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Abstract: The US housing market exhibits seasonal boom and bust cycles where prices and

the speed of trade (turnover rate) rise in summers and fall in winters. We present a search model

that analytically generates the observed cycles. The proposed mechanism is based on swings in

market thickness rather than market tightness, the leading explanation in the literature.
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1 Introduction

The US housing market goes through seasonal boom and bust episodes:- in summers prices rise and

trade speeds up whereas in winters prices fall, it takes much longer to sell and the number of sales

slides to the annual lows. The cycles are highly predictable and repetitive, seemingly defying the

no-arbitrage condition; hence di¢ cult to explain with standard frictionless asset pricing models.

Figure 1, which depicts seasonal components in purchase-price and speed of trade, illustrates these

cycles using monthly US data from January 1991 to December 2011.1

Figure 1 - Seasonal Components in Price and Speed of Trad (Turnover Rate)

In an oft cited article Novy Marx (2009) constructs a search model of the housing market to provide

rationale for the observed cycles. The idea is that if a season exogenously adds more buyers to

the market then the buyer-seller ratio goes up and therefore houses sell more quickly. The housing

supply is assumed to be �xed so it reduces rapidly and the buyer-seller ratio increases even further,

1The panel illustrates seasonal components in sale prices (right axis) and the speed of trade (turnover rate). The
patterns show that the market systematically alternates between boom and bust episodes where in summers prices
rise and trade speeds up while in winters the trend reverses. The monthly purchase price index comes from the Federal
Housing Financing Agency and it is constructed by a version of the weighted-repeat sales methodology proposed by
Case and Shiller (1989). The method controls for di¤erences in the quality of the houses comprising the sample.
The speed of trade, on the other hand, is proxied by the ratio of the number of new-single family houses sold at the
end of the month divided by the number of houses listed as being for sale that month. The higher the ratio, the
higher the speed of trade in that month. The data are obtained from the US Census Bureau and are not seasonally
adjusted. We used the X-12-ARIMA procedure, developed by the Census Bureau, to obtain the seasonal factors in
each data set. The procedure conducts three formal tests to assess the presence of seasonality: a parametric F-test,
a non-parametric Kruskal-Wallis test and a moving seasonality test based on two way ANOVA. All tests positively
indicate that identi�able seasonality is present in both series.
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which, in turn, leads to higher prices.2 The mechanism operates through market tightness (buyer-

seller ratio) and to obtain cycles as in Figure 1 one needs to assume that the buyer-seller ratio rises

every summer and falls every winter.

While it is true that there are more potential buyers in summers than in winters, the supply side

is hardly �xed� in fact it exhibits the same pattern as the demand side, i.e. there are more houses

on sale in summers than in winters.3 Therefore it is not clear whether or not market tightness� the

key parameter of interest in Novy Marx (2009)� indeed increases in summers.

In this letter we propose an alternative mechanism that depends on market thickness (the

number of market participants) instead of market tightness (ratio of participants) and is capable

of producing deterministic boom and bust cycles. Market thickness refers to the fact that there

are more houses on sale in the summer market than in the winter market, hence better quality

matches are formed in summers. The thick summer market comes with the greatest possible choice

of residence which means that buyers encounter better quality matches in such a market. People

are willing to pay a premium for housing that closely matches their needs, tastes and preferences;

hence prices go up in the summer. On the other hand, sellers have no means of transferring the

extra value across seasons, so they have strong incentives to trade while the market is still thick.

Therefore they limit the price rise to a modest amount to ensure that trade indeed speeds up. The

rising prices coupled with the increased speed of trade means that the market booms in the summer.

The trend reverses in the summer, so the market alternates between boom and bust episodes as

seasons change.

2 Model

Time is discrete, in�nite and deterministically alternates between two seasons, summer (s) and

winter (w). The economy is populated by a continuum of houses and a continuum of buyers each

of whom wishes to purchase a house. In summers there is a measure of hs properties for sale and

bs buyers whereas in winters these measures are hw and bw: Each house is owned by a risk neutral

seller, who derives no utility from the ownership. Buyers, too, are risk neutral and receive periodic

housing services starting the period after the purchase and continuing forever. The measures of

potential buyers and sellers are exogenous; however the number of transactions, the speed of trade

and sale prices are, of course, endogenous.

