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Abstract

A paradigm example of brain plasticity is the change in the structure of the orientation
map in primary visual cortex (V1) in response to an environment consisting of stripes of
one orientation. However, until now this plasticity has been characterised only by the
relative size of the areas of V1 representing different orientations. Here we extend to
the stripe-reared case a recently-proposed Bayesian method for reconstructing orientation
maps from intrinsic-signal optical imaging data, which allows a more nuanced assessment
of changes in orientation map structure in response to stripe-rearing. We find that the
structure of a normal map can change in several different ways to accommodate more
preference for one orientation. Overall this work expands our understanding of the effects
of the environment on brain structure.
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1 Introduction

A critical question for understanding brain plasticity is to understand how the environment
influences brain structure. A paradigmatic model system in this regard is how the form of
visual activity during early life affects the spatial arrangement of topographic maps in the
primary visual cortex (V1) of mammals such as cats, ferrets and monkeys. In particular
the spatial arrangement of preference for orientation (Blasdel and Salama, 1986), direction
(Weliky et al., 1996), spatial frequency (Hübener et al., 1997; Issa et al., 2000) and ocular
dominance (Anderson et al., 1988; Bonhoeffer et al., 1995), as well as the relationships between
these maps (Shmuel and Grinvald, 1996; Hübener et al., 1997), have been widely studied.

A particularly striking example of the effect of the environment on these maps is stripe-
rearing, in which animals are exposed only to edges of a particular orientation during the
critical period (Blakemore and Cooper, 1970). This leads to an increase in the proportion of
V1 neurons preferring the reared orientation, at the expense of other orientations (Sengpiel
et al., 1999). However, so far this proportion is the only quantitative measure that has been
used to characterise the difference in structure between normal and stripe-reared orientation
maps. This measure depends sensitively on the estimate of the map, which is traditionally
obtained by vector-averaging noisy data from single-condition optical imaging experiments,
followed by spatial filtering with parameters chosen subjectively. Furthermore this measure
does not provide a method for determining whether there are more subtle changes in overall
map structure that are induced by stripe rearing.

Recently a novel method was introduced which improves on vector averaging for determin-
ing orientation map structure, using a Bayesian approach based on Gaussian processes (Macke
et al., 2011). This uses prior knowledge about map structure in a principled way rather than
via subjectively-chosen smoothing parameters, and provides quantitative error estimates for
the resulting map. However, Macke et al.’s original method contained assumptions which
meant it could not be directly applied to estimating maps in abnormally reared animals.

We first generalised this Gaussian process method to a much broader class of visual map
data, including abnormal rearing conditions. We then used it to interrogate map structure in
data from the stripe-reared cats of Sengpiel et al. (1999). Besides producing more accurate
estimates of the maps than in the original study, the method revealed that three parameters
of map structure change with stripe-rearing, rather than just the single parameter of the
proportion of neurons preferring the reared orientation. Together these three parameters
provide a much richer description of both natural variability between maps from different
individuals, and how maps change in response to altered environments.

2 Methods

2.1 The method of Macke et al. (2011)

The method introduced by Macke et al. (2011) for estimating orientation preference maps from
optical imaging data is an application of Gaussian process (GP) regression (Rasmussen and
Williams, 2006) to the problem of estimating a 2D vector field from noisy data. The important
results are the choice of an appropriate prior, a method for estimating the parameters of the
prior, an appropriate noise model and a method for fitting it to the data, and the use of
approximation techniques for dealing with large datasets.
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Briefly, the prior is defined by a zero mean function and a difference of Gaussians covariance
function,

K(x, x′, k, k′) = δk,k′
2∑

a,b=1

αaαb
2π(σ2a + σ2b )

exp

(
− |x− x

′|2

2(σ2a + σ2b )

)
, (1)

where δi,j is the Kronecker delta, x and x′ are two positions in the map, and k and k′ are
either 1 or 2, the two vector components of the map. The assumption that the components
are uncorrelated gives K(x, x′, 1, 2) ≡ K(x, x′, 2, 1) ≡ 0. The parameters of this function can
be interpreted as scaling parameters, the αi, and filter widths, the σi, which correspond to
the wavelength of the map. Macke et al. set α := α1 = −α2 so that K has zero mean, and
σ := σ2 = 2σ1 to reduce the number of parameters.

The prior covariance matrix Σprior, a n × n matrix containing the covariance K between
each pair of n pixels in a map, needs to be calculated, stored and inverted, which is a com-
putationally demanding task. Macke et al. used a low-rank approximation to the prior,
generated by an incomplete Cholesky decomposition. This results in a prior of the form
Σprior = D + GGᵀ, where D is n × n and diagonal, and G is n × q, with q � n. The eigen-
spectrum of the chosen covariance function drops off quickly, which makes the incomplete
Cholesky decomposition a good approximation. To estimate the parameters α and σ of the
prior covariance function (equation 1), Macke et al. fit the covariance function to the average
of the radial component of the autocorrelation function of the two vector components of the
filtered, vector averaged map.

There are numerous sources of noise in images of the cortex, and therefore the most
appropriate way to incorporate noise in the model is by adding a full noise covariance matrix
Σε to the prior, which models the independent noise variance at each pixel as well as the
noise correlation between all pairs of pixels. However, for practical reasons in these types
of experiments, there are usually many more pixels than trial images, meaning the entire
matrix cannot be inferred from the data. Macke et al. overcame this problem by using a
noise covariance of the form Σε = Dε + GεG

ᵀ
ε , where Dε is n × n and diagonal, and Gε is of

size n × qε, with qε � n. Dε models the independent noise in each pixel, while the low-rank
term models noise correlations between a small number of pixels, determined by the chosen
value of qε.

Macke et al. used an iterative approach to fit this noise model to the data. An initial
estimate of the noise is obtained by calculating the variance at each pixel within each stimulus
condition. This makes the assumption that the underlying activity in the cortex is identical
for the presentation of an identical stimulus, so the difference between images within each
stimulus condition can be attributed to noise. These estimates are then averaged over all
the stimulus conditions, giving an initial estimate of the pixel-wise noise variance Dε. The
posterior distribution is derived using this estimate, and then the noise covariance is fit to the
residuals of the mean of the posterior and the data, using a factor analysis method.

