Accepted Manuscript

Structural Controls on gold mineralization on the margin of the Yilgarn craton, Albany-Fraser orogen: The Tropicana Deposit, Western Australia

T.G. Blenkinsop, M.G. Doyle

PII: S0191-8141(14)00026-1

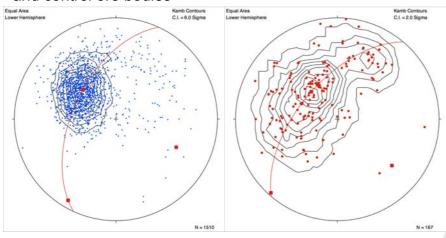
DOI: 10.1016/j.jsg.2014.01.013

Reference: SG 3017

To appear in: Journal of Structural Geology

Received Date: 1 March 2013

Revised Date: 20 January 2014 Accepted Date: 26 January 2014


Please cite this article as: Blenkinsop, T.G., Doyle, M.G., Structural Controls on gold mineralization on the margin of the Yilgarn craton, Albany–Fraser orogen: The Tropicana Deposit, Western Australia, *Journal of Structural Geology* (2014), doi: 10.1016/j.jsg.2014.01.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- Tropicana is a world class gold deposit on the margin of the Yilgarn craton
- Gold was precipitated in the Archean at greenschist facies within granulite gneiss hosts
- Mineralization was governed by fluid flow in a network of shear zones
- The shear zones and ore bodies reflect the geometry of the host gneisses
- The entire history of five deformation events has affected gold mineralization

Gneissic banding and shear planes have similar orientations and control ore bodies

- 1 Structural Controls on gold mineralization on the
- 2 margin of the Yilgarn craton, Albany-Fraser
- 3 orogen: The Tropicana Deposit, Western Australia

4

- 5 T. G. Blenkinsop^{1,2*} and M. G. Doyle²
- 6 ¹ Economic Geology Research Unit
- 7 School of Earth and Environmental Science,
- 8 James Cook University,
- 9 Townsville QLD 4811,
- 10 Australia
- ²Present Address:
- 12 School of Earth and Ocean Sciences,
- 13 Main Building, Park Place,
- 14 Cardiff CF10 3AT,
- 15 United Kingdom
- 16 BlenkinsopT@Cardiff.ac.uk
- 17 *Corresponding Author

18

- 19 ² AngloGold Ashanti Ltd
- 20 Level 13, St Martins Tower
- 21 PO Box Z5046, Perth WA 6831
- 22 <u>MDoyle@AngloGoldAshanti.com.au</u>
- 23 **Key words**. Shear zone, Archean, Lode gold, orogen, Albany-Fraser, Tropicana

Abstract

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

25

The Tropicana gold deposit is located adjacent to the margin of the Yilgarn craton in the Albany-Fraser orogen, Western Australia. The deposit is hosted in granulite facies quartzo-feldspathic gneisses of the Archean Tropicana Gneiss. Ore bodies comprise biotite-pyrite alteration concentrated in shear zones that formed during NE-SW shortening in the late Archean, and clearly postdate the formation and deformation of high-grade gneiss fabrics (D1 and D2). The orientation of the ore bodies is controlled by the shear zones that are in turn localised by the gneissic banding. Mineralization also involved solution and coeval microfracturing and veining of more competent pegmatitic units. The mineralizing event (D3) was followed by at least two further deformations, which reactivated and overprinted the biotite fabrics with sericite and chlorite, created new shear zones, and affected gold distribution. D5 consisted of dextral shear on ~E-W shear zones, which subdivide the deposit into five major structural domains. The importance of structurally controlled permeability at Tropicana is similar in cratonic lode gold deposits, as is the protracted deformation/fluid flow history. Like Renco mine in Zimbabwe, Tropicana gold deposit was formed by hydrothermal fluid flow peripheral to the craton: economic gold mineralization was clearly post-peak metamorphism.

44

45	1. Introduction
46	
47	Many Archean lode gold deposits have distinctive geological characteristics (e.g.
48	Robert and Brown, 1986; Groves et al., 1998; 2000; Wit and Vanderhor, 1998;
49	Goldfarb et al., 2001) including:
50	
51	1) Discrete, high grade lodes, commonly with abundant quartz and
52	carbonate veining;
53	2) Greenschist-amphibolite facies peak metamorphism of the host rocks,
54	which slightly predates alteration and mineralization at similar or lower
55	grade metamorphic conditions;
56	3) A variety of supracrustal host rocks, although Fe-rich and competent
57	lithologies make especially favourable sites for mineralization;
58	4) Little mineralization in plutonic rocks;
59	5) A spatial association with felsic intrusions.
60	
61	In addition to these general geological characteristics, the ore bodies all have in
62	common strong structural controls, which testify to the essential roles of
63	permeability and fluid flow in creating these hydrothermal ore bodies (e.g. Cox,
64	1999). The controls can be crudely classified in terms of the hosting structure as
65	breccias, faults and shear zones (e.g. Hodgson, 1989). In well-documented cases
66	there is evidence of reactivation of structures and multiple cycles of deformation
67	and fluid flow (e.g. Poulsen and Robert, 1989; Baker et al., 2010; Davis et al.,
68	2010; Miller et al., 2010; Dirks et al., 2013). Increasingly these patterns are
69	interpreted in terms of stress and fluid pressure fluctuations associated with the

70	earthquake cycles (Sibson et al., 1987, 1988; Robert et al., 1995; Cox and Ruming,
71	2004; Micklethwaite and Cox, 2004; 2006).
72	
73	At a scale greater than individual deposits, it is well recognised that Archean lode
74	gold deposits are not found directly on craton-scale shear zones, but instead lie
75	in adjacent lower order structures (e.g. Kerrich, 1989; Vearncombe, 1998),
76	although a role for the first order features can be inferred from the distribution
77	of mining camps along them (e.g. Weinberg et al., 2004; Blewett et al., 2010a,b).
78	At a global scale, the occurrence of gold provinces that contain giant or several
79	world class gold deposits has been explained as the consequence of their
80	formation in orogenies involving thin lithosphere or subducted oceanic crust
81	(Bierlien et al., 2001; 2006) because of the greater likelihood of high
82	asthenospheric heat input.
83	
84	This study describes the structural controls on Australia's largest new gold
85	discovery, the world class Tropicana deposit in Western Australia. The Tropicana
86	deposit is located adjacent to the edge of the Archean Yilgarn craton in the
87	Albany-Fraser orogen (Fig. 1), naturally leading to comparisons with the
88	Archean lode gold deposits of the Yilgarn craton, and posing the question of
89	whether it has formed in a similar way. The aims of this paper are to describe the
90	structural controls on mineralization at Tropicana, to make a comparison with
91	the classic deposits of the Yilgarn craton, and to highlight some remarkable
92	comparisons between the deposit and the Renco gold mine in Zimbabwe. These
93	comparisons cast light on the genesis of the Tropicana deposit.

94

95	
96	2. Geology of the Tropicana Deposit
97	
98	2.1 Regional Setting
99	The Tropicana deposit is situated 41 km to the E of the easternmost magnetic
100	expression of the Archean Yilgarn craton, in the Northern Foreland of the
101	Albany-Fraser orogen (Spaggiari et al., 2011). The proximal part of the Yilgarn
102	craton is the Yamarna Terrane of the Eastern Goldfields Superterrane (Pawley et
103	al., 2012) (Fig. 1). On a regional scale, the boundary between the Northern
104	Foreland and the craton has been interpreted as a major regional structure, the
105	Cundeelee fault, which may have originated as a thrust (Spaggiari et al. 2011).
106	Immediately to the W of the Northern Foreland, a thick sequence of Permo-
107	Carboniferous sedimentary rocks overlies the craton, and is separated from the
108	Northern Foreland around Tropicana by the Gunbarrel fault (Fig. 2), a steeply
109	NW dipping normal fault which cuts the Cundeelee fault. There is no obvious
110	continuity between the NNW trending structures on the Yilgarn craton in the
111	Yamarna terrane (including the Yamarna shear zone) and structures in the
112	Tropicana area of the Northern Foreland (Fig. 2) (e.g. Jones et al., 2006).
113	
114	The Albany-Fraser orogen mantles the southern and western margins of the
115	Yilgarn craton over a distance of more than 1000 km. Mesoproterozic orogenic
116	events have been recognised at 1350 – 1260 Ma and 1215-1140 Ma (Clark et al.,
117	2000), but more recently it has become clear that Paleoproterozoic events
118	including deposition of metasedimentary rocks and intrusion of granitic to
119	gabbroic intrusions, constitute a major part of the eastern Albany–Fraser

120	orogeny in the Biranup zone (Kirkland et al., 2011). High grade deformation
121	occurred here at 1680 Ma, called the Zanthus Event within the Biranup orogeny,
122	and this geological history has been interpreted as representing the evolution of
123	an arc-backarc on the margin of the Yilgarn craton (Kirkland et al., 2011).
124	
125	The Northern Foreland is defined as the reworked part of the Yilgarn craton
126	within the Albany–Fraser orogen (Myers, 1990). The intensity and grade of
127	reworking varies in the Northern Foreland from amphibolite-granulite facies in
128	the S to greenschist-amphibolite facies in the N (Spaggiari et al., 2011). Around
129	and approximately 200 km to the SW of Tropicana, the Northern Foreland
130	consists of a fault-bound assemblage of rocks with a common and distinct
131	geological history that we define as the Plumridge terrane. The Plumridge
132	terrane is approximately 27 km wide at Tropicana: to the E lies the Biranup Zone
133	consisting of intensely deformed gneiss and metagabbro with Paleoproterozoic
134	ages (Bunting et al., 1976; Spaggiari et al., 2011). The contact between the two
135	zones has a curved NE trending shape in map view, which is overall convex to
136	the NW: it is interpreted as a thrust, herein referred to as the Black Dragon
137	Thrust (Fig. 2). The Black Dragon Thrust juxtaposes ca. 1820 Ma metagranite and
138	amphibolite rocks in the Black Dragon Domain of the Biranup Zone above
139	Archean gneissic rocks hosting the Tropicana deposit, herein referred to as the
140	Tropicana Gneiss (Fig. 2). Deformation in the Biranup zone is associated with the
141	Biranup orogeny (1710 – 1650 Ma), but there was also activity along the Yilgarn
142	margin at 1800 Ma, as indicated by the deposition of sedimentary rocks and
143	intrusion of granites of this age (Spaggiari et al., 2011).

