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Abstract

Multireference Configuration Interaction (MRCI) is widely and successfully used for

the accurate computation of molecular energies and properties when chemical bonds

are broken, and in other cases of quasi-degeneracy. However, it suffers from a lack of

extensivity, which introduces significant errors for large molecules. Currently feasible

Multireference Coupled Cluster (MRCC) approaches, which address the extensivity

issue, are complicated and expensive. In this work we investigate simple approxima-

tions to MRCC, generalising the single-reference linked pair functional theories to the

multi-reference case. We show how to develop a simple extension to MRCI that gives

approximate extensivity, retains orbital invariance and acts as an approximation to a

multireference variational Coupled Cluster theory.
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Chapter 1

Introduction

“The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore be-
comes desirable that approximate practical methods of applying quantum
mechanics should be developed”

– P. A. M. Dirac, 1929

Quantum chemistry involves the application of the principles of quantum mechanics

to problems in chemistry and chemical physics. This application offers the possibility

to describe real chemical processes and phenomena, complementing existing experi-

mental techniques and in many cases providing data on systems as yet inaccessible to

experiments.

To describe a molecule on a quantum mechanical level, the relativistic-Schrödinger

(Dirac) equation must be solved. However, for practicality, approximations must be

made such as use of the Born-Oppenheimer (clamped nucleus) approximation, and ne-

glect of relativistic effects. The standard methods in electronic structure theory there-

fore attempt to solve the non-relativistic time-independent Schrödinger equation for

the electrons in an atom or molecule only.

The simplest and least computationally demanding methods use a single Slater deter-

minant to form their electronic wavefunction, with methods such as Configuration In-

teraction (CI) and Coupled Cluster designed to further improve upon the single Slater
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determinant theory. These methods have been successful at predicting equilibrium

geometries, and properties of molecules near equilibrium. However, these simple

methods have been shown to fail in circumstances corresponding to areas of chemi-

cal interest. As such, more demanding multireference methods have been developed

to describe bond breaking processes, excited states, biradicals and photochemical pro-

cesses, but the most popular multireference methods still contain systematic errors and

unwanted features. These errors can be both quantitative and qualitative, leading to

flawed and invalid conclusions.

The work presented in this thesis attempts to correct errors in the widely used Multi-

Reference Configuration Interaction (MRCI) method, while simultaneously extending

the Linked Pair Functional (LPF) theory to the multireference domain. In order to

explain and give context to this work, a review of common methods currently used in

electronic structure theory is given, highlighting the defects and discussing methods

relevant to the work presented here.

1.1 Quantum Chemistry Basics

1.1.1 The Schrödinger Equation

The central equation of quantum mechanics is the Schrödinger equation. It is shown

here in its time-independent form.

Ĥ ψ = E ψ (1.1)

To solve this equation for molecules, the Hamiltonian operator is defined,

Ĥ = −1

2

n∑
i=1

∇2
i −

1

2

M∑
A=1

1

mA

∇2
A −

n∑
i=1

M∑
A=1

ZA
riA

+
n∑
i=1

i−1∑
j=1

1

rij
+

M∑
A=1

A−1∑
B=1

ZAZB
RAB

.

(1.2)

n number of electrons, M number of nuclei, MA relative mass of A, ZA charge of

nucleus A.

Solution of this equation gives the molecular wavefunction, ψ, and the total energy of

the molecule.
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Born-Oppenheimer Approximation

The time-independent Schrödinger equation using the Hamiltonian defined above re-

quires the solution of a total molecular wavefunction. To simplify this, the clamped

nucleus condition may be used, which fixes the nuclear geometry, and solves only the

electronic Schrödinger equation, where the nuclei-nuclei interaction can easily be com-

puted as the nuclei are considered as fixed point charges simply defining a potential in

which the electrons move. This approximation may be rationalised by considering

the relative motion of the nuclei and electrons; the nuclei are more massive and slow

moving than the electrons, so as an approximation may be considered stationary. This

simplifies the solution of the Schrödinger equation, which is solved under this approx-

imation using the modified Hamiltonian,

Ĥe− = −1

2

n∑
i=1

∇2
i −

n∑
i=1

M∑
A=1

ZA
riA

+
n∑
i=1

i−1∑
j=1

1

rij
. (1.3)

Ĥe− ψe− = Ee− ψe− (1.4)

The total energy of the system is the sum of the electronic energy and the nuclear

repulsion term.

ETot = Ee− +
M∑
A=1

A−1∑
B=1

ZAZB
RAB

(1.5)

1.1.2 Slater Determinants

The wavefunction of two separated electrons can be written as a product of the wave-

functions of the individual electrons.

Ψ(1, 2) = φx(1)φy(2) (1.6)

Electrons belong to the class of particle known as Fermions, which possess the property

of Fermionic antisymmetry, where interchange of electrons results in a change in the

sign of the wavefunction.

Ψ(1, 2) = −Ψ(2, 1) (1.7)

This has no effect on the probability density Ψ∗Ψ.
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However, it is not possible to distinguish between two electrons, electron “1” may be

described by φx and “2” by φy or vice versa, so the total wavefunction must be written

as a linear combination of the two cases

Ψ(1, 2) = φx(1)φy(2) − φy(1)φx(2) (1.8)

As a result of this property, the total wavefunction can be written as a determinant

Ψ(1, 2) =

∣∣∣∣∣∣ φx(1) φy(1)

φx(2) φy(2)

∣∣∣∣∣∣ (1.9)

This can be generalised to any number of electrons (with correct normalisation),

Ψ(1, 2, . . . , n) =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) · · · φn(1)

φ1(2) φ2(2) · · · φn(2)
...

... . . . ...

φ1(n) φ2(n) · · · φn(n)

∣∣∣∣∣∣∣∣∣∣∣∣
(1.10)

Linear algebra tells us that interchange of two rows or columns of a determinant

changes the sign of the determinant, which makes them ideal for expressing elec-

tronic wavefunctions, as satisfaction of the constraint of Fermionic antisymmetry is

built in.

1.1.3 Hartree-Fock Theory

In Hartree-Fock theory[1, 2] the independent particle model introduced by use of a

Slater Determinant is used as the basis to describe n interacting electrons.

The energy associated with the Slater determinant (Hartree-Fock) wavefunction |Ψ0〉

can be found via minimisation of the standard quantum mechanical energy.

EHF =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

(1.11)

The central aim of Hartree-Fock theory is to construct the optimal set of 1-electron

spinorbitals {φi} that define the Slater determinant, to order to minimise the standard

quantum mechanical energy. The spinorbitals are required to solve the eigenvalue

equation, giving the energy of each spinorbital.

f̂φi = εiφi (1.12)
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The Fock-operator is defined as the core-Hamiltonian plus the Hartree-Fock poten-

tial,

f̂ = ĥ(1) +
∑
j

Ĵj(1)−
∑
j

K̂j(1), (1.13)

The one electron Hamiltonian is given by,

ĥ(1) = −1

2
∇2

1 −
∑
A

ZA
r1A

, (1.14)

and the Coulomb operators Ĵi(1) and Exchange operators K̂i(1) are defined,

Ĵi(1)φj(1) = φj(1)

∫
φ∗i (2)

1

r12

φi(2)dx2, (1.15)

K̂i(1)φj(1) = φi(1)

∫
φ∗i (2)

1

r12

φj(2)dx2. (1.16)

The action of the Coulomb operator gives the Coulomb integral, which averages the

Coulomb interaction between electrons over all space and spin coordinates. Here, this

gives an average potential between an electron in the ith spin orbital and an electron in

the jth orbital. The sum in the Fock operator means each electron only feels the aver-

age field of the other n− 1 electrons in the other spinorbitals. The Exchange operator

exchanges the electron indices, accounting for the antisymmetric nature of the wave-

function which is neglected by the Coulomb term. This operator builds in exchange

or Fermi correlation, where the motion of electrons of the same spin is correlated,

meaning they cannot occupy the same point in space. In Hartree-Fock, the motion of

electrons of opposite spin is not correlated.

After some manipulation (see [3] for details), the problem of finding the set of orbitals

reduces the solution of the integro-differential equation

f̂ |φi〉 = εi |φi〉 (1.17)

Solution of this set of equations yields the set of canonical orbitals. Aside from the case

of the hydrogen atom, the form of the orbitals is unknown, so they are approximated

as a linear combination of known functions, the basis functions.

φi =
x<∞∑
j=1

cijχj (1.18)

If the set of x basis functions (the basis set) is complete then the exact orbitals can be

found. However, we are of course limited to a finite set of basis functions, meaning
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the orbitals are not exact. Re-casting the canonical equation above (eq. 1.17 via in-

troduction of a basis converts the integro-differential equation problem to a problem

of linear algebra, which allows for efficient computation. The recast equations (with a

few more manipulations) give the Roothaan-Hall equations [4, 5], giving the optimal

linear combination of basis functions.

F C = S C ε (1.19)

This matrix equation requires the evaluation of the Fock matrix elements, and an over-

lap matrix arising form the non-orthogonal nature of the basis functions.

Fij = 〈χi|f̂ |χj〉 (1.20)

Sij = 〈χi|χj〉 (1.21)

Solution of the Roothaan-Hall equations gives the coefficients in the linear expansion,

defining the orbitals. It can be seen that the Fock matrix itself depends on the orbitals,

meaning that the equations must be solved iteratively until convergence is achieved,

i.e. when the input orbitals are the same as the output. For this reason the method is

often referred to as the Self-Consistent Field (SCF) method.

The orbitals obtained via the SCF procedure are dependent on the basis functions in

the basis set. Larger basis sets in general give more accurate orbitals, but convergence

to the exact answer is slow. Therefore sets must also be chosen to suit the specific

situation. For all but the smallest basis sets, the number of basis functions exceeds the

number of electrons. This generates many more orbitals than electrons, hence some

orbitals are occupied and make up the Slater determinant, while the remaining orbitals

(usually greater in number) are left unoccupied as virtual orbitals.

The Hartree-Fock method solves the electronic Schrödinger equation, with the total

energy of the system being found after adding the nuclear-nuclear Coulomb term (as

is done in eq. 1.5), for the fixed nuclear geometry.
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1.2 Electron Correlation

“The correlation energy is the difference between the Hartree-Fock energy and Full

Configuration Interaction”

Statements such as the one above are often repeated and remembered. However, it

does not explain explicitly where correlation energy comes from or what it actually is,

and furthermore is not technically correct. An overview of electron correlation is now

given.

The Hartree-Fock approximation provides a mean field description of the electronic

structure and, despite the mean-field approximation, gives 99% of the energy of the

molecule. By utilising the mean-field approximation, the correlated nature of the

motion of electrons is mostly neglected, causing the Hartree-Fock energy to be er-

roneously higher than the total energy of the molecule. The Hartree-Fock method does

include some correlation energy by design, as the wavefunction is written as a Slater

determinant and therefore is antisymmetric with respect to the interchange of two elec-

trons (Fermionic antisymmetry) and as a result obeys the Pauli Exclusion Principle.

This is known as the Fermi correlation and is captured by Hartree-Fock, but it does not

capture the Coulomb correlation relating to the instantaneous Coulomb interaction of

the electrons. The description of the correlation energy can be split into descriptions

of dynamic and non-dynamic(static) correlation.

1.2.1 Dynamic Correlation

The Hartree-Fock theory is a mean-field theory and only contains information about

average positions and potentials. Therefore an electron is only feeling the mean-field of

all the other electrons, i.e. each electron “knows” only the average position of the other

electrons, therefore being unaffected by whether other electrons are instantaneously far

away or close. Hartree-Fock therefore over-estimates the probability of electrons being

close together.

In another way, Hartree-Fock assumes that the probability of finding electron 1 at a

certain position and electron 2 at another position is simply the product of the two
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1-electron probability densities. However, this is not the case because the position of

electron 2 is correlated with that of electron 1.

Lack of dynamic correlation overestimates the probability that electrons are near to

each other. As mentioned, Hartree-Fock contains some correlation as a result of obey-

ing the Pauli Exclusion Principle, so electrons of the same spin are less likely to be

near to each other, hence dynamic correlation effects are most important for electrons

of opposite spin. Dynamic correlation is therefore greatest in doubly occupied orbitals

that, for one reason or another, are spatially small, such an example would be in F2

where the molecular orbitals are smaller than the atomic ones, increasing the dynamic

correlation energy.

Since the probability of finding 2 electrons close together is overestimated in a mean

field theory such as Hartree-Fock, the repulsion energy is overestimated and the result-

ing total energy is higher than that of the exact answer. It is this difference that results

in the common definition of correlation energy being the difference between Hartree-

Fock and the exact answer. A lack of dynamic correlation causes Hartree-Fock to

overestimate bond lengths and underestimate binding.

FCI

The neglect of correlation energy means the electrons spend too much time close to-

gether, but by allowing electrons to occupy the virtual orbitals, electrons avoid each

other and correlation energy is recouped. Removing an electron from an occupied or-

bital and allowing it to occupy a virtual orbital is an “excitation” in quantum chemistry

and is used as a mathematical tool to produce excited Slater determinants. Moving

a single electron is called a “single excitation”, and so on. Allowing all electrons to

be excited to all orbitals, i.e. producing all excited determinants, and linearly com-

bining them with the Hartree-Fock determinant is known as Full Configuration In-

teraction (FCI). FCI captures all correlation energy, giving the exact solution of the

non-relativistic time-independent Schrödinger equation within the Born-Oppenheimer

approximation and within the confines of the basis set.

The FCI wavefunction can be written in terms of the excited determinants, weighted

by coefficients (determination of these coefficients is described later).
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|ΨFCI〉 = C0|Ψ0〉 +
∑
i
a

Ca
i |ψai 〉 +

∑
ij
ab

Cab
ij |ψabij 〉 + . . . +

∑
ij..no
ab..nv

Cab..nv
ij..no
|ψab..nvij..no

〉

(1.22)

where no (nv) represent the number of occupied (virtual) orbitals and |ψai 〉 represents

an “excitation” of the reference determinant with the electron moving from orbital i to

orbital a. FCI calculations are not feasible beyond small molecules due to their com-

putational demand. The cost of the calculation scaling as n factorial (n!). Perturbation

theory shows the hierarchy of excitations needed. At first order only determinants cor-

responding to double excitations from the reference function are included, due to the

Hamiltonian only containing at most interactions of two bodies. Second order pertur-

bation theory says to include excitations from single up to quadruple. Since these exci-

tations are deemed to be the most important, methods which use “truncated excitation

operators”, that only excite to certain levels have developed, the most widely known

being truncated Configuration Interaction (CI) and Coupled Cluster (CC). These meth-

ods are known to perform well at capturing the dynamic correlation energy, which is

the dominant form of correlation energy around the equilibrium geometry, but they

perform less well, and are very poor approximation of FCI when other forms of corre-

lation energy become important.

1.2.2 Static Correlation

When a molecule forms a bond, the atomic valence orbitals overlap and molecular or-

bitals are formed. There exists a gap between the Highest Occupied Molecular Orbital

(HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO). When this gap is

large, the wavefunction is dominated by a single configuration, i.e. the FCI expan-

sion gives a dominant weighting to a specific determinant. In this case the valence

electrons seem to move in a mean-field potential of the other electrons. This can be ad-

equately described qualitatively by a theory based on a single reference determinant,

and in many cases by a single reference mean field approximation such as Hartree-

Fock. When the gap between HOMO and LUMO is small, close to degeneracy, the

wavefunction is no longer dominated by a single configuration and is instead a super-
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position of several configurations similar in energy. This correlation of electrons is

called static correlation.

The effects of static correlation are most visible when studying reaction pathways and

bond stretching. In most cases when atoms are placed at long bond lengths, states

become nearly degenerate, leading to multi-reference behaviour. It is for this reason

that static correlation is also known as “long range” correlation. A simple and much

quoted example of a situation of static correlation is that of dissociation of H2 to open-

shell products. The Hartree-Fock wavefunction for the X1Σ+
g ground state can be

written,

ψG = Â σαg (1)σβg (2) (1.23)

σg = Zσg(χA + χB) (1.24)

where χX is a basis function centred on atom X, Zσg is the normalisation factor, A is

the antisymmetrizing operator and α and β indicate the spin.

Asymptotically becoming

ψG ∼ Z2
σg Â

(
1sαA1sβB + 1sβA1sαB + 1sαA1sβA + 1sαB1sβB

)
(1.25)

The last two terms have both electrons centred on one atom, representing homolytic

fission of the diatomic. This causes an overestimation of the energy and a qualitatively

incorrect potential energy surface (PES).

A way of capturing static correlation upon dissociation of H2 to ensure a qualitatively

correct description of the process must be found. Looking at the 1Σ+
g excited state

of H2 where both electrons are in the anti-bonding orbital, the wavefunction can be

written

ψE = Â σαu (1)σβu(2) (1.26)

σu = Zσu(χA − χB) (1.27)

with normalisation factor Zσu .

Asymptotically becoming

ψE ∼ Z2
σu Â

(
1sαA1sβB + 1sβA1sαB − 1sαA1sβA − 1sαB1sβB

)
(1.28)



Electron Correlation 11

Which contains covalent and ionic terms as before for ψG. It can be seen that the

linear combination of the two configurations, ψG − ψE = σ2
g − σ2

u, cancels the ionic

terms exactly and correctly describes the dissociation of H2 into 2 equal fragments

in a qualitatively correct way. The exchange integral for the two electrons is small,

indicating a low probability of exchange of the electrons, hence the phrase “static cor-

relation”.

In general, for all bond lengths, a linear combination of the determinants can describe

the state of the H2 molecule.

Ψ = cGψG + cEψE (1.29)

The wavefunction is a linear combination of Slater determinants, this is a form of Con-

figuration Interaction (CI) mentioned in the previous subsection, but importantly, to

describe the H2 molecule qualitatively correctly at all bond lengths, more than 1 Slater

determinant is required. A linear combination of similarly weighted configurations is

the key way to capture static correlation, and give a qualitatively correct description of

the wavefunction.

Single- and Multi-reference Situations

It is perhaps simpler to talk about single reference situations and multireference sit-

uations. Looking at the exact Hamiltonian of the system as the Hartree-Fock (self-

consistent field (SCF)) Hamiltonian plus a perturbation operator to define the missing

contributions,

Ĥ = Ĥ0 + V̂ (1.30)

Ĥ0 =
∑
i

f̂i (1.31)

When the perturbation is small, i.e. the norm of the V matrix is small, then the wave-

function is dominated by a single determinant, that of the Hartree-Fock wavefunction

and singly and doubly excited states will have a small amplitude. If the perturbation

is large, then the wavefunction is not dominated by a single determinant and the ex-

act wavefunction contains two or more configurations with similarly large amplitudes;

this can be known as configurational quasi-degeneracy (CQD). This is considered a

multireference case because multiple configurations are needed for a qualitatively cor-

rect description of the wavefunction. This behaviour arises most commonly upon bond
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stretching (at long bond lengths), with excited states and biradicals [6]. In the multiref-

erence situations, where static correlation is significant and the minimal qualitatively

correct wavefunction consists of 2 or more similarly weighted configurations, the dy-

namic correlation is also important and must also be found, using the multiconfigura-

tional wavefunction as the reference state from which to make excitations.

Methods

Static correlation cannot be captured by a Hartree-Fock calculation. Hartree-Fock uses

only a single reference determinant as its wavefunction, so therefore cannot include

other configurations of importance, therefore lacking the freedom required. The post-

Hartree-Fock methods, such as CCSD and CISD, do form a wavefunction based on

many configurations and therefore might be thought to capture static correlation, how-

ever, the configurations in the CCSD and CISD wavefunction are those configurations

reached by single and double excitations of a single reference determinant only. To

capture the static correlation a method that spans more of the space by making more

excitations (i.e. approaches FCI) could be used, or, a method that spans different areas

of the space to provide a more balanced wavefunction. The first approach is a con-

tinuation of the CCSD and CISD idea, to include higher excitations in the excitation

operator (CCSDT,CCSDTQ, CCSDTQ...). Including higher and higher excitations

will approach FCI, accounting for all correlation, however it is very slow to converge

to FCI and to capture static correlation (but very accurately captures dynamic corre-

lation). Including higher order excitations also becomes prohibitively expensive, with

scaling of n8 for CCSDT, n10 for CCSDTQ and n12 for CCSDTQP.

The second approach encompasses the multi-configurational nature of the wavefunc-

tion by including different configurations in the reference function, therefore spanning

different areas of the space. This approach therefore can give equal weightings to dif-

ferent determinants in the wavefunction and really embodies the idea that the state is

not simply 1 configuration but a combination. This method of capturing static corre-

lation is mentioned above in the section on static correlation. Multi-Configurational

Self-Consistent Field (MCSCF) theory is one such approach where a linear combina-

tion of several configurations is used as the zeroth order wavefunction, with the orbitals

and expansion coefficients being optimised. Further excitations can be made from the

multiple configurations of MCSCF in order to capture more dynamic correlation en-



Electron Correlation 13

ergy, which can be done using existing techniques mentioned previously (CI and CC

to form Multi-Reference CI (MRCI) and Multi-Reference Coupled Cluster (MRCC)).

But importantly, these excitations are now being made from a broader range of config-

urations that were deemed to be important for the zeroth order approximation of the

state. MCSCF itself and methods using the multi-configurational MCSCF wavefunc-

tion as the 0th order reference from which to make excited configurations are called

multireference methods. Application of the method of configuration interaction to a

multi-configurational reference function yielded MRCI, and attempts to apply Cou-

pled Cluster theories to a multi-configurational reference function to give an MRCC

are on-going.

A review of methods designed to capture the correlation energy and accurately de-

scribe the many body effects is now given, dealing first with methods based on a single

reference determinant (1.3) before describing multireference methods (1.4)
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1.3 Capturing Correlation: Single-Reference Methods

The Hartree-Fock approximation does not offer exact results, and in many cases such as

bond breaking, can offer qualitatively wrong results. However, this approximation does

provide a basis for other methods to go further and capture electron correlation.

1.3.1 Configuration Interaction and Size-Extensivity

Configuration Interaction

The FCI wavefunction can be written as linear combination of the reference and all

possible excited states.

|ΨFCI〉 = C0|Ψ0〉 +
∑
i
a

Ca
i |ψai 〉 +

∑
ij
ab

Cab
ij |ψabij 〉 + . . . +

∑
ij..no
ab..nv

Cab..nv
ij..no
|ψab..nvij..no

〉

(1.32)

This expansion uses the general notation of |ψab..nvij..no
〉 indicating electrons in orbitals

i,j have been excited to the orbitals a,b. Orbitals i,j belong to the set of no occupied

orbitals in the reference and a,b belong to the set of nv virtual orbitals. The Full-CI

limit is reached when all electrons have been excited to all virtual orbitals.

The coefficients in the linear combination can be determined variationally, via minimi-

sation of the Rayleigh quotient with respect to the coefficients.

ρ =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= E

∂ρ

∂c
= 0 (1.33)

As stated previously, the FCI calculation can only be performed on small molecules

with small basis sets due to its n! computational scaling. Truncated forms of CI are

performed where the excitation operator is truncated to include only specific excitation

levels. The typical truncations are to include only doubles or to include single and

double excitations, giving the methods CID and CISD.

General Size-extensivity Error
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Size-extensivity is defined as the correct linear scaling of a property with system size

as opposed to an intensive property that does not change with increasing system size.

With regard to quantum chemical methods, the energy must scale correctly with system

size, otherwise calculations cannot provide a constant level of accuracy across systems,

therefore providing unbalanced and inaccurate descriptions of processes.

The linked diagram theorem states that a many-body theory is extensive if its energy

expression contains linked diagram contributions only [7, 8] (for the energy expression

this is equivalent to “connected” diagrams). This means that the energy terms must be

composed of parts that are all linked/connected by sharing indices, for example the

ficticious term,

〈ij||ab〉X ij
cd Y

cd
kl Z

kl
ab (1.34)

is linked and connected because indices are shared across all parts, each part is linked

and connected to another. A ficticious example of a disconnected and unlinked term is

given below,

〈ij||ab〉X ij
ab Y

kl
cd Z

cd
kl (1.35)

This energy contribution consists of a product of connected parts but importantly

they are not connected to each other, therefore one part can grow irrespective of the

other, causing erroneous scaling. There also exist disconnected diagrams that are

linked.

