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Abstract 

In this study a CD31-expressing co-culture system was used to establish whether 

differential CD31/CD38 signalling may contribute to the poor prognosis associated with 

CD38 expression in CLL. Using western blot analysis, a PKB phospho-substrate 

antibody was used in combination with phospho-specific antibodies to identify 

ribosomal protein S6 and GSK3β as key signalling molecules that were augmented 

following short-term CD31-expressing co-culture. CD31-expressing co-culture did not 

alter the phosphorylation of STAT6. However, the addition of IL-4 to the cultures was a 

potent mediator of this signalling pathway. This highlights the specificity of signalling 

molecules to different external stimuli. Both CD31-expressing co-culture and NTL co-

culture induced changes in the phosphorylation of target proteins therefore it was not 

possible to reach absolute conclusions about the role of CD31 as opposed to co-culture 

with non-transfected fibroblasts in the parameters measured. 

Multi-colour flow cytometry was employed to quantify the expression of cell surface 

activation markers as well as intracellular phospho-proteins. The CD31-expressing co-

culture led to a significant up regulation of the activation markers CD38, CD49d and 

CD69. Selective pharmacological inhibition of the phosphorylation of S6, STAT6 and 

ERK resulted in the down regulation of activation markers. Furthermore, the inhibition 

of p-STAT6 and p-ERK resulted in increased levels of apoptosis, which indicates that 

these signalling pathways are directly involved in CLL cell survival. 

Multi-colour flow cytometry was also used to quantitate the levels of phospho proteins, 

p-S6 and p-ERK.  Similar to the results observed by antibody detection following 

western blotting, basal and inducible levels of p-S6 and p-ERK were elevated in 

primary CLL cells expressing high levels of CD38.  

Taken together, the work carried out in this project highlights the importance of using 

co-culture systems to stimulate CLL cells in vitro in order to mimic some of the key 

stimuli encountered in vivo. The dissection of the signalling pathways activated as a 

result of CD31/CD38 interactions provides a rational for the poor prognosis associated 

with elevated CD38 expression in this disease and identified candidate therapeutic 

targets that might particularly benefit this group of patients. 
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1 Introduction 

1.1 CLL 

Chronic lymphocytic leukaemia (CLL) is a malignant disorder of mature B-

lymphocytes, characterized by the monoclonal expansion of B-cells in the peripheral 

blood (PB), bone marrow (BM) and lymphoid organs, a large proportion of these 

malignant cells are arrested in the G0/G1 phase of the cell cycle (Deaglio and Malavasi 

2009). CLL has previously been described as a disease characterised by the failure of 

CLL cells to undergo apoptosis, and was not considered a proliferative disease. 

However, there is now a growing body of evidence to suggest that malignant CLL cells 

have undergone substantial cell division, most likely within proliferative compartments 

in lymphoid tissues to produce an expanding clone, with as much as 1% of the entire 

clone dividing each day (Deaglio and Malavasi 2009; Messmer et al. 2005). The 

proliferation of these B-lymphocytes can lead to a compromised immune response, 

anaemia and thrombocytopenia (Keating et al. 2003). 

CLL is the most commonly diagnosed leukaemia in the western world and makes up 

between 30-40% of all leukaemia cases diagnosed globally (Foon et al. 1990). The 

median age of diagnosis of CLL is 70 years of age (Oscier et al. 2004). CLL is generally 

considered a disease of the elderly, however up to 30% of CLL patients are diagnosed 

below the age of 55 (Oscier et al. 2004). CLL occurs predominantly in males (2:1 ratio) 

for reasons that are still uncertain (Finch and Linet 1992). CLL is a very heterogeneous 

disease with a highly variable clinical course and whilst this disease can be treated with 

chemotherapy to reduce the tumour burden, CLL is still largely considered to be 

incurable. Through better understanding of the pathological mechanisms involved in 

this highly variable disease, it is hoped that treatment options for CLL patients will be 

developed leading to improved response rates and enhanced survival (Abbott 2005; Wu 

et al. 2013). 

The latest world health organisation (WHO) classification scheme defines CLL as a 

mature B-cell neoplasm and does not distinguish the disease from small lymphocytic 

leukaemia (SLL) that has identical cell phenotype but which is confined to the lymph 

nodes (Jaffe 2009). 
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1.1.1 A brief History: The origin of CLL cells 

Over several decades different cell types have been hypothesised as being those which 

give rise to CLL cells. Some of these suggestions have been disproven with the use of 

emerging technologies available. CLL cells resemble activated B-lymphocytes and for 

this reason the cellular origin of CLL cells cannot be deduced by phenotypic analysis 

alone. 

CLL is a disease that shows a high level of heterogeneity, key prognostic markers such 

as the mutational status of IGHV genes can define distinct patient subgroups. CLL 

patients with unmutated IGHV genes (U-CLL) represent a cohort of patients who have 

not undergone somatic hypermutation in response to antigen and this is associated with 

poor clinical outcome, whereas patients with mutated IGHV genes (M-CLL) are antigen 

experienced and associated with a better clinical outcome (Damle et al. 1999; Hamblin 

et al. 1999). These two types of CLL may originate from two distinct cell types 

(Rosenwald et al. 2001). However, this theory has been called into question since 

microarray analysis has revealed a small number of differences between U-CLL and M-

CLL subgroups but much bigger differences between normal B-cells and CLL cells, 

irrespective of the IGHV mutational status. Furthermore, genetic profiling revealed that 

U-CLL and M-CLL subgroups shared similarities with memory B-cells, which would 

indicate that all CLL cells originate from antigen experienced B-cells (Klein et al. 

2001). These findings suggest that there may be a single originating cell and other non-

genetic factors may be responsible for the differences observed between U-CLL and M-

CLL in terms of clinical outcome. In contrast, experiments carried out by Seifert et al in 

2012 compared global gene expression of M-CLL and U-CLL patients to human mature 

B-cell subsets and showed that CD5
+
 normal B-cells had the most similarities to both 

M-CLL and U-CLL cohorts (Seifert et al. 2012).  

Another theory is that marginal zone B-cells are the precursors of both M-CLL and U-

CLL. The marginal zone (MZ) is where normal adult B-cells, which produce antibodies 

against viral or bacterial carbohydrates, reside (Chiorazzi et al. 2005). In humans 70-

80% of total MZ B-cells located in the spleen are IGHV mutated (Chiorazzi et al. 2005).  

MZ B-cells, like CLL cells, produce surface IgM and IgD, but unlike CLL cells the 

surface phenotype of MZ B-cells is CD5
-
CD23

-
CD22

+
. However, these phenotypic 

differences could be attributed to the activation of CLL cells leading to up-regulation of 

both CD5 and CD23 (Chiorazzi et al. 2005).  
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1.1.2 Aetiology and epidemiology 

Advanced age, Caucasian race and a familial history of other haematological 

malignancies have all been shown to increase the risk of developing CLL, however the 

aetiology of CLL remains uncertain (Chiorazzi et al. 2005). The incidence of CLL cases 

has increased since the 1950’s, but this is more likely to be due to more sophisticated 

detection methods rather than an actual increase in occurrence. Global CLL rates are 

between 1 to 5 people diagnosed per 100,000 of the population. However, Asian 

populations have a significantly lower incidence of CLL diagnoses than Caucasian, 

Americans and European populations; interestingly these lower frequencies are 

maintained in Asian populations who have migrated to USA (Pan et al. 2002).  

CLL is generally not associated with any environmental or external factors; however 

studies have linked the development of CLL with exposure to occupational chemicals 

including benzene, radioisotopes and pesticides (Schnatter et al. 2005). Viruses such as 

HTLV, EBV and CMV have also been proposed as risk factors for the development of 

CLL (Crowther-Swanepoel et al. 2010).There are also rheumatologic conditions, which 

have been associated with a risk of developing lympho-proliferative disorders, such as 

CLL (Mellemkjaer et al. 1996). 

Approximately 5% of individuals diagnosed with CLL report a family history of this 

disease or another lympho-proliferative disorder, thus genetic predisposition is the best-

understood risk factor in CLL. Genome-wide association analysis has been used to 

identify several genetic loci, which together gave an accumulated risk of the 

development of CLL (Crowther-Swanepoel et al. 2010). 

1.1.3 Diagnosis of CLL 

Patients with CLL can be asymptomatic and are diagnosed during a routine blood test 

which returns with a higher than normal white blood cell count (Hoeller et al. 2013; 

Shanafelt and Kay 2007). However, more often than not patients are diagnosed with this 

disease after suffering from persistent infections and increased lethargy or malaise due 

to anaemia (Keating et al. 2003). As CLL progresses symptoms can include swollen 

lymph nodes, spleen and liver as well as anaemia and thrombocytopenia. A diagnosis of 

CLL is made when there is a B-lymphocyte count of 5x10
9
/L in the peripheral blood 

present for at least 3 months; clonality of these cells needs to be established with flow 

cytometry.  
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1.1.4 Clinical features 

CLL is an extremely heterogeneous disease with high variability in clinical course that 

is often extremely difficult to predict. The disease can remain stable for many years, and 

clinicians often implement a ‘watch and wait’ approach before determining which 

treatment course would be the most beneficial and appropriate for individual patients. In 

some patients CLL disease progression is very rapid and despite treatment ends in a 

fatal outcome. However, survival of patients with CLL is between 8 and 10 years 

(Hallek et al. 2008). A wide range of laboratory tests can now be used to more 

accurately predict disease progression; there are also universal clinical parameters used 

as a standard guide for clinicians, these are outlined below. 

1.1.5 CLL cell morphology 

The World Health Organization (WHO) describes CLL as a leukaemic lymphocytic 

lymphoma, which can be distinguished from small lymphocytic leukaemic lymphoma 

(SLL) only by its morphological appearance and locality. To avoid misdiagnosis, a full 

blood count and blood smear should be routinely performed on all patients. Figure 1.1 

represents a blood smear for a case of CLL.  Lymphocytes are small (average 7.33µm in 

diameter (Kuse et al. 1985)) and appear mature. The nucleus is dense and inhabits most 

of the cell; the nucleus is contained within a very narrow cytoplasm. The nucleus lacks 

any observable nucleoli and dark staining within this region represents aggregated 

chromatin (Hallek et al. 2010). Smudge cells are a common characteristic of CLL cells; 

these cells are likely to have been smeared during the slide preparation process and 

demonstrate the increased fragility of the CLL cell membrane. 
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Figure 1.1 Blood film illustrating typical CLL cells and smudge cells (Adapted from Brandon 

Guthery, M.D., and Nasir Bakshi, M.D. Department of Pathology, University of Oklahoma Health 

Sciences Center, Oklahoma City) 
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1.1.6 Classification systems: Rai and Binet 

The Rai and Binet classification systems were developed over 30 years ago but remain a 

valuable diagnostic tool for clinicians when managing treatment decisions in CLL. Both 

staging systems are based on clinical features and are thought to help to accurately 

predict the prognostic outcome of CLL patients. These staging systems are both simple 

and inexpensive and hence are used as a standard by physicians’ worldwide (Binet et al. 

1981; Rai et al. 1975). 

Table 1.1 shows the Rai classification system, which ranges from stage 0 to stage IV. 

This system uses the presence of persistent lymphocytosis with or without 

lymphadenopathy, hepato/splenomegaly, anaemia and thrombocytopenia as markers of 

disease progression. Stages III and IV represent more advanced disease and a less 

favourable outcome. Table 1.2 represents the Binet classification system. This system is 

based on the presence or absence of anaemia or thrombocytopenia with 

lymphadenopathy at single or multiple sites. 
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Table 1.1Rai staging System ( Adapted from Rai et al., 1975) 

Low  

0 Lymphocytosis only 

Intermediate  

I Lymphocytosis + lymphadenopathy 

II 
Lymphocytosis + splenomegaly with/without 

lymphadenopathy or hepatomegaly 

High  

III Lymphocytosis + anaemia, with or without organomegaly 

IV Lymphocytosis + thrombocytopenia +/- organomegaly 

 

 

Table 1.2 Binet staging system (Adapted from Binet et al., 1981) 

Stage A Patients have fewer than three areas of enlarged lymphoid 

tissue. Enlarged lymph nodes of the neck, underarms, and 

groin, as well as the spleen, are each considered “one 

group” whether unilateral (one sided) or bilateral (on both 

sides). 

Stage B Patients have more than three areas of enlarged lymphoid 

tissue. No anaemia or thrombocytopenia 

Stage C Patients have anaemia and/or thrombocytopenia  
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1.1.7 Immunophenotype 

CLL cells co-express normal B-cell antigens CD19, CD20 and CD23 but also express 

CD5, which is characteristically a T-cell marker. Lymphocytes in CLL also show the 

weak expression of either kappa (κ) or lambda () light chains on the cell surface 

(Matutes et al. 1994). CD79b and CD22 are either very weakly expressed or not present 

on the CLL cell surface; both of these molecules are associated with cell signalling. 

Markers FMC7 and TdT are also weakly expressed or absent on CLL cells, these 

molecules are associated with B-cell maturity. The levels of expression of these two 

markers may demonstrate the point of B-cell transformation and thus could be 

indicative of disease severity (Craig 2007). Flow cytometric analysis of CLL cells is an 

extremely important tool in aiding diagnosis, classification and prognosis of this disease 

as well as deciding how best to manage the treatment of this disease. 

 

Table 1.3 Immunophenotypic scoring system for CLL (Adapted from Moreau et al., 1997) 

Marker Expression Score Expression Score 

Surface Ig Weak 1 Mod/strong 0 

CD5 Positive 1 Negative 0 

CD23 Positive 1 Negative 0 

FMC7 Negative 1 Positive 0 

CD79b Weak 1 Strong 0 
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1.1.8 Other Diagnostic Tests 

The following tests/markers are not essential for the diagnosis of CLL but may provide 

a better indication of disease progression for sufferers of this highly heterogeneous 

disease. 

1.1.8.1 Lymphocyte Doubling Time  

The Lymphocyte doubling time (LDT) has been used as an indicator of clinical course 

since the mid 1980’s (Montserrat et al. 1986). The LDT correlates with other prognostic 

indicators, including CD38 and ZAP70 expression, it has been shown that used alone 

the LDT is an accurate method of measuring CLL progression (Montserrat et al. 1986). 

In 1986 Montserrat stated that a LDT of greater than 12 months represents a cohort of 

patients with a more favourable clinical outcome, a LDT of less than or equal to 12 

months is associated with much poorer survival rates. Patients who have a short LDT in 

the early stages of the disease are likely to have a more rapidly developing disease 

(Montserrat et al. 1986). Pepper et al (2012) showed that LDT was the most prognostic 

parameter for predicting time to first treatment (TTFT) in a large-scale study of 1152 

CLL patients, all in Binet Stage A with a median follow up period of 8 years (Pepper et 

al. 2012). 

1.1.8.2 Molecular cytogenetics 

Around 80% of CLL patients will have identifiable chromosomal abnormalities in their 

malignant clone (Dohner et al. 2000).  Genomic aberrations can be identified using 

fluorescence in situ hybridisation (FISH). The most common cytogenetic abnormalities 

include a 13q deletion, found in approximately 55% of CLL patients (Parker et al. 

2011). Other prevalent aberrations are 11q and 17p deletions and trisomy 12 (Dohner et 

al. 2000).  Both the 17p and 11q deletions are mostly found in patients who have 

unmutated IGHV genes and these deletions are associated with a poor prognosis 

(Stilgenbauer et al. 2002). Patients with a deletion in 17p display resistance to 

chemotherapy using alkylating drugs and purine analogues (Bentz et al. 1995). A 

retrospective study which analysed 620 CLL patients showed that 17p deletion and 

IGHV mutational status held the most prognostic power out of various biological and 

clinical markers analysed with 17p deletion being an important predictor of TTFT 

(Bulian et al. 2012).  
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The identification of patients with chromosomal abnormalities is important since these 

genomic aberrations can identify patients with lower response rates to chemotherapeutic 

therapies. For example Hewamana and Dearden looked at a cohort of Binet stage C 

relapsed or refractory patients and discovered that the inactivation of the tumour-

suppressor gene TP53 occurred in between 35-50% of these patients, this cohort of 

patients showed poor response rates to chemotherapeutics including alkylating agents 

and purine analogues (Hewamana and Dearden 2011). A number of other studies have 

also revealed correlations between cytogenetic abnormalities and clinical outcome in 

CLL (Garcia-Marco et al. 1994; Oscier 2005). Therefore, early detection of such 

chromosomal abnormalities may be able to provide vital information when deciding 

what treatment course is the most appropriate. 

1.1.8.3 Serum Markers 

Elevated levels of β2-microglobulin, thymidine kinase (TK), and soluble CD23 have all 

been proposed as independent prognostic markers in CLL (Delgado et al. 2009; Hallek 

et al. 1999; Meuleman et al. 2008). Low levels of β2-microglobulin have been associated 

with longer overall survival (OS) and higher remission rates following fludarabine-

based chemotherapy (Hallek et al. 1996). High levels of TK are produced by dividing 

cells and elevated levels of this kinase in the blood serum is indicative of increased CLL 

proliferation (Hallek et al. 1999). Soluble CD23 is produced by CLL cells so high levels 

of this molecule detected in serum is a direct measure of tumour burden, and increased 

levels of soluble CD23 have been linked to shorter TTFT and OS (Meuleman et al. 

2008). Serum markers are considered to be reliable independent markers of disease 

progression, however the routine testing of serum is not conducted, since there is not yet 

a clearly defined standardised threshold for the levels of these markers in CLL patients 

(Parker and Strout 2011).  

1.1.8.4 CLL Transformation Richter’s syndrome 

Richter’s syndrome was first described by Maurice Richter in 1928 and is characterised 

by the transformation of CLL cells to a diffuse large cell non-Hodgkin lymphoma 

(Tsimberidou and Keating 2005). Richter’s syndrome is associated with a poor clinical 

outcome; however a large-scale study has shown that survival of patients who develop 

this malignancy can vary between a few weeks and up to 15 years (Tsimberidou et al. 

2006). Richter’s syndrome occurs in between 1-10% of all CLL cases and is more 

prevalent in patients under 55 years of age (Ghofrani et al. 2007). The risk of 
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developing Richter’s syndrome is independent of disease stage, disease duration or prior 

treatments. The clinical features of Richter’s transformation are non-specific and 

laboratory tests such as β2-microglobulin cannot distinguish between CLL and Richter’s 

syndrome. Genetic abnormalities including c-MYC mutations and TP53 inactivation 

have been shown to be the two most prevalent genetic disruptions in patients with 

Richter’s syndrome (Rossi et al. 2011).PET/CT scanning is a method available which 

may help to detect Richter’s transformation of CLL cells (Bruzzi et al. 2006).   
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1.2 Treatment of CLL 

There are currently no total curative therapies available for the treatment of CLL. Early 

intervention with chemotherapy versus just observing disease progression has not been 

shown to increase overall length of survival (Dighiero and Hamblin 2008). The 

appropriate timing of treatment can delay the natural course of the disease; at present 

treatment is initiated when a patient displays progressive and/or symptomatic disease. 

Since there is no curative therapy for CLL and drugs used have a range of unpleasant 

side effects, the decision to introduce therapy has to be managed very carefully. As the 

understanding of the biology of this disease has improved, so has the range of treatment 

options available to patients. The National Cancer Institute working group (NCIWG) 

has developed a set of criteria to assist clinicians in determining when to begin 

treatment, these include the development of stage “B” symptoms (weight loss, fevers 

which last longer than 2 weeks, extreme fatigue and night sweats), as well as increased 

anaemia and or thrombocytopenia, autoimmune cytopenias, progressive splenomegaly, 

progressive lymphadenopathy and a LDT of less than 6 months (Hallek et al. 2008). 

1.2.1 Assessing patient fitness to determine suitability for treatment 

Formal and Informal assessment methods are implemented when deciding whether 

patients are fit enough to receive treatment for CLL. A formal system commonly used is 

the Eastern Cooperative Oncology Group Performance Status (ECOG PS), this system 

uses a grading system of 0-5 to convey how CLL affects day-to-day living, a score of 0 

represents physical function equal to pre disease status and a low score would deem a 

patient fit enough to receive conventional treatments (Oken et al. 1982). Other systems 

are also used including the Cumulative Illness Rating Scale (CIRS); this system looks at 

co-morbidities and works by assigning points to separate conditions in other organs of 

the body. The number of points across all organs in the body is calculated and a low 

score is associated with higher patient fitness levels (Hudon et al. 2007). However, 

clinicians may often use personal judgement and previous experience when deciding 

whether a patient is fit for treatment. 

In fit patients Fludarabine, Cyclophosphamide and Rituximab (FCR) treatment 

(discussed below) has been shown to be the most effective treatment in terms of overall 

response rates. However, this treatment regime may not be suitable for older or ‘less fit’ 

patients due to the toxicities associated with this treatment including cytopenias and 

infections. An agent that is quite often used in less fit or older patients is the alkylating 
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agent Chlorambucil, this drug has been established in the treatment of CLL for over 50 

years and is administered orally, with fewer adverse side-effects (Van der Jagt et al. 

2012). 

1.2.2 Single agent therapies 

Patients can either receive single agent therapies or several different agents in 

combination, which are known to act synergistically. Discussed below are three classes 

of single agent therapies for the treatment of CLL. 

1.2.2.1 Alkylating agents 

Chlorambucil (phenylbutyric acid nitrogen mustard) was synthesised over 50 years ago 

and started being used as a therapy for CLL shortly thereafter (Robak and Kasznicki 

2002). The exact mechanism of this alkylating agent remains largely undetermined, 

however it is believed that Chlorambucil acts by inducing DNA crosslinking in CLL 

cells, Chlorambucil has also been shown to directly induce apoptosis in CLL cells 

(Robak and Kasznicki 2002). Chlorambucil has response rates in between 47% and 71% 

of patients and can be used in combination with other alkylating agents, however no 

differences have been observed in progression-free survival (PFS) or OS when 

Chlorambucil is used alone or in combination in clinical trials (Hansen et al. 1988; 

Montserrat et al. 1986). 

1.2.2.2 Purine nucleoside analogues 

Nucleoside analogues such as Fludarabine, Cladribine and Pentostatin represent a group 

of cytotoxic agents, which are also very effective in the treatment of CLL (Robak and 

Kasznicki 2002).  The most extensively studied of these three purine analogues is 

Fludarabine. Fludarabine acts in part by decreasing DNA synthesis, however several in 

vitro studies have confirmed that Fludarabine treatment triggers cell apoptosis (Robak 

and Kasznicki 2002). As a single agent Fludarabine has been shown to provide higher 

response rates in terms of PFS compared with treatment of Chlorambucil as a 

monotherapy (Ricci et al. 2009). The downside of using nucleoside analogues is that 

these agents can lead to adverse side effects including myelosuppression, significant 

lymphosuppression and the development of secondary acute myeloid leukaemia (Abbott 

2005). 
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1.2.2.3 Monoclonal antibodies  

The emergence of monoclonal antibody therapies represents a more targeted treatment 

for CLL. The first monoclonal antibody developed for the treatment of CLL was 

Alemtuzumab (anti-CD52); which targets both mature B- and T-cells within the CLL 

patient (Mavromatis and Cheson 2003). Treatment with this antibody typically gives 

response rates of around 30% in patients with advanced disease. However, infusion 

reactions and immunosuppression pose serious limitations with this agent and, 

therefore, it is not recommended for use in patients who are immunosuppressed and 

susceptible to infection (Mavromatis and Cheson 2003; Peleg et al. 2007).  

Another monoclonal antibody in clinical use is Rituximab, an anti-CD20 antibody. 

Rituximab targets CLL B-cells and is used as both a single agent and in combination 

with other chemotherapeutic agents (Jaglowski and Byrd 2010). This antibody treatment 

has proven to be highly effective in treating CLL, however studies to determine the 

specific mechanism of action of Rituximab in CLL cells are still required (Jaglowski 

and Byrd 2010).  

GA-101 is a next generation anti-CD20 antibody; it is the first glyco-engineered anti-

CD20 monoclonal antibody developed. The German CLL11 trial is a phase III 

multicentre study designed to look at the safety and efficacy of GA-101 as well as 

comparing the efficacy of this monoclonal antibody treatment to other monoclonal 

antibody treatments. The first stage of this study has been completed and has shown an 

improvement in PFS in patients treated with GA-101 plus Chlorambucil compared to 

patients treated with Chlorambucil alone. Another next generation anti-CD20 

monoclonal antibody for the treatment of CLL is Ofatumumab. This antibody has 

shown enhanced killing in Rituximab resistant cell lines (Teeling et al. 2006) and has 

also shown to be effective in high-risk patient cohorts (Nabhan and Kay 2011). 

1.2.3 Combination treatment-Chemoimmunotherapy 

The use of combination chemotherapy has been shown to increase levels of complete 

remission of CLL (Desai and Pinilla-Ibarz 2012). The FCR combination is considered 

to be the ‘gold standard’ treatment option for CLL by many clinicians (Hamblin 2009).  

The mechanism by which Fludarabine inhibits excision repair of DNA lends itself to the 

combined use with Cyclophosphamide, which induces DNA breaks, and these drugs 

have been shown to synergise in laboratory experiments (Alas and Bonavida 2001). 



  Chapter 1 

 

  15 

Additionally, it has also been discovered that Fludarabine and Rituximab could work in 

synergy since Rituximab acts by sensitizing leukaemic cells to apoptosis by down-

regulating the anti-apoptotic protein BCL2 (Alas et al. 2001). A study conducted by 

Hallek et al looked at a large cohort of physically fit CLL patients aged between 30 and 

81 years. One group of 408 patients were treated with chemoimmunotherapy that 

comprised of Fludarabine, Cyclophosphamide and Rituximab, whilst the second cohort 

of 409 patients was treated with chemotherapeutic agents Fludarabine and 

Cyclophosphamide only, patients received six doses of treatment over a 28-day period. 

After 3 years 65% of patients in the chemoimmunotherapy group displayed PFS 

compared to 45% of patients treated with chemotherapy agents only (Hallek et al. 

2010). Although FCR is currently used as a standard treatment choice in CLL patients, 

new combinations of therapeutic agents are currently being developed which will begin 

to emerge into clinical use within the next decade. A major benefit of using 

combinations of therapeutic agents is that individual drugs can be administered at a 

lower dosage, which can reduce the severity of dose-dependent side effects whilst 

maintaining efficacy. 

1.2.4 Kinase-targeted therapy 

Aberrant signalling through the B-cell receptor (BCR) provides growth signals to CLL 

cells which are central in driving the pathogenesis and progression of this disease 

(Robak and Robak 2013). Following antigen engagement of the BCR, BCR-associated 

kinases are recruited and activated these include spleen tyrosine kinases (Syk), Brutons 

tyrosine kinase (BTK) as well as phosphatidylinositol 3-kinases (PI3K). Several kinases 

in the BCR signalling pathway are suitable targets for potential therapies in CLL these 

kinases include LYN, SYK and PI3K(Robak and Robak 2013).  

SYK initiates and activates the BCR signalling pathway (Friedberg et al. 2010). In vitro 

treatment of primary CLL cells with the SYK inhibitor Fostamatinib (R788) induces 

apoptosis at an increased level and antagonises the protective effect of stromal cells, 

Fostamatinib is an ATP-competitive kinase inhibitor and was originally developed to 

treat inflammatory diseases but studies have shown that SYK is an interesting target to 

pursue in CLL (Friedberg et al. 2010; Wiestner 2012b). In vivo treatment with 

Fostamatinib has been conducted using the Eμ-TCL1 transgenic mouse model of CLL. 

In this context, Fostamatinib demonstrated the ability to inhibit survival and 
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proliferation of malignant B-cells; and interestingly this SYK inhibitor did not affect the 

normal B-cell population (Suljagic et al. 2010). 

Ibrutinib (PCI-32765) is a potent inhibitor of BTK and has shown very promising 

results in CLL patients (Burger and Buggy 2013), even in patients not suitable for 

conventional treatments due to co-morbidities and genetic aberrations such as del 17p, 

which generally fail to respond to treatment (Barrientos and Rai 2013; Burger and 

Buggy 2013). Treatment with Ibrutinib results in migration of CLL cells from the 

lymph nodes into the blood, where they are more treatable (Robak and Robak 2013). 

Treatment with this inhibitor results in the rapid shrinkage of lymph nodes and 

prolonged treatment with this agent results in the lymphocyte count returning to normal 

and remission in a large proportion of patients (Barrientos and Rai 2013). 

Dasatinib is an inhibitor that can target both SRC and ABL kinases and is taken orally. 

In vitro studies have shown variable levels of phosphorylation of these kinases in CLL 

patients; pro-apoptotic effects can be observed following treatment with Dasatinib but 

this effect is seen to be antagonised when CLL cells have stromal cell contact or CD40 

stimulation (Wiestner 2012b).  

The PI3K pathway is central in linking many signalling pathways and is responsible, in 

part for cellular growth, proliferation and cell survival (Liu et al. 2009). The PI3K 

pathway acts by amplifying the BCR signal and mediating functional effects of antigen-

dependent BCR activation. GS-1101 (CAL-101) is a selective inhibitor specific to 

PI3Kδ isoform and acts by inhibiting PKB and ERK, inhibiting the secretion of 

cytokines and chemokines both in vitro and in vivo (Macias-Perez and Flinn 2013; 

Wiestner 2012b).  A phase I study was carried out in 2010 in 37 CLL patients, with 

resulting reductions in lymphadenopathy in all 37 patients and shrinkage in lymph node 

legions (of up to 50%) observed in 91% of this patient cohort (Furman 2010).  

Furthermore, other studies have used GS-1101 in combination with Rituximab or 

Bendamustine in pre-treated CLL patients and also observed significant reductions in 

lymphadenopathy (Lu and Wang 2012). GS-1101 induces apoptosis of CLL cells in 

vitro regardless of culture conditions and has shown to be effective with CD40L 

activation as well as when added to culture with nurse-like stromal cells (Wiestner 

2012b). 
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1.2.5 Immunomodulatory drugs 

Lenalidomide is an immunomodulatory drug, which has been used in the treatment of 

CLL. The exact mechanism of action of Lenalidomide on CLL cells is not fully 

understood however it may work through enhancement of helper and cytotoxic T cells 

or inhibition of pro-survival signalling from stromal cells. Furthermore, Lenalidomide 

has been shown to effectively reduce the proliferation of regulatory T-cells known to be 

associated with markers of poor prognosis in CLL (Cortelezzi et al. 2012; Schulz et al. 

2013). Chanan-Khan et al first demonstrated the use of Lenalidomide in the treatment of 

CLL, patients were treated for 21 days out of a 28-day cycle and 45 patients took part in 

the study (Chanan-Khan et al. 2006). The overall response rate was 47%, however 

tumour lysis syndrome (TLS) and tumour flare reaction (TFR) posed major limitations 

in this treatment (Chanan-Khan et al. 2006) and future studies have used a much lower 

dose or an escalation dose system whereby they start patients on a dose of 5mg and 

work up to a dose of 25mg to avoid such reactions (Cortelezzi et al. 2012).  

Lenalidomide has also been shown to reduce the migratory potential of CLL cells which 

limits the homing of CLL cells to lymph nodes (Schulz et al. 2013). 

 

1.2.6 Stem cell transplantation 

Haematopoietic stem cell transplantation (HSCT) is not considered a suitable treatment 

option for the majority of CLL patients, due to high treatment-related morbidity and 

mortality (Gribben 2009). However, the use of allogeneic transplants may be considered 

in younger CLL patients or patients with short remission times (<1-2 years). Patients 

who may be considered for HSCT are those who have p53 mutations or have 

experienced an early relapse after purine analogue combination therapy (Ferrajoli 

2010).  
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1.3 Biological and molecular markers 

The variability in clinical outcome in CLL is strongly related to several factors 

including CD38 expression, ZAP70 expression and the mutational status of the IGHV 

genes (Deaglio 2001a). The heterogeneity of this disease means it is essential to identify 

prognostic markers, to indicate whether individual patients have an indolent or 

progressive form of the disease. 

1.3.1 ZAP70 

Zeta-chain associated protein kinase (ZAP70) has a molecular weight of 70kDa and is 

situated close to the cytoplasmic membranes of both T-cells and natural killer (NK) 

cells (Chan et al. 1992). ZAP70 is involved in T-cell signalling, but is also needed for 

pre B-cell development; however the expression of this protein is lost in normal mature 

B-cells (Chan et al. 1992). The increased expression of ZAP70 in CLL has been 

associated with a poor prognosis in CLL (Parker and Strout 2011). The precise role of 

ZAP70 in CLL is unclear, but this protein kinase has been shown to improve the 

effectiveness of B-cell signalling in CLL cells, particularly in CLL patients expressing 

unmutated IGHV genes (Chen et al. 2008). 

1.3.2 IGHV mutational status 

In the late 1990’s, two groups independently reported that CLL could be divided into 

two subgroups based on the amount of mutations in the immunoglobulin heavy-chain 

variable region genes (IGHV) (Damle et al. 1999; Hamblin et al. 1999). Patients with 

more than 98% sequence homology of IGHV genes to germline are deemed to have an 

unmutated phenotype and those patients with fewer than 98% homology within this 

region have a mutated phenotype. A higher-risk cohort of patients are those who display 

few mutations within the DNA in the IGHV antibody gene region, whereas the lower 

risk cohort of patients show substantial mutations of the DNA in the IGHV gene region 

indicating more antigen experienced CLL cells. It has been shown that patients 

diagnosed with stage A disease with mutated IGHV genes have a median survival three 

times longer than patients diagnosed with stage A with unmutated IGHV genes (Oscier 

et al. 1997). 
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1.3.3 Telomere Dynamics 

Telomere length analysis can be carried out using a high-resolution single molecule 

PCR strategy (STELA); telomere length was examined using this highly sensitive 

approach in a large cohort of CLL patients (Lin et al. 2010b). It was discovered that 

telomere length was significantly shorter in more advanced Binet stages of CLL, thus 

short telomere length could be used as an indicator of poor prognosis (Lin et al. 2010a). 

Furthermore, another key finding of this work is that some early stage patients also had 

very short telomeres, which were predictive of an unfavourable clinical course prior to 

clinical disease progression (Lin et al. 2010a). A major hallmark of telomere 

dysfunction is telomere-telomere fusion events. Consistent with this, samples derived 

from patients with the most eroded telomeres showed the highest frequency of fusion 

events and demonstrated genomic instability that was focussed at the telomeric ends of 

chromosomes (Lin et al. 2010a).  
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1.4 CD38 

The CD38 protein was discovered using monoclonal antibody typing of lymphocytes 

and was initially thought to be a lymphocyte-specific antigen (Reinherz et al. 1980). 

Subsequent studies have shown that that CD38 is expressed on many cell types 

including thymocytes, activated T-lymphocytes, B-cell precursors, plasma cells, NK 

cells, monocytes as well as dendritic cells (Deaglio 2007). CD38 has also been found on 

neurons in the human brain (Mizuguchi et al. 1995). CD38 is a glycoprotein, with dual 

functionality with enzymatic and a receptor capabilities (Deaglio 2003a). Pathways 

involved in CD38 signalling have been investigated in murine and human B-

lymphocyte cell lines. The ligation of CD38 in an immature human B-lymphocyte cell 

line resulted in the rapid tyrosine phosphorylation of many proteins including the p85 

subunit of Phosphatidylinositol 3-kinases (PI3K), as well as phospholipaseCγ (PLCγ) 

amongst others (Shubinsky and Schlesinger 1997). 

The enzymatic activity of CD38 was first described in 1993 in a murine model and 

established in the human model shortly thereafter (Howard et al. 1993). The enzymatic 

capabilities of CD38 include the conversion of nicotinamide adenine dinucleotide 

(NAD) into cyclic adenosine diphosphate ribose (cADP ribose) and hydrolysis of cADP 

ribose to ADP ribose (Lee 2006). In murine lymphocytes CD38 ligation is followed by 

a rapid flux in the concentration of intracellular Ca
2+ 

(Howard et al. 1993). It has also 

been shown that the overexpression of human CD38 leads to an increase in intracellular 

levels of cADP, initiating the mobilisation of Ca
2+

from intracellular stores, resulting in 

the activation of lymphocytes (Lee 2006). 