2Krainer (2001) presents an alternative model where the market �uctuates between hot and cold episodes, however
the model fails to produce deterministic cycles. Indeed if the persistence parameter in Krainer (2001) is set � = 0
so that seasons alternate deterministically then, interestingly, one obtains the wrong cycle; the market is cold in the
summer and hot in the winter. Ngai and Tenreyro (2013) present a setup generating deterministic cycles, but their
results are based on quantitative simulations. See also Kaplanski and Levy (2012), Muellbauer and Murphy (1997),
and Stein (1995).

3Rosen (1979), one of the most comprehensive studies on seasonality in the American housing market, presents
substantial evidence documenting seasonal ups and downs in demand and supply in the residential property market
and concludes that demand and supply are both high in summers and low in winters. In other words, the seasonality
in housing demand coincides with the seasonality in housing supply (housing authorizations, construction of new
houses and listings of existing properties). Goodman (1993), using data from separate sources con�rms Rosen�s
�ndings.
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The market is characterized by two types of frictions. The �rst is �nding a counterpart, which

depends on market tightness (buyer-seller ratio). Assuming an urn-ball matching function and

letting �x := bx=hx denote the buyer-seller ratio in season x = s; w, a seller meets a buyer with

probability 1� e��x whereas a buyer meets a seller with probability
�
1� e��x

�
=�x:

Assumption 1. We have �s = �w = �: Furthermore hs > hw.
The mechanism in Novy Marx (2009) operates through market tightness, �x; so, for exposition,

we shut down this channel by assuming that �x remains constant throughout the year. The second

part of the assumption is based on the aforementioned empirical �ndings by Rosen (1979) and

Goodman (1993) and states that in summers there are more houses on the market than in winters.

The second friction deals with whether the house turns out to be a good match. After an initial

inspection, the buyer realizes his valuation v 2 [0; 1] ; which is private information and a random
draw via cdf F (v; hx) � Fx (v). From the buyer�s perspective the search process amounts to �nding
a high enough v: The cdf F depends on the stock of the vacant houses hx and we assume that the

larger this stock the more likely are buyers to �nd what they are looking for.

Assumption 2. If hx > h~x then Fx likelihood ratio dominates F~x; that is fx (v) =f~x (v)

increases in v. In addition, the "Iso-Probability Curve"

� (v) := F�1~x � Fx (v) : [0; 1]! [0; 1]

increases and is strictly convex.4 Finally we assume that the survival function Sx = 1 � Fx is
log-concave, that is f2x (v) + f

0
x (v)Sx (v) > 0; 8v and x = s; w:5

Likelihood ratio dominance implies �rst order stochastic dominance (FOSD), Fs (v) < Fw (v) ; as

well as hazard rate dominance, �s (v) < �w (v) ; where �x := fx=Sx: FOSD implies that, controlling

for the probability of trade, higher quality matches are formed in summers since the house stock

4The strict convexity of � is added as an extra assumption, but under certain circumstances likelihood ratio
dominance is a su¢ cient condition for it; for instance if f 0x � 0 and f 0~x � 0 with one inequality strict.

5Log-concavity is a mild assumption satis�ed by well known distributions; see Bagnoli and Bergstrom (2005).
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in summers exceeds the one in winters (recall that hs > hw).

Figure 2 �CDFs and the Iso-Probability Curve

Discussion. Before proceeding further, two points are worth discussing. First, we treat the stocks
of market participants exogenously, i.e. we do not seek to explain why the number of potential

buyers and sellers are higher in summers than in winters. Based on the empirical studies mentioned

in the Introduction we take the seasonal stocks as given and then explain how the equilibrium price

and the speed of trade (turnover rate) rise in summers and fall in winters as a result. A more

complete model should treat these stocks endogenously and this letter should be viewed as a �rst

step towards that goal.

Second, Assumptions 1 and 2 do not immediately imply the results. The assumption that

hs > hw may imply that there will be more trade in summers than in winters; however the turnover

rate (speed of trade) is the ratio of the number of houses sold to the number of houses on sale.