〈ij||ab〉Xk
c (1.36)

This example is linked because multiplication by another object can make it connected,

it doesn’t contain closed disconnected parts like the previous example. This leads us to

the conclusion that “linked” diagrams or terms should be called “linkable” [9].

For the energy to scale correctly with system size, only linked/connected diagrams

must be included. It is perhaps easiest to see if a term is connected/linked or discon-

nected/unlinked via diagrammatic representation, for which the reader is directed to

the review of Crawford and Schaefer [9].

The size-extensivity error can be alternatively viewed for the CI case. Equations to

determine the CI coefficients can be obtained by minimisation of the Rayleigh quotient
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or by projection of excited determinants on the Schrödinger equation. We will look at

the CI size extensivity/consistency errors in the projected equations, as this is most

commonly done due to its ease of comparison with Coupled Cluster theory and other

corrective methods that cannot be formulated in a functional form. To determine the

amplitude of a double excitation in FCI, the equation below must be solved.

〈ψabij |Ĥ − E0|Ψ0〉 +
∑
k,c

Cc
k〈ψabij |Ĥ − E0|ψck〉

+
∑
k>l
c>d

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉

+
∑
k>l>m
c>d>e

Ccde
klm〈ψabij |Ĥ − E0|ψcdeklm〉

+
∑

k>l>m>n
c>d>e>f

Ccdef
klmn〈ψ

ab
ij |Ĥ − E0|ψcdefklmn〉 = ∆E Cab

ij (1.37)

where the correlation energy can be written as a sum of the pair energies

∆E = Ccd
kl 〈ψcdkl |Ĥ − E0|Ψ0〉 (1.38)

The correlation energy ∆E grows with system size n. For the size-extensivity rules to

be obeyed, the left hand side of 1.37 must also scale with n. It can be seen that the left

hand side term contains disconnected parts, i.e. the amplitude is independent of the 2-

electron integrals. This causes erroneous scaling, as for a given orbital i, the number of

non-zero coefficients involving orbitals i, j, etc, increases with n. This acts to balance

the n scaling of the right hand side of 1.37. This happens at all orders, leaving the

method size-extensive. This is the case in Full-CI.

Truncated-CI methods, where the excitation operator is truncated to include only lower

excitations, excitations of higher rank are not included meaning the cancellation of

errors to balance the equation does not occur at any order. Upon truncation to CID, the

amplitude equation no longer contains the disconnected quadruple terms.

〈ψabij |Ĥ − E0|Ψ0〉 +
∑
k>l
c>d

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉 = ∆E Cab

ij (1.39)

As a result, the cancellation of the disconnected terms does not occur, the right hand

side of 1.39 still scales with n, but the left hand side does not. The method is therefore

no longer size-extensive. A related property to that of size-extensivity is the property

of size-consistency.
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Size Consistency Error

Size-consistency is the property that the simultaneous calculation of the energy of two

separated subsystems must be the same as the sum of the energies calculated in sep-

arate calculations. The wavefunction for the super-system must be the product of the

wavefunctions of the two separated subsystems.

A truncated CI calculation, for example CID, on the separated monomers will contain

double excitations within the monomers. A CID calculation on the super-system will

not allow a double excitation in monomer A simultaneous with a double excitation in

monomer B because this represents a quadruple excitation in the super-system. The

CID wavefunction and energy for the super-system are therefore different to those of

the sum of the monomers. CID applied to the super-system does not have enough

flexibility to give twice the monomer energy. When increasing the level of excitation

of the monomers, the super-system must contain even higher excitations.

Ĉ = ĈA + ĈB (1.40)

|Ψ0〉 = |ψ0A〉.|ψ0B〉 (1.41)(
1 + Ĉ

)
|Ψ0〉 =

(
1 + ĈA + ĈB

)
|ψ0A〉|ψ0B〉 (1.42)

6=
(

1 + ĈA

)
|ψ0A〉.

(
1 + ĈB

)
|ψ0B〉 (1.43)

The wavefunction of the supersystem is not a product of the subsystems as it should

be, because CI represents a linear parameterisation. As a result the CI wavefunction of

the supersystem does not separate into the wavefunctions of the subsystems. The lack

of size-consistency has many consequences, for example the reaction AB → A + B,

the calculation of the monomer energies in effect contains disconnected quadruple

excitations giving a better description of the monomers than the compound AB whose

CID wavefunction contains only double excitations. For this example, endothermic

reaction barriers are underestimated and that of exothermic overestimated, leading to

incorrect conclusions.

To restate, CID is not size-consistent because its wavefunction is not separable. Meth-

ods to correct the size-consistency error of the popular truncated CI forms of CID and

CISD focus on inclusion of quadruple excitations, as this can treat the consistency

problem for CID.
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1.3.2 Coupled Cluster

Coupled cluster theory replaces the linear parameterisation of the wavefunction present

in CI with an exponential parameterisation (exponential ansätze).

|ΨCC〉 = eT̂ |Ψ0〉 =
∞∑
n=0

T̂ n

n!
|Ψ0〉 (1.44)

The exponential parameterisation ensures the correct behaviour on separation of the

system into non-interacting subsystems, i.e. the wavefunction of the supersystem is a

product of the wavefunctions of the subsystems.

T̂ = T̂A + T̂B

|Ψ0〉 = |Ψ0A〉|Ψ0B〉

eT̂ |Ψ0〉 = eT̂A+T̂B |Ψ0A〉|Ψ0B〉

= eT̂AeT̂B |Ψ0A〉|Ψ0B〉

= eT̂A|Ψ0A〉.eT̂B |Ψ0B〉, (1.45)

Coupled cluster theory is therefore size-consistent, irrespective of the level of trunca-

tion of T̂ .

The exponential ansätze also partially introduces the effects of higher levels of exci-

tation through products of lower order operators. For example, including only double

excitations in T̂ (T̂ = T̂2) introduces quadruple excitations via 1
2!
T̂ 2

2 .

We now look at the extensivity of the Coupled Cluster method. The energy and am-

plitude equations can be found via left projection of the reference or excited determi-

nants.

〈Ψ0|ĤN e
T̂ |Ψ0〉 = Ecorr (1.46)

〈ψabij |ĤN e
T̂ |Ψ0〉 = Ecorr T

ab
ij (1.47)

using the normal-ordered Hamiltonian operator ĤN , which is equivalent to Ĥ − E0.

For simplicity, truncating the excitation operator to double excitations (T̂ = T̂2),

〈Ψ0|ĤN e
T̂ |ψcdkl 〉T klcd = Ecorr (1.48)

〈ψabij |ĤN

(
1 + T̂2 + 1

2
T̂
)
|Ψ0〉 = Ecorr T

ab
ij (1.49)
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It is easy to see that unlike the CID case, there are now disconnected quadruple term

on both sides of equation 1.49. The disconnected parts of T̂2|Ψ0〉 cancel Ecorr T abij ,

leaving a fully connected equation.

〈ψabij |ĤN

(
1 + T̂2 + 1

2
T̂
)
|Ψ0〉c = 0 (1.50)

This results in CCD being size-extensive, and similar cancellations occur for all orders,

meaning Coupled Cluster is extensive irrespective of the truncation of T̂ .

The form of the Coupled Cluster equations above is not that of the general formalism,

and was written as such above to show similarities to other methods developed as

corrections to CI, described later. The standard method of solving the Coupled Cluster

equations is to define a similarity transformed Hamiltonian, in order to decouple the

energy and amplitude equations, then project on the left with either the reference to

form the energy equations, or an excited determinant to form the amplitude equations.

For example, the CCD equations show the projective nature of traditional Coupled

Cluster.

〈Ψ0|e−T̂ ĤeT̂ |Ψ0〉 = ECCD (1.51)

〈ψabij |e−T̂ ĤeT̂ |Ψ0〉 = 0. (1.52)

Traditional Coupled Cluster also has a favourable scaling of n2
on

4
v where no and nv rep-

resent the number of occupied and virtual orbitals respectively. The favourable scaling

can be seen to be a result of the truncation of the Campbell-Baker-Hausdorff (CBH)

expansion[9]. The CBH expansion takes the similarity-transformed Hamiltonian and

expands it as a series of commutators[10].

H̄ = e−T̂ ĤeT̂ = Ĥ +
[
Ĥ, T̂

]
+

1

2!

[[
Ĥ, T̂

]
, T̂
]

+
1

3!

[[[
Ĥ, T̂

]
, T̂
]
, T̂
]

+ . . .

(1.53)

This expansion truncates at the fourth power of T̂ due to the Hamiltonian being a 2-

body operator, reducing the n! complexity.

Coupled cluster is size-extensive and size-consistent, orbital invariant and exact when

the excitation operator is not truncated, i.e. is of the order of the number of electrons.

This has led to its widespread use, but as noted later, it is known to fail for geometries

away from the equilibrium[11, 12].
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1.3.3 CI Corrections and Pair Theories

It has been shown above that the extensivity and consistency error of CI can be seen

as a result of the neglect of disconnected quadruples. Therefore a simple approach to

correct the error is the inclusion of disconnected quadruples.

Quadratic Configuration Interaction(QCI) [13] simply includes the quadratic term of

Coupled Cluster in the CI equations. For the case of QCID i.e. T̂ = T̂2, the equations

become,

〈Ψ0|ĤN T̂2|Ψ0〉 = Ecorr (1.54)

〈ψabij |ĤN

(
1 + T̂2 + 1

2
T̂
)
|Ψ0〉 = Ecorr T

ab
ij (1.55)

These equations are the same as the CCD equations described earlier (eq. 1.49), as

initially noted by Pople [13], meaning there is no independent QCID method. When

including other excitations, the QCI method differs from Coupled Cluster. A compar-

ison of CISD, QCISD and CCSD is now given.

CISD : 〈Ψ0|ĤN T̂2|Ψ0〉 = Ecorr (1.56)

〈ψai |ĤN

(
T̂1 + T̂2

)
|Ψ0〉 = Ecorr T

a
i (1.57)

〈ψabij |ĤN

(
1 + T̂1 + T̂2

)
|Ψ0〉 = Ecorr T

ab
ij (1.58)

QCISD : 〈Ψ0|ĤN T̂2|Ψ0〉 = Ecorr (1.59)

〈ψai |ĤN

(
T̂1 + T̂ 2

2 + T̂1T̂2

)
|Ψ0〉 = Ecorr T

a
i (1.60)

〈ψabij |ĤN

(
1 + T̂1 + T̂ 2

2 + 1
2
T̂2

)
|Ψ0〉 = Ecorr T

ab
ij (1.61)

CCSD : 〈Ψ0|ĤN

(
T̂2 + T̂ 2

1

)
|Ψ0〉 = Ecorr (1.62)

〈ψai |ĤN

(
T̂1 + T̂2 + T̂1T̂2 − 1

3
T̂ 3

1

)
|Ψ0〉 = Ecorr T

a
i (1.63)

〈ψabij |ĤN

(
1 + T̂1 + T̂2 + 1

2
T̂ 2

1 + 1
2
T̂ 2

2 + T̂1T̂2 − 1
3
T̂ 3

1 − 1
12
T̂ 4

1

)
|Ψ0〉 = Ecorr T

ab
ij

(1.64)

The variational property of CISD is sacrificed in order to gain size-extensivity as

QCISD. QCISD has shown to perform well, but not as well as CCSD, for example,
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in the calculation of spectroscopic properties of BeO[14]. This error is a result of the

missing terms in QCISD compared to CCSD (as shown above). These terms are rel-

atively simple to compute, the most demanding scaling like O(n6), not increasing the

complexity of the method. As a result, QCISD is seen as an approximation to CCSD,

with CCSD is generally used and QCISD seldom used. In addition, extending to in-

clude triple excitations in the T̂ operator, as is often required to produce chemically

accurate results, breaks the extensivity of QCISDT [15]. This further adds to the over-

whelming reasons to use Coupled Cluster over QCI, as CCSDT (and above) remains

extensive.

The QCI method modifies CI, to make it size-extensive, approximating Coupled Clus-

ter. However, before Coupled Cluster theory was practical, many method to correct

CI were formulated, to sit on efficient CI code available, and in some cases retain the

variational property.

CEPA Methods

To look at methods designed to correct configuration interaction errors or go beyond

CI, we must first look at the full-CI equations. The equation to determine the doubles

amplitude in FCI is as follows.

〈ψabij |Ĥ − E0|Ψ0〉 +
∑
k,c

Cc
k〈ψabij |Ĥ − E0|ψck〉

+
∑
k>l
c>d

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉

+
∑
k>l>m
c>d>e

Ccde
klm〈ψabij |Ĥ − E0|ψcdeklm〉

+
∑

k>l>m>n
c>d>e>f

Ccdef
klmn〈ψ

ab
ij |Ĥ − E0|ψcdefklmn〉 = ∆E Cab

ij (1.65)

As noted, full-CI is too computationally demanding for all but small systems, so the

excitation operator is truncated, most commonly to include only single and double

excitations. The equation to determine the doubles amplitudes in the resulting CISD

method is shown,

〈ψabij |Ĥ − E0|Ψ0〉 +
∑
k,c

Cc
k〈ψabij |Ĥ − E0|ψck〉

+
∑
k>l
c>d

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉 = ∆E Cab

ij (1.66)
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where the pairs energy is given,

∆E =
∑

i>j,a>b

〈Ψ0|Ĥ|ψabij 〉Cab
ij =

∑
i>j

εij (1.67)

It was shown above that the lack of extensivity of CI is a result of the energy dependent

term ∆E Cab
ij , which contains disconnected quadruple terms. In the case of QCI the

solution to the extensivity error was to introduce the quadruple terms as a product of

double excitations. The methods described below do not include all quadruples, they

include only those needed to cancel the ∆E Cab
ij term, i.e. the disconnected terms. The

disconnected terms can be included via the use of the Cluster condition:

Cabcd
ijkl ≈ Cab

ij C
cd
kl (1.68)

Including the approximate quadruples, the amplitude equation becomes,

〈ψabij |Ĥ − E0|Ψ0〉 +
∑
k,c

Cc
k〈ψabij |Ĥ − E0|ψck〉

+
∑
k>l
c>d

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉

+

6=ij,6=ab∑
k>l
c>d

Cab
ij C

cd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉 = ∆E Cab

ij (1.69)

Inserting the correlation energy from 1.67 as a sum of pair energies,

〈ψabij |Ĥ − E0|Ψ0〉 +
∑
k,c

Cc
k〈ψabij |Ĥ − E0|ψck〉

+
∑
k>l
c>d

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉

+

6=ij,6=ab∑
k>l
c>d

Cab
ij C

cd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉 =

∑
k>l,c>d

Cab
ij C

cd
kl 〈Ψ0|Ĥ|ψcdkl 〉 (1.70)

The last term on the left-hand-side looks almost identical to the right-hand-side, apart

from the restricted summations indicating the neglect of Exclusion Principle Violating

(EPV) terms on the left hand side. The Exclusion Principle Violating (EPV) terms are

those where the same electron is created/annihilated more than once, which violates

the Pauli exclusion principle. These terms therefore partially cancel.

For the moment we assume these terms cancel exactly. The result is equations are

those of CEPA(0) [16], giving the amplitude and energy equations (including double
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excitations only in the excitation operator)

〈ψabij |(Ĥ − E0)
(

1 + Ĉ2

)
|Ψ0〉 = 0 (1.71)

〈Ψ0|Ĥ − E0Ĉ2|Ψ0〉 + 〈Ψ0|Ĉ†2Ĥ − E0Ĉ2|Ψ0〉 = ∆E (1.72)

It is clear from these equations that CEPA(0) is equivalent to a linearised Coupled Clus-

ter method (LCCD) [17] (also known as Linear-Coupled Pair Many Electron Theory(L-

CPMET) [18]), where the exponential series of the cluster operator is truncated at the

linear term. CEPA(0) is size-extensive as a result of inclusion of disconnected quadru-

ples and resulting removal of the energy dependence of the amplitude equation. This

method is not exact, even for 2-electrons and is known to overestimate the effect of

higher excitations (linearised CC methods often do [19]). Assuming the full cancella-

tion of the terms noted above is too much of an approximation.

We now look again at the partial cancellation of the quadruple terms in 1.70. the

partial cancellation leaves only disconnected EPV terms. In simplified terms, where

(C4)D symbolises the disconnected quadruple terms (with no EPVs) and (C4)EPVD the

disconnected EPV terms, the cancellation between the two terms occurs,

((C4)D) −
(
(C4)D + (C4)EPVD

)
= −(C4)EPVD (1.73)

The doubles amplitude equation can then be written,

〈ψabij |Ĥ − E0|Ψ0〉 +
∑
k,c

Cc
k〈ψabij |Ĥ − E0|ψck〉 +

∑
k>l
c>d

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉

−
“restr”∑
klcd

Cab
ij C

cd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉 = 0 (1.74)

〈ψabij |(Ĥ − E0)
(

1 + Ĉ1 + Ĉ2

)
|Ψ0〉 − Cab

ij

“restr”∑
klcd

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉 = 0

(1.75)

where “restr” indicates at least one of the indices klcd must match ijab, giving an EPV

term. If the EPVs are included exactly, there is full cancellation of the two terms.

The problem lies in finding the connected EPV terms, with many methods designed to

approximate them in different ways. The language of the literature can be confusing
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when referring to “inclusion” and “exclusion” of EPV terms. To restate, EPV terms re-

main in equation1.75. These are often neglected but for a better description of the cor-

relation energy, they should be calculated. The Coupled Electron-Pair Approximation

(CEPA) methods were originally designed as size-extensivity corrections for single

reference CI that also improved the correlation energy, before Coupled Cluster seemed

feasible. The different CEPA methods aim to capture the EPV terms (mentioned above)

either completely or partially via different adjustments of the equations.

EPV Terms: Cab
ij

“restr”∑
klcd

Ccd
kl 〈ψabij |Ĥ − E0|ψcdkl 〉 = Cab

ij R
ab
ij (1.76)

The simplest CEPA approach is that of CEPA(0) described above. This method actu-

ally neglects EPV terms completely as they are quadratic (but also implicitly includes

them in order for the cancellation of disconnected quadruples to occur in equation

1.75). Further CEPA methods attempt to capture the EPV terms in order to better ap-

proximate the quadruple excitations, negating CEPA(0)’s overshoot of the effects of

higher excitations, therefore give a more accurate energy. Several CEPA approaches

exist [20–24], with references [25, 26] providing a detailed review. The CEPA(0) ap-

proach was outlined here in the single reference formalism due to connection to its

multireference version and the work carried out in this thesis which looks to extend a

method, with a CEPA(0)-like energy, to the multireference case.

The Functional Form of the Energy

The description of the extensivity error in CI and the corrective methods has focused on

projected equations. Alternatively, the cause of the CI extensivity error can be clearly

and most easily seen from the functional form of the energy.

E = E0 +
〈Ψ0 + Ψc|Ĥ − E0|Ψ0 + Ψc〉

1 + 〈Ψc|Ψc〉
(1.77)

= E0 +
〈Ψ0|

(
1 + Ĉ

)† (
Ĥ − E0

)(
1 + Ĉ

)
|Ψ0〉

1 + 〈Ψ0|
(

1 + Ĉ
)† (

1 + Ĉ
)
|Ψ0〉

(1.78)

The right hand side of 1.66 contained disconnected terms, which can be seen in the

functional form because the denominator is totally independent of the numerator, shar-

ing no indices, hence the denominator and numerator are not connected/linked, mean-

ing the denominator can grow independently of the numerator leading to disconnected
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energy contributions that do not scale correctly with system size. The numerator scales

with n, whereas the denominator scales as 1 + n. By expanding the denominator in a

binomial series the disconnected nature of the energy can be seen.

E = E0 + 〈Ψ0 + Ψc|Ĥ − E0|Ψ0 + Ψc〉
(
1 − 〈Ψc|Ψc〉 + O

(
〈Ψc|Ψc〉2

))
(1.79)

The second term on the right hand side can grow independently of the first term.

∆E = 〈Ψ0 + Ψc|Ĥ − E0|Ψ0 + Ψc〉〈Ψc|Ψc〉 (1.80)

From this outline of the cause for CI extensivity errors, it is not a surprise that meth-

ods for correction focus on inclusion of quadruples (including capture of EPV terms

to better approximate the quadruples), removal of energy dependence in the ampli-

tude equations and introducing a linked denominator for the functional form of the

energy.

As stated, when looking at the functional form of the CI energy, it is easy to see that the

denominator contains a 〈Ĉ†Ĉ〉 term that is not linked to the numerator, causing size

extensivity problems. Accordingly there has been effort to form a functional where

the denominator is linked to the numerator, leading to correct scaling. The following

methods are most clearly viewed in their functional form as opposed to their projected

equations, so are discussed here in that form.

The Coupled Pair Functional (CPF) method of Ahlrichs et al [27, 28] uses a partial nor-

malisation procedure. The denominator of the energy functional contains a topological

factor, TPQ, that scales the contributions to pair part of the denominator.

F [Ψc] = 2
∑
P

〈Ψ0|Ĥ − E0|ψP 〉
NP

+
∑
P,Q

〈ψP |Ĥ − E0|ψQ〉
MPMQ

(1.81)

NP = 1 +
∑
Q

TPQ 〈ψQ|ψQ〉 (1.82)

MP =
√
NP (1.83)

The case of TPQ = 1 returns the CI(SD) energy functional and a choice of TPQ =

0 gives CEPA(0) or Linearised-CCSD. For the general case, the factors scale the

〈ψQ|ψQ〉 contribution based on how much the orbitals in Q are related to the orbitals

in P. If the orbitals occupied in P are denoted i,j and the spin coupling denoted p, and
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similarly klq for state Q, the topological factors can be found via,

TPQ =
δik + δil

2ni
+

δjk + δjl
2nj

(1.84)

Where ni indicate the occupation number of orbital i. The more “related” the orbitals

in P are to the orbitals in Q, then the greater TPQ and therefore this contributes more to

the denominator. When there is little or no relation, then TPQ is very small or 0. In CI

as system size increases the denominator grows because all the 〈ψQ|ψQ〉 are included

in the sum for the denominator for ψP , whereas CPF doesn’t include (or includes to a

lesser extent) the cases where 〈ψQ|ψQ〉 is unrelated to ψP , i.e. the disconnected cases.

Hence, the denominator of the energy functional scales more reasonably, because the

energy is approximately linked/connected. The form of topological factors was chosen

to make the method correct for separated electron pairs and make it invariant to unitary

transformations of equivalent orbitals of identical subsystems. The idea utilised here is

similar to that used by the linked pair functional[29, 30] theories described later, that

form the basis for the work in this thesis.

ACPF

Further work looked at simply scaling the 〈T̂ †T̂ 〉 term in the denominator to make

the method extensive, even though it still contains disconnected/unlinked terms. The

Averaged Coupled Pair Functional (ACPF) [31] was developed from CPF [27, 28] and

CI.

F [Ψc] =
〈Ψ0 + Ψc|Ĥ − E0|Ψ0 + Ψc〉

1 + g〈Ψc|Ψc〉
(1.85)

If the factor, g, is 1 then CI the functional reduces to CI. The norm of the correlation

part of the wavefunction in the denominator is the cause of the lack of size extensivity

in CI, due to unlinked diagram contributions. It is apt to set the g factor to scale the

norm to counter the norms unphysical increasing size due to unlinked contributions. A

choice of g proportional to 1/n, where n is the number of correlated electrons is used.

Adjusting the method so it is correct for separated pairs of electrons, g is chosen to be

2/n. This method therefore takes into account the EPV terms in an average way, as it

distributes the correlation energy equally among all n/2 non-interacting pairs, giving

an average pair energy. In the language of the previous section on projected equations,

the EPV terms Cab
ij R

ab
ij are approximated by the average pair energy ∆E

(
n
2

)
.
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Again looking at the EPVs in the projected equations, ACPF averages out the exclusion

principle violation terms, by using an averaged pair energy.