145	
146	2.2 Host rocks
147	Neither the host rocks nor the ore body are exposed at Tropicana, being covered
148	by up to 15 m of Cretaceous to Recent sediments. All the data in this study are
149	based on the diamond drilling carried out to delineate the mineral resource. Core
150	was examined from 36 drillholes (Supplementary Material gives drillhole
151	locations), but this did not include any drillholes into the Boston Shaker or the
152	Havana Deeps domains.
153	
154	The host rocks at Tropicana are gneisses dominated by garnet gneiss
155	(plagioclase, amphibole, garnet ± leucoxene, quartz) and quartzofeldspathic
156	gneiss (plagioclase, k-feldspar, quartz, biotite), with lesser amounts of
157	amphibolite, meta-ferruginous chert (quartz, grunerite), pegmatite and mafic
158	granulite. The pegmatites appear to be products of in situ partial melting at peak
159	metamorphism, which was at upper amphibolite to lower granulite facies (Doyle
160	et al., 2007; 2009). Compositional banding in the gneisses dips moderately to the
161	E to SE (Fig. 4). The hangingwall of the deposit is dominated by the garnet gneiss
162	The gneisses and the ore bodies are cut by mafic dykes ascribed to the c. 1210
163	Ma Gnowangerup-Fraser Dyke Suite (Doyle et al., 2007), which are prominent
164	regional aeromagnetic features trending NE (Fig. 2).
165	
166	2.3 Geochronology
167	The age of the host rocks regionally was inferred to be Archean (Bunting et al.,
168	1976). This possibility has been strengthened by unpublished propriety
169	geochronological data (Doyle et al., 2009) and preliminary U-Pb zircon ages of

170	2722 ± 15 Ma and 2643 ± 7 ma for a metagranite sample taken 7 km N of
171	Tropicana, which have been interpreted as ages of crystallization and
172	metamorphism respectively (Spaggiari et al., 2011).
173	
174	The retrograde path from peak granulite facies metamorphism is constrained by
175	a rutile U-Pb date of 2524 \pm 8 Ma, interpreted to reflect cooling through 500-
176	550°C (Doyle et al., 2013). A minimum age of 2515 ± 8 Ma for mineralization is
177	suggested by biotite Ar-Ar analyses, which is consistent with late Archean Re-Os
178	analyses of pyrite (Doyle et al., 2013). Discordance in zircons and monazites can
179	be interpreted in terms of Pb loss in Stage II of the Albany-Fraser Orogeny
180	(1215-1140 Ma: Kirkland et al., 2011).
181	
182	
183	3. Ore Geometry and Style of Mineralization
104	
184	
185	The resource at Tropicana occurs along a 5 km strike length trending overall NE,
	The resource at Tropicana occurs along a 5 km strike length trending overall NE, which can be divided into five structural domains from N to S: Boston Shaker,
185	
185 186	which can be divided into five structural domains from N to S: Boston Shaker,
185 186 187	which can be divided into five structural domains from N to S: Boston Shaker, Tropicana, Havana, Havana Deeps and Havana South (Fig. 3). Low grade
185 186 187 188	which can be divided into five structural domains from N to S: Boston Shaker, Tropicana, Havana, Havana Deeps and Havana South (Fig. 3). Low grade mineralization is also recorded to the S of these main areas, for example at
185 186 187 188 189	which can be divided into five structural domains from N to S: Boston Shaker, Tropicana, Havana, Havana Deeps and Havana South (Fig. 3). Low grade mineralization is also recorded to the S of these main areas, for example at Crouching Tiger prospect, and at other prospects regionally (Fig. 2). The five
185 186 187 188 189 190	which can be divided into five structural domains from N to S: Boston Shaker, Tropicana, Havana, Havana Deeps and Havana South (Fig. 3). Low grade mineralization is also recorded to the S of these main areas, for example at Crouching Tiger prospect, and at other prospects regionally (Fig. 2). The five domains have en echelon arrangement. Within each domain the general

194	zones (Fig. 3). Most of these shear zones dip S. Map scale shears with a similar
195	orientation also occur within the resource areas, as well in a NE direction (Fig. 3).
196	
197	Mineralization is concentrated in one to several sub-parallel tabular ore zones 2
198	– 50 m thick which generally dip to the E to SE, within quartzofeldspathic gneiss
199	(Fig. 4). Within these ore zones there are higher grade lenses. When viewed in
200	section parallel to strike, ore zones show an inosculating pattern, separating
201	lenses of unmineralised rock, and thickening and thinning (Fig. 5). The map view
202	of the gold assay data x thickness (gram-metres) shows high grade ore shoots
203	with slightly variable orientations between the domains. In Boston Shaker, the
204	trend is SE, in the northern part of Tropicana, ESE; in Havana and Havana Deeps,
205	SSE (Fig. 3).
206	
207	Similar distinctions in orientations between the domains are seen in three-
208	dimensional data by examining the orientations of modelled high grade lenses
209	(≥3 g/t) (Fig. 6). Tropicana is characterized by E to SE dipping ore bodies,
210	generally coaxial about an E-plunging line (29° \rightarrow 087°), whereas the ore bodies
211	in Havana North dip between S and E, and have a common axis plunging to the
212	SSE (22° \rightarrow 163°).
213	
214	Gold grades in the ore zones at Tropicana are dominantly associated with
215	intervals of biotite-pyrite alteration that occur within quartzofeldspathic gneiss
216	with pegmatites. Biotite with pyrite and gold replaces metamorphic biotite and
217	amphibole, most commonly in millimetre wide shear zones defined by strong
218	fabrics consisting of elongate biotite and pyrite grains (Fig. 7a,b), but also in

219	disseminated volumes. Higher gold grades are also associated with areas of
220	brecciation in pegmatites around shears, with shears containing biotite-sericite
221	and minor chlorite (Fig. 7c, d), and in areas with solution fabrics (see below; Fig.
222	8). Known occurrences of visible gold correspond with intercepts of >30 g/t in
223	1m composite assays. Visible gold is paragenetically late and typically localized
224	on muscovite fractures which cut across anatectic segregations, quartz veins and
225	gneissic bands and biotite-pyrite fracture fills.
226	
227	4. Deformation History, Meso- and Microstructures
228	
229	Table 1 gives a deformation history that can be inferred from drill core,
230	geophysics and deposit scale geometry. This section focuses on the detailed
231	evidence from the core pertaining to events which may be associated with gold
232	mineralization: the preceding history is outlined because it affects the deposit
233	geometry.
234	
235	4.1 Gneissic Banding S1, F1 folds
236	The most commonly observed mesoscale structure in the cores is a gneissic
237	banding defined by variations of up to 20% in the proportions of quartz,
238	feldspars, biotite, amphibole and garnet on a mm to cm scale (Fig. 9a,b). The
239	gneissic banding is tight to isoclinally folded (Fig. 9a,b) with E to SE dipping
240	hinge surfaces and gently S plunging hinges (Fig. 10). Some of these folds are
241	rootless (Fig. 9b), suggesting that the gneissic banding is the product of early
242	deformation and high grade metamorphism, as indicated by leucosomes that are
243	generally parallel to the banding.

244	
245	4.2 D2
246	A fold on the scale of hundreds of m is suggested by W-dipping gneissic banding
247	in cores to the W of the deposit. The drill core data imply an asymmetric synform
248	in the footwall of the mineralization. Based on evidence from the nearest outcrop
249	at Hat Trick Hill (Fox-Wallace, 2010) and regional considerations (Spaggiari et al.
250	2011), this W verging fold is likely associated with a W to NW verging thrust
251	system that is developed regionally. It is possible that some of the S plunging
252	folds shown in Fig. 10 are F2 folds.
253	
254	4.2 D3: Shear Zones
255	Quite distinct from the gneissic banding are localised zones of strong foliation
256	defined by biotite and pyrite, chlorite or sericite (Fig. 7b). Such shear zones are
257	typically mm to cm wide, and clearly cut across the gneissic banding in places,
258	although they are generally parallel to the banding. Asymmetric fabrics
259	indicating shear are common in such zones, and include SC and SC' fabrics, sigma
260	porphyroclasts and oblique foliations (Fig. 9d). Lineations are very difficult to
261	observe because the foliation surfaces are not generally visible in the core. The
262	shear zones are commonly surrounded by zones of brecciation.
263	
264	Shear zones containing biotite – pyrite only are distinct from those that may also
265	include chlorite or sericite: these minerals appear to overprint the biotite, so that
266	the shear zones containing biotite-pyrite are regarded as a third deformation
267	(D3), after the formation and folding of the gneissic fabric, but predating later
268	overprinting by other phyllosilicates.

269	
270	4.3 D3: Solution Fabrics and Breccias
271	Zones of intense solution fabrics are defined by wavy seams containing biotite and
272	pyrite $1-2$ mm wide between fractured quartz and feldspar layers $5-10$ mm thick
273	(Fig. 8). In places the fracturing is dense enough to be described as a breccia (Fig. 8b).
274	The quartz and feldspar are fractured by mm long veins filled with calcite that form
275	distinctive irregular shapes perpendicular to the stylolites (Fig. 8a). The calcite veins
276	appear to be extensional and in places are markedly oblique to the solution seams.
277	They are associated with ostensibly the same auriferous pyrite as the solution seams,
278	since that pyrite can be seen as a component of the fracture fill in the carbonate veins
279	(Fig. 8d), and biotite alteration in the seams extends into the fractures. The presence
280	of biotite and pyrite suggests that this fabric may have formed during D3, although
281	there is also a strong association with sericite in places. Significant gold grades were
282	recovered from a stylolitic interval in core from drill hole TP202.
283	
284	4.4 D3 Folds
285	Gentle folds of the lithological layering visible in the mine model plunge
286	moderately SE and occur on the scale of whole domains. Folding with a similar
287	orientation can be inferred from the distribution of poles to gneissic banding (Fig
288	11), and from some measurements of individual folds in core (Fig. 10). This
289	folding postdates D1 and D2, and is ascribed to D3.
290	
291	4.3 D4, D5 Shear Zones and Folds
292	Some biotite-pyrite shear zones are overprinted by fabrics defined by chlorite
293	and sericite, which have distinct kinematics. Other shear zones contain sericite

and chlorite only. A distinctive set of shear zones with biotite and
sericite/chlorite dip S and SW and have dextral kinematics. Some of these later
fabrics are folded into characteristically asymmetric folds on a 1 - $10\ \text{cm}$ scale
(Fig. 9c). These folds have been measured at the boundary between the
Tropicana and Havana domains, near the Boston Shaker shear zone. Fold hinge
surfaces dip S, with generally E to SE plunging hinges (Fig. 10) and Z
asymmetries. The folds and the S dipping dextral shears are consistent with a
late deformation event comprising dextral shear on S and SW dipping zones.
Since they fold a sericite-chlorite fabric, this event (D5) probably postdates an
intermediate event represented by sericite-chlorite shear zones in various
orientations (D4).

5. Kinematic Analysis

Shear zones were measured from cores into the Tropicana, Havana North and South domains (Fig. 12). Kinematic analysis of shear zones was possible from SC and SC' fabrics and sigma clasts which could be used to identify the vorticity vector and hence the shear direction as perpendicular to the vector. A kinematic analysis was performed using linked Bingham axes (cf. Marrett and Allmendinger, 1990) and filtering the results by the phyllosilicate mineralogy of the shear zones into biotite, biotite with sericite and/or chlorite, and sericite/chlorite groups (Figs. 12, 13). In all cases the linked Bingham axes from the kinematic analysis give one of two shortening directions: NE or NW (Fig. 13).

