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ABSTRACT

Modelling human activities observed in multimedia streams as tempo-

ral sequences of their constituent actions has been the object of much

research effort in recent years. However, most of this work concentrates

on tasks where the action vocabulary is relatively small and/or each ac-

tivity can be performed in a limited number of ways. In this Thesis,

a novel and robust framework for modelling and analysing composite,

prolonged activities arising in tasks which can be effectively executed

in a variety of ways is proposed. Additionally, the proposed framework

is designed to handle cognitive tasks, which cannot be captured using

conventional types of sensors.

It is shown that the proposed methodology is able to efficiently

analyse and recognise complex activities arising in such tasks and also

detect potential errors in their execution. To achieve this, a novel ac-

tivity classification method comprising a feature selection stage based

on the novel Key Actions Discovery method and a classification stage

based on the combination of Random Forests and Hierarchical Hid-

den Markov Models is introduced. Experimental results captured in

several scenarios arising from real-life applications, including a novel

application to a bridge design problem, show that the proposed frame-

work offers higher classification accuracy compared to current activity

identification schemes.
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Chapter 1

INTRODUCTION

The objective of computer based activity recognition is to automatically

recognise the actions and goals of one or more agents from a series of

observations using computer systems [Patterson et al., 2003, Hodges

and Pollack, 2007,Laerhoveni, 2012]. Activity recognition offers a wide

variety of applications relevant to many study areas such as medicine,

social sciences and informatics which explains the vast and growing

body of research devoted to its investigation.

Activity recognition methods ease critical but at the same time te-

dious, time consuming tasks saving on time, cost and human effort. For

example, an intelligent fall detection system for the elderly can moni-

tor the patient’s movements at all times and prompt the administrator

when anomalous activity (e.g. fall) is detected. Human intervention is

required only when alarm is signaled by the system. Such systems have

the advantage that their accuracy cannot be affected by human factors

such as fatigue, operating constantly at the same high productivity

standards. They are also cost efficient since they reduce the need for

private nursing. Additionally they offer considerable conveniences such

as sending automated reports to relatives of the patients who might

live far away or are travelling, putting their minds at ease.

At the same time, activity recognition is a technically challenging
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research area. The goal is to build intelligent machines capable of re-

liably mimicking the human ability of recognising activities. Activity

analysis consists of three stages, sensing, learning and inferring [Liao,

2006]. Thus, the machine must be equipped with instruments which

make up for the human eyes, ears, hands, etc. which can be cameras

or other sensors. Then it must be able to use the data acquired by

the sensors to learn models describing the observed activities. Finally,

in the inference stage, the machine should be able to use the learned

models in order to recognise the observed activities. Technical difficul-

ties are present in all three stages. For example, in the sensing stage

environmental noise can deteriorate the quality of observations mak-

ing the extracted streams very hard to analyse. Or an activity might

be too complex to be sufficiently captured by existing state of the art

modelling methods, making the learning and inference stages very chal-

lenging.

There are currently two main approaches in terms of sensing : sensor

based activity recognition frameworks, which use wearable sensors, RF-

IDs, accelerometers or mobile phones to capture data from the real

world for further processing and vision based systems which use video

footage taken by various cameras. Sensor based methods have the

disadvantage of being obstructive; they are not capable to monitor an

agent who does not possess the necessary equipment. On the other

hand, cameras are often limited to small environments. Therefore the

choice of sensing equipment is clearly application specific. Since in both

cases there is a significant amount of noise in the input stream, further

data analysis (i.e. learning and inference stages) are typically carried

out with the aid of statistical techniques.
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A problem encountered often during data acquisition is whether the

chosen data form can sufficiently represent the monitored activity. For

example, video or sensor data cannot be used to monitor a discussion,

since a large amount of important data can only be recorded in the

audio stream. The gap between the real world activity and its repre-

sentation in terms of captured data related to the activity is known

as sensory gap [Schooler et al., 1993, Smeulders et al., 2000,Xie et al.,

2008]. A common way to handle insufficient data representations is to

use a combination of sensors to record an event. The disadvantage of

this practice is the associated technical difficulties such as data syn-

chronisation issues and increase of the amount of data storage space

required for the recording of the event.

This Thesis investigates the analysis of complex human behaviour

taking place in constrained, indoors, office-type environments. The

methods and algorithms proposed in this work are designed to monitor

procedures performed by professionals, carried out normally without

the use of sensors or other obstructive equipment which could affect

their performance. Therefore the activities performed by humans are

captured using video cameras. However several of the activities in-

vestigated involve cognitive tasks [Clark et al., 2008] which cannot be

captured in video stream or in any other type of stream resulting from

recording using conventional types of sensors (e.g. microphones, RF-

IDs). To solve this problem, a new method is introduced in this Thesis

which involves recording human’s interactions with specialised devel-

oped software. Thus the data content representing activities comprises

two concurrent streams, each resulting from a different type of sen-

sor. The first stream is video and the second is computer-based human
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generated content.

1.1 Activity analysis in multimedia streams

The work presented in this Thesis investigates analysis of activities oc-

curring in concurrent multimedia streams which result from video and

computer-based human generated content. The focus of this Thesis is

on the general problem of event analysis in multimedia streams. How-

ever, since the second type of data (computer-based human generated

content) is unexplored in the field of activity analysis, in the presenta-

tion of related research emphasis is placed on work which uses mainly

visual information.

Recognising human activities in multimedia streams is a challeng-

ing research topic. Its importance is underlined by the large num-

ber of application areas which require recognition of activities tak-

ing place in multimedia streams such as surveillance, entertainment,

human-computer interaction and personal archiving. In simple terms,

the problem can be defined as follows: “Given a multimedia stream

illustrating one or more agents executing an activity, can a framework

be developed which can automatically identify what activity is being

performed?” [Turaga et al., 2008]. There is currently no universal solu-

tion to this problem [Amato and Di Lecce, 2011]. Many methods have

been proposed, each exhibiting success in specific types of activities.

Therefore the type of the studied activities determines the choice of

the optimal analysis methodology.

Activities in multimedia streams are traditionally classified accord-

ing to their duration into short actions or snapshots (e.g. grab, kick),

simple but periodic actions (e.g. running), complex activities, consti-
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tuting of simpler actions (e.g. playing tennis, preparing a meal), events,

comprising activities (e.g. football match) and long-term events (build-

ing construction) [Niebles et al., 2010].

Activities longer than snapshots can be efficiently represented as

sequences of their constituent actions [Hamid et al., 2007]. For short

activities, it is observed that the temporal order of the actions consti-

tuting an activity becomes more immutable. For example, the actions

comprising the complex activity of a long jump (running, jumping and

falling) cannot be executed in a different order. On the contrary, when

activity duration increases, leading to long-term events, it is evident

that the activities become more variable. For instance, in the activity

prepare meal, a human might decide, e.g. to cut bread first and then

put vegetables in the casserole; another might execute these activities

in the opposite order and a third might completely omit the first step or

the second. This variability makes activities of this type more difficult

to model, which explains why most of the activity analysis frameworks

presented to date focus on monitoring relatively simple tasks.

1.2 Problem statement

This thesis attempts to bridge the gap between the methods of analysing

simple everyday activities and long-term events. More specifically the

focus of this work lies on events which comprise a large number of steps

and these steps can be executed in a plethora of ways. Such activities

occur in a large number of diverse contexts. A surgeon performing an

operation, a patient performing the task of calibrating a blood glucose

monitor or an engineer working at a study desk are some examples of

such activities. Often more than one multimedia streams are required
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in order to efficiently model these activities. The work presented in

this Thesis focuses on building a framework capable of representing

and learning such activities, which will be referred to as prolonged,

composite activities. The purpose of the research presented here is to

use the learned models to identify activities in new data streams. Fur-

thermore, an important feature of the methodology developed in this

work is the proposed system’s ability to discriminate between correct

and erroneous executions of the same task.

It has to be noted that there is a number of open challenges re-

lated to human activity recognition. For example, if the problem is

viewed from the visual information perspective, robust object recogni-

tion/detection and tracking are tasks which are necessary for the feature

extraction phase. The work presented in this Thesis does not attempt

to tackle such problems; instead, it relies on current state-of-the-art so-

lutions to handle these. Therefore this Thesis focuses on representation

and modelling of prolonged, composite human activities.

1.3 Context and motivation

The work presented in this Thesis is a result of collaborative research

between the schools of Engineering, Computer Science and Psychology

of Cardiff University. The initial idea was to study the psychologi-

cal implications of engineering design decision making. In the first

phase of the project, case studies were designed which would enable

the investigation of the engineer’s thought process. It was decided that

observational methods would be used to study the problem. This in-

volved designing realistic engineering tasks, recording the behaviour

of subjects while attempting to solve these tasks using various media
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types and analysing their behaviour. The goal, from the psychological

perspective, was to study the cognitive processes which lead to mis-

takes, impasse and insight. If the mechanics behind these processes

are understood, psychological methods can be developed which could

potentially help the engineer avoid mistakes and move rapidly from im-

passe to insight. From the engineering/computer science perspective,

the goal was to develop methods, based on artificial intelligence prin-

ciples, which would model the behaviour of the engineers taking part

in the case studies for the purpose of detecting patterns of correct and

erroneous executions of the given tasks.

As the project progressed, it became apparent that the artificial in-

telligence techniques developed were suitable for modelling and analysing,

not only engineering tasks, but a variety of complex human activities;

thus, emphasis was given in applying these techniques to several scenar-

ios to show that they can generalise to solve different types of problems.

The result of the research from the engineering/computer science per-

spective was an artificial intelligence framework capable of recognising

complex human activities arising in multimedia streams using computer

vision/machine learning techniques.

1.4 Definitions

For consistency, a list of key terms is presented here that will be used

throughout this article. It is inspired by the terminology proposed

in [Hamid et al., 2007]:

Key-object: An object present in a study scene, providing func-

tionalities required for the execution of various interesting processes or

operations in the scene. In the work presented in this Thesis, the set
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of key-objects in a study scene is known a priori.

Action: An interaction amongst a subset of key-objects in the

study scene that holds over a finite time period.

Action boundaries: The beginning and ending points of an action

in time.

Action primitives: The basic elements used to denote an action.

If there are concurrent actions in a task or a dataset, the action primi-

tives are the action’s boundaries. If not, the action primitives are the

actions themselves.

Key action primitive: An action primitive which is important for

the completion of a specific activity.

Common action primitive: An action primitive which is unim-

portant for the completion of a specific activity or a set of activities.

Activity: A finite sequence of actions. An activity’s start and end

points are signaled by special landmark actions. Since actions comprise

action primitives, the definition of an activity as “a finite sequence of

action primitives” is equivalent.

1.5 Project challenges

This Thesis analyses complex human behaviour arising in prolonged,

composite tasks such as engineering design or calibrating a blood glu-

cose monitor. Such tasks usually require a long time period to complete.

The “long period” is a factor which increases the difficulty of analysing

activities associated with these tasks and distinguishes the work pre-

sented in this Thesis from other approaches in analysis of complex

human activities. Although the activities analysed here normally con-

sist of a number of specific actions, these can be usually carried out
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in a large number of ways and in different order. Therefore the “long

period” factor implies that a framework designed to analyse prolonged,

composite activities should be able to efficiently model complex tem-

poral dependencies between the different steps comprising these tasks.

It is also possible that a human executing prolonged, composite

tasks makes a mistake or is unsure about the correct step sequence.

Thus, he may retrace his steps or make a few steps towards a poten-

tially wrong direction before returning to the right track. This char-

acteristic implies that there are many different ways to complete such

tasks and therefore their structure is not known (or is difficult to be

predicted) a priori. Additionally, it suggests that temporal dependen-

cies between task steps have a non-local character. This means that

although certain steps may have to be carried out in a specific order,

they do not necessarily have to be executed one immediately after the

other. Hence the temporal model should be able to handle these loose

temporal dependencies.

Additionally, during the execution of complex activities certain ac-

tions can take place in parallel at the same time. For example in the

glucometer calibration task a human might interfere with certain tools

participating in the calibration procedure (e.g. test strip, blood vial)

while operating the glucometer. Therefore a framework analysing pro-

longed, composite activities should be able to handle such concurrent

actions.

Furthermore, the fact that prolonged, composite activities consist

of a number of steps (or sub-activities) suggests that they are charac-

terised by a natural hierarchical structure. Consequently a framework

representing such tasks should be capable of capturing this hierarchy.
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Additionally, current state of the art complex activity recognition

algorithms are only suitable for a limited range of applications. One

of the objectives of this Thesis is to present a methodology capable of

solving a variety of complex tasks.

In this Thesis non-obstructive data acquisition methods are utilised

in order to ensure that humans participating in the experiments of this

study work under real life conditions. For this reason video camera is

the main sensor used. To record data from cognitive tasks, which can-

not be captured using conventional types of sensors, a non-obstructive

method is required. Its development is one of the challenges of this

Thesis.

State of the art activity recognition methods prove inadequate to

efficiently analyse tasks arising in the problem space studied in this

work as explained in the literature review (Chapter 2).

The hypothesis of this Thesis is the following:

Prolonged, composite human activities involving cognitive tasks can

be sufficiently represented by data captured in a non-obstructive man-

ner. Additionally, activities represented in this data can be modelled

and identified using a methodology which combines feature selection,

discriminative features and hierarchical statistical graphical models.

The following section discusses the contributions of this Thesis.

1.6 Contributions

Currently there is no model to represent prolonged activities of high

complexity like the ones considered in this Thesis. Additionally, in

such prolonged, composite activities not all actions are important for

correct execution of an activity. A method is needed to identify such



Section 1.6. Contributions 11

actions automatically and to avoid including them in the models of

activities of interest. Moreover, a method to unobtrusively extract

cognitive activities is required.

In this Thesis a framework for analysing prolonged, composite hu-

man activities is developed, capable of overcoming the deficiencies of

existing methods. Activities are represented using a model whose topol-

ogy and parameters can be learned from data; it is capable of efficiently

representing temporal relations between an activity’s constituent ac-

tions and can handle noisy datasets. Furthermore, the method pro-

posed in this Thesis is capable of capturing hierarchy of complex activ-

ities and is designed to work with actions that take place in parallel at

the same time.

The contributions of this work are:

• A new feature extraction method which enables automatic con-

struction of action sequences from data arising from multiple

streams representing complex human activities is proposed. Con-

trary to existing methods in the area of complex activity analysis,

this representation can model activities whose exact structure is

not known a priori and can handle concurrent activities. This

method first appeared in [Kaloskampis et al., 2011b] and is cov-

ered in Chapter 4 of this Thesis.

• A new method for recording cognitive activities, i.e. activities

which aid in understanding cognitive thought process [Clark et al.,

2008]. Central part of the proposed method is a Knowledge Based

System (KBS) [Akerkar and Sajja, 2010]. This work was first pre-

sented in [Kaloskampis et al., 2011b] and is discussed in Chapter

4 of this Thesis.
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• A new classification method, suitable for analysing prolonged,

composite human activities, an area where currently existing meth-

ods prove inadequate, is proposed. It is based on the combina-

tion of Random Forests (RF) [Breiman, 2001] and Hierarchical

Hidden Markov Models (HHMMs) [Fine et al., 1998]; combining

these methods in the manner proposed in this Thesis allows the

proposed algorithm to benefit from their strengths whilst avoid-

ing their weaknesses. This work first appeared in [Kaloskampis

et al., 2011c] and is covered in Chapter 5 of this Thesis.

• A method for identifying unimportant and important actions in

action sequences arising from the execution of prolonged, com-

posite human activities with the goal of improving classification

accuracy, based on the Key Action Discovery concept. This work

first appeared in [Kaloskampis et al., 2011a] and is discussed in

Chapter 6 of this Thesis.

• An application of the proposed framework to the analysis of the

conceptual stage of the bridge design task. This application was

first described in [Kaloskampis et al., 2011b] and is covered in

Chapter 7 of this Thesis.

The above methodologies are evaluated in scenarios resulting from

real-life applications. Later in this work it is shown that the proposed

framework can be successfully applied to detect mistakes in a bridge

design scenario and the task of calibrating a blood glucose monitor.

Additionally, the proposed method is applied to a dataset illustrating

everyday human activities with the purpose of identifying these and

it is observed that the proposed algorithm achieves state of the art
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performance. Thus, the proposed methodology generalises well to solve

a wide variety of problems.

The experimental results showed that proposed method compares

favourably against state-of-the-art algorithms in the field of activity

identification, such as the HHMMs (used for activity identification in

[Nguyen et al., 2005]) and the Suffix Trees [Hamid et al., 2007], state-

of-the-art classifiers such as RFs and Support Vector Machines (SVMs)

[Cortes and Vapnik, 1995] and several classifier combinations (e.g. the

combination of HHMMs and SVMs). Several of these comparisons were

recommended by anonymous reviewers who refereed the publications

resulting from this Thesis; all recommended comparisons were carried

out.

A list of publications resulting from work presented in this Thesis

is given below.

1. Kaloskampis, I., Hicks, Y., and Marshall, D. (2011). Analysing

engineering tasks using a hybrid machine vision and knowledge

based system application. In 12th IAPR International Conference

on Machine Vision Applications (MVA), volume 1, pages 495-498,

Nara, Japan.

2. Kaloskampis, I., Hicks, Y., and Marshall, D. (2011). Reinforcing

conceptual engineering design with a hybrid computer vision, ma-

chine learning and knowledge based system framework. In 2011

IEEE International Conference on Systems, Man, and Cybernet-

ics (SMC), pages 3242-3249, Anchorage, AK, USA.

3. Kaloskampis, I., Hicks, Y., and Marshall, D. (2011). Automatic

analysis of composite activities in video sequences using key ac-
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tion discovery and hierarchical graphical models. In Proceed-

ings of 2nd IEEE Workshop on Analysis and Retrieval of Tracked

Events and Motion in Imagery Streams (IEEE ARTEMIS 2011),

pages 890-897, Barcelona, Spain.

In the next section the outline of this thesis is presented.

1.7 Thesis outline

This Thesis is structured as follows: the main approaches relevant to

the work presented in this Thesis are reviewed in Chapter 2. A brief

overview of the proposed system is given in Chapter 3. Then the pro-

posed framework’s main components are explained, namely the Data

acquisition unit in Chapter 4 and the Machine Learning component

in Chapters 5, 6. Performance of the proposed system is assessed in

Chapter 7, where testing methodology is first described and then the

proposed system’s performance is assessed on a real life complex civil

engineering task. This thesis is concluded in Chapter 8, where plans

for future work are also presented.



Chapter 2

RELATED WORK

In this Chapter the main research approaches relevant to the work pre-

sented in this Thesis are investigated. First the main aspects of activity

analysis in multimedia streams are discussed (Section 2.1). This discus-

sion aims at identifying open questions and problems in this research

area which will be investigated in this Thesis. Then focus turns to in-

vestigation of techniques relevant to the design of algorithms capable

of tackling these problems. In the field of activity analysis, algorithms

typically comprise two phases, feature extraction and activity mod-

elling. Thus previous work relevant to each of these phases will be

critically reviewed in individual sections. Work related to the feature

extraction phase is investigated in Section 2.2; the activity modelling

phase is covered in Section 2.3.

2.1 Activity Analysis in Multimedia Streams

In this section three important aspects of activity analysis in multi-

media streams are discussed. The first of these aspects is the data

form in which the media are recorded. It is crucial for the performance

of an activity analysis algorithm since it influences the fidelity with

which a real life event is converted to a data form. Any detail of the

event missing from the resulting data stream will be unavailable during

15
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the analysis procedure and could possibly lead to less accurate results.

Media form can also impact the algorithm’s design since processing

of complex streams may result in technical difficulties such as stream

combining and synchronisation. The second aspect is the type of the

activity analysis task which the developed algorithm will handle, as it

influences the nature of the problem. The final aspect is the complexity

of the activities to be modelled by the algorithm, which is related to

their duration.

2.1.1 Media data forms

A factor that greatly influences the approach chosen to tackle an ac-

tivity analysis problem is the form of the data which will be used for

solving the problem. In [Xie et al., 2008] possible data forms are classi-

fied into four categories, which are data from a single stream captured

in one continuous take, multiple concurrent streams, single stream cap-

tured in multiple takes and media collections.

The first category includes data from a single stream, captured in

one continuous take. In this case data is captured using a single sen-

sor (camera, microphone etc.). In practice this data form is the one

encountered most often and can result from single camera surveillance

which can be static [Lama et al., 2013, Bodor et al., 2003,Wren and

Pentland, 1998,Beymer and Konolige, 1999] or moving, e.g. mounted

on an unmanned aerial vehicle (UAV) [Manohar et al., 2006]. Since

there is just a single stream data processing is simple as all problems

related to syncrhronising data streams are avoided. However, there are

often cases where a single stream cannot capture sufficient information

for activity detection in the scene e.g. when a single view camera is



Section 2.1. Activity Analysis in Multimedia Streams 17

blocked by an obstacle. Therefore alternative media data forms are

often considered.

Multiple concurrent streams is the second category of data forms

used in the data acquisition phase of activity recognition. This form

enriches available information as not only it can offer a new perspec-

tive (e.g. an additional viewpoint in visual surveillance) but also useful

complementary information not detectable by a single data type. For

example conversation recorded in an audio track can reveal information

not visually observable. Thus combination of concurrent audio-visual

data is frequently used in activity identification. In [Chen et al., 2004]

multiple cameras and audio tracks are used for nursing home surveil-

lance; in [McCowan et al., 2005] audio-visual information is exploited

to analyse multimodal group actions in meetings. Other data type

combinations can also be used for activity identification: in [Shi et al.,

2004a] visual information is complemented by an RS232 stream from a

medical instrument for identifying erroneous executions of a glucometer

calibration task; in [Krahnstoever et al., 2005] video stream is combined

with RFID to detect activities relevant to the retail domain such as a

customer’s interactions with products to prevent shoplifting. Using

multiple concurrent streams can also enhance the information gathered

from a scene by opening the way to certain technical possibilities. For

example, employing two appropriately placed and calibrated cameras

enables 3D scene reconstruction [Shcherbakov, 2009]. Thus depth in-

formation becomes available for scene objects, enhancing the accuracy

of extracted information from video streams.

The third category concerns a single stream captured in multiple

takes. One example of this media form is TV broadcast, where dif-
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ferent video content (resulting from different shows scheduled in a TV

program) appears sequentially in a unified stream. The difficulty of pro-

cessing such streams results mainly from the boundaries of the takes,

which cause discontinuities in time and space in the stream [Xie et al.,

2008]. These discontinuities often cause problems to standard algo-

rithms (e.g. tracking and object detection in computer vision) which

rely on scene specific training data. Examples of research using this

media type form for activity recognition are [Laptev et al., 2008],

which introduces a dataset resulting from a collection of movies and

the TRECVID project [Over, 2013] offering collections from news, doc-

umentary etc.

Media collections is the final media data form discussed in this sec-

tion. This type concerns loosely related data collections resulting from

various sources. An example of this data form is data resulting from

forensics applications, which can contain diverse data types such as im-

ages, video/audio streams and documents [Krusse and Heiser, 2001].

The main challenge of activity identification in this category is the

spatio-temporal correlation of the data. In [Naaman et al., 2004,Naa-

man et al., 2005] this problem is tackled by using geographical and time

meta-data automatically assigned to imagery by the capturing device

in order to generate label suggestions for unknown person identities in

images.

Cognitive tasks

For certain types of human activities existing data acquisition methods

are not capable of recording sufficient information to represent them.

One example is activities which include cognitive tasks, i.e. actions
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which aid in understanding cognitive thought process [Clark et al.,

2008]. An example of a cognitive task could be selecting to follow a par-

ticular step of an industrial process and making a decision [Merriënboer,

1997]. Cognitive tasks include the perceptual, cognitive and motor de-

mands of the studied activity [Remington et al., 2012]. Such tasks can-

not be directly observed in video streams. Previous work in analysing

cognitive tasks has used the think-aloud protocol [Lewis, 1982] which

involves humans verbalising their thoughts while performing an activity.

However, this method has three problems: firstly there is the possibil-

ity that thought verbalisation deteriorates human’s performance [Lane

and Schooler, 2004], an effect known as verbal overshadowing [Schooler

et al., 1993]; secondly processing data acquired using this method is

tedious and thirdly thought verbalisation during task execution is an

unnatural process and though useful for understanding human cogni-

tion it cannot be employed in practical applications.

Current practice recommends, when dealing with activities which

include cognitive tasks, the following procedure. First, a task analysis

is carried out [Kirwan and Ainsworth, 1992] which reveals the primitive

actions [Kieras, 1994] in the studied domain. These primitive actions

are observable; for example, in the case of analysing the cognitive pro-

cesses in the driving domain, task primitives could be actions related

to steering wheel, brake and acceleration [Remington et al., 2012]. In

the case of the ATM simulation task using computer software, task

primitives are mouse clicks, mouse movements etc. [John et al., 2002].

Then, these primitive actions are linked to the covert cognitive actions

which occur in the studied task. The cognitive actions cannot be ob-

served and therefore have to be inferred from the theory of the studied
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task. The main drawback of this approach is that there is no reliable

method to determine the assignment of primitive actions to cognitive

actions [Remington et al., 2012].

Therefore a new method is required for acquiring data describing

cognitive tasks. Ideally, this method should avoid the problems associ-

ated with the think-aloud method and the ambiguities arising from the

assignment of primitive actions to cognitive actions.

2.1.2 Type of activity analysis task

There are two main tasks of activity analysis frameworks in media data

streams. The first task is detecting known activities and the second

discovery of unknown activities. Both are presented below.

Detecting known activities

An important task is identification of an a priori known activity pat-

tern in the data stream. For example, to detect a penalty kick in a video

stream illustrating a football match. In this case the usual approach

is to build a model of the known activity pattern using training data

and apply this model to the video stream in order to detect instances

of the modelled activity. This task can be applied in several problems

such as stream annotation (place labels to the data stream), informa-

tion retrieval (retrieve information relevant to a query from data) and

verification (confirm a property in the data, e.g. whether a medical

process was carried out correctly or erroneously). Several examples of

known activity detection applications are described below.

Intelligent environments. Intelligent environments are spaces equipped

with sensors to capture human activity. An artificial intelligence sys-
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tem analyses the captured data and generates an appropriate response.

This response varies with the application type. In [Yu et al., 2010] a fall

detection system for the elderly in an intelligent room is presented. Hu-

man behaviour is analysed using the person’s head velocity and shape

as features; when a fall is detected the system notifies the nursing per-

sonnel. A smart clothes application based on activity recognition is

presented in [Pentland, 1998]. Their implementation includes a camera

mounted on a baseball cap. The camera is paired with an American

Sign Language recognition facility based on hand gesture recognition

which operates on a 40 word vocabulary with 97% accuracy.

Content based analysis and retrieval. The evolution in compression

and streaming technologies have significantly increased our everyday

exposure to media content. This development has initiated the need

for a new category of applications which offer organisation of the digital

media library. A fundamental problem is to detect interesting events

in the media stream, such as a successful shot in a basketball game.

In [Chang et al., 2001] a framework for filtering streaming videos illus-

trating sports activities is presented, capable of identifying canonical

views (e.g. serving in tennis). Detecting interesting events in movies,

such as kissing, answering phone and hugging is the objective in [Laptev

et al., 2008]. An automatic football match analysis framework is intro-

duced in [Xie et al., 2004] which can identify structural elements of the

game such as play and break.

Surveillance - known activity detection. Surveillance is one of the

traditional areas where human activity identification frameworks are

applied. Advances in sensors technology have increased the quality

of resulting media streams thus surveillance techniques are becoming
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more accurate. Also, current security needs dictate the use of an in-

creasing number of sensors, which translates into a growing need for

automated surveillance. The problem of human activity recognition for

surveillance is defined as follows: a human operator oversees activity

captured by a set of appropriately placed sensors. The operator wishes

to automatically identify in the video footage various events of interest.

In this section detection of known events is covered and discovery of

suspicious activities is reviewed where discovery of unknown activities

is discussed (Section 2.1.2). In industrial applications, events of interest

could be disruptions in a manufacturing work flow. A dataset for work

flow recognition in industrial environments is presented in [Voulodimos

et al., 2012] comprising video sequences taken from the production line

of a major vehicle manufacturer. In medical applications interesting

events could be the phases of the surgery and mistakes or omissions

during a process. Operating room work flow is studied in [Padoy et al.,

2009] where the task is to identify the stages of a surgery, such as

anaesthesy control and surgeon preparation. The glucometer calibra-

tion process is investigated in [Shi et al., 2004a] where the goal is to

verify correct task executions and detect mistakes in the procedure.

The glucometer calibration dataset is publicly available and used in

this Thesis for testing the proposed algorithms.

Discovering unknown activities

The second prominent task is to discover events in media streams with-

out any a priori knowledge of their semantics. This case is similar to

the clustering problem in machine learning [Duda et al., 2000] and is

solved by forming clusters of natural groupings of the input data. The
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natural groupings result using the regularity or self-similarity of event

instances [Xie et al., 2008] e.g. a news broadcast takes place at approx-

imately the same time every day.