ε̄ =
∆E
n
2

(1.86)

The EPV terms are then approximately averaged out,

Cab
ij R

ab
ij = Cab

ij ε̄ (1.87)

leaving the method approximately size-extensive.

AQCC

Average Quadratic Coupled Cluster (AQCC) theory [32] accounts for the EPV terms

in a similar way to ACPF, but uses a different averaged pair energy and distributes the

electron correlation differently over all pairs. The AQCC average pair energy

ε̄ =
∆E(
n
2

) (1.88)

The EPV terms are found by summing over electron pairs with shared indices.

Cab
ij R

ab
ij = Cab

ij

((
n

2

)
−
(
n− 2

2

))
∆E(
n
2

) = Cab
ij

(
1 − (n− 2) (n− 3)

n (n− 1)

)
∆E

(1.89)

Again a functional form exists for this method, where the only difference to ACPF is

the choice of g in the denominator. ACPF’s choice of g is to make it exact for non-

interacting pairs of electron pairs. AQCC is not exact for non-interacting pairs but is

exact for 2 electrons (where there are no unlinked diagrams) and for 3-electrons (where

no EPVs exist). AQCC distributes the correlation energy over more electron pairs than

ACPF, it distributes over all pairs while ACPF only distributes over non-interacting

pairs. ([32], Gives detailed comparison of the ACPF and AQCC energy functional and

choice of G).
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1.3.4 Variational Coupled Cluster and the Linked Pair Functional

The Knowles research group has in recent years developed a series of methods that

starting from a CEPA(0) like energy expression, introduces a linked denominator to

ensure exact size extensivity while simultaneously approximating Variational Cou-

pled Cluster (VCC) to infinite order. Successive methods approximate VCC exactly

to higher order. To explain the Linked electron Pair Functional (LPF) methods [29, 30,

33], a short review of VCC is now given.

VCC

In Coupled Cluster theory an “exponential ansatz” is used where the excitation operator

(eT̂ is expanded as an exponential series 1 + T̂ + T̂ 2

2!
+ .... This is then inserted into the

Schrödinger equation to give:

ĤeT̂ |Ψ0〉 = EeT̂ |Ψ0〉 (1.90)

In traditional Coupled Cluster, the energy is usually determined from the equation

below where multiplication by e−T̂ has occurred to help decouple the energy and am-

plitude equations.

E = 〈Ψ0|e−T̂ ĤeT̂ |Ψ0〉 (1.91)

The expansion coefficients are determined via projection with the excited determi-

nants,

〈Ψij
ab|e

−T̂ ĤeT̂ |Ψ0〉 = 0 (1.92)

This method has proved to be very accurate around equilibrium geometries and is the

most widely used correlated method. However, the traditional Coupled Cluster for-

malism that relies on a projective method is poor when stretching bonds, i.e. when

static/non-dynamical correlation energy is important, giving both quantitatively and

qualitatively incorrect results. A side note is to mention that in recent years there

has been much research into MRCC in order to correct bond-stretching errors etc but

there are several different formalisms and each are very computationally demanding

[34, 35]. The failures of traditional Coupled Cluster have been seen as a result of the

truncation of the excitation operator, however, it has also been shown [12] that the
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projective method itself is to blame and using a different set of equations, at the same

truncation level, will yield much more reliable results. The formalism suggested is that

of a Variational Coupled Cluster. A VCC is considered to be advantageous because the

energy of the variational method is known to be an upper bound to the exact energy,

meaning it cannot suffer from the same unphysical behaviour as Traditional Coupled

Cluster (TCC) at long bond lengths where the energy can tend to minus infinity. A

VCC also allows the energy to satisfy the generalised Hellmann-Feynman theorem,

giving an energy functional allowing properties of the system to be computed [12]. In

traditional Coupled Cluster the bra and ket of the energy equation are not complex con-

jugates of each other (e−T̂ and eT̂ ) and therefore the method will never be variational,

however in VCC, instead of multiplying by e−T̂ , the adjoint of the excitation operator

is used. The VCC energy functional:

Evcc =
〈Ψ0|eT̂ †ĤeT̂ |Ψ0〉
〈Ψ0|eT̂ †eT̂ |Ψ0〉

(1.93)

It is often inconvenient to have a denominator, hence the denominator is removed via

complete factorisation of the numerator, causing cancellation between the numera-

tor and the denominator. All disconnected terms in the denominator cancel exactly

with the disconnected terms in the numerator, leaving a fully-connected energy ex-

pression:

Evcc = 〈Ψ0|eT̂ †ĤeT̂ |Ψ0〉c (1.94)

The quotient form of the energy is extensive. However, upon carrying out the se-

ries expansions of the exponential operators, the series only terminates when the level

of excitation reaches the n-electron excitation term, meaning all-electrons have been

replaced.This gives the method factorial complexity for all T̂ , irrespective of the trun-

cation level of the excitation operator itself.

This is different to traditional coupled cluster where the expansions terminate after

the product of four T̂ operators, due to the Campbell-Baker-Hausdorff expansion [10].

This gives the method scaling problems and is much more computationally expensive

than a projective Coupled Cluster method.

The connected form of the energy is extensive but does not terminate after a product of

four T̂ operators or even at the n-electron limit, it has an infinite series. The differences
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described between the quotient and connected forms of the VCC energy functional can

be seen by analysis of the expressions themselves.

For demonstrative purposes and for ease of reading, it is simplest to truncate the expo-

nential at 1 + T̂ , doing this shows the first terms of the true expansion. The connected

form of the energy can be expanded out as follows:

Evcc = 〈0|eT̂ †ĤeT̂ |0〉c (1.95)

= 〈Ĥ〉 + 2〈ĤT̂ 〉c + 〈T̂ ĤT̂ 〉c + O
(
T̂ 3
)

(1.96)

= 〈Ĥ〉+ + + +

(1.97)

The quotient form of the energy can be expanded using the binomial theorem to ex-

pand the denominator (shown below), noting that the expression contains disconnected

terms.

〈 (1 + T̂ + ...)† Ĥ (1 + T̂ + ...) 〉
1 + 〈T̂ †T̂ 〉

(1.98)

=
〈Ĥ〉 + 2 〈ĤT̂ 〉 + 〈T̂ †ĤT̂ 〉 + ...

1 + 〈T̂ †T̂ 〉
(1.99)

The numerator:

= 〈Ĥ〉+ + 〈Ĥ〉 +

+ + + ... (1.100)

The binomial expansion of the denominator(
1 + 〈T̂ †T̂ 〉

)−1

=
(

1 − 〈T̂ †T̂ 〉 + ...
)

(1.101)

= 1 − + + ... (1.102)

The numerator and the expansion of the denominator can then be multiplied together

(note: the identity: 〈T̂ †ĤT̂ 〉c = 〈T̂ †ĤT̂ 〉 − 〈T̂ †T̂ 〉〈Ĥ〉)
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(
〈Ĥ〉 + 2 〈ĤT̂ 〉 + 〈T̂ †ĤT̂ 〉 + ...

)(
1 − 〈T̂ †T̂ 〉 + ...

)
(1.103)

So multiplying the numerator by each part of the denominator:

(Numerator)x(1)

= 〈Ĥ〉 + + 〈Ĥ〉 +

+ + + ...

(Numerator)x(−〈T̂ †T̂ 〉)

= − 〈Ĥ〉 −

− 〈Ĥ〉

−

 + +




+ ...

(1.104)

Adding,

= 〈Ĥ〉 + −

+

 + +


1−


(1.105)

By adding these parts together, it can be seen that cancellation occurs of the discon-

nected 〈T̂ ĤT̂ 〉 term. The cancelling term came from 〈Ĥ〉 in the numerator, multiplied

by -〈T̂ †T̂ 〉 from the binomial expansion of the denominator. Only one multiplication
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of -〈T̂ †T̂ 〉 is shown, for simplicity, but cancellation of this kind happens at all orders,

this example is illustrative and does not show all products. The disconnected part is

cancelled by the connected part, this trend continues for higher orders. This shows

the EPV terms in the quotient form disappear via cancellation of disconnected and

connected terms. An apt question would be “With a quotient energy already existing

that is extensive and truncates, why the need for the connected form of the energy?” It

can often be inconvenient to have a denominator in an expression. Hence the numer-

ator of the quotient form is factorised completely in order to cancel the denominator

(Cizek 1969). However, the complete factorisation of the numerator requires summa-

tions over all indices, meaning that some unphysical diagrams are included in the sum,

these are Exclusion Principle violating terms (EPV terms). The connected form of

the VCC energy contains EPV terms that cause the expansion to be non-terminating

because multiple creation and annihilation operations can now be applied to the same

hole state. Truncation of the expansion must be carried out in order to obtain an ex-

pectation value, however, this value is no longer exact. The quotient form of the VCC

energy does not contain EPV terms due to cancellation of connected and disconnected

terms, as shown above. On the non-terminating nature of the connected form of the en-

ergy, the cause can be thought of as a result of the binomial expansion of the reciprocal

of the denominator, (1 +X)−1.

Due to the scaling problems the projective Coupled Cluster method has been widely

used as it does not have the same flaw. As mentioned, it is however advantageous to

have a variational CC method. Many attempts have been made to mimic or include the

variational VCC structure into methods, such as the CEPA methods [36] or quadratic

coupled cluster (QCC) [37]. In these methods the power series expansion of the ex-

citation operator is truncated, in CEPA(0) it is truncated to the linear term (linearised

Coupled Cluster), QCC gets it’s name from including up to the quadratic terms in the

series expansion. The Knowles group have recently developed a set of new approxi-

mations to variational Coupled Cluster, based on the LPF method [29].

LPF

The LPF method starts from the CEPA(0) energy equation, but LPF theory contains

only connected diagrams in the evaluation of its energy. Also, instead of the standard

amplitudes, it uses transformed amplitudes. The transformation of these amplitudes
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is constructed as to introduce a local(linked) denominator, similar to the idea of CPF,

which gives the CI denominator for 2-electrons, which is exact for that case.

ELPF = E0 + 〈Ψ0|Ĥ2T̂ |Ψ0〉+ 〈Ψ0|1T̂ (Ĥ − E0)1T̂ |Ψ0〉c (1.106)

Where the amplitudes used are the transformed amplitudes:

qT̂ |Ψ0〉 =
1

4
qT

ij
ab|Ψ

ab
ij 〉 (1.107)

The transformed amplitudes are generated from the old amplitudes using the U ma-

trix

qT
ij
ab = (U−

q
2T )ijab =

1

2
(U−

q
2 )ijklT

kl
ab (1.108)

where U is defined using hole-density matrix elements

U ij
kl = δijkl + ∆ij

kl (1.109)

∆ij
kl = δijη

j
l + δjl η

i
k − δilηkj − δ

j
kη

i
l − η

ij
kl (1.110)

ηij =
1

2
T ikabT

ab
jk = ηikjk ηijkl =

1

2
T ijabT

ab
kl (1.111)

U ij
kl = δijkl + ∆ij

kl (1.112)

∆ij
kl = −ληijkl +

(1− λ)

2

(
δijη

j
l + δjl η

i
k − δilηkj − δ

j
kη

i
l

)
(1.113)

ηij =
1

2
T ikabT

ab
jk = ηikjk ηijkl =

1

2
T ijabT

ab
kl (1.114)

The matrix inverse introduces division by the parts of the CI denominator that are lo-

cal to a specific part of the numerator, they are coupled to the correlation of 2 specific

reference orbitals. The size of the coupling between Cij in the denominator to terms

involving a pair of reference orbitals in the numerator (Ckl) is given by the magnitude

of the matrix element ∆kl,ij . From this point of view it is seen that the LPF method

introduces a local denominator. Although the energy functional looks the same as

CEPA(0), the transformed amplitudes are key. Binomial expansion of the local de-

nominator introduced via the amplitude transformations shows that transformations

introduce an infinite series. This transformations are designed so that the infinite se-

ries approximates the infinite series of connected VCC, and captures specific 3rd order

VCC terms to make the theory exact for 2 electrons.
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The λ parameter specifies the terms captured from 3rd order VCC, required for exact-

ness for 2-electrons.

For 2 electrons, the following combinations of terms are true

A B

C D

Figure 1.1: 3rd Order VCCD diagrams

A+D = 0 (1.115)

B + 2C = 0 (1.116)

A+B + C +D = B + C = −C =
1

2
B (1.117)

Using the definition of ∆ (above) it can be seen that the λ = +1 theory (LPF+1) gives

diagram -C, λ = 0 (LPF0) gives 1
2
B and λ = −1 gives B+C (LPF-1). Any choice

of λ gives the correct result for 2-electrons. Recent research [11] has shown that the

original LPF U matrix, defined above, where λ=-1, cannot be guaranteed to give a

positive definite matrix, and hence the matrix powers or inverses are not guaranteed

to exist. A choice of λ=+1 is considered to be the most suitable choice as through

that choice the U matrix is guaranteed to be positive definite, so the inverse matrix is

guaranteed to exist. This choice of λ also makes the theory also exact for 2 holes.

The series expansion of the transformed amplitude equation gives terms identical to a

subset of terms in CCD. For the 2-electron case, the expansion is identical to CID/CCD

because all are exact. For that case the U matrix has the CID norms as its diago-

nals.
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Therefore LPF approximates the connected form of the VCC energy, but does not suf-

fer from termination problems like the connected form of the VCC energy functional,

as it is written in a closed form.

The LPF method is exact for 2 electrons systems, it is size-extensive as it includes

linked-diagrams only, its energy is invariant to transformations of the orbitals spaces

and although it is not an upper-limit to the exact energy, it does satisfy the generalised

Hellmann-Feynman theorem [38]. The LPF-doubles method also has accuracy match-

ing VCCD [29, 30]. The Knowles group have developed a set of approximate varia-

tional coupled cluster theories based around transformations similar to LPF, including

approximate variational coupled cluster theory (AVCC) [11, 39] and quasi-variational

coupled cluster theory[11, 39].
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1.4 Capturing Correlation: Multi-Reference Methods

MR or not MR

Since different methods capture, and are optimised to capture, different forms of cor-

relation energy, diagnostics have arisen in order to indicate if ones methods of choice is

appropriate, and whether a multireference method should be used. The T1 diagnostic[40]

used in coupled cluster, simply takes the norm of the singles vector of CCSD, nor-

malised by the number of correlated electrons, and uses its magnitude to tell whether a

multireference method should be used, and logically, whether the result obtained with

single reference coupled cluster can be trusted, or whether a multireference method

should be used. This diagnostic is used after the calculation has finished, by which

time a large amount of time may have elapsed, hence tools have been developed to

tell whether a multireference method should be used, or not, from the outset. One

such method is that of Boguslawski et al.[41] who look at the measure of orbital en-

tanglement to determine the single- or multi-reference nature of the problem, the ma-

jor correlation energy contributions and the most appropriate ab initio method for the

problem. However, in general cases, it is often known beforehand that a single Slater

determinant does not provide a qualitatively correct description of the wavefunction,

in those cases, a multireference method must be used.

When the wavefunction is poorly approximated by a single determinant, e.g. Hartree-

Fock, the wavefunction can be written as a linear combination of several configura-

tions. This may resemble CI, but the difference is key. In CI, the configurations in the

linear combination are those which can be reached by, for example, double excitations

from the Hartree-Fock determinant. The configurations in a MCSCF wavefunction are

any configurations deemed to be important for the basic qualitative description of the

wavefunction. These generally consist of low-lying excited states, or configurations

that are degenerate or near degenerate to the Hartree-Fock determinant. Although there

is freedom to select specific configurations, a commonly used and more theoretically

attractive approach is to split the orbitals of the reference determinant into inactive,

active and virtual orbitals, as opposed to just occupied and virtual. The inactive or-

bitals are generally doubly occupied, and the virtuals unoccupied, but the active set of

orbitals form an active space, where excitations are made to distribute the electrons in
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the space. This generates many configurations, and if all possible ways to distribute

the electrons are included then the active space is complete and the method is then re-

ferred to as the Complete Active Space Self Consistent Field (CASSCF) method. The

use of a complete active space rather than selecting a subset of configurations provides

provides a better description of the wavefunction but also importantly use of a com-

plete active space means the method retains the invariance of the energy with respect

to unitary rotations of the orbital spaces. The CASSCF method can be viewed as a FCI

within an active space, with simultaneous orbital optimisation.

Considering the wavefunction as a linear combination of configurations

Ψmcscf =
∑
I

cI |I〉 (1.118)

the equation to determine the coefficients of the configurations is given as

〈I|Ĥ|J〉cJ = EcorrcI (1.119)

under the constraint of
∑

I c
2
I = 1. The orbitals are optimised by parameterising the

orthogonal rotations between orbitals using U = eR, where the R matrix is antisym-

metric. The change in the orbitals must be stationary with respect to the change in the

R matrix.

0 =
∂E

∂Rrs

= 2(1− τrs)Frs (1.120)

Frs =
∑
u

Dsuhru +
∑
uvw

Dsuvw(ru|vw) (1.121)

where Dsu and Dsuvw are the 1 and 2 particle density matrices. These two sets of

equations must be solved simultaneously to yield the MCSCF energy and orbitals.

The reader is directed to references [42–44] for a review of MCSCF theory and the

theoretical and computational techniques employed in its implementation.

The MCSCF/CASSCF method captures static correlation and is capable of describing

processes that single-reference methods struggle with such as bond breaking. How-

ever, MCSCF/CASSCF does not capture enough dynamic correlation. Ways of captur-

ing dynamic correlation in the single-reference case can be modified and implemented

to use a MCSCF/CASSCF wavefunction as the reference function. This has been done

(to differing degrees of success) for Coupled Cluster, Configuration Interaction and

Perturbation Theory, yielding the MRCC methods, MRCI and MR-perturbation theory
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methods such as CASPT2 [45] (MR-perturbation theories are not dealt with again in

this work, and are generally not extensive). The work in this thesis is based on exten-

sivity corrections for MRCI and approximating a multireference variational Coupled

Cluster theory, we therefore must look at the current methods used in this area.

1.4.1 MRCC

In light of traditional single reference coupled cluster’s failure when static/non-dynamical

correlation energy become important and in cases of near degeneracy, a multireference

implementation of a coupled cluster theory is desirable. The multireference nature

would allow the correct qualitative description of the state in question and the coupled

cluster ansätze would capture the dynamic correlation. However, over the last 30 years

there has been much research into the formulation of a MRCC method, with no method

yet satisfying all the criteria required of a multireference coupled cluster theory.

A satisfactory MRCC method would: be size-extensive, be size-consistent, be exact for

2-electrons, reduce to the single reference theory, have tractable equations, be invariant

to orbital rotations.

Initial MRCC methods were multi root methods in that they computed several elec-

tronic states at once in the same computation. These methods can be split into Valence

Universal (Fock space)[46] and State Universal (Hilbert space) methods. Fock space

methods use an exponential operator that can generate states with different numbers of

electrons; it acts in the Fock space which is the union of the Hilbert spaces of different

particle number. The other main multi-root methods are the State Universal methods

that are particle conserving and consider a manifold of states that have a fixed num-

ber of electrons. These are often based on the Jeziorski-Monkhorst (JM) [47] ansätze.

All multi-root calculations suffer from the same flaws; they are expensive and hard

to converge. These methods suffer from intruder states which are states energetically

close to model space on which the excitation operators act, causing divergence in the

iterative solution of the equations. This is caused by their being multiple solutions to

the equations. The problems of the multi-root methods have led to the development

of State Specific (SS) methods that attempt to alleviate the intruder state problem by

solving for one specific state of interest only. These are in general also based on the JM
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ansätze[47]. Many of these methods exist, such as Brillouin-Wigner (BW-MRCC)[48],

and Mk-MRCC and its many subsequent adjustments[49–51]. In general, the effective

Hamiltonian is diagonalised,

∑
µ

〈Φν |ĤeT̂µ|Φµ〉 = E cν (1.122)

Where Tµ and cµ are reference specific cluster operators and coefficients.

Since JM based methods use reference specific operators, there exist redundancies in

the method because a specific excited determinant may possibly be reached by excita-

tions from multiple model space configurations. Therefore the number of equations is

less than the number of unknowns. The SS-MRCC methods differ in their handling of

the redundancies via introduction of “sufficiency conditions“. These sufficiency con-

ditions cause the Schrödinger equation to not be satisfied because some of the residual

equations are not equal to zero. This is termed the “proper residual“ problem. Ad-

justing the equations to solve this problem can cause a lack of extensivity such as

in BW-MRCC. Of the SS-MRCC methods Mk-MRCC has fulfilled more of the re-

quirements of a multireference coupled cluster method. Mk-MRCC is size-extensive

and consistent when localised orbitals are used, and has been shown to be accurate.

However it does not fulfil the proper residual condition and is not invariant to orbital

rotations[6, 52]. All JM based methods have an increased complexity compared to

MRCI. As stated, these methods use reference specific cluster operators which imme-

diately increases the number of variables by M, the size of the reference model space.

This causes a computational scaling of A factorial (A!), where A is the number of

active orbitals.

There has been much recent work in the groups of Gauss and Köhn [53–57] on an

alternative MRCC approach which has much improved computational scaling. These

methods use internal contraction, like that of icMRCI[58], where the excitation oper-

ators act on the whole reference function. This means that, unlike the JM approaches,

the number of amplitudes does not increase with the size of the reference space. The

several different formulations from each of the authors give chemically accurate re-

sults for traditionally multireference problems, albeit small ones. These methods are

also formulated to be invariant to orbital rotations. Of particular relevance to the work

presented in this thesis is the method of removal of redundancies in the excitation



40 Introduction

operator. Linear redundancies are also present in icMRCI[58] and are removed by

simple deletion of redundant pairs, however has been proved that this cannot be used

for a multireference coupled cluster theory because it destroys the property of orbital

invariance[53]. The authors instead use a singular value decomposition to remove the

redundancies. The icMRCC methods are a basis for comparison for the work pre-

sented within this thesis, which aims to form an icMRCI size extensivity correction

while simultaneously approximating a MRCC method.

For a very detailed review of multireference coupled cluster theories, the reader is

directed to a review by Bartlett et al [6] and a review of state specific MRCC[59], and

all articles in [60] and [61].

Apart from genuine multireference methods that treat a set of reference configurations

on an equal footing, there have also been many mixed methods and methods that try

to incorporate configurations deemed to be important to describe cases of static/non-

dynamical correlation, from within frameworks that are less computationally com-

plex than existing MRCC theories. The author points to the relevant references, [62–

67].

As no MRCC method obeys all the requirements, the multireference implementation

of MRCI method used since the 1980s is still used as the method of choice for mul-

tireference problems.

1.4.2 MRCI

The MRCI methods such as MRCISD and MRCID use the configuration interaction

technique to capture dynamic correlation, but they use a reference consisting of multi-

ple configurations, in order to capture static correlation and give a qualitatively correct

description of the wavefunction. Excitations are made from all reference configura-

tions

The MRCI wavefunction can then be written analogously to the single reference CI
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wavefunction.

|Ψ
MRCI
〉 =

∑
µ

cµ|µ〉 +
∑
µ

∑
i,a

C
a(µ)
i |µai 〉 +

∑
µ

∑
i>j,a>b

C
ab(µ)
ij |µabij 〉 + . . .

(1.123)

Where µ is each reference configuration.

Alternatively, in notation that fits the rest of the thesis.

|Ψ
MRCI
〉 =

∑
I

cI |ΨI〉 +
∑
S

∑
a

cSa |Ψa
S〉 +

∑
P

∑
ab

CP
ab|Ψab

P 〉 + . . . (1.124)

Where S and P denote internal n − 1 and n − 2 hole states. The external orbitals are

denoted ab.

The coefficients can again be found via minimisation of the Rayleigh quotient, or

equivalently by inserting the definition of the MRCI wavefunction into the Schrödinger

equation and left projecting with the excited determinants.

