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Search and matching models such as those of Mortensen and Pissarides 

(1994) and Pissarides (2000) have come under criticism in recent years.   

Analysis of the model by Shimer (2005) and others has focussed in 

particular on the models’ inability to generate sufficient volatility in variables 

such as the unemployment and vacancies rates, and the vacancy-

unemployment ratio.   Newer models have sought to ameliorate these 

empirical issues by changing the model – for example by adding wage 

rigidity or by amending the specification of the costs of search.   

 

In Chapters 3 and 4 of this thesis, we re-address some of these issues 

using the method of indirect inference.  The method allows us to formally 

test the hypothesis that data was generated by a particular model under a 

given set of parameter values.  It therefore offers a statistically founded 

replacement for the somewhat arbitrary moment-by-moment comparisons 

found in much of the existing literature.  We apply the method to Shimer’s 

analysis of the Mortensen Pissarides model, and concur with his analysis 

that, under his chosen parameters, the model fails to fit the data.  We also 

apply the method to the model used in Yashiv’s (2006) paper, which argues 

using moment comparisons that the standard model can be improved by 

adding convex search costs.  In contrast, we find that the augmented 

model is rejected under formal indirect-inference tests.  

 

The aggregate search and matching literature has also generated an 

empirical debate about the relative importance of labour market flows, 

expressed in terms of the hazard rates of labour market transition faced by 

workers.  Many studies decompose changes in steady-state unemployment 

in terms of the contributions of various hazard rates.   This thesis also 

extends this literature so as to model the contributions of hazards for two 

distinct and contiguous geographical areas – those of Wales and the rest of 

the United Kingdom, using Labour-Force-Survey panel data.  We find some 

evidence that in this regard, the UK hazards are weighted towards the 

hazards “out of” unemployment, whereas for Wales the hazards “into” and 

“out of” unemployment are of approximately equal importance.  We also 

find however that the results are sensitive to whether or not the data are 

smoothed, and whether a steady-state is imposed. 
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Introduction: 

Understanding fluctuations in unemployment is a core task of both macroeconomics 

and microeconomics.   It matters because employment is the primary means for the 

majority of the working-age population of accessing income and the resources they 

need to survive.  Unemployment as defined and measured by modern labour market 

surveys represents a direct frustration of that aim.  Various approaches have been 

used to analyse different aspects of unemployment.  Search theory and the analysis 

of gross flows is one comparatively recent approach, which takes as its focus the 

transition of individuals between the different categories or states of employment, 

unemployment and inactivity.  Within this broader category, work has spanned 

theoretical models to almost purely empirical applications.  The former are attempts 

to understand the drivers of flows between labour market states, and the ways in 

which they interact.  The latter examine which facts the models should aspire to 

reproduce.   In this thesis, we use a relatively new empirical technique, simulation-

based indirect inference and testing, to reappraise the performance of a version of 

an already well-known search theoretic model – the Mortensen Pissarides model.  In 

keeping with the existing literature, we find the model a poor fit to US data, even 

when we estimate a set of “best-fitting” parameters.  We also look at a variant of the 

model which has been purported to improve on the original model’s performance by 

means of an augmented search cost function.  We also conduct an empirical 

analysis of gross labour market flows for the country of Wales, which we compare 

with a similar analysis of the whole of the UK. To our knowledge this is the first 

attempt to perform an analysis of this type for this region.            

 

How successful is search theory in modelling the aggregate labour market?  The 

question has had a large literature lavished upon it in the last 20 years.   

Central to the enterprise has been the contributions of Professors Mortensen and 

Pissarides, who provided a series of models which have become canonical.  These 

original models are not well known because of their explanatory or predictive power.  

They are recognized as theoretical achievements, for bringing together search costs, 

labour demand and labour market flows in an internally coherent framework.  

However the empirical shortcomings of the models - even in terms of matching 

moments for plausible parameter values are well known.  Essentially, the models 
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have trouble generating the appropriate level of business cycle volatility when their 

parameter values are chosen to be consistent with micro-econometric evidence.  

Some doubt has also arisen regarding the choice of model variables – which are the 

appropriate shocks, which variables can be modelled as exogenous and which are 

endogenous? 

One could argue that the literature has responded to these doubts along two broad 

dimensions.  Firstly, a large number of papers have attempted to add extensions to 

these basic models, in order to improve their empirical performances.  Secondly, the 

interest in search and matching models has coincided with and perhaps caused an 

interest in the empirics of gross labour market flows.  A source of debate has been 

the relative importance of inflows to unemployment, versus outflows from 

unemployment in determining the unemployment rate at business cycle frequencies.   

The issue is of relevance to aggregate search and matching theorists.   One version 

of the Mortensen Pissarides model has an exogenous separation rate from 

employment, another has an endogenous separation rate, and both assumptions 

have been made in the recent literature.   One of the aims of the empirical literature 

is to decide which sort of model is more appropriate. 

This thesis makes a contribution to each of these strands of the literature.  We note 

first that a large amount of the literature that has sought to improve upon the 

Mortensen Pissarides framework has followed a calibration-based methodology, in 

which the modeller chooses parameter values based on their consistency with micro-

econometric evidence, in the hope that the model will produce simulated moments of 

endogenous variables that are the same as or close to those found in the data.   The 

methodology is a controversial one, because it does not have a statistical foundation.  

No statistical metric is used to compare the model to the data, apart from “eyeball” 

comparisons between data and model of the modeller’s chosen moments.   In 

Chapter 3 of this thesis, we use the simulation based technique of indirect inference 

testing to test one of the basic aggregate search and matching models, under certain 

parameter values which have been suggested in the literature.   This method of 

testing is statistical, in the sense that it uses the model’s error to simulate the 

distribution of model outcomes, allowing in turn for a statistical test of the model’s fit 

to the data.   We also use the closely related method of indirect inference estimation 
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to generate an ‘optimal’ set of parameters, and then examine the model’s fit to these 

data based on these. 

One suggestion put forward for the improvement of the Mortensen Pissarides 

framework has been with regards to the way search costs are modelled.  After some 

preliminary empirical investigation into this issue, Professor Eran Yashiv published a 

model (2006) with nonlinear search costs, which he claimed provided a closer fit to 

the data than the canonical aggregate search and matching models.  The paper was 

based on the literature’s standard calibration methodology.  In Chapter 4 of this 

thesis we reconstruct this model, so as to test it under Yashiv’s chosen parameter 

values, again using the indirect inference method.  We reach different conclusions to 

those in Yashiv’s article. 

This thesis also makes a contribution to the purely empirical strand of the literature.  

During the academic debate over the relative importance of flows for the evolution of 

unemployment, methods were developed for decomposing unemployment into 

hazard rates for the transition between labour force states faced by workers and the 

unemployed.  In Chapter 2, we extend one such method used in a paper by 

Petrongolo and Pissarides (2008), for decomposing unemployment in order to 

analyse gross labour market flows in Wales, UK.  The method allows for changes of 

state between countries – necessary in this case because of the close linkages of 

the Welsh economy with that of neighbouring England.   The method used relies on 

the assumption of steady-state unemployment being a reasonable proxy for actual 

unemployment, and we also examine the validity of this assumption in Chapter 2.       
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Chapter 1:  The Mortensen Pissarides framework and the aggregate labour 

market – a review essay 

1.1 Introduction 

1.2 The canonical Mortensen and Pissarides models 

1.3 The Mortensen Pissarides model, job reallocation and the choice of shocks 

1.4 Gross Flows 

1.5 Evaluating the Mortensen Pissarides model 

1.6 Amending the Mortensen Pissarides model 

1.7 Conclusion 

 

1.1 Introduction 

The above is a brief overview of where this thesis sits in relation to existing literature.  

In the rest of this chapter we fill in the details.  The next section, section 1.2 

discusses two canonical versions of the aggregate search and matching model, 

credited to Mortensen and Pissarides.  One version (here denoted version (a), with 

model equations labelled accordingly) contains exogenous separations of workers 

from employment to unemployment.  This is the version of the model which we use 

in subsequent chapters for indirect inference testing and estimation.  The other 

version (here denoted (b)) contains endogenous separations.  Having explained the 

models, in section 1.3 we describe the empirical background to these models, their 

theoretical advantages, and their initial empirical performance.   In section 1.4 we 

outline the findings of empirical literature which has sought to assess the relative 

importance of different labour market flows, and some of the questions it has thrown 

up.  Crudely, this could be thought of as adjudicating between the models of type (a) 

and type (b) discussed in section 1.3 since one important issue is whether the 

separation rate plays a significant role in cyclical fluctuations.  This section also is an 

overview of the literature that is relevant to our empirical exploration of gross flows in 

Wales, in Chapter 2.  In section 1.5 we then outline the Shimer critique, which 

focuses on the model of type (a), and claims that the model does not generate 

enough labour market volatility to match the volatility seen in the data.  Section 1.6 

discusses ways in which the literature has responded.  The last two sections aim to 

situate Yashiv’s ideas regarding the modelling of search costs – and our response - 
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in the large pre-existing literature, in preparation for Chapters 3 and 4. 

 

1.2 The canonical Mortensen Pissarides models 

The models that are presented in this section are based on Pissarides (1986) and 

Mortensen and Pissarides (1994), but in terms of exposition we follow Chapters 1 

and 2 of Pissarides (2000).  The aim is to outline the way in which aggregate search 

and matching models work in order to provide the necessary background to the 

literature relevant to subsequent sections.  Note that these models are in continuous 

time, whereas Chapters 3 and 4 use discrete time treatments. 

The matching function 

The canonical models begin with an economy with an exogenous labour force of size 

  of which    denotes the number of unemployed workers and    the number of job 

vacancies.  The number of hires or matches of unemployed workers to vacancies at 

any instant is given by   .  In this version of the model, matches of workers who are 

already in employment to new jobs are ignored.  There is a matching function that 

posits that there is a stable and increasing relationship between the stocks of vacant 

jobs, that is: 

    (     )        

 

  (     )      (     )    

 

(   ) 

 

Where  (     ) is a linear homogenous function and subscripts represent 

derivatives.  The linear homogeneity of the matching function allows us to divide the 

matching function through by the labour force constant, so that it may be written in 

terms of rates out of the labour force:     (   ). 

Furthermore, we may divide this again by the vacancy rate  , so as to write the 

following: 

  (   )

  
  (

 

 
  )     ( )   

(   ) 
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Where   
 

 
  measures “market tightness,” and where   ( )   .   

Equation (1.2) is the instantaneous probability of a firm filling a vacancy.  Over the 

time interval   , the probability is  ( )  .  The probability is decreasing in the 

number of vacancies.  This is the model’s version of “congestive externalities” on the 

firm’s side of the market: the tighter the labour market, the more firms are chasing 

fewer unemployed workers.   

The analogous probability for unemployed workers may be obtained by dividing the 

matching function expressed in rates by the unemployment rate.  The result is 

conveniently expressed in terms of market-tightness and  ( ): 

 (   )

 
     ( ) 

(   ) 

Therefore, the probability that an unemployed worker finds a job over the time 

interval    is given by   ( )  .  This is increasing in  
 

 
 .   

Unemployment flows 

For unemployment inflows, two different assumptions can be made.  In the most 

basic form of the model, model (a), separation shocks hit with an exogenous Poisson 

probability  .  In this case the inflow rate to unemployment is given by the product of 

this parameter with the employment rate: (   ) .  In model (b), separations are 

endogenous.  One can suppose that firm and worker matches have idiosyncratic 

productivity indexed to the [   ] interval.  When aggregate separation shocks hit with 

probability  , matches have their productivity revalued.  The [   ] interval is the 

support of the cumulative density function of idiosyncratic productivity which is 

denoted  ( ).   An endogenous variable in the model is the reservation productivity 

level chosen by firms in response to economic conditions,   [   ].  The separation 

rate into unemployment in this model is then given by (   )  ( ).  One can then 

write the equations for unemployment dynamics in each of the models – these are 

(1.4)(a) and (1.4)(b) respectively. 

 ̇  (   )    ( )  (   )( ) 

 ̇  (   )  ( )    ( )  (   )( ) 
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By setting the differential to zero these can be written as expressions for steady state 

unemployment: 

  
 

    ( )
 

 

(   )( ) 

  
  ( )

  ( )    ( )
 

 

(   )( ) 

Values of states 

There are two types of agents in these models, and each type of agent can be in one 

of two states.  Firms are either in possession of a vacant job, or a filled job.  Workers 

are either employed or unemployed.  For each of these four states, we can write 

down the return on the value of the state as a Bellman equation. 

In the simple version of the model with an exogenous separation rate, the expected 

return on a filled job to a firm is given by: 

          (   )( ) 

 

The benefit to a firm of a filled job is the output produced by the filled job (given by 

marginal productivity parameter  , less wages  .  There is also a probability   of a 

separation shock, in which case the firm closes the job, and loses the job’s current 

value  .    is the real interest rate.  In the version with the endogenous rate, the value 

if the job is contingent on realised productivity   [   ]. Also when a separation 

shock hits we need to allow for the possibility that the job will not be completely 

destroyed: 

  ( )      ( )   ∫  ( )  ( )
 

 

   ( ) (   )( ) 

 

Firms are risk neutral, and both filled and vacant jobs are treated as an asset.  It is 

therefore the case that the rate of return on filled jobs and job vacancies is equal to 

the exogenous rate of return on capital,  . 
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The expected return on a vacancy in the model (a) is given by: 

        ( )(   )     (   )( ) 

    represents the instantaneous search cost that the firm incurs while it has a 

vacancy.  Note that this is some constant proportion,  , of a marginal occupied job’s 

instantaneous output,  . 

Firms with vacancies fill them with a probability  ( ), this is therefore the probability 

that the firm’s job changes state, from vacant to filled.  When this occurs, firms gain 

the value of a filled job   and lose the value of a vacant job  .  In model (b) the 

relevant equation is: 

        ( )[ ( )   ] (   )( ) 

The  ( ) arises from the simplifying assumption that new matches are assumed to 

have maximum idiosyncratic productivity.  The justification for this is that firms will 

hire workers so as to be most productive with their current stock of capital1.  

The expected return to a worker from being in employment is equal to the wage 

received, plus the expected value of a change of state – which is in this case a 

change from the employed to the unemployed state.  The probability of this 

occurrence is the probability that the firm suffers a negative shock.  The return 

equation is therefore 

      (   )      (   )( ) 

In model (b): 

  ( )   ( )   ∫  ( )  ( )
 

 

   ( )    ( ) (   )( ) 

 

Similarly, when the worker is unemployed, the expected return is the value of the 

unemployment benefit received,  , plus a term representing the expected return on 

finding a job.   In model (a) this is: 

                                                           
1
 Capital is not modelled explicitly here, but one could argue that this line of reasoning makes it 

implicit. 
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       ( )(   ) (   )( ) 

And in model (b): 

       ( )[ ( )   ] (   )( ) 

Note again that when workers are newly matched in model (b), they receive the 

value of a job that pertains to maximum match productivity,  ( ). 

Free entry 

Both versions of the model assume that there is free entry of firms.  This drives the 

value of a vacancy to zero in equilibrium.  Using the condition that    , equation 

(1.7)(a) solves to derive the equilibrium value of a filled job in model (a): 

 

  
  

 ( )
 (    )( ) 

 

And in model (b): 

 ( )  
  

 ( )
 (    )( ) 

 

The value of a filled job is increasing in the costs of a vacancy: firms incur an 

instantaneous search costs of    for vacancies, and 
 

 ( )
 is the average duration of a 

vacant firm’s search – in other words, the average duration over which the 

instantaneous search cost    is incurred. 

Equilibrium rents 

 By solving equations (1.8) and (1.9), it can be shown that the expected return on 

employment for a worker is at least as great as the expected return of a worker from 

unemployment, if it is assumed that    .  (See Pissarides (2000), p14).  Similarly, 

vacancies have a zero value in equilibrium by the free entry assumption, whereas 

filled jobs have a greater-than-zero value which is given by (1.10).  The returns from 

being in a filled job, or owning a filled job, are therefore both greater to workers and 

firms respectively, than the respective values of being unemployed, or holding a 
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vacant job.  The implication is that there when firms and workers find a match, which 

puts both parties in their higher value state, there are rents that must be shared.  

This reasoning is used to find equilibrium wages in the model. 

Wage bargaining 

Wage determination is assumed to take place through Nash bargaining.  Assuming 

that workers have bargaining power   (   ), and firms have power    , this 

implies that the wage bargained between the ith firm and worker pair, maximizes the 

joint surplus between them, i.e. 

         (    ) (    )    (    ) 

Using this assumption, we can derive the wage equations for each version of the 

model:  

  (   )    (    ) (    )( ) 

In version (b), wages are match productivity contingent, hence: 

 ( )  (   )    (    ) 

 

(    )( ) 

The only endogenous variable in the wage equation is  .  A higher vacancy-

unemployment ratio increases the bargaining power of workers, as it means that 

there are more firms trying to attract fewer workers, and workers are able to drive a 

harder bargain for the surplus.  This effect is multiplied by workers’ bargaining 

power, , and the firms’ costs of search   .  Greater productivity also increases the 

available surplus from which workers are able to bargain, hence the wage equation 

is also increasing in  .  Finally, workers demand a higher wage, the higher is the 

non-market wage (for example, unemployment benefit) available  . 

Demand for labour 

Equations (1.6)(a) and (1.10)(a) can be combined to derive what is effectively a 

demand for labour curve.  Pissarides (2000) refers to it as a “job creation condition” 
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(   )  

 ( )
       (    )( ) 

The equation looks like a simple zero marginal profit condition for a single job, 

however there is an additional term  (   )
  

 ( )
 , which represents implicit and 

explicit flow search costs.   Firms with vacancies incur an instantaneous search cost 

of    over an average duration 
 

 ( )
.  A higher arrival rate of shocks,  , increases the 

equilibrium search costs, because it means firms will close jobs more frequently and 

therefore will have to search more often.    represents the opportunity cost of putting 

resources into search. 

Model (b) has a pair of equations governing labour demand, due to the presence of 

the extra endogenous variable, reservation productivity which is  : 

(   )
 (   )

   
 

  

 ( )
 (    )( )( ) 

    
 

 
 

 

   
   

 

   
∫ (   )  ( ) 
 

 

 (    )( )(  ) 

(    )( )( ) is known as the job creation condition.  It is useful to think about it as 

representing a locus of points in (   ) space, for which the relationship is a negative 

one.  To see why, we can think about increasing   from some positive initial value.   

The right hand side of (    )( )( ) is proportional to the expected search cost of 

filling a vacancy, as in (    )( ).  When the search costs are higher, the net 

expected benefit from vacancies or search (the left hand side) needs also to be 

higher.  This can be achieved by lowering the reservation productivity  , since when 

  falls, firms are more tolerant of low realizations of productivity  , and when the firm 

is hit by a shock, there is a higher probability that the firm will keep the job open.  

Therefore, when   is lower, they will fire fewer workers, close down fewer jobs, and 

they will on average spend less time engaged in search for new workers.  In other 

words, hired workers and jobs will last longer.   

Equation (    )( )(  ), or the job destruction condition in contrast can be thought of 

as an upward sloping locus in (   ) space.  It reflects the fact that a higher levels of 

market tightness  , workers are able to bargain higher wages from firms (see 

(    )( )).  This means that firms then require jobs to have higher productivity in 
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order for them to make sufficient profit for them to be worth keeping open.   So as   

rises, firms require a higher reservation productivity  . 

 

This completes our discussion of the basic forms of aggregate search models.  Note 

what they have in common.  Each model has a wage equation derived from the 

assumption of Nash bargaining, and each model has an equation governing  

unemployment dynamics, on which a steady state assumption may be imposed to 

give a solution for the equilibrium unemployment rate.  Model (a) has one more 

equation which describes how vacancies are posted contingent on productivity 

wages, and separations.  Model (b) has two such equations, since firms must not 

only determine how many vacancies to post, but the minimum level of idiosyncratic 

productivity that they are prepared to tolerate in any match. 

1.3 The Mortensen Pissarides model, job reallocation and the choice of shocks 

In this section I discuss the success of Mortensen Pissarides model with respect to 

its earlier goals – fitting stylized facts on job creation and destruction.  Secondly, I 

discuss the fact that embedding the search and matching models into 

macroeconomic  models has appeared to improve the fit of RBC models to the data 

along several dimensions – as found by Merz (1995) and Andolfatto (1996).   

A literature that preceded the aggregate search and matching literature concerned 

the importance of shocks to the labour market, especially with relevance to the hiring 

behaviour of firms.  The literature in some ways mirrored a similar debate in 

macroeconomics, regarding the relative importance of shocks to aggregate supply 

and aggregate demand-related factors.  Supply-side shocks at the firm level have in 

some cases been ascribed to changes in the industrial structure of the economy – in 

terms of its relative demand for labour in different industrial sectors.  The idea is that 

changing industrial structure creates frictional unemployment as workers move 

between expanding and contracting sectors.  For example, Lilien (1982) found a 

positive empirical relationship between cross-sectional dispersion in U.S hiring 

growth rates at the 2-digit industry level, and layoffs, and in turn with unemployment. 

Lilien argued on the basis of exogeneity tests that causality runs from employment 

growth dispersion to unemployment, and that on this basis, sectoral reallocation can 

explain around 60% of the time variation in U.S unemployment over the period 1949-
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1980 (p792).  Abraham and Katz (1986) disputed Lilien’s claimed importance of 

industry level shocks in favour of aggregate level shocks, by showing that 

countercyclical dispersion of employment growth at the industry level is quite 

compatible with aggregate shocks – on the condition that that slower growing 

industries are more cyclically sensitive.  The authors presented evidence that this did 

indeed appear to be the case in the U.S economy.  Instead of sectoral shocks, they 

argued for the importance of aggregate shocks, citing the aforementioned negative 

correlation between vacancy and unemployment rates at the aggregate level.   

Blanchard and Diamond (1989) used a structural VAR analysis to investigate the 

dynamics of the US unemployment, rate, vacancy rate and labour force between 

1952 and 1988.    They used sign and coefficient restrictions to identify the effects of 

cyclical and structural innovations (p59), and concluded that cyclical shocks were of 

much greater importance than structural shocks in explaining the variance of 

unemployment and vacancies over the short and medium run (p43).  Their work thus 

echoed that of Abraham and Katz.    In their (1992) analysis Davis and Haltiwanger 

examined the dynamics of employment growth using a panel of U.S manufacturing 

firms between 1973 and 1986.  Defining the “job reallocation rate” as the sum of the 

rates of jobs created and destroyed during a particular year, they found, using a 

variance decomposition analysis that job reallocation is dominated by idiosyncratic 

changes in firm level employment growth, rather than sectoral changes, or shifts in 

the aggregate distribution of employment changes.  Confusingly, the variances of job 

creation and job destruction rates were found to be individually dominated by 

aggregate and sectoral variation (pp853-854).  Davis and Haltiwanger argued that 

their work suggested that models of employment dynamics should not rely on 

homogenous firms or homogenous sectoral responses to aggregate fluctuations 

(p859).   The study provided more useful stylized facts: they found a large amount of 

job reallocation, in excess of the net reallocation rate – suggesting that one third to 

one-half of manufacturing job gains and losses are not related to aggregate labour 

demand (p834).  They also found however that in the manufacturing sector there is a 

negative correlation between job reallocation and the net reallocation rate – as the 

latter is a good cyclical indicator this implies that job reallocation is countercyclical 

(p830).  They argued that this shows that manufacturing job destruction is more 

volatile than job creation.  The study was influential, and is cited by Pissarides (2000, 

p 63) for being one motivation for Mortensen and Pissarides (1994) – that is, model 
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(b) in section 1.2.  At the end of their paper, Mortensen and Pissarides provided an 

illustrative simulation, the results of which showed that this model was able to 

generate both the negative correlation between job creation and job destruction, and 

a rate of job destruction more volatile than job creation (Mortensen and Pissarides 

p412).  Cole and Rogerson (1999) examined Mortensen and Pissarides’ (1994) 

model in more detail, studying in particular the ability of the model to match the 

stylized facts on job creation and job destruction noted above.  Their approach was 

to note that for a simple version of the model with only two possible productivity 

states there were different structural versions of the model which all had the same 

reduced form.  Therefore, they attempted to search for appropriate reduced form 

parameters which could reproduce those facts.  As in Mortensen and Pissarides, 

Cole and Rogerson focused in particular on the negative correlation between job 

creation and job destruction and the fact that job destruction is more cyclically 

volatile than job creation – both facts reported by Davis and Haltiwanger.  Cole and 

Rogerson claimed that under reduced form parameter values equivalent to the ones 

used by Mortensen and Pissarides the model was able to match at most one of 

those facts – but not both (p950).  They argued that the model could fit both stylized 

facts simultaneously, if the steady-state unemployment hazard (that is – the hazard 

rate of an unemployed worker making a transition into employment) was reduced 

further below the value used by Mortensen and Pissarides, and indeed below the 

value that is consistent with official Bureau of Labour Statistics data.  (p954).  They 

argued that this might in practise be defensible, because the model abstracts from 

those workers on temporary quits and layoffs, who tend to have shorter durations 

thus pushing the BLS figure down, and because of evidence that there existed a 

subset of the officially economically inactive as classified by the BLS – that should 

have been rightfully be classified as unemployed.  As these individuals tended to be 

less effective in searching, but should rightfully be counted as unemployed, their 

exclusion from the official BLS data means that the official unemployment hazard 

rate was again biased upwards.   In summary, Cole and Rogerson showed that the 

reduced form of the Mortensen Pissarides model could be made to match the 

stylized facts on job creation and job destruction, for a certain restricted set of 

reduced form parameter values. 
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Aggregate search and matching models have themselves been used to improve the 

performance of RBC models according to calibration methodology.  Merz (1995) is 

one effort in this direction.   Merz added a matching function with variable search 

intensity and a search cost function on the part of unemployed workers to a 

macroeconomic model with productivity shocks.  She found that search did improve 

the moment-matching capabilities of the model, on several dimensions.   The labour 

market dynamics of the search model, for example, changed the contemporaneous 

correlation between employment and productivity relative to that found in the 

standard RBC model. With search frictions, employment reached its peak correlation 

with productivity at a lag –closer to the time series properties of the data (pp 282-

283).  Mertz also found that search costs dampened the volatility of wages, so that 

they were no longer of equal volatility to productivity, as in the standard RBC model 

with wages set according to the basic marginal product condition (pp281-282).   This 

in turn generated a countercyclical labour share of output (as opposed to a constant 

share in the standard RBC model), also more in keeping with the data (p284).  

Finally, Merz noted that search frictions added persistence to unemployment and by 

extension to output.  This contrasted well with pre-existing RBC models with no 

persistence, for example Hansen’s (1985) indivisible labour model in which 

unemployment is determined period-by-period by lottery, for which the transition 

probabilities are independent of workers’ labour market state.  (p285)  On the 

downside, the addition of search costs did result in insufficient output volatility 

(p285), and when variable search intensity was added to the model the observed 

negative correlation between vacancies and unemployment could not be re-created 

(pp284-295).    

Andolfatto’s (1996) paper is in a similar vein.  Andolfatto stressed the ability of the 

RBC model, when combined with a search model to match the U.S data – in terms in 

particular of the volatility and covariance with output of employment and total hours.  

This he contrasted favourably with the basic RBC model, which for instance did not 

allow for labour inputs to vary via the employment rate at all.  (p122).  On the other 

hand, Andolfatto’s hybrid model failed with respect to productivity and real wages – 

like the standard RBC model it displayed a near unit correlation between productivity 

and output, and between real wages and output respectively (p123). 
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The issues of the driving forces of job reallocation and real business cycles models 

are related – since all models mentioned in this section embody different views about 

the appropriate modelling of shocks to the labour market.  The RBC framework has 

made a natural marriage with search theory, perhaps because both types of models 

have emphasised the importance of productivity shocks.  It is worth mentioning that 

search theoretic labour market models have also been incorporated into the New 

Keynesian literature, see for example Krause and Lubik (2007), Barnichon (2007), 

who presents evidence that shocks in real-business cycle-style search models have 

their productivity shocks misidentified, conflating exogenous productivity movements 

with demand-driven endogenous shifts in work intensity (p3).   

 

It is also the case that the Mortensen and Pissarides’ own (1994) model evaluation 

exercise, the model evaluation exercise of Cole and Rogerson and the RBC hybrid 

models mentioned above are all based on calibration and pure moment-matching.  

We shall have more to say about that in Chapters 3 and 4 – but we note here that 

this is one of the ways in which this thesis diverges from the bulk of the existing 

model evaluation literature in this area. 

 

 1.4 Gross Flows 

In section 1.2 we outlined two different versions of the aggregate search and 

matching model.  In the first version, model (a), the rate at which employed workers 

made a transition to unemployment was given by a parameter  .  This meant that the 

only source of variation in the unemployment rate was variation in  (   ), or 

ultimately via variation in  .  Other models have allowed the separation shock arrival 

rate   to vary, but as an exogenous variable only.   In the second version, model (b), 

the total rate of separation was given by   ( ), with   being an exogenous 

parameter but  , and hence  ( ) being an endogenous variable.    

The development of the aggregate search and matching literature has led to an 

interest in the question of which sort of model is more appropriate.  How much of the 

cyclical volatility in unemployment is due to movements in the separation rate, and 

how much to outflows from unemployment?  Economists have sought to settle the 

matter empirically as a basis for specifying search and matching models.  In this 
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section I review the evidence on this matter.  Chapter 2 of this thesis draws directly 

on the methods used in this literature. 

First however, I briefly consider the outflow from unemployment into employment.  In 

contrast to inflows, the aggregate search and matching literature more or less 

universally accepts the aggregate matching function as an acceptable way of 

modelling hiring.   In section 1.2 we postulated a matching function for use in the 

explanatory Mortensen-Pissarides type models of that section.  The matching 

function posits a relationship between the stock of vacancies, the stock of 

unemployment, and the flow of hiring.  We return to this now, but with a more 

specific functional form: 

           
   

 
 

        

  refers to the beginning of a discrete period of time (typically a quarter or a month).  

The right-hand-side of the equation therefore refers to a set of labour market stocks 

at the beginning of period  .  The flow of matches of the left-hand-side is a flow of 

matches that occurs during period  , up until the beginning of the new period    .   

This is the meaning of the double subscript. 

This form has been widely adopted in the literature, including in the Mortensen 

Pissarides model.  As this is a generalized Cobb-Douglas form, the returns to scale 

of the matching function are not restricted for        , although the elasticity of 

substitution between unemployment and vacancies is restricted to be 1.  The 

literature commonly estimates this relationship in logs using OLS, so that the 

estimating equation is linear.  In many applications, the variables are also scaled as 

rates by the contemporaneous value of the labour force.  It is also common to 

include a time trend.  The literature produces a range of estimates, but the common 

finding is that    is in the range of 0.5-0.7.  (Petrongolo and Pissarides (2000)).  

Estimates for   and   can be interpreted as “elasticities” of the stocks with respect to 

the flow of hires.  The mechanism is simply that with more unemployed individuals, 

or more vacancies, or more of both, the rate of contact between them is higher - all 

other things being equal.   
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 Most of the literature that estimates the matching function focuses on single-variable 

returns or returns-to-scale implied by the estimated parameters.  If   and   are both 

less than 1, as implied by Petrongolo and Pissarides’ study, then the standard 

interpretation given is that there are diminishing returns in terms of hiring to 

increasing either unemployment or vacancies.  The implication is that there are not 

sufficient vacancies to meet the extra unemployed (or vice versa).  Increasing 

vacancies and unemployment by the same proportion addresses the separate 

concept of returns to scale.  The returns to scale are determined by the sum of the 

indices in the case presented above.  If   and   sum to 1 exactly, then there are 

constant returns to scale in the matching function,       implies increasing 

returns to scale and       implies diminishing returns to scale.  Coles and Smith 

(1996, p590) interpret increasing returns as being related to the density of the labour 

market – if vacancies and unemployment are scaled upwards by the same 

proportion, and all vacancies and unemployed individuals exist in the same area 

(that is, they are in the same market) – then increasing returns is what one would 

expect, since the rate of meeting will tend to be increasing in the density searching 

firms and workers.  Petrongolo and Pissarides (2000) provide a meta-study on the 

returns-to-scale of the matching function literature.  The results are not uniform 

across studies, although many are indeed consistent with constant returns (p425).  

Thus, many search-theoretic models have assumed constant returns to scale, 

including the Mortensen-Pissarides model.  These findings matter, as the theoretical 

literature shows that differing qualitative returns to scale properties have different 

implications for the macroeconomy.  (Diamond (1982).)   However Barnichon (2013) 

shows that the standard matching function relationship of this type (with imposed 

constant returns to scale) breaks down after the 2007 for the US.  Barnichon 

augments the standard matching function by including in (aggregate and labour-

specific) match efficiency, time-varying labour market heterogeneities according to 

geography, industry and occupation.  He shows that his specification provides a 

better fit to the post 1976 CPS labour market data, including the post great-recession 

period as far as 2012, owing to its capturing of time-varying effects upon dispersion 

and the composition of the labour market. 
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  Blanchard and Diamond (1989) provide an early set of estimates of the U.S 

matching function, based on monthly data, for the period February 1968-December 

1981.  Across a range of specifications they find evidence of constant or increasing 

returns to scale in matching.  They also highlight one potential econometric pitfall 

with matching function estimation.  Because the regressors - vacancies and 

unemployment - are stocks which are reduced when regressand, hires, increases, 

any positive persistence in the deviations of hires around their predicted value (i.e. 

positive serial correlation in the error term) will be associated with subsequent 

periods of low unemployment and vacancies.  This is simultaneity bias - OLS will 

over-attribute variation in hires to the error term and under-attribute it to variation in 

unemployment and vacancies so that the estimates will be depressed (p28).  

Recognising this, Blanchard and Diamond use the lagged values of unemployment 

and vacancies as instruments.   

 

The residual is obviously also an important part of the matching function.  In its most 

basic form, with just unemployment and vacancies and a time-trend, at least part of 

the residual can be attributed to ‘mismatch’.  The idea is that the residual may 

contain time-varying unobserved factors that affect hiring, such as search intensity, 

worker mobility, the propensity of workers to accept or reject job offers, which may in 

turn be influenced by the wage distribution and the benefit system.  If data is 

available, these elements may be included in the matching function regression and 

their components identified.  

Arguably the central concern of the aggregate class of aggregate search models to 

which the Mortensen-Pissarides model belongs is unemployment, of which hiring is 

only part of the story.  Clearly, the inflows to unemployment (separations) as well as 

outflows (hires, or matches) must have some role in determining observed 

unemployment.  The share of fluctuations in inflows and outflows in determining such 

fluctuations has been the subject of empirical debate in the literature, which we now 

consider.    

Gross labour market flow equations can be expressed in terms of flow-levels. 

Consider equation (1.14).    , is the stock of the unemployed at time t.      is the 

number of transitions from employment to unemployment during period t, and     is 
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the reverse flow, from unemployment to employment.  Note that we have not 

included flows to or from inactivity (although these are in practise important), as the 

example given is merely illustrative: 

                

 
(    ) 

The popularity of search theory has meant that analysis of equations such as (1.14) 

is no longer frequently used.  Instead, let the labour force at time t be         , 

where    is the stock of employment at time  .  Furthermore define       
        ⁄  

to be the growth of the labour force between periods t and t+1 and define the 

unemployment rate and the employment rates respectively as     ⁄     and 

    ⁄      .  An equation for the evolution of the unemployment rate can then be 

written as: 

              (    )
   
  

   
   
  

 
(    ) 

Search theoretic models tend to be written in terms of workers’ probabilities of 

making labour market transitions between states, (for example, the probability of an 

employed worker transitioning from employment to unemployment).  A simplifying 

assumption of many search models is to assume homogeneity of all the workers that 

are within a particular labour market state at a given time.  This means, for instance, 

that 
   

  
 can be interpreted as the probability of any individual that is employed of 

making a transition from employment to unemployment during period t (the 

‘separation rate’), and 
   

  
 is analogously the probability of any individual that is 

unemployed of making a transition into employment (the ’job-finding rate’).     

Shimer (2005b) is recognised as a major contribution to the empirical literature on 

the relative influences of the separation and job-finding rates.  His paper is notable 

for proposing a method of constructing estimates of the separation rate and job 

finding rate by matching individual households in the U.S Current Population Survey.  

His method has the advantage of correcting for time aggregation bias, a bias 

towards the under-reporting of labour market transitions when transition rates are 

calculated using stock data gathered at discrete intervals.  If changes in monthly 

stock data are used to infer labour market transitions rates for example, then this will 
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fail to capture transitions that occurred within the month that were reversed within the 

same period.  Shimer’s method uses available data on short-duration unemployment 

to correct for this bias.  He produces two distinct set of estimates, in which 

individuals can be in two and three states respectively.  The two state analysis 

concerns unemployment and employment and the flows between them, and the 

three state analysis adds the possibility of inactivity and the extra requisite flows. 

Having used his new method to construct estimates for the job-finding and 

separation probabilities, Shimer begins by noting that setting the change in 

unemployment to zero in equation (1.15)2  generates  an estimated series for steady 

state unemployment which is highly correlated with the actual BLS unemployment 

rate between 1948 and 2004, with a coefficient of 0.99  (Shimer pp7-8).  This 

suggests that U.S unemployment dynamics are sufficiently fast (that is, 
   

  
  and 

   

  
 

are of sufficient magnitude), that U.S unemployment is never far from the steady 

state.  Thus, Shimer argues that the convenience of looking at the effects of the 

transition rates on this measure of steady-state unemployment is justified.  Thus, 

rather than modelling equations of type (1.4), one is justified in using the steady-

state equivalent (1.5).  (See Chapter 3). 

Shimer’s primary method in the 2-state case is to construct hypothetical 

unemployment rates, with only one or the other of the job-finding or separation 

probabilities allowed to vary through time.  The other is held constant.  In each case, 

Shimer then compares the resulting hypothetical series to the actual unemployment 

rate.   He notes that the series in which the separation rate is held constant and the 

job finding rate is allowed to vary is more correlated with actual unemployment than 

in the opposite case.  (The coefficients are 0.97 and 0.71 respectively).  He takes 

this as evidence that the job finding rate makes a larger contribution than the 

separation rate to unemployment fluctuations (p8 and p33).  Shimer also notes that 

the correlation between steady state unemployment with the job-finding probability 

held constant versus actual unemployment falls to 0.15 in the period following 1986 

(p8).  He infers that separations rates have become less important in the evolution of 

U.S unemployment since the mid-1980s.   

Shimer follows a similar procedure for the three-state-system, which includes the 

                                                           
2
 Shimer’s analysis also assumes that the labour force is constant, that is         . 
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labour market flows between inactivity.  Allowing for three states does not alter his 

conclusion that the flow from unemployment to employment explains more of the 

variation in unemployment than the reverse flow.  The analysis upholds Shimer’s 2-

state findings, while also suggesting that the flow from unemployment to inactivity 

contributes to the increase in unemployment in low parts of the economic cycle, 

suggesting that workers prefer to retire from the labour force when the economy is 

doing well.   

  Shimer’s (2005b) paper has become known for its emphasis on the job-finding 

rate – the “Outs” (from unemployment) - in explaining unemployment fluctuations.  

Hall’s (2005) paper provides some additional evidence for this view.    

His starting point is the JOLTS3 survey, an official U.S survey of aggregate labour 

market transitions, time series for which begin in December 2000.  The JOLTS 

survey confirms Shimer’s finding about the recession of 2001 (which lasted 

according to the NBER from March 2001(Q1) to November 2001(Q4)), that there 

was no large increase in the separation rate compared to the trend level of 

separations.  In fact, as Hall notes separations declined slowly from around 3.5% of 

employment to around 3% over the year 2001.  This reflected a steady fall in the quit 

rate over the year, which slightly offset a gradual rise in involuntary separations over 

the same period.  (See Hall pp104-105 and Figure 2.1 p105).   Yashiv (2007 p787) 

notes that separations figures recorded in JOLTS include job-to-job flows, as well as 

exits to employment and inactivity.   

Hall reports that the number of monthly U.S. separations as a share of employment 

is significantly larger than the standard deviation of the growth rate of employment, 

across a broad range of all industries and as a weighted average of most broad 

industrial categories of the U.S. economy.  He interprets this to mean that a 

substantial amount of monthly separations over the period covered by the survey (at 

Hall’s time of writing December 2000-October 2004) are associated with worker 

transitions that do not correspond to firms’ changes in their employment levels, and 

can be interpreted simply as average gross flows for the industry.    

In the same paper, Hall considers other sources of data on separations.   He reviews 

the CPS4-based estimates of gross flows constructed by Shimer, and notes that they 

differ from the JOLTS data in that the former do not include job-to-job flows.  

                                                           
3
 JOLTS stands for “Job Openings and Labor Turnover Survey”. 

4
 CPS stands for “Current Population Survey”. 
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Although Shimer’s CPS-based estimates show more counter-cyclicality in the 

separation rate in the period from mid-century to the end of the nineteen-eighties 

than they do in later decades, Hall conjectures that this might be due to the exclusion 

of job-to-job flows.  Employer-to-employer transitions have been estimated to make 

up 40% of total separations (Fallick and Fleischman, p11).    Therefore if the level of 

employment-employment separations is positively correlated with the business cycle, 

the former would tend to fall in recessions, potentially offsetting an increase in 

separations to unemployment.   Hall concludes that:  “there is nothing in the CPS 

flows data to suggest that total separations rise in recessions” (p111).    

Hall mentions other evidence that can be used to examine the separation rate.   

Gottschalk and Moffitt’s separation rate estimates from the Survey of Income and 

Program Participation (SIPP) are consistent in the level with JOLTS data, display no 

counter-cyclicality, but do display positive co-movement with employment increases.   

Hall also notes that the study on tenure by Jaeger and Stevens (1999) provides no 

evidence of counter-cyclical increases in short-tenure, which one would expect if 

separations were taking the burden of employment adjustments in recessions.   Hall 

considers these short time series “tentative evidence” for the relative unimportance 

of the separation rate in cyclical employment adjustments. 

Elsby, Michaels and Solon (2009) adopt a linear decomposition of log-changes in 

steady-state unemployment, as an alternative to Shimer’s counterfactual 

composition method.  They use the same dataset as Shimer, built from matched 

monthly CPS records.  Their revised method of analysis alone gives an estimate of a 

35:65 split between the separation and the job-finding hazard rate in explaining 

changes in log steady-state deviations in unemployment between 1948 and 2004.  

(Elsby, Michaels and Solon p11).   They also consider several refinements to 

Shimer’s method of construction of transition rates from the gross flows.  The 

authors plot their estimates of the contributions (which are in logarithmic form) of the 

job-finding and separation hazards to U.S unemployment for all of the recessions 

between 1948-2004.  Their analysis shows a decline in the importance of the 

separation rate relative to the job-finding probability, especially since the 1980s.  

However, although movements in the job-finding probability are still dominant, prior 

to the 1980s separations still played a considerable role.  

Elsby, Michaels and Solon’s analysis follows Hall’s (2005) in decomposing inflow 
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rates to unemployment and outflow rates from employment according to whether the 

separation was forced or voluntary.   One would expect more voluntary separations 

to be job-to-job flows than to be job-unemployment flows.  Elsby, Michaels and Solon 

show Hall’s conjecture to be broadly correct.  That is - the log of the overall 

separation rate is a-cyclical, but that within this masks a pro-cyclical rate of 

separation among job leavers and a counter-cyclical rate of separation among job 

losers.  Contrary to what one might think from looking at the cyclical behaviour of the 

aggregate separation rate, layoffs are an important cause of unemployment during 

recessions (Elsby, Michaels and Solon pp18-21). 

Fujita and Ramey (2009) use a different approach to analyse the contribution of the 

different rates from the CPS-based gross flows dataset.  They use a variance 

decomposition of steady state unemployment into components associated with the 

separation and job finding rates respectively.   There is also an error term.  To 

generate series on separations and job finding rates they follow a similar data 

treatment procedure to Shimer, using a two-state model that corrects for aggregation 

bias.  

As a prelude to their variance decompositions, Fujita and Ramey examine the 

correlations with labour productivity and the unemployment rate, the latter taken as 

different measures of the economic cycle.    They find the separation rate to be 

contemporaneously correlated with productivity, with a correlation coefficient of -0.58 

when an HP-filter(1600) is used to de-trend the data (p420).  Noting that 

unemployment is a lagging and counter-cyclical indicator, they also find that the 

separation rate leads unemployment with a peak correlation of 0.50.    Thus they 

report substantial counter-cyclical variation in the separation rate, more or less 

contemporaneous with the economic cycle.  There is also a strong correlation of the 

cycle with the job-finding rate, with a peak at around 3 quarters after that of the 

economic cycle and a correlation at 0.6.   Thus according to Fujita and Ramey’s 

analysis both the inflows and outflows from unemployment are cyclical variables.  