Surveillance - unknown activity discovery. In security applications

the task is to detect abnormal (anomalous) or suspicious behaviour.

The problem is formulated as follows: given a media stream a surveil-

lance system has to locate the position (in the case of a video stream the

position is defined by the video frame(s) and the area within the video

frames) that an unusual event takes place. The question that the ma-

chine has to answer is “what is abnormal behaviour?” If the answer to

the question is that “abnormal behaviour is a type of behaviour which

is not usually encountered in some context (where context could be,

for example, airplane docking, surgery, etc.)”, the problem is converted

to statistically modelling the usual behaviour observed in this context.

Then abnormal behaviour is defined as the examples which do not fit

the model of usual behaviour. These examples are often referred to

as outliers. The problem of airport surveillance is studied in [Vaswani

et al., 2005], where trajectories of passengers are analysed to detect ab-

normal behaviour. A framework for bicycle theft detection is proposed

in [Damen and Hogg, 2009] which is based on recognising linked events

in video. Suspicious behaviour arising in a delivery vehicle loading dock

is detected in [Hamid et al., 2005] with the aid of bags of event n-grams.

The choice of abnormality detection method is application related. It

depends on the availability of labelled data, the desired accuracy and

how dissimilar are the outliers to the usual behaviour model.

In this work tasks of the first category are studied, where the anal-

ysed activities are known. More specifically, the problem of verification
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is investigated i.e. models of known patterns are learned from labelled

training data and are then applied to novel examples in order to deter-

mine whether they match the properties of the learned known patterns.

2.1.3 Activity duration

The duration of the studied activities is a factor which defines to a large

extent the methodology which will be employed to study them. The

main reason behind this is that duration is indicative of an activity’s

complexity, although there are exceptions to the rule e.g. a marathon

run lasts longer than a football game but it is much simpler to model. In

[Niebles et al., 2010] activities are classified according to their duration

into (Figure 2.1):

• Short actions or snapshots (e.g. grab, kick). These usually

last for short durations of time on the order of tens of seconds

[Turaga et al., 2008]. Representative approaches for analysing

short actions are featured in [Gupta et al., 2009], [Ikizler and

Duygulu, 2009] and [Yao and Fei-Fei, 2010].

• Simple but periodic actions e.g. running, walking, swimming

etc.. Methods for analysis of simple actions can be found in,

e.g. [Efros et al., 2003] and [Laptev et al., 2008].

• Simple activities e.g. high jump, constituting of simpler actions

and lasting for durations on the order of ten seconds. [Ikizler

and Forsyth, 2007] and [Laxton et al., 2007] are two examples of

methods proposed to analyse such activities.

• Intermediate activities, constituting of simpler actions but

lasting for durations on the order of 103 seconds e.g. playing
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Human activities can be classified according to their du-
ration into (a): snapshots (e.g. kicking), (b): simple but periodic
actions (e.g. walking), (c): simple activities (e.g. high jump), (d):
intermediate activities (e.g. meal preparation), (e): events and com-
plex activities (e.g. rugby match), (f):long-term events (e.g. building
construction).

tennis, preparing a meal. Such activities were studied in [Sridhar

et al., 2010] and [Nguyen et al., 2003].

• Events and complex activities, comprising activities e.g. foot-

ball match. [Xie et al., 2002] and [Kuettel et al., 2010] are exam-

ples of event modelling.

• Long-term events e.g. building construction. Such events can

last 107−8 seconds and they have not yet been studied by any

computer vision framework.
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A special case of events are prolonged events, which typically com-

prise a large number of steps and these steps can be executed in a

plethora of ways. This characteristic makes the structure of such events

challenging to model. In simpler events, like a sports match certain con-

straints (e.g. laws of physics) simplify the prediction of the next step

in an action sequence given the current step. For example, in a ten-

nis game consider the state of the ball hitting the court. This state

can only be followed by two possible states: either the ball is hit by

a player or a point is scored. In the activity high jump, action jump

is always followed by action fall. The temporal relationships between

the actions comprising such simple activities have local character which

means that the temporal dependencies between their actions are short-

termed. Constraints apply in prolonged events, too; however these are

much less restrictive than those encountered in normal events. For

example, during meal preparation, the human opens the fridge. Even-

tually the fridge will be closed, which implies a temporal dependency

between actions open fridge and close fridge but in the meantime a

variety of random actions can take place. This temporal dependency is

more relaxed compared to the table tennis and “jump-fall” examples.

Prolonged events are time sequences whose temporal dependencies be-

tween their elements are long-termed and have non-local character. An

aspect of such events is that their execution requires a certain level of

expertise by the human who performs them. Sample applications for

the proposed framework is a doctor performing a surgery, a patient

calibrating a medical device or an engineer working on a design study.
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A note on activity complexity

It was mentioned earlier that the duration of an activity is indica-

tive of its complexity. This is an empirical approach to indirectly de-

fine complexity, which is accepted by the machine learning community

(e.g. [Turaga et al., 2008,Niebles et al., 2010]) because of its simplicity.

However, there is a huge body of literature on defining activity com-

plexity, most of which stems from the domain of behaviour analysis.

There are two definitions which are most widely used, as pointed out

in [Gill and Hicks, 2006]. The first was proposed by Wood [Wood, 1986]

and the second by Campbell [Campbell, 1988].

Wood [Wood, 1986] identifies three main sources of complexity,

which are: the number of distinct steps required for the completion

of the task, the form of the relationships between these steps and the

evolution of the task’s objectives during the execution of the task.

Campbell [Campbell, 1988] proposes four characteristics which con-

tribute to complexity: the existence of multiple ways to complete the

task, the existence of multiple desired outcomes, the potential con-

flicting interdependence among task objectives and the uncertain or

probabilistic linkages between potential path activities.

Commenting on these two popular approaches, it is apparent that

the sources of complexity considered in both of them imply an increase

in information load, information diversity or information change. An

activity becomes more complex as the number of the steps required for

its completion increases and/or if its goal can be achieved using several

different paths. From this perspective, the empirical taxonomy based

on activity duration, which is used by the machine learning community,

appears to be a reasonable heuristic: longer duration usually means an
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increase in the number of the required steps and the possible paths to

the task completion. Additionally, the evolution of the task’s objectives

is a characteristic of more time consuming, long-term activities.

A special reference is given now to the source of complexity de-

scribed as “uncertainty” by Campbell. In [Campbell, 1988] the way

that “uncertainty” affects complexity is explained: existence of proba-

bilistic linkages increases information load and diversity, because can-

didate solution paths cannot be ruled out quickly; also, the number of

paths to the desired outcome increases. This description is in line with

the taxonomy based on activity duration: to model activities of equal

or greater complexity than simple activities, a probabilistic framework

is normally employed. In fact, Charniak and Goldman [Charniak and

Goldman, 1993] argue that any complex activity analysis system which

does not include any facility to handle uncertainty is inadequate.

It was mentioned earlier in this section that the activities studied

in this thesis usually require a certain level of expertise by the human

who performs them. It has to be noted that, as pointed out in [Kishore

et al., 2004], when a certain degree of familiarity and experience with a

task exists, such that the likelihood of successfully completing the task

is high, the task’s uncertainty (and therefore, its complexity) is low.

The task then becomes similar to “routine tasks” which are regarded

as non complex [Jehn et al., 1999,Schwarzwald et al., 2004]. However,

the human’s familiarity and expertise with the task do not necessarily

make the task easier. Returning to Campbell’s definition, the poten-

tial conflicting interdependence among task objectives is often present

in tasks which require expertise; in such cases the task is complex, by

Campbell’s definition, as candidate solution paths cannot be ruled out
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quickly and/or they need to be studied at a deeper level to be evalu-

ated. An example is the game of chess: despite of the fact that there

exist thousands of books about the theory of the game, the game is

highly complex. Furthermore, there are cases in which, although the

human who performs the task is proficient, the task is of high complex-

ity because of the continuous flow of new information (e.g. air traffic

controller simulation task) [Schwarzwald et al., 2004].

In this work the heuristic taxonomy of activities according to their

duration, which is accepted by the machine learning community, is

used. As mentioned earlier, it is only indicative of the complexity of

an activity. There are cases where the taxonomy does not work (e.g.

sleeping can last for a long time but it is easy to model). In [Sahaf et al.,

2011] it is suggested that other factors should be taken into account

along with activity duration, such as the human’s participation during

the activity and the presence of repetitive patterns. Regarding the

concern that the human’s expertise can transform a seemingly complex

task into a routine task, care must be taken when a task is chosen

so that there exists conflicting interdependence among task objectives

and/or flow of new information during the execution of the task to

ensure that the task is complex. Both of these requirements were taken

into consideration in the task studied in chapter 7 of this thesis.

Types of activities studied in this work

Potential applications for the framework proposed in this thesis are, as

mentioned earlier, a doctor performing a surgery, a patient calibrating

a medical device or an engineer working on a design study. These tasks

are, however, very different. The calibration of a medical device is a
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purely procedural task. Given instructions, it is doubtful that the user

will make any mistakes. However, as explained in the previous subsec-

tion, given that the task might comprise a large number of steps and

last for a long period of time (as explained in the previous subsection,

both of these factors increase uncertainty), the challenge may lie in

modelling all the correct ways of executing the task. Also, a surgery

can be seen as a procedural task, however, like in the case of the air

traffic controller simulation task, the continuous flow of new informa-

tion (e.g. complications during the procedure) increases the difficulty

of modelling the activity. Regarding engineering tasks, it first has to

be clarified that those studied in this thesis have a general (although

usually “loose”) structure which stems from the regulations and stan-

dards which have to be followed when these tasks are carried out. The

complexity in these tasks stems from the potential conflicting interde-

pendence among task objectives. This characteristic makes such tasks

difficult to model as many iterations may be required until an accept-

able solution is reached. Sports events and games is another type of

applications in which the proposed framework can be applied. Such

events also have some type of structure; in [Bettadapura et al., 2013],

for example, football (soccer) is structured using transitions between

different zones of the field.

Despite their differences, the activities studied in this thesis are

similar in that they have some type of structure. Additionally, they

include sources of uncertainty, such as a large number of steps, contin-

uous flow of new information, conflicting interdependence among task

objectives etc.. Frameworks designed to model simpler activities are

not suitable to handle composite, long term activities as shown in the



Section 2.2. Extracting features from video footage 31

results sections of this thesis.

2.1.4 Methodology of event analysis problems

The methodology applied to any event analysis problem typically com-

prises two stages: first, interesting features are extracted from the video

footage. In the second stage these features are analysed at a high level

and a complex human behaviour model is built. This model is then

used to assign novel sequences to behaviour classes according to their

context. Review of related work will focus on the investigation of meth-

ods previously applied in these fundamental stages. Thus, the choices

made later on the selection of components which comprise the frame-

work proposed in this Thesis will be justified.

Feature extraction techniques are covered in Section 2.2. The main

approaches in the research area of complex activity identification are

presented in Section 2.3.

2.2 Extracting features from video footage

As stated in [Wang et al., 2009] there are two approaches to feature

extraction from video footage:

1. Objects of interest in a scene are detected (automatically or man-

ually) and tracked; then their tracks exploited to understand ac-

tivities (e.g. [Nguyen et al., 2005]).

2. Use of motion feature vectors instead of tracks (e.g. [Laptev et al.,

2008,Niebles et al., 2010]).

The following Subsection 2.2.1 discusses literature related to the tra-

jectory manipulation approach. Literature relevant to motion feature
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vectors is covered in Subsection 2.2.2.

2.2.1 Key object detection and tracking

Methods of the first category can efficiently analyse relatively sim-

ple scenes e.g. where the video stream is captured by a single view

camera and the set of key objects participating in the scene is known

a priori. Such scenes include desktop activities (e.g. calibration of

a medical device [Shi et al., 2004a]), everyday human activities (e.g.

shopping [Xiang and Gong, 2006]), traffic control [Fernyhough et al.,

2000,Wang et al., 2006], parking lot surveillance [Johnson and Hogg,

1996] and monitoring of elderly people in smart environments [Truyen

et al., 2006]. In [Xiang and Gong, 2006] the disadvantages of such ap-

proaches are discussed. These disadvantages are given below in free

interpretation.

1. Since the method relies on constantly tracking key objects in a

scene, it is difficult to apply in video streams captured by low

resolution CCTV surveillance cameras which might provide in-

sufficient accuracy, especially in cluttered scenes.

2. In busy everyday scenes object tracking might be interrupted by

occlusions resulting to potentially unusable tracks.

3. In certain cases, trajectories of moving objects cannot capture

sufficient information to identify a human activity. For example,

in a kitchen environment a person might walk towards the fridge,

check if a certain product is present and then leave through the

door or they might pick up an item from the fridge (e.g. a drink)

and again leave the kitchen through the door. If the person’s
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movement trajectory is solely monitored, it is not possible to dis-

criminate between the similar activities check fridge and pick up

an item from fridge.

To these issues the fact that these methods heavily rely on the

performance of the object tracker has to be added.

In view of these disadvantages, several researchers adopt an alterna-

tive methodology to exploit tracks resulting from the movement of key

objects. Specifically, rather than quantitatively representing an object’s

trajectory (i.e. taking as features the trajectory’s coordinates) features

emerge by taking into account certain occurrences resulting from the

object’s interaction with other key objects in the scene. In [Hamid

et al., 2009] these occurrences are an agent’s interactions with kitchen

facilities (such as stove, fridge, etc.). In this case, an extracted fea-

ture, a(x) is in the form of a(x) = {agent interacts with facility x}

where x the code of a facility. Note that here the extracted features

have qualitative rather than quantitative character. This idea is fur-

ther investigated in [Sridhar et al., 2008] where features result from

qualitative spatial relations between objects. Based on Allen’s In-

terval Algebra [Allen, 1983] and Qualitative Primitives [Cohn et al.,

2003] this work captures features resulting from the type of interaction

between objects. Examples of features captured in this manner are

a1 = {objectx surrounds objecty} and a2 = {objectx touches objecty}.

Another example of this methodology is [Nguyen et al., 2005] where

the floor of a room is divided to a number of square segments. In this

case, features result from the presence of an agent within the limits of a

segment and are in the form a(x) = {agent in segment x}, where x is

the code of a segment. Qualitative spatial relations have the advantage
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that momentary loss of an object by the tracker does not necessarily

render the track useless due to the qualitative rather than quantitative

representation of the the trajectory. Therefore the requirements for

perfect tracking and high quality data stream are relaxed. However,

some problems still remain. Specifically, this method cannot discrim-

inate between spatially similar actions such as writing and sketching

which involve the same objects (hand, pencil and paper) in the same

spatial setup (hand holding pencil over paper).

Therefore trajectory-based activity recognition might not be the

optimal solution for some applications. Researchers also investigated

techniques in which key object detection and tracking is not required.

These approaches are reviewed in the next subsection.

2.2.2 Motion feature vectors

An early example of a motion feature vector approach is [Bobick and

Davis, 2001] where temporal templates for simple human actions (e.g.

sit down, wave arms, crouch down) are learned from labelled video

sequences and are then used for identification in novel videos. During

learning it is assumed that the object whose motion is used to construct

a temporal template can be separated from the background. On the

contrary this restricting assumption is not required in [Shechtman and

Irani, 2005]. In this work event detection is achieved with the extension

of the concept of 2D image correlation (i.e. 2D template matching) to

3D space-time video template correlation. With this method, behaviour

patterns illustrating atomic actions (e.g. walking, pool dive, ballet turn)

can be detected in long video sequences or video databases. The advan-

tages of this approach is that no background-foreground segmentation
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is required and that it can be used to detect actions which occur simul-

taneously. The disadvantage of this method is its sensitivity to large

geometric deformations of the video template.

The popularisation of local feature representation for images (using

algorithms such as SIFT [Lowe, 1999], SURF [Bay et al., 2008] and

GLOH [Mikolajczyk and Schmid, 2005]) inspired the extension of this

concept to space-time representations. In the same manner that local

feature-based techniques represent an image as a vector of 2D interest

points, space-time feature methods model a video as a vector of local

3D volume features in a space-time scale. One of the first attempts to

model video sequences with the aid of such methods is [Chomat and

Crowley, 1999] where local spatio-temporal features representing an

activity are captured with the aid of motion energy models. In [Zelnik-

Manor and Irani, 2001] events in a video sequence are modelled as

local features captured at various temporal scales. Events that have

similar local feature distributions at corresponding temporal scales are

considered as similar. The advantage of the method is that no prior

knowledge concerning the model events is required. An extension of the

Harris and Föstner interest point operators [Harris and Stephens, 1988,

Föstner and Gülch, 1987] is proposed in [Laptev and Lindeberg, 2003] to

detect spatio-temporal interest points. The idea of local scale selection

in the spatial and temporal domain [Lindeberg, 1998,Lindeberg, 1997]

is used in this work to define the spatio-temporal extent of an event.

Based on Lowe’s remark that, although in certain cases feature sparsity

might be desirable, excessive rarity of features might cause problems

to a recognition framework [Lowe, 2004], work in [Dollar et al., 2005]

proposes a local feature detection algorithm designed to produce more
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features compared to [Laptev and Lindeberg, 2003]. Their goal is to

capture subtle movements such as the jaw of a horse chewing on hay

and the spinning wheel of a bicycle. Features are represented with

cuboids containing spatio-temporally windowed pixel values and they

apply their method to detect facial expressions, human behaviour and

animal (mouse) activity (e.g. drink, eat, sleep).

Several researchers enrich the feature selection stage by investigat-

ing dependencies between extracted low level features. In [Niebles et al.,

2006] features are extracted using the methodology of [Laptev and Lin-

deberg, 2003] and then the correlation between extracted features is

investigated: a codebook is formed by clustering extracted local fea-

tures with the k -means algorithm [Duda et al., 2000]. In this codebook,

the center of each resulting cluster is defined as a codeword. Proba-

bilistic Latent Semantic Analysis (pLSA) [Hofmann, 1999] is used to

learn action models. The pLSA model cannot capture structural infor-

mation (i.e. geometric relationship between extracted local features);

thus in [Wong et al., 2007] the pLSA-Implicit State Model (pLSA-

ISM) [Leibe et al., 2005] was employed to encode such information,

offering improved performance over the pLSA algorithm. Performance

of spatio-temporal features in realistic videos is tested in [Laptev et al.,

2008] where a variation of [Laptev and Lindeberg, 2003] is used to learn

and detect human actions in videos extracted from popular movies. In

contrast to [Laptev and Lindeberg, 2003], a multi-scale approach is

used and features are extracted at multiple levels of spatio-temporal

scales. To tackle the problem of feature sparsity [Gilbert et al., 2009]

use the 2D Harris corner detector for interest point localisation. Once

extracted, local features are grouped hierarchically which speeds up
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the classification process and improves accuracy. Based on the obser-

vation that most approaches using local spatio-temporal features dis-

regard structural information (i.e. spatial and temporal relationships

between extracted features), work in [Ryoo and Aggarwal, 2009] pro-

poses the spatio-temporal match algorithm which compares temporal

relationships (e.g. before and during) and spatial relationships (e.g.

near and far) between extracted local features. This approach can

successfully recognise two-person interactions (e.g. shake hand, hug,

punch) as well as standard atomic actions.

A disadvantage of motion feature vector approaches is that are

sometimes not able to handle complex temporal relations [Zhang et al.,

2011].

2.3 Complex Activity Modelling

In the past, complex activity analysis systems have used pattern recog-

nition techniques to analyse, e.g. kitchen activities [Sridhar et al.,

2008], card games [Moore and Essa, 2002] and nursing activities [In-

omata et al., 2009]. There are currently six approaches to complex

activity modelling, specifically grammar-driven representations, vector

space models, pattern recognition methods, local event statistic meth-

ods, flat statistical graphical models and hierarchical graphical models.

These approaches are discussed in the following sections.

2.3.1 Grammar-driven representations

The first approach is based on grammar-driven representations where

an activity is modelled as a string of symbols. In this string, each

symbol represents an atomic action or primitive behaviour and the ac-
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tivity’s structure is captured in a set of production rules. An example

of such methods are deterministic grammar models, which were used

to analyse manipulations (i.e. meaningful sequences of body articula-

tions such as picking up) in video [Brand, 1996]. Deterministic models

have the limitation of relying on perfect low-level sensing [Ivanov and

Bobick, 2000] and are therefore not suitable for noisy environments. To

avoid this problem, a stochastic model specifically a Stochastic Context-

Free Grammar (SCFG) was proposed in [Ivanov and Bobick, 2000] for

parking lot surveillance. In SCGFs production rules are associated

with probabilities and are therefore better suited for capturing com-

plex tasks than deterministic grammars. Similar methods were em-

ployed for monitoring card games, [Moore and Essa, 2001] gymnastics

and traffic events [Zhang et al., 2008] and simple human actions (such

as walk, turn, kneel) [Ogale et al., 2007]. Attribute grammars [Knuth,

1968] is an extension of SCFGs which additionally associate production

rules with conditions and can therefore describe features which finite

symbols (produced by a purely syntactic grammar) cannot easily rep-

resent. Parking lot activity was analysed in [Joo and Chellappa, 2006]

with the aid of attribute grammars. Propagation Nets (P-Nets) [Shi

et al., 2004a] is a method which is related to grammar approaches. In

this framework activity structure is explicitly pre-defined. Such meth-

ods cannot be applied when activity structure is not known a priori.

Wyatt et al. [Wyatt et al., 2005] extended P-Nets so that structure is

automatically learned from data, however their method is specific to

the problem of identifying activities from text corpora such as the web

and is therefore hard to generalise for complex activities [Shi et al.,

2006]. In general, grammar representations are powerful activity mod-
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elling tools but learning production rules is a difficult problem. Expert

knowledge is required in order to construct the grammar, as pointed

out in [Lavee et al., 2009] and therefore these methods are not suit-

able when activity structure is not known. For example, in [Cho et al.,

2004,Cho et al., 2006,Guerra-Filho and Aloimonos, 2006,Kitani et al.,

2007] model parameters are learned for known model topologies.

2.3.2 Vector Space Models

Vector Space Models (VSMs) [Salton et al., 1975, Dubin, 2004], used

for street surveillance applications in [Stauffer and Grimson, 2000] is

the second class of algorithms widely used to model complex activities.

According to this method, an activity is represented as a vector of the

frequencies of its constituent actions. This representation has its origins

in the field of Natural Language Processing (NLP) (e.g. [Lebanon et al.,

2007]) and Information Retrieval [Carrillo and Lpez-Lpez, 2010] where

the method is often referred to as Bag-of-words [Salton and McGill,

1986]. Introduction of this theory in activity recognition signaled the

arrival of important analysis techniques such as tf-idf weighting and

feature selection [Chen et al., 2009] in the field. Temporal relations

between actions are ignored in the VSM representation, which means

that the model provides no information about the ordering of an ac-

tivity’s constituent actions. Extensions of VSMs using Latent Seman-

tic Analysis (LSA) [Deerwester et al., 1990] and Probabilistic Latent

Semantic Analysis (pLSA) [Hofmann, 1999] reduce dimensions of the

vector space providing computationally more efficient representations.

The main idea behind these methods is that a vector (representing an

activity) can be viewed as a mixture of various topics (events). Latent
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Dirichlet allocation (LDA) [Blei et al., 2003] is another extension of

VSMs, similar to pLSA with the difference that the topic distribution

is assumed to have a Dirichlet prior. These extensions, however, like

the original VSMs do not encode information regarding the ordering of

the vector’s elements.

2.3.3 Pattern recognition methods

Application of pattern recognition methods is often encountered in ac-

tivity analysis. There exist four categories of relevant algorithms which

are presented in the following sections.

Parametric approaches

In parametric approaches it is assumed that the model of one or more

activities can be satisfactorily approximated with a known distribu-

tion (e.g. Gaussian or Poisson [Duda et al., 2000]) or a mixture of

known distributions (e.g. Gaussian Mixture Model [Bishop, 2007]).

Then the problem is to define or learn the appropriate model param-

eters and classify examples according to their proximities to the dis-

tributions [Ben-Gal, 2005]. Such approaches often fail to model high

dimensional datasets, especially when there is no information regarding

the underlying data distribution [Papadimitriou et al., 2003].

Non-parametric approaches

Non-Parametric techniques make no assumptions regarding the under-

lying distributions of the data. There are mainly two types of non-

parametric approaches. The methods of the first type estimate the

probability density functions from data. An example of such approaches
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is the Parzen-Rosenblatt window method [Rosenblatt, 1956, Parzen,

1962]. The methods of the second type directly estimate the a pos-

teriori probabilities, (i.e. the probability of a sample to belong to

a specific class). A method which belongs to this category is the k -

nearest-neighbour algorithm [Duda et al., 2000]. The problem with

such approaches is that a large number of samples is required in order

to estimate the underlying distributions with accuracy. Therefore they

are not suitable for small datasets.

Clustering techniques

Clustering techniques group the samples of a dataset in such a way

that elements belonging to the same group (cluster) are similar be-

tween them and dissimilar to the elements belonging to other clusters.

In such approaches, distance metrics are employed to classify novel ex-

amples. The main advantage of using clustering techniques is that they

don’t require training data, which comes handy in cases where labelled

data are unavailable or the process of labelling the samples manually is

tedious. Examples of clustering methods are k-means clustering [Mac-

Queen, 1967,Steinhaus, 1956], hierarchical clustering [Sibson, 1973] and

density-based clustering [Kriegel et al., 2011].

Discriminative feature approaches

These methods assume that the form of the discriminant function is

known; parameters of the classifier are learned using training samples.

The prominent algorithm of this category is the Support Vector Ma-

chines (SVMs) [Cortes and Vapnik, 1995]. SVMs are used often to learn

activity models when features are extracted using the motion feature
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vector methodology. For example, in [Schuldt et al., 2004] a framework

for human action recognition (like walk, jog, run) is presented where

action features are described using spatio-temporal interest points and

action models are build using SVMs. Recently an alternative descrim-

inative feature approach based on ensembles of cascade classifiers is

gaining popularity, which is Random Forests (RFs) [Breiman, 2001].

This method has demonstrated better or at least comparable perfor-

mance to other state-of-the-art methods in both classification [Breiman,

2001,Bosch et al., 2007], real-time keypoint recognition [Lepetit et al.,

2005] and clustering applications [Moosmann et al., 2006]. Compared to

their competitor, SVMs, RFs have the advantage of offering a variable

importance index which reflects the “importance” of a variable based

on the classification accuracy, taking into account interaction between

variables [Breiman, 2001]. Also, their performance is not sensitive to

the values of their parameters [Yeh et al., 2012]. Moreover, RFs extend

“naturally” to multiple class problems unlike SVMs [Torralba et al.,

2007,Criminisi et al., 2012].

Feature selection

Feature selection is an important aspect of pattern recognition method-

ology and it involves assessing the significance of extracted features in

discriminating between different activities. Features found insignifi-

cant, or unimportant, or redundant are eliminated from the dataset.

This results in reduction of the problem’s dimensionality which trans-

lates to higher classification accuracy and computational efficiency.

Feature selection is relatively unexplored in the context of activity

analysis. In [Baos et al., 2010] a feature ranking technique based on
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discrimination and robustness is proposed for the purpose of discrim-

inating between activities such as standing still, sitting and relaxing,

running and walking. In [Ribeiro and Santos-Victor, 2005] several fea-

ture selection algorithms are tested in order to reduce dimensionality

in a dataset illustrating human activities active, inactive, walking, run-

ning and fighting. The best results by far were obtained by trying all

possible combinations of dataset features rather than using established

feature selection algorithms (the established Relief algorithm [Kira and

Rendell, 1992] was among the methods tested). This illustrates the fact

that feature selection in the activity analysis context is a complex pro-

cess which is also application related. In [Hamid et al., 2005] a scheme

of detecting deficient and extraneous actions in a dataset is proposed.

This scheme aims at defining actions that could help discriminate be-

tween two or more activities.

Discussion on pattern recognition methods

Pattern recognition methods are powerful modelling tools which are of-

ten encountered in activity analysis algorithms. Out of the approaches

mentioned above, parametric and non-parametric approaches are rarely

employed in current practice: the former because activity complexity

cannot be sufficiently approximated with simple distributions and the

latter due to the large number of samples required to estimate the

underlying distributions from data. Clustering techniques are usually

employed in unsupervised activity analysis tasks, where the classes and

their semantics are unknown. On the contrary, in the work presented

in this Thesis, the number and type of classes is known. Discriminative

feature approaches are techniques often encountered in modern activ-
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ity analysis frameworks and will be thoroughly discussed throughout

this work as they offer excellent classification accuracy when the num-

ber of classes is known. Their drawback is that they do not take into

consideration temporal dependencies between features.

2.3.4 Local event statistic methods

Local event statistic methods, such as n-grams [Hamid et al., 2005]

and Suffix trees [Hamid et al., 2007], which capture neighbouring tem-

poral relations between an activity’s constituent actions is the fourth

approach. The algorithms of this category have been successfully ap-

plied to everyday activities and anomaly detection problems [Hamid

et al., 2007]. The drawback of this approach is that in noisy datasets

these neighbouring relations sometimes become less characteristic of

the performed activity.