1.4.1 Phylogeny of CD38 

The development of sophisticated phylogenetic analysis techniques has revealed that 

CD38 is derived from the ancient sea mollusc Aplysia Californica, and shares a 

strikingly similar amino acid sequence with an enzyme found in this sea creature called 

Aplysia ADP-ribosyl cyclase, a soluble protein 256 residues in length located at 

elevated levels in the ovotestis of this mollusc (Deaglio 2008a).  A sequence 

comparison revealed that 86 of the 256 residues of ADP-ribosyl cyclase from the 

Aplysia mollusc are identical to the human CD38 protein.  

A paralogue of CD38 is the GPI-anchored antigen CD157 (Deaglio et al. 2008). 

Aplysia, CD38 and CD157 share around 25-30% sequence identity and there is a nine-
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residue sequence, located in the central region of the CD38 protein, which is a highly 

conserved region amongst the three proteins. CD38, CD157 and ADP-ribosyl cyclase 

can cyclise NAD to cADPR as well as being able to produce NAADP using NADP as a 

substrate (Malavasi et al. 2008). A study conducted by Goodrich et al has suggested that 

there may be a fourth member of this cyclase family which is a GPI-anchored protein 

found in the human parasite Schistosoma mansoni which shares 21% homology with 

CD38 which also is an enzyme producing NAADP from NADP as well as aiding in the 

hydrolysis of NAD to ADP-ribose (Goodrich et al. 2005).  

CD38 and CD157 appear to have evolved in parallel and both function as GPI 

membrane-anchored proteins. Over the course of evolutionary history the CD38 and 

CD157 proteins have not only maintained their enzymatic abilities but have also 

acquired new properties which include membrane anchorage allowing for the cell 

surface receptor capabilities. The dual functionality of these paralogues as both ecto-

enzymes and cell surface receptors are likely to have arisen as a result of evolutionary 

pressure for the once soluble enzyme to become a more complex and multi-faceted 

molecule (Deaglio et al. 2006). 

1.4.2 CD38 Genetics 

Both CD38 and CD157 genes are located on the short arm of chromosome 4 (Quarona 

et al. 2013). CD38 and CD157 genes are arranged as follows; telomere  CD157  

CD38  centromere which suggests that CD157 and CD38 have arisen through gene 

duplication (Malavasi et al. 2006). CD38 is a comparatively large gene and consists of 8 

exons that make up 98% of the 80kb fragment. The promoter region of CD38 lacks a 

TATA box, but contains a CpG island, which indicates epigenetic regulation (Ferrero et 

al. 1999). The methylation of the promoter region of CD38 negatively correlates with 

the surface expression of CD38 (Ferrero et al. 1999). A study conducted on 168 CLL 

patient samples, with the CD38 cut-off point for positivity set at 7%, revealed that 96% 

of the CD38 negative samples had CD38 gene methylation whereas in the CD38 

positive cohort just 25% of patients displayed CD38 gene methylation (Del Poeta et al. 

2001). Methylation was not observed in healthy controls, which indicates that this event 

is CLL specific. A single nucleotide polymorphism is located at the 5' end of intron 1 of 

CD38; the frequency of the G allele is significantly higher in CLL patients who have 

clinical and molecular markers of poor prognosis. Moreover the C to G mutation is an 
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independent risk factor for the development of Richter’s syndrome (Del Poeta et al. 

2001). 
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1.4.3 Structure of CD38 

The CD38 protein is a type II 45kDa trans-membrane glycoprotein. CD38 has a small 

21 amino acid cytoplasmic region, a 23 amino acid single chain trans-membrane 

domain and a much larger 256 amino acid extracellular domain, which can roughly be 

divided, into two main regions. The extracellular amino domain is composed of 156 

amino acids made up of 5 α-helices which are adjacent to a carboxyl domain made up of 

4 β-sheets, these sheets are flanked by another four α-helices, two of which are short 

and the other two much longer. These two regions are linked at multiple points along 

the amino acid sequence; the linking of amino acids between the two domains acts as a 

hinge mechanism and allows for the conformational changes of the CD38 protein upon 

binding with other molecules (Malavasi et al. 2008). 

 

 

 

Figure 1.1Crystal structure of CD38(Adapted from Liu et al,. 2005) 

 

1.4.4 CD38 in normal lymphocyte development 

The expression of CD38 during B-cell ontogeny is very tightly regulated; CD38 appears 

on bone marrow precursor cells and terminally differentiated plasma cells but is lost on 

resting mature B-lymphocytes (Campana et al. 2000; Hamblin et al. 2002). CD38 

mediates the adhesion of B-lymphocytes to stromal cells found in the bone marrow and 

lymphoid organs (Zupo et al. 1994). It appears that CD38 expression may be increased 
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at times during B-cell development when cell-to-cell interactions are required, with 

CD38 expression stimulated upon naïve B-cell activation, increasing when B-cells enter 

the germinal centre and rapidly decreasing upon B-cell differentiation (Liu et al. 2008). 

CD38 expression is absent in the memory B-cell subset. There have been relatively few 

studies that focus on the role of CD38 in human mature B-cell development. 

1.4.5 CD38 in CLL 

CD38 is thought to be involved in a number of human diseases including HIV infection, 

diabetes, acute pro-myelocytic leukaemia, obesity and CLL (Malavasi et al. 2011; 

Malavasi et al. 2008; Savarino et al. 2000; Stevenson 2006). CD38 is a well-established 

prognostic marker in CLL; high surface CD38 expression signifies a poor prognosis 

with shorter overall survival (Damle et al. 1999; Deaglio 2011; Ibrahim et al. 2001). 

The prognostic relevance of this molecule was first recognised by Damle et al in 1999 

when analysing a cohort of 47 patients who had been phenotyped for CD38 expression. 

Damle et al discovered that the high expression of CD38 (on greater than 30% of CLL 

cells) correlated with inferior survival and it was this study that initially established 

CD38 expression as a means of predicting outcome of newly diagnosed CLL patients 

(Damle et al. 1999). To reaffirm the prognostic significance of CD38, Ibrahim et al 

(2001) looked at CD38 expression in a larger cohort of patients (Ibrahim et al. 2001). 

The CD38 expression of 218 patients was correlated with clinical characteristics. CD38 

was expressed in 20% or more leukaemic cells in 43% of CLL patients. Patients deemed 

to have high CD38 expression (greater than 20% of the CLL clone) were shown to have 

significantly shorter survival times. Furthermore, high CD38 expression identified a 

sub-group of patients with progressive disease but who were considered to have early 

stage disease according to the Rai staging classification protocol (Ibrahim et al. 2001).  

An accumulating body of evidence indicates that CD38 is not just a marker of activated 

clonal B-cells but rather it plays a role in the pathology of CLL. A study conducted by 

Pittner et al in 2005 looked at a cohort of 90 patients, of which 43 were uniformly CD38 

positive (greater than 20%) and 47 were uniformly CD38 negative (less than 7%) and 

discovered that cell surface markers CD49d, CD18 and CD20 were more highly 

expressed in the CD38 positive cohort of patients. Pittner et al also looked at the cell 

cycle related protein APC/C5 and discovered that higher levels could be detected in 

CD38 positive patients. This is indicative that cells from the CD38 positive cohort of 

patients have more recently exited the cell cycle and are also more primed to re-enter 
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the cell cycle (Pittner et al. 2005). In 2007, Pepper and colleagues conducted 

experiments whereby gene expression analysis was carried out in CD38 positive and 

CD38 negative CLL cells isolated from 30 bi-modal patients (patients with two distinct 

populations of CD38+ and CD38- cells) to try and uncover the biological rationale 

behind the prognostic relevance of CD38. It was shown that there were 62 differentially 

expressed genes between the CD38
+
 and CD38

-
 populations, 35 genes were over 

expressed in the CD38
+
 CLL cells and 27 were under expressed in the CD38

+
 CLL 

cells. VEGF and the anti-apoptotic gene MCL1 showed augmented expression in the 

CD38
+ 

population of CLL cells. The differential gene expression discovered between 

the two populations of cells from the same patient in some part explains the prognostic 

significance of the CD38 protein (Pepper 2007). 
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1.5 Microenvironment 

CLL cells in vivo exhibit increased survival and levels of apoptosis remain low when 

compared to normal B-lymphocytes. In stark contrast, when CLL cells are removed 

from the body they die spontaneously and can be very difficult to keep alive 

(Ghamlouch et al. 2013). This knowledge highlights the importance of external signals 

and essential growth factors from accessory cells, which provide supportive interactions 

to the CLL cell that appear to be critical for the maintenance and progression of CLL 

(Caligaris-Cappio 2011). CLL cells accumulate in the bone marrow, neoplastic growth 

follicles and lymphatic tissues where they receive survival and/or growth signals from 

surrounding cells. CLL cells possess multiple surface adhesion molecules, which 

include integrins, selectins and immunoglobulins, which facilitate interactions between 

CLL cells and the extracellular matrix as well as accessory cells, aiding in the 

migration, localisation and survival of CLL cells (Burger and Montserrat 2013; 

Caligaris-Cappio 2011; Friedberg 2011). These interactions may be responsible for the 

emergence of resistance to conventional clinical therapeutics and may account for 

minimal residual disease (MRD) and relapses following treatment (Audrito et al. 2013). 

Furthermore, as well as promoting the survival and proliferation of CLL cells signals 

within the microenvironment are likely to promote the accumulation of new genetic 

mutations and aid in the expansion of pre-existing mutated sub-clones which may 

further drive disease progression.  Components of the in vivo microenvironment thought 

to promote CLL cell growth and proliferation are discussed below. 

1.5.1.1 Bone Marrow stromal cells 

Bone marrow stromal cells (BMSCs) were the first stromal cells identified to support 

CLL cell survival ex vivo (Burger et al. 1999). BMSCs are known to be very important 

in the process of normal haematopoiesis providing growth factors and docking sites to 

which haematopoietic precursors are able to bind (Burger 2011). It is thought that for 

CLL cells BMSCs can provide a niche environment within the bone marrow where CLL 

cells can lodge and be shielded from cytotoxic agents, accounting for MRD (Burger 

2011). Co-culture systems with BMSCs have shown that following the rapid adhesion 

of CLL cells to the stromal layer, a sub population of the CLL clone is able to migrate 

beneath the BMSCs, this phenomenon is known as pseudo-emperipolesis and is reliant 

upon the expression of the chemokine receptor CXCR4 as well as expression of the 

adhesion molecule CD49d by CLL cells (Burger et al. 1999). CXCL12 also known as 
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stromal cell-derived factor 1 (SDF-1) is a CXC chemokine expressed by stromal cells 

which signals through CXCR4, a G protein coupled chemokine receptor known to play 

a role in the trafficking and homing of CLL cells to the bone marrow. The adherence of 

CLL cells to stromal cells depends upon interactions between CD49d on the CLL cell 

surface and vascular cell adhesion molecule-1 (VCAM-1) expressed by stromal cells 

(Buchner et al. 2010; Burger et al. 1999). 

1.5.1.2 Nurse-like cells 

Nurse-like cells (NLCs) are a subset of blood cells derived from monocytes, which have 

the ability to differentiate to form large adherent cells, which attract CLL cells and 

protect them from apoptosis as well as drug-induced cell death in vitro through contact-

dependent mechanisms(Burger et al. 2000). FISH analysis has proven that NLCs do not 

arise from the CLL clone; phenotypic characterisation of NLCs has revealed that these 

cells closely resemble marrow stromal cells (Burger et al. 2000) but also express 

markers CD45, CD14 and CD68, which are found on monocytic precursor cells 

(Tsukada et al. 2002). NLCs are found in the spleen and secondary lymphoid tissues of 

CLL patients and also express CXCL12, CXCL13, CD31, plexin B1, BAFF and 

APRIL, which promote CLL cell survival (Burger 2011). Furthermore, gene expression 

profiling (GEP) studies have revealed that CLL cells co-cultured with NLCs have 

similar gene expression profiles to CLL cells isolated from secondary lymphatic tissues, 

suggesting that co-culture with NLCs may provide a relevant system to study the CLL 

cell microenvironment (Burger 2011).  

1.5.1.3 T-lymphocytes 

Untreated CLL patients show elevated numbers of both CD4
+
/CD8

+
 circulating T-cells 

(Mellstedt and Choudhury 2006), it is unclear whether this expansion is due to 

interactions with the CLL clone or due to microbial agents which have a greater effect 

on CLL patients (Burger 2011; Burger et al. 1999). T-lymphocyte numbers are further 

elevated in CLL patients with a poor clinical outcome (D'Arena et al. 2011). Cytokines 

such as IL-4, derived from T-cells are able to inhibit apoptosis of CLL cells (Rossmann 

et al. 2002). Patten et al demonstrated that close interactions between CLL cells and T-

cells within pseudo follicles in vivo result in an activated subset of CLL cells which 

have elevated CD38 surface expression (Patten et al. 2008). 
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1.5.2 In vitro systems used in CLL research 

Recent emphasis in CLL research has focused on targeting the leukaemic cell 

microenvironment. Previous studies have shown that co-culturing CLL cells with 

different adherent cell types, collectively known as stromal cells, are able to maintain 

CLL survival. Some of these co-culture systems are discussed below. 

1.5.2.1 CD40 signalling in CLL 

CD40 is a 45kDa protein expressed on both normal and malignant B-cells and is a 

member of the TNF receptor superfamily. A key role of this molecule on B-

lymphocytes is to enhance antigen presentation to T-lymphocytes (Bishop and Hostager 

2003). The CD40 ligand (CD40L/CD154) is a molecule expressed on the surface of 

activated T-lymphocytes, which plays a central role in providing helper signals required 

for the activation, proliferation, differentiation, and prevention of apoptosis in 

haematopoietic cells (Bishop and Hostager 2003). The activation of CD4
+
 T-cells leads 

to an up regulation of CD40L on the T-cell surface. This ligand delivers signals to the 

CLL cell by binding to CD40 present on the CLL cell surface leading to an up-

regulation of pro-survival signalling pathways including PI3K and PLCγ. Furman et al 

demonstrated that in vitro CD40 ligation could inhibit apoptosis in CLL cells by 

inducing the transcription factor NF-B (Furman et al. 2000). As well as enhancing 

CLL survival, it has been shown that CD40 signalling promotes proliferation of CLL 

cells, with augmented expression of cyclin-dependent kinases CDK4 and CDK6 and 

down regulation of cell cycle inhibitory kinase p27
kip1

(Harnett 2004). 

1.5.2.2 Interleukin 4 (IL-4) 

IL-4 is a pluripotent gamma chain cytokine, first identified by its proliferative effect on 

B-lymphocytes (Kay and Pittner 2003). IL-4 can induce the expression of surface 

molecules involved in immune activation and immune recognition. IL-4 is 

predominantly secreted by CD4
+
T-cells and can protect CLL cells from apoptosis in 

vitro(Kay et al. 2001). Circulating CD8
+
 T-cells from CLL patients also express 

elevated levels of IL-4 when compared to normal healthy donors (Mu et al. 1997). 

Cytoplasmic IL-4 can also be detected in clonal B-cells (Douglas et al. 1997). There are 

two types of IL-4 receptors, one found on haemopoietic cells and the other on every 

other cell type. CLL cells possess IL-4 receptors, and IL-4 produced by both B-cells and 

T-cells may impact upon CLL survival via autocrine and paracrine mechanisms (Kay et 
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al. 2001). The binding of IL-4 to the IL-4 receptor activates Jak1 and Jak3, two 

members of the Janus family of tyrosine kinases, which results in the phosphorylation 

and activation of the transcription factor STAT6 (Kay and Pittner 2003). 

 Experiments conducted by Dancescu et al have demonstrated that the addition of IL-4 

to culture medium leads to an increase in the expression of anti-apoptotic protein BCL2, 

when compared to cells which have not been stimulated by IL-4. This implies that the 

mechanism by which IL-4 rescues CLL cells from apoptosis is, at least to some extent, 

BCL2-dependent (Dancescu et al. 1992). IL-4 can partially counteract the effect of 

chemotherapeutics including treatment with Chlorambucil and Fludarabine; increased 

CLL cell viability is observed when IL-4 is present in drug-treated cultures (Mentz et al. 

1996). Studies such as those conducted by Mentz et al and Dancescu et al highlight the 

importance of targeting elements of the CLL microenvironment to counteract drug 

resistance mechanisms. 

 

 

 

Figure 1.2 CLL cell microenvironment (copied from (Burger et al. 2009)) 

 

  



  Chapter 1 

 

  30 

1.5.3 CD31 

CD31 (Cluster of differentiation 31, also known as platelet endothelial cell adhesion 

molecule (PECAM-1)), is encoded by the PECAM-1 gene located on chromosome 17 

(Deaglio 1996). CD31 is a 130kDa member of the Immunoglobulin (Ig) superfamily 

and is expressed on endothelial cells, platelets, neutrophils, monocytes and naïve B-

lymphocytes (Deaglio 2003b; Ibrahim et al. 2003). The extracellular domain of CD31 is 

composed of 574 amino acids made up of 6 homologous sections linked to a single 118 

amino acid intracellular domain via a transmembrane channel (Ibrahim et al. 2003). The 

expression of CD31 on the surface of B-lymphocytes changes throughout the B-cell 

maturation process and CD31 plays a fundamental role in determining key adhesion-

mediated biological events (Ibrahim et al. 2003). In 1998 Deaglio et al identified CD31 

as the ligand for CD38 (Deaglio 1998).  

Studies have been conducted in an attempt to determine whether the surface expression 

of CD31 on B-lymphocytes has any prognostic value in CLL. Maniou-Fowler et al 

analysed the surface density of CD31 expressed on the CLL cells in a cohort of 120 

patients. CD31 expression was significantly lower in patients with advanced or 

progressive CLL (Binet stages B and C), and higher in patients with stage A disease. An 

inverse correlation was established between CD31 and CD38, and all CLL-related 

deaths that occurred within the duration of this study were patients who had low CLL 

cell surface expression of CD31. It was shown that low CD31 expression was associated 

with poor clinical outcome, irrespective of patient age (Mainou-Fowler et al. 2008). In 

contrast, Ibrahim et al looked at a cohort of 120 patients and showed that patients who 

had low surface expression of CD31 and CD38 had the most favourable outcome 

compared to all other combinations of expression of these two proteins. They also 

showed that patients with high CD31 expression but low CD38 expression had a poor 

clinical outcome, which was analogous to that of the CD38 positive cohort suggesting 

that increased expression of CD31 is of prognostic significance (Ibrahim et al. 2003). 

Furthermore, Poggi et al showed that members of the BCL2 family associated with cell 

survival were up-regulated in CLL cells with high surface density of CD31. After 

studying the effects of CD31 ligation, they observed significant up-regulation of the 

PI3K/PKB signalling pathway as well as subunits p65 and p52 of NF-B (Poggi et al. 

2010). 
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Independent immuno-histochemical studies on lymph node sections revealed a direct 

association between the number of endothelial cells (CD31
+
) and the level of CD38 

expression by CLL cells (Deaglio et al. 2010). The lymph nodes are proposed to be 

where CLL cells proliferate and CD38
+
 CLL cells are characterised by a specific 

genetic profile showing up-regulation of proliferation and survival pathways (Deaglio 

2010; Pepper 2007). A method has been developed whereby CD38
+
 CLL cells can bind 

to murine fibroblasts transfected with the CD31 ligand with resulting increased growth 

and survival. In vivo CD31
+
 cells can be found in lymphoid organs often in close 

contact with CD38
+
 CLL cells (Patten et al. 2008). Experiments carried out by Deaglio 

et al have revealed that CD31/CD38 interactions drive activation and proliferation of 

distinct lymphocyte populations (Deaglio et al. 2010). 
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1.6 Signalling pathways in CLL  

1.6.1 B-cell receptor (BCR) 

1.6.1.1 Structure of the B-cell receptor (BCR) 

Mature B-cells have two types of B-cell receptor, which are IgM and IgD. The BCR is 

made up of membrane immunoglobulin (mIg) made up from a heavy chain, which is 

composed of 4 domains in the IgD isotype and 5 domains in the IgM isotype. This 

heavy chain is linked to a very short intracellular domain, via a transmembrane 

connective domain, three amino acids in length with the sequence lysine, valine, lysine 

(KVK) (Matsuuchi and Gold 2001). The mIg is linked to a CD79a Igα/ CD79b Igβ 

heterodimer which has immunoreceptor tyrosine-based activation motifs (ITAM), a 

highly conserved sequence which is made up of only 4 amino acids and includes a 

tyrosine separated from either leucine or isoleucine by any 2 amino acids (Treanor 

2012). 

 

Figure 1.3 B-cell receptor 

1.6.1.2 Normal BCR signalling 

The ligation of an antigen to the BCR results in phosphorylation of tyrosine residues 

within the ITAM region of the Igα/ Igβ heterodimer by the SRC family kinase LYN as 
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well as Spleen Tyrosine kinase (SYK) (Matsuuchi and Gold 2001)(Yamamoto et al. 

1993). Phosphorylation of the ITAM region leads to the recruitment of the signalosome, 

which includes other kinases and adaptor proteins including SYK, BTK and LYN and 

VAV proteins and adaptor proteins GRB2 and B cell linker (BLNK) (Rolli et al. 2002; 

Wickremasinghe et al. 2011). BCR signalling occurs through many different pathways, 

including phospholipase C gamma 2 (PLCγ2), PI3K as well as BTK. Following the 

recruitment of SYK and LYN to the ITAM region after phosphorylation, BLNK binds 

via SRC homology 2 (SH2) domain on the non-ITAM Igα portion of the BCR (Engels 

et al. 2001). Upon binding BLNK it is rapidly phosphorylated and can act as a scaffold 

protein to bring into contact SYK, BTK, BLNK and PLCγ2. The dual phosphorylation 

of PLCγ2 via SYK and BTK produces secondary messengers diacylglycerol (DAG) and 

inositol-1,4,5-triphosphate from the plasma membrane lipid phosphatidylinositol 4,5-

bisphosphate (PIP2). DAG can activate Protein kinase C (PKC) that in turn leads to the 

downstream amplification of BCR signalling (Rolli et al. 2002). IP3 production leads to 

enzyme activation and an influx of Ca
2+

 from the endoplasmic reticulum and 

extracellular space. This Ca
2+

 influx activates transcription factors including NF-κB 

(Woyach et al. 2012).  
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Figure 1.4 Schematic to show the BCR signalling pathway taken from (Stevenson et al. 2011) 
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The tight regulation of the BCR is required since the constitutive activation of this 

pathway can result in malignancies and autoimmune diseases (Woyach et al. 2012). 

This pathway is kept under control via inhibitory regulators FcγRIIb, SH2 domain-

containing inositol 5'-phosphatase (SHIP), SH2 domain containing phosphatase (SHP-1) 

and LYN kinase amongst others (Engels et al. 2001; Matsuuchi and Gold 2001). 

An important role of the BCR in normal B-cells is to mediate signals which facilitate 

entry to the lymph node, where the B-cell can undergo genetic diversification to form a 

mature cell which is specific to the encountered antigen (Agenes et al. 2000). The cell 

then differentiates and is either retained as a mature memory B-cell or forms an 

antibody-secreting plasmacytoid cell. Whilst the B-cell is undergoing the differentiation 

process, the BCR continues to respond to external stimuli to promote the development 

of the cell or induce programmed cell death (Agenes et al. 2000). 

1.6.1.3  BCR signalling in CLL 

The maintenance and progression of CLL is thought to be partly due to aberrant BCR 

signalling (Stevenson et al. 2011). A characteristic trait of CLL cells is the low surface 

expression of IgM/IgD, compared to normal B-cells; therefore, it may be assumed that 

the ability of the CLL cell to signal through the BCR complex is limited. However, 

Gene expression profiling (GEP) has revealed that CLL cells share many features with 

antigen activated mature normal B-cells and this suggests a role for BCR signalling in 

the pathogenesis of CLL. 

As previously discussed, the absence of somatic mutations in the immunoglobulin 

variable heavy chain region (IGHV) genes in the sIg is indicative of a poor prognosis. 

After discovering the prognostic relevance of the IGHV genes mutational status, it was 

established that responsiveness of CLL cells following BCR ligation significantly 

correlated with IGHV mutational status; 80% of unmutated cases responded to ligation 

compared to only 20% of mutated CLL cases (Lanham et al. 2003). Furthermore, a 

study by Rosenwald et al using GEP revealed that CLL patients share a common gene 

expression “signature” regardless of IGHV mutational status, this would suggest that 

CLL is in fact not 2 distinct diseases based on mutational status. However, in the 

unmutated IGHV group it was found that there was an up-regulation of genes expressed 

during mitogenic BCR signalling, the expression of these up regulated genes were used 

to help in the clinical staging of this highly heterogeneous disease (Rosenwald et al. 

2001). 
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Unmutated IGHV genes are strongly associated with the increased expression of 

ZAP70, which is also a marker of poor prognosis in CLL (Chen et al. 2008; Chen et al. 

2002). High ZAP70 protein expression on CLL cells has been shown to lead to 

increased BCR signalling in the peripheral blood which aids in the migration of CLL 

cells to microenvironments towards chemokines (Richardson et al. 2006). Despite the 

fact that ZAP70 expression shows a strong correlation with IGHV mutational status 

CLL patients with unmutated IGHV genes and increased ZAP70 expression show 

augmented SYK phosphorylation following BCR stimulation. Furthermore, microarray 

analysis of bone marrow and lymph node tissues of CLL patients revealed an increase in 

BCR signalling in these tissues compared to peripheral blood regardless of the IGHV 

mutational status or ZAP70 expression (Herishanu et al. 2011). 

As discussed previously the tumour microenvironment in which CLL cells reside 

promotes CLL cell survival and proliferation. This may be partly due to increased 

activation of the BCR signalling pathway. GEP from CLL cells taken from the 

peripheral blood compared to the lymph node revealed significant increases in genes 

associated with the BCR signalling pathway in CLL cells derived from the lymph nodes 

(Jaksic et al. 2004) . Tight regulation of BCR signalling in normal B-cells ensures there 

is no aberrant signalling, however in CLL deregulation of BCR signalling is observed. 

This can be due to the constitutive activation of particular kinases. 

1.6.1.4 Tyrosine Kinases 

1.6.1.4.1 Tyrosine Kinases in normal B-lymphocytes 

The SRC kinase LYN initiates BCR signalling and is the mediator of activation and 

termination of BCR signalling (Wiestner 2012b). In normal resting B-lymphocytes, a 

significant increase in LYN activity occurs following BCR engagement. LYN plays a 

central role in mediating both survival and apoptosis following BCR activation in B-

lymphocytes (Contri et al. 2005). Interestingly, LYN knockout mice display hyper 

responsiveness developing lethal autoimmune glomerulo-nephritis, this demonstrates 

that LYN has a critical role in the regulation of the BCR (Woyach et al. 2012).  

LYN phosphorylates SYK with a resulting amplification of BCR signalling which leads 

to the activation of downstream signalling targets. The activation of SYK is crucial in 

BCR signalling since this event initiates the formation of the signalosome, which 

connects key signalling molecules together to coordinate cellular events including 
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survival, proliferation or differentiation. It is the balance of these signalling molecules 

that determines the B-lymphocyte fate (Scupoli and Pizzolo 2012).  

The ERK signalling pathway is also activated as a result of BCR ligation. ERK 

regulates transcription factors and, in early stages of B-cell maturation, this event can 

lead to proliferation and survival whereas at later stages of B-cell development, 

phosphorylation of ERK can result in apoptosis (Woyach et al. 2012). Downstream 

proteins involved in cell survival include pro-apoptotic proteins BAD and BIM which 

are inhibited as a result of ERK activation (Scupoli and Pizzolo 2012). 
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1.6.1.5 Tyrosine Kinases in CLL cells 

The SRC kinase LYN displays increased protein expression in CLL cells compared to 

normal B-lymphocytes. The distribution of LYN protein expression varies between 

normal B-lymphocytes and CLL cells. In normal B-lymphocytes LYN protein 

expression is sporadic across the plasma membrane, whereas in CLL cells dense LYN 

protein expression could be observed in the whole plasma membrane (Contri et al. 

2005). LYN mRNA levels were found to be similar in normal B-lymphocytes and CLL 

cells, so the differences in protein expression of this kinase are likely to be due to de-

regulation in protein turnover. In vitro kinase assays have revealed that LYN is 

constitutively activated in CLL cells, and this activation is independent of BCR 

engagement (Contri et al. 2005). Following BCR engagement no flux in LYN protein 

expression was observed, but this may be due to basal levels of this kinase already being 

elevated in CLL patients. Increased LYN protein activity is linked to an increase in 

survival pathways and a decrease in cell apoptosis, both features of CLL. 

 In many CLL patients SYK is overexpressed at both mRNA and protein level. The 

basal levels of phospho-SYK are also much higher in CLL cells compared to B-cells 

from normal age-matched individuals (Buchner et al. 2009). However, Gobessi et al 

found no link between the levels of increased SYK activity and CLL disease 

progression (Gobessi et al. 2009). Increased levels of activated SYK have been 

discovered in CLL cells located in the lymph node. Both SYK and ZAP-70 are 

cytoplasmic tyrosine kinases and have been shown to work synergistically, the 

increased expression of ZAP-70 leads to an enhanced BCR response that displays 

prolonged activation of SYK (Wiestner 2012a). ZAP70 expression increases the 

response of CLL cells to BCR activation; this finding provides a rationale for why 

ZAP70 expression is associated with poor prognosis and a rapidly progressing disease 

(Gobessi et al. 2007). 

Constitutive ERK phosphorylation has been shown in almost half of CLL patients 

analysed (Muzio et al. 2008), the phosphorylation of ERK has been associated with a 

lack of BCR responses. Increased ERK phosphorylation as a result of anti-IgM 

stimulation has been shown to correlate with markers of poor prognosis in CLL and 

increased phosphorylation of this tyrosine kinase is indicative of a more rapidly 

progressing disease (Scupoli and Pizzolo 2012). The ability for ERK phosphorylation to 

influence increased cell survival in CLL has not been fully elucidated, however, the 
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phosphorylation of ERK may influence the survival potential of the cell since 

phosphorylated ERK promotes the phosphorylation and degradation of the pro-

apoptotic protein BIM in the proteasome (Ley et al. 2005) 

1.6.1.6 Serine/threonine kinases 

1.6.1.6.1 PKA signalling in normal cells 

Protein Kinase A (PKA) is a tetramer composed of two homo or heterodimer subunits, 

each bound to a catalytic subunit. PKA is a serine/threonine kinase, which is cAMP 

dependent (adenosine 35 cyclic monophosphate); activation of PKA only occurs when 

cAMP is present (Kleppe et al. 2011). PKA can alter the function of enzymes through 

direct phosphorylation or activation of transcription factors CREB, CREM (a cAMP 

response element modulator) as well as ATF-1 (activating transcription factor). PKA 

has the ability to coordinate different cellular processes within the same cell, this is due 

to temporal and spatial regulation of cAMP within different cellular components 

(Kleppe et al. 2011). 

1.6.1.6.2 PKA signalling in CLL cells 

Aberrations within the PKA signalling pathway have been implicated in human 

diseases. A link has been established between the activation of PKA and 

hyperproliferation and tumourigenesis. Mutations in PKA have been implicated in GH-

secreting pituitary tumours as well as advanced thyroid cancers (Kirschner et al. 2009). 

Increased PKA signalling has also been associated with increased apoptosis in CLL 

cells. The murine T-lymphoma cell line S49 has been previously used to demonstrate 

the pro-apoptotic effect of cAMP via PKA signalling (Murray and Insel 2013). 

Treatment with agents that elevate the intracellular levels of cAMP show elevated levels 

of apoptosis of CLL cells. Agents such as these may prove to be effective in clinical use 

to enhance this pro-apoptotic signalling pathway (Lerner et al. 2000). 

1.6.1.7 PKC signalling in normal cells 

Protein kinase C (PKC) represents a family of closely related Serine/Threonine protein 

kinases. PKCs are controlled by a variety of extracellular stimuli and facilitate 

physiological processes through the phosphorylation of PKC and downstream targets of 

this kinase. PKC was first identified in 1977 as a calcium-activated enzyme (Takai et al. 

1977), as well as a major target of lipid metabolite diacylglycerol (DAG). Shortly after 
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the discovery of PKC it was established that multiple isoforms of PKC exist and 

interestingly multiple isoforms of PKC may be present in a single cell or tissue (Teicher 

2006). PKCs are divided up into 3 main sub-families: the first is the classical Ca
2+

 

isoforms (α, βI/ II and γ), the second subfamily is the novel Ca
2+

-dependent isoforms 

and the third subfamily is the atypical isoforms (Abrams et al. 2007; Koivunen et al. 

2006). PKCs contain both a regulatory and catalytic domain, which are joined by a 

hinge type region (Steinberg 2008). In normal B-cells PKCξ, PKCβ, PKCδ and PKCε 

represent important mediators of BCR signalling (Abrams et al. 2007). Upon activation, 

PKC is recruited to the plasma membrane and PKCs are known to be involved in many 

processes including regulation of cell growth, as well as regulating immune responses 

and transcription (Steinberg 2008). 

1.6.1.8 PKC signalling in CLL 

Constitutive activation of PKC in CLL cells has been identified in multiple studies 

(Barragan et al. 2002; Gschwendt 1999; Nishikawa and Shirakawa 1992). Work 

conducted by Alkan et al in 2005 looked at the expression of different PKC isoforms in 

CLL patients and showed that CLL patients consistently displayed expression of PKC 

isoforms β and γ as well as δ and ζ. However, the expression of other PKC isoforms was 

more varied. Following pharmacological inhibition of PKC isoforms with Safingol 

induction of apoptosis was observed regardless of whether patients had received 

previous treatment or not (Alkan et al. 2005). Holler et al used PKCβ deleted TCL1 

transgenic mice to assess the effect of this PKC isoform on the initiation and 

development of CLL disease in the mouse model. It was shown that PKCβ deficient 

mice did not develop a malignant clone; moreover the targeting of CLL cells in vitro 

with PKCβ specific inhibitor resulted in elevated levels of apoptosis (Holler et al. 2009). 

Abrams et al 2007 showed that levels of protein kinase CβII (PKCβΙΙ) in CLL cells 

were 7-fold greater than levels of this PKC isoform in normal B cells (Abrams et al. 

2007). PKCβΙΙ has been shown to negatively regulate Ca
2+ 

flux following BCR 

engagement and it has been proposed that in CLL the overexpression of this kinase 

maintains BCR signalling at a level that is insufficient to trigger apoptosis following 

antigen encounters (Abrams et al. 2007).  

High PKCβΙΙ expression in CLL patients correlated with increased white blood cell 

count and disease stage. This is indicative that the regulation of BCR signalling by 

PKCβΙΙ is functionally relevant in vivo (Barragan et al. 2006).Work conducted by 
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Lutzny et al this year has shown that CLL cells can induce the expression of PKCβΙΙ in 

BMSCs, which could also mediate stromal cell survival (Lutzny et al. 2013). Therefore 

this particular isoform of PKC may have dual functionality in CLL, expression of this 

kinase in CLL cells may lead to the evasion of pro-apoptotic signalling through 

activation of PI3K/PKB signalling, and expression of PKCβΙΙ on stromal cells may 

mediate microenvironment survival. 

1.6.2 Phosphatidylinositol 3-Kinase (PI3K)/ Protein kinase B (PKB) signalling 

1.6.2.1 Phosphatidylinositol 3-Kinase (PI3K)/ Protein kinase B (PKB) signalling 

in normal cells 

Phosphatidylinositol 3-kinases (PI3K) are an evolutionarily conserved family of 

intracellular lipid kinases which have been identified in species ranging from yeast to 

humans. To-date PI3K family members have been identified in every eukaryotic 

organism examined (Engelman et al. 2006). The regulation of this pathway is under 

tight control via a complex multi-stage activation process. A schematic of this signalling 

cascade is depicted in Figure 1.5. Activation of this pathway is triggered through the 

binding of growth factors to various receptors on the CLL cell surface, which in turn 

phosphorylates PI3K, initiating the conversion of phosphatidylinositol (3,4)-bis-

phosphate (PIP2) lipids to phosphatidylinositol (3,4,5)-tris-phosphate (PIP3). PKB the 

target of PI3K then binds to PIP3at the plasma membrane exposing T
308

 within the 

“activation loop” to be phosphorylated by PDK1. Phosphorylation of T
308

 results in 

partial PKB activation, to attain full PKB activation phosphorylation of S
473 

in the 

carboxy terminal hydrophobic motif must occur (Hemmings and Restuccia 2012).  