319	The biotite shear zones dip to the SW, S, SE and NE (Fig. 12). Kinematics vary
320	consistently with orientation: SW, S and SE dipping shears are sinistral, while E and
321	NE dipping shears are dextral (Fig. 12). The displacement pattern is kinematically
322	coherent, and consistent with NE horizontal shortening, which is also reflected by the
323	linked Bingham axes (Fig. 13). This orientation defines D4 kinematics.
324	
325	The other shear zones have similar orientations to the biotite shears, but in all
326	orientations there is a variety of shear directions and senses (Figs. 12, 13), commonly
327	with contradictory shear senses on adjacent and sub-parallel shears. A particularly
328	common set of shears dips S to SW with mostly dextral normal kinematics: these are
329	common at the major breaks between the Tropicana and Havana North domains and
330	between the Havana North and South domains, (e.g. holes TFRC090D and TFD167)
331	(Figs. 11, 12), and they define the D5 kinematics with a NW shortening direction. The
332	same shortening direction is apparent from shears that have sericite/chlorite and no
333	biotite, which can be associated with D5 (Table 1).
334	
335	Shear zones with biotite and sericite/chlorite show some overlap between shortening
336	and extensional quadrants, and the Bingham axes reflect either NE or NW shortening
337	(Fig. 14). This is consistent with the possibility that some of these shear zones have
338	been reactivated in D5 kinematics, while others preserve D3 shortening directions.
339	
340	
341	6. Discussion
342	
343	6.1 Deformation History and Structural Controls on Ore bodies at Tropicana

344	
345	The structural/mineralization history at Tropicana is summarised in the cartoons
346	of Fig. 16. D1 included the formation of high-grade gneissic banding, partial melting,
347	and isoclinal folding (Fig. 16a). The kinematics of D1 could not be constrained by
348	observations in this study, and the event as defined here might include additional
349	complexities. Regional considerations suggest that D2 was a major event of W to NW
350	directed thrusting that probably created some of the major structures in the area such
351	as the Iceberg thrust (Fig. 16b). Tight to isoclinal folds in gneissic banding plunging S
352	to SE observed in the core cannot definitively be ascribed to D1 or D2, and it is
353	possible that they represent a progressive deformation event.
354	
355	Gold mineralization at Tropicana is controlled by a system of biotite-pyrite shear
356	zones within a favourable lithological band of feldspathic gneiss that has a sheet dip
357	to the E to SE. The biotite shear zones are generally sub-parallel to gneissic banding,
358	but clearly postdate it, and are surrounded by diffuse bodies of mineralised breccia.
359	The main mineralization phase was associated with the biotite alteration, and the
360	shear zones formed with a NE shortening direction (Fig. 14).
361	
362	The biotite-pyrite shear zones measured in the core have an approximate girdle
363	distribution around a SE-trending axis (Fig. 15). Although the shears have a variety of
364	orientations, they are not folded on the scale of the core. The SE trend is similar to
365	the direction of the high grade ore shoots visible on the map (Fig. 3) and to the
366	common intersection of high-grade ore shells in Havana (Fig. 6). Gentle folding of the

gneissic banding in this orientation is also apparent on a large scale (Fig. 11): these

are ascribed to an F3 generation of folds.

367

368

369	
370	The SE trend observed in the gram-metre plot, the high grade ore shells, the girdle
371	distribution of the shears and the orientations of gneissic banding, is a very significant
372	control on mineralization, which is consistent with fluid flow along the biotite-pyrite
373	shears. The observation that the biotite-pyrite shears are not folded and the similarity
374	of Figs. 11 and 15 suggest that their orientation was largely controlled by the gneissic
375	banding, to which they are generally parallel. The orientation of the gneissic banding
376	reflects D1 and D2, which imparted the moderate E to SE dip to the banding, and a
377	component of gentle folding superimposed in D3. The trends of the high grade shoots
378	are therefore parallel to common intersections of the biotite-pyrite shear zones and
379	hinges of F3 folds (Fig. 16c).
380	
381	There are significant variations in these trends between Tropicana and the other
382	domains. In Tropicana, high grade ore shells dip more easterly than in Havana (Fig. 6),
383	giving an easterly trend to their intersection, which is also apparent in the gram-metre
384	plot (Fig. 3). At least two possibilities to explain this variation are: i) an initial
385	variation in geometry inherited from D1 and D2; or ii) Reorientation by D4 or D5 in
386	Tropicana, which is distinguished from the other domains by a higher density of late
387	shear zones.
388	
389	Lower grade sericite/chlorite fabrics overprint the biotite-pyrite shears. SC and SC'
390	fabrics were developed during this retrogression. The distinct group of S to SW
391	dipping shear zones observed in the cores with sericite/chlorite and dominantly
392	dextral normal kinematics near the junction of boundaries of the structural domains

393	(Fig. 12) have a NW shortening direction, and define the D5 kinematics (Fig 16d).
394	The distinctive Z folds near the Boston Shaker shear zone are consistent with D5.
395	
396	Notwithstanding the general history given above, there are examples of contradictory
397	shear senses, some even within the mineralising biotite-pyrite shears. These testify to
398	repeated reactivation, commonly in opposite shear senses, which is a hallmark of the
399	deposit. Much of the reactivation is consistent with D5 overprinting D3 structures, but
400	there are anomalous shear zones that do not fit in with this history: they could
401	represent the influence of D4. However, the kinematics of D3 and D5 appear to be
402	dominant (Fig. 14).
403	
404	N trending shears observed in some cores (Fig. 12) are parallel to a change in
405	structural grain observed on a large scale around Tropicana and in the Plumridge
406	terrane compared to other parts of the Northern Foreland, where aeromagnetic trends
407	are NW and more comparable with adjacent trends in the Yamarna Terrane. This
408	inflexion may have been important to mineralization by bringing lithological bands
409	into a more favourable orientation for shearing.
410	
411	
412	6.2 Comparison with Archean lode gold deposits
413	
414	In terms of its general geological properties, the Tropicana deposit has some
415	similarities but also significant differences from many Archean lode gold
416	deposits of the Yilgarn craton. Tropicana lacks the metre scale quartz carbonate
417	veining that is such a characteristic feature of many Archean lode gold deposits.

418	Likewise, the upper amphibolite-granulite grade of metamorphism for the host
419	rocks is exceptional, while the occurrence of mineralization at greenschist facies
420	at Tropicana (Doyle et al., 2009) is more typical of lode gold deposits (e.g.
421	Vearncombe, 1998). The concentration of mineralization in the feldspathic
422	gneiss is comparable to preferential mineralization in some host rocks within
423	lode gold deposits, although the feldspathic gneiss itself is quite dissimilar
424	geochemically to the basaltic or andesitic volcanic hosts of many lode gold
425	deposits. The diffuse nature of many ore bodies at Tropicana, which occur in
426	volumes of altered rock that do not have discrete structural boundaries, is also
427	atypical of lode gold deposits, in which ore bodies are commonly confined by
428	vein, fracture, fault or shear margins.
429	
430	However, the structural control by shear zones at Tropicana is similar to some
431	lode gold deposits, as is the role of solution and brecciation (e.g. Witt and
432	Vanderhor, 1998). Shear zones at Tropicana exist in many orientations (Fig. 12):
433	similarly orientated shear zones can have quite different kinematics (Fig. 13).
434	This feature is also typical of some lode gold deposits (see below) in which, as at
435	Tropicana, it is probably due to overprinting events, several of which may be
436	associated with gold mineralization and remobilization. The main phase of
437	economic gold mineralization at Tropicana is Archean and postdates D1 and D2
438	deformation events: in this respect it is also similar to Archean lode gold deposits
439	of the Yilgarn craton, although the timing of mineralization at Tropicana does not
440	appear to correspond with the majority of late Archean deposits on the craton.
441	Nevertheless, Tropicana fits well into the suggested categorization of those
442	deposits as "late orogenic, structurally controlled" (Witt and Vanderhor, 1998).

443	
444	It is difficult to establish how much new mineralization as opposed to
445	remobilisation may have been associated with D4 and D5 at Tropicana.
446	Remobilisation of gold is evidenced by clusters of visible gold localised in late
447	muscovite fabrics that overprint earlier biotite-pyrite fracture fills and grains.
448	Several detailed studies of large lode gold deposits show that they have
449	experienced more than one mineralizing event (e.g. the Golden Mile; Vielreicher
450	et al., 2010) or that reactivation has been a significant part of the deposit history
451	(e.g. St Ives: Miller et al., 2010; Renco Mine, Kolb and Meyer, 2002; Sunrise Dam:
452	Baker et al., 2010). The evidence for reactivation at Tropicana is a point of
453	comparison with the Archean lode gold deposits.
454	
455	The timing of D3 and the main mineralizing event (Tropicana event) is well
456	constrained to the late Archean by Ar-Ar dating of biotite and Re-Os dating of
457	pyrite (Doyle et al., 2013). From a regional perspective there are at least three
458	possibilities for the reactivation recorded by D4 and D5 at Tropicana. The
459	Zanthus event of the Biranup orogeny occurred at c. 1680 Ma, and the two stages
460	of the Albany–Fraser orogeny occurred at 1345–1260 Ma (Stage I) and 1215–
461	1140 Ma (Stage II) (Kirkland et al., 2011). The Eastern Biranup zone, in contact
462	with the Northern Foreland to the E of Tropicana, has no geochronological
463	evidence for Stage I of the Albany–Fraser orogeny (Kirkland et al., 2011), which
464	is consistent with a lack of evidence for this event in zircon or monazite.
465	However, low grade deformation and fluid flow related to this event can not be
466	excluded. Thrust emplacement of the Eastern Biranup Zone over the Northern
467	Foreland is likely to have occurred in the later stage of the Albany-Fraser

168	orogeny, which most probably correlates with the clearest evidence of
169	reactivation at Tropicana, in D5.
170	
1 71	
172	6.3 Comparison with Renco Deposit, Zimbabwe
173	
174	Renco gold mine in Zimbabwe is in a granulite terrane (the Northern Marginal
175	Zone) 10 km from the contact between the granulites and the Zimbabwe Archean
176	craton. The mine is hosted by a late Archean enderbite intrusion (Blenkinsop et
177	al., 2004). The mineralization lies in shear zones that dip moderately away from
1 78	the craton, and in steeper linking shear zones (Kisters et al., 1998).
179	Mineralization probably occurred in upper amphibolite facies conditions at the
180	end of the Archean (Kolb et al., 2000), although evidence for a lower grade of
181	mineralization suggests that there was a second, possibly Paleoproterozoic event
182	(Frei et al., 1999; Blenkinsop et al., 2004). Reactivation is also evidenced by low
183	grade fabrics in the shear zones (Kolb et al., 2003). Within the shear zones that
184	host the mineralization, two domains are distinguished: quartz-feldspar-biotite-
185	hornblende mylonites, which surround lithons of k-feldspar-quartz-biotite-
186	garnet-sulphide. Fractures in lithons are filled by sulphides, and the majority of
187	the grade is concentrated in them (Kisters et al., 2000).
188	
189	The similarity in the position of Renco and Tropicana as gold deposits in
190	granulite terranes relative to their adjacent cratons is striking, and this is
191	reinforced by the common geometry of the ore bodies in zones that dip
192	moderately away from the craton. A network of shear zones is the critical