2.3.5 Flat statistical graphical models

The fifth approach is based on flat statistical graphical models, such

as the HMM [Yamato et al., 1992, Cielniak et al., 2003]. These dy-

namic representations model activities as state chains of their con-

stituent actions and encode temporal information in the form of tran-

sition probabilities between the elements of the chain. Early work with

such models in the field of activity identification focused on recognition

of American Sign Language [Costello, 2008] from sequences of hand

gestures [Starner and Pentland, 1995] and hand’s movement trajecto-

ries [Bobick and Wilson, 1997]. Due to scaling issues of the HMM

in long sequences [Rabiner, 1989,Bui, 2004] researchers employed sev-

eral variations of this approach to handle this problem. Methods em-
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ployed include the Parallel Hidden Markov Model (PHMM) to model

ASL [Vogler and Metaxas, 1999] and the Coupled HMM (CHMM)

to model human activities [Oliver et al., 2000]. These methods im-

proved the performance of the original HMM in handling prolonged

sequences. A more complex model was introduced in [Natarajan and

Nevatia, 2007] specifically the Coupled Hidden Semi Markov Model

which outperformed CHMM in the ASL recognition task. One of the

drawbacks of such extensions is that by complicating the model topol-

ogy, standard, exact HMM learning and inference algorithms become

inapplicable in these complex structures [Lavee et al., 2009]. There-

fore, approximation algorithms are required to solve learning and infer-

ence problems when employing such methods. Another disadvantage

of flat statistical models is that if the model’s topology is fixed, repre-

sentational capabilities are limited, which can potentially cause prob-

lems when modelling variable activities [Kaloskampis et al., 2011b]: a

variable activity’s constituent actions can be changed and actions can

be added to the action sequence representing the activity or omitted

from it without significantly altering the activity. Such behaviours can-

not be efficiently captured using fixed topologies. This deficiency was

tackled in [Galata et al., 2001] the Variable Length Markov Model

(VLMM) [Guyon and Pereira, 1995] was used to model human exer-

cise activities. The main problems of flat statistical graphical models is

that they cannot represent efficiently the natural hierarchical structure

of complex activities [Nguyen et al., 2005].

Flat statistical graphical models are related to CFGs as both mod-

els are grammar-based. Their difference is that CFGs represent activ-

ities by applying a set of production rules on a vocabulary of actions;
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on the other hand, HMMs represent activities using a probabilistic

model of discrete hidden states, where each state emits actions. In

formal language terms, HHMs are essentially regular languages and

CFGs context-free languages. Since, according to the Chomsky hierar-

chy [Chomsky, 1956], a normal language is a subset of a context-free

language, CFGs have the advantage in terms of expressive power. How-

ever, this comes at the price of lacking efficient mechanisms which would

enable learning of the structure of CFGs from data.

2.3.6 Hierarchical graphical models

The sixth class of complex activity models includes extensions of graph-

ical models in a hierarchical manner, such as the Layered HMM [Oliver

et al., 2002], the Abstract Hidden Markov Memory Model [Nguyen

et al., 2003], the Abstract HMM [Osentoski et al., 2004] and the Hier-

archical Hidden Markov Model (HHMM) [Nguyen et al., 2005]; these

approaches demonstrate accuracy in modeling complex activities. The

differences between LHMMs, HHMMs and AHMMs are the following.

LHMMs are essentially cascades of HMMs, with each HMM (layer) op-

erating at a different time scale. There is no dependency between the

states of different layers. One problem with this method is that the

model is not learned automatically; the number of layers and the time

scale represented by each layer are handcrafted by taking into account

intuition and domain knowledge provided by human experts. On the

other hand, AHMMs and HHMMs are both organised in levels and not

layers; dependencies are defined between their states at different levels.

The difference between these two models lies in the types of the de-

pendencies defined in each model, as their structures are different. Fig.
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(a) (b)

Figure 2.2: Structures of AHMM (modified from [Johns and Mahade-
van, 2005]) and HHMM (modified from [Murphy and Paskin, 2001])
models in DBN form. (a): AHMM (b): HHMM.

2.2 shows the dynamic Bayesian network forms of the two models. As

stated in [Nguyen et al., 2005] in the case of the AHMM the parame-

ter learning process can become intractable when the number of levels

increases. On the contrary, efficient parameter learning algorithms are

available for the HHMM, e.g. [Nguyen et al., 2005,Murphy and Paskin,

2001]. HHMMs are capable of capturing hierarchy of everyday activities

but have difficulties recognising more complex behaviour [Vishwakarma

and Agrawal, 2012] and sometimes prove to be sensitive to noise.

2.3.7 Discussion

In Section 1.5 the challenges of analysing prolonged, composite tasks

such the ones investigated in this Thesis were given. Current algo-

rithms covered in this Chapter are now discussed in relation to these

challenges. The methods listed above prove inadequate to efficiently

analyse tasks arising in the problem domain investigated in this Thesis

for the following reasons: activity structure is not known a priori in
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the problem domain discussed in this work, therefore grammar driven

representations are not applicable. Vector Space Models ignore tem-

poral relations between actions and are therefore not suitable. Local

event statistic methods focus on capturing neighbouring temporal re-

lations between an activity’s constituent actions. On the contrary, in

the problem space discussed in this work, these neighbouring relations

become less characteristic of the performed activity since in many cases

“important” actions are preceded or/and succeeded by random actions,

which can be thought of as “noise”. Pattern recognition methods have

the disadvantage that they do not take into consideration the ordering

of features and therefore they cannot be readily applied to the prob-

lem investigated in this work. Flat statistical graphical models prove

inadequate as they fail to capture the natural hierarchical structure

of complex activities [Nguyen et al., 2005]. On the other hand, ex-

tensions of HMM in a hierarchical manner are capable of capturing

hierarchy but prove to be sensitive to noise. Moreover, in all the above

approaches (with the exception of [Shi et al., 2004a]) it is assumed that

actions constituting activities take place in a sequential manner. There-

fore these methods cannot readily handle parallel streams. In contrast,

the method proposed in this Thesis is designed to handle concurrent

actions, i.e. actions which take place in parallel at the same time.

In this Thesis, a novel methodology which deals with the short-

comings of the above presented approaches is proposed. In particular,

the proposed method can model activities whose structure is not pre-

viously known. It is capable of efficiently representing the natural hier-

archy of complex activities and encode the temporal relations between

their constituent actions. Moreover, it is designed to operate in noisy
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environments and can handle concurrent activities.

2.4 Summary

In this Chapter previous research which is relevant to the work pre-

sented in this Thesis was discussed. First the problem which is in-

vestigated in this Thesis was defined by analysing the main aspects

of activity analysis in multimedia streams. Then techniques relevant

to the design of an algorithm which will solve this problem were re-

viewed. Specifically, since activity analysis algorithms usually com-

prise two phases, feature extraction and activity modelling, the review

covered the main trends and developments for these phases.



Chapter 3

SYSTEM OVERVIEW

3.1 Overview

New research presented in this Thesis spans several distinct areas, each

contributing to a different part of the proposed framework. This chap-

ter explains the design of the whole framework, capable of analysing

prolonged, composite human activities arising in multimedia streams

and the interaction between its different parts leaving the detailed de-

scriptions of its individual parts to be presented later in appropriate

chapters.

This chapter is structured as follows: the purpose of the proposed

framework is first defined in Section 3.2 and a short general description

is given in Section 3.3. A list of properties which should be accommo-

dated by a complex behaviour analysis framework are then given (Sec-

tion 3.4). Then the proposed framework’s components are described in

detail in Section 3.5. The Chapter is concluded in Section 3.6 in which

the work presented here is summarised.

3.2 System scope

The objective of the proposed framework is to recognise prolonged,

composite human activities in multimedia streams given a set of ob-

50
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servations. These observations are data acquired from sources such as

video footage, sensors, audio etc.. The system operates in a supervised

manner: a part of the acquired data is annotated by experts. This

data is used to build (train) models describing the observed activities.

These models are then used to identify novel data, i.e. data not used

in the training process.

3.3 General system description

The activity recognition process is now briefly described. The system

first acquires data from multiple, parallel streams and converts them

in the form of sequences of discrete actions. Sequences arising from

parallel streams are merged in a unified stream which gives an account

of what events took place during the observed period and in what or-

der. A number of unified sequences are selected to serve as the training

dataset. These are first assigned labels by human experts; the labels

are high level descriptions of the activities observed in the sequences.

The labelled sequences are then used to build activity models through

a three-stage pipeline. The stages are: (1) removal of redundant se-

quence elements; (2) capture of discriminative importance of sequence

elements; (3) encoding of temporal dependencies between sequence el-

ements. Using the built activity models, activity recognition (for se-

quences not used for training) is achieved using a similar pipeline.

3.4 Desired framework properties

A set of desired properties is now listed which are desirable for a com-

plex activity analysis model.
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1. To be able to handle concurrent events. Human activities often

naturally overlap one another. For example, in a kitchen envi-

ronment one might prepare a side dish while the food is cooking.

Yet, most current activity analysis frameworks assume that every

activity must be finished before another is started [Hamid, 2008].

2. To be able to integrate and process data from multiple streams. In

many cases, a single data stream is inadequate for capturing com-

plex human behaviour. In many fields of observational research it

is common to collect multiple data streams describing an activity,

including digital video, system logs and sensor data [Fouse et al.,

2011].

3. To be resilient to noise. “Noise” in human activities is defined

in this work as random actions which take place during an ac-

tivity without these actions being significant for the execution of

the activity. For example, during the activity washing clothes a

person can decide to take a break, performing the action drink

coffee. This action is not relevant to the execution of washing

clothes activity. In contrast, e.g., one cannot wash clothes with-

out switching on the washing machine. Therefore, the action

switch on washing machine is important for the execution of the

activity wash clothes. During the execution of complex, prolonged

activities it is possible that the human sidetracks from execut-

ing actions relevant to these activities, performing several ran-

dom, unpredictable actions. Therefore a complex activity analysis

framework should be capable of dealing with such unpredictable,

random actions.
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4. To be able to handle datasets in which only a few labels are

available. In practice it is difficult to obtain labelled data of

complex activities such as engineering design processes since this

data has to be annotated by experts. Therefore, there are many

datasets X in which, if labelled data is denoted with Xl and

unlabelled data with Xu then |Xl| < |Xu| or |Xl| ≪ |Xu|.

5. To be able to learn model topology from data. Manually defined

model topology (e.g. [Shi et al., 2004b]) has the disadvantage of

bounding a framework to a specific problem. Another disadvan-

tage is that experts may be required to define the topology. This is

usually a tedious process which requires extensive domain exper-

tise [Shi et al., 2006] and may additionally result to a subjective

model with poor generalisation potential.

6. To be able to learn model parameters from data. For the same

reasons as in 5 it is desirable that model parameters are learned

from data and are not manually defined.

7. To be able to efficiently represent activity hierarchy. Human ac-

tivities have a natural hierarchy [Nguyen et al., 2005] as they typ-

ically comprise sequences of subtasks. For example, activity high

jump consists of the subtasks or actions running, jumping and

falling. As shown in [Nguyen et al., 2005], flat models such as the

HMM and its extensions Coupled Hidden Markov Model [Brand

et al., 1997] and Variable Length Hidden Markov Model [Galata

et al., 2001] cannot model complex behaviour efficiently as they

fail to capture the hierarchy naturally embedded in the behaviour.

8. To be able to provide on-line feedback in case of erroneous execu-
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Inomata et al. Nguyen et al. Shi et al. Hamid et al. Proposed
2009 2005 2004 2009

1. Concurrency × × X × X
2. Multi streams X × X × X
3. Noise Resiliency X X × × X
4. Few training data × × X × X
5. Auto topology X × × X X
6. Auto parameter X X × X X
7. Hierarchy × X X X X
8. On-line X × X × X

Table 3.1: Comparing characteristics of various current activity analysis
frameworks.

tion of an activity or if any type of anomalous event is detected.

This is very important for surveillance applications e.g. theft de-

tection [Damen and Hogg, 2007] or nursing applications (e.g. fall

detection for the elderly [Yu et al., 2010]) and industrial process

monitoring applications [Voulodimos et al., 2012].

Table 3.1 shows how these properties are catered by four current

activity analysis frameworks.

In this Thesis a system for analysing prolonged, composite human

activities arising in multimedia streams is proposed which accommo-

dates all properties listed above. The overview of the system is now

presented.

3.5 System description

The proposed framework automatically analyses multiple data streams

recorded during the execution of complex human activities. An overview

of the overall system proposed in this Thesis is given in Fig. 3.1.

The proposed system comprises two main components, specifically,

a data acquisition and feature extraction unit (Fig. 3.1a) and a machine

learning unit (Fig. 3.1b and c).
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Figure 3.1: Overview of the proposed prolonged, composite activity
analysis system. (a): Data acquisition unit. (b): Machine learning
unit Phase I, training. (c): Machine learning unit Phase II, identifica-
tion.

3.5.1 Data acquisition and feature extraction unit

The data acquisition unit extracts sequences of human actions from var-

ious data streams. These streams may result from video cameras, audio



Section 3.5. System description 56

recorders or any other type of sensors. In this work video streams are

primarily used; additionally, in one of the studied applications a data

stream which results from the user’s interactions with a software ap-

plication (KBS) is utilised. However, the system can handle streams

resulting from any type of sensor, under the condition that the streams

can be represented as time series of discrete elements (action prim-

itives). If this condition is satisfied, the process of action sequence

formulation, which prepares the data for further processing with the

machine learning part of the system, is simply a matter of merging all

data streams in a unified superstream by placing the elements of the

data streams (action primitives) in chronological order.

The data acquisition unit consists of the following parts:

The video recording component, which uses a static video camera

to record user’s interactions with various scene objects (Fig. 7.1).

The automatic tracker, which picks out the movements of the mov-

ing objects in the scene. It is described in section 4.3.1.

The action detection unit, which converts the data generated by the

tracking mechanism into actions by examining the qualitative spatial

relations (QSR) [Sridhar et al., 2008] between the tracking windows of

moving objects. This unit is described in section 4.3.2.

The KBS interaction recording unit which provides the user with

on-demand expert knowledge and also records his queries and the ex-

act time they occurred. The sequence formulation unit handles these

queries in the same manner as the standard actions recorded by the

QSR. As explained in Section 4.4, by monitoring the engineer’s queries

it can be deduced in which cognitive task he is involved, which would

be impossible to determine by solely analysing the video stream. The
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KBS interaction recording unit is described in section 4.4.

The action sequence formulation unit which generates a time se-

quence of actions that took place in the studied scene. This sequence,

Q is of the form:

Q = {pa(ta,s), pb(tb,s), pb(tb,e), pa(ta,e), . . . } (3.1)

where px an action (e.g. erasing, writing etc.) which starts at time

tx,s and ends at time tx,e. Sequence Q includes the complete timeline

of the engineer’s involvement with the engineering design task. This

unit handles desired properties 1 and 2, which are handling concurrent

events and data from multiple streams. It is described in section 4.5.

3.5.2 Machine learning unit

The action sequences extracted by the data acquisition unit are passed

to the machine learning component. The latter is in essence a super-

vised classifier and operates in two phases, a training phase (Fig. 3.1b)

and an identification phase (Fig. 3.1c).

Phase I: Training

The purpose of the training phase is to automatically train the classifier

using data labelled by experts. The training phase accommodates de-

sired properties 5 and 6 as model topology and parameters are learned

from data. It comprises the following stages:

The sequence labelling stage is performed by experts, who label

each action sequence by examining (a) the video footage correspond-

ing to the action sequence (b) the elements of the sequence (c) the

participant’s study progress corresponding to the sequence. These la-
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bels are high level descriptions of the activity observed in each action

sequence, e.g. soil condition examination executed correctly or base

cost estimation executed erroneously. Note that the correct solutions

to the task are known to the experts. The proposed system can op-

erate with a relatively small training dataset. Specifically, in the Gun

Point dataset [Ratanamahatana and Keogh, 2004], discussed in chap-

ter 5, 25% of the sequences are labelled. In the glucometer calibration

task [Shi et al., 2004a], discussed in chapter 6, 14% of the total se-

quences are labelled. In the bridge design task, discussed in chapter

7, 43% of the total sequences are labelled. Thus, desired property 4

is satisfied as inequality Xu then |Xl| < |Xu| stands (labelled data is

denoted with Xl and unlabelled with Xu.)

The sequence denoising stage, in which redundant elements of the

input sequences are removed. This process simplifies the dataset in

a form which eases the classification task. This stage handles desired

property 3, which is noise resilience and is described in sections 6.2 and

6.3.

The RF classifier training stage which builds a classification model

on the basis of the constituent actions of the training sequences; the

temporal order in which these actions are executed is not taken into ac-

count. It is performed with the aid of a Random Forests (RF) [Breiman,

2001] classifier. This stage handles desired property 4 as RFs are eff-

cient in semi-supervised learning [Leistner et al., 2009]. It is described

in section 5.3.1, Part I.

The HHMM Training stage which encodes information regarding

the temporal order in which actions are executed within the sequences.

This is achieved with an Hierarchical Hidden Markov Model (HHMM)
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[Fine et al., 1998] whose topology represents the activities hierarchy

and structure. This stage handles desired property 7 as HHMMs can

efficiently represent activity hierarchy [Nguyen et al., 2005]. It is de-

scribed in section 5.3.1, Part III.

Phase II: Identification

In the identification phase, novel unlabelled data (i.e. data not used

during the training phase) are fed to the classifier which assigns them

to classes. Each of these classes represent a complex activity, such as

transient loads evaluation executed correctly. The identification phase

consists of the following stages.

The sequence denoising stage which operates exactly as in the train-

ing phase and is described in sections 6.2 and 6.3.

The preliminary classification stage which assigns test sequences to

activity classes using the trained RF classifier. The purpose of this stage

is to statistically detect omissions of critical steps in the sequences.

Sequences found to miss critical steps are not passed to the next step.

Instead they are marked as erroneous, retaining the class label assigned

to them by the RF classifier. This stage is described in section 5.3.2,

Parts II and III.

The temporal analysis stage which assigns test sequences to activity

classes using the trained HHMMmodel. This stage checks the temporal

order in which actions are executed within the sequences marked as

correct by the RF classifier and assigns them to activity classes. This

stage is described in section 5.3.2, Part IV.

The activity characterisation stage is the decision making unit which

makes a decision of the activity class label assigned on the basis of the
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results obtained in the preliminary classification and temporal analysis

stages. The form of activity characterisation is a single label providing

a high level description of the activity performed in a test sequence

(e.g. glucometer calibration executed erroneously, base cost estimation

executed correctly). This stage handles desired property 8 as it provides

on-line feedback in case of erroneous execution of an activity or if any

type of anomalous event is detected. It is described in section 5.3.2,

Part V.

Future extension: Unsupervised classification

Although a supervised classifier is currently used, in future work an

unsupervised classifier will be considered. The classification phase will

then work as follows. A number of sequences will be used for training.

In the training stage, these sequences will be clustered using a suitable

unsupervised clustering algorithm. Examples of such algorithms are

k -means and Gaussian mixture models (GMMs) [Duda et al., 2000].

Ideally, each cluster will represent an activity. Then, in the identifica-

tion phase, test sequences (not present in the training dataset) will be

assigned to activities according to their proximities from the clusters

representing activities. There are two problems that need to be solved

which are discussed in the two paragraphs that follow.

First of all, it has to be ensured that each cluster, discovered in an

unsupervised manner, actually corresponds to a single activity. In prac-

tice, a discovered cluster could represent different aspects of an activ-

ity (over-segmentation) or two similar activities (under-segmentation).

In [Hamid et al., 2007] this problem was tackled by using labelled

training sequences (where the labels corresponded to activities) and
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following the three-step procedure of (1) over-segmenting the training

dataset, (2) assigning each discovered cluster to the activity with the

most samples in the cluster and (3) merging clusters assigned to the

same activity. Of course, this method requires labelled training sam-

ples which implies a supervised classification procedure (although the

method was named unsupervised). A fully unsupervised method would

potentially consist of two steps, (1) over-segmentation of the training

dataset (2) merging of the discovered clusters hierarchically, using, for

example, the algorithm given in [Vasconcelos and Lippman, 1998].

The second problem is the choice of a distance metric which will

determine the proximity of a test sequence to the discovered clusters

representing activities.

3.6 Summary

In this Chapter a description of the proposed framework, capable of

analysing prolonged, composite human activities arising in multimedia

streams was given. The design of the whole framework was explained

and the interaction between its different parts was analysed.

In the following chapters a detailed description of the system’s in-

dividual components is presented. In Chapter 4 the data acquisition

unit is described. Chapter 5 covers the classification component which

comprises a discriminative features unit based on RFs and a temporal

analysis unit which employs HHMMs. The system’s denoising unit is

described in Chapter 6.



Chapter 4

EXTRACTING ACTION

SEQUENCES

4.1 Overview

In this chapter a methodology to extract features from multiple, par-

allel streams illustrating complex human activities which may involve

cognitive actions is proposed. The goal of the method is to acquire a

set of features from the input streams which can be used to recognise

activities in the streams. The problem of activity recognition is studied

later in this Thesis (Chapters 5 and 6).

For reasons explained in Section 2.1.1 current methods to record

cognitive actions prove inadequate for practical applications. Thus,

a novel method is proposed in this chapter which acquires data from

cognitive tasks.

The contribution of this Chapter is therefore two-fold:

1. A new method to automatically extract action sequences from

data streams representing complex human activities is presented.

The proposed method has three important properties: firstly, it

can handle multiple streams resulting from different acquisition

sources; secondly, it is capable of modelling concurrent activi-

62
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ties; thirdly it can model activities whose exact structure is not

known a priori. No system simultaneously satisfying these three

important properties has been previously presented.

2. A methodology for recording cognitive activities is introduced. In

contrast to existing approaches, the proposed method operates in

a non-obstructive manner and is suitable for practical applica-

tions.

The following section gives a general description of the proposed

algorithm, explaining the methodological choices made for its develop-

ment.

4.2 Framework design

It was stated that multiple concurrent streams are used as input. This

decision is closely related to the proposed methodology of recording

cognitive actions, which utilises at least two parallel streams: the first

stream is video footage; the second stream is obtained by the human’s

interactions with a computer software. Note that in the analysis which

follows, it is assumed that input data comprises two streams. However,

the presented methodology can be extended to handle more than two

streams. Additionally, in the experimental section it is shown that it

can be efficiently applied to a single data stream.

The two extracted streams complement one another in the sense

that each one stores information unavailable to the other. Semantically,

the human activity represented in these streams results by merging

them in a way that all recorded information appears in a unified stream

which gives an account of what events took place during the observed
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period and in what order. To ease the merging task, each stream was

chosen to be represented as a finite sequence of discrete actions. Then

building the unified sequence is simply a matter of placing the actions

comprising each stream in absolute chronological order.

Converting the stream resulting from software to a sequence of dis-

crete actions is achieved by associating each user’s interactions with

the software with a discrete action. For extracting simple actions from

the video stream the choice of algorithm is application related, as it

depends on the type of actions that have to detected. In the applica-

tions studied in this Thesis, often the framework has to discriminate

between spatially similar but temporally different actions. This can

only be achieved by analysing the trajectories of the objects involved

in the similar actions.

Since the activities studied in this work are prolonged and involve

multiple objects, trajectory recording and analysis are computationally

expensive. To ease computational burden, qualitative spatial relations

(QSR) [Sridhar et al., 2008] are employed. QSR is capable of moni-

toring interactions between objects. In this work, object interactions

yielding spatially similar but temporally different actions are considered

known. During the time intervals that QSR detects these interactions

trajectories of involved objects are recorded. This is much more effi-

cient than recording trajectories for the whole duration of the processed

stream. Recorded trajectories are then analysed with the aid of con-

tinuous HMMs.
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4.3 Extracting Actions from Video

The sequence classification algorithm proposed in this Thesis analyses

time series of actions representing complex human activities. In this

section a method to extract these actions from video of a human inter-

acting with various objects on a table is presented. As stated in Wang

et al. [Wang et al., 2009] there are two approaches in activity analysis:

1) objects detected (automatically or manually), tracked, then their

tracks exploited to understand activities 2) use of motion feature vec-

tors instead of tracks. For various practical reasons (e.g. tracking is

still an unsolved problem unless constraints are applied in the study

scene) most current action detection systems use the second method.

However, these type of algorithms have the disadvantage of not being

able to handle complex temporal relations [Zhang et al., 2011] and are

not able to disambiguate between spatially similar but temporally dif-

ferent actions. The approach adopted in this Thesis falls in the first

category as complex temporal relations and spatially similar actions

are encountered in the examined problem.

4.3.1 Object tracking

In this Thesis it is assumed that all important objects are at least

partially visible at all times. To monitor their movements, one video

tracker on each object is placed manually at the first frame of each se-

quence. The work presented in this Thesis does not attempt to tackle

the tracking problem; instead, it relies on current state-of-the-art solu-

tions to handle it. Thus, an off-the-self approach is used which is suffi-

cient for the applications studied in this Thesis. The chosen algorithm

performs tracking using a colour histogram-based observation model
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and a second order autoregressive dynamical model. This method can

be found in [Pérez et al., 2002]. The main points of this algorithm are

discussed in the following subsections.

Probabilistic Sequential Tracking with Monte Carlo Approximation

A state space model is first defined in which a Markovian prior on the

hidden states is coupled with a conditionally independent observation

process. At time t the hidden state is xt and the observation yt. If

the order of the dynamics is fixed to one then the sequence of filtering

distributions p(xt|y0:t) to be tracked follows the equation:

p(xt+1|y0:t+1) ∝ p(yt+1|xt+1)

∫
xt

p(xt+1|xt)p(xt|y0:t)dxt (4.1)

where x0:t = (x0, . . . ,xt) and y0:t = (y0, . . . ,yt).

Eqn. 4.1 cannot be handled analytically in visual tracking prob-

lems. Therefore in this work, following the recommendation of [Pérez

et al., 2002] it is solved using a sequential Monte Carlo framework.

More specifically the posterior p(xt|y0:t) is estimated by a finite set

{xm
t }m=1...M ofM particles. A proposal transition kernel f(xt+1;xt,yt+ 1)

is used to generate samples for p(xt+1|y0:t+1). If the set {xm
t }m=1...M

consists of representative samples from the filtering distribution at

time t then the new particles x̃m
t+1 associated with their importance

weights πm
t+1 are also representative samples of the new filtering distri-

bution [Pérez et al., 2002]. The importance weights are given by the

equation:
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πm
t+1 ∝

p(yt+1|x̃m
t+1)p(x̃

m
t+1|xm

t )

f(x̃m
t+1;x

m
t ,yt+ 1)

(4.2)

The set of representative samples for the distribution p(xt+1|y0:t+1)

is denoted as {xm
t+1}m=1...M .

The output of the tracker at time t is given by the equation

x̂t =
1

M

M∑
m=1

xm
t (4.3)

Dynamics Representation

A region of interest in a frame of a video sequence needs to be tracked.

This region is represented as a 0-centered window, W which can be of

any shape. Tracking is the process of determining the parameters of

the transformation to be applied to W , for every frame of the video se-

quence. Following recommendations found in [Pérez et al., 2002,Brad-

ski, 1998, Comaniciu et al., 2000], the parameters taken into account

are the window’s location in the image coordinate system d = (x, y)

and the scale of the image, s. These parameters are the hidden vari-

ables of the dynamics representation. To estimate these parameters

throughout the video sequence a second-order autoregressive dynam-

ics model is used. The model’s state at time (frame) t is defined as

xt = (dt,dt−1, st, st−1). The dynamics model is given by the equation

xt+1 = Axt +Bxt−1 + Cut (4.4)

where ut ∼ N (0,Σ).

Coefficients A,B and C as well as the covariance matrix, Σ can be

learned from data illustrating correct tracks using the methodology
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described in [Reynard et al., 1996]. In this work these parameters are

empirically defined as described in Appendix 5.

Colour Representation

The colour model for a key object is obtained by applying histogram-

ming techniques in the Hue, Saturation, Value (HSV) colour space

[Forsyth and Ponce, 2011]. As in [Pérez et al., 2002] a HS histogram of

NhNs bins is formed and pixels with saturation > 0.1 and value > 0.2

are used. Acknowledging that the remaining pixels might contain use-

ful information, an additional Nv bins are included which only con-

tain Value, therefore the entire number of bins in the histogram is

N = NhNs + Nv. The bin representing color vector yt(u) in frame t

and at pixel location u is denoted as bt(u), with bt(u) ∈ {1, . . . N}.

The system’s state at frame t is given by the state vector x. Colour

information will be collected from region R(xt) with R(xt) = dt+stW .