Fujita and Ramey’s analysis suggests that variation in the separation rate explains at 

least 40% of variation in the steady state unemployment rate.  This finding is 

unchanged even when Shimer’s original data set is used, indicating that the 

difference is due to Fujita and Ramey’s and Shimer’s methods of analysis, rather 

than data construction.  (The full sample is from 1976Q1 in Fujita and Ramey’s data 

and from 1967Q2 in that of Shimer).   When the sample is restricted to post- 1985 
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data, the separation rate’s share of the variance falls to 34% (27% in Shimer’s data). 

5 (See Fujita and Ramey p427).   

Finally, Elsby, Michaels and Solon argue that the observed dominance of the job-

finding-probability in most of these empirical gross-flows studies is in fact consistent 

with causality running from the separation rate to the job-finding probability.   They 

note that the unemployment to employment flow is well-known to be countercyclical 

when measured without normalization (simply in terms of numbers of workers), or 

when it is normalized by employment (Yashiv) or the working-aged population 

(Fallick and Fleischman (2004)).   Conversely, the job-finding probability from 

unemployment is pro-cyclical.  The unemployment and the separation rate from 

employment to unemployment are both countercyclical.  For all of these facts to be 

true requires that unemployment rise by proportionately more than the gross flow out 

of unemployment in a recession, a change which can only occur through greater flow 

of separations into unemployment.  The large plunge in the job-finding probability 

that occurs in recessions is thus entirely due to an increase in the denominator (i.e. 

unemployment).  Elsby, Michaels and Solon note that this is potentially compatible 

with a burst of separations being the ultimate cause of the proximate rise in the job 

finding probability:  the job-finding probability falls simply because of the rise in 

unemployment.  Thus it could conceivably be the case that separations have a 

driving role in unemployment despite the apparent dominance of the 

contemporaneous job-finding probability in the variance of the changes of steady-

state unemployment.  Elsby, Michaels and Solon’s argument is consistent with Fujita 

and Ramey’s (2009)’s finding that the separation rate leads the unemployment rate 

in the economic cycle (p421).   

To summarize, aggregate evidence for the U.S labour market suggests that the job-

finding probability has the largest share of unemployment fluctuations over the post-

war period.  The separation probability has a smaller but definitely non-zero share for 

the whole of the post-war period, although its importance seems to have declined 

since the mid-1980s.  However, the separation probability is composed of pro-

cyclical quits and counter-cyclical layoffs – the effect of the whole separation rate on 

unemployment is dampened as the latter are counter-acted by the former in periods 

                                                           
5
 A smaller share of the variance of steady state unemployment is attributable to separations when 

Fujita and Ramey use a different duration-based dataset. 
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of recession.    The findings suggest that neither model (a) nor model (b) is quite 

correct in terms of its modelling of separations.  More accurate analysis would seek 

to model separations by type.  In the next section we review another, perhaps more 

fundamental shortcoming. 

 

 

 

1.5 Evaluating the Mortensen Pissarides model  

In an influential (2005(a)) paper, Robert Shimer criticises the Mortensen-Pissarides 

model for failing to generate realistic labour market volatility in response to 

exogenous productivity fluctuations.  He calibrates his own version of the model 

using parameter values based on microeconomic literature, and shows that the ratio 

of the volatility of the vacancy-unemployment ratio to the ratio of labour productivity 

in the data over the period 1951-2003 (at a quarterly frequency and with the HP-

filtered trend removed) is a factor of ten times larger than in the model. (p39)  Not 

only does the model fail to match this particular moment, but vacancies, 

unemployment and the job finding rate all display less volatility in the model than 

they should (p28 cf. p39).  Shimer tries out a variety of combinations of shocks to the 

model, including using shocks to the separation rate.  He finds that most of these 

lead to worse counterfactual model behaviour – for example separation shocks 

generate positive correlation between unemployment and vacancy rates, contrary to 

what is observed in the data (p40).  His main result therefore uses productivity 

shocks alone.  The explanation given for the erroneous model mechanism is that the 

Nash-bargained real wages respond too much to labour productivity, eroding profits 

and the incentive to job creation (p45).   The discrepancy between the data and the 

model has become known as the “Shimer puzzle.” 

Mortensen and Nagypál (2007) examine the Shimer puzzle closely.   They note that 

the correlation between the log vacancy-unemployment ratio and log productivity has 

a value of 0.396 (p333) - far less than unity, implying that productivity cannot be the 

only cause of fluctuations.  The authors argue that it is incoherent to expect a model 

with one driving force to explain more than the empirical elasticity of the vacancy 
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unemployment ratio to productivity – a value they report as being 7.56.  (p333)  From 

this argument it can be surmised that the Shimer puzzle is still a puzzle – but the 

magnitude of the discrepancy between data and model is less severe than Shimer’s 

paper suggests.  Mortensen and Nagypál then examine the ideas which have been 

suggested as corrections to the Shimer puzzle.  We discuss some of these in the 

following section. 

 

1.6  Amending the Mortensen-Pissarides model 

Many attempts to amend the Mortensen Pissarides model in light of the Shimer 

puzzle focus on the flexibility of wages implied by the model, though this is not the 

only approach that has been tried.  Hagedorn and Manovskii (2008), for example, 

note that it is not only the cyclical volatility of wages that matters for the volatility of 

the labour market variables in the model, but also the level of profits.  They argue 

that the volatility of the vacancy unemployment ratio is in fact decreasing in profits, 

so that attempting to increase the labour market volatility simply by reducing labour’s 

bargaining power is doomed to failure (p1695).  Instead, the authors show that large 

increases in model volatility can be generated by simultaneously reducing bargaining 

power, while increasing the value of the parameter representing unemployment 

benefit or the value of leisure.  Since wages under Nash bargaining are increasing in 

the value of leisure, this counteracts the rise in profits.  Mortensen and Nagypál are 

however sceptical of this solution, noting that it implies that worker’s average benefit 

from employment versus not working is a mere 2.3% (p335).   Costain and Reiter 

(2007) acknowledge Hagedorn and Manovksii’s finding that the model can be made 

to produce more labour market volatility in response to productivity fluctuations by 

calibrating unemployment benefits such that firms’ profit is very small.  However they 

also show that not only does this produce large fluctuations in the vacancy-

unemployment ratio as the data require, it also has the effect of greatly increasing 

the elasticity of unemployment with respect to changes in the benefit level.  The 

authors use cross-country panel data on 19 OECD countries for the years 1960-

1999 with unemployment as the regressand, and estimate a multiple regression 

coefficient of around 0.02 for the association of the benefit replacement rate with 

unemployment.  They interpret their estimate as an elasticity of benefits on 
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unemployment of roughly 2 (p1138).   Costain and Reiter find that increasing the 

unemployment parameter to equal that of Hagedorn and Manovskii produces a 

model elasticity of 14.29 for the same figure.  The Shimer puzzle is thus not resolved 

so easily. 

That rigid wages in search models can resolve the Shimer puzzle was demonstrated 

by Shimer himself (2004).  Continuing the theme, Hall (2004) shows that the Nash 

bargain solution for wages is in fact an arbitrary point within a broader set of wages 

that would be mutually agreeable to rational firms and workers.  He suggests that 

wage stickiness can be modelled as a wage norm, so that wages change only when 

shocks are of sufficient magnitude that the prevailing wage is no longer part of the 

admissible bargaining set.   In a separate contribution, Hall and Milgrom (2008) 

replace the Nash bargaining solution in the canonical Mortensen and Pissarides 

model with a bargaining game of alternating offers between the worker and the firm.  

The authors theorize that the threat point values (those of unemployment and a job 

vacancy) are unlikely to be the practically relevant threat points in actual wage 

negotiations.  Rather than workers leaving bargaining altogether, Hall and Milgrom 

reason that it is more likely that in the face of an unacceptable initial offer workers 

will propose a counteroffer.  The result is a delay which is somewhat costly for the 

firm and which causes workers to have to subsist on unemployment benefits for 

extra time.  The worker reverts to unemployment only with a small, exogenously 

imposed probability – representing the total breakdown of negotiations.  Hall and 

Milgrom admit to having scant evidence on actual wage negotiations (p 1655), 

however their model of wage bargaining has the desired effect of dampening cyclical 

wage fluctuations – relative to the canonical model with Nash bargaining.  The 

reason is that the Nash bargaining solution contains an expression of the worker’s 

full value of unemployment – this value is pro-cyclical via its continuation value.  In 

Hall’s model, the value of the unemployment in the wage solution is damped by the 

small exogenous probability of complete failure of wage negotiations with no 

counteroffer (p1660).   This is another mechanism through which the desired wage 

rigidity can be incorporated into the Mortensen-Pissarides model.   

 

Pissarides (2009) however expresses scepticism that simply imposing aggregate 

wage rigidity can resolve the Shimer puzzle.  Pissarides creates a version of the 
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aggregate matching model which differentiates between wages paid to new and 

existing matches.  Theoretically, he shows that the wage relevant to the Shimer 

puzzle is that paid to new matches.  The problem is that empirical evidence shows 

that wages tend to be flexible in new matches, and rigid and existing matches 

(Pissarides p1360).  Therefore, Pissarides argues that the focus on wage rigidity in 

solving the Shimer puzzle is misleading.  Instead, echoing Mortensen and Nagypál 

(pp337-338), he suggests that adding fixed firm hiring and firing costs may help to 

solve the Shimer puzzle. 

Pissarides explains his reasoning in a model of canonical type (a) (above).  To see 

the effects on the model, let   be the fixed hiring cost, incurred only after a match is 

formed.  Equation (   )( ) then becomes: 

        ( )(     )     (    ) 

This in turn implies that the value of a job is given by:  

  
  

 ( )
   

     

(    ) 

The job creation condition (    )( ) and the wage equation under Nash bargaining 

(    )( ) become: 

    (   ) [
 

 ( )
  ]    

 

(    ) 

  (   )   (        ( ) ) 

     

(    ) 

In (    )  the search cost now contains a fixed component (   ) .  In the wage 

equation there is an extra term    ( ) , which indicates the fact that hired workers 

save firms an expected hiring cost, for which they are compensated according to 

their bargaining power,  .  (Pissarides (2009, p1364)).  Without having specified any 

parameter values, equations (1.18) and (1.19) look as if they add volatility to the 

wage equation, and so might reduce firms’ job creating incentives when there is a 

positive productivity shocks.  However, Pissarides argues that by reallocating search 
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costs away from vacancy costs  , towards fixed hiring costs,  , this version of the 

model is able to match the elasticity of   with respect to  , whereas the original 

version cannot.  When the bulk of search costs do not depend upon the expected 

duration of the vacancy (in other words the inverse of  ( ), which is increasing in   ), 

there is less of a dampening effect on job creation when there is a positive 

productivity shock.  Building on Pissarides’ paper, Silva and Toledo (2013) find that a 

necessary condition for hiring costs to significantly raise the sensitivity of labour 

market variables with respect to productivity is that the hiring costs be sunk when 

wage bargaining occurs.  If the hiring costs are not sunk then they raise the firm’s 

threat point, and in equilibrium they are passed on as a discount in the wages of new 

entrants.  

Silva and Toledo (2009) also explore the potential of hiring and firing costs to solve 

the Shimer puzzle using a model of endogenous job destruction, one of type ( ) 

above.  Crucially however, they distinguish between newly hired workers and 

‘incumbent’ workers.  It is assumed that newly hired workers are less productive than 

incumbent workers by a proportion of realized match-specific productivity.  The 

assumption is founded on evidence from the Employer Opportunities Pilot Project, 

which reports large training costs born on average by firms after the recruitment of a 

new employee (Silva and Toledo pp79-80).  In addition, the authors assume both an 

exogenous separation probability of matches common to new and incumbent 

workers, and a firing cost to the firm of firing incumbent workers only.  The model 

dynamics are assumed to be driven by productivity. 

Silva and Toledo show that under standard calibrated values these assumptions are 

sufficient to bring the moments of the model closer to the data in a number of ways.  

Vacancies, the job-finding probability and the vacancy-unemployment ratio are all 

increased by at least a factor of two relative to the standard model.  (The data 

standard deviations are still however at least 3.25 times the amended model, so the 

puzzle is not fully resolved.)  The volatility result works by reducing the match 

surplus relative to the model without hiring and firing costs, proportionately 

increasing the incentives for job creation when productivity shocks hit (p89).   This is 

the mechanism identified by Hagedorn and Manovskii and by Costain and Reiter.  

However, the solution survives Costain and Reiter’s critique in that the modification 

does not induce unrealistic sensitivity of unemployment with respect to the benefit 
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replacement ratio.  Silva and Toledo argue that while the smaller surplus does make 

hiring more sensitive to benefit changes, the extra firing costs serve to reduce the 

sensitivity of separations to the same changes, neutralizing the overall effect on 

unemployment (pp90-91).  Finally, the authors note that in contrast to Shimer’s 

(    )( ) observation, the introduction of endogenous separations to their model 

does not induce a positive correlation between vacancies and unemployment.   

Again Silva and Toledo state that this is because of firing costs in their model, which 

induce firms to ensure that the burden of adjustments to their stock of labour fall on 

hires rather than separations (p92).   

1.7 Conclusion 

This chapter has discussed the evolution of the aggregate search theoretic literature 

over the last twenty years, with an emphasis on the Mortensen Pissarides model and 

the Shimer critique.  We have explained the empirical controversy over the question 

of whether or not the separation rate is exogenous or endogenous, and shown how 

this relates to the theoretical literature with the use of two canonical models.  Finally, 

we have explored the response to the Shimer critique, which consists of attempts to 

amend the canonical model so as to bring the simulated moments closer to the data.  

The main approaches to this puzzle have been the introduction of wage rigidity, and 

exploration of alternative specifications for search costs – in particular fixed search 

costs, sunk when wages are bargained over, which crucially are independent of 

search duration.  The latter approach has been argued to be more consistent with 

the data by Pissarides (2009).   

 

The two broad areas surveyed overlap exactly with Chapters 2-4 of this thesis.  

Hence the rest of this thesis proceeds as follows:  In Chapter 2 we take the tools 

developed in the empirical gross flows literature, and adapt them for an analysis of a 

small and very open labour market – that of Wales.  In line with the literature we 

measure the contribution of labour market hazards to unemployment on a quarterly 

basis since 1997.  We also critically consider the robustness of the procedure. 

In Chapters 3 and 4 we build on the large model evaluation literature with respect to 

the canonical Mortensen Pissarides model and its extensions.  However, rather than 

using the calibration-based procedures which are popular in the literature, we turn 

instead to the simulation-based procedure of indirect inference, which in Chapter 3 
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we argue constitutes a more statistically founded method of model evaluation than 

calibration-based moment matching.  Chapter 3 is a “test-bed” for the procedure, in 

which we use a canonical Mortensen-Pissarides model with static expectations, to 

see how the model performs.  Here we do not expect the model to perform well – 

being cognizant of the Shimer critique.  We also take the chance to use the closely 

related method of indirect inference estimation to attempt to find a better-fitting 

model.  In Chapter 4, we turn to the literature which attempts to address the Shimer 

critique.  We subject to rigorous testing Yashiv’s (2006) version of the model, which 

in the vein of Pissarides (2009) and Silva and Toledo (2009, 2013), attempts to 

address the model with the use of an amended search cost function.      
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Chapter 2: Do the Ins win in Wales?  A hazard rate variance decomposition of 

Welsh unemployment using LFS panel data. 

2.1 Introduction 

2.2 Data 

2.3 Calculating hazards rates from discrete gross flows:  

ignoring time aggregation bias 

2.4 The Petrongolo and Pissarides (2008) decomposition of UK unemployment  

2.5 Deriving steady-state labour force stocks for Wales and the rest of the UK 

2.6 The relationship between steady state and measures of observed unemployment 

rates 

2.7 Variance decomposition results 

2.8 Discussion 

2.9 Conclusion 

 

2.1 Introduction 

As described in more detail in Chapter 1, the 2000s have seen a revival in the 

empirical study of gross labour-market flows, especially those of the United States.  

This has coincided with the rising popularity in the use of search-theoretic models to 

describe the aggregate U.S labour market.  A central paper of this recent literature is 

that of Shimer (2005), who matched monthly observations on the labour-market 

status of U.S individuals in the U.S Current Population Survey (CPS) in order to 

create a set of quarterly aggregate gross flows for the period 1967-2004.  Rather 

than simply computing gross flows in levels, Shimer expressed the flows in terms of 

hazard-rates.  The idea was to summarize the data in a way that afforded 

comparison with the output of theoretical search models.  In models in which the 

modelled individuals are sufficiently (ex-ante) homogenous, hazard rates can be 

interpreted as conditional transition probabilities for individuals of moving from one 

state to another6, which makes them natural for modelling labour market flows in 

continuous time. 

 

Shimer suggested that most of the variation in the U.S unemployment rate could be 

                                                           
6
 Conditional here means that it applies to individuals that have not yet made a transition. 
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attributed to cyclical changes in the probability of unemployed individuals finding a 

job, and that the probability of employed individuals becoming unemployed – the 

separation probability - was of little importance.  If true, the finding could validate the 

modelling assumption of an exogenous separation rate, as used for example in 

Pissarides (2000, chapter 1), Yashiv (2006) and Chapters 3 and 4 of this thesis.  

Although it was acknowledged that Shimer’s paper contributed novel ways of 

handling various data issues, many thought the conclusion to be driven by a 

combination of somewhat arbitrary data-handling procedures and a potentially 

misleading empirical method. (Gomes, 2009 p28).  There followed several papers 

that built upon Shimer’s study and sought to improve the empirical methods used, 

and which failed to uphold Shimer’s central finding – changes in the U.S separation 

probability  can explain at least 28% of the variation in U.S steady-state7 

unemployment, and more depending upon empirical and analytical choices.  (See for 

example Fujita and Ramey, (2009) p427, and Elsby, Michaels and Solon (2007), 

p10). 

 

There have been similar recent attempts to investigate the importance of different 

gross flows and hazard rates in the UK labour market.  Most have had results similar 

to the more recent U.S analysis, finding that both job-finding rates and separation 

rates make important contributions to fluctuations in UK unemployment rate.   

Petrongolo and Pissarides (2008) decompose quarterly UK Labour-Force panel data 

and claimant-count data, and find that the inflow rate to unemployment explains a 

minimum of 20% and as much as 45% of movements in steady-state 

unemployment.8   In a similar analysis which uses a range of methods, Gomes 

(2009) finds that the separation rate contributes around 40% of steady-state 

unemployment volatility at a quarterly frequency, although the contribution of the 

separation rate tends to be lower at monthly and weekly frequencies. Using a 

different sort of unemployment data  - LFS recall-based micro-data that stretches 

back to 1975 - Elsby, Smith and Wadsworth (2011, p355) find a 64.1% - 28.2% split 

                                                           
7
 The analyses tend to maintain (with some justification) the assumption that U.S unemployment is 

well-approximated by steady-state unemployment – roughly speaking the unemployment rate that 
holds when the inflows and outflows to the unemployment are equal.  See Chapter 1 for a broad 
discussion of the issue. 
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in the contribution of separations to job-finding hazard rates to the variance of 

changes in steady-state unemployment, with combined inactivity-related hazard 

rates contributing just under 10%.  Smith (2011) provides a dynamic, non-steady 

state analysis of UK unemployment by hazard rate based on British Household 

Panel Survey (BHPS) data, in which she allows both current and past changes in 

hazard rates to affect observed unemployment, motivated by the UK’s relatively 

small gross flows relative to those of the U.S.  Her long sample allows her to 

calculate time-varying variance shares for inflows and outflows to unemployment.   

The results are broadly supportive of those of Elsby, Smith and Wadsworth, with 

lagged and contemporaneous inflows to unemployment accounting for over 100% of 

the variance of observed BHPS unemployment around the late 1980s and early 

1990s, and around 40% since the late 1990s.  She also finds however, that outflows 

from unemployment were comparatively more important than inflows during the mid-

to-late 1990s, over the period of relative economic stability and declining 

unemployment (Smith p420). 

 

The extension to the literature made here is to estimate the contributions of inflows 

and outflows to unemployment for Wales.  We use Labour Force Survey panel data 

to obtain gross flows and hazard rates for the period 1997Q2-2010Q4.  The analysis 

includes as far as possible cross-border flows between Wales and the rest of the UK.  

We use a steady-state framework in the style of Petrongolo and Pissarides, rather 

than a dynamic framework in the style of Smith, but we also examine how closely the 

steady-state approximates observed unemployment.  This is to our knowledge the 

first attempt to apply this sort of flows analysis to regional data. 
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Figure 2.1:  Unemployment and inactivity rates in Wales and the UK, 1997Q2-2012Q4 

(seasonally adjusted and based on UK Labour Force Survey stock data). 

Figure 2.1 shows the unemployment rates and inactivity rates for the UK and for 

Wales between 1997Q2 and 2012Q4.  The graphs show that both are higher in 

Wales.  Wales also suffered a sharper increase in unemployment during the 

recession that began in 2008 (shaded in grey in the figure).  The graphs therefore 

suggest important differences between the labour markets in the two areas.  This is 

confirmed by NOMIS data, which show, for example that the proportion of the 

population that is of working age (16-64) in Wales is persistently smaller than that of 

Great Britain (The UK minus Northern Ireland).  The occupational structure of the 
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Welsh economy is also different, with persistently higher proportion of process, plant 

and machine operatives, caring, leisure and service occupations, and skilled trades, 

and a lower proportion of managerial, professional and technical occupations.    

Wales also has a different distribution of skills in its working-age-population 

compared to the whole of Great Britain.  For example, the NOMIS data shows that 

Wales has a somewhat lower proportion of highly skilled workers than the rest of 

Great Britain (NVQ level 4 and above), and a higher proportion of individuals with no 

qualifications.9   To the extent that these different worker characteristics are 

associated with different labour-market dynamics, we would expect Wales to exhibit 

a different pattern of gross flows in our analysis.     

 

Section 2.2 describes the panel dataset, data-handling procedures, and provides 

summary statistics for the gross flows measures that we derive from it.  We also 

describe how we define whether or not individuals in our dataset are associated with 

Wales.  Section 2.3 explains how we obtain hazard rates from the gross-flow 

measures, and notes some of the methodological choices taken along the way.  

Section 2.4 reviews Petrongolo and Pissarides’ (2008) variance decomposition of the 

changes in UK unemployment.  As their analysis is the closest in the existing 

literature to our own, we redo their analysis with our own LFS panel dataset in order 

to provide UK estimates for our sample period which are comparable with our results 

for Wales, in terms of being estimated over the same sample period and in terms of 

being subject to the same data-handling procedures.  Section 2.5 describes how we 

obtain steady-state estimates of the unemployment rates both for Wales and 

Outside-of-Wales.  Section 2.6 analyses the correlation between steady-state 

unemployment rates (which are constructed using the hazard rates) and observed 

unemployment rates, for the UK, for Wales and for the area of the UK Outside-of-

Wales.  Section 2.7 contains the results of our variance decompositions for each of 

the geographical areas.  In section 2.8 we discuss our results and section 2.9 

concludes. 

   

 

 

                                                           
9
 http://www.nomisweb.co.uk/reports/lmp/gor/2013265930/report.aspx 
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2.2 Data 

We use data from the 2-quarter Labour Force Survey panel, between 1997Q1 and 

2010Q4.   The Labour Force Survey (LFS) is a quarterly address-based survey 

conducted by the UK’s official statistical agency, the Office of National Statistics 

(ONS).   The survey is based upon five waves, meaning here that an address that 

has been selected for participation will be interviewed for five consecutive quarters.  

In any given quarter, survey respondents will be made up of responding addresses 

that are on their first of five interviews (wave 1), those that are on their second of five 

interviews (wave 2), etc, up to those wave 5 addresses that are on their fifth 

interview.  When the address has been interviewed for five consecutive quarters, it 

exits the sample.  Each quarter, new addresses must be selected to comprise the 

wave 1 part of the sample. 

 

Attempts are made to interview each individual in a sampled household, although 

proxy responses are permitted in some cases.  (Labour Force Survey, User Guide 

Volume 1 – LFS background and methodology p29.)  Data are collected on many 

different sorts of variable.  That which is most of interest here is of course data on 

labour-market status, and also geographical location.  Quarterly LFS datasets are 

available in cross-sectional, two-quarter and five-quarter panel form.  Each dataset 

includes a set of “person weights”, which may be used to scale the desired 

observations up to the population level in each quarter.  The weights in the two-

quarter and five-quarter panels have the added feature of correcting for attrition bias. 

We use the two-quarter panel datasets to obtain data on gross flows for the area of 

the UK Outside-of-Wales respectively.  The panel datasets make this very easy, as 

each contains a ready-made variable10 that indicates whether individuals at each 

sampled address made a transition between – or remained within – any of the labour 

market states of employment, unemployment and inactivity.  The fact that changes in 

labour market status among individuals is already coded in the panel means that 

there is no need to match individuals based on other characteristics, as is the case 

                                                           
10

 The variable is called ‘FLOW’.  See Labour Force Survey User Guide – LFS two quarter and five 
quarter longitudinal datasets-2011; version 2.0 March 2012, p3 for more details. 
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for example, when constructing gross flows from the U.S Current Population Survey 

data. 

Each of the quarterly panel datasets contains an estimated number of individuals in 

each of the initial labour-market states, which can be grossed up to an area 

population-level estimate using the panel weights.  We use these panel data-based 

stocks, rather than the separate cross-sectional datasets which are also available, to 

ensure consistency between the stocks and flows.  

It is clear that any analysis of gross flows between regions within an economy will 

require definitions of the economically relevant “boundary” between regions.  How 

should “Wales” versus “not in Wales” be demarcated?  The LFS dataset contains 

enough variables such that there is more than one possible answer.  In the analysis 

that follows, we use individuals’ location of residence11 to assign individuals to the 

Wales or Outside-of-Wales categories, consistent with the standard geographical 

definitions of labour market states 

Before discussing the gross flows, we briefly review summary statistics on the labour 

market stocks for the areas under consideration.  These are displayed in table 2.1.  

The table shows that Wales contains roughly 4.7% of the UK’s working age 

population, and 4.4% of the UK’s labour force.  Over the full sample from 1997Q2-

2010Q4, the Welsh unemployment rate was on average 0.6 percentage points 

higher than that of the UK as a whole, however the difference is due to the period of 

economic weakness in the latter part of the sample that began in 2008Q2 – the 

difference in average unemployment between the earlier and later parts of the 

sample period was 3.4 percentage points in Wales but 2.6 percentage points for the 

whole of the UK.  Table 2.1 also shows that over the full sample period, economic 

inactivity has been persistently higher in Wales than in the rest of the UK. 

 

 

 

 

 

                                                           
11

 The variables that identify location of residence in the 2-quarter panel dataset are called 
‘GOVTOR1’ and ‘GOVTOR2’.   
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Table 2.1: Summary statistics on labour markets 

    
Working-age 
population   

 
UK Outside-of-Wales Wales 

Full sample 1997Q2-2010Q4 
(T=55) 36,724,969 35,235,081 1,489,888 

  Labour force 

 
UK Outside-of-Wales Wales 

Full sample 1997Q2-2010Q4 
(T=55) 29,288,746 27,987,818 1,300,928 

  Unemployment rate 

  UK Outside-of-Wales Wales 

Full sample 1997Q2-2010Q4 
(T=55) 0.058 0.057 0.063 

1997Q2-2008Q1 (T=44) 0.054 0.054 0.060 

2008Q2-2010Q4 (T=11) 0.076 0.072 0.076 

  Inactivity/Labour force 

 
UK Outside-of-Wales Wales 

Full sample 1997Q2-2010Q4 
(T=55) 0.271 0.267 0.347 

1997Q2-2008Q1 (T=44) 0.276 0.268 0.351 

2008Q2-2010Q4 (T=17) 0.266 0.263 0.327 

Notes: Seasonally adjusted LFS data.    denotes sample size (number of 
quarters). 

 

Table 2.2 shows summary statistics (means and standard deviations) for the levels 

of all the seasonally adjusted flows derived from the LFS 2-quarter panel dataset.  

Columns (i) and (ii) correspond to actual numbers of transitions, whereas (iii) and (iv) 

correspond to transitions expressed as a proportion of the relevant working-age 

population in the quarter.  The flows ‘  ’, ‘  ’, ‘  ’, ‘  ’ ‘  ’, ‘  ’ and ‘  ’ pertain to 

the whole of the United Kingdom.  For example, the first column of the row labelled 

‘  ’ shows the estimated per quarter number of individuals in the United Kingdom 

that moved from the state of unemployment to that of employment over the sample 

period.  The other flows contain suffixes to indicate whether the statistic includes 

individuals moving ‘from’ or ‘to’ a state associated with Wales (‘ ’), or Outside-of-

Wales (‘ ’).  For example, column (i) of the row labelled ‘    ’ contains the 

estimated per quarter number of individuals that moved from a state of being 

unemployed in Wales, to a state of being employed in Wales over the sample period. 

In columns (iii) and (iv) the relevant working-age population in terms of which each 

flow is expressed is the area from which the flow originated.  Flows that have the 

form ‘  ’ - in other words, flows estimated for the whole of the United Kingdom - are 
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expressed as a proportion of the working-age population of the United Kingdom.  

Flows that pertain to Wales and which therefore have the form ‘    ’ are expressed 

as a proportion of the working-age population of Wales.  Flows that pertain to 

Outside-of-Wales and which therefore have the form ‘    ’ are expressed as a 

proportion of the working-age population Outside-of-Wales.   

Note that each of the employment-employment flows is the largest of its type.  An 

average of 1.9% of the working age population of the UK per quarter changed jobs 

over the sample period.  In this context,    means someone has changed jobs 

rather than remained in the same job thus placing the emphasis on employment 

flows.  The employment-employment flows are presented only for context – we do 

not use them in the decomposition of unemployment that follows. 

Table 2.2 makes clear that sample-size is an issue in estimating gross-flows for 

Wales using the 2-quarter LFS panel.   Consider column (i).  The LFS Longitudinal 

Panel Guide 12 stipulates a minimum publication threshold of 17,000, for any 

estimates derived from the 2-quarter dataset.   At this level the sampling variation 

implies a standard error of around 20% (LFS Longitudinal Panel Guide, p5) – a level 

deemed unacceptable for official publication.  Column (i) of table 2.2 shows that the 

gross flows estimates for the whole of the UK meet this criterion comfortably.  This is 

also true for all flows of the form ‘    ’ and ‘    ’ (in other words, for all flows 

within Wales or within the Outside-of-Wales area), with the exception of separations 

from employment in Wales to unemployment in Wales (‘    ’).  For these flows, the 

sample sizes for the Outside-of-Wales area tend to be much greater than the sample 

sizes for inside of Wales, which means that the cross-quarter standard deviations of 

the flows as a percentage of the respective working-age populations in column (iv) 

tend to be greater for ‘    ’ estimates than for ‘    ’ estimates.  

 

Ideally, we would like to include in our data analysis flows of the form ‘    ’ and 

‘    .’  However, the numbers of such quarterly flows are evidently so small that 

they are no such observations in the panel sample.  It is highly unlikely that the 

number of individuals making such transitions is exactly zero in every quarter, but 

the point is that there are insufficiently many of such transitions to show up in the 

                                                           
12

 Labour Force Survey User Guide – LFS two quarter and five quarter longitudinal datasets-2011; 
version 2.0 March 2012. 
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LFS’ limited panel sample.  Hence they are not included in table 2.2, nor in further 

results.   

 Table 2.2 shows that, on average the flows from unemployment into 

employment were the second largest flows (second to employment-employment 

flows) over the sample period.  Flows from employment to inactivity were almost as 

large.  (‘    ’ is in fact estimated to be slightly bigger than ‘    ’ but the difference 

is unlikely to be significant.)  Flows from unemployment to inactivity tended to be 

smallest, at around 0.8% of the Working-age population for the UK a whole.   Flows 

from employment to unemployment were somewhat bigger at around 0.9% for the 

UK.   

Note that as a percentage of the working-age population, all gross flows in Wales are 

estimated to be greater than their counterparts for the area Outside-of-Wales and for 

the whole of the UK.  We attribute this to the base-effect of the Wales working-age 

population.   They also consistently more volatile, with more than double the 

standard deviation than their Outside-the-UK counterparts, for all flows with the 

exception of job-to-job flows (    ).    

It would be useful to see whether we are able to reject the null hypotheses that each 

of the Wales and UK flows are equal, in each period or on average.  However 

constructing confidence intervals for these flows based upon panel transitions (which 

are in turn based on weighted estimates of a smaller underlying sample) is not 

simple, and requires more information on the sampling process.    We would also 

need to incorporate the sampling variability of the relevant working-age population in 

each area.  We therefore leave the testing of this set of hypotheses for further work.   
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   Table 2.2:  Summary statistics for gross 
flows data, 1997Q2-2010Q4 

Flow Mean level 
Standard 

dev. 
Mean, % 
of      

Standard 
dev., % 
of      

  (i) (ii) (iii) (iv) 

   459,584 43,037 0.0125 0.0011 

     21,636 4,874 0.0146 0.0034 

     437,947 41,680 0.0124 0.0011 

        338,782 50,012 0.0092 0.0013 

     14,764 4,135 0.0099 0.0028 

     324,017 48,404 0.0092 0.0013 

        362,579 61,932 0.0098 0.0015 

     19,364 5,508 0.0130 0.0035 

     343,215 58,652 0.0097 0.0014 

        288,811 47,475 0.0079 0.0012 

     17,580 4,811 0.0118 0.0032 

     271,230 45,712 0.0077 0.0012 

        435,346 40,768 0.0119 0.0011 

     20,959 5,238 0.0141 0.0035 

     414,388 38,251 0.0118 0.0011 

        454,624 37,028 0.0124 0.0011 

     21,774 5,333 0.0146 0.0036 

     432,850 34,888 0.0123 0.0010 

        689,533 120,193 0.0189 0.0036 

     29,337 6,704 0.0197 0.0046 

     660,196 115,600 0.0188 0.0037 

          

  55 55 55 55 
 

 Notes:    denotes the sample size (number of quarters of 

data). “    ” stands for “Working-aged-Population”. 
Seasonally adjusted data.   

 

The gross flows expressed as a percentage of the relevant working-age population 

are displayed in figure 2.2 below.  The graphs illustrate the fact that the gross flows 

for Wales are very much more volatile than those for the Outside-of-Wales and for 

the whole of the UK.  They also show that as a share of the working-age-population, 

the mean level of gross flows in Wales tends to be somewhat higher than in the UK 

as a whole.  A large increase in the flow into unemployment from employment is 
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visible in all areas following the recession that began in 2008.  Otherwise, the flows 

do not display a clear cyclical pattern.   

 

 

Figure 2.2:  Gross flows for Wales, Outside Wales and the UK as a % of the relevant 

Working-Age population, seasonally adjusted 
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2.3 Calculating hazards rates from discrete gross flows: ignoring time aggregation 

bias 

The gross flows literature on which this chapter is based obtains continuous time 

labour market measures from a discrete dataset.   In this view, labour market flows 

change continuously according to the labour market’s underlying hazard rates.  The 

hazard rates are themselves assumed to be constant for the discrete period under 

examination (in our case, for a given quarter).     

Table 2.2 summarizes the gross flows data that the LFS 2-quarter panel data 

allowed us to construct.  How should one go about constructing hazard rates from 

this data? 

The ‘correct’ way of constructing hazard rates in this way is to construct the hazard 

rates jointly.  Unfortunately, this is only simple in model with two labour market 

states.   We illustrate the point with a very simple model. 

Consider a single country model in which workers can move only between 

employment and unemployment.  Discrete quarters of time are indexed by   

        .  Time also elapses continuously between quarters, and is indexed by the 

intra-quarter variable  [   ] .   Let    ( ) be the cumulative number of workers that 

have made the transition between employment and unemployment since the 

beginning of period t, up to and including the instant   [   ] of period t.  By 

definition,    ( )    since no time has elapsed and so no transitions have taken 

place.  When     we have the total number of    transitions for period t, this 

number can be denoted by    ( )     .  There is an opposite flow of workers from 

unemployment into employment,    ( ), which obeys the same timing conventions.  

The stocks of unemployment and employment also vary continuously in the model 

and can therefore be written as   ( ) and   ( ) respectively. 

  It is assumed that within each period t, the flow from employment to unemployment 

   ( ) is driven by a constant continuous time hazard rate    and the flow from 

unemployment to employment    ( ) is driven by a constant continuous time hazard 

rate   .  It is assumed that we are only able to observe any of the labour market 

stock or flow variables at discrete intervals – at the end of each of the discrete 

quarters when    .  The problem is to estimate the hazard rates in each period,    

and   , from the discretely observed data.  Note that this is a simplified version of the 
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general question addressed by this chapter, the latter being complicated by the 

desire to model extra countries and states. 

  

To proceed further, it is useful to review exactly what the assumption of a constant 

hazard rate entails, with reference to the rest of the model.  Firstly, consider the 

magnitude 
   ( )

  ( )
 for some   [   ].  This gives the proportion of individuals that were 

employed at the beginning of period t that have made the transition to unemployment 

by   [   ].   The converse of this magnitude,   
   ( )

  ( )
 is the proportion of those 

individuals that were employed at the beginning of the period who have not made the 

transition, and is called the survivor function. Finally, let   
  ( ) be the instantaneous 

probability of an individual moving from employment to unemployment at time 

  [   ].    
  ( ) is an unconditional transition probability. 

Under these assumptions the proportion of those making transitions 
   ( )

  ( )
 and 

   ( )

  ( )
  

satisfy the following pair of equations: 

   ( )

  ( )
 ∫   

  ( )
 

 

   ∫
  
  ( )

(  
   ( )
  ( )

)
 

 

 

   ( )

  ( )
    

   ( )

  ( )
 ∫   

  ( )
 

 

   ∫
  
  ( )

(  
   ( )
  ( )

)
 

 

 

   ( )

  ( )
    

In general, the fact that the hazard rate of making the transition from employment to 

unemployment is assumed to be constant for period t means that the transition 

probability is a constant proportion of the survivor function in each period – that is:  

   
  
  ( )

  
   ( )
  ( )

 

          

Defining similar notation, there will be an equivalent expression for the job-finding 

hazard rate: 



47 
 

   
  
  ( )

  
   ( )
  ( )

 

          

The pair of differential equations then becomes: 

 

   ( )

  ( )
 ∫   (  

   ( )

  ( )
)

 

 

   ∫   

 

 

 
   ( )

  ( )
    

 

 

 

(   )( ) 

 

   ( )

  ( )
 ∫   (  

   ( )

  ( )
)

 

 

    ∫   
   (  )

  ( )

 

 

    

 

          

(   )( ) 

 Differentiating equations (2.1)(a) and (2.1)(b) gives a pair of differential equations in 

   ( )

  ( )

̇
 and 

   ( )

  ( )

̇
  respectively.  By solving these equations and letting     then the 

hazard rates can be shown to satisfy the following pair of equations for each 

         : 

   
  ( )

 
  (    (     ))

     
 (   )( ) 

   
  ( )

 
  (    (     ))

     
 

          

(   )( ) 

   

  ( )
 and 

   

  ( )
 are observed in the data, so the equations can be inverted numerically 

and solved for    and   .  Equations (2.2)(a) and (2.2)(b) shows that modelling time 

aggregation bias implies solutions for    and    that are mutually inter-dependent. 
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Note that these equations are equations (4) and (5) of Petrongolo and Pissarides 

(2008). 

The idea behind these equations is as follows.  Labour market surveys occur at 

discrete intervals.  On a quarterly basis, a certain number of individuals will have a 

pattern of transition that is a single move from employment to unemployment, we 

can write this as     .  Clearly, we would like to construct our continuous time 

hazard rate    so as to take account of these individuals.  However, there may be 

another group of individuals that have a pattern of transition         which 

occurs during a single quarter.  This means that at the two discrete quarterly 

interview dates that enclose one separation and one job-finding event, they are 

classified as employed. The survey design will not take into account the fact that 

they made a transition      and another      within the period between 

surveys, and so this transition will be incorrectly omitted from the measured    and 

so from the calculated   .  The longer the discrete interval between interview dates, 

all other things equal, the greater the chances of such unregistered transitions 

occurring.  Thus this phenomenon is known as time aggregation bias. 

Unfortunately, when the number of states is greater than 2 it becomes more difficult 

to adjust for time-aggregation bias.   Gomes (2009, Appendix) models the bias for a 

three-state system (including inactivity) using LFS data and a system of non-linear 

equations.  Petrongolo and Pissarides (2008, p258 footnote 2), use LFS data and 

decompose UK unemployment using both a 2-state and 3-state model.  Noting that 

adjusting their 2-state results for time aggregation bias does not substantially affect 

their results, they decline to make a similar adjustment to their 3-state results.   As 

our model also contains flows between 3 states we follow Petrongolo and Pissarides, 

and compute our gross flows independently using the LFS panel data.   

Consider the general flow for interval [   ] of period t from state   
 
 to state   

  , 

    {   }.   Abstracting from time aggregation bias implies the total number of 

transitions relative to the initial stock is simply the integral of the hazard: 

     ( )

   ( )
 ∫   

  ( )
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Once more we assume the hazard rate is constant throughout the whole discrete 

time period.  Let the constant hazard rate for flow        for period t be given be   
  

  

Since by the definition of a hazard rate,  

  
  
 

  
  ( )

(  
     ( )
   ( )

)

 

Where   
  ( ) is the instantaneous transition probability and (  

     ( )

   ( )
)  is the 

survivor function.   

It is clear that when we abstract from time aggregation bias that: 

     ( )

  
 ( )

 ∫   
  
(  

     ( )

  
 ( )

)
 

 

   

          

    {   } 

By solving this equation it can be shown that the relationship between the transition 

rate and the hazard rate is given by13: 

Or: 

  
  
    (  

     

  
 ( )

) 

        

  {   } 

 

 

 

(   ) 

Which when inverted gives: 

                                                           
13

 The formula is not original however most of the literature omits its derivation. 
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 ( )

       
  

 

        

  {   } 

 

 

(   ) 

See Appendix 2.1 for details. 

Equation (2.3) is the formula that we use to compute the hazard rates for our data.  

Table 2.3 gives the flows and the corresponding hazard rates, with summary 

statistics for the latter. 

Data treatment in general, and smoothing in particular are important issues in gross-

flows analysis.  Yashiv (p12) discusses how different analyses have used different 

seasonal adjustment procedures.  For simplicity we use a system of quarterly 

dummy variables to remove seasonal components from each of our series.14 

 

Smoothing is more controversial.  Gomes (2009) uses a four-quarter moving 

average to smooth his LFS-based UK gross flows, whereas other analysis 

(Petrongolo and Pissarides (2008) for example) give no mention of having applied 

extra smoothing to their data.    

For the sake or robustness, in our analysis we provide results using both smoothed 

and unsmoothed data.  For smoothing the data we use the fitted values of each 

series from a regression on a third-order polynomial in time.  The order of polynomial 

is selected for convenience – we could of course have reduced the smoothing to an 

arbitrary degree by choosing a higher-order function.   As we disaggregate the LFS 

data into two lower-level countries (Wales and Outside-of-Wales), the sample sizes 

on which our flow data are based are necessarily smaller than those available for the 

UK as a whole.  This is especially true of our country of primary interest – Wales, as 

can be seen in table 2.2 – since Wales contains only around 4.4% of the UK’s 

working-age population (table 2.1).    Smoothing may mitigate the effects of sampling 

                                                           
14

 More specifically, we regress each series on a set of three seasonal dummy variables representing 
quarters.  The de-seasonalised series we then take to be the constant plus the residual from each of 
these regressions.  Some papers in the literature instead use an X-11 ARIMA, however Bell and 
Smith (2002, p23) try both methods and report little difference between them. 
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noise on changes in our gross flow estimates.  On the other hand, it might also throw 

the baby out with the bathwater, discarding relevant time-variation in the hazard 

rates.  

Table 2.3 displays summary statistics for both smoothed and unsmoothed hazard 

rates.  The sample rates are calculated using the LFS gross flows data summarized 

in table 2.2, as well as LFS stock data for each of the relevant areas, as summarized 

in table 2.1.  To this data we apply equation (2.3) to obtain each hazard rate.  In the 

analysis that follows, we also experiment with smoothing various measures of 

unemployment.  We cover both smoothed and unsmoothed analyses.    
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Table 2.3:  Summary statistics for hazard rates data, 1997Q2-
2010Q4 

  

Hazard rates, 
unsmoothed 

 

Hazard rates, 
smoothed 

Flow Hazard Mean 
Standard 

dev.   Mean 
Standard 

dev. 

