

extend slightly deeper into the subsurface material in the asperity contact models. As a result, 

elevated von Mises stresses extend into the corresponding regions once the load has been removed. 

 

Figure 6.33 - Contours of normalised residual von Mises stress for section of roughness from x = 

0.43 mm to x = 0.53 mm; a) complete contact model, b) asperity contact model. σy = 2.550 GPa 

and ET / E = 0.05 for each model. 

Figure 6.34 shows the contours of normalised residual direct stress in the tangential direction for the 

section of roughness between x = 0.43 mm and x = 0.53 mm in the complete contact model and in 

the asperity contact model previously shown in Figure 6.32. Very little agreement can be found 

between the models. In the complete contact model in Figure 6.34a, regions of tensile stress occur 

both at the surface and beneath the surface. The majority of the asperity contact model shown in 

Figure 6.34b is under compressive stress, with significantly smaller regions of surface and subsurface 
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tension. The only similarity between the two models is in the regions of subsurface tension. The 

tensile region at x = 0.463 mm, z = 0.012 mm in the complete contact model is also found in the 

asperity contact model, albeit at a smaller magnitude. The regions of tension in the complete 

contact model at x = 0.445 mm, z = 0.015 mm and x = 0.516 mm, z = 0.008 mm are instead regions of 

low magnitude compressive stress in the asperity contact model. 

 

Figure 6.34 - Contours of normalised residual direct stress in the tangential direction for section of 

roughness from x = 0.43 mm to x = 0.53 mm; a) complete contact model, b) asperity contact 

model. σy = 2.550 GPa and ET / E = 0.05 for each model. 
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6.5. Conclusions 

This chapter has described the analysis of individual asperity contacts within a complete contact. The 

analysis consisted of discussion of residual stresses found in the complete contact models described 

in Chapter 5, parametric analysis of complete contacts subject to a range of nominal Hertzian 

contact pressures, and the simulation of sections of roughness from contact surfaces to assess the 

difference between complete contact models and smaller, less computationally intensive asperity 

contact models. 

Links between experimental findings on surface cracking and pitting failure and locations of the 

maximum principal stresses both at the surface and in the subsurface material were found. It is 

proposed that the maximum principal stresses at the surface are typically found at orientations 

perpendicular to characteristic crack growth. Subsurface principal stresses normal to the surface are 

also found at depths where cracks have been found to penetrate into the deeper subsurface 

material. 

The parametric analysis studied the relationships between residual stresses found to occur at the 

surface and the maximum residual deflection normal to the surface of the associated asperity. It was 

found that a pure power law relationship could not accurately represent the results found from the 

contact simulations. Furthermore, the trend lines that were found as a result of the least squares 

method were dominated by the number of asperities that experienced small residual deflections. 

The result is a particularly poor prediction of the stresses found for asperities with large asperity 

deflections. These asperities were of greater interest, as it is thought that the increased stresses 

affect fatigue life more significantly. As a result, manually manipulated power laws were defined that 

more accurately represented this region of the results.  

The comparison of the complete contact models and asperity contacts models showed that when 

considered correctly, smaller, less computationally intensive simulations of limited widths of 

roughness can provide very similar results to those found from modelling an entire contact. These 
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asperity contact models were found to most accurately agree with the complete contact model for 

sections of roughness close to the contact centre. For sections of roughness far from the contact 

centre, the agreement was found to decline due to the boundary conditions implemented in the 

asperity contact models. These boundary conditions were not sufficient to provide an equivalent 

solution. However, the asperity contact models using sections of roughness from the centre of the 

contact gave excellent agreement. 
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Conclusions and future work 

7.1. Summary of work 

This thesis has been concerned with the investigation of the contact of real rough surfaces, typical of 

those found on the teeth of gears. In the early stages of operating life, freshly manufactured 

surfaces undergo a process known as running-in, where relatively large amounts of plastic 

deformation occurs. This thesis has modelled elastic-plastic contact based on measured profiles to 

investigate the residual stresses induced by this plastic deformation. As part of this investigation, 

both theoretical work, in the form of finite element analysis, and experimental work have been 

undertaken. 