The color model of this region at frame t, qt(x) is a distribution which

is given by a kernel density estimate as follows [Comaniciu et al., 2000]:

qt(x) = {qt(n;x)}n=1,...N (4.5)

qt(n;x) = K
∑

u∈R(x)

w(|u− d|)δ[bt(d)− n] (4.6)

In Eqn. 4.6, K is a normalisation constant ensuring
∑N

n=1 qt(n;x) = 1,

δ is the Kronecker delta function [Spiegel and O’Donnell, 1997] and w is

a weighting function. When a strictly colour-based tracking algorithm

is used (e.g. mean shift [Comaniciu et al., 2000]) w is a smooth kernel,

e.g. [Bradski, 1998,Comaniciu et al., 2000]. On the contrary, in parti-
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cle filtering tracking methods this is not necessary since all candidate

hypotheses associated with the particles have to be estimated [Pérez

et al., 2002]. In such cases it is w ≡ 1. In general, the described color

representation assigns a probability to each of the color histogram’s N

bins.

A colour representation qt(x), corresponding to a candidate state x

will be compared to the reference colour representation q∗ with:

q∗
t(x) = {q∗(n)}n=1,...N (4.7)

Similar to the case of qt(x), it is
∑N

n=1 q
∗(n) = 1. The reference dis-

tribution can be defined manually or detected automatically given a

certain colour profile. Colour models associated with candidate states

are compared against the reference distribution using the distance D

proposed in [Bradski, 1998,Comaniciu et al., 2000] with

D[q∗,qt(xt)] =

[
1−

N∑
n=1

√
q∗(n)qt(n;x)

] 1
2

(4.8)

Distance D as given in Eqn. 4.8 is derived from the Bhattacharyya

similarity coefficient. Following the recommendation of [Pérez et al.,

2002] the probability of a candidate state is estimated as:

p(yt|xt) ∝ exp−λD2[q∗,qt(xt)] (4.9)

Having applied the tracking algorithm, each object in the scene

is now represented by a tracking window. In the next section it is

described how interactions between tracking windows can be exploited

to detect actions in video sequences.
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4.3.2 Action detection in the video stream

In this section it is explained how actions are detected in the video

footage.

QSR Framework

Actions from video footage are extracted by identifying patterns of qual-

itative spatial relations (QSR) [Sridhar et al., 2008] between the track-

ing windows of moving objects. For every pair of tracking windows,

(Wj,Wk), a sequence of spatial relations is computed by considering

the relative position of the windows. In [Sridhar et al., 2008], 3 types

of spatial relations were used: two windows could be either spatially

Disconnected (D), or connected through the surrounds (S) or Touches

(T) relations. Here, this system is simplified by merging relations (S)

and (T) and, therefore, 2 windows can be either Disconnected (D) or

Interacting (I). A relation holds for a finite amount of time, from time

point tm to tn. Therefore, a relation Ri between two tracking windows,

Wj, and Wk can be represented with the 5-tuple:

Ri =< Qi,Wj,Wk, tm, tn > (4.10)

with Qi the type of relation (i.e. (D) or (I)).

A timeline representation is formed which includes all spatial re-

lations taking place in the examinant video sequence. In this repre-

sentation, an action is defined as the temporal co-occurrence of one or

more spatial relations that hold during a time interval. The mapping

from spatial relation co-occurrence to actions is pre-defined, for exam-

ple, the temporal co-occurrence of relations “hand (I) ruler” and “hand

(I) map” yields action “measuring on map”. Hence the set of possible
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Figure 4.1: Mapping from qualitative spatial relations to actions for
three action classes. Subclasses of Class 2 can be distinguished by
analysing the moving hand’s trajectory. Index of symbols used: T :
Touches, S : Surrounds, && : And, ∥ Or.

actions detected from video is also predefined. An action pz, starts at

time point tx when the spatial relations defining it start co-occurring

and ends at time point ty when the relations stop existing. The map-

ping from qualitative spatial relations to actions for three action classes

is shown in Fig. 4.1.

Extended QSR

QSR cannot distinguish between spatially similar actions, such as writ-

ing and sketching : both of them are represented by the co-occurrence

of spatial relations “hand (I) pencil” and “hand (I) paper”. It is also

possible that the participant simply holds a pencil over the paper (wait-

ing).

QSR framework is extended here to disambiguate between these

three actions by statistically analysing the motion trajectories of the

objects involved in these. This analysis is performed with the aid of

a continuous HMM. More specifically, a trajectory is considered to be

a continuous quantity that is described as the position of the object
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in time. A feature vector Oi is constructed for each trajectory i by

using the object’s relative coordinates (xt, yt) within a period of t = 15

successive frames. Therefore, the trajectory classification problem can

be formulated as the assignment of an input vector, On, to a trajec-

tory class cm. This problem can be viewed as the maximisation of the

quantity m∗, with:

m∗ = arg max
m

P (cm|On). (4.11)

To solve Equation 4.11, a HMM is defined where each state represents

a trajectory class, cm. The complete set of model parameters is given

by the triplet:

λ = {π,A, bj} (4.12)

where πj the initial probability, A the state transition probability ma-

trix and bj the probability density function (PDF) for state j, respec-

tively. A Gaussian Mixture-based representation is used for the PDF,

bj. In the experiments, the HMM is trained with 750 sequences, each of

length 15, with 250 sequences representing each class (writing, sketching

and waiting).

Note that a related action detection framework appears in Yao and

Fei-Fei [Yao and Fei-Fei, 2010]. However their method is not able to

differentiate between spatially similar but temporally different actions

such as writing and sketching and cannot be trivially extended to do so;

the framework proposed here on the other hand is capable of performing

this distinction.
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4.4 Cognitive action detection

When performing a cognitive task (such as an engineering task), an

engineer executes actions such as “estimate seismic load” and “estimate

soil condition” which are related to the task and have to be detected

by the system. These actions cannot be observed directly through the

analysis of the video stream. To solve this problem, a novel action

detection scheme is introduced in this section based on monitoring of

the user’s interactions with a computer software.

The action detection methodology presented in this section can be

applied to tasks with the following three characteristics: 1) expert

knowledge is required for the completion of the task which the user

does not possess, 2) this knowledge can be acquired by the user by

posing simple queries, 3) information which results from engineer’s cal-

culations can be directly associated with a query that a user posed.

For example, during the execution of a bridge design task the user

requires information regarding the effect of wind load to the structure.

He poses the query wind load. The software replies by displaying rel-

evant information. After calculations the user reaches a result which

reflects the effect of wind load. This result is directly associated with

query wind load.

The computer software is in essence a Knowledge Based System

(KBS); its structure is shown in Fig. 4.2. The software’s Knowledge

Base which stores all information required to solve the examined cogni-

tive task is built by consulting relevant handbooks and regulations. The

resulting database has been validated by experts. All information used

for the purpose of the experiment is presented in Section 7.3.1. Prior

to using the KBS the users are instructed to estimate any parameters



Section 4.4. Cognitive action detection 74

not included in the KBS on the basis of their knowledge.

The KBS is designed so that each piece of requested information

when accessed is associated with a specific cognitive action of the ex-

ecuted task. Therefore, when the user queries the system, it can be

deduced in which task he is involved. The user’s query is automatically

inputted as a spreadsheet entry in the KBS GUI (Fig. 4.3, D). The en-

try is timestamped by the system (Fig. 4.3, E). When the user obtains

a result associated to the posed query, he inputs this result in a cell

corresponding to this query (Fig. 4.3, F). The software automatically

timestamps the result entry as well and associates it with the end of the

corresponding cognitive process (Fig. 4.3, G). Each user’s interaction

with the computer software is denoted as ω(ϕ, t) where ϕ is the type of

the interaction (e.g. wind load) and t its timestamp. Thus, the KBS

is used to generate a time sequence of the user’s interactions with it by

recording and timestamping the user’s queries and result entries.

A cognitive action, pϕ is defined as the action which takes place

during the time interval between a user’s query ωs(ϕs, ts) and the entry

of the result associated to this query ωe(ϕe, te). A cognitive action is

symbolised as pϕ = {pϕ(tϕ,s), pϕ(tϕ,e)} with tϕ,s = ts and tϕ,e = te.

Compared to the existing methods of obtaining information regard-

ing cognitive actions (discussed in section 2.1.1) the proposed method

has the following advantages. First, it avoids the problem of overshad-

owing, associated with the think-aloud method. Second, there is no

(or limited) ambiguity in the assignment of primitive actions to cogni-

tive actions as the resulting cognitive action is directly associated with

the user’s input query. It has to be noted that the proposed method

has also similarities with the previously proposed methods. First, task
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Figure 4.2: Structure of the KBS.

analysis is required to determine the cognitive actions of the studied

domain. Second, it uses a key term recognition scheme in text, which

is similar to the key term recognition scheme in speech utilised by the

think aloud method. In other words, the think aloud method asks the

participants to verbalise their thoughts; the proposed method asks the

participants to convert their thoughts into text.
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Figure 4.3: Overview of the KBS interface: (A) Task scenario, (B)
input console, (C) returned expert knowledge, (D) entered queries and
(E) their timestamps, (F) slot for user to input result and (G) result’s
timestamp.

Figure 4.4: The activity timeline for a design task is formed from tem-
poral occurrence of its constituent actions. Each action primitive (e.g.
measure start, measure end, writing start, bridge length start etc.) is
inputted as timepoint in the activity’s (Base cost) timeline.

4.5 Action Sequence Formulation

Extraction of actions from input streams with the aid of QSR frame-

work and KBS is a timeline of the user’s actions during the studied

task. Two data streams are obtained, one from the QSR action extrac-

tion unit and one from the KBS. The QSR stream is represented by

the sequence QQSR with:

QQSR = {pa(ta,s), pb(tb,s), pb(tb,e), pa(ta,e), . . . } (4.13)
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with px(tx,s), px(tx,e) start and end of action px.

The KBS stream is represented by the sequence QKBS with:

QKBS = {pm(tm,s), pn(tn,s), pn(tn,e), pm(tm,e), . . . } (4.14)

with px(tx,s), px(tx,e) start and end of action px.

Sequences QQSR and QKBS are then joined in one super sequence,

Qtotal with:

Qtotal = {QQSR, QKBS} (4.15)

Qtotal = {pa(ta,s), pb(tb,s), pb(tb,e), pa(ta,e),

pm(tm,s), pn(tn,s), pn(tn,e), pm(tm,e). . . }
(4.16)

A notation which will help explaining sorting of the elements (action

primitives) of Qtotal more efficiently is now employed. Each element of

Eqn. 4.16 px(tx,ϕ), ϕ ∈ {s, e} is written as pn(ψn, tn) where ψn = (x, ϕ),

tn = tx,ϕ and n the order of the element in sequence Qtotal. If Qtotal

consists of N elements, then Eqn. 4.16 can be written as:

Qtotal = {pn(ψn, tn), pn+1(ψn+1, tn+1). . . , pN(ψN , tN)} (4.17)

The final sequence is obtained by placing the elements of Qtotal in

chronological order starting with the action primitive which occurred

first:
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Q = {pm(ψm, tm) ∈ Qtotal : tm < tm+1} (4.18)

In Fig. 4.4 it is shown how a sequence Q is formulated: each action

primitive (e.g. measure start, measure end, writing start, bridge length

start etc.) is inputted as timepoint in the activity’s timeline. Note

that this representation can handle actions that take place in paral-

lel (concurrent actions). The temporal relations between an activity’s

constituent action primitives are variable. This means that the order

of action primitives forming an activity can be changed and action

primitives can be added to the sequence or omitted from it without

necessarily altering the correctness of the overall process.

4.6 The general case

The previous section described the sequence formulation process in the

case that the system handles two streams, one resulting from video and

the other from the user’s interactions with the KBS. This section shows

how this method can be applied to multiple streams, resulting from

several different sources. It is assumed that there are N sources, then

their corresponding time sequences of primitive actions, Q1, Q2, ..., QN

can be written as:

Q1 = {p11(ψ11, t11), p12(ψ12, t12), ..., p1k(ψ1k, t1k)} (4.19)

Q2 = {p21(ψ21, t21), p22(ψ22, t22), ..., p2k(ψ2k, t2k)} (4.20)
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QN = {pN1(ψN1, tN1), pN2(ψN2, tN2), ..., pNk(ψNk, tNk)} (4.21)

In the above equations it is assumed that the sequencesQ1, Q2, ..., QN

contain equal number of elements, k, to simplify the notation. Obvi-

ously, in practice these sequences usually include different numbers of

elements. A super-sequence is then formed, Qtotal such that:

Qtotal = {Q1, Q2, ..., QN} (4.22)

Qtotal = {p11(ψ11, t11), p12(ψ12, t12), ..., p1k(ψ1k, t1k),

p21(ψ21, t21), p22(ψ22, t22), ..., p2k(ψ2k, t2k), ...,

pN1(ψN1, tN1), pN2(ψN2, tN2), ..., pNk(ψNk, tNk)}

(4.23)

The elements of Qtotal are then placed in chronological order, start-

ing with the element which occurred first:

Q = {pm(ψm, tm) ∈ Qtotal : tm < tm+1} (4.24)

The final sequence, Q is the unified representation of the time se-

quences Q1, Q2, ..., QN , resulting from N different data streams.

4.7 Experimental results

In this section qualitative results are presented for the proposed se-

quence extraction and representation method in two datasets. The

first dataset arises from execution of a bridge design task. The second
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illustrates execution of the glucometer calibration task.

4.7.1 Bridge design task

This dataset is described in detail in Chapter 7 where the activity

recognition results are presented. Here a brief overview is given.

Actions of engineers working on a bridge design task are recorded

using a static video camera and the software described in Section 4.4.

Regarding the analysis of video footage, key objects are manually se-

lected and a video tracker, operating as described in Section 4.3.1 is

placed manually on each of them. Key objects are all objects present

in the studied scene, i.e. the participant’s hands, a pencil, an eraser, a

ruler, a map and a paper. Each key object in the scene is now repre-

sented by a tracking window. Actions are then detected by recording

the spatial interactions between the tracking windows using the QSR

framework as described in Section 4.3.2. Mapping between object in-

teractions and actions is achieved using the manually defined scheme

of Fig. 4.1. For convenience each interaction observed in the experi-

ment is represented by a short code; all assigned codes are shown in

Table 4.1. The resulting two streams are merged into a unified stream

following the methodology proposed in Section 4.5.

The proposed algorithm results in formulation of Gantt charts.

Charts resulting from a selection of four clips of the dataset are shown in

Fig. 4.5 where the extracted action sequences appear below the Gannt

charts. Note that in the charts, time interval between two consecutive

action boundaries is set to five time units for representational purposes.

Actions extracted from the video stream appear in red colour and cogni-

tive actions, detected by the software, in blue colour. It is clear that the
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No. Action boundary code Description Source stream

1 p measuring start video
2 v measuring end video
3 b sketching start video
4 u sketching end video
5 x writing start video
6 w writing end video
7 y erasing start video
8 z erasing end video
9 s transient loads start KBS
10 t transient loads end KBS
11 d river traffic start KBS
12 e river traffic end KBS
13 f wind load start KBS
14 g wind load end KBS
15 h seismic load start KBS
16 i seismic load end KBS
17 j base cost start KBS
18 k base cost end KBS
19 l bridge length start KBS
20 m bridge length end KBS
21 n traffic requirements start KBS
22 o traffic requirements end KBS
23 a (1) soil evaluation in zone 1 start KBS
24 c (1) soil evaluation in zone 1 end KBS
25 a (2) soil evaluation in zone 2 start KBS
26 c (2) soil evaluation in zone 2 end KBS
27 a (3) soil evaluation in zone 3 start KBS
28 c (3) soil evaluation in zone 3 end KBS
29 a (4) soil evaluation in zone 4 start KBS
30 c (4) soil evaluation in zone 4 end KBS
31 q reference datum start KBS
32 r reference datum end KBS
33 E excavations start KBS
34 K excavations end KBS
35 P intermediate piers start KBS
36 R intermediate piers end KBS
37 F foundations start KBS
38 G foundations end KBS
39 A aesthetics start KBS
40 Z aesthetics end KBS

Table 4.1: Vocabulary of observed action boundaries in the bridge de-
sign task with their corresponding codes.

proposed representation is capable of efficiently extracting actions from

multiple parallel streams. The charts show that many of the recorded

actions overlap. By modelling each action using its boundaries (i.e. its

start and end point), the method is able to represent such concurrent

actions.

4.7.2 Glucometer calibration

The proposed action sequence extraction framework is also applied to

the videos of the publicly available dataset presented in [Shi et al.,

2004a]. The videos illustrate executions of the task of calibrating a

blood glucose monitor, which is a common task for elderly people who
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(a) (b)

(c) (d)

Figure 4.5: Gantt charts resulting from four clips of the bridge design
task. Actions extracted from the video stream appear in red colour and
cognitive actions, detected by the software, in blue colour. Extracted
action sequences are shown below the charts.

develop late stage diabetes. In similar fashion to the bridge task, in-

depth analysis of this dataset and results in activity recognition are

given later in this Thesis, in Section 6.7. Here analysis is restricted to

qualitative assessment of the action sequence representation resulting

from the application of the proposed framework to this dataset.

In this case there is only one stream, resulting from the video

footage. However, action concurrency poses a significant challenge. Key

objects are manually defined and tracked using the tracking technique

described in Section 4.3.1. Rather than manually specifying certain

actions of interest, all possible object interactions are recorded. Each

interaction observed in the experiment is represented by a code (Table

4.2).

Formulated Gannt charts for a selection of four clips from the dataset
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No. Action primitive code Description Source stream

1 a hand interacts with glucometer, start video
2 b hand interacts with glucometer, end video
3 c hand interacts with liquid, start video
4 d hand interacts with liquid, end video
5 e hand interacts with test strip, start video
6 f hand interacts with test strip, end video
7 g glucometer interacts with test strip, start video
8 h glucometer interacts with test strip, end video
9 i test strip interacts with liquid, start video
10 j test strip interacts with liquid, end video
11 k shake liquid, start video
12 l shake liquid, end video
13 m shake test strip, start video
14 n shake test strip, end video
15 o liquid interacts with glucometer, start video
16 p liquid interacts with glucometer, end video

Table 4.2: Vocabulary of observed action primitives in the glucometer
task with their corresponding codes.

(a) (b)

(c) (d)

Figure 4.6: Gantt charts resulting from four clips of the glucometer
task. The extracted sequences of action primitives are shown below
the charts.

are shown in Fig. 4.6. Resulting action sequences appear below the

charts. As shown in the charts, many of the recorded actions overlap.

The proposed framework models all actions using their start and end

points to overcome this problem.

Note that so far it was shown that the proposed framework is

capable of obtaining qualitatively logical results as the information
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present in the data streams is smoothly converted into action sequences.

The resulting sequences are afterwards passed to the machine learning

unit which identifies the activities represented in them. The relevant

methodology is discussed in Chapters 5 and 6. The efficiency of the pro-

posed algorithm is therefore assessed in the following chapters. High

accuracy in activity identification will prove that the proposed action

extraction and representation method is suitable for prolonged, com-

posite human activities.

Similarly, the effectiveness of the proposed cognitive action detec-

tion method will be further investigated in Chapter 7 where the bridge

design dataset is analysed from the aspect of activity identification.

4.8 Summary

In this Chapter a methodology to extract features from multiple, par-

allel streams illustrating complex human activities which may involve

cognitive actions was presented. The extracted features are in form

of sequences of simple actions. Two streams are used, video footage

and user’s interactions with a computer software. The methodology

proposed to use human’s interactions with the computer to record cog-

nitive tasks is novel. In contrast to existing approaches, the proposed

method operates in a non-obstructive manner and is suitable for prac-

tical applications. The idea of complementing video features with a

stream acquired by the human’s interactions with a computer for ac-

tivity analysis is novel as well. The proposed method can handle mul-

tiple streams resulting from different acquisition sources, it is capable

of modelling concurrent activities and can model activities whose exact

structure is not known a priori. No system simultaneously satisfying
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these three important properties has been previously presented.



Chapter 5

ACTION SEQUENCE

RECOGNITION

In this Thesis activities which fall in the category of events in terms

of duration are examined. The focus of this work lies specifically on

activities which comprise a large number of steps and these steps can be

executed in a plethora of ways. This characteristic makes the structure

of such activities challenging to model. In simpler events, like a sports

match certain constraints (e.g. laws of physics) simplify the prediction

of the next step in an action sequence given the current step. For

example, in a tennis game consider the state of the ball hitting the

court. This state can only be followed by two possible states: either the

ball is hit by a player or a point is scored. Although constraints apply

in the events studied in this Thesis, these are much less restrictive than

those encountered in normal activities. Therefore activities studied in

this Thesis are time sequences whose temporal relationships between

their elements have non-local character. An aspect of such activities is

that their execution requires a certain level of expertise by the human

who performs them. They can be observed in a wide variety of tasks

such as surgery, calibration of a medical device or an engineering design

study. These activities are referred to as prolonged, composite activities

86
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in this work.

The contribution of this chapter is a classification algorithm de-

signed to efficiently recognise composite, prolonged activities. The

proposed method comprises two individual components: a preliminary

classification unit based on RFs and an HHMM, whose topology im-

plements the activities’ hierarchy and structure. Previously proposed

algorithms are not capable of recognising composite, prolonged activi-

ties with high accuracy.

The decision to propose this combined classification model was

based on the observations that:

1. Discriminative feature approaches (such as RFs and SVMs) per-

form well in noisy datasets but are not readily capable of handling

temporal relations arising from sequential data.

2. Markov type approaches represent temporal relationships in time

sequences efficiently, however their accuracy deteriorates in noisy

sequences.

In this work, it is shown how discriminative feature and Markov

type methods can be combined in a model which yields “the best of two

worlds” for datasets illustrating complex human behaviour. There exist

no classifiers that posses both discriminative and temporal encoding

properties; modelling prolonged, composite activities requires both.

Regarding the choice of individual methods, RFs is used in this

work as the discriminative feature algorithm as they have demonstrated

better or at least comparable performance to other state-of-the-art

methods in classification [Breiman, 2001,Bosch et al., 2007], real-time

keypoint recognition [Lepetit et al., 2005] and clustering applications
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[Moosmann et al., 2006]. Compared to their main competitor, SVMs,

RFs have the advantage of offering a variable importance index which

reflects the importance of a variable based on the classification accu-

racy, taking into account interaction between variables [Breiman, 2001].

Also, their performance is not sensitive to the values of their parame-

ters [Yeh et al., 2012]. Moreover, RFs extend naturally to multiple class

problems unlike SVMs [Torralba et al., 2007,Criminisi et al., 2012]. In

this work a multiclass problem is solved; also measuring feature im-

portance is desirable so that a reduced set of features is passed to

the temporal part of the proposed algorithm. Therefore RFs are used.

Concerning the choice of the temporal modelling algorithm, a hierarchi-

cal graphical model is used since flat statistical graphical models (like

HMMs) cannot represent efficiently the natural hierarchical structure

of complex activities [Nguyen et al., 2005]. The HHMM was finally

chosen over other algorithms of its category because it offers efficient

parameter learning algorithms, which are actually generalisations of the

standard parameter learning algorithms for HMMs [Fine et al., 1998].

The proposed algorithm receives as input action sequences illustrat-

ing prolonged, composite human activities extracted using the method-

ology described in Chapter 4. It then analyses sequences in a supervised

manner: using a subset of labelled extracted sequences it automatically

trains a combined RF and HHMM classifier; this classifier is then used

to analyse novel sequences, i.e. sequences not used in training. The

analysis results in assigning each of the novel sequences a label describ-

ing the type of activity represented in the sequence as predicted by the

combined RF and HHMM classifier.

Note that the action sequences contain action boundaries (i.e. start
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and end points of actions), in cases where concurrent actions exist in

a dataset. If no action concurrency is observed (which can be deter-

mined by forming Gannt charts, such as those in Fig. 4.5) the action

sequences contain simply actions. Therefore the action primitives are

action boundaries when action concurrency is observed; in the opposite

case, the action primitives are the actions themselves.

As results show (Section 5.4), the proposed combined model achieves

higher classification accuracy than other classification frameworks both

in synthetic and real data.

In the next section, a brief review of RFs is given.

5.1 Random forests

A RF is an ensemble classifier that consists of many decision trees and

outputs the class that is the statistical mode of the classes output by

individual trees. The method combines “bagging” concept [Breiman,

2001] and random selection of features [Ho, 2002] in order to construct

a collection of decision trees with controlled variation.

For a RF consisting of N independent decision trees, the nth tree

of the ensemble is denoted as fn(x, θn) : X → Y mapping each element

of the sample space X to a label in the label space, Y . θn is a random

vector containing the stochastic elements of the tree (e.g. the randomly

subsampled training set or selected random tests at its decision nodes).

The entire forest is denoted as F = {f1, ..., fN}. The estimated proba-

bility for predicting class c for a sample is given by equation

p(c|x) = 1

N

N∑
n=1

pn(c|x), (5.1)
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where pn(c|x) is the estimated density of class labels of the leaf of the

nth tree where x falls with pn(c|x) = pn(c|L). The class probability at

leaf L, pn(c|L) can be directly estimated from Eqn. 5.14. Note that

Eqn. 5.1 is obtained in a data-driven fashion as illustrated later by its

derivation in Section 5.3.1; it does not require knowledge of the forms

of underlying probability distributions. Therefore its classification ac-

curacy (as reflected in the results) depends on the representativeness of

the data used for training, which is the filtered training dataset UTr,F

consisting of N labelled action sequences. The multi-class decision

function of the forest is defined as

C(x) = arg max
c∈Y

p(c|x). (5.2)

Breiman [Breiman, 2001] defined the classification margin of a la-

beled sample (x, y) as

ml(x, y) = p(y|x)−max
k∈Y
k ̸=y

p(k|x). (5.3)

For a correct classificationml(x, y) > 0 should hold. The generalization

error is given by

GE = E(X,Y ) (ml(x, y) < 0 ), (5.4)

where the expectation is measured over the entire distribution of (x, y).

Breiman [Breiman, 2001] has shown that this error has an upper bound

in the form of

GE ≤ p̄
1− s2

s2
, (5.5)

where p̄ is the mean correlation between pairs of trees in the forest and
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s is the strength of the ensemble (i.e., the expected value of the margin

over the entire distribution).

In the next section an overview of the Hierarchical Hidden Markov

Model is given.

5.2 The Hierarchical Hidden Markov Model

Algorithms such as RFs do not encode the temporal relationships be-

tween the elements of a time sequence. In the problem domain investi-

gated in this Thesis, these relationships are important, since the order

in which the actions constituting an activity are executed is vital to

the characterisation of a sequence. To encode temporal information, in

this work the elements of sequences are represented as states of an ac-

tivity chain, where transitions from one state to another are allowed or

not subject to the set of rules that govern the event. Such representa-

tions have been employed frequently in the past. They usually take the

form of the HMM and some of its variations. However, as pointed out

in [Nguyen et al., 2005], these flat models cannot sufficiently represent

complex activities, as they fail to model the hierarchic structure that

describes them. More recent work has adopted extensions of the HMM

in a hierarchical manner, such as the HHMM [Fine et al., 1998], which

is used here.

Each state of the HHMM (Fig. 5.1) can either emit observations

(“production states”) or strings of observations (“abstract states”).

Each abstract state is a sub-HHMM that can be called recursively and

integrates end states, which signal when the control is returned to the

parent HHMM. In this work discrete HHMMs are used, which are for-

mally defined by a 3-tuple < ζ,Σ, ϑ >: the topological structure,
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Figure 5.1: An example three-level HHMM which represents two sam-
ple design activities, D1 and D2. Actions below a production state
represent the symbol that is emitted. Each state is symbolised as qdi ,
d ∈ {1, . . . , D} with i the state index and d the hierarchy index. Transi-

tion probabilities are denoted with aq
d

ij and the initial state probabilities

with πqd(qd+1
i ).

ζ, defines the number of levels, the state space at each level and the

parent-children relationship between levels. The observation alphabet,

Σ, is the set of the symbols emitted by the model’s states and the set of

parameters, ϑ, includes the matrix of transition probabilities between

nodes, the initial probability distribution between the children of each

node and the observation probability distribution.

Denoted as Σ∗ is the set of all possible activities formed by the

actions in Σ. An activity can be represented as a sequence Ō =

{o1o2 . . . oT} = o1:T where T the length of the sequence. Each state

of the HHMM is symbolised as qdi , d ∈ {1, . . . , D} with i the state

index and d the hierarchy index (for the root it is d = 1, for produc-

tion states d = D). The number of substates of an internal state qdi

is denoted as |qdi |. The state index will be omitted in cases where it

is clear from the context and thus a state at level d will be denoted

as qd. Each level, excluding the root level has an ending state, qdend.
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The state transition probabilities between the internal states at level

d + 1 are given by the matrix Aqd = (aq
d

ij ) with aq
d

ij = P (qd+1
j |qd+1

i )

the probability of transitioning from state i to j within level d + 1.

The initial distribution over the substates of qd is given by the vec-

tor Πqd = {πqd(qd+1
i )} = {P (qd+1

i |qd)}. Note that P (qd+1
i |qd) is the

probability that parent state qd will initially activate substate qd+1
i .

The production states, qD emit actions as specified by their output

probability vector BqD = {bqD(k)}. In this case, bq
D
(k) = P (σk|qD)

is the probability that qD will produce action primitive σk ∈ Σ. The

set of parameters for the entire HHMM can be symbolised as λ =

{λqd}d∈{1,...,D} = {{Aqd}d∈{1,...,D−1}, {Πqd}d∈{1,...,D−1}, {BqD}}.

