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Abstract 
 

This review article considers 2´- and 3´-labelled nucleosides, which are of great 

importance as Positron Emission Tomography (PET) probes in clinical diagnostics and 

PET research. Although the radiochemical preparation of several [
18

F]-labelled 

nucleosides such as [
18

F]FLT or [
18

F]FAC has been accomplished within the last two 

decades, a number of potentially interesting nucleoside-based biomarkers are not yet 

available for automated GMP production due to the lack of fast and efficient synthetic 

methods for late-stage [
18

F]-introduction. In order to meet recent demands for new PET 

based biomarkers in various clinical applications, appropriate precursors that can easily 

be fluorinated and deprotected need to be developed. 

 

Keywords: nucleoside analogues, late stage precursor, [
18

F]-incorporation, radiosynthesis. 

 

Introduction 
 

PET (and PET-CT) imaging continues to develop as a powerful tool to quantitatively 

determine the in vivo locations of radiolabelled disease biomarkers and drugs, and is emerging 

as the technique of choice in the field of non-invasive imaging. This is particularly apparent in 

areas such as oncology where (repeat) patient scanning provides vital information on the 

diagnosis and grading of cancers, and on response to therapeutic intervention. The exquisite 

sensitivity of PET imaging tracers means that only picomolar tracer concentrations (non-

pharmacological concentrations) are required for patient administration and signal detection, 

hence toxicological concerns become much less significant compared to use of therapeutic 

agents.
[1]

 [
18

F] has become the radionuclide of choice amongst a variety of positron-emitting 

isotopes since [
18

F] provides an attractive balance between radioactive half-life (110 minutes) 

and percentage of β
+
-emission/sensitivity. The fluorinated glucose analogue [

18
F]FDG 

dominates the PET cancer imaging field due to both the selective uptake and trapping within 

“glucose-hungry” tumours
[2]

 and its highly advanced radiochemical synthesis.
[3]

 However, the 

full potential of this powerful scanning technique will only be fully realised when a wider 

range of [
18

F]-fluorinated probes representative of a variety of clinical biomarkers are 
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introduced into routine clinical use.
[3]

 This review article considers the specific case of 2’- and 

3’-[
18

F] labelled nucleosides, considering their importance as imaging biomarkers alongside 

radiochemical challenges for future clinical production applications. 

 

[
18

F]-Labelled Nucleosides as Proliferation Biomarkers 

 

As one of the fundamental cancer hallmarks
[2]

, PET imaging of proliferation within tumor 

tissue represents a major component of an integrated approach towards in vivo cancer 

detection and staging. [
11

C]Thymidine is an early example of a nucleoside based PET tracer 

for proliferation
[4]

, however, this [
11

C]-based tracer was later superseded by the chemical 

analogue [
18

F]fluorothymidine ([
18

F]FLT (1), Figure 1), which combined the advantages of a 

more stable biomarker in vivo
[5]

, with the presence of the preferred [
18

F] positron-emitting 

radiolabel. Uptake of [
18

F]FLT is regulated by the cytosolic S-phase specific thymidine kinase 

(TK1). However, [
18

F]FLT is not incorporated into DNA but acts as a chain determinator 

instead, which is why [
18

F]FLT is not a marker for DNA-synthesis.
[6]

 A range of in vivo 

studies have demonstrated the utility of [
18

F]FLT as a proliferation biomarker, with properties 

complementary to the widely used clinical standard [
18

F]FDG. For example, in studies of 

C3H/Hej mice bearing a radiation-induced fibrosarcoma tumour treated with 5-fluorouracil, 

the decrease in [
18

F]FLT uptake was more pronounced than that of [
18

F]FDG and correlated 

with the proliferating cell nuclear antigen (PCNA) index.
[7]

 FDA (Food and Drug 

Administration) approval of [
18

F]FLT was granted in 2009 for imaging of proliferation and 

monitoring response to treatment.
[6]

 [
18

F]FLT is nowadays accessible in high radiochemical 

yields using automated synthesisers in line with good manufacturing practice (GMP) 

guidelines.
[8,9]

 

The 2´-[
18

F]-labelled arabino nucleoside analogue 2´-[
18

F]fluoro-2´-deoxy-1-β-D-

arabinofuranosyl-5-methyluracil ([
18

F]FMAU (3), Figure 1) has been used to study cancer cell 

proliferation in humans
[4]

 and animal models
[10]

 in settings such as prostate and brain cancer. 