  
  

 
  

      (i) (ii)   (iii) (iv) 

      0.325 0.042 
 

0.324 0.038 

       
   0.319 0.086 

 
0.316 0.052 

       
   0.325 0.042 

 
0.325 0.037 

    

           0.013 0.002 
 

0.013 0.001 

       
   0.016 0.004 

 
0.016 0.002 

       
   0.012 0.002 

 
0.012 0.001 

    

           0.047 0.007 
 

0.047 0.007 

       
   0.044 0.013 

 
0.044 0.008 

       
   0.047 0.007 

 
0.047 0.007 

    

           0.189 0.015 
 

0.188 0.009 

       
   0.248 0.071 

 
0.245 0.021 

       
   0.186 0.015 

 
0.185 0.009 

    

           0.057 0.005 
 

0.057 0.004 

       
   0.048 0.012 

 
0.048 0.006 

       
   0.057 0.005 

 
0.057 0.004 

    

           0.017 0.001 
 

0.017 0.001 

       
   0.023 0.006 

 
0.023 0.003 

       
   0.017 0.001 

 
0.017 0.001 

    

       
 

55 55 
 

55 55 
 

 Notes:   denotes the sample size (number of quarters of data).   Seasonally 
adjusted data using quarterly seasonal dummies.  Smoothing in columns (iii) and 
(iv) is done using a third-order polynomial in time.   

 

The means of the hazard rates are uninformative with respect to their importance in 

explaining variation in unemployment, because their levels depend on the average 

size of their denominators.  Hence, hazard rates calculated using flows out of 

employment are generally very small, especially relative to same-country flows out of 

unemployment.  A comparison of columns (i) and (iii) shows that smoothing does not 

affect the means of the hazard rates, however, comparing columns (ii) and (iv) 

shows that it produces reasonably large reductions in the volatility of each of the flow 

series. 
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Table 2.3 shows that in general, the mean and standard deviation of the UK-wide 

hazards (  ) are very similar to the analogous hazards within the UK-Outside-of-

Wales (of the form     ).  This is entirely as one would expect given that the 

Outside-of-Wales part of the UK is far larger than Wales.  By contrast, the      

hazards     ,     appear to be somewhat greater on average than the analogous 

Outside-of-Wales and UK hazards, whereas the     ,      and      hazards are 

on average smaller.  Thus inflow hazards to unemployment in Wales are slightly 

weighted towards separations from employment, whereas inflows to employment,  

     and      hazards are on average, lower across the board than their UK 

values. 

The smoothed and unsmoothed hazard rates are plotted in figures 2.3, 2.4 and 2.5, 

for the UK, Wales and Outside-of-Wales respectively. 
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Figure 2.3:  Hazard rates for UK Gross flows, seasonally adjusted 
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Figure 2.4:  Hazard rates for Wales, seasonally adjusted 
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Figure 2.5:  Hazard rates for Outside-of-Wales, seasonally adjusted 

 

Table 2.4 gives the correlations of flows and hazard rates with the unemployment 

rates.  The cyclicality of gross flows is of general interest in the gross flows literature 

and since the purpose of this analysis is to attempt to explain movements in 

unemployment, we compare the correlations of both our gross flows as shares of the 

relevant populations, and of our constructed hazard rates to unemployment. 

Unemployment is of course a negatively cyclical indicator. 
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Table 2.4: Cyclical correlations of flows and hazards (1997Q2-
2010Q4) 

  (i)   (ii) (iii) 

Flow: 

Correlation of flow as 
proportion of 
Working-age-
population with 
unemployment rate Hazard rate 

Correlation of 
unsmoothed hazard rate 
with unsmoothed 
unemployment rate 

Correlation of 
smoothed hazard rate 
with smoothed 
unemployment rate 

UK:     (
  

    
  ) 

      (   )     ( ̃  ̃) 

Wales & Outside-
of-Wales: 

    (
    

    
   ) 

        (      )     ( ̃    ̃ ) 

          

   0.74    -0.82 -0.96 

     0.44   
   -0.45 -0.79 

     0.74   
   -0.82 -0.96 

  
       0.59    0.64 0.97 

     0.24   
   0.32 0.95 

     0.58   
   0.63 0.97 

  
       0.74    0.73 0.81 

     0.19   
   0.16 0.37 

     0.76   
   0.75 0.83 

  
       0.90    -0.53 -0.74 

     0.50   
   -0.32 -0.89 

     0.90   
   -0.49 -0.70 

  
       -0.72    -0.73 -0.97 

     -0.38   
   -0.43 -0.89 

     -0.71   
   -0.73 -0.97 

  
       -0.53    -0.44 -0.78 

     -0.23   
   -0.15 -0.27 

     -0.53   
   -0.44 -0.83 

  

  55 
 

55 55 
 

 Notes:    denotes the sample size (number of quarters of data).  Seasonally adjusted data using 
quarterly dummy variables.  Smoothing is done using a third-order polynomial in time.  When 
correlations are reported as being “.” it means that there are none of the relevant observations in 
the dataset. 

 

Column (i) of Table 2.4 contains the correlation of each of the gross flows as a 

proportion of the relevant working-age population with the relevant unemployment 

rate.  Flows of the type     ;     {   } are expressed as a proportion of the 

working-age-population in country  , and the reported correlation is with the 
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unemployment rate in country  .  Flows for the whole of the UK (of type   ) are 

expressed as a proportion of the working-age population of the UK, and the reported 

correlation is with UK unemployment.  In column (i), all flows and unemployment 

rates are seasonally adjusted using quarterly dummy variables, however we have 

not applied third-order polynomial smoothing to either the flows or the unemployment 

rates.  In columns (ii) and (iii), seasonally adjusted flows are converted to hazard 

rates using equation (2.3) above, and the correlation with the appropriate 

unemployment rate (again that of country    for flows of the type     ;     {   } 

and that of the whole of the UK for flows of type   ) are reported.  In column (iii), the 

hazard rates and unemployment rates have been computed using third-order-

polynomial smoothing, and in column (ii), no such smoothing has been used.  

Therefore, comparing columns (ii) and (iii) of table 2.4 gives a measure of the effects 

of our smoothing procedure on the cyclicality of the hazard rates.  For each hazard 

rate, it is clear that the smoothing procedure increases the absolute magnitude of the 

correlation with unemployment – in other words it makes the cyclicality of each 

hazard rate more pronounced. 

 

Table 2.4 shows that our data recreates a well-known stylized fact about the 

cyclicality of gross flows from unemployment to employment, and the hazard rate 

counterparts (  ,   
   and   

  ) to this flow.  The hazard rates are strongly pro-cyclical 

whereas the flows are counter-cyclical.  This has previously been noted in US data 

by Yashiv (2006 ,p17), and is also apparent in the analyses by Gomes (2009, table B 

p14) and Bell and Smith (2002, p33).  Note that      and   
   appear to be less 

pro-cyclical than the measures for the UK and for Outside-of-Wales.  The counter-

cyclicality of the    flow is what we would expect to find based on the theory of the 

matching function, which states that hiring is an increasing function of 

unemployment.  Meanwhile the pro-cyclicality of   ,   
   and   

   supports the 

familiar intuition that that jobs are easier to find for workers when the economy is 

strong.  The reconciliation is of course that unemployment falls by proportionately 

more than the flows into employment during periods of economic expansion. 

The flows and hazard rates from employment to unemployment are countercyclical, 

although more moderately so in Wales.  Flows between inactivity and employment 

within countries are in general pro-cyclical, whereas those between inactivity and 
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unemployment are generally counter-cyclical (though note that the hazard rates 

corresponding to the flows from unemployment to inactivity are pro-cyclical). 

2.4 The Petrongolo and Pissarides (2008) decomposition of UK unemployment 

Petrongolo and Pissarides (2008) attempt to assign changes in steady-state 

unemployment to various UK hazard rates using LFS panel data.  The method used 

is that developed and applied by Fujita and Ramey (2009), to decompose changes in 

steady-state U.S unemployment. 15  

The approach we take here to analyse changes in Welsh unemployment builds 

directly on these papers.  For this reason, as well as the fact that it is useful for the 

purposes of our own analysis to have comparable results for the whole of the UK, we 

first reproduce Petrongolo and Pissarides’ method of analysis here.  As the sample 

we have at our disposal is different to that used by those authors16, and because 

some of our data-treatment procedures differ (for example, the methods of seasonal 

adjustment) we then repeat their analysis using our later sample and our own data-

treatment procedures.  These results can then be compared back to the original 

results, and also to our results for Wales and Outside-out-Wales.  The analytics for 

this part of the paper are however the same. 

Petrongolo and Pissarides begin their three-state analysis with a pair of steady state 

equations for the UK labour market (Petrongolo and Pissarides, p258): 

          (     )   
 

          (     )   
 

 
(   ) 

 

   is the hazard rate corresponding to   ,    is the hazard rate corresponding to   , 

   is the hazard rate corresponding to   ,    is the hazard rate corresponding to   , 

   is the hazard rate corresponding to    and    is the hazard rate corresponding to 

  .  The equations are two steady state conditions – the first of which says that the 

                                                           
15

 Gomes (2009) also analyses UK gross flows obtained from LFS panel data – however the variance 
decompositions that he reports are for a two-state model which excludes inactivity, rather than a 
three-state model as used in Petrongolo and Pissarides. 
 
16

 Petrongolo and Pissarides’ (2008) sample is 1993Q3-2003Q3.  Our sample is 1997Q2-2010Q4. 
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total inflows to unemployment equals the total outflows, and the second of which 

says that the total inflows to employment equals the total outflows. 

By defining the unemployment rate by 
  

     
 the solution for steady-state 

unemployment in the UK is given by: 

 ̅ 
   

   
  

     
  

   
  

     
      

  
     

  
 

 

(   ) 

 

 ̅ 
   is the steady state unemployment rate for the UK under which the system of 

equations (2.4) holds.  Note that if    and    are both zero, one recovers the familiar 

steady state condition for unemployment that is used in the 2-state Mortensen-

Pissarides model (Chapter 3). 

 

Equation (2.5) says that steady-state unemployment is increasing in the separation 

hazard to unemployment,    and decreasing in the job-finding hazard to employment, 

  .  One may also interpret 
  

     
   as the hazard of making a transition from 

employment to inactivity via unemployment, and from inactivity to unemployment, 

since    is the    hazard and 
  

     
 is the hazard of making an    transition, given that 

one transitions out of inactivity to some state.  Similarly, 
  

     
   is the hazard of 

making a transition to employment from unemployment via inactivity.  (Smith (2011), 

p413). 

Taking the first difference of equation (2.5) and manipulating, the change in steady-

state unemployment can be decomposed as follows: 

 
 
 

(   ) 
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The idea is that equation (2.4) decomposes the first difference of unemployment into 

weighted changes in variables that are related to contemporaneous changes in the 

hazard rate counterparts to the gross flows.  Clearly the first and third terms 

represent changes in the    and    hazard rates respectively.   Petrongolo and 

Pissarides take the second term to represent changes in    and the fourth term to 

represent changes in    (see p258 and table 2 p260).   

Collecting terms allows one to write the expression as a simple sum: 
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The   
  s are not themselves linear in the differences of hazards.  The weights 

applied to them however, which consist of nonlinear combinations of the hazard 

levels (both contemporaneous and at first lag) result in a linear and exact 

decomposition of steady-state unemployment.  

The sample variance of the change in steady state unemployment is then 

decomposed using a standard variance decomposition as follows: 
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Note that the variances and covariances are taken with respect to time.   

Dividing through by   ̂ (  ̅ 
  ) gives: 
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Equation (2.9) is an expression of the shares of the variance of the first-difference in 

steady state unemployment attributable to (weighted) changes in the hazard rate 

counterparts   ,   ,    and   .  As is standard in the literature we label these 

shares  ̂  .  They satisfy: 
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The linearity property of covariances means that the betas above have a far more 

concise expression: 
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To understand the decomposition, it is useful to consider an ideal (and implausible) 

case in which the   
  are entirely independent.  In that case, the beta of each hazard 

is simply the ratio of the variance of the relevant   
   to the total variance of the 

change in steady state unemployment.  For example,  ̂   
  ̂ (  

  )

  ̂ (  ̅ 
  )

.   Now if we 

relax the assumption, and consider the case where there is some negative 

covariation between some of the   
  .  Suppose for example that   ̂ (  

     
  ) is 

negative.  In that case, 
  ̂ (  

  )

  ̂ (  ̅ 
  )

 alone will over-estimate the contribution of the    to 

the change in steady state unemployment because whenever there is an increase in 

  
   there will be an offsetting decrease in   

  .  The magnitude of the offset will 

depend on the strength of the negative correlation.  Similarly, positive covariation 

between the   
   will mean that the variance ratio alone will be an under-estimate of 

the contribution of the role of the change in the    hazard. 

This discussion brings out an important feature of the method, which is that 

statistically it is no more causal than regression analysis.  The method measures the 

strength of the association of transformations of the flows to an approximation to the 

change in the stock.  In general, we understand flows to be the proximate causes of 

the change in stocks.  The method can therefore do no more than measure the effect 

of variation in functions of these proximate causal factors on the change in the stock 

of unemployment.  It will not uncover the driving force, or causal interrelationships 

between the flows.  

This completes the analytic summary of method used by Petrongolo and Pissarides 

(2008) and Fujita and Ramey (2009). 

We make one small extension to the method.  Rather than decompose the variance 

of the first difference of steady-state unemployment, we decompose the variance of 

the first difference of observed unemployment, by adding an error term representing 

the change in observed unemployment that is not due to the change in steady state 

unemployment.  The idea is to derive an extra beta term to indicate how closely 
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changes in steady-state unemployment track changes in actual unemployment.  

Formally, the expression for the change in observed unemployment is given by: 
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Where the    have the same interpretation as before.   

The variance of the change in observed unemployment is given by: 
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The betas now give the shares of each of the component flows in the change in 

observed unemployment.  They satisfy: 
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And are calculated as follows: 
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Or, expressed in their concise form: 
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 ̂  is the component of the change in actual unemployment which goes unexplained 

in the analysis of Petrongolo and Pissarides (2008).  Note that each beta contains a 

covariance with the error term– we want to know the extent to which each beta co-

varies systematically with elements that are not explained by steady-state 

unemployment. 

This completes the review of the analysis used on the UK as a whole.  In the 

following section we adapt the methods presented here to decompose the variance 

of the change in unemployment for Wales.   

 

2.5 Deriving steady-state labour force stocks for Wales and the rest of the UK 

We derive the steady-state labour force stocks for the economically defined regions 

of Wales and Outside-of-Wales (the precise definitions of these were given above).   

If it was the case that we could identify cross-border flows between Wales and 

outside of Wales in our dataset, this would increase the difficulty of the problem 

significantly.   We would need to estimate the contribution of at least eight flows 

rather than four as in Petrongolo and Pissarides’ analysis.  As the number of cross-
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border changes of state appear to be small enough that no recorded changes 

appear in the dataset, we are restricted to the “within area” flows for Wales and 

Outside Wales.  We therefore retain the Petrongolo and Pissarides decomposition 

for comparability’s sake, applying it on the within-area flows for each area. 

 

The formulae are therefore familiar.  The steady-state unemployment rate in each 

area is given by: 
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Decomposing the change in each of the steady-state unemployment rates gives: 
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We can follow exactly the same logic as in section 2.4 to derive the betas for Wales 

and Outside of Wales respectively.   That is, the change in steady-state 

unemployment for each time period and in each area is decomposed into a sum of 

linear components:  
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As in the previous section, we may now calculate the shares of the variance of 

steady-state unemployment associated with each hazard component: 
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Alternatively, we may as in the UK case, decompose the variance of observed rather 

than steady-state unemployment.  The change in observed unemployment in each 

area is now the sum of the change in steady-state unemployment and an error term:   
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Decomposing observed unemployment in this way implies an extra beta for the error 

term.  The betas are now: 
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2.6 The relationship between steady state and measures of observed unemployment 

rates 

In the previous sections we discuss Petrongolo and Pissarides’ (2008) method for 

decomposing the variance of UK unemployment rates into linear components which 

depend directly on changes in gross-flow hazard rates.  The method involves the 

prior construction of an expression for the steady state unemployment rate.  The 

expression is given in equation (2.5).   

We then went on to construct steady state unemployment rates for Wales, and for 

the part of the UK that is Outside-of-Wales, in order to derive variance 

decompositions for the changes in these variables. 

In all cases, we made clear that it is possible to decompose the variance of the 

change in the observed unemployment rate for each area, by adding a term that 

represents the difference between the change in the steady state and the change in 

the observed measure.  Before moving on to the variance decomposition, we 
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investigate how closely correlated the levels and first differences of the steady-state 

rates of unemployment are with the levels and first differences of observed rates.   

 

Table 2.5:  Correlations between measures of unemployment for the UK, Wales and Outside-
of-Wales, 1997Q2-2010Q4. 

 

   
Levels: 

 

 

 UK:   Wales:   Outside-of-Wales: 
 

 

 (1) (2) (3) (4)  (5) (6) (7) (8)  (9) (10) (11) 
 

(12) 

    ̃  ̅  ̃       ̃   ̅̅ ̅̅    ̃       ̃   ̅̅ ̅   ̃ 

  1 0.93 0.90 0.92    1 0.91 0.75 0.94    1 0.93 0.91 0.92 
 ̃   1 0.84 0.99   ̃   1 0.74 0.94   ̃   1 0.83 0.99 
 ̅    1 0.84   ̅̅ ̅̅     1 0.79   ̅̅ ̅    1 0.84 

 ̃       1   ̃       1   ̃       1 
   

First differences: 
 

 

      ̃   ̅   ̃         ̃    ̅̅ ̅̅     ̃         ̃    ̅̅ ̅    ̃ 
   1 0.27 0.19 0.28     1 0.20 0.31 0.19     1 0.27 0.41 0.28 
  ̃   1 0.08 0.95    ̃   1 0.03 0.97    ̃   1 0.10 0.94 
  ̅    1 0.12    ̅̅ ̅̅     1 0.03    ̅̅ ̅    1 0.13 

  ̃       1    ̃       1    ̃       1 
    

Notes:  T=55 in levels and T=54 in first differences.  Seasonally adjusted data using quarterly seasonal dummies.  Smoothing is 

done using fitted values from a third-order polynomial in time.    is the observed, unsmoothed UK unemployment rate,  ̃ is the 
observed, smoothed UK unemployment rate,  ̅ is the steady-state UK unemployment rate,    is the observed, unsmoothed 

unemployment rate in Wales,  ̃ is the steady-state UK unemployment rate constructed out of smoothed hazard rates, so that it 

is effectively a smoothed steady-state rate.   ̃ is the observed, smoothed unemployment rate in Wales,   ̅̅ ̅̅  is the steady-state 
unemployment in Wales,  

  ̃ is the steady-state Welsh unemployment rate constructed out of smoothed hazard rates.     is the observed, unsmoothed 

unemployment rate Outside-of-Wales,   ̃ is the observed, smoothed, unemployment rate Outside-of-Wales,   ̅̅ ̅ is the steady-

state unemployment rate Outside-of-Wales,   ̃ is the steady-state unemployment rate Outside-of-Wales constructed out of 
smoothed hazard rates. 

 

We examine the correlation between three measures of the unemployment rate for 

each country in table 2.5.  The variables  ,    and    are observed unemployment 

rates for the UK, for Wales, and for Outside-of-Wales respectively.  These we obtain 

from the cross-sectional LFS dataset.  Each is seasonally adjusted using quarterly 

dummy variables. 

 

 ̃,   ̃ and   ̃ are observed unemployment rates for the UK, Wales, and for Outside-

of-Wales.  They differ from  ,    and    respectively, only in the fact that we smooth 

them using a third-order polynomial.  It makes sense to use at least one measure of 

unemployment which has had its high frequency components removed, to go along 

with the case in which the hazard rates are smoothed in the same way.  The 

decompositions of changes in the  ,    and    series are likely to have a greater 
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variance share attributable to error than changes in the  ̃,   ̃ and   ̃ series, because 

 ,    and    contain high frequency fluctuations, whereas  ̃,   ̃ and   ̃ and the 

smoothed hazard rates do not. 

 ̅,   ̅̅ ̅̅  and   ̅̅ ̅ are the steady state unemployment rates for the UK, for Wales and for 

the area Outside-of-Wales respectively.  They are constructed using the gross flow 

hazard rates, according to equations (2.5) and (2.15).  The hazard rates that make 

up these measures of steady-state unemployment are not smoothed in this case, so 

that the steady-state series are not smoothed. 

Finally, ̃,   ̃ and   ̃ are the smoothed steady state unemployment rates for the UK, 

for Wales and for the area Outside-of-Wales respectively.  They are smoothed 

because they are constructed out of smoothed hazard rates, in contrast to  ̅,   ̅̅ ̅̅  and 

  ̅̅ ̅. 

The first part of table (2.5) shows that there is a high correlation in levels between 

the different measures of unemployment for all the geographical areas under 

examination.  In the UK, and the Outside of Wales region the correlation between all 

measures of unemployment (whether steady-state or observed, smoothed or 

unsmoothed) in levels are all above 0.83.  For Wales all correlations are above 0.74.   

Thus, in levels, steady-state unemployment is a reasonably good approximation to 

observed unemployment whether the data are smoothed or unsmoothed.   
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Figure 2.6:  Observed and steady state unemployment, smoothed and unsmoothed, for the 

UK, Wales and Outside the UK. 

The graphs in figure 2.6 show the levels of each of the four measures of 

unemployment for the three areas.  The official period of recession which is 2008Q2-

2009Q2 is shaded in grey.  The charts show that for each geographical area, the 

unsmoothed and smoothed observed unemployment rates track each other closely 

in levels.  However, from 2007 the unsmoothed unemployment rate series 

undergoes more fluctuations and deviates more from the smoothed series, 

especially with the onset of the 2008 recession. 

In general, as unemployment stocks have to be the result of prior flows, we would 

expect steady-state unemployment to be a leading indicator of actual unemployment.  

When steady state unemployment is below observed unemployment, observed 

unemployment should be falling, and vice versa.  In our analysis, this is true of the 

large increase in unemployment, during or following the 2008 recession (in which the 

upwards-spike in steady-state unemployment does indeed proceed the rise in actual 

unemployment), and during the period 1998-2003, in which observed unemployment 

was on a falling trend.  However, throughout most of the sample steady-state 

unemployment bias does appear to be consistently lower than it should be, 
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especially in periods of fairly stable observed unemployment.  Comparison of non-

seasonally adjusted and seasonally adjusted data (reported above) suggests that 

some, but not all of this discrepancy is due to seasonal adjustment (since removing 

seasonal components using dummy variables has an effect on the level of the data).  

It is not clear what explains the rest of the discrepancy, although the reason may 

relate to the effects of the LFS panel weights.  However, the variance decomposition 

analysis that we perform is not in levels but in first differences.  We therefore do not 

explore further the discrepancies between the different measures of the levels of 

unemployment since they are not critical to our analysis.  It is however, relevant to 

consider whether the high correlations between the levels of the different measures 

of the unemployment rate in each geographical area are also present in the first 

differences of the series.  The relevant correlations are given in the second part of 

table 2.5. 

The table shows that the correlation between the unsmoothed first differences of 

steady-state measures of unemployment (  ̅   ̅    ̅  , respectively) and the 

unsmoothed first differences of observed measures of unemployment (          , 

respectively) are in general much weaker.  The greatest at 0.41 is for the Outside-of-

Wales area.  The value for Wales is 0.31 and 0.19 for the whole of the UK.  This is 

because differencing series tends to exacerbate the effect of idiosyncratic noise 

present in the data.   However, the correlations between changes in smoothed 

measures of observed unemployment (  ̃   ̃    ̃   respectively) and the changes in 

smoothed measures of steady-state unemployment  (  ̃̅   ̃̅    ̃̅ , respectively) are 

very high (above 0.90 for all areas).  The reason is that the smoothing removes 

idiosyncratic movements from both steady-state and observed unemployment series.  

What is left is a common trend which is highly correlated between series. 

 

2.7 Variance decomposition results: 

Table 2.6 reports the results of our variance decompositions for the United Kingdom.  

The figures in the table are the relevant “betas” which are hazard shares that 

correspond to the “flows” indicated in the second column of the same table.17   

                                                           
17

 In the discussion that follows, for the sake of brevity we often refer to the betas as “hazard shares”. 
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The first column labelled P&P contains Petrongolo and Pissarides’ results for 

comparison purposes.  For our analysis, we present a range of results, which differ 

according to whether we decompose steady-state unemployment (columns (1) and 

(2)) or observed unemployment (columns (3) and (4)).  Within these categories, we 

differentiate between analyses in which we smooth the unemployment and hazard-

rate data using a 3rd-order-polynomial (columns (1) and (3)) and analyses in which 

we perform no such smoothing (columns (2) and (4))18.  Note that in the steady-state 

analyses of columns (1) and (2), the decomposition of the unemployment rate is 

constructed out of the hazard rate according to equations (2.5) and (2.6), so that 

using smoothed hazards means automatically that the steady-state unemployment 

will also be smoothed19. 

  Column (1) of table 2.6 shows the decomposition of the change in steady-state 

unemployment according to equation (2.10).  The steady-state unemployment rate 

and its changes are constructed out of smoothed hazards.  These results are most 

similar to those of Petrongolo and Pissarides.   In our analysis, the share attributable 

to the hazard rate of moving from unemployment to employment (  ), at 0.43, is 

around 0.07 greater than in Petrongolo and Pissarides’ analysis (0.36), with a 

roughly corresponding relative reduction in the hazard rate of moving from 

employment  to unemployment (our figure is 0.07 lower than Petrongolo and 

Pissarides’    hazard share of 0.35).  The shares attributed to each of the inactivity 

hazard shares (   and   ) in column (1) are similar to those of Petrongolo and 

Pissarides.    In column (2) of table 2.6 we do the same steady-state decomposition 

without smoothing the hazard rates.  In this case the    hazard share, at 0.21, is far 

more important relative to the    and    hazard shares, gaining at the expense of 

the    hazard share (which falls from 0.18 in column (1) to 0.08 in column (2)).    

Interestingly, the    and    hazard shares are relatively unaffected by the lack of 

smoothing.   The results suggest that the volatility in the    share is 

disproportionately affected by smoothing. 

 

                                                           
18

 This pattern of analyses with respect to the table columns is the same for our Wales and Outside-
of-Wales analyses, and for each sample length analysed, i.e. in tables 2.7, 2.8, 2.10, 2.11 and 2.12, 
as well as in table 2.6. 
 
19

 This is also true of the steady-state unemployment rates for Wales and for Outside-of-Wales. 
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Table 2.6:  UK Variance decompositions 1997Q2-2010Q4     

    P&P (1) (2) (3)   (4)   

Steady state unemp? Yes Yes Yes No 

 Of 
which  

No 

 Of 
which  

Smoothed unemp? - Yes No Yes No 

Smoothed hazards? - Yes No Yes No 

Sample   - Full Full Full Full 

Beta: Flow: 

        ̂      0.35 0.28 0.28 0.18 0.21 0.26 -0.25 

 ̂      0.13 0.12 0.21 0.11 0.16 0.16 -0.11 

 ̂   UE 0.36 0.43 0.43 0.32 0.41 -0.04 0.90 

 ̂      0.15 0.18 0.08 0.15 0.22 -0.01 0.45 

 ̂   Error 

   
0.24 

 
0.63 

 

           
 

41 55 55 55 
 

55 
 

         Notes:    denotes the sample size (number of quarters of data).  Note that the reported numbers are the 
“Beta” as listed in the leftmost column.  The column entitled “Flow” is included simply to remind the reader 
to which flow the reported betas correspond.  Seasonally adjusted data using quarterly seasonal dummies.  
Smoothing is done using a third-order polynomial in time.   “Of which” refers to the column directly to the 
left.  It is the ratio of the row’s entry to the total non-error share in column.  For example, 
0.21=0.18/(0.18+0.11+0.32+0.15). P&P refers to Petrongolo and Pissarides’ (2008) results for the period 
1993Q3-2003Q3 which also use the Labour Force Survey panel.   

 

Cognizant of the correlations between changes in observed and steady state 

unemployment in table 2.5 (0.999 with smoothed data but only 0.75 in the 

unsmoothed analysis) we turn to the decomposition of observed unemployment.  

Column (3) shows that changes in steady-state unemployment explain only 76% of 

the time-variation in observed unemployment, when both observed unemployment 

and the hazards that determine steady-state unemployment are subject to 

smoothing.  However, in the column directly to the right of column (3), (labelled “Of 

which”), we recalculate the hazard shares excluding the error term, so that they are 

expressed as a proportion of steady-state unemployment only.  From this column it 

can be seen that the results are very similar to those in column (1), except with 

slightly more emphasis on the inactivity-related (that is    and    - related) hazard 

shares.  This is broadly what we would expect with both the hazard-rate data and 

variable to be explained (either observed or steady state unemployment) smoothed 

in the same way in each analysis. 

In columns (4) we relax the aggressive smoothing of column (3), both on observed 

unemployment and on the hazard rates that constitute steady-state unemployment.  
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The results are striking - suggesting that, without smoothing, just under 2/3rds of the 

change in observed unemployment is not attributable to change in the steady-state.  

Also in column (4), it can be seen that both of the outflow hazard shares from 

unemployment (the UE and UI hazard shares) make small negative contributions (-

4% and-1% respectively) to the variance of the change in observed unemployment.  

Moreover, because the corresponding steady state analysis in column (2) contains 

no negative shares, we can infer that the negative shares of components in column 

(4) arise from negative correlation between those components and the error term.  

This implies that in our sample, when the change in unemployment increases due to 

non-steady state factors there is a tendency for the outflow hazard rates to fall.  

Column (4) also suggests a relatively important role for changes in inflow hazard 

shares (that is   and    hazard shares) in explaining changes in the observed 

unemployment rate. 

Table 2.7:  Wales Variance decompositions 1997Q2-2010Q4     

      (1) (2) (3)   (4)   

Steady state unemp?   Yes Yes No 

 Of 
which  

No 

 Of 
which  

Smoothed unemp? 
 

Yes No Yes No 

Smoothed hazards? 
 

Yes No Yes No 

Sample     Full Full Full Full 

Beta: Flow: 
       

 ̂  
        

 

0.22 0.27 0.20 0.26 0.08 0.15 

 ̂  
        

 

0.27 0.33 0.18 0.23 0.07 0.14 

 ̂  
         

 

0.23 0.25 0.16 0.21 0.17 0.31 

 ̂  
        

 

0.28 0.15 0.22 0.29 0.21 0.40 

 ̂ 
         

   
0.24 

 
0.46 

 
         
  

  

55 55 55 
 

55 
 

         Notes:    denotes the sample size (number of quarters of data).  Note that the reported numbers are the 
“Beta” as listed in the leftmost column.  The column entitled “Flow” is included simply to remind the reader to 
which flow the reported beta correspond.   Seasonally adjusted data using quarterly seasonal dummies.  
Smoothing is done using a third-order polynomial in time.   When shares are reported as being “.” it means 
that there are none of the relevant observations in the dataset.  “Of which” refers to the column directly to the 
left.  It is the ratio of the row’s entry to the total non-error share in column.  For example, 
0.26=0.20/(0.20+0.18+0.16+0.22). 

 

Tables 2.7 and 2.8 repeat the full-sample variance decomposition analyses for 

Wales and for Outside-of-Wales respectively.  The most notable difference between 

the results for the UK and Wales for the smoothed steady-state decompositions is 

the relative importance of the inactivity (that is,      and     ) hazard shares.  The 
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     hazard share at 27% and the      hazard share at 28% is greater than either 

of the      or      contributions (22% and 23% respectively).  As for the UK 

analysis, when smoothing is relaxed in column (2), the      share increases (to 

33%) and the      share falls (to 15%), whereas the      and      hazard shares 

are relatively unchanged.   Another similarity with the UK analysis is that the column 

(3) results in table 2.7 (smoothed data but decomposing the observed rather than 

steady-state unemployment in Wales) are very similar to the column (1) results in 

table 2.7 (smoothed data and steady-state unemployment in Wales).   The chief 

difference is that there is an error term, relating changes in steady-state 

unemployment in Wales to changes in observed unemployment in Wales.  In column 

(3) we can see that the error comprises 24% of the variance of changes in observed 

unemployment. 

Column (4) of table 2.7 decomposes changes in observed unemployment in Wales, 

without any data smoothing.  We can see that this changes the results greatly.  The 

error term representing non-steady state changes in observed unemployment 

comprises 46% of the variance of observed unemployment in the sample.  In 

contrast to the results for the UK, the      and      hazard shares (Outflows) 

appear to matter more than the inflow hazard shares, with shares of 31% and 41% of 

steady-state unemployment respectively (or 17% and 21% of observed 

unemployment). 

As we would expect given that the Outside-of-Wales region comprises around 96% 

of the working-age-population of the UK, the results in table 2.8 are mostly very 

similar to the results for the whole UK in table 2.6.  The results are different in 

column (4), however.  The error term takes a smaller share in the Outside-of-Wales 

area than in the whole of the UK (25% rather than 63%), and the outflow hazard 

shares take positive shares of the variance of observed unemployment.  The shares 

are in fact strikingly similar to the steady-state shares using unsmoothed data in 

column (2), once allowance is made for the contribution of the error term. 
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Table 2.8:  Outside-of-Wales Variance decompositions 
1997Q2-2010Q4     

    
 

(1) (2) (3)   (4)   

Steady state unemp?   Yes Yes No 

 Of 
which  

No 

 Of 
which  

Smoothed unemp? 
 

Yes No Yes No 

Smoothed hazards? 
 

Yes No Yes No 

Sample     Full Full Full Full 

Beta: Flow: 
       

 ̂  
        

 

0.28 0.35 0.18 0.24 0.27 0.36 

 ̂  
        

 

0.11 0.23 0.10 0.13 0.14 0.18 

 ̂  
        

 

0.44 0.38 0.33 0.43 0.26 0.35 

 ̂  
        

 

0.17 0.05 0.15 0.20 0.08 0.10 

 ̂ 
         

 

  
 

0.24 
 

0.25 
 

           
  

55 55 55 
 

55 
 

         Notes:     denotes the sample size (number of quarters of data).   Note that the reported numbers are the “Beta” 
as listed in the leftmost column.  The column entitled “Flow” is included simply to remind the reader to which flow 
the reported beta correspond.  Seasonally adjusted data using quarterly seasonal dummies.  Smoothing is done 
using a third-order polynomial in time.  When shares are reported as being “.” it means that there are none of the 
relevant observations in the dataset.  We use “~” to denote shares that are very close to zero, but for which 
there are observations.  “Of which” refers to the column directly to the left.  It is the ratio of the row’s entry to the 
total non-error share in column.  For example, 0.24=0.18/(0.18+0.10+0.33+0.15). 

 

A significant event of our full sample is the period including and following the 

recession that began in 2008Q2.  We are interested in the extent to which the large 

increase in unemployment that occurred at this time is driving our variance 

decomposition results.   To investigate this further, we split our sample into a period 

before the recession that spans the years from 1997Q2 to 2008Q1 (    ) and a 

second smaller sample that covers the period 2008Q2-2010Q4.  We then analyse 

the correlations between observed unsmoothed, observed smoothed, and steady-

state unemployment rates in each of the three areas for the earlier subsample.  We 

do not use the subsample that runs from 2008Q2-2010Q4, because it contains only 

11 observations.  Results for the pre-recession subsample are presented in table 

2.9.  The table may be compared with table 2.5, which contains the same 

correlations but for the full 1997Q2-2010Q4 sample. 
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Table 2.9:  Correlations between measures of unemployment for the UK, Wales and Outside-
of-Wales, 1997Q2-2008Q1. 

 

   
Levels: 

 

 

 UK:   Wales:   Outside-of-Wales: 
 

 

 (1) (2) (3) (4)  (5) (6) (7) (8)  (9) (10) (11) 
 

(12) 

    ̃  ̅  ̃       ̃   ̅̅ ̅̅    ̃       ̃   ̅̅ ̅   ̃ 

  1 0.85 0.78 0.76    1 0.85 0.58 0.99    1 0.84 0.84 0.75 
 ̃   1 0.70 0.97   ̃   1 0.55 0.99   ̃   1 0.72 0.97 
 ̅    1 0.62   ̅̅ ̅̅     1 0.53   ̅̅ ̅    1 0.65 

 ̃       1   ̃       1   ̃       1 
   

First differences: 
 

 

      ̃   ̅   ̃         ̃    ̅̅ ̅̅     ̃         ̃    ̅̅ ̅    ̃ 
   1 0.26 0.12 0.21     1 0.18 0.14 0.16     1 0.27 0.41 0.21 
  ̃   1 0.16 0.967    ̃   1 0.09 0.940    ̃   1 0.19 0.956 
  ̅    1 0.15    ̅̅ ̅̅     1 0.10    ̅̅ ̅    1 0.17 

  ̃       1    ̃       1    ̃       1 
    

Notes:  T=43.  Seasonally adjusted data using quarterly seasonal dummies.  Smoothing is done using a third-order polynomial 

in time.     is the observed, unsmoothed UK unemployment rate,  ̃ is the observed, smoothed UK unemployment rate,  ̅ is the 

steady-state UK unemployment rate,    is the observed, unsmoothed unemployment rate in Wales,  ̃ is the steady-state UK 

unemployment rate constructed out of smoothed hazard rates, so that it is effectively a smoothed steady-state rate.   ̃ is the 
observed, smoothed unemployment rate in Wales,   ̅̅ ̅̅  is the steady-state unemployment in Wales,  

  ̃ is the steady-state Welsh unemployment rate constructed out of smoothed hazard rates.     is the observed, unsmoothed 

unemployment rate Outside-of-Wales,   ̃ is the observed, smoothed, unemployment rate Outside-of-Wales,   ̅̅ ̅ is the steady-

state unemployment rate Outside-of-Wales,    ̃ is the steady-state unemployment rate Outside-of-Wales constructed out of 
smoothed hazard rates.   

 

 

Comparing the first rows of tables 2.5 and 2.9 we see that in most cases, excluding 

the quarters from 2008Q2 to 2010Q4 which cover the recession weakens the 

correlation between the unemployment level series.  The exception to this is the 

correlation between the smoothed steady state unemployment series for Wales,   ̃ 

and the smoothed and unsmoothed observed series for the same area,    and   ̃.     

A similar effect is observed in first-differences when we move from the longer to the 

shorter sample comparing the change in unsmoothed observed and unsmoothed 

steady-state unemployment, for Wales and for the whole of the UK.   The effect for 

Wales is particularly stark:    ̅̅ ̅̅  and    have a correlation of 0.31 in the full sample, 

and just 0.14 in the shorter sample.   However, shortening the sample has very little 

effect on the correlation between changes in the smoothed observed and steady-

state series, in all cases. 
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 The variance decomposition results for the UK in the shorter sample in table 2.10 

are very similar to those for the whole 1997Q2-2010Q4 period in table 2.6.  This is 

especially true of columns (1)-(3) in each table, the smoothed analyses and the 

unsmoothed steady-state analyses suggest similar relative roles for each type of 

hazard.  There are a few exceptions however.  Firstly, note that in the analysis of 

observed unemployment, with smoothed hazards and smoothed observed 

unemployment, the error term takes a smaller share over the shorter period than in 

the full sample (0.24 in the full sample and 0.07 in the short sample – see columns 

(3) of tables 2.6 and 2.10 respectively).  Secondly, consider column (4) of table 2.10, 

which is the analysis without any smoothing and without the imposition of steady-

state unemployment.  The negative contributions of the    and    hazard shares 

are present in both samples, however they are more pronounced in the pre-

recession subsample.  The magnitudes of the    hazard is the same in each 

sample.  However, the error share in the1997Q2-2008Q1 is much greater than in the 

full sample (95%, rather than 63%).    

Table 2.10:  UK variance decompositions 1997Q2-2008Q1     

    P&P (1) (2) (3)   (4)   

Steady state unemp? Yes Yes Yes No 

Of 
which 

No 

Of 
which 

Smoothed unemp? - Yes No Yes No 

Smoothed hazards? - Yes No Yes No 

Sample   - Short Short Short Short 

Betas: Flow: 

       
 ̂     0.35 0.33 0.26 0.27 0.30 0.26 5.54 

 ̂      0.13 0.10 0.18 0.11 0.12 0.05 1.12 

 ̂     0.36 0.45 0.46 0.42 0.46 -0.14 -3.01 

 ̂      0.15 0.12 0.10 0.11 0.12 -0.12 -2.65 

 ̂          

  
0.07 

 
0.95 

 
           

 

41 43 43 43 
 

43 
 

         Notes:     denotes the sample size (number of quarters of data).   Note that the reported numbers are the “Beta” 
as listed in the leftmost column.  The column entitled “Flow” is included simply to remind the reader to which flow 
the reported beta correspond.  Seasonally adjusted data using quarterly seasonal dummies.  Smoothing is done 
using a third-order polynomial in time.   “Of which” refers to the column directly to the left.  It is the ratio of the 
row’s entry to the total non-error share in column.  For example, 0.30=0.27/(0.27+0.11+0.45+0.11).  P&P refers 
to Petrongolo and Pissarides’ (2008) results for the period 1993Q3-2003Q3 which also use the Labour Force 
Survey panel. 

 

 

We now consider the pre-recession results for Wales and Outside-of-Wales (tables 

2.11 and 2.12).  Firstly, note the smoothed steady-state and non-steady-state results 
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for Wales in columns (1) and (3) of 2.11.  Shortening the sample so as to exclude the 

recessionary period serves to greatly reduce the variance shares of inactivity-related 

flows.  In the non-steady-state analysis, for example, the contribution of the 

     hazard share actually becomes negative in the short sample (-0.08), from a 

hazard share of 0.10 in the full sample.  The shares attributable to the      hazard 

are increased by 5% in the smoothed steady-state case column (1) and 10% in the 

smoothed non-steady-state case (column (3)).  The shares attributable to      are 

increased even more by shortening the sample, by 13 percentage points in the 

steady-state case and 27 percentage points in the non-steady-state analysis.  This 

contrasts with the unsmoothed steady-state analysis, in which the      hazard 

share increases slightly in the shortened sample to 0.36 and the      hazard share 

is 7 percentage points lower at 0.08.   

Table 2.11: Wales variance decompositions 1997Q2-2008Q1     

      (1) (2) (3)   (4)   

Steady state unemp?   Yes Yes No 

 Of 
which  

No 

Of 
which 

Smoothed unemp?   Yes No Yes No 

Smoothed hazards?   Yes No Yes No 

Sample     Short  Short  Short  Short  

Betas: Flow: 
       

 ̂  
          0.27 0.34 0.30 0.38 -0.18 -1.16 

 ̂  
          0.01 0.36 -0.08 -0.10 0.03 0.16 

 ̂  
          0.57 0.22 0.43 0.56 0.24 1.55 

 ̂  
          0.15 0.08 0.12 0.16 0.07 0.44 

 ̂ 
           

  
0.22 

 
0.84 

 

           
  

43 43 43 
 

43 
 

         Notes:     denotes the sample size (number of quarters of data).  Note that the reported numbers are the “Beta” 
as listed in the leftmost column.  The column entitled “Flow” is included simply to remind the reader to which flow 
the reported beta correspond.  Seasonally adjusted data using quarterly seasonal dummies.  Smoothing is done 
using a third-order polynomial in time.    When shares are reported as being “.” it means that there are none of 
the relevant observations in the dataset.  We use “~” to denote shares that are very close to zero, but for which 
there are observations.  “Of which” refers to the column directly to the left.  It is the ratio of the row’s entry to the 
total non-error share in column.  For example, 0.38=0.30/(0.30-0.08+0.43+0.12). 

 

In the non-steady-state analysis of column (3), moving to a shorter sample does not 

have a large effect on the share of the error term – it falls by just 2 percentage 

points.  However, as already pointed out, the distribution of the explained volatility is 

very different, falling more heavily on the unemployment-related flows in the shorter 

sample.  Finally we turn to column (4) of table 2.11, which is the analysis for 
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observed unemployment without any smoothing.  Interestingly, the hazard shares for 

movements out of unemployment (     and     ) are almost the same, whereas 

the      hazard appears to contribute negatively in the shorter sample (compared 

to 0.27 in table 2.8), and the share attributable to      is almost zero (compared to 

0.14 in table 2.8).   Instead, the share of the error term is much greater in the early 

sample, at 0.84 (compared with 0.25 in the full sample). 