Both the numerator and the denominator rise in summers; thus the change in the turnover rate is

ambiguous. Similarly, a priori it is hard to predict how the equilibrium price would change across

seasons since there are always � buyers per seller in the market.

3 Analysis

The valuation v is a buyer�s private information, so the seller quotes the same take-it-or-leave-it

price px for all customers. Letting 
x denote the value of search to a buyer in season x = s; w we

have


x =
h�
1� e��

�
=�
i Z 1

0
max fv= (1� �)� px; �
~xg dFx (v) +

h
1�

�
1� e��

�
=�
i
�
~x:
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With probability
�
1� e��

�
=� the buyer meets a seller. If he purchases he gets v=(1��)� px:

If he walks away he obtains �
~x; which is the discounted value of search in the next season. With

the complementary probability he does not encounter a seller and moves on to the next season. We

have


x = ��x + ��� ~x;

where

� :=
1� e��

� (1� �)2 (1 + �)
and

�x :=

Z 1

0
max fv � (1� �) (px + �
~x) ; 0g dFx (v) :

For any given price px there is a threshold reservation value vx satisfying

vx = (1� �) (px + �
~x) : (1)

For trade to occur the house must turn out to be a good match, which happens with probability

Pr (v � vx) = Sx (vx) : Inserting (1) into �x yields


x = �

Z 1

vx

Sx (v) dv + ��

Z 1

v~x

S~x (v) dv:

Substituting 
x into the indi¤erence condition (1) one gets the �indi¤erence curves�Is and Iw

px = vx= (1� �)� �
~x � Ix: (2)

The value function of a seller is given by

�x =
�
1� e��

�
Sx (vx)max fpx; ��~xg+

n
1�

�
1� e��

�
Sx (vx)

o
��~x:

With probability 1 � e�� the seller meets a buyer, with probability Sx (vx) the buyer agrees to
purchase and the seller obtains price px. With the complementary probability trade does not

materialize, so the seller moves to the next season. The seller quotes px in season x taking as given

the indi¤erence condition (1) i.e.

max
px

�x subject to vx = (1� �) (px + �
~x)

treating 
x and 
~x exogenously. The FOC is given by

�0x = 0) px � ��~x = Sx (vx) =ffx (vx) (1� �)g:
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If Sx is log concave then the second order condition holds; hence the FOC yields a maximum.6

Straightforward algebra yields pro�t maximizing prices Ps and Pw that a seller ought to post:

Px =
Sx (vx)

fx (vx) (1� �)
+
��S2~x (v~x)

f~x (v~x)
+
���S2x (vx)

fx (vx)
: (3)

Simultaneous intersections of the o¤er and indi¤erence curves determine the equilibrium. More

formally a steady-state, stationary and symmetric equilibrium is characterized by the pairs v� =

(v�s ; v
�
w) and p

� = (p�s; p
�
w) satisfying indi¤erence (1) and pro�t maximization (3)

Proposition 1 An equilibrium exists and it is unique.

The proof amounts to showing that there exists a unique pair v� = (v�s ; v
�
w) 2 (0; 1)

2 satisfying

�x := Px + �
~x � vx= (1� �) = 0; for x = s; w: (4)

The details of the proof are relegated to the Online Appendix.

3.1 Deterministic Cycles

We now show that the equilibrium price and speed of trade together rise in summers and fall in

winters. The speed of trade is typically proxied by the turnover rate, i.e. the number of homes sold

divided by the number of homes listed; e.g. Goodman (1993), Rosen (1979). In our model season

x comes with hx houses for sale, of which
�
1� e��

�
hxSx are sold; thus the turnover rate equals to�

1� e��
�
hxSx

hx
=
�
1� e��

�
Sx:

Since � is the same in both seasons (Assumption 1) we simply focus on the probability of sale Sx to

compare turnover rates. Our goal, therefore, is to show that in equilibrium p�s > p
�
w and S

�
s > S

�
w.

Proposition 2 The equilibrium price and the speed of trade are both high in the summer and low

in the winter i.e. p�s > p
�
w and S

�
s > S

�
w: So, we have a booming market (high prices and fast sales)

in the summer and a declining market (low prices, slower sales) in the winter. In addition, sellers

and buyers are strictly better of trading immediately rather than waiting for the next season.