The thymidine analogue FMAU was initially developed as an antiviral and antineoplastic 

agent, but when labelled with [
18

F] it is selectively taken up and incorporated into DNA of 

proliferating cells.
6
 DNA incorporation makes [

18
F]FMAU a powerful cell proliferation 

marker alongside the non DNA-incorporated [
18

F]FLT. Although [
18

F]FMAU can be 

synthesised in acceptable radiochemical yields and high radiochemical purity,
[11]

 routine 

production for clinical studies is not yet established. 

 

[
18

F]-Labelled Nucleosides in Prediction of Response to Nucleoside Analogue 

Chemotherapy 

 

Nucleoside analogues such as 5-fluorouracil, clofarabine and gemcitabine are used clinically 

in many types of cancer with variable (often low) response rates and serious dose-limiting 

side effects in many cases. Imaging using nucleoside PET probes is becoming established as 

an important tool to predict patient response and inform patient stratification, an important 

objective towards personalised cancer chemotherapy.
[12]

 For example, [
18

F]FAU (2, Figure 1) 

can be used to identify in vivo expression rates of the target enzyme thymidylate synthase 

(TS) to potentially assess a positive outcome using TS-inhibitors such as 5-fluorouracil.
[13]

 

Gemcitabine is clinically used for treatment of pancreatic, ovarian, and lung cancers, despite 

being characterised by low response rates (often <20%) and frequent occurrence of grade 3 or 

4 toxicity.
[14]

 1-(2´-deoxy-2´-[
18

F]fluoroarabinofuranosyl)cytosine ([
18

F]FAC, 8, Figure 1) is a 

PET probe with a close structural relationship to gemcitabine and high affinity for 

deoxycytidine kinase (dCK), the rate limiting enzyme in activation of gemcitabine and related 

cancer drugs such as clofarabine. [
18

F]FAC PET has been used to identify dCK-positive and -

negative tumors and predict gemcitabine response in in vivo models.
[15]

 In an extension to this 



work, the influence of cytidine deaminase (CDA), a determinant of gemcitabine resistance, 

was additionally studied using the nucleoside PET probe 1-(2´-deoxy-2´-

[
18

F]fluoroarabinofuranosyl)-5-methylcytosine ([
18

F]FMAC, 9).
[16]

 [
18

F]FAC and [
18

F]FMAC 

were found to be predictive of the in vivo enzymatic activities of dCK and CDA further 

supporting the notion of using nucleoside-based [
18

F] PET to guide selection of nucleoside 

analogues for individualised cancer therapy. 

 

[
18

F]-Labelled Nucleosides in Reporter Gene Imaging – Towards Personalised Medicine 
 

PET imaging has enormous potential for future application to personalised therapy, where 

binding to disease relevant drug target biomarkers provides a platform for introduction of a 

PET tracer for in vivo interrogation of reporter gene products.
[17]

 Herpes simplex virus-1 

thymidine kinase (HSV1-tk) represents a reporter gene product implicated in biological 

processes such as transcriptional regulation
[18]

 and lymphocyte migration.
[19]

 A number of 

[
18

F]-radiolabelled nucleosides have demonstrated promise as reporter probes for HSV1-tk 

gene expression, including [
18

F]FMAU
[20]

, and the corresponding 5-iodo- (7)
[21]

 and 5-

ethylpyrimidine (4)
[22]

 derivatives (Figure 1). 

 

 
 
Figure 1. Selected [

18
F]- labelled nucleosides as PET tracers. 

 

Non-invasive methods for monitoring the long term viability of transplanted stem cells in vivo 

would be of enormous benefit to therapeutic strategies involving genetically modified cells.
[23]

 

For example, the ability to measure engraftment of hematopoietic stem cell transplants non-

invasively within hematopoietic tissue has been reported making use of [
18

F]- labelled PET 

nucleoside probes.
[24]

 Studies have previously used variants of HSV1-tk, as described above, 

however HSV1-tk is immunogenic and therapeutic failure can result from cells expressing this 

enzyme being selectively cleared. The reporter gene in more recent studies is a non-

immunogenic human deoxycytidine kinase containing three amino acid substitutions within 

the active site (hdCK3mut) in combination with [
18

F]FMAU, allowing in vivo measurements 

of long-term engrafted cells and maintaining hdCK3mut expression. 

Altogether, 2´- and 3´-[
18

F]-labelled nucleoside analogues are of increasing importance 

in clinical PET applications and PET research.
[25]

 The ability to introduce the weak [
18

F]-

nucleophile into the sugar moiety, however, is the limiting factor in radiosynthetic methods. 