Table 2.12: Outside-of-Wales variance decompositions 1997Q2-
2008Q1     

      (1) (2) (3)   (4)   

Steady state unemp?   Yes Yes No 

 Of 
which  

No 

 Of 
which  

Smoothed unemp?   Yes No Yes No 

Smoothed hazards?   Yes No Yes No 

Sample     Short  Short  Short  Short  

Betas: Flow: 
       

 ̂  
          0.33 0.37 0.27 0.29 0.30 0.55 

 ̂  
          0.10 0.22 0.12 0.13 0.05 0.09 

 ̂  
          0.45 0.36 0.42 0.46 0.18 0.34 

 ̂  
          0.12 0.04 0.11 0.12 0.01 0.02 

 ̂ 
           

  
0.09 

 
0.46 

 

           
  

43 43 43 
 

43 
 

         Notes:      denotes the sample size (number of quarters of data).  Note that the reported numbers are the “Beta” 
as listed in the leftmost column.  The column entitled “Flow” is included simply to remind the reader to which 
flow the reported beta correspond.  Seasonally adjusted data using quarterly seasonal dummies.  Smoothing is 
done using a third-order polynomial in time.    When shares are reported as being “.” it means that there are 
none of the relevant observations in the dataset.  We use “~” to denote shares that are very close to zero, but 
for which there are observations.  .  “Of which” refers to the column directly to the left.  It is the ratio of the row’s 
entry to the total non-error share in column.  For example, 0.29=0.27/(0.27+0.12+0.42+0.11). 

 

The results for the 1997Q2-2008Q1 sample for the area Outside-of-Wales are given 

in table 2.12.   We note that for the smoothed results (columns (1) and (3)) these are 

for the most-part, very similar to those in table 2.10, which cover the whole of the UK 

for the same period.  The unsmoothed analysis results are however somewhat 

different, for example with a much larger share attributed to the EU hazard in the 

Outside-of-Wales region in the steady-state analysis (column (2)).  The results also 

differ greatly from those of the whole of the UK for the unsmoothed, non-steady 

analysis in column (4).   

 As with the results for the whole of the UK, shortening the sample does not greatly 
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affect the shares for the Outside-of-Wales region, again with the exception of column 

(4).  

 

 

2.8 Discussion 

Do the “ins” (that is, the    and    hazards), or the “outs” (   and    hazards) - 

“win” in the sense of dominating the first difference of unemployment?  Our answer 

for the whole of the UK depends on whether or not the data are smoothed.  The 

results for the whole of the UK appear to suggest that the “ins” and “outs” are of 

approximately equal importance, if the steady-state is imposed and the data are not 

smoothed (column (2) of table 2.6).  This result is in line with those of Petrongolo and 

Pissarides, who find that the total shares of the “ins” and “outs” are approximately 

equal.  However, when the data are smoothed (columns (1) and (3) of table 2.6), the 

“outs” gain in importance relative to the “ins”.    

Column (4) of table 2.6 (in which we neither smooth the series nor impose the 

steady-state unemployment) appears to overturn this result.  Here, the contribution 

of the “ins” is positive whereas that of the “outs” is slightly negative, and 63% of the 

variation in observed unemployment is attributed to the error term.   Thus the results 

for the UK analysis with the least restrictive assumptions and data-treatment appear 

to contradict the assertion that the “ins” and “outs” have approximately equal hazard 

shares. 

   

This is one reason for caution in interpreting these results.   Looking at table 2.8 

gives further reasons to be cautious.  In the smoothed steady-state and non-steady 

state analysis (columns (1) and (3)), the results for Outside-of-Wales are almost 

exactly the same for those of the UK.  This is as it should be, given that the Outside-

of-Wales area is 95.5% of the population of the UK.  But in column (2), where we 

impose the steady state but do not smooth the data, the results are surprisingly 

different.  The share of the “ins” is approximately 9 percentage points higher than 

that for the whole of the UK: 58% against 43% for the “outs”.   Now it is possible that 

the “ins win” Outside of Wales, and the “outs win” in Wales, giving a “draw” (roughly 

50% share for ins and outs) in the UK.  However for this explanation to work we 
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would need the “outs” to dominate in column (2) of table 2.7, which is not the case.  

In fact, the results for column (2) in table 2.7 show that the “ins” win by slightly more 

in Wales.  Therefore, a more likely explanation is that the unsmoothed series for 

Outside of Wales and for Wales are excessively noisy.  A worrying implication is that, 

in reducing the sample size for the hazard rates in each period when we break the 

UK down into geographical sub-regions, we are reducing the scope for answering 

the question about the relative importance of hazard shares with the given data set.  

In other words, if we had estimated confidence intervals in the analyses of observed 

unemployment using the error term, the confidence intervals for the Outside-of-

Wales analysis would wide enough to be consistent with the fact that the “ins win” or 

that the “outs win.”    The fact that the results for “outs” differ so much for the UK 

compared with Outside-of-Wales area in the non-steady state, unsmoothed analysis 

(column (4) results in table 2.6 and 2.8) underline these concerns.   

In the shorter, 1997Q2-2008Q1 sample, our results for the steady-state analysis 

without smoothing (column (2)) are tipped in favour of the “outs” for the UK, and the 

“ins” for Outside-of-Wales (tables 2.10 and 2.12).  Thus the fragility of our results is 

once again evident.  This is also the case in column (4) of those tables (the non-

steady state, non-smoothed results), where the “outs” have a negative share of the 

variance for the whole of the UK and a positive share for the area Outside-of-Wales.  

The results for the smoothed data (steady-state and non-steady-state) are however 

qualitatively similar to those in the larger sample:  the Outs appear to dominate.   

Given our concerns about the sample size for the Outside-of-Wales analysis, these 

concerns are even greater for our results for Wales, for which the number of each 

type of transition in our dataset is inevitably much smaller.  Note that in both the 

longer and shorter samples (tables 2.7 and 2.11), the unsmoothed results (columns 

(2) and (4)) suggest that the “ins” win in Wales.  In the analysis with smoothed data 

(steady state and non-steady-state – columns (1) and (3)), the longer sample 

suggests that “ins” and “outs” contribute equally, whereas the shorter sample 

suggests the “outs” are more important.   

What then are we to make of these results which conflict across specifications?  We 

argue that these results do not allow us to draw a conclusive inference about 

whether or not the “ins” or the “outs” win, and that we should be equally cautious 

about attributing relative importance to each of the four individual hazard shares.  
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The analyses to which we feel it is proper to attach most weight – namely the column 

(4) analyses in which we neither smooth the data and attempt to explain observed 

rather than steady-state unemployment, contains large error terms and fails to 

display similar results for the whole UK and for Outside-of-Wales.   This is an 

important failure.  We feel that it is important to take account of the fact that non-

steady state unemployment deviates from steady-state unemployment, which is why 

we attach more weight to this analysis than the more plausible column (2) results 

(which come very close to those of Petrongolo and Pissarides, despite the difference 

in our sample period – see column (2) of table 2.6), which are unsmoothed yet do 

not contain an error term.   

We are less inclined to put weight on our smoothed results.  The reason is that we 

cannot know how much noise and how much legitimate variation it removes from the 

data.  It is the case that the 3rd order polynomial smoother is very “aggressive” form 

of smoothing, and it might be possible in future work to examine the results of 

smoothing that removes less of the original variation.  One could experiment, for 

example, with moving average smoothers of different lengths or higher-order 

polynomials. 

Unfortunately, it seems that the main objective of our analysis, to ascertain the 

relative importance of the gross-flows in Wales, is hamstrung by the sample size in 

the LFS panel.  The Welsh hazard rate series we construct are far more volatile in 

than those for the larger regions, making the precision of our results weak.  This is, 

we argue, the reason for the wide variation in our estimated Wales hazard-rate 

shares between specifications.  In particular, the smoothed results tell us that the 

“ins” and “outs” are approximately of the same importance, whereas the unsmoothed 

results are themselves inconsistent, depending in turn on whether or not the steady-

state is imposed.   

Finally, we note that our choosing to decompose observed unemployment in addition 

to steady-state unemployment allows us to ascertain the magnitude of departures of 

changes in actual unemployment from changes in steady-state unemployment, in a 

departure from the otherwise comparable method of Petrongolo and Pissarides.  

Although the magnitude of this estimated error-share varied between specifications, 

in general it was at least of 24% of the variation in observed unemployment (with 

smoothed data in the full sample – column (3) of tables 2.6-2.8), and sometimes as 

great as 95%(column (4) of table 2.10).   This suggests that there is scope for further 
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dynamic modelling of unemployment in relation to the hazard rates, for example of 

the type undertaken by Smith (2011), may also be fruitful at a regional level.   

 

2.9 Conclusion 

We have constructed gross flows for Wales based upon the Labour Force Survey 

panel dataset.  This builds upon similar work that has been done for the whole of the 

UK, in Gomes (2009), Bell and Smith (2002) and Petrongolo and Pissarides (2008).   

Our results are shown to be heavily contingent on the precise assumptions of the 

analysis – whether we decompose steady-state or observed unemployment, and 

whether the measure of unemployment we choose to decompose is smoothed or 

unsmoothed.  In the UK and Outside-of-Wales, the smoothed analyses suggests that 

exists from unemployment dominate, in particular the hazard shares from 

unemployment to employment.  This is true both in the pre-recession sample period 

and in the full sample.  These results are dominated by UE and EU flows in 

particular. 

The unsmoothed analyses give different results, depending on whether it is steady-

state unemployment or observed unemployment that is decomposed, the length of 

the sample period and whether the whole of the UK is analysed, or just the area 

Outside-of-Wales.   

The smoothed results for Wales have more weight on the “ins”, so that the hazard 

shared between the “ins” and “outs” are approximately equal for the smoothed 

analysis.  For these results there is also more of an emphasis on inactivity related 

hazard shares in the full sample.   The unsmoothed steady-state results are fairly 

consistent with the smoothed result, however when we relax the steady-state 

assumption with the unsmoothed data we get anomalous results. 

A potential criticism of our method is that we did not deeply explore the non-steady 

state analysis, in the sense of providing a comprehensive account of out-of-steady 

state unemployment dynamics using our error term.  Smith (2011) suggests that 

unemployment dynamics are a far slower in the UK than in the US, so that there is a 

smaller volume of labour turnover and it takes unemployment longer to converge to 

its steady state value in the absence of intervening disturbances. (Smith, p417.)  
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Table 2.2 and 2.3 provide no reason to think that unemployment dynamics are any 

faster in Wales than for the rest of the UK.  This suggests that if a dynamic analysis 

is appropriate for the UK, then it is just as appropriate for Wales. We leave for further 

work the issue of how to reconcile a dynamic analysis with multiple states and gross 

labour market flows between different countries.   

Appendix 2.1: Deriving the relationship between the hazard rate and the transition rate 

Note that the formula is not original, but it is hardly ever included in the literature. (Indeed we were 

forced to derive it ourselves).  We include it here for completeness as it is part of the method: 

We show that given  
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Chapter 3:  Testing and estimating the basic Mortensen-Pissarides model 

using indirect inference 

3.1 Indirect Inference 

3.2 A discrete-time Mortensen-Pissarides model 

3.3 Data 

3.4 Calibration 

3.5 Model testing using Indirect Inference with Shimer’s (2005) parameters 

3.6 Indirect inference estimation of the model 

3.7 Discussion 

 

Chapter 1 outlines the Mortensen-Pissarides model of the labour market and the 

associated Shimer puzzle, which is the failure of the model to match moments in 

aggregate US data such as the standard deviations of vacancies, unemployment, 

market tightness (the vacancy/unemployment ratio) when the model is subject to 

shocks to productivity.  The usual explanation given for the Shimer puzzle is that 

wages absorb too much of changes in productivity, so that productivity shocks result 

in insufficiently strong incentives for job creation. 

Shimer (2005(a)) is the original formulation of the Shimer puzzle.  Here Shimer 

calibrates key parameters of the Mortensen - Pissarides model, and comparing 

moments of endogenous variables with those in the data, finds important 

discrepancies.  Importantly, Shimer’s moment comparison method is simply based 

on inspection of the distance between moments from the model and the data.  The 

moment comparisons are done independently, without reference to the joint 

distribution of parameters implied by the model.  In this chapter, we work with a 

similar version of the Mortensen-Pissarides model.   Rather than following Shimer’s 

methodology of comparing moments, we use indirect inference evaluation to 

evaluate the model under Shimer’s suggested parameters.    

 

Indirect inference offers a statistically-founded way of evaluating the performance of 

a model subject to shocks.  It takes a set of primitive model parameters, and 

simulates – using a bootstrap procedure - a distribution of model outcomes which 
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can be compared to the data in the form of a statistical hypothesis test20.  Crucially, 

the statistical test is based upon the joint distribution of data moments.  We therefore 

argue that in the context of the Mortensen-Pissarides model, the use of indirect-

inference offers an advantage over Shimer’s moment - by - moment comparison 

method, while at the same time retaining the focus on endogenous-variable 

moments that form the basis of the Shimer critique.   

Exploring the implementation of the method is therefore the contribution of this 

chapter.  Our intention here is primarily to see what conclusions about the basic 

Mortensen-Pissarides model we can draw using this method.  We are interested in 

whether the statistical testing procedure of indirect inference reaches the same 

conclusion as Shimer’s calibration procedure – namely that the Mortensen 

Pissarides model fits the data poorly due to wages absorbing productivity shocks.   

Indirect inference can also be used for estimation of primitive parameters.  This is an 

extension of the model evaluation procedure - one can search for primitive 

parameters that give the best fit of the model in terms of moments of interest, by 

searching for the minimal test statistic.  This method is particularly useful in the 

context of models that do not fit the data under calibrated parameters.  We argue 

that indirect inference estimation is therefore useful for our purposes, given that the 

Shimer puzzle suggests that the basic form of the Mortensen-Pissarides model is 

likely to be rejected under Shimer’s parameters, and given that the literature that 

claims that choosing new parameters can improve the model’s performance 

(Mortensen and Nagypál (2007), Hagerdorn and Manovskii (2008)).    

 

In what follows, we find that the Mortensen-Pissarides model under Shimer’s 

calibration is indeed rejected using indirect inference evaluation. Turning to indirect 

inference estimation, we are able to estimate and report a set of parameters that do 

fit the data using a statistical test based on the standard deviations of the 

endogenous variables, but that do not fit the data using a test based on VAR 

coefficients. 

                                                           
20

 The hypothesis is that the observed data were generated by the model under the given set of 
primitive parameters.  See the extended discussion below for more details. 
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We begin by summarizing the method of indirect inference both for testing and 

estimating applications in section 3.1.  Section 3.2 summarizes the main features of 

the model, and we provide more detail in Appendix 3.1.  Section 3.3 provides details 

of all of the data used in this chapter, both in terms of sources and in terms of 

summary statistics.  Section 3.4 explains how our model is calibrated so that in 

section 3.5 we can evaluate it under parameters equivalent to those of Shimer 

(2005).  In section 3.5 we estimate the model under indirect inference and comment 

on our findings.  We discuss and interpret the results in section 3.6. 

 

3.1 Indirect inference 

Consider an economic model in structural form: 

                   
 

         

We assume that there are   equations, and that vector    contains   endogenous 

variables.  There are   exogenous variables in   , and all variables are assumed to 

be stationary.   is a time subscript, and    is the expectations operator. 

The elements of  ,   and   are structural parameters, since the equation is in 

structural form.  These elements will be combinations of primitive parameters  , 

each of which has a theoretical economic interpretation.  Let all the primitives of   in 

  be   , let those in   be    and those in   be   .  The model can then be written 

more fully as: 

 (  )    (  )    (  )          

        

Indirect inference is a simulation-based method.21   It has two broad uses with 

respect to a model like the one above.  (i) It can be used to evaluate the model 

against the data for a particular choice of   and for a particular choice of model 

metric.  We denote the particular set of primitive parameters under consideration by 

 ̂ and assume that as in the case of the general values these can be grouped as  ̂ ,  

                                                           
21

 An important general reference for the use of indirect inference in econometrics is Gourieroux and 
Monfort (1993). 
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 ̂  and  ̂ , according to the structural matrices  ,   and   in which they make an 

appearance.  (ii) It can be used to estimate the parameters of  , finding a set of 

values    that brings the performance of the model closest to the data based on a 

pre-specified model metric.  In this chapter we use both applications.  Estimation, (ii), 

can however be easily described with reference to the testing procedure, (i), so we 

focus first on the latter.  The method is very difficult to describe piecemeal, so to 

ease our exposition we first present a schematic summary of indirect inference 

testing.  It begins by assuming that we have a model in the structural form above, 

and we wish to test the fit of the model against real world data for a particular vector 

of primitive parameters,  ̂. 

Schema for testing 

(1) Choose a K-parameter auxiliary model.  The parameters of the auxiliary 

model should be the means by which we wish to compare the model against 

the data.  The model should be simple to estimate.  We first estimate the 

auxiliary model on our data, which should correspond to the real-world 

observations on the   endogenous variables of our structural model contained 

in   .  At the end of this step we will have one set of K auxiliary-model 

parameters.  We denote the  th such parameter estimate by  ̂ , with 

        .   In the applications that follow in this and the following chapters, 

three different auxiliary models will be used.  The first consists simply of a 

vector of   standard deviations of the endogenous variables, so that    .  

The second is a set of VAR(1) coefficients estimated on the endogenous 

variables only and with no constant terms, in which case     .  The third 

auxiliary model combines both standard deviations and VAR coefficients, 

which implies that       . 

(2) Using the structural model, compute the r structural errors in  ̂  under  ̂ using  

 ̂   ( ̂ )    ( ̂ )    ( ̂ )       

using actual data for   ,    and if necessary, using a VAR to obtain estimated 

data values for       .   
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(3) Estimate autoregressive (here illustrated as AR(1)s22) processes for each of 

the r structural errors in    so as to obtain serially independent residuals for 

each.  (The residuals do not have to be normal – see Meenagh, Minford and 

Wickens (2008), p6).   

     ̂         ̂ 
 

     ̂         ̂ 

 

 

Estimate autoregressive processes for the exogenous variables as well, and 

obtain the residuals which are also white noise. 

     ̂        ̂  
 

     ̂        ̂  

 

  And the end of step (3) one will have parameters  ̂     ̂   ̂     ̂   and 

residuals   ̂      ̂   ̂      ̂       in the notation above. 

(4) Sample the residuals in order to create 2000 vector-bootstrapped samples of 

innovations.  This means using each of the estimated univariate processes to 

generate 2000 simulated samples of structural errors, and 2000 samples of 

exogenous variables.  In the notation above, this is the stage in which we 

create, for           : 

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 

 

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 
 

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 

 

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 
 

(5) Solve the model under  ̂ for   , in terms of the structural errors and 

exogenous variables.  Use the simulated data and the model solution to 

generate 2000 samples of pseudo-data for the endogenous variables. 

(6) Estimate the chosen K-parameter auxiliary model on each of the 2000 

simulated samples. We denote the     auxiliary parameter estimate on the 

                                                           
22

 In what follows in this chapter we use AR(1) processes to generate innovations to our structural 
error terms for all variables.  We check each series for serial independence.  For all of our variables 
but one (wages), we fail to reject the null of serial independent residuals after the original series has 
been fitted to an AR(1) process.  Wages are found to have serially independent residuals when they 
are fitted to an AR(2).  To check the robustness of our results, we run indirect inference tests again 
using AR(2) processes to extract the residuals.  The results are not substantially affected however.           



95 
 

pseudo-data from the    ̂ 
 
( ̂) for            and           Compute the 

mean of each parameter across the simulations:  ̅ ( ̂)  
 

    
∑  ̂ 

 
( ̂)    

  for 

         . 

 

(7) Compute the Wald statistic.  For this let: 

  [ ̂   ̅ ( ̂)   ̂   ̅ ( ̂)   ̂   ̅ ( ̂)] 

where  ̂     ̂     ̂    come from step (1) and  ̅ ( ̂)    ̅ ( ̂)    ̅ ( ̂) 

come from step (6).  Also let: 

 ( ̂)  [ ( ̂   ̅ ( ̂)) ( ̂   ̅ ( ̂))]
  

        {     } 

In other words,  ( ̂) is the     inverse of the variance-covariance matrix of 

 . 

The Wald statistic is given by   ( ̂)  . 

 

(8) Compute the distribution of the Wald under the null as follows:      
 
 

  
 
 ( ̂)  

 
  for          , where: 

  
 
 [ ̂ 

 
( ̂)   ̅ ( ̂)   ̂ 

 
( ̂)   ̅ ( ̂)   ̂ 

 
( ̂)   ̅ ( ̂)] 

Note that under the null hypothesis, the Wald has an asymptotically chi-

squared (K) distribution, although one does not need to rely on its asymptotic 

properties.  For inference one instead may use the finite-sample simulated 

distribution that can be constructed by ordering the 2000 values of      
 
 by 

increasing magnitude.  

(9) The Wald statistic from step (7) can then be compared to the distribution of 

Wald under the null hypothesis from the previous step.  The model under  ̂ is 

rejected if the Wald statistic lies in the tail outside of 95% of the values of the 

finite sample Wald distribution constructed in step (8).  A p-value for the Wald 

can also be constructed, by comparing the value of the Wald statistic to the 

percentile of the closest value of the Wald under the null hypothesis that the 

data was generated by the model. 

(10) (If required).  Compute the t-statistic equivalent of the Wald.  This can 

be easier to interpret than the Wald’s p-value, and is defined so that under the 

null hypothesis that the true data was generated by the model, the 95th 
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percentile of the Wald distribution has a value of 1.645.  Let       be the 

Wald statistic from step (7) and let        be the 95th percentile value of the 

Wald distribution under the null.    is the number of auxiliary model 

parameters.  The formula for the t-statistic (see Meenagh and Le (2013)) is 

then given by: 

 

        (
√       √  (   )

√         √  (   )
) 

 

Having provided an outline we now clarify the method.   

 

Step (1) concerns the choice of auxiliary model, the estimated parameters of which 

are first used to represent the true data, and which is later estimated repeatedly on 

the pseudo-data.  In economic applications the auxiliary model is typically a pure 

statistical model with little economic content such as volatilities of endogenous 

variables, VAR coefficients, impulse response functions or some combinations of 

these.  The particular choice should be informed by the objectives of the modelling 

exercise.   This means that the choice is essentially ad-hoc, although it is the case 

that the more parameters in the auxiliary model, the greater the power of indirect 

inference to reject a mis-specified model.  (This result is described in Le, Meenagh, 

Minford and Wickens (2012), see below for more details on this).  One could 

arguably count this ad-hocness as a strength or a weakness.  In its favour, it means 

that the method is adaptable – the modeller can focus on the moments that are most 

of interest, and is free to exclude others from consideration.  Of course, such ad-

hocness adds the ambiguity of interpretation – what are we to make of a model that 

fits the data well in terms of standard deviations, but only three out of six VAR 

coefficients?   

In step (2), the structural errors are calculated for each model equation and each 

time period.  The equation in step (2) makes clear that they are simply the difference 

between the data-values for the endogenous variables, and the model’s predicted 

values given the data for the exogenous variables and under the particular choice of  

 ̂ that are being tested.  We use the structural errors to create bootstrapped samples 

of shocks, but as is made clear in step (3), we do not bootstrap the structural errors 
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themselves but their estimated white-noise innovations from a univariate time-series 

process.  We also estimate univariate processes on the exogenous variables, and 

obtain white-noise innovations for these.   Thus with   structural equations and   

exogenous variables, step (3) requires that we estimate     univariate time series 

equations: 

     ̂         ̂ 
 

     ̂         ̂ 

 

 

     ̂        ̂  
 

     ̂        ̂  

 

The estimated residual innovations to each of the estimated AR(1)s 

  ̂      ̂   ̂      ̂   should be white-noise – mean zero, stationary, and with all the 

temporal correlation removed - otherwise one must reconsider the time-series model 

used.   We assume here that univariate AR(1)s are sufficient to produce white noise 

innovations for each equation. 

In step (4) we draw bootstrap samples of the innovations.  The bootstrapping 

procedure used is a vector bootstrap.  This means that rather than drawing samples 

of innovations individually, we do the following.  Suppose that our sample of real-

world data is of length  .  This means that estimating univariate AR(1) processes on 

the structural errors and innovations will result in (   ) vectors of fitted innovations 

each of which has dimension (   ).  To create a single simulated bootstrap sample 

of the same length, we draw     integers at random and with replacement from the 

discrete uniform distribution of the integers between   and    .  The drawn 

integers represent the time index of the estimated innovations   ̂      ̂   ̂      ̂    in 

the original sample.  For example, suppose we are making draws for our     of 2000 

simulated samples.  If the first integer we draw at random is  , the values of the first 

set of innovations in the bootstrap sample are   ̂      ̂   ̂      ̂  .  In this way the 

drawn bootstrap samples preserve any intra-temporal correlation that may exist in 

the original structural innovations.  We denote estimated parameter values (including 

the original time-series residuals) with a single-hat and bootstrapped residuals and 
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simulated values with a double-hat.  Under this notation, in our example, we would 

therefore set: 

[ ̂̂  
 
    ̂̂  

 
  ̂̂  

 
    ̂̂  

 
]  [  ̂      ̂   ̂      ̂  ] 

To create simulated structural errors for each bootstrap sample, one then simply 

uses the estimated parameter set  ̂     ̂   ̂     ̂  and an initial drawing of 

                    as follows.   

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 

 

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 
 

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 

 

 ̂̂  
 
  ̂  ̂̂    

 
  ̂̂  

 
 

We create 2000 bootstrap samples so           . 

Steps (5) and (6) complete the process of generating the 2000 samples of pseudo-

data.  This requires us to find the solution to the structural model, also known as the 

reduced form.  This can be done with conventional methods – the solution procedure 

will depend on the particular way that expectations are specified and other features 

of the model.  We may then simulate the endogenous variables by applying the 

pseudo-samples of  ̂̂  
 
    ̂̂  

 
 and  ̂̂  

 
    ̂̂  

 
.    The equation for generating the 

pseudo-samples of endogenous variables is given below: 

 ̂̂ 
 
   ( ̂) ̂̂ 

 
   ( ̂) ̂̂ 

 
 

        

           

where   ( ̂) and   ( ̂) are respectively     and     matrices of reduced form 

parameters, which are the solution to the structural model under  ̂.  These will 

depend on the structural matrices  ,   and  , and hence ultimately on the primitive 

parameters  ̂.   

Step (6) requires estimating the auxiliary model 2000 times upon the pseudo data, 

and generating 2000 sets of estimated auxiliary model parameters.  The result is a 
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K-dimensional distribution of features of interest under the assumption that the 

model is the true data-generating mechanism.  From step (1), we also now have a 

single K-dimensional vector of auxiliary model parameters from the data.  It should 

be clear that we have the necessary ingredients for a statistical test (an empirical 

distribution under a null hypothesis, and a high-dimensional version of a comparable 

test-statistic), except that there are too many dimensions.  To reduce the dimensions 

down from   to 1, we use steps (7) to construct a single Wald-statistic based on the 

step (1) parameters, and we use step (8) to construct a (univariate) distribution of the 

Wald under the null.  We discuss the Wald statistic and the distribution of the Wald in 

more detail below. 

 In steps (9) and (10) we conduct the actual inference procedure.   In step (9) we use 

the p-value of the Wald statistic, which can be obtained by looking at the percentile 

at which it lies in the Wald distribution.  If the Wald-statistic lies outside the maximum 

point of the simulated Wald distribution however, it is more informative to calculate 

the equivalent t-statistic which is given by the formula in step (10).   The model is 

rejected at the 5% level of significance if the p-value is less than 0.05 or if the t-

statistic is greater than 1.645. 

 

More about the Wald statistic 

We now use a particular example of an auxiliary model to understand the 

construction of the Wald statistic in more detail.  The discussion is an algebraic 

version of the presentation given in Minford, Meenagh and Wickens (2009). 

Consider again the model: 

  

 (  )    (  )    (  )          

        

Suppose more specifically that there are two endogenous variables so that  (  ) is 

a     matrix and    [      ] is a vector of dimension 2.  Suppose that our 

auxiliary model is a VAR(1) of the endogenous variables, which for simplicity is 

orthogonal, in other words: 
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   [
   
   

]         

Let  ̂        be the coefficients obtained from running the VAR on the true 

(observed) data.  Let  ̂ 
 
( ̂)       be the respective VAR coefficients obtained by 

estimating a VAR on the     sample that was simulated by the model under  ̂, and 

let  ̅ ( ̂)       denote the respective means of these model-generated VAR 

coefficients.  The Wald statistic will then be calculated as follows: 

        ( ̂)  

where   is a vector of deviations of the data-estimated VAR coefficients from the 

mean of the model generated coefficients, in other words: 

  [ ̂   ̅ ( ̂)  ̂   ̅ ( ̂)]
 
 

 ( ̂) is a weight matrix created out of the inverse of variance-covariance matrix, 

denoted as follows: 

 ( ̂)  

[
 
 
 
    ( ̂ 

 
( ̂)   ̅ ( ̂))    (( ̂ 

 
( ̂)   ̅ ( ̂)) ( ̂ 

 
( ̂)   ̅ ( ̂)))

   (((  
 ̂
( ̂)   ̅ ( ̂)) ( ̂ 

 
( ̂)   ̅ ( ̂))))    ( ̂ 

 
( ̂)   ̅ ( ̂))

]
 
 
 
 
  

 

In this simple case, by working through the algebra to obtain    ( ̂) , the Wald 

statistic can be shown to be equivalent to the following: 

     ( ̂   ̅ ( ̂))
 

[
 
 
 
 
 
 
 

 

   ( ̂ 
 
( ̂)   ̅ ( ̂))  

    ((( ̂ 
 
( ̂)   ̅ ( ̂)) ( ̂ 

 
( ̂)   ̅ ( ̂))))

   ( ̂ 
 
( ̂)   ̅ ( ̂)) ]

 
 
 
 
 
 
 

  

( ̂   ̅ ( ̂))
 

[
 
 
 
 
 
 

 

   ( ̂ 
 
( ̂)   ̅ ( ̂))  

    (( ̂ 
 
( ̂)   ̅ ( ̂)) ( ̂ 

 
( ̂)   ̅ ( ̂)))

   ( ̂ 
 
( ̂)   ̅ ( ̂)) ]
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 ( ̂   ̅ ( ̂)) ( ̂ 

  ̅ ( ̂)) [
   (( ̂ 

 
( ̂)   ̅ ( ̂)) ( ̂ 

 
( ̂)   ̅ ( ̂)))

   ( ̂ 
 
( ̂)   ̅ ( ̂))    ( ̂ 

 
( ̂)   ̅ ( ̂))      (( ̂ 

 
( ̂)   ̅ ( ̂)) ( ̂ 

 
( ̂)   ̅ ( ̂)))

] 

In other words, the Wald statistic is a weighted, linear combination of squared 

deviations of the data-generated auxiliary parameters from the mean of the 

simulated outcomes under  ̂, plus a cross product term.  The weights come from the 

inverse variance-covariance matrix  ( ̂), a substitute for the de-meaned distribution 

of auxiliary parameters of the model under  ̂ .   

  

One can see from the equation above that the Wald criterion uses auxiliary 

parameter variation implied by the model under  ̂ to infer the extent to which 

deviation of the mean of these parameters from those generated by the data should 

be ‘penalised.’  For example, if    ( ̂ 
 
( ̂)   ̅ ( ̂)) is relatively large, deviations in 

 ̂  around  ̅ ( ̂) will be weighted less heavily than if    ( ̂ 
 
( ̂)   ̅ ( ̂)) is 

relatively small.  When there is a relatively large covariance between de-meaned 

 ̂ 
 
( ̂) and de-meaned  ̂ 

 
( ̂) (i.e. when it is clear that the joint distribution of 

( ̂ 
 
( ̂)   ̅ ( ̂)) and ( ̂ 

 
( ̂)   ̅ ( ̂)) is far from linearly independent), values of 

( ̂   ̅ ( ̂))
 

will be penalised more heavily than they would if the auxiliary model 

parameters were assumed to be independent.  (This would be the case if  ( ̂) were 

assumed to be a diagonal matrix).  Another way of saying this is that use of the Wald 

statistic with  ( ̂) models the joint distribution of auxiliary model parameters.  For a 

numerical illustration of this point see Le, Minford and Wickens (2010).   

 

Indirect inference estimation for a given choice of auxiliary model: 

Estimating the model means finding the vector of primitive parameter values  ̂  

within the parameter space of the model that minimizes the Wald statistic.  In 

practise this means running through steps (2)-(7) repeatedly, for different candidate 

values of  ̂ in the parameter space.  An obvious (and slow) way to do this is via grid 

search.  Another way is to use a different sort of stochastic search algorithm.  For 
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example, Meenagh and Le (2013) recommend the use of the simulated annealing 

algorithm, and this is also the search algorithm which we use in this chapter’s 

estimation.  Under this algorithm, an initial choice of parameter vector   is chosen, 

and the Wald at that point is evaluated by running through steps (2)-(7) above.  The 

algorithm then moves randomly to try a new point in the parameter space.  When a 

new point in the parameter space is found to have a smaller Wald than any point 

preceding it in the sequence, it is chosen to be the current point from which the 

search for the minimum proceeds.  The algorithm can also move to points which 

have a larger Wald, although the probability of this happening decreases with the 

number of points at which Wald statistics have previously been evaluated23.    

Eventually, after a certain number of best points are found, the search is once again 

widened, by increasing the acceptance probability.  There are many different 

available stopping rules for the algorithm.   In this chapter we set the maximum 

number of iterations to 500. 

Note that due to the random nature of the bootstrap, there is stochastic volatility in 

the Wald.  Running through steps (2)-(7) for the same  ̂ will not give an identical 

Wald each time.  The volatility of the Wald can however be reduced by increasing 

the number of simulated samples drawn for each test. 

 

One issue which remains relatively unexplored in the literature is the small sample 

efficiency properties of indirect inference estimators.  This relates to the more 

practical issue of what an adequate sample size might be to provide sufficiently 

precise estimates.  While we are unable to provide a benchmark sample size with 

                                                           
23

 In fact, the acceptance probability is not directly a function of the number of evaluated Wald 
statistics.  Instead the number of evaluated Wald statistics is negatively related to an intermediate 
variable, known as the temperature.   The temperature starts at some high pre-specified maximum 
value and as the number of evaluated Wald statistics increases the value of the temperature falls, 
according to a pre-specified schedule.   The schedule determines the specific rate of descent of the 
temperature with respect to the number of evaluated Wald statistics.  The acceptance probability 
decreases as the temperature decreases, so that with more evaluations, the algorithm becomes 
decreasingly likely to accept points in the parameter space of   which have a greater Wald than the 
current point.  An added complication is that the acceptance probability is also decreasing in the 
distance between the current candidate point and the point with the minimum Wald that has been 
found in the parameter space thus far.  Eventually, after a certain number of candidate points have 
been accepted, the temperature and hence the search probability are reset to their maximum values, 
and the algorithm begins another iteration.  The algorithm is designed this way to reduce the chance 
that it will end up at a local rather than a global minimum.   
See http://www.mathworks.co.uk/help/gads/how-simulated-annealing-works.html 
 

http://www.mathworks.co.uk/help/gads/how-simulated-annealing-works.html
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regards to efficiency, we note that our 114 observations for the period 1976Q1-

2003Q3 compares favourably with the 98 quarters used in the estimation results of 

Meenagh, Minford and Wickens (2009, p450). 

 

Why use indirect inference? 

At some stage of econometric model evaluation, data must be somehow used in 

conjunction with the model.  One broad approach concerns itself with matching data 

moments – a canonical reference is Kydland and Prescott (1982).  Another approach 

posits that the model in question is a restricted version of a more general a-

theoretical model, and consists of likelihood ratio tests of the two representations of 

the data.  Most research on the aggregate search and matching model falls clearly 

within the first group.  (See Chapter 1.)         

Le, Minford and Wickens (2010) describe the first approach in detail, labelling it the 

Puzzles Methodology.   They associate this methodology with five modelling 

tendencies.  These are: (i) The modeller has a free choice of shocks, (ii) Shocks are 

scaled arbitrarily to match moments of endogenous variables, (iii) Required values 

for other parameters are obtained from VAR estimation, (v) Particular moments of 

endogenous variables are compared with the data, (iv) but only one-by-one – the 

joint distributions of the moments are ignored.  (Le, Minford and Wickens 2010 (p))24.    

Le, Minford and Wickens argue that these tendencies are without clear justification, 

and that indirect inference provides a means of replacing them with something more 

well-founded.    Broadly, the way in which structural errors are derived under indirect 

inference deals with (i) and (ii), the block-bootstrap deals with (iii), (iv) and (v).   In 

the case of (i) and (ii), shocks pertain to each of the structural equations and the 

scale of the errors is determined by the error inherent in the structural equations.   

Errors are therefore no longer at the modeller’s discretion.  In the case of (iii), (iv) 

and (v), indirect inference replaces the moment-by-moment comparison with a 

statistical test of the moments of interest.  The advantages of this as opposed to 

looking at only the differences between data and model moments should be obvious 

from the discussion of the concept of the distribution of the Wald above – without 

some reference to the stochastic volatility implied by the model the “closeness” of the 

                                                           
24

 The authors take pains to point out that not every practitioner of the puzzles methodology adopts all 
five of these tendencies. 
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data moments to those implied by a particular model is not meaningful.  Thus, we 

agree that model evaluation by indirect inference is superior to mere moment 

matching. 

Still, one could reasonably ask why one should bother with indirect inference when 

likelihood ratio tests are a well-established means of econometric model evaluation.  

Firstly, many models have likelihoods which are difficult to model.  Indirect inference 

requires only that the model of interest may be simulated, so that for some models 

the latter may be much easier to implement than the former.  However, many models 

in current use including the popular Dynamic Stochastic General Equilibrium models 

of macroeconomics and the partial equilibrium models used in this thesis have 

representations as VAR or VARMA time series models, so this argument does not 

apply.  Instead, Le, Meenagh, Minford and Wickens (2012) show that model 

evaluation by maximum likelihood (they use the term ‘direct method’) and by indirect 

inference evaluation are based on fundamentally different criteria.  The former is a 

test of the model’s in-sample predictive power (p13), which is not the same as the 

testing whether the moments of interest in the data (as represented by the 

parameters of the auxiliary model) could have been generated by the model.25    If 

indirect inference had a lower power than the direct method of inference then this 

would weigh in favour the latter – however the authors provide evidence that this is 

not the case.  In fact, they use a Monte-Carlo analysis to show that indirect inference 

has a higher rejection rate among subtly mis-specified models than direct inference 

(p13) (although both methods of evaluation have good power properties for more 

dramatic mis-specification – in the sense that as the null model diverges from the 

true model the rejection rates of both tests tend to one-hundred percent.)  

Furthermore, they show that in contrast to direct inference, indirect inference has the 

feature that one can increase the power of the test by adding more parameters to the 

auxiliary model (pp17-18).   In other words, the higher the dimension of the joint 

distribution of simulated auxiliary model parameters, the harder the test that the 

                                                           
25

 In fact, Le, Meenagh, Minford and Wickens (2012, pp14-15) show using Monte-Carlo simulations 

that the Wald statistics arising from Indirect Inference testing and Likelihood Ratio statistics arising 
from Likelihood tests on a given model are essentially uncorrelated for a given model.  That is, the 
model’s ability to reproduce moments of a chosen auxiliary model is entirely distinct from its 
forecasting ability.   
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model faces under indirect inference.26 

We have outlined some broad justifications for indirect inference from the literature.  

The question remains – why use indirect inference for the particular purpose of this 

paper -  re-evaluating the Mortensen Pissarides model and one of its extensions?   

The literature reviewed in Chapter 1 that evaluates the original Mortensen Pissarides 

model and that attempts to solve the Shimer puzzle adopts the puzzles 

methodology.  Of the tendencies outlined above, (i), (iv) and (v) are especially 

prevalent in this literature.  Shocks are generally assumed to be shocks to 

productivity, and sometimes to the separations rate.  This corresponds to tendency 

(i).  Furthermore, shocks are sometimes excluded for producing data moments which 

differ widely from the data.27  The entire Shimer puzzle itself is conceived around 

points (iv) and (v). The discrepancy between the standard deviation of various labour 

market variable moments (such as vacancies, unemployment and the vacancy 

unemployment ratio) and that of labour productivity is established by a series of 

moment-by-moment comparisons.   The joint distribution of the moments of interest 

are typically not considered. 

In this thesis, we take it for granted that matching the moments is a desirable means 

of model evaluation for models of this type.  In other words, we are fundamentally 

interested in the moments of the model (and their distribution) rather than the 

model’s property as an in-sample predictor.  Based on the discussion in Le, 

Meenagh, Minford and Wickens (2012), this obviates the use of the direct inference 

method.  Indirect inference provides us with a statistical inference procedure based 

on the moments that are of concern to search theorists. 

 

 

                                                           
26

 Note that an issue that indirect inference alone does not resolve occurs where the model of interest 
may is observationally equivalent to another model.  In fact, this problem may be may be exacerbated 
by the use of linear structural models using aggregate variables –many primitive models may result in 
the same structural form.  Note however, that our models concerns a set of variables which are fairly 
specific to search theoretic studies of the aggregate labour market.  Therefore we do not consider the 
issue to be a severe problem in the material presented in this thesis. 
 
27

 See Shimer (2005), who abandons the separation rate because its inclusion violates the negative 
correlation between the vacancy and unemployment rates observed in the data. 
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3.2 A discrete-time Mortensen-Pissarides model 

We turn now to the version of the version of the model that we wish to test and 

estimate.   The model is a simplified version of that used by Yashiv (2006).28  The 

model is in discrete time, in contrast to most of the search and matching literature.  

Expectations are assumed to be static.  In Chapter 4 we perform the same analysis 

on the full version of the Yashiv model, which uses rational expectations, a more 

complicated vacancy cost function, and a modified Nash bargaining condition. 

This version of the model starts from the premise of a representative, profit-

maximizing firm that must choose a quantity of labour to operate a fixed capital 

stock.  The firm cannot simply employ as much labour as it likes directly however, it 

must open vacancies to attract unemployed workers.  Hiring takes place via the 

matching function, which implies that it depends both on the stock of vacancies 

maintained by the firm and on the level of unemployment.  The firm pays a cost per 

vacancy maintained, which is also proportional to average labour productivity.  As in 

the standard Mortensen-Pissarides framework, real wages are determined by Nash 

bargaining.  Also consistent with the original Mortensen Pissarides model, 

unemployment is modeled as steady-state unemployment, which balances 

exogenous separations and endogenous hires.   The model seeks to determine 

either the vacancy-unemployment ratio or the job-finding probability, real wages (or 

compensation paid to labour) and the unemployment rate.  These are the 

endogenous variables.  The exogenous variables are labour productivity, here 

proxied by GDP per worker, and the separation rate into unemployment. 

                                                           
28

 At this point it is useful to clarify the relationship between the model of this chapter, and that of the 
Chapter 4, especially in terms of what they owe to Professor Yashiv’s work.  Chapter 4 contains a 
version of the model in Yashiv’s (2006).  The model is an amended version of the standard 
Mortensen-Pissarides model, which has been converted to discrete time. The model’s equations are 
explicitly derived from a model of a profit maximizing firm treating the decision to hire labour as an 
investment decision, as well as the standard search-theoretic Bellman equations.  The model differs 
from the canonical model in that it makes use of a non-standard search cost function, allows wages to 
respond to employment, and has a non-standard choice of variables.  It is also a log-linearized model.  
The model used here in Chapter 3 is essentially the Chapter 4 model, but with all of the non-standard 
assumptions and variable choices removed.   This brings the model back to the canonical Mortensen 
Pissarides model with exogenous separation rate shocks as well as the usual productivity shocks.   
We therefore refer to the model in this chapter as the “Mortensen-Pissarides model”.   The 
presentation does still owe something to Yashiv however – since we follow his method of framing the 
analysis as an investment-in-labour decision for the firm.   
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The full derivation of this model is written in Appendix 1 to this chapter.  Here we 

summarize the model’s main parts.  The representative firm maximizes the following 

stream of discounted expected future profits, with respect to     29 and   : 

       ∑(∏  

 

   

)

 

   

[          (  )] 

 

(   )( ) 

Subject to: 

     (        )              (   )( ) 

 

In this chapter’s version of the model, the search cost function is given by: 

  (  )     (
  
  
) (   )( ) 

 

Here    is period   output,   is the real wage and    is the number of workers 

employed.    (  ) is the level of search costs, specified as a function of the stock of 

vacancies posted by the firm,   .   (3.1)(c) shows that this total cost is proportional to 

the firm’s output-per-worker, 
  

  
, and a constant of proportionality  , as well as the 

number of vacancies themselves.  (3.1)(b) is the equation for the evolution of 

employment, which depends positively upon those that were employed last period 

that did not separate into unemployment (        )  , and negatively upon the 

number of vacancies that are become matches during period  ,         . (See below 

for a more precise definition of       ). 

As is standard in the search literature, four Bellman equations give the values of the 

two possible states that the firm’s job positions can take (that is, vacancies or filled 

jobs), and of the two labour force states that workers may occupy.  Workers may be 

unemployed or employed, and are otherwise homogenous.  They enjoy utility from 

either state, but would rather be employed since it affords them more utility.  (See 

Pissarides (2000).)    
  represents the value to the firm of a filled job, and   

  the value 

of a vacancy.    
     is the value to a worker of being unemployed, and   

  is the value 

of employment.  The four Bellman equations can then be written: 

                                                           
29

 Note that    is predetermined. 
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 is the firm’s marginal product of labour and   is the real wage, to be determined 

by Nash bargaining.         is the separation rate of workers from employment into 

unemployment during period t.     is a discount factor (common both to workers and 

firms).   In this version of the model it will be treated as a constant.  It is more 

standard in the search and matching literature to write it as an interest rate  , so that 

  
 

   
 or    

   

 
. 