493	hydrogeological structure in both cases, and the fractured lithons of Renco have
494	their counterpart in the brecciated pegmatite bodies of the Tropicana deposit.
495	Both deposits also have evidence for lower metamorphic grade overprints on
496	granulite facies host rocks.
497	
498	The timing of Renco mineralization is considered to be post-peak granulite facies
499	metamorphism in the late Archean, on a retrograde path but within 100°C of
500	peak metamorphism (Kolb and Meyer, 2002). The post-peak conditions and
501	timing are another similarity to Tropicana. The timing and geology of these
502	deposits suggest a possible link to granulite facies metamorphism in as much as
503	the deposits can be interpreted as forming in the retrograde parts of an orogenic
504	cycle that reached peak granulite facies. However, Kerrich (1988) has shown that
505	there is unlikely to be a direct geochemical link between granulite formation and
506	lode gold deposits: additional fluid input is probably required to explain
507	characteristic Large Ion Lithophile (LILE) enrichment of alteration associated
508	with mineralization compared to the depleted LILE characteristics of Archean
509	granulites.
510	
511	
512	7. Conclusions
513	
514	Tropicana gold deposit in the Albany Fraser orogen on the margin of the Yilgarn
515	craton was formed by fluid flow through a network of biotite-pyrite-bearing
516	shear zones, initially in an event of NE shortening (D3). Permeability was created
517	in coarser, more competent pegmatitic layers by fracturing, and was

518	accompanied by solution transfer along solution seams. Shear zones were
519	reactivated to provide a record of complex kinematics, including two retrograde
520	events (D4 and D5). D5 involved dextral shear on S-SW dipping surfaces.
521	
522	The most important geometrical control on mineralization at Tropicana is the
523	permeability created by the biotite-pyrite-bearing shear zones. The orientation
524	and location of these in turn were largely dictated by the orientation of the
525	gneissic banding in the favourable horizon of host rocks, which reflects two
526	previous deformation events and gentle folding in D3. High grade ore shoots
527	formed parallel to the common intersection direction of the shear zones, which
528	was also parallel to F3 fold hinges. Variations in the direction of the ore shoots
529	could reflect variations in the initial geometry of the gneisses, and/or later
530	deformation. A consideration of the entire geological history is necessary to
531	understand the deposit geometry.
532	
533	The style of mineralization at Tropicana is different from many Archean lode
534	gold deposits of the Yilgarn craton in as much as no metre scale
535	quartz/carbonate veins, fractures or faults seem to have played an important
536	role in mineralization. Nevertheless, the Tropicana deposit has a strong
537	structural control, in common with the Archean lode gold deposits, because all
538	these deposits were formed by hydrothermal fluid flow along structural
539	permeability. Mineralization at Tropicana occurred at greenschist facies in
540	granulite facies host rocks, clearly post-dating peak metamorphism.
541	

542	Renco mine in Zimbabwe and Tropicana gold deposit have several
543	characteristics in common, including their formation within granulites at the
544	margins of well-mineralized Archean cratons, probably within the late Archean.
545	It is possible that both could have been formed by fluid flow driven by heat
546	sources reflecting the waning of granulite facies metamorphism in orogenic belts
547	on the periphery of their respective Archean cratons.
548	
549	
550	Acknowledgements
551	Independence Group NL and AngloGold Ashanti Ltd are thanked for permission
552	to publish the manuscript. The authors acknowledge the significant contribution
553	of past and present AngloGold Ashanti geologists and the exploration team who
554	have contributed to the discovery, delineation and understanding of the mineral
555	deposit. In particular, we are grateful for the assistance of Jeni Savage and Jovo
556	Przulj in completing the study.
557	
558	References
559	Baker, T., Bertelli, M., Blenkinsop, T., 2010. PTX conditions of fluids in the Sunrise
560	Dam gold deposit, Western Australia, and implications for the interplay between
561	deformation and fluids. Economic Geology 105, 873–894.
562	Bierlein, F.P., Hughes, M., Dunphy, J., McKnight, S., Reynolds, P.R., Waldron, H.,
563	2001. Tectonic and economic implications of trace element, 40Ar/39Ar and Sm-
564	Nd data from mafic dykes associated with orogenic gold mineralisation in central
565	Victoria, Australia. Lithos 58, 1–31.

566	Bierlein, F.P., Groves, D.I., Goldfarb, R.J., Dubé, B., 2006. Lithospheric controls on
567	the formation of provinces hosting giant orogenic gold deposits. Mineralium
568	Deposita 40, 874–886.
569	Blenkinsop, T.G., 2006. Fluid flow in shear zones: insights from the geometry and
570	evolution of ore bodies at Renco gold mine, Zimbabwe. Geofluids 6, 334-345.
571	Blenkinsop, T.G., Doyle, M.G., 2010. A method for measuring the orientations of
572	planar structures in cut core. Journal of Structural Geology 32, 741–745.
573	Blenkinsop, T. G., 2011. Archean magmatic granulites, diapirism, and Proterozoic
574	reworking in the Northern Marginal Zone of the Limpopo Belt. Geological
575	Society of America Memoir 207, 245-267.
576	Blenkinsop, T.G., Kröner, A., Chiwara, V., 2004. Single stage, late Archaean
577	exhumation of granulites in the Northern Marginal Zone, Limpopo Belt,
578	Zimbabwe, and relevance to gold mineralization at Renco mine. South African
579	Journal of Geology 107, 377–396.
580	Blewett, R.S., Czarnota, K., Henson, P.A., 2010a. Structural-event framework for the
581	eastern Yilgarn Craton, Western Australia, and its implications for orogenic gold
582	Precambrian Research 183, 203–229.
583	Blewett, R.S., Henson, P.A., Roy, I.G., Champion, D.C., Cassidy, K.F., 2010b. Scale-
584	integrated architecture of a world-class gold mineral system: The Archaean
585	eastern Yilgarn Craton, Western Australia. Precambrian Research 183, 230–250.
586	Bunting, J.A., De Laeter, J.R., Libby, W.G., 1976. Tectonic subdivisions and
587	geochronology of the northeastern part of the Albany-Fraser Province, Western
588	Australia, in Annual report for the year 1975: Geological Survey of Western
589	Australia, Perth, Western Australia, p. 117–126.

590	Cameron, E., 1988. Archean gold: Relation to granulite formation and redox zoning in
591	the crust. Geology 16, 1–4.
592	Clark, D.J., Hensen, B.J., Kinny, P.D., 2000. Geochronological constraints for a two-
593	stage history of the Albany-Fraser Orogen, Western Australia: Precambrian
594	Research, v. 102, no. 3, p. 155–183.
595	Cox, S.F., 1999. Deformational controls on the dynamics of fluid flow in
596	mesothermal gold systems. Geological Society, London, Special Publications
597	155, 123–140.
598	Cox, S.F., Ruming, K., 2004. The St Ives mesothermal gold system, Western
599	Australia—a case of golden aftershocks? J. Struct. Geol. 26 (2004) 1109–1125.
600	Davis, B.K., Blewett, R.S., Squire, R., Champion, D.C., Henson, P. A., 2010. Granite-
601	cored domes and gold mineralisation: Architectural and geodynamic controls
602	around the Archaean Scotia-Kanowna Dome, Kalgoorlie Terrane, Western
603	Australia. Precambrian Research 183, 316–337.
604	Dirks, P.H.G.M., Charlesworth, E.G., Munyai, M.R., Wormald, R., 2013. Stress
605	analysis, post-orogenic extension and 3.01Ga gold mineralisation in the
606	Barberton Greenstone Belt, South Africa. Precambrian Research 226, 157–184.
607	Doyle, M.G., Kendall, B.M., Gibbs, D., 2007. Discovery and characteristics of the
608	Tropicana Gold District. In: Bierlein F.P., and Knox-Robinson C.M. (editors),
609	2007. Proceedings of Geoconferences, Kalgoorlie 07 Conference, Geoscience
610	Australia Record 2007/14, pp.186–190.
611	Doyle M.G., Gibbs, D., Savage J., , Blenkinsop, T.G., 2009. Geology of the
612	Tropicana Gold Project, Western Australia. In: In Williams P.J., et al. (editor)
613	Smart science for exploration and mining; Proceedings of the tenth biennial SGA
614	meeting, Townsville, p.50–52.

015	Doyle, M. G., Savage, J., Blenkinsop, 1.G., Crawford, A., McNaughton, N. 2013
616	Tropicana: Unravelling a +6Moz Gold Deposit Hosted in Granulite Facies
617	Metamorphic Rocks. The Australian Institute of Mining and Metallurgy
518	Publication Series 9/2013, 87–93.
619	Fox-Wallace L.J., 2010. Geology of the Hat Trick Prospect in the Tropicana Project
620	area, Western Australia. Unpublished Bsc. (Hons.) thesis, James Cook University
621	p. 104.
622	Frei, R., Blenkinsop, T.G., Schonberg, R., 1999. Geochronology of the late Archaean
523	Razi and Chilimanzi suites of granites in Zimbabwe: implications for the late
624	Archaean tectonics of the Limpopo Belt and Zimbabwe Craton South African
625	Journal of Geology 102, 55–64.
626	Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic gold and geologic time: a
627	global synthesis. Ore Geology Reviews 18, 1–75.
628	Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., Robert, F., 1998.
629	Orogenic gold deposits: A proposed classification in the context of their crustal
630	distribution and relationship to other gold deposit types. Ore Geology Reviews
631	13, 7–27.
632	Groves, D.I., Goldfarb, R.J., Knox-Robinson, C.M., Ojala, J., Gardoll, S., Yun, G.Y.,
533	Holyland, P., 2000. Late-kinematic timing of orogenic gold deposits and
634	significance for computer-based exploration techniques with emphasis on the
635	Yilgarn Block, Western Australia. Ore Geology Reviews 17, 1–38.
636	Hodgson, C.J., 1989. Patterns of Mineralization, in: Bursnall, J.T. (Ed.),
637	Mineralization and Shear Zones: Short Course Notes Volume 6. Montreal, pp.
638	51–88.