Finite element modelling techniques were initially developed using known contact problems for 

verification. This included comparisons with pre-existing studies from the literature for both elastic 

and elastic-plastic contact of spheres, cylinders and sinusoidal surfaces. After developing a method 

for importing as-measured, rough surface profiles into Abaqus, profiles from unrun and run gear 

surfaces were used in contact simulations. Difficulties were encountered in the simulations for unrun 

surfaces, where more aggressive surface features are found. These difficulties involved excessive 

element distortions as a result of larger relative asperity deflections. In turn, these distortions 

resulted in excessive surface penetrations and extreme contact pressure events that were judged to 

be unsatisfactory. A number of new modelling techniques were trialled in response to these factors, 

improving the robustness of the contact models. 

Using these developed modelling techniques, unrun surface profiles were used in an investigation of 

multiple load applications, and of the effect of tangential loading including friction. The aim of the 

multiple load applications was to simulate the process of running-in. The results of this investigation 

showed that the overwhelming majority of residual asperity shape change occurred in the first 

loading cycle. Subsequent loading cycles resulted in repeated application of contact pressure and 
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stress in both the loaded and residual states. Deformation under load was predominantly elastic in 

the second and subsequent applications of the same load. In studying the effect of tangential loads, 

it was found that the coefficient of friction had to be defined as unrealistically large for noticeable 

effects to be seen in the contact behaviour. For more realistic coefficients of friction, only small 

differences could be found. Where differences did occur, it was found that peak stresses were closer 

to the surface than in equivalent simulations having only normal load. 

Alongside the finite element analysis, an experimental procedure for the contact of two crowned, 

rough disks was established. The aim of the experimental programme was to provide verifiable 

deformation of rough surface profiles that could be recreated using Abaqus. To simplify the model, 

the test disks were carefully chosen. The first disk was nitrided and superfinished. This was 

simulated in Abaqus as a smooth, perfectly elastic solid. The second disk was case carburised with a 

ground surface finish, typical of the specification of gear teeth surfaces. This was simulated as a 

rough, elastic-plastic solid in Abaqus. Surface profiles were taken at three circumferential positions, 

before being loaded with nominal Hertzian contact pressures of 1.0 GPa, 1.5 GPa, and 2.0 GPa 

respectively. Residual surface profiles were measured after loading and correlated with the initial 

profiles using undeformed asperity peaks and valley features. These loads were recreated in Abaqus 

and the residual surface geometry of the finite element analysis and experiment compared. Good 

agreement was generally found to occur. 

In the loaded state, stresses were typically found to be compressive. Upon removal of the load, 

regions of residual tensile stress were found to occur in the proximity of heavily deformed asperities. 

These were found both at the surface and subsurface. Surface tensile stresses were in regions where 

crack initiation has been found to occur in test gears, with the orientation of the maximum principal 

stress found to be perpendicular to the typical direction of crack growth in micropitting. The regions 

of subsurface tension occurred at depths characteristic of the progression of micropitting to macro 
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pitting failure. Cyclic loading of compressive and tensile stress has the potential to aid crack initiation 

and propagation. 

Parametric analysis was used to explore the relationship between residual surface stresses and the 

maximum residual deflection normal to the surface of an asperity. The aim of this analysis was to 

provide a tool that could approximately predict residual surface stresses as a result of a measured 

residual deflection. This would then be used alongside other work in the research group 

investigating the fatigue life of rough surface contacts. A pure power law did not accurately describe 

the data, and a trend line generated using the least squares method was distorted by the higher 

number of asperities with small residual deflections. This resulted in poor prediction of residual 

stresses for asperities experiencing larger residual deflections. Manually manipulated trend lines 

were therefore used to describe the results. 

7.2. Conclusions 

• Finite element analysis can provide accurate residual deformation of asperities in 

comparison with experimental results. 

• Repeated applications of the same load resulted in predominantly elastic behaviour. 

• Tangential loading caused little change in contact behaviour at practical coefficients 

of friction. 