The matching function is assumed to be Cobb-Douglas and is given by: 

          
   

    (   )( ) 

 

The parameter   is the elasticity of hiring with respect to unemployment, restricted 

here to lie between 0 and 1.    is a scale parameter.  The matching function can be 

more usefully written with       ,    and    expressed in lower-case as proportions of 

the labour force (the sum of employment and unemployment). 

          
   

    (   )( ) 

The variables        and        which both appear in the Bellman equations are the 

job-filling rate for firms and the job-finding rate for workers, respectively.  They can 

be derived from the matching function as follows: 
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   is the ratio of vacancies to unemployment (or their equivalent rates, since both are 

expressed here as a proportion of the labour force).  This is the crucial market-

tightness variable, and we make it endogenous for the purposes of one of the 

versions of the model that we test in this chapter.  Equation (3.4)(b) shows that the 

job finding rate        is a positive monotonic transformation of    for     and    .   

In this chapter we estimate and test two versions of the model, using    and       as 

measures of market tightness respectively.  As can be seen from our data summary 

(below), our measure of    is based on the U.S help-wanted index, an aggregate 

index of job-advertising.  The same index has been used in previous empirical work 

on aggregate search and matching models, see for example Shimer (2005).  

However, Yashiv (2006) argues that this measure of vacancies conflates vacancies 

that are eventually filled by individuals outside of employment with those filled by 

individuals moving directly between jobs.  Underlying his argument is the fact the 

matching function is embedded within the Mortensen-Pissarides model, which is only 

supposed to explain hires from outside of employment.  There is a general argument 

for including job-to-job vacancies in this matching function since there is a possibility 

of them crowding-each other out, but Yashiv provides evidence that the cyclical 

behaviour of the two (ex-post) types of vacancies are different, leading him to 

conclude that they should not be treated in the same way.  In other words, the 

Mortensen-Pissarides model does not model job-to-job flows, but Help-Wanted Index 

data inextricably contains job-to-job flows.  Rather than using the Help-Wanted 

Index, and pretending that all vacancies are subsequently filled by individuals 

outside of employment, one should instead not use the vacancies data.   

However, we would like to contrast our results to those of Shimer (2005), who uses 

the Help-Wanted Index.  Therefore, our first version of the model uses the Help-

Wanted Index to construct   , and the caveat that an important variable may be mis-

measured should be kept in mind.  Our second version substitutes the job-finding 

probability of the unemployed        as the measure of market tightness, using 

equation (3.4)(b).  Note that this transformation relies on the assumption of a 
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constant-returns-to-scale matching function. The transformation is useful because 

we can construct job-finding-probability data without using the Help-Wanted Index: it 

is the ratio of the hiring rate from unemployment (which we estimate directly from 

matched CPS data) to the unemployment rate.  Further details are given in the data 

section below. 

We note that our approach does not entirely solve the problem, since job-to-job flows 

can affect the job finding probabilities of workers that transition between 

unemployment and employment.  Our measure of        is at least based upon the 

theoretically relevant population, which we argue is an advantage over   .  To 

resolve this issue completely, our model would need to take explicit account of job-

to-job flows directly, however so far this has not been a major concern of the Shimer-

puzzle literature and we have not yet extended our results in this direction. 

The first equation of the structural model is given by: 

(   )
  
  

    
 

 
[        ]

  
  
  

  (   )( ) 

 

Equation (3.5)(a) modifies the standard neoclassical result for a perfectly competitive 

firm, that the marginal product of labour equals the real wage.  A Cobb-Douglas 

production function is assumed, such that  (     )    
   

   .  This implies that the 

marginal product of labour is given by (   )
  

  
.  The term on the right hand side 

represents the cost of search to the firm.  It is increasing in the search cost 

parameter   and in the vacancy-unemployment ratio   .  The real interest rate   

appears as a measure of the opportunity cost to the firm of devoting resources to 

search activity.  The term also contains the separation rate        , since a higher 

separation rate serves to increase the amount of search the firm needs to take in 

order to maintain its desired level of employment.  The equation is derived in 

Appendix A.3.1.1 

 

Real wages are assumed to be set by Nash bargaining.  The result is equation 

(3.5)(b).  The equation serves to allocate the surplus from matching between firms 

and workers.  Details of the derivation are in Appendix A.3.1.2. 
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The final equation of the model is an expression for steady-state unemployment.   

   
       (    )

[(    )            
   ]

 
 

(   )( ) 

 

Expressing these in terms of the job-finding probability for workers, rather than 

market tightness gives: 

(   )
  
  

    
 

 
[        ]

  
  
 

 
   (      )

 
    

 

(   )( ) 

   (   )   
  
  
((   )    

 
   (      )

 
   ) 

 

(   )( ) 

   
       (    )

[(    )               ]
 

 

 

(   )( ) 

 

Following Shimer (2005(a)), we log-linearize the variables around their HP-filtered 

trend.  We use a smoothing parameter equal to 1600 – this is the standard for 

quarterly data (Cogley (2006), p6), rather than Shimer’s value of    .  We adopt the 

lower-case    as a short-hand for the average productivity of labour     ⁄ .   We use 

the notation  ̃  to denote the log deviation of a variable    from its steady state value 

 .   

The log-linearized equations in terms of  ̃  are given by: 
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In terms of  ̃      they are given by: 
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3.3 Data 
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Table 3.1 contains details of the variables used in our analysis of the model, in terms 

of both their construction and their sources.  The unemployment rate, the 

employment rate, and the labour force are the standard BLS30 series used for 

aggregate labour market analysis of U.S data - Yashiv (2006) uses the same data for 

these variables.  We also follow Yashiv in constructing the job-finding-probability as 

the hiring rate divided by the unemployment rate, and in using the Index of Real 

Compensation as the measure of U.S. real wages.  We differ from Yashiv somewhat 

in the construction of gross flows data, meaning the quarterly flows of matching and 

separations and their associated rates.  The underlying data is from the same 

monthly Current Population Survey, from which individuals must be matched in 

consecutive months in order to estimate the number of labour market transitions. 

The monthly estimates can then be time-aggregated to produce quarterly figures.  

The flows that Yashiv derives from this data are matched by Bleakly et. al ((1999), 

see Yashiv (2006), p934).  For reasons of access, ours are matched using a set of 

Stata programs written by Robert Shimer, which are available at his website.31   The 

variables that are at least partially based on matched CPS data are               and 

      .    

We follow Shimer (2005) in using output per worker as a measure of average labour 

productivity, although our variable definitions are not precisely the same as Shimer’s.  

The use of Conference Board’s Help-Wanted-Index as a proxy for vacancies is 

widespread in the literature (see, for example Shimer (2005), Blanchard and 

Diamond (1989)), when estimates are required for any period before 2002. 

 

 

 

 

 

 

                                                           
30

 BLS stands for” Bureau of Labor statistics”. 
 
31

 See https://sites.google.com/site/robertshimer/research/flows, under the section “Gross Worker 
Flows” for Shimer’s Stata programs.  We downloaded the monthly CPS files from 
http://www.nber.org/data/cps_basic.html.   

https://sites.google.com/site/robertshimer/research/flows
http://www.nber.org/data/cps_basic.html
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Table 3.1: Data definitions and sources. 
 

Variable 
 

Variable definition in 
model 

Source 

 
Endogenous variables: 

   Vacancy-unemployment 
ratio.   

   
  

  
 

  

  
  

 

Vacancy data calculated by Wouter Den Haan.  
For vacancies he uses the Conference Board’s 
index of newspaper advertising, the Help-
Wanted Index.  This is a seasonally adjusted 
monthly series, which Den Haan converts into 
a quarterly series by averaging.  To keep the 
ratio consistent, he does the same averaging 
procedure with seasonally adjusted 
unemployment.  The resulting series is a 
quarterly series for market tightness.  We 
downloaded it from his website 
http://www.wouterdenhaan.com/data.htm.  The 
spreadsheet is the one that accompanies his 
paper Anticipated Growth and Business Cycles 
in Matching Models (2009).  

       
 

Job-finding probability 
among workers. 

       
      

  
 

 

The job finding-probability for workers is 
calculated as the ratio of our series for the 

hiring rate        to our series for the 

unemployment rate   . 

   
 

Real wages paid to 
workers. 
 

We create an index of real compensation by 
dividing the quarterly seasonally adjusted BEA 
series COE (National Income: Compensation 
of Employees: Paid), by the BEA Implicit Price 
Deflator for GDP (series GDPDEF).  Both 
series were downloaded from 
http://research.stlouisfed.org/.  

   
 

Unemployment rate 
expressed as a 
proportion of the labour 
force. 
 

Unemployment is BLS series LNS13000000Q 
divided our series for   .  The former is 
quarterly seasonally adjusted U.S 
unemployment, and was downloaded from 
http://www.bls.gov/cps/.   For details of    see 
below in this table. 

 
Exogenous variables: 

   
 

Average product of 
labour. 

We created an index of the average product of 
labour by dividing the quarterly seasonally 
adjusted BEA series for real U.S GDP (series 
GDPC1) by quarterly seasonally adjusted U.S 
employment (BLS series LNS12000000Q).  
The former was downloaded from 
http://research.stlouisfed.org and the latter 
from http://www.bls.gov/cps/. 

       
 
 

Separation probability of 
workers from 
employment into 
unemployment. 

We create estimates of quarterly flows by 
matching individuals in consecutive months 
using the U.S Current Population survey, and 
observing and recording any changes in their 
labour market status between months.  To do 
this we adapted code which has been made 
public by Robert Shimer.  See the main text for 
details.  This method gives a quarterly 
seasonally adjusted series of estimates for 
movements from employment to 
unemployment.  To generate the separation 
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probability       we divide by   .     

 
Other variables (used as means or in the calculation of exogenous and endogenous 
variables): 

       

 

 We create estimates of quarterly flows by 
matching individuals in consecutive months 
using the U.S Current Population survey, and 
observing and recording any changes in their 
labour market status between months.  To do 
this we adapted code which has been made 
public by Robert Shimer. This method gives a 
quarterly seasonally adjusted series of 
estimates for movements from unemployment 
to employment,       .  To get the rate         

we divide by the labour force    (see below). 

   
 

Labour force.     
 
Note that the 
unemployment rate   , 
and where required the 
vacancy rate    and 

matching rate    are all 
expressed as 
proportions of the labour 
force.  

For the labour force we use BLS series 
LNS11000000Q.  This is the quarterly 
seasonally adjusted U.S civilian labour force.  
The data was downloaded from 
http://www.bls.gov/cps/. 

   
 
 

Employment rate 
expressed as a 
proportion of the labour 
force. 

Employment is BLS series LNS12000000Q 
divided our series for   .  The former is 
quarterly seasonally adjusted U.S 
unemployment, and was downloaded from 
http://www.bls.gov/cps/.   For details of   see 
above in this table. 

      
  

 

Quarterly (gross) growth 
rate of the labour force.   

      
  

    
  

 

Note that we only 
actually use the mean of 
this value for the sample 
period, so that    takes 
the role of a parameter. 

Calculated as the gross quarter on quarter 
growth of   . 

 

 Table 3.2 presents summary statistics for each of the variables used in the version 

of model that is estimated and tested here.  We use deviations from the HP- filtered 

trend for the model, the level means in the second column are included for illustrative 

purposes, and because we calibrate the steady-state values of variables (which 

enter the linearized version of the model, below) for the most part using sample 

means.   
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Table 3.2:  Data moments: Means of levels and standard 
deviations of log deviations from HP(1600)-filtered trend, 
1976Q1-2003Q4 
 

Variable 

   
Mean 

 ̅  
 
 

Log deviation  

 ̃ 
   (  )    ( ) 

 

Standard 
deviation 

 ( ̃ ) 
 
 

Endogenous variables: 
 

   
 

1.08  ̃  
 

0.22 

       
 

0.54  ̃      
 

0.07 

   
 

1,616  ̃  
 

0.01 

   
 

0.063  ̃  
 

0.10 

Exogenous variables: 
 

   
 

68,836  ̃  
 

0.01 

       
 

0.031  ̃      
 

0.07 

Other variables: 
 

       

 

0.033  ̃      

 

0.06 

   
 

0.94   

      
  

 

1.0039   

Notes:  U.S. data.  See table 3.1 for sources. 
 

 

The fourth column of table 3.2 gives the data standard deviations of the de-trended 

HP filtered variables for the 1976Q1-2003Q4 sample period.  The idea of using the 

filter is to take out the trend from the data, and hence isolate cyclical movements in 

the variables of interest.  We are aware of the disadvantages of the procedure – the 

use of the filter means that the trend is essentially estimated using an a-theoretical 

time series method, and adds a degree of ad-hockness into the analysis.  There is 

also the possibility of introducing spurious cyclicality into the data, under the 

presence of a random-walk with drift in the original series (see Cogley (2006) p8).  

However, in using the filter we are following much of the literature, including for 

example Shimer (2005(a)) and Hagerdorn and Manovksii (2008). 
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Figure 3.1 Graphs of HP(1600)-filtered variables for 1976Q1-2003Q4 sample 

    The standard deviations are important as they are some of the most basic stylized 

facts that the model needs to come close to recreating in order to fit the data.  By far 

the most volatile variable is the vacancy-unemployment ratio, next is the 

unemployment rate which is less than half as volatile.  The alternative measure of 

market tightness, the job-finding probability is less than one-third as volatile as the 
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vacancy-unemployment ratio.  Least volatile are the average productivity of labour 

and real wages. 

An examination of the signs of the correlations in table 3.3 confirms that the de-

trended variables have the cyclicality that one would expect.  The vacancy 

unemployment ratio  ̃  and the job-finding probability  ̃      are both highly negatively 

correlated with the unemployment rate, and more modestly positively correlated with 

productivity (output-per-worker).   Our measure of real wages is also highly pro-

cyclical.  As one might expect, the separation rate is positively correlated with 

unemployment and negatively correlated with all of the pro-cyclical variables in both 

samples.   

The only variable which surprises in terms of correlations is the counter-cyclicality of 

the matching rate  ̃     .   This is however consistent with previous empirical 

literature, for example Yashiv (2006, p925) argues that this is because during 

recessions, the effect of the increase in unemployment tends to outweigh the effect 

of the fall in the job-finding probability.  Note that the matching rate       does not 

play a direct role in the either version of the model presented here, we include 

information on its cyclical properties because we use it to construct the job-finding 

probability       .   

Table 3.3:  Correlations between variables in log-
deviations from HP(1600)-filtered trend, 1976Q1-2003Q4 

 

  ̃  
 

 ̃      
 

 ̃  
 

 ̃  
 

 ̃  
 

 ̃      
 

 ̃      

 

 ̃  
 

1       

 ̃      

 

0.78 1      

 ̃  
 

0.79 0.66 1     

 ̃  
 

-0.92 -0.85 -0.82 1    

 ̃  
 

0.57 0.37 0.53 -0.47 1   

 ̃      
 

-0.80 -0.59 -0.65 0.77 -0.56 1  

 ̃      

 

-0.71 -0.31 -0.67 0.76 -0.40 0.68 1 

Notes:  U.S. data.  See table 3.1 for sources. 
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Table 3.4 contains univariate AR(1) correlation coefficients for each of the relevant 

variables.  All variables are moderately to highly persistent.  The coefficients are 

similar in each of the two samples. 

Table 3.4:  AR(1)  
autocorrelation parameters for 
variables in log-deviations from 
HP(1600) filtered trend, 
1976Q1-2003Q4 

 ̃  
 

0.928 

 ̃      

 

0.740 

 ̃  
 

0.919 

 ̃  
 

0.933 

 ̃  
 

0.664 

 ̃      
 

0.727 

 ̃      

 

0.583 

Notes:  U.S. data.  See table 3.1 
for sources. 

 

3.4 Calibration 

 We have already described the method of indirect inference in detail above.  Details 

of the procedure for implementing this model are in Appendix 2.  Here in the main 

text we give details of the calibrated model parameters that we use.  

 

  An examination of the log-linearized equations of the model reveals that simulation 

of the model requires the assumption of steady state values for most of the 

variables.  There are also three parameters, the matching function scale parameter 

 , the capital-elasticity of output,  , and the real interest rate,  , the values of which 

we fix throughout the analysis. 

We set       , the same value as that used by Yashiv (2006), whose model is the 

closest cousin of that used here.  For   we use a quarterly rate of 0.012, which is the 

same as that used by Shimer (2005).  We set   to the value which reconciles the 

mean job-finding probability in the data between 1976Q1 and 2003Q4 (0.538), to the 

same sample counterpart for the mean vacancy unemployment ratio    (1.076), 

when the value for matching elasticity of unemployment is set to Yashiv’s (2006) 
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baseline calibration value of 0.4.  As the job finding probability is given by        

   
   , our calibrated figure is given by: 

     (  (     )  (     )    (     ))         

The calibration and steady-state values are summarized in table 3.5. 

Table 3.5: Calibrated values for indirect inference estimation and 
model testing 

Steady state 

value/parameter 

Calibrated 

value (short 

sample) 

Reasoning/source: 

  1.08 sample mean 

  0.54 sample mean 

  0.58  see text  

  68,836 sample mean 

  0.0314 sample mean 

  0.033 sample mean 

   1.0039 sample mean 

  0.5150 see text 

  0.32 Yashiv(2006) 

  0.012 Shimer (2005) 

 

 

The steady state real wage   is calibrated as follows.  The mean labour share of 

GDP for our sample period is 0.58.  Normalizing the price level to 1 gives      
  

 
 

or       
 

 
      .    is set to the mean output per worker for the sample period, 

although an examination of the model equations’ condition shows that this level is 

arbitrary;   or   enter every term of the linearized job-creation conditions and wage 

equations, so that what matters is not the absolute level of either but their relative 

values. 

The search cost parameter   in the model acts as a multiplier on the vacancy–

employment ratio.  To see this, note the firm’s total per-period profit is given by: 

           (
  
  
) 

Dividing through by output gives: 



121 
 

  
    
  

  (
  
  
) 

Note that 
    

  
 is the labour share    if the price level is normalized to 1.  Dividing both 

total vacancies and employment by the labour force gives: 

      (
  
  
) 

The mean value of the employment rate    for our sample is 0.94.  The mean 

vacancy rate can be inferred from the implied mean vacancy-unemployment ratio 

which is 0.0680.  

                      

Shimer (2005) uses a value of vacancy costs which is equivalent to 0.213 of output 

per worker.  As the Shimer model is like the model presented here, based on a 

search cost function that is linear in vacancies, in terms of our model this implies 

that: 

        

Based on our mean values of the vacancy and employment rates, this implies that 

vacancies are a very small share of output, around 1.5%, since: 

      (
 

 
)        (

     

    
)         

Below where we estimate the model, we impose the upper bound on   as being 7, in 

order to help the estimation algorithm by limiting the area over which it needs to 

search.  Our reasoning is that a value of   greater than 7 would be implausible.  

Based on a mean vacancy rate of 0.068 this would imply a total vacancy cost equal 

to over half of output, a magnitude that seems too large: 

  (
 

 
)    (

     

    
)         

We set the number of bootstrap samples that go into the calculation of each Wald at 

2000.  We chose this value based on a rough trade-off between statistical efficiency 

and computing time.  The initial number of model replications was 1000, but we 
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found that doubling this figure produced a roughly 60% reduction in the Wald’s 

statistic’s volatility for an acceptable increase in time taken.  Computational efficiency 

gains dropped off sharply after that.        

In our sample of data which runs from 1976Q1 to 2003Q4 we have 112 quarterly 

observations.  We therefore set the simulated samples of data to be the same 

length. 

3.5 Model testing using Indirect Inference with Shimer’s (2005) parameters 

 Table 3.6 shows that under Shimer’s parameters, our version of the model fails to fit 

the data either with an auxiliary model based either on volatilities of VAR coefficients, 

when both    and        are used as measures of market tightness.  Tables 3.7 to 3.9 

reveal why.   

Table 3.6:  Model evaluation results for Shimer parameterisation 1976Q1-
2003Q4.   

Estimation criterion and Model: Wald t-stat. P-value 

(A) Standard deviations,  ̃  *** 24.875 4.17 0.0005 

(B) Standard deviations,  ̃      *** 29.502 4.71 0.0000 

    

(C) VAR coefficients,  ̃  *** 51.003 4.48 0.0005 

(D) VAR coefficients,  ̃      *** 31.172 3.06 0.0025 

    

(E) Standard deviations & VAR 

coefficients,  ̃  
*** 76.275 5.55 0.0000 

(F) Standard deviations & VAR 

coefficients,  ̃      
*** 54.278 
 

4.36 0.0000 

Notes:  Model distribution data is generated by 2000 replications of each 
model using Shimer’s (2005) parameters:  c=0.213, σ=0.72, ξ=0.72.    *** 
Indicates statistically significant at the 1% level.  The column labelled ‘t-
stat’ is a t-statistic which may be compared to a critical value of 1.645.  
This corresponds to a 5% level of significance. 

 

   Table 3.7 shows the individual standard deviations of the endogenous 

variables in the data.  It also shows various characteristics of the distribution of 

standard deviations for the same variables across 2000 simulations of the model 

under Shimer’s parameters.  The column entitled “In or Out?” says whether the 

standard deviation in the data lies inside or outside the 5%-95% range of simulated 

standard deviations from the model.  Model (A) is the version of the model with the 

vacancy-unemployment ratio as its measure of market tightness, and model (B) is 

the version with the job-finding-probability as its measure of market tightness.  The 

table shows that the main points of failure in terms of volatilities are wages and the 
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unemployment rate.  Simulated wages and unemployment are both insufficiently 

volatile relative to the data, for both models.  Conversely, in terms of the volatilities of 

market tightness, both models perform reasonably well, in the sense that the data is 

within the 95% range of model-generated outcomes.  Table 3.6 shows that neither 

model (A) nor (B) fit the data overall under Shimer’s parameters.   

Table 3.7:  Distribution of auxiliary model parameters (endogenous variable 
volatilities) under Shimer’s (2005) parameters.   1976Q1-2003Q4. 

Model: Parameter: Data: In or 
out? 

Model distribution: 

(A) 

   Mean: 5% 50% 95% 

   ( ̃ ) 0.219 IN 0.171 0.118 0.166 0.239 

   ( ̃ ) 0.0141 OUT 0.0108 0.0083 0.0107 0.0138 

   ( ̃ ) 0.101 OUT 0.063 0.047 0.062 0.084 

 

(B) 

   ( ̃     ) 0.069 IN 0.063 0.051 0.062 0.075 

   ( ̃ ) 0.0141 OUT 0.0099 0.0076 0.0098 0.0126 

   ( ̃ ) 0.101 OUT 0.062 0.050 0.062 0.076 

Notes:    ( ̃ ) refers to the standard deviation of variable  ̃ .   Model 
distribution data is generated by 2000 replications of each model using 
Shimer’s (2005) parameters: c=0.213, σ=0.72, ξ=0.72.     

 

Table 3.8 displays similar results for the dynamics of the model under Shimer’s 

parameters. The auxiliary model is a VAR(1) on the three endogenous variables 

only.  Here and in the remainder of this chapter we use the notation “   (     )” to 

refer to the estimate of VAR(1) coefficient  that associates variable    with the lag of 

variable   .  Model (C) is the version of the model the vacancy-unemployment ratio 

as its measure of market tightness, and model (D) is the version with the job-finding-

probability as its measure of market tightness.  Note that the model with    as a 

measure of market tightness and the model with        as a measure of market 

tightness naturally have different VAR coefficients in the data.  The largest 

differences between the coefficients are (as one would probably expect), between 

the VAR coefficients for the dynamics of the market tightness variable, but there are 

also considerable differences between the estimated coefficients for unemployment 

on lagged wages and between the estimated coefficients for the joint unemployment 

persistence. 

In terms of joint persistence, both versions of the model are able to fit the data on 

wages, in the sense that VAR coefficient of wages on its lag value from the VAR 

estimated on the actual data in both cases falls within each model’s 95% bounds.  In 

addition, model (C) fits the joint persistence of unemployment.  Neither model 
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captures the joint persistence of market tightness.  Model (D) fits all of the VAR 

coefficients for real wages and unemployment, with the exception of unemployment’s 

joint persistence.  Model (C) fails to fit the VAR coefficients for real wages and for 

unemployment with respect to lagged market tightness  Table 3.6 shows that models 

(C) and (D) are both rejected overall, although model (D) with the job-finding 

probability as its measure of market tightness fits marginally better. 

Table 3.8. Distribution of auxiliary model parameters (VAR coefficients) under 
Shimer’s (2005) parameters.  1976Q1-2003Q4. 
 

Model: Parameter: Data: In or 
out? 

Model distribution: 

(C) 

   Mean: 5% 50% 95% 

   ( ̃   ̃ ) 1.317 OUT 0.886 0.717 0.890 1.038 

   ( ̃   ̃ ) -1.097 IN -0.321 -1.715 -0.327 1.012 

   ( ̃   ̃ ) 0.819 OUT -0.003 -0.424 -0.010 0.454 

   ( ̃   ̃ ) 0.017 OUT -0.005 -0.019 -0.004 0.00874 

   ( ̃   ̃ ) 0.778 IN 0.800 0.675 0.807 0.900 

   ( ̃   ̃ ) 0.012 IN 0.004 -0.032 0.004 0.041 

   ( ̃   ̃ ) -0.149 OUT -0.043 -0.119 -0.042 0.029 

   ( ̃   ̃ ) 0.461 IN 0.112 -0.498 0.113 0.711 

   ( ̃   ̃ ) 0.687 IN 0.725 0.506 0.735 0.918 

 

(D) 

   ( ̃   ̃ ) 0.300 OUT 0.680 0.521 0.686 0.826 

   ( ̃   ̃ ) -0.253 IN 0.116 -0.819 0.119 1.022 

   ( ̃   ̃ ) -0.387 OUT 0.013 -0.159 0.013 0.187 

   ( ̃   ̃ ) 0.0162 IN 0.009 -0.013 0.009 0.032 

   ( ̃   ̃ ) 0.819 IN 0.768 0.629 0.775 0.880 

   ( ̃   ̃ ) -0.008 IN 0.004 -0.021 0.004 0.028 

   ( ̃   ̃ ) -0.165 IN -0.148 -0.286 -0.148 -0.011 

   ( ̃   ̃ ) 0.095 IN -0.047 -0.876 -0.057 0.768 

   ( ̃   ̃ ) 0.849 OUT 0.670 0.504 0.673 0.821 

Notes:     ( ̃   ̃ ) refers to the VAR(1) coefficient that associates the variable 

 ̃  with the first lag of  ̃ .  Model distribution data is generated by 2000 
replications of each model using Shimer’s (2005) parameters: 
c=0.213, σ=0.72, ξ=0.72.     

 

Finally, table 3.9 displays results for a version of the model that again uses the 

equivalent of Shimer’s parameters, but which also combines volatilities and VAR 

coefficients in the Wald criterion.  This is not really necessary as the results are 

essentially the same.  Model (E) uses the vacancy-unemployment ratio as its 

measure of market tightness and model (F) uses the job-finding probability as its 

measure of market tightness.   Table 3.9 shows that, coefficient for coefficient, the 

version of the model with        is superior, with the exception of the joint persistence 
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of unemployment.  This is reflected in the somewhat smaller Wald coefficient for 

model (F) compared to that of model (E) (see table 3.6), although both models are 

rejected overall. 

Table 3.9:  Distribution of auxiliary model parameters (endogenous variable 
volatilities and VAR coefficients) under Shimer’s (2005) parameters.  
1976Q1-2003Q4. 

Model: Parameter: Data: In or 
out? 

Model distribution: 

    Mean: 5% 50% 95% 

(E) 

   ( ̃ ) 0.219 IN 0.171 0.119 0.166 0.235 

   ( ̃ ) 0.0141 OUT 0.011 0.008 0.011 0.01404 
   ( ̃ ) 0.101 OUT 0.063 0.047 0.062 0.083 

   ( ̃   ̃ ) 1.317 OUT 0.889 0.711 0.898 1.037 

   ( ̃   ̃ ) -1.097 IN -0.289 -1.660 -0.276 1.028 

   ( ̃   ̃ ) 0.819 OUT 0.010 -0.415 0.004 0.455 

   ( ̃   ̃ ) 0.017 OUT -0.004 -0.018 -0.004 0.009001 

   ( ̃   ̃ ) 0.778 IN 0.800 0.671 0.807 0.901 

   ( ̃   ̃ ) 0.012 IN 0.006 -0.031 0.006 0.042 

   ( ̃   ̃ ) -0.149 OUT -0.046 -0.119 -0.045 0.026 

   ( ̃   ̃ ) 0.461 IN 0.103 -0.538 0.099 0.730 
   ( ̃   ̃ ) 0.687 IN 0.717 0.501 0.725 0.905 

 

(F) 

   ( ̃ ) 0.0686 IN 0.063 0.051 0.062 0.075 

   ( ̃ ) 0.0141 OUT 0.010 0.008 0.010 0.012 
   ( ̃ ) 0.101 OUT 0.062 0.050 0.062 0.076 

   ( ̃   ̃ ) 0.300 OUT 0.680 0.519 0.688 0.818 

   ( ̃   ̃ ) -0.253 IN 0.113 -0.804 0.104 1.033 

   ( ̃   ̃ ) -0.387 OUT 0.010 -0.163 0.009 0.185 

   ( ̃   ̃ ) 0.016 IN 0.010 -0.010 0.010 0.030 

   ( ̃   ̃ ) 0.819 IN 0.769 0.640 0.774 0.882 

   ( ̃   ̃ ) -0.008 IN 0.004 -0.019 0.004 0.028 

   ( ̃   ̃ ) -0.165 IN -0.147 -0.291 -0.142 -0.015 

   ( ̃   ̃ ) 0.095 IN -0.066 -0.912 -0.069 0.766 
   ( ̃   ̃ ) 0.849 OUT 0.671 0.509 0.676 0.820 

Notes:     ( ̃ ) refers to the standard deviation of variable  ̃ .     ( ̃   ̃ ) 
refers to the VAR(1) coefficient that associates the variable  ̃  with the first 
lag of  ̃ .  Model distribution data is generated by 2000 replications of each 
model using Shimer’s (2005) parameters.  c=0.213, σ=0.72, ξ=0.72.     

 

3.6 Indirect inference estimation of the model 

In this section we report the results for estimating the model by minimizing the Wald 

statistic.  We perform three different sets of estimation, with three different types of 

auxiliary models.  

As discussed in section 3.1, we attempt to use the simulated annealing algorithm to 

minimize the Wald.  This turns out not to be straightforward however.  We find that 
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setting a stopping rule of a maximum of 500 iterations per estimation sometimes 

results in different estimated parameters for the same model.  There appears to be 

two problems.  Firstly, the simulated annealing does not always visit the areas of the 

parameter space where the minimal Wald is to be found.  Secondly, even when it 

does, there is a possibility for the particular draw of the Wald statistic to not be 

especially low – recall that the Wald is subject to stochastic variation because of the 

bootstrapping procedure.   

To resolve the issue, we estimate each model several times, compare the Wald 

statistics and obtain a set of candidate plausible values.  For each of these sets of 

optimal parameters, we run indirect inference testing on each 50 times, and take the 

average of the Wald statistics, in order to remove the effect of out-lying Walds based 

on out-lying bootstrap samples.  We then search manually around the minimum 

points using indirect inference testing for smaller values of the Wald, averaging in the 

same way.  In many cases we find that parameter estimates that minimize the Wald 

are at or near the corner solutions, as can been below.  We vary the parameters 

values in the neighbourhood of the resulting values, to ascertain that we are close to 

or at the minimum. 

In all, the minimization algorithm used can be described less as pure simulated 

annealing, than a combination of simulated annealing and manual search. 

 Table 3.10 shows the estimated parameter values for each version of the model and 

each of three Wald criterions used for the short sample.     

Table 3.10: Estimation results for indirect inference, 1976Q1-2003Q4. 
 

Estimation criterion and Model:          Wald t-stat. P-
value 

(A) Standard deviations,  ̃  7.00 0.03 1.00 0.688 -0.67 0.875 

(B) Standard deviations,  ̃      7.00 0.31 0.00 3.698 0.59 0.257 

       

(C) VAR coefficients,  ̃  0.4 0.65 0.04 *** 35.244 3.20 0.003 

(D) VAR coefficients,  ̃      6.88 0.01 0.02 *** 24.433 2.38 0.009 

       

(E) Standard deviations & VAR 

coefficients,  ̃  
4.8 0.58 0.01 *** 45.834 3.54 0.003 

(F) Standard deviations & VAR 

coefficients,  ̃      
7.00 0.02 0.02 ** 27.822 2.22 0.049 

Estimation predominantly based on simulated annealing.  (See main text for details).  
Estimation restrictions imposed are [0,0,0] (lower) and [7,1,1] upper for the model for [     ] , 
and [0,0,0] (lower) and [7,0.999,1] for the model for [     ] .  The column labelled ‘t-stat’ is a  
t-statistic which may be compared to a critical value of 1.645.  This corresponds to a 5% level 
of significance. 
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 Table 3.10 shows that the indirect inference estimation procedure is able to find 

parameter values for which the model is able to fit the data based on the standard 

deviations of the three endogenous variables (models (A) and (B)), but not based on 

a full set of nine VAR(1) coefficients (models (C) and (D)).  Of course, when the 

auxiliary model combines volatilities with VAR coefficients, the presence of the VAR 

coefficients again creates problems for the fit of the model, hence models (E) and (F) 

are also fail to fit the data.  

Table 3.11 shows the distribution of the model volatilities of endogenous variables, 

when the auxiliary model used to estimate the model are the volatilities themselves.  

Model (A) is the model in which market tightness is the vacancy unemployment ratio 

   and model (B) is the one in which market tightness is given by       .  Note that all 

of the data standard deviations lie within the 95% range of model outcomes in each.    

The value of 7 for the estimate of the vacancy cost parameter c for both estimations 

(A) and (B) is the upper bound that we imposed on the estimation on the grounds of 

plausibility.  Similarly, the value for the elasticity of hiring with respect to 

unemployment in model (A) is close to its lower estimation bound of 0.  The labour 

bargaining-power parameter    is close to its upper bound at 1.   

In model (B), where the measure of market tightness is the job-finding probability 

       rather than the vacancy-unemployment ratio   , the result is reversed for the 

labour bargaining power – it takes on a value of zero rather than one.  The elasticity 

of unemployment with respect to hiring   takes a value within the [0,1] interval – of 

0.31.  This is far below conventional estimates which tend to be in the [0.5, 0.7] 

range (Petrongolo and Pissarides, 2001).  A value of 7 for the search cost parameter 

seems high – taking the implied mean vacancy rate to be 0.066 as discussed above, 

this would imply that vacancies costs of 0.066x7=46.2% of output per worker.  

 It is important to remember however that these estimated parameter values cannot 

be given a straightforward comparative-static interpretation solely in terms of the 

exogenous variables.  The reason is that the parameters also enter the matrix that 

converts the bootstrapped structural errors into reduced form errors in the model 

simulations.  The volatilities of the endogenous variables come both from the 

exogenous variables and from the bootstrapped shocks to the endogenous 
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variables, the latter are converted to reduced form shocks in the model solution and 

so the results for the volatility estimation become difficult to interpret.  The estimation 

algorithm simply fits the volatilities of the endogenous variables as closely as 

possible – it does not care about the source of the volatility.   

Table 3.11:  Distribution of auxiliary model parameters (endogenous variable 
volatilities) under estimated parameters. 

Model: Parameter: Data: In or 
out? 

Model distribution: 

(A) 

   Mean: 5% 50% 95% 

   ( ̃ ) 0.219 IN 0.188 0.126 0.183 0.266 

   ( ̃ ) 0.0141 IN 0.0140 0.0109 0.0139 0.0176 

   ( ̃ ) 0.101 IN 0.089 0.062 0.087 0.125 

 

(B) 

   ( ̃ ) 0.069 IN 0.068 0.057 0.068 0.082 

   ( ̃ ) 0.0141 IN 0.0115 0.0081 0.0113 0.0160 

   ( ̃ ) 0.101 IN 0.089 0.070 0.088 0.110 

Notes:    ( ̃ ) refers to the standard deviation of variable  ̃ .  Model 
distribution data is generated by 2000 replications of each model using the 
estimated parameters as estimated by simulated annealing (see table 3.10).  
For model (A) these are c*=7, σ*=0.03, ξ*=1  and for model (B) these are 
c*=7, σ*=0.31, ξ*=0.00. 

 

Table 3.12 shows the parameter-by-parameter results for models (C) and (D).  Both 

models manages to fit the dynamics of unemployment with respect to lagged wages, 

and also the joint persistence of unemployment.  Otherwise, the only other VAR 

parameter that (C) and (D) both mange to fit is that of market tightness with respect 

to lagged real wages.  Model (D), which has       as its measure of market tightness, 

in fact manages to fit all of the VAR parameters with respect to unemployment.  It 

does not fit any on any of the dynamics of wages, except for with respect to the 

lagged job-finding probability.  Model (C) meanwhile fits the dynamics of wages with 

respect to both unemployment and for wages’ joint persistence.   In terms of market 

tightness, model (C) fits only on lagged wages, and model (D) fits both this and the 

joint persistence of       . 
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Table 3.12:  Distribution of auxiliary model parameters (VAR coefficients) under 
estimated parameters. 

Model: Parameter: Data: In or 
out? 

Model distribution: 

(C) 

   Mean: 5% 50% 95% 

   ( ̃   ̃ ) 1.317 OUT 0.865 0.639 0.869 1.086 

   ( ̃   ̃ ) -1.097 IN -1.184 -3.262 -1.145 0.733 

   ( ̃   ̃ ) 0.819 OUT 0.110 -0.384 0.100 0.650 

   ( ̃   ̃ ) 0.017 OUT 0.000 -0.014 0.000 0.013 

   ( ̃   ̃ ) 0.778 IN 0.831 0.696 0.840 0.933 

   ( ̃   ̃ ) 0.012 IN 0.003 -0.029 0.003 0.033 

   ( ̃   ̃ ) -0.149 OUT -0.028 -0.126 -0.028 0.068 

   ( ̃   ̃ ) 0.461 IN 0.386 -0.484 0.361 1.348 

   ( ̃   ̃ ) 0.687 IN 0.720 0.482 0.728 0.934 

 

(D) 

   ( ̃   ̃ ) 0.300 IN 0.466 0.290 0.469 0.625 

   ( ̃   ̃ ) -0.253 IN 0.747 -0.397 0.737 1.878 

   ( ̃   ̃ ) -0.387 OUT -0.176 -0.372 -0.171 0.010 

   ( ̃   ̃ ) 0.0162 IN -0.013 -0.035 -0.013 0.009 

   ( ̃   ̃ ) 0.819 OUT 0.666 0.516 0.670 0.801 

   ( ̃   ̃ ) -0.008 OUT -0.039 -0.064 -0.039 -0.016 

   ( ̃   ̃ ) -0.165 IN -0.013 -0.173 -0.011 0.151 

   ( ̃   ̃ ) 0.095 IN -0.773 -1.917 -0.761 0.319 

   ( ̃   ̃ ) 0.849 IN 0.778 0.594 0.779 0.946 

Notes:     ( ̃   ̃ ) refers to the VAR(1) coefficient that associates the variable 

 ̃  with the first lag of  ̃ .   Model distribution data is generated by 2000 
replications of each model using the estimated parameters as estimated by 
simulated annealing (see table 3.10).  For model (C) these are c*=0.40, 
σ*=0.65, ξ*=0.04  and for model (D) these are c*=6.88, σ*=0.01, ξ*=0.02. 

 

 Table 3.13 shows parameter by parameter results for models (E) and (F).  The 

results are naturally somewhat different to those for models (A) to (D), because the 

Wald criterion now includes VAR(1) coefficients and volatilities together.  This 

implies a different set of estimated optimal parameters for each measure of market 

tightness.  For example, if the results for model (E) and model (A) are compared, it is 

apparent that the inclusion of VAR coefficients in the Wald criterion implies that the 

model’s optimal parameters no longer fit the volatility of the vacancy-unemployment 

ratio nor unemployment, as the model volatility is too low in both cases.  On the 

other hand, model (E) fits all of the VAR coefficients that model (C) fits – that is the 

joint persistences of real wages and unemployment, the coefficients for market 

tightness and unemployment with respect to lagged real wages, and that of real 

wages with respect to unemployment. 
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In model (F) (compared with model (B)) it is the volatility of real wages that no longer 

fits the data once the VAR coefficients are added to the auxiliary model.  In this case, 

there is insufficient volatility for model generated real wages to fit the data within the 

model’s 95% bounds. In terms of VAR coefficients, the only results that are different 

for model (D) compared with model (F) is the job-finding probability, which is too 

persistent relative to the data in (F), the version with both volatilities and VAR 

coefficients. 

Table 3.13:  Distribution of auxiliary model parameters (standard deviations 
and VAR coefficients) under estimated parameters. 

Model: Parameter: Data: In or 
out? 

Model distribution: 

    Mean: 5% 50% 95% 

(E) 

   ( ̃ ) 0.219 OUT 0.161 0.118 0.158 0.216 

   ( ̃ ) 0.0141 IN 0.011 0.008 0.011 0.015 
   ( ̃ ) 0.101 OUT 0.071 0.054 0.069 0.093 

   ( ̃   ̃ ) 1.317 OUT 0.833 0.617 0.843 1.023 

   ( ̃   ̃ ) -1.097 IN 0.077 -1.640 0.070 1.844 

   ( ̃   ̃ ) 0.819 OUT 0.001 -0.437 -0.001 0.450 

   ( ̃   ̃ ) 0.017 OUT -0.004 -0.018 -0.003 0.010 

   ( ̃   ̃ ) 0.778 IN 0.870 0.731 0.877 0.979 

   ( ̃   ̃ ) 0.012 IN -0.002 -0.034 -0.001 0.029 

   ( ̃   ̃ ) -0.149 OUT -0.007 -0.104 -0.008 0.097 

   ( ̃   ̃ ) 0.461 IN -0.061 -0.918 -0.072 0.793 
   ( ̃   ̃ ) 0.687 IN 0.787 0.564 0.794 0.993 

 

(F) 

   ( ̃ ) 0.0686 IN 0.065 0.053 0.065 0.080 

   ( ̃ ) 0.0141 OUT 0.0109 0.0083 0.0109 0.0139 
   ( ̃ ) 0.101 IN 0.081 0.062 0.081 0.104 

   ( ̃   ̃ ) 0.300 OUT 0.477 0.311 0.478 0.636 

   ( ̃   ̃ ) -0.253 IN 0.683 -0.472 0.675 1.860 

   ( ̃   ̃ ) -0.387 OUT -0.191 -0.384 -0.193 0.003 

   ( ̃   ̃ ) 0.016 OUT -0.013 -0.035 -0.012 0.009 

   ( ̃   ̃ ) 0.819 OUT 0.655 0.500 0.659 0.807 

   ( ̃   ̃ ) -0.008 OUT -0.040 -0.065 -0.040 -0.013 

   ( ̃   ̃ ) -0.165 IN -0.022 -0.188 -0.019 0.145 

   ( ̃   ̃ ) 0.095 IN -0.724 -1.911 -0.723 0.388 
   ( ̃   ̃ ) 0.849 IN 0.789 0.601 0.792 0.963 

Notes:     ( ̃ ) refers to the standard deviation of variable  ̃ .     ( ̃   ̃ ) 
refers to the VAR(1) coefficient that associates the variable  ̃  with the first 
lag of  ̃ .     Model distribution data is generated by 2000 replications of each 
model using the estimated parameters as estimated by simulated annealing 
(see table 3.10).  For model (E) these are c*=4.8, σ*=0.58 ξ*=0.01  and for 
model (F) these are c*=7, σ*=0.02, ξ*=0.02. 
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3.7 Discussion 

It is not surprising that the model under Shimer’s parameters is rejected by our tests 

in table 3.7.  Recall from Chapter 1 that the point of Shimer’s (2005) paper was to 

document the fact that the model implied insufficient volatility in market tightness (the 

vacancy-unemployment ratio   , as measured by the Help-Wanted index), 

unemployment and vacancies relative to productivity.  Are our testing results under 

Shimer’s parameters consistent with the Shimer puzzle?  Model (A) in table 3.7 

would superficially suggest not.  The one coefficient for which the data lies in the 

model bounds is the volatility of the vacancy-unemployment ratio     – the mean 

standard deviation of the vacancy unemployment ratio generated by our model is 

0.171, compared with 0.219 in the data.  The maximum volatility that that Shimer’s 

model is able to generate in    for any combination of productivity and/or separation 

rate shocks is 0.037 (compared to a volatility of 0.382 in his sample – note that there 

is a discrepancy between Shimer’s sample period and ours, and he also uses a 

difference HP-filter with a different smoothing parameter.32)  It therefore appears that 

the lack of volatility is less of an issue in our model.  Furthermore, when we simulate 

the model under Shimer’s parameters, the 95% distribution of the standard deviation 

of real wages lies below rather than above the standard deviation in the data.   There 

is however, a very important difference between our model and Shimer’s that makes 

this comparison misleading.  Our model contains an important extra source of 

volatility which comes from the bootstrapped shocks to the structural errors.   