This process of deriving the posterior and fitting to the residuals is repeated several times,
resulting in a good estimate of the noise covariance in the data. With the prior and noise
models fit to the data as described above, the mean and covariance of the posterior distribution
are derived using standard GP regression equations (Rasmussen and Williams, 2006). As
both the prior and noise covariance matrices are in the form A = D + GGᵀ where D is
diagonal, and G is of size n× q, where q � n, they can be inverted using the matrix inversion
lemma (Rasmussen and Williams, 2006), making calculation of the posterior distribution
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computationally tractable.

2.2 Efficient inversion of a general prior covariance matrix

The most general form of prior covariance matrix for estimating OPMs using GP regression
is

Σprior =

(
A B
B C

)
, (2)

where A and C are the covariance matrices of the real and imaginary components, respectively,
and B is the covariance between the two components. Macke et al. (2011) substantially
simplified the GP regression problem by assuming a prior of the form

Σprior =

(
A 0
0 A

)
,

which assumes independence of the two vector components and that their covariance structure
is identical, which is a valid assumption for orientation preference maps from normally reared
animals. This simplification, combined with an incomplete Cholesky decomposition and the
matrix inversion lemma, allowed efficient calculation of the posterior distribution (see above).
To handle the more general case (equation 2), this method needs to be adjusted, but can be
performed in a very similar manner.

Firstly A, B and C are factored separately using incomplete Cholesky decompositions,
into the forms A = DA +GAG

ᵀ
A, C = DC +GCG

ᵀ
C and B = GBG

ᵀ
B. The factorisation of B

does not have a diagonal component, as the diagonal of B corresponds to covariance between
map components, not variance, and so we do not give it special treatment, as in A and C.

Now set G1 =
(
GA
0

)
, G2 =

(
0
GC

)
, G3 =

(
GB
0

)
, H3 =

(
0 Gᵀ

B

)
, G4 =

(
0
GB

)
and H4 =(

Gᵀ
B 0
)
, where

(
A 0
)

indicates the block matrix formed by A and an appropriately sized zero
matrix. It is simple to check that we now have Σprior = G1G

ᵀ
1 + G2G

ᵀ
2 + G3H3 + G4H4 +(DA 0

0 DC

)
. Setting

G =
(
G1|G2|G3|G4

)
, H =

(
Gᵀ

1|G
ᵀ
2|H3|H4

)ᵀ
and

D =

(
DA 0
0 DC

)
,

gives Σprior = D +GH, and so the matrix inversion lemma,

Σ−1prior = D−1 −D−1G
(
I +HD−1G

)−1
HD−1,

where I is an appropriately sized identity matrix, can be used to efficiently calculate the
inverse of Σprior.

Additionally, a more general prior also has a non-zero mean. If the mean at each pixel is
represented by the vector m, then we simply replace the data vector y with y −m in all of
the calculations (Rasmussen and Williams, 2006).
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2.3 Marginal likelihood maximisation

Macke et al. (2011) chose the hyperparameters of the prior by fitting its covariance function to
the auto-correlation function of a filtered, vector averaged map. In this Bayesian framework,
however, the marginal likelihood is a quantity which gives the probability that a given set of
data came from a given prior. We maximised this quantity over the parameters of the prior to
obtain a set of parameters which define the optimal prior for each dataset. The log marginal
likelihood log p(y|Σprior) can be calculated as

log p = −1

2

(
yᵀΣ−1priory + log |Σprior|+ n log 2π

)
,

where y is the data vector, Σprior is the prior covariance matrix and n is the total number of
data points (Rasmussen and Williams, 2006).

To maximise this function, we tried several local optimisation algorithms which did not
handle the relative shallow peaks in the function well. We ultimately used the SIMPSA
algorithm (Cardoso et al., 1996), a combination of simplex methods and simulated annealing,
as it was tested on synthetic data sampled from priors with known parameters and performed
well (data not shown).

2.4 Comparison metric

The metric used to compare maps was the absolute value of the complex correlation coefficient
of two maps represented as one-dimensional complex vectors.

2.5 Simple overrepresentation quantification

To aid comparison with the original analysis of Sengpiel et al. (1999), we calculated a simple
scalar value for overrepresentation, ρ. This was defined by first binning each pixel in a vector
averaged map by its nearest preferred orientation out of S = {0◦, 45◦, 90◦, 135◦}. The value ρ
was then defined as

ρ =
1

N

3nθ′ −
∑
θ∈S\θ′

nθ

 ,

where N is the total number of pixels, nθ is the number of pixels preferring θ, and θ′ is either
the reared orientation or the maximally represented orientation in control maps. This should
yield values near zero for maps with no overrepresentation, and positive values for maps with
an overrepresentation of the reared orientation.

2.6 Covariance function differences

The difference between the covariance functions of the real and imaginary components of an
orientation map can be used to infer overrepresentation. Differences in both the maximum
value and the distance for which the function is a minimum (i.e., the argument of the mini-
mum) quantify the degree of overrepresentation. To formalise this notion we used the absolute
relative difference between the max and argmin of the two components, written ∆max and
∆argmin, respectively. Formally, ∆max is defined as

∆max =
|maxreal−maximaginary|
1
2(maxreal + maximaginary)

,
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and ∆argmin as

∆argmin =

∣∣argminreal − argminimaginary

∣∣
1
2(argminreal + argminimaginary)

.

2.7 Data

We used three different datasets for the analyses in this work, all consisting of optical imaging
of either cat or ferret primary visual cortex: The images of ferret V1 used in Macke et al.
(2011), images of a single cat V1 collected by us for use in this method development (see
below for full experimental methods), and the images of cat V1 used in Sengpiel et al. (1999)
(summarised in table 1), which contains full details of the experimental procedures.

For the ferret data we used region 2, as defined in Macke et al. (2011), as it contained
minimal noise and was also used in that paper for the majority of the analyses. The data from
Sengpiel et al. (1999) were only available in an averaged form, as due to the expense of digital
storage space at the time of the experiments, not all of the data were stored permanently.
Instead of individual trial images from the experiment, the data were only kept in ‘block’
form, the average of 8 presentations of each stimulus, divided by a blank. This resulted in,
for each image set, a set of between 6 and 14 images for each stimulus condition. A schematic
showing the form of the block data is given in figure 1. 13 different image sets in this form
were available for 17 hemispheres of 10 cats (table 1).