The proof is in the Online Appendix. The thick summer market presents the largest number

of possible housing alternatives. Buyers, on average, encounter higher quality matches in such a

market, so they are ready to pay more. This is why prices go up in the summer. On the other

hand, sellers cannot transfer the additional value across seasons, so they wish to trade while the

market is still thick. To do so, they limit the price rise to a modest amount making sure that trade

6Basic algebra yields sign (�00x) = �sign
��
f 0xSx + 2f

2
x

	
=fx

�
: The expression inside the parenthesis on the rhs of

the equality is positive because of log concavity; hence �00x is negative.
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indeed speeds up in the summer.7 In the winter, the scenario is reversed; so we have a setup where

the market deterministically alternates between boom and bust episodes.

This brings us to a crucial question: Why do not buyers wait until the winter to obtain better

deals or why do not sellers wait until the summer to obtain better prices? The reason is that the

market operates via search and matching, so an agent may not be able to meet a counter-part in

the next season. Plus, even if a counter-part is found, there is no guarantee that a sale will occur

as the quality of the new match may not be high enough. Therefore, assuming a suitable match is

found, agents are strictly better o¤ trading immediately.

Numerical Example. To provide further insight we run a numerical simulation based on the
following parameter values:

bs = 1 hs = 1 bw = 0:8 hw = 0:8

Fs (v) = v
2 Fw (v) = v � = 1 � = 0:9

Table 1

The parameters yield equilibrium prices p�s = 6:26; p
�
w = 6:17 and probabilities of trade S

�
s = 0:37;

S�w = 0:21:
8 The summer market starts with bs = hs = 1 potential buyers and sellers. The measure

of agents who trade and exit equals to

summer out�ow = 1�
�
1� e��

�
� S�s = 0:23:

7Sellers indeed do not raise prices as much as they could in summers. The following simulation (based on the
parameter values in Table 1) con�rms this insight

Price Prob. of Sale
Summer 6:26 0:37
Winter 6:17 0:21

If winter never came 6:36 0:33

The �rst two rows report equilibrium objects under the regular model. The third row is calculated under the
assumption that the market remains thick throughout the entire year, i.e. if Fw(v) were the same as Fs(v): The
equilibrium price in this imaginary scenario exceeds the summer price in the regular model. As argued above, sellers
in the regular model do not raise prices su¢ ciently as they want to take advantage of the summer market while it
lasts.

8Solving �s = 0 and �w = 0; where �x is given by (4), yields v�s = 0:796 and v�w = 0:791, which means that
S�s = 0:37 and S

�
w = 0:21: Substituting v

�
s = 0:8 and v

�
w = 0:79 into (3) yields prices p

�
s = 6:27 and p

�
w = 6:17:
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Figure 3 - Flowchart

Remaining agents, i.e. 0:77 buyers and sellers, move to the winter market. Before trading resumes,

an in�ow of 0:03 new agents arrive, taking the stocks of potential buyers and sellers to 0:8 (recall

that bw = hw = 0:8): At the end of the winter season a measure of

winter out�ow = 0:8�
�
1� e��

�
� S�w = 0:10

buyers and sellers trade and exit. Remaining 0:70 buyers and sellers, move on to the next summer

market. An in�ow of 0:30 new agents arrive before trading resumes, thus the summer market, again,

starts with bs = hs = 1: And so on. The market indeed experiences boom and bust episodes as

seasons change. In summers a unit measure of houses are o¤ered for sale, each priced at p�s = 6:26:

At the end of the season 0.23 houses are sold. The turnover rate (i.e. the speed of trade), thus

equals to 23%. In winters 0.8 houses are put up for sale (each priced at p�w = 6:17), of which, 0.10

are sold. Despite lower prices, the turnover rate is only 12.5%.

4 Discussion and Conclusion

We have presented a setup that generates deterministic boom and bust cycles. The proposed

mechanism operates through market thickness rather than market tightness (unlike Novy Marx

(2009)) and the results are analytic (unlike Ngai and Tenreyro (2013)). Finally, although the

discussion so far revolved around the housing market, the model is applicable to other search and

matching settings, such as the used car market or, to some extent, the labor market, that go through

similar seasonal cycles
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Online Appendix �Not intended for publication

The following Lemmas are useful in proving existence and uniqueness of the equilibrium.