Shimer’s (2005) model only includes the responses of the endogenous variables to 

productivity and/or the separation rate.  It is however possible for us to decompose 

the variances of the endogenous variables in our model, and to thus examine the 

amount of variation that is attributable to the exogenous variables and to the 

endogenous variables’ shocks in each.  We present the results of this exercise in the 

table 3.14 below, under Shimer’s parameters and for both measures of market 

tightness. 

 

 

                                                           
32

 We use the standard quarterly HP-filter with a smoothing parameter of 1600.  This is the standard 

for macroeconomic data (Cogley (2006), p6).  Shimer uses a smoothing parameter of      (Shimer 
(2005) p27).  The latter represents an “extremely low frequency trend”.   
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Table 3.14  Variance decompositions for endogenous variables under Shimer’s (2005) parameters. 

 Model with    as measure of market 
tightness 

Model with        as measure of market 

tightness 

Shares 
attributable to: 

                      

exogenous 0.00093 0.65 0.86 0.00057 0.80 0.90 
structural 0.97 1.38 0.81 0.995 1.41 0.67 

Notes: The exogenous variance share is obtained by averaging the variance generated by 
productivity and the separation rate across 2000 samples, and taking the ratio of this to the total 
volatility across 2000 samples.  The structural volatility and covariance shares are the model variation 
attributable to the simulated structural shocks.  All results are generated under Shimer’s (2005) 

parameters:  c=0.213, σ=0.72, ξ=0.72.    Omitted is the error share, which is necessarily negative in the 

case that the sum of the rows exceeds 1. 

 

  Table 3.14 shows that for both measures of market tightness, the vast 

majority of the volatility comes from the shocks to the endogenous variables rather 

than from the exogenous variables.  Conversely there is still plenty of model variation 

in real wages that is attributable to variation in productivity and the separation rate.  It 

therefore seems that the lack of volatility in market tightness with respect to 

productivity fluctuations is still present in our model – it is simply masked by the 

treating the structural errors as shocks and using them to generate aggregate 

volatility.  This volatility is omitted by Shimer’s (2005) stochastic simulations – this is 

we believe the reason for the discrepancy.  It is also the case that Shimer does not 

compare the standard deviation of simulated wages against its counterpart in the 

data – his assertion that wages are too volatile relates to the model mechanism that 

generates volatility in market tightness.  We therefore argue that our results are 

broadly consistent with the Shimer puzzle. 

To summarize our estimation results, it is clear from table 3.10 that the estimated 

model can fit the data based on volatilities of the endogenous variables, but not 

based on dynamics (that is – VAR coefficients).  It must be noted that the parameter 

estimates in the volatility-based estimates (models (A) and (B)) are at odds with the 

values conventionally used in the search and matching literature.  While this is not in 

itself a problem, the fact that four out the six estimated parameters for models (A) 

and (B) are on the corners of the estimation bounds implies that the model could fit 

the data more closely by violating the theoretical (and in the case of the upper bound 

of the vacancy cost parameter, pragmatic) constraints imposed upon it.   

So far in this discussion we have focussed on the results of our model in terms of the 

standard deviation of the endogenous variables, as most of the closely related 
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literature has been preoccupied with the relative volatilities of market tightness, 

unemployment, vacancies and productivity rather than the dynamics.   Fitting the 

data based on VAR coefficients is a stringent test and it is not surprising that 

Shimer’s parameters in our model perform poorly.  Neither is it surprising that the 

estimation procedure fails to find any set of parameters in the permitted parameter 

space that can fit the model to the data based on dynamics.  The failure of 

propagation in the basic Mortensen-Pissarides model has been already noted in the 

literature, by for example Fujita and Ramey (2007).  

It must be noted that our modelling of shocks is somewhat different to the original 

Mortensen-Pissarides (1994) model, as well as that of Shimer (2005).  The original 

formulation of the model uses a three state Markov process as an aggregate shock.  

These shocks are to (in our notation)   (interpreted in that model as “price”, but since 

more commonly given the interpretation of aggregate productivity, including in 

Shimer (2005(a))).  There is also a shock to idiosyncratic job productivity in the 

original paper, assumed to be uniform on the [-1,1] interval.  The original Mortensen 

Pissarides model is of type (b) (in the categorisation of chapter 1).  Shimer’s version 

of the Mortensen Pissarides model is however of type (a).  This means that 

separations are exogenous, and are not modelled as a response to changes in the 

idiosyncratic productivity of jobs as in the type (b) model.  Aggregate shocks are 

modelled as a Poisson process on a grid.  Shimer tries out a variety of different 

shock variables, including to the separation rate and to workers’ bargaining power, 

but finds that shocks to   alone allow the endogenous variables of the model to 

match the moments of the data better, for the reasons discussed in Chapter 1.  

Yashiv (2006) adds shocks to the separation rate and to the discount rate. 

 

The point here is that the relationship between the shocks in the theoretical and the 

empirical model is weak.  The literature has not taken a uniform stance on which 

shocks are included – Shimer tries a variety of specifications and uses that which 

results in the best fit.  This may be because Shimer, and the associated Shimer 

puzzle literature, takes a model which was originally calibrated to quarterly data for 

the U.S manufacturing sector alone, for the short 17 year period 1972-1988, and 

applied to aggregate US data for a much longer 53 year period, 1951-2003.  Later 

work has combines the basic search and matching model with (for example), 
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monetary shocks (see Barnichon (2010.)  It is true however that productivity shocks 

are included in most Mortensen-Pissarides type models. 

Our model abandons the discrete-grid approach to shocks, used by Mortensen and 

Pissarides, Shimer and others.  The reason is that our procedure requires us to 

bootstrap the innovations to the exogenous variables.  Discretising productivity can 

needlessly add approximation error if there are not enough steps, therefore we find it 

simplest to keep productivity on the continuous scale in which it appears in the data.  

The same applies to the separation-rate shocks.  

Productivity shocks are common to almost all Mortensen-Pissarides type models, 

and are an essential part of the Shimer puzzle.  Separation rate shocks are more 

controversial (Shimer rejects their use as he finds they lead to a positive correlation 

between vacancies and unemployment).  However, we have followed Yashiv (2006) 

in including them.  (Apart from modelling endogenous separations, which would take 

us too far from the Shimer framework, we would otherwise have to keep separations 

constant, which we feel would be worse, especially given the results of the more 

recent empirical gross flows literature, which shows that separations do play a role in 

the evolution of unemployment, see for example, Fujita and Ramey (2009)). 

Finally, we note that the structural shocks which we introduce as part of our indirect 

inference procedure are a departure from previous work.  These shocks contain the 

effects of unobserved factors, which lie outside of the purview of the theoretical 

model.  The theory therefore does not have anything to say about the expected 

magnitude or source of these shocks, and the fact that they are large suggests that 

these omitted factors are important.  

   In our version of the model we take non-wage income or home production, to 

be a parameter, as in most of the related literature.  The reason for this is that it is 

very difficult to come up with an adequate summary measure of a highly contingent 

benefit system for the whole U.S economy which is suitable for use in an aggregate 

model.  Similarly, creating a time-series for the value of home-production would 

hardly be straightforward.  In our model, non-wage income enters the solution to the 

Nash-bargain wage equation, however it vanishes when we linearize the model.  

This is not the case in most of the search and matching literature, which does not 

tend to linearize its models before simulating them.  The fact that our model lacks the 

parameter prevents us from making full comparisons to certain other models and 

testing their full set of parameterisations.  Shimer’s (2005) model includes a non-
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wage income parameter, so does the model of Hagedorn and Manovskii (2008).  

The latter stress an interaction between the level of non-labour income and 

bargaining power in the determination of the response of market-tightness to 

productivity changes in the Mortensen-Pissarides model.  Obviously, our version of 

the model is unable to capture this effect.  One solution, proposed by Pissarides 

(2000) and used by Yashiv (2006) would be to make the parameter proportional to 

wages – the parameter then becomes a replacement ratio.  Again, the following 

chapter extends the model in this direction. 

  

  This chapter attempted to estimate and test a very simple version of the 

Mortensen-Pissarides model using indirect inference.  One major simplification was 

the imposition of static expectations – this is contrary to the usual assumption in this 

literature (including that in Yashiv’s (2006) paper) which is that expectations are 

rational.  Another is the fact that the model used here ignores non-labour income and 

unemployment benefits as mentioned previously.  It is clear that we need to deal with 

these issues before coming to definitive conclusions about the model using indirect 

inference.  A separate issue is that the basic Mortensen-Pissarides model has 

already been seen to be an inadequate description of the labour market – from the 

point of view of the Shimer puzzle.  As discussed in Chapter 1, a large literature has 

emerged to try to generate volatility closer to that seen in the data.  Examples 

include wage-rigidity (see Shimer (2004) and Hall (2005)), and the specification of 

the search cost function (Yashiv (2006)).  The model here addresses none of these 

innovations, so that even if our reproduction of the Mortensen-Pissarides model had 

been entirely faithful, there is a limit to what we could expect to see in terms of 

empirical performance.  In Chapter 4 we attempt to address the problems 

simultaneously, by testing Yashiv’s (2006) full model, again using the method of 

indirect inference as a tool of exploration.        
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Appendix 3.1:  Mathematics of the model 

The model starts with a representative firm, that chooses      and    to solve the following 

maximization problem: 

       ∑(∏  
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[          (  )] 

 

(   )( ) 

 

The choice is subject to the evolution of employment equation which is a binding constraint in each 

period: 

     (        )              (   )( ) 

 

The first order conditions are as follows: 
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A transversality condition is also necessary.   

Note that in this model we treat the discount factor    as a parameter, so that      for all  .  The 

same goes for the discount rate  , since   
 

   
.   

 

A.3.1.1  Deriving the job-creation conditions (3.5)(a) and (3.6)(a): 

Beginning using the Bellman equation for the firm’s marginal value of a vacancy: 

  
   

   
   

     [          
  (        )    

 ] (   )( ) 

The model is predicated on the assumption that the firms open vacancies until the marginal value of a 

vacancy is driven to zero, in other words,   
    for all t.  This results in the condition: 

   
   
   

    [          
 ] 

Furthermore, in this version of the model we use static expectations, with the implication that       
  

  
 . 
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This implies that the value to the firm of a marginal filled job is: 

  
  

 
  
  

       
 

To derive the job creation condition, we substitute this and the   
     condition into the Bellman 

equation that gives value of the marginal value of a filled job to the firm, which is 
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Imposing the static expectations condition once again, and rearranging can be shown to give the 

result: 
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Since   
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The matching function implies that the firm’s job filling probability is given by           
  .  

Furthermore, the assumption of a Cobb-Douglas production function with a labour elasticity of output 

(   )means that the marginal product of labour is (   ) times the average product of labour.  This 

gives the final form of the job creation condition, expressed in terms of the vacancy-unemployment 

ratio   . 
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Since by the matching function           
   , the vacancy-unemployment ratio may also be re-

written in terms of the worker’s job finding probability.  Inverting the relationship gives    
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Collecting the terms in   gives: 
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This is the second form of the job finding probability that we use in the testing and estimation of the 

model. 

A.3.1.2. Deriving the wage equation under the assumption of Nash bargaining (3.5)(b) and (3.6)(b): 

The bargained wage is assumed to maximize the “Nash product”.  The bargaining power of the 

worker is given by the parameter   which can lie anywhere in the closed interval between zero and 

one.  The bargaining power of the firm is given by   .  The wage then satisfies: 

          (  
    

 )   (  
    

 )  

The solution to the problem can be shown to satisfy: 

  
    

  (   )(  
    

    
    

 ) 

Since it is assumed here that vacancies are opened until their marginal value   
    at all times, this 

simplifies to: 

(  
    

 )  [
 

   
]   

  

To derive the wage equation, both of the Bellman equations for workers are required, both that for the 

state of being employed and for the state of unemployment: 
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Taking the difference and simplifying gives: 
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Substituting [
 

   
]   

  for (  
    

 ) gives: 
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In the place of   
  we substitute the firm’s Bellman’s equation for the marginal value of filled job, in 

which the condition   
    for all t is assumed to hold, which is given by: 
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 ] 

Substituting and rearranging gives: 
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Finally, the assumption of static expectations allows us to write: 
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So that: 
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Substituting average for marginal productivity, and solving for    gives: 
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The matching function allows us to re-express the ratio 
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Without any data on    we assume it to be a constant,     . This gives the wage equation under 

Nash-bargaining: 
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Alternatively it may be expressed in terms of the job finding probability       : 
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A.3.1.3. Deriving steady state unemployment (3.5)(c) and (3.6)(c): 

Under the assumption that all labour force entrants are initially unemployed, the constraint can be 

written in terms of unemployment: 

              (     )                 

The model is however expressed in terms of rates.  We use lower case to denote rates out of the 

labour force   .    
  denotes the gross rate of growth of the labour force.  This gives: 

      
           (    )         (  
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We assume labour force growth to be constant, which parameterises   
  such that   

    .   
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           (    )         (    ) 

By the matching function (see the main text)                .  Therefore: 
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Finally we assume that unemployment is always in its steady state in each period.  This allows us to 

substitute    for     . 
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Under these assumptions, steady state unemployment can be written as: 
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Alternatively, since by the matching function           
   , unemployment can be written in terms of 

market-tightness as: 
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Appendix 3.2:  Applying the method of Indirect Inference testing  

There are two versions of the simple Yashiv-Mortensen-Pissarides model, the first of which has 

endogenous variables   ,    and    and the second of which contains       ,    and   .  Note that the 

exogenous variables,    and       , are the same in both versions of the model.  Let the first version 

with    be model m1 and the second with        be m2. 

We begin by writing the linearized version of each model in structural form: 
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.  The structural model 

matrices are given as follows: 
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             in the model matrices above are the steady-state counterparts to the variables in the 

model.  They are set to their mean values, which can be found in the second column of table 3.2 in 

the main text. 

  
  is a 3x1 vector of structural errors.  The first step in indirect inference testing is to find the 

structural errors, given the structural model matrices    and    and given the real world data. 

  
      

        

        

The structural errors are assumed to be independent AR(1) processes.  For each of the m structural 

errors of   
 , univariate AR(1)s are estimated and the residuals   ̂  

  determined: 

    
   ̂ 

       
    ̂  

  

  {     } 

Here   refers to the number of structural equation in the order given above.  Therefore      refers to 

the structural error for the job creation condition,     is the structural error for the wage equation, 

and     that for the steady-state unemployment condition.   

We also estimate independent AR(1) equations on each of the two exogenous variables. 

 ̃   ̂  ̃      ̂   

 ̃       ̂  ̃        ̂   

Estimating these AR(1) regressions will give five vectors of residual innovations per model, which are 

grouped together ready for bootstrapping into a Tx5 matrix as follows:   

         [ ̂ 
  ̂ 

  ̂ 
  ̂  ̂ ] 
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To draw a single bootstrap sample of length T, one simply makes T draws of rows of           at 

random with replacement. Indirect inference testing in fact requires multiple samples to be drawn.  we 

draw 2000 samples.  The result can be written as 2000 Tx5 matrices: 

           [ ̂̂ 
   

 ̂̂ 
   

 ̂̂ 
   

 ̂̂ 
   

 ̂̂ 
   
] 

           

These 2000 samples of length T represent simulated innovations.  As discussed in the main text, 

drawing a vector bootstrap in this way serves to preserve any correlation between  To calculate 

simulated structural errors and simulated samples of exogenous variables, one uses the estimates 

 ̂ 
    ̂ 

 ,  ̂ 
  ,  ̂  and  ̂  from the AR(1) regressions.  One also requires initial values for the innovation.    

For these we simply use the first row of           .   Note that we use a “hat” to denote an 

estimated value, and a “double-hat” to denote a simulated value.  (All of the bootstrapped residuals 

we count as simulated because they have been re-sampled.)  The structural errors and exogenous 

variables can therefore be written as follows: 
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As the structural model contains no expectations, it is simple to solve for the simulated endogenous 

variables, given the simulated exogenous variables and simulated structural errors.  We compute 

2000 samples of simulated endogenous variables as follows.   

Let: 

 ̂̂ 
 
 [

 ̂̂ 
  

 ̂̂     
 

] 

 ̂̂ 
   

 

[
 
 
  ̂̂   
   

 ̂̂   
   

 ̂̂   
   
]
 
 
 

 

        

           

  {     } 

Then the simulated endogenous variables are given by: 
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 ̂̂ 
   

 [  ]     ̂̂ 
 
 [  ]   ̂̂ 

   
 

        

           

  {     } 

It is useful to represent the simulated data as full-sample vectors: 

 ̂̂    [
 ̂̂ 
    

 

 ̂̂ 
    

] 

           

  {     } 

Also let: 

    [
      
   
      

] 

    [

        
   

          

] 

The auxiliary model of choice may then be estimated on each of the samples of  ̂̂     or  ̂̂    , and on 

the true data     or    . 
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Chapter 4:  Testing the Yashiv (2006) extension of the Mortensen-Pissarides 

model using indirect inference 

4.1 Introduction  

4.2 Model 

4.3 Data sources 

4.4 Parameter values and the steady state 

4.5 The linearized system of equations 

4.6 Methodology 

4.7 Differences between Yashiv (2006) and this paper 

4.8 Results 

4.9 Discussion 

4.10 Conclusion 

 

4.1 Introduction 

Although a useful first step in showing how the method of indirect inference can be 

applied to aggregate search and matching models, the representation of the 

Mortensen Pissarides model used in Chapter 3 contained simplifications compared 

to those typically used in evaluation.  The most important of these is the lack of 

dynamics in the model – meaning the use of steady-state unemployment in every 

period as opposed to the dynamic form of the unemployment equation.  It also 

contained static expectations, contrary to most of the literature that uses rational 

expectations in aggregate search models.  In this chapter we amend the analysis to 

deal with these issues. 

 

Secondly, the model estimated is a relatively old-fashioned aggregate search 

theoretic sort of model, of the type criticised by Shimer (2005) and Costain and 

Reiter (2007).  As was described in Chapter 1, Shimer argued that these models 

failed to generate realistic volatility in labour market variables, essentially because 

labour was unrealistically successful in absorbing gains in productivity into wages.  

There is now a lengthy literature that suggests amendments to these models – also 

described in Chapter 1. 
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In this chapter we apply the method of indirect inference to a model created and 

evaluated by Professor Eran Yashiv, in a paper entitled “Evaluating the Performance 

of the Search and Matching Model.”  The paper makes several amendments to the 

standard search and matching model, and Yashiv calibrates and simulates the 

model, and compares the simulated moments to those of U.S data.  The main 

amendment to the standard model, which Yashiv credits with the model’s superior 

empirical performance, is the incorporation of non-linear search costs facing the firm 

in vacancy creation and in hiring.  Specifically, he makes search costs a cubic 

function of a linear combination of hires and vacancies, going against the standard 

assumption that search costs are linear in vacancies which was also used in Chapter 

3.    

The analysis of this chapter is a departure from the standard model in two important 

ways.  Firstly, we use Yashiv’s non-linear search cost specification.  Secondly, we 

evaluate the model using indirect inference.  Chapter 1 mentioned different ideas 

that have been suggested to resolve the Shimer puzzle, such as fixed firing costs, 

non-Nash bargaining.  Here, in focussing on the search cost function faced by the 

firm, we explore just one of these ideas.  The results of this augmented specification 

have already been explored in a calibration framework by Yashiv.  However, we are 

changing the method of analysis in using indirect inference, which is a departure 

from the normal calibration-based method of analysis.  Therefore, we argue that it 

makes sense to look at one just major change to the basic model at a time.  We 

leave for further work the evaluation of alternative suggested resolutions to the 

Shimer puzzle under Indirect Inference.  

The assumption of non-linear search costs is not arbitrary.  Yashiv builds on his 

previous econometric work which attempts to directly estimate a structural model of 

search costs, albeit in a different setting (and using different techniques to those 

used here.)     

In Yashiv (2000a) he models firm hiring for the Israeli economy as an attempt of a 

representative firm to maximize expected lifetime profits, by choosing a hiring level 

for each period.  His primary aim is to use the very comprehensive Israeli 

Employment Service dataset on firm hiring between 1975 and 1989 in order to 

search for best fitting hiring-cost function for the model.  The set of permissible 

functions are, in the notation used in Chapter 3 – (see Yashiv 2000a p495): 
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Table 4.1: Search cost specifications in Yashiv (2000a) 

Quadratic  

   
 

 
(
  

  
)
 

   

 

Generalized Power  

   
 

 
(
  

  
)
 

   

 
 

Polynomial  

   ∑
  
 

 

   

(
  

  
)
 

   

 
        

Notes: Θ is a scale parameter, which plays a similar role to 

  in Chapter 3.     is number of period t hires of the firm. 
   is the firm’s output level.     is the firm’s number of 
employees in period t. 

 

Yashiv uses General Method of Moments (GMM) to try to estimate the best cost 

function specification, as well as the Cobb-Douglas parameter   and the 

unemployment benefit parameter.  With respect to hiring costs, Yashiv finds the best 

fit (based on the J- test of over-identifying restrictions) – with a generalised 

exponential search cost function of the form: 

   
 

 
(
  

  
)
 

   

So that under the best specification, search costs are modelled so as to depend on 

the scale parameter   and the exponent parameter  .  The GMM procedure precisely 

estimates    and the range of estimates that are not rejected based on the J-test is 

[4.69, 4.94], indicating that the estimates are stable with respect to the choice of 

timing and instruments.   However the estimates for the scale parameter   show a 

greater dispersion between specifications. 

Yashiv attempts to corroborate these results by decomposing the firm’s inter-

temporal condition into terms related to the expected value of the marginal cost and 

the variance of the marginal costs of hiring, respectively.  The marginal cost terms 

are interpreted as the asset value to the firm of a filled job, via the equilibrium 

condition of the model.  These asset value terms are decomposed in terms of 

sample covariances for transformations of other variables appearing in the firm’s 
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inter-temporal condition – that is, separation rates, real interest rates and marginal 

profit rates.  The postulated marginal cost function is the functional form selected by 

the J-test criterion in GMM, so again the task is to estimate   and  .  By choosing a 

range of the scale parameter, Yashiv compares the resulting exponent parameter 

arising when the sample moments are also fed into the expected value and variance 

terms of the asset.   To pin down the value of  , he uses that which arises when   is 

chosen so that both parameters are as close as possible to his acceptable GMM 

results.  These parameters used in conjunction with the other data also allow for the 

calculation of mean asset values, which are not observed in the real world. 

Yashiv (2000b) extends the analysis in Yashiv (2000a) in several ways.  The 

dynamic demand for labour is again estimated using GMM, however rather than 

looking for the best-fitting function of the hiring rate, he looks for the best fitting 

function of a weighted sum of the vacancy rate and the hiring rate, relative to 

employment.  The re-specification is to allow for the fact that firms may incur costs of 

maintaining (or indeed posting) vacancies, as well as when workers are matched.   

In practise Yashiv’s estimate of the weight on vacancies is not significantly different 

from zero (p1309)33, and he restricts the weight to be zero for the rest of the paper.  

Note however that he brings back the weighted function of vacancies in Yashiv 

(2006) – justifiably- since the latter paper is based on U.S aggregate data rather than 

the Israeli Employment Service dataset used in Yashiv (2000a) and (2000b).   The 

analysis presented here is an attempt to build upon the results of the latter of the 

three papers, therefore it also allows vacancies to affect search costs. 

Yashiv (2000b) also estimates a behavioural equation for workers.  This is facilitated 

by the fact that the Israeli Employment Service data contains a plausible proxy for 

the search intensity of the unemployed.   During the 1975-1989 sample period, the 

Employment Service recorded the number days of visits of job-seeking unemployed 

workers.  Yashiv reports that the employment service was at this time the only legal 

employment exchange in the Israeli labour market for those job-seekers that did not 

have a university degree.  (pp1303-1304).  This allows him to justify using the 

                                                           
33

 The point estimate is however 0.3, a value used in Yashiv (2000c) and in the analysis below (table 
4.3), both of which model the U.S rather than the Israeli labour market. 
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frequency of visits to the Employment Service as a proxy for worker search intensity 

– a variable that goes unobserved in most settings. 

In (2000b) Yashiv estimates the firm’s and the worker’s first-order conditions 

separately using GMM.  The results for the firm are consistent with those of (2000a), 

and the estimates of the power function parameter   in particular are almost exactly 

the same at around 4.7 with a small standard error (pp503-504 Yashiv (2000a) and 

p1309 Yashiv (2000b).34  The estimates for the scale parameter   have relatively 

large standard errors and are not robust to specification changes in both papers.  

The firm’s estimated asset value (that is, the ratio of the firm’s estimated marginal 

cost of search to output-per-worker) are similar for some values of  .  (The instability 

of estimates of   translates into unstable estimates for the firm’s asset value).    The 

similarity between papers is hardly surprising since the only innovation to the 

modelling of the firm in the latter paper is the previously mentioned weight on 

vacancies in the matching function.  The results are reported to be consistent with 

the small number of existing studies of hiring costs faced by firms, including 

Hamermesh (1993).   

In Yashiv (2006), the cubic hiring cost function is used to simulate a version of the 

aggregate search and matching model, with the objective of matching U.S data.  

Yashiv shows that the cubic hiring cost model generates simulated moments that are 

closer to the data for the period 1976Q1-2003Q3 than the version with linear search 

costs.  Clearly, it is not the case that, just because the model fits Israeli data, it is 

applicable to the US over a different sample period.  However, Yashiv identifies a 

general mechanism by which the cubic hiring cost mechanism may help to resolve 

the Shimer puzzle.  He also calibrates the model to US values.  The mechanism is 

most clearly explained in a working paper version of the same paper, Yashiv (2005), 

which shows that the non-linear search costs make the dynamic adjustment of 

vacancies slower and increases their persistence.  The persistence of vacancies 

feeds through to other parts of the model.  The greater volatility of the simulated 

variables of the model when search costs are non-linear is argued to be a direct 

consequence of the increased persistence (Yashiv (2005) p39, footnote 18).  If the 

                                                           
34

 Yashiv (2000a) is “Hiring as Investment Behaviour” and Yashiv (2000b) “The Determinants of 

Equilibrium Unemployment.” 
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model does turn out to be inappropriate for the US, indirect inference should allow us 

to reject the model based on a poor fit with the data. 

 

4.2 Model 

Yashiv’s (2006) model in its most general form begins with an infinitely lived 

representative firm, maximizing expected future profit: 

       ∑(∏  

 

   

)

 

   

[          ] (   )( ) 

Note however that,      (  ) so that wages can respond to the level of 

employment.     is the firm’s period t real output,    is the real wage and    is its 

employment level.     is the firm’s one period discount factor.   

Furthermore, the vacancy cost function now becomes (see Yashiv p913): 
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With derivatives (Yashiv p913, footnote 6): 
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As before the matching function is given by the constant returns to scale (CRS), 

Cobb-Douglas form: 

          
   

    (   )( ) 

Or, normalizing by the labour force   : 
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where lower case denotes rates out of the labour-force. 

The job-finding probabilities for workers and for firms are the same as in Chapter 1: 
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and the production function is also CRS: 

       
   

    (   ) 

 

The firm maximizes (4.1)(a) with respect to vacancies    and employment in the next 

period     , subject to the following law of motion for employment,   : 

  

     (        )            (   ) 

Note that the firm’s matching function in (4.1)(b) is, for    , a convex function of a 

linear combination of vacancies and hires, expressed relative to the stock of 

employment.  It is also linear in output, as is the standard assumption in the 

literature. 

(        ) is the proportion of employees out of    that do not separate, as        is 

the separation rate.         is the job-finding probability,    is the stock of vacancies, 

and so           is the number of new hires between t and t+1 since:  

          (
  
  
)
  

      
   

            

The first-order conditions are as follows.   (   )( ) is the first-order condition for   .    

(   )( ) is the first-order condition for     .  (   )( ) is the first-order condition for the 

Lagrange multiplier   .  (   )( )is the transversality condition. 



151 
 

   
   

          (   )( ) 

 

         [
     
     

          
     

     
 
     
     

]

       (          )     

(   )( ) 

 

     (        )            (   )( ) 

 

        [(∏  

   

   

) {
   
   

      
   

   
 
   
   

}]      (   )( ) 

 

Finally, firm and worker behaviour is assumed to correspond to the maximization of 

utility or profit, according to the value functions that describe the net benefit of being 

in each state: 
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As is usually the case in Mortensen-Pissarides-style models, it is assumed that firms 

enter until the benefit from an additional vacancy is zero. 

  
    (   ) 
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As in Chapter 3, and in general for Mortensen-Pissarides style models, wages are 

determined by Nash-bargaining over the surplus value from the matched state.    is 

the bargaining power of labour. 

           (  
    

 ) (  
    

 )    (   ) 

 

So far we have followed Yashiv’s model entirely.  However, we test a representation 

of the model that condenses into three linear equations, the endogenous variables of 

which are similar to those in Chapter 3.   

After some manipulation, one can derive the following equations of the pre-linearized 

model.  Of the variables and parameters that have not yet been mentioned or 

defined,    
  

    ⁄
 is the Lagrange multiplier normalized by output-per worker, 

   
    

  
 is the labour share of output,   is the Nash-bargaining power of labour, 

    
  

        ⁄

    ⁄
 is the (gross) quarter-on-quarter growth rate of output-per-worker.    

is a parameter that depends on the bargaining power of labour,   and also the 

replacement rate of income of unemployment benefits paid to unemployed workers: 

letting    denote the level of this benefit implies that        .    is then given by: 

  
 

  (   ) 
 

   is the gross quarter-on-quarter growth rate of the labour force, averaged over the 

sample and hence used as a parameter. 
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In Appendix 4.2(a)-4.2(e) we show how each of these equations is derived from the 

first-order conditions, and the other search theoretic assumptions that come from the 

Mortensen-Pissarides framework.   We first solve for the wages (that is we solve the 

problem in (4.9) to give   ) in Appendix 4.1, as this is necessary to derive equation 

(4.10)(a).  

Equation (4.10)(a) is an expression of the firm’s inter-temporal first order condition.  

It says that the appropriately scaled Lagrange multiplier is equal to the expected 

discounted value of the marginal profit from a filled job, plus the continuation value of 

that filled job.  To see this, note firstly that marginal profits are defined by: 

   

  
  

    
   
   

   
   (  )
   

    ⁄
 

and that the firm’s first order inter-temporal condition  (   )  can therefore be 

written35 

  

    
        [    ]        (          )     

which implies that      
   

 
                 .  Equation (4.10)(b) is the firm’s 

intra-temporal condition, which says the firm equates the marginal cost of a vacancy 

with its expected marginal benefit, (the value of an extra employee in the following 

period, equal to the current period Lagrange multiplier).   (4.10)(c) is the job-finding 

probability, expressed in terms of the vacancy and employment rates (note that it 

could just as easily be expressed in terms of the vacancy unemployment ratio).  The 

functional form arises from the Cobb-Douglas matching function specification.   

(4.10)(d) is the solution for the labour share, which is shown to be increasing in both 

marginal search costs and in        multiplied by the marginal value of a filled job to 

                                                           
35

 Note that this is spelled out clearly only in Yashiv’s technical appendix to the paper, p6. 
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the firm.  The whole expression is multiplied by  , which as demonstrated above is 

increasing both in the labour bargaining-power parameter    and the benefit or non-

work income replacement ratio  .  These variables reflect the familiar intuition behind 

the Nash-bargaining assumption, which is that workers use their bargaining power to 

capture a proportion of the rents that accrue to workers and firms as a result of being 

in a “matched” state.  (4.10)(e) is an equation describing the evolution of the 

employment rate, which is determined by workers that do not separate from one 

period to the next [(        )  ] and by those unemployed workers that find jobs  

[      (    )]. 

 

4.3  Data sources 

Table 4.2 gives details of the data sources used in this chapter.  There are some 

differences between the data used in Chapter 3.    

Firstly, we have dispensed with the use of the vacancy-unemployment ratio    as a 

measure of market tightness entirely.  (Recall that in Chapter 3, both       and    

were used.)  The reason is mainly for the sake of being concise, however it must 

also be remembered that        may be measured independently of the vacancy rate 

   whereas   may not.  Following Yashiv’s argument that available measures of    

conflate vacancies filled by job-to-job movers with those filled by the unemployed, we 

reason that        is empirically a more appropriate variable to use (as in this model, 

as in Chapter 3,    may be expressed in terms of        by a simple monotonic 

transformation.)  Furthermore, the results of Chapter 3 give us no reason to favour    

over        . 
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Table 4.2:  Data definitions and sources. 
 

Variable 
 

Variable definition in 
model 

Source 

 
Endogenous variables: 

       
 

Job-finding probability 
among workers. 

       
      

  
 

 

The job finding-probability for workers is 
calculated as the ratio of our series for the 

hiring rate        to our series for the 

unemployment rate   . 

   
 

Labour share of output 
in nominal terms. 

   
    
     

 

For estimates of      (i.e. nominal payments 
to labour) we follow Yashiv (2006) in using the 
quarterly, seasonally-adjusted BEA series 
“Compensation of Employees, Paid” (code 
COE). We divide this by the quarterly 
seasonally-adjusted BEA series for (nominal) 
GDP (code GDP).  Data downloaded from the 
St. Louis Fed. 
http://research.stlouisfed.org/fred2/.   

   
 
 

Employment rate 
expressed as a 
proportion of the labour 
force. 

Employment is BLS series LNS12000000Q 
divided by our series for   .  The former is 
quarterly seasonally adjusted U.S 
unemployment, and was downloaded from 
http://www.bls.gov/cps/.   For details of   see 
below in this table. 

 
Exogenous variables: 

    
  
 

Quarter-on-quarter 
growth rate in real GDP 
per worker. 
 

    
  

        ⁄

    ⁄
 

 

We first calculate quarterly, seasonally-
adjusted series of real output per worker.  
Output is BEA real quarterly U.S gross 
domestic product, (code GDPC1).  We divide 
this by our series for    (see below).    

  is then 
simply the gross quarter-on-quarter growth-rate 
of the resulting series.  BEA data downloaded 
from the St. Louis Fed. 
http://research.stlouisfed.org/fred2.   

       
 
 

Separation probability of 
workers from 
employment into 
unemployment. 

We create estimates of quarterly flows by 
matching individuals in consecutive months 
using the U.S Current Population survey, and 
observing and recording any changes in their 
labour market status between months.  To do 
this we adapted code which has been made 
public by Robert Shimer.  See the main text for 
details.  This method gives a quarterly 
seasonally adjusted series of estimates for 
movements from employment to 
unemployment.  To generate the separation 

probability       we divide by   .    

   
 
 
 

Firm’s discount factor. We use the quarterly Moody’s Seasoned BAA 
Corporate Bond Yield (BEA code BAA).  The 
quarterly figures are averages of daily yields.   
We seasonally adjust the series using quarterly 
dummy variables.  Data downloaded from the 
St. Louis Fed. 
http://research.stlouisfed.org/fred2.   
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Other variables (used as means or in the calculation of exogenous and endogenous 
variables): 

       

 

 We create estimates of quarterly flows by 
matching individuals in consecutive months 
using the U.S Current Population survey, and 
observing and recording any changes in their 
labour market status between months.  To do 
this we adapted code which has been made 
public by Robert Shimer. This method gives a 
quarterly seasonally adjusted series of 
estimates for movements from unemployment 
to employment,       .  To get the rate         

we divide by the labour force    (see below).   

   
 

Labour force.     
 
Note that the 
unemployment rate   , 
and where required the 
vacancy rate    and 

matching rate    are all 
expressed as 
proportions of the labour 
force.  

For the labour force we use BLS series 
LNS11000000Q.  This is the quarterly 
seasonally adjusted U.S civilian labour force.  
The data was downloaded from 
http://www.bls.gov/cps/. 

   
 

Unemployment rate.   Calculated as      (see above). 

  
  
 

Quarterly (gross) growth 
rate of the labour force.   

  
  

    
  

 

Note that we only 
actually use the mean of 
this value for the sample 

period, so that    takes 
the role of a parameter. 

Calculated as the gross quarter on quarter 
growth of   . 

 

A second difference in the choice of variables between those used here and in 

Chapter 3 is in regards to the use of the labour share of nominal GDP,   , as 

opposed to real wages.  Yashiv himself uses this transformation rather than real 

wages.  The reason is essentially that Yashiv chooses to express labour productivity 

(output per worker) in terms of its quarterly growth rate, and uses this as a driving 

force in his model.  Quarterly growth in output per worker has the benefit of being 

stationary.  Imposing this transformation requires us to normalize the job-creation 

condition by output-per-worker.  Dividing wages by output per worker gives the 

labour share in GDP.  Thus, re-specifying productivity also requires that we recast 

wages in this way.  We also follow Yashiv in using growth in output-per-worker, 

rather than the level as in Chapter 3 (See appendices 4.21 and 4.24 for details.) 

 

Another important difference is that the labour market dynamics are represented by 
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a difference equation in the employment rate rather than the unemployment rate – 

again so as to follow Yashiv as closely as possible for the sake of comparability.  

Note however that due to the fact that only two labour market states are modelled 

(that is, employment and unemployment), the two dynamic equations of Chapter 3 

(in the unemployment rate) and Chapter 4 (in the employment rate) are formally 

equivalent. 

 

Finally, there is an additional exogenous variable compared with the analysis in 

Chapter 3.  Yashiv uses the discount factor    as an exogenous variable, 

representing the firm’s financing costs.  For data Yashiv uses a weighted average of 

average debt and equity financing costs as a measure of the cost of capital.  This is 

an attempt to capture the range of means of financing that are available to different 

firms across the US economy.  Unfortunately, we are unable to obtain a comparable 

measure of equity financing costs.  For data on    we therefore use only a measure 

of the interest rate on BAA rated U.S corporate debt.     

 

4.4 Parameter values and the steady state: 

The steady state is more important in Chapter 4 than in the model used in Chapter 3.  

There are two main reasons for this.  Firstly, Yashiv makes a subset of the model 

parameters functions of a smaller subset of steady state parameters.  There are nine 

steady-state conditions which determine these parameter values (see (4.11)(a)-(i)).  

Twelve parameters have their values determined by Yashiv – these appear in the 

first panel of table 4.3.  The remaining nine parameters in the bottom panel of the 

table are determined by the steady-state conditions.   The second reason that the 

steady-state is important for Yashiv’s model is that some of the parameters 

represent the steady-states of variables which appear as exogenous or endogenous 

variables in the model.  Yashiv’s original model is written in terms of log-deviations 

from these parameter values, allowing for the representation of the model in its log-

linearized form.  The use of these parameters as steady-state values allows Yashiv 

to avoid the use of an HP-filter or other time-series de-trending method.  One could 

argue that this is preferable in the sense that the steady-state around which the 

variables are postulated to deviate is part of the model, rather than imposed a-

theoretically.  There is however a practical problem with the assumption of the 

constant steady-state for the whole of the sample period, which we discuss below.   
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Ultimately, this means that we use the HP-filter to de-trend our variables, rather than 

Yashiv’s steady state values. 

 

Table 4.3:  Steady state values for different model specifications - comparison with 
Yashiv (2006) 

    (i) (ii) (iii) (iv) 

    Yashiv (2006) Nanton 

  Pool: 0 1 0 0 

 

Search 
costs: γ=2 γ=2 γ=0 

            

Production 1-α 0.68 0.68 0.68 

Matching σ 0.4 0.4 0.4 

Hiring (convexity) γ 2 2 0 

Hiring (vacancy weight) φ 0.3 0.3 0.3 

Productivity growth Gx-1 0.003536 0.0037328 0.0037328 

Labour force growth Gl-1 0.004296 0.004199 0.0039294 0.0039294 

Discount factor β 0.9929 0.9081 0.9081 

Separation rate δ 0.0404 0.0315 0.0315 

Unemployment u 0.063 0.104 0.0634 0.0634 

Labour share s 0.579 0.575 0.575 

Vacancy matching rate Q 0.9 0.9 0.9 

Benefit replacement rate τ 0.25 0.25 0.25 

Matching scale param. μ 0.8 0.85 0.724 0.724 

Hiring scale param. Θ 465 82 715 2 

Wage bargaining param. ξ 0.37 0.41 0.40 0.29 

Wage parameter η 0.44 0.48 0.47 0.35 

Vacancy rate v 0.047 0.089 0.037 0.037 

Market tightness v/u 0.74 0.86 0.58 0.58 
Workers' bargaining 
power P 0.67 0.77 0.52 0.52 

Profits π 0.05 0.07 0.13 0.21 

Asset value λ 1.02 0.73 0.99 1.62 

 Notes: Columns (iii) and (iv) entitled “Nanton” refers to our own steady state results in 

this paper using system (4.11).  All of our analysis is based upon “Pool 0” – the official 
BLS definition of unemployment.  Yashiv, by contrast presents results for two different 
Pools – one of which is Pool 0, the other, Pool 1 includes a subset of the 
economically inactive.  See the main text for details.  Note that the first 12 rows of this 
table corresponds to calibrated values, the remaining 9 are the solutions to the 
steady-state system.  

 

  Many of the parameter values in the top panel are justified with reference to 

previous econometric studies.   Merz and Yashiv (2006) give a point-estimate the 

labour elasticity of Cobb-Douglas output for the U.S,     as 0.68.  The important 

calibrated value for the hiring convexity parameter   – a value of around 2 - comes 



159 
 

from the same study.  The calibrated value of 0.3 for the relative weight on vacancies 

as opposed to new hires in the vacancy cost function,   comes from the GMM 

estimate in Yashiv (2000b).  The elasticity of hires with respect to unemployment,  , 

set to 0.4 is based on Blanchard and Diamond’s (1989) estimate for the U.S 

manufacturing sector.  The steady-state value for the job-filling probability for firms 

 , of 0.9 comes from a U.S study by Burdett and Cunningham (1982).  The benefit 

replacement rate   is set to 25/99 based on a study by Anderson and Meyer (1997), 

although Yashiv reports finding his simulation results scarcely affected by different 

values.  Yashiv (2006) p926 is the reference for these values.  These parameter 

values are summarized in the top panel of table 4.1, in columns (i) and (ii). 

  The aim of this chapter is to evaluate Yashiv’s model under these parameter 

values using the method of indirect inference.  We also wish to use indirect inference 

to examine how the fit of the model is affected by the use of cubic rather than linear 

search costs.  For this reason, we keep the values of the parameters mentioned in 

the preceding paragraph the same in our analysis, with the exception of  , which we 

set alternately to 2 and to 0, for cubic and linear search costs respectively (see table 

4.3 columns (iii) and (iv), top panel.  The parameters that appear in the top panel of 

table 4.3 which we have not yet mentioned are sample means of Yashiv’s data.  

These are, productivity growth     , labour force growth     , the discount rate 

 , the separation rate  , the unemployment rate   and the labour share of output  .  

Yashiv analyses the model using different ‘pools’ (i.e. measures) of unemployment, 

the most empirically successful of which turn out to be the conventional measure of 

unemployment that accords with the official CPS definition (‘pool 0’) and the official 

unemployment measure, plus those that are officially economically inactive members 

of the working-age population, but who say that they ‘want a job now’ (‘pool 1’) 

(Yashiv (2006), p919).  It is for this reason that there are two figures for mean 

unemployment and for mean labour force growth in the first panel of table 4.3- the 

figures for pool 0 are in column (i) and those for pool 1 are in column (ii).36  Our 

dataset differs from Yashiv’s to varying degrees among some variables.  Therefore, 

for those parameters which are set equal to sample means, we use the sample 

means of our own dataset rather than those of Yashiv’s.  Our values for mean 

                                                           
36

 Note that we differ from Yashiv in that we only consider the official pool of unemployment – Pool 0 - 

in the evaluation of our model.  Columns (iii) and (iv) of table 4.3 correspond not to different definitions 

of unemployment, but to different values of the search cost parameter  . 
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productivity growth       are somewhat higher, and those for labour force growth 

     somewhat lower.  Also lower are the mean separation rates   and the labour 

share  .  The biggest difference is the between the values for the mean discount 

factor  , which is lower by roughly 8 percentage points in our version.  The reason is 

that our data for the discount factor is very different from that constructed by Yashiv, 

see table 4.2.   