Internally Contracted MRCI

In internally contracted MRCI (icMRCI)[58][68] the excitation operators are not ap-

plied to each individual internal configuration, they are instead applied to the whole

reference function. The name “internally contracted” applies because using this tech-

nique is equivalent to a linear combination of the states Ψab
P with differing internal P.

The number of contracted internal states is independent of the the number of internal

configurations, they only depend on the number of possible n − 1 and n − 2 states

that can be generated, which depends on the number of correlated orbitals, not explic-

itly on the number of reference/internal configurations. This reduces the number of

coefficients in the CI expansion by 1 or 2 orders of magnitude, making more MRCI

calculations feasible. icMRCI introduces a contraction error, so has an error compared

to MRCI but this has been shown to be relatively small when compared to the differ-

ence to FCI[58].

|Ψ
icMRCI

〉 =
∑
tuvw

CtuvwÊtu,vw|Ψ0〉 +
∑
tuva

Ctuv
a Êat,uv|Ψ0〉

+
∑
p

∑
ab

∑
t≥u

Ctup
ab

1
2

(
Êat,bu + pÊau,bt

)
|Ψ0〉 (1.125)

Using second quantised excitation operator and splitting the external sum into p=1

or p=-1 contributions depending on whether the configuration Φab
P is singlet or triplet

coupled in the external space.
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1.4.3 Multireference Corrections

Analogously to the single reference case, we look at multireference corrections to

MRCI. The reader is pointed to [69] for a very good overview.

The full-CI equation can be partitioned into separate spaces. The P space contains the

reference functions, the Q space contains the single and double excitations out of the

P space and the R space contains all other configurations consisting of higher order

excitations from the P space.

〈ΨP + ΨQ + ΨR|Ĥ − E0|ΨP + ΨQ + ΨR〉
〈ΨP + ΨQ + ΨR|ΨP + ΨQ + ΨR〉

= Ec (1.126)

Varying the coefficients, the stationary equation must be solved.

〈Φi|Ĥ − E|ΨP + ΨQ + ΨR〉 = 0 i ∈ {P,Q,R} (1.127)

As discussed earlier, due to computation costs the excitation operators are normally

truncated to include only single and double excitations, giving the truncated CISD

equation, but an additional term can be defined that uses lower order amplitudes to ap-

proximate the higher order excitations. This section now uses the notation Bartlett[69]

in defining the Ki term.

〈Φi|Ĥ − E|ΨP + ΨQ〉 + Ki〈Φi|ΨP + ΨQ〉 = 0 (1.128)

Ki =
〈Φi|Ĥ|ΨR〉

Ci
(1.129)

Using the Cluster Condition, cRj = cick, we include the disconnected parts of the

higher excitations, just as in QCI and TCC described above, which are responsible for

extensivity errors. The expression for Ki can then be simplified,

Ki =
∑
k∈D

ck〈Φ0|Ĥ|ΦQ
k 〉 (1.130)

where D denotes the disconnected set where i does not equal k. The FCI correlation

energy can be written,

Ec =
∑
i

ci〈Φ0|Ĥ|ΦQ
i 〉 (1.131)

Ki can be further simplified,

Ki = Ec −
∑
i 6∈D

ck〈Φ0|Ĥ|ΦQ
k 〉 (1.132)
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This is a restatement of the problem of capturing EPV terms in the previous section.

Using the definition of pair energies,

εij =
∑
ab

Cab
ij 〈Ψ0|Ĥ|Φab

ij 〉 (1.133)

The relationship with the previous section can be seen, where the second term the

equation above are the EPV terms which the previous section aims to find in a single

reference setting. Until this point the definitions are valid for both single- and multi-

reference cases, depending on definitions of E0 and the reference, and can be used as

an alternative way of thinking about the methods defined in the previous section. For

example, setting Ki = Ec for i ∈ D and 0 else, can be seen to give CEPA(0), where

energy dependence of the equations is cancelled and the EPVs are neglected.

The definitions of the reference, the reference energy and the correlation correction

will now be specific to the multireference case.

The wave function is thought of as a reference function and correlation correction.

These partitions can be defined in different ways. The Ψ0 function can be defined

either as an eigenfunction of the Hamiltonian in the reference P space or can include

the relaxation of the reference space due to the inclusion of the correlation effects of

the Q space. For the second choice, the correction Ψc would be just the Q space wave

function ΨQ, while the other choice is to include the orthogonal complement of the P

space in the correction

Ψc = ΨQ + Ψ
′

P (1.134)

Inclusion of the orthogonal complement in a full MRCC theory would cause problems

but these do not present themselves in linear CEPA methods.

Several issues arise due to the multireference nature of the problem that are not present

in the single reference theories. These include the problem that there is no unique

P space configuration that produces a specific Q space configuration. Also, the idea

of the cluster condition in a multireference method is not totally analogous to that in

the single reference case and is not well defined. A related key issue involves the

configuration spaces themselves. Using a multireference wavefunction, a product of Q

space excitations does not necessarily produce an R space configuration, for example, a

double excitation of a Q space configuration does not necessarily produce a quadruple
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excitation from the P space (that would belong in the R space), this would depend on

the configurations in the P space.

ÊjÊiΨ0 ∈ Q (1.135)

This causes over counting of some excitations, these terms are referred to as “redun-

dancy terms”.

〈ΦQ
i |Ĉ|Ψ0〉

∑
j

ÊjÊiΨ0∈Q

〈cjΨ0|Ĥ − E|ΦQ
j 〉 = 0 (1.136)

A full theory would subtract these redundancy terms.

Multireference methods differ in the definitions of Ψ0, E0, the capture of the EPV

terms (via definition of Ki) and the accounting for redundancy terms.

MRCI

The MRCISD method neglects higher order contributions and does not take account

of EPV terms, i.e. Ki = 0 . This introduces the extensivity error described earlier

because unlinked term are not cancelled.

MR-LCCM and MR-CEPA(0)

The single reference CEPA(0) and Linear Coupled Cluster are equivalent, but differ

slightly for the MR case. Like the SR theory they both set Ki = Ec for the Q space,

meaning the EPV terms are not subtracted so are retained in the overall theory. For

the MR case, this is done for i in the Q space and Ki = 0 otherwise. The difference

between the multireference theories is due to the definition of Ψc. The MRLCCM

method [19] [70] is based on the linearisation of the MRCC equations.This derivation

does not include the orthogonal complement of the P space, as the full MRCC does

not, so the correction only takes contributions from the Q space (Ψc = ψQ). The

MRCEPA(0) method [31] includes the orthogonal complement of the P space, and

is therefore slightly different from MRLCCM despite using the same EPV capturing

technique (i.e. that of not capturing them!).

〈Φi|Ĥ − E + Ec|Ψ0 + Ψc〉 = 〈Φi|Ĥ − E0|Ψ0 + Ψc〉 = 0 (1.137)

F [Ψc] = 〈Ψ0 + Ψc|Ĥ − E0|Ψ0 + Ψc〉 (1.138)
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MR-ACPF

ACPF can be extended to the multireference case giving MRACPF[31] , which acts

as a size-extensivity/consistency correction to the MRCI method, and is very widely

used in this form due to it decreasing the error at a trivial additional cost to the MRCI

calculation. As in the single reference theory the EPV terms are accounted for in an

averaged way. To account for the EPV terms, n
2

electrons pairs are assumed to be

non-interacting and all contribute equally to the correlation energy.

Defining K as

Ki =
n− 2

n
Ec i ∈ Q Ki = 0 i ∈ P (1.139)

This gives the MRACPF equation,

〈Φi|Ĥ − E|Ψ0 + Ψc〉 +
n− 2

n
Ec〈Φi|Ψc〉 = 0 (1.140)

which can be formulated into a functional

F [Ψc] =
〈Ψ0 + Ψc|Ĥ − E|Ψ0 + Ψc〉
〈Ψ0|Ψ0〉+ 2

n
〈Ψc|Ψc〉

(1.141)

The functional may alternatively be written with the correlation correction wave func-

tion split into two a different mutually orthogonal parts, Ψa and Ψe. Ψa contains all

determinants that have the same orbital occupation as the reference, outside the active

space, Ψe contains all other determinants.

F [Ψc] =
〈Ψ0 + Ψc|Ĥ − E|Ψ0 + Ψc〉

〈Ψ0|Ψ0〉+ ga〈Ψa|Ψa〉+ ge〈Ψe|Ψe〉
(1.142)

The factor ge, is set to 2/n and the factor ga is set to 1, giving the MRACPF defined ear-

lier. The factor ga is set to 1 with the argument that the reference is a CAS wavefunction

then all combinations of double replacements are already included in the CI and hence

cluster corrections are not needed for this class. Generally the reference may not be

CAS but may be nearer enough for this approximation to hold, as a non-CAS choice

of ga may be difficult to define. The MRACPF method has several desirable attributes.

It is invariant to orbital rotations within relevant orbital spaces, i.e. internal-internal

and external-external rotations. ACPF is exact for non-interacting pairs of electrons

and is size-consistent for identical subsystems using a single reference function. As

shown MRACPF can also be formulated into an energy functional (the form shown
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above) meaning that analytical energy derivatives are available. MRACPF can easily

be related to other methods, for example, Multi-Reference Linearised Coupled Cluster

(MR-LCCM) can be derived by setting ge = ga = 0. MRACPF is also closely re-

lated to MRAQCC (outlined below). The performance of this method has been tested

substantially, and as a result has become popular as a choice of method that is ap-

proximately size extensive and consistent and of the same complexity of CI, directly

utilising CI code in most cases. However, it has been shown that (MR)ACPF over-

estimates the effect of higher excitations[32] and also fails badly for small reference

spaces. This second problem was known from the outset and was noted in the orig-

inal MRACPF paper by Gdanitz & Ahlrichs([31], where it suggested using a large

reference space.

MRAQCC

Multireference Averaged Quadratic Coupled Cluster (MRAQCC)[32] builds on MRL-

CCM and MRACPF but is able to use a smaller reference space. Includes EPV terms

arising in the quadratic part of the exact energy functional, but in an averaged way. It is

simpler than a full quadratic coupled cluster, but builds towards that. As in the working

for the single reference theory, a pair energy is defined where the correlation energy is

equally distributed among
(

2
n

)
equivalent pairs rather than n

2
as in (MR)ACPF.

Giving,

Ki =

(
n− 2

2

)
Ec(
n
2

) (1.143)

〈Φi|Ĥ − E|Ψ0 + Ψc〉 + GEc〈Φi|Ψc〉 = 0 (1.144)

G =
(n− 2) (n− 3)

n (n− 1)
(1.145)

F [Ψc] =
〈Ψ0 + Ψc|Ĥ − E|Ψ0 + Ψc〉
〈Ψ0|Ψ0〉+G〈Ψc|Ψc〉

(1.146)

Although (MR)AQCC is not exact for non-interacting pairs, an energy functional ex-

ists (Hellmann-Feynman theorem satisfied[71]), has analytical energy gradients, and

can be applied to excited states. It can also calculate transition moments via a linear

response extension MR-AQCC-LRT[72]. MR-AQCC is known to give similar results
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to (MR)ACPF but performs better than MR-ACPF when a small reference space is

used [32].

The multireference methods described so far are simple extensions of their single refer-

ence counterparts and have not made any attempt to account for the redundancy terms

that arise as a result of the use of a multi-configurational reference function.

MR-CEPA

The MR-CEPA method of Ruttink et al. [73] takes the idea of CEPA but tries to take

account of the redundancy terms. This method splits the orbitals into 3 spaces, the

inactive orbitals that doubly occupied in all references, the active whose occupation

vary and the virtual that are unoccupied in all reference functions. Classes are created

labelling excitations (k,l) where k is the number of holes in the inactive orbitals and l is

the number of particles in the virtual orbitals. This classification is used to determine

if the product of excitations belongs to the R space or the Q space, where products

that remain in the Q space are the redundancy terms. The class of the product of two

excitationsEi ∈ (k1, l1) andEj ∈ (k2, l2) gives the class (k1+k2, l1+l2). If k1+k2 ≤ 2

and l1 + l2 ≤ 2, the term is a redundancy term. This method does not account for the

redundancy terms exactly because it neglects single excitations and also retains some

EPVs. Furthermore, ki depends on ck, meaning no functional exists, making gradients

difficult to calculate.

MR-SC2-CI [74, 75]

Accounts for EPVs and redundancy terms, so is rigorously size-extensive and consis-

tent. Needs a lot of storage so makes it the most expensive correction (but additional

cost is less than underlying MRCI calculation)[69]. Slightly more accurate than MR-

AQCC and MR-ACPF [76][77]. It is an exact CEPA but not much more accurate than

the approximate versions. Not associated with a functional hence no analytical deriva-

tives. The additional accuracy is deemed to be not worth the considerable additional

cost.

A posteriori Corrections

The a posteriori size-consistency corrections are generally simple corrections to the

correlation energy to account partially for quadruple excitations, applied after the con-
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vergence of the MRCI procedure. As such these methods are cheap to calculate on

top of underlying MRCI calculations, meaning they are easy to implement and readily

used. Many of these corrections were developed from extension of single-reference

corrections, but are introduced here as corrections to MRCI, as use of corrections for

the single-reference case is outdated due to the use of Coupled Cluster theory.

The most commonly used a posterior corrections are those devised and/or named for E.

R. Davidson. The simplest Davidson Correction, by Langhoff and Davidson [78], aims

to roughly negate the error via approximately including the effects of the quadruple

excitations.

EDC = (1 − c2
0)(E

CI
− E0) (1.147)

where c0 is the reference coefficient, and E0 the reference energy. The correction is

therefore the magnitude of the correlation part of the wavefunction multiplied by the

correlation energy. The multireference version of [79–81] can be derived from the

single reference correction by the inserting for the nth state c2
n =

∑
p∈P c

2
p where cp

are the reference coefficients in the MRCI wavefunction and E0 the reference energy.

Giving,

EMDC =

(
1−

∑
p∈P

c2
p

)
(Emrci − E0) (1.148)

whereE0 the reference energy. This simple correction is not normalised correctly, thus

a later correction, known as the Renormalised Davidson Correction [82], whose single

reference version takes the form,

ERDC =
1− c2

n

c2
n

(
En
CI
− En

0

)
(1.149)

Extending this to the case for correction of MRCI can be done in several ways, two

of which are discussed here. The cn of the single reference correction can be replaced

by the coefficient of the (fixed) reference function (c0
Rn) in the MRCI wave function,

giving the MR fixed Renormalised Davidson Correction [83]

cn = 〈Ψn
ref |Ψn

MRCI
〉 =

∑
R

c0
RncRn (1.150)

En
RDCf =

1− (
∑

R c0
RncRn)

2∑
R c0

RncRn
(E

MRCI
− E0) (1.151)
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Alternatively when the reference function may have a small overlap with the MRCI

wave function, for example near avoided crossings, the relaxed wavefunction may be

used [84, 85],

Ψn
rlx =

∑
R cRnΦR√∑

R c2
Rn

(1.152)

cn =
∑
R

c2
Rn (1.153)

En
RDCr =

1−
∑

R c2
Rn)∑

R c2
Rn

(
En
MRCI

− En
0

)
(1.154)

It is worth noting that the Davidson corrections are usually denoted as +Q, for example

MRCI+Q, but care should be taken when running calculations as to which Davidson

correction is implemented in the software being utilised, be it the Davidson or the

Renormalised Davidson correction. The MOLPRO software package [86], used in the

work presented in this thesis, uses the renormalised corrections, with a choice of fixed

or relaxed coefficients.

Although there are many other corrections, such as the Meissner correction [87], the

final a posteriori correction described here is that of the Pople correction [88] due to

its use in MOLPRO it can therefore be compared against other corrections described

above and against methods developed in this thesis. The single reference Pople correc-

tion can be written,

EPC =

√
n2
c + 2nc tan2(2θ)− nc

2(sec(2θ)− 1)
ECI − E0 (1.155)

where nc is the number of correlated electrons. Unlike the Davidson corrections, this

correction does disappear for the 2 electron case, when CISD is correct. Within MOL-

PRO, the extension to the multireference case can be made with either choice of fixed

or relaxed coefficients, as outlined above.

Performance of MR methods

The performance of the multireference methods described has been extensively stud-

ied, particularly in references [6, 26, 32, 51, 76]. These studies have shown that both

MRACPF and MRAQCC out-perform MR-LCCM and MR-CEPA(0) in the prediction
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of potential energy surfaces of small molecule examples. It has also been noted that

MRACPF and MRAQCC perform better than many multireference Coupled Cluster

methods that are more demanding [6, 53]. MRACPF and MRAQCC generally give

very similar results for real systems[76], showing that the distribution of the correla-

tion energy among all pairs instead of only over non-interacting pairs has little effect.

Despite little difference between the two methods, MRACPF has been shown to fail for

some examples[76], notably ozone[32], and in general under performs when a small

active space is used[31, 76]. In examples with a larger active space, MRACPF tends

to perform slightly better than MRAQCC but in general, has only small differences.

The extension of these methods to include EPVs arising form virtual orbitals does not

affect the energy greatly, and in several cases increases the consistency error[89]. A

similar trend is seen for the -mc extensions, which were designed to account for the

redundancy terms due to the MR nature [89]. In addition, functionals do not exist for

those extensions, meaning analytic gradients can’t be defined, and their applicability

is limited.

In terms of the size-consistency error, MRACPF and MRAQCC reduce the size con-

sistency error of MRCI by between 1-3 orders of magnitude [26, 89].

Of all of the multireference methods described here, the most widely used and cited

are those of MRACPF and MRAQCC, due to their accuracy, existence of functionals

and they can be implemented easily from existing MRCI programs and run at almost

no extra cost (they have same complexity).

Performance of a posteriori Corrections

The performance of the a posteriori corrections has been probed in references [87, 90,

91]. The study of Duch et. al [90] has shown that both the Meissner and Pople cor-

rections outperform the Davidson corrections [87, 90, 91] for both the single-reference

and multi-reference case in tests on size-consistency and size-extensivity. In accor-

dance with this work, the Pople correction will be taken to be the benchmark for a

posteriori corrections, and this will be compared against other multireference methods

and the popular Davidson corrections.

Comparison

Despite their popularity, MRACPF and MRAQCC are still only classed as “approxi-
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mately” extensive and consistent. The lack of size-consistency can be seen in the small

molecule example of N2 and H2O.

In this example the size-consistency error is measure by the energy difference between

the energy calculated with separated molecules and the energy that is the sum of the

energies of the two molecules in separate calculations.

Error mH

MRCISD 17.9696

MRCISD+Qf 1.5887

MRCISD+Qr 1.8323

MRCISD+Pf -0.1143

MRCISD+Pr 0.1547

MRACPFSD -1.1183

MRAQCCSD 0.0712

Table 1.1: Size-consistency error for N2 and H2O using a cc-pVDZ basis

where “+Q” indicates the Renormalised Davidson correction and “+P” the Pople cor-

rection, with subscripts f and r indicating fixed or relaxed coefficients as described ear-

lier. These energies were computed in MOLPRO using a cc-pVDZ basis, making use

of the internally contracted MRCI method, from which the MRACPF and MRAQCC

are modifications, hence all contain the contraction error. In agreement with the litera-

ture, the error in MRACPF is reduced by an order of magnitude and 2 for MRAQCC.

The consistency error for MRAQCC is small (0.04 kcal mol−1), below that of chemical

accuracy (∼1 kcal mol−1). The Pople correction is shown to perform much better than

the renormalised Davidson corrections, in agreement with other studies.

The size-consistency error here is that when the molecules are measured at large sep-

aration, because the error can be measured easily and accurately. However, when the

molecules are interacting, the error is likely to increase, and will certainly increase

using larger systems. This has shown that MRAQCC has a small consistency error

compared to the other methods, with the Pople correction performing well for its sim-

ple structure. Size-consistency is not the only property a method must have, it should

also correctly give the shapes of potential energy curves and reproduce the FCI result

as closely as possible, at least within chemical accuracy.
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An appropriate example of the calculation of a potential energy curve is that for the

insertion of Be into H2. The full details of the calculation are described later in section

3.6.

Figure 1.2: Potential energy curve errors to that of FCI for BeH2 dissociation calcu-
lated with a cc-pVDZ basis set. Qf (Qr) indicates the fixed (relaxed) renormalised
Davidson correction and Pf (Pr) the fixed (relaxed) Pople correction

The mean error of each potential energy curve is given in table 1.2 (below), with a

measure of how well the method reproduces the curve of the FCI calculation, this is

the non-parallelism error (NPE). The NPE is calculation as the difference between

the maximum error and minimum error. This measure gives some indication of how

parallel the computed potential energy curve is to that of FCI, i.e. how precise it is, or

conversely, how erratic the potential energy curve is.

These results agree with the stated previous studies that the Pople corrections per-

form better than the Davidson corrections, but MRACPF and MRAQCC out-perform

a posteriori corrections by having a smaller mean error and NPE, better reproducing

the FCI result. A recent comparative study from the Truhlar group [92] noted the

good performance of MRACPF and MRAQCC but did show MRCI+Q to give quan-

titatively slightly more accurate results for the dissociation of F2, however, it notes

that this is due to a cancellation of errors, which cannot be relied upon in general.
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Mean Error/mH NPE

MRCISD 2.275 1.617

MRCISD+Qf -4.528 3.553

MRCISD+Qr -4.489 3.419

MRCISD+Pf -2.417 2.056

MRCISD+Pr -2.389 1.959

MRACPFSD -2.376 1.585

MRAQCCSD -0.300 0.426

Table 1.2: Calculated BeH2 potential energy curve mean and non-parallelism errors

(in milli-Hartree) relative to FCI

The MRACPF energy is also below that of FCI and MRAQCC above it, as noted in

previous studies. This can be explained by realising that MRACPF uses independent

electron pairs to approximate the EPV terms, overestimating the contribution, while

MRAQCC averages over all pairs, therefore including some interaction and reducing

the error [76]. This example calculation highlights why MRAQCC is considered to be

a relatively cheap alternative to the MRCI energy that performs better than MRCI. As

stated earlier, MRAQCC also performs better than other corrective methods and other

multireference methods. Evangelista & Gauss [53] reported results for this test system

showing Mk-MRCCSD failed to reproduce the potential energy curve, breaking down

at the point with most multireference character. Their results showed Mk-MRCCSD

had a NPE of 2.24 mHartree and their icMRCC method an NPE of 1.04 mHartree.

The same study also showed that MRACPFSD and MRAQCCSD had smaller errors

than many multireference Coupled Cluster methods for the stretch of hydrogen flu-

oride, with only icMRCCSD performing slightly better. However, the error to FCI

for the better performing multireference methods i.e. MRAQCC and MRACPF, re-

mains chemically relevant for many systems and can only grow with increased system

size. Accordingly, new rigorous corrective methods are required to give accurate and

reliable results across a wider range of molecules. The work in this thesis aims to de-

velop new methods that correct the errors outlined above, and must perform better than

MRACPF, MRAQCC and the Pople and Davidson corrections, but simultaneously it

goes beyond just the simple notion of correcting MRCI, to build towards a multirefer-

ence Coupled Cluster theory.
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Detailed analysis of the theories and performance of the methods outlined above has

previously been carried out, the author specifically points to the review by Szalay[26]

and also [44, 76, 89] for more information.



Chapter 2

A Multireference Approximate VCC

Theory

To date no reliable MRCC exists, that has been proven to fulfil all criteria. As a result,

MRCI based methods are still the most common form of calculation performed when

dealing with multireference situations. In general MRACPF and MRAQCC has been

shown to perform well, but they still are not strictly size-extensive and show size-

consistency errors. As such, a method that improves upon the MRCI size consistency

would be of use.

The previous chapter highlighted recent work on the LPF theories, which use a matrix

transformation to introduce a linked denominator for a CEPA(0) like energy functional.