Lemma 1 We have @Ix=@vx > 0 and @Ix=@v~x > 0; where Ix is given by (2).

Proof of Lemma 1. Note that

@
x
@vx

= ��Sx (vx) < 0 and @
x
@v~x

= ���S~x (v~x) < 0:

Therefore
@Ix
@vx

= 1
1�� + �

2�Sx (vx) and @Ix
@v~x

= ��S~x (v~x) :

Clearly both expressions are positive; hence indi¤erence curves Is and Iw are upward sloping wrt

vs and vw. �

Lemma 2 We have dPx=dvx < dP~x=dvx < 0; for x = s; w where Px is given by (3).

Proof of Lemma 2. Observe that

dPx
dvx

= �Mx(vx)
1�� � ��Sx (vx) f1 +Mx (vx)g < 0 and dPx

dv~x
= ��S~x (v~x) f1 +M~x (v~x)g < 0;

whereMx (vx) = 1+f
0
x (vx)Sx (vx) =f

2
x (vx) ; which is positive because of log concavity (Assumption

2); thus both derivatives are negative. Furthermore

d fPx � P~xg
dvx

=
1

1� �2
�
n
�Mx

n
1 + � �

�
1� e��

�
Sx

o
+
�
1� e��

�
Sx

o
< 0;

which is negative because Mx is positive. �

Proof of Proposition 1. The proof amounts to showing that there exists a unique pair

v� = (v�s ; v
�
w) 2 (0; 1)

2 satisfying

�x := Px + �
~x � vx= (1� �) = 0; for x = s; w: (5)

In equilibrium the di¤erence function D := �s ��w must equal to zero as well. Note that

D = Ps � Pw| {z }
T1

+ � (
w � 
s)� (vs � vw) = (1� �)| {z }
T2

: (6)

For expositional purposes we will focus on �w and D. Below we show that the locus of �w is

downward sloping whereas the locus of D is upward sloping. The equilibrium v� lies at their

intersection. In what follows we omit the superscript � when understood.
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Claim 1. The function �w decreases in both arguments vs and vw while its locus, denoted by

l�; is downward sloping wrt vs. The function D, on the other hand, decreases in vs and increases

in vw; whereas its locus, denoted by lD; is upward sloping wrt vs:

Proof of Claim 1. Let l� (vs) := fvw : �w (vs; vw) = 0g be the locus of �w = 0: Its slope wrt vs
is given by (Implicit Function Theorem)

dl�
dvs

= �@�w
@vs

=
@�w
@vw

< 0:

Observe that
@�w
@vs

=
@Pw
@vs

+ �
@
s
@vs

< 0;

which is negative because @Pw=@vs < 0 (Lemma 2) and @
s=@vs = ��Ss (vs) < 0: Similarly one

can show that @�w=@vw < 0; hence dl�=dvs < 0:

Now turn to the di¤erence function D. Recall that D = T1 + T2, where T1 and T2 are de�ned

in (6). Substitute for Ps; Pw; 
s and 
w and simplify to obtain

T1 (vs; vw) =
1
1�� �

n
1

�s(vs)
� 1

�w(vw)
+ 1�e��

1��

h
Sw(vw)
�w(vw)

� Ss(vs)
�s(vs)

io
and (7)

T2 (vs; vw) =
(1�e��)�
(1��2)�

�
nR 1

vs
Fs (v) dv �

R 1
vw
Fw (v) dv

o
�

1+�

�
1� 1�e��

�

�
1��2 (vs � vw) : (8)

Let lD (vs) := fvw : D (vs; vw) = 0g be the locus of D = 0: Its slope wrt vs is given by

dlD
dvs

= �@fT1+T2g
@vs

=@fT1+T2g@vw
> 0:

Observe that

@T1
@vs

= @Ps�Pw
@vs

< 0 ; @T1
@vw

= @Ps�Pw
@vw

> 0 (Lemma 2) (9)

@T2
@vs

= � 1
1�� �

�
1� �(1�e��)

(1+�)� Ss (vs)

�
< 0 and

@T2
@vw

= 1
1�� �

�
1� �(1�e��)

(1+�)� Sw (vw)

�
> 0:

The signs of @T1=@vs; @T1=@vw; @T2=@vs and @T2=@vw imply that dlD=dvs is indeed positive.