• Large plastic deformation of asperities resulted in surface and subsurface regions of 

residual tensile stress. 

• The location of these residual tensile stresses aligns well with experimental studies 

of the location of crack initiation and propagation typically found in micropitting. 
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7.3. Suggestions for future work 

The work in this thesis has been part of a wider area of research within the research group at Cardiff 

University. This research is concerned with an investigation of the fatigue life of rough surfaces 

operating under mixed lubrication conditions. The current work in the analysis of the fatigue of 

rough surfaces has considered elastic bodies with no residual stresses as a result of running-in (Evans 

et al. 2012). In the future, the work described in this thesis could be incorporated with the fatigue 

life analysis to superimpose the residual stresses, as a result of plastic deformation during initial 

running-in, with the cyclic elastic contact stresses of a typical operating life cycle. This will allow the 

investigation of the impact of residual stresses as a result of running-in on the subsequent fatigue 

life of rough surfaces. 

In the work discussed in Chapter 4 regarding the running-in process of a surface, it was found that 

the majority of plastic deformation occurred within the first application of any given load. In 

correlating contact of real rough surfaces of test disks with finite element analysis, only single 

applications of load were performed. It may be of interest to further investigate the plastic 

deformation contribution to the running-in process by performing multiple applications of the same 

load to confirm whether the results achieved in Chapter 4 can be replicated in experimental tests. 

Additional care would be required in order to ensure than the load was applied to the same 

circumferential location each time. In a single load application, this was less crucial due to the length 

of profiles measured to detect the contact region. 

While good agreement between the results from finite element analysis and experiment has been 

found, a number of assumptions and simplifications have been made. In the future, these should be 

reconsidered. In the present model, asperity features were considered to be two-dimensional, to 

allow simple modelling of a plane strain problem. In many manufacturing processes, such as 

grinding, this is not an unreasonable assumption, as shown by the agreement found in this research. 

However, asperities are generally three-dimensional features and modelling them as such will 
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provide more accurate solutions. To introduce three-dimensional surfaces to Abaqus, modifications 

to the current excel macros and python scripts are needed to consider y-coordinates, as well as x 

and z. Yastrebov et al. (2011) and Olshevskiy et al. (2012) have both used finite element analysis to 

model three-dimensional roughness. Both have encountered considerable simulation time 

difficulties and so an appraisal of computational resources would be recommended if such models 

were to be created. 

In the current model, simple material properties are assumed, either utilising elastic-perfectly plastic 

properties, or varying degrees of linear strain hardening. In reality, material behaviour is more 

complex, and there are a number of ways in which this can be implemented in Abaqus models. 

Assuming that the user knows the complete stress-strain behaviour for the material, the simplest 

option would be to approximate the stress-strain curve using a number of linear sections. This would 

be implemented in the same manner as the linear strain-hardening behaviour previously discussed, 

but consist of additional rows defining the plastic behaviour. A more complex method would be to 

create a user-defined material using a UMAT user subroutine (Abaqus 2010a). To develop the 

knowledge to create user-defined materials it is recommended that simple materials, such as purely 

elastic, elastic-perfectly plastic and linear strain hardening types are created first. These user-defined 

materials can then be compared with those defined using Abaqus/CAE as described in this thesis. 

Subsequently, the more complex behaviour of real engineering materials can be measured and used 

within Abaqus with the aim of obtaining more accurate results. 

In the comparison with experimental results, the best agreement was found to occur for a nominal 

Hertzian contact pressure of 1.0 GPa. With increased pressure, while reasonable agreement was 

found to occur, inconsistencies in the under and over prediction of plastic deformation was seen to 

occur. It was proposed in the discussion of these results that the way in which the profiles were 

filtered could be a contributing factor in these differences. With increased pressure, larger asperity 

deformation occurs, which in turn results in a greater effect upon the mean line of the roughness. In 
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comparing initial and residual profiles with different mean lines used for filtering, the comparison at 

high pressures may not be as equivalent as at lower pressures. It is suggested that for comparisons 

in the future, a new method of filtering profiles be developed in order to eliminate any contribution 

of the filtering process to the differences seen. 