539	Kerrich, R., 1988. Archean gold : Relation to granulite formation or felsic
640	intrusions□? Geology 17, 1011–1015.
641	Kerrich, R., 1989. Geodynamic setting and hydraulic regimes: shear zone hosted
642	mesothermal gold deposits, in: Bursnall, J. (Ed.), Mineralization and Shear
643	Zones: Geological Association of Canada Short Course Notes 6. Montreal, pp.
644	89–128.
645	Kirkland, C.L., Spaggiari, C.V., Pawley, M.J., Wingate, M.T.D., Smithies, R.H.,
646	Howard, H.M., Tyler, I.M., Belousova, E.A., Poujol, M., 2011. On the edge: U-
647	Pb, Lu-Hf, and Sm-Nd data suggests reworking of the Yilgarn craton margin
648	during formation of the Albany-Fraser Orogen. Precambrian Research 187, 223-
649	247.
650	Kisters, A. F. M., Kolb, J., Meyer, F.M., 1998. Gold mineralization in high-grade
651	metamorphic shear zones of the Renco Mine, southern Zimbabwe. Economic
652	Geology 93, 587–601.
653	Kisters, A.F.M., Kolb, J., Meyer, F.M., Hoernes, S., 2000. Hydrologic segmentation
654	of high-temperature shear zones: structural, geochemical and isotopic evidence
655	from auriferous mylonites of the Renco mine, Zimbabwe. Journal of Structural
656	Geology 22, 811–829.
657	Kolb, J., Kisters, A., Hoernes, S., Meyer, F., 2000. The origin of fluids and nature of
658	fluid-rock interaction in mid-crustal auriferous mylonites of the Renco mine,
659	southern Zimbabwe. Mineralium Deposita 35, 109–125.
660	Kolb, J., Kisters, A.F.M., Meyer, F.M., Siemes, H., 2003. Polyphase deformation of
661	mylonites from the Renco gold mine (Zimbabwe): identified by crystallographic
662	preferred orientation of quartz. Journal of Structural Geology 25, 253-262.

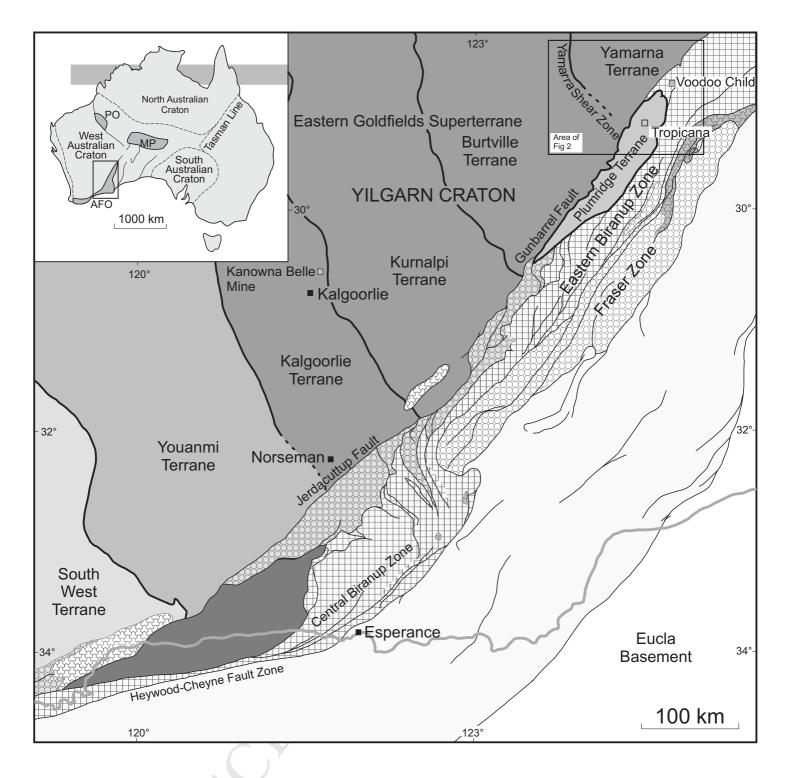
003	Kolb, J., Meyer, M.F., 2002. Fluid inclusion record of the hypozonal orogenic Renco
664	gold deposit (Zimbabwe) during the retrograde P-T evolution. Contributions to
665	Mineralogy and Petrology 143, 495–509.
666	Marrett, R., Allmendinger, R.W., 1990. Kinematic analysis of fault-slip data. Journal
667	of Structural Geology 12, 973–986.
668	Micklethwaite, S., Cox, S.F., 2004. Fault-segment rupture, aftershock-zone fluid flow,
669	and mineralization. Geology 32, 813.
670	Micklethwaite, S., Cox, S., 2006. Progressive fault triggering and fluid flow in
671	aftershock domains: Examples from mineralized Archaean fault systems. Earth
672	and Planetary Science Letters 250, 318–330.
673	Miller, J., Blewett, R., Tunjic, J., Connors, K., 2010. The role of early formed
674	structures on the development of the world class St Ives Goldfield, Yilgarn, WA.
675	Precambrian Research 183, 292–315.
676	Myers J.S., 1990. Albany-Fraser Orogen. In Geology and mineral resources of
677	Western Australia: Western Australia Geological Survey, Memoir 3, p. 255–264.
678	Pawley, M.J., Wingate, M.T.D., Kirkland, C.L., Wyche, S., Hall, C.E., Romano, S.S.,
679	Doublier, M.P., 2012. Adding pieces to the puzzle: episodic crustal growth and a
680	new terrane in the northeast Yilgarn Craton , Western Australia. Western
681	Australia. Australian Journal of Earth Sciences 59, 603-623.
682	Poulsen, H., Robert, F., 1989. Shear zones and gold: Practical examples from the
683	southern Canadian Shield, in: Bursnall, J.T. (Ed.), Mineralization and Shear
684	Zones, Geological Association of Canada, Short Course Notes 6. Montreal, pp.
685	239–266.

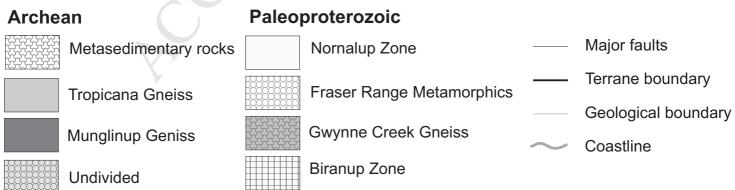
686	Robert, F., Brown, A.C., 1986. Archean gold-bearing quartz veins at the Sigma mine,
687	Abitibi greenstone belt, Quebec. Part I. Geologic relations and formation of the
688	vein systems. Economic Geology 81, 578–592.
689	Robert, F., Boullier, AM., Firdaous, K., 1995. Gold-quartz veins in metamorphic
690	terranes and their bearing on the role of fluids in faulting. Journal of Geophysical
691	Research: Solid Earth 100, 12861–12879.
692	Sibson, R., 1987. Earthquake rupturing as a mineralizing agent in hydrothermal
693	systems. Geology 15, 710–704.
694	Sibson, R., Robert, F., Poulsen, K., 1988. High-angle reverse faults, fluid-pressure
695	cycling, and mesothermal gold-quartz deposits. Geology 16, 551-555.
696	Spaggiari C.V., Kirkland C.L., Pawley M.J., Smithies R.H., Wingate M.T.D., Doyle
697	M.G., Blenkinsop T.G., Clarke C., Oorschot L.J., Fox, L.J., Savage J., 2011. The
698	geology of the East Albany-Fraser Orogen - A field guide. Geological Survey of
699	Western Australia, Record 2011/23, 98p.
700	Vearncombe, J.R., 1998. Shear zones, fault networks, and Archean gold. Geology 26,
701	855.
702	Vielreicher N.M., Groves D.I., Snee L.W., Fletcher I.R., McNaughton N.J., 2010:
703	Broad synchroneity of three gold mineralisation styles in the Kalgoorlie gold field:
704	SHRIMP, U-Pb, and ⁴⁰ Ar/ ³⁹ Ar geochronological evidence. Economic Geology 105
705	pp. 187-227.
706	Weinberg, R.F., Hodkiewicz, P.F., Groves, D.I., 2004. What controls gold distribution
707	in Archean terranes? Geology 32, 545.
708	Witt, W.K., Vanderhor, F., 1998. Diversity within a unified model for Archaean gold
709	mineralization in the Yilgarn Craton of Western Australia: An overview of the

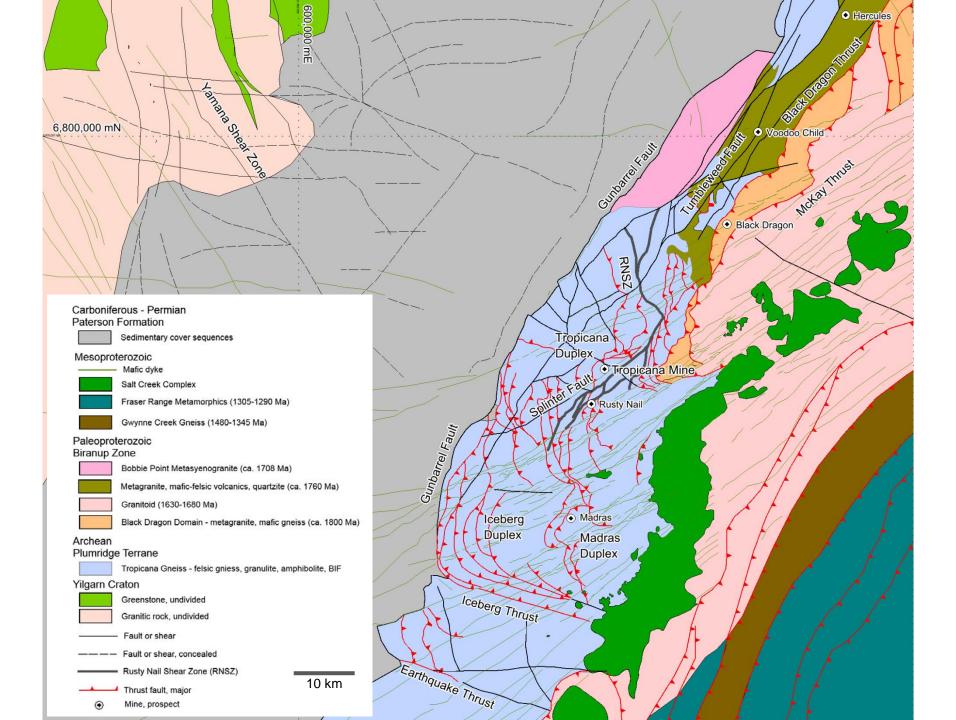
710	late-orogenic, structurally-controlled gold deposits, Ore Geology Reviews 13, 29-
711	64,
712	
713	
714	Figures
715	
716	Fig. 1. Location of Tropicana gold deposit in the Northern Foreland of the
717	Albany-Fraser orogen (partly based on Spaggiari et al., 2011, Pawley et al., 2012).
718	
719	Fig 2. Simplified interpretive geological map of the Tropicana region. The Black
720	Dragon thrust separates the Archean Tropicana Gneiss in the Plumridge terrane
721	from lower metamorphic grade rocks of the Paleoproterozoic Biranup zone.
722	Other NNE to NE trending structures separate further subdivisions of the
723	Albany–Fraser orogen.
724	
725	Fig. 3. Structural domains and mesoscopic shear zones of the Tropicana
726	Deposit, superimposed on a grade (g/t) X thickness (m) plot. GDA/UTM grid.
727	
728	Fig. 4. Schematic EW cross section of the Tropicana Deposit (based on Doyle et al.,
729	2007).
730	
731	Fig. 5. NE-SW section (true scale). Blue shapes are delimited by > 3g/t. "Principal
732	lineation" refers to the high grade ore shoots seen in the gm plot of Fig. 3. High
733	grade ore bodies pinch and swell.
734	