The nine parameters of the model in the bottom panel of table 4.3 are solved-for 

using nine steady-state conditions, which are listed below in equations (    )( )  

(    )( ).  These are solved jointly as a non-linear system.   Details of the derivation 

of these equations is given in Appendix A.4.3.  Note that the solutions for the 

parameter values in the bottom panels of column (i) and column (iii) of table 4.2 are 

similar.  (These columns have both the same definition of unemployment (that is, the 

unemployment pool is pool 0) and are based on the assumption of cubic search 

costs:    .)    Differences which do arise are the result of the different values for 

    ,     ,  ,   and  , and also from the fact that the solution is actually a non-

linear approximation, which may have been implemented somewhat differently in 

Yashiv’s paper.   The greatest differences between parameters are for the hiring 

scale parameter   (which, as can be seen by comparison with columns (ii) and (iv), 

is sensitive to changes in the initial parameter values), and the mean marginal profit 

rate  , for which our parameterisation results in a value of more than double the 

comparable figure in Yashiv’s study (0.13 versus 0.05).   
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Table 4.3 also reveals the effect on the steady-state parameters of changing the 

search costs from cubic (   ) to linear (   ).  This can be seen by comparing 

columns (iii) and (iv).  Only four out of nine of the steady-state conditions are 

affected: these are ((4.11)(f), (g), (h) and (i)).   The steady-state marginal profit rate   
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can be seen to roughly double – this is because there is large increase in steady-

state vacancy costs, which is not offset by a large fall in the scale of matching   in 

equation (4.11)(h).  The marginal profit increase is also helped by a fall in labour’s 

bargaining power   of around one-quarter, and consequently in   which is increasing 

in   as can be seen in (4.11)(f).  This fall in bargaining power is required to maintain 

the steady state condition (4.11)(i), as the condition requires that there be no 

increase in the labour share which has been calibrated to the sample mean, and is 

therefore invariant to  .  Equation (4.11)(g) says that the value to the firm of a 

marginal employed worker (normalized by the average product of labour),    is equal 

to the firm’s marginal profit rate   multiplied by a discount factor.  The discount factor 

is also invariant to changes in  , which means that the value to the firm of a marginal 

employed worker increases when search costs are changed from being cubic to 

linear.   

In summary, our data-set differs from Yashiv’s in several important ways due to data 

availability.  This is an issue because we don’t have access to Yashiv’s original 

dataset, and are therefore forced to reconstruct the data as closely as possible using 

the variable descriptions given in Yashiv’s paper.  Some of the data are not 

accessible to us, and some appear to have been subject to revisions.  These data 

differences imply somewhat different means, and hence different steady-states for a 

subset of our variables (the first twelve rows of table 4.3).  We use the same steady-

state conditions as Yashiv to derive the steady-states for the remaining nine 

variables.  But as the parameters to the steady-state system are precisely those 

twelve variable means at the top of table 4.3, the resulting steady-states for the 

remaining nine variables are also different.  We argue that it makes more sense to 

use the actual means of our data for the original twelve variables, than it does to 

borrow the numerical means wholesale from Yashiv, when the latter are not the 

means of the data that we are actually using.  The remaining nine steady-states that 

are solved from the system are therefore numerically different from those of Yashiv, 

but are derived according to the same logic. 

  Ideally it would be better for the purposes of evaluating the model under indirect 

inference if we were to have exactly the same dataset.  However, this is not an 

option for us, and we are forced to compromise somewhat in the comparability of our 

results. 
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Note that below we also explore an alternative possibility for de-trending the data.  

That is, as an alternative de-trending method we use also use a log deviation around 

an HP(1600) filtered trend for each of our variables (as in Chapter 3).  Although we 

explore the model under both treatments, we end up using the HP-de-trended data 

for indirect inference testing37.  The reason is that it turns out that using log 

deviations around our constant mean values for the sample period fails to make our 

data stationary (see table 4.9 below ).  Again, here we deviate from Yashiv’s original 

paper.   

However, we note that there is nothing in Yashiv’s proposed mechanism (increased 

persistence of vacancies) that relies on de-trending the variables around a constant 

steady-state.  Indeed, the original Shimer (2005) puzzle was cast in terms of HP-de-

trended data.  Therefore, we maintain that HP-de-trending rather than steady-state 

de-trending should not be a gross distortion of the Yashiv model. De-trending using 

an HP-filter will of course result in different data generated and model generated 

moments, (since it will result in different bootstrap-residuals), as we document below.    

 

 

4.5  The linearized system of equations 

We combine equations (4.10)(a)- (4.10)(e) so as to eliminate    ,     ,        and   .  

The resulting system is given by (4.12)(a)-(c), in three equations, with three 

endogenous variables  ̃     ,  ̃  ,  ̃    (the –tilde notation expresses log deviations 

from an assumed steady state) and exogenous variables  ̃ 
 ,  ̃ 

  and  ̃ .   ̃  is of 

course pre-determined by period (   ).   To recap:  ̃      is the workers’ job finding 

probability,  ̃  is the labour share of output,  ̃    is the employment rate in period 

   .   

(4.12)(a) is the combined inter-temporal and intra-temporal condition.   (4.12)(b) is 

the equation for the labour-share.  (4.12)(c) is the log-linearized equation of motion 

for employment. 

In anticipation of the econometrics to follow, we note that equations (4.12)(a)-

(4.12)(c) are in structural form – they are conditions that have been derived from the 

                                                           
37

 Note that even when we de-trend the data using the HP-filter, the steady-state values are still used 
in the analysis, as they become parameters in the structural matrices of the model. 
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assumptions of the model (by way of log-linearization from an assumed steady 

state).  No effort has yet been made to solve them.  We have attached a structural 

error to the right-hand-side of each equation, given by     ,     and      respectively.   

These play an important role in the indirect inference testing procedure below. 

 

 

 

  
[[  (      )   ]

 

   
]  ̃      

 

  
[

 

   
]  ̃  

 

  
    ̃ 

        ̃     

  
   

 
   [ ̃   ]  ( 

   

 
    (     ))    ̃ 

 {(  (   )     ) [[  (      )   ]
 

   
]

    }   [ ̃       ]   (     ) [
 

   
]  [ ̃   ]       

(    )( ) 

 

 

  ̃  [
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   
(   )

   
[   (   )]

 
   

   
[   (    )   ]]  ̃     

 (
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   
(   )

   
 
    

   
)  ̃       

(    )( ) 

 

   ̃    (     ) ̃    ̃      
 (   )

 
 ̃           (    )( ) 

 

4.6  Methodology 

The method and ideas behind indirect inference were explained in detail in Chapter 

3.  Here we reproduce the schema from that chapter, highlighting the way in which 

we adapt the method for this particular model. 
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(1). Estimate the auxiliary model once on the data.   
 
The auxiliary models we will use (in separate tests) are the standard deviations of the 
endogenous variables (in which case     ) and VAR(1) coefficients from estimating a 

VAR on the endogenous variables (in which case    ). 
 
This will give us k parameter estimates. 
 

 ̂   for         . 
 

(2). Using the structural model, compute the r structural errors in  ̂  under  ̂ using 

 ̂   ( ̂ )    ( ̂ )    ( ̂ )       

and using actual data for   ,    and if necessary, using a VAR to obtain estimated data 

values for       .   

 

In this model,    , and the vectors are as follows: 
 

 ̂  [ ̂    ̂    ̂   ]  
 

   [ ̃      ̃  ̃   ]
 

 

 

   [ ̃ 
  ̃      ̃ ]

 
 

 
 ̂ contains all of the parameters in table 4.3, partitioned as required into  ̂ ,  ̂  and   ̂ .   

 

To obtain the structural errors   , we feed in data to   ,    and       , and we populate 

 ( ̂ ),   ( ̂ ) and  ( ̂ ) with the requisite parameters from (4.12)(a), (4.12)(b) and 

(4.12)(c).   
 

In Chapter 3,  ( ̂ ) was a matrix of zeros due to the assumption of static expectations.  

Here this is no longer the case, as the maintained assumption following Yashiv is that 
expectations are rational.   To obtain data on the expectations, we estimate a first order 
VAR on the log-linearized endogenous variables in    using our sample of data.  We 
construct fitted values from the regression and lead those values by one period.   

(3). Estimate univariate processes for each of the r structural errors in    so as to obtain white 
noise residuals for each.  Estimate univariate processes for the exogenous variables as 
well, and obtain the residuals which are also white noise.  And the end of step (2) one will 

have parameters  ̂     ̂   ̂     ̂   and residuals   ̂      ̂   ̂      ̂       in the notation 
above. 
 
That is, we estimate the following univariate AR(1) equations: 
 

      ̂          ̂  
      ̂          ̂  
      ̂          ̂  

 ̃ 
   ̂   ̃   

   ̂    

 ̃       ̂  ̃       ̂   

 ̃   ̂  ̃     ̂   

 

 
(3). We draw 1000 bootstrap pseudo-samples of the estimated residuals, 

[  ̂    ̂    ̂   ̂     ̂     ̂   ] ,  and the estimated univariate AR(1) equations to create 

1000 pseudo-samples of exogenous variables, of structural errors and of exogenous 
variables.  The re-sampling is done as a block bootstrap, as detailed in Chapter 3 so as to 
preserve any correlation between the residuals in the original time series. 
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(5). Solve the model under  ̂ for   , in terms of the structural errors and exogenous variables. 
 
Solving the model is somewhat more difficult than in Chapter 3 due to the presence of the 
expectations of endogenous variables in the structural equations.  We use the equation 
solver in the MATLAB package Dynare to compute the reduced form of the model.  The 
reduced form allows us to simulate the model 1000 times using the 1000 bootstrap samples 
of exogenous variables and error processes for the three structural equations.   
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 ̂̂   
 
]
 
 
 
 
 
 
 
 

 

 
 

           
 

Where    and    are 3x6 matrices both of which depend on the underlying parameter vector 

 ̂ .    
(5). Estimate the chosen K-parameter auxiliary model on each of the 1000 simulated samples. 

 

We use the notation  ̂ 
 
( ̂) for            and          to denote the     parameter of 

the chosen auxiliary model, estimated on the     pseudo-sample of exogenous and 

endogenous variables: { ̂̂ 
 
  ̂̂ 

 
}
   

 
.  As in Chapter 3, the auxiliary models are standard 

deviations of the model’s endogenous variables (for which the parameter vector is a three-
vector of standard deviation parameters, hence    ), and the VAR coefficients from a 

first-order VAR on the endogenous variables (in which case    ).   
 

Calculating the Wald statistic for the model under  ̂ requires the mean of each of the 
auxiliary model parameters across the 1000 simulations, we therefore calculate: 
 

 ̅ ( ̂)  
 

    
∑  ̂ 

 
( ̂)    

  for              

 
 

(7). 
 
 
 

Compute the Wald statistic 
 

For this we require   and  ( ̂).  The Wald is given by    ( ̂) . 

 

  [ ̂   ̅ ( ̂)   ̂   ̅ ( ̂)] 
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Which makes  ( ̂) a     matrix. 

 
(8). 

 
Compute the distribution of the Wald under the null as follows:      

 
   

 
  ( ̂)  

 
 for 

         , where: 
 

  
 
 [ ̂ 

 
( ̂)   ̅ ( ̂)   ̂ 

 
( ̂)   ̅ ( ̂)] 

 
For inference we use this finite-sample simulated distribution that can be constructed by 

ordering the 1000 values of      
 
 by increasing magnitude.  

 
(9). The Wald statistic from step (7) can then be compared to the distribution of Wald under the 

null hypothesis from the previous step.  The model under  ̂ is rejected if the Wald statistic 
lies in the tail outside of 95% of the values of the finite sample Wald distribution constructed 
in step (8). 
 

  

 

In contrast to the analysis in Chapter 3, we do not attempt to estimate the 

parameters of Yashiv’s model.  Our aim is simply to test the model under parameters 

that are purported to be successful in Yashiv (2006). 

 

4.7 Differences between Yashiv (2006) and this paper 

This chapter is an attempt to test the model of Yashiv (2006) using indirect inference, 

instead of using the simple comparison of moments that Yashiv employs.  The model 

we have used is however not a perfect replica of the one used in the original paper.   

Our aim in this section is firstly to enumerate the differences between the models 

and secondly to show that these differences are not important – that the two models 

produce broadly the same results when we use a similar method of evaluation on 

each (that is, Yashiv’s comparison of moments).  This will allow us to make a valid 

comparison between Yashiv’s and our results when we switch to using indirect 

inference, below.  In other words, it will allow us to be reasonably sure that any 

differences in the model evaluation arise from the econometric procedures used, and 

not from fundamental differences between the models.       

The first major difference between our model and that used by Yashiv, is that our 

model is smaller.  We condense the model into three linearized equations ((4.12)(a)-
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(c)), so as to remove all unobservables.  This is necessary for the implementation of 

indirect inference, because one requires data on all of the variables in the structural 

equations to derive the structural errors (step (2), above).  Removing unobservables 

is however not a requirement of Yashiv’s moment comparison method, since he is 

free to simulate the whole model –both observable and unobservable parts – and 

may then simply compute the moments on which he has comparable data. 

 Removing unobservables from our version of the model means eliminating 

expressions of the (normalized by average labour productivity) Lagrange multiplier    

at any time index.  This is easily done, since by the first order condition (4.6)(a)    is 

equal to to the (normalized) marginal cost of a vacancy divided by the firm’s hiring 

probability.   

There are however more unobservables that must be removed.  Since we ultimately 

agree with Yashiv’s contention that the Help-Wanted-Index does not capture the 

relevant concept of vacancies (recall from Chapter 3 that the problem is that the 

Help-Wanted Index conflates vacancies which are eventually filled by job-to-job 

movers with those filled by the unemployed)  and since we have no ready 

alternative, we must also eliminate the vacancy rate,   , and the firm’s hiring 

probability        , as the latter must be calculated using a measure of vacancies.  

Fortunately, as shown in Appendix 4.4, both of these variables may be eliminated 

entirely, by writing them in terms of employment    and the job-finding-probability for 

workers,       .  As we have argued in Chapter 3, the latter can be measured in a 

way that does not conflate job-to-job movers with flows from unemployment to 

employment, as it is the ratio of hires to unemployment, and we can use the CPS 

data to measure hires that are strictly from unemployment. 

The other major difference is in the way Yashiv chooses to model the three 

exogenous variables  ̃ 
   ̃       ̃.  He uses a reduced form VAR(1) estimated on his 

data for these variables, and treats the resulting reduced-form shocks as the source 

of shocks to his model.   This is the only source of shocks to his model.   

 

In our version of the model, there is something of a dilemma that we face with 

regards to the modelling of shocks.   The usual procedure with indirect inference is to 

assign one structural shock to each structural equation, as we have done in 
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(4.12)(a)-(4.12)(c).  The model solution will specify the appropriate linear 

combination of the structural shocks required to convert the structural error to a 

reduced form error, enabling simulation of the endogenous variables.  The 

exogenous variables and the structural errors are modelled as univariate AR(1) 

processes, but the residuals from each are bootstrapped as a block, with the aim of 

preserving any correlation between the residuals found in the data.  The problem 

here is that this method implies block-bootstrapping residuals for six variables (or 

more generally, the number of structural shocks plus the number of exogenous 

variables), whereas Yashiv’s model requires the modelling of just three exogenous 

shocks (or in general one shock per exogenous variable).  This issue turns out to be 

a crucial one for this paper - we later argue based on our indirect inference results 

that Yashiv’s calibration only produces simulated data that matches the data 

moments if one ignores the error inherent in the structural equations.  For the 

moment, however, we are concerned with matching Yashiv’s results as closely as 

possible.   For this, we assume that the three structural equations (4.12)(a)-(4.12)(c) 

hold exactly – that is we force     ,      and      to equal zero.  We then implement 

the block bootstrap procedure using only the estimated residuals to the AR(1) 

processes of the exogenous variables.  Effectively, this means amending steps (2)-

(4) (above) as follows: 

 

(3). Estimate univariate processes for the exogenous variables, and obtain the residuals which 

are also white noise.  And the end of step (2) one will have parameters  ̂     ̂   and 

residuals  ̂      ̂       in the notation above. 
 
That is, we estimate the following univariate AR(1) equations: 
 

 ̃ 
   ̂   ̃   

   ̂    

 ̃       ̂  ̃       ̂   

 ̃   ̂  ̃     ̂   

 

 
 

(4). Sample the residuals in order to create 1000 vector-bootstrapped samples of innovations.  
This means using each of the estimated univariate processes to generate 1000 simulated 
samples of structural errors, and 1000 samples of exogenous variables.   
 

We draw 1000 bootstrap pseudo-samples of the estimated residuals, [ ̂     ̂     ̂   ] ,  

and the estimated univariate AR(1) equations to create 1000 pseudo-samples of exogenous 
variables, of structural errors and of exogenous variables.  The re-sampling is done as a 
block bootstrap, as detailed in Chapter 3 so as to preserve any correlation between the 
residuals in the original time series. 
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(5). Solve the model under  ̂, in terms of the exogenous variables.  Use the simulated data to 
generate 1000 samples of endogenous variables. 
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   ( ̂) [

 ̂̂   
 

 ̂̂   
 
]    ( ̂)
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Where    is a     matrix and    is a     matrix.   
  

 

 

The three equations in step(3) used with a block-bootstrapped vector of residuals 

[ ̂     ̂     ̂   ]  are comparable with the reduced-form VAR(1) Yashiv uses to 

simulate his equations (p916): 

[

 ̃   
 ̃       

 ̃   

]   [

 ̃ 
 ̃     

 ̃   

]    

where   and   are both 3x3 matrices.  Note however that Yashiv’s specification is 

somewhat more general than our univariate equation setup in that it allows for 

dependencies between lagged exogenous variables (since   is not forced to be 

diagonal), as well as for contemporaneous reduced form shocks in    On the other 

hand,   in Yashiv’s analysis should capture the same shocks as our block bootstrap 

vector [ ̂     ̂    ̂   ].   

Yashiv simulates a log-linearized version of his model, in which variables are 

represented as percentage differences from their steady state values.  In order to 

compare the simulated series with the data, the data must be made stationary in the 

same way.  The steady-state values are given in table 4.3, columns (i) and (ii) (recall 

that Yashiv’s data and our data imply different steady states).  I begin by using our 
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own steady-state values (columns (iii) and (iv)) to de-trend our variables.    

There is however an econometric problem here.  The variables in the model are 

assumed to have been made stationary. We find evidence however that de-trending 

our sample of data in this way does not produce stationary data.  Table 4.4 presents 

Dickey-Fuller tests for unit roots on the individual data series used in our study.  In 

column (i) of the table, the series have been de-trended by taking log-differences 

from their respective steady-state values given in table 4.3.  For all variables with the 

exception of quarterly labour productivity growth  ̃     , we fail to reject the null 

hypothesis that each series has a unit root.  More prosaically, since many of the 

variables are trended and do not have a constant mean, it is not at all surprising that 

log-differencing from a constant does not counteract the non-stationarity.   

Table 4.4:  Dickey-fuller test for a unit root: McKinnon approximate 
P-values 

  (i) (ii) 

  
log-difference from 

steady state HP(1600)-filter 

 ̃      0.3268 0.006 

 ̃  0.2346 0.0007 

 ̃  0.1610 0.0012 

 ̃      0.0000 0.0000 

 ̃      0.3917 0.001 

 ̃  0.6507 0.0007 

P-values for the Dickey fuller test with 1 lag.  The sample size is 
109 in all cases.  Results are similar for 0 and 2 lags. 

 

A more standard approach to making variables stationary from the macroeconomics 

literature is to log-difference the data from their HP-filtered trend.  Column (ii) of table 

4.4 suggests that this works – after filtering and log-differencing the variables in this 

way we are able to reject the null hypothesis of a unit root for each at the 1% level of 

significance.  Note that this use of the HP-filter does deviate from the methodology of 

Yashiv (2006).   One could also object to using an a-theoretical time series process 

to treat the variables, although it is hard to see why log-differencing from an arbitrary 

sample mean is better in this respect.   

The graphs in figure 4.1 shows graphs each variable both HP-filtered and expressed 

as a log-difference from its steady state.  The graphs confirm the results of figure 4.4 

visually.  Simply log-differencing the variables around the steady-state appears to 
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allow the variables to retain a time-varying mean, in other words, it does not de-trend 

them properly.  This is not the case for the HP-filtered variables. 

 

Figure 4.1.  Steady-state and HP(1600) filter de-trended variables plotted for the 

sample period, 1976Q1-2003Q3.   

 

The strategy we use in the remainder of the paper is as follows.  In the next two 

tables (tables 4.5 and 4.6) we present summary statistics on different versions of the 

model, with a view to comparing our reproduction of Yashiv’s (2006) model with the 

original.  Thereafter, we focus on the HP-filtered version of the model, since we 

require stationary residuals for our indirect inference procedure. 
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Table 4.5:  Comparison of summary statistics from Yashiv's (2006) analysis with those from our versions of the model, with 
shocks to the exogenous variables only.    

  (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) 

 
Yashiv  (2006) Nanton 

Pool: 1 0 

  Data Model Data Model Data Model 

Shocks:   
Exog. 

only 
Exog. 

only   
Exog. 

only 
Exog. 

only   
Exog. 

only 
Exog. 

only 

Search costs:   γ=2 γ=0   γ=2 γ=0   γ=2 γ=0 

Data treatment: Steady-state de-trending Steady-state de-trended HP-filter(1600) de-trended 

AR1( ̃ ) 0.97 0.98 0.88 0.97 0.99 0.99 0.92 0.96 0.80 

AR1( ̃     ) 0.85 0.99 0.47 0.89 0.94 0.95 0.56 0.66 0.74 

AR1( ̃ ) 0.88 0.98 0.59 0.65 0.99 0.99 0.20 0.96 0.80 

Standard dev ( ̃ ) 0.022 0.021 0.015 0.015 0.011 0.005 0.007 0.003 0.002 

Standard dev ( ̃ ) 0.188 0.183 0.126 0.222 0.159 0.080 0.094 0.049 0.022 

Standard dev ( ̃     ) 0.085 0.052 0.09 0.117 0.061 0.045 0.055 0.023 0.016 

Standard dev ( ̃ ) 0.016 0.056 0.068 0.014 0.015 0.034 0.008 0.006 0.010 

corr( ̃   ̃     ) 0.81 0.997 0.89 0.92 0.93 0.78 0.75 0.83 0.70 

corr( ̃   ̃     ) -0.93 -1.000 -0.74 -0.93 -0.98 -0.79 -0.83 -0.92 -0.70 

corr( ̃   ̃ ) -0.16 0.997 0.94 -0.33 0.63 0.78 -0.14 0.49 0.68 

corr( ̃       ̃ ) 0.45 -0.99 -0.99 0.32 -0.35 -0.27 0.03 0.04 0.02 

corr( ̃       ̃     ) 0.91 0.86 0.60 0.88 0.98 0.95 0.67 0.98 0.83 

 Notes:  AR1( ̃ ) stands for the univariate AR(1) coefficient of the variable  ̃  .  Standard dev ( ̃ ) is the standard deviation of 

variable  ̃ .  corr( ̃   ̃ ) stands for the correlation between variables  ̃  and  ̃ .  Columns (iii) and (iv) entitled “Nanton” refers 
to our own steady state results in this paper using system (4.11).  All of our analysis is based upon “Pool 0” – the official 
BLS definition of unemployment.  Yashiv’s results are however based upon Pool 1, which includes a subset of the 
economically inactive.  “Exog only” means that the only shocks applied to the model are to the known exogenous variables: 

 ̃ 
 , ̃     and  ̃ . 
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Table 4.5 compares Yashiv’s results with our own results when we allow for shocks 

only to the exogenous variables in the way we outlined above.38  The results are not 

Wald statistics, but comparisons of model and data moments.   (Yashiv’s results are 

columns (i)-(iii), and our results are in columns (iv)-(ix)).  We present two separate 

analyses of our own results – in the first of which (columns (iv)-(vi)), we have 

attempted to make the data stationary by differencing from the steady state (though 

table 4.4 suggests that this is unsuccessful), and the second of which ((vii)-(ix)) we 

instead use the HP-filter for the same purpose.  Thus, columns (v) and (vi) are 

results from our reconstruction of Yashiv’s model using data that has been log-

differenced around our steady-state values.  Columns (viii) and (ix) are results from 

our reconstruction of Yashiv’s model using data that has been log differenced around 

the HP(1600)-filtered trend. 

 For each analysis we also present the dataset which is most comparable with the 

analysis (using the same data treatment method as for the simulated data).  The 

idea is to show that our model is a good representation of that of Yashiv,  because 

the moments that arise from simulations of our model have a similar relationship to 

the relevant data moments as they do in Yashiv’s model, especially with respect to 

changes in the search cost parameter,  .   

We begin with the AR(1) coefficients for unemployment,  ̃  hires,  ̃      and the 

labour share  ̃ .  Note that in Yashiv’s analysis in column (i), and in our analysis in 

column (iv) where the data are log-differenced from the steady state, unemployment 

and hires are highly persistent in the data.  The labour share is also highly persistent 

in the data by Yashiv’s reckoning, and moderately persistent in the data according to 

ours.   In simulations the persistence is maintained, whether search costs are 

assumed to be linear or cubic is essentially irrelevant.  Thus our results for these 

variables in columns (v) and (vi) are similar to Yashiv’s in (ii) and (iii).   The results 

are somewhat different when we use an HP filter on the variables (columns (vii)-

                                                           
38

 Table 4.5 augments panel (a) of table 7 on p931 of Yashiv (2006).  We choose this table because 

here Yashiv shows the effect of changing the search cost parameter   from     to      on chosen 
moments from his simulation.  His chosen moments do not correspond neatly to the variables we 

have chosen to use in our version of his model.   Specifically,  ̃      and  ̃  do not feature in our 

model although they are present in the table.  However, we do have data on both of these variables 
and for simulated values they are easily obtained from the variables we do choose to model.  Since 

        it follows that  ̃   
 

   
 ̃  and since        

      

  
 it follows that  ̃       ̃       ̃  

 ̃      
 

   
 ̃ . 
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(ix)).39  In particular, the persistence of hires in the data falls to 0.56 and that of the 

labour share falls to just 0.20.   Nevertheless, the simulated persistences in this case 

are reasonably high, and the effects of moving from cubic to linear search costs are 

fairly small.   

Moving on to examine the standard deviations, a comparison between columns (i) 

and (iv) reveals that there are differences between Yashiv’s data moments and our 

own – even when the data are treated in the same way (that is, log-differencing from 

the steady state values).   The employment rate is nearly one-third less volatile in our 

dataset than in Yashiv’s and the unemployment rate is nearly 20% more volatile.    

The hiring rate is nearly 40% more volatile in our dataset.  The labour share is 12.5% 

less volatile in our dataset than in Yashiv’s.  The reported data correlations all have 

same signs and are in most cases reasonably similar between datasets –  the 

notable exception is the correlation between employment and the labour share which 

is -0.16 in Yashiv’s dataset and -0.33 in our (log-differenced) dataset.   

There are many factors that could explain these differences.  Most likely is the fact 

that we use the block-bootstrap re-sampling procedure along with univariate AR(1) 

processes to simulate the exogenous shocks, whereas Yashiv uses his reduced 

form VAR.  These are not guaranteed to produce the same results.  Differences may 

also arise from our raw data samples.  Nevertheless, we would like to draw attention 

to the relationships between columns (i) (ii) and (iii), and columns (iv), (v) and (vi) in 

table 4.5 respectively.   Consider the simulations in columns (ii) and (v) (which are 

for    ), in particular the results for the rows containing standard deviations.  It can 

be verified that the difference between the model and simulated volatilities both have 

the same sign in both Yashiv and our results.  (That is, the simulated variables are 

less volatile than the data for all reported variables except for the labour share  ̃ ).  

The same can be said of the reported covariances, with the exception of 

   ( ̃       ̃     ).  In the cases of some moments (in particular 

   ( ̃     )     ( ̃   ̃     ) and     ( ̃   ̃ ))  , the differences between simulation 

and data are of comparable magnitude, and in others they are not.   Now consider 

columns (iii) and (vi).  In the case of the standard deviations and covariances, 

changing search costs so that the function is linear rather than cubic (that is, moving 

                                                           
39

 Why does the data treatment procedures (log deviations around the steady-state value or the HP-
filter) affect our simulation results?  The reason is that the treated exogenous variables are used in 
the block bootstrap, which is in turn used to determine the shocks that drive the simulations. 
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from     to    )  serves in the case of most reported moments to move the 

simulated moments in the same direction in our simulation as in Yashiv’s.  An 

examination of columns (vii)-(ix), which shows moments of data and simulated 

variables which have been log-differenced from an HP trend shows similar 

relationships, indicating that our reproduction of Yashiv’s model is robust to the data-

treatment procedure. 

 

4.8  Results 

In this section we present results for indirect inference testing of our version of 

Yashiv’s model, with a full set of shocks.  However, we make one more small change 

to the method.  Rather than simulating exogenous variables and structural shocks as 

AR(1) processes, we choose to model the structural shocks only, so that the 

exogenous parts of the model are subsumed within the structural errors.  To see how 

this works, note that we can collect the exogenous parts of the model (terms in  ̃ 
 , 

 ̃      and  ̃ )  in (4.12) into the respective structural error terms, so that we can write: 

 

  
[[  (      )   ]

 

   
]  ̃      

 

  
[

 

   
]  ̃   

   

 
   [ ̃   ]

 {(  (   )     ) [[  (      )   ]
 

   
]

    }   [ ̃       ]   (     ) [
 

   
]  [ ̃   ]      

  

(    )( ) 

 

  ̃  [
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   
(   )

   
[   (   )]

 
   

   
[   (    )   ]]  ̃     

 (
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   
(   )

   
 
    

   
)  ̃      

  

(    )( ) 

 



177 
 

 

   ̃    (     ) ̃  
 (   )

 
 ̃          

  

(    )( ) 

 

Where: 

    
       

 

  
    ̃ 

        ̃      ( 
   

 
    (     ))    ̃  

    
       

    
         ̃      

(    ) 

 

Steps (2)-(5) of the indirect inference methodology are now amended as follows: 

 

(2). Compute the r structural errors in    under  ̂ using  

 

  
   ( ̂ )    ( ̂ )       

 

using actual data for   ,    and if necessary, using a VAR to obtain       . 
 
Now we have the error vector: 
 

  
  [    

     
     

 ]  
 
where     

 ,     
  and     

  are equal to the expressions given(4.14).  Note however, we do not 

construct them according to equation (4.14) – they are calculated by feeding data into    
and        and parameter values into  (  ) and  (  ) and performing the matrix 
subtraction. 
  
 
As before,    , and: 
 

   [ ̃      ̃  ̃   ]
 
 

 

 
 

(2). Estimate univariate processes for each of the r structural errors in   
  so as to obtain white 

noise residuals for each.    At the end of step (2) one will have parameters  ̂     ̂    and 

residuals   ̂      ̂       in the notation above. 
 
That is, we estimate the following univariate AR(1) equations: 
 

    
   ̂     

    ̂  
 

    
   ̂       

    ̂  
 

    
   ̂       

    ̂  
 

 

 
(3). Resample the residuals in order to create 1000 vector-bootstrapped samples of innovations.  

This means using each of the estimated univariate processes to generate 1000 simulated 



178 
 

samples of structural errors, and 1000 samples of exogenous variables.   
 

We draw 1000 bootstrap pseudo-samples of the estimated residuals,[ ̂̂   
  ̂̂   

  ̂̂   
 ],  and 

the estimated univariate AR(1) equations to create 1000 pseudo-samples of exogenous 
variables, of structural errors and of exogenous variables.  The re-sampling is done as a 
block bootstrap, as detailed in Chapter 3 so as to preserve any correlation between the 
residuals in the original time series. 
 

 ̂̂   
  
  ̂  ̂̂     

  
  ̂̂   

  

 ̂̂   
  
  ̂  ̂̂     

  
  ̂̂   

  

 ̂̂   
  
  ̂  ̂̂     

  
  ̂̂   

  

 

 

 
 
 
 

           
 

 

(4). Solve the model under  ̂, in terms of the structural errors and exogenous variables.  Use the 
simulated data to generate 1000 samples of endogenous variables. 
 

The model solution now has the form: 
 

 ̂̂ 
 
   ( ̂)[ ̂̂   

 ]    ( ̂)

[
 
 
  ̂̂   

  

 ̂̂   
  

 ̂̂   
  
]
 
 
 
 

 
 

           
 

 
Where    and    are both 3x3 matrices.  

 

 

We then follow the remaining steps to implement the indirect inference procedure, 

under the chosen auxiliary models.  Before we present the indirect inference results, 

however, we first present the analogous table to 4.5, table 4.6 which differs from 

table 4.5 in that the shocks applied to the model are the bootstrapped structural 

shocks   
  [    

     
     

 ]   as opposed to only the shocks to the exogenous 

variables that were used as an approximation to Yashiv’s method. 
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Table 4.6:  Comparison of summary statistics from Yashiv's (2006) analysis with those from our versions of the model, with shocks 
to the structural equations only.    

  (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) 

Pool: 0 1 

  Yashiv Nanton 

  Data Model Data Model Data Model 

Shocks:   
Exog. 
only 

Exog. 
only 

Search 
costs: 

Endog. 
only 

Endog. 
only 

Search 
costs 

Endog. 
only 

Endog. 
only 

Search costs:   γ=2 γ=0 Shocks: γ=2 γ=0 Shocks: γ=2 γ=0 

Data treatment: Steady-state de-trending Steady-state de-trended HP-filter(1600) de-trended 

AR1( ̃ ) 0.97 0.98 0.88 0.97 0.99 0.97 0.92 0.97 0.90 

AR1( ̃     ) 0.85 0.99 0.46 0.89 0.81 0.72 0.56 0.58 0.65 

AR1( ̃ ) 0.88 0.98 0.59 0.65 0.99 0.97 0.20 0.97 0.90 

Standard dev( ̃ ) 0.022 0.021 0.015 0.015 0.192 0.024 0.007 0.204 0.007 

Standard dev ( ̃ ) 0.188 0.183 0.126 0.014 2.829 0.353 0.094 3.011 0.104 

Standard dev ( ̃     ) 0.085 0.052 0.09 0.117 0.513 0.160 0.055 0.830 0.075 

Standard dev ( ̃ ) 0.016 0.056 0.068 0.014 1.837 0.318 0.008 2.372 0.092 

corr( ̃   ̃     ) 0.81 0.997 0.89 0.92 -0.51 -0.13 0.75 -0.41 0.44 

corr( ̃   ̃     ) -0.93 -1.000 -0.74 -0.93 -0.99 -0.91 -0.83 -0.97 -0.71 

corr( ̃   ̃ ) -0.16 0.997 0.94 -0.33 0.89 0.88 -0.14 0.79 0.58 

corr( ̃       ̃ ) 0.45 -0.99 -0.99 0.32 0.84 0.49 0.03 0.88 0.38 

corr( ̃       ̃     ) 0.91 0.86 0.60 0.88 - - 0.67 - - 

  Notes:  AR1( ̃ ) stands for the univariate AR(1) coefficient of the variable  ̃  .  Standard dev ( ̃ ) is the standard deviation of 

variable  ̃ .  corr( ̃   ̃ ) stands for the correlation between variables  ̃  and  ̃ .  Columns (iii) and (iv) entitled “Nanton” refers to our 
own steady state results in this paper using system (4.11).  All of our analysis is based upon “Pool 0” – the official BLS definition of 
unemployment.  Yashiv’s results are however based upon Pool 1, which includes a subset of the economically inactive. “Endog 
only” means that the only shocks applied to the model are structural shocks – one for each equation.  These are defined such that 
they include any changes in exogenous variables which may affect the system.  See equation (4.14). 
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It is clear from looking at table 4.6 that applying shocks to the endogenous parts of 

the three structural equations of the model in general does not produce similar 

moments as applying shocks to only the exogenous variables, and so does not 

produce moments that are in any way comparable to the results of Yashiv.  In 

particular, the imposition of cubic search costs (   ) massively increases the 

standard deviations of the reported variables, to magnitudes of many times their 

sample counterparts.  (Table 4.6, columns (v) and (viii)).  The volatility is reduced 

when linear search costs are once again imposed (   ).  In the case where the 

variables are de-trended by the steady state, the model volatilities of  ̃  and  ̃  are 

still far from those in the data even when    . (table 4.6, column (vi)).  The model 

volatilities are close to those in the data for (   ) in the HP-filtered version of them 

model (column (ix)).  However, the results suggest the opposite finding to Yashiv 

(2006) – that imposing cubic search costs make the model’s performance worse 

rather than better. 

The issue appears to be that the structural equations (4.13)(a)-(4.13)(c) fit the data 

poorly, producing large structural errors, and large estimated innovations to those 

errors.  These produce volatile series of endogenous variables when the model is 

solved and simulated. 

The results are similarly disappointing for the model covariances.  For example 

    ( ̃   ̃ ) and     ( ̃   ̃ )both have the wrong sign under (   ).  Only 

    ( ̃   ̃     ) is reasonably close to its data counterpart.   

We now present more detailed results on the model’s performance, using the 

method of indirect inference.  As discussed above, table 4.4 suggests that taking the 

log-difference from Yashiv’s steady state is not sufficient to induce stationarity.  We 

therefore report results only for data de-trended using the HP-filter.  It is somewhat 

regrettable, since it would have useful to follow Yashiv’s data treatment procedures 

more exactly throughout the analysis.  However, table 4.6 presents evidence that the 

steady-state de-trended and HP-filtered model behave in broadly the same way with 

respect to changes in the search cost parameter,  .     

Table 4.7 shows results using the standard deviations of the endogenous variables 

as the auxiliary model.  We test both the version of the model with exogenous 

shocks only and the version with only shocks to the structural equations.  Results are 
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provided for versions of the model with cubic search costs (   ) and with linear 

search costs (   ).   

 

For the data we report the standard deviations of endogenous variables (column (i)), 

and for the simulations we report the mean and the 95% distribution of the standard 

deviations.   We also report the Wald statistic for the null hypothesis that the true 

data was generated by the model, and the 95th percentile of the Wald under the 

assumption that the null is true.   At the bottom of table 4.7 we also report the 

equivalent t-statistic, which is calculated so that it would equal 1.645 at the 95th 

percentile of the Wald.40  

 

We note first that for each version of the model the Wald is far outside the 95% 

critical value.  For both treatments of shocks the assumption that     does 

somewhat better than the assumption that     in the sense of having a smaller 

Wald statistic relative to the critical value,  As noted above, when     (when 

search costs are cubic) the model standard deviations are far closer to the data 

when shocks are only applied to the exogenous variables.  (Compare columns (ii) 

and (iv) with column (i).)  Out of all the specifications the only data standard 

deviation that fits into the 95% distribution of model standard deviations is that of 

employment  ̃ when     in the specification with shocks to each structural 

equation (column (iv)).  Note however that overall this model still does worse than 

the same shock specification with     (column (iii)).   

  

                                                           
40

  The formula for this is         (
√       √  (   )

√         √  (   )
), where      is the Wald statistic,        

is the 95
th
 percentile value of the Wald statistic under the null hypothesis that the data was generated 

by the model and   is the number of auxiliary model parameters. 
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Table 4.7:  Indirect inference testing results under Yashiv’s parameters using standard deviations 
of endogenous variables as the auxiliary model. 

    (i) (ii) (iii) (iv) (v) 

  
Data: Model 

  Shocks:   Exog. only Endog. only 

 

Search 
costs:   γ=2 γ=0 γ=2 γ=0 

    HP-filter de-trended 

   ( ̃     ) Mean 0.064 0.0326 0.0156 3.4387 0.0969 

 
95%  dist. - [0.028, 0.037] [0.012,0.020] [2.510, 4.529] [0.077, 0.120] 

          ( ̃ ) Mean 0.0075 0.0055 0.0101 2.3717 0.0919 

 
95%  dist. - [0.005, 0.006] [0.008, 0.013] [1.920, 2.908] [0.079, 0.106] 

       
   ( ̃ ) Mean 0.0071 0.0033 0.0015 0.2038 0.007 

 
95%  dist. - [0.003, 0.004] [0.001, 0.002] [0.144, 0.274] **[0.005, 0.009] 

  
          

Wald: 
  

- ***391 ***1,366,400 ***118 ***343 

P-value: 
  

- 0.000 0.000 0.000 0.000 

t-stat.: - 22.2 1412 11.3 19.9 

Notes: *** means statistically significant at the 1% level.     ( ̃ ) denotes the standard deviation of 

variable  ̃ . “Exog only” means that the only shocks applied to the model are to the known 

exogenous variables:  ̃ 
 , ̃     and  ̃ .  “Endog only” means that the only shocks applied to the 

model are structural shocks – one for each equation.  These are defined such that they include 
any changes in exogenous variables which may affect the system.  See equation (4.14).  The 
rows entitled “Mean” in columns (ii)-(v) denote the mean standard deviation of the given variable 
across 1000 simulations.  In column (i) it simply denotes the standard deviation of the data.  The 
rows entitled “95% dist” are the 95% confidence intervals of model standard deviations for the 
requisite variable. ** denotes that the model standard deviation (column (i)) falls inside the 
model’s 95% confidence interval for the same statistic. 

 

 

To summarize table 4.7, all of the models are rejected by the data when the auxiliary 

model is the vector of standard deviations of endogenous variables.  It is noteworthy 

that whereas the 95th percentiles of the Wald statistics under the null are of similar 

magnitude, the Walds themselves are wildly different.  We return to this issue in the 

discussion section. 

 

Table 4.8 contains indirect inference results based on an auxiliary model of VAR(1) 

coefficients estimated on the endogenous variables of the model.  In contrast to the 

analysis in table 4.7, we use only the version of the model with shocks to the 

structural equations, since applying shocks to the exogenous variables only results 

in simulated samples of endogenous variables which result in singular or near-

singular VARs when the auxiliary model is applied to them.   
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The results are disappointing.  Both versions of the model with respect to search 

costs (   ) and (   ) are rejected, although the Wald is smaller for the case in 

which    , that is, for linear search costs.   

Interestingly, for    , many of the data coefficients fall within the 95% model 

bounds, despite the overall rejection of the model.  For     which corresponds to 

the case of linear search costs, many of the 95% bounds of the auxiliary model’s 

parameters are tighter, so that more estimated data parameters lie outside of these 

bounds. 
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Table 4.8: Indirect inference testing results under Yashiv’s 
parameters using the VAR(1) coefficients of the endogenous 
variables as the auxiliary model. 

    (i) (ii) (iii) 

    Data Model 

Shocks:     Endog. only 

Search costs:   γ=2 γ=0 

 
HP-filter de-trended 

   ( ̃  ̃) Mean 0.28 0.27 1.5831 

 
95% dist   **[-4.9, 5.66] [1.22, 1.97] 

  
  

     ( ̃  ̃) Mean -0.03 0.52 -1.0822 

 
95% dist   **[-2.29, 3.29] [-1.42, -0.81] 

  
  

     ( ̃  ̃) Mean 4.65 5.6 0.9148 

 
95% dist   **[-55.83, 65.29] [-1.47, 3.42] 

  
  

     ( ̃  ̃) Mean 0 0.3 0.9029 

 
95% dist   [-5.57, 6.38] [0.46, 1.39] 

  
  

     ( ̃  ̃) Mean 0.65 0.6 -0.463 

 
95% dist   **[-2.63, 3.71] [-0.91, -0.11] 

  
  

     ( ̃  ̃) Mean 0.14 -3.53 1.0415 

 
95% dist   **[-73.82, 64.5] **[-1.82, 3.95] 

  
  

     ( ̃  ̃) Mean 0.01 -0.03 0.0373 

 
95% dist   **[-0.21, 0.16]  [0.02, 0.06] 

  
  

     ( ̃  ̃) Mean -0.1 0.04 -0.0392 

 
95% dist   **[-0.06, 0.13] **[-0.06, -0.02] 

  
  

     ( ̃  ̃) Mean 0.79 1.06 0.8236 

 
95% dist   **[-1.09, 3.19] **[0.71, 0.93] 

  
      

Wald:   - ***484,920 ***1005 

P-value:   - 0.000 0.000 

t-stat.:    -  807 33.6  
Notes: In the notation of this table,    ( ̃  ̃) denotes the VAR(1) coefficient 
that associates the variable  ̃ with the first lag of variable  ̃.  “Endog only” 
means that the only shocks applied to the model are structural shocks – one 
for each equation.  These are defined such that they include any changes in 
exogenous variables which may affect the system.  See equation (4.14).  The 
rows entitled “Mean” in columns (ii)-(v) denote the mean VAR(1) coefficient of 
the relevant variables across 1000 simulations.  In column (i) it simply denotes 
the same VAR(1) coefficient of the data.  The rows entitled “95% dist” are the 
95% confidence intervals of model VAR(1) coefficients for the requisite 
variable. ** denotes that the model standard deviation (column (i)) falls inside 
the model’s 95% confidence interval for the same statistic.   ***Indicates that 
the Wald statistics are significantly different at the 1% level. 
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As the fit of both models is very poor under both type of auxiliary model, we do not 

bother to use a third auxiliary model combining both the standard deviations of 

endogenous variables and their VAR(1) coefficients, as we did in Chapter 3.  Instead 

we move straight away to the discussion section. 