Algorithm 5.2.1: Learn HHMM Structure

// Learn HHMM structure from training sequences

V set of all possible actions in the task

l =∥ V ∥

Uc,i, i ∈ {1 . . . Nc} a training sequence

illustrating activity class c ∈ {1 . . . C}

O root node of the HHMM

for u← 1 to C

do



for v ← 1 to Nc

do



b(Uu,v) binary vector of length l

for j ← 1 to l

do


if action primitive Vj is present in Uu,v

then

{
b
(Uu,v)
j = 1

else b
(Uu,v)
j = 0

Vu =
{
Vk :

(∑NC
n=1 b

(Uu,n)
k ≥ 1

)}
Form a chain Du with the elements of Vu as nodes

Add an end state to the chain Du

Add a node Iu to the root node O

Attach chain Du to node Iu

Chain formed by nodes Iu, u ∈ {1 . . . NC} is model’s

first level; add an end state to this chain.

The topology of the HHMM implements the rules that govern the

activities taking place within the studied task. Previous approaches us-
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ing HHMM for activity recognition (e.g. [Nguyen et al., 2005]) have used

a manually specified model topology. Here, the topology of the model is

learned automatically from annotated training sequences using a data-

driven, heuristic approach proposed in this Thesis. The algorithm takes

as input a set of labelled training sequences Uc,i, i ∈ {1 . . . Nc}, with

Nc the number of sequences for each class c ∈ {1 . . . C}. It works as

follows. The vocabulary of the task, V , which contains all possible ac-

tions in the task, is first extracted from the labelled training sequences

and its length l = ||V || is calculated. All sequences Uc,i of the same

class c are processed as follows. For each sequence a binary vector bc,i of

length l is first formed. Each element, b
(Uc,i)
j of the binary vector, corre-

sponds to an action primitive of the task vocabulary so that b
(Uc,i)
j = 1

if action primitive Vj is present in Uc,i, otherwise b
(Uc,i)
j = 0. Then

a set Vc is formed, representing the vocabulary of the class, so that

Vc =
{
Vk :

(∑NC

n=1 b
(Uc,n)
k ≥ 1

)}
. This set includes all actions which

appear in at least one sequence of the class c in the training dataset.

From Vc a Markov chain, Dc is formed using the elements of Vc as

nodes and an end node is added to the chain. A node, Ic, representing

class c is added to the root O of the HHMM network and the chain

Dc is attached to Ic. This procedure is repeated for all classes present

in the dataset. Thus, the simplest possible 3-level HHMM is formed,

where at the third level, each class is represented as a flat HMM. Pseu-

docode for this method is given in Algorithm 5.2.1. This structure can

be optimised, given sufficient data, using Markov Chain Monte Carlo

techniques [Xie, 2005]. The structural optimisation is beyond the scope

of this Thesis; it will be covered in future work.

The parameters of the model are then estimated by discovering the
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most probable set of parameters, λ∗ with λ∗ = arg max
λ

P ({Ōt}|λ).

This is achieved with the aid of the generalised Baum-Welch algorithm

[Fine et al., 1998]. The only information that the algorithm requires is

the training dataset UTr,F of N labelled action sequences. More details

about the generalised Baum-Welch algorithm are given in Appendix 1.

5.3 The combined RF+HHMM activity analysis method

In this section a methodology is presented to analyse activities using a

classifier which combines the discriminative capabilities of RFs and the

efficiency of HHMMs to efficiently encode complex temporal relations

between elements of an action sequence. Classification is performed in

a supervised manner: a model is first learned automatically using a set

of labelled sequences; this model is then used to analyse novel input

sequences (i.e. sequences not present in the training dataset).

5.3.1 Model training

Consider a set UTr of N labelled action sequences, UTr = {UTr,i =

(Si, ci)} where Si is an action sequence and ci is the sequence’s class

label. The set UTr will be used to train the model. The classifier

comprises two parts, a RF classifier and an HHMM classifier. The two

parts are linked as follows. First, the RF classifier is trained using

the labelled action sequences, UTr. During the classification process,

the RF classifier assesses the significance of actions using a variable

importance facility which is integrated in the RF algorithm. Using this

facility, the action sequences UTr are simplified by removing actions

with low importance score. Thus, a simplified (filtered) training dataset

is obtained, UTr,F . This filtered dataset is used to train the HHMM
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classifier.

Elimination of unimportant actions from the dataset reduces prob-

lem dimensionality, resulting in sequences with fewer features. Conse-

quently, input sequences also become shorter. This allows the HHMM

to operate more robustly since algorithms of its category may run into

numerical underflow problem models as the length of the observation

sequence increases [Bui et al., 2004].

Part I: RF Classifier Training (discriminative action primitive classification)

For the RF classifier, each tree is grown as follows: a bootstrapped

[Efron and Tibshirani, 1994] sample of the training dataset is taken for

the tree which is denoted as UBt. For each non-leaf node of the tree a

split function has to be defined

fΦ(UBt,i) ∈ {0, 1} (5.6)

which provides the optimal separation of the training sequences. The

function evaluates one or more features of sequence UBt,i and decides

about whether it will be sent to the left (fΦ(UBt,i) = 0) or right child

(fΦ(UBt,i) = 1) of the node. With Φ the set of parameters of the

split function are denoted. These parameters are optimised during the

training process, which is summarised in the following steps:

1. The algorithm starts at the root node of the tree with the training

set UBt = Anode.

2. A random set of parameters, Φ = {ϕk} is generated.

3. The training set Anode is divided into two subsets, AL and AR

∀ϕ ∈ Φ as follows:
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AL(ϕ) = {UBt,i ∈ Anode|fϕ(UT,i) = 0} (5.7)

AR(ϕ) = {UBt,i ∈ Anode|fϕ(UT,i) = 1} (5.8)

4. The split parameters ϕ∗ are selected so that they optimise a gain

function g with:

ϕ∗ = arg max
ϕ∈Φ

g(ϕ,Anode) (5.9)

where the gain function g is given in the equation:

g(ϕ,Anode) = H(Anode)−
∑

M∈{L,R}

|AM(ϕ)|
|Anode|

H(AM(ϕ)). (5.10)

The function H measures the gain of the classification accuracy

of the children nodes in comparison to the current node. The

following entropy-based classification function H is given in [Gall

et al., 2012]:

H(Anode) = −
∑
c

p(c|Anode)log(p(c|Anode)) (5.11)

where the class probability, p(c|Anode), can be calculated from the

equation

p(c|Anode) =
|Anode

c | · rc∑
c

(|Anode
c | · rc)

(5.12)
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with Anode
c the set of sequences with class label c reaching the

studied node after training and

rc =
|A|
|Ac|

(5.13)

where Ac the set of sequences with class label c within the whole

training set, A.

5. If the stopping criteria are not satisfied, the tree continues to grow

using the subsets AL and AR . Else a leaf node is created which

stores the statistics of the training data Anode. Therefore the class

probability p(c|L) at leaf L can be estimated with the equation

p(c|L) = |AL
c | · rc∑

c

(|AL
c | · rc)

(5.14)

Part II: Selecting good features

One of the advantages of using RF is that they integrate a variable

importance facility which assesses the significance of each feature par-

ticipating in the classification process [Breiman, 2001, Genuer et al.,

2010]. The algorithm operates as follows:

1. For every tree in the forest, the classification of the out-of-bag

(OOB) samples of the training set is predicted and the misclas-

sification rate is estimated. The OOBt samples for a tree t are

defined as the training samples not used during the construction

of t. The misclassification rate is defined as the tree’s out-of-bag

error.

2. Values of every variable in the tree are permuted and compute
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the out-of-bag error is estimated. By comparing this error to the

misclassification rate of the tree an indication of the variable’s

importance is obtained. The increase of misclassification rate is

defined as the variable’s importance measure for the tree.

3. Out-of-bag errors and importance measures from all trees in the

forest are then aggregated to obtain the overall out-of-bag error

rate and variable importance measures.

Part III: HHMM Training (temporal model)

After selecting the important features using the Variable Importance

assessment method, non-important features are removed from the orig-

inal training sequences. Therefore, a filtered training dataset UTr,F of

N labelled action sequences is obtained. The filtered dataset is used

to train the HHMM. Using Algorithm 5.2.1 the HHMM’s structure

is obtained and model’s parameters are learned using the methodology

found the methodology in [Fine et al., 1998] which is given in Appendix

1.

5.3.2 Activity identification

Consider the task of classifying a test dataset, UTe ofM labelled action

sequences not included in the training dataset UTr,F . The process is as

follows:

Part I: Sequence denoising

Non-important elements (i.e. actions with low importance score as

given by the variable importance facility of RFs in section 5.3.1, Part

II) detected by RF during the training process are removed from the



Section 5.3. The combined RF+HHMM activity analysis method 100

test dataset and thus the filtered test dataset, UTe,F is obtained. Elim-

ination of unimportant actions from the dataset reduces problem di-

mensionality, resulting in sequences with fewer features. Therefore, the

sequence denoising stage improves the computational efficiency of the

proposed algorithm.

Part II: RF Classification

The filtered test dataset UTe,F is passed to the RF classifier. Classifi-

cation process results in mapping the elements of UTe,F to classes cor-

responding to correctly executed activities UTe,F,Corr and erroneously

executed activities UTe,F,Err. The RF classification step classifies input

sequences using their discriminative features. A high-level, qualitative

explanation of this step is that the algorithm, by taking into consider-

ation the discriminative features of the activities, which were learned

in the training stage, makes an initial decision regarding the type of

activity performed in each input sequence. This step is necessary, since

the temporal model used later in the algorithm does not have strong

feature discriminative properties, since it lacks a facility which can per-

form classification by taking into account the absence or presence of

features in a sequence and their frequencies. On the other hand, dis-

criminative feature classification, as performed in this stage, does not

take into account the ordering of the features. Therefore it is comple-

mented with a temporal model, as described in Part IV. The next part

describes how the discriminative and the temporal models are linked.
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Part III: Linking RF with HHMM

This part describes how the proposed algorithm links the discrimina-

tive model (RF) with the temporal model (HHMM). Two subsets of the

filtered test dataset, UTe,F are passed to the HHMM: the first contains

all sequences marked as correct by the RF classifier; the second com-

prises sequences which, although were marked as erroneous by the RF,

have close proximity to the correct executions of an activity according

to a similarity criterion proposed here. The idea behind the similarity

criterion used here is that, if a sequence is classified as “erroneous” by

the RF classifier, but contains all important elements of an activity, as

detected by the variable importance facility of RFs, it was potentially

misclassified by the RF classifier; therefore the responsibility for the

final classification decision is passed to the temporal model. This part

aims at reducing the classification error of the RF classification stage;

it comprises six steps.

At a high level, the process can be described as follows. In the first

two steps, a model is built for each correctly executed activity, which

is in the form of a binary vector. Each element of the binary vector

corresponds to an important element (the important elements for the

dataset are those detected in section 5.3.1, Part II). If an important

element exists in all training sequences of a correctly executed activity,

its corresponding element in the binary vector representing this activ-

ity is equal to one; else it is equal to zero. In the third step, each

sequence classified as erroneous is converted to a binary vector so that,

if it contains an important element, the element in its binary vector

corresponding to this important element is equal to one; else it is equal

to zero. Step four estimates the similarity of each sequence classified
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as erroneous with each model of correctly executed activities. Step five

selects the sequences, which, although classified as erroneous, are given

a “second chance” and are therefore passed to the temporal model.

Note that the sequences classified as “correct” by the RF classifier are

unaffected by the process so far. In step six, sequences classified as

“correct” by the RF classifier and sequences which, as described above,

will be given a “second chance” are passed to the temporal model.

The whole process is described in detail below.

1. A binary vector, b(Imp) is formed which represents the important

variables of the dataset. If Imp is the set of important elements,

the length l of b(Imp) is l =∥ Imp ∥. Furthermore, it is b
(Imp)
j = 1,

j ∈ {1 . . . l}.

2. For all correctly executed activities of the filtered training dataset,

UTr,F,Corr binary vectors b(U) are formed of length l such that, if

an important variable, j is present in a sequence then b
(U)
j = 1 else

b
(U)
j = 0. The important variable vector for a correctly executed

activity, B is defined as:

VB =

{
j :

(
N∑
i=1

b(U) = N

)
∀j ∈ VB

}
(5.15)

The binary importance vector of B is defined as a binary vector

of length l with b
(B)
j = 1, if j ∈ VB, otherwise b

(B)
j = 0. This

vector contains all actions present in all the correct executions of

the activity B. This vector is used later in the algorithm as a

means of measuring the similarity of a test sequence to the model

of correct executions of an activity.
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3. For all sequences classified as erroneous, UTe,F,Err binary vectors

b(U) are formed of length l such that, if an important variable, j

is present in a sequence then b
(U)
j = 1 else b

(U)
j = 0.

4. Similarity score Sim(B, b(U)) is estimated as follows:

Sim(B, b(U)) =
l∑

j=1

b
(U)
j · b(B)

j . (5.16)

5. A set of sequences of erroneously executed activities which satisfy

the condition Sim(B, b(U)) =∥ VB ∥ is formed (where || · || stands

for the length of the vector) and is denoted with UTe,F,Pas. Se-

quences in this set, as stated by the condition, contain all actions

encountered in all correct executions of an activity in the training

dataset. These sequences are given a “second chance” since they

include all steps present in all correct executions of an activity.

6. Sequences of sets UTe,F,Corr and UTe,F,Pas are passed to the HHMM.

Part IV: HHMM Classification

Inference for the sequences of the sets UTe,F,Corr and UTe,F,Pas is per-

formed with the generalised Viterbi algorithm [Fine et al., 1998]. More

details about this algorithm are given in Appendix 2. The generalised

Viterbi requires only the sets UTe,F,Corr and UTe,F,Pas and assigns a class

to each sample of the sets.

Part V: Activity Characterisation

The class assigned to each of these sequences by the HHMM is the out-

put of the combined RF+HHMM algorithm. Sequences of set UTe,F,Err\
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UTe,F,Pas (here the symbol ‘\’ denotes deduction) retain the class label

assigned to them by the RF classifier.

In the next Section classification results for the proposed algorithm,

RF+HHMM are presented in two datasets. Further experiments on

real life data are presented in Chapters 6 and 7.

5.4 Results: activity identification and error detection

In this section the classification accuracy of the proposed algorithm

RF+HHMM is assessed in two datasets.

An everyday human activity classification problem is investigated

in Section 5.4.1 where the task is to discriminate between activities

relevant to meal preparation. The purpose of this experiment is to

demonstrate the proposed algorithm’s ability to classify relatively sim-

ple action sequences arising from everyday activities with high classi-

fication accuracy. This dataset consists of time sequences comprising

discrete data. Complexity of this dataset is then increased by synthet-

ically adding erroneous variations of the existing everyday activities.

This addition aims at demonstrating that the proposed algorithm is

capable of detecting mistakes. Finally, the dataset is modified using

synthetically generated noise which perplexes the identification task.

This experiment aims at demonstrating the proposed algorithm’s re-

silience to noise.

In Section 5.4.2 a threat detection problem from a publicly available

dataset is considered. Specifically, the task is to discriminate between

the similar actions draw gun and raise hand pointing forward. In this

case time sequences comprise continuous data. The purpose of this

experiment is to demonstrate the proposed algorithm’s ability to work
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with continuous data, although it was not specifically designed to do

so.

In both scenarios the proposed algorithm is compared against sev-

eral current activity identification methods.

5.4.1 Everyday activity problem

In this section, experimental results of the method described in this

chapter are presented on a dataset derived from real world data. More

specifically, the activity representation model described in [Nguyen and

Venkatesh, 2005] is replicated and used to generate action sequences for

three activity classes which are have coffee, have snack and have meal.

The structures of these activities, as given in [Nguyen and Venkatesh,

2005] are shown in Fig. 5.2. Examples of action sequences expected

from these structures are: start, door to cupboard, cupboard to fridge,

fridge to dining table, dining table to cupboard, cupboard to fridge, fridge

to TV chair (have coffee); start, door to TV chair, TV chair to cup-

board, cupboard to fridge, fridge to TV chair, TV chair to cupboard,

cupboard to TV chair (have snack); start, door to stove, stove to fridge,

fridge to dining table, dining table to stove, stove to dining table (have

meal).

Activity Classification and Error Detection

One of the most important aspects in this Thesis is the detection of

errors during execution of complex activities. However the activity

model of [Nguyen and Venkatesh, 2005] only generates action sequences

illustrating correctly performed activities. To produce sequences of er-

roneously executed activities, the activity generators of [Nguyen and
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(a) (b) (c)

Figure 5.2: The structures of everyday activities studied in [Nguyen
and Venkatesh, 2005]. (a): Have coffee, (b): have snack, (c): have
meal.

Venkatesh, 2005] are modified and the output sequences of the mod-

ified generators are regarded as erroneous. The modification of the

activity generators is done by hand; random noise is added later to the

dataset to alleviate potential bias which could be introduced by the

hand-coding. Six activity classes are now present, the original three

(have coffee, have snack and have meal) and their erroneously executed

counterparts. The erroneous sequences introduced by the modified gen-

erators illustrate two types of erroneous activity executions:

Type I: An action primitive is missing from the sequence. Erro-

neous executions of activities have coffee and have meal fall into this

category.

Type II: No action primitive is missing from the sequence but

action primitives are performed in a different order than the normal

behaviour. Erroneous executions of activity have meal fall into this

category.

For each of the activity classes 25 action sequences are obtained, 15

of which are used for training and 10 for testing (thus keeping the train-
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ing/testing samples ratio identical to [Nguyen and Venkatesh, 2005]).

The dataset comprises 90 training and 60 testing action sequences. The

vocabulary of the dataset consists of 12 primitive actions (the same as

in [Nguyen and Venkatesh, 2005]).

Four algorithms are tested against the proposed algorithm, RF +

HHMM, specifically HHMM (used for activity recognition in [Nguyen

and Venkatesh, 2005]), Suffix Trees (used for activity recognition in

[Nguyen and Venkatesh, 2005]), RFs and SVMs. A three-level HHMM

was learned using algorithm 5.2.1 from the data; it is shown in Fig.

5.3. In Fig. 5.4 (a) classification results are shown in the form of ROC

curves. It is observed that three methods, RF+HHMM, HHMM and

Suffix Trees achieve maximum accuracy (100% classification accuracy

with area under curve (AUC) = 1). RFs and SVMs on the other hand

misclassify several sequences of Type II. This result was expected since

these algorithms do not encode temporal relations between an activity’s

constituent actions which is the challenge posed by sequences of Type

II.
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Figure 5.3: The learned three-level HHMM representing activities per-
formed in the everyday activity problem. Each action primitive is rep-
resented with a letter using the mapping of Fig. 5.2.
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Figure 5.4: (a): ROC curves illustrating classification accuracy (b):
Variable importance.

In Fig. 5.4 (b) the importance of actions present in the dataset

is shown as determined by the RF variable importance module (Sec-

tion 5.3.1). At this stage no action primitive in the dataset can be

characterised as unimportant.

Further commenting on the results, the classification accuracy of

HHMMs reported in [Nguyen and Venkatesh, 2005] (100%) is validated

by the experiment presented in this section. However, since three dif-

ferent algorithms achieved maximum accuracy a concern is raised re-

garding the difficulty of the classification task in this dataset. Therefore

the results presented in this section serve as a sanity check for the pro-

posed method. In the next section difficulty of the classification task is

increased with the addition of noise to the original dataset.

Adding noise to the original dataset

The purpose of the algorithm presented in this Chapter is to classify

complex human behaviour. When the sequences representing activities

only contain actions directly related to the activity performed, encod-

ing temporal relations between actions and determining discriminative

features is an easy task for modern classification algorithms as illus-
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trated in Section 5.4.1. However in action sequences actions which are

irrelevant to the performed activity are sometimes encountered. For

example, a human might pick up the phone to answer a phone call dur-

ing the execution of the washing clothes activity. In this case the action

pick up phone is irrelevant to the washing clothes activity. In this sec-

tion it is investigated how such actions can influence the performance

of current activity classification algorithms.

The effect of random, irrelevant actions is simulated here with the

addition of noise to the original dataset. Towards this effort 14 new

features (actions) are inputted in the original dataset in places deter-

mined by the van der Corput low discrepancy sequence [van der Corput,

1935a,van der Corput, 1935b]. Appendix 6 explains how this sequence

is generated. The amount of noise added to the dataset is determined

as follows: the irrelevant/relevant actions ratio (IRR) is estimated for

the dataset presented in chapter 7 which comprises action sequences

recorded during the execution of a complex engineering task. This

dataset is used as a reference to estimate the amount of added noise

because it illustrates a typical prolonged, composite human activity

and therefore contains an amount of noise which is representative for

activities of this category. If for the dataset in chapter 7 it is IRR = a,

noise is added to the dataset described in Section 5.4.1 so that its IRR

equals a. The resulting noisy dataset will be referred to as basis noise

dataset.

The same algorithms are tested in this new, noisy dataset and the

results are shown in Fig. 5.5 (a). In Fig. 5.5 (b) the importance of ac-

tions present in the dataset is shown as determined by the RF variable

importance module (Section 5.3.1). For the temporal encoding part of
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the proposed algorithm RF+HHMM actions with variable importance

(V I) less than 0.01 are discarded. It is observed that classification ac-

curacy for HHMM and Suffix Trees significantly deteriorates under the

effect of noise. On the other hand, the proposed method RF+HHMM

is not affected by noise since the variable importance module used suc-

cessfully discards most irrelevant features. Further experiments with

added noise are carried out. Specifically, 20% - 80% noise is added

to the basis noise dataset and the results are shown in Fig. 5.5 (a,

c, e) and Fig. 5.6 (a, c). All results from experiments where noise is

added to the basis noise dataset are aggregated in Fig. 5.7 where the

effect of added noise to the area under the ROC curves for the tested

algorithms is illustrated. Suffix Trees and SVMs are the algorithms

most affected by noise whereas HHMM and RF are more resilient. The

proposed RF+HHMM algorithm is not affected by noise in this ex-

periment. Note that the feature selection facility used is part of the

RF algorithm employed in the first classification step of the proposed

RF+HHMMmethod. Therefore no external feature selection algorithm

is used.

Performance Interpretation

The result tables show that RFs and SVMs have problems with dis-

tinguishing between activities of Type II (no action primitive missing

from sequence but action primitives are performed in a different order

than the normal behaviour). Since these algorithms do not take into

account the temporal order between sequence elements, they cannot

differentiate efficiently between these two activity classes.

Regarding the performance of HHMM and Suffix Tree algorithms,
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Figure 5.5: ROC curves illustrating classification accuracy under the
effect of noise (a): Base dataset, (c): Added 20% noise, (e): Added
40% noise. Feature importance for each case shown in (b), (d), (f).

performance decrease is directly related to noise increase. When noise

is added, their accuracy deteriorates.

On the contrary, it is observed that the algorithm proposed in this

Chapter is capable of encoding complex temporal relations between an

activity’s constituent actions and is additionally resilient to noise. Note
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Figure 5.6: ROC curves illustrating classification accuracy under the
effect of noise (a): Added 60% noise, (c): Added 80% noise. Feature
importance for each case shown in (b), (d).

20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

1

Noise added (%)

A
re

a 
un

de
r 

R
O

C
 c

ur
ve

 (
A

U
C

)

 

 

RF+HHMM
HHMM
RF
SVM
Suffix

Figure 5.7: Area under curve measurements for noise added to the basis
noise dataset.

that the feature selection facility used is part of the RF unit employed

in the first classification step of the proposed RF+HHMM method.

Therefore no external feature selection algorithm is used.
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5.4.2 Continuous data problem

In this section, experimental results of the method described in this

Chapter are presented on the publicly available Gun-Point dataset

[Ratanamahatana and Keogh, 2004]. The purpose of this experiment

is to demonstrate the proposed algorithm’s ability to work with con-

tinuous data, although it was not specifically designed to do so. The

dataset has two classes, each containing 100 sequences. 50 of these

sequences are used for training and 150 for testing; the partitioning

recommended by the authors is used in the experiments. All instances

are of the same length (150 data points). The two classes are:

Gun Draw: The actors start with their hands by their sides. They

then draw a gun from a hip-mounted holster, point it to a target for

approximately one second, then return the gun to the holster, and their

hands to their sides.

Point: The actors start with their hands by their sides. They then

point with their index fingers to a target for approximately one second,

then return their hands to their sides.

Data in this experiment was captured by placing a video tracker on

the centroid of the right hand in both the horizontal and vertical axes.

However, the dataset contains the track of the hand in the vertical axis

only. The resulting data is in continuous form. Sample trajectories

from the Dataset are shown in Fig. 5.8. Since the proposed algorithm

RF+HHMM works with discrete data, continuous features are discre-

tised into 40 bins using equal width discretisation.
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(a) (b)

Figure 5.8: Sample trajectories from the Gun-Point dataset(a): Class
Point, (b): Class Gun Draw.

Activity Classification and Error Detection

The proposed RF+HHMM algorithm operates in datasets where correct

and erroneous executions of an activity are present. Therefore in the

Gun-Point dataset, one of the two classes has to be considered as correct

and the other as erroneous. To determine this, the training dataset is

split into two parts and classification is performed using one part as a

training subset and the other as testing subset. A bootstrapped sample

of the training dataset consisting of 35 sequences is the training subset;

the remaining 15 sequences are used for testing. Two experiments are

carried out: in the first Gun Draw class is selected as correct and in the

second class Point is selected as correct. Performance of RF+HHMM

is measured in both experiments. Since the algorithm performs better

in the second experiment, class Point is selected as correct.

The four algorithms tested against the proposed algorithm RF +

HHMM in Section 5.4.1, specifically HHMM, Suffix Trees, RFs and

SVMs are tested in this dataset too. In Fig. 5.9 and Table 5.1 clas-

sification results are shown in the form of ROC curves and correct

classification percentages respectively. It is observed that the proposed

method RF + HHMM yields higher classification accuracy compared
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to the other methods tested. Note that the feature selection facility of

the proposed RF+HHMM algorithm was not used in this experiment.

It is noteworthy that the performance of SVMs and RFs is consid-

erably inferior compared to that of the rest of the algorithms. This is

due to the fact that SVMs and RFs ignore the temporal relationships

between the elements of the sequences. Since the Gun Point dataset

consists of time series, temporal relationships are a prominent charac-

teristic of the dataset’s sequences which explains the low classification

accuracy outputted by these two methods.

It is also noteworthy that both discriminative feature methods ex-

hibit high accuracy in the Point class and low accuracy in the Gun

Draw class. This is attributed to the fact that only a small percent-

age of the total number of sequences in the dataset is used for training

(25%) is used for training; in most applications, this percentage is usu-

ally above 50%. Thus, both of the discriminative models built are not

descriptive enough to discriminate between the two classes: in the case

of SVMs, all testing samples are assigned to a single class; in the case

of RFs, 79% of the testing samples were attributed to a single class.

Consequently, this leads to high detection rate for one class and low for

the other.

Gun Point Classes

Methods Gun Draw Point Total

RF+HHMM 0.96 0.78 0.86
HHMM 0.91 0.76 0.83
RF 0.42 1.00 0.71
SVM 0.00 1.00 0.49
Suffix 0.93 0.65 0.79

Table 5.1: Classification accuracy in the Gun Point dataset.
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Figure 5.9: Classification accuracy in the Gun Point dataset.

5.5 Summary

In this chapter the novel RF + HHMM classification method was pre-

sented, which was used here to analyse complex human activities. In

contrast to existing approaches the proposed method possesses both

discriminative and temporal encoding properties; these properties are

essential for modelling prolonged, composite activities. The proposed

technique operates in a supervised manner: a combined classifier based

on RFs and HHMMs is first built using training data; novel data (i.e.

action sequences not used during training) is then fed to the model

which maps input action sequences into classes corresponding to types

of correctly executed activities and classes corresponding to erroneous

activity executions. Results in two datasets derived from real data show

that the proposed method is capable of encoding complex temporal re-

lations between an activity’s constituent actions and is additionally

resilient to noise.



Chapter 6

KEY ACTION DISCOVERY

SYSTEM

The novel Key Action Discovery (KAD) system is presented in this

chapter, designed to discover important, key action primitives in ac-

tion sequences illustrating prolonged, composite human activities with

the goal of improving classification accuracy in activity recognition ap-

plications. The proposed method comprises two phases:

1. Exclusion of sequence elements (action primitives) from the dataset

which perplex the activity classification task. This phase is per-

formed in an unsupervised manner using a data-driven approach

inspired from Natural Language Processing statistics and is dis-

cussed in Section 6.2.

2. Detection of important, key sequence elements (key action primi-

tives). This phase treats action sequences as bags-of-words [Salton

and McGill, 1986] and utilises a training dataset consisting of la-

belled action sequences. The labels are high level descriptions

of the activity illustrated in each sequence (an example label is

(washing clothes - correct execution). This phase is analysed in

Section 6.3.