Q.E.D.
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Figure 4 �Locuses (all possible scenarios)

Claim 2. There exists a unique vw 2 (0; 1) satisfying l� (1) =vw: In addition either there exists
vs 2 (0; 1) s.t. l� (vs) = 1 or there exists vw 2 (0; 1) s.t. l� (0) = vw:

Proof of Claim 2. Recall that �w decreases in vw: In addition we have

�w (1; 1) = � 1
1�� < 0 and �w (1; 0) = Ps (1; 0) + �
w (1; 0) > 0:

Therefore there exists a unique vw 2 (0; 1) satisfying �w (1; vw) = 0 i.e. l� (1) =vw: The rest of

the claim depends on whether �w (0; 1) is positive or negative:-

� Suppose �w (0; 1) � 0: Since (i) �w (1; 1) < 0 and (ii) �w decreases in vs there exists

vs 2 (0; 1) such that �w (vs; 1) = 0 i.e. l� (vs) = 1:

� Suppose �w (0; 1) < 0: Since �w (0; 0) > 0 and (ii) �w decreases in vw there exists vw 2 (0; 1)
such that �w (0; vw) = 0 i.e. l� (0) = vw: Recall that l� is a decreasing function of vs;

therefore l� (0) > l� (1) ; hence vw >vw: Q.E.D.

Claim 3. We have lD (1) = 1: In addition either there exists ~vw 2 (0; 1) s.t. lD (0) = ~vw or there
exists ~vs 2 (0; 1) s.t. lD (~vs) = 0: Finally ~vw < vw:

Proof of Claim 3. One can immediately verify that D (1; 1) = 0; hence lD (1) = 1: The rest of

the arguments depend on the sign of D (0; 0):-
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� Suppose that D (0; 0) � 0: The fact that D (1; 1) = 0 implies that D (0; 1) is positive since D
decreases in vs. Hence there exists some ~vw 2 (0; 1) s.t. D (0; ~vw) = 0 i.e. lD (0) = ~vw:

� Suppose that D (0; 0) > 0: The fact that D (1; 1) = 0 implies that D (1; 0) is negative since D
increases in vw. Hence there exists some ~vs 2 (0; 1) s.t. D (~vs; 0) = 0 i.e. lD (~vs) = 0:

To see why ~vw < vw note that

�s (0; ~vw) = Ps (0; ~vw) + �
w (0; ~vw) > 0:

Recall that D = �s ��w: Since D (0; ~vw) = 0 it follows that �w (0; ~vw) equals to �s (0; ~vw) ; and
therefore, positive: On the other hand, recall that �w (0; vw) = 0: Since �w decreases in vw, it

follows that ~vw < vw: Q.E.D.

Based on Claims 2 and 3 we draw lD and l� in Figure 4. A visual inspection reveals that under

all scenarios the curves intersect once in the unit interval, hence the equilibrium exists and it is

unique. For the precision minded reader, below we make this argument clear.

De�ne � (vs) := lD (vs)� l� (vs) as an increasing function of vs (recall that lD increases whereas
l� decreases in vs): Note that � (1) = lD (1)� l� (1) is positive since lD (1) = 1 and l� (1) =vw < 1:
At the lower end, however, there are two cases depending on the sign of D (0; 0):-

� If D (0; 0) > 0 then lD (~vs) = 0 for some ~vs 2 (0; 1) : Note that l� (~vs) is positive because
l� (1) is positive, l� is a decreasing function and ~vs < 1: Hence � (~vs) = lD (~vs) � l� (~vs) is
negative. In addition since � (1) is positive there exists some v�s 2 (~vs; 1) satisfying � (v�s) = 0:

� If D (0; 0) � 0 then lD (0) = ~vw: Recall that l� (0) = vw; hence � (0) = ~vw � vw < 0; which
is negative since ~vw < vw (see above). In addition since � (1) is positive there exists some

v�s 2 (0; 1) satisfying � (v�s) = 0:

So, in either case there exists a unique v�s in the unit interval, or within a subset of the unit

interval, satisfying l� (v�s) = lD (v
�
s) = v

�
d: This completes the proof. �

The next Lemma says that the locus of T1 = Ps�Pw = 0; denoted by � (the "iso-price curve")
looks as in Figure 5, which in turn will be useful in proving the main result of the paper, Proposition

2.