735	Fig. 6. Stereoplots of poles to high grade (>3 g/t) ore shells. A distinct difference
736	is noted between the Tropicana and Havana domains. Red squares are
737	eigenvectors of the distribution of poles. The minimum eigenvector is labelled
738	with its trend and plunge; a great circle connects the minimum and intermediate
739	eigenvectors. All stereoplots are lower hemisphere, equal area.
740	
741	Fig. 7. Styles of Mineralization in the core.
742	a) Biotite-pyrite shear zone sub-parallel to gneissic banding, core TPD366,
743	160 m.
744	b) Biotite-pyrite shear zone (thin section). Foliation defined by biotite and
745	pyrite gives clear top-to-the left sense of shear. Core TPD361A, 161 m, XPL
746	(Cross-polarised light).
747	c) Chlorite-sericite shear zone, core TPD167, 163.2 m. Asymmetric clast
748	gives clear shear sense.
749	d) Sericite shear zone (thin section). Spectacular SC fabrics defined by
750	sericite and pyrite give clear top-to-the-right shear sense. Core TPD067, 143.3 m,
751	XPL.
752	
753	Fig. 8. Styles of mineralization in the core.
754	a) Solution seams with biotite anastomosing between feldspar-rich lithons
755	with carbonate-filled extension fractures. TPD202, 281.9 m
756	b) Fragmentation and solution accompanying formation of carbonate-
757	sericite-pyrite veins. TPD202B, 282.9 m, XPL.
758	c) More discrete formation of biotite lined solution seams and irregularly-
759	shaped patches of carbonate. TPD 202, 285.8 m

760	d) Extension microfracture in perthite grain, with filling of pyrite and
761	carbonate. TPD202C, 283.9 m, XPL
762	
763	Fig. 9. Structural features in core.
764	a) F1 folds in gneissic banding. Yellow lines marks form surface, yellow spots ar
765	hinges and red line is hinge surface trace. TPD251, 222.7 m.
766	b) Tight F1 fold hinge of gneissic banding, TPD202, 314.1 m.
767	c) Asymmetric F5 fold of gneissic banding and shear foliation. TPRC092D, 298.7 m
768	d) SC' defined by chlorite and sericite. Marking according to the scheme of
769	Blenkinsop and Doyle (2010). TPD262, 162m.
770	
771	Fig. 10. Orientations of fold hinges and hinge surfaces, located relative to
772	drillholes and structural domains. Folds in cores MBRC019D, TPRC607D,
773	TFD137, TFRC501D, TPD202, TPD261 and TPD366 plunge moderately S to SE
774	with E to SE dipping hinge surfaces. These are interpreted as F1 or F2 folds,
775	because they are tight to isoclinal. Folds in cores TFRC090D and TFRC092D
776	plunge moderately E to SE with S-dipping hinges surfaces. Many of these have
777	dextral vergence (turquoise colour). These folds are located adjacent to the
778	Boston Shaker shear zone and are F5 folds. Alternatively those folds which are
779	symmetric could be F3.
780	
781	Fig. 11. Poles to gneissic banding (n = 1510) in the Havana domain. Cylindrical
782	best fit gives a fold hinge plunging 35° to 115°. Kamb contours with a contour
783	interval of 6σ , 3σ significance level.


784


785	Fig. 12. Geographic distribution of shear zones in ball-and-string plots. Great
786	circles indicate shear planes: arrows indicate hangingwall movement. In most
787	plots there are sub-parallel shears with different movement directions, testifying
788	to reactivation.
789	
790	Fig. 13. Tangent lineation plots of shear zones separated by structural domain
791	and by phyllosilicate mineralogy. Arrows indicate footwall movement, plotted at
792	the pole to the fault. Dextral components in green and sinistral in red.
793	
794	Fig. 14. Kinematic analysis of shear zones separated by structural domain and by
795	phyllosilicate mineralogy. Red and blue dots are shortening and lengthening axes
796	for individual shear zones respectively; 1, 2, and 3 are the linked Bingham axes
797	for the distributions shown.
798	
799	Fig. 15. Poles to shear zone orientations in four structural domains, with
800	eigenvectors to the distributions shown as black squares. Great circle links
801	maximum and intermediate eigenvectors. Kamb contours, Contour interval 2σ ,
802	significance level 3σ .
803	
804	Fig. 16. Cartoon of the structural evolution of the Tropicana Gold Deposit
805	a) D1 is preserved as asymmetric folds and gneissic banding
806	b) D2: thrusting (orange surfaces) and folding is inferred from regional
807	considerations
808	c) D3: the main mineralizing event, due to NE shortening
809	d) D5: The main reactivation


ACCEPTED MANUSCRIPT

		D1	D2	D3	D4	D5
	Macro structure		Thrusts Folds	SE plunging folds		Shear zones
Au: High Low	Meso-micro structures	Gneissic Banding Isoclinal folds		Shear zones Solution fabrics Breccias	Shear zones	Shear zones Asymmetric folds
	Kinematics	?	NW shortening	NE Shortening	?	Dextral E-NE shearing
	Biotite					
	Pyrite					
	Sericite					
	Carbonate				7	
	Chlorite					
	Timing	2640-2524	2640-2524	2524-2515	?	? 1215-1140

Table 1. Deformation and mineralization history at Tropicana Gold Mine

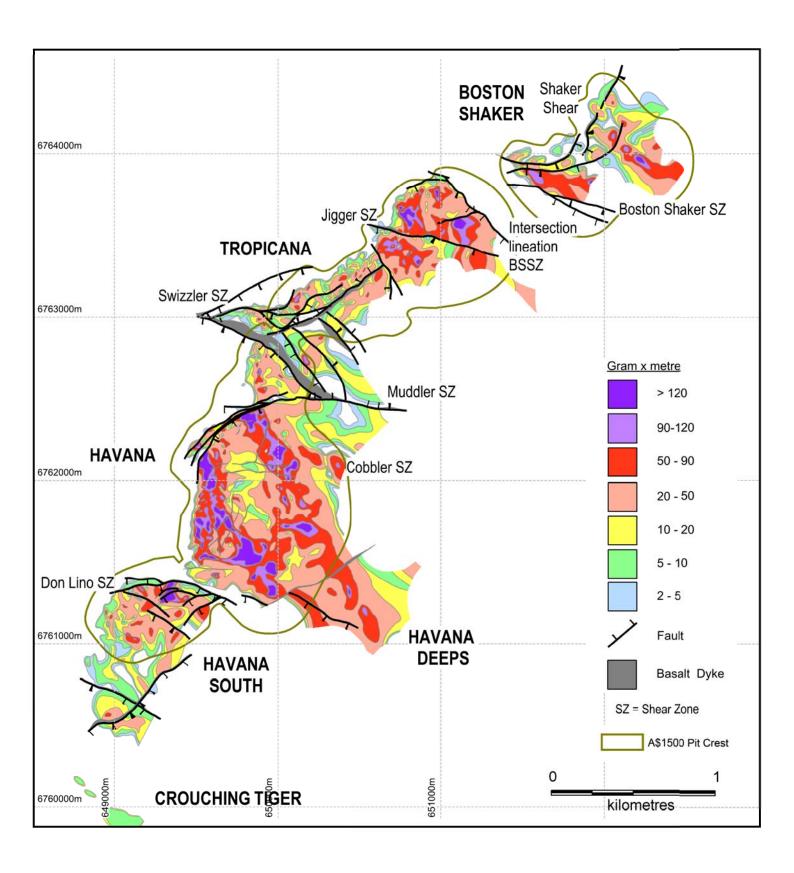


Fig. 3. Structural domains and mesoscopic shear zones of the Tropicana Deposit, superimposed on a grade (g/t) X thickness (m) plot. GDA/UTM grid

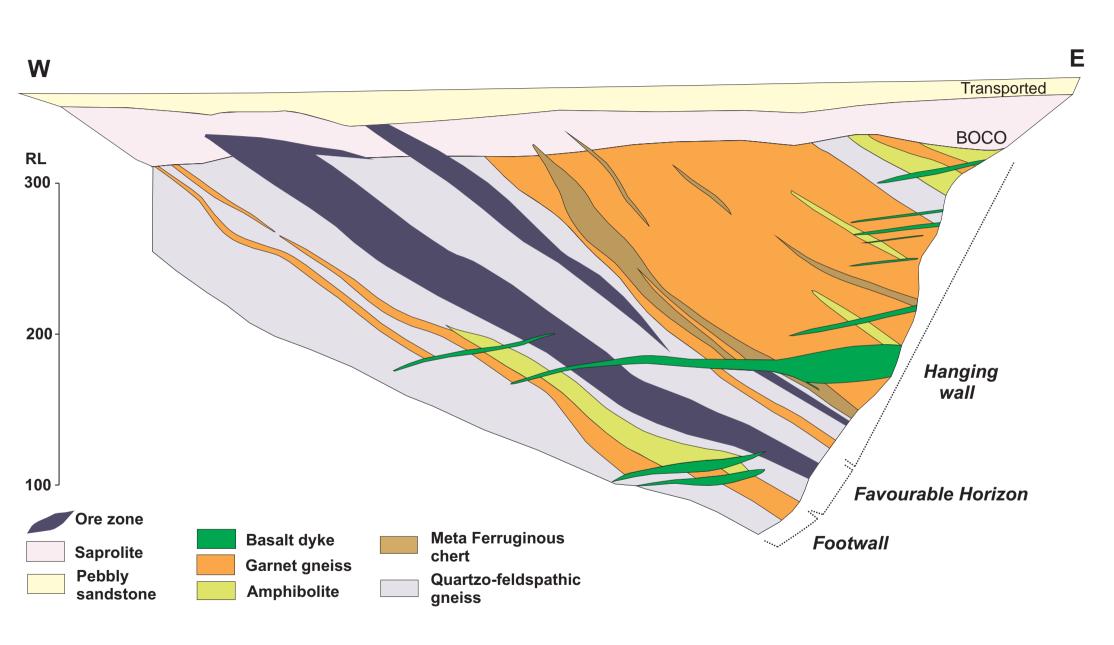


Fig. 4. Schematic EW cross section of the Tropicana Deposit (based on Spaggiari et al. 2011).