Protein Kinase B (PKB) also known, as AKT is a well-characterised target of PI3K. 

PKB belongs to a sub-family of protein kinases termed the AGC (cAMP-dependent 

protein kinase A/ Protein kinase G/ Protein kinase C) protein kinases, which also 

include PKA and PKC. PKB is a highly conserved serine/threonine kinase; in fact PKB 

was identified through the high degree of homology to PKA and PKC and therefore 

named. 
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Figure 1.5 Schematic of the PI3K/PKB signalling cascade 
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1.6.2.2 Phosphatidylinositol 3-Kinase (PI3K)/ Protein kinase B (PKB) signalling 

in CLL cells 

The PI3K signalling pathway has an important role in the biology of human cancers 

(Barragan et al. 2006); components within this signalling pathway have been found to 

be deregulated in a wide range of solid tumours as well as haematological malignancies 

(Engelman et al. 2006). In the context of CLL, PI3K has been described as having a 

crucial role in cell survival; a huge wealth of knowledge has been gathered on this 

signalling cascade regarding both CLL and other malignancies (Engelman et al. 2006; 

Lawlor and Alessi 2001). 

A study conducted by Bernal et al in 2001 stimulated CLL cells in vitro with F (ab’) 2 

antibody fragments to human IgM. This stimulation resulted in a significant decrease in 

spontaneous apoptosis and an inhibition in caspase activity as well as augmented 

expression of anti-apoptotic proteins BCL2 and MCL1. These pro-survival effects 

observed upon antigen-receptor binding were counteracted by the treatment of CLL 

cells with PI3K inhibitor LY294002; this implicates PI3K as being a critical mediator of 

survival signalling in CLL (Bernal et al. 2001).  

Evidence from transgenic mice show that when PKB is constitutively activated the mice 

rapidly develop aggressive B-cell lymphomas with leukaemic involvement (Zhuang et 

al. 2009). Activated PKB phosphorylates and de-activates many proteins involved in 

apoptosis and consequently increases cell survival. Although PKB has been identified as 

a key survival factor in CLL, the precise targets of this kinase remain poorly 

characterised (Barragan et al. 2006).  

1.6.2.2.1 Downstream targets of PI3K/PKB signalling 

Following the full activation of PKB, which occurs very rapidly following cell 

stimulation, PKB is released from the cell membrane and enters the cell nucleus. PKB 

phosphorylates various substrates at serine and threonine residues within RXRXXS/T 

consensus motifs in both the cytoplasm and the nucleus, where X represents any amino 

acid (Kane et al. 2002; Lawlor and Alessi 2001). PKB phosphorylation arbitrates a 

number of cellular processes including survival, growth, proliferation as well as 

transcription. PKB substrates reside at different sub-cellular compartments including the 

cytoplasm, nucleus and mitochondrial membrane and usually become inhibited by the 

phosphorylation event (Kane et al. 2002). 
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PKB can alter cell survival; two PKB substrates that are directly involved in apoptosis 

are BAD and the pro-death caspase-9. BAD, a BCL2 family member promotes 

apoptosis by forming a heterodimer with the survival factor BCLXL, when BAD is 

phosphorylated by PKB this interaction is inhibited, which increases the survival 

potential of the cell (Lawlor and Alessi 2001). Pro-death caspase-9 is also inhibited 

following phosphorylation by PKB, which results in the phosphorylation and activation 

of MDM2 (murine double minute-2), promoting the destabilization of p53 and 

preventing cell death (Feng et al. 2004). 

There are other mediators of the PKB signalling pathway, which alter the survival 

potential of the CLL cell indirectly through transcriptional regulation. Examples of this 

are the forkhead box O (FOXO) family of transcription factors, so named because they 

have a very distinct forkhead shaped DNA binding domain (Myatt and Lam 2007). 

Upon phosphorylation by PKB, FOXO transcription factors are inhibited and 

translocated out of the cell nucleus preventing any transcriptional activity. The FOXO 

transcription factors direct the transcription of genes involved in cell cycle arrest and 

apoptosis (Seoane et al. 2004).  

The mammalian target of Rapamycin (mTOR) protein is another important mediator of 

the PI3K/PKB signalling cascade. The mTOR protein is a kinase, one of this kinase’s 

functions is to regulate cell proliferation, this is achieved through the phosphorylation of 

the well characterised downstream effector of mTOR; S6 kinase (S6K), which in turn 

leads to the phosphorylation of the 32kDa S6 ribosomal protein. Ultraviolet crosslinking 

studies have shown that S6 interacts with tRNA, initiation factors and mRNA and is 

involved in the regulation of translation initiation (Nygard and Nilsoon 1990). The 

precise role S6 has in translation is not known but it is thought that following the 

phosphorylation of this molecule the rate of protein synthesis is increased, it has also 

been suggested that S6 regulates cell size. The deletion of S6 in mice resulted in a block 

in ribosome biogenesis and prevented cell cycle progression (Volarevic et al. 2000) 

GSK3 is a 46kDa serine/threonine kinase that has enzymatic activity regulated by 

many signalling pathways.GSK3 has 2 phosphorylation sites that influence the 

catalytic activity of the protein, Serine 9 is the phosphorylation site for PKB, and 

phosphorylation of this residue inactivates the protein. In contrast, phosphorylation of 

Tyrosine 216, located on the activation loop increases catalytic activity(Plate 2004). 

Phosphorylation of serine 9 prevents phosphorylation of -catenin, a cytoplasmic 
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signalling molecule which, when phosphorylated, is degraded however when 

unphosphorylated -catenin is translocated to the nucleus. In the nucleus -catenin 

interacts with the transcription factors TCF and LEF-1 to initiate the expression of many 

genes, including cyclin D1, which permits cell cycle progression (Piao et al. 2008). 

1.6.3 CD38 signalling 

Almost two decades after CD38 was first described as being expressed on the surface of 

CLL cells it was demonstrated that, as well as being an ecto-enzyme involved in the 

mobilisation of intracellular Ca
2+

, CD38 also has a signalling-receptor capacity in 

lymphocytes (Deaglio 2003a). In the late 1990’s, Malavasi and colleagues used a non-

substrate agonistic antibody for CD38 to show that CD38 ligation could stimulate 

intracellular signalling pathways. The molecules activated, as a result of this stimulation 

were similar to those induced through engagement of the T-cell receptor (TCR).  

The earliest experimental work on CD38 signalling was carried out by Zubiaur et al on 

T-cells showing that CD38 ligation could induce tyrosine phosphorylation of the CD3-ζ 

and CD3-ε components of the TCR (Zubiaur et al. 1999). Downstream targets of CD38 

signalling were identified as ERK and PKC signalling cascades amongst others. An 

experiment using a mutant CD3-ζ TCR resulted in the defective binding to CD38, 

although tyrosine phosphorylation of CD3-ζ was not achieved, downstream effectors of 

CD38 signalling were stimulated, indicating that CD3-ε is sufficient to the 

phosphorylation and activation of some downstream effectors. It is likely that CD3-ζ 

and CD3-ε work in synergy to attain maximal CD38 signalling, since CD3-ζ has been 

shown to have the ability to recruit ZAP-70 to the TCR (Zubiaur et al. 1999).  

1.6.3.1 CD38 signalling in normal B-cell development 

In normal B-lymphocytes CD38 is expressed on the cell surface at very specific stages 

during B-cell maturation. CD38 is expressed on the surface of progenitor B-cells with a 

role in aiding lymphopoiesis in the bone marrow. When monoclonal antibodies were 

used to block CD38 ligation in CLL cells followed by stimulation by cytokines and co-

culture with supportive stromal cells, B-cell lymphopoiesis was inhibited. This 

demonstrates that CD38 is an essential signalling molecule in B-cell maturation process 

(Kumagai et al. 1995). Investigations by Kitanaka et al in 1996 and 1997 revealed that 

CD19 is an important mediator of CD38 signalling. CD19 is able to facilitate in the 

recruitment of kinases to the inner membrane that, in turn, allows CD38 signalling via 
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the PI3K signalling pathway amongst others, this occurs in normal B-cell progenitors. 

Normal mature B-lymphocytes do not express surface CD38, but re-expression of CD38 

marks B-cells that are differentiating or have been stimulated by antigens (Kitanaka et 

al. 1997; Kitanaka et al. 1996).  

1.6.3.2 CD38 signalling in CLL  

CD38 is well established as a marker of poor clinical outcome in CLL. In the last 

decade multiple research groups have been investigating the signalling capabilities of 

CD38 specifically involving proliferation and survival mechanisms in CLL. 

In 2002 Durig et al compared the gene expression profiles of a cohort of CD38 positive 

and CD38 negative patients and revealed differences in the expression of multiple genes 

including genes that are central in survival signalling (Durig et al. 2002). In 2007 

Pepper used GEP to analyse CLL cells attained from CD38 bi-modal patients and 

showed that the CD38 positive sub-clones had a distinct gene expression profile 

compared to the CD38 negative sub-clones derived from the same patient (Pepper 

2007).  

In 2003 Deaglio et al used an agonistic CD38 antibody to stimulate surface CD38 in 

CLL patients (Deaglio 2003a). Two patients out of a cohort of eight patients showed a 

slight Ca
2+

 flux following cross-linking. The cytokine IL-2 has been shown to up-

regulate the expression CD38 when CD38 is already present on the cell surface. The 

addition of IL-2 to the agonistic CD38 antibody resulted in a marked increase in Ca
2+

 in 

CLL samples which were previously unresponsive to CD38 ligation alone (Deaglio 

2003a). Further work carried out by Deaglio et al in 2006 indicate that there is a 

minimum threshold that is based on the cell surface density of CD38, which is required 

for CD38 signalling to occur (Deaglio 2006). The capacity of IL-2 to facilitate CD38 

signalling in previously unresponsive CLL patients may be due to the ability of this 

cytokine to modify the arrangement of CD38 with other accessory molecules to allow 

for signalling to occur (Deaglio 2006). Furthermore, it has been shown that both CD38 

and CD19 were recruited alongside CD38 to form lipid rafts (Deaglio 2007), illustrating 

that to induce CD38 signalling the recruitment of accessory molecules may be required. 

Since it has been shown that the lymph nodes, microvasculature and peripheral blood all 

contain accessory molecules this supports the notion that the combination of signals 

within complex microenvironments in vivo are essential for the activation, proliferation 

and survival of CLL cells. 
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It has been reported that there may be synergy between the BCR and CD38 protein 

signalling, which may enhance the survival and proliferation of CLL cells. A report by 

Lanham et al has shown that increased CD38 expression is associated with an increase 

in BCR signalling (Lanham et al. 2003). Lund et al demonstrated that increased CD38 

expression lowered the threshold for BCR signalling in murine B-cells, which are 

responsive to BCR stimulation (Lund et al. 1996). The evidence revealing disruption of 

BCR signalling in CLL makes the prospect of pharmacological inhibition of this 

pathway promising therapeutically. 

1.6.4 Other signalling pathways implicated in CLL pathogenesis 

Aberrant JAK/STAT signalling has been reported in both solid and haematological 

malignancies. In acute leukaemia’ the constitutive activation of STAT transcription 

factors are commonly observed (Lin et al. 2000). CLL cells possess constitutively high 

levels of the IL-4 receptor (Dietrich et al. 2012). IL-4 signalling occurs mainly through 

JAK1 and JAK3, and IL-4 mediated JAK phosphorylation results in the 

phosphorylation and activation of STAT6 (Dietrich et al. 2012). 

The expression of pattern recognition receptors known as toll-like receptors (TLRs) in 

CLL patients has been reported as being very heterogeneous, however most patients 

were found to have gene expression profiles which closely resemble normal mature B-

lymphocytes with TLRs 1,2,6 and 10 found on the cell surface and TLRs 7,8 and 9 

within endosomes (Muzio et al. 2008). When comparing different sub groups of CLL 

patients it was discovered that patients with mutated IGHV genes had very few 

differences in TLR signalling molecules however TLR8 was found to be up regulated in 

patients with unmutated IGHV genes (Muzio et al. 2012). Gene expression profiling of 

the TLR signalling pathway was carried out on 192 CLL patients in a study conducted 

by Arvaniti et al. It was established that TLR7 had the highest expression of all the TLR 

receptors in this cohort of CLL patients (Arvaniti et al. 2011). Furthermore, in more 

recent experiments Efremov et al looked at the capacity of CLL cells to respond to 

TLR9 signalling. This study showed that patients with a more aggressive form of CLL 

responded more efficiently to TLR9 stimulation compared to patients who have a less 

aggressive form of CLL. Thus the capability of CLL cells to respond to TLR9 signalling 

may be of prognostic value (Efremov et al. 2013) 

Constitutively activated NF-B has been identified in several haematological 

malignancies including acute myeloid leukaemia, chronic myeloid leukaemia as well as 
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CLL (Cuni et al. 2004; Furman et al. 2000; Guzman et al. 2001). Three members of the 

NF-B family are more abundant in CLL; these are p50, RelA and c-Rel (Cuni et al. 

2004; Furman et al. 2000; Hewamana et al. 2008). In CLL, other microenvironmental 

stimuli have been shown to increase NF-B activation which in turn leads to increased 

CLL cell survival; these include AKT activation, CD40 ligation as well as exposure to 

IL-4 and BAFF (Yamagishi et al. 1997). The downstream targets of NF-B signalling 

are highly complex but are known to include members of the BCL2 family as well as 

inhibitor of apoptosis proteins (IAPs) (Pepper et al. 2009).  
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1.7 Project Aims: 

The precise biological role of CD38 in the pathology of CLL remains elusive.  CD38 

has been shown as a marker of a more progressive disease type and in around 30% of 

CLL cases CD38 is highly expressed on the CLL cell surface. Evidence has shown that 

CD38 is not only a marker of poor prognosis but also has distinct signalling capabilities. 

CD31 is the non-substrate ligand for CD38 and interactions between CD38/CD31 have 

been shown to increase CLL cell survival.  

The dissection of the key survival signalling pathways in operation in CLL cells, using 

in vitro co-culture systems, should help to provide information about the critical signals 

that help to protect CLL cells from chemotherapeutic agents in the tissue 

microenvironments. The central hypothesis of this project is that CD38 ligation leads to 

changes in key survival signalling pathways resulting in lower rates of CLL cell 

apoptosis. In order to test this hypothesis, four main objectives were formulated: 

1. Assess the ability of CD38 ligation to induce changes in the phosphorylation of 

protein kinases known to be involved in cell survival, and furthermore to 

uncover whether CD38 positivity increases the phosphorylation of protein 

kinase substrates. 

 

2. To assess the ability of other co-culture systems, including CD40L and the Th2 

cytokine IL-4, to modulate the phosphorylation of the substrates identified in 

(1.) and also to compare the effects of these co-culture systems on CLL cell 

phenotype and viability. 

 

3. To observe changes in CLL cell surface phenotypic markers following CD31 co-

culture and to establish whether treatment with pharmacological inhibitors can 

block the phosphorylation of key signalling pathways. 

 

4. To compare and contrast the effect of different co-culture systems on CLL cell 

extracellular and intracellular markers of activation. 
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2 Materials and Methods 

2.1 List of general Materials and laboratory equipment 

*Paraformaldehyde 

The preparation of paraformaldehyde was carried out in a fume hood for health and 

safety purposes. To make a 1% paraformaldehyde solution, 1 gram of paraformaldehyde 

(Sigma) was dissolved in 100ml PBS, the solution was heated to 70C to ensure all 

paraformaldehyde was dissolved, this solution was cooled and aliquoted into 20 ml 

universal containers and stored at 4C in darkness to prevent de-polymerisation and the 

release of formaldehyde. 

Material Source Code 

Phosphate buffered saline 

tablets 

Oxoid BR0014G 

15ml tubes Greiner 188271 

50ml tubes Corning 430291 

Haz Tabs Guest Medical H8801 

Histopaque Sigma Aldrich 1077 

T175 tissue culture flask Nunc. Thermo Sci 178883 

T75 tissue culture flask Greiner 658175 

6-well plates Nunc. Thermo Sci 140675 

12-well plates Greiner 665180 

24-well plates Nunc. Thermo Sci 150687 

5ml Pipettes Corning 4487 

10ml Pipettes Corning 4101 

25ml Pipettes Corning 4251 

Test tubes (flow cytometry) BD falcon 352054 

*Paraformaldehyde Sigma P6148 



  Chapter 2 

 

  51 

2.2 Primary Cell isolation 

2.2.1 Patient samples and ethical approval 

Professor Chris Fegan and Dr Guy Pratt provided CLL patient samples, which were 

taken in outpatient clinics at Llandough Hospital, the University Hospital Wales (UHW) 

and Birmingham Heartlands Hospital. All patients’ informed consent was gained in 

accordance with the ethical approval granted by the South East Wales Research Ethics 

committee in accordance with the declaration of Helsinki. Patients were considered 

eligible for this study following a definitive diagnosis of CLL and were subsequently 

selected for use in this project according to the surface expression of CD19 and CD38. 

2.2.2 Density centrifugation of peripheral blood (PB) to obtain CLL cells from 

patient’s samples 

CLL cells were isolated from peripheral blood samples by density gradient 

centrifugation using histopaque reagent (Sigma Aldrich, catalogue no: 1077). Upon 

arrival in the laboratory, blood sample tubes were inverted several times to ensure they 

were well mixed. The histopaque reagent was added to labelled tubes corresponding to 

patient samples. For a 4ml blood sample, 3ml of histopaque was used. Using a pastette, 

blood samples were layered gently on top of the histopaque layer in a dropwise fashion, 

excess blood in the collection tubes were rinsed out with phosphate buffered saline 

(PBS) to make the total volume up to 14ml.  The samples were then centrifuged for 20 

minutes at 2000 x g with the centrifuge brake switched off to avoid any disruption to the 

mononuclear (interface) layer. The removal of the brake means that this centrifugation 

process took approximately 40 minutes. Following centrifugation a monolayer of low-

density white blood cells (WBC), which were mainly CLL cells were apparent as an 

interface layer underneath the blood plasma and on top of the clear histopaque phase. 

This was removed with a pastette and transferred to a 15ml labelled tube. These cells 

were washed in 10ml of sterile PBS, and centrifuged for 5 minutes at 1200 x g. To lyse 

any contaminating red blood cells, 2ml of sterile H2O was added to the pellet and 

briefly mixed with a pastette before being topped up to 12ml with sterile PBS to restore 

the isotonic solution. The cells were centrifuged for 5 minutes at 1200 x g and if any red 

blood cells were still visible in the pellet the lysis step was repeated. Once the cells were 

washed the pellet was resuspended in 1-10ml of PBS depending on the amount of cells 

isolated from the patients’ blood sample. 
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2.2.3 Counting CLL cells 

The Beckman Coulter Vi-cell analyser was used to count the number of viable CLL 

cells. In order to do this, 50l of the CLL cell sample was added to 450l of PBS in a 

Vi-cell counting cup and placed in the cell counting carousel at the appropriate position 

(position 1-12). This gives a 1 in 10 dilution factor and this information, as well as the 

cell type and cell size, was entered into the Vi-cell software and set to run. The Vi-cell 

analyser uses a Trypan Blue exclusion assay to ascertain cell viability and takes 25 

images of the sample before giving an average viable cell count per/ml of cells. Data 

were subsequently printed and used for experimental purposes. 

2.2.4 Testing CD19/CD38 status 

Following CLL cell isolation and counting, cells were stained for CD19 and CD38. 

3x10
5
of each sample was added to a FACS tube (2 tubes per sample; one no antibody 

control and the other containing all of the relevant antibodies). Using this number of 

cells ensured that the antibodies were present in excess and that all cells were uniformly 

stained. The volume in the tubes was then made up to 100μl with sterile PBS. The two 

antibodies purchased from Invitrogen were added to isolated CLL cells, 

allophycocyanin-labelled CD19 (catalogue number:MHCD1905) and phycoerythrin-

labelled CD38 (catalogue number: MHCD3804), 4μl of each were added to the test 

sample tube and briefly mixed before being placed in the dark for 10 minutes. After this 

time 3ml of PBS was added to each of the FACS tubes and tubes were inverted to wash 

the cells followed by centrifugation for 5 minutes at 1200 x g to pellet the cells. The 

supernatant was tipped off and the stained (or unstained controls) cells were re-

suspended in 1% paraformaldehyde (200μl). Cells were fixed for at least 10 minutes at 

5°C followed by analysis on an Accuri C6 flow cytometer using Cflow software. A 

template folder was used for all samples, which gated out debris as well as any non-

viable cells. This approach ensured that all operators analysed the cells in a standard 

fashion.  
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2.3 Tissue Culture 

2.3.1 Eukaryotic cell culture 

Material Source Code Storage 

Dulbecco’s Modified Eagles Media 

(DMEM) 

Gibco 41965 4C 

Foetal Calf Serum (FCS) Gibco 31870 -20C 

Penicillin (5000U/ml)/Streptomycin 

(5000U/ml) 

Gibco 12319018 -20C 

Sodium Pyruvate Gibco 11360070 4C 

0.5% Trypsin EDTA Gibco 25300 -20C 

L-glutamine x 100 (200μM) Gibco 25030 -20C 

Interleukin 4 R & D Systems 204-IL-010 -20C 

 

2.3.2 Co-culture Cell lines 

Cell Line Source 

CD31/NTL Professor Silvia Deaglio 

CD40L/NTL Dr Aneela Majid 

 

2.3.3 Culture media for adherent cells 

Cell lines were cultured in Dulbecco’s Modified Eagle’s Media (DMEM)growth 

medium supplemented with 10% foetal bovine serum (FBS), Penicillin plus 

Streptomycin (100U of penicillin/ml and 100g streptomycin/ml) and Sodium Pyruvate 

(5X). The media was inverted to mix well before being stored at 4˚C.  
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2.3.4 Cell culture storage 

The co-culture cell lines used in this project were stored in liquid nitrogen in vials 

containing ~8 x10
6
cells in a 500l solution containing 50% FCS, 40% DMEM (plus the 

additives described above) and 10% DMSO.  Precautionary measures were taken when 

obtaining cells from liquid nitrogen as well as general liquid nitrogen safety training 

(lab coat, gloves and face mask).  Cells were thawed quickly by placing into a 37C 

water bath and added drop-wise to a 15ml tube containing 9.5ml of pre-warmed culture 

medium to remove the toxic dimethyl sulphoxide (DMSO) as quickly as possible. The 

mix was then centrifuged at 1200g for 5mins to pellet the cells, the supernatant was 

removed and the cells were re-suspended in 8ml of fresh warmed growth medium 

before being transferred into a T25 culture flask and placed in a humidified incubator 

maintained at 37C, 5% CO2. Once the cells were confluent in the T25 flask they were 

transferred to a larger T75 flask and once confluent in this flask cells were transferred 

into a T175 flask. 

 

2.3.5 CD31 and CD40 co-culture 

The basis of this project was to attempt to characterise signalling events occurring in 

vivo in CLL patients within specific microenvironments in the body that promote CLL 

cell growth. In order to achieve this in vitro, genetically modified adherent mouse 

fibroblast cell lines were used which had been genetically modified to express either 

human CD31 or human CD40L, ligands to CD38 and CD40 respectively.  

 

2.3.6 Irradiation of Murine fibroblast cell lines 

To inhibit fibroblast growth in co-culture experiments the adherent CD31-expressing or 

non-transfected cells were removed from culture in a large T175 flask, and re-

suspended in 25ml of supplemented DMEM growth medium, 1-5 ml of the cells were 

placed into a fresh T175 culture flask depending on experimental requirements for 

continual growth. The rest of the cells were irradiated at 75 Gray (29 minutes in the 

presence of Caesium-137, -emission).  
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2.3.7 Co-culture conditions 

Following irradiation cells were counted using the Vi-Cell Coulter counter, 1 x 10
6
of 

the fibroblast cells were transferred into each well of a 6-well plate, the final volume of 

media was then made up to 3ml. The irradiated fibroblast cell lines were left overnight 

to allow the cells to adhere to the tissue culture plate and were between 90-95% 

confluent. The media was removed and any fibroblasts which had not adhered were 

removed by a PBS wash. CLL cells were then added to the co-culture well for a time 

period according to experimental design in 2-3ml of fresh media. Most of the co-culture 

experiments in this project were between 1 and 24 hours although longer time points 

were occasionally used. 

 

2.3.8 Inhibitors 

When inhibitors were used in this project they were added to CLL cells for a pre-co-

culture step. Appropriate volumes of the inhibitors were added to CLL cells and 

incubated at 37°C for 30 minutes before being transferred for a further time period 

(between 1 and 48 hours) in their specific culture conditions. The cells were transferred 

with the inhibitors in media either to supplemented media only (LQ) or added to culture 

withCD31-expressing fibroblast or NTL. After the appropriate time point CLL cells 

were removed from culture and lysed for western blotting or fixed for flow cytometry 

analysis. 
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2.4 Cell Lysis and Sample Preparation 

2.4.1 Cell lysis and sample preparation reagents 

2 x Lysis Buffer (made in 100ml volume and stored at 4C) 

 HEPES (1M stock)            10ml (100mM final conc) 

 NaF (MW 42)    0.042g (10mM final conc) 

 Iodoacetamide (MW 185)  0.185g (10mM final conc) 

 NaCl (MW 58.4)   0.8756g (150mM final conc) 

*Make up to 100ml total volume with deionized H2O 

NP-40 (10% solution stored at room temperature) 

 1ml NP-40 added to 9ml H2O 

Protease Inhibitors 

Purchased from Sigma (Cat no P-8340) as a 100 x stock in DMSO- stored at -

20C 

Phosphatase Inhibitor Cocktail 3 

Purchased from Sigma (cat no-2850) as a 100x stock in DMSO-stored at 4C 

(Cocktail frozen at 10C) has to be removed from fridge several hours prior to 

use to ensure it has properly thawed. 

Phosphatase Inhibitor Cocktail 2 

Purchased from Sigma (Cat no P-5726) as a 100x aqueous stock (stored at 4C). 

PMSF (MW 100mM) (100 x stock, store at 4C)-wear mask as harmful if 

inhaled. 

 Add 87mg of PMSF to 5ml ethanol and allow to dissolve. 

Sodium Orthovanadate (100 x stock; store at -20C) 

Add 0.2 Na3VO4 (mw 183.9) to 5ml H20 and allow to dissolve, aliquot into 

500l tubes and store at -20C. 
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Lysis buffer should be made fresh before use: 

For 10ml Lysis Buffer:  

 2 x Lysis Buffer……………………………………….5ml 

 10 x NP40……………………………………………..1ml 

 Protease Inhibitors…………………………………….100l 

Phosphatase Inhibitors 1………………………............100l 

Phosphatase Inhibitors 2………………………………100l 

PMSF………………………………………………….100l 

Na3VO4………………………………………………..100l 

dH20…………………………………………………...3.5ml 

 

Reducing Sample Buffer (1ml) 

 NuPAGE SDS sample buffer 4 x…………………......250l 

 NuPAGE Reducing agent 10 x…………………….....100l 

 Deionised Water………………………………………650l 

 

2.4.2 Lysis method 

Following the appropriate time period CLL cells were removed from co-culture 

ensuring enough force was used to make sure CLL cells had not adhered to the bottom 

of the well but not so the fibroblasts were also lifted from the bottom of the plate. The 

samples were removed from co-culture into a labelled 4ml FACS tubes and centrifuged 

at 300g for 5 mins at 4C. The supernatant was removed and cells were washed in 3ml 

of PBS followed by another 5-minute centrifugation. Lysis buffer was made fresh 

before use (see appendix), and 500l of lysis buffer was added to the cell pellet and 

pipetted up and down several times to re-suspend cells. The tubes were then placed on 

ice for 20 mins and vortexed at regular intervals (or put at -20C for a maximum of 2 

weeks). 

 



  Chapter 2 

 

  58 

2.4.3 Sample preparation 

After the CLL cells were lysed, the samples were vortexed well and the 500µl lysate 

was transferred to 1.5ml eppendorfs and centrifuged at 13,000-x g for 20 mins to pellet 

any cell debris. The supernatant was then carefully removed and added to 0.7 volume of 

acetone (for 500l lysate 350l of acetone used). Samples were then stored at -20C for 

at least 1 hour. Samples were centrifuged at 13,000 x g for a further 20 mins at 4C to 

produce a protein pellet. 

 

2.4.4 Lysis/ reducing buffer heating etc. 

In order to resolve proteins by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) the proteins had to be denatured. This was achieved by 

using reducing sample buffer mix. The SDS sample buffer acts by denaturing proteins 

by wrapping around the polypeptide backbone. SDS binds to proteins in a mass ratio of 

1.4:1, and confers a negative charge to the polypeptide. Following the addition of the 

reducing sample buffer, the mixture was boiled for 5-10 minutes. The denaturation step 

enabled the SDS-PAGE separation of proteins based on their molecular weight and not 

the intrinsic electrical charge of each polypeptide. After the samples were boiled they 

were removed from the heat block and briefly centrifuged to ensure that the all sample 

was at the bottom of the tube and no condensation was collected in the tube lid. 

2.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-

PAGE) and western blotting 

2.5.1 Reagents 

Pre Cast Gels: Purchased from Invitrogen 

 NuPAGE 4-12% Bis-Tris 1.00mm-10 wells; Cat no: NP0321 

NuPAGE 4-12% Bis-Tris 1.00mm-12 wells; Cat no: NP0322 

 

Pre-stained molecular weight protein marker (Invitrogen): SeeBlue Plus 2 pre-

stained standard (500μl LC5925) 
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Electrophoresis running buffer: (Invitrogen) 50ml of readymade running buffer 

solution was diluted in 950ml-deionized water to make a 1x solution, to be stored at 

room temperature. 

Non-reduced Transfer Buffer:  (Invitrogen) 50ml of transfer buffer (20x) was diluted 

with 100ml of methanol(200ml if more than 1 gel to transfer in blot cassette) and 850ml 

of deionised water (for 2 gels 750ml) to make a 1x working solution which was stored 

at room temperature. 

1 X PBS (Phosphate buffered saline): 10 PBS tablets were dissolved in 1 L distilled 

water and stored at room temperature. 

PBS-Tween:contained 0.1%vTween-20 detergent (V/V) in 1 x PBS 

IBT-Tween (Blocking buffer): PBS-Tween was prepared with 1ml (0.05%) of tween 

detergent added and then heated to 80C in a water bath; 2g of I-block was added (0.2% 

v/v) to the solution and dissolved in the heated PBS on a magnetic stirrer. Once the 

solution had cooled to room temperature 4g of sodium azide was added (0.02%) and the 

solution can then be stored for use at 4C for up to 1 month. 

Alkaline phosphatase assay (APA) buffer (Tropix Inc.) 

CDP-Star development reagent ( Tropix Inc.) ready to use solution, to be stored at 

4C 

MESNA stripping buffer: prepared as a 1 x working solution, made up from 6.25mM 

Tris-HCl pH 6.8, 2% w/v SDS and 50mM 2-mercaptoethansulfonate (MESNA; Sigma). 

This buffer was only kept for a 2-week period and stored at 4C. 

Western Blot antibodies- all purchased from cell signalling technology. 

Phospho- (Ser/Thr) PKA Substrate Antibody; Cat number: 9621 

Phospho- (Ser/Thr) PKB Substrate Antibody; Cat number: 9611 

Phospho- (Ser) PKC Substrate Antibody; Cat number: 2261 

Phospho-S6 Ribosomal Protein (Ser235/236) Antibody; Cat number: 4856 

Phospho- GSKβ (Ser9) Antibody; Cat number: 9336 

Phospho- Stat6 (Tyr641) Antibody; Cat number: 9361 
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2.5.2 SDS-PAGE 

Pre-cast gels purchased from Invitrogen (Cat no: NP0321 and NP0322) were used for 

all SDS-PAGE experiments in the study. Gel cassettes were first removed from a plastic 

pouch and rinsed with deionised water. A length of white tape covering an opening at 

the back of the cassette was removed and in one smooth motion the comb can be 

removed from the top of the gel to expose the loading wells. The wells were rinsed 

carefully with 1 x electrophoresis running buffer and the gel was placed into a mini cell 

such that the notched ‘well-side’ of the gel faces inwards toward the buffer core. The 

gels were seated on the bottom of the mini-cell and locked into place with a gel tension 

wedge. If only one gel was run a buffer dam was used in place of the second gel. 

The gel tank was filled with running buffer which was poured into the central chamber 

and overfilled so that the tank was around a third full in the external buffer section. 

A pre stained molecular weight protein marker was added to the first well to ascertain 

the molecular weight of the resolved proteins detected with western blotting. 

Appropriate volumes of samples were then loaded into the subsequent wells using gel-

loading tips. Gels used were either 10 or 12 wells and up to 30l of sample per well was 

loaded. The lid was then placed on the gel tank and whilst the power was off, the 

electrodes were connected to the power supply. Gels were run for 50-55 minutes at 

200V (120mA, 25W) and stopped when the dye front reached the open ridge at the 

bottom of the gel. 

Once the run was complete the lid was removed from the gel tank followed by the 

unlocking the gel tension wedge and removal of the gel cassette/s from the tank. After 

rinsing off any running buffer on the cassettes with deionised water the cassettes were 

laid flat on the bench and the gel was gently removed from the cassette prior to 

transferring the gel onto a polyvinylidene difluoride PVDF membrane for western 

blotting. 

 

2.5.3 Transfer of resolved proteins onto a polyvinylidene difluoride (PVDF) 

membrane 

Once proteins had been resolved by SDS-PAGE they were transferred onto a PVDF 

membrane. The PVDF membrane was first soaked in methanol to prevent unspecific 

binding to the membrane and then equilibrated by soaking in transfer buffer. The 
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polyacrylamide gels were placed on top of PVDF membrane and sandwiched between 2 

pieces of Whatman 3MM filter paper ensuring no trapped air bubbles were present 

between the layers. The gel was then placed between 5 pre-soaked sponges in a blotting 

cassette. Holding the blot module together, the unit was slid into the guide rails in the 

lower buffer chamber and secured with the gel tension wedge.  The sealed blot chamber 

was then filled with transfer buffer until the gel/ membrane assembly was completely 

submerged. Any residual air bubbles were removed at this stage by tapping the unit 

gently on the bench. The outer buffer chamber was filled with deionised water to 

dissipate heat during the transfer process. Protein transfer was carried out at 30V for 1 

hour and thirty minutes. After transfer the membranes were removed from the blot 

module and washed three times in PBS tween for five minute time periods 

consecutively.  

 

2.5.4 Immunostaining of western blotted membranes 

The membrane was then blocked in 30ml I-Block Tween (IBT-Tween) in a large 

weighing boat for at least 1 hour at room temperature (or overnight at 4C) before being 

transferred to a 50ml tube and incubated with a primary antibody at the correct dilution 

in IBT-Tween overnight at 4C on a roller. The primary antibody was poured out of the 

tube and the blot was washed 3 times for 10 mins with PBS-Tween. This ensured that 

any excess or unbound antibody was removed thereby decreasing any background 

staining. The membrane was probed for 1 hour with an appropriate secondary antibody 

at room temperature followed by a further three 10-minute washes with PBS-Tween to 

reduce background staining.  The membrane was then washed with a 1 x alkaline 

phosphatase (AP) buffer for 5 mins; excess AP buffer was removed from the membrane 

by blotting on a paper towel and was then placed on a plastic sheet. 600l substrate 

(Tropix, CDP-star ready to use) was dropped onto the membrane to enable detection of 

protein bands probed for. The detection reagent was removed from the plastic sheet and 

the films are placed into a cassette case ready to be exposed to photographic film in the 

developing room. The membranes were initially exposed to the photographic film for 10 

minutes and subsequent incubation times were determined for further exposures if 

required. 
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2.5.5 Stripping blots for repeated staining of western blotted membranes 

If repeated staining was required it was possible to strip antibodies from western blots 

using Sodium 2-mercaptoetanesulfonate (MESNA) stripping buffer; 30ml of MESNA 

stripping buffer was added to the blot within a sealed polyethene bag and placed in a 

water bath for 30 mins at 50C. Regular shaking of the bag was required to ensure an 

even spread of the buffer. After this time-point the blots were washed in 10 ml of SDS 

wash buffer followed by 30 minutes washing in PBST ensuring the wash was changed 

every 10 mins. The blots were then covered with 30ml of blocking buffer in a sealed 

polyethene bag and put on a rocker overnight at 4C. After this time point blots were 

ready for repeated immunostaining. 