ID Cat Name Hemisphere(s) Treatment Blocks/Stimulus

C1 C29 97 L 135◦ Stripe 10
C2 C45 97 L&R 0◦ Stripe 8
C3

C28 97
L 90◦ Stripe 6

C4 R 90◦ Stripe 8
C5

C16 97
L 90◦ Stripe 12

C6 R 90◦ Stripe 12
C7 C69 97 R 45◦ Stripe 14
C8

C27 97
L Normal 10

C9 R Normal 12
C10 N032207 R Normal 14
C11 N033006 L&R Normal 12
C12 N013103 L&R Normal 12
C13 C842 L&R Normal 6

Macke et al. (2011) – – Normal 100
Our Data – – Normal 80

Table 1: Summary of the data used. The hemisphere(s) column lists which hemisphere(s) were
contained in each set of images. The blocks/stimulus column lists how many block images per stimulus
condition were available, or images/stimulus for both our and Macke et al. (2011)’s datasets.
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Orientation
Preference

Map

Single Condition Maps Blocks (Average of 8 Images)

Individual Trial Images

Figure 1: Schematic showing the form of the available data. Individual trial images were
available for our data and the data fromMacke et al. (2011), but only block data (the average of sets
of 8 images) were available for data from Sengpiel et al. (1999).

2.7.1 Synthetic maps

For the purposes of verifying the implementation of some techniques and assessing their va-
lidity, we used synthetic maps. These were generated by sampling from a prior distribution
of maps, generated with specified hyperparameters, then converting the maps into the ap-
propriate form (such as individual trial images or averaged block data), and adding noise.
Noise was added to each pixel in each image individually, all drawn from the same Gaussian
distribution, with a zero mean and specified variance. The process of sampling from the prior
is mathematically identical to convolving white noise with the prior covariance function to
generate the two vector components of a map.

The training data used to train the linear predictor consisted of 20000 maps sampled from
the stripe-reared prior in the way described above, for a range of the parameters αreal, σreal,
αimaginary, σimaginary and r, to overrepresent one of 0◦, 45◦, 90◦ or 135◦ to varying degrees.
The values of ∆max and ∆argmin for each map were then determined from the covariance
functions formed by the chosen hyperparameters. The degree of overrepresentation in these
maps was quantified using the measure ρ.

2.7.2 Elastic net maps

To determine general rules for the covariance functions of stripe-reared maps, maps with
overrepresented orientations were generated using the elastic net model. This model has been
shown to produce overrepresentation of the reared orientation (Carreira-Perpiñán et al., 2005),
and therefore was used as a guide to the general structure of maps with overrepresentation
caused by single orientation rearing.

The elastic net algorithm is a dimension-reducing model for determining how preferences
for features of the input space (e.g., visual field position, orientation, spatial frequency) are
arranged in the cortex. It folds a two-dimensional net in higher-dimensional space in an
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attempt to minimise a tradeoff between coverage of the input space and continuity of the
cortical representation. To increase efficiency, we only included orientation preference in our
simulations.

The parameters and training regime used were as described in Carreira-Perpiñán et al.
(2005), with the exception that the stimulus space consisted solely of orientation preference
and selectivity. Twelve maps were generated with the orientations 0◦, 15◦, . . . , 165◦ overrep-
resented, respectively. In each case, the overrepresented orientation was boosted to a level of
2.5, meaning that that orientation wielded 2.5 times as much influence on the elastic net as the
others. This resulted in maps with a relatively large degree of overrepresentation in compari-
son to the real maps of Sengpiel et al. (1999), which was done to make identifying systematic
changes in the maps’ covariance functions easier. The simulations were performed using cus-
tom software written in MATLAB, the same as used by Carreira-Perpiñán et al. (2005), a ver-
sion of which is available online at http://faculty.ucmerced.edu/mcarreira-perpinan/

research/EN.html.

2.8 Data preprocessing

In most of the data used here the imaging covered areas outside of the primary visual cortex,
and it is important to ensure that these areas do not interfere with the analyses. We therefore
chose to mask the images so that only pixels inside V1 were considered. Anatomical features
can be used to identify V1 with a high level of accuracy, and we used this approach to mask all
of the image sets used here, except for the Macke dataset, as the chosen region contained only
a small number of non-V1 cells. In images containing two hemispheres (see table 1), the two
hemispheres were masked and considered separately. Additionally, the vector averaged maps
which were analysed were low- and high-pass filtered to remove noise, and for some analyses
the angle value at each pixel was weighted by the tuning strength, in a further effort to reduce
the influence of non-orientation specific cells. We investigated the effects of weighting and
masking, and decided the preceding protocol to be the best choice.

For consistency, all datasets were normalised to have a zero mean and unit variance, calcu-
lated across all pixels in each collection of images. Performing this across the entire datasets,
as opposed to per image as done by Macke et al. (2011), does not affect the value distributions
of the maps, which is important when analysing maps with possible overrepresentation. To
account for differences in overall response between stimulus conditions, we found the trans-
formation required to set the area outside of V1 in each stimulus response to have a zero
mean and unit variance, and applied that transformation to the area within V1. This method
makes the assumption that the areas outside V1 contain Gaussian noise.

In our experiment, images were captured at a rate of 5 Hz for a period of 10 s, resulting
in 50 frames for each trial (see Experimental methods). To obtain a single image from each
trial for analysis, the mean of the 10 pre-stimulus frames was subtracted from the 25 stimulus
frames, which had the effect of removing the baseline activity from the images. Then the trial
image was taken as the mean of the final 5 stimulus frames. As there are small changes in the
images due to respiration and blood-flow, taking the mean of a smaller number of frames is a
better approach than taking the average of all 25 stimulus frames. Mathematically stated, if
ri is frame i of a single trial, where i ranges from 1 to 50, the image used as a representation
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of that trial was

r =
1

5

35∑
i=31

ri −
1

10

10∑
i=1

ri.

2.9 Experimental methods

We performed optical intrinsic signal imaging of primary visual cortex in three normally
sighted juvenile cats (felis catus; 3.0–3.8 kg) reared from birth in outdoor enclosures subject
to the prevailing night-day cycle. All surgical and experimental procedures were approved
by the institutional Animal Experimentation Ethics Committee (AEEC) at the Australian
National University and were performed in strict compliance with the Australian Code of
Practice for the Care and Use of Animals for Scientific Purposes from the Australian National
Health and Medical Research Council (NH&MRC).