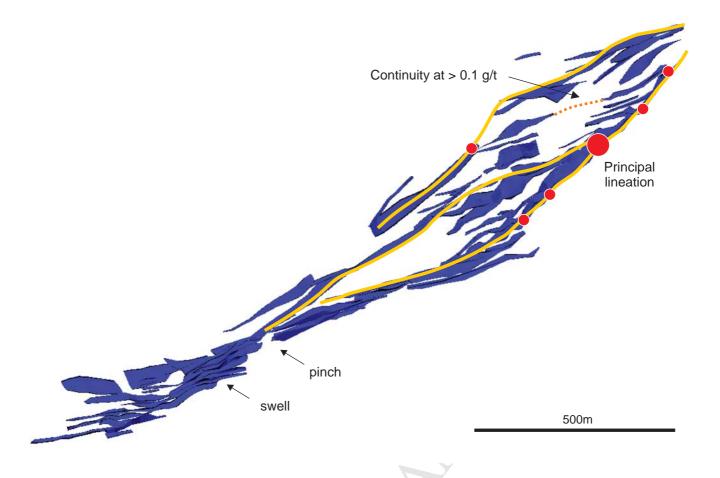


Fig. 5. NE-SW section (true scale). Blue shapes are delimited by > 3g/t. "Principal lineation" refers to the high grade ore shoots seen in the gram x metre plot of Fig. 3. High grade ore bodies pinch and swell.

ACCEPTED MANUSCRIPT

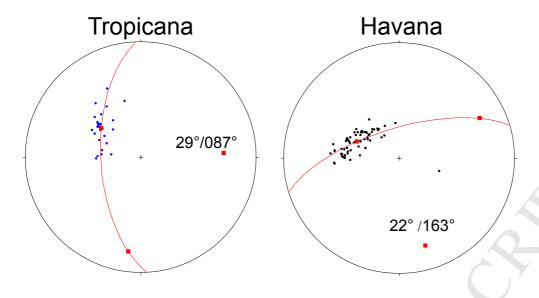


Fig. 6. Orientations of poles to high grade (>3 g/t) ore shells. A distinct difference is noted between the Tropicana and Havana domains.

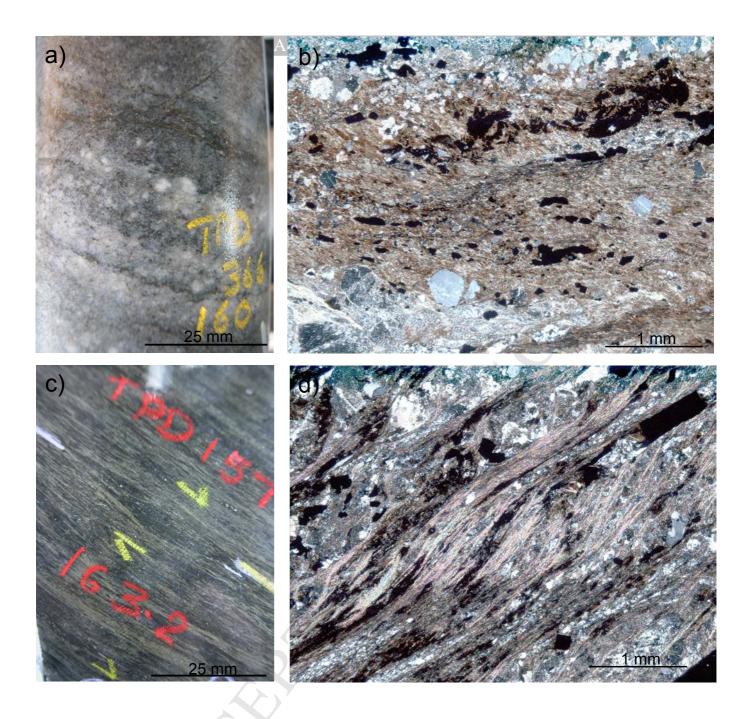


Fig. 7. Styles of Mineralization in the core.

- a) Biotite-pyrite shear zone sub-parallel to gneissic banding, core TPD366, 160 m.
- b) Biotite-pyrite shear zone (thin section). Foliation defined by biotite and pyrite gives clear top-to-the left sense of shear. Core TPD361A, 161 m, XPL (cross-polarised light).
- c) Chlorite-sericite shear zone, core TPD167, 163.2 m. Asymmetric clast gives clear shear sense d) Sericite shear zone (thin section). Spectacular SC fabrics defined by sericite and pyrite give
- clear top-to-the-right shear sense. TPD067, 143.3 m, XPL.

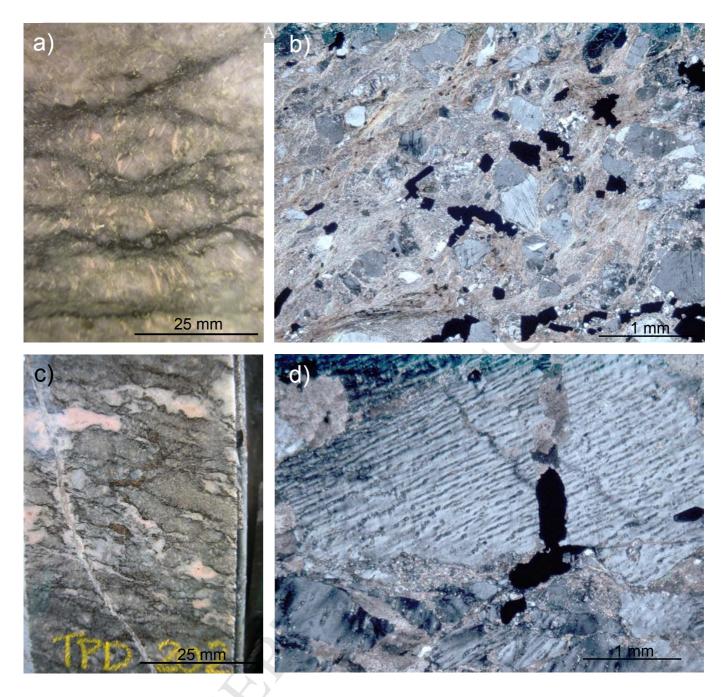


Fig. 8. Styles of mineralization in the core.

- a) Solution seams with biotite anastomosing between lithons of feldspar with carbonate-filled extension fractures. TPD202, 281.9 m
- b) Fragmentation and solution accompanying formation of carbonate-sericite-pyrite veins. TOD202B, 282.9 m, XPL.
- c) More discrete formation of biotite lined solution seams and amorphous patches of carbonate. TPD 202, 285.8 m
- d) Extension microfracture in perthite grain, with filling of pyrite and carbonate. TPD202C, 283.9 m, XPL

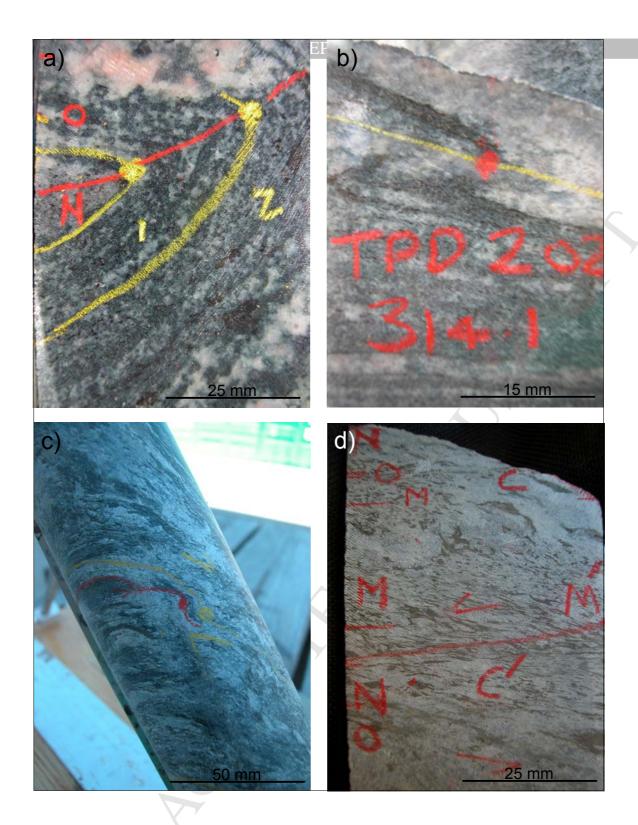


Fig. 9. Structural Features in core.

- a) F1 Folds in gneissic banding. Yellow lines marks form surface, yellow spots are hinges and red line is hinge surface. TPD251, 222.7 m
- b) Isoclinal F1 fold hinge of gneissic banding, TPD202, 314.1 m
- c) Asymmetric F5 fold of gneissic banding and shear foliation. TPRC092D, 298.7 m
- d) SC' defined by chlorite and sericite. Marking according to the scheme of Blenkinsop and Doyle (2010). TPD262, 162m

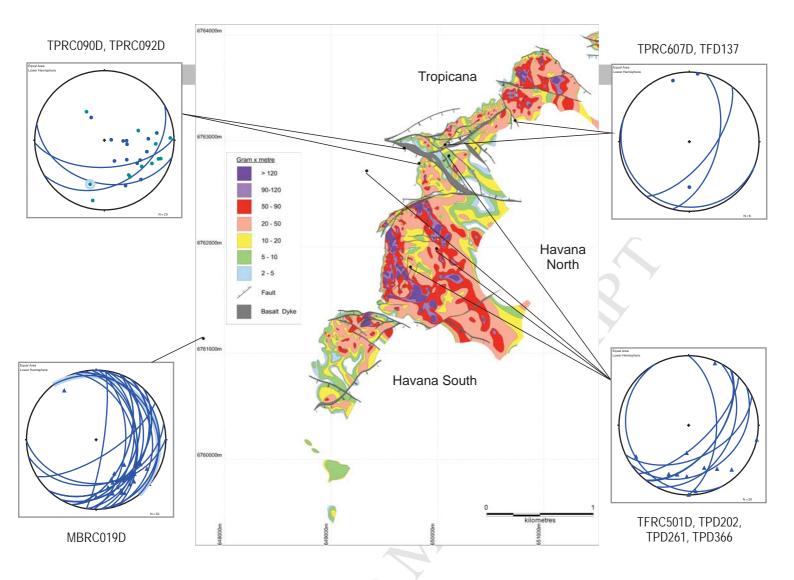


Fig. 10. Orientations of fold hinges and hinge surfaces, located relative to drillholes and structural domains. Folds in cores MBRC019D, TPRC607D, TFD137, TFRC501D, TPD202, TPD261 and TPD366 plunge moderately S to SE with E to SE dipping hinge surfaces. These are interpreted as F1 or F2 folds, because they are tight to isoclinal. Folds in cores TFRC090D and TFRC092D plunge moderately E to SE with S-dipping hinges surfaces. Many of these have dextral vergence (turquoise colour). These folds are located adjacent to the Boston Shaker shear zone and are F5 folds. Some of these folds which are not asymmetric could also be F3.