 

2.6 Flow Cytometry 

Flow cytometry was used in this project to assess CLL cell viability and the expression 

and phosphorylation of both intracellular and extracellular molecules of interest. 

a b c 

 
  

Figure 2.1 Gating strategy for the analysis of CD19
+ 

CLL lymphocytes 

(a) Lymphocytes were primarily gated from forward and side scatter profiles. Using an 

accuri C6 flow cytometer (b) Single cells were gated from forward scatter height and 

area profiles  (c) Within the single cell gate CD19
+ 

lymphocytes were gated to identify 

the CLL cell population. 

 

2.6.1 Preparation of primary CLL cells for Flow Cytometry 

Up to 750µl of CLL cell culture suspension was removed and pelleted by centrifugation 

for 5 mins at 1200 x g. The cell pellet was resuspended in 100µl of PBS and relevant 
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antibody/antibodies were added (see below for list of all antibodies used and 

concentrations). In all antibody panels CD19 was added to identify the B-cell 

population. CLL cells were incubated with appropriate antibodies for 15 mins in the 

dark, after this time period CLL cells were washed to remove excess antibody with 2ml 

of PBS, pelleted and fixed in 250µl of 1% paraformaldehyde. 

 

2.6.2 Fixing and Permeabilising CLL cells for Intracellular staining 

In order to quantitatively measure intracellular CLL proteins, flow cytometry was used. 

Intracellular staining of phospho-S6 (BD Phosflow; cat no: 560434), phospho-STAT6 

(561203) and phospho-ERK1/2 (560115) was conducted using a fixing and 

permeabilisation method. To do this, cells were removed from culture and extracellular 

staining was carried out for CD38 and CD69 as well as CD19 to identify the B-cell 

population. After the appropriate staining time for the extracellular proteins the CLL 

cells were washed in 2ml of PBS and centrifuged at 1500 x g for 5 mins. 100µl of PBS 

was added as well as 50µl of fixing reagent A (caltag). Cells were put in the dark for a 

10 min period and after this time cells were washed in PBS and re-suspended in 1ml of 

PBS as well as 50µl of Phosflow permeabilisation reagent with the appropriate 

intracellular antibodies. Following further 15-minute incubation in the dark samples 

were washed in 2 ml of PBS and resuspended in 500µl of 1% paraformaldehyde. 

Samples were left to fix for at least 15 minutes in the fridge before being run on the 

flow cytometer. 

Antibody Fluorochrome Company Code 

CD19 APC Invitrogen MHCD1905 

CD38 RPE Invitrogen MHCD3804 

CD5 PerCP/Cy5.5 Biolegend 300620 

CD49d FITC AbD Serotec MCA2503F 

CD69 PE/Cy7 Biolegend 310912 

CD25 APC-H7 BD Pharmagen 560225 

Phospho-S6 Alexa Fluor 488 BD Phosflow, BD 560434 
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2.7 Viability Analysis using Propium Iodide and Annexin V 

Annexin V is a calcium-dependent phospholipid binding protein. When cells undergo 

apoptosis phosphatidyl serine residues flip from the inside to the outside of the plasma 

membrane. Annexin V has a high affinity for phosphatidyl serine and can be used to 

assess apoptosis by flow cytometry once it is conjugated to a fluorescent marker.  

 

2.8 Statistical Analysis 

Both paired and unpaired t-test was used as a means of determining differences between 

paired samples, which were subjected to different conditions. When correlating protein 

expression in a cohort of patients, the Spearman’s rank test was employed.GraphPad 

Prism 5.0 (Graphpad Software Inc.) was used to carry out all statistical analysis. 

When multiple comparisons were being made the repeated measures ANOVA test was 

used.

Biosciences 

Phospho-Stat6 V450 BD Phosflow, BD 

Biosciences 

561203 

Phospho-ERK1/2 PerCP/Cy5.5 BD Phosflow, BD 

Biosciences 

560115 
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3 Characterising Protein Kinase B signalling in primary CLL cells 

following CD31 co-culture 

3.1. Introduction 

CLL has previously been defined as a disease characterised by the resistance of 

malignant B-lymphocytes to undergo apoptosis (Sanhes et al. 2003). Whilst CLL cells 

in vivo display increased survival when compared to normal B-lymphocytes, when CLL 

cells are removed from the body they often undergo spontaneous apoptosis (Deaglio 

2010). Co-culture systems have been shown to rescue CLL cells from spontaneous and 

drug-induced apoptosis in vitro(Burger et al. 2000; Deaglio et al. 2005; Panayiotidis et 

al. 1996),by providing signals which maintain CLL cell survival and, under some 

conditions, result in growth and proliferation (Friedberg 2011). By investigating the 

signalling pathways that are activated in CLL cells as a consequence of CD31 co-

culture it may be possible to identify some of the signals provided by the in vivo 

microenvironment that contribute to the maintenance of CLL cells. 

The expression of CD38 on the surface of primary CLL cells is associated with a 

progressive disease type and is an independent marker of poor clinical outcome in this 

disease(Ibrahim et al. 2001; Parker and Strout 2011; Pepper 2007). CD38 expression in 

CLL is modulated by microenvironmental factors and CD38 is not only a prognostic 

marker in CLL but also a functional molecule, possessing cell surface receptor as well 

as adhesion capabilities (Deaglio 2010). A role of CD38, in CLL, is to aid in the 

delivery of proliferative and migratory signals to CLL cells (Deaglio 2011). The 

receptor capacity of CD38 is modulated, in part, through the binding to its non-substrate 

ligand CD31 (Deaglio 2010) which is expressed by both CLL cells and endothelial 

tissues in vivo (Willimott et al. 2007). Interactions between CD31 and CD38 have been 

shown to be able to drive the activation and proliferation of distinct lymphocyte 

populations (Poggi et al. 2010). Independent immunohistochemical studies on lymph 

node sections have revealed a link between the numbers of endothelial cells which 

express CD31 and the level of CD38 expressed on the surface of CLL cells (Deaglio et 

al. 2010; Patten et al. 2008). The lymph nodes are proposed to be where the 

proliferative core of the diseases resides and GEP has shown that CLL cells isolated 

from the lymph nodes displayed activation of signalling pathways, which have the 
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ability to sustain CLL cell survival and proliferation (Herishanu et al. 2011). 

CD31/CD38 static interactions are likely to take place in lymph nodes where CLL cells 

have sustained contact with CD31
+
 residential stromal cells (Deaglio 2010; Patten et al. 

2008). 

The deregulation of growth mechanisms in cancer cells is largely due to changes in 

signalling pathways, some of which are involved in cell proliferation, differentiation, 

growth and apoptosis (Barragan et al. 2006). Protein kinases are an essential group of 

enzymes, which regulate the protein activity involved in most cellular processes(Cheng 

et al. 2011). A valuable approach adopted when attempting to uncover specific 

components of signalling pathways mediated by protein kinases is the use of phospho-

specific antibodies (Alessi et al. 1996b; Obata et al. 2000; Zhang et al. 2002). These 

antibodies allow for the detection of phosphorylated substrates of a particular kinase 

and in this chapter such antibodies have helped to identify targets of protein kinase B in 

primary CLL cells.  

In order to simulate the in vivo growth permissive lymph node microenvironment, a 

murine fibroblast cell line that exogenously expresses human CD31 ligand was utilised. 

In experiments conducted by Deaglio et al in 2010, a gene expression analysis was 

performed following 5 days of primary CLL cell co-culture withCD31-expressing 

fibroblasts. It was shown that 1645 genes were modulated as a result of CD38/CD31 

ligation, some of which are involved in apoptosis regulation, migration and proliferation 

(Deaglio 2010). This work supports the hypothesis that the maintenance and 

progression of CLL is modulated through accessory signals provided by the 

microenvironment supporting the localisation of CLL cells to growth permissive sites 

such as primary lymph nodes (Deaglio 2010). In contrast to these findings, work 

conducted by Tonino et al(2008) used GEP to show that no altered expression of any 

known regulators of apoptosis were detected following CD31/CD38 ligation (Tonino S 

et al. 2008). These contradictory findings call in to question the functional significance 

of CD38 on the surface of CLL cells.  

By studying signals that CD31/CD38 interactions are capable of generating, it may be 

possible to predict which signalling pathways are activated in vivo. In this study 

phospho-substrate antibodies directed against the substrates of the kinases PKA, PKB 

and PKC were used. Individual phospho-specific antibodies and pharmacological 
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inhibitors were then used to study phosphorylated proteins that may contribute to cell 

survival in CLL. 

 

3.2. Results 

3.2.1. CD31 expression is similar in all CLL patients 

CD31 is the only known ligand of CD38 but it also has the ability to bind other CD31 

molecules a homotypic fashion. This has been shown to result in downstream signalling 

effects and cell:cell adhesion in primary CLL cells (Poggi et al. 2010). 

The expression of CD31 was analysed in CLL patients to investigate whether 

homotypic interactions should be considered when conducting the experiments in this 

thesis. Primary cells from 30 CLL patients with differing levels of basal CD38 

expression were analysed with anti-CD19 to identify the B-cell population as well as 

anti-CD38 and anti-CD31 to measure the expression of these molecules. The CD38 

MFI values were plotted against the CD31 MFI values in each CLL patient. 

Figure 3.1a shows that there was little variation in the CD31 MFI values in the cohort of 

CLL patients analysed in this experiment and hence no correlation between CD31 and 

CD38 expression. Figure 3.1b shows a box and whisker plot, which represents the 

CD38
lo

 and CD38
hi 

cohort of patients. The box and whisker blot shows the median 

CD31 MFI value for the CD38
hi

 and CD38
lo 

cohorts of patients, the box represents the 

upper and lower quartiles of the data and the upper and lower limits are represented by 

the outer bars (whiskers). There was no significant difference detected between the MFI 

of CD31 in the CD38
hi

 cohort of patients or the CD38
lo

 cohort of patients. 
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 a   

 

 b   

 

Figure 3.1 There is no significant difference in CD31 expression in CD38
hi 

and CD38
lo 

CLL patients 

5 x 10
5 

CLL cells were taken from freshly isolated whole blood samples. The surface 

expression of CD31 and CD38 was measured on CD19
+
 CLL lymphocytes within the 

lymphocyte gate identified from forward and side scatter plot. The cut off for CD38
lo

 is 

<5% CD38 positive cells, CD38
int 

is between 20-40% and CD38
hi

 is >50%. a) The 

surface expression of CD38 was plotted against the surface expression of CD31, b) A 

paired t-test was used to compare CD31 expression between the CD38
lo

 and CD38
hi

 

cohort of patients. 

 

  

0 2000 4000 6000 8000 10000
0

2000

4000

6000

CD38 MFI

C
D

3
1

 M
F

I

C
D
38

lo
 

C
D
38

hi
0

2000

4000

6000

8000

C
D

3
1

 M
F

I

ns



  Chapter 3 

 

  69 

3.2.2. CD38   expression is increased on CLL cells following co-culture with 

CD31-expressing fibroblasts 

Studies to analyse CD38 expression on the surface of CLL cells located within the 

lymph node and bone marrow microenvironments are limited due to the difficulties 

associated with obtaining CLL cells from these tissues. However in a study conducted 

by Jaksic et al in 2004 it was shown that CLL cells isolated from the lymph nodes had 

increased CD38 expression when compared to both the peripheral blood and bone 

marrow (Jaksic et al. 2004). There is now strong circumstantial evidence to suggest that 

the expression of CD38 is transient (Calissano et al. 2009; Damle et al. 2007),with 

CD38 expression being up regulated on the surface of CLL cells located within the 

lymph node microenvironment and subsequently lost upon re-entry into the peripheral 

blood. The increase in expression of CD38 on the cell surface when CLL cells enter 

these growth permissive microenvironments may enhance disease progression and cell 

survival through CD38 receptor capabilities. For the purpose of these experiments 

patients are deemed to be CD38
hi 

if over 50% of the CLL cell population express CD38, 

whereas CD38
lo

 patients have less than 5% of the CLL population expressing CD38. 

To establish the stimulating ability of the CD31-expressing co-culture system, primary 

CLL cells from 20 patient samples with differing levels of basal CD38 expression were 

co-cultured with fibroblasts transfected with the CD31 ligand (31) as well as non-

transfected fibroblasts (Non-transfected mouse L-cells: NTL) for two and five days 

respectively. Two fluorophore-conjugated antibodies were used, anti-CD19 to identify 

the B-cell population and anti-CD38 to quantify the expression of this molecule. The 

CD38 MFI values presented in this chapter relate to the CD19
+
 lymphocyte-gated 

population in each sample.  

Figure 3.2a shows that augmented CD38 MFI was detected following incubation of 

CLL cells for 2 and 5 days in CD31-expressing co-culture (P=0.0009 and P=0.0002 

respectively). A significant increase in CD38MFI was observed following 5 days on 

CD31-expressing co-culture compared to just 2 days (P=0.0002) suggesting that there is 

a time-dependent component to the regulation of CD38 under these conditions (Figure 

3.2b). In contrast, there was no significant increase in CD38 MFI in cells cultured with 

non-transfected co-culture for 2 and 5 days (P=0.47 and P=0.39 respectively).   



  Chapter 3 

 

  70 

 

 a   

 

 b   

 

Figure 3.2 A significant increase was observed in CD38 expression following incubation with 

CD31-expressing fibroblasts at 2 and 5 days 

1 x 10
6
 CLL cells were placed into co-culture with 1.5 x10

6 
NTL or CD31-expressing 

fibroblasts (90-95% confluent). (a) The surface expression of CD38 was measured on 

day 0, day 2 and day 5 and the MFI values were plotted for each patient (n=20). 

CD38 expression was measured on CD19
+
 CLL lymphocytes within the lymphocyte 

gate identified from forward and side scatter plot. A paired t-test was used to 

compare CD38 expression. (b) The line graph shows CD38 MFI at 2 and 5 days in 

CD31 co-culture. 
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3.2.3. Protein phosphorylation changes were detected using substrate antibodies 

against protein kinase A, protein kinase B and protein kinase C 

Having established that incubation of primary CLL cells with CD31-expressing co-

culture augmented the expression of CD38 on the CLL cell surface, the next step of this 

project involved investigating short-term changes in protein phosphorylation induced by 

CD31-expressing co-culture.  

A schematic of the workflow used for this experiment is shown in Figure 3.3. The first 

experiment was carried out using two CLL patient samples chosen to represent the 

extremes of CD38 expression in this disease. The first patient was strongly CD38 

positive (CD38
hi

) with CD38 expression on 95% of the CLL cells and the second 

patient was CD38 negative (CD38
lo

) with only 1% of CLL cells expressing CD38. 

Three culture conditions were used for each patient: liquid culture (LQ), co-culture with 

CD31-expressing fibroblasts (31) or co-culture with a non-transfected fibroblast cell 

line (NTL). Three protein kinase substrate antibodies were utilised, which allowed for 

the detection of phosphorylated substrates of PKA, PKB and PKC, all of which have 

been implicated in the pathogenesis of CLL (Abrams et al. 2007; Nakagawa et al. 

2006). 

Figure 3.4showsthree western blots loaded with protein extracts derived from two CLL 

patients, one CD38
hi

 and one CD38
lo

. Distinctive patterns of protein phosphorylation 

were detected with the three protein kinase substrate antibodies. A higher number of 

phosphorylated substrate bands were detected following CD31-expressing co-culture 

compared to LQ or NTL co-culture. Given the wide range of changes seen with the 

different antibodies, it was decided to focus on the changes detected with just one of the 

antibodies. The PKB substrate antibody is probably the most widely used of the three 

antibodies (Alnagar et al. 2010; Kane et al. 2002; Manning et al. 2002; Obata et al. 

2000)and for this reason it was decided that the PI3K/PKB signalling pathway would be 

the focus of this chapter. 
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Figure 3.3 - Schematic to demonstrate workflow 

PBMCs were isolated from whole blood samples, cells were counted and stained for CD19 to identify B-cell 

population and the CD38 status was determined within the CD19
+
 population. CLL cells were incubated with CD31-

expressing fibroblasts for 1 hour. Following this time CLL cells were removed from culture, lysed and proteins were 

resolved by SDS-PAGE followed by western blot analysis and detection with a protein kinase substrate antibody. 
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a     PKA   b     PKB 

  

 c      PKC  

 

Figure 3.4 Analysis of the same 2 CLL samples with 3 different protein kinase substrate 

antibodies. 

Primary CLL cells were separated from whole blood samples of 2 patients the 

first a CD38
hi

 patient (CD38 expressed on 95% of CLL cells) and the second a 

CD38
lo 

patient (CD38 expressed on 1% of CLL cells). CLL cells were incubated 

with CD31-expressing co-culture cells (31) or non-transfected cells (NTL) or 

left in liquid culture (LQ) for 1 hour. The CLL cells were removed from culture 

and lysed. Protein was extracted, resolved by SDS-PAGE followed by western 

blotting. Three identical PVDF membranes were probed with different protein 

kinase substrate antibodies, (a) Protein kinase A, (b) Protein kinase B and (c) 

Protein kinase C. All antibodies were purchased from Cell Signalling 

Technologies (1:1000 dilution was used for all antibodies in this chapter). 
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3.2.4. The protein kinase B substrate antibody detects protein phosphorylation in 

primary CLL cells 

The PKB signalling pathway has been linked to CLL cell proliferation and survival 

(Deaglio 2001b). The peptide motif for PKB-mediated phosphorylation has been 

established as Arg-Xaa-Arg-Yaa-Zaa-Ser/Thr-Hyd (Xaa represents any amino acid, Yaa 

and Zaa represent small residues other than glycine and Hyd signifies a large 

hydrophobic residue such as phenylalanine or leucine)(Alessi et al. 1996a). This motif 

is present in over 400 different proteins (Nicholson and Anderson 2002). Approaches 

have searched orientated peptide libraries and a motif-profile scoring algorithm has 

identified more than 14,000 targets phosphorylated by PKB in 9,500 vertebrate protein 

sequences (Lawlor and Alessi 2001; Obata et al. 2000; Yaffe et al. 2001). CLL cells 

have altered expression of regulatory molecules that modulate the PKB signalling 

pathway, and activated PKB regulates the function of numerous substrates involved in 

apoptosis including Bad, glycogen synthase kinase (GSK) and the forkhead family of 

transcription factors (Barragan et al. 2006). The PKB signalling pathway is essential for 

cell proliferation and survival (Zhou et al. 2008) and CLL clones have been shown to 

contain constitutively activated PKB.  

To assess the phosphorylation of PKB substrates in CLL patients’ further, 1x10
6
 

primary CLL cells were incubated in the conditions previously described. Following 

incubation, CLL cells were harvested and lysed to generate protein extracts, resolved 

using SDS-PAGE, transferred onto a PVDF membrane by western blotting and 

subsequently probed with a PKB substrate antibody. The cut off positivity’s for CD38 

expression in this project are CD38 low <5%, CD38 intermediate is between 20-40% 

and CD38 high is >50%. 

 Figure 3.5shows three CLL patients, the first a CD38
lo

 patient (14% CD38), the second 

a CD38
int 

patient (37% CD38) and finally a CD38
hi

 patient (84% CD38). Following the 

incubation of CLL cells with CD31-expressing co-culture, six phospho-proteins 

appeared to be consistently increased over a range of molecular weights (pp): pp240 

pp97, pp65, pp55, pp47 and pp32 (marked with arrows in Figure 3.5). Interestingly, the 

intensity of some bands representing phosphorylated substrates of PKB remained 

unchanged following CD31-expressing co-culture, such as the pp65 band.   
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Figure 3.5 – Three representative western blot derived from CLL samples probed with the PKB 

substrate antibody 

Primary CLL cells were separated from three 3 patient samples (CD38
lo 

(14% positive), 

CD38
int 

(37% positive), CD38
hi 

(84% positive). 1x10
6
 cells were incubated with CD31-

expressing co-culture cells (31) or non-transfected cells (NTL) or left in liquid culture 

(LQ) for 1 hour in a 6-well plate. Following co-culture the primary CLL cells were 

removed from culture and cell lysates generated. Protein was extracted, resolved by 

SDS-PAGE, followed by Western Blotting and detection with an antibody that detects 

phospho-motifs generated by the kinase PKB. These blots are representative of a further 

six blots.  
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3.2.5. Ribosomal protein S6 and glycogen synthase kinase 3 beta are 

phosphorylated in CLL cells following CD31-expressing co-culture  

The next aim was to try and establish the identity of some of the phosphorylated 

proteins identified with the PKB substrate antibody consistently increased under CD31 

co-culture conditions, highlighted by the red arrows in Figure 3.5 (pp240 pp97, pp55, 

pp47 and pp35). Barragan et al have previously used the same PKB substrate antibody 

to analyse PKB target proteins and found it a useful method to screen for targets of this 

signalling pathway in CLL (Barragan et al. 2006). In the first instance, the 35kDa 

protein (pp35) and the 47kDa protein (pp47) detected with the PKB substrate antibody 

were analysed.  

Freshly isolated CLL cells were incubated under three conditions: LQ, 31 and NTL. 

After 1 hour, CLL cells were removed from the culture conditions and identical samples 

were resolved by SDS-PAGE on parallel gels. After western blotting, one of the PVDF 

membranes was probed with a PKB substrate antibody whilst the other was probed with 

antibodies specific to phospho-S6 and phospho-GSK3β. Phospho-S6 and phospho-

GSK3β were considered as potential candidates for the pp35 and pp47 bands identified 

with the PKB substrate antibody due to comparable molecular weights (Kane et al. 

2002). This method allowed for direct comparison of both the size of the band detected 

and the phosphorylation state of the protein.  

Figure 3.6 shows the band detected with the phospho-specific S6 antibody was a 

comparable size and followed a similar phosphorylation pattern to the pp35 band 

detected using the PKB substrate antibody. Furthermore the band detected by the 

phospho-GSK3β antibody was a comparable size and followed a similar 

phosphorylation pattern to the pp47 band detected by the PKB substrate antibody, thus 

providing circumstantial evidence for the identity of these phospho protein bands. 
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Figure 3.6 Analysis of a CLL sample with a PKB substrate antibody a phospho-S6 antibody and a 

phospho-GSK3β 

Primary CLL cells were separated from a patient sample. CLL cells were incubated 

with CD31 expressing co-culture cells (31) or non-transfected cells (NTL) or left in 

liquid culture (LQ) for 1 hour. The CLL cells were removed and lysed. Protein was 

extracted, resolved by SDS-PAGE followed by western blotting, and detection with 2 

antibodies, the first a PKB substrate antibody that detects phospho motifs generated by 

the kinase PKB. The second an antibody specific to phospho-S6 ordered from Cell 

Signalling Technologies. 
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3.2.6. CD38 positive patients display increased basal S6 phosphorylation 

The phosphorylation of ribosomal S6 is associated with protein translation and cell 

growth (Ibrahim et al. 2003). In a study conducted by Blix et al in 2012, different CLL 

cell stimuli, including CD40 ligation and BCR engagement, were used to assess the 

inducible and basal phosphorylation of S6 in CLL patients (Blix et al. 2012). Blix et al 

were able to identify variable levels of p-S6 in both unstimulated and CD40L activated 

CLL cells (Blix et al. 2012), however they did not study whether augmented S6 

phosphorylation correlated with CD38 expression.  

Therefore, the next step of this study was to investigate whether short-term CD31-

expressing co-culture augmented the phosphorylation of ribosomal S6in multiple CLL 

patients; an additional aim was to determine whether CD38 expression on the surface of 

CLL cells had an effect on the basal and inducible levels of p-S6. To test the hypothesis 

that CD38 expression correlates with increased phosphorylation of ribosomal S6, p-S6 

levels were measured in CD38
hi

 and CD38
lo

 CLL samples. Primary CLL cells from 6 

patient samples (3 CD38
hi

 and 3 CD38
lo

) were incubated for 1 hour in LQ, 31 or NTL. 

Cell extracts were generated and one CD38
hi

the other CD38
lo

 per gel were resolved by 

SDS-PAGE followed by western blotting and detection with a phospho-S6 antibody.  

Figure 3.7 show that basal p-S6 detected in LQ conditions was elevated in 

CD38
hi

patients (Patient 1, Patient 3 and Patient 5) compared to CD38
lo

 patients. 

Furthermore, p-S6 was elevated following 1 hour incubation with CD31-expressing co-

culture (31) in all six patients, irrespective of the CD38 status, compared to basal levels 

of p-S6. Patients 1, 2, 3, 4 and 5 showed comparable levels of p-S6 following CD31-

expressing co-culture. However patient 6 show that much lower levels of basal and 

inducible p-S6 were detected. Interestingly, p-S6 was also augmented following co-

culture with non-transfected cells (NTL) cells compared to LQ. In four of the six 

samples (patients 3.4,5 and 6), cells expressing CD31 caused a higher increase in p-S6 

compared to NTL.  
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Figure 3.7 Analysis of 6 CLL samples with a phospho-S6 antibody 

Primary CLL cells were separated from 6 different patients: 3 CD38
hi 

and 3 CD38
lo

. 

CLL cells were incubated with CD31 expressing co-culture cells (31) or non-transfected 

cells (NTL) or left in liquid culture (LQ) for 1 hour. The CLL cells were removed and 

lysed. Protein was extracted, resolved by SDS-PAGE followed by western blotting, and 

detected with a phospho-S6 antibody and an actin antibody. The band intensity was 

normalised to Actin. 
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3.2.7. CD38 positive patients display increased GSK3β phosphorylation 

The activation of CLL cells was previously assessed in CLL patients using the PKB 

substrate antibody in a study carried out by Barragan et al in 2006. These authors used 

PMA (phorbol 12-myristate 13-acetate) to stimulate CLL cells; the addition of PMA 

induced phosphorylation of PKB substrates at ~30, 47, 66, 80, 95 and 120kDa in CLL 

patients. Using a specific antibody directed against known PKB substrates they 

confirmed that the 47kDa band was GSK3β (Barragan et al. 2006).  

The following experiments assessed whether CD31-expressing co-culture could induce 

GSK3β phosphorylation and whether CD38 expression increased the degree of 

phosphorylation in both the basal and post co-culture settings. As for the p-S6 assay, the 

same six patient samples were incubated for one hour in LQ, 31 or NTL co-culture. Cell 

extracts were generated, and one CD38
hi

 and one CD38
lo

 per gel were resolved by SDS-

PAGE followed by western blotting and detection with a phospho-GSK3β antibody.  

Figure 3.8 shows that in general, a higher basal level of phospho-GSK3β was detected 

in CD38
hi

 samples (Patients 1, 3 and 5) compared to CD38
lo

 samples (Patients 2, 4 and 

6). In five out of the six samples, phospho-GSK3β was augmented following co-culture 

of CLL cells with CD31-expressing co-culture compared to LQ. As with p-S6, 

incubation of CLL cells with NTL caused an increase in phospho-GSK3β over that 

detected in cells maintained in liquid culture (LQ).   
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Figure 3.8 Analysis of CD38 positive and CD38 negative CLL samples with a phospho-GSK3β 

antibody. 

Primary CLL cells were separated from patient whole blood samples. CLL cells were 

incubated with CD31 expressing co-culture cells (31) or non-transfected cells (NTL) or 

left in liquid culture (LQ) for 1 hour. The CLL cells were removed and lysed. Protein 

was extracted, resolved by SDS-PAGE followed by western blotting, followed by 

detection with phospho-GSK3β. The band intensity was normalised to Actin. 
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3.2.8. LY294002 and Rapamycin can inhibit phosphorylation of ribosomal S6 

The development of pharmacological inhibitors directed towards downstream targets of 

the PI3K signalling, as well as PI3K directly, has contributed to a better understanding 

of the biological role of PI3K isoforms and their substrate proteins(Arcaro and 

Guerreiro 2007; Banham-Hall et al. 2012; Neri et al. 2003). For example, Neri et al 

showed that increased PI3K/PKB signalling is a crucial mediator of drug resistance in a 

leukaemic cell line (Neri et al. 2003). Therefore, establishing the ability of 

pharmacological inhibitors to target the PI3K/PKB signalling pathway may provide a 

rationale for blocking PI3K signalling in order to increase sensitivity of CLL cells to 

chemotherapeutic drugs. Initially four inhibitors were used, to assess their ability to 

prevent the phosphorylation of the two PKB substrates identified as phospho-S6 and 

phospho-GSK3β on and off the CD31-expressing co-culture system.  

LY294002 is a synthetic analogue of the naturally occurring bioflavonoid, Quercetin. 

LY294002 acts reversibly as an ATP-competitive inhibitor (Vlahos et al. 1994). This 

inhibitor is very stable in solution and was designed to target PI3K (Vlahos et al. 1994). 

The mammalian target of Rapamycin (mTOR) protein is activated in response to PI3K 

signalling. The mTOR protein activates the downstream S6 kinase (S6K) which in turn 

phosphorylates the ribosomal protein S6 (Ruggero and Pandolfi 2003). Rapamycin is an 

inhibitor of the mammalian target of Rapamycin (mTOR) protein (Aleskog et al. 2008). 

In addition, two inhibitors of NF-κB were also used to assess whether inhibition of this 

pathway would have any impact on S6 and GSK3β phosphorylation, namely BAY 11-

7082 and LC-1.  BAY 11-7082 is a well-characterised inhibitor of the IκB kinase 

complex; IKK (Pierce et al. 1997) shown to have the ability to induce CLL cell 

apoptosis whilst having a low toxicity to normal B-cells (Pierce et al. 1997). LC-1 is a 

novel NF-κB inhibitor that is effective in primary CLL cells; LC-1-induced cell death is 

associated with Caspase-3 activation mediated via the activation of both caspase-8 and 

caspase-9 (Hewamana et al. 2008). Primary CLL cells were pre-treated for 30 minutes 

with appropriate concentrations of the four pharmacological inhibitors to completely 

inhibit the phosphorylation of the target proteins before being added to LQ or 31 co-

cultures for 1 hour. 

Figure 3.9 shows 2 blots, the first represents a CD38
hi

 patient (90% CD38 

expression)(Figure 3.9a) and a CD38
lo 

patient (4.7% CD38 positive) (Figure 3.9b). 

From Figure 3.9a it is evident that low levels of basal phospho-S6 and phospho-GSK3β 
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were detected in the LQ lane. Following 1-hour incubation with CD31-expressingco-

culture augmented p-S6 and p-GSK3β bands were detected. In contrast, p-S6 could not 

be detected following treatment with LY294002 or Rapamycin in LQ or CD31-

expressing co-cultures (lanes 3-6). However, treatment with BAY 11-7082 and LC-1 

did not modulate the phosphorylation of S6 or GSK3β demonstrating that these proteins 

are not targets of these pharmacological inhibitors. In the CD38
lo

 sample, (Figure 3.9b) 

low basal phosphorylation of GSK3β was detected in LQ but p-GSK3β was augmented 

following CD31-expressing co-culture. There was no basal p-S6 detected in this sample 

and induction of p-S6 was not visible after 1 hour on CD31-expressing co-culture. The 

complete inhibition of p-GSK3β was not detected following treatment with any of the 

four pharmacological inhibitors. However, there was a modest decrease in the levels of 

p-GSK3β in the LQ conditions in the presence of LY294002 and Rapamycin. For this 

reason, further experiments were conducted with LY294002 and Rapamycin to further 

establish the efficacy of these pharmacological inhibitors in the context of inhibiting 

activation and phosphorylation of targets of PKB signalling using p-GSK3β and p-S6 as 

readouts. The inhibitors used showed no effect on the viability of murine cell lines. 
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 a    

 

 

 b    

 

 

Figure 3.9 Analysis of 2 CLL patients following treatment with four inhibitors LY294002, 

Rapamycin, Bay 11-7082 and LC-1 with a phospho-PKB substrate antibody. 

Primary CLL cells were separated from two patient samples.  1x10
6 

CLL cells were 

incubated with 4 different inhibitors for 30 minutes before being added to co-culture 

with CD31-expressing co-culture cells (31) or maintained in liquid culture (LQ) for 1 

hour. The CLL cells were harvested from culture and lysed. Protein was extracted, 

resolved by SDS-PAGE followed by western blotting and detection with phospho- 

specific antibodies for GSK3β and S6. (a) Represents a CD38
hi

 patient with 90% CD38 

expression, (b) represents a CD38
lo 

patient with 4.7% CD38 expression. 
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3.2.9. Rapamycin inhibits p-S6 in CD38
hi

and CD38
lo

 patient samples 

A study by Aleskog et al showed that Rapamycin exhibited anti-cancer capabilities, 

particularly in haematological malignancies. Aleskog studied a cohort of CLL patients 

and demonstrated that CLL patients displayed a heterogeneous response to treatment 

with Rapamycin, this drug was shown to have reduced efficacy in CLL patient samples 

with poor prognostic markers (Aleskog et al. 2008). 

To elucidate the effects of Rapamycin on more phospho-proteins, the PKB phospho-

substrate antibody was used in two CLL samples. Figure 3.11 shows two patient 

samples, the first a CD38
hi 

patient (89% positive) as well as a CD38
lo 

patient (2% 

positive). CLL cells were pre-treated with 5nM Rapamycin in a total volume of 2ml of 

supplemented media for 30 minutes at 37
o
C before being transferred into co-culture 

with CD31-expressing fibroblasts (31) or liquid culture only (LQ) for 1 hour. Untreated 

cells were also subjected to the same culture conditions. CLL cells were harvested, 

lysed and protein was extracted from CLL cells, proteins were resolved by SDS-PAGE 

followed by detection with a PKB substrate antibody, and separately with phospho-

specific antibodies to detect p-S6 and p-GSK3β.  

Figure 3.10 shows the effect of Rapamycin on PKB substrate phosphorylation and 

specifically the effect of this inhibitor on the targeting of p-S6 and p-GSK3β. 

Rapamycin caused the loss of specific bands detected by the PKB substrate antibody 

and not a general loss of protein phosphorylation. Phospho protein bands of high 

molecular weight did not show a detectable loss of phosphorylation. The most dramatic 

effect was on pp32, which corresponds to phospho-S6.  This complete inhibition of 

phospho-S6 was detected with the specific antibody and was observed in the CD38
hi

 

sample; no basal p-S6 was detected in the CD38
lo

patient so the effects of the inhibitor 

could not be ascertained. In contrast, p-GSK3β was completely inhibited in the 

CD38
lo

patient sample on CD31-expressing co-culture but p-GSK3βremained detectable 

in the CD38
hi

patient sample under the same conditions.  
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Figure 3.10 Analysis of PKB substrate phosphorylation patterns in 2 CLL samples following 

treatment with Rapamycin. 

Primary CLL cells were separated from two patients, the first CD38 positive with CD38 

expressed on 89% of CLL cells and the second CD38 negative with CD38 expressed on 

2% of the CLL cells. CLL cells were left untreated or were treated with Rapamycin at a 

concentration of 5nM for 30 minutes at 37°C before being added to culture with CD31-

expressing co-culture cells (31) or left in liquid culture (LQ) for 1 hour. The CLL cells 

were removed from culture and lysed. Protein was extracted, resolved by SDS-PAGE 

followed by western blotting and detection with an antibody that detects phospho motifs 

generated by the kinase PKB, as well as phospho-specific antibodies for S6 and GSK3β.  
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3.2.10. LY294002 can inhibit p-S6 in CD38
hi

and CD38
lo

patient samples 

A previous study showed that CLL patients were sensitive to treatment with the PI3K 

inhibitor LY294002. Increased levels of apoptosis were observed following treatment 

with this pharmacological inhibitor but western blot analysis revealed that LY294002 

was not able to inhibit the phosphorylation of PKB (Plate 2004). Another study 

conducted by Ringshausen et al in 2002 also showed increased levels of apoptosis 

following LY294002 treatment in 24/24 patients analysed. In contrast, increased levels 

of apoptosis were not observed when normal B-cells were treated with this inhibitor 

(Ringshausen et al. 2002) 

The next step was to establish whether CD38 positivity increased the sensitivity of CLL 

cells to PI3K inhibition using LY294002. Figure 3.12 depicts two patient samples, a 

CD38
hi

 (89% positive) and a CD38
lo 

(2% positive). CLL cells were pre-treated with 

10μM LY294002 in a total volume of 2mlsupplemented media for 30 mins at 37
o
C 

before being transferred into co-culture with CD31-expressing fibroblasts (31) or in 

liquid culture only (LQ) for 1 hour. Untreated CLL cells cultured under the same 

conditions were used as controls. CLL cells were harvested, lysed and protein was 

extracted from CLL cells, proteins were resolved by SDS-PAGE followed by detection 

with a PKB substrate antibody, and separately with phospho-specific antibodies for the 

substrates S6 and GSK3β.  