For the 2 electron case, these methods are equivalent to CID. Additionally, the matrix

inverse can be seen, via the binomial expansion, to introduce a series that approxi-

mates the linked form of variational coupled cluster theory to infinite order. Further

developments of these methods has given increased robustness within a single refer-

ence framework in situations where single reference methods typically struggle or fail,

such as at long bond length or when multiple bond breaking [11, 30].

The aim of the work presented in this chapter is to develop an LPF like matrix trans-

formation of the pair amplitudes in MRCI that introduces a linked denominator.

Just as with single reference theory, the transformation is to be designed to introduce

terms from VCC. As it would be done in a multireference framework, it would be an
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approximation to a multireference variational coupled cluster.

This idea straddles different research areas, which explains the need for descriptions of

many different methods in the previous chapter, as they bear some relation to, or their

results can be compared to, the work presented here.

The author has not seen a multireference variational coupled cluster theory. Like with

single reference, general implementations are based on projective methods. As such,

the VCC equations must be analysed, but simplifications that arise when a single refer-

ence is used cannot be used here. Thus, the VCC expressions here will be of a general

form.

In LPF theory it is the 3rd order VCC terms that are introduced via a transformation.

Therefore the approach here will be to also analyse the 3rd order VCC energy and

determine which terms are required for the 2 electron, 2 reference model case, and

design a transformations to capture those terms. This will produce a method approx-

imating terms in a 3rd order multireference variational Coupled Cluster theory, hence

is referred to as MR3VCC.

2.1 Spin-Orbital Derivation of MR3VCC

Cluster operator:

T̂ = 2−2T ijab a
†b†ji (2.1)

Hamiltonian:

Ĥ = 1
2
(pr|qs) p†s†qr (2.2)

2.1.1 Isolation of Unlinked Parts of VCCD

Third order

As discussed in the previous chapter, it is the linked form of VCC that is infinite.

An energy containing only linked diagrams, according to the linked diagram theorem
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[7, 8], is extensive. Here, attempts are made to remove the unlinked terms from the 3rd

order energy.

Relevant Hamiltonian fragment:

Ĥ = 1
2
Kij
ab a
†b†ji Kij

ab = (ai|bj) (2.3)

E =
N

D
(2.4)

N = 2〈ĤT̂ 〉+ 〈T̂ †ĤT̂ 2〉 (2.5)

= 2−2〈i†j†bag†h†po〉Kij
ab T

op
gh + 2−7〈i†j†bak†l†dc e†f †nmg†h†po〉Kij

ab T
kl
cd T

mn
ef T opgh

(2.6)

= 1
2
〈i†j†po〉Kij

ab T
op
ab + 2−5〈i†j†bak†l†df †nmg†h†po〉Kij

ab T
kl
cd T

mn
cf T opgh (2.7)

= 1
2
〈i†j†po〉Kij

ab T
op
ab

+ 2−5〈i†j†bak†l†nmg†h†po〉Kij
ab T

kl
cd T

mn
cd T opgh

+ 2−4〈i†j†bak†l†f †nmg†po〉Kij
ab T

kl
cd T

mn
cf T opgd (2.8)

= 1
2
〈i†j†po〉Kij

ab T
op
ab

+ 2−4〈i†j†k†l†nmpo〉Kij
ab T

kl
cd T

mn
cd T opab + 2−3〈i†j†k†l†nmpo〉Kij

ab T
kl
cd T

mn
ca T opbd

(2.9)

The unlinked part of this is

2〈T̂ †T̂ 〉〈ĤT̂ 〉 = 2−6〈i†j†bag†h†po〉 〈k†l†dc e†f †nm〉Kij
ab T

kl
cd T

mn
ef T opgh (2.10)

= 2−4〈i†j†po〉 〈k†l†nm〉Kij
ab T

kl
cd T

mn
cd T opab (2.11)

In either the special case of a system containing only well-separated two-electron sub-

systems, or the case of a single Slater-determinant reference, this is equivalent to

2−4〈i†j†po k†l†nm〉Kij
ab T

kl
cd T

mn
cd T opab (2.12)

We therefore seek to isolate and remove this term from the full numerator.

N = 1
2
〈i†j†po〉Kij

ab T
op
ab

+ 2−4〈i†j†k†l†ponm〉Kij
ab T

kl
cd T

mn
cd T opab + 2−3〈i†j†k†l†nmpo〉Kij

ab T
kl
cd T

mn
ca T opbd

(2.13)

= 1
2
〈i†j†po〉Kij

ab T
op
ab
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+ 2−4〈i†j†pk†l†onm〉Kij
ab T

kl
cd T

mn
cd T opab + 2−3〈i†j†k†onm〉Kij

ab T
kl
cd T

mn
cd T olab

+ 2−3〈i†j†k†l†nmpo〉Kij
ab T

kl
cd T

mn
ca T opbd (2.14)

= 1
2
〈i†j†po〉Kij

ab T
op
ab

+ 2−4〈i†j†pok†l†nm〉Kij
ab T

kl
cd T

mn
cd T opab + 2−3〈i†j†pk†nm〉Kij

ab T
kl
cd T

mn
cd T lpab

+ 2−3〈i†j†k†onm〉Kij
ab T

kl
cd T

mn
cd T olab

+ 2−3〈i†j†k†l†nmpo〉Kij
ab T

kl
cd T

mn
ca T opbd (2.15)

= 1
2
〈i†j†po〉Kij

ab T
op
ab

+ 2−4〈i†j†pok†l†nm〉Kij
ab T

kl
cd T

mn
cd T opab + 2−3〈i†j†k†onm〉Kij

ab T
kl
cd T

mn
cd T olab

− 2−3〈i†j†nm〉Kij
ab T

kl
cd T

mn
cd T klab + 2−3〈i†j†k†onm〉Kij

ab T
kl
cd T

mn
cd T olab

+ 2−3〈i†j†k†l†nmpo〉Kij
ab T

kl
cd T

mn
ca T opbd (2.16)

The unlinked term does not drop out, but must be contained within:

2−4〈i†j†pok†l†nm〉Kij
ab T

kl
cd T

mn
cd T opab

The term 2−3〈i†j†nm〉Kij
ab T

kl
cd T

mn
cd T klab , resembles the diagram -3C from VCC. A

transformation could be constructed to capture this term, as it is known to be important

in the single reference case. For 2 electrons it is the only term required in the 3rd order

energy. However, its importance here is unknown. Terms that are also non-zero for the

2 electron model system will appear out of 2−4〈i†j†pok†l†nm〉Kij
ab T

kl
cd T

mn
cd T opab .

Therefore the unlinked terms must still be removed completely from the energy, to aid

in determining the key energy contributions. To try to remove the unlinked term in a

more systematic way, the density matrices are expanded in cumulants.
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2.1.2 Development in Cumulants

The work of Mukherjee and Kutzelnigg, and their general normal ordering [93–96],

has led to the widespread use of the cumulant expansion. This expansion allows the

reduced density matrices (RDMs) to be expanded in terms of cumulants. The n-particle

cumulant is the irreducible, connected part of the reduced density matrix, which can-

not be described by lower order cumulants (or density matrices) or by disconnected

products of cumulants. The remainder of the reduced density matrix is described by

lower order cumulants and density matrices.

The reduced density matrices (γ1...n
1...n) can be expanded in cumulants (λ1...n

1...n) [97][96]

γpt = λpt (2.17)

γpqtu = Â

[(
1

2!

)2

λpqtu +
1

2!
(λptλ

q
u)

]
= λpqtu + λptλ

q
u − λpuλ

q
t (2.18)

γpqrtuv = Â

[(
1

3!

)2

λpqrtuv +

(
1

2!

)2

(λpqtuλ
r
u) +

1

3!
(λptλ

q
uλ

r
v)

]
(2.19)

γpqrstuvw = Â
[( 1

4!

)2

λpqrstuvw +

(
1

3!

)2

(λpqrtuvλ
s
w) +

(
1

2!

)5

(λpqtuλ
rs
vw)

+

(
1

2!

)3

(λptλ
q
uλ

rs
vw) +

1

4!
(λptλ

q
uλ

r
vλ

s
w)
]

(2.20)

The physical meaning of the n-particle cumulants is not fully understood. For a refer-

ence consisting of a single determinant, only the first order cumulant is non-zero, all

higher order cumulants are zero. It is therefore logical that the higher order cumulants

have been linked with describing electron correlation in multi-determinant theories.

Kutzelnigg and Mukherjee [95] stated that the n-particle cumulant directly describes

n-particle correlations.

Cumulants have been suggested to be the logical choice in density matrix based many

body theories because they are extensive quantities, (unlike the reduced density ma-

trices), in that they cannot be described by products of disconnected cumulants and

hence truncation of the cumulant series at any point does not affect the extensivity of

the method. The truncation of the series is desirable for computational reasons, hence

work has been done to look at the affect of the truncation of the series on its accu-

racy in describing the RDM. Perturbation theory with a single reference shows that

the higher order cumulants decrease in importance, meaning truncation of the cumu-
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lant expansion of the RDM would have a negligible affect. Thus, since it has been

shown that the 1 and 2 particle cumulants, in general, account for the majority of the

higher order RDMs, it has become a common practice to neglect the third order cumu-

lant and higher in the cumulant expansion of the RDMs. As mentioned, this still re-

tains extensivity. Cumulant approximations of this nature are central to the Contracted

Schrodinger (CSE) theories [98–102] and are used in the Canonical Transformation

(CT) theory of Yanai and Chan [62–64], and both state-specific MRCC [103] and in-

ternally contracted MRCC [103–105]. Even though neglect of higher order cumulants

does not affect extensivity, and whose affect on the accuracy of the RDM description

has been deemed small when a single reference determinant is used, the question of

the validity of the approximation in the multi-determinantal wave function case is still

unanswered.

Recent work [106] has again questioned whether neglecting higher order cumulants

has a significant affect by explicity calculating the higher order cumulants in a few

test cases and observing their magnitude. This work shows no decisive conclusion,

because whether or not the cumulants decay at higher orders, and are therefore less

important, seems to be system specific. Shamasundar[107] justifies the use of cumulant

approximations by stating that in general states with multireference character, higher

order cumulants will have less importance, unless extended electron delocalisation

has occurred, in which case, higher order cumulants would be needed in the RDM

decomposition. Based on perturbation theory arguments and the accuracy of methods

involving them, approximate cumulant decompositions of RDMs are used here.

Make the approximation that the third and higher-order cumulants (as defined in [97])

are zero. In that case, the density matrices may be re-expressed as products of lower

order density matrices,

γim = 〈i†m〉

γijmn = 〈i†j†nm〉

γijkmno = 〈i†j†k†onm〉

= Â ijk
abc

(
1
4
γijmn γ

k
o − 1

3
γimγ

k
nγ

l
n

)
(2.21)

γijklmnop = 〈i†j†k†l†ponm〉
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= Â ijkl
mnop

(
1
32
γijmnγ

kl
op − 1

8
γijmnγ

k
oγ

l
p + 1

8
γimγ

j
nγ

k
oγ

l
p + 1

8
γijmnγ

k
oγ

l
p + 1

24
γimγ

j
nγ

k
oγ

l
p

)
(2.22)

= Â ijkl
mnop

(
1
32
γijmnγ

kl
op + 1

6
γimγ

j
nγ

k
oγ

l
p

)
(2.23)

Now starting from (2.9):

N = 1
2
γijopK

ij
ab T

op
ab

+ 2−4Kij
ab T

kl
cd T

mn
cd T opab Â ijkl

mnop(
1
32
γijmnγ

kl
op + 1

6
γimγ

j
nγ

k
oγ

l
p)

+ 2−3Kij
ab T

kl
cd T

mn
ca T opbd Â ijkl

mnop(
1
32
γijmnγ

kl
op + 1

6
γimγ

j
nγ

k
oγ

l
p) (2.24)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−9Kij
ab T

kl
cd T

mn
cd T opab Â ijkl

mnop(γ
ij
mnγ

kl
op) + 1

6
2−4Kij

ab T
kl
cd T

mn
cd T opab Â ijkl

mnop(γ
i
mγ

j
nγ

k
oγ

l
p)

+ 2−8Kij
ab T

kl
cd T

mn
ca T opbd Â ijkl

mnop(γ
ij
mnγ

kl
op) + 1

6
2−3Kij

ab T
kl
cd T

mn
ca T opbd Â ijkl

mnop(γ
i
mγ

j
nγ

k
oγ

l
p)

(2.25)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−9Kij
ab T

kl
cd T

mn
cd T opab Âmnop(4γ

ij
mnγ

kl
op − 16γilmnγ

kj
op + 4γklmnγ

ij
op)

+ 1
6
2−4Kij

ab T
kl
cd T

mn
cd T opab Âmnop(4γ

i
mγ

j
nγ

k
oγ

l
p − 16γimγ

l
nγ

k
oγ

j
p + 4γkmγ

l
nγ

i
oγ

j
p)

+ 2−8Kij
ab T

kl
cd T

mn
ca T opbd Âmnop(4γ

ij
mnγ

kl
op − 16γilmnγ

kj
op + 4γklmnγ

ij
op)

+ 1
6
2−3Kij

ab T
kl
cd T

mn
ca T opbd Âmnop(4γ

i
mγ

j
nγ

k
oγ

l
p − 16γimγ

l
nγ

k
oγ

j
p + 4γkmγ

l
nγ

i
oγ

j
p)

(2.26)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−9Kij
ab T

kl
cd T

mn
cd T opab (16γijmnγ

kl
op − 64γijmpγ

kl
on + 16γijopγ

kl
mn

− 64γilmnγ
kj
op + 256γilmpγ

kj
on − 64γilopγ

kj
mn

+ 16γklmnγ
ij
op − 64γklmpγ

ij
on + 16γklopγ

ij
mn)

+ 1
6
2−4Kij

ab T
kl
cd T

mn
cd T opab (16γimγ

j
nγ

k
oγ

l
p − 64γimγ

j
pγ

k
oγ

l
n + 16γioγ

j
pγ

k
mγ

l
n

− 64γimγ
l
nγ

k
oγ

j
p + 256γimγ

l
pγ

k
oγ

j
n − 64γioγ

l
pγ

k
mγ

j
n

+ 16γkmγ
l
nγ

i
oγ

j
p − 64γkmγ

l
pγ

i
oγ

j
n + 16γkoγ

l
pγ

i
mγ

j
n)

+ 2−8Kij
ab T

kl
cd T

mn
ca T opbd (16γijmnγ

kl
op − 64γijmpγ

kl
on + 16γijopγ

kl
mn

− 64γilmnγ
kj
op + 256γilmpγ

kj
on − 64γilopγ

kj
mn

+ 16γklmnγ
ij
op − 64γklmpγ

ij
on + 16γklopγ

ij
mn)

+ 1
6
2−3Kij

ab T
kl
cd T

mn
ca T opbd (16γimγ

j
nγ

k
oγ

l
p − 64γimγ

j
pγ

k
oγ

l
n + 16γioγ

j
pγ

k
mγ

l
n

− 64γimγ
k
nγ

j
oγ

l
p + 256γimγ

k
pγ

j
oγ

l
n − 64γioγ

k
pγ

j
mγ

l
n
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+ 16γkmγ
l
nγ

i
oγ

j
p − 64γkmγ

l
pγ

i
oγ

j
n + 16γkoγ

l
pγ

i
mγ

j
n) (2.27)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−4Kij
ab T

kl
cd T

mn
cd T opab (γijopγ

kl
mn

+ γijmnγ
kl
op − 4γijmpγ

kl
on

− 2γilmnγ
kj
op − 2γilopγ

kj
mn + 8γilmpγ

kj
on)

+ 1
3
Kij
ab T

kl
cd T

mn
cd T opab (γioγ

j
pγ

k
mγ

l
n + γimγ

j
nγ

k
oγ

l
p − 2γimγ

j
pγ

k
oγ

l
n

− 2γimγ
l
nγ

k
oγ

j
p + 8γimγ

l
pγ

k
oγ

j
n − 2γioγ

l
pγ

k
mγ

j
n − 2γkmγ

l
pγ

i
oγ

j
n)

+ 2−2Kij
ab T

kl
cd T

mn
ca T opbd (γijmnγ

kl
op − γijmpγklon

− γilmnγkjop + 4γilmpγ
kj
on − γilopγkjmn − γklmpγijon)

+ 1
3
Kij
ab T

kl
cd T

mn
ca T opbd (γimγ

j
nγ

k
oγ

l
p − 4γimγ

j
pγ

k
oγ

l
n + γioγ

j
pγ

k
mγ

l
n

− 4γimγ
k
nγ

j
oγ

l
p + 16γimγ

k
pγ

j
oγ

l
n − 4γioγ

k
pγ

j
mγ

l
n

+ γkmγ
l
nγ

i
oγ

j
p − 4γkmγ

l
pγ

i
oγ

j
n + γkoγ

l
pγ

i
mγ

j
n) (2.28)

Unfortunately this isn’t the best way to go since some of these terms mix not only terms

3B and 3C of VCC, but also the unlinked diagram. For example, the density matrix

product γilmpγ
kj
on multiplying Kij

ab T
kl
cd T

mn
cd T opab . To analyse what this term contains, we

look at what it corresponds to in the single reference case, by assuming we only have

one reference function and evaluating this term.

Kij
ab T

kl
cd T

mn
cd T opab

(
γilmpγ

kj
on

)
= Kij

ab T
kl
cd T

mn
cd T opab (δimδ

l
p − δipδ

l
m)(δkoδ

j
n − δknδ

j
o)

= Kij
ab T

kl
cd T

mn
cd T opab

(
δimδ

l
pδ
k
oδ

j
n + δipδ

l
mδ

k
nδ

j
o − δipδ

l
mδ

k
oδ

j
n − δimδ

l
pδ
k
nδ

j
o

)
= Kij

ab

(
T klcd T

ij
cd T

kl
ab + T klcd T

lk
cd T

ji
ab − T klcd T

lj
cd T

ki
ab − T klcd T

ik
cd T

jl
ab

)
= Kij

abT
kl
cd T

ij
cd T

kl
ab︸ ︷︷ ︸

Term C

+ Kij
abT

kl
cd T

lk
cd T

ji
ab︸ ︷︷ ︸

Unlinked

− Kij
abT

kl
cd T

lj
cd T

ki
ab︸ ︷︷ ︸

Term B

− Kij
abT

kl
cd T

ik
cd T

jl
ab︸ ︷︷ ︸

Term B

Therefore the simple product of density matrices,γilmpγ
kj
on, when combined with the

integrals and amplitudes, contains terms corresponding to the third order terms B and

C as well as an unlinked term. The unlinked term cannot be separated out from the

product of density matrices, meaning that a transformation involving this product could

not be constructed that would generate only linked diagrams, violating the rules for

extensivity. If included in a transformation, this density matrix product term would

also generate both 3B and 3C terms of 3rd order VCCD, however it has been shown
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that generating 3B and 3C separately is advantageous [11].

It is better to delay the repackaging of the 2nd order and lower cumulants into den-

sity matrices, until the fully unlinked term appears. Assuming neglect of 3rd order

cumulant λijkmno and higher, but keeping cumulants explicitly in the working,

γim = 〈i†m〉 (2.29)

λim = γim (2.30)

γijmn = 〈i†j†nm〉

= Â ij
mn

(
1
4
λijmn + 1

2
λimλ

j
n

)
= λijmn + λimλ

j
n − λinλjm (2.31)

λijmn = γijmn − γimγjn + γinγ
j
m (2.32)

γijkmno = 〈i†j†k†onm〉

= Â ijk
mno

(
1
4
λijmn λ

k
o + 1

2
λimλ

k
nλ

l
n

)
(2.33)

γijklmnop = 〈i†j†k†l†ponm〉

= Â ijkl
mnop

(
1
32
λijmnλ

kl
op + 1

8
λijmnλ

k
oλ

l
p + 1

24
λimλ

j
nλ

k
oλ

l
p

)
(2.34)

N = 1
2
〈i†j†po〉Kij

ab T
op
ab

+ 2−4〈i†j†k†l†ponm〉Kij
ab T

kl
cd T

mn
cd T opab + 2−3〈i†j†k†l†nmpo〉Kij

ab T
kl
cd T

mn
ca T opbd

(2.35)

= 1
2
〈i†j†po〉Kij

ab T
op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)
Â ijkl
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(
1
32
λijmnλ
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8
λijmnλ

k
oλ
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p + 1

24
λimλ

j
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l
p

)
(2.36)

= 1
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〈i†j†po〉Kij

ab T
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ab

+
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ab T
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cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)
Âmnop (
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4
λijmnλ

kl
op + 1

2
λilmnλ

kj
op

+1
2
λijmnλ

k
oλ

l
p − 2λilmnλ

k
oλ

j
p + 1

2
λklmnλ

i
oλ

j
p

+λimλ
j
nλ

k
oλ

l
p

)
(2.37)

= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)
(
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λijmnλ
kl
op − 4λijmpλ

kl
on + λijopλ

kl
mn

−2λilmnλ
kj
op + 8λilmpλ

kj
on − 2λilopλ

kj
mn

+2λijmnλ
k
oλ

l
p − 8λijmpλ

k
oλ

l
n + 2λijopλ

k
mλ

l
n

−8λilmnλ
k
oλ

j
p + 32λilmpλ

k
oλ

j
n − 8λilopλ

k
mλ

j
n

+2λklmnλ
i
oλ

j
p − 8λklmpλ

i
oλ

j
n + 2λklopλ

i
mλ

j
n

+4λimλ
j
nλ

k
oλ

l
p − 32λimλ

j
pλ

k
oλ

l
n + 4λioλ

j
pλ

k
mλ

l
n

)
(2.38)

= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)
(

λijmnλ
kl
op + 2λijmnλ

k
oλ

l
p + 2λklopλ

i
mλ

j
n + 4λimλ

j
nλ

k
oλ

l
p

+λijopλ
kl
mn + 2λklmnλ

i
oλ

j
p + 2λijopλ

k
mλ

l
n + 4λioλ

j
pλ

k
mλ

l
n

−4λijmpλ
kl
on − 8λijmpλ

k
oλ

l
n − 32λimλ

j
pλ

k
oλ

l
n

−2λilmnλ
kj
op − 8λilmnλ

k
oλ

j
p

+8λilmpλ
kj
on + 32λilmpλ

k
oλ

j
n

−2λilopλ
kj
mn − 8λilopλ

k
mλ

j
n

−8λklmpλ
i
oλ

j
n

) (2.39)

= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)
(

γijmnγ
kl
op

+γijopγ
kl
mn

−4γijmpγ
kl
on

+4γkjmnγ
li
op

+8λilmpλ
kj
on + 32λilmpλ

k
oλ

j
n

)
(2.40)

N = 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

) (
γijopγ

kl
mn

+γijmnγ
kl
op − 4γijmpγ

kl
on

+4(λkjmn + 2γkmγ
j
n)(λliop + 2γloγ

i
p)

+8λilmpλ
kj
on + 32λilmpλ

k
oλ

j
n

)
(2.41)
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= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

) (
γijopγ

kl
mn

+γijmnγ
kl
op − 4γijmpγ

kl
on

+16γkmγ
j
nγ

l
oγ

i
p + 4λkjmnλ

li
op + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n

+8λilmpλ
kj
on + 32λilmpγ

k
oγ

j
n

)
(2.42)

= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

) (
γijopγ

kl
mn

+γijmnγ
kl
op − 4γijmpγ

kl
on

+4(γijpn − λijpn)(γklmo − λklmo)

+4λkjmnλ
li
op + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n

+8λilmpλ
kj
on + 32λilmpγ

k
oγ

j
n

)
(2.43)

= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

) (
γijopγ

kl
mn

+γijmnγ
kl
op − 4γijmpγ

kl
on

+4γijpnγ
kl
mo

−4λijpnγ
kl
mo − 4γijpnλ

kl
mo

+4λijpnλ
kl
mo + 4λkjmnλ

li
op + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n

+8λilmpλ
kj
on + 32λilmpγ

k
oγ

j
n

)
(2.44)

= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

) (
γijopγ

kl
mn

+γijmnγ
kl
op − 4γijmpγ

kl
on

−4γijmpγ
kl
on

−4λijpnλ
kl
mo + 8λijpnγ

k
mγ

l
o − 4λijpnλ

kl
mo + 4γipγ

j
nλ

kl
mo − 4γinγ

j
pλ

kl
mo

+4λijpnλ
kl
mo + 4λkjmnλ

li
op + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n

+8λilmpλ
kj
on + 32λilmpγ

k
oγ

j
n

)
(2.45)

= 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

) (
γijopγ

kl
mn

+γijmnγ
kl
op − 8γijmpγ

kl
on

+8λijpnγ
k
mγ

l
o + 4γipγ

j
nλ

kl
mo − 4γinγ

j
pλ

kl
mo + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n + 32λilmpγ

k
oγ

j
n
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−4λijpnλ
kl
mo + 4λkjmnλ

li
op + 8λilmpλ

kj
on

)
(2.46)

This is an approximate form of the 3rd order VCCD energy. No simplifications have

been made by considering only a single reference function, this form assumes a refer-

ence of multiple functions but is completely general and hence the form of an approx-

imate VCC method should aim to approximate this form as closely as possible.