117
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The contribution presented in this Chapter is the KAD algorithm,

a method for identifying unimportant and important action primitives

in action sequences arising from the execution of prolonged, composite

human activities. Furthermore, it is described how this method can be

combined with the RF + HHMM algorithm proposed in Chapter 5 and

several other widely used classifiers. It is experimentally shown that

these combinations offer improved accuracy in classification. Previously

proposed feature selection methods cannot efficiently detect important

and redundant action primitives in action sequences illustrating pro-

longed, composite human activities.

The next section presents the definitions of certain action primitive

types which will be used in this Chapter.

6.1 Action primitive types definitions

In this Thesis an activity is defined as a sequence of action primitives.

Some of these action primitives are critical for the execution of a cer-

tain activity e.g., one cannot wash clothes without switching on the

washing machine. Such important action primitives are defined as key

action primitives for a specific activity. On the other hand, in action

sequences, action primitives which are irrelevant to the performed ac-

tivity are sometimes found. For example, a human might pick up the

phone to answer a phone call during the execution of the washing clothes

activity. In this case the action primitive pick up phone is irrelevant to

the washing clothes activity. In complex activities a third category of

action primitives is often encountered, in specific those action primitives

which although are relevant to the executed activity they do not alter

its semantic meaning. For example, during the activity take literature
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exam a candidate will certainly perform the action primitive write and

might also need to erase. However, presence of action primitives writing

and/or erasing in a sequence does not alter its semantic meaning: one

cannot determine if the candidate’s answers were correct or erroneous

by the presence or absence of these two action primitives. Furthermore,

since writing and erasing can appear in a large variety of contexts, they

cannot help in differentiating between activities such as take literature

exam, take law exam or even write letter. On the contrary, they en-

large the computational burden required to analyse complex behaviour

since their presence results in longer sequences and further complicates

the temporal relations between an activity’s constituent action primi-

tives. Such action primitives are defined as common action primitives

in this Thesis. Successful detection of common action primitives and

their elimination from the dataset reduces problem dimensionality as it

simplifies input sequences allowing hence the dataset contains fewer fea-

tures. Dimensionality reduction also means that the dataset sequences

are shortened. This allows the HHMM which is used in the classifi-

cation stage to operate more robustly since algorithms of its category

may run into numerical underflow problem models as the length of the

observation sequence increases [Bui et al., 2004].

The idea behind the proposed KAD method is to first detect and re-

move common action primitives from the dataset and then use context

statistics to discover key action primitives.

6.2 Detecting common action primitives

The vocabulary relevant to a specific task (e.g. bridge design or meal

preparation), VT , is defined as the set which includes all possible action
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primitives in the context of this task. The next step is to discover the

set of key action primitives for each individual activity in the task. Key

action primitives are important for the execution of certain activities

while common action primitives such as erasing do not alter the se-

mantic meaning of any performed activity and can therefore be ignored

during the activity identification process.

The concept of common actions is new in the area of activity recog-

nition. Related schemes are present in literature but serve different

purposes: e.g. in [Hamid et al., 2005] a scheme of deficient and extra-

neous action primitives was proposed. However, this classification aims

at defining action primitives that could help discriminate between two

or more activities. In the work described in this Thesis, such methods

are not readily applicable since at least two different activities (e.g.

correct and erroneous execution of a task) could comprise the same ac-

tion primitives but differ in the order that these same action primitives

are executed. Rather than classifying activities, identification of com-

mon action primitives aims at denoising the dataset to allow a later

classification stage to operate efficiently in noisy environments.

Eliminating common action primitives from an action sequence is

closely related to the discovery of “stop words” (articles, prepositions

etc) in the field of document analysis [Salton, 1971, Salton and Lesk,

1968]. Similar concepts have been applied for genome comparison and

clustering in Bioinformatics [Miller and Attwood, 2001]. Convention-

ally, a list of “stop words” is prepared manually. However, this process

is subjective and may not be optimal for every application domain.

In this Thesis a data-driven algorithm (Alg. 6.4.1) based on sliding

context windows (Fig. 6.1) [Chotimongkol, 2008] is proposed to elim-
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inate “common action primitives”. The algorithm is now described in

detail. First, all context sliding windows in the dataset are detected.

For an action sequence S, with S = {w1, w2, w3, ..., wν} the context slid-

ing windows are given by the set of bi-grams {w1w2, w2w3, ..., wν−1wν}.

Let us denote the total number of context sliding windows in the dataset

with z and the frequency of each action primitive in the dataset with

fw. For each action primitive w present in the dataset, its regular-

ity count, RC(w) is defined as the number of context sliding windows

in which w participates (Fig. 6.1). The action primitive’s regularity

weight, RW (w) is estimated as RW (w) = z−RW (w)
z

. By multiplying the

regularity weight with the frequency of the action in the dataset, the

regularity (Reg) of the action primitive is obtained. The feature vector

of the action primitive, Mw consists of the tuple < Reg,RC(w) >, i.e.

its regularity and regularity count.

The proposed algorithm is related to [Chotimongkol, 2008] with

the important difference that in [Chotimongkol, 2008], a threshold is

applied in the final classification stage which is usually learned from

annotated data. In the research area covered in this Thesis, such an-

notated data is not available. Therefore common action primitives are

discovered in an unsupervised manner using k-means (Alg. 6.4.1, last

line) [Duda et al., 2000].

In this algorithm, the rows of matrix Mn which correspond to com-

mon action primitives are removed and the resulting matrix, Mres is

retained. Having found the set of common action primitives, VU , it is

subtracted from VT , which gives the set of task key action primitives,

VT,C :
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Figure 6.1: Using context sliding windows to calculate regularity count
RC(w) for each action primitive w in the sequence {a, b, a, c, a}. It is
RC(a) = 4, RC(b) = 2, RC(c) = 2.

VT,C = VT \ VU . (6.1)

6.3 Discovering key action primitives

To discover the set of key action primitives for an individual activity,

VA,C , the following method is proposed: For every sequence describing

A in the training set, Si, i ∈ {1 . . . N}, a subsequence of length l, is

formed, with l =∥ VT,C ∥. A binary vector w(Si) of length l represents

the presence or absence of each of the possible action primitives in Si

such that, if an action primitive j is present in Si, w
(Si)
j = 1, otherwise

w
(Si)
j = 0. Then, the set of key action primitives for A is defined as:

VA,C =

{
j :

(
N∑
i=1

w
(Si)
j = N

)
∀j ∈ VA,C

}
(6.2)

which means that a key action primitive for an activity A is a task key

action primitive which is, in addition, present in all training sequences

describing A. The characteristic vector of A is defined as a binary vector

of length l = ∥VT,C∥ with w(A)
j = 1, if j ∈ VA,C , otherwise w

(A)
j = 0.

6.4 Sequence classification

In order to classify a test sequence X, its similarity to each activity A

can be computed in three steps:
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1. Obtain set X ′ = X ∩ VA,C .

2. Convert X ′ to a binary vector w(X′) as above.

3. Compute similarity score, Sim(A,X) as follows:

Sim(A,X) =
l∑

j=1

w
(X′)
j · w(A)

j . (6.3)

If Sim(A,X) = ∥VA,C∥ for an activity class, then input vector X is

assigned to this class. If this condition applies to more than one class,

X is temporarily assigned to all classes satisfying the criterion. Disam-

biguation is achieved with the aid of the activity structure investigation

method discussed in Section 6.5. If Sim(Ak, X) < ||VA,C || for all classes,

X is characterised as an erroneous activity.

For an erroneous activity it is also important to find the type of

the activity which was erroneously performed. To find this informa-

tion, the proximity of an erroneous activity to each class of correctly

executed activities is evaluated by computing the similarity between

their characteristic vectors. Input vector X is considered as an erro-

neous execution of the activity class Ak for which the similarity score

Sim(Ak, X) is maximised and therefore:

k∗ = arg max
k∈{1...c}

Sim(Ak, X). (6.4)

where c is the number of distinct correctly executed activity types.
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Algorithm 6.4.1: Detect Common Actions

// Identify common actions in dataset D

z total number of context windows in D

fw frequency of action primitive w in D

RC(w) regularity count of w in D (Fig. 6.1)

n = ∥VT∥

for w ← 1 to n

do



Estimate RC(w) and fw

RW (w) = z−RC(w)
z

Reg = fw ·RW (w)

Mw =< Reg,RC(w) >

kmeans(Mn, 2) //Separate Mn in 2 clusters (i)

6.5 Encoding temporal information

It is important to know that having finished an activity the partici-

pant completed certain stages which are key for the activity’s correct

execution. This step is accomplished with the use of KAD system, as

described earlier. However, the temporal order in which these stages are

completed is equally important; imagine the activity “wash clothes” ex-

ecuted in the order {put clothes in washing machine, take clothes out of

the washing machine, start washing machine, stop washing machine}.

Although all necessary steps are there, the activity is abnormal. The

temporal order between stages (or actions) defines the activitys struc-

ture which is modelled with the use of HHMMs.
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When modelling an activity with the aid of HHMMs, two problems

need to be solved:

1. Given a set of sequences illustrating an activity, the parameters

of the HHMM have to be learned from data. The sequences used

to learn the parameters of the HHMM are defined as training

sequences.

2. Given a set of sequences illustrating activities, the HHMM has

to be utilised for the purpose of inferring to which activity class

each of these sequences belongs.

The first problem is solved using the Expectation-Maximisation

(EM) algorithm [Duda et al., 2000]. The solution to this problem

is presented in Appendix 1. To solve the second problem (inference)

the generalised Viterbi algorithm is employed [Fine et al., 1998]; this

method is discussed in Appendix 2.

6.6 DeRFHHMM: Combining KAD with RF+HHMM

The classification method proposed Section 6.4 can be substituted with

the RF+HHMM algorithm proposed in Chapter 5. This is useful when

detected Key Actions cannot sufficiently discriminate between similar

activities. In this case RF+HHMM algorithm is directly applied to the

simplified dataset, VT,C obtained by Eqn. 6.1. The resulting algorithm,

combining common actions denoising and RF+HHMM classification is

called DeRFHHMM.

The common actions denoising unit can be modified to include vari-

able importance measure obtained by the RF algorithm as explained

in Section 5.3.1. Specifically, after obtaining the matrix of importance
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measures generated by the RF, its maximum value, V Imax, is estimated.

To detect unimportant actions the k-means clustering technique on ma-

trix Mres retained from Section 6.2 is applied as follows (in similar

fashion to Alg. 6.4.1) : kmeans((1−V Imax

V Imax
Mres)

◦2, 2), where the symbol

◦ is used to denote element-wise matrix operation.

6.7 Experimental results

As stated in Section 4.3, approaches in which objects are first detected

and tracked and then their tracks are used to model activities are inves-

tigated in this Thesis. In this research area, very few public data sets

exist [Zhang et al., 2011]. One of these is found in [Shi et al., 2004a]; it

analyses the problem of evaluating correct execution of the task of cal-

ibrating a blood glucose monitor, which is a common task for elderly

people who develop late stage diabetes. This task is relevant to the

work described in this Thesis for the following reasons: (1) the glucose

monitor calibration task is a real life, complex task which comprises a

large number of individual steps (2) these steps can be carried out in

a large number of ways (3) these steps can be typically executed con-

currently. For more details regarding the glucose monitor calibration

task please see [Shi et al., 2004a]. The video sequences used as dataset

for the evaluation of the task are publicly available from the authors’s

website [Shi et al., 2004b]. The dataset consists of 41 video sequences

depicting this activity carried out by 3 participants. In the experiments

described below a similar testing methodology with the one proposed

in [Shi et al., 2004a] was used: in specific six sequences were used for

training of the model and the rest for testing. Sample frames from this

dataset are shown in Fig. 6.2a and 6.2c.
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(a) (b)

(c) (d)

Figure 6.2: (a), (b): Sample frames extracted from the dataset pre-
sented in [Shi et al., 2004a]. (c), (d): Object tracking results obtained
by the key object tracking algorithm.

In [Shi et al., 2004a] a framework based on Propagation Networks

(P-Nets) was introduced to solve this task. This method has the follow-

ing conceptual similarities with the method proposed in this Thesis: (1)

an activity is, as in the methodology proposed in this Thesis modeled

as a sequence of actions (2) the activity is represented as a discrete

state model. However, there are several key differences between the

two approaches, namely (1) the state model proposed in [Shi et al.,

2004a] is manually designed which means that it is specific to the glu-

cose monitor task. For a different task a different state topology has

to be defined; in contrast, the state model of the method proposed in

this Thesis is learned from training data (2) the transition probabilities

between two states of the model are provided by experts in [Shi et al.,

2004a], however in the method proposed in this Thesis these are learned

from training sequences (3) the method proposed in this Thesis includes

a sequence classification step based on ensemble classifier techniques;
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for this reason, the model automatically built using the methodology

discussed in this Thesis has to be trained with a dataset which includes

sequences illustrating both correctly and erroneously executed activi-

ties; on the contrary, the topology of the model proposed in [Shi et al.,

2004a] is manually defined using only sequences illustrating correctly

executed activities. Despite these differences the comparison is infor-

mative and useful as the activity detection rate reported in [Shi et al.,

2004a] provides a measure for the success rate which is expected for a

system designed to analyse the glucose monitor task.

Objects of interest in the scene are the glucometer, the participant’s

hands, the test strip and the liquid bottle containing the blood sample.

Each of these key objects was tracked using methodology described in

Section 4.3.1. Results of application of the proposed system’s tracking

component to the video sequences of this dataset are shown in 6.2b

and 6.2d. Using the QSR action detection framework (Section 4.3.2),

action primitives which correspond to interactions of key objects in the

scene were extracted.

6.7.1 Performance without denoising

First the proposed method RF+HHMM is applied (Chapter 5) without

the denoising stage (Chapter 6). The proposed method’s performance

in the glucose monitor calibration task is shown in Table 6.1 and is

compared to the performance of the P-Nets as reported in [Shi et al.,

2004a] (Table 6.2). The method proposed in Chapter 5 is able to classify

sequences marked as “correct” in the ground truth data with accuracy

of 90.5%. However, it is able to detect sequences marked as “missing

one” with 100% accuracy and sequences marked as “missing six” with
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90% accuracy. P-Nets achieves 100% accuracy at identifying “correct”

executions but when it comes at detecting erroneous sequences accuracy

at detecting sequences of type “missing one” is 80% and accuracy at

detecting sequences of type “missing six” is 50% of these sequences.

The accuracy of 100% achieved by P-Nets in identification of “correct”

executions is attributed to the fact that this model is only trained

with sequences illustrating correctly executed activities, whereas the

method proposed in Chapter 5 is trained with sequences illustrating

both correctly and erroneously executed activities. More specifically P-

Nets use six sequences to build the “correct” model while the proposed

method RF+HHMM uses only two sequences. The approach proposed

in Chapter 5 is able to correctly classify the sequences of the testing

dataset in 93% of cases; performance of P-Nets is 83%. Note that KAD

method only works with the denoising step therefore it is not tested at

this stage.

6.7.2 Performance with denoising

The proposed method DeRFHHMM is applied which comprises a de-

noising stage using the common actions framework (Section 6.1) and

a classification stage (Chapter 5). Results of the denoising phase are

shown in Fig. 6.3. Actions enclosed in cluster 1 are regarded as com-

mon and are therefore removed from the dataset. These actions are:

{a, b, e, f} using the codes of Table 4.2. Classification is afterwards

performed as in Section 6.7.1 using RF+HHMM algorithm (Chapter

5) The proposed method’s performance in the glucose monitor calibra-

tion task is shown in Table 6.3. The method proposed in this Thesis is

able to classify sequences marked as “correct” in the ground truth data
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Table 6.1: Performance of the proposed method RF+HHMM, glucose
monitor calibration task.

Sequence Category Total Correct Almost right Negative
Correct 19/21 90.5% 9.5% 0%

Missing one 10/10 0% 100% 0%
Missing six 9/10 0% 10% 90%

Table 6.2: Propagation Nets [Shi et al., 2004a] performance, glucose
monitor calibration task (reported in [Shi et al., 2004a]).

Sequence Category Total Correct Almost right Negative
Correct 21/21 100% 0% 0%

Missing one 8/10 20% 80% 0%
Missing six 5/10 0% 50% 50%

Table 6.3: Performance of the proposed DeRFHHMM method, glucose
monitor calibration task.

Sequence Category Total Correct Almost right Negative
Correct 20/21 95% 5% 0%

Missing one 10/10 0% 100% 0%
Missing six 10/10 0% 0% 100%

Table 6.4: Performance of the proposed KAD+HHMMmethod, glucose
monitor calibration task.

Sequence Category Total Correct Almost right Negative
Correct 20/21 95% 5% 0%

Missing one 9/10 0% 90% 10%
Missing six 10/10 0% 0% 100%

with accuracy of 95%. It is also able to detect sequences marked as

“missing one” with 100% accuracy and sequences marked as “missing

six” with 100% accuracy. Compared to the results without the denois-

ing stage the proposed method illustrates significant improvement in

classification accuracy yielding an overall performance of 98% in this

dataset.

The proposed method KAD+HHMM is also tested. Key actions

detected are {c, d, g, h, i, j, k, l}. The algorithm achieves overall classi-

fication accuracy of 95%. In Table 6.4 its results are presented analyt-

ically.
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6.7.3 Investigating alternative denoising methods

In this subsection alternative denoising techniques are considered for

the glucometer calibration task. These techniques are then compared

against the denoising algorithm proposed in this Chapter. The compari-

son methodology is the following: each denoising technique is applied to

four classifiers which are RFs, HHMM and the proposed KAD+HHMM

and RF+HHMM. Note that Suffix Trees algorithm was also tested but

did not present competitive classification accuracy therefore its results

are not shown here. The denoising algorithms which are tested are: RF

variable importance [Breiman, 2001], SVM variable importance [Mal-

donado and Weber, 2009], Brute Force feature selection [Ribeiro and

Santos-Victor, 2005] and the Common actions method proposed in this
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Figure 6.3: Common action primitives detection in the glucometer
dataset. Elements of cluster 2 are regarded as common and are there-
fore removed from the dataset.
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Chapter. Implementation details for each method are given below.

RF variable importance. The algorithm outputs the mean decrease in

Gini index [Gini, 1912] for all variables. Gini index is a standard mea-

sure of variable importance [United Nations, 2010, Hillebrand, 2011].

Variable importance is analogous to decrease in Gini index, i.e. more

important variables display higher values of decrease in Gini index. The

test was repeated 10 times and the average decrease in Gini index for

all variables was estimated. Results are shown in Fig. 6.4. Actions

{g, h,m, n} with Gini index = 0, are considered redundant and are

removed from the dataset.

SVM variable importance. The algorithm randomly partitions the train-

ing dataset into two subsets. The first is used to train an SVM classifier.

Important features are those which maximise classification accuracy of

the trained SVM classifier on the second subset. The training dataset

of the glucometer dataset is very small (six samples) and the method

does not produce logical results in a single run. Therefore the algo-

rithm is executed multiple times (n) and the number of occasions each

action primitive a is selected as important, na,i divided by n is calcu-

lated. Then a manually defined threshold is applied over the resulting

na,i values to select redundant actions. The algorithm is first executed
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Figure 6.4: Decrease in Gini index as outputted by the RF variable
importance algorithm.



Section 6.7. Experimental results 133

a b c d e f g h i j k l m n o p
0.7

0.8

0.9

1

SVM variable importance, n = 100

feature

S
V

M
 im

po
rt

an
ce

 n
a,

i/n

(a)

a b c d e f g h i j k l m n o p
0.7

0.8

0.9

1

SVM variable importance, n = 1000

feature

S
V

M
 im

po
rt

an
ce

 n
a,

i/n

(b)

Figure 6.5: Variable importance na,i as outputted by the SVM variable
importance algorithm.

n = 100 times and results are shown in Fig. 6.5a. A logical threshold

for this experiment is na,i/n = 0.90 and for this value actions {a, b}

with na,i/n = 0.84 are considered redundant and are removed from the

dataset. Then the algorithm is run n = 1000 times and results are

shown in Fig. 6.5b. A logical threshold for this experiment is again

na,i/n = 0.90 and for this value actions {a, b} with na,i/n = 0.84 are

considered redundant and are removed from the dataset.

Brute Force feature selection. This method was found to give the best

results in [Ribeiro and Santos-Victor, 2005]. In [Ribeiro and Santos-

Victor, 2005] important feature selection is based on classification re-

sults of the original dataset partitioning in training and testing data.

However, selecting features and testing this selection on the same data

can lead to overfitting. A modified version of this method is therefore

applied here. The training dataset is partitioned into two subsets. The

first is used to train a set of classifiers. Then the algorithm exhaus-

tively searches amongst all possible feature combinations and selects

those maximising a certain metric. This metric is based on classifica-

tion accuracy of the trained classifiers on the second subset. Important
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features are those present in most of the selected combinations and re-

dundant those present in the least of them. Exhaustive search is limited

to feature combinations which include at least 8 features. HHMM and

RF classifiers are used, the classification accuracy of which is symbolised

as accHHMM and accRF respectively. The chosen metric mbrute is the

average performance of the classifiers, mbrute =
accHHMM+accRF

2
. If k fea-

ture combinations yield maximum metric valuembrute,max and a feature,

a is present in ka of these combinations, its importance for a specific

training dataset partitioning can be measured as impbrute,a = ka/k.

The algorithm is run n times, each for a random partitioning of the

training dataset and the overall importance for a feature is calculated

as impbrute,a(n) =
1
n

∑n
j=1

ka,j
kj

. In this work the algorithm is run n = 10

times and results are shown in Fig. 6.6. A logical threshold for this

experiment is impbrute = 0.50 and for this value actions {a, b, c, d} are

considered redundant and are removed from the dataset. It is observed

that action primitive {n} is close to the threshold and measurements

are repeated with this action primitive added to the redundant action

primitives set.
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Figure 6.6: Brute Force variable importance.
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Performance comparison. Feature selection results for each tested method

are applied to the glucometer dataset and classification performance

of four classifiers (RFs, HHMM and the proposed KAD+HHMM and

RF+HHMM) is measured on the filtered versions of the dataset. Classi-

fication results are shown in Fig. 6.7a. The proposed dataset denoising

algorithm based on the common actions concept offers higher classifi-

cation accuracy for all tested classifiers. It is also noteworthy that all

tested classifiers clearly benefit from the proposed denoising method as

their classification accuracy increases when the common action primi-

tive scheme is applied before classification. Performance evaluation of

the tested algorithms in terms of speed is shown in Fig. 6.7b. Mat-

lab implementation of all tested algorithms was used on an Intel Core

i7-870 quad core CPU with 8 GB of RAM. The proposed method is

the second fastest in this experiment; on the other hand Brute Force

algorithm is by far the slowest.

6.7.4 Modifying the glucometer dataset

Results presented in Subsection 6.7.3 show that the proposed denois-

ing method, based on the common actions concept, when combined

with several current classifiers results in increase of classification ac-

curacy in the glucometer dataset. In Fig. 6.7a it is also shown that

the RF classifier offers the highest classification accuracy. This result

is attributed to the fact that discriminative features (i.e. the type of

actions executed) are more important for classification than temporal

dependencies between features (i.e. the ordering of actions) in the glu-

cometer dataset. The power of the proposed algorithms RF+HHMM

and KAD+HHMM, however becomes apparent in datasets where dis-
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Figure 6.7: Feature selection methods comparison.

criminative features and temporal dependencies are equally important.

To prove this point, the glucometer dataset is modified as follows: ac-

tions {k, l} are attached to the end of six sequences of the class “miss-

ing one” and the modified sequences are added to the dataset as a new

class. Two of the new sequences are used for training of the new class.

The new sequences illustrate erroneous executions since, although they

include all necessary steps for the glucometer calibration procedure,

ordering of actions is erroneous as {k, l} should be carried out before

actions {i, j, g, h}. All classifiers tested in Subsection 6.7.3 are evalu-

ated in the modified dataset. The proposed common action primitive

denoising scheme is applied to all algorithms before classification. Re-

sults are shown in Fig. 6.8. The proposed methods RF+HHMM and
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Figure 6.8: Classifier comparison, in the modified glucometer dataset.

KAD+HHMM clearly outperform the rest of the classifiers in classifi-

cation accuracy with performances of 91% and 89% respectively.

The finding that discriminative features are more important for clas-

sification than temporal dependencies between features in the glucome-

ter task motivates the application of KAD method without the tempo-

ral analysis step both to the original and the modified dataset. Results

are shown in Fig. 6.9 where all algorithms were applied in combination

with the common actions denoising step. It is observed that in the orig-

inal dataset (Fig. 6.9a) KAD method achieves classification accuracy

of 100%. On the contrary, in the modified dataset (Fig. 6.9a), when

temporal dependencies come into play performance of KAD method

drops to 87% as it has no means of encoding the ordering of actions.

Note that activity identification was achieved in the examined dataset

with high precision. This proves that the action primitive extraction

and representation method proposed in Chapter 4 is suitable for pro-

longed, composite human activities.
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Figure 6.9: Comparative performance of KAD in the original and the
modified dataset.

6.8 Summary

In this chapter the novel KAD method was presented, which identi-

fies key actions in datasets illustrating complex human behaviour. The

technique simplifies input data and therefore eases further classifica-

tion process. Furthermore, it was shown how the main concepts of

the proposed methodology can be used to form an activity classifica-

tion scheme. Experiments showed that the proposed algorithm, com-

bined with several classifiers offers improved accuracy in classification.

Previously proposed feature selection methods cannot efficiently detect

important and redundant actions in action sequences illustrating pro-

longed, composite human activities.



Chapter 7

ENGINEERING APPLICATION

7.1 Overview

In this chapter a novel application of activity recognition is presented, in

which the proposed system is tested in a real-life bridge design scenario,

developed with the help of three bridge design experts. The bridge

design task was chosen because of its relative complexity and due to

the fact that many conventional Decision Support Systems focus on

this problem, e.g. [Moore, 1991, Choi and Choi, 1993, Philbey et al.,

1993,Moore et al., 1997, Hong et al., 2002,Malekly et al., 2010]. In

particular the conceptual stage of bridge design is investigated.

The conceptual stage of design engineering is the stage where the

basic solution path is laid down [Pahl et al., 2007]. It is traditionally

performed on pen and paper. However, in recent years several computer

based applications have been proposed for the purpose of supporting

this preliminary design stage. In initial computer based approaches

(e.g. [Moore, 1991]), the decision making process was controlled by an

expert system, which asked questions until it had sufficient information

and then provided a solution. It is apparent that such an approach lim-

its engineer’s creativity. More recent systems attempted to enhance the

user’s role by allowing him to make decisions regarding the choice of

139
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components and the style of the structure [Moore et al., 1997,Mashood

et al., 2007,Nimtawat and Nanakorn, 2009] or even allowing modifica-

tions in the final design [Sisk et al., 2003]. However, in these systems

the engineer’s contribution is still constrained to a supervisory role.

The proposed system monitors an engineer’s behaviour using a static

video camera as he works on a design task at a table (Fig. 7.1). Tech-

nical information is provided to the engineer on demand with the aid

of a Knowledge Based System (KBS); their interactions with the KBS

are also recorded. The system automatically extracts the actions per-

formed by the engineer from the video footage and their interactions

with the KBS during the conceptual design phase in a stream which

is called the task’s timeline. This timeline is then analysed using the

framework presented in Chapter 3. After the completion of a design

phase, the system either verifies its correct execution or points out po-

tential mistakes. Thus the proposed system, in contrast to previously

existing decision supports systems, gives feedback to the engineer with-

out providing ready-made solutions to the task.

7.2 System Development

The procedure followed in order to formulate a framework that would

enable the monitoring of the behaviour of engineers when working on

a design task is described in this section.

7.2.1 System requirements

One of the most challenging aspects of the work presented in this Thesis

is to design a platform which will enable us to study and analyse the

behaviour of engineers when working on a design task. Two important



Section 7.2. System Development 141

(a) (b)

(c) (d)

Figure 7.1: The experimental environment: the engineer interacts with
various objects at a study desk. (a), (c): Sample frames extracted from
the bridge task dataset. (b), (d): Object tracking results obtained by
the key object tracking algorithm (Section 4.3.1) and application of the
extended qualitative spatial representation framework (Section 4.3.2).
(b): Action writing, sketching or waiting. Spatial relationship: {(hand
1) Surrounds (pencil) And (pencil) Surrounds (paper)} (d): Action
measuring on map. Spatial relationship: {(hand 1) Touches (ruler)
And (ruler) Surrounds (map) && (hand 2) Touches (ruler)}.

factors which have to be accommodated are:

1. Solution variety. There are multiple correct ways of solving a

design task. To be able to draw conclusions regarding the effi-

ciency of a solution, a set of parameters which are essential for its

completion need to be identified a priori. These parameters will

serve as a list of checkpoints. A solution will be then evaluated

with respect to how many of these checkpoints were completed

and (in certain occasions) the temporal order of their completion.

2. Participant’s expertise. Engineer’s experience in relevant tasks

might hinder the attempt to analyse his behaviour during the de-

sign procedure. Given an easy design task, an experienced engi-

neer might be able to provide an immediate solution, without the
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need to complete any checkpoints.