2.9.1 Anaesthesia and surgical procedures

Animals were prepared for acute physiological recordings as described previously (van Kleef
et al., 2010). Animals were anaesthetised by intramuscular injection of ketamine hydrochloride
(20 mg/kg) and xylazine (1 mg/kg). Once deeply anaesthetised, as confirmed by the absence
of corneal and toe withdrawal reflexes, animals were placed on a heated surgery table and the
cephalic vein was cannulated to permit delivery of fluids and intravenous drugs. Animals were
then intubated to ensure adequate respiration and anaesthesia was then maintained for the
duration of the experiment by inhalation of gaseous halothane (1.0% during surgery; 0.5–1.0%
during recording) in a 60:40 mixture of N2O and O2. Non-invasive physiological indicators,
including heart rate and end-tidal CO2 concentration, were continuously monitored to ensure
adequate levels of anaesthesia at all times. Body temperature was maintained at 37.7◦C by
means of an electric blanket under feedback control.

The head was held in a stereotaxic frame using ear bars, a bite bar and a head bolt po-
sitioned on the skull at the midline approximately 30 mm anterior to inter-aural zero. To
prevent eye movements, animals were subject to neuro-muscular blockade by continuous in-
travenous infusion of gallamine triethiodide (10 mg/kg/h). During neuro-muscular blockade
animals were mechanically ventilated to maintain end-tidal CO2 between 3.5 and 4%. For
fluid replacement, all animals received a constant intravenous infusion containing Hartmanns
(lactated ringer) solution (25% by volume), 5% glucose 0.9% NaCl solution (25% by volume)
and an amino acid solution (50% by volume) at a rate of (2.5 mL/kg/h). Animals were given
daily injections to reduce salivation (atropine, 0.2 mg/kg; s.c.), cerebral oedema (dexam-
ethasone phosphate, 1.5 mg/kg; i.m.) and the risk of infection (Clavulox, a broad spectrum
antibiotic, 0.05 mL/kg; i.m.). The eyes were fitted with neutral power rigid gas-permeable
contact lenses to ensure corneal perfusion, and drops (1% atropine; 10% phenylephrine) were
administered daily to cause pupillary dilatation and to retract the nictitating membrane.
Refractive errors were assessed by reverse ophthalmoscopy and corrected as required using
spherical lenses placed in front of the eyes to focus the stimulus on the retina. For imaging,
the scalp was reflected and a small trephine hole (10 mm × 8 mm; A4 to P6, L1 to L9) was
made in the cranium, exposing the visual cortex (Areas 17 and 18) in the right hemisphere. A
stainless steel recording chamber was affixed to the cranium with dental acrylic and the dura
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mater removed. The recording chamber was then filled with silicone oil (Dow Corning 200,
50 cSt) and sealed with a glass cover slip, mechanically stabilising the cortex for imaging.

At the conclusion of the experiment animals were euthanised by intravenous injection of
an overdose of barbiturate (sodium pentobarbital; Lethabarb, 150 mg/kg).

2.9.2 Intrinsic signal imaging

The exposed cortex was imaged using a Pantera 1M60P high-sensitivity 12-bit area scan CCD
camera (Teledyne DALSA, Waterloo, ON Canada) fitted with a macroscope, formed using a
pair of Nikkor 50 mm f/1.2 lenses arranged front-to-front (H and A, 1991), focused 400–600 µm
below the cortical surface. The camera was configured to bin sensor pixels 2 × 2 producing
images with a resolution of 512 × 512 pixels (24 × 24 µm per pixel). Image acquisition was
restricted to a region of interest (ROI) comprising a subset of the full imaging frame.

During imaging, the cortex was epi-illuminated using a custom built LED light source
with a peak wavelength of 520 nm (Agilent Technologies; HSMQ-C150). Increased blood flow
indicative of neural activity was therefore manifest as a reduction in cortical reflectance and
thereby image intensity.

Cortical responses were imaged during presentation of an ensemble of visual stimuli (see
below). For each stimulus presentation images were acquired continuously at a rate of 5 Hz
for a period of 10 s, the onset of which was synchronised to the phase (maximum inspiration)
of the respirator. Visual stimuli were presented for 5 s beginning 2 s after the beginning
of image acquisition. Each stimulus presentation was followed by a 3 s (minimum) recovery
period during which the monitor displayed an isoluminant mean gray screen.

2.9.3 Visual stimuli

Visual stimuli consisted of luminance defined oriented square wave gratings presented within
a circular aperture on an isoluminant gray screen matched to the mean luminance of the
gratings. Stimuli were generated by a ViSaGe visual stimulus generator (Cambridge Research
Systems Ltd., Cambridge, UK) and presented on a calibrated Clinton Monoray CRT monitor
(modified Richardson Electronics MR2000HB-MED CRT with fast DP104 phosphor, 100 Hz
refresh, 1024 × 768 pixels) viewed binocularly from a distance of 28 cm. Maps of orientation
preference were obtained by presenting high contrast (Michelson contrast, c = 1.0), large field
(60◦) drifting gratings of fixed spatial and temporal frequency (0.15 cycles per degree and
2 Hz respectively) drifting in one of either 16 or 32 directions equi-spaced between 0◦ and
360◦. Each stimulus direction, together with a blank condition (no grating), was presented at
least 30 times with the order of presentation randomised across trials to avoid any systematic
bias in the observed responses.

3 Results

3.1 The quality of averaged data and optimal parameters for data acquisi-
tion

We developed a generalised form of the Gaussian process map estimation method of Macke
et al. (2011), and applied it to three different sets of data: our data, data from Macke

11



et al. (2011), and data from Sengpiel et al. (1999) (see Methods). A feature of the Sengpiel
et al. data was that the image sets were only available as block images, averages of sets of
8 images, rather than the individual experimental trial images. It was therefore important
to ensure that the use of the averaged data would not significantly reduce the quality of the
resulting map and therefore affect the results, when compared to a map generated using all
individual experimental images. Our own dataset consisted of a large number of trials for
many orientations, and could therefore be used to investigate this characteristic of the data.