14



Figure 5 - Iso-Probability and Iso-Price Curves

Lemma 3 There exists a unique point A =
�
�Vs; �Vw

�
on the iso-probability curve � such that

fs
�
�Vs
�
= fw

�
�Vw
�
, Ss

�
�Vs
�
= Sw

�
�Vw
�
and therefore �s

�
�Vs
�
= �w

�
�Vw
�
. The iso-price curve �

monotonically increases in vs and intersects with curve � at point A. In addition � lies underneath

lD; while point A lies underneath both lD and l�:

Proof of Lemma 3. The iso-probability curve � is obtained by drawing horizontal lines across
the cdfs and tracing combinations of vs and vw satisfying Fs (vs) = Fw (vw) ; see Figure 2 in the

main text: For clarity, the points on the border of � are denoted with capital letters. The slope of �

equals to fs (Vs) =fw (Vw) : Strict convexity of � (Assumption 2) ensures that there exists a unique

point A =
�
V s; V w

�
2 (0; 1)2 on � such that fs

�
V s
�
= fw

�
V w
�
.9 Since A =

�
�Vs; �Vw

�
lies on �; we

have Fs
�
�Vs
�
= Fw

�
�Vw
�
and therefore Ss

�
�Vs
�
= Sw

�
�Vw
�
: In addition since fs

�
V s
�
= fw

�
V w
�
, we

have �s
�
V s
�
= �w

�
V w
�
; where � = f=S is the hazard rate.

Recall that T1 = Ps � Pw: The locus of T1 (vs; vw) = 0 is the iso-price curve and it is given by

� (vs) = fvw : T1 (vs; vw) = 0g :
9To see this note that dF�1w � Fs (Vs) =dVs = fs (Vs) =fw (Vw) : The function is convex and lies underneath the

450 line cutting it at the origin and at (1; 1) : The Intermediate Value Theorem implies existence of a unique point
A =

�
�Vs; �Vw

�
such that fs

�
�Vs
�
= fw

�
�Vw
�
: Strict convexity of � ensures that V s and V w are strictly between zero

and one.
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The Implicit Function Theorem asserts that

d�

dvs
= �@T1

@vs
=
@T1
@vw

:

Recall that @T1=@vs is negative while @T1=@vw is positive (see (9)). Hence d�=dvs is positive.

To see that � intersect with the iso-probability curve � at point A recall that at A we have

fs
�
V s
�
= fw

�
V w
�
and Ss

�
V s
�
= Sw

�
V w
�
; therefore �s

�
V s
�
= �w

�
V w
�
: Substituting these

equalities into (7) yields T1
�
V s; V w

�
= 0; hence A belongs to �:

Now we argue that � lies to the right of the locus of D = 0 (the curve lD): In Figure 5 �x some

vw and imagine a horizontal line going through vw cutting the curve � at v0s and the curve lD at

v00s . Formally T1 (v
0
s; vw) = 0 and D (v

00
s ; vw) = 0): We will show that v

0
s > v

00
s :

To start, note that v0s must exceed vw. To see why substitute vs = vw = v into the expression

for T1; given by (7), to obtain

T1 (v; v) =
1+��(1�e��)Ss(v)

�s(v)
� 1+��(1�e��)Sw(v)

�w(v)
> 0;

which is positive because �s (v) < �w (v) and Ss (v) > Sw (v) for all v. The former relationship is the

hazard rate dominance and the latter is the FOSD: Recall that @T1=@vs < 0. So, if T1 (v0s; vw) = 0

then v0s must indeed exceed vw: Since v
0
s exceeds vw we have T2 (v

0
s; vw) < 0 (one can immediately

verify this from (8)).

Now, since T1 (v0s; vw) = 0 and T2 (v0s; vw) < 0, their sum D (v0s; vw) is, therefore, negative.