4.9  Discussion 

Chapter 1 reviewed literature on aggregate search and matching models, of the type 

developed by Mortensen and Pissarides.  We located Yashiv’s (2006) paper in the 

part of the literature that attempts to resolve the shortcomings of the standard model 

by modifying the way in which search costs are incurred by firms.  The main relevant 

findings of this literature with respect to Yashiv’s paper are as follows: 

(i) By reallocating search costs away from vacancy costs and towards a fixed 

hiring cost per worker, the elasticity of key labour market variables (market 

tightness, vacancies, unemployment and the job finding probability) with 

respect to productivity increases significantly.  (Pissarides (2009)).  This is 

because the fixed hiring cost reduces the dampening effect of a higher 

vacancy-unemployment ratio through the expected vacancy duration 

channel. 

(ii) For the channel to be operative, the costs must be sunk.  If the costs are 

not sunk then they are merely equivalent to a reduction in productivity, 

some of which is passed from the firm to newly hired workers in the form 

of lower wages. This does not have a large effect on the elasticity of the 

labour market variables with respect to productivity.  (Silva and Toledo 

(2013)). 

We now consider Yashiv’s stated mechanism for inducing the required volatility via 

search costs.   

First of all, we must note that Yashiv’s model contains both a vacancy cost and a 

hiring cost.  Recall the cost function: 

   
 

   
(
    (   )    

  
)

   

   (   )( ) 

The term 
(   )    

  
 

(   )  

  
 represents a hiring cost.   The term 

   

  
 is a more 

standard vacancy cost.   
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Yashiv’s search costs are indeed sunk.   When search costs are not sunk, they are 

available for bargaining over, and the result is that they enter the threat point of the 

firm and reducing wages of new entrants.  (Silva and Toledo (2013, p838)).  

Conversely, when they are sunk they implicitly raise the bargaining power of the 

worker, and so appear with a positive sign in the equilibrium wage equation.  In 

Yashiv’s model however, search costs do not appear in the Nash bargaining 

equation (equation (4.9)), and these clearly raise the equilibrium labour share (see 

equation (4.10)(d)).  The search costs in Yashiv’s model are definitely sunk, as in the 

usual case. 

However, the hiring costs are definitely not fixed.  Instead they fluctuate pro-

cyclically, although the effect is somewhat dampened due to the fact that 

employment is in the denominator.  (Note that hires are 7.8 times more volatile than 

employment in our data and between 5.5 and 9 times more volatile in our model with 

only exogenous variation- see columns (iv), (v) and (vi) of table 4.5.  This confirms 

that hiring costs are still pro-cyclical despite the countervailing effect of employment 

in the search cost function.)  Furthermore, by the same reasoning, vacancy costs are 

non-linearly increasing with vacancies.41   This suggests that the dampening effect of 

the expected duration channel should be particularly severe following a positive 

productivity shock. 

The channel by which Yashiv purports to solve the Shimer puzzle is therefore 

different from that chosen by Pissarides and Silva and Toledo.   As Yashiv reports, 

the mechanism is that the convexity of both vacancy and hiring costs when     

makes firms slow to adjust their vacancy stock in response to shocks.  This induces 

extra persistence in vacancies, and raises their volatility due to the standard 

relationship between persistence and standard deviation.  The mechanism works 

because Yashiv models vacancies as a control variable, and persistence and 

volatility is transmitted to the rest of the model by similar means.  (Yashiv (2006) 

p39, footnote 18).   

Table 4.9 below shows univariate AR(1) coefficients for the HP-filtered data (column 

(i)) and for the different shock-specifications and search cost parameter values used 

in the model (columns (ii)-(iv)).   The table shows that raising the search cost 

                                                           
41

 Here we do not have vacancy data but the Help-Wanted Index suggests that they are many times 

more volatile than employment.  For example Shimer (2005, p28) puts the quarterly standard 
deviation of the HP-de-trended Help-Wanted Index at 0.202 over the period 1951-2003. 
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parameter   from     to     does indeed raise the persistence of key variables.  

(The exception to this is hires, which somewhat decrease in persistence when 

search costs are raised).  However, unemployment and the labour share both 

increase in persistence when   is raised.  This suggests that the mechanism in our 

model works as it should.   

Table 4.9:  AR(1) coefficients 

  (i) (ii) (iii) (iv) (v) 

  Data Model Model 

 
  Exog. Only Endog. Only 

    γ=2 γ=0 γ=2 γ=0 

  HP Filter De-trended 

   ( ̃) 0.9181 0.9578 0.8085 0.9648 0.869 

   ( ̃) 0.6965 0.6357 0.7553 0.5786 0.6505 

   ( ̃) 0.6282 0.9578 0.8085 0.9648 0.896 

 Notes:    ( ̃) is the univariate AR(1) coefficient of variable  ̃.  
“Exog only” means that the only shocks applied to the model 

are to the known exogenous variables:  ̃ 
 , ̃     and  ̃ .  

“Endog only” means that the only shocks applied to the model 
are structural shocks – one for each equation.  These are 
defined such that they include any changes in exogenous 
variables which may affect the system.  See equation (4.14).   
 

 

Nonetheless, we have shown that the presence of the increased persistence is 

not sufficient to allow the model to fit the data based on our indirect inference 

testing procedure, even when – following Yashiv – only shocks to the known 

exogenous variables are included.    Yashiv’s structural parameters cannot 

produce a fit of his model to data for even the smallest of our auxiliary models - 

the standard deviations of endogenous variables.  Results are no better with 

respect to the dynamics – as expected since the power of the Wald statistic 

increases with the number of auxiliary model parameters.  (Le, Meenagh, Minford 

and Wickens, p17). 

What is the problem?  Firstly, we consider the inability of the model to fit even the 

data standard deviations, when only the shocks to the exogenous variables were 

considered.  None of the data standard deviations fall inside the 95% model 

distributions in columns (ii) and (iii) of table 4.7.  The results suggest that more 

volatility is needed to fit the data, but the results are still close enough that a 

different set of parameter values might allow the model to fit based on the same 

auxiliary model.  As they are, the data standard deviations clearly lie on the 
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fringes of our model’s joint distribution of parameters.   There are however some 

differences between our model and that of Yashiv.  The model used in this 

chapter is somewhat smaller, we reduce the model down to three equations in 

which all the featuring variables are observable.  We also HP-filter the data, 

rather than log-differencing it from Yashiv’s steady state values, in order to 

achieve stationarity.  Finally, there are unavoidable differences in some of the 

data used, due to issues of availability.  These discrepancies may mean that a 

different set of parameters are needed to produce the same results, given the 

same modelled shocks.  From this point of view there is a good chance that 

indirect inference estimation might be successful in finding a better fitting set of 

parameters according to the Wald criterion, which offset some of these 

differences. 

However, the rest of our results show deeper problems.  When we generate 

stochastic variation in the model using bootstrapped structural errors which we 

assume to include the exogenous variable shocks, we find that the structural 

equations in fact fit the data very poorly.  The result is very large structural errors 

and large estimated structural innovations, which in turn generates large amounts 

of volatility when the structural errors are re-sampled.  This is then transferred to 

the model during simulation.   The result is massive standard deviations in the 

simulated endogenous variables as well as poorly fitting VAR coefficients.  In 

Chapter 3 we argued that the Shimer puzzle related literature was an example of 

the ‘puzzles’ methodology, as described by Le, Minford and Wickens (2010).  

Yashiv’s paper is no different in this case.  The discrepancy between these 

results of ours and Yashiv’s highlights an important difference between the 

puzzles methodology and the methodology of indirect inference.    In the latter, 

one treats the structural error in the model as a factor generating variation in the 

endogenous variables, hence it can be subject to bootstrapping and simulation.  

The structural error can also be redefined (as it was in our case) to include 

variation in chosen exogenous variables.  The model then reverts to the internal 

responses of the endogenous variables.   Seen in this light, the puzzles method 

of applying shocks only to the chosen exogenous variables and ignoring the 

structural error term looks like an arbitrary restriction – it is equivalent to 

assuming that the structural equations hold exactly.  That the volatility of the 
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structural shocks turned out to be so large in our case suggests that this is not a 

good assumption.    

 There is still a potential reconciliation however, which we leave for further work.  

The obvious next step in our procedure would be to estimate Yashiv’s model with 

unrestricted structural parameters, to see whether chosen data moments are 

consistent with the joint distribution of moments implied by the model, since it is 

still the case that a different set of parameters could improve the fit of the 

structural equations greatly.   

 

4.10 Conclusion 

We have shown in Chapters 3 and 4 that the Mortensen Pissarides model has a 

hard time fitting the data using indirect inference.   In Chapter 3, we find as 

expected that the basic model fails to fit the data for any auxiliary model under 

Shimer’s (2005) parameters.  The three candidate auxiliary models are standard 

deviations of the endogenous variables, VAR(1) coefficients for the endogenous 

variables and a combination of these.  Although the model is rejected by the 

Wald test, our bootstrapped simulated version of the model does display far more 

volatility than Shimer’s.  However, we also show that this is due to the extra 

volatility that results from treating the structural errors as shocks, which is a 

standard part of our indirect inference procedure.  Upon estimating the basic 

model, we obtain values which appear to fit the data based on an auxiliary model 

of standard deviations only.  The estimated results are however corner solutions, 

and therefore at the edge of our theoretically imposed constraints.  We take this 

as a warning that there are indeed serious specification issues with this basic 

model, as has already been frequently suggested in the literature.  

 

Moving on to Chapter 4, we test Yashiv’s (2006) model with the indirect inference 

procedure, using Yashiv’s chosen steady-state parameters.  We choose Yashiv’s 

model, as it is an example of a discrete time model which tries to introduce more 

volatility to the labour market variables than is allowed for by the canonical 

Mortensen-Pissarides model.   The proposed cure is by the introduction of a 
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cubic (rather than linear) search cost function faced by firms, which depends both 

on vacancies and on hires.   

 

Again, our results show that whether the structural error shocks are used, or 

whether we simply shock the chosen exogenous variables (as Yashiv does) is an 

important issue.  In the latter case, the properties of our reproduction of Yashiv’s 

model are similar to the original.  In the former case however, we derive large 

structural errors which cause large amounts of extra volatility, pushing the 

average simulated volatilities far from the data.  Most importantly however, in 

both cases the model is rejected based on the Wald test for each auxiliary model 

used.    

We have shown that the indirect inference method allows us to simulate the joint 

distribution of moments of interest, and that this is a very different from the 

standard moment-by-moment comparison approach that is widely taken by the 

literature.  Because the joint distribution is derived from a simulation that takes 

into account correlation between the structural innovations, fitting the data based 

on moments is potentially challenging.  The Wald test removes the ambiguity that 

arises from simply examining the simulated and target moments, and deciding 

whether they are “close”.   With many suggested solutions to the Shimer puzzle, 

we suggest that in general the wider adoption of indirect inference testing could 

sharpen the empirical analysis by allowing for far greater discrimination between 

models. 

 

 

 

 

 



191 
 

Note:  As we have made clear throughout Chapter 4, the model presented here is essentially the 

same as that presented in Yashiv (2006), with a few adjustments to better adapt it for indirect 

inference.  Mathematical details of the original model are available in the technical appendix to Yashiv 

(2006), which is available on request from Professor Yashiv himself. 

Appendix 4.1:  Deriving an expression for     - solving (4.9): 
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The first-order condition is: 
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Take the required differences: 
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Note therefore, that: 
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Since, due to the free entry condition: 

  
    

It follows that: 
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And: 
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Start by substituting the derivatives only into the first-order condition: 
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Rearranging  

 (  
    

 )  (   )(  
    

 ) 

Letting   
   : 
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       {(        )    
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Of course     
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       {(        )    
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 )]] 

Use the first order condition to eliminate     
 .  Since     

    by free entry: 

     
  (   )(    

      
 ) 

Substituting into the above can be shown to give: 
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Now use the first order condition once again, to eliminate(   )(    
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The next step is to solve for       [          
 ] in the wage equation.  From equation (4.7)( ) for   

 :  
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 ] 

And from the first order condition for employment: 

 

         [
     
     

          
     

     
 
     
     

]

       (          )     

 

 

(   )( ) 

It can be shown that: 

             
   

 

Hence the wage equation may be written as: 
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  [

   
   

 
   
   

         ]  (   )   

Or: 

    [
   
   

 
   
   

    
   

   
         ]  (   )   

Note that this is a differential equation in    and 
   

   
.  The differential equation arises from having 

wages dependent on employment.  We do not provide the details of the solution here, but we have 

them and they are available on request.   The result is the following equation for wages: 

    [(   ) (
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Appendix 4.2:  Solving for equations (    )( )-(    )( ). 
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(Since         this follows from (4.3)). 
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A.4.2.1 

Solving for: 
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Begin with the inter-temporal condition: 
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In Appendix 4.1 it was shown that: 
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    [
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(   )( ) 

We now assume that benefits are given by        - in other words   is the replacement rate out 

wages that are paid in case of unemployment.  This gives: 
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Where: 
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This implies that: 

   
   

 
   
   

    
   

   
 
  

 
           

Leading by one period and substituting into the intra-temporal condition gives: 
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Divide through by         ⁄  
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    ⁄

    ⁄

        ⁄
       [

   

 

    

        ⁄
             ]

       (          )
    

        ⁄
 

 

 

Noting that    
  

    ⁄
 is the normalized Lagrange multiplier, 

    

        ⁄
 

        

    
      is the labour 

share, 
    ⁄

        ⁄
 

 

    
  is the growth rate of output-per-worker, the result is: 
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(    )( ) 

as required. 

 

A.4.2.2 

Solving for: 
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Begin with the intra-temporal condition in(   )( ):  
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Also recall that: 
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Now divide through by 
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Since    
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 it follows that: 
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As required. 

 

A.4.2.3 

Solving for: 
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This is trivial since         (
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 by (4.3), and       . 

 

A.4.2.4 
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From Appendix (4.1): 
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Using the assumption that       , this can be written: 
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Where: 
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Noting that  (
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 that the labour share is given by 
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 the result 

is: 
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As required. 

A.4.2.5 

Solving for: 
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(    )( ) 

Beginning with the equation-of-motion for employment: 
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Dividing through by the labour-force   : 
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Since we can write 
    

  
 

    

    

    

  
 

    

    
   we have: 

     
  (        )            

 

 

Where as usual, we use lower-case letters to denote rates out of the labour-force.  Finally, note that 

by (4.3): 

                               (    ) 

Substituting in gives: 
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As required. 

 

 

 

Appendix 4.3:  Deriving the system of equations for steady-state variables and parameters 
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A.4.3.1 

Solving for: 
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Start with the equation of motion for employment 

     (        )            (   ) 

Appendix A.4.2.5 we know can be written as: 

     
  (        )             

Applying the steady state: 

    (   )      

Rearranging and substituting in (   )    gives: 

  (
      

 
) (   ) (    )( ) 

As required. 

 

A.4.3.2 

Solving for: 
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Simply dividing (    )  through by   gives the required result. 

 

A.4.4.3 

Solving for: 
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Start with: 
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Set the values equal to their steady state values and rearrange: 
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And since       

(   )(      )     
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Hence: 
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As required. 

A.4.3.4 

Solving for: 
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Start with the equation of motion for employment 
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Appendix A.4.2.5 we know can be written as: 
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Applying the steady state: 

    (   )     

 

 

Collecting terms in   and solving gives: 
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As required. 
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A.4.3.5 

Solving for: 
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This is trivial since         (
  

  
)
  

by equation (   ). 

A.4.3.6 

Solving for: 

  [
 

  (   ) 
] (    )( ) 

See A.4.2.1 where the inter-temporal condition was solved-for.  When the benefit level    is assumed 

to equal the product of the wage and the replacement ratio, so that       the equation for   above 

comes naturally out of the wage-equation. 

A.4.3.7 

Solving for: 
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Begin with the inter-temporal condition: 

 

         [
     
     

          
     

     
 
     
     

]        (          )     

 

(   )( ) 

Divide through by average labour productivity one period ahead,         ⁄ : 
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Recall that      
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, and that we can write 
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Now define marginal profit at time t+1 as: 
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Substituting everything in gives: 
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Finally, set everything in the equation to its steady-state value. 
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Solving for   gives: 

  [
   

     (   )
]   

 

(    )( ) 

As required. 

 

 

A.4.3.8 

Solving for: 
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Defining marginal profit – as in A.4.3.7, as: 
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The wage solution, from A.4.2.1, is: 
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Recall the relationship between wages and the labour share: 

       
  
  

  

By eliminating   from the previous two equations it can be shown that: 
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You will note that the right hand side is simply   . 

    
  
 
            

From (    )( ) we have the following expression for    
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Substituting into the expression for profits gives: 
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Set all of the variables to their steady-state values: 
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As required. 

 

 

 

A.4.3.9 

Solving for: 
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The equation comes directly from setting (    )( ) equal to its steady-state value. 

 

Appendix 4.4:  Deriving and linearizing the estimating equations (    )( )  (    )( ). 
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A.4.4.1 
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In A.4.2.1 it was shown that: 
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                  ]        (          )     

 

         [(
   

 
)                 ]        (          )     

 

 

Recall that      
    

        ⁄
, and that we can write 

  

        ⁄
 

  

        ⁄

    ⁄

    ⁄
 

  

    ⁄

    ⁄

        ⁄
 

  

    
 .  

Substituting these in gives: 

 

  

    
        [

   

 
                 ]        (          )     

 

 

Here we log-linearize the inter-temporal condition: 

 

 

  
(   ̃ )(   ̃   

 )        [
   

 
                 ]        (          )     
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(   ̃ )(   ̃   

 )

  (    [ ̃   ])
   

 
 (    [ ̃   ])

  (    [ ̃   ])  (    [ ̃       ])(    [ ̃   ])

  (    [ ̃   ])(   ) (    [(          )
̃ ]) (    [ ̃   ]) 

Note that:  

(          )
̃    ̃       

 

   
 

 

  
(   ̃ )(   ̃   

 )

  (    [ ̃   ])
   

 
 (    [ ̃   ])

  (    [ ̃   ])  (    [ ̃       ])(    [ ̃   ])

  (    [ ̃   ])(   ) (    [ ̃       ]
 

   
) (    [ ̃   ]) 

 

  
(   ̃ )(   ̃   

 )

  
   

 
 (    [ ̃   ])(    [ ̃   ])

    (    [ ̃       ])(    [ ̃   ])(    [ ̃   ])

  (   ) (    [ ̃   ]) (    [ ̃       ]
 

   
) (    [ ̃   ]) 

 

  
(   ̃   ̃   

 )

  
   

 
 (    [ ̃   ]    [ ̃   ])

    (    [ ̃       ]    [ ̃   ]    [ ̃   ])

  (   ) (    [ ̃   ]    [ ̃       ]
 

   
   [ ̃   ]) 

Subtracting out the steady state: 

 

  
 ̃  

 

  
 ̃   
   

   

 
 (  [ ̃   ]    [ ̃   ])

    (  [ ̃       ]    [ ̃   ]    [ ̃   ])

  (   ) (  [ ̃   ]    [ ̃       ]
 

   
   [ ̃   ]) 

 

Collecting terms gives: 

 

 

  
 ̃  

 

  
 ̃   
   

   

 
   [ ̃   ]  ( 

   

 
   (   )     )   [ ̃   ]

      [ ̃       ]       [ ̃       ]  (  (   )     )  [ ̃   ] 
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Note that we still need to eliminate  ̃  and   [ ̃   ] from the expression obtained so far.  We do this 

following Yashiv’s technical appendix.  We begin with the version of the intra-temporal condition given 

in (4.10)(b) 

 

 (  (   )      ) (
    (   )        

  
)

 

          

 

 

(    )( ) 

For brevity of notation, define: 

 

 ̅        (   )       

 

Which allows one to write the intra-temporal condition as: 

 

  ̅     (
 ̅       
  

)

 

          

 

Note that one can normalize    and    by the labour force which will not change anything since the 

ratio of the variables appears. 

  ̅     (
 ̅     

  
  

  
  

)

 

   ̅     (
 ̅       
  

)

 

           

The steady state of the intra-temporal condition is given by: 

  ̅ (
 ̅ 

 
)

 

     

Log-linearizing around the steady-steady values: 

  ̅(   ̃̅     ) (
 ̅ 

 
)

 

(    ̃̅        ̃    ̃ )    (   ̃     )(   ̃ ) 

  ̅(   ̃̅     ) (
 ̅ 

 
)

 

(    ̃̅        ̃    ̃ )    (   ̃     )(   ̃ ) 

(  ̅    ̅ ̃̅     ) (
 ̅ 

 
)

 

   ̅ (
 ̅ 

 
)

 

(  ̃̅        ̃    ̃ )       ( ̃       ̃ ) 

  ̅ (
 ̅ 

 
)

 

   ̅ ̃̅     (
 ̅ 

 
)

 

   ̅ (
 ̅ 

 
)

 

(  ̃̅        ̃    ̃ )

      ( ̃       ̃ ) 
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Subtracting out the steady-state gives: 

  ̅ (
 ̅ 

 
)

 

( ̃̅        ̃̅        ̃    ̃ )    ( ̃       ̃ ) 

 

Dividing out the remaining steady state values gives: 

 ̃̅        ̃̅        ̃    ̃   ̃       ̃  

The challenge is now to derive an expression for  ̃̅     .  Recall that  ̅        (   )       so we 

will first find an expression for  ̃     .   Use equation (4.3): 

        (
  
  
)
  

  

The fact that          allows me to write: 

        (
  

    
)
  

  

 

Hence, log-linearizing        around its steady state: 

 ̃        [  ( )    (  )    (    )    ( )    ( )    (   )] 

   [  (  )    ( )    (    )    (   )] 

   [  (  )    ( )    (    )    (   )] 

   [ ̃  
        

   
] 

   [ ̃  
        

   
] 

 

   [ ̃  
 (    )

 

 

   
] 

 

 ̃        [ ̃  
 

   
 ̃ ] 

 

 

From here one can derive an expression for  ̃̅     : 

Since   ̅        (   )      , it follows that: 

 

 ̃̅      
  (   )         (   ) 

  (   ) 
 
(   )(        )

  (   ) 
 

 

 
(   ) 

  (   ) 
[
        

 
] 
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(   ) 

  (   ) 
 ̃      

 

   ̃      

 

Where  

  
(   ) 

  (   ) 
 

 

Substituting these expressions into the linearized intra-temporal condition above and rearranging 

gives: 

 ̃̅        ̃̅        ̃    ̃   ̃       ̃  

  ̃         ̃       ̃        ̃    ̃   ̃  

 

 ̃     (      )    ̃    ̃   ̃  

 

  ( ̃  
 

   
 ̃ ) (      )    ̃    ̃   ̃  

 

[  (      )   ] ̃  [   
 

   
(      )]  ̃   ̃  

 

 

We now have a linearized expression for the intra-temporal condition.   However, we do not have data 

on  ̃  and so wish to express the equation in terms of  ̃     .  From equation (4.3) we have: 

        (
  
  
)
   

  (
  

    
)
   

  

Log linearizing around an assumed steady-state gives: 

 

 (   ̃     )   (
 

   
)
   

(  (   ) ̃ )(  (   )(    )̃ ) 

 

(    )̃  
(    )  (   )

   
 
 (    )

   
 
 (    )

   

 

 
 
 (    )

 

 

   

   ̃ 
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 (   ̃     )   (
 

   
)
   

(  (   ) ̃ ) (  
(   ) 

   
 ̃ ) 

 (   ̃     )   (
 

   
)
   

(  (   ) ̃  
(   ) 

   
 ̃ ) 

Subtracting out the steady-state: 

  ̃       (
 

   
)
   

((   ) ̃  
(   ) 

   
 ̃ ) 

Divide out the steady state: 

 ̃      (   ) ̃  
(   ) 

   
 ̃  

 

Now solve to get an expression for  ̃ : 

 ̃      
(   ) 

   
 ̃  (   ) ̃  

 

 ̃  
 

   
 ̃      

 

   
 ̃  

Returning to the linearized intra-temporal condition  

[  (      )   ] ̃  [   
 

   
(      )]  ̃   ̃  

Substituting to eliminate  ̃  gives: 

[  (      )   ] (
 

   
 ̃      

 

   
 ̃ )  [   

 

   
(      )]  ̃   ̃    

Rearranging gives the desired form of the linearized intra-temporal condition. 

 ̃  [[  (      )   ]
 

   
]  ̃      [

 

   
]  ̃  

 

The linearized intra-temporal condition can be substituted back into the inter-temporal condition, 

which was: 

 

  
 ̃  

 

  
 ̃   
   

   

 
   [ ̃   ]  ( 

   

 
   (   )     )   [ ̃   ]

      [ ̃       ]       [ ̃       ]  (  (   )     )  [ ̃   ] 

 

 

Substituting to eliminate  ̃  and   [ ̃   ] and rearranging gives: 
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[[  (      )   ]

 

   
]  ̃      

 

  
[

 

   
]  ̃  

 

  
 ̃   
       [ ̃       ]

  
   

 
   [ ̃   ]  ( 

   

 
    (     ))  [ ̃   ]

 {(  (   )     ) [[  (      )   ]
 

   
]

    }   [ ̃       ]   (     ) [
 

   
]  [ ̃   ] 

 

 

Take expectations at time t. 

 

 

  
[[  (      )   ]

 

   
]  ̃      

 

  
[

 

   
]  ̃  

 

  
  [ ̃   

 ]       [ ̃       ]

  
   

 
   [ ̃   ]  ( 

   

 
    (     ))  [ ̃   ]

 {(  (   )     ) [[  (      )   ]
 

   
]

    }   [ ̃       ]   (     ) [
 

   
]  [ ̃   ] 

 

Finally, assume that the expectations of the exogenous variables are formed using the univariate 

AR(1) coefficient.  That is:   [ ̃   
 ]      ̃ 

  ,   [ ̃       ]     ̃     .      [ ̃   ]     ̃ .  Substituting in 

gives: 

 

 

  
[[  (      )   ]

 

   
]  ̃      

 

  
[

 

   
]  ̃  

 

  
    ̃ 

        ̃     

  
   

 
   [ ̃   ]  ( 

   

 
    (     ))   ̃ 

 {(  (   )     ) [[  (      )   ]
 

   
]

    }   [ ̃       ]   (     ) [
 

   
]  [ ̃   ] 
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[[  (      )   ]

 

   
]  ̃      

 

  
[

 

   
]  ̃  

 

  
    ̃ 

        ̃     

  
   

 
   [ ̃   ]  ( 

   

 
    (     ))   ̃ 

 {(  (   )     ) [[  (      )   ]
 

   
]

    }   [ ̃       ]   (     ) [
 

   
]  [ ̃   ] 

 

 

 

 

  
[[  (      )   ]

 

   
]  ̃      

 

  
[

 

   
]  ̃  

 

  
    ̃ 

        ̃     

  
   

 
   [ ̃   ]  ( 

   

 
    (     ))    ̃ 

 {(  (   )     ) [[  (      )   ]
 

   
]

    }   [ ̃       ]   (     ) [
 

   
]  [ ̃   ]    

 
 

(    )( ) 

 

 

 

 

 

 

 

 

A.4.4.2 

Solving for: 
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  ̃  [
   

(   )(   )(   (     ))
 (   ) (

   (   )  

 
)

   
(   )

   
[ 

  (   )]  
   

   
[   (    )   ]]  ̃     

 (
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   
(   )

   
 
    

   
)  ̃    

  

(    )( ) 

Beginning with the labour share equation from (    )( ) 

    [(   )([
 

    
]

  (
    (   )    

  
)

   

[
   

(   )(   )(   (     ))
])

         ] 

(    )( ) 

Log-linearizing around the steady-state: 

 (   ̃ )   [(   )([
 

    
]

  (
   (   )  

 
)

   

( 

 (   ) (
    (   )    

  
)

̃
)[

   

(   )(   )(   (     ))
])

   (   ̃     )(    ̃)] 

 

First we will log-linearize (
   (   )  

 
): 

 

(
    (   )    

  
)

̃
    

     (   )  
       

 
   

     (   )  
              (   )     

      (   )     
 

 

 

 

 

 
   

           (   )  
       (   )     

      (   )     
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      (   )     
 
(   )  

       (   )     

      (   )     
 

 
   

          

     
[

     

      (   )     
]

 
(   )  

      (   )     

(   )     
[

(   )     

      (   )     
] 

    
    
̃ [

     

      (   )     
]  (   )  

      
̃ [

(   )     

      (   )     
] 

    
    
̃ [

 

  (   ) 
]  (   )  

      
̃ [

(   ) 

  (   ) 
] 

 (  (   
    )    (     )) [

 

  (   ) 
]

 (  ((   )  
      )    ((   )     )) [

(   ) 

  (   ) 
] 

 ( ̃   ̃ ) [
 

  (   ) 
]  ( ̃   ̃       ̃ ) [

(   ) 

  (   ) 
] 

 

Noting that [
(   ) 

  (   ) 
]    and [

 

  (   ) 
]     : 

 

(
    (   )    

  
)

̃
 ( ̃   ̃ )  ( ̃   ̃       ̃ )[   ] 

 ( ̃   ̃ )  ( ̃   ̃       ̃ )[   ] 

 

 ( ̃   ̃   ̃     [   ]) 

 

 

 

Substituting into the expression for  ̃ : 
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 (   ̃ )   [(   )([
 

    
]

  (
   (   )  

 
)

   

( 

 (   )( ̃   ̃ 

  ̃     [   ])) [
   

(   )(   )(   (     ))
])

   (   ̃     )(    ̃)] 

 

Subtracting out the steady-state gives: 

 

  ̃   (   )( (
   (   )  

 
)

   

(   )( ̃   ̃ 

  ̃     [   ]) [
   

(   )(   )(   (     ))
])

    ( ̃        ̃) 

 

 

Rearranging the terms: 

  ̃  [
   

(   )(   )(   (     ))
 (   ) (

   (   )  

 
)

   

(   )]  ̃ 

 [
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   

(   )]  ̃ 

 [
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   

(   )[   ]]  ̃      [   ] ̃     

 [   ]  ̃ 

 

 

 

 

It remains to remove the terms in  ̃ ,   ̃ and  ̃     , using the expressions derived so far. 
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 ̃  (
 

   
 ̃      

 

   
 ̃ ) 

 

 ̃  [[  (      )   ]
 

   
]  ̃      [

 

   
]  ̃  

 

 ̃      
 

   
 ̃      

 

 

After eliminating  ̃ ,   ̃ and  ̃      in the expression for  ̃  gives: 

 

  ̃  [
   

(   )(   )(   (     ))
 (   ) (

   (   )  

 
)

   
(   )

   
[ 

  (   )]  
   

   
[   (    )   ]]  ̃     

 (
   

(   )(   )(   (     ))
 ( 

  ) (
   (   )  

 
)

   
(   )

   
 
    

   
)  ̃    

  

(    )( ) 

As required. 

 

A.4.4.3 

Solving for: 

 

   ̃    (     ) ̃    ̃      
 (   )

 
 ̃      

 

 

(    )( ) 

Beginning with: 

 

       (        )         (    ) 

 

(    )( ) 

Log-linearize around the steady-state: 
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   (   ̃   )  (   ) (  (        ̃ )) (   ̃ )

  (   ̃     )(   ) (  (    ̃ )) 

 

   (   ̃   )  (   ) (  (        ̃ ))(   ̃ )

  (   )(   ̃     ) (  (    ̃ )) 

 

   (   ̃   )  (   ) (   ̃  (        ̃ ))  (   ) (   ̃      (    ̃ )) 

 

Note that: 

 

(        ̃ )  
(        )  (   )

   
  

(        )

   
  

(        )

 

 

   

   ̃     
 

   
 

 

(    ̃ ) 
(    )  (   )

   
  

(    )

   
  

(    )

 

 

   
   ̃ 

 

   
 

 

Substituting in gives: 

 

   (   ̃   )  (   ) (   ̃   ̃     
 

   
)   (   ) (   ̃       ̃ 

 

   
) 

 

Subtracting out the steady-state gives: 

   ̃    (   ) ( ̃   ̃     
 

   
)   (

   

 
) ( ̃       ̃ 

 

   
) 

   ̃    (   ) ( ̃   ̃     
 

   
)   (

   

 
) ( ̃       ̃ 

 

   
) 

 

 

 

Rearranging gives: 

   ̃    (     ) ̃    ̃      
 (   )

 
 ̃      (    )( ) 
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As required. 
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Conclusion 

In Chapter 2 of this thesis we have used the Petrongolo and Pissarides method on 

UK Labour Force Survey panel data, and attempted to apply it to quarterly gross 

flows in the Welsh labour market for the period 1997Q2-2010Q4.  For comparison 

purposes, we have also updated the results of Petrongolo and Pissarides, by re-

estimating the gross flow shares for the whole of the UK over our more recent 

sample period. 

   

We have found that, under steady-state assumptions and with smoothed data, gross 

flow hazard shares “into” and “out of” unemployment are approximately equal in 

Wales, whereas they are weighted towards “outs” in the UK and the area outside of 

Wales, (specifically the UE hazards).  The conclusions for the UK are similar to those 

obtained by Petrongolo and Pissarides from their earlier sample.  

However, once we relax the smoothing and/or steady state assumptions, and when 

we change the sample period so as to exclude the period of recession in the UK that 

began in 2008Q2, the results are shown to be fragile and highly contingent on the 

particular assumptions made.  Our results are least stable when we impose neither 

the assumption of the steady state nor data smoothing.  Most worryingly, the results 

from unsmoothed data do not have the property that the results for the whole of the 

UK are a weighted-average of those for Wales and the area Outside-of-Wales – 

although this property is present when the data is smoothed.  We suggest that there 

is a particular problem with small panel sample sizes for Wales, giving noisy 

estimates of hazard shares without smoothing. 

How might this problem be addressed?  Firstly, it is clear that we need bigger 

sample sizes to make progress with decomposing unemployment for Wales.   It is 

clear both from visual inspections of the derived gross flows (figure 2.3) and from the 

tables (2.2 and 2.3) that the series are much more volatile than those for the whole 

of the UK and for Outside-of-Wales.  There is an extent to which this is natural: we 

would expect the flows pertaining to a smaller geographical area to be smaller and 

hence naturally more volatile.  However, our average gross flow figures are close to 

the ONS minimum of 17,000.  It also telling that we cannot identify flows of any type 

between geographical regions from the panel data.  The fact that the panel grosses 

its sample estimates to population level using sample weights makes the zero values 
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for migration figures potentially problematic.  If the sample were to pick up even one 

or two cross-border changes of labour market state per quarter, the sampling 

weights would gross these up to presumably much larger number.   But with zero 

values, the sampling weights have nothing to multiply, so that the results are a likely 

source of downwards bias. 

This suggests that the sample coverage is insufficient, and that future work should 

seek to use a larger sample to obtain more robust conclusions.  An exercise which 

would also be interesting is to check the method using a larger geographical sub-

region of the UK.  Examining the gross flows within and between London and the 

rest of the UK, for example, would make for a more precise analysis if it were subject 

to careful robustness checks on the boundary between “London” and “Outside-of-

London”. 

  Another idea to improve the analysis is to change the construction of 

unemployment.  There is a very sharp dichotomy in our analysis between steady-

state unemployment, which we decompose without any error term, and observed 

unemployment, which we decompose with an error term.  Rather than model steady-

state unemployment as Petrongolo and Pissarides do, we could perhaps follow 

Shimer (2005(a)) in the simulation of unemployment data.  That is, having estimated 

the hazard rates from the panel data, we would specify an initial value for 

unemployment at the beginning of the simulated series.  We could then simulate 

unemployment within quarters based on the assumption of the constant hazard rates 

estimated for the quarter from the data (mapping time within each quarter to the [0,1] 

interval,    [   ] as described in Shimer (2005(a))).  We could then read off the 

simulated value for unemployment at end of each quarter (   ), and treat this as 

the series to be decomposed.  This is ought to result in a less volatile series for 

unemployment, without the need for extra smoothing.  It might also have a smaller 

error term in the decomposition than the (non-smoothed) analyses presented here.     

 

Finally, we note that there may be scope to use search and matching theory, of the 

type covered in chapters 3 and 4, to improve our knowledge of the properties of 

gross-flows decomposition.  In this thesis, we report results for different sample 

periods, one of which includes a deep recession.  Our results show notable 
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differences in shares attributable to hazard rates, even in our estimates for Outside-

of-Wales and for the UK with large sample sizes.   

It would be interesting to explore the properties of the gross-flows variance 

decomposition procedure to changes in the way the economy is believed to work.  

One could conduct a variety of Monte-Carlo simulations using theoretical models 

(specified with different sorts of shocks of various magnitudes), different 

assumptions about search and matching, and the potential for structural breaks.  

One could then conduct variance-decompositions on the simulated data.  This could 

be one way to get a more comprehensive understanding of the effects of smoothing, 

and the error term properties for the unemployment decompositions.  The analysis 

would presumably require a finer differentiation between different types of flows (for 

example – separations would need to be decomposed into separations and layoffs, 

in the manner of Elsby, Michaels and Solon (2007)).   In light of this analysis, one 

could then adapt the variance decomposition according to evidence on the 

circumstances of the economy for the sample period. 

 

This brings us back to our indirect – inference assessment of a part of search and 

matching theory.  Our contribution has been to test a version of the Mortensen-

Pissarides model, under a set of parameters suggested by Shimer, using indirect 

inference rather than calibration and simple moment comparison.  Shimer showed 

that the data fails to match essential moments of the model, due to the sensitivity of 

wages with respect to changes in productivity, a result that arises from the Nash 

bargaining assumption over wages.   

 

Our results in Chapter 3 affirm the finding that under Shimer’s original parameter 

values, the model fits poorly.  (In indirect inference terms, we reject the hypothesis 

that the data were generated by the model).  The auxiliary model coefficients from 

the data – be they standard deviations of endogenous variables or VAR(1) 

coefficients - fall far outside of 95% of model outcomes.   We then estimate the 

model using indirect inference estimation, and find that the model is not rejected by 

the data (really that the data is not rejected by the model) when the auxiliary model 

used to fit the data consists of standard deviations of the endogenous variables (the 

vacancy-unemployment ratio, wages and unemployment).  However, the estimated 
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primitive parameters that generate the “closest” standard deviations are corner 

solutions – they are at the boundary of the restricted parameter space, which we 

impose both to economize of parameter search and for theoretical reasons.  When 

we try to fit the data based on VAR coefficients, we cannot get the model to fit the 

data at all. 

 

Our results broadly support the idea that the Mortensen Pissarides model generates 

moments that are inconsistent with the data.  Although the results under indirect 

inference for volatilities of endogenous variables look different, the differences can 

be at least partially resolved by decomposing shocks to the exogenous variables 

(which our model has in common with the traditional Shimer puzzle approach) and 

the endogenous variables (which are a result of our bootstrapping procedure and are 

not present in Shimer’s analysis).  However, one can criticise our work here along 

certain dimensions, which could be the subject of further work. 

 

Firstly, we have linearized the standard model, so that we lose second or higher 

order effects in the model.  One particular implication of this is that we lose part of 

the original Nash bargaining wage equation, for example non-labour incomes or the 

benefit replacement ratio drops out of the model under linearization.  We also lose all 

of the non-linearity in the search cost specification term in the job-creation condition. 

Proponents of the original search and matching approach would be right to question 

the robustness of our work to this assumption.  Further work could see if the same 

conclusions can be reached if we keep the non-linearities of the original model.   

 

A second potential criticism relates to the treatment of time, and is similar to our 

comment on our gross flows decomposition procedure.  In Chapter 3 we use a 

steady-state approximation to the unemployment rate.  A better approach would be 

to use a difference equation in the manner of Chapter 4.  Better still however would 

be to follow Shimer (2005(a)) and model the continuously evolving intra-period 

unemployment rate in the manner described above, mapping time within each 

quarter to the [0,1] interval,   [   ] and recording the quarterly unemployment rate 

when    .  Doing this would re-emphasize the role of hazard rates as in the 

original formulation, and would arguably be a more faithful representation to the 

original model. 
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In Chapter 4 we reproduce Yashiv’s version of the Mortensen-Pissarides model, 

which employs cubic search costs to attempt to resolve Shimer’s volatility puzzle.  

The Yashiv model has some extra features compared to the model in Chapter 3, 

such as rational rather than static expectations and an unemployment difference 

equation that moves dynamically (rather than assuming steady state unemployment 

in every period).  The search cost function incorporates new hires as well as 

vacancies into the search cost function.  Yashiv’s putative mechanism to induce 

more volatility in the labour market variables is to increase the persistence of 

vacancies, reducing the speed at which they respond to productivity shocks.  This 

has a positive effect on the volatility of vacancies, which feeds through into other 

labour market variables. 

Yashiv’s paper shows that the model is much more successful at fitting US time 

series data moment-for-moment than the original, when a moment comparison-

based calibration methodology is used.  We recreate Yashiv’s model as closely as 

possible, subject to constraints on our ability to recreate Yashiv’s data set.  We show 

that our version of the model behaves in a similar way to that of Yashiv’s with 

respect to variations in the search cost function, subject to a few exceptions.  Finally 

we subject each version of the model (with the standard linear search cost and 

Yashiv’s cubic search cost specification, respectively) to indirect inference testing.  

We find using an auxiliary model comprised of standard deviations of endogenous 

variables, that the standard deviations fit better under cubic search costs, although 

both versions of the model – linear and cubic search costs - are rejected by the data. 

 

Our main interpretation of this result is –as in Chapter 3 - that shocks from the 

unexplained variation in the model are important.  Our method of indirect inference 

includes this unknown variation in the way that the traditional calibration method 

(simulating the shocks to the chosen exogenous variables in the model only) does 

not, since it involves drawing errors from the distance between data and structural 

model fitted values, and simulating their serially independent components. The main 

point is that including this source of variation results in very different model 

behaviour compared to the standard formulation in which one simulates shocks to 

the exogenous variables only.  Because the structural errors – the distance between 
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the data and the fitted values – are so large, the effect is to drive our results further 

away from those of Yashiv.  Indirect inference also constitutes a stringent test of the 

“closeness” of the chosen auxiliary model parameters to those of the data, because 

it is based on the joint distribution of model generated auxiliary parameters.  

Moment-by-moment comparisons are not, strictly speaking, a statistical test at all, 

but they are an analogue of a marginal distribution.  The failure of the model to fit 

using an auxiliary model based on the standard deviations of the three endogenous 

variables is perhaps surprising.  But as the power of indirect inference testing 

increases with the number of auxiliary model parameters, it is not surprising that the 

model does not fit when we use a VAR as an auxiliary model.  

 

There are in principle several infidelities to Yashiv’s model in our analysis.  In the 

final analysis we use an HP-filter to de-trend our variables, rather than log 

differencing the data from steady-state values as Yashiv does, as we find that the 

latter fails to make most of the series stationary.  There are also differences between 

our original data and Yashiv’s - for example our construction of the discount factor 

faced by the firm, which constitutes one of the model’s exogenous variables, has a 

different construction to the original, and also has very different statistical properties.  

There is in truth no way to be sure that this does not affect the result.  Other 

unavoidable data discrepancies could also make a difference, however they are less 

severe and their effect is presumably smaller. 

 

A broader question to consider is whether Yashiv’s original formulation is a good 

one, aside from the specification of search costs.  For example, as described in 

Chapter 1, recent work suggests that separations are an important part of the 

evolution of cyclical unemployment.  It may therefore be better to try to build upon 

the original Mortensen Pissarides model, which had an endogenous separation rate.  

Progress could perhaps be made by focussing on the distinction between fires and 

quits, a strategy followed in the more recent empirical work by Elsby, Michaels and 

Solon (2007).  As with Chapter 3, it may also be worthwhile to consider keeping the 

model non-linear, rather than linearizing it, for the sake of the second order (and 

higher) moments.   

 

Finally we note that in Chapter 4 we have focussed on only one proposed 
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mechanism for resolving the Shimer puzzle.  Many others have been suggested, 

notably the re-specification of shocks (Barnichon) and alterations to the assumptions 

of Nash bargaining (for example Hall (2005a), Shimer (2004)).  The incorporation of 

job-to-job flows could also improve the results, and would avoid the problem of using 

the vacancy data encountered in Yashiv’s paper and in our own work.  There is no 

reason why these models cannot be explored using the indirect inference tools set 

out in this thesis. 
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