Figure 3.11 shows that the untreated CD38
hi

patient cells showed increased basal levels 

of PKB substrate phosphorylation (in the LQ lane) when compared with the CD38
lo

 

CLL sample. In addition, following 1-hour of CD31 co-culture (31) both the untreated 

patient samples showed increased substrate phosphorylation consistent with that 

observed in the previous experiments (Figure 3.10).  The LY294002 treated cells 

showed a significant decrease in PKB substrate phosphorylation over a range of 

molecular weights specifically in the LQ treated lane compared to the untreated LQ 

controls for both samples.  The phosphorylation status of known PKB substrates p-S6 

and p-GSK3β were assessed using the phospho-specific antibodies for these proteins. 

Following LY294002 treatment no p-S6 could be detected in either sample. The 

phosphorylation of GSK3β was decreased but remained detectable in both patient 

samples. 
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Figure 3.11 Analysis of two CLL samples following treatment with LY294002 with a phospho-

PKB substrate antibody. 

Primary CLL cells were separated from two patients, the first CD38 positive with 

CD38 expressed on 89% of CLL cells and the second CD38 negative with CD38 

expressed on 2% of the CLL cells. CLL cells were left untreated or were treated with 

LY294002 at a concentration of 10μM for 30 mins at 37°C before being added to 

culture with CD31 expressing co-culture cells (31) or left in liquid culture (LQ) for 1 

hour. The CLL cells were removed from culture and lysed. Protein was extracted, 

resolved by SDS-PAGE followed by western blotting and detection with an antibody 

that detects phospho motifs generated by the kinase PKB, as well as phospho-specific 

antibodies for S6 and GSK3β. 
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3.2.11. LY294002 and Rapamycin cause a sustained loss of PKB substrate 

phosphorylation 

In breast cancer cells a loss of the cyclin-dependent kinase inhibitor p27 is a marker of 

poor prognosis, p27 is a direct target of mTOR signalling. Increased mTOR signalling 

results in the down-regulation of p27 in breast cancer cells. Treatment with Rapamycin 

has been shown to result in the stabilisation of p27 in a time-dependent manner (Shapira 

et al. 2006). Furthermore, treatment of cervical cancer cell lines with the PI3K inhibitor 

LY294002 resulted in elevated levels of apoptosis as well as altered gene expression. 

This was also shown to occur in a time-dependent manner, indicating that length of 

exposure to this inhibitor increases efficacy (Lee et al. 2006). It has also been shown 

that the combination of LY294002 and Rapamycin results in co-operative inhibition of 

T-cell proliferation (Breslin et al. 2005).  

To investigate the effects of a longer exposure to pharmacological inhibitors Rapamycin 

(5nM) or LY294002 (10μM), CLL cells from 4 CLL patients were pre-treated with each 

inhibitor for 30 minutes and then incubated in LQ or withCD31-expressing fibroblasts 

for 3 timepoints (1 hour, 4 hours and 24 hours). Cells were subsequently harvested prior 

to separation, western blotting and detection with specific antibodies. 

Figure 3.12 shows that a 1-hour incubation of primary CLL cells withLY294002 caused 

a slight decrease in substrate phosphorylation over a range of molecular weights, when 

added to LQ. The pp35 (phospho-S6) band was detected following1-hour incubation in 

CD31-expressing co-culture. There was no detectable effect of LY294002 at this time 

point. After 4 hours incubation with the LY294002 inhibitor a distinct reduction in 

pp35was observed in CD31-expressing co-culture and at 24hours incubation with this 

inhibitor the band was barely visible in the co-culture condition. It indicates that 

extended exposure of the LY294002 inhibitor resulted in a more complete inhibition of 

the phosphorylation of S6. Other PKB substrates also showed reduced levels of 

phosphorylation in the LQ lanes in a time-dependent manner following treatment but 

this may be due to a more general lack of CLL stimulation.  

Figure 3.13 shows a similar time course inhibitor experiment with Rapamycin.  The 

pp35 band (p-S6) was detected following CD31-expressing co-culture with the PKB 

substrate antibody. However, the pp47 band (p-GSK3β) was undetectable in this blot. 

Following just 1 hour of treatment with Rapamycin complete inhibition of p-S6 was 

detected in cells co-cultured on CD31-expressing fibroblasts. This inhibition of S6 



  Chapter 3 

 

  90 

phosphorylation was sustained throughout the twenty hours tested in the experiment.  

Other PKB substrates showed a time-dependent reduction in phosphorylation 

particularly in the LQ lanes. 

 

 

 

 

 

Figure 3.12 Analysis of a CLL sample following treatment with LY294002 at three time-points 

(1hr, 4hr, 24hr) with a phospho-PKB substrate antibody and phospho-S6 antibody. 

Primary CLL cells were separated from a patient sample. CLL cells were left untreated 

or treated with LY294002 at a concentration of 10μm for 30 minutes at 37°C before 

being added to culture with CD31 expressing co-culture cells (31) or left in liquid 

culture (LQ) for 1 hour, 4hours and 24 hours. The CLL cells were removed from culture 

and lysed. Protein was extracted, resolved by SDS-PAGE followed by western blotting 

and detection with an antibody that detects phospho motifs generated by the kinase 

PKB, as well as phospho-specific antibodies for S6.  
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Figure 3.13 Analysis of a CLL sample following treatment with Rapamycin at three time-points 

(1hr, 4hr, 24hr) with a phospho-PKB substrate antibody and phospho-S6 antibody. 

Primary CLL cells were separated from a patient sample. CLL cells were left untreated 

or treated with Rapamycin at a concentration of 5nm for 30 minutes at 37°C before 

being added to culture with CD31 expressing co-culture cells (31) or left in liquid 

culture (LQ) for 1 hour, 4hours and 24 hours. The CLL cells were removed from culture 

and lysed. Protein was extracted, resolved by SDS-PAGE followed by western blotting 

and detection with an antibody that detects phospho motifs generated by the kinase 

PKB, as well as phospho-specific antibodies for S6. 
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3.2.12. CD38
hi

 patient samples maintain phosphorylation of PKB substrates on 

CD31 co-culture over a 48 hour time period 

To establish whether PKB substrate phosphorylation was sustained following longer 

exposure to CD31-expressing fibroblasts, 4 time points were assessed over a 48-hour 

time period.  

Briefly, primary CLL cells were incubated in LQ alone or with CD31-expressing 

fibroblasts (31) for 1 hour, 4 hours, 24 hours and 48 hours. CLL cells were subsequently 

harvested, lysed and protein extracts were generated and resolved by SDS-PAGE. 

Proteins were transferred onto a PVDF membrane, and probed with a PKB substrate 

antibody.  

Figure 3.14a shows the time course experiment with a CD38
lo

 patient sample. 

Following short-term culture, no basal phosphorylation of either p-S6 or p-GSK3β was 

detected even following 1 hour on CD31 co-culture. However, after 48 hours on the 

CD31 co-culture system phosphorylation of S6 protein was observed. Furthermore, the 

phosphorylation of other PKB substrates was also maintained over the 48 hour time 

period when co-cultured with CD31-expressing fibroblasts. In contrast, after 24 hours in 

LQ conditions the phosphorylation of the PKB substrates was dramatically reduced and 

was diminished further in LQ after 48 hours. 

Figure 3.14b shows the same time course experiment with a CD38
hi

 patient sample. 

Unlike the CD38
lo

 sample, this patient displayed basal phosphorylation of S6 and 

GSK3β. P-S6 was maintained over the 48-hour time period in CD31-expressing co-

culture. In contrast, basal p-S6 detected in the LQ lane was rapidly lost; after 4 hours 

LQ levels of p-S6 were prominently diminished and at 24 hours and 48 hours p-S6 

could not be detected in the LQ condition. The levels of phosphorylation of other PKB 

substrates were reduced in a time dependent manner particularly in LQ. The doublet 

bands detected at ~64kDa showed uniform phosphorylation across all time-points in 

both LQ and CD31-expressing co-culture suggesting that these particular PKB 

substrates are not affected by in vitro stimulation or time out of the in vivo environment.  
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Figure 3.14 Analysis of a CD38
lo
 and a CD38

hi 
CLL sample with a phospho-PKB substrate antibody 

over 48 hours. 

Primary CLL cells were isolated from a CD38 negative (>5%) patient sample. CLL 

cells were incubated with CD31 expressing co-culture cells (31) or left in liquid culture 

(LQ) for 1 hour, 4 hour, 24 hour and 48-hour periods. The CLL cells were removed 

from culture and lysed. Protein was extracted, resolved by SDS-PAGE followed by 

western blotting and detection with an antibody that detects phospho motifs generated 

by the kinase PKB. a) Represents a CD38
lo 

patient 2.3% CD38, b) represents a CD38
hi

 

CLL patient 92%  
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3.3. Discussion 

CLL cells thrive in vivo but often undergo spontaneous apoptosis in vitro under 

conditions which are capable of supporting the growth of normal B-cells (Burger et al. 

1999). Emerging evidence indicates that the survival of CLL cells in the body is largely 

determined by microenvironmental influences such as antigen stimulation and support 

from residential stromal cells (Hofbauer et al. 2010). In order to develop a greater 

understanding of the signalling events that drive the survival and progression of CLL, 

tumour cells ideally need to be studied in conditions that reflect those encountered by 

CLL cells in the in vivo microenvironment. Several survival pathways have been 

implicated in the pathogenesis of CLL (Scupoli and Pizzolo 2012; Woyach 2013; 

Woyach et al. 2012). This chapter set out to analyse the consequences of CD31/CD38 

interactions on three protein kinase-signalling pathways, and resulted in four main 

findings.  

Firstly, CD38 MFI was significantly up-regulated following 2 and 5 days with CD31-

expressing co-culture, however an increase in CD38 MFI was not detected when CLL 

cells were cultured with non-transfected fibroblasts cell lines. This finding supports the 

concept that CD31/CD38 interactions are specifically responsible for changes in CD38 

expression. Furthermore, CD38 expression was augmented in a time-dependent manner; 

incubation of CLL cells for 5 days in CD31-expressing co-culture significantly 

increased CD38 expression compared to CLL cells cultured for only 2 days. It has 

previously been shown that CLL cells from the bone marrow microenvironment have 

increased surface expression of CD38 when compared to CLL cells in the peripheral 

blood(Patten et al. 2008). Therefore, exposure to the CD31 ligand on the endothelium of 

blood vessels and/or nurse-like cells in the bone marrow may contribute to this. 

Furthermore in a study conducted by Deaglio et al in 2010, which involved the analysis 

of lymph node sections, a direct link was shown between the number of endothelial 

cells (which are CD31
+
) and the level of CD38 expressed by CLL cells (Deaglio et al. 

2010).  

CD31 on the surface of CLL cells has the ability to ligate other CD31 molecules in a 

homotypic fashion; such interactions can take place with molecules expressed on 

vascular endothelial cells, nurse-like cells or other CLL cells (Deaglio 2003b). Poggi et 

alhave previously proposed that CD31/CD31 homotypic interactions resulted in 

increased gene transcription and CLL cell survival and showed that this effect was 
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observed irrespective of the levels of CD38 expression on the CLL surface (Poggi et al. 

2010). Tonino et al reported that high expression of CD31 can be detected on the 

surface of CLL cells irrespective of CD38 expression (Tonino S et al. 2008). There is 

controversy within the field of CLL research as to whether CD31 expression per se is a 

determinant of clinical outcome (Ibrahim et al. 2003; Mainou-Fowler et al. 2008; Poggi 

et al. 2010). In order to make a contribution to this debate, 30 CLL patients were 

analysed for CD31 cell surface expression. The levels of CD31 were similar in all the 

samples tested and did not vary significantly between CD38
hi 

and CD38
lo

 CLL patient 

samples. For this reason CD31/CD31 homotypic interactions were excluded as a 

significant confounding factor when comparing CD31/CD38 signalling in CD38
hi 

and 

CD38
lo

samples.  

The second main finding in this set of experiments was that increased levels of 

phosphorylated proteins were detected following short-term CD31-expressing co-

culture as well as non-transfected co-culture. In vitro studies have revealed that stromal 

co-culture can support CLL cell survival, providing signals, which are largely contact-

dependent. Comparing non-transfected (NTL) fibroblast co-culture with CD31-

expressing co-culture means the direct effect of the CD31 ligand can be assessed. 

Antibodies against the substrates of three protein kinases PKA, PKB and PKC were 

used to detect phosphorylated targets of these pathways following just 1-hour 

incubation in three culture conditions. Changes in protein phosphorylation could be 

detected with all three antibodies following CD31-expressing co-culture as well as NTL 

co-culture with all three protein kinases. The identity of many of these PKB substrates 

is unknown but it shows the powerful effect of co-culture on CLL cells. The short-term 

nature of cell stimulation implies that these changes occur directly downstream of 

CD31/CD38 ligation. The PKB substrate antibody was the focus of the chapter and over 

a range of patient samples, both basal and the induced protein phosphorylation varied. 

However, in all samples a change in protein phosphorylation was induced by co-culture. 

In co-culture experiments within this thesis some PKB substrate bands remained the 

same regardless of the culture conditions this acted as a good internal loading control. 

Phospho-motif substrate antibodies represent phosphorylation-state sensitive, motif-

specific antibodies which are a useful tool to investigate the mechanisms of substrate 

phosphorylation in signalling pathways. Phospho-specific antibodies help to identify 

novel signalling molecules which display aberrant signalling in malignancies. The PKB 

substrate antibody has been extensively used in other studies, resulting in the 
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identification of novel targets of PKB signalling (Alnagar et al. 2010; Kane et al. 2002; 

Manning et al. 2002). The detection of multiple protein bands with the PKB substrate 

antibody suggests that these bands are direct targets for phosphorylation by PKB. 

However, multiple kinases can share very similar consensus phosphorylation motifs, for 

example the blots generated with PKA, PKB and PKC substrate antibodies showed a 

considerable number of overlapping bands detected indicating that the same 

downstream targets were being recognized. It also is possible that the phosphorylation 

of a substrate is induced by other physiological stimuli. Furthermore PKB in vitro has 

been shown to phosphorylate most R-X-RX-X-S/T sites as well as some R-X-X-S/T 

sites. Therefore to further study substrates that are of interest, phospho-specific 

antibodies which recognise the precise phosphorylation sites must be used, as well as 

protein kinase inhibitors which demonstrate specific kinases are responsible for the 

phosphorylation 

Thirdly, studying known PKB substrates helped to establish the identity of two protein 

bands detected with the PKB substrate antibody; phospho protein bands pp35 and pp45 

were identified as phospho-S6 and phospho-GSK3β respectively. Ribosomal S6 kinases 

(rsk) are a family of serine/threonine kinases, p90
rsk

is one such kinase, p90
rsk

 is 

activated by the ERK pathway and this phosphorylated kinase activates ribosomal S6. 

The phosphorylation of the ribosomal S6 protein has been directly implicated in protein 

translation initiation and cell growth (Ibrahim et al. 2003). Levels of p-S6 were 

increased following 1-hour culture with both CD31-expressing co-cultures as well as in 

NTL co-culture. Supporting the identity of these PKB substrate are studies conducted 

by two other groups who have used the same phospho-PKB substrate antibody to detect 

a 32kDa, LY294002 sensitive protein. Using immunoprecipitation and mass 

spectrometry, both Kane et al, and Ly et al were able to prove the identity of this 32kDa 

substrate to be the ribosomal S6 protein (Kane et al. 2002; Ly et al. 2003). 

Pharmacological inhibitors LY294002 and Rapamycin have the ability to inhibit 

phosphorylation of S6 at concentrations of 10μM and 5nM respectively, this shows that 

phosphorylation of S6 is dependent on the activation of PI3K/ mTOR pathways. 

Ultraviolet cross-linking studies have shown that S6 directly interacts with tRNA, 

initiation factors and mRNA, implicating this protein in the regulation of translation 

initiation. Furthermore it has been shown that phosphorylation of S6 increases the rate 

of protein synthesis as well as regulating cell size; this would suggest that S6 is also a 

mediator of cell growth (Nygard and Nilsoon 1990). Mouse studies have shown that 
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following the deletion of S6; there is no ribosome biogenesis, inhibiting entry into cell 

cycle progression (Volarevic et al. 2000). In 2003 Ly et al discovered that ribosomal S6 

was constitutively phosphorylated in chronic myeloid leukaemia (CML) cells, and the 

phosphorylation of S6could be inhibited in CML cells following treatment with 

LY294002 and Rapamycin (Ly et al. 2003). Constitutive p-S6 has also been detected in 

vivo in the transgenic B-cell lymphoma mouse model expressing the c-myc oncogene, 

which results in the constitutive expression of PKB (Wendel et al. 2004). This 

phosphorylation event was shown to be dependent on mTOR signalling since when the 

lymphoma was treated with Rapamycin there were significantly lower levels of p-S6 

compared to untreated lymphoma (Wendel et al. 2004). In 2002, Zhang et al identified 

p-S6 as an important target of PI3K signalling in embryonic stem cells. Zhangs’study 

used an antibody directed towards the consensus motif of PKC and not PKB and, 

therefore, this implies that phosphorylation of S6 can occur independently of PKB and 

mTOR (Zhang et al. 2002). S6 kinases are also activated by PKC in a number of other 

cell types (Akimoto et al. 1998; Valovka et al. 2003). A study conducted by Barragan et 

al also showed that PKC could induce the phosphorylation of PKB substrates 

independently of the PI3K signalling pathway in primary CLL cells (Barragan et al. 

2006). Increased activation of the ribosomal protein S6 is clearly a feature of other 

malignancies of lymphoid origin and thus may play a vital role in the activation and 

proliferation of CLL cells in vivo.  

The second phospho protein was predicted to be GSK3β, a 47kDa serine/threonine 

kinase with enzymatic activity. GSK3β is regulated by a number of signalling pathways 

(ter Haar et al. 2001), and 2 phosphorylation sites influence the catalytic activity of the 

protein. The first, Serine 9 is the phosphorylation site for PKB and phosphorylation of 

this residue inactivates the protein. In contrast phosphorylation of Tyr 216, located on 

the activation loop increases catalytic activity (Grimes and Jope 2001). The levels of p-

GSK3β were analysed in CLL patients. Phosphorylation of this protein increased 

following CD31-expressing co-culture this was observed in all patients indicating that 

the inhibition of this protein is promoted by CD31:CD38 interactions.  Phosphorylation 

of GSK3β by PKB inactivates the protein and inhibition of this pathway has been 

implicated in cell proliferation (ter Haar et al. 2001).  Supporting the identity of this 

protein is a study that used the same commercially available PKB substrate antibody as 

a means of identifying substrates of the PI3K/PKB dependent serine/threonine 

kinase.This study confirmed that the band they detected at ~47kDa was GSK3β by 
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immunoprecipitation and subsequent tandem mass spectrometry (Kane et al. 2002). The 

experiments using LY294002 and Rapamycin showed that p-S6 and p-GSK3β could be 

inhibited following 30 minutes pre-treatment of CLL cells with the inhibitors followed 

by 1 hour incubation with CD31-expressing fibroblasts or LQ only. A more dramatic 

decrease in protein phosphorylation was observed in the LQ controls, which suggests 

that that CD31-expressing co-culture may be providing some level of protection against 

this inhibitor and may confer a cytoprotective effect on CLL cells. Whether or not the 

identified phosphorylated proteins S6 and GSK3β are targets of PKB in vivo remains 

uncertain in CLL.  

The basal levels of p-S6 and p-GSK3β in CLL patient samples were found to be higher 

in the CD38
hi

cohort of patients; this group of patients is known to have a poorer 

prognosis and it may be the case that elevated levels of basal p-S6 or p-GSK3β could be 

used as a marker of poor prognosis in CLL. 

Finally, phosphorylation of the identified PKB substrates S6 and GSK3β can be 

maintained in CD31-expressing co-culture for 48hours but cannot be maintained in LQ 

even in CLL patients expressing high surface levels of CD38 protein. Following 4 hours 

in LQ it was shown that there was a dramatic loss in phosphorylation of PKB substrates, 

which demonstrates the transient nature of protein phosphorylation when stimuli are 

removed. The maintenance of p-S6 and p-GSK3β, as well as other unidentified 

phosphorylated substrates of PKB, when incubated with co-culture demonstrates the 

significance of these interactions on the sustained activation status of the CLL cell. 

Despite opening with three different phospho-substrate antibodies, this chapter focussed 

on the PI3K/PKB pathway. In vivo and in vitro studies have demonstrated the 

importance of the PI3K/PKB signalling pathway in B-cell malignancies, specifically 

CLL(Arcaro and Guerreiro 2007; Hoellenriegel et al. 2011; Khwaja 2010).Lannutti et al 

used the PI3Kζ inhibitor GS-1101 on primary leukaemic cells and demonstrated that 

patients with B-cell malignancies were more responsive to treatment with this agent. 

GS-1101 was capable of abrogating CD40-induced PKB phosphorylation in CLL 

patients as well as down-regulating the anti-apoptotic protein MCL1(Lannutti et al. 

2011).  Furthermore a phase I clinical trial looked at the effects of GS-1101 treatment in 

a cohort of 37 patients with relapsed or refractory CLL.All patients displayed reduced 

lymphadenopathy and 91% of patients showed a lymph node response; few adverse side 

effects were observed following treatment (Veliz and Pinilla-Ibarz 2012). Therefore the 
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targeting of this pathway looks to be of clinical significance in CLL patients and is an 

exciting prospect to circumvent the pro-survival signals provided by the 

microenvironment.  

In summary, a phospho-PKB substrate antibody was used to implicate S6 and GSK3 

as important targets of PI3K/PKB signalling in primary CLL cells. This demonstrated 

the value of using phospho-specific motif antibodies as tools to identify targets of 

protein kinases involved in survival signalling. Furthermore, this work demonstrated 

that increased CD38 expression is associated with higher basal levels of phosphorylated 

PKB substrates and a higher phosphorylation signal following CD31 co-culture. The 

increased basal phosphorylation of these substrates may be of prognostic value and a 

useful tool as the phosphorylation status of S6 and GSK3β may prove to be a method 

used to monitor PI3K and mTOR activity. 
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4 Different co-culture systems stimulate different key survival 

signalling pathways 

4.1 Introduction 

Recent reports have highlighted that CLL cells are exposed to complex and 

varied microenvironments in vivo(Audrito et al. 2013; Deaglio 2010; Hamilton et al. 

2012). Consequently there has been a concerted effort to try to understand these 

varied conditions and the molecules involved (Burger and Gandhi 2009; Deaglio 

2010; Friedberg 2011). In recent years, CLL research has focused on the crosstalk 

between CLL cells and growth permissive microenvironments in the body such as the 

lymph nodes and bone marrow, where CLL cells are exposed to signals which 

maintain CLL cell survival. CLL cells undergo apoptosis when cultured in vitro in the 

absence of stromal cells or growth factors, but thrive when cytokines are added to 

culture or when stromal co-culture systems are used (Binder et al. 2010; Deaglio 

2008b; Hamilton et al. 2012), this demonstrates that CLL cells maintain the ability to 

respond to external stimuli when removed from the body. 

In 2012, Hamilton et al compared three in vitro co-culture systems, allowing 

for the direct comparison of individual stimuli known to be present within the in vivo 

CLL microenvironment (Hamilton et al. 2012). The three systems studied were the 

human endothelial cell line HMEC, as well as mouse embryonic fibroblasts 

transfected with human CD31 or human CD40L. A non-transfected fibroblast murine 

cell line was used as a control in order to ascertain the specific effect of the human 

ligands. All three systems delivered cytoprotection to CLL cells; the HMEC cell line 

conferred the greatest survival advantage and CD40L-expressing co-culture provided 

the least amount of cytoprotection to CLL cells. Cell surface phenotypic markers 

associated with activation were also analysed following culture on these three 

systems. Phenotypic changes were observed in all co-culture systems withthe 

exception of non-transfected co-culture cells, this demonstrated ligand specificity in 

terms of the ability to activate CLL cells. Interestingly, co-culture with CD31 and 

CD40L expressing fibroblasts induced CLL cell proliferation whereas the HMEC cell 

line did not (Hamilton et al. 2012). Asslaber et al examined the effect of CD40 

ligation on CLL cells in vitro. Following CD40-expressing co-culture a marked 
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increase in CLL cell viability was observed as well as augmented expression of the 

early activation marker CD69 (Asslaber et al. 2013). Both Hamilton et al and 

Asslaber et al demonstrated the ability of co-culture systems to support CLL cell 

survival as well as the capability to modulate the expression of some activation 

markers. In these experiments, however, the impact of in vitro stimuli on intracellular 

signalling pathways was not examined. 

Recently Ghamlouch et al (2013) assessed the ability of cytokines to maintain CLL 

cell survival ex vivo, IL-4 and BAFF were identified as two cytokines that were able 

to support CLL cell survival when added to culture. IL-4 proved to be the most potent 

mediator of survival and had the ability to maintain CLL cell survival for over 168 

hours (Ghamlouch et al. 2013). Other studies have demonstrated the potent effect of 

IL-4 as a mediator of CLL cell survival in vitro(Dancescu et al. 1992; Kay and Pittner 

2003). It has been shown that CLL patients have raised levels of IL-4 produced by 

peripheral blood CD4
+
T-cells when compared to normal age-matched controls 

(Mainou-Fowler et al. 2001). CLL patients also possess constitutively higher levels of 

the IL-4 receptor (Kay et al. 2001). The increased levels of IL-4 in the peripheral 

blood in CLL patients may provide sufficient signals to maintain circulating CLL 

cells in vivo.  

In Chapter 3 of this thesis CLL cells were co-cultured with CD31-expressing 

fibroblasts. This resulted in the augmented phosphorylation of substrates of the PKB 

signalling pathway. Experiments in this chapter were performed to compare the effect 

of CD31 stimulation with CD40L stimulation in the presence and absence of IL-4. All 

experiments were carried out following 1-hour incubation and a non-transfected 

fibroblast cell line was used as a control to measure the specific effect of the human 

ligands. The phosphorylation status of four proteins was assessed: the ribosomal 

protein, S6; the serine kinase, GSK3β; the transcription factor, STAT6 a target of 

Janus kinase pathway; and ERK, a target of CD40 signalling. The primary aim of 

these experiments was to characterise the direct pathways in primary CLL cells ofthe 

individual stimuli.  
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4.2 Results 

4.2.1 Addition of IL-4 to CD31 co-culture slightly augments p-S6 and p-GSK3β 

CLL cells not only have elevated levels of the IL-4 receptor but also have the ability 

to secrete IL-4. The production of IL-4 by both CLL cells and CD4
+
 T-cells permits 

for both autocrine and paracrine activation of the IL-4 signalling pathway in CLL 

patients (Seiffert et al. 2010). The addition of IL-4 to CD31-expressing co-culture 

mimics another element of the in vivo lymph node microenvironment as CLL cells 

located in the lymph node are exposed to CD31
+ 

stromal cells as well as elevated 

numbers of CD4
+
 T-cells, which produce IL-4 (Kay et al. 2001). 

The hypothesis in this experiment was that the addition of IL-4 to CD31-expressing 

co-culture could enhance the phosphorylation and activation of intracellular signalling 

proteins in CLL cells. In total, 10 patients were analysed; five were CD38
hi 

and five 

were CD38
lo

. Figure 4.1 shows four blots generated from two CLL patient samples, a 

CD38
hi 

(95%)and CD38
lo

 (2%)patient.  

Figure 4.1 shows that basal p-S6 and p-GSK3βcould be detected in the CD38
hi 

sample. In contrast, basal p-S6 and p-GSK3β could not be detected in the 

CD38
lo

sample.Following the addition of IL-4 to liquid culture (LQ) the p-S6 and p-

GSK3βbands appeared to be slightly elevated in CD38
hi 

samples but p-S6 and p-

GSK3β remained undetectable in CD38
lo

samples. Co-culture on CD31-expressing 

fibroblasts and NTL co-culture induced the phosphorylation ofS6 and GSK3β in 

theCD38
lo

samples and augmented levels of p-S6 and p-GSK3β in the CD38
hi

samples 

analysed. The addition of IL-4 to CD31-expressing and non-transfected co-cultures 

lightly increased the phosphorylation of GSK3β and S6 in theCD38
lo 

patient, this 

effect was not observed when IL-4 was added to co-culture in the CD38
hi

 patient 

sample (patient 1). 
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Figure 4.1 Analysis of 2 CLL patients on CD31 co-culture system with and without the 

addition of IL-4. 

Primary CLL cells were separated from 2 patients. 1 x 10
6 

CLL cells were 

incubated with CD31-expressing co-culture (31) or non-transfected co-culture 

(NTL) or left in liquid culture (LQ) for 1 hour with and without the cytokine IL-

4 (5ng/ml). Following, incubation the CLL cells were harvested lysed and 

protein extracted, proteins were resolved by SDS-PAGE followed by western 

blotting and detection with p-GSK3β and p-S6 antibodies as well as actin. The 

band intensity was normalised to Actin. 
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4.2.2 Addition of IL-4 to CD40L co-culture augments phosphorylation of S6 

and GSK3β 

CD40 signalling induces powerful anti-apoptotic signalling in CLL cells in 

vitro(Furman et al. 2000), signals induced by CD40 stimulation include canonical and 

non-canonical NF-κB signalling (Furman et al. 2000), ERK signalling (Kashiwada et 

al. 1996), and PI3K/PKB signalling (Deregibus et al. 2003). CLL cells constitutively 

express CD40 on their surface and CD40 signalling is induced upon CLL cell (CD40) 

binding to CD40L expressed on the surface of CD4
+
 T-cells (Schattner et al. 1998). 

Increased numbers of CD4
+ 

T-cells are detected in the lymph nodes of CLL patients 

(Brusa et al. 2013), and CD4
+
 T-cells not only promote signalling through 

CD40/CD40L receptor but also produce IL-4.  

To imitate a different element of the CLL cell microenvironment murine fibroblasts 

exogenously expressing CD40Lwere used in the following co-culture experiment. 

The same patients were used in this experiment in order to facilitate direct comparison 

with the CD31-expressing co-culture experiments presented in Figure 4.1. Figure 4.2 

depicts four representative blots from two CLL patients, one CD38
hi 

(95%)and one 

CD38
lo

 (2%)patient.  

Figure 4.2 shows that following 1 hour of CD40L-expressing co-culture the 

phosphorylation of S6 and GSK3β was induced in the CD38
lo

 patient and augmented 

phosphorylation of S6 and GSK3β could be detected in the CD38
hi

 patient. Increased 

phosphorylation of these substrates was also observed following culture with non-

transfected fibroblasts (NTL) although to a lesser extent. The phosphorylation of 

these proteins was modestly increased in both the CD38
hi

 and CD38
lo 

samples when 

CD40L-expressing and NTL co-culture systems were supplemented with IL-4. 
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Figure 4.2 Analysis of 2 CLL patients on CD40L co-culture system with and without the 

addition of IL-4. 

 

Primary CLL cells were separated from two patients. CLL cells were 

incubated with CD40L-expressing co-culture (40L) or non-transfected co-culture 

(NTL) or left in liquid culture (LQ) for 1 hour with and without the cytokine IL-

4 (5ng/ml). Following incubation the CLL cells were harvested lysed and protein 

extracted, proteins were resolved by SDS-PAGE followed by western blotting 

and detection with p-GSK3β and p-S6 antibodies as well as actin. 
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4.2.3 CD31 co-culture can induce phosphorylation of ERK and IL-4 culture 

can induce phosphorylation of STAT-6 

The ERK signalling pathway has been identified as a therapeutic target to counteract 

the pro-survival effect of the in vivo microenvironment in CLL patients (Herishanu et 

al. 2011). Muzio et al showed in 2008 that (25/51) 49% of CLL patients analysed 

displayed constitutive phosphorylation of ERK(Muzio et al. 2008).  Furthermore, the 

ability of IL-4 to sustain CLL cell survival in vitro also supports the targeting of this 

cytokine. 

To ascertain whether CD31-expressing co-culture or IL-4 co-culture could induce the 

activation and phosphorylation of ERK as well as IL-4 signalling target STAT6, ten 

CLL patients were analysed, five CD38
hi

 and five CD38
lo

. The p-STAT6 blots in 

Figure 4.3 depict blots from CLL patients, one CD38
hi 

(83%) and the other 

CD38
lo

(2.4%).  

Figure 4.3a show that the STAT6 protein is only phosphorylated in cultures 

supplemented with IL-4 this was shown in all 10 patients analysed. In Figure 4.3b 

only a CD38
hi

 patient is shown, this is because no basal or inducible p-ERK could be 

detected in the five CD38
lo 

patients analysed. The CD38
hi

 patient represented in 

Figure 4.3b shows that although basal p-ERK was not detected, following 1-hour of 

CD31-expressing co-culture the phosphorylation of ERK was strikingly up regulated 

and the levels of p-ERK detected were further augmented following the addition of 

IL-4 to CD31-expressing co-culture. Low levels of p-ERK were detected following 

NTL co-culture with a modest increase in p-ERK detected with the addition of IL-4.  
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Figure 4.3 Analysis of CD38
hi

and CD38
lo 

CLL patients with P-STAT6 and P-ERK following 

CD31 co-culture 

 

Primary CLL cells were separated from two CLL patients. CLL cells were 

added toCD31-expressing fibroblasts (31) or non-transfected cells (NTL) or left in 

liquid culture (LQ) for 1-hour with and without IL-4 (5μg/ml). The CLL cells were 

removed and lysed. Protein was extracted, resolved by SDS-PAGE followed by 

western blotting, and detection with (a) p-STAT6 antibody or (b) a p-ERK antibody. 
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4.2.4 Phosphorylation of ERK can be induced by CD40L co-culture in CD38
hi

 

patients and STAT6 can be achieved through IL-4 treatment 

It is well established that IL-4 alone can maintain CLL cell survival in vitro (Kay et 

al. 2001; Kay and Pittner 2003; Wurster et al. 2002). The experiments shown in 

Figures 4.1 and 4.2 revealed that IL-4 treatment resulted in a modest increase in the 

phosphorylation of PKB substrates GSK3β and S6 when added to CD31-expressing 

and CD40L-expressing co-culture systems. However, IL-4 treatment alone only 

induced a small phosphorylation of S6 in some patients, given that IL-4 is able to 

maintain CLL survival this would imply that the phosphorylation of these proteins is 

not essential for cell survival. However, Figure 4.3a demonstrated the potent ability of 

IL-4 to induce the phosphorylation of STAT6.  

The results above promoted experiments to directly assess the comparative effects of 

individual stimuli (IL-4 CD40L, CD31, NTL) in the same samples. This allowed the 

evaluation of basal CD38 expression on the downstream phosphorylation events (S6, 

STAT6 and ERK). In order to do this protein extracts were prepared from CD38
lo

, 

CD38
hi

 patients as well as CLL patients with intermediate levels of CD38 expression 

(CD38
int

).  

Figure 4.4a represents a CD38
lo

patient (2.3%): consistent with previous experiments 

no basal p-S6 was detected in this patient and was not induced following the addition 

of IL-4 to culture. However, CD31-expressing and CD40L-expressing co-culture 

were able to induce the phosphorylation of S6. Distinct p-STAT6 bands were readily 

detected upon addition of IL-4 to cultures but no p-STAT6 was detected in cultures 

without IL-4. Consistent with the low level of CD38 expressed by this sample, p-ERK 

was not detected in any of the culture conditions assessed. 