2.1.3 Approximate MRVCC 3rd Order Energy Terms

The approximate MRVCC 3rd order energy terms are given below.

E3vcc ≈
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)(
γijopγ

kl
mn + γijmnγ

kl
op − 8γijmpγ

kl
on + 8λijpnγ

k
mγ

l
o

+ 4γipγ
j
nλ

kl
mo − 4γinγ

j
pλ

kl
mo + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n

+ 32λilmpγ
k
oγ

j
n − 4λijpnλ

kl
mo + 4λkjmnλ

li
op + 8λilmpλ

kj
on

)
(2.47)

The approximate energy terms are referred to according to by the names in the fol-

lowing table, labelling the terms 1 to 12. When multiplying out the energy expression

above, each “term”, that is, each density matrix product or cumulant product, can be

combined with 2−4Kij
ab T

kl
cd T

mn
cd T opab or 2−3Kij

ab T
kl
cd T

mn
ca T opbd , which give different vir-

tual pairings and will be referred to as pairing α and pairing β. Term 1α therefore

refers to density matrix product term 1, with α virtual pairing 2−4Kij
ab T

kl
cd T

mn
cd T opab .

The terms and their name, for ease of reference is given in table 2.1.

Many of the terms in this form can be easily seen to be generalisations of the simpli-

fied single reference case, which are the terms the single reference LPF methods are

designed to capture, such as term 3C and 3B. To aid in determining the major contrib-

utors to the energy (i.e. the most important terms to capture in an approximation to the

full form), a comparison with the single reference theory is needed.

Single Reference Limit

To aid in determining which terms give the most important contributions to the third

order energy, correspondences with the single-reference theory must be sought and

used as a guide.
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Name Term

1 γijopγ
kl
mn

2 γijmnγ
kl
op

3 −8γijmpγ
kl
on

4 +8λijpnγ
k
mγ

l
o

5 +4γipγ
j
nλ

kl
mo

6 −4γinγ
j
pλ

kl
mo

7 +8λkjmnγ
l
oγ

i
p

8 +8λliopγ
k
mγ

j
n

9 +32λilmpγ
k
oγ

j
n

10 −4λijpnλ
kl
mo

11 +4λkjmnλ
li
op

12 +8λilmpλ
kj
on

Virtual pairing

1α γijopγ
kl
mn × 2−4Kij

ab T
kl
cd T

mn
cd T opab

1β γijopγ
kl
mn × 2−3Kij

ab T
kl
cd T

mn
ca T opbd

. . . . . .

Table 2.1: Approximate MRVCC 3rd Order Energy Terms

The approximate form of the energy assuming a reference containing multiple refer-

ence functions, as found above, is of the form:

E = 1
2
γijopK

ij
ab T

op
ab

+
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)(
γijopγ

kl
mn + γijmnγ

kl
op − 8γijmpγ

kl
on + 8λijpnγ

k
mγ

l
o

+ 4γipγ
j
nλ

kl
mo − 4γinγ

j
pλ

kl
mo + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n

+ 32λilmpγ
k
oγ

j
n − 4λijpnλ

kl
mo + 4λkjmnλ

li
op + 8λilmpλ

kj
on

)
(2.48)

The terms involving products of density matrices can be evaluated using a single ref-

erence determinant, shown below, and can be compared to single reference 3rd order

VCC terms, shown in brackets.

(
2−4Kij

ab T
kl
cd T

mn
cd T opab

) (
γijopγ

kl
mn

)
= 2−3Kij

ab T
mn
cd Tmncd T ijab(Unlinked) (2.49)
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(
2−4Kij

ab T
kl
cd T

mn
cd T opab

) (
γijmnγ

kl
op

)
= 2−3Kij

ab T
op
cd T

ij
cd T

op
ab (C) (2.50)(

2−4Kij
ab T

kl
cd T

mn
cd T opab

) (
−8γijmpγ

kl
on

)
= −Kij

ab T
kl
cd T

il
cd T

kj
ab (B)−Kij

ab T
kl
cd T

jk
cd T

li
ab(B)

(2.51)

Virtual pairing

×2−4Kij
ab T

kl
cd T

mn
cd T opab ×2−3Kij

ab T
kl
cd T

mn
ca T opbd

Terms

γijopγ
kl
mn Unlinked A

γijmnγ
kl
op C A

−8γijmpγ
kl
on B D

All other terms 0 0

Table 2.2: Single reference limit of the approximate 3rd order MRVCC terms

In the single reference theory, there exist special relationships for the 3rd order terms

for the 2-electron case.

〈T̂ †ĤT̂ T̂ 〉L = 〈T̂ †ĤT̂ T̂ 〉 − 〈T̂ †T̂ 〉〈ĤT̂ 〉

〈T̂ †ĤT̂ T̂ 〉L + 〈T̂ †T̂ 〉〈ĤT̂ 〉 = 〈T̂ †ĤT̂ T̂ 〉 (2.52)

For 2 electrons . . .

〈T̂ †ĤT̂ T̂ 〉L + 〈T̂ †T̂ 〉〈ĤT̂ 〉 = 0

〈T̂ †ĤT̂ T̂ 〉L = 3A+ 3B + 3C + 3D = 3B + 3C = −3C =
1

2
3B (2.53)

In summary, the linked and unlinked terms cancel completely to give 0 as the third

order energy. Terms in the linked energy cancel each other to leave an object that is

the same as -3C, which is the same as 1
2
3B or 3B + 3C. The different LPF methods

differed in which of these terms they captured, all being equivalent for the 2 electron

special case.

An equivalent analysis is carried out for the approximate 3rd order energy evaluated

for the model system, both in the limit of a single reference and in the general mul-

tireference case.

2.1.4 Two Electron Case

|0〉 = 1
2
Cmn|mn〉 ≡ 1

2
Cmnm†n†|vac〉 (2.54)
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γij = 〈0|i†j|0〉 (2.55)

= CilCjl (2.56)

γijkl = 〈0|i†j†lk|0〉 (2.57)

= CijCkl (2.58)

λijkl = γijkl − γ
i
kγ

j
l + γilγ

j
k (2.59)

= CijCkl − CimCkmCjnC ln + CimC lmCjnCkn (2.60)

Assume, without loss of generality, that we have a natural orbital basis, ie that γ is

diagonal:

γik = (c(i))2 δik (2.61)

Cij = c(i) δj,[i] (2.62)

γijkl = c(i) c(k) δj,[i] δl,[k] (2.63)

Restricting the excitation operators making up T̂ to exclude the null space,

T ijab = c(i) δj,[i] Tab (2.64)

Normalisation:

1 =
∑
ij

1

2
(Cij)2 =

1

2

∑
i

(c(i))2 (2.65)

In the special case of just two orbitals, then c(1) = c(2) = 1, otherwise all coefficients

are less than 1.

NC = 1
2
γijopK

ij
ab T

op
ab

+ 2−4Kij
ab T

kl
cd T

mn
cd T opab

(
c(i) c(o) δj,[i] δp,[o]c

(m) c(k) δn,[m] δl,[k]

+c(i) c(m) δj,[i] δn,[m]c
(o) c(k) δp,[o] δl,[k]

−8c(i) c(m) δj,[i] δp,[m]c
(o) c(k) δn,[o] δl,[k]

−8λijpnγ
k
mγ

l
o − 8γipγ

j
nλ

kl
mo + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n + 32λilmpγ

k
oγ

j
n

−4λijpnλ
kl
mo + 4λkjmnλ

li
op + 8λilmpλ

kj
on

)
(2.66)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−4Kij
ab T

kl
cd T

mn
cd T opab

(
c(i) c(o) δj,[i] δp,[o]c

(m) c(k) δn,[m] δl,[k]
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+c(i) c(m) δj,[i] δn,[m]c
(o) c(k) δp,[o] δl,[k]

−8c(i) c(m) δj,[i] δp,[m]c
(o) c(k) δn,[o] δl,[k]

+ . . . ) (2.67)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−4c(i) c(k) c(m) c(o) Kij
ab T

kl
cd T

mn
cd T opab

(
δj,[i] δp,[o]δn,[m] δl,[k]

+δj,[i] δn,[m]δp,[o] δl,[k] − 8δj,[i] δp,[m]δn,[o] δl,[k] + . . .
)

(2.68)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−4
∑

ijklmnop

c(i) c(k) c(m) c(o) Kij
ab c

(k) δl,[k] Tcd c
(m) δn,[m] Tcd c

(o) δp,[o] Tab

(
(1 + 1)δj,[i] δn,[m]δp,[o] δl,[k]

−8δj,[i] δp,[m]δn,[o] δl,[k]

)
+ . . . (2.69)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−4
∑
ikmo

K
i,[i]
ab c(i) (c(k))2 (c(m))2 (c(o))2

(
(1 + 1)− 8δ[m],[o]

)
+ . . . (2.70)

= 1
2
γijopK

ij
ab T

op
ab

+ 2−4
∑
i

K
i,[i]
ab c(i)

∑
k

(c(k))2

(∑
mo

(c(m))2 (c(o))2 (1 + 1)− 8
∑
m

(c(m))4

)
+ . . .

(2.71)

In the case of just two orbitals, then c(1) = c(2) = 1. The above is expected to give

zero, because, as noted earlier, the linked 3rd order energy terms (B+C) are equal and

opposite to the unlinked terms for the 2 electron case. For the multireference case,

there are more than 2 orbitals. If the exact answer for 2 electrons is simply a sum of

terms 3B and 3C, then the sum above still containing the unlinked term must be zero

and would show that the neglected terms (products of cumulants) are not required to

be correct for this example system.

Evaluation of the approximate 3rd order energy derived above using the cumulant ex-

pansion must be evaluated for the model system.

Evaluation for the model system

The total 3rd order energy including all linked term and unlinked terms is 0 for 2

electrons, however, the linked form of the energy is non-zero. If the approximate form

of the energy derived above is to be relied upon, then it must also show the same
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behaviour for the 2-electron, 2-reference model system define din the Appendix.

It can be shown that the evaluation of the approximate 3rd order total energy for the

model system does indeed give 0, as desired, and the linked energy is shown to be

non-zero.

The linked energy is given below (1̄ indicates β spin and 1 α spin),

E3vcc = EL + EUL = 0

EL =
(
− 8K11̄

33̄ cos4 θ 2−3 T 11̄
33̄ T

11̄
33̄ T

11̄
33̄

− 24K11̄
33̄ cos3 θ sin θ 2−3 T 11̄

33̄ T
22̄
33̄ T

22̄
33̄

− 24K11̄
33̄ cos2 θ sin2 θ 2−3 T 11̄

33̄ T
22̄
33̄ T

22̄
33̄

− 8K11̄
33̄ cos θ sin3 θ 2−3 T 22̄

33̄ T
22̄
33̄ T

22̄
33̄

− 8K22̄
33̄ sin4 θ 2−3 T 22̄

33̄ T
22̄
33̄ T

21̄
23̄

− 24K22̄
33̄ cos θ sin3 θ 2−3 T 22̄

23̄ T
11̄
33̄ T

11̄
33̄

− 24K22̄
33̄ cos2 θ sin2 θ 2−3 T 22̄

33̄ T
11̄
33̄ T

11̄
33̄

− 8K22̄
33̄ cos3 θ sin θ 2−3 T 11̄

33̄ T
11̄
33̄ T

11̄
33̄

)
(2.72)

The linked energy contains the contributions from 23 terms. However, terms involv-

ing second order cumulants sum to zero (terms 4-12). As mentioned, in the single-

reference theory for 2 electrons, the linked energy terms partially cancel to give a

linked energy that is the same as term −3C or 1
2
3B. Similar cancellations occur here

for the evaluation of the multi-reference model system, the linked energy in 2.72 can

be seen to reduce to be the same as simple individual contributions. The evaluation of

terms 1β and 2α are give below,

Term 1β γijop γ
kl
mnK

ij
ab

(
2−4 T klcd T

mn
ca T opbd

)
(2.73)

= − 8K11̄
33̄ cos4 θ 2−3 T 11̄

33̄ T
11̄
33̄ T

11̄
33̄

− 24K11̄
33̄ cos3 θ sin θ 2−3 T 11̄

33̄ T
22̄
33̄ T

22̄
33̄

− 24K11̄
33̄ cos2 θ sin2 θ 2−3 T 11̄

33̄ T
22̄
33̄ T

22̄
33̄

− 8K11̄
33̄ cos θ sin3 θ 2−3 T 22̄

33̄ T
22̄
33̄ T

22̄
33̄

− 8K22̄
33̄ sin4 θ 2−3 T 22̄

33̄ T
22̄
33̄ T

21̄
23̄

− 24K22̄
33̄ cos θ sin3 θ 2−3 T 22̄

23̄ T
11̄
33̄ T

11̄
33̄

− 24K22̄
33̄ cos2 θ sin2 θ 2−3 T 22̄

33̄ T
11̄
33̄ T

11̄
33̄
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− 8K22̄
33̄ cos3 θ sin θ 2−3 T 11̄

33̄ T
11̄
33̄ T

11̄
33̄ (2.74)

Term 2α γijmn γ
kl
opK

ij
ab

(
2−4 T klcd T

mn
cd T opab

)
(2.75)

= + 8K11̄
33̄ cos4 θ 2−3 T 11̄

33̄ T
11̄
33̄ T

11̄
33̄

+ 24K11̄
33̄ cos3 θ sin θ 2−3 T 11̄

33̄ T
22̄
33̄ T

22̄
33̄

+ 24K11̄
33̄ cos2 θ sin2 θ 2−3 T 11̄

33̄ T
22̄
33̄ T

22̄
33̄

+ 8K11̄
33̄ cos θ sin3 θ 2−3 T 22̄

33̄ T
22̄
33̄ T

22̄
33̄

+ 8K22̄
33̄ sin4 θ 2−3 T 22̄

33̄ T
22̄
33̄ T

21̄
23̄

+ 24K22̄
33̄ cos θ sin3 θ 2−3 T 22̄

23̄ T
11̄
33̄ T

11̄
33̄

+ 24K22̄
33̄ cos2 θ sin2 θ 2−3 T 22̄

33̄ T
11̄
33̄ T

11̄
33̄

+ 8K22̄
33̄ cos3 θ sin θ 2−3 T 11̄

33̄ T
11̄
33̄ T

11̄
33̄ (2.76)

The results of the evaluation of these terms can be related to the linked energy (eq.

2.72) very simply. For the 2 electron, 2 reference model, the linked approximate 3rd

order VCC energy can be written,

EL = 1β = −2α (2.77)

It is shown above that in the single reference limit term 2α reduces to VCC term 3C,

so it is in complete analogy that the linked energy for the model can be described

completely by −2α, just as in single reference the linked energy for 2 electrons can be

written as -3C. The other term here that gives the full linked energy is term 1β, which,

in the single reference limit, reduces to diagram A. This is a slightly different trend to

the single reference case.

The approximate 3rd order energy contains some terms involving 2nd order cumulants

(terms 4-12), that sum to 0 for the model. They may be important for the general

multireference case, but their importance is not probed here. One can look at their

importance by re-analysing the 4th order density matrix and showing how good the

approximations to it are when containing the different terms.

For the model case, term 1β or −2α are the only terms needed for the description of

the linked energy. Accordingly attempts should be made at capturing these terms via a

transformation of the pair amplitudes.
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The Transformation

As stated, it is apt to capture either term 1β or the negative of term 2α via a transfor-

mation, as either of these terms give the correct linked energy for the model 2-electron

multireference system. A pragmatic choice of which term to capture is to choose term

−2α, as the pairing of virtual indices is simpler than that of term 1β. Also, another

consideration is the comparison to single reference theory. Term −2α is the multiref-

erence generalisation of the single reference 3rd order VCC diagram -3C. -3C is the

term captured by LPF+1D, which has shown to perform well (despite being a simple

approximation to VCC)[11, 30], and this term is known to be important in the general

case. Without further analysis of the multireference terms, capture of −2α is a logical

choice.

To restate, term −2α is chosen to be captured by a transformation because it is exact

for the model system and reduces directly to LPF+1 when a single reference function

is used. Possible transformations to capture further terms are outlined later but not

considered in detail in this work.

The requirement is the transformed amplitude must capture the correct 1st order energy

but also the negative 3rd order energy term 2α.

N = 1
2
γijopK

ij
ab T

op
ab − 2−4Kij

ab T
kl
cd T

mn
cd T opab γ

ij
mnγ

kl
op (2.78)

= 1
2
Kij
ab γ

ij
mn 2T

mn
ab (2.79)

An appropriate transformation matrix, U, can be defined,

U = 1 + ∆ (2.80)

Umn
op = δmnop + ∆mn

op (2.81)

∆mn
op = 1

2
ηmnkl γklop (2.82)

ηmnkl = 1
2
Tmncd T cdkl γ

kl
op (2.83)

The definition of a general transformed amplitude follows;

qT
mn
ab = 1

2

(
δmnop + 1

4
T klcd T

mn
cd γklop

)− q
2 T opab (2.84)

qT
mn
ab = 1

2

(
U−

q
2

)mn
op

T opab (2.85)
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The result of the transformation can be viewed using the binomial expansion (1 +

x)−1 = 1− x+ . . .

1
2
Kij
ab γ

ij
mn (U−1 T opab ) = 1

2
Kij
ab γ

ij
mn T

mn
ab − 2−4Kij

ab γ
ij
mn T

mn
cd T klcd γ

kl
op T

op
ab + . . .

(2.86)

This is the 1st order energy contribution plus the negative of term 2α as required, show-

ing the transformation matrix does as required. This transformation can be constructed

at a cost in complexity of no more than o4v2, by first computing the intermediate matrix

η before contraction with the density matrix to make ∆ to be used in the transformation

matrix, U.

Computational scaling:

Tmncd T cdkl γ
kl
op

o4v2

−−−−→ ηmnkl γklop
o6

−−−→ ∆mn
op

Umn
op = δmnop + ∆mn

op

The formation of this transformation matrix is no more complex than the limiting steps

in both Coupled Cluster and Configuration Interaction, however, the number of internal

orbitals is greatly increased in the multireference case, making the U matrix more

demanding to construct, and invert.

2.1.5 Positivity of the Transformation Matrix

As negative powers of the U matrix are needed in the transformation, the U matrix

must proven to be positive definite, to be sure the matrix inverse exists and can be

found. Without this property the theory cannot work.

In order to look at the positive definite-ness of U, the component matrices must be

analysed.

U = δ + ∆ (2.87)

Umn
op = δmnop + 1

4
Tmncd T cdkl 〈0| k† l† p o|0〉 (2.88)

Umn
op = δmnop + 1

4
Tmncd T cdkl 〈φkl−2|φ−2

op 〉 (2.89)

Where 〈φkl−2| denotes an n− 2 electron state, and kl indicates the electrons annihilated.

The elements of the ∆ matrix are formed as inner products of vectors, showing ∆ is a
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Grammian matrix and is therefore positive-semi-definite, meaning the lowest possible

eigenvalue is 0 [108]. The addition of the unit matrix will shift the eigenvalues U when

compared to ∆ by 1. This results in the lowest possible eigenvalue now being positive

and hence U is positive definite, meaning it is non-singular and negative matrix powers

can be found.

Model Multireference 2-Electron Case

The multi-reference LPF theory must be formulated to be exact for 2 electrons. Here

is the model two electron case, with 2 reference determinants (defined in Appendix).

Consider a 2-electron system with 2 reference determinants. There are 2 occupied

orbitals with different symmetry and one virtual orbital.

|12〉 = 11̄

|22〉 = 22̄

The reference wavefunction:

|0〉 = cos θ|12〉+ sin θ|22〉

Due to there being only 1 virtual orbital, there is only 1 excited configuration:

|32〉 = 33̄

The total wavefunction,

|Ψ〉 = cos θ|12〉 + sin θ|22〉 + µ |32〉

|Ψ〉 = |0〉 + µ |32〉

The excitation operators are also orthogonalised and are shown together with its action

on the reference wavefunction.

T̂ =
(

cos θÊ31,31 + sin θÊ32,32

)
µ

T̂ |0〉 =
(
cos2 θ + sin2 θ

)
µ |32〉

T 33
11 = cos θµ
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T 33
22 = sin θµ

The γ matrix needed for this method and it’s elements are defined using γklop = 〈k†l†po〉

γ =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ


The η matrix must also be found.

η =

 cos2 θµ2 sin θ cos θµ2

sin θ cos θµ2 sin2 θµ2



Evaluating all terms that contribute to the ∆ matrix,

∆ = η γ

∆ =

 cos2 θµ2 sin θ cos θµ2

sin θ cos θµ2 sin2 θµ2


Forming the U matrix,

U ij
kl = δijkl + ηijkl (2.90)

U =

 1 + cos2 θµ2 sin θ cos θµ2

sin θ cos θµ2 1 + sin2 θµ2


This matrix needs inverting, the inverse matrix can be visualised via Kramer’s closed

form method for finding the inverse of a matrix.

U−1 =

 1+sin2 θµ2

1+µ2 − sin θ cos θµ2

1+µ2

− sin θ cos θµ2

1+µ2
1+cos2 θµ2

1+µ2


The transformation then follows,

U−1T = T̃ 1+sin2 θµ2

1+µ2 − sin θ cos θµ2

1+µ2

− sin θ cos θµ2

1+µ2
1+cos2 θµ2

1+µ2

T 33
11

T 33
22

 =

T̃ 33
11

T̃ 33
22


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(
1 + sin2 θµ2

)
T 33

11 − (sin θ cos θµ2)T 33
22

1 + µ2
= T̃ 33

11

(− sin θ cos θµ2)T 33
11 + (1 + cos2 θµ2)T 33

22

1 + µ2
= T̃ 33

22

Remembering the definition of the amplitudes (above),

T̃ 33
11 =

cos θµ+ sin2 θµ2 cos θµ− sin θ cos θµ2 sin θµ

1 + µ2

T̃ 33
22 =

− sin θ cos θµ2 cos θµ+ sin θµ+ cos2 θµ2 sin θµ

1 + µ2

T̃ 33
11 =

T 33
11

1 + µ2

T̃ 33
22 =

T 33
22

1 + µ2

This is simply the standard amplitude with the introduction of the MRCI pair denomi-

nator, 1 + 〈T̂ †T̂ 〉, making it the same as MRCI. This shows the equivalence of a term

involving the transformed amplitude to that of the term in MRCI in the 2-electron,

2-reference model system.