Experimental data from the one cat we imaged, consisting of each individual trial image
from 80 trials of 16 different orientation stimuli (evenly spaced in [0◦, 180◦)), was used to
determine the difference in map quality induced by using averaged trials. Maps were estimated
from subsets of this dataset using the original Gaussian process method as described by Macke
et al. (2011). As there are many ways, for example, 80 trials can be averaged together to form
10 blocks, 40 random samples of each number of averaged trials were used to estimate maps,
to obtain a distribution of map quality values. The results indicate that using averaged data
does not make a substantial difference to the maps (figure 2A), at least in terms of overall
map quality, and so the use of such data in further analyses is justified.

In addition, it is useful to investigate how best to design orientation preference map
imaging experiments. In particular, given a limited number of trials, what is the trade-off
between obtaining many images for just a few orientations, and thus getting a good estimate of
the noise for only a sparse sampling of orientation space, versus obtaining only a few images
for each of many orientations, giving a poor estimate of noise but for a dense sampling of
orientation space?

We addressed this question by generating maps from sets of constant numbers of total
images, split among a differing number of stimulus conditions (figure 2B). Again, as a subset
of images can be obtained in many ways, 40 random samples of each condition were used. The
results indicate that the difference between maps resulting from different numbers of stimuli
is not substantial, except at very small numbers of trials. For very small numbers of images,
the difference between having, for example, 1 trial for 16 stimuli, and 4 trials for 4 stimuli
becomes substantial, the latter option being the better choice as an estimate of the pixel-wise
noise can be obtained. Overall then, for any sufficiently large number of trials (greater than
approximately 50), the choice of trial dispersal among stimuli is of little consequence to the
quality of the resulting map.
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Figure 2: Using averaged data does not reduce map quality substantially, nor does the
dispersal of experimental trials among stimuli. (A) A comparison between map quality (mea-
sured as the correlation with the map generated using all of the data, 80 trials each of 16 stimuli) and
amount of data used, here as averaged blocks of trials, showing a drop in quality when any averaging
is used, but with all maps being above 85% similar to the map estimated using all of the data. Data
shown is mean ± std. dev. for 40 random samples. (B) A comparison between map quality and the
total number of images used in the estimation, for different numbers of stimulus conditions. In each
case, the total number of images are split evenly between each of the stimuli, where the mean ± std.
dev. is shown for 40 random subsets of images.
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3.2 Robust estimation of hyperparameters

Macke et al. (2011) estimated the parameters of the prior distribution by fitting the prior
covariance function to the autocorrelation functions of the real and imaginary components
of filtered, vector averaged maps (see Methods). For very noisy data, the autocorrelation
function can also be very noisy, in which case filtering of the map is required. However,
introducing this subjective step causes the process to become much less reliable. We there-
fore implemented a computationally expensive but more robust method for determining the
hyperparameters, which involves choosing the parameter set which maximises the marginal
likelihood (Rasmussen and Williams, 2006) (see Methods). This results in an inferred set of
parameters which determine the prior from which the data is most likely to have come.

To validate this technique, we compared its chosen parameters to the true parameters of
synthetic data, with which we find a good match (figure 3A). We also compared it to the
autocorrelation function fit technique of Macke et al. (2011), and showed that on synthetic
data (figure 3A), the data from Macke et al. (2011) (figure 3B), our data (figure 3C) and
a representative control dataset from Sengpiel et al. (1999) (figure 3D), the two methods
produce similar parameter estimates, but as shown in figure 3A, the marginal likelihood
technique produces estimates closer to the true parameter values.

The peaks of the marginal likelihood (figure 3) are relatively flat, indicating that a large
range of parameter values fit the data well. In most orientation preference experiments, a
large number of images are captured relative to the number of data points one might have
in a more typical regression problem. The large amount of data suppresses the influence
of the prior, and thus the importance of accurately estimating the parameters of the prior
when estimating a map diminishes. To confirm this, the correlation with the map estimated
with the hyperparameters corresponding to the peak marginal likelihood was also calculated
(figure 3), which has a similarly flat peak in all cases. This does not diminish the importance
of this more robust technique, however, as accurate estimates are important when using the
fitted parameters to analyse the map (see below).
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Figure 3: Hyperparameters can be reliably inferred from the data by maximising the
marginal likelihood. All panels show isolines of the marginal likelihood for a range of the two hy-
perparameters of Macke et al. (2011)’s prior (colour scale), above a filled contour plot of the correlation
between maps estimated with the specified parameters and the parameters corresponding to the peak
marginal likelihood (grey scale). The peak of the marginal likelihood (empty circle) and the parame-
ter chosen by Macke et al. (2011)’s technique (cross) are also shown. (A) Using synthetic test data.
Here we know the true parameters of the map (filled circle) with which the maximum of the marginal
likelihood function corresponds well. (B) Using the data from Macke et al. (2011). (C) Using our
data. (D) Using a representative example of a control dataset from Sengpiel et al. (1999). Generally
the parameters chosen by Macke et al. (2011)’s method agree with those fitted by maximising the
marginal likelihood, with the maps resulting from each estimation being fairly similar (as shown by
the greyscale correlation values). However, the latter is closer to the true parameter values, as shown
in A.
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3.3 Generalising the GP model

To reduce the complexity of the model, Macke et al. (2011) assumed that the real and imag-
inary components of the maps were independent and uncorrelated, and also that the a priori
mean at each pixel was zero (shown schematically in figure 4A, first row). These assumptions
hold for normally reared animals (dotted lines, figures 4C and D). However, in the general
case, there may be correlations between the real and imaginary components, differences in
their individual covariance functions, and a non-zero mean at each pixel (figure 4A, second
row).

To investigate this empirically, we generated maps using the elastic net model with and
without overrepresentation of a larger variety of orientations than available in experimental
data (see Methods). The covariance functions of the overrepresented maps showed a system-
atic difference between the real and imaginary components of the maps, dependent on the
overrepresented orientation, as well as a non-zero covariance between the map components
(figure 4, panels B–D, data from two maps for each orientation, with and without over-
representation; other maps showed similar results (data not shown)). These changes in the
covariance structure lead to overrepresentation by shifting the angle distribution in a map
with a uniform distribution towards the reared orientation. It is clear, then, that a more
general treatment is required when investigating maps with possible overrepresentation.
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Figure 4: Schematic representation of the structure of the prior covariance and mean,
demonstrating the different levels of generality. (A) The first row of the table shows the model
used by Macke et al. (2011), with zero mean and matched and independent real and imaginary compo-
nent covariances. The second row shows the most general model, with a non-zero, independent mean
which varies with position (x, y) across the map, and independent real and imaginary covariances with
correlations. The final row shows a compromise between the first two, with a non-zero mean param-
eterised by the overrepresented angle θ and degree r and a general covariance without correlations.
(B) Definitions of the terms max and argmin, in relation to the covariance function of maps. (C)
An analysis of the covariance structure of elastic net maps (data from two maps for each orientation,
with and without overrepresentation; other maps showed similar results (data not shown)), showing
the maximum value of the autocovariance functions of the real and imaginary components, and the
maximum absolute value of the covariance between the two components, showing a dependence on the
overrepresented orientation. (D) The distance at which the autocovariance is at a minimum for the
same maps, again showing a dependence on the overrepresented orientation. This example inspired
the generalised prior (panel A, second row). Note that the chosen overrepresented orientations are
only relative, dependent upon how angles in the plane are measured, and that choosing different coor-
dinate axes would not change the relationship between the red and blue curves, but simply shift them
together.
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3.4 The analysis of stripe-reared maps