An issue with finite element analysis is the potential for error in determining the contact area. The 

precision with which the edge of a contact is detected is limited to plus or minus the element size. In 

a single contact problem, this effect can be more fully accounted for by using more elements of 

reduced size to reduce the potential for error to an acceptable limit. For contact of rough surfaces, 

the number of elements required is already significant and so increasing the number of surface 

elements is not always practical. To solve this issue, another form of adaptive meshing could provide 

a solution. Adaptive remeshing is an automated iterative process, that runs the prescribed analysis 

multiple times, altering the mesh between analyses based on specified rules that can be defined by 

the user. The process will repeatedly iterate until a set number of cycles is complete, or until targets 

are met. These targets are output variable based, and are essentially mesh dependency checks, 

judging the difference in output parameters between simulations. Once the difference is below a 

prescribed limit, the process is complete and terminates. For example, the user may choose the von 

Mises stress as the variable of interest, ensuring that heavily loaded regions become more densely 

meshed. An example of this can be seen in Figure 7.1. 
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Figure 7.1 - Stress raiser mesh before and after refinement (Abaqus 2010a). 

As contacts are heavily loaded, this will ensure more elements in contact regions, enhancing the 

accuracy of the contact dimension. An increased number of elements around the contact regions 

will also result in an increased resolution of stresses, which may be advantageous for studying 

phenomena such as micropitting which occurs on a scale of just a few microns. The process can also 

work in reverse, increasing element size in regions where little activity occurs. It should be noted 

that adaptive meshing requires triangular elements, either alongside or in combination with 

quadrilateral elements in order to be implemented. The effect of using triangular elements should 

be fully evaluated before proceeding with such an investigation. 

Assuming that triangular elements are found to be suitable, the implementation of adaptive 

meshing is relatively simple. In the Mesh module, the user must select Adaptivity from the toolbar, 

and create a Remeshing Rule, defining the regions and step in which the adaptation is required. In 

the subsequent menu, a number of options become available that are described in much greater 

detail within the Abaqus User’s Manual (Abaqus 2010a). These include the error indicator (such as 

von Mises stress, or plastic strain), the error tolerance, minimum and maximum element size, the 

maximum total number of elements and the rate of refinement/coarsening allowed during the 



 Conclusions and future work 

Chapter 7  300 

process. To submit standard analyses, the Job module is used to create and submit Jobs. To use 

adaptive meshing, the Job module is still used, but an Adaptivity Process is created and submitted 

instead. Upon creating the Adaptivity Process, the user can specify the maximum number of 

iterations that will be performed by Abaqus. Abaqus will then initially proceed as in a standard 

analysis until the first iteration is completed. The mesh is then automatically altered using the 

specified remeshing rules, before submitting and running the job again. This will be repeated until 

the error targets are met or the maximum number of iterations is achieved. 
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Importing profiles into Abaqus/CAE 

A.1. Introduction 

In order to simulate the contact of real rough surfaces, measured rough surface profiles must be 

available within Abaqus. For the user to create these parts using the simple CAD tools available 

within Abaqus/CAE would be a time consuming and monotonous task. To provide an effective to 

solution to this task, macros were used in Microsoft Excel to create a Python script that would create 

a part with the required profile coordinates in Abaqus (Gay 2010). 

A.2. User Guide 

The solution consists of two files: an Excel workbook, containing embedded macros to write a 

python script file, and the base python script file itself. The Excel workbook allows the user to specify 

the profile data, and the Abaqus part dimensions, while the base python file consists of the code 

that is required for every part creation. It is recommended that a copy of this python file is kept 

separate, and renamed, for reference and in the event of difficulties. Before opening and using the 

embedded macro script, the Excel workbook and associated python file(s), must be located on the D 

drive, in a folder named “talysurf2abaqus” (i.e. D:\talysurf2abaqus\). 

A.2.1. In Excel 

The excel spreadsheet consists of four sheets: “options”, “results here”, “transform” and “out”. 