Alternatively, the inverse of the U transformation can be visualised via the binomial

expansion of (1 + ∆)−1. Thus the transformation is as follows,

U−1T = T̃1 0

0 1

−
 cos2 θµ2 sin θ cos θµ2

sin θ cos θµ2 sin2 θµ2

+ · · ·

T 33
11

T 33
22

 =

T̃ 33
11

T̃ 33
22



cos θµ− cos2 θµ2 cos θµ− sin θ cos θµ2 sin θµ+ · · · = T̃ 33
11

sin θµ− sin θ cos θµ2 cos θµ− sin2 θµ2 sin θµ+ · · · = T̃ 33
22

T 33
11 − T 33

11 T
33
11 T

33
11 − T 33

11 T
33
22 T

33
22 = T̃ 33

11

T 33
22 − T 33

22 T
33
11 T

33
11 − T 33

22 T
33
22 T

33
22 = T̃ 33

22

Showing the first order terms still being present, while capturing the terms corre-

sponding to the -C 3rd order diagram, which ensures the desired behaviour for 2-

electrons.
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Redundancy Removal

As a result of the multireference nature of the wavefunction, the excitation operators

form a linearly dependent set. Thus, these redundancies must be removed. Due to the

form of the equations, the method of Evangelista & Gauss [53] cannot be used, as it

results in orthogonalisation of the operators, causing U to be in a different basis to the

rest of the work.

Therefore, the method used in the MOLPRO icMRCI [58] code is used, that of pair

deletion.

γ =
(
cos2 θ

)
(2.91)

T = T 11,1
33 (2.92)

Therefore the U matrix can be easily found and inverted.

U = 1 + ∆

U = 1 +
(
γ11

11T
111
33 T 33

111

)
U = 1 + cos2 θ µ2 cos2 θ

U−1 =
1

1 + cos2 θ µ2 cos2 θ
(2.93)

The U matrix introduces the pair norm correctly:

〈T̂ †T̂ 〉 = 〈ψ33
11|ψ33

11〉
(
T 33

111

)2 (2.94)

= cos2 θ µ2 cos2 θ (2.95)

This shows using the method of pair deletion, the correct pair norm is still introduced,

but the excitations to the external space are coming from 1 determinant only because

of the redundancy.

Further Manipulation

This section attempts to further manipulate the terms 4-12 in table 2.1, which are

not needed for the model multireference case but may be important in the general

case.
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Looking at the (approximate) 3rd order energy contributions:

E3vcc =
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)(
γijopγ

kl
mn + γijmnγ

kl
op − 8γijmpγ

kl
on + 8λijpnγ

k
mγ

l
o

+ 4γipγ
j
nλ

kl
mo − 4γinγ

j
pλ

kl
mo + 8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n

+ 32λilmpγ
k
oγ

j
n − 4λijpnλ

kl
mo + 4λkjmnλ

li
op + 8λilmpλ

kj
on

)
(2.96)

The terms involving 2nd order cumulants disappear in the single reference case. Al-

though these terms were shown not to be important for the multireference model sys-

tem, these terms may be important in the general multireference case and should be

simplified into a computable form. The terms in question have been manipulated and

rearranged below.

+ 8λkjmnγ
l
oγ

i
p + 8λliopγ

k
mγ

j
n + 4λkjmnλ

li
op

+ 8λilmpλ
kj
on + 32λilmpγ

k
oγ

j
n

− 8λijpnγ
k
mγ

l
o − 8γipγ

j
nλ

kl
mo − 4λijpnλ

kl
mo

Upon inspection the first line looks like the product γkjmnγ
li
op and the 3rd line like

−γijpnγklmo. This observation can be probed by expansion of the density matrix prod-

ucts and comparing to the terms in the energy expression.

4γkjmnγ
li
op = 4

(
λkjmn + 2γkmγ

j
n

) (
λliop + 2γloγ

i
p

)
= 4

(
λkjmnλ

li
op + 4γkmγ

j
nγ

l
oγ

i
p + 2γkmγ

j
nλliop + 2γloγ

i
pλ

kj
mn

)
(2.97)

−4γijpnγ
kl
mo = 4

(
λijpn + 2γipγ

j
n

) (
λklmo + 2γkmγ

l
o

)
= 4

(
λijpnλ

kl
mo + 4γipγ

j
nγ

k
mγ

l
o + 2γipγ

j
nλklmo + 2γloγ

k
mλ

ij
pn

)
(2.98)

Thus

4γkjmnγ
li
op − 4γijpnγ

kl
mo = +8λkjmnγ

l
oγ

i
p + 8λliopγ

k
mγ

j
n + 4λkjmnλ

li
op

− 8λijpnγ
k
mγ

l
o − 8γipγ

j
nλ

kl
mo − 4λijpnλ

kl
mo (2.99)

which is the same set of terms that appear in the energy expression, Realising this

relation, the terms in the energy expression involving 2nd order cumulants can now be

simplified,

+ 4γkjmnγ
li
op − 4γijpnγ

kl
mo + 8λilmpλ

kj
on + 32λilmpγ

k
oγ

j
n
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Despite re-expressing the terms involving 2nd order cumulants as products of density

matrices, it can be seen that they still sum to zero in the single reference limit and for

the model MR case.

The energy expression now reads,

E3vcc ≈
(
2−4Kij

ab T
kl
cd T

mn
cd T opab + 2−3Kij

ab T
kl
cd T

mn
ca T opbd

)
(
γijopγ

kl
mn + γijmnγ

kl
op − 8γijmpγ

kl
on

+ 4γkjmnγ
li
op − 4γijpnγ

kl
mo + 8λilmpλ

kj
on + 32λilmpγ

k
oγ

j
n

)
(2.100)

Further Transformations

Although not utilised in the current theory, these matrices are likely to be required in

future implementations in order to generate more 3rd order energy terms to approxi-

mate VCC more closely and therefore produce a more complete theory.

The selection of which 3rd order terms to include in the theory and therefore which

terms require production via a matrix transformation must be decided based on the-

oretical arguments based on approximation of the 4th order density matrix, and the

numerical performance of pilot implementations and tests. It has already been indi-

cated above that no extra terms are needed to be exact for the 2 electron, 2 reference

model system and no further argument on which terms should be captured in a trans-

formation is given here, but transformation matrices that would capture these terms are

given, for completeness.
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Term Transformation Matrix Complexity(
2−4Kij

ab T
kl
cd T

mn
cd T opab

)
γijopγ

kl
mn Unwanted -

(
2−4Kij

ab T
kl
cd T

mn
cd T opab

)
γijmnγ

kl
op ∆mn

op = Tmncd T klcdγ
kl
op

o4v2 and o6

Umn
op = δmnop + ∆mn

op

−
(
2−4Kij

ab T
kl
cd T

mn
cd T opab

)
8γijmpγ

kl
on ∆m

o = Tmncd T klcdγ
kl
on

o4v2 and o5

Um
o = δmo + ∆m

o

(
2−4Kij

ab T
kl
cd T

mn
cd T opab

)
4γkjmnγ

li
op ∆mn,ki,op = Tmncd T klcdγ

li
op

o4v2 and o7

Umn,ki,op = δmn,ki,op + ∆mn,ki,op

−
(
2−4Kij

ab T
kl
cd T

mn
cd T opab

)
4γijpnγ

kl
mo ∆n

o = Tmncd T klcdγ
kl
mo

o4v2 and o5

Un
o = δno + ∆n

o

Table 2.3: Transformations to capture all terms that are products of density matrices in

the approximate 3rd order energy (2.100)

2.2 Spin Free Formulation

The partial numerator only containing the term 2α (corresponding to single-reference

diagram 3C) has until now been expressed only in spin-orbital form.

N =
∑

ijklmnopabcd

1

16
Kij
ab T

op
ab γ

ij
mn T

mn
cd T klcd γ

kl
op spin orbitals

However, a spin-summed, purely spatial form is needed to be comparable to, and to be

integrated into, the MRCI code within MOLPRO.

In spatial form, the numerator:

N =
∑

ijklmnopabcd

1

16
Kij
ab T

op
ab γ

ij
mn T

mn
cd T klcd γ

kl
op spin orbitals

N =
∑

ijklmnopabcd

( 1

16
K ĩj̃

ãb̃
T õp̃
ãb̃
γ ĩj̃m̃ñ T

m̃ñ
c̃d̃

T k̃l̃
c̃d̃
γk̃l̃õp̃

+ 4 K ĩj̄

ãb̄
T õp̄
ãb̄
γ ĩj̄m̃n̄ T

m̃n̄
c̃d̄ T k̃l̄c̃d̄ γ

k̃l̄
õp̄
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+
1

16
K īj̄

āb̄
T ōp̄
āb̄
γ īj̄m̄n̄ T

m̄n̄
c̄d̄ T k̄l̄c̄d̄ γ

k̄l̄
ōp̄

)
spatial orbitals

where ĩ indicates an electron with α spin and ī an electron with β spin. For non-

singlet states, spin-rotation of the spin factor associated with the spin-orbital causes a

change in the state. Accordingly, invariant states and objects are instead used in spin-

adapted many electron methods in MOLPRO. Therefore, the term to be captured via

a transformation (term 2α) needs to be re-expressed using spin-free operators, which

are invariant to spin rotations and can be written as invariant linear combinations of

spin-orbital operators. The spin-free (singlet) excitation operator can be written as a

linear combination of spin-orbital operators,

Epq = p̃†q̃ + p̄†q̄ (2.101)

Re-expressing using spin summed pure spatial operators,

T̂ =
∑
ij

∑
ab

T ijab ÊaiÊbj (2.102)

=
∑
ij

∑
ab

T ijab

(
ã†b̃†ĩj̃ + ā†b̄†īj̄ + a†b̄†j̄i + a†b̄†īj

)
(2.103)

=
∑
ij

∑
ab

1

4
T ĩj̃
ãb̃
ã†b̃†ĩj̃ +

1

4
T īj̄
āb̄
ā†b̄†īj̄ + T ij̄

ab̄
ã†b̄†īj̃ (2.104)

Γijmn = 〈(̃i†m̃ + ī†m̄)(j̃†ñ + j̄†n̄) − δjm(̃i†ñ + ī†n̄)〉 (2.105)

= 〈̃i† j̃† ñ m̃ + ī† j̄† n̄ m̄ + ĩ† j̄† n̄ m̃ + ī† j̃† ñ m̄ − δjm
(̃
i† ñ + ī†n̄

)
〉

(2.106)

= γ ĩj̃m̃ñ + γ īj̄m̄n̄ + γ ĩj̄m̃n̄ + γ īj̃m̄ñ (2.107)

It becomes immediately clear that re-expression using these operators involves more

than a simple ‘translation’ between the two representations. The spatial expression,

above (2.107), involves products of density matrices, but does not contain products of

density matrices of mixed spin, as a product of spin-summed density matrices would.

The product of 2 spin-summed 2nd-order reduced density matrices is shown.

ΓijmnΓklop = γ ĩj̃m̃ñγ
k̃l̃
õp̃ + γ ĩj̃m̃ñγ

k̄l̄
ōp̄ + γ ĩj̃m̃ñγ

k̃l̄
õp̄ + γ ĩj̃m̃ñγ

k̄l̃
ōp̃

+ γ īj̄m̄n̄γ
k̃l̃
õp̃ + γ īj̄m̄n̄γ

k̄l̄
ōp̄ + γ īj̄m̄n̄γ

k̃l̄
õp̄ + γ īj̄m̄n̄γ

k̄l̃
ōp̃

+ γ ĩj̄m̃n̄γ
k̃l̃
õp̃ + γ ĩj̄m̃n̄γ

k̄l̄
ōp̄ + γ ĩj̄m̃n̄γ

k̃l̄
õp̄ + γ ĩj̄m̃n̄γ

k̄l̃
ōp̃
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+ γ īj̃m̄ñγ
k̃l̃
õp̃ + γ īj̃m̄ñγ

k̄l̄
ōp̄ + γ īj̃m̄ñγ

k̃l̄
õp̄ + γ īj̃m̄ñγ

k̄l̃
ōp̃ (2.108)

The underlined terms are those that are present in the spatial expression above, but

all other terms are not present. Therefore, the spatial expression does not contain

a product of spin-summed density matrices. Shamasundar has noted that the spin-

orbital reduced density matrices of non-singlet states cannot be re-expressed in terms

of spin-free reduced density matrices alone [107]. It can be seen that this is the case

for a 1st-order reduced density matrix evaluated for a set of (2S + 1) many-electron

wavefunctions
{

ΨS
Ms
,Ms = −S, . . . ,+S

}
γ p̃q̃ = 〈ΨS

Ms
|p̃†q̃|ΨS

Ms
〉 (2.109)

= 1
2
Γpq + ζpq (2.110)

where ζpq is a spin density matrix, which depends on both the total spin quantum num-

bers S and Ms. To get this far in the derivation of the spin-summed spin-free form, the

spin-orbital form has been found, and ‘translated’ into spatial form and attempted to

be written in a spin-free form via spin-summation (as Shamasundar notes it can’t be

done). For a true spin-free form, the whole derivation of the theory, from the 3rd order

VCC energy, must be re-done using spin-free operators.

Spin-free excitation operators are routinely used (and will be in this theory), as are

spin-free density matrices which are expectation values of spin-free operators. Cu-

mulants are not expectation values of spin-free operators, hence derivation of their

spin-free form is more complicated. Spin-free cumulants, required for the cumulant

approximation of the 4th order density matrix, have only recently become known and

their use is still problematic.

Therefore, the most pragmatic option is not to re-derive the equations but to simply

adjust factors to get the spin-free expression correct for the 2-electron singlet and triplet

cases, the error for all other cases will be averaged out.

The 2 electron triplet case:

Γijmn = γ ĩj̃m̃ñ ; T ijab =
1

4
T ĩj̃
ãb̃

(2.111)

E = 8Kij
ab T

op
ab T

mn
cd T klcd Γijmn Γklop (2.112)

The 2 electron singlet case:

Γijmn = γ ĩj̄m̃n̄ + γ īj̃m̄ñ ; T ijab =
1

2
T ĩj̄
ãb̄

(2.113)
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E = 8Kij
ab T

op
ab T

mn
cd T klcd Γijmn Γklop (2.114)

Symmetric and Antisymmetric

The spin-summed excitation operators are required to be re-expressed in terms of a

symmetric and antisymmetric part, in the same way the MRCI code works as defined

in ref [58]. That work uses the excitation operator Ĉ while the work presented here so

far uses T̂ .

Ĉ =
1

2

∑
i≥j

∑
ab

∑
p

Cij,p
ab

(
Êai,bj + pÊaj,bi

)
(2.115)

T̂ =
∑
ij

∑
ab

T ijab Êai,bj (2.116)

=
∑
i

T iiab Êai,bi +
∑
i>j

T ijab Êai,bj +
∑
i<j

T ijabÊai,bj

=
1

4

(
T ijab + T ijba

) (
Êai,bj + Êaj,bi

)
+

1

4

(
T ijab − T

ij
ba

) (
Êai,bj + Êaj,bi

)
(2.117)

To allow re-expression of the T amplitudes in terms of a symmetric part and antisym-

metric part, a comparison between the definition of Ĉ (as used in ref. [58]) and T̂ (used

here) must be made.

For the i=j case:

Ĉ =
∑
ab

Cii,1
ab Eai,bi (2.118)

T̂ =
∑
ab

T iiabEai,bi (2.119)

Hence, Cii,1
ab = T iiab (2.120)

For the case i 6= j:

Ĉ =
1

2
Cij,1
ab

(
Êai,bj + Êaj,bi

)
+

1

2
Cij,−1
ab

(
Êai,bj − Êaj,bi

)
(2.121)

T̂ =
1

4

(
T ijab + T ijba

) (
Êai,bj + Êaj,bi

)
+

1

4

(
T ijab − T

ij
ba

) (
Êai,bj + Êaj,bi

)
(2.122)

Cij,1
ab =

1

2

(
T ijab + T ijba

)
(2.123)
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Cij,−1
ab =

1

2

(
T ijab − T

ij
ba

)
(2.124)

Hence T ijab = Cij,1
ab + Cij,−1

ab (2.125)

This also holds up for the case when i=j, because the antisymmetric amplitude will be

zero by design.

Now that the amplitudes have been written in a combination of symmetric and anti-

symmetric parts, the energy expression can be re-expressed using these amplitudes,

together with the spin-free operators shown earlier.

Inserting the amplitude definitions into the unrestricted energy expression, it becomes:

8Kij
ab T

mn
cd T klcd Γklop T

op
ab Γijmn (2.126)

=8Kij
ab

(
Cmn,1
cd + Cmn,−1

cd

) (
Ckl,1
cd + Ckl,−1

cd

)
Γklop
(
Cop,1
ab + Cop,−1

ab

)
Γijmn (2.127)

=8Kij
ab

(
Cmn,1
cd Ckl,1

cd + Cmn,−1
cd Ckl,−1

cd

)
Γklop
(
Cop,1
ab + Cop,−1

ab

)
Γijmn (2.128)

Further manipulation must be carried out because the density matrices can be split up

into symmetric and antisymmetric parts also.

Γklop = 〈0|Êko,lp|0〉 (2.129)

=
1

2
〈0|Êko,lp + Êkp,lo|0〉 +

1

2
〈0|Êko,lp − Êkp,lo|0〉 (2.130)

Then using the definition of the overlap matrix (2nd order DM) used in the MRCI code

([58]), Skl,pop = 〈0|Êko,lp + pÊkp,lo|0〉, then

Γklop =
1

2
Skl,1op +

1

2
Skl,−1
op (2.131)

The final spin-free form of the part of the energy required can be written fully,

=4Kij
ab

(
Cmn,1
cd Ckl,1

cd + Cmn,−1
cd Ckl,−1

cd

) (
Skl,1op + Skl,−1

op

) (
Cop,1
ab + Cop,−1

ab

)
Γijmn

(2.132)

=4Kij
ab

(
Cmn,1
cd Ckl,1

cd Skl,1op Cop,1
ab + Cmn,−1

cd Ckl,−1
cd Skl,−1

op Cop,−1
ab

)
Γijmn (2.133)

=2Kij
abC

mn,1
cd Ckl,1

cd Skl,1op Cop,1
ab Sij,1mn + 2Kij

abC
mn,−1
cd Ckl,−1

cd Skl,−1
op Cop,−1

ab Sij,−1
mn (2.134)

=2Kij
abC

mn,P
cd Ckl,P

cd Skl,Pop Cop,P
ab Sij,Pmn (2.135)
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This is the part of the energy to capture via a transformation, and is now written using

the same operators as the MRCI code in MOLPRO. The transformation can be re-

defined in this form:

U
− q

2
p Cop,P

ab =
(
δmnop + Cmn,P

cd Ckl,P
cd Skl,Pop

)− q
2
Cop,P
ab = qC

mn,P
ab (2.136)

This definition of the energy and of the transformation cannot be correct for the general

case, as the spin free formalism is not correct.

2.3 Redundancies and Conclusions

In multireference methods, complications arise due to redundancies in the excitation

operator, due to the equivalence of pairs of electrons. The redundancies in the excita-

tion operator show themselves as singularities in the pair overlap matrix S(p)
ij,kl,

S
(p)
ij,kl = 〈0|Êik,jl + pÊil,jk|0〉 (2.137)

In the icMRCI code in MOLPRO, the pairs with small values in the overlap matrix

(below a cutoff) are deleted until the overlap matrix is no longer singular, termed here

“pair deletion”. However, recent research [53] shows that this pair deletion method

cannot be used for a multireference Coupled Cluster if orbital invariance is to be re-

tained, as all pair products are needed when considering powers of the amplitudes.

This is not a consideration in MRCI because it does not contain powers of the opera-

tors/amplitudes. Instead the cited work suggested to use a singular value decomposi-

tion to remove redundancies, while retaining orbital invariance. This also has the effect

of orthogonalising the excitation operators.

The theory described in this chapter uses explicit orbital labels not orthogonal pairs.

Like the theory presented here, the single-reference LPF theories use explicit orbital

labels. However, the single-reference situation is fundamentally different to the mul-

tireference case in that redundancies do not arise and the electron pairs are automati-

cally orthogonal as a result of the reference consisting of a single Slater determinant.

The orthogonality of the pairs can be shown simply in spin-orbital form,

〈ψcdkl |ψabij 〉 = δcaδ
d
b δ
k
i δ

l
j − δcaδ

d
b δ
k
j δ

l
i − δcbδ

d
aδ
k
i δ

l
j + δcbδ

d
aδ
k
j δ

l
i (2.138)
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The single-reference theory can be written using explicit electron/orbital labels due to

the orthogonality of the electron pairs. In the multireference case, electron pairs are

not automatically orthogonal, and as stated above, orthogonalisation and redundancy

removal must be carried out using a singular value decomposition. The result of the

singular value decomposition is a set of non-redundant orthogonal excitation opera-

tors, generating orthogonal configurations, meaning they cannot be labelled by explicit

electron/orbital labels. The use of orthogonal pairs cannot be integrated into the work

presented in this chapter, which has been built using explicit electron labels. Without

the use of a singular value decomposition (generating orthogonal pairs) and instead

using pair deletion, the method presented here loses its property of the invariance to

orbital rotations, which has been highlighted as a key property.

In addition to the lack of orbital invariance, it was noted earlier that the spin-free for-

malism does not correspond to the spin-orbital form, with its behaviour for more than

2 electrons unknown. With these errors in mind, better MRVCC approximations must

be sought in a spin-free form that are orbital invariant, which can be ensured by using

a singular value decomposition to eliminated redundancies rather than pair deletion,

resulting in a theory based on orthogonal electron pairs.





Chapter 3

A Multireference LPF+1 Theory

3.1 Preliminaries

As mentioned in the introductory chapter, MRCI is not size consistent or extensive and

there have been methods developed to try to correct this behaviour. The aim of this

present chapter is to define a transformation of the pair amplitudes within MRCI akin

to the LPF theories that introduces a linked denominator and via a binomial expansion

can be seen to capture 3rd order VCC energy terms, hence approximating VCC, within

a multireference framework.

Unlike the single reference theory where the orbital spaces are split into occupied and

virtual, the multireference case has the virtual and internal orbital spaces. The internal

orbital space consists of those orbitals occupied in any of the references. The internal

orbitals are further split into active and core, core being orbitals doubly occupied in

all configurations and active being the rest. Excitations of the kind in CI and Coupled

Cluster can occur between active and virtual or between active orbitals.

The icMRCI energy can be written as follows,

Ecorr =
〈0| (1 + ĉ)†

(
Ĥ − E0

)
(1 + ĉ) |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉

+
2〈0| (1 + ĉ)† (Ĥ − E0)T̂ |0〉 + 〈0|T̂ †(Ĥ − E0)T̂ |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉
(3.1)

where |Ψ〉 = |0〉 + ĉ|0〉 + T̂ |0〉
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|0〉 = ĉ0|Ψ0〉 =
1

nact!

∑
uv..z

âuv..z|Ψ0〉cuv..z

〈0|ĉ|0〉 = c0
†c′ = 0 (3.2)

The |0〉 wavefunction is the reference function, it is a CASSCF wavefunction gener-

ated from the single input configuration |Ψ0〉. ĉ, here represents excitations amongst

the internal configurations from the starting 0th order CASSCF wavefunction, i.e. it

carries out the pure active excitations, those between active orbitals. It produces the

orthogonal complement mentioned in the introductory chapter, whose coefficients of

the internal configurations are written c′. This operator ensures the result of its action

is orthogonal to the reference state.

Initially development of an MRLPF method should focus on the double excitations to

the virtual orbitals (external space), excitations that are often termed doubly-external

or pair-external.

Therefore the energy of the MRLPF+1 would be of the form:

Ecorr
MRLPF

=
〈0| (1 + ĉ)†

(
Ĥ − E0

)
(1 + ĉ) |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉

+ 2〈0|(1 + ĉ†) (Ĥ − E0) 2T̂ |0〉 + 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉 (3.3)

where the terms involving double-external excitations have been separated from those

without. The development of an MRLPF+1 method must introduce the linked denom-

inator, and simultaneously capture terms from 3rd order VCC. This method must also

be correct for 2 electrons, must be invariant to the choice of orbitals, reduce to the

single reference LPF+1 theory and be size extensive. Initial development focuses on

the transformation of the pair amplitudes, removing the extensivity error introduced by

unlinked pair terms. This neglects the extensivity error of the first term in the energy

above, where the complete pair norm, including unlinked terms is used.