3.4.1 Classical analysis

The classical method for determining overrepresentation in orientation preference maps is to
bin each pixel according to which orientation of a small set (usually 0◦, 45◦, 90◦ and 135◦)
is nearest its preferred orientation. The difference between the number of pixels in each
bin is interpreted as the level of overrepresentation in the map. This method only allows a
granular analysis of the overrepresentation on a small set of predefined orientations however,
and artefacts in the images may lead to large areas which are erroneously said to prefer
some orientation. Taking the difference between the number of pixels preferring the reared or
maximally oriented orientation and the other orientations as a scalar measure ρ (see Methods),
there was significant overrepresentation of the reared orientation in the stripe-reared maps in
the Sengpiel et al. (1999) dataset compared to the control animals (figure 5A; p < 0.0005,
Mann-Whitney U test), confirming the results of Sengpiel et al. (1999). It is notable that this
measure is not very robust to changes in the filtering parameters used to smooth the data
(figure 5B).

3.4.2 Shifting value distributions

In an orientation preference map with overrepresentation, the value distributions of the two
vector components of the map are expected, from our investigations of the elastic net model,
to shift according to the degree and orientation of overrepresentation. We first investigated if
this change alone would account for the overrepresentation seen in the maps. To confirm this,
we analysed the value distributions of the vector averaged maps from the Sengpiel et al. (1999)
dataset, and found that they do vary with rearing condition (figures 5C and D). In control
animals, the two map components had near identical distributions (figure 5C). However, in
stripe-reared maps the mean of the component corresponding to the reared orientation saw a
positive shift (figure 5D), with the corresponding components being 0◦ ↔ positive real, 45◦t↔
positive imaginary, 90◦ ↔ negative real, and 135◦ ↔ negative imaginary. We assume that
this pattern holds for intermediate orientations, and that the means of the value distributions
follow the equations

µreal = r cos 2θ

µimaginary = r sin 2θ,

where r and θ are the degree and orientation of overrepresentation, respectively.
To check that this is an appropriate parametrisation of the mean, we least-squares fit

the means of the vector averaged map component distributions (figures 5C and D) to find
a value for r, the degree of overrepresentation for each map (figure 5E). As expected, the
mean value of r for the stripe-reared maps is significantly greater than that of the normally
reared maps (p < 0.018, Mann-Whitney U test). Fitting the values of r and θ to the value
distributions in this way provides an improved technique for estimating overrepresentation
than that used in Sengpiel et al. (1999), as here we are not limited to considering only a
discrete set of orientations. The distribution of values of this measure are in good agreement
with the results of the original study (figure 5A).

Adding these two parameters, r and θ, as hyperparameters to the Gaussian process model
allows us to infer them from the data by maximising the marginal likelihood (see Methods).
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Performing this, with a prior otherwise the same as Macke et al.’s, provides surprising results
(figure 5F). While the stripe-reared maps generally have larger r values than the control
maps, there is a substantial degree of overlap between the two distributions. The inferred
values of θ were, however, in good agreement with expectations, with all orientations being
within approximately 25◦ of the reared orientation, with the exception of a single map, C4,
which overrepresents the orthogonal orientation (figure 5G). Further investigation indicated
that the region outside V1 in that particular map had a large area of constantly strong
response for the reared orientation, violating our normalisation assumption of (potentially
biased) Gaussian noise outside V1 (see Methods). No other method of normalisation could be
found which could cope with this issue. It is worth noting that the measure ρ only indicates
an overrepresentation of the reared orientation when the map is filtered appropriately. An
unfiltered, vector averaged map of the C4 data has a negative ρ value, indicating that the
orthogonal orientation is overrepresented. Map C3 contains data from the other hemisphere
of the same cat, and overrepresents the reared orientation, suggesting that the orthogonal
overrepresentation in the C4 data is erroneous and an artefact of the imaging and processing
processes.

3.4.3 Shifting covariance functions

Another possible source of the overrepresentation not accounted for by the shift in value dis-
tribution means is the covariance functions. The elastic net maps predict small changes in
the maximum and minimum of the argument of the covariance functions of maps with over-
representation, and we looked for this effect in the vector averaged maps from Sengpiel et al.
(1999). The covariance functions were the same for each map component in the control maps
(figure 5H), as expected, but showed a slight difference in both magnitude and wavelength
dependent on the reared orientation in the stripe-reared cases, as predicted by the elastic net
maps (figures 5I and J). There was no substantial correlation between the two map compo-
nents, which again is consistent with the elastic net maps, since for axis-aligned orientations
(i.e., 0◦, 45◦, 90◦ and 135◦, the only orientations examined in Sengpiel et al. (1999)), the
predicted correlation between components is zero (figure 4C).

To model these changes in the covariance functions, we added two more hyperparameters
to the model, for a total of four parameters for the covariance: αreal, σreal, αimaginary and
σimaginary. Following the results from the elastic net maps (figures 4C and D), we could then
determine the level of overrepresentation by looking at the relative absolute difference between
the max and argmin of the two components, ∆max and ∆argmin (see Methods).