Limitations in clinical applications are therefore due to difficulties in establishing routine 

clinical radiosynthesis protocols. The radiosynthetic methods covered in this review focus on 
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the 2´- and 3´-[
18

F]fluorinated nucleoside analogues and are based on the current literature 

status which does not include unpublished in-house methods. Furthermore, the discussion will 

be divided into two main sections focusing on both early-stage and late-stage [
18

F]fluoride 

introduction. 

 

Early-stage [
18

F]-introduction in 2´- and 3´-[
18

F]-labelled nucleosides 

 

The most common and radiochemically efficient method for the synthesis of 2´-

[
18

F]fluorinated uridine- and cytidine-arabinonucleosides is based on an early stage 

radiofluorination of a protected sugar moiety in a manner similar to the radiosynthesis of 

[
18

F]FDG.
[26]

 The radiosynthetic approach is exemplified by the formation of [
18

F]FMAU
[27,28]

 

(3, Figure 2). Moreover, a similar approach was reported for the uridine derivatives [
18

F]FAU 

(2), [
18

F]FEAU (4), [
18

F]FFAU (5), [
18

F]FBAU (6) and [
18

F]FIAU (7), as well as for the 

cytidine-based nucleosides [
18

F]FAC (8) and [
18

F]FMAC (9).
[28-30] 

 

 

 
 
Figure 2. Early-step [

18
F] incorporation exemplified by radiosynthesis of [

18
F]FMAU. 

 

Here, the protected triflate precursor 10 reacts first with an [
18

F]F/Kryptofix complex to 

perform the nucleophilic substitution reaction at high temperatures. The 2´-[
18

F]-labelled 

sugar moiety 11 contains the [
18

F]-substituent in the correct stereochemical orientation. 

Bromination and subsequent condensation of 12 with the appropriate 2,4-bis-O-

(trimethylsilyl)pyrimidines followed by deprotection produced a mixture of the desired β- and 

α-anomers 3 and 3b in a ratio of 3/1 to 8/1 depending on the reaction solvent, obtaining a 

radiochemical yield up to 45% of the correct stereoisomer.
[31]

 Even though the nucleoside 

radiotracers were obtained in good radiochemical yields and high purities this synthetic 

approach reveals issues that inhibit these PET probes from being produced on commercially 

available synthesis modules for routine production and human application.
[32]

 For instance, 

multiple steps after [
18

F]-introduction with an additional purification step due to the formation 

of the D- and L-isomers, as well as the use of toxic substances such as HBr, make the 

translation to automated synthesisers difficult. These difficulties go hand in hand with 
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reproducibility issues when it comes to Quality Control (QC) in clinical practice according to 

the British/European/American Pharmacopeia. Furthermore, as the number and space in hot 

cells is limited, multiple-step radiosyntheses should rather be replaced by shorter and less 

complex synthetic procedures. 

 

Late-stage [
18

F]-introduction in 2´- and 3´-[
18

F]-labelled nucleosides 

 

A reproducible and efficient late-stage [
18

F]-introduction for 2´- and 3´-labelled nucleoside 

analogues is potentially able to overcome these issues. However, the greatest challenge from a 

synthetic point of view is the rational design and synthesis of an appropriate fluorination 

precursor which combines an activated electrophilic position at the sugar moiety (for 

nucleophilic replacement by the [
18

F]fluoride nucleophile) with stability against 

decomposition and side-product formation, especially when handled at high reaction 

temperatures (>90° C) under basic conditions. The synthesis of [
18

F]FLT developed by 

Grierson and Shields
[25]

 exemplifies this approach by using an N
3
-2,4-dimethoxybenzyl- and 

5´-dimethoxytrityl-protected nosylate precursor 13 (Figure 3). 

 

 
 
Figure 3. First reported radiochemical synthesis of [

18
F]FLT. 

 

The radiochemical synthesis of [
18

F]FLT for clinical applications, however, is based on the 

approach above and makes use of the N
3
-Boc-group, whereas the automation was adopted 

from the automated [
18

F]FDG synthesis (Figure 4).
[33,34]

 Hereby, the protected nosylate 

precursor 14 reacts with a dried [
18

F]/Kryptofix/K2CO3-mixture in anhydrous acetonitrile for 

10 minutes. The subsequent deprotection step is carried out using a 1N aqueous HCl solution 

at 105° C for 5 additional minutes. 