Recall that, on the other hand, D (v00s ; vw) = 0. Since D decreases in vs we have v00s < v0s; which

means that � lies to the right of lD:

Finally, we show that point A lies underneath lD and l�: The �rst relationship immediately

follows from the facts that A belongs to � and that � lies below lD: The claim that A lies below l�
is also easy to verify. Substitute A =

�
V s; V s

�
into �w, given by (5), and simplify the expression

using the fact that fs
�
V s
�
= fw

�
V w
�
and Ss

�
V s
�
= Sw

�
V w
�
to obtain �w

�
V s; V w

�
> 0: This

implies that A lies underneath l� since the function �w is positive at any point underneath its

locus l�: �

Proof of the Proposition 2. The arguments below are best understood with the aid of Figure
5. First we show that p�s > p

�
s. Note that at any point (vs; vw) above the iso-price curve � we have

Ps (vs; vw) > Pw (vs; vw)
10, so we want to show that the equilibrium point v� falls above �: Recall

that v� lies at the intersection of lD and l�; so, by de�nition, v� belongs to curve lD: Recall also

that lD lies above the iso-price curve � (Lemma 3). Therefore Ps (v�s ; v
�
w) > Pw (v

�
s ; v

�
w) :

Now we turn to the claim that S�s > S
�
w: Our objective is to show that v

� falls inside the iso-

probability curve �: The curve l� is downward sloping whereas lD is upward sloping and point A

lies beneath both (Lemma 3). This means that point v� must lie above point A; that is v�w > V w;

10This claim follows from the fact that the function T1 = Ps�Pw decreases in vs and increases in vw (see the proof
of Proposition 1). More precisely, �x some (bvw; bvs) on � and note that T1 (vs; bvw) > 0, Ps (vs; bvw) > Pw (vs; bvw) for
any vs < bvs since @T1=@vs < 0: Similarly T1 (bvs; vw) > 0 for any vw > bvw since @T1=@vw > 0:
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so the region below V w can be dismissed as it cannot contain the equilibrium.

We now claim that along the border of � lying above V w the function D = T1 + T2 is nega-

tive. Recall that at point A =
�
V s; V w

�
we have fs

�
V s
�
= fw

�
V w
�
: The strict convexity of �

(Assumption 2) also ensures that fs (Vs) > fw (Vw) for all (Vs; Vw) on � lying above A. Along such

points the function T1 is negative. To see why substitute (Vs; Vw) into (7) and use the fact that

Ss (Vs) = Sw (Vw) to obtain

T1 (Vs; Vw) =
�
1 + � �

�
1� e��

�
Ss (Vs)

	
Ss (Vs)

n
1

fs(Vs)
� 1

fw(Vw)

o
:

The expression is negative because fs (Vs) > fw (Vw). Now focus on T2, given by (8), and note that

T2 (Vs; Vw) < 0 because Vs > Vw and FOSD. Since both T1 and T2 are negative, so is D:

Since D (Vs; Vw) < 0 along the border of � the equilibrium point v� must be inside � (recall

that D (v�s ; v
�
w) = 0). To see why �x Vw and note that D (vs; Vw) = 0 for some vs < Vs since D

decreases in vs: Alternatively �x Vs and note the D (Vs; vw) = 0 for some vw > Vw since D increases

in vw: Finally, since (v�s ; v
�
w) lies inside � we have Ss (v

�
s) > Sw (v

�
w) :

Finally we turn to the last claim in the proposition� that agents prefer trading immediately

rather than waiting. Start with buyers. Suppose a buyer encounters a house in season x and the

realized valuation v exceeds the threshold vx: If he buys he obtains the payo¤ v=(1� �)� px: If he
waits he obtains �
~x which is the present value of being a buyer in the next season. Now, rearrange

the indi¤erence condition (1) in to obtain

vx=(1� �)� px = �
~x:

Since v > vx it follows that v=(1 � �) � px exceeds �
~x and therefore the buyer is strictly better
o¤ by purchasing right away.

Now turn to sellers. If a seller decides to sell in the current season x, he obtains price px: If he

waits he obtains the the present value remaining on the market in the next season ��~x: Recall that

px � ��~x = Sx (vx) =ffx (vx) (1� �)g:

The expression on the right hand side is positive for all vx; hence px > ��~x: Said di¤erently, sellers,

too, are better o¤ trading immediately. This completes the proof. �
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