Figure 4.4b and 4.4c represent two CD38
int

 samples; CD38 was expressed on 23% 

(Figure 4.4b) and 43% of CLL cells (Figure 4.4c) respectively. Low basal p-S6 was 

detected in both CD38
int

 samples; the addition of IL-4 to LQ slightly elevated levels 

of p-S6. P-S6 was augmented following CD31-expressing co-culture as well as 

CD40L-expressing co-culture. Striking p-STAT6 bands were detected exclusively in 

cultures supplemented with IL-4 in both CD38
int

 samples. As was the case with the 

CD38
lo

 sample analysed (Figure 4.4a), faint p-ERK bands were detected following 

incubation with CD40L-expressing co-culture and CD31-expressing co-culture. 
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Figure 4.4d shows a CD38
hi

 (92%) patient sample; high basal p-S6 was detected in 

this patient. The phosphorylation of S6 was slightly augmented upon addition of IL-4 

to liquid culture (LQ), comparable p-S6 bands were observed following CD31-

expressing co-culture and CD40L-expressing co-culture, and increased p-S6 was 

detected following the addition of IL-4 co-culture. Distinct p-STAT6 bands were 

detected in all cultures containing IL-4. Faint p-ERK could be detected in this CD38
hi

 

patient, a slight increase in p-ERK was observed following the addition of IL-4 to LQ 

and increased p-ERK was evident following CD31 and CD40L co-culture.
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Figure 4.4Analysis of a CD38
lo
, two CD38

int
and a CD38

hi
CLLpatient sample with three phospho-specific antibodies on both CD40L co-culture, CD31 co-culture 

and with IL-4 after 1hour culture. 

Primary CLL cells were separated from a patient. CLL cells were added to (40), (31) or non-transfected cells (NTL) or left in liquid culture 

(LQ) for 1 hour. The CLL cells were removed and lysed. Protein was extracted, resolved by SDS-PAGE followed by western blotting, and 

detection with p-S6, p-STAT6, p-ERK and loading control actin. 

P-S6 

P-STAT6 

P-MAPK 

Actin 

 L
Q

   
   

 
 L

Q
 +

 IL
4 

   
 

 4
0L

   
   

 
 4

0L
+I

L4
   

  

 

 3
1+

IL
4 

   
   

 3
1 

   
   

 N
TL

+I
L4

   
  

 

 N
TL

   
  

 

0.00 0.00 0.67 0.78 0.18 0.21 0.17 0.20 

0.00 1.54 0.00 1.62 0.00 0.89 0.00 1.13 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 L
Q

 +
 IL

4 
   

 
 4

0L
+I

L4
   

   
 

 N
TL

+I
L4

   
  

 

 N
TL

   
  

 

P-STAT6 

P-MAPK 

Actin 

P-S6 

 L
Q

   
   

 

 4
0L

   
   

 

 3
1+

IL
4 

   
   

 3
1 

   
   

0.22 0.18 1.22 1.32 0.55 0.65 0.12 0.12 

0.00 1.43 0.00 1.55 0.00 1.32 0.00 1.41 

0.00 0.00 0.02 0.02 0.00 0.06 0.00 0.00 
0.00 0,.00 0.01 0.00 0.00 0.03 0.00 0.00 

P-S6 

P-STAT6 

P-MAPK 

Actin 

 L
Q

   
   

 
 L

Q
 +

 IL
4 

   
 

 4
0 

L 
   

 

 4
0L

+I
L4

   
   

 
 3

1+
IL

4 
   

   

 3
1 

   
   

 N
T
L
+I

L4
   

  

 

 N
T
L 

   
 

 

0.00 0.00 0.01 0.01 0.00 0.03 0.00 0.00 
0.00 0,.00 0.01 0.00 0.00 0.03 0.00 0.00 

0.00 1.32 0.00 1.55 0.00 1.54 0.00 1.42 

0.00 0,.02 0.78 0.91 0.43 0.97 0.81 0.89 

P-S6 

P-STAT6 

P-MAPK 

Actin 

 L
Q

   
   

 
 L

Q
 +

 IL
4 

   
 

 4
0 

L 
   

 

 4
0L

+I
L4

   
   

 
 3

1+
IL

4 
   

   

 3
1 

   
   

 N
TL

+I
L4

   
  

 

 N
TL

   
  

 

0.00 0.00 1.64 1.55 1.77 1.83 0.92 0.98 
0.00 0,00 1.64 1.55 1.77 1.83 0.92 0.98 

0.00 1.43 0.00 1.24 0.00 1.83 0.00 1.21 

0.83 0.89 1.02 1.04 0.96 0.97 0.61 0.75 



  Chapter 4 

 

111 

4.2.5 IL-4 treatment or co-culture can maintain CLL cell survival over 48 

hours 

In experiments conducted by Tonino et al, in 2008, the CLL cell viability of 10 CLL 

patients was assessed following 7-day co-culture with CD40L-expressing and CD31-

expressing mouse fibroblasts. Tonino et al (2008) demonstrated that co-culture with 

CD40L expressing fibroblasts resulted in a significant increase in CLL cell viability. 

In contrast, CLL cells cultured with CD31-expressing co-culture, in the presence or 

absence of CD31 blocking antibodies, did not demonstrate any survival advantage 

(Tonino S et al. 2008). Given that culture with IL-4 has been shown to have a potent 

effect on CLL cell survival (Dancescu et al. 1992) but the cytoprotective effects of 

various co-culture systems remain contentious, experiments were performed to 

determine their effects on CLL survival.  

To evaluate the comparative effects of the different in vitro stimuli on CLL cell 

viability 30 CLL patient samples were analysed, 2x10
5
cellswere removed from the 

different culture conditions after 24 hours and 48 hours and stained with Annexin V/ 

propidium iodide (PI).  

Figure 4.5 and 4.6 shows show annexin V/PI staining in the various culture conditions 

at 24 and 48-hour time points. Figure 4.7 represents the mean percentage of viable 

CLL cells in the cohort of 30 CLL patients in each culture condition following 24-

hour and 48-hour incubations respectively. Figure 4.7a shows that IL-4 treatment, 

CD40L expressing co-culture, CD31-expressing co-culture and NTL co-culture all 

resulted in a significant increase in cell viability compared to LQ alone (P< 0.0001 for 

all conditions). CD31-expressing co-culture and CD40L expressing co-culture were 

significantly more cytoprotective than IL-4 treatment alone (P<0.0001 and P=0.001 

respectively). However, NTL co-cultures were not significantly different to IL-4 

treated cultures in terms of viability. The differences in CLL cell viability between 

different culture conditions were modest at the 24-hour time point. Figure 4.7b shows 

that increased cell death was observed in the LQ condition at the 48-hour time point 

compared to the 24-hour time point. Cell survival remained high in IL-4 treated 

cultures as well as in co-cultures. As with the 24-hour cultures CD40L-expressing co-

culture and CD31-expressing co-culture were significantly more cytoprotective than 

IL-4 treatment alone (P<0.0001, P=0.0001 respectively). 
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Figure 4.5 IL-4 treatment and co-culture maintains CLL survival for 24 hours 

2 x10
5
CLL cells were placed in LQ, treated with IL-4 or added to CD40L-expressing co-culture, CD31-expressing co-culture or NTL co-culture 

for 24 hours. Viability was assessed using Annexin V/ PI staining in a P1-gated population that excludes debris. 
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Figure 4.6 IL4 treatment and co-culture maintains CLL survival for 48 hours 

2 x10
5
CLL cells were placed in LQ, treated with IL-4 or added to CD40L-expressing co-culture, CD31-expressing co-culture or NTL co-culture 

for 48 hours. Viability was assessed using Annexin V/ PI staining in a P1-gated population that excludes debris. 
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 a. 24 hours   

 

 b. 48 hours   

 

Figure 4.7 Analysis of primary CLL cell viability following 24-hour and 48-hour co-culture with 

IL-4, CD40L expressing fibroblasts and CD31 expressing fibroblasts. 

Primary CLL cells (n=10) were separated from patient whole blood samples. CLL 

cells were added to (CD40L),(CD31) or non-transfected cells (NTL) or left in liquid 

culture (LQ) for a.) 24 orb.) 48 hours with and without addition of 5ng/ml IL-4. The 

CLL cells were removed and CLL cells were stained with Annexin V/PI before being 

analysed on the flow cytometer. A repeated measures ANOVA test was used to 

compare the viability of CLL cells between culture conditions. 
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4.2.6 PF956980 inhibits the phosphorylation of STAT-6 

To investigate whether it was possible to identify STAT6 as a direct target of JAK3 

kinase in CLL cells PF956980, a JAK3 selective inhibitor was used (Steele et al. 2010). 

1x10
6
primary CLL cells were left untreated or incubated with three doses of PF956980: 

1.25μM, 2.5μM and 5μM, for 1 hour. Given that IL-4 alone can induce phosphorylation 

of STAT6, CLL cells were cultured in liquid culture (LQ) and 5ng/ml of IL-4 (LQ+IL-

4) in all cultures. In total 10 patient samples were analysed, five were CD38
hi 

and five 

were CD38
lo

. 

Figure 4.8 shows a representative western blot from a CD38
hi

 patient and a CD38
lo

 

patient; a strong p-STAT6 band was detected in the LQ+IL-4 untreated condition in 

both samples. Treatment with PF956980 caused a rapid reduction in p-STAT6 in a 

dose-dependent manner. Treatment with 5μM of PF956980 completely abolished p-

STAT6 in both samples analysed. 
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Figure 4.8 Western blot analysis of P-STAT6 following treatment with PF956980 in a dose-

dependent manner. 

 

1x10
6
 Primary CLL cells were incubated in LQ+ IL-4 in the presence of 

increasing doses of the JAK 3 kinase inhibitor PF956980 (1.25μM, 2.5μM and 5μM) 

for 1 hour. The CLL cells were removed and lysed. Protein was extracted, resolved by 

SDS-PAGE followed by western blotting, and detection with a p-STAT6 antibody. 

 

4.2.7 U0126 inhibits the phosphorylation of ERK in a dose-dependent manner 

To investigate whether it was possible to identify ERK as a specific target of CD38 

signalling, the ERK inhibitor U0126 was used (Hawkins et al. 2008). In this experiment 

1x10
6
 cells were incubated with three doses of U0126: 2.5μM, 5μM and 10μM or left 

untreated for 1 hour on CD31-expressing co-cultures supplemented with 5ng/ml IL-4. 

Since it was already established that CD31-expressing co-culture induced ERK 

phosphorylation in CD38
hi 

patients, 10 CD38
hi

 patients were studied. Figure 4.11 

depicts two representative CD38
hi

 patients showing a dose-dependent response in p-

ERK inhibition following treatment with U0126. P-ERK could not be detected in any of 

the CD38
hi 

patient samples when treated with 10μM of U0126. 
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Figure 4.9 Western blot analysis of P-ERK following treatment with U0126 in a dose-dependent 

manner. 

 

1x10
6
 Primary CLL cells were incubated withCD31-expressing fibroblasts and 

5ng/ml IL-4 in the presence of increasing doses of the ERK inhibitor U0126 (2.5μM, 

5μM and 10μM) for 1 hour. The CLL cells were removed and lysed. Protein was 

extracted, resolved by SDS-PAGE followed by western blotting, and detection with a 

p-ERK antibody (two bands detected with P-ERK represent phosphorylated 

ERK44/42). 
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4.3 Discussion 

Hamilton et al showed that co-culture systems (HMEC, CD31 and CD40L) have the 

ability to support CLL cell survival in vitro (Hamilton et al. 2012). These culture 

systems are likely to induce activation of intracellular signalling pathways however 

these experiments did not examine the effect of these stimuli on signalling events. 

Signals within the CLL microenvironment in vivo are considered to be a major obstacle 

impeding the effective treatment of CLL with chemotherapeutic agents (Audrito et al. 

2013; Herishanu et al. 2011). IL-4 is another molecule to consider when replicating the 

CLL microenvironment ex vivo. The addition of IL-4 to CLL cultures in vitro has been 

shown to support CLL cell survival (Dancescu et al. 1992; Steele et al. 2010). 

Furthermore, CD40 signalling and CD38 signalling have also been shown to be 

powerful mediators of CLL cell survival in vitro, but the precise mechanism/s by which 

these stimuli inhibit apoptosis have not been fully elucidated. In this set of experiments 

CD31-expressing co-culture and CD40L-expressing co-culture, as well as non-

transfected co-culture and treatment with IL-4 were used to assess the impact of 

individual stimuli on targets of survival signalling. These co-culture systems were used 

alone and in combination and four phospho-proteins were analysed: S6, GSK3β, ERK 

and STAT6. These experiments have led to four principal findings. 

The first finding in this set of experiments was that CD40L stimulation, like CD31 

stimulation, was capable of inducing the phosphorylation of PKB substrates S6 and 

GSK3β in CD38
lo

 CLL patients, and augmenting the phosphorylation of PKB substrates 

in CD38
hi

 patients. Cuni et al used non-transfected and CD40L-expressing co-culture to 

demonstrate that both systems were able to increase the phosphorylation of PI3K 

signalling targets; however CD40L-expressing co-culture is required to further augment 

the phosphorylation and activation of the PI3K/PKB and NF-κB signalling pathways to 

initiate CLL cell proliferation (Cuni et al. 2004). However, in contrast to these findings, 

Hallaert et al in 2008 were unable to detect PKB phosphorylation following the 

prolonged culture of CLL cells with CD40L-expressing co-culture (Hallaert et al. 2008). 

These differences may be because Hallaert et al analysed CLL samples that had been 

stored in liquid nitrogen. In contrast, the work presented in this thesis was all carried out 

on freshly isolated CLL cells. Furthermore, Hallaert et al conducted all experiments 

following 48-hour incubation in CD40-expressing co-culture whereas experiments in 

this chapter were conducted following just 1 hour of co-culture. The results generated in 
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this chapter indicate that phosphorylation of signalling molecules can be rapidly 

induced following CLL cell stimulation. 

The second principal finding in this chapter was that IL-4 had the ability to augment the 

phosphorylation of both ribosomal S6 and GSK3β. In agreement with these findings 

Steele et al showed that CLL patients had constitutive S6 phosphorylation, the addition 

of IL-4 to CLL cell culture at a concentration of 10ng/ml invitro for 18hours resulted in 

augmented levels of p-S6(Steele et al. 2010). In the same cohort of patients constitutive 

basal p-GSK3β could be detected but in contrast to S6 the addition of IL-4 to cultures 

did not result in increased phosphorylation of this protein (Steele et al. 2010). It is 

known that CD4
+
 T-cells secrete IL-4; CD4

+
 T-cells are situated in close proximity to 

CLL cells located within the lymph node. In 2001 Kay et al showed that CLL cells have 

the ability to secrete IL-4 (Kay et al. 2001). In addition, CLL cells possess increased 

numbers of IL-4 receptors compared to normal B-lymphocytes (Kay et al. 2001). A 

study conducted by Vogler et al examined the dual stimulation of CLL cells with 

CD40L-expressing co-culture and IL-4, representing signals provided by T-cells located 

in the lymphoid tissues; significant drug resistance was conferred by these interactions 

(Vogler et al. 2009). However, Burger and Ghandi criticised the Vogler study, as they 

didn’t feel this co-culture system was an appropriate representation of the lymph node 

microenvironment, they believed that this system did not adequately represent the 

complex and dynamic signals CLL cells receive in vivo(Burger and Gandhi 2009). They 

went on to suggest that a more accurate in vitro model for CLL research would be a 

nurse-like cell co-culture system, since this model induced a similar gene expression 

profile to that obtained from CLL cells derived from lymph nodes. In response to this 

criticism, Vogler admitted that the CD40L/IL-4 model may represent an over 

exaggerated model of the lymph node microenvironment and hypothesised that only 

CLL cells in direct cell-cell contact with T-cells in vivo would be activated by this 

system (Vogler et al. 2009). 

The next main finding was that basal phosphorylation of STAT6 and ERK could not be 

detected in the small series of CLL patients analysed. The phosphorylation of STAT6 

was strikingly induced following the addition of 5ng/ml IL-4 to CLL cultures; 

phosphorylated STAT6 could not be detected following CD31 or CD40L ligation alone. 

Experiments conducted by Steele et al also showed that constitutive p-STAT6 was not 

detectable in unstimulated CLL cells, however the addition of between 1-10ng/ml of IL-
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4 to cultures rapidly induced p-STAT6. The addition of IL-4 to CLL culture did not 

augment the constitutively phosphorylated STAT3 protein in CLL patients, 

demonstrating STAT6 protein is a specific target of IL-4 signalling (Steele et al. 2010). 

The results presented in this chapter confirm these findings. 

 Constitutive p-ERK could also not be detected in any CLL patients analysed. However, 

following 1-hour CD31-expressing or CD40L-expressing co-culture p-ERK could be 

detected but exclusively in CD38
hi

 patients. In contrast, Steele et al showed that ERK 

was constitutively phosphorylated in all CLL patients analysed (Steele et al. 2010). 

These findings may be reflective of the heterogeneity of CLL disease and/or possible 

technical variations in the way cells were handled, processed and phospho-proteins 

detected. Muzio et al was also able to detect constitutive p-ERK in some CLL patients 

(Muzio et al. 2008), and showed that phosphorylation of ERK correlated with the Rai 

disease staging system but no correlations were established with any biological or 

prognostic markers (Muzio et al. 2008).  Interestingly, Muzio et al demonstrated that 

patients with constitutive ERK phosphorylation were unresponsive to BCR stimulation 

and thus could represent a cohort of patients with a more favourable clinical outcome 

(Muzio et al. 2008). Most recently, Woyach further characterised CLL patients with 

constitutive ERK phosphorylation and discovered that 23/52 patients displayed 

constitutive ERK phosphorylation (Woyach 2013). The phosphorylation of ERK was 

associated with the absence of PKB phosphorylation and low expression of the poor 

prognostic markers CD38 and ZAP70 as well as extended CLL cell survival in culture. 

Woyach proposed that patients with constitutive p-ERK represent an anergic CLL cell 

subset with an inability to respond to BCR engagement due to chronic antigen 

stimulation. This anergic CLL cell type is resistant to apoptosis and thus the constitutive 

phosphorylation of ERK confers a survival advantage. To assess whether it was 

possible to target the ERK signalling pathway as a means of inducing CLL cell 

apoptosis in this patient cohort, p-ERK 1/2
+
(anergic CLL patients) and p-ERK 1/2

-
(non-

anergic CLL patients) were treated with ERK inhibitors, resulting in a restored 

sensitivity to BCR stimulation in the anergic p-ERK 1/2
+
 group of patients. 

Furthermore, following 48-hour treatment with ERK inhibitors the p-ERK1/2
+
 group of 

CLL patients showed a significant reduction in CLL cell viability when compared to the 

p-ERK1/2
- 

cohort of patients. It remains uncertain whether treatment with ERK 

inhibitors is appropriate in this patient cohort since patients with constitutive ERK 

phosphorylation are associated with an indolent disease type. The maintenance of this 
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anergic response may prove to be beneficial to the CLL patient in terms of disease 

progression (Woyach 2013). In contrast to Woyach’s findings, work conducted by 

Hallaert et al in 2008 showed that prolonged CD40 stimulation of CLL cells resulted in 

the increased activation and phosphorylation of ERK, which in turn phosphorylates 

Bim. This resulted in the proteasomal degradation of this pro-apoptotic BCL2 family 

member, thereby increasing the survival potential of the CLL cells. Treatment of CLL 

cells with PD-98059, a phospho-ERK inhibitor, co-cultured on CD40L-expressing 

fibroblasts inhibited the degradation and loss of Bim. However, when multiple CLL 

patients were analysed treatment with this p-ERK inhibitor was not sufficient to reduce 

the resistance to chemotherapeutics conferred in long term CD40L culture. These 

findings would indicate that although CD40 signalling activates the p-ERK signalling 

pathway, this pathway is not the cause of drug resistance conferred by CD40L-

expressing co-culture (Hallaert et al. 2008). 

 The results generated in this chapter show that p-ERK was only detected in the CD38
hi 

cohort of patients following co-culture with CD40L expressing co-culture, CD31-

expressing co-culture and NTL co-culture. Since CD38 expression is associated with 

poor prognosis in CLL patients these results are not in concordance with Woyach’s 

data, which correlated constitutive ERK phosphorylation in CLL patients with a good 

prognostic outcome. 

Finally, all the co-culture conditions tested in this chapter conferred some 

cytoprotection to CLL cells. The differences between the viability conferred by each of 

the co-culture systems were fairly modest, and at 24 hour and 48 hour timepoints co-

culture and IL-4 treatment have the ability to maintain high levels of CLL cell survival. 

These findings are supported by a study conducted by Cuni et alin 2004 who used a 

non-transfected as well as a CD40L transfected murine cell line to mimic the in vivo 

CLL microenvironment and showed that co-culture of primary CLL cells with the non-

transfected cell line was able to support CLL cell survival. Tonino et al also examined 

the effect of CD31 and CD40L ligation on the viability of CLL cells in a cohort of 10 

CLL patients, five of which were CD38 positive and five CD38 negative. CLL cells 

were co-cultured with CD31 and CD40L transfected fibroblasts with and without CD31 

and CD40 blocking antibodies respectively. Following 7-day cultures no increased 

viability was observed following CD31 co-culture. In contrast when CLL cells were 

cultured with CD40L transfected fibroblasts a significant increase in CLL cell survival 
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was observed. The expression of apoptosis regulating genes was also analysed 

following CD31 and CD40L co-culture, no changes were observed in the expression of 

apoptosis related genes on the CD31-expressing co-culture. In contrast, CD40L co-

culture caused the up-regulation of several apoptosis-related genes including BCL-2, 

BCL-XL, Bfl-1/A1 and Bid as well as Survivin (Tonino S et al. 2008).  

In summary, three co-culture systems were utilised in this set of experiments to 

compare the effect of IL-4, CD31-expressing and CD40L-expressing co-culture as 

individual stimuli on intracellular signalling pathways in CLL cells as well as CLL cell 

viability. These experiments showed that CD40L-expressing and CD31-expressing co-

culture systems have the ability to induce and augment the phosphorylation of PKB 

substrates S6 and GSK3β, as well as ERK but they do not have the ability to induce 

STAT6 signalling. However, the addition of IL-4 was a potent mediator or STAT6 

signalling in all CLL patients. It is worthy of note that IL-4 augmented the 

phosphorylation of PKB substrates S6 and GSK3β as well as ERK but could not induce 

these signals in the absence of basal phospho-protein expression. These experiments 

have also shown the ability of these co-culture systems to maintain CLL cell viability in 

vitro. 
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5 Phenotypic Changes induced by co-culture with CD31-expressing 

fibroblasts can be reversed by pharmacological inhibition of three 

survival-signalling pathways 

 

5.1 Introduction 

The primary aim of this chapter was to investigate the expression of CLL cell activation 

markers following CD38 ligation with its non-substrate ligand CD31 and to investigate 

the role of co-culture stimulated signalling pathways. To further simulate the CLL in 

vivo microenvironment, IL-4 was also added to CD31-expressing co-culture at a 

concentration of 5ng/ml. The CLL cell surface phenotype induced by CD31-expressing 

co-culture was compared to CLL cells cultured in liquid culture (LQ) supplemented 

with IL-4. The analysis of CLL cell surface markers was conducted at a 24-hour time 

point since a previous study showed this to be the optimum incubation time to facilitate 

maximal phenotypic changes (Hamilton et al. 2012). The phenotypic markers of 

interest: CD25, CD38, CD49d and CD69, were evaluated on CD5
+
/CD19

+
gated 

lymphocytes to ensure that only CLL cells were included in the analysis. Multi-colour 

flow cytometry was conducted using the Becton-Dickinson FACSAria flow cytometer 

and automatic compensation was applied to the full antibody panel using single labelled 

compensation beads. The MFI values of the cell surface markers of interest were 

obtained and analysed in a cohort of 12 CLL patients, six of which expressed high 

surface levels of CD38 (CD38
hi 

>50%) and the remaining six patients expressed low 

levels of CD38 (CD38
lo 

<5%). 

Previous studies have shown that three distinct survival-signalling pathways can be 

active in primary CLL cells: the PKB/mTOR, JAK/STAT and ERK signalling pathways 

(Muzio et al. 2008; Steele et al. 2010; Zhuang et al. 2009). Ribosomal S6 is a 

downstream target of PKB/mTOR signalling (Lawlor and Alessi 2001); STAT6 is a 

target of JAK3 (Wurster et al. 2000) and ERK is phosphorylated following CD40L 

ligation (Davies et al. 2004; Steele et al. 2010). Therefore these phospho-proteins were 

used as readouts for the activation of the respective pathways. To determine the role of 

these signalling molecules on the phenotype of CLL cells, three pharmacological 

inhibitors were used to inhibit the pathways defined above. The first inhibitor was 

Rapamycin, an mTOR inhibitor (Argyriou et al. 2012; Huang et al. 2003), the mTOR 
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protein is a target of PKB signalling and is located upstream of ribosomal S6.Inhibition 

of mTOR prevents the phosphorylation of S6. PF956980 is an inhibitor of 

JAK3(Changelian et al. 2008)the activation of this kinase leads to the phosphorylation 

and activation of STAT6 and PF956980 effectively inhibits JAK3 phosphorylation. 

Finally U0126 was used; this inhibitor directly prevents the phosphorylation of ERK 

(Duncia et al. 1998). Inhibitors were added to 2x10
6
 CLL cells in IL-4 supplemented 

media for 30 minutes. After 30 minutes, the CLL cell/inhibitor mixes were added to 

CD31-expressing co-culture for 24 hours or kept in IL-4 supplemented LQ for 24 hours. 

CLL cells were analysed for viability using Annexin V/PI staining. A separate aliquot 

of CLL cells was used for phenotypic analysis on a FACSAria flow cytometer. 
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5.2 Results 

5.2.1 Phosphorylation of STAT6, ribosomal S6 and ERK were inhibited 

following treatment with PF956980, Rapamycin and U0126 respectively 

The first step was to examine the effectiveness and specificity of the three inhibitors 

used. The dose of inhibitor required to inhibit the phosphorylation of STAT6, S6 and 

ERK proteins was established in earlier experiments (Figure 4.9; PF956980 - 5μM, 

Figure 3.11; Rapamycin - 5nM, and Figure 4.9; U0126 - 10μM, respectively). 

In order to assess the specificity of the inhibitors, CLL cells were cultured in LQ 

supplemented with IL-4, or in the presence of CD31-expressing co-culture for a 24-hour 

time point. Each inhibitor was added at the concentrations established to diminish the 

phosphorylation of the target protein. The three inhibitors were pre-incubated with 

1x10
6
 CLL cells for 30 minutes prior to being added to CD31 co-culture to avoid the 

uptake of the inhibitors by the CD31-expressing co-culture layer. After 24 hours, CLL 

cells were removed from cultures, proteins were resolved by SDS-PAGE followed by 

western blotting and detection with three phospho-specific antibodies directed towards 

STAT6, S6 and ERK.  

Figure 5.1 depicts a CD38
hi

 patient sample with basal ERK phosphorylation and basal 

S6 phosphorylation. The same sample showed IL-4-induced STAT6 phosphorylation 

that was completely inhibited following treatment with the JAK3 kinase inhibitor 

PF956980. In contrast, the phosphorylation of STAT6 was maintained following 

treatment with Rapamycin and U0126. Similarly, treatment with Rapamycin completely 

inhibited the phosphorylation of S6 but the p-S6 band was still detectable following 

treatment with PF956980 and U0126. Finally treatment of CLL cells with U0126 

completely eliminated the p-ERK band; this effect was not observed following 

treatment with PF956980 and Rapamycin. Taken together, these data illustrate the 

effectiveness and selectivity of the three inhibitors used in this study.  
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Figure 5.1 Analysis of protein phosphorylation of P-STAT6, P-S6 and P-ERK following inhibition 

with three pharmacological inhibitors at 24 hours. 

Primary CLL cells were incubated with LQ+IL-4 or CD31-expressing co-culture (31) 

for 24 hours in the presence of pharmacological inhibitors. 1x10
6
 CLL cells were pre-

incubated for 30 minutes with PF956980, Rapamycin and U0126 independently at 

concentrations of 5μM, 5nM and 10μM respectively. CLL cells were then added to 

CD31-expressing co-culture with IL-4. Following 24 hours in culture CLL cells were 

removed; protein was extracted and resolved by SDS-PAGE followed by western 

blotting and detection with P-STAT6, P-S6 and P-ERK antibodies to confirm specific 

inhibition of these pathways. 
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5.2.2 Significant changes in CLL cell viability were observed following CD31 co-

culture and treatment with inhibitors 

It is now well established that signals received by CLL cells from the in vivo 

microenvironment are drivers of CLL cell survival (Audrito et al. 2013; Burger 2011). 

Therefore, inhibition of specific signaling molecules may disrupt the supportive 

interactions provided by stromal cells and result in increased cell death.  

To assess the effect of inhibition of three signalling pathways on CLL cell viability,CLL 

cells were treated with the PF956980, Rapamycin and U0126 for 24 hours on CD31 co-

culture. After this time-point a 200μl aliquot of the cell suspension was removed from 

cultures and stained with AnnexinV/PI and analysed by flow cytometry. The CLL cell 

viability under the different culture conditions was then compared. Figure 5.2 shows the 

Annexin V/PI plots for the culture conditions and inhibitors used. Figure 5.3 shows that 

a significant increase was observed in CLL cell viability in cells incubated in CD31-

expressing co-culture when compared to LQ (P=0.001). Following treatment with 

PF956980 and U0126 a significant decrease in cell viability (P=0.0001 and P=0.01 

respectively) was observed. In contrast, CLL cell viability was not significantly altered 

following treatment with Rapamycin (P=0.1125). 
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IL-4 only CD31 co-culture+ IL-4  CD31+ IL-4+ PF956980 CD31+ IL-4+ RAPAMYCIN CD31+ IL-4+ U0126 

     

     

Figure 5.2 Example of CLL patients Annexin V/PI plot for different culture conditions and treatments with inhibitors 

Annexin V/PI plots from a patient sample following treatment with PF956980 (10μm/ml), Rapamycin (5nm/ml) and U0126 (10μm/ml). 
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Figure 5.3 Changes were observed in CLL cell viability following CD31 co-culture as well as 

following treatment with pharmacological inhibitors PF956980 and U0126. 

2x10
5
 CLL cells were removed from the co-cultures following 24 hours in culture. 

CLL cells were then labelled with Annexin V/Propidium Iodide in order to determine 

their viability. A total of 12 patients were analysed and a repeated measures ANOVA 

test was used to compare the different culture conditions and inhibitor treatments. Co-

culture on CD31-expressing fibroblasts increased CLL cell viability and this was 

partially reversed by the addition of PF956980 and U0126. 
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5.2.3 The inhibition of signalling molecules S6, STAT6 and ERK did not alter 

CD38 expression 

CD38 is not only a cell surface receptor but also a recognised marker of cellular 

activation(Deaglio 2010). Therefore, measuring the CD38 expression may provide an 

index of CLL cell activation status. In the following experiments, CLL cells from 12 

patients, six CD38
hi

 (>50%) and six CD38
lo 

(<5%), were either cultured in LQ 

supplemented with IL-4, or in the presence of CD31-expressing co-culture for 24 hours. 

Inhibitors PF956980, Rapamycin and U0126 were added to CD31-expressing co-culture 

to target STAT6, S6 and ERK signalling pathways respectively. The phenotypic 

markers of interest: CD25, CD38, CD49d and CD69, were evaluated on 

CD5
+
/CD19

+
gated lymphocytes to ensure that only viable CLL cells were included in 

the analysis. 

The MFI values for CD38 expression for the 12 patient samples are shown in Figure 

5.4, and the red dots represent CD38
hi

 patients. Figure 5.4a shows that CD38 MFI 

values were significantly increased when CLL cells were incubated with CD31-

expressing co-culture compared to CLL cells incubated in LQ supplemented with IL-4 

for 24 hours (P=0.01). Figure 5.4b shows the CD38 expression before and after co-

culture a line graph to link individual patient samples to show the significant change in 

CD38 values following CD31 and IL-4 co-culture. Addition of the pharmacological 

inhibitors PF956980, Rapamycin and U0126 did not reverse the changes in CD38 

expression induced by CD31-expressing co-culture.   
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a 

 

  

 

 b    

 

Figure 5.4 CD38 expression was increased following 24 hours in CD31-expressing co-culture. 

1x10
6
 CLL cells were placed into co-culture with CD31-expressing fibroblasts 

supplemented with 5ng/ml IL-4. (a) Surface CD38expression was measured by flow 

cytometry after 24 hours and the MFI values were plotted for each CLL patient sample. 

The red dots represent CD38
hi

 patients. A repeated measures ANOVA test was used to 

compare CD38MFI between conditions. (b) The line-graph represents paired samples 

cultured under the two conditions. 
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5.2.4 The ERK inhibitor,U0126 inhibited the increase in CD25 

CD25 makes up the alpha chain of the IL-2 receptor and is a type I transmembrane 

protein that is present on activated B-cells and T-cells(Shvidel et al. 2012). CD25 

expression has been found to be significantly higher in CLL cells when compared to 

normal B-lymphocytes(Damle et al. 2002). A retrospective study conducted by Shvidel 

et al looked at a cohort of 281 patients of which 46 were found to have very high 

expression of CD25. Shvidel et al discovered that CD25 expression correlated with 

CD38 expression levels but not with other prognostic factors such as Binet stage, 

circulating lymphocyte count and ZAP70 expression. Furthermore, no correlation was 

found between CD25 expression and TTFT or OS, thus it was concluded that CD25 

does not hold prognostic relevance in CLL (Shvidel et al. 2012)..  

The MFI CD25 values of the 12 patient samples are shown in Figure 5.5. Figure 5.5a 

shows that there was no significant change in CD25 MFI following CD31-expressing 

co-culture when compared to LQ supplemented with IL-4 after 24 hours. However, 

treatment of CLL cells with the ERK inhibitor U0126 on CD31-expressing co-culture 

and IL-4resulted in a significant decrease in CD25 MFI (P=0.0001) when compared to 

CD31-expressing co-culture and IL-4 only. Treatment with PF956980 caused a decrease 

in CD25 expression but it was not statistically significant probably due to the variable 

response of the individual samples. Following treatment with Rapamycin no differences 

in CD25 MFI were observed. In contrast to the study of Shvidel et al(Shvidel et al. 

2012), no correlation was apparent between levels of CD25 expression and CD38 

expression in this small series. 
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Figure 5.5 A decrease in CD25 expression was observed on CD31 co-culture following treatment 

with U0126. 

1x10
6
 CLL cells were placed into co-culture with CD31-expressing fibroblasts 

supplemented with 5ng/ml IL4. (a) Surface CD25 was measured by flow cytometry 

after 24 hours and the MFI values were plotted for each CLL patient sample. A repeated 

measures ANOVA test was used to compare CD38 expression. The red dots represent 

MFI values from CD38
hi

 patients (b) The line-graph represents paired samples from the 

two conditions, which showed significant change in CD25 MFI. 
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5.2.5 Co-culture with CD31-expressing fibroblasts induces CD49d expression on 

CLL cells which can be blocked by all three pharmacological inhibitors 

tested 

CD49d is an integrin alpha subunit, which constitutes one half of the α4β1 integrin 

receptor(Pacheco et al. 1998). The expression of CD49d is very heterogeneous in CLL 

patients and elevated CD49d expression has been associated with a poor clinical 

outcome(Gattei et al. 2008). Numerous studies have highlighted the prognostic 

relevance of this molecule(Gattei et al. 2008; Majid et al. 2011; Rossi et al. 2008; 

Shanafelt et al. 2008). Majid et al analysed CD49d expression in a cohort of 652 CLL 

patient samples and showed that this marker is associated with a shorter TTFT and OS 

(Majid et al. 2011). In another large-scale study by Gattei et al CD49d showed 

prognostic independence(Gattei et al. 2008). Shanafelt et alhave also shown that CD49d 

expression is correlated with other poor prognostic markers in CLL, including CD38 

and ZAP70(Shanafelt et al. 2008). It has also been hypothesised that CD49d expression 

is associated with the up-regulation of CD38(Shanafelt et al. 2008)and acts in a 

macromolecular complex with CD38, CD44 and MMP9 in CLL cells (Buggins et al. 