Figure A.1 shows the sheet “results here”, where the required rough surface profile data is to be 

entered. For the surface roughness to be to-scale, each of the coordinates must be in the same 

units. In the example shown, both the x and z coordinates are specified in millimetres. Furthermore, 

if the profile is still in raw, as measured format, any filtering or smoothing should be performed prior 

to using the transformation spreadsheet. Column A consists of the x-coordinate, while column B 

consists of the z-coordinate, i.e. the profile height. However, it should be noted that the macros do 
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not use the x-coordinates in column A, it is purely for user reference. The macro assumes that the 

profile starts at x=0mm (or other units) in cell B1. The following points are then spaced in the x-

direction by the “Resolution” input in the “options” sheet. 

Figure A.2 shows the sheet “options”, where the details of the part to be created in Abaqus are 

entered. The cells highlighted in yellow show the cells that must be completed by the user. The x-

coordinate of the start and end of the profile required in Abaqus must be specified in C22 and E22 

respectively. It is here in which the x-coordinate data becomes useful to the user. If only a portion of 

the profile data imported to the “results here” sheet is required, then the x-coordinate data in 

column A allows simple selection of the required profile section. As previously stated, the spacing 

between points in the x-direction is defined in C26. Each of these is to be specified in millimetres. In 

the example shown, the spacing between points is 0.25µm, ranging from 0.0mm to 0.5mm. The 

remaining box to be filled in by the user is C24. This defines the depth of the part that will be created 

above the rough surface in the z-direction, again, specified in millimetres. In the example shown, the 

part created will extend 0.5mm beyond the imported rough surface to the part boundary. However, 

this is relatively unimportant as the part can be modified further once in Abaqus.  
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Figure A.1 - Results Sheet. 
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Figure A.2 - Options Sheet. 

The sheets “transform” and “out” should be left unchanged by the user unless modifications to the 

code are to be performed. The “transform” sheet contains the code to transform the specified rough 

surface profile and part dimensions into the required coordinates for Abaqus. It then uses these 

coordinates with the required Sketcher command (Abaqus 2010c) to draw straight lines between the 

points. These commands are then written in the “out” sheet, which consists of the entire part 

creation command list required to draw a part in Abaqus. This command list is then written to a 

generically named python scripting file, named python.py. This file contains required initial 

commands for Abaqus, and overwrites the part creation command lines each time the user clicks the 

“Run” button in the “options” sheet. Each of these regions is labelled in Figure A.3. It is therefore 

important to copy and rename the python script file if overwriting subsequently would be 
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undesirable. For further details on writing script for use with Abaqus, it is recommended that users 

refer to the Abaqus Scripting User’s Manual (Abaqus 2010d). 

 

Figure A.3 - Python Script File Layout. 
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A step by step guide to use the excel workbook is shown in Table A.1. 

Table A.1 - Step by step guide to using excel workbook. 

1. Insert profile data in millimetres in sheet “results here”.  

2. 
Define starting and finishing x-coordinate in millimetres for Abaqus part in cells C22 and E22 in 

sheet “options”.  The macros consider cell B1 to be at x=0mm. 

3. Define depth of part in millimetres beyond the rough surface in cell C24 in sheet “options”. 

4. Select x-direction spacing of inserted profile data in cell C26 in sheet “options”. 

5. Click “Run” in sheet “options”. 

6. Python.py file is updated with new profile data to be run in Abaqus. 

 

A.2.2. In Abaqus 

Once the python script file has been created using the macros in the excel workbook, Abaqus/CAE 

can be opened, and a new model created. Select “File” from the taskbar at the top of the window, 

and choose the “Run script” option. This will open a separate explorer window that will allow the 

user to select the previously created python script file (.py file extension). The script will then run 

and create a 2D deformable part based on the roughness profile and details specified by the user. If 

necessary, the user can then modify the part as required and proceed with creating a finite element 

model in Abaqus/CAE in the same way as with any other part. 
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Publications 