In the next section, it is described how the case study was developed

in order to handle these issues.

7.2.2 Facing the challenges

To satisfy solution variety factor, the experiment was developed in

close collaboration with bridge design experts. Widely used bridge

design handbooks [Troitsky, 2000, Menn, 1990] and regulations [Fa-

houm, 2010] were taken into consideration. Finally, discovered check-

points were cross-validated with findings from relevant research [Moore,

1991,Moore and Miles, 1991]. To ensure that the task is not trivial and

therefore the participant will eventually be obliged to complete the

checkpoints in order to provide a scientifically sound solution (partici-

pant’s expertise factor), the experiment was designed so that:

1. The design scenario given to the participant contains only abstract

information concerning the task. Thus, the engineer has to ask

for further information to solve the problem. This information is

carefully correlated to the checkpoints so that it can be deduced

in which part the engineer is working by his queries. More details

about this method are given in Section 4.4.

2. There are multiple correct solutions to the problem; by careful

setting of the task’s parameters, it is ensured that none of these is

obviously “optimum”. Several alternatives have to be thoroughly

considered before the final decision is made. A circumstantial

decision is only possible after consideration of all problem param-

eters; this necessitates the completion of designated checkpoints.
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7.3 The bridge design task

This section presents an extensive evaluation of the proposed system.

Here an overview of the experiments is given: after presenting the

dataset used in the experiments (Section 7.3), testing methodology is

described (Section 7.3.3) and an overview of the evaluation method-

ology is given (Section 7.3.4). Then the experimental results are pre-

sented where it is shown that the proposed sequence analysis algo-

rithm performs better than other existing approaches on the bridge

task dataset (Section 7.3.5). Section 7.3.6 investigates the cases where

the proposed algorithm failed to classify correctly. It is shown that the

proposed methodology offers high classification accuracy on the stud-

ied dataset and it is therefore suitable for detecting mistakes in tasks

illustrating complex human behaviour.

7.3.1 Technical specifications

In this section technical details about the bridge design task are given.

The scenario presented to each participant is discussed in Section 7.3.1

and the parameters of the task are analysed in Section 7.3.1.

Bridge Design Scenario

The topographical map of Fig. 7.2 is presented to the engineer. The

map is divided into four zones, each with different characteristics (e.g.

soil condition, wind load etc.). According to the scenario, a river flows

somewhere in the map. The exact location of the river and its char-

acteristics (e.g. depth, width) are not given but can be estimated by

querying the KBS and performing calculations using the information

given by the software. Two cities are located in the map on opposite
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Figure 7.2: The topographical map accompanying the Bridge Design
Task.

sides of the river. Their locations are not given. The cities are cur-

rently connected by ferries and it takes about 80 minutes on average

to travel from one city to the other. The engineer is asked to design

a bridge which connects the two river banks and cost it. All technical

aspects of the bridge have to be taken into consideration. The bridge

should cater all forms of automotive traffic in two directions and also

pedestrians and cyclists. The final design should comprise the following

information: location of the bridge (preferred zone and coordinates),

bridge type (e.g. suspension, arch, cable etc.), total cost, total travel

time between the cities after the construction and a sketch of the bridge.

The goal is to design the best possible solution with respect to cost and

travel time. Justification for individual choices should also be given.
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Bridge Design task parameters

The basic scenario does not offer sufficient data for the solution of the

task. All additional necessary information is provided by the KBS in

the form of answers to the engineer’s queries. Appropriately placed

queries reveal information about the parameters of the Bridge Design

problem which were defined after thorough research in the bridge design

literature, with the main sources being [Troitsky, 2000,Menn, 1990,Fa-

houm, 2010,Moore, 1991,Moore and Miles, 1991]. Three bridge design

experts verified the parameters of the task and the associated values.

It is not claimed that the experiment presented here captures the full

complexity of the bridge design task however it features its main design

principles and is suitable for educational purposes.

The parameters taken into consideration in the Bridge Design Task

are the following:

Bridge width, which depends on the traffic lanes carried.

Bridge length, which depends on the river’s width.

Traffic requirements, with the minimum being a dual carriageway

with two lanes in each direction. Concerning the traffic lane width,

width of motor vehicle lane should be between 3.0-4.0m, cycle lane

if incorporated should be between 1.5-2.0m, pedestrian pavement if

incorporated should be at least 1.5m and pavements with bike lanes

have a minimum width 2.5m.

Travel time between cities, after the bridge is constructed which

will vary depending on where in the zones the bridge is located. This

is because of the available current road infrastructure. For Zone 1 it is

50 minutes, 30 for Zone 2, 20 for Zone 3 and 60 for Zone 4.

Bridge types with the following being available for the experiment:
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concrete beam and slab, steel beam and concrete slab, steel truss, cable

stayed, arch, suspension, movable span.

Bridge spans, which depend on the chosen bridge type. Minimum

and maximum spans for the bridge types of the experiment are shown

in Table 7.1.

Bridge base cost, which depends on the chosen bridge type and

the size of the bridge. Costs for the bridge types of the experiment are

given in Table 7.1. All calculations regarding additional costs should

use this value as basis.

Intermediate piers. If maximum span is exceeded, intermediate

piers will be required to ensure the bridge is safe. It is assumed that

an intermediate pier will increase the overall cost of the bridge by 5%.

This increase does not include the additional cost of the foundation

that may be required.

Foundations. If the ground/terrain at the location of bridge con-

struction requires deep foundations or piling, costs can be expected to

increase by 10% of the total cost of the bridge for each 10m of depth

for each foundation. An additional 7% of the total cost of the bridge is

required if the structure is founded on land and 15% if founded in the

river.

Excavations. If the ground/terrain at the location of bridge con-

struction requires bulk excavation, costs can be expected to increase by

Bridge Specifications

Bridge Type Cost (£/m2) Min-max span (m)

Concrete beam and slab 2000 20-40
Steel beam, concrete slab 2200 30-90
Steel Truss 2000 90-360
Cable Stayed 3700 180-360
Arch 3000 10-120
Suspension 7000 180-1500
Movable Span 12000 60-120

Table 7.1: Specifications for bridge types available in the experiment.
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5% for each 10m of depth for earth and 10% for rock.

Wind load. Wind speed can reach up to 160km/hr in Zone 4.

Max wind speed in Zones 1 -3 lower, max 120km per hr. If the bridge

is built in Zone 4, costs can be expected to increase by 5%.

Seismic activity. Previous seismic activity has been greater in

Zones 3 and 4. If the bridge is built in these zones, costs can be expected

to increase by 5%.

Safety for river traffic. Where possible, river traffic should be

unaffected by the presence of the bridge.

Water height above reference datum. Minimum +118, maxi-

mum +120.

Ground type which depends on zone. It can be evaluated using

given boreholes to solve a three-point geology problem. Boreholes are

given for only one side of the river for each zone but it can be assumed

that the soil structure is the same on both sides of the river for the

same zone. Borehole specifications are as follows (note that the letter

preceding the borehole measurements refers to its corresponding point

in map of Fig. 7.2):

Zone 1: A: Surface - 50m: Sand, 50 - 80: Clay, 80 - : Rock. B:

Surface - 30m: Sand, 30 - 60: Clay, 60 - : Rock. C: Surface - 20m:

Sand, 20 - 50:Clay, 50 - :Rock.

Zone 2: D: Surface - 60m: Clay, 60 - : Rock. E: Surface - 40m:

Clay, 40 - :Rock. F: Surface - 30m: Clay, 30 - : Rock.

Zone 3: G: Surface - 70m: Clay, 70 - : Rock. H: Surface - 60m:

Clay, 60 - :Rock. I: Surface - 40m: Clay, 40 - : Rock.

Zone 4: J: Rock. K: Rock. L: Rock.

Aesthetics, which depends on the chosen bridge type and the cho-
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sen location. It is assumed that in Zones 2 and 3 the bridge should be

aesthetically pleasing.

7.3.2 Results

Six civil engineering professionals and 14 civil engineering students par-

ticipated in the study, resulting in a total of 30 hours of video footage.

From this video footage 54 sequences were extracted (each of length 5-

15 minutes) to serve as the training set. In each sequence, participants

execute one of three complex tasks: evaluate soil condition, estimate

transient loads and evaluate bridge cost. The test data is a different set

of 72 sequences obtained in a similar way. Table 7.5 shows the distri-

bution of the sequences of the dataset in activity classes as provided by

expert’s labelling.

The data acquisition and feature extraction component extracted

sequences of actions from the video stream and the user’s interactions

with the KBS as explained in Section 4.3. The task vocabulary, VT ,

which consists of 40 action primitives is shown in Table 7.3. In this

Table it is also specified whether each action primitive is detected by

the video analysis unit or the KBS. For action primitives related to soil

evaluation suffixes indicating specific zones are dropped, thus action

primitives 23-30 in Table 7.3 are merged into two: soil evaluation start

and soil evaluation end. A subset of the sequences used for testing is

given in Table 7.4. All sequences used in the experiments (both for

training and testing) are given in Appendix 3.

Ground truth (i.e. identification of activities performed in sequences

and evaluation if these activities were executed in a correct or erroneous

manner) was provided by bridge design experts by manual labelling of
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Table 7.2: Bridge Design Task dataset, labelling details

Class No. Code Description

Class 1 A1.1 Soil Condition examination executed correctly
Class 2 A1.2 Soil Condition examination executed erroneously
Class 3 A2.1 Transient Loads evaluation executed correctly
Class 4 A2.2 Transient Loads evaluation executed erroneously
Class 5 A3.1 Base Cost estimation executed correctly
Class 6 A3.2 Base Cost estimation executed erroneously

the extracted video sequences and examination of each participant’s

study output. The labelling process took place as follows: (1) an ex-

pert examined an input sequence and evaluated the participant’s study

output corresponding to this sequence, (2) based on this information,

they assigned the input sequene a label which indicated (a) type of the

activity observed in the sequence (b) whether the activity was executed

in a correct or erroneous manner. Activity classes for the bridge design

task are shown in Table 7.2.

7.3.3 Model specifications

The proposed sequence classification algorithm was applied to the ex-

tracted sequences, as specified in Section 5. Denoising was first applied

(Section 6.2) which characterised four of the actions in the dataset vo-

cabulary, specifically writing start, writing end, erasing start, erasing

end as common, forming the set Vcom. These are excluded from the set

of key actions, VT,C .

The combined RF+HHMM was then built as described in Section

5.3.1 using the 54 training sequences. For the RF, 100 trees were used

and the number of split variables, m was set to m = 6. Data was

classified into six classes (two for each activity: one including correct

executions of the activity and one erroneous executions). Concerning

the temporal analysis stage, a three-level HMMM was automatically
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No. Action primitive code Description Source stream

1 p measuring start video
2 v measuring end video
3 b sketching start video
4 u sketching end video
5 x writing start video
6 w writing end video
7 y erasing start video
8 z erasing end video
9 s transient loads start KBS
10 t transient loads end KBS
11 d river traffic start KBS
12 e river traffic end KBS
13 f wind load start KBS
14 g wind load end KBS
15 h seismic load start KBS
16 i seismic load end KBS
17 j base cost start KBS
18 k base cost end KBS
19 l bridge length start KBS
20 m bridge length end KBS
21 n traffic requirements start KBS
22 o traffic requirements end KBS
23 a (1) soil evaluation in zone 1 start KBS
24 c (1) soil evaluation in zone 1 end KBS
25 a (2) soil evaluation in zone 2 start KBS
26 c (2) soil evaluation in zone 2 end KBS
27 a (3) soil evaluation in zone 3 start KBS
28 c (3) soil evaluation in zone 3 end KBS
29 a (4) soil evaluation in zone 4 start KBS
30 c (4) soil evaluation in zone 4 end KBS
31 q reference datum start KBS
32 r reference datum end KBS
33 E excavations start KBS
34 K excavations end KBS
35 P intermediate piers start KBS
36 R intermediate piers end KBS
37 F foundations start KBS
38 G foundations end KBS
39 A aesthetics start KBS
40 Z aesthetics end KBS

Table 7.3: Vocabulary of observed actions in the bridge design task
with their corresponding codes.

No. Class Sequence

1 1 ahixwqrxwdebulxwFxwpvGdmyzxwc
2 3 sxwyzxwFhxwixwyzaxwGcxwdxwet
3 5 jdxwyzepvxwbuxwqrExwKxwpvAxwZlmyzxwk
4 2 axwbuxwyzjxwnoyzxwc
5 4 sfxwgxwdhiexwt
6 6 jdxwexwyzqxwFGryzlxwpvxwmk
7 1 axwbudexwbujyzxwc
8 1 abuxwqxwburyzxwc
9 2 axwhxwyzxwixwyzxjwyzxwc
10 2 axwdxwnxwyzpvqxwc
11 3 sxwlpvmxwbunjpvoxwdpvxkwefxwghxwit
12 4 sdbupvxwnoxwlmyzxwqrnxwexwt
13 3 sxwhxwixwdehxwiyzxwfgxwyzxwt
14 4 sxwyzxwdbuxwpvxwlmyznoyzxwqrnxwqret
15 5 jxwqrxwnxwPxwRxwoxwAxwZlxwpvmxwdexwbuxwk
16 5 jqrxwpvlmAxwZyzhxwFxwGxwnxwok
17 6 jxwdxweyzxwqxwryzlExwyzKxwpvxwmxwk
18 6 jyzxwnoxwlxwmyzqxwPxwRxwyzrxwpvk

Table 7.4: Example sequences used for testing.

created using algorithm 5.2.1. The learned model is shown in Fig. 7.3

where the actions are represented using the code system of Table 7.3.

Parameters of the learned HHMM are given in Appendix 4.
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7.3.4 Performance evaluation

Using the learned model of Section 7.3.3 the 72 test sequences are clas-

sified following the proposed algorithm as described in Section 5.3.2.

Evaluation of the framework’s efficiency in behaviour recognition is

based on system’s ability to identify correctly performed activities and

detect mistakes in the test sequences.

The performance standards on which the proposed method is eval-

uated are the following:

1. Comparison of the proposed method’s (DeRFHHMM) classi-

fication accuracy against the classification accuracy of its individual

components (RF and HHMM). The purpose of this test is to show

that the proposed method outperforms its individual components in

classification accuracy hence combining these two algorithms is mean-

ingful. The comparison is achieved using Receiver Operator Charac-

Figure 7.3: The learned HHMM representing activities performed in
the bridge design task.
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teristic curves [Provost and Fawcett, 2001]. This method is standard

for evaluating the robustness of classification performance. This test

is repeated with added noise to the original dataset to illustrate the

proposed method’s resilience to noise.

2. Comparison of the proposed method’s (DeRFHHMM) classi-

fication accuracy against the classification accuracy of several existing

methods. The purpose of this test is to show that the proposed method

outperforms current state-of-the-art in classification accuracy in the ex-

periment described in Section 7.3.1. The comparison is achieved using

standard classification accuracy estimation for multi-class problems.

Therefore classification accuracy, accuracy(k), for a class k from Table

7.2 is defined as:

accuracy(k) =
number of correctly identified samples of k

total number of samples of k
(7.1)

Accuracy is estimated for all tested methods, for all activities of Table

7.2.

3. Discriminatory power of the proposed method. The purpose of

this test is show that the proposed method mislabels similar classes less

frequently than other tested methods. This is achieved using confusion

matrices [Kohavi and Provost, 1998].

4. Classification accuracy in relation to activity complexity. The

purpose of this test is to illustrate how classification accuracy of the

proposed method is affected by increase of activity complexity. If for

an activity there are N correct and M erroneous executions present in

the test dataset, a sequence illustrating correct execution of the activity
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is denoted with Qi and erroneous with Qj and activity’s complexity is

defined as:

complexity =

∑N
i=1 |Qi|+

∑M
j=1 |Qj|

N +M
(7.2)

where |Q| is the cardinality of an action sequence, Q. In this case,

the total classification accuracy for each tested method is considered,

defined as:

total accuracy =
total number of correctly identified samples

total number of samples
(7.3)

7.3.5 Comparative performance

For the behaviour analysis component of the proposed system a combi-

nation of a RF, a hierarchical graphical model and a denoising unit is

proposed. The superiority of this ensemble model is now demonstrated

over its individual components on the bridge task dataset (RF classi-

fier and HHMM). An illustrative way to achieve this is to employ ROC

curves to measure the efficiency of each algorithm in distinguishing

“correct” from “erroneous” behaviours. The ROC curves are obtained

as follows: each tested method outputs, for each sample of the test

Table 7.5: Bridge Design Task dataset, distribution of dataset se-
quences to activities. “ID”: correctly performed activities. “ERR”:
erroneously performed activities.

Activities ID ERR Total
Soil Condition 20 16 36
Transient Loads 25 21 46

Base Cost 23 21 44
Overall 68 58 126
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dataset, a tuple < I, p > where I is the classification result which cor-

responds to an activity class of Table 7.2 and p the classifier’s score in

the interval [0, 1] for the result which is a measure of the classifier’s con-

fidence for the result. The list of tuples for each method are then used

to form its ROC curve using the algorithm from [Provost and Fawcett,

2001]. An interpretation of the ROC curve visualisation is given in Fig.

7.4c. Curves corresponding to higher classification accuracies bulge fur-

ther outward to the upper-left, nearing the point of perfection at (0,1).

Note that in Fig. 7.4c curves corresponding to low and higher accu-

racy are indicative. ROC curves visualising classification accuracy for

the proposed method (DeRFHHMM), RF and HHMM are presented in

Fig. 7.4a, where it is shown that the proposed method achieves higher

classification accuracy.

The response of the three tested algorithms to the addition of inde-

pendent noise to the original dataset is also evaluated. For the reasons

explained in Section 6.1 it is expected that addition of independent

noise will increase the difficulty of the classification task. Independent

noise is added by inputting additional “common” actions in the testing

dataset. The proposed algorithm has already detected four of those,

forming the set Vcom as described in Section 7.3.3. This set is expanded

as follows. Following the recommendation of [Kaloskampis et al., 2011b]

a set comprising actions of VT,C which are present in all correct exe-

cutions of at least one activity in the training dataset is formed. By

subtracting these actions from VT,C set VT,R is obtained. The set of

actions Vnoise which will be used as noise in the experiment is Vnoise =

VT,R ∪ Vcom. It is found that Vnoise = {x,w, y, z, E,K, P,R, F,G,A, Z}

where the codes of Table 7.3 are used to represent the actions. Input
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Figure 7.4: ROC curves for different approaches in classification of
performed activities in correct or erroneous of the experiments. (a):
Original dataset, (b): Added noise, (c): Performance reference, (d):
Area under curve (AUC).

points for the actions within the dataset are determined using the van

der Corput low discrepancy sequence [van der Corput, 1935a, van der

Corput, 1935b]. A randomly selected action primitive from set Vnoise is

inputted at each input point. ROC curves for the added noise experi-

ment are shown in Fig. 7.4b, where it is clear that the proposed method

is able to maintain its edge compared to RF and HHMM algorithms

under the effect of independent noise.

In a ROC diagram, a measure of classification accuracy is the area

under a curve (AUC). An AUC of 0.5 reflects random forecasts and

AUC = 1 implies perfect forecasts. An AUC for a ROC curve y(x) can

be directly computed with the formula AUC =
∫ 1

0
y(x) dx. In Fig. 7.4d
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the change of AUC size under the effect of independent noise is shown

for the three tested algorithms. It is observed that classification accu-

racy for both RF and HHMM algorithms significantly deteriorates due

to added independent noise; on the other hand, the proposed method’s

performance exhibits a very mild decrease rate which keeps accuracy

at an almost steady level.

The experiments therefore show that the proposed method outper-

forms its constituent components in classification accuracy in the bridge

task dataset.

To further demonstrate the efficiency of the proposed DeRFHHMM

algorithm in sequence analysis, the system’s performance is compared

against several alternative methods. The examined bridge task involves

complex temporal relations, therefore approaches in which objects are

first detected and tracked and then their tracks are used to model ac-

tivities are investigated. Input sequences are analysed with flat HMM

(a popular choice in activity analysis, e.g. [Cielniak et al., 2003]), sim-

ple RF [Leistner et al., 2009] and HHMM (used for activity identifi-

cation in [Nguyen et al., 2005]) algorithms. A comparison against an

unsupervised method involving Suffix Trees which appears in Hamid

et al. [Hamid et al., 2009] is also carried out. Furthermore the pro-

posed method is compared against two algorithm combinations: se-

quence analysis is performed by combining RF with the flat HMM and

finally combine HHMM with Support Vector Machines (SVMs) [Cortes

and Vapnik, 1995]. SVMs were chosen as an alternative non-parametric

classification algorithm due to its popularity in current activity recog-

nition frameworks, e.g. [Niebles et al., 2010,Duchenne et al., 2009]. Fi-

nally, comparisons against algorithms RF+HHMM [Kaloskampis et al.,
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2011c] and KAD+HHMM [Kaloskampis et al., 2011b] are carried out

which were discussed earlier in this Thesis. The results are presented

in Fig. 7.5, where it is shown that the proposed approach exhibits

higher or equal accuracy in activity identification than the other tested

methods. Performance analysis is based on each algorithm’s ability to

identify correctly performed activities (column “ID”) and detect mis-

takes in the test sequences (column “ERR”).

An important finding of the experiments is that methods com-

bining a discriminative feature classifier and a Markov model (i.e.

DeRFHHMM, SVM+HHMM, RF+HMM) perform better than single

step classification methods (i.e. RF, HMM, HHMM and Suffix Trees).
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Figure 7.5: (a), (b, (c): Comparative performance of the proposed
system for three activities. (d): System performance in analysis of
complex behaviours.



Section 7.3. The bridge design task 158

To further investigate this finding, confusion matrices of RF, HHMM,

Suffix trees and the proposed method (DeRFHHMM) are plotted (Fig.

7.6). Denoted as A1.1, A2.1, A3.1 in Fig. 7.6 are the activities es-

timate soil condition, evaluate transient loads and estimate base cost

respectively executed correctly. Denoted as A1.2, A2.2, A3.2 are their

corresponding erroneously executed counterparts. It is observed that

it is easy for single step approaches to confuse correct with erroneous

activity executions. This is attributed to the fact that non-parametric

approaches (e.g. RF) are not able to handle temporal relations; on the

other hand, models following Markovian properties (e.g. HHMM) are

not able to represent temporal relations accurately in noisy environ-

ments. Suffix Trees encode neighbouring temporal relations between

an activity’s constituent actions; in the examined problem space, these

neighbouring relations become less characteristic of the performed ac-

tivity since in many cases “important” actions are preceded and/or

succeeded by random actions, which can be thought of as noise.

Furthermore, the relationship of system’s performance with the

complexity of each performed activity is investigated as defined in Sec-

tion 7.3.4. In Fig. 7.5d overall performance (i.e. combined perfor-

mance in identification and error detection) of composite algorithms

RF+HMM, SVM+HHMM, RF+HHMM and the proposed DeRFHHMM

is plotted with respect to activity complexity. It is observed that algo-

rithms RF+HMM, SVM+HHMM, RF + HHMM perform equally well

in the task evaluate soil condition, which has an average sequence length

of 14 actions. For more complex tasks, performance slightly deterio-

rates for these models. On the contrary, it is clear that the proposed

DeRFHHMM algorithm maintains its accuracy level as complexity in-
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Figure 7.6: Confusion matrices for different approaches in identifica-
tion of the six activity classes of the experiments. (a): The proposed
method, (b): RF, (c): HHMM, (d): Suffix Trees.

creases.

7.3.6 Interpretation of misclassifications

Out of the total 72 test sequences, six were misclassified by the pro-

posed system. Out of these, three were false positives (FPs) and three

false negatives (FNs). All FPs occurred due to calculation errors, i.e.

although participants followed all necessary checkpoints in the correct

order, failure of combining input data lead to erroneous results. Re-

garding the occurrence of FNs, there were two causes:

1. In one of the FNs, occurrence of non critical (see Section4.5) ac-

tions in an input sequence was observed, i.e. the participants

requested information not related to the performed activity dur-

ing a design procedure.

2. In the two remaining FNs, participants did not request critical
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Figure 7.7: Analysis of system’s misclassifications.

details concerning a performed activity but reached acceptable

results by assuming reasonable values for the missing data. This

is common practice for the more experienced engineers in the

conceptual stage of the design process.

In Fig. 7.7, misclassifications are attributed to individual system

components.

7.3.7 Importance of actions extracted from video

This section reviews the importance of actions recorded in video in the

identification of activities in the bridge design task. As already men-

tioned in Section 7.3.3, two of those, specifically writing start, writ-

ing end, erasing start, erasing end were characterised by the proposed

system as common (unimportant) and were removed from the dataset.

However this was not the case with actions relevant to sketching (sketch-

ing start, sketching stop) and measuring (measuring start, measuring

stop).

For the activity soil condition it was discovered that all correct exe-

cutions included action sketching. This is logical from a technical point
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of view as during the execution of this activity the engineer has to

solve a geological 3-point problem [pit, 1985]. Since this problem is

solved by determining the positions of soil layers in the three dimen-

sional space, sketching is an essential part of the solution. It has to be

noted that sketching is not an indication that the engineer attempted

the task; this indication is the primitive action soil evaluation in zone

x start. Sketching is an optional primitive action which, in the context

of the soil evaluation process, was carried out in most cases only by

participants who understood that a 3-point problem had to be solved

and knew the procedure. Therefore detection of action sketching is im-

portant for discriminating between correct and erroneous executions of

this activity. Of course, even if an engineer sketches they might still

produce an incorrect result possibly by errors in their calculations. In

the experiments however no such incidents were encountered. In con-

clusion, omission of sketching is a good reason for the proposed system

to notify the user that they have possibly omitted a step during the ex-

ecution of the task and therefore detection of this action by the system

is important. Detecting errors in calculations is an interesting problem

and will be analysed in future work.

It was also discovered that for the activity base cost, engineers who

did not perform measuring after querying reference datum executed this

activity erroneously. This is logical since, although ground morphology

as given in the geological map (Fig. 7.2) implies that the river is lo-

cated somewhere in the middle of the map (at the lower point, which

is between the lowest contours of 100m), its width is not known. Only

after the engineer queries reference datum it is discovered that water

reaches the altitude of 118m. This means that the river flows between
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the two contours representing the altitude of 120m hence the width of

the river becomes known for every map location. Therefore, omission of

measuring sometime after the reference datum query is a good reason

for the system to notify the user about the potential omission of the

step. Thus detection of this action by the system is important.

7.4 Action sequence extraction assessment

Activity identification is achieved in the bridge design dataset with

high precision. This proves that the action extraction and representa-

tion method proposed in Chapter 4 is suitable for prolonged, composite

human activities. Furthermore, cognitive tasks can be successfully ex-

tracted using a KBS as proposed in Section 4.4.

7.5 Suitability of the bridge design task to test the performance

of the proposed method

The engineering design task was found suitable to test the performance

of the proposed method for the following reasons. First of all, it involves

cognitive actions. Second, it comprises two parallel data streams. Cer-

tainly, most of the information is included in the KBS stream and the

video plays a secondary role. Yet, without the information obtained

from video it is not possible to discriminate between correct and erro-

neous executions of some performed activities as the action primitives

found in the video have discriminative characteristics. Therefore, the

two streams complement each other. Third, the resulting classification

task is difficult; in fact, as experimental results show, many state-of-

the-art algorithms perform poorly - especially after the addition of in-
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dependent noise to the dataset. The main difficulty of the classification

task is that it requires a method which has both discriminative feature

and temporal analysis properties. One of the main contributions of

this work is the proposed classification algorithm; this problem shows

that this algorithm compares favourably to state-of-the-art methods in

a challenging task.

However, acknowledging the fact that a more difficult task is re-

quired to test the efficiency of the video analysis component of the pro-

posed system, it was tested additionally in a publicly available dataset

where video is the prominent stream, as described in chapter 6.

Finally, there is a logical concern regarding whether certain action

primitives, such as erasing, should be included in the task analysis

since they seem to be irrelevant to the objectives of the task. Initially

several researchers working on the development of the task had the idea

that erasing could be used as a discriminative feature i.e. there was

a possibility that erroneous executions could include erasing in higher

frequencies compared to correct executions. This hypothesis was not

proven correct, as results showed, for the activities analysed in the

studied experiment. However, the results might be different for other

types of engineering activities. Therefore, that erasing is a common

action was a hypothesis that had to be proven experimentally. Since

it was validated, the action primitive erasing can be ignored when the

proposed system is applied in practice.

7.6 Summary

In this chapter a novel application of activity recognition was presented,

in which the proposed system was tested in a real-life bridge design
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scenario, developed with the help of three bridge design experts. En-

gineer’s behaviour was monitored using a static video camera as they

worked on a design task at a table. The system automatically extracted

the actions performed by the engineer following the methodology pre-

sented in Chapter 4 and analysed them using the techniques described

in Chapters 5 and 6. The results showed that the proposed method

offers high accuracy in recognising activities and detecting mistakes in

the Bridge Design Task. Furthermore it was shown that the proposed

algorithm outperforms several current activity recognition algorithms

in classification accuracy in the application examined in this Chapter.