2011). However, it has not yet been established whether CD38 ligation with its ligand 

CD31 has an effect on CD49d expression.  

The MFI values for CD49d expression for the 12 patient samples are shown in Figure 

5.6. Figure 5.6a shows that a significant increase in CD49d MFI was observed 

following CD31-expressing co-culture with IL-4 when compared to LQ and IL-4 

culture (P=0.01) after 24 hours. Furthermore, significant decreases in CD49d MFI were 

detected following treatment with PF956980 and Rapamycin (P=0.01 and P=0.001, 

respectively). Figure 5.6b and Figure 5.6c show the changes in CD49d expression in 

individual patient samples following treatment with PF956980 and Rapamycin 

compared to CD31 and IL-4 co-culture.  
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Figure 5.6 The expression of CD49d is induced following CD31 co-culture and is repressed by 

treatment with inhibitors of three signalling pathways 

1x10
6
 CLL cells were placed into co-culture with CD31-expressing fibroblasts 

supplemented with 5ng/ml IL-4. (a) Surface CD49d was measured by flow cytometry 

after 24 hours and the MFI values were plotted for each CLL patient sample. The red 

dots represent MFI values from CD38
hi

 patients. A repeated measures ANOVA test 

was used to compare CD49d expression following culture under the various 

conditions. Figures b and c show line graphs showing the significant changes in 

CD49d MFI between paired samples.  
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5.2.6 Significant changes in CD69 were observed following CD31 ligation and 

treatment with the ERK inhibitor PF956980 

CD69 is a type II integral membrane protein with a single transmembrane domain and 

belongs to the C-type lectin family of surface receptors (Del Poeta et al. 2012). Normal 

B-cells express high levels of CD69 during the early stages of B-cell development and 

CD69 is the earliest identifiable inducible cell surface glycoprotein acquired through 

lymphocyte activation(Del Poeta et al. 2012). CD69 is known to be involved in 

proliferation but also functions as a signal transmitting receptor in 

lymphocytes(D'Arena et al. 2001; Del Poeta et al. 2012).A preliminary study conducted 

by Bigler et al in 1988 proposed that CD69 could be of prognostic significance in CLL 

but independent prognostic value was not attained at this time(Bigler 1988). A 

subsequent study conducted by Guarini et al analysed a large cohort of patients and 

showed that high CD69 expression (>30% of CLL cells) was significantly correlated 

with other established CLL prognostic markers including CD38, CD49d, and ZAP70 

(Guarini et al. 2008). 

The MFI CD69 values of the 12 patient samples are shown in Figure 5.7. A significant 

increase in CD69 MFI was observed in CD31-expressing co-culture with IL-4when 

compared to LQ supplemented with IL-4 (P=0.01) after 24 hours. This elevated CD69 

expression was maintained following treatment with PF956980 and Rapamycin. 

However, a significant decrease in CD69 MFI was observed following treatment with 

U0126 compared to CD31-expressing co-culture with IL-4 (P=0.001). There was no 

significant correlation found between CD69 expression and expression in this cohort of 

patients. 
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Figure 5.7 The expression of CD69 is induced following CD31 co-culture and repressed following 

treatment with U0126 

1x10
6
 CLL cells were placed into co-culture with CD31-expressing fibroblasts 

supplemented with 5ng/ml IL-4. (a) Surface CD69 was measured by flow cytometry 

after 24 hours and the MFI values were plotted for each CLL patient sample. The red 

dots represent MFI values from CD38
hi

 patients. (b and c) A repeated measures 

ANOVA test was used to compare CD69 expression; the line graphs represent 

conditions that showed significant differences. 
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5.3 Discussion 

The aim of this chapter was to investigate the expression of surface molecules 

associated with CLL cell activation following CD31 ligation and to assess whether the 

inhibition of three signalling pathways altered CLL cell viability or immunophenotype. 

Multi-colour flow cytometry was used in this set of experiments to analyse 12 patient 

samples; six of these patient samples had high surface expression of CD38 (CD38
hi

) and 

six had low surface expression of CD38 (CD38
lo

). Four phenotypic markers were 

analysed following 24-hour CD31-expressing co-culture. CD38 and CD49d were 

markers selected since both of these cell surface proteins have proven to be valuable 

prognostic indicators in predicting disease outcome in CLL (Gattei et al. 2008; Majid et 

al. 2011; Shanafelt et al. 2008). CD69 represents the earliest activation antigen on 

lymphocytes and regulates immune responses (Damle et al. 2002), and CD25 is the 

receptor for IL-2 (Decker et al. 2010), which is known to be a potent mediator of CLL 

cell survival.  The activation status of B-cells is known to be associated with clear 

changes in the expression of cell surface molecules.  

After confirmation that p-S6, P-STAT6 and p-ERK could be successfully inhibited in 

CLL cells by western blot analysis, the first observation in this set of experiments was 

that the viability of CLL cells was significantly reduced by the inhibition of p-STAT6 

with PF956980, and p-ERK with U0126, however cell viability was not altered 

following the inhibition of p-S6 with Rapamycin. Experimental evidence has shown 

that activated STAT-6 can enhance the expression of the anti-apoptotic protein BCL-XL 

(Wurster et al. 2002); this in turn may contribute to the pro-survival effects observed 

following treatment of CLL cells with IL-4. It is worthy of note that BCL-XL protein is 

usually only detected in lymph node samples from CLL patients; this supports the 

importance of pro-survival signals received by the microenvironment (Smit et al. 2007). 

CLL cells located within the lymph node and bone marrow microenvironments are 

exposed to elevated levels of cytokines such as IL-4 as well as intracellular signalling 

pathways that raise the apoptotic threshold of CLL cells which may lead to resistance to 

current chemotherapeutic therapies (Dietrich et al. 2012). Dietrich et al demonstrated 

that treatment of CLL cells with the JAK3 inhibitor PF956980 could overcome IL-4 

mediated resistance to fludarabine treatment (Dietrich et al. 2012). Previous 

experiments carried out by Steele et al in 2010 showed that the addition of IL-4 to 

primary CLL cells resulted in the rapid phosphorylation and activation of STAT-6 
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(Steele et al. 2010). The addition of this cytokine prevented fludarabine and 

chlorambucil-mediated killing of CLL cells. However, treatment with PF956980 

reversed any cytoprotective effect observed with IL-4 (Steele et al. 2010). The killing 

effect of this inhibitor was not correlated with IGHV mutational status or the expression 

of prognostic markers CD38 and ZAP70. Therefore, therapies such as PF956980 may 

provide a useful strategy for circumventing the cytoprotective effect of the 

microenvironment in CLL patients, even those with a poor prognosis. Interestingly 

Steele et al also showed that CLL cultures without IL-4 had enhanced PF956980-

induced cell death in some CLL patient samples. Indeed, it was shown that constitutive 

tyrosine phosphorylation of STAT3 is evident in some CLL samples. STAT3, like 

STAT6, has been shown to confer anti-apoptotic capabilities to CLL cells, and 

treatment with PF956980 completely abrogated the phosphorylation of STAT3 as well 

as STAT6. It may be the case that patients who display constitutive phosphorylation of 

STAT3 are sensitive to treatment with PF956980 in the absence of IL-4 (Steele et al. 

2010). 

This set of experiments also showed that treatment with U0126 has a potent effect on 

CLL cell viability. The phosphorylation and activation of ERK following BCR 

engagement has been shown to mediate the survival and growth of cells in human 

malignancies (Fang et al. 2012; Junttila et al. 2008). Platanias et al (2003) showed that 

ERK and upstream effectors MEK1/2 are constitutively activated in many patients with 

acute myeloid leukaemia (AML) as well as patients with chronic myeloid leukaemia 

(CML), indicating that the phosphorylation of ERK is a feature of myeloid malignancies 

(Platanias 2003). In 2012 Paterson et al used the ERK inhibitor U0126 in vitro in a 

cohort of CLL patient samples and revealed a heterogeneous response in terms of 

apoptosis. Some patients showed increased levels of apoptosis following treatment with 

this inhibitor whilst other patients were not responsive to this treatment and apoptosis 

levels remained low (Paterson et al. 2012). Patients who are responsive to this treatment 

may display constitutively phosphorylated ERK, whereas patients unresponsive to this 

inhibitor may not have any constitutive ERK phosphorylation. Immunohistochemical 

studies have revealed that CLL cells taken from the lymph nodes have increased levels 

of p-ERK indicating that this pathway is activated in vivo and thus represents a 

promising therapeutic target to counteract the protective effect of microenvironmental 

stimuli. 
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Treatment of CLL cells with the mTOR inhibitor Rapamycin resulted in a significant 

decrease in CD49d expression, but did not result in a significant increase in CLL cell 

apoptosis. In support of these findings, Decker et al showed that treatment of CLL cells 

with Rapamycin could effectively inhibit cell cycle progression and down-regulate the 

anti-apoptotic protein Survivin but was unable to induce increased levels of apoptosis in 

CLL cells (Decker et al. 2003). Decker postulated that whilst treatment with Rapamycin 

was ineffective in killing CLL cells, Rapamycin is effective in negating the proliferation 

of CLL cells which ultimately drives the progression of this disease. Furthermore, it 

may be the case that treatment of CLL cells with Rapamycin makes CLL cells more 

sensitive to killing with other therapeutic agents (Decker et al. 2003). In contrast to 

these observations Aleksog et al 2008 showed that Rapamycin was cytotoxic to CLL 

cells in a dose-dependent manner. However the efficacy of this inhibitor was limited to 

patients who possessed poor prognostic markers (Aleskog et al. 2008).  

Other inhibitors of the PKB signalling pathway have been used in vitro to assess the 

effect on CLL cell viability. De Frias et al (2009) used PKB inhibitors Akt-1/2 and A-

443654 and showed that both of these inhibitors induced apoptosis in CLL patients in a 

dose-dependent manner (de Frias et al. 2009). Treatment with survival factors IL-4 and 

SDF-1α were unable to protect the cells from apoptosis induced by both PKB inhibitors 

Akt-1/2 and A-443654. Treatment with both of these inhibitors resulted in augmented 

pro survival PUMA and NOXA protein levels and a decrease in anti-apoptotic protein 

MCL1 (de Frias et al. 2009). 

The second observation in this set of experiments was that significant changes in the 

CLL cell immunophenotype could be detected following incubation of CLL cells for 24 

hours in CD31-expressing co-culture supplemented with IL-4. CLL cells up-regulated 

CD38, CD49d and CD69 when compared to expression levels of these molecules when 

incubated with LQ supplemented with IL-4 for the same time period. In contrast, CD31-

expressing co-culture failed to induce significant changes in CD25 expression on CLL 

cells implying that the regulation of CD25 is independent of CD38/CD31 signalling but 

that CD38, CD49d and CD69 can be modulated directly/or indirectly through 

CD38/CD31 interactions or other co-culture interactions. Interestingly CD69 has been 

shown to correlate with the expression of both CD49d and CD38 in CLL cells (Del 

Poeta et al. 2012). CD38, CD49d and CD69 have also been shown to enhance BCR 
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signalling which may influence the survival and proliferative potential of the CLL cells 

(Del Poeta et al. 2012).  

In this set of experiments there was no significant difference in the expression of CD25, 

CD69 or CD49d between CD38
hi

 CLL samples and CD38
lo

 CLL samples under any of 

the conditions tested. However, it should be acknowledged that this study represents a 

very small series and may be subject to sampling error. A larger study conducted by 

Damle et al in 2007 showed that the expression of CD38 on the CLL cell surface is 

associated with an increase in cell surface activation markers. The CD38
hi

 cohort of 

patients displayed a significant increase in the percentage of CLL cells expressing 

activation markers CD40, CD69 and CD79b (Damle et al. 2007).However, the 

increased expression of activation markers in the CD38
hi

 cohort of patients may be 

indicative of temporal differences in the activation of the CLL cell rather than 

differences in response to stimulation. Work undertaken by Deaglio et al in 2010 

focused on identifying genome-wide transcriptional events following 5-day culture on 

CD31-expressing co-culture systems. Deaglio showed using microarray analysis that 

CD31 co-culture induced distinct signalling pathways in CLL and interestingly three 

such pathways included mTOR, ERK as well as JAK/STAT signals (Deaglio 2010). 

The next observation in this set of experiments was that inhibiting intracellular 

signalling resulted in changes in the CLL cells immunophenotype. Firstly, CD49d 

expression was significantly down regulated following treatment with inhibitors 

PF956980 and Rapamycin. It is broadly accepted that CD49d is an independent 

prognostic indicator in CLL patients; increased expression of this molecule is associated 

with an advanced and progressive disease type (Gattei et al. 2008; Majid et al. 2011; 

Rossi et al. 2008). CD49d aids leukocyte migration and trafficking and the increased 

surface expression of CD49d has been linked with the ability for CLL cells to migrate to 

growth permissive microenvironments such as lymphoid tissues (Deaglio 2010; Rose et 

al. 2002). CD49d also possesses receptor capabilities; the amplified expression of 

CD49d is associated with the up-regulation of members of the pro-survival BCL2 

family as well as chemokines CCL3 and CCL4(Zucchetto et al. 2009). A correlation has 

been established between CD49d expression and the expression of CXCR4, a 

chemokine receptor involved in haematopoietic mobilisation and trafficking(Majid et al. 

2011).The prognostic relevance of CD49d makes this molecule an attractive therapeutic 

target, but little is understood regarding the signals involved in the regulation of CD49d 
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expression. The results generated in this chapter implicate STAT6 and S6 signals in the 

regulation of CD49d expression in CLL.  Interestingly Geutskens showed that CD49d 

expression is modulated by the phosphorylation state of ERK in human dendritic cells 

(Geutskens et al. 2004). Furthermore, Sasaki et al has examined CD49d expression on 

CD8
+
 T-cells following IL-4/STAT6 stimulation, a significant down-regulation of 

CD49d expression was observed following stimulation of the STAT6 pathway (Sasaki 

et al. 2008). It may be the case that IL-4 signalling in growth permissive 

microenvironments such as the lymph nodes leads to a reduction of CD49d expression 

on CD8
+
 T-cells preventing the recruitment of these cells to the lymph node 

microenvironments and thus reducing the anti-tumour activity of these T-cells aiding in 

disease progression. The converse may be true in terms of CD49d expression on CLL 

cells, the increased exposure of CLL cells to IL-4/STAT6 signalling may augment the 

expression of CD49d on the CLL cell surface resulting in the attraction of CLL cells to 

growth permissive microenvironments. Natalizumab is a humanised anti-CD49d 

monoclonal antibody, which is already in clinical use for the treatment of multiple 

sclerosis and Crohn’s disease which may be a potential therapeutic suitable for the 

treatment of CLL (Dal-Bo et al. 2009).  

The expression of CD25 was not augmented following CD31-expressing co-culture. 

However, the inhibition of p-ERK with U0126 resulted in a significant down regulation 

of CD25 MFI when compared to CLL cells incubated in CD31-expressing co-culture 

and IL-4. This finding indicates that ERK signalling is involved in the regulation of this 

antigen. CD25 is not deemed to be an independent prognostic marker in CLL (Shvidel 

et al. 2012). However, a study conducted by Hjalmar et al(2002)showed that CD25 

provided some prognostic information; patients with 30% or greater CD25
+
 CLL cells 

had shorter time to first treatment than patients with lower CD25expression(Hjalmar et 

al. 2002). The elevated expression of CD25 is associated with the increased activation 

of CLL cells, and is linked to augmented levels of proliferation (Damle et al. 2002). A 

CD25 inhibitor in clinical use is LMB-2, which is a recombinant immune toxin directed 

towards the α chain of the IL-2 receptor (Decker et al. 2002). LMB-2 has been used to 

effectively treat hairy cell leukaemia (HCL) (Kreitman et al. 1999) and has been used in 

CLL patients but only 1/8 CLL patients treated were sensitive to this immune toxin 

(Kreitman et al. 2000). A possible explanation for this poor response is thought to be 

due to the high levels of this IL-2 receptor on the surface of HCL cells compared to 

CLL cells (Decker et al. 2002). Decker et al looked at whether they could enhance the 
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anti-tumour effect of LMB-2 in CLL cells by up-regulating the levels of CD25 on the 

CLL cell surface. They stimulated CLL cells with an oligonucleotide containing a CpG 

nucleotide and discovered that the modulation of CD25 in this way resulted in an 

increased response in CLL cells to LMB-2 treatment. Interestingly, the same levels of 

toxicity were not observed in normal B- and T- lymphocytes (Decker et al. 2002).  

The expression of CD69 was significantly down regulated following the treatment of 

CLL cells with the ERK inhibitor U0126. CD69 is upregulated following CLL cell 

activation and is associated with a poor clinical outcome (D'Arena et al. 2001; Del 

Poeta et al. 2012). Del Poeta et al showed that surface CD69 expression was up 

regulated on CLL cells located in the lymph nodes and bone marrow, this finding is not 

surprising considering CD69 is associated with retaining lymphocytes at the site of 

stimulation, and the levels of CD69 on circulating CLL cells may be much lower for 

this reason(Del Poeta et al. 2012). CLL cells with increased levels of CD69 in the 

peripheral blood may be indicative of malignant cells that have recently left the lymph 

node or bone marrow microenvironments. In a recent study Wobke et al looked at the 

effect of ERK inhibition on CD69 expression in a human acute monocytic leukaemia 

(AML) cell line; following the treatment of cells with ERK inhibitors PD98059 and 

U0126 a reduction in CD69 mRNA was observed. This finding implicates ERK 

signalling in the regulation of CD69 in monocytes (Wobke et al. 2013) and this present 

study indicates that the same is true for CLL B-cells.  Anti-CD69 antibody therapies 

have been used in animal models with resulting reductions in tumour burden and 

metastasis (Esplugues et al. 2005); such therapies could be beneficial for the treatment 

of CLL. However, the targetting of CD69 may lead to the increased death of normal 

haematopoietic progenitors, with resulting enhanced risk of immunodeficiency and 

infections. Hinton et al (2006) revealed a relationship between CD69 expression and the 

phosphorylation of ribosomal S6 in T-cells. It is known that increased CD69 expression 

on the surface of T-cells is a marker of maturation, T-cells with high CD69 expression 

also showed increased intracellular ribosomal S6 phosphorylation indicating that these 

molecules are functionally linked (Hinton et al. 2006), however the inhibition of S6 

phosphorylation in these experiments did not significantly alter the expression of CD69 

so this may not be the case in CLL cells. 

This set of experiments demonstrated that CD31-expressing co-culture may have a role 

in the up-regulation  of the cell surface activation markers CD38, CD49d and CD69 in 
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primary CLL patients, however since NTL co-culture was not used in this set of 

experiments the effect of the CD31 ligand cannot be assessed. These set of experiments 

also helped to establish the role of individual signalling pathways in CLL cells in vitro. 

The inhibition of p-STAT6 with PF956980 resulted in a significant reduction in CLL 

cell survival as well as a down regulation of cell surface activation marker CD49d. The 

inhibition of p-S6 with Rapamycin had no effect on CLL cell viability but resulted in a 

down-regulation of CD49d. Finally, inhibition of CD69 with U0126 resulted in reduced 

CLL cell viability as well as a down-regulation of CLL cell activation markers CD25, 

CD49d and CD69. The changes induced in these activation markers through the use of 

pharmacological inhibitors may represent targets to counteract the protective effect of 

signalling in vivo.  
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6 The phosphorylation of S6 and ERK is significantly increased in 

CD38
hi

 CLL patients 

6.1 Introduction 

The primary aim of this chapter was to quantify the effects of stimulation of primary 

CLL cells via CD38 ligation and IL-4 treatment in terms of the expression and 

phosphorylation of selected proteins using multi-colour flow cytometry. Given the 

findings of the preceding chapters, the expression of the cell surface markers CD38 and 

CD69, and the levels of the intracellular phospho-proteins S6, STAT6 and ERK, were 

quantified following 1 and 24 hour exposures to the stimuli. 

 Multi-colour flow cytometry allows for the detection of multiple proteins in a single 

patient sample, facilitating the simultaneous identification and quantification of surface 

and intracellular antigens within a specific cell population. In recent years, a number of 

companies have taken this concept further, by developing antibodies that can be used to 

analyse the phosphorylation state of proteins of interest quantitatively using flow 

cytometry. This methodology requires far fewer cells that western blot analysis and 

potentially also provides information on the intensity and kinetics of activated 

signalling targets. 

 In 2012 Blix et al utilised phospho-specific flow cytometry to identify and quantitate 

differences in the activation of signalling molecules in CLL cells compared to normal 

B-cells taken from healthy donors (Blix et al. 2012). Initially Blix et al first analysed 

the basal phosphorylation levels of several signalling proteins, STAT6, ERK and S6 

were measured in this study. Elevated basal p-STAT6 and p-ERK were detected in CLL 

cells compared to healthy donors. In contrast, basal p-S6 levels in CLL cells were 

comparable to p-S6 found in normal B-cells. However, following BCR stimulation with 

anti-IgM increased levels of both p-S6 and p-ERK were detected in CLL cells but not in 

normal B-cells (Blix et al. 2012). 

Perl et al (2012) also used phospho-flow cytometry to monitor levels of phospho-

proteins in serial AML patient peripheral blood samples (Perl et al. 2012). The 

phosphorylation and activation of the PI3K/PKB/mTOR signalling pathway has been 

associated with the resistance of AML cells to chemotherapy. Indeed, the 

phosphorylation levels of S6 were used as readout of mTOR activity and provided a 

quantitative measure of the sensitivity of AML cells to mTOR inhibition. Importantly, 
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this study demonstrated the ability to monitor individual patient responses to drug 

treatment using phospho-protein measurements and provided a proof-of-concept that 

this approach may be useful in other diseases including CLL (Perl et al. 2012). 

An alternative multiplex approach for the analysis of phospho-proteins is the use of 

microbead suspension arrays. In 2006 Khan et al used fluorescently tagged microbeads 

to recognise target phospho-proteins in lysates generated from CLL cell lines (Khan et 

al. 2006). Mec-1 and Mec-2 CLL cell lines were used in this study; both lines were 

established from the same CLL patient at different stages of CLL disease progression. 

The Mec-2 cell line represents a blood sample drawn from a CLL patient in an 

advanced stage of disease progression; this blood sample had a white blood cell count 

3-fold higher than that of the Mec-1 cell line, which was established from the same 

patient at an earlier point when the disease was in a more indolent stage. The 

phosphorylation levels of PKB and ERK (amongst other phospho-proteins) were 

assessed in these cell lines; p-PKB and p-ERK were significantly elevated in lysates 

generated from sodium pervanadate-treated (activated) cell lysates from both the Mec-1 

and Mec-2 CLL cell lines. Furthermore, the basal levels of p-PKB and p-ERK were 

dramatically increased in the Mec-2 cell line, which implicates the activation of these 

signalling pathways in the progression of this disease (Khan et al. 2006). 

In this set of experiments multi-colour flow cytometry was used to measure the 

expression of cell surface activation markers, CD38 and CD69. Phosflow antibodies 

purchased from BD biosciences were also used to analyse intracellular phospho-

proteins, S6, STAT6 and ERK. The levels of expression of the extracellular proteins as 

well as phosphorylation levels of the intracellular proteins were measured at 1 and 24 

hour time points. The primary aim of the experiments conducted in this chapter was to 

provide a quantitative measure of phosphorylated intracellular signalling proteins and 

determine the dynamics of these phosphorylation events in vitro. 
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6.2 Results 

6.2.1 The expression of CD38 was increased following 24 hours in CD31-

expressing co-culture 

It is now clear that CD38 is temporally expressed on CLL cells (Calissano et al. 2009; 

Damle et al. 2007); CD38 expression is believed to be rapidly up regulated on the 

surface of CLL cells located within the lymph node microenvironment and subsequently 

down regulated upon re-entry to the peripheral blood. The rapid increase in expression 

of CD38 on the cell surface when CLL cells enter growth permissive 

microenvironments may enhance disease progression and cell survival through CD38 

receptor capabilities. In chapter 3 of this thesis it was shown that CD31-expressing co-

culture for 2 and 5 days resulted in the significant up regulation of CD38 in 20 CLL 

patients. This experiment was conducted to establish whether CD38 was maintained or 

modulated over a period of 24 hours. 

Figure a 6.1a show that at 24 hours CD38 expression was down regulated in LQ and 

NTL-co-culture however an increase in CD38 expression was detected following 

CD31-expressing co-culture. Figure 6.1b represent paired patient samples to show the 

change in CD38 expression following 24 hours CD31-expressing co-culture compared 

to 1 hour (P=0.04). There was also a trend towards increased CD38 expression when 

comparing the expression levels at 24 hours between cells cultured in LQ and cells 

cultured in CD31-expressing co-culture (P=0.01). Figure 6.1c shows an overlaid 

histogram, which is representative of the shift in CD38 MFI following CD31 co-culture 

for 24 hours compared to 1 hour. Figure 6.2 shows that comparable levels of CD38 

were detected following the addition of IL-4 to culture systems at 1 hour  (Figure 6.2a) 

or 24 hours (Figure 6.2b).  
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Figure 6.1An increase in CD38 expression was observed following CD31-expressing co-culture for 

24 hours 

1x10
6
 CLL cells were placed into culture with LQ,or CD31 co-culture/NTL co-culture. 

CD38expression was measured by flow cytometry at 1 hour and 24 hours and the MFI 

values were plotted for each CLL patient sample. a) Shows the mean (SD) CD38 MFI 

at 1 and 24 hours b) line-graph shows individual patients at 1 hour and 24 hours in 

CD31-expressing co-culture. c) Overlaid histogram shows shift in CD38 expression at 

24 hours in CD31 co-culture. In total 15 patients were analysed.  A repeated measures 

ANOVA test was used to compare the different conditions. 
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Figure 6.2 IL-4 does not modulate the expression of CD38 at 1 hour or 24 hours 

1x10
6
 CLL cells were placed into culture with LQ with and without IL-4, or CD31 co-

culture/ NTL co-culture with and without IL-4. CD69 expression was measured by flow 

cytometry at 1 hour and 24 hours and the MFI values were plotted for each CLL patient 

sample. a) Shows the mean (SD) CD69 expression at 1 hour with and without IL-4. b) 

Shows the mean (SD) CD69 expression at 24 hours with and without IL-4. In total 15 

patient samples were analysed. A repeated measures ANOVA test was used to compare 

the different conditions. 
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6.2.2 The expression of CD69 was increased following 24 hour co-culture 

The inducible early activation marker CD69 is expressed very rapidly following 

cellular activation both in vivo and in vitro (Damle et al. 2002). Consistent with this 

concept, the expression of CD69 on CLL cells was shown to be elevated in cells derived 

from the lymph node and bone marrow microenvironments (Del Poeta et al. 2012). In 

T-cells the expression of CD69 is induced 3 hours post-activation at levels easily 

identifiable by flow cytometry (Simms and Ellis 1996). In B-lymphocytes it has been 

shown that RNA expression of CD69 reaches its peak 3-6 hours post-stimulation with 

cell surface expression induced at 12 hours, with the expression of CD69 remaining 

stable over 48 hours (Lopez-Cabrera et al. 1993). CD69 is involved in retaining B-

lymphocytes at the site of stimulation and for this reason the levels of CD69 on the CLL 

cell surface may be lower on circulating cells compared to CLL cells located in lymph 

node and bone marrow microenvironments (Del Poeta et al. 2012). 

To establish whether CD69 expression was maintained or modulated over a 

period of 24 hours in different culture conditions, 1x10
6
 CLL cells were cultured in 

either LQ alone or supplemented with IL-4, CD31-expressing co-culture with and 

without IL-4 as well as NTL co-culture with and without IL-4. At 1 hour and 24 hour 

time points 5 x 10
5
 CLL cells were removed from cultures and immediately fixed in 

Phosflow fix buffer to maintain the phosphorylation of proteins for analysis. Labelling 

of the surface markers CD19, CD38 and CD69 was performed prior to permeabilisation 

of the CLL cells and subsequent labelling with phospho-specific antibodies. The 

expression of CD69 was analysed within a CD19+ gated viable lymphocyte population. 

 Figure 6.3a shows that comparable low levels of CD69 were detected in LQ and 

the co-culture conditions at 1 hour. However, the expression of CD69 was up regulated 

under all conditions after 24 hours in culture. The augmented expression of this 

molecule was significantly up regulated following CD31-expressing co-culture and 

NTL co-culture after 24 hours (Figure 6.3b, P = 0.01 and Figure 6.3c, P =0.01 

respectively). Figure 6.3d shows an overlaid histogram illustrating the increase in CD69 

expression in CD31-expressing co-culture between 1 hour and 24 hours.  Figure 6.3d 

shows that at 24 hours, CD69 expression was significantly higher in CD31-expressing 

co-culture compared to LQ only (P=0.01). In contrast, there was no significant 

difference in CD69 expression between CD31-expressing co-culture conditions and 

NTL co-culture at 24 hours suggesting that co-culture, rather than the specific ligand, 
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has the ability to augment the expression of this marker. Figure 6.4 shows that the 

addition of IL-4 to cultures at 1 hour did not modulate the expression of CD69 (Figure 

6.4a) however at 24 hours the addition of IL-4 appeared to augment the expression of 

CD69 in LQ and co-cultures, however these differences were not significantly different 

(Figure 6.4b). 
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Figure 6.3 An increase in CD69 expression was observed following 24 hour incubation in co-culture 

1x10
6
 CLL cells were placed into culture with LQ, or CD31 co-culture/ NTL co-culture. 

CD69 expression was measured by flow cytometry at 1 hour and 24 hours and the MFI 

values were plotted for each CLL patient sample. a) Shows the mean (SD) CD69 

expression at 1 and 24 hours b) line-graph links individual patients at 24 hours in LQ or 

CD31-expressing co-culture c) line-graph links individual patients at 1 hour and 24 

hours in CD31-expressing co-culture d) line-graph links individual patients at 1 and 24 

hours in NTL co-culture. E) Overlaid histogram shows shift in CD69 expression at 24 

hours in CD31 co-culture.  In total 15 patients were analysed. 
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 a: 1 hour treatment  

 

 b: 24 hour treatment  

 

Figure 6.4 IL-4 does not modulate the expression of CD69 at 1 hour or 24 hours 

1x10
6
 CLL cells were placed into culture with LQ with and without IL-4, or CD31 co-

culture/ NTL co-culture with and without IL-4. CD69 expression was measured by flow 

cytometry at 1 hour and 24 hours and the MFI values were plotted for each CLL patient 

sample. a) Shows the mean (SD) CD69 expression at 1 hour with and without IL-4. b) 

Shows the mean (SD) CD69 expression at 24 hours with and without IL-4. In total 15 

patient samples were analysed. A repeated measures ANOVA test was used to compare 

the different conditions. 
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6.2.3 The expression of CD69 was increased in CD38
hi

 patients 

It has been previously reported that CD69 expression is significantly correlated 

with other prognostic markers in CLL, including CD38 (D'Arena et al. 2001) In Chapter 

5 of this thesis in the patient cohort examined no significant differences could be 

detected in CD69 expression between CD38
hi 

and CD38
lo 

patient groups. To assess 

whether there was a correlation between CD38 expression and CD69 expression in this 

series of CLL patients, CD69 MFI values were plotted for CD38
hi

 or CD38
lo

 patients. 

The box and whisker plot shown in Figure 6.5 demonstrates significantly higher basal 

expression of CD69 in the CD38
hi

 cohort of CLL patients compared to the CD38
lo

 

cohort of patients (P=0.01). 

 

 

Figure 6.5 CD38
hi

 patients display increased CD69 expression 

The median MFI values for CD69 expression for the CD38
hi

 and CD38
lo

 cohort of 

patients are displayed in this box and whisker plot. The CD38
hi

 cohort of patients had 

significantly higher expression of CD69 compared to the CD38
lo 

cohort of patients 

(P=0.01). In total 15 patient samples were analysed. 
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6.2.4 The phosphorylation of S6 is augmented following 1 hour of CD31-

expressing co-culture and decreased after 24 hours incubation in all 

conditions 

In previous chapters, the phosphorylation levels of S6 were assessed following SDS-

PAGE and western blotting. Consistent differences in the phosphorylation of S6 were 

identified; basal levels of phospho-S6 were elevated in the CD38
hi

 cohort of patients 

and the phosphorylation of the S6 protein was augmented in all CLL patients following 

1 hour of CD31-expressing co-culture as well as NTL co-culture.Variations identified in 

both the magnitude and timing of protein phosphorylation and activation can alter the 

viability as well as the proliferative capacity of CLL cells. Tasian et al (2012) used flow 

cytometry to detect inducible p-S6 in acute lymphoblastic leukaemia (ALL) cells 

(Tasian et al. 2012); Perl et al (2012) also detected p-S6 using flow cytometry in AML 

patients (Perl et al. 2012). 

In order to identify quantitative differences in basal and inducible p-S6 in primary CLL 

cells multi-colour cytometry was used; the phosphorylation of p-S6 was examined 

within CD19+ gated viable lymphocytes. Figure 6.6a shows that p-S6 is significantly 

increased following 1 hour in CD31-expressing co-culture compared to LQ culture or 

NTL co-culture (P= <0.0001, P= <0.0001). Figure 6.6b shows that levels of p-S6 are 

also significantly increased following 24 hours of CD31-expressing co-culture 

(P=<0.0001) compared to LQ or NTL co-culture. Figure 6.6c represents paired patient 

samples to show the significant change in p-S6 following 1 hour of CD31 co-culture 

compared to 1 hour in LQ. Figure 6.6d shows an overlaid dot plot, which shows an 

example of the shift in p-S6 MFI following CD31-expressing co-culture compared to 

LQ at 1 hour.   

The bar graph in Figure 6.7 shows that p-S6 is significantly down regulated in LQ and 

NTL co-culture at 24 hours compared to 1 hour (P=0.001, P=0.01 respectively). There 

is also a slight decrease in levels of p-S6 detected at 24 hours compared to 1 hour in 

CD31-expressing co-culture however this loss was not significant. 

Figure 6.8 shows the p-S6 MFI values when IL-4 was added to cultures. The addition of 

IL-4 to LQ and NTL co-culture did not modulate the phosphorylation of S6 at 1 hour 

(Figure 6.8a) or 24 hours (Figure 6.8b). However the addition of IL-4 to CD31-

expressing co-culture at 1 hour resulted in a significant increase in p-S6 (P=0.01), this 

was not observed at 24 hours.  
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a: 1 hour b: 24 hour 

  

c d 

  

Figure 6.6 An increase in p-S6 was detected following 1 hour and 24 hours of CD31 co-culture 

1x10
6
 CLL cells were placed into culture with LQ with and without IL-4,or CD31 co-

culture with and without IL-4. CD38expression was measured within the CD19+ gated 

population by flow cytometry at 1 hour and 24 hours and the MFI values were plotted 

for each CLL patient sample. a) Shows mean CD38 expression at 1 and 24 hours 

without IL-4 b) line-graphs show differences in co-culture at 24 hours c) line graph 

shows difference in CD69 on CD31 co-culture system compared to LQ d) overlaid dot 

plot shows the shift in p-S6 MFI following CD31-expressing co-culture for 1 hour. In 

total 15 patient samples were analysed. 
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Figure 6.7 A significant decrease in p-S6 was observed following 24 hours of LQ and NTL co-

culture. 

1x10
6
 CLL cells were placed into culture with LQ with and without IL-4,or CD31 co-

culture with and without IL-4. CD38 expression was measured within the CD19+ gated 

population by flow cytometry at 1 hour and 24 hours and the MFI values were plotted 

for each CLL patient sample. 
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 a   

 

 b   

 

Figure 6.8 The addition of IL-4 to CD31-expressing co-culture increases levels of p-S6 at 1 hour. 

1x10
6
 CLL cells were placed into culture with LQ with and without IL-4, or CD31 co-

culture/ NTL co-culture with and without IL-4. P-S6 levels were measured by flow 

cytometry at 1 hour and 24 hours and the MFI values were plotted for each CLL patient 

sample. a) Shows the mean (SD) p-S6 at 1 hour with and without IL-4. b) Shows the 

mean (SD) p-S6 expression at 24 hours with and without IL-4. In total 15 patient 

samples were analysed. 
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6.2.5 The phosphorylation of STAT6 is augmented following 1 hour of IL-4 

culture but decreased after 24 hours incubation in IL-4 culture 

In 2012 Blix et al analysed freshly isolated CLL cells and compared the 

phosphorylation of intracellular signalling proteins with normal B-cells taken from a 

healthy donor. One such protein was STAT6; Blix et al revealed that basal levels of p-

STAT6 were elevated in CLL patients compared to normal controls (Blix et al. 2012). 