Title Plastic deformation in rough surface line contact - a finite element study 

Authors M.J. Bryant, H.P. Evans, R.W. Snidle 

Journal Tribology International 

Year 2012 

Volume (Issue) 46(1) 

Pages 269-278 

Abstract The paper describes an elastic–plastic finite element (EPFE) analysis of line 

contact between a cylinder and rigid plane using commercial software. The 

range of loading demonstrates the transition from purely elastic to fully plastic 

contact behaviour, revealing the residual deformations and stress fields upon 

unloading. A multiple contact configuration was analysed in the form of 

sinusoidal roughness. Results obtained under elastic conditions were validated 

by comparison with theoretical solutions. This model was extended by replacing 

the sinusoidal surface with a real roughness profile. Modelling multiple contacts 

indicates the influence of adjacent surface ‘‘asperities’’ on contact pressure and 

residual stress distributions.  

 

Title Predictive modelling of fatigue failure in concentrated lubricated contacts 

Authors H.P. Evans, R.W. Snidle, K.J. Sharif, M.J. Bryant 

Journal Faraday Discussions 

Year 2012 

Volume (Issue) 156(1) 

Pages 105-121 

Abstract Reducing frictional losses in response to the energy agenda will require use of 

less viscous lubricants causing hydrodynamically-lubricated bearings to operate 

with thinner films leading to ‘‘mixed lubrication’’ conditions in which a degree of 

direct interaction occurs between surfaces protected only by boundary 

tribofilms. The paper considers the consequences of thinner films and mixed 

lubrication for concentrated contacts such as those occurring between the teeth 

of power transmission gears and in rolling element bearings. Surface fatigue in 

gears remains a serious problem in demanding applications, and its solution will 

become more pressing with the tendency towards thinner oils. The particular 

form of failure examined here is micropitting, which is identified as a fatigue 

phenomenon occurring at the scale of the surface roughness asperities. It has 

emerged recently as a systemic difficulty in the operation of large scale wind 

turbines where it occurs in both power transmission gears and their support 

bearings. Predictive physical modelling of these contacts requires a transient 

mixed lubrication analysis for conditions in which the predicted lubricant film 

thickness is of the same order or significantly less than the height of surface 

roughness features. Numerical solvers have therefore been developed which are  
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cont. able to deal with situations in which transient solid contacts occur between 

surface asperity features under realistic engineering conditions. Results of the 

analysis, which reveal the detailed time-varying behaviour of pressure and film 

clearance, have been used to predict fatigue and damage accumulation at the 

scale of surface asperity features with the aim of improving understanding of the 

micropitting phenomenon. The possible consequences on fatigue of residual 

stress fields resulting from plastic deformation of surface asperities is also 

considered. 

 

Title Dry elasto-plastic contact of nominally flat surfaces 

Authors A.V. Manoylov, M.J. Bryant, H.P. Evans 

Journal Tribology International 

Year 2013 

Volume (Issue) 
Article in press 

Pages 

Abstract In mixed lubrication the lubricant film is not sufficiently thick to prevent contact 

between the working surfaces. As a result, the influence of the surface 

roughness on the pressure distribution becomes significant with large pressures 

being generated in the interaction regions of the most prominent surface 

asperities. In addition the flow of lubricant is obstructed by the asperities and 

therefore the flow cannot be described by the classical Reynolds equation for 

smooth surfaces. The flow of lubricant between rough surfaces was studied by 

e.g. Patir and Cheng, who introduced flow factors to modify the Reynolds 

equation so as to take roughness effects into account in an averaged way and 

this approach has been subsequently generalised to incorporate an 

homogenised Reynolds equation. These methods take account of roughness 

based on the distribution of gap between the loaded surfaces obtained from a 

dry contact analysis. This paper presents a method to solve dry contact 

problems for this purpose in the case of plane surfaces using a simple elastic–

plastic model at the asperity contacts and a differential formulation for the 

elastic deflection, and provides validation for the method in terms of 

comparison with the results of an elastic–plastic rough surface contact analysis 

obtained using a finite element analysis. 

 