ACCEPTED MANUSCRIPT

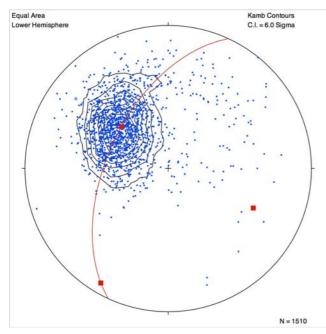
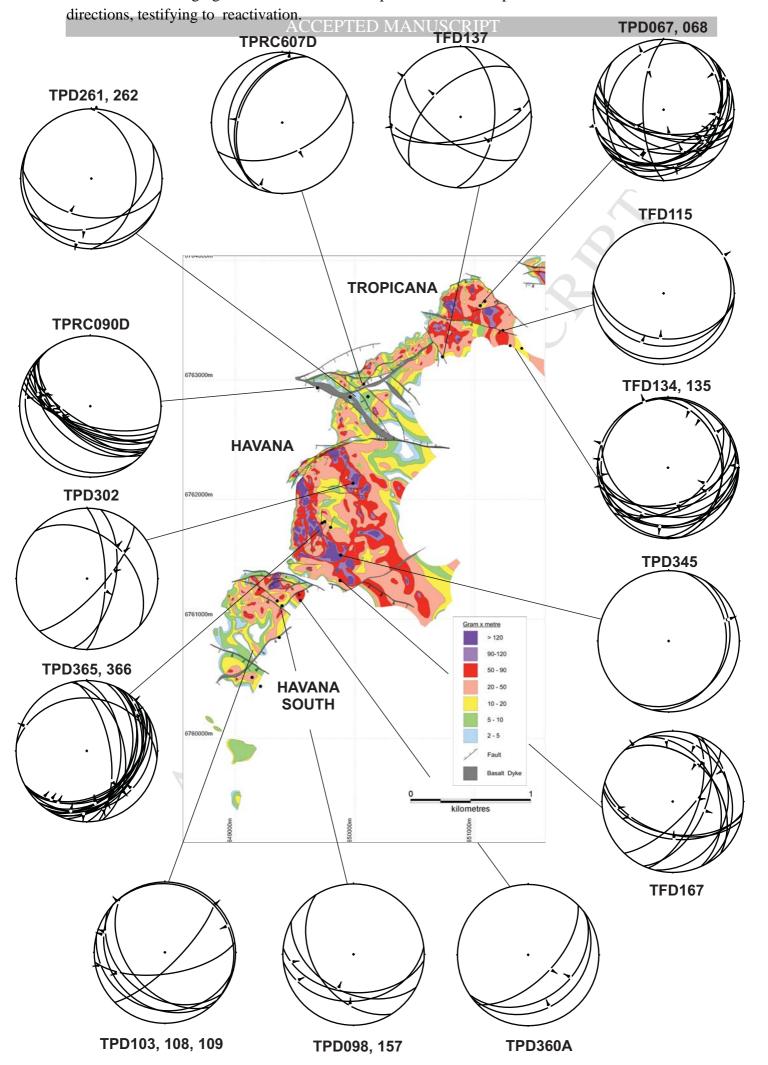



Fig. 11. Poles to gneissic banding (n = 1510) in the Havana domain. Cylindrical best fit gives a fold hinge plunging 35° to 115°. Kamb contours with a contour interval of 6σ , 3σ significance level.

Fig. 12. Geographic distribution of shear zones in ball-and-string plots. Great circles indicate shear planes: arrows indicate hangingwall movement. In most plots there are sub-parallel shears with different movement

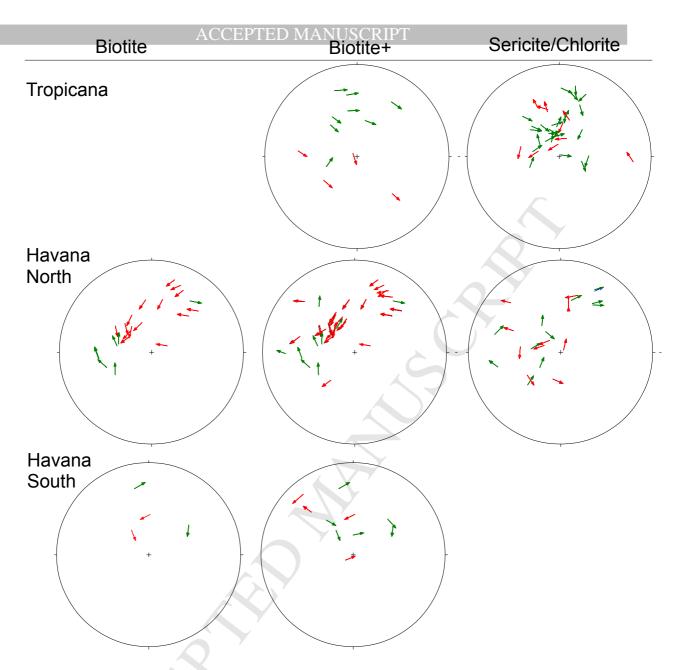


Fig. 13. Tangent lineation plots of shear zones separated by structural domain and by phyllosilicate mineralogy. Arrows indicate footwall movement. Dextral components in green and sinistral in red.

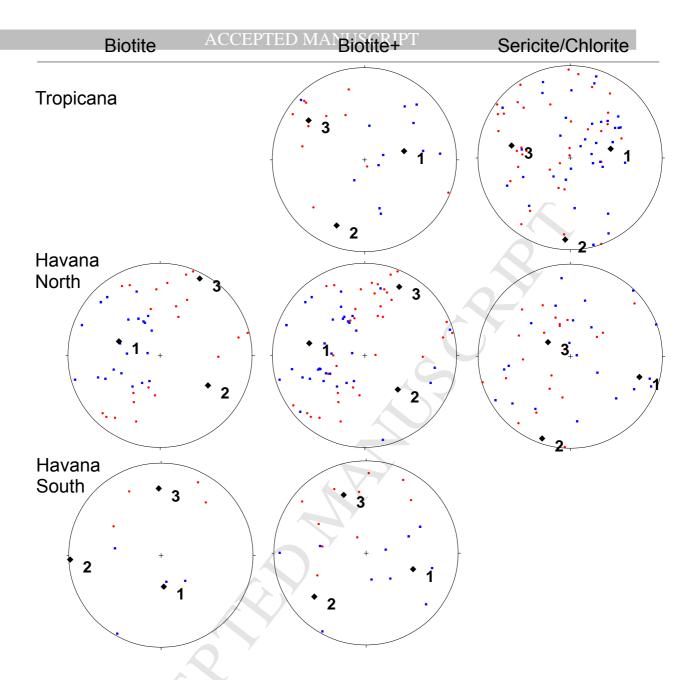


Fig. 14. Kinematic analysis of shear zones separated by structural domain and by phyllosilicate mineralogy. Red and blue dots are shortening and lengthening axes for individual shear zones respectively; 1, 2, and 3 are the linked Bingham axes for the distributions shown

Tropicana Havana North ACCEPTED ANUSCRIPT Havana South Crouching Tiger

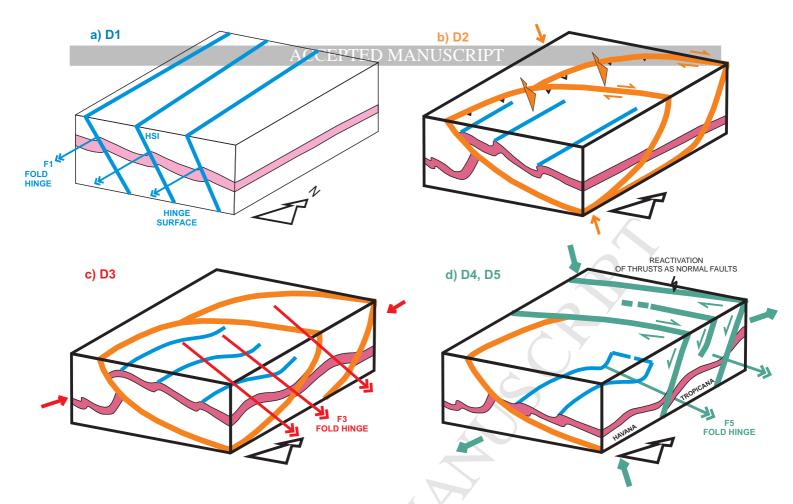
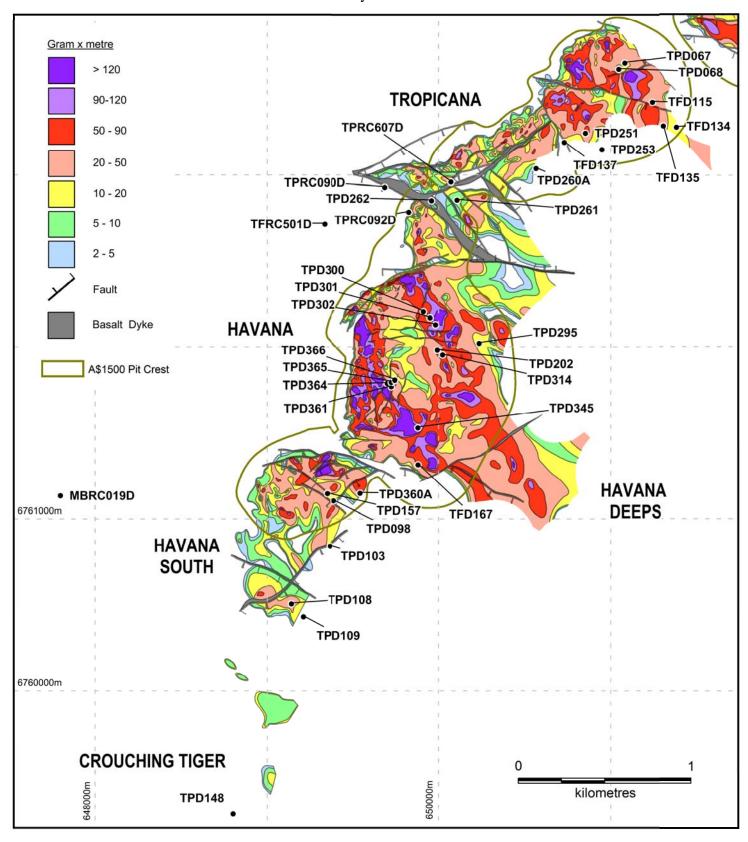



Fig. 16. Cartoon of the structural evolution of the Tropicana Gold Deposit

- a) D1 is preserved as isoclinal folds and gneissic banding
- b) D2: thrusting and folding is inferred from regional considerations
- c) D3: the main mineralizing event, due to NE shortening
- d) D5: The main reactivation