However, following BCR stimulation the levels of p-STAT6 were not augmented 

further implying a constitutive rather than inducible signal being responsible for the p-

STAT6 observed. In keeping with this notion, Chapter 4 of this thesis established that 

the phosphorylation of STAT6 was only increased in cultures containing IL-4; a 

cytokine that is produced in an autocrine fashion by CLL cells as well as by activated T-

cells (Mainou-Fowler et al. 2001).  

Figures 6.9a and 6.9b confirm that levels of p-STAT6 remain low at 1 hour and 24 

hours in cultures, which do not contain IL-4. The Na3V04 was used as a positive control 

and demonstrates proof of technology, since following treatment with this agent 

increased p-STAT6 could be detected. Figure 6.9c shows that p-STAT6 was down 

regulated in cultures at 24 hours compared to 1 hour, which was significant in CD31-

expressing co-culture and NTL co-culture (P=0.01, P=0.001, respectively). This implies 

that in the absence of IL-4 any basal p-STAT-6 is lost at 24 hours.  

Figure 6.10a shows that the addition of IL-4 to cultures up-regulates p-STAT6 when 

added to LQ (P= <0.0001) and CD31-expressing co-culture (P=0.01) at 1 hour. Figure 

6.10b shows paired patient samples in the culture conditions to represent the significant 

change in IL-4 supplemented LQ compared to LQ at 1 hour. Furthermore the overlaid 

dot plot (Figure 6.10c) shows an example of the shift in p-STAT6 in IL-4 supplemented 

LQ. Figure 6.10d shows that IL-4 can also slightly increase p-STAT6 at 24 hours but 

this is not significant. 
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a  b 

  

 c   

 

Figure 6.9 An increase in p-STAT6 was detected following 1 hour in IL-4 culture 

1x10
6
 CLL cells were placed into culture with LQ,or CD31 co-culture. P-STAT6 levels 

were measured within the CD19+ gated population by flow cytometry at 1 hour and 24 

hours and the MFI values were plotted for each CLL patient sample. a) Shows mean p-

STAT6 MFI at 1 hour well as Na3V04 positive control b) Shows mean p-STAT6 MFI at 

24 hours as well as Na3V04 positive control c) shows mean p-STAT6 at 1 hour and 24 

hours. 
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Figure 6.10 IL-4 treatment up-regulates p-STAT6 when added to cultures at 1 hour 

1x10
6
 CLL cells were placed into culture with LQ with and without IL-4, or CD31 co-

culture/ NTL co-culture with and without IL-4. P-STAT6 levels were measured by flow 

cytometry at 1 hour and the MFI values were plotted for each CLL patient sample. a) 

Shows mean p-STAT6 at 1 hour with and without IL-4. b) Line-graph link individual 

patients in LQ and LQ+ IL4 at 1 hour c) overlaid dot plot shows the shift in p-STAT6 

MFI following IL-4 treatment for 1 hour d) shows  mean p-STAT6 at 24 hours with and 

without IL-4. In total 15 patient samples were analysed. 
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6.2.6 The phosphorylation of ERK is augmented following 1 hour of IL-4 culture 

but decreased after 24 hours incubation in IL-4 culture 

Blix et al 2012 looked at the basal and inducible levels of p-ERK in CLL cells and 

compared them to healthy controls. Elevated basal levels of p-ERK were detected in 

CLL patients, and following BCR stimulation levels of p-ERK were further increased 

(Blix et al. 2012). In Chapter 4 of this thesis it was established that CD40L-expressing 

co-culture was able to induce the p-ERK, and CD31-expressing co-culture was also able 

to stimulate p-ERK but exclusively in patients with high surface expression of CD38.  

In order to identify quantifiable differences in p-ERK following co-culture a Phosflow 

ERK antibody was used. Figure 6.11a and Figure 6.11b show that p-ERK was 

significantly up-regulated following CD31-expressing co-culture at 1 hour (P=0.003) 

and 24 hours (P=0.001) compared to LQ. The significant differences are represented in 

Figures 6.11c and 6.11d with line graphs which link individual patient samples in LQ 

and CD31-expressing co-cultures at 1 hour and 24 hours. Interestingly a significant 

increase was not observed following NTL co-culture which indicates that the 

CD31/CD38 interaction is key to the induction of p-ERK at the 1 hour time point. 

Figure 6.11d shows an overlaid dot plot, which represents the shift in p-ERK at 1 hour 

in CD31-expressing co-culture compared to LQ at this time point. Figure 6.12 shows 

that there is a significant down regulation in p-ERK in LQ (P=0.01) and NTL co-culture 

(P=0.01) at 24 hours compared to 1 hour. However, this was not observed in CD31-

expressing co-culture between these time points. Figure 6.13 shows that the addition of 

IL-4 to cultures did not result in significant changes in the levels of p-ERK under any of 

the culture conditions tested. 
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c d 

  

 e   

 

Figure 6.11 An increase in p-ERK was detected following 1 hour in IL-4 culture 

1x10
6
 CLL cells were placed into culture with LQ, or CD31 co-culture. P-ERK levels 

were measured within the CD19+ gated population by flow cytometry at 1 hour and 24 

hours and the MFI values were plotted for each CLL patient sample. a) Shows the 

mean (SD)p-ERK MFI at 1 hour as well as Na3V04 positive control b) Shows the 

mean (SD)p-ERK MFI at 24 hours as well as Na3V04 positive control c) Line-graph 

link individual patients in LQ and 31 culture at 1 hour d) Line-graph link individual 

patients in LQ and 31 cultures at 24 hours e) overlaid dot plot represents a patient 

sample in LQ and CD31 co-culture at 1 hour.  
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Figure 6.12 A significant decrease in p-ERK was detected in LQ and NTL co-culture after 24 hours 

1x10
6
 CLL cells were placed into culture with LQ, or CD31 co-culture or NTL co-

culture. P-ERK levels were measured within the CD19+ gated population by flow 

cytometry at 1 hour and 24 hours and the mean (SD)MFI values were plotted (n = 15). 

 

  

LQ
 1

H
R

LQ
 2

4H
R

31
 1

H
R

31
 2

4H
R

N
TL 1

H
R

N
TL 2

4H
R

0

100

200

300

400

500

P
-E

R
K

 M
F

I
P= 0.01

ns

P= 0.01



  Chapter 6 

 

165 

  a   

 

  b   

 

Figure 6.13 The addition of IL-4 to cultures does not modulate p-ERK 

1x10
6
 CLL cells were placed into culture with LQ with and without IL-4, or CD31 co-

culture/ NTL co-culture with and without IL-4. P-ERK levels were measured by flow 

cytometry at 1 hour and 24 hours and the mean (SD) MFI values were plotted. a) 

Shows mean p-ERK at 1 hour with and without IL-4. b) Shows the mean (SD)p-ERK 

expression at 24 hours with and without IL-4. In total 15 patient samples were analysed. 
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6.2.7 Quantitative analysis of p-ERK and p-S6 levels confirmed significantly 

increased levels in CD38 positive CLL patient samples 

It was established in Chapters 3 and 4 through western blot analysis that increased basal 

and inducible levels of p-S6 and p-ERK were detected in CD38
hi

 patients when 

compared to CD38
lo

 patients. In this set of experiments the MFI values of p-S6 and p-

ERK were compared between the CD38
hi

 and CD38
lo

 cohort of patients.  

 

Using the MFI values obtained from CLL patient samples sampled at 1 hour, when 

phosphorylation levels of p-S6 and p-ERK were shown to be higher, the CD38
hi

 and 

CD38
lo

 cohorts of patients were compared. The box and whisker plots in Figure 6.14a 

show that the CD38
hi

 cohort of patients had significantly higher levels of basal (LQ) 

P=0.002 and inducible (CD31 and NTL co-culture) p=0.005, p=0.005 p-S6 compared to 

the CD38
lo

 cohort of patients. Similarly figure 6.14b shows that the CD38hi cohort of 

patients have significantly increased levels of basal (LQ) P=0.0002 and inducible 

(CD31 and NTL co-culture) P=0.0002, P=0.02 p-ERK compared to the CD38
lo

 cohort 

of patients.  
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Figure 6.14 Increased p-S6 was detected in CD38
hi

 patient samples compared to CD38
lo
 samples 

The mean MFI values for p-S6 and p-ERK are shown for the CD38
hi

 and CD38
lo

 cohort of patients. Box and whisker plots show significantly higher a) 

p-S6 and b) p-ERK in CD38
hi

patient samples when compared to CD38
lo

 patient samples. In total 15 patient samples were analysed. 
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6.3 Discussion 

The primary aim of this chapter was to quantify the levels of intracellular phospho-

proteins using multi-colour flow cytometry. Following CLL stimulation, cells were 

labelled with antibodies against the markers of activation, CD69 and CD38, prior to 

being fixed and permeabilised to analyse intracellular levels of p-S6, p-ERK and p-

STAT6. Ten CLL patients, five CD38
hi 

and five CD38
lo

, were analysed at 1 hour and 24 

hours following CD31-expressing co-culture with and without the addition of IL-4.  

The first main observation was that CD38 expression was increased on CLL cells 

incubated with CD31-expressing co-culture for 24 hours. In contrast, no significant 

changes in CD38 expression were observed following LQ or NTL co-culture over the 

same time period. This observation demonstrates the specificity of CD31 on the ability 

of CLL cells to up-regulate CD38 on their surface. High CD69 expression has been 

previously shown to correlate with other established prognostic markers including 

CD38 (Damle et al. 2007). In agreement with that report, in this patient cohort higher 

levels of basal CD69 expression were found in the CD38
hi 

patients. The surface 

expression of CD69 was also significantly up regulated after 24 hours incubation on 

both co-culture systems (CD31 and NTL) compared to 1 hour. The NTL and CD31 co-

culture fibroblasts are likely to release cytokines as well as other growth factors that 

induce these phenotypic changes and demonstrate the importance of using NTL co-

culture as a control in experiments. These findings show that co-culture alone has the 

capacity to induce increased expression of CD69 within 24 hours of stimulation.  

Interestingly, the addition of IL-4 treatment to the co-culture systems did not result in 

the modulation of CD69 or CD38 at the 1-hour or 24-hour time points. This implies that 

IL-4 signalling does not significantly impact upon the expression of these activation 

markers. This is in keeping with data generated by Deaglio et al (2003) who looked at 

the effect of culturing CLL cells in the presence of cytokines including IL-2, IL-4 and 

IL-6 amongst others. IL-2 treatment resulted in the up-regulation of CD38 in CD38
hi

 

CLL cells but no upregulation of CD38 was observed in CLL cells with low CD38 

expression. Increased CD38 expression was first observed 30 hours following the 

addition of IL-2 to culture and the maximum CD38 MFI values were detected 72 hours 

post IL-2 stimulation.  The other cytokines analysed, including IL-4, failed to modulate 

CD38 expression within this patient cohort at any of the time points and concentrations 
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examined (Deaglio et al. 2003). Willimott et al (2007) used the CD40L/IL-4 co-culture 

system to stimulate CLL cells and observed augmented CD38 expression, but when 

CD40L-expressing co-culture and IL-4 treatment were compared as separate stimuli it 

was shown that the up-regulation of CD38 is predominantly due to CD40 signalling and 

not IL-4 signalling (Willimott et al. 2007).  

The next main finding was that intracellular phospho-proteins could be detected and 

quantified in primary CLL cells using flow cytometric analysis. In chapters 3 and 4 of 

this thesis the phospho-proteins S6 and ERK were increased following CLL stimulation 

with CD31-expressing co-culture and phosphorylation of STAT6 was increased by IL-4 

treatment. Phospho-specific flow cytometry was utilised in this set of experiments to 

provide a quantitative measure of both the intensity and dynamics of p-S6, p-STAT6 

and p-ERK following CLL cell stimulation. The MFI levels of p-S6 and p-ERK were 

significantly increased following 1 hour on CD31-expressing co-culture but not NTL 

co-culture or LQ; this implies that CD31/CD38 ligation is capable of inducing the 

activation of these signalling molecules independently of other stimuli. In previous 

western blot analysis, p-S6 and p-ERK were augmented following the addition of IL-4 

to cultures. However, when using flow cytometry only the phosphorylation of S6 was 

enhanced following the addition of IL-4 to CD31-expressing co-culture at the 1 hour 

timepoint.  

Phospho-specific flow cytometry experiments also showed significantly increased 

levels of p-STAT6 following the addition of IL-4 to CLL cultures. In contrast, p-

STAT6 levels were not altered following CD31/CD38 ligation, which is in keeping with 

the findings generated in previous chapters using western blot analysis. In vivo mouse 

studies have been used to establish both the spatial and temporal range of IL-4 

signalling. In order to do these mice were infected with parasitic pathogens and IL-4 

signalling was measured by monitoring levels of p-STAT6. Four days after 

administering the infection, p-STAT6 could be detected, which was sustained at similar 

levels over the course of the two-week experiments. The half-life of p-STAT6 was 

analysed to ensure the phosphorylation of STAT6 was due to the sustained IL-4 

stimulation; the half-life of STAT6 phosphorylation was found to be 15 minutes 

(Perona-Wright et al. 2010). The transient nature of STAT6 phosphorylation may 

explain why p-STAT6 cannot be detected in freshly isolated peripheral blood. In 

contrast, the persistent presence of IL-4 in the lymph node microenvironments in vivo 
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may result in sustained IL4 signalling thereby maintaining the phosphorylation of 

intracellular STAT6 in CLL cells. However, when CLL cells leave the lymph node 

environment and enter the peripheral blood levels of IL-4 may not remain high enough 

to maintain the phosphorylation of STAT6. 

The MFI values obtained using Phospho-specific flow cytometry were lower than 

expected when compared to the intensity of the bands detected by western blot analysis. 

Following CD31/CD38 ligation a robust increase in band intensity of p-S6 was detected 

with western blot analysis in all patients analysed. The disparity in the signals obtained 

through western blot analysis and phosphoflow cytometry may be due to limitations in 

the Phosphoflow approach. In the western blot experiments performed in this thesis, 

CLL cells were maintained on ice following stimulation and lysates were generated 

rapidly thereafter. A major limitation of the phosphoflow detection methodology 

employed here was the fluorescence intensities of phospho proteins were relatively low 

suggesting that this approach may not be sensitive enough to detect subtle changes in 

signalling molecules. To ensure accurate results are obtained using flow cytometry it is 

important to maintain phospho-specific epitopes following CLL cell stimulation. 

Recently Li et al measured p-S6 in multiple myeloma patient samples and optimised a 

protocol for flow cytometry analysis to preserve levels of p-S6 in patient samples. Li et 

al demonstrate that levels of p-S6 were rapidly diminished at room temperature over a 

period of 48 hours. Following 24 hours over 50% of the p-S6 signal was lost compared 

to basal levels. In response to this finding, they developed a fixation protocol which 

involved the immediate transfer of whole peripheral blood into lysis and fixation buffer 

to show that p-S6 could be maintained for 24 hours (Li et al. 2013).  

Furthermore, the optimisation of the cell permeabilisation method employed may be 

required to accurately measure levels of intracellular phosphorylated proteins. Kritzik 

and Nolan focused on both the ERK cascade and the JAK/STAT signalling pathways. 

Different permeabilisation agents were used (methanol vs detergent-based) to determine 

which agents resulted in the best detection of intracellular proteins. It was discovered 

that the detergent-based permeabilisation method was most effective for detecting 

phosphoproteins located within the cytoplasm such as ERK (and S6), whereas a 

methanol based cell permeabilisation was more effective in detecting nuclear 

translocated phospho-proteins such as STAT6 (Krutzik and Nolan 2003). In these 

experiments a detergent-based permeabilisation agent was used, which may not be 
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suitable for detection of nuclear located p-STAT6.Optimisation of these protocols may 

result in higher signal output by flow cytometry.  

Temporal changes in phospho-proteins were detected; p-S6, p-STAT6 and p-ERK were 

all down regulated at 24 hours compared to 1 hour under all conditions. In 2011, Woost 

et al compared bone marrow samples from healthy controls and AML patients and 

showed that following stimulation there was an enhanced response in the 

phosphorylation of S6 and ERK. The kinetics of these phosphorylation events was 

measured in AML patients and it was shown that p-ERK could be detected 2 minutes 

post stimulation and p-S6 could be detected 4 minutes following stimulation (Woost et 

al. 2011). The experiments in this chapter demonstrate the potent ability of CD38 

stimulation to induce rapid phosphorylation of both ribosomal S6 and ERK. The reason 

for the down-regulation of phospho-proteins at 24 hours compared to 1 hour may be due 

to the chronic stimulation of CLL cells. Cells may be maximally stimulated at a time 

point less than 24 hours resulting in the loss of unstable phospho-epitopes. Given the 

importance of IL-4 for inducing phosphorylation of STAT6, it may be that IL-4 levels 

may have been depleted at the 24-hour time point and therefore the p-STAT6 signal 

could not be sustained.  

In summary, experiments in this chapter have established that Phosphoflow cytometry 

can be used to detect quantitative changes in basal and inducible levels of intracellular 

phospho-proteins S6, STAT6 and ERK following short term CD31-expressing co-

culture. Furthermore these experiments have confirmed that basal and inducible levels 

of p-S6 and p-ERK are significantly higher in CD38
HI

 patients. However, relatively low 

levels of phospho-proteins were detected using this method so optimisation of the 

permeabilisation protocol in particular may be required to determine more accurate 

results.
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7 Final Discussion 

In the experiments carried out in this thesis, western blotting and flow cytometry were 

combined to investigate CD31/CD38 signalling in primary CLL cells. Understanding 

the clinical heterogeneity of CLL may be facilitated by identifying the underlying 

differences in signalling pathways activated by a variety of in vivo microenvironmental 

stimuli. Therefore, the primary objective of this study was to determine how differential 

signalling could contribute to disease progression. Given the known association 

between CD38 expression and poor clinical outcome in CLL (Damle et al. 2007; 

Deaglio 2003a, 2008a), this research project focused on the downstream consequences 

of CD31/CD38 ligation in order to establish whether differential CD31/CD38 signalling 

might provide an explanation for the inferior prognosis of CD38
+
 patients. 

During the course of this study, the expression of CD38 was routinely measured and, in 

keeping with previous studies, it was shown to be dynamically upregulated following 

CD31 co-culture (Deaglio 2001b; Hamilton et al. 2012). This readout served as a 

valuable biomarker to help validate the various instrumentation used during the course 

of the study. An increase in CD38 expression was observed using three different flow 

cytometers at four different time points. Chapter 3 showed a significant up-regulation of 

CD38 on CD31 co-culture at two and five days, the CD38 MFI was measured using the 

Accuri C6 flow cytometer in the CD19+/CD5+ gated lymphocyte population. In 

Chapter 5, the MFI of CD38 was measured following 24 hours of CD31-expressing co-

culture, and it was shown that CD38 was also significantly up-regulated at this time-

point; this analysis was conducted on the Aria Flow cytometer within the CD19
+
/CD5

+
 

gated lymphocyte population. Finally in Chapter 6, an up-regulation of CD38 was also 

detected at 24 hours following CD31-expressing co-culture in a CD19
+
 gated 

lymphocyte population. This analysis was conducted on the Canto II flow cytometer. 

No change in CD38 expression was detected in CLL cells cultured with non-transfected 

co-culture cells, thus these experiments demonstrate the potent ability of CD31/CD38 

signalling to modulate the expression of CD38 on the CLL cell surface.  

In order to assess the early consequences of CD38/CD31 ligation, 1-hour co-culture of 

primary CLL cells with CD31-expressing cells were analysed. These conditions led to 

augmented phosphorylation of the signalling molecules S6 and GSK3β. S6 

phosphorylation was demonstrated following SDS-PAGE and western blotting in a cell 

population and was demonstrated at the single cell level by flow cytometry. This is the 
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first time that stimulation of primary CLL cells through CD38 has been directly linked 

with the PI3K/PKB pathway. Furthermore, Rapamycin and the PI3K inhibitor 

LY294002 could inhibit the activation of S6. Phenotypically, CD38 ligation is 

associated with increased cell survival and proliferation (Deaglio, 2010; Hamilton et al, 

2012). The PI3K/PKB signalling pathway plays an important role in both CLL cell 

survival and CLL cell proliferation (Cuni et al. 2004; Hoellenriegel et al. 2011; Scupoli 

and Pizzolo 2012). Linking CD38 with the PI3K/PKB pathway maybe important for 

this phenotype and may be involved in the development of disease.  

The phosphorylation of ribosomal protein S6 showed variation from patient sample to 

patient sample. Basal levels of p-S6 were elevated in CLL patient expressing high levels 

of CD38. On the same western blots, a CD38 high and a CD38 low patient were 

analysed and revealed that the levels of p-S6 in unstimulated CLL cells were elevated in 

patients with higher expression of CD38 (Figure 3.5, Figure 3.7, Figure 4.4).  Flow 

cytometry analysis, which is more quantitative, also showed that the MFI of p-S6 was 

significantly increased in the CD38
hi

 cohort of CLL patients compared to the CD38
lo 

cohort of patients (Figure 6.14). Interestingly flow cytometry also revealed that there 

was a difference following CD31 co-culture (Figure 6.14). These data provide a further 

link between CD38 and the ribosomal protein S6 and suggests that S6 is elevated in 

vivo which may have implications for ability of CLL cells to proliferate.  

Data from western blotting and flow cytometry showed S6 phosphorylation was a 

dynamic event that had the capacity to respond to diverse stimuli and integrate multiple 

pathways.  In the absence of cell stimulation, p-S6 was decreased at 4 hours (Figure 

3.12). Flow cytometry showed a quantitative and significant loss of p-S6 in liquid 

culture at 24 hours (Figure 6.7). This suggests that p-S6 must be actively maintained in 

CLL cells in vivo, perhaps through transient interactions with the endothelium during 

circulation. S6 phosphorylation was further induced by co-culture with CD40L-

expressing cells and could be augmented by the addition of the cytokine, IL-4. 

Interestingly, incubation of some patient samples with non-transfected co-culture cells 

could also increase p-S6. S6 phosphorylation is downstream of the mammalian Target 

of Rapamycin (mTOR). This pathway has the capacity to integrate multiple signalling 

pathways (Laplante and Sabatini 2012), which is illustrated well by the work presented 

here.  
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The mTOR inhibitor Rapamycin could induce the complete inhibition of p-S6 even in 

the presence of CD31-expressing co-culture. Rapamycin has anti-cancer properties in 

solid tumours and lymphomas. Activated CLL cell treatment with Rapamycin showed a 

significant inhibition of proliferation but no evidence of increased cell death (Decker et 

al. 2003). The potent inhibition of p-S6 by Rapamycin may be an important factor in the 

anti-cancer properties of Rapamycin and other analogues of this pharmacological 

inhibitor. Activation markers on the CLL cell surface were assessed following treatment 

of CLL cells on CD31-expressing co-culture with Rapamycin and were compared to 

untreated CLL cells on this co-culture system at 24 hours. Treatment with Rapamycin 

resulted in the significant down regulation of CD49d, CD25 and CD69 expression. The 

viability of CLL cells was also assessed following treatment of CLL cells with 

Rapamycin and this inhibitor did not affect CLL cell viability. Decker et al also showed 

that Rapamycin did not affect CLL cell viability (Decker et al. 2003), but aided in the 

treatment of CLL cells by negating the proliferative capacity of CLL cells. CD49d 

expression has been shown to be associated with proliferative markers (Rossi et al. 

2008), thus the suppression of proliferation with Rapamycin may be due to in part the 

down regulation of CD49d.   

Clinical trials have been used to test the efficacy and tolerability of Rapamycin and its 

analogues in CLL patients. For example Zent et al used Rapamycin analogue 

everolimus that had previously been used to treat relapsed renal cancer. A phase II 

clinical trial revealed that treatment with this mTOR inhibitor resulted in the 

mobilization of CLL cells from lymph nodes into the peripheral blood in a proportion of 

CLL patients. The movement of CLL cells from the protective stromal 

microenvironment into the peripheral blood will enhance the cytotoxicity of CLL cells 

to other pharmacological agents improving treatment outcomes (Zent et al. 2010).   

Other inhibitors of S6 phosphorylation have also been used in CLL research. A 

derivative of Rapamycin named RAD001 was used in an in vivo model of CLL. It was 

shown that RAD001 was able to significantly delay the growth of tumours and in some 

cases resulted in the regression of established tumours(Majewski et al. 2000). The 

ability of both RAD001 and Rapamycin to effectively inhibit p-S6 shows that ribosomal 

S6 is a major target for phosphorylation by mTOR, which is important when assessing 

the immunosuppressive properties of Rapamycin and other analogues. The 

phosphorylation status of S6 is increasingly being used as a potential biomarker to 

evaluate aberrant activation of PI3K and mTOR pathways. The monitoring of response 
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to these treatments in several disease contexts has been assessed for example in AML, 

prostate cancer, breast cancer as well as antibody-mediated rejection in heart transplant 

models(Chow et al. 2006; Lepin et al. 2006; Thomas 2006; Thomas et al. 2004). 

The phosphorylation of the signalling molecule ERK was also assessed in this thesis 

using western blot analysis as well as flow cytometry and ERK inhibitors. Western blot 

analysis showed that basal and inducible p-ERK could only be detected in some of the 

CD38
hi 

cohort of patients analysed (Figure 4.4). Phosphoflow analysis was also used as 

a means to quantitatively measure basal and inducible levels of p-ERK. A modest but 

reproducible increase was induced by co-culture with CD31-expressing cells as 

measured by flow cytometry (Figure 6.11). A significant increase in basal and inducible 

p-ERK was detected in the CD38
hi

 cohort of patients compared to the CD38
lo

 cohort of 

patients supporting the findings of western blot analysis. The detection of constitutive 

p-ERK in CLL has been reported in other studies, for example Steele et al were able to 

detect basal p-ERK in all patients analysed(Steele et al. 2010), Cesano et al detected 

constitutive phosphorylation of ERK in 59% of patients analysed (Cesano et al. 2013), 

and Muzio et al reported the detection of basal p-ERK in around 50% of patients 

analysed (Muzio et al. 2008).  The disparity in terms of detection of constitutive p-ERK 

in CLL patients in these studies and experiments carried out in this thesis highlight the 

heterogeneity of CLL and the challenges of working with primary tumour cells. It is 

possible that both biological and technical differences contributed to the discrepancy 

between the studies. For example, the prognostic marker composition of the cohorts 

examined may play a critical role in determining both basal and inducible signalling 

pathway activation. It was not possible to explore this possibility here, as the previously 

published work did not describe the patient characteristics of the samples used. In 

addition to inherent biological differences, cell preparation techniques and phospho-

antibody selection may contribute to the discrepant results in terms of phosphorylated 

ERK protein. Cesano et al reported that p-ERK was independently prognostic in terms 

of TTFT. Therefore the targeting of this pathway is an attractive prospect in CLL, 

specifically in patients with a progressive disease type (Cesano et al. 2013).  

The p-ERK inhibitor U0126 was used in this study to establish the effect of inhibiting 

this signalling molecule on cell activation markers as well CLL cell viability. The 

treatment of CLL cells with U0126 for a 24-hour time point resulted in the down-

regulation of cell surface activation markers CD25, CD49d and CD69. Furthermore 
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treatment of CLL cells with U0126 resulted in reduced CLL cell survival. These 

findings imply that ERK signalling is involved in CLL cell activation as well as 

supporting CLL cell survival. 

The amplitude and duration of PKB and ERK signalling have been shown to be critical 

in determining cell cycle progression (Longo et al. 2007; Ringshausen et al. 2002). 

Signalling molecules, which include PKB and ERK, have shown elevated and sustained 

activation in CLL cells undergoing proliferation. Longo et al studied whether the forced 

activation of PKB and ERK signals altered the propensity of cells to proliferate. To do 

this, CLL cells were transfected via nucleofection to induce the constitutive 

phosphorylation of PKB and ERK respectively. Following nucleofection CLL cells 

were stimulated with CpG ODN for 44 hours, and after this point it was shown that 

sustained PKB signalling resulted in the up-regulation of Cyclin-A, a marker of cell 

cycle progression. The sustained activation of ERK was not shown to induce the up-

regulation of cyclin A. Inhibitors of PI3K/PKB and ERK signalling pathways were 

used, with resulting inhibition of proliferative responses. Therefore the observation that 

cyclin A was not up-regulated following the chronic stimulation of the ERK signalling 

pathway is surprising. When looking at the expression of cell cycle markers, Longo et 

al discovered that ERK inhibition mainly inhibited the induction of cyclin A, which is 

involved in later phases of the cell cycle whereas PKB inhibition induced changes in 

cyclin D3. P27
KIP1

, Cyclin E as well as Cyclin A and PKB has been shown to regulate 

G1-S phase transition in the cell cycle (Longo et al. 2007). Therefore the activation of 

these markers induced by PKB signalling is required for cell cycle progression and 

show why a proliferative response was not observed following the chronic stimulation 

of ERK.  

The dual targeting of ERK and PI3K/PKB signalling pathways has shown to be 

effective in the treatment of thyroid cancer cells in vitro. ERK inhibitor AZD6244 and 

PI3K inhibitor GDC0941 were used alone and in combination and the levels of p-ERK 

and p-PKB were measured by western blot analysis. Cell cycle progression and levels 

of apoptosis were measured using flow cytometry; p-ERK and p-PKB were completely 

abrogated following treatment with inhibitors and the toxicity of these drugs were 

shown to be synergistic in combination (Kandil et al. 2013). Therefore the dual 

targeting of ERK and PKB may provide an interesting therapeutic option for the 

treatment of CLL. Interestingly a report by Paterson et al has shown that the inhibition 
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of PI3Kδ with CAL-101 has been shown to interfere with ERK activation indicating 

that ERK is also a downstream target of PI3K, therefore it may be the case that PI3K 

can coordinate survival signalling through dual pathways both ERK as well as PKB 

(Paterson et al. 2012).  

Furthermore, in this thesis it was shown with western blot analysis and phosphoflow 

cytometry that the addition of IL-4 to cultures resulted in the rapid up-regulation of p-

STAT6. In contrast, there was no detectable basal p-STAT6 and CD31/CD38 ligation 

did not induce p-STAT6. The IL-4 induced p-STAT6 bands detected with western blot 

analysis were comparable in intensity in all CLL patients regardless of CD38 positivity, 

which implies that this signalling pathway is independent of CD38 signalling. 

Phosphoflow cytometry was conducted at 1 hour and 24 hours and also showed that the 

addition of IL-4 to cultures at these time points resulted in significantly increased MFI 

of intracellular p-STAT6. Phosphoflow cytometry also showed that there was no 

significant difference in MFI of p-STAT6 between CD38
lo

 and CD38
hi

 cohorts of CLL 

patients. 

Treatment with JAK3 kinase inhibitor PF956980 completely abrogated the p-STAT6 

signalling and furthermore following 24 hours treatment with PF956980 increased 

levels of apoptosis were detected. Steele et al showed that p-STAT6 could be abolished 

following treatment with PF956980 but also showed that the constitutive 

phosphorylation of STAT3 was also inhibited following treatment with this inhibitor 

(Steele et al. 2010). Therefore the increased levels of apoptosis shown following 

treatment with PF956980 cannot be completely attributed to the inhibition of p-STAT6 

but rather reflect the inhibition of all pathways modulated by JAK signalling. 

Furthermore a study by Ghamlouch et al looked at the effect of multiple cytokines on 

CLL cell viability. Following the addition of IL-2, IL-6, IL-10, IL-12, IL-15, IL-21, 

BAFF and APRIL separately to CLL cultures in vitro CLL survival was moderately 

improved. The combination of all of these cytokines resulted in increased CLL cell 

viability, which was sustained over a period of 7 days (Ghamlouch et al. 2013). This 

implies that soluble factors may work synergistically to maintain CLL cell survival in 

vivo. 

The work conducted in this thesis has demonstrated the potent ability of CLL cells to 

respond to stimulation in vitro. Using phosphoflow cytometry it was possible to 

quantitatively corroborate findings from western blot analysis. Using western blot 
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analysis allowed for the identification of p-S6 and p-GSK3β as downstream targets of 

the PI3K/PKB signalling pathway. This technique allows for the precise molecular 

weight of proteins of interest to be assessed that is not possible with flow cytometry; 

western blot analysis also shows antibody specificity. However, flow cytometry allows 

for the rapid quantification of antigens whereas with western blotting the process takes 

around 2 days. Flow cytometry also allowed for simultaneous analysis of multiple 

phospho-proteins in the same cell population. Western blot analysis required >3 x 

10
6
cells per experimental condition, whereas flow cytometry required much lower 

numbers of input cells (< 1 x 10
6
).  

There was a robust increase in phospho band intensity following CD31-expressing co-

culture detected with western blot analysis in this study however much more modest 

differences in phospho-proteins were observed using phosphoflow cytometry. However, 

it is not possible to come to any definitive conclusions about the role of CD31 as 

opposed to co-culture with fibroblasts in the parameters measured. Wu et al assessed 

different cell permeabilisation agents for the use in Phosphoflow cytometry. A 

detergent-based cell permeabilisation method was the most effective for detecting 

phosphoproteins located in the cytoplasm such as ERK and S6, whereas methanol is 

more effective in detecting nuclear translocated phosphoproteins such as STATs. 

Therefore a problem arises when you are assessing the dual phosphorylation of multiple 

intracellular proteins, which have different requirements. There remain other technical 

limitations in the phosflow approach, namely the fact that the fluorescent intensities of 

phosphorylated proteins are quite weak and subtle changes in signalling pathways are 

often not identified; establishing optimal fixation and permeabilisation methods may 

help increase the sensitivity of detection (Wu et al. 2010). The combination of western 

blot analysis and Flow cytometry has proven to be an effective way of identifying 

phospho-proteins and cell surface markers in this project. 

Whilst it is understood that CD38 is a marker of poor prognosis in CLL, it is not known 

whether CD38 signalling is the cause of developing CLL or arises as a consequence of 

the disease. Work is ongoing to uncover the role of CD38 signalling in CLL cells, as 

this should provide a better understanding of the precise biological role of the CD38 

protein in this disease. The results generated in this thesis support the view that CD38 is 

an important signalling molecule involved in the pathogenesis of CLL, providing 

survival signals to CLL cells which may account for the presence of residual disease 
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when CLL is treated with chemotherapeutic agents. Therefore the targeting of CD38 

with pharmacological inhibitors may help with the treatment of CLL. Daratumumab is a 

CD38 inhibitor under laboratory investigation, which has been shown to be effective in 

the treatment of haematological malignancies including CLL as well as multiple 

myeloma. Parallel studies carried out in 2011 by Weers et al and van de Veer et al 

showed that low doses of Daratumumab could inhibit tumour growth in a xenograft 

mouse model and this drug was also effective in antibody and complement-mediated 

killing of multiple myeloma in vitro even in the presence of bone marrow stromal cells. 

Furthermore, when Daratumumab was used in combination with Lenalidomide, 

enhanced cytotoxicity was observed. There are however major concerns with using anti-

CD38 antibodies since CD38 is expressed in a wide range of cell types including 

lymphoid, myeloid, epithelial, eye and brain cells. Therefore the side effects of this 

treatment in vivo would have to be determined. Daratumumab has been used in a Phase 

I/II clinical trial to treat patients with multiple myeloma and showed clinical benefit in 

over 50% of patients treated with limited side effects. 

The heterogeneity of CLL makes the identification and targeting of pro-survival 

signalling pathways in patients a promising prospect. However, studies to date have 

often shown disparity between in vitro efficacy and clinical responses in vivo. 

Combining conventional chemotherapeutics and therapies to target microenvironment 

signalling may prove to be effective in the prevention of MRD. The understanding of 

CLL biology has significantly advanced within the last decade, however the challenge 

remains in translating biologically relevant findings into improving the clinical outcome 

for CLL patients. 
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