Inferring all six hyperparameters of the model from the data by maximising the marginal
likelihood, and calculating the measures ∆max and ∆argmin, provided a clearer picture of
the differences between control and stripe-reared maps (figures 6A and B). Control maps
showed generally small values of ∆max and ∆argmin, and stripe-reared maps generally larger
values, but interestingly this was not the case for all maps. However, all stripe-reared maps
had a high value of at least one of the measures (r, ∆max and ∆argmin), motivating us
to investigate whether some combination of these measure may give the best indication of
overrepresentation.
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3.4.4 Prediction and Classification

We therefore combined the values r, ∆max and ∆argmin linearly to obtain a single measure
of overrepresentation. To determine the appropriate weighting coefficients, we generated a
large number of maps with overrepresentation, by sampling from the appropriate priors, with
a range of values of r, ∆max and ∆argmin (see Methods). Calculating ρ for these maps, and
then solving the linear system

a ∆max + b ∆argmin + c r + d = ρ

for the coefficients in the least-squares sense, we obtained a = 0.53, b = 0.10, c = 0.32,
and d = 0.04. The coefficient of determination of the fit was R2 = 0.98, validating our
assumption of a linear relationship. Note that the values of the coefficients are not directly
comparable, as they are of different units. We used this model to predict overrepresentation
in the maps, which resulted in a significant grouping of the maps by rearing condition, as
expected (figure 6C; p < 0.012, Mann-Whitney U test). These results can be compared to
those from Sengpiel et al. (1999) (figure 5A), and to the least-squares fitting of r (figure 5E),
with both of which there is a good match.

The fitted hyperparameters can also be used to classify maps by rearing condition without
relying on the measure ρ, by training a linear support vector machine (SVM) on the Sengpiel
dataset, cross-validating by leaving out a single map on each training iteration. Such an SVM
could correctly classify 14/17 of the maps (2 stripe-reared and 1 control map misclassified),
whereas an SVM trained on the values of ρ could only correctly classify 13/17 maps (4 stripe-
reared maps misclassified). No standard non-linear kernel function performed better in either
case (data not shown).

To investigate the space of hyperparameters, maps were sampled from priors spanning a
realistic range of the parameters and with several overrepresented orientations. The value
of ρ for these maps increases linearly, at different rates, for each of the hyperparameters, as
predicted by the linear relationship investigated above (figure 6D). To investigate why some
of the maps lie on different regions of the same iso-ρ planes in parameter space, we calculated
the 2D distributions of orientation and tuning strength for all of the maps, and compared their
similarity across iso-ρ planes. Only minor differences in the distributions were found, with
changes in the size and shape of the peaks of orientation selectivity at the reared orientations
(data not shown), which may be capturing subtle variation in the visual statistics encoded by
each map.

These results lead to a model where all three metrics contribute to the overrepresentation
seen in stripe-reared maps, but in slightly different ways. This can be seen visually in both
the maps themselves and in the value distributions of the real and imaginary components
(figure 6E). An increase in r shifts the distributions without affecting their shape, while
changing ∆argmin or ∆max has the opposite effect. We can get an overall estimate of the level
of overrepresentation through our linear model, but by looking at the different components
in this way we can see how the aspects combine to form the final level of overrepresentation.
By looking at the distributions of orientation and selectivity in the maps we see that different
combinations of the hyperparameters create maps with subtle differences in the distributions,
as well as spatial structure.
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Figure 5: Stripe-rearing affects the value distributions of maps and their covariance
functions. (A) Values of the overrepresentation metric ρ calculated on the data from Sengpiel et al.
(1999), based on counting the number of pixels preferring each orientation (see Methods) (*p < 0.0005,
Mann-Whitney U test). (B) The same data as panel A, but with error bars showing the range
of values ρ takes over a range of realisitc filtering parameters (σlowpass ∈ {1, 2, . . . , 5} pixels and
σhighpass ∈ {15, 16, . . . , 25} pixels), showing that it is not very robust. (C) The normalised value
distributions of the real and imaginary components of all normally reared maps (n = 5 cats, 10
hemispheres), with the thick and thin lines showing mean ± std. dev. The 95% confidence interval
on µimaginary − µreal is [−0.024,−0.021] (Student’s t-test), showing a small difference in the means.
(D) The normalised value distributions of all stripe-reared maps, with the components grouped so
that a shift towards the reared orientation corresponds to a positive shift in the red distribution. The
95% confidence interval on µshifted − µstationary is [0.050, 0.054] (Student’s t-test), over twice as large
as the difference in the normal reared maps. (E) Values of r from least-squares fitting the mean
parametrisation to the vector averaged maps’ value distributions, showing a generally larger value of r
for the stripe-reared maps than the normal maps (**p < 0.018, Mann-Whitney U test). (F) Marginal
likelihood fitted values of r. (G) The absolute difference between the reared orientation and the fitted
value of θ, showing that the most overrepresented orientations are close to the reared orientations,
with the exception of a single map (see text). (H) The normalised autocovariance functions of the real
and imaginary components, and the covariance between them, of all normally reared Sengpiel maps,
showing mean ± std. dev. as in panel C. (I–J) The normalised covariance functions of (I) all 0◦ and
90◦ stripe-reared maps (n = 3 cats, 6 hemispheres) and (J) all 45◦ and 135◦ stripe-reared maps (n = 2
cats, 2 hemispheres). In the 0◦ and 90◦ cases there is a slightly smaller wavelength and a lower level of
covariance at small distances in the imaginary component as predicted by the elastic net maps, and in
the 45◦ and 135◦ cases the same predicted change in the real component is less clear but present. In
both cases there is no substantial covariance between the two components. Note that, as in figure 4,
these four orientations are not special, but rather are the result of our choice of coordinate axes, which
is the most convenient for the selection of reared orientations available. Symbols show which dataset
each point represents, as per the legend. C: control, S: stripe-reared.
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Figure 6: Map classification and overrepresentation prediction using fitted overrepre-
sentation parameters.. (A) Relative absolute difference in maximum of marginal likelihood fitted
covariance functions. (B) Relative absolute difference in argmin of marginal likelihood fitted covari-
ance functions. (C) Results of applying the linear model to the maps, showing a significant split in
the data by rearing condition (*p < 0.012, Mann-Whitney U test), a good match with the results
in figures 5A and E. Symbols show which map each point represents, as per legend. C: control,
S: stripe-reared. (D) Distribution of ρ in maps sampled from Gaussian process priors with varying
values of the hyperparameters, with the parameter values fitted to the maps shown. The value of ρ
increases linearly with each hyperparameter, as expected, but the values of each map sit at different
locations on the planes on constant ρ, indicating that the same level of overrepresentation is caused
by different combinations of the hyperparameters. Vertical lines indicate the location of the points in
the ∆max-∆argmin plane. (E) Changes induced in maps by increasing different overrepresentation
metrics. (top) A normal map, with identically distributed real and imaginary components, and an
even distribution of orientations, as shown by the circular histogram. (left) A map with increased
∆max or ∆argmin, with a change in the variance of the components, and overrepresentation of 0◦

and 90◦. (right) A map with increased r, showing shifted distributions, and overrepresentation of 0◦.
(bottom) A map with all three measures increased to a lesser degree, showing both a change in shape
and shift in the distributions. Compare these distributions to figure 5D, and note that the map has a
subtle but noticeable level of overrepresentation of 0◦ (cyan pixels, see legend). The normal map was
sampled from a GP prior with α = 5 and σ = 4 and the value distributions shown are fitted Gaussians.
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4 Discussion