 

 
 
Figure 4. A currently used example of automated [

18
F]FLT synthesis. 
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The use of the Boc-protection group simplifies the deprotection step in two ways, as both 

protection groups can now be removed simultaneously using acidic conditions and ceric 

ammonium nitrate (CAN) as an additional deprotection agent is avoided. It is worth noting 

that N
3
-Boc-protected precursors do not lead to a higher radiochemical yield than their N

3
-

unprotected analogues. The protection of N
3
 with an electron-withdrawing group was 

originally developed for preventing 2,3´-anhydro side-product formation, however, due to the 

unfavoured orientation of the nosyl substituent this effect seems to be unlikely. In addition the 

late-stage radiosynthesis of 2’-deoxy-2’-[
18

F]fluorouridine (2´-[
18

F]FU, 16) was carried out 

successfully without any functionalisation at N
3
 (Figure 5).

[34]
 Apart from that, the formation 

of the 2´,3´-olefinic elimination side product does in fact appear to be the main product (90%) 

of the labelling reaction towards [
18

F]FLT. Hence, a preparative HPLC purification has to be 

performed due to side-product formation before dispensing of the sterile product solution 

containing [
18

F]FLT.
[35]

 

 

 
 
Figure 5. Radiosynthesis of 2´-[

18
F]FU without N

3
-protection. 

 

At the present time the proliferation marker [
18

F]FLT remains the only 2´- or 3´-[
18

F]-labelled 

nucleoside which is routinely used in human clinical applications. Its synthetic accessibility is 

much easier to realize than for 2´-[
18

F]fluoro (arabino-) nucleosides. FLT only has one free 5´-

hydroxy group and has a relatively stable precursor, since the leaving group is in the up 

position and a 6-membered ring is less likely to be formed than a 5-membered ring at the 2´-

position. 2´-[
18

F]-labelled arabino nucleosides analogues are, however, of great interest in 

both clinical oncology and preclinical research mainly due to their variable applicability as 

described above. For instance, 2´-[
18

F]-labelled arabino-nucleosides have been used as 

reporter gene probes for targets such as HSV1-tk and are strong candidates for imaging other 

important targets within the nucleoside salvage pathway. However, introducing the 

[
18

F]fluoride substituent into the 2´-arabino position was considered to be difficult.
[36]

 The 

main reason for the difficulty is the high potential of 2´-activated labelling precursors to form 

the anhydro side product due to the nucleophilicity of the C-2 carbonyl group of the 

pyrimidinone moiety (Figure 6). 
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Figure 6. Heat/base-triggered formation of the 2’-anhydro by-product 18. 

. 

However, N
3
-protection with an electron-withdrawing group such as Boc could successfully 

prevent 2´-activated precursor molecules from forming the 2’-anhydro compounds as was 

recently shown by Alauddin et al. with an improved radiochemical synthesis of  [
18

F]FMAU 

(3) (Figure 7).
[36]

 

 

 
 
Figure 7. Late-stage radiofluorination of precursor 19 in the synthesis of [

18
F]FMAU (3). 

 

Further investigations
[32]

 regarding the effect of a 2´-nosyl leaving group combined with 

different hydroxyl-protecting groups did not show any improvement in the radiochemical 

yield of [
18

F]FMAU, which is interesting since improved leaving group abilities would 

suggest a higher labelling yield. On the other hand this shows the importance of a good 

balance between reactivity and stability, which is needed in order to provide a high 

radiochemical yield while minimizing side product formation. 

 

Conclusion 
 

Overall, this review demonstrates that there is a need for more efficient and less complex 

radiochemical syntheses using late-stage stereospecific [
18

F]-introduction into an intact 

nucleoside in order to make these syntheses suitable for automated synthesisers. Even though 

first attempts using stereospecific radiofluorination of intact pyrimidine nucleoside precursors 

have been reported, successful further investigations towards improved radiochemical yields, 

higher reproducibility and especially cytidine-based nucleosides such as [
18

F]FAC need to be 

accomplished. Here, the rational design and synthesis of appropriate fluorination precursors 

showing an improved reactivity-to-stability profile will be crucial. Moreover, as PET imaging 
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will consistently grow within clinical and preclinical applications in the near future, the need 

for highly specific radiotracers has to be addressed by developing new and efficient 

radiosynthetic routes. Future studies into appropriate protected nucleosides precursors that 

allow efficient late-stage introduction of [
18

F]-fluoride into the 2’- or 3’-position are certainly 

warranted. These developments will help to address future clinical PET imaging challenges 

within this field. 
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