In this application the proposed framework can be viewed as a decision

support system as it gives feedback to the engineer after the comple-

tion of each design stage. In contrast to previously existing decision

supports systems, the proposed method aids the engineer in the design

process without providing ready-made solutions.



Chapter 8

CONCLUSIONS AND

FUTURE WORK

The work presented in this Thesis investigates analysis of activities

occurring in concurrent multimedia streams which result from video

and computer-based human generated content. The general problem

of event analysis in multimedia streams is investigated with the main

focus lying on events which comprise a large number of steps and these

steps can be executed in a plethora of ways. The studied events may

include cognitive tasks. Human activities arising in such events are

referred to as prolonged, composite activities.

Currently there is no model to represent prolonged activities of high

complexity like the ones considered in this Thesis. Additionally, in such

prolonged, composite activities not all actions are important for correct

execution of an activity. A method is needed to identify such actions

automatically and to avoid including them in the models of activities of

interest. What’s more, there exists no method to unobtrusively extract

cognitive activities.

Therefore in this Thesis a framework for analysing prolonged, com-

posite human activities is developed, capable of overcoming the defi-

ciencies of existing methods. Activities are represented using a model

165
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whose topology and parameters can be learned from data; it is capa-

ble of efficiently representing temporal relations between an activity’s

constituent actions and can handle noisy datasets. Furthermore, the

method proposed in this Thesis is capable of capturing hierarchy of

complex activities and is designed to work with actions that take place

in parallel at the same time.

The novelties presented in this Thesis are the following:

• A new feature extraction methodology which enables automatic

construction of action sequences from data arising from multiple

streams representing complex human activities is proposed. Con-

trary to existing methods in the area of complex activity analysis,

this representation can model activities whose exact structure is

not known a priori and can handle concurrent activities.

• A new methodology for recording cognitive activities, i.e. activi-

ties which aid in understanding cognitive thought process. Cen-

tral part of the proposed method is a KBS.

• A new classification algorithm, suitable for analysing prolonged,

composite human activities, an area where currently existing meth-

ods prove inadequate, is proposed. It is based on the combination

of RFs and HHMMs; combining these methods in the manner pro-

posed in this Thesis allows the proposed algorithm to benefit from

their strengths whilst avoiding their weaknesses.

• A method for identifying unimportant and important actions in

action sequences arising from the execution of prolonged, com-

posite human activities with the goal of improving classification

accuracy, based on the Key Action Discovery concept.
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• An application of the proposed framework to the analysis of the

conceptual stage of the bridge design task.

The proposed methodology offers higher accuracy in activity recog-

nition and error detection than other leading methods. This is assessed

using extensive experiments. Moreover, the algorithm’s performance

is assessed in several datasets with results showing that the proposed

method generalises well to solve a variety of different problems.

The next section gives a brief overview of the impact of the work

presented in this Thesis in the studied research area and its importance

is discussed.

8.1 Impact of the proposed methodology

Analysis of prolonged, composite activities is a step further in identi-

fying complex behaviour as it is an unexplored area. The techniques

described in this Thesis can potentially offer a variety of applications,

such as monitoring and identification of mistakes in composite tasks,

improved automated surveillance and reinforced learning. The pro-

posed methodology paves the way for numerous important applications

in the fields of training for industrial engineering, education and cog-

nitive psychology: automation in error detection as provided by the

proposed system saves on time and human effort. Moreover, since the

proposed methodology provides a means of analysing complex human

behaviour, it can be used for understanding complex cognitive processes

in psychology studies.

Current state of the art complex activity identification algorithms

are only suitable for a limited range of applications. On the contrary,

the methodology presented in this Thesis is designed to solve a variety
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of complex tasks. It is shown that the proposed framework can be suc-

cessfully applied to detect mistakes in a bridge design scenario and the

task of calibrating a blood glucose monitor. Additionally, the proposed

method is employed in a dataset illustrating everyday human activities

and it is observed that the proposed algorithm achieves state of the art

performance. Thus, the proposed methodology generalises well to solve

a wide variety of problems.

An important aspect of the work presented in this Thesis is the abil-

ity of a system to identify mistakes in the execution of prolonged, com-

posite activities. Such mistakes are typically difficult to detect since a

correct and an erroneous execution of the same task are strongly corre-

lated and therefore hard to distinguish. Being able to identify mistakes

during the execution of prolonged, composite activities is very impor-

tant: a mistake during a surgery can cost the patient’s life. Mistakes in

engineering studies can also prove costly: engineering design consists

of a number of consecutive stages and the outcomes from each stage

feed into the next one; thus, any undetected errors made at an ear-

lier stage can feed into the next stages propagating through the entire

process. Since mistakes in construction engineering can cost human

lives [Frejus, 2009] or have severe environmental and/or financial con-

sequences [Pellegrini, 2008], detecting mistakes as early as possible is

of priority.

The work presented in this Thesis offers several important applica-

tions which are listed below.

Automated surveillance is a field which can benefit from the tech-

niques presented here. In particular, the proposed method makes it

possible to identify complex activities in noisy environments in multi-
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media streams. This is useful for monitoring complex long-term man-

ufacturing procedures in industrial environments.

Detecting mistakes in engineering tasks is a tedious, time consuming

task which in addition requires the presence of experienced reviewing

engineers. Thus, automation in activity verification and error detection

as provided by the proposed system saves on time and human effort.

The benefit of the proposed system as an educational tool emanates

once more from its ability to detect mistakes; recurring patterns of

mistakes occurring in groups of people trained in the same institute

might indicate a potential deficiency in its training programme.

An important aspect of this work is to investigate the cognitive

processes underlying an engineer’s decisions. In the bridge design task

a KBS is used to obtain data from cognitive tasks. This method can

be used for understanding engineering cognition using problem solving

analysis methodologies.

8.2 Limitations

This section discusses the limitations of the methods proposed in this

work. There exist two limitations.

The first limitation is that time sequences of discrete elements (which

represent primitive actions) are required for the method to work. Yet,

in theory all continuous time series can be converted to discrete by

discretising the data into bins. In fact, section 5.4.2 demonstrates how

the proposed method can handle a continuous data problem. However

the discretisation process results in loss of accuracy which means that

a method designed to work with continuous data would normally yield

better performance.
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The second limitation of the proposed framework concerns the method

used to extract cognitive actions. Specifically, one of the requirements

of the method presented in this thesis is that the participant types text

using a suitable device (desktop computer, laptop, tablet, etc.). There-

fore for applications where the participant is in motion (e.g. driving a

vehicle) the proposed method might not be appropriate.

8.3 Future work

In future work, applicability of the proposed system to other areas

involving complex, flexible tasks will be explored. An interesting area is

surgery monitoring, where verification of procedures followed by doctors

and detection of potential mistakes in them is an important problem.

Another research path which can be followed is to use the activity

recognition methods proposed in this Thesis to improve performance of

algorithms tackling technical problems such as object tracking in video

or action detection. For example, the position of an occluded object,

lost by the video tracker could be inferred by the activity performed.

Also, given a detected activity an algorithm could disambiguate be-

tween two actions yielding equal probability of occurrence with greater

confidence.

The algorithms developed in this work are supervised. Although

they operate with high classification accuracy in the chosen applica-

tions, they require human labelled training data. In certain cases ac-

quisition of training data is a time consuming, tedious process which

may require employment of experts. It has to be noted that experts are

hard to find and are sometimes unable to dedicate the amount of time

required for data annotation. Therefore, an extension of the proposed
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algorithms so that they operate in an unsupervised manner is a logical

research direction.

8.4 Conclusion

The work presented in this Thesis investigates analysis of activities

occurring in concurrent multimedia streams. The studied events may

include cognitive tasks. The proposed algorithms are experimentally

validated in several different datasets. It is thus proven that they can

recognise prolonged, composite activities arising in these streams with

high classification accuracy, even at the presence of noise. Hence the

proposed methodology can be regarded as a small but significant step

towards understanding prolonged, composite human activities.



Appendix 1

ESTIMATING PARAMETERS

OF AN HHMM

The set of parameters for the entire HHMM is symbolised as λ =

{λqd}d∈{1,...,D} = {{Aqd}d∈{1,...,D−1}, {Πqd}d∈{1,...,D−1}, {BqD}}. Param-

eters are learned given the structure of the HHMM, an initial set of pa-

rameters, λ and a sequence from the training set, Ō = {o1o2 . . . oT} =

o1:T where T the length of the sequence, using the generalised Baum-

Welch algorithm [Fine et al., 1998]. Directly following [Fine et al.,

1998] it is shown how the variables used in the expectation step of this

algorithm are calculated. Auxiliary parameters α, β, ξ are first defined

as follows:

α(t, t+k, qdi , q
d−1) = P (ot . . . ot+k, q

d
i finished at t+k|qd−1 started at t)

(1.1)

where α(t, t + k, qdi , q
d−1) the probability that the sequence ot . . . ot+k

was generated by state qd−1 and that qdi was the last state activated by

qd−1. Also, t ∈ [1, . . . , T ] and t+ k ∈ [1, . . . , T ].
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β(t, t+k, qdi , q
d−1) = P (ot . . . ot+k|qdi started at t, qd−1 finished at t+k)

(1.2)

where β(t, t+ k, qdi , q
d−1) is the probability that the sequence ot . . . ot+k

was generated by state qd−1 which finished at time t+k having activated

qd−1 at time t.

The probability of a horizontal transition from qdi to qdj , which are

substates of qd−1 at t after emission of ot and before emission of ot+1 is

symbolised as ξ(t, qdi , q
d
j , q

d−1) and is given by the equation:

ξ(t, qdi , q
d
j , q

d−1) = P (o1 . . . ot, q
d
i → qdj , o1 . . . oT |λ) (1.3)

Two more auxiliary variables, γin and γout are based on ξ. Specifi-

cally, γin is the probability of a horizontal transition to qdi before emis-

sion of ot and γout the probability of a horizontal transition from qdi to

any of the states of level d after emission of ot. These variables can be

estimated by Eqs. 1.4 and 1.5:

γin(t, q
d
i , q

d−1) =

|qd−1|∑
k=1

ξ(t− 1, qdk, q
d
i , q

d−1) (1.4)

γout(t, q
d
i , q

d−1) =

|qd−1|∑
k=1

ξ(t, qdi , q
d
k, q

d−1) (1.5)

The path variable χ is defined as the probability that qd−1 was

entered at t before emission of ot and activated qDi and is given by the

equation:



174

χ(t, qdi , q
d−1) = P (o1 . . . ot−1,

qd−1

↓

qdi

, ot . . . oT |λ) (1.6)

With the aid of the above defined variables the following expectations

can be estimated:

First, the expected number of horizontal transitions from qdi to qdj .

These two states are both substates of qd−1.

T−1∑
t=1

ξ(t, qdi , q
d
j , q

d−1) (1.7)

T∑
t=2

γin(t, q
d
i , q

d−1) =

|qd−1|∑
k=1

T∑
t=2

ξ(t− 1, qdk, q
d
i , q

d−1), (1.8)

which gives the expected number of horizontal transitions to state qdi

from all substates of level d.

T−1∑
t=1

γout(t, q
d
i , q

d−1) =

|qd−1|∑
k=1

T∑
t=2

ξ(t, qdi , q
d
k, q

d−1), (1.9)

which gives the expected number of horizontal transitions from state

qdi to any substate of level d.

T∑
t=1

χ(t, qdi , q
d−1), (1.10)

which gives the expected number of vertical transitions from state qd−1

to qdi .

|qd−1|∑
i=1

T∑
t=1

χ(t, qdi , q
d−1), (1.11)

which gives the expected number of vertical transitions from state qd−1
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any of its substates at level d.

T∑
t=1

χ(t, qDi , q
D−1) +

T∑
t=2

γin(t, q
D
i , q

D−1) =
T−1∑
t=1

γout(t, q
D
i , q

D−1), (1.12)

which gives the expected number of vertical transitions from state qD−1

to production state qDi .

Having estimated the above expectations, the new set of parameters is

given by the following equations:

π̂q1(q2i ) = χ(t, q2i , q
1) (1.13)

π̂qd−1

(qdi ) =

∑T
t=1 χ(t, q

d
i , q

d−1)∑|qd−1|
i=1

∑T
t=1 χ(t, q

d
i , q

d−1)
, (2 < d < D) (1.14)

âq
d−1

ij =

∑T
t=1 ξ(t, q

d
i , q

d
j , q

d−1)∑T
t=1 γout(t, q

d
i , q

d−1)
(1.15)

b̂q
d−1

qDi
(υk) =

∑
ot=υk

χ(t, qDi , q
D−1) +

∑
t>1,ot=υk

γin(t, q
D
i , q

D−1)∑T
t=1 χ(t, q

D
i , q

D−1) +
∑T

t=2 γin(t, q
D
i , q

D−1)
(1.16)



Appendix 2

INFERENCE IN HHMM

The most probable state sequence can be estimated using the gener-

alised Viterbi algorithm. This algorithm is presented in this section,

directly following [Fine et al., 1998].

Three variables are retained for each pair of states (qd−1, qdi ):

1. δ(t, t + k, qdi , q
d−1) which represents the likelihood of the most

probable state sequence producing observation sequence {ot, . . . ,

ot+k} under the assumption that it was produced by a recursive

activation starting at t from qd−1 and ending at qdi and returned

to qd−1 at t+ k.

2. ψ(t, t + k, qdi , q
d−1) which represents the most probable state ac-

tivated by qd−1 before qdi . In the case that such a state does not

exist it is ψ(t, t+ k, qdi , q
d−1) := 0.

3. τ(t, t + k, qdi , q
d−1) which is defined as the time at which state

qdi was most probable to be activated by parent state qd−1. In

case the whole subsequence was produced by qdi it is τ(t, t+k, qdi ,

qd−1) := t.

For notation simplification, the functionalMAX is defined as follows:

MAX l∈S{f(l)} :=
(
max
l∈S
{f(l)}, arg max

l∈S
{f(l)}

)
(2.1)
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Starting from the production states the algorithm calculates δ, ψ

and τ bottom-up.

For the production states it is:

1. Initialisation:

δ(t, t, qDi , q
D−1) = πqD−1

(qDi )b
qDi (ot) (2.2)

ψ(t, t, qDi , q
D−1) = 0 (2.3)

τ(t, t, qDi , q
D−1) = t (2.4)

2. Recursion:

(δ(t, t+ k, qDi , q
D−1), ψ(t, t+ k, qDi , q

D−1)) =

MAX 1≤j≤|qD−1|

{
δ(t, t+ k − 1, qDj , q

D−1)α
qDi
ji b

qDi (ot+k)
} (2.5)

τ(t, t+ k, qDi , q
D−1) = t+ k (2.6)

For the internal states it is:

1. Initialisation:

δ(t, t, qdi , q
d−1) = max

1≤j≤|qdi |

{
πqd−1

(qdi )δ(t, t, q
d+1
r , qdi )α

qdi
r,end

}
(2.7)
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ψ(t, t, qd+1
r , qdi ) = 0 (2.8)

τ(t, t, qd+1
r , qdi ) = t (2.9)

2. Recursion:

(a) For t′ = t+ 1, . . . , t+ k set:

R = max
1≤r≤|qdi |

{
δ(t′, t+ k, qd+1

r , qdi )α
qdi
r,end

}
(2.10)

(∆(t′),Ψ(t′)) =MAX 1≤j≤|qD−1|

{
δ(t, t′ − 1, qdj , q

d−1)αqd−1

ji R
}

(2.11)

(b) For t set:

∆(t) = πqd−1

(qdi ) max
1≤r≤|qdi |

{
δ(t′, t+ k, qd+1

r , qdi )α
qdi
r,end

}
(2.12)

Ψ(t) = 0 (2.13)

(c) The most probable switching time can be found as follows:

(
δ(t, t+ k, qdi , q

d−1), τ(t, t+ k, qdi , q
d−1)

)
=MAX t≤t′≤t+k∆(t′)

(2.14)
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ψ(t, t+ k, qdi , q
d−1) = Ψ(τ(t, t+ k, qdi , q

d−1)) (2.15)

The probability of the most probable state sequence can be calcu-

lated from the equation:

(P ∗, q2last) =MAX q2i

{
δ(1, T, q2i , q

1)
}

(2.16)

To find the most probable state sequence the lists ψ and τ starting

from δ(1, T, q2last, q
1) and ψ(1, T, q2last, q

1) have to be scanned.



Appendix 3

BRIDGE TASK DATASET

All sequences used in the experiments are given in this section. Se-

quences used for training are shown in Table 3.1 and for testing in

Table 3.2.
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No. Class Sequence Training dataset

1 1 axwbumnoc
2 1 abuxwqxwryzxwc
3 1 axwbulxwmyzxwc
4 1 axwbusnopvtc
5 1 axwbuyzxwc
6 2 axwyzsxwtc
7 2 axwlxwqrxwmyzxwc
8 2 axwFxwyzpvxwGfxwhixwc
9 2 axwqdxwFxwGyzAxwyzKpvxwrc
10 1 axwbuqxwrc
11 1 axwbunopvyzxwc
12 2 axwhxwiyznxwc
13 3 sxwdxwefxwghxwit
14 3 sdexwfgyzhxwit
15 3 sxwAxwZfxwgdxwbueyzxwhit
16 3 sxwfxwgqxwderhxwit
17 3 sxwfxwgxwdeyzxwhxwit
18 3 sfgxwdehnopvxwit
19 3 sfxwgdxweyzhxwit
20 3 sxwPxwRxwhxwixwfgdxwet
21 3 sxwhxwixwdehxwiyzxwfgxwyzxwt
22 3 sxwhixwdxwexwyzxwfxwgt
23 3 shxwideyzxwfgxwt
24 3 sxwhxwixwdelxwmyzxwfxwgt
25 4 shxwpvixwdyzlmexwt
26 4 sxwyzxwdxwexwlbuhixwmt
27 4 sfxwgpvxwdexwlmt
28 4 sxwyzbufgxwyzhixwt
29 4 sdxwehpvxwlmixwt
30 4 sfxwgxwhpvxwlmit
31 4 sxwhixwyzpvfgxwt
32 4 sfxwgxwpvdeyzxwlmxwt
33 4 sxwhxwidyzxwet
34 6 jxwlxwmxwnyzxwoxwpvxwk
35 5 jnxwoxwqrxwpvExwKxwlyzpvmAxwZxwk
36 5 jqxwrpvxwlmAZhxwFGixwPxwRnxwoxwk
37 5 jxwqrxwpvxwnAZxwyzxFxwyzGwoxwPxwRxwlyzxwmxwk
38 6 jlxwmxwqrxwExwKnoyzxwFxwGpvxwPxwRxwk
39 6 jxwlmxwnxwopvEKxwAxwZxwyzxwk
40 6 jxwyzxwlmxwqrnxwopvxwyzxwk
41 5 jnxwoxwFxwGqyzPxwRrpvxwPxwyzxwRxwlpvmxwk
42 5 jxwqrxwpvlmEKxwnAZoxwk
43 5 jqrxwpvxwFxwGxwPxwRxwnAxwZstxwoxwlmk
44 6 jlxwmnxwFGoyzAZxwPxwRxwpvxwyzxwk
45 5 jxwnxwoAZxwqrpvxwFGlmxwk
46 5 jqrxwpvlmyzExwKxwnAxwZxwok
47 6 jxwpvnoxwyzxwlmFxwGxwk
48 6 jxwlxwmnxwopvAZyzxwk
49 6 jlmxwnxwbuFGodepvxwk
50 6 jxwlxwmxwnxwbuAxwZoyzxwpvxwk
51 5 jxwnoxwqrxwpvAZlmyzxwFGxwk
52 5 jqrxwpvxwlxwEKmxwFGnyzxwPxwRoxwyzxwk
53 6 jnxwyzxwolmAxwZxwpvbuxwqxwFxwGrxwk
54 6 jlxwmxwAqxwZstPbuRrnoxwpvxwyzk

Table 3.1: Training dataset.
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No. Class Sequence Testing dataset

1 1 axwbumnopvxwc
2 1 abuxwqxwburyzxwc
3 1 axwbulxwhmyzxwc
4 1 axwbudexwbujyzxwc
5 1 axwbuAKlxwmyzxwpvxwc
6 1 ahixwqrxwdebulxwFxwpvGdmyzxwc
7 1 axwbulxwmyzxwc
8 1 axwbumnopvxwc
9 1 axwbuyzxwpvxwyzxwc
10 2 axwfxwlxwsxwc
11 2 axwlmyzExwKxwc
12 2 apvxwhixwdestc
13 2 axwfgxwdestc
14 2 axwlmyzxwc
15 2 axwbuxwyzjxwnoyzxwc
16 1 abustxwc
17 1 axwbuqxwrc
18 1 axwbunopvyzxwc
19 2 axwdxwnxwyzpvqxwc
20 2 axwyzfxwgpvxwc
21 2 axwhxwyzxwixwyzxjwyzxwc
22 2 axwyznxwyzxwc
23 2 axwyzxwpvxwc
24 2 axwyzxwc
25 3 sxwlpvmxwbunjpvoxwdpvxkwefxwghxwit
26 3 sxwlpvmfxwgxwnjohxwidxkwexwt
27 3 sfgxwdehnopvxwit
28 3 sfxwgdxweyzhxwit
29 3 shxwixwfgdxwet
30 3 sxwyzxwFhxwixwyzaxwGcxwdxwet
31 3 shxwifgnoxwpvdexwt
32 3 sxwhxwixwfxwgxwdxwet
33 3 sxwhxwifnopvxwgyzxwdyzxwet
34 3 syzxwhxwidxwyzxwefxwgxwtxwlbuhi
35 3 sxwhxwixwdehxwiyzxwfgxwyzxwt
36 3 sxwhxwidexwfyzxwgt
37 4 sdbupvxwnoxwlmyzxwqrnxwexwt
38 4 sdxwexwlhixwmt
39 4 sxwhixwyzfnyzxwgxwt
40 4 sxwbufgxwyzhixwt
41 4 sfxwgxwdhiexwt
42 4 syzxwbuxwfxwgxwyzhxwyzxwixwyzt
43 4 sdxwehxwixwt
44 4 sxwPxwRyzxwfgxwyzhixwt
45 4 sxwyzbuyzhixwfxwgxwt
46 4 sxwhixwyzfyzxwgxwt
47 4 sxwyzExwfnxwgxwhixwtxwPxwR
48 4 sxwyzxwdbuxwpvxwlmyznoyzxwqrnxwqret
49 6 jlxwmxwFxwyzxwGxwnyzxwExwKoxwpvxwk
50 5 jnxwoxwFGqrxwPxwRxwAZpvxwlyzmxwk
51 5 jAxwZqxwrpvxwlExwKmhxwixwnxwoxwk
52 5 jxwqrxwnxwPxwRxwoxwAxwZlxwpvmxwdexwbuxwk
53 6 jxwyzxwlyzxwExwKhmxwqyzrxwnoyzxwpvxwk
54 6 jlxwmxwnxwExwKopvxwk
55 6 jxwAZxwlmxwqrFxwGnxwopvk
56 5 jnxwoxwqAxwZyzrpvFxwGxwPxwRlmkxwPbuR
57 5 jxwEKqrxwpvlmExwKxwnxwok
58 5 jxwyzxwqrxwExwKpvxwAxwZnstxwoxwlmk
59 6 jlxwmnxwFGoyzxwPxwRxwpvxwk
60 5 jxwnoxwqrAxwExwKyzxwZpvxwlmxwk
61 5 jqrxwpvlmAxwZyzhxwFxwGxwnxwok
62 6 jlxwmxwnxwFxwyzxwGbuPxwRodeAZpvxwk
63 6 jxwyzlxwEKmdxwnxwbuAZoyzxwpvk
64 5 jdxwyzepvxwbuxwqrExwKxwpvAxwZlmyzxwk
65 5 jxwqrxwlxwFxwGdpvmAxwZxwPxwRnxwok
66 5 jxwqxwrxwpvAxwyzZlxwdpvmEKxwnyzxwoxwk
67 5 jxwdexwnbuxwoxwPxwRxwqrAxwZlxwpvmxwk
68 6 jlxwmxwqxwstExwKrnoxwpvk
69 6 jdxwexwyzqxwFGryzlxwpvxwmk
70 6 jyzxwnoxwlxwmyzqxwPxwRxwyzrxwpvk
71 6 jxwdxweyzxwqxwryzlExwyzKxwpvxwmxwk
72 6 jxwdxwexwyzqxwryzlxwpvmxwk

Table 3.2: Testing dataset.
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PARAMETERS OF THE

LEARNED HHMM

The set of parameters of the learned HHMM, λ with λ = {λqd}d∈{1,...,D} =

{{Aqd}d∈{1,...,D−1}, {Πqd}d∈{1,...,D−1},

{BqD}} is given in this section.

Initial probabilities, {Πqd}d∈{1,...,D−1} for the model are given in Ta-

ble 4.1.

Emission probabilities of production states at level D = 3, Bq3 , are

given in Table 4.3. Since each state of level 3 emits one and only one

action with probability 1, for simplicity we symbolise each state at of

level D = 3 with its corresponding action.

The transition probability matrix for level d = 2, Aq1 is given in

Table 4.2.

Learned transition probability matrices for level d = 3, Aq2 are

given in Fig. 4.1, 4.2 and 4.3. To cover state occurrences and state

transitions not present in the examples of the training dataset, each

transition matrix of level d = 3, Aq2 is extended to a n × n matrix,

Aq2,mod where n = |VT,C | the number of key actions of the task. The

added entries represent the task key actions missing from Aq2 . All

transition probabilities which are either not defined in matrix Aq2,mod
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d k i πqdk (qd+1
i ) qd+1

i

1 1 0.166
1 2 0.166
1 3 0.166
1 4 0.166
1 5 0.166
1 6 0.166

2 1 1 1.000 a
2 2 1 1.000 a
2 3 19 1.000 s
2 4 19 1.000 s
2 5 10 1.000 j
2 6 10 1.000 j

Table 4.1: Initial probabilities of the HHMM.

q21 q22 q23 q24 q25 q26 q2end

q21 0.142 0.142 0.142 0.142 0.142 0.142 0.142
q22 0.142 0.142 0.142 0.142 0.142 0.142 0.142
q23 0.142 0.142 0.142 0.142 0.142 0.142 0.142
q24 0.142 0.142 0.142 0.142 0.142 0.142 0.142
q25 0.142 0.142 0.142 0.142 0.142 0.142 0.142
q26 0.142 0.142 0.142 0.142 0.142 0.142 0.142

Table 4.2: Transition probabilities for states at level d = 2.

or equal to zero are set to a small value, 1×10−4. Inference is performed

using matrix Aq2,mod.
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i σ bq
D
i (σ) D = 3

1 a 1.000
2 b 1.000
3 c 1.000
4 d 1.000
5 e 1.000
6 f 1.000
7 g 1.000
8 h 1.000
9 i 1.000
10 j 1.000
11 k 1.000
12 l 1.000
13 m 1.000
14 n 1.000
15 o 1.000
16 p 1.000
17 q 1.000
18 r 1.000
19 s 1.000
20 t 1.000
21 u 1.000
22 v 1.000
23 A 1.000
24 E 1.000
25 F 1.000
26 G 1.000
27 K 1.000
28 P 1.000
29 R 1.000
30 Z 1.000

Table 4.3: Emission probabilities of production states at level 3.

(a)

(b)

Figure 4.1: Learned transition matrices for the third level of the
HHMM. (a): Aq21 , (b): Aq22 .
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(a)

(b)

Figure 4.2: Learned transition matrices for the third level of the
HHMM. (a): Aq23 , (b): Aq24 .

(a)

(b)

Figure 4.3: Learned transition matrices for the third level of the
HHMM. (a): Aq25 , (b): Aq26 .
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TRACKING PARAMETERS

For the dynamics model of the tracking algorithm used in this Thesis,

given by the equation

xt+1 = Axt +Bxt−1 + Cut (5.1)

where ut ∼ N (0,Σ), coefficients A,B and C as well as the covariance

matrix, Σ are empirically defined as follows:

A =


2.0 0 0

0 2.0 0

0 0 2.0

 (5.2)

B =


−1.0 0 0

0 −1.0 0

0 0 −1.0

 (5.3)

C =


1.0 0 0

0 1.0 0

0 0 1.0

 (5.4)
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Σ =


1.0 0 0

0 0.5 0

0 0 0.001

 (5.5)



Appendix 6

VAN DER CORPUT

SEQUENCE ESTIMATION

This chapter explains how the van der Corput sequence of numbers

[van der Corput, 1935a,van der Corput, 1935b] is generated.

For a subsequence of natural numbers, S = {1, 2, 3, ...ν} a base is

first chosen, b, with b ∈ N. Each of the numbers of S is first converted

to its base-b form, such that, for every n ∈ S it is:

n =
m∑
j=0

aj(n)b
j, (6.1)

where aj(n) is the j
th digit of n in its base-b form and m is defined as

follows:

m = min(k ∈ N) :
n

bk
≥ 1. (6.2)

Then the van der Corput sequence, Φb(n), is defined as follows:

Φb(n) =
m∑
j=0

aj(n)b
−j−1. (6.3)
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