To determine the effects of experience on brain structure it is critical to have reliable statis-
tical methods for determining that structure based on noisy experimental data. The method
for estimating orientation preference maps from optical imaging data introduced by Macke
et al. (2011) was an important step forward in studying visual cortical maps, and provided
substantial improvements over the classical technique of vector averaging. However, the orig-
inal method was unable to address the effects of rearing in an abnormal visual environment,
which is a paradigmatic method for investigating brain plasticity. We therefore generalised the
method, including introducing a prior which allows some orientations to be overrepresented.
This revealed that a three-dimensional measure of overrepresentation is required to capture
the full nature of the induced changes in map structure following stripe rearing.

Previous work on the effect of stripe rearing characterised map structure using only a
single parameter comparing pixel counts of cortical regions representing different orientations,
equivalent to our ρ metric (Sengpiel et al., 1999; Tanaka et al., 2006). This suffices to indicate
whether or not maps exhibit significant overrepresentation, but conveys no other information
about how the structure of the maps are different to those from control animals. In contrast
our three-dimensional metric directly measures changes in the spatial layout of orientation
preference and tuning strength. The three parameters are derived from the standard vector
field representation of orientation maps (Blasdel and Salama, 1986), and represent the relative
absolute difference between the wavelengths of the real and imaginary components (∆argmin),
the relative absolute difference between the scaling of these two components (∆max), and the
difference in the mean of the two components (r). How varying each of these parameters
independently affects map structure is illustrated in figure 6E. We found that the variation
of these parameters between normal and stripe-reared maps has a strikingly diverse pattern,
but that, despite this, together these three values provide a more reliable prediction of rearing
condition than ρ alone.

The diversity in parameter values between animals in the same rearing condition is in-
triguing, and suggests one or both of the following possibilities. The more subtle statistics of
the visual environment during rearing in the experiments of Sengpiel et al. (1999) were not
tightly controlled, and it is thus possible that some of the parameter diversity we observed is
due to variations in these statistics between animals. In support of this possibility, simulations
have shown that subtle differences in, for instance, the cocircularity of visual input during
development have measurable effects on orientation map structure (Hunt et al., 2009). Alter-
natively, the parameter diversity could be due to genetic effects. In support of this possibility,
recent work in rodents has shown that the orientation preferences of clonally-related neurons
in V1 are more similar than those of unrelated neurons (Ohtsuki et al., 2012; Li et al., 2012),
and recent work in cats has shown that molecular cues might guide the initial segregation of
ocular dominance columns (Tomita et al., 2012). Some of the maps we analysed here were
two hemispheres from the same animals, however the sample size was too small to determine
whether these tend to have more similar statistics than maps from different animals (data not
shown; see also Hunt et al. (2009); Kaschube et al. (2002)). Potentially there could also be
a gene-environment interaction, such that the variance in results is not explained by treating
genetic and environmental effects as independent variables (Hunter, 2005). The sample sizes
required to address these questions are challenging to obtain, given that rodents do not have
smooth orientation maps and so animals such as cats must be used, for which ethical concerns
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usually severely limit numbers. Stripe-rearing of cats is also extremely labour-intensive.
In many situations where one is attempting to estimate anatomical or functional structures

in the brain some information about the underlying form is already known. In these cases,
the use of Bayesian inference (of which Gaussian process regression is a particular case)
with a suitable prior encoding that knowledge allows much more robust estimations to be
made (Friston et al., 2002). Bayesian methods have made an especially large impact in the
analysis of functional MRI data (Woolrich, 2012). Gaussian process regression lends itself
well to estimation tasks where the underlying structure is of a well known form which can be
expressed mathematically. This is true for orientation preference maps, as well as some other
visual cortical maps, but may apply equally well to other functional topographic maps in the
cortex, such as those found in auditory (e.g., Aitkin et al. (1986)), olfactory (e.g., Astic et al.
(1987)) and gustatory cortex (e.g., Chen et al. (2011)).

We demonstrated the implementation of an efficient and robust marginal likelihood max-
imisation technique for estimating the parameters of Gaussian process models for visual maps.
Although we used this method to estimate the six parameters of our stripe-reared prior, we
also showed that it performed well estimating the two parameters (α and σ) of the prior of
Macke et al. (2011). This removes any subjective interpretation of the data, which can oth-
erwise be necessary when the data is especially noisy, for example when spatially filtering an
orientation preference map. The method also provides a set of parameters which are known
to be optimal (under the assumption that the prior is of an appropriate form), and does not
a require vector averaged map to be generated and analysed as in Macke et al. (2011). While
this method is not free of assumptions, those that it does make are clearly stated, which is
preferable to the subtle and subjective assumptions made by previous techniques.

The role played by visual input in early life in the formation and refinement of visual
cortical maps is still an active research topic (Espinosa and Stryker, 2012). Investigations
into the effects of abnormal visual input on visual cortical maps have also included ocular
dominance maps (Shatz and Stryker, 1978) and the spatial relationships between these and
orientation maps (Crair et al., 1997). The generalised implementation presented here allows
the application of this method to maps of ocular dominance, with an appropriate chosen
prior (perhaps based on Rojer and Schwartz (1990)), as well as both orientation and ocular
dominance maps together, with a prior defining the relationship between them. Other visual
cortical maps, such as for direction preference, spatial frequency, retinotopic location, and
colour could also be more reliably estimated using this technique, given suitable priors. Using
this technique to investigate what can be learnt about the effects of visual input on these
maps and their combinations is a promising direction for further research.
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