As with the LPF theories the transformation of the amplitudes takes the form,

qT = U−
q
2 T (3.4)

Where the transformation matrix will be of the form,

U = 1 + η (3.5)
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Therefore the development of a multireference LPF theory must focus on the develop-

ment of an appropriate η matrix that satisfies the requirements stated above.

3.1.1 Extending LPF

The LPF+1 η matrix in spin orbital form can be written,

ηijkl = 〈Ψ0|T̂ † k l j† i† T̂ |Ψ0〉 (3.6)

A basic multireference formalism would simply use the same η matrix but have multi-

ple configurations in the 0th order wavefunction.

This formalism is fundamentally different to the single reference LPF theory. In LPF,

the ji creation operators must match the occupied orbitals destroyed in T̂ , otherwise,

ji are already occupied and the wavefunction is annihilated. In the multireference

case, ji does not need to match T̂ in order for the contribution to be non-zero. ij may

create in any orbitals that are not occupied in a specific reference, so this includes the

orbitals/electrons annihilated in T̂ and any other reference determinant where ij are

empty. This formalism would lead to amplitudes being included in the ∆ matrix that

are nothing to do with ij and kl, and they would therefore not be linked to the amplitude

being transformed.

An illustrative example can show how the amplitudes from η are not necessarily linked

to the amplitude which is being transformed.

(δijkl + ηijkl)
−1 T klab = (δijkl + 〈T̂ †k l j† i†T̂ 〉)−1 T klab

=
(
δijkl + T ijcdT

cd
kl + T uvcd T

cd
wx + T yzαβT

αβ
st + . . .

)−1

T klab (3.7)

where uvwxyz are internal indices and α and β indicate virtual orbitals. Expanding this

using the binomial expansion gives terms such as:

T ijab − T
ij
cdT

cd
kl T

kl
ab − T uvcd T cdwxT klab − T

yz
αβT

αβ
st T

kl
ab (3.8)

The 3rd and 4th terms in 3.8 can give unlinked contributions. This inclusion of un-

linked diagrams is directly against the principle of LPF and violates the linked-diagram

rules required for size-extensivity. For this reason, this direct generalisation of the

LPF+1 theory to the case of multiple reference determinants cannot be used.
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Applying this to the model case gives the correct denominator, however, it is concep-

tually different to the single reference LPF theory. In SR-LPF the hole density matrix

creation indices must match the indices that are excited in the T̂ operator. If the in-

dices do not match, then electrons are trying to be created in orbitals that are already

occupied, therefore annihilating the wavefunction. This ensures that only linked dia-

grams are included because if the contribution to η does not link to the amplitude to

be transformed, then it is annihilated. In the multi reference case the application of a

creation operator indexed as internal does not necessarily need to match the indices of

the T̂ operator, because the i†j† orbitals may not be occupied and therefore creating

there does not annihilate the wavefunction. In summary, in SR-LPF the η creation

operators, i†j†, must match the T̂ operator indices because those indices are the only

space in which you can create that does not result in annihilation, this is not true in the

multireference case where there are multiple references you could additionally create

in.

Single Reference

o p j† i† T̂ abkl |0〉 = 0 (ij 6= kl) (3.9)

o p j† i† T̂ abij |0〉 6= 0 (3.10)

Multi Reference

o p j† i† T̂ abkl |0〉 6= 0 (ij 6= kl) (3.11)

Second Possibility

The aforementioned difference in the multi-reference LPF method compared to the

single reference theory must lead to a different formalism. The deficiency with the

previous method above, i.e. the single reference LPF+1 transformation applied to the

multi-reference case, was that the indices of the creation operators did not necessarily

have to match the T̂ operator, as mentioned above. A simple modification to suit

the multireference case is to change the definition of η so that the creation operators

always match those annihilated by the T̂ operator, giving an effect analogous to the

single reference theory. This can be accomplished via the use of a commutator, as

shown below for the η matrix that generates term 3B (analogous to single reference
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LPF0).

ηio = 〈T̂ † [oi†, T̂ ]〉 (3.12)

(3.13)

The commutator is only non-zero when the creation operators i and j match the indices

in the T̂ operator. In SR LPF ijj†i†T̂ |0〉 = T̂ |0〉, this commutator approach can be

proved to have the same property.

[ii†, T̂ ]|0〉

= ii†T̂ |0〉 − T̂ ii†|0〉 (3.14)

= ii†|Φab
mn〉 − T̂ ii†|0〉 (3.15)

If i 6= m

j occupied : 0 − 0 (3.16)

j unoccupied : |Φab
mn〉 − |Φab

mn〉 (3.17)

therefore [ii†, T̂ ]|0〉 = 0 (3.18)

If i = m

|Φab
mn〉 − 0 (3.19)

therefore [ii†, T̂ ]|0〉 6= 0 (3.20)

This therefore may appear to be a satisfactory generalisation of LPF to the case of mul-

tiple reference functions, however, when applied to the model 2-electron 2-reference

example, the method does not generate the CI denominator that we require for 2 elec-

trons. Looking at the 1,1 element of η,

〈T̂ † [11†, T̂ ]〉 (3.21)

T̂ †[
(

11†T̂ |0〉
)
−
(
T̂11†

)
] (3.22)

= T̂ †[
(

11†(cosθT 11
33 |32〉+ sinθT 22

33 |32〉)
)
−
(
T̂ sinθ|22〉

)
] (3.23)

= T̂ †[
(
cosθT 11

33 |32〉+ sinθT 11
33 |32〉

)
−
(
sinθT 22

33 |32〉
)

] (3.24)

= T̂ †[cosθT 11
33 |32〉] (3.25)

= cosθcosθT 11
33 〈32|32〉 + cosθsinθT 11

33 T
22
33 〈32|32〉 (3.26)
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= cos2θT 11
33 T

11
33 + cosθsinθT 11

33 T
22
33 (3.27)

This is only part of the required denominator, (cosθT 11
33 + sinθT 22

33 )2. The 2,2 element

contains the other half of the required denominator sin2θT 22
33 + cosθsinθT 11

33 T
22
33 . The

operators in the commutator can be normal ordered, but this does not give the required

denominator.

ηij = 〈[T̂ †, [ij†, T̂ ]]〉 (3.28)

ij† = δij − j†i (3.29)

= [δij − j†i, T̂ ] (3.30)

= (δij − j†i)T̂ − T̂ (δij − j†i) (3.31)

= −j†i T̂ + T̂ j†i (3.32)

= −〈[T̂ †, [j†i, T̂ ]]〉 (3.33)

This method of building a direct analogue of LPF in a MR framework is not exact for

2 electrons.

The transformation must be linked to the amplitude it is transforming, giving only

linked diagrams. However, in order to be exact for 2 electrons, terms that are not

linked in the internal indices must be included. This is not a problem in single reference

LPF because there are only 2 electrons, hence only 2 occupied indices, therefore all

amplitudes in the transformation matrix are linked to the amplitude to be transformed,

generating only linked diagrams.

In the MR case, there are more than 2 internal orbitals for the 2 electrons. This is

because each reference has 2 internal orbitals, hence in total there are more than 2

internal orbitals. Therefore there is the opportunity for amplitudes to share or not

share their internal indices, this does not happen in the SR-LPF for 2 electrons, it

only happens with more electrons which defines the method by only including linked

diagrams. So, not all internal indices match those of the untransformed amplitude(as

they do in SR-LPF) and are therefore not included in the transformation because they

would not produce linked diagrams. Hence these methods do not produce the full

denominator for the 2 electron case because it would require unlinked contributions.

It is therefore difficult to produce a theory that only contains linked diagrams and

simultaneously is exact for 2 electrons, it can only be achieved in SR-LPF because
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there are only 2 occupied orbitals, which is a special case.

A way to progress....

A key reason why the previous attempts at a multireference LPF+1 theory do not give

the desired results (exact for 2 electrons and reduce to single-reference theory), is

the non-vanishing case of the T̂ excitation operator not matching indices on the η

matrix. This leads to the presence of a density matrix evaluated across the reference.

However, this difficulty can be overcome by realising that for a single reference theory

with a Hartree-Fock determinant, 〈Φij
ab|Φab

kl 〉 is non-zero only if the internal orbital

indices match, meaning that the electron pairs are orthogonal. In the multireference

case, electron pairs can be made to be orthogonal via an orthogonalisation procedure,

meaning that the indices on the η matrix must match the T̂ excitation operator. (This

was the aim of the section above but yielded no good result). The multireference

LPF+1 theory can then be formulated in terms of orthogonal pairs. A theory based

on orthogonal pairs may also use the redundancy removal procedure of Evangelista &

Gauss [53] (unlike the work in the previous chapter), which also orthogonalises the

operators, which will preserve orbital invariance.

3.1.2 Operator Considerations

The work in chapter 2 attempted to approximate 3rd order variational coupled cluster

theory. It started form a spin-orbital formulation and was later translated to a spin free

formulation. This led to difficulties, so attempts here to form a multireference analogue

of LPF+1 use the spin free operators from the outset, as these are the operators used in

the MRCI program in MOLPRO.

A comparison of the operators used in different methods must be made. Below are 3

parameterisations of the excitation operator T̂ . Type 1 is in spin orbital notation, Type

2 is a spatial operator used in closed shell coupled cluster theory in MOLPRO and

Type 3 is a spin summed operator used for open shell icMRCI code in MOLPRO (as

used in the definition of the icMRCI wavefunction in 1.125).

Spin Orbitals: T̂ =
1

2

∑
ij

∑
ab

T ijab a
† b† j i (3.34)
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Spatial Orbitals T̂ =
∑
ij

∑
ab

T ijab Êai,bj (3.35)

Spatial with parity Ĉ =
1

2

∑
i≥j

∑
ab

∑
p

Cij,p
ab

(
Êai,bj + pÊaj,bi

)
(3.36)

Compare

T̂ =
∑
ij

∑
ab

T ijab Êai,bj (3.37)

=
∑
i

T iiab Êai,bi +
∑
i>j

T ijab Êai,bj +
∑
i<j

T ijabÊai,bj (3.38)

=
1

4

(
T ijab + T ijba

) (
Êai,bj + Êaj,bi

)
+

1

4

(
T ijab − T

ij
ba

) (
Êai,bj + Êaj,bi

)
(3.39)

To allow re-expression of the T amplitudes in terms of a symmetric part and antisym-

metric part, a comparison between the definition of Ĉ and T̂ must be made.

For the i=j case:

Ĉ =
∑
ab

Cii,1
ab Eai,bi (3.40)

T̂ =
∑
ab

T iiabEai,bi (3.41)

Hence, Cii,1
ab = T iiab (3.42)

For the case i 6= j:

Ĉ =
1

2
Cij,1
ab

(
Êai,bj + Êaj,bi

)
+

1

2
Cij,−1
ab

(
Êai,bj − Êaj,bi

)
(3.43)

T̂ =
1

4

(
T ijab + T ijba

) (
Êai,bj + Êaj,bi

)
+

1

4

(
T ijab − T

ij
ba

) (
Êai,bj + Êaj,bi

)
(3.44)

Cij,1
ab =

1

2

(
T ijab + T ijba

)
(3.45)

Cij,−1
ab =

1

2

(
T ijab − T

ij
ba

)
(3.46)

Hence T ijab = Cij,1
ab + Cij,−1

ab (3.47)

This also holds up for the case when i=j, because the antisymmetric amplitude will be

zero by design.
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The LPF+1D theory constructed from the T̂ using spatial orbitals only will not be the

same as the theory constructed that includes the parity sum. In LPF+1D the amplitude

transformation introduces the linked denominator

U ij
kl = δijkl + 1

2
T ijcdT

cd
kl (3.48)

qT
ij
ab = 1

2

(
U−

q
2

)ij
kl
T klab (3.49)

However, using the parity summed operators, the transformation can only be con-

structed to involve amplitudes of the same parity, to transform amplitudes of the same

parity

U ijp
klp = δijpklq + Cijp

cd C
cd
klp (3.50)

qC
ijp
ab =

(
U−

q
2

)ij
kl
Cklp
ab (3.51)

Hence, the result is just different because using the parity sum operator does not intro-

duce the full denominator required. The different partitioning causes a difference in

the transformation, and hence the energy.

Despite the difference in the theories, they are equivalent in the limiting case of 2

electrons.

The Singlet Operator:

1
2

(
Êai,bj + Êaj,bi

)
(3.52)

= 1
2

(
a†i+ ā†ī

) (
b†j + b̄†j̄

)
+ 1

2

(
a†j + ā†j̄

) (
b†i+ b̄†ī

)
(3.53)

= 1
2

(
a†b†ij + ā†b̄†īj̄ + ā†b†īj + a†b̄†ij̄ + a†b†ji + ā†b̄†j̄ ī + ā†b†j̄i + a†b̄†jī

)
(3.54)

= 1
2

(
a†b†ij + ā†b̄†īj̄ + ā†b†īj + a†b̄†ij̄ − a†b†ij − ā†b̄†īj̄ − ā†b†ij̄ − a†b̄†īj

)
(3.55)

= 1
2

(
ā†b†īj − ā†b†ij̄ + a†b̄†ij̄ − a†b̄†īj

)
(3.56)

= 1
2

(
ā†b† (̄ij − ij̄) + a†b̄† (̄ij − ij̄)

)
(3.57)

The Triplet Operator:

1
2

(
Êai,bj − Êaj,bi

)
(3.58)

= 1
2

(
a†i+ ā†ī

) (
b†j + b̄†j̄

)
− 1

2

(
a†j + ā†j̄

) (
b†i+ b̄†ī

)
(3.59)
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= 1
2

(
a†b†ij + ā†b̄†īj̄ + ā†b†īj + a†b̄†ij̄ − a†b†ji − ā†b̄†j̄ ī − ā†b†j̄i − a†b̄†jī

)
(3.60)

= 1
2

(
a†b†ij + ā†b̄†īj̄ + ā†b†īj + a†b̄†ij̄ + a†b†ij + ā†b̄†īj̄ + ā†b†ij̄ + a†b̄†īj

)
(3.61)

= a†b†ij + 1
2

(
ā†b† + a†b̄†

)
(̄ij + ij̄) + ā†b̄†ī†j̄† (3.62)

In the 2 electron singlet case, i=j, therefore the only excitation operator to survive in

both representations is Ea1,b1, and the antisymmetric part of the parity sum is 0.

Spatial Orbitals: T̂ =
∑
ab

T 11
ab Êa1,b1

=
∑
ab

T 11
ab

(
a†b†ij + ā†b̄†īj̄ + ā†b†īj + a†b̄†ij̄

)
(3.63)

=
∑
ab

T 11
ab

(
ā†b†īj + a†b̄†ij̄

)
(3.64)

Spatial with parity: Ĉ =
1

2

∑
ab

Cij,+1
ab

(
Êa1,b1 + Êa1,b1

)
(3.65)

=
1

2

∑
ab

Cij,+1
ab

(
ā†b†īj + a†b̄†ij̄

)
(3.66)

T̂ = Ĉ (3.67)

In the 2 electron triplet case, i 6= j and the spin of the electrons are the same,

Spatial Orbitals: T̂ =
∑
ab

T 12
ab Êa1,b2 + T 21

ab Êa2,b1 (3.68)

=
∑
ab

T 12
ab

(
a†b†ij + ā†b̄†īj̄ + ā†b†īj + a†b̄†ij̄

)
=
∑
ab

(
a†b†ij

)
T 12
ab (3.69)

Spatial with parity: Ĉ =
1

2

∑
ab

C21,1
ab

(
Êa2,b1 + Êa1,b2

)
+ C21,−1

ab

(
Êa2,b1 − Êa1,b2

)
(3.70)

=
1

2

∑
ab

C21,1
ab (0) + C21,−1

ab

(
a†b†ij

)
(3.71)

Therefore:Ĉ = T̂ (3.72)
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Therefore a theory constructed using the operators in the icMRCI code (Ê operators

and a parity sum) is not the same as the single reference LPF+1 theory (as published)

in general, but is the same for both 2-electron cases, the singlet and triplet.

This can be seen in the simple examples in the table below showing the LPF+1 the-

ory implemented with the parity summed operators is equivalent to the published full

LPF+1D method for 2 electrons (helium), and a system of 2 separated 2 electron sub-

systems (He-He), but different otherwise (Be example).

CID LPF+1D (parity operators) LPF+1D

He -2.88759250 -2.88759250 -2.88759250

He2(r=5.915 Bohr) -5.77472763 -5.77519127 -5.77519127

Be2(r=3.444) -29.18316881 -29.19755451 -29.19764021

Table 3.1: Comparison of LPF+1 implementations using different operators. Basis=cc-

pVDZ. Energy in Hartree

A theory constructed using the spin free operators with the parity sum is theoretically

different to the LPF+1D method because it doesn’t introduce the full linked denom-

inator, but still may be useful. Since the MRLPF+1D method is designed to be a

correction to MRCI, it must necessarily be constructed using the same operators as

the MRCI code in order to be implemented in MOLPRO. The theory presented here

will continue to use the spin-free operators with a parity sum, but will change nota-

tion slightly from amplitudes denoted Cijp
ab resembling the icMRCI paper of Werner

and Knowles [58], to denoting the same amplitude as T ijpab . This change is necessary to

switch focus from the differing T̂ operators to highlighting that the amplitude is related

to the pair-externals and should not be confused with the internal coefficients that are

denoted cI .
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3.1.3 Redundancy Removal

The internally contracted nature of the reference function causes singularities to appear

in the metric. For the two-determinant-reference example,

|Ψ0〉 = âuv|0〉cuv + âwx|0〉cwx (3.73)

Excitations of electrons from these active orbitals into the virtual orbitals generate

a linearly dependent set. The linearly dependent excitations can be removed without

affecting the convergence of the theory to FCI. As this problem is due to the contracted

nature of the reference function, internally contracted MRCI also encounters the same

problem.

In the icMRCI formulation of Werner and Knowles[58], the matrix T(p), is a square

matrix that rotates a non-redundant subset of the individual excitation operators; there

are multiple possibilities for the elimination of excitations to achieve this, and for CI,

the choice does not matter. The icMRCI implementation simply removes redundant

pairs based on their near zero values in the metric. Evangelista & Gauss[53] and Köhn

& Hanauer[55], have recently shown that unlike icMRCI, the icMRCC solution de-

pends on the method of removal of these redundancies to make the excitation basis,

and invariance of the energy with respect to active-active rotations is also dependent

on the method of redundancy removal. They provide a proof that orbital invariance

can be maintained if the non-redundant excitation operators are formed by a transfor-

mation, of the redundant operator set, of the form,

T̂in = T̂ Z (3.74)

In their work they use a singular value decomposition (SVD), which will also be used

in the present work, as the procedure serves to create a linearly independent excitation

basis and canonically orthogonalises it; a requisite of the MRLPF+1D theory.

The procedure for removal of redundancies is now described,

S
(p)
ij,kl = 〈0|Êik,jl + pÊil,jk|0〉 (3.75)

s(p) = V† S(p) V (3.76)

where V is a matrix that has M rows, M ′ ≤ M columns, that is the left slice of an

M × M orthogonal matrix that brings S to diagonal form including its null space.
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s is thus an M ′ × M ′ diagonal matrix. All singular values S below a cutoff ε, are

neglected, leaving a set of linearly independent columns in the rectangular matrix s−
1
2 ε,

of dimension M ×Min, whose elements are defined below,

(
s
−1
2

ε

)
pq

=


(

s−
1
2

)
pp

if p = q and spp ≥ ε

0 if p 6= or spp〈ε

The transformation matrix Z(p) to transform between orthogonal and elementary gen-

erators is defined through

Z(p) = Vs
−1
2

ε (3.77)

The transformation of the individual excitation operators and amplitudes in the cluster

operator T̂ is defined previously (above), but is restated here.

T̂in = Z(p) T̂ (3.78)

Êab
Dp =

∑
i≥j

Êab
ijpT

(p)
D,ij (3.79)

Cijp
ab =

∑
D

T
(p)
ij,DT

Dp
ab (3.80)

The cutoff value for the singular values/eigenvalues of S used by Evangelista & Gauss[53]

and Hanauer & Köhn [55] varies, typically being between 10−4 or 10−6[59].
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3.2 Construction of the Transformation

3.2.1 Form of η using Orthogonal Pairs

As stated above, a transformation of the amplitudes is required of the form,

qT
ij
kl =

(
U−

q
2

)
T klab (3.81)

Where the transformation matrix can be written as,

U ij
kl = δijkl + ηijkl (3.82)

The addition of the identity matrix gives the correct behaviour when considering the

binomial expansion of the powered matrix, leaving the η matrix which is designed to

contract with the amplitude to be transformed to generate terms present in 3rd order

VCC. For limiting chosen cases, the matrix transformation must introduce the correct

denominator for the amplitudes.

The challenge is to design an appropriate η matrix.

Like the LPF+1 η matrix, an analogous matrix can be written in purely spatial operator

form. Unlike the single reference case, the multireference η matrix does not simplify

easily.

ηklγijp = 〈0|T̂ † Êcd
klγ Ê

ijp
ab T̂ |0〉 (3.83)

= 〈0|Êmnε
ef Êcd

klγ Ê
ijp
ab Ê

gh
rsq|0〉 T ghrsqTmnεef (3.84)

Using the definition and commutation relations

ΨCI = (1 + T̂ ) Ψ0 (3.85)

T̂ =
∑
i≥j

∑
p

∑
ab

T ijpab Ê
ab
ijp Êab

ijp = 1
2
(Êai,bj + pÊbi,aj) (3.86)

=
∑
D

∑
p

∑
ab

TDpab Ê
ab
Dp (3.87)

Êpq,kl = ÊpqÊrs − δqrÊps (3.88)

[Êpq, Êrs] = δqrÊps − δpsÊrq (3.89)



Construction of the Transformation 103

Gives,

ηklγijp = 〈0|1
2
(Êmk,nl + εÊml,nk)

1
2
(Êir,js + pÊis,jr)|0〉(

T ghrsqT
mnε
ef (δagδbh + δahδbg) (δceδdf + δcfδde)

)
(3.90)

ηklγijp = 〈0|Êmn
klε Ê

ij
rsp|0〉 T ghrsqTmnεef (δagδbh + δahδbg) (δceδdf + δcfδde) (3.91)

= 〈0|Êmn
klε Ê

ij
rsq|0〉T abrsqTmnεab (3.92)

= 〈0|Êmn
klq Ê

ij
rsp|0〉T abrsqT

mnq
ab (3.93)

ηklpij = 〈0|Êmn
klp Ê

ij
rsp|0〉T abrspT

mnp
ab (3.94)

This is a higher order density matrix that is costly to compute. To compute the density

matrix efficiently we can insert a resolution of the identity as a sum over the complete

space of orbital products (Something better), that is equivalent to the factorisation of

the 4th order reduced density matrix into a product of two 2nd order transition density

matrices.

ηklpij = 〈0|Êmn
klp |I〉 〈I|Êij

rsp|0〉12T
ab
rspT

mnp
ab (3.95)

(3.96)

This can be re-expressed using orthogonal pairs, where the transformation between

orthogonal and elementary generators is defined through

S
(p)
ij,kl = 〈0|Êik,jl + pÊil,jk|0〉 (3.97)

〈0|Êijp
ab Ê

cd
klq|0〉 = 1

2
δpq(δacδbd + pδadδbc)S

(p)
ij,kl (3.98)

Êab
Dp =

∑
i≥j

Êab
ijpZ

(p)
D,ij (3.99)

T ijpab =
∑
D

Z
(p)
ij,D T

Dp
ab (3.100)

The form of the matrix Z(p) used to transform between orthogonal and elementary

generators is that given in (3.1.3)

The η matrix can thus be re-expressed using the canonical excitation operators.

ηDpE = 〈0|ÊF
Ep|I〉〈I|ÊD

Gp|0〉 1
2
T abGpT

Fp
ab (3.101)

This defines the η matrix used in the MRLPF+1 theory (efficient construction of the

matrix is discussed later).
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3.2.2 η in the Limiting Cases

Single Reference case For the single reference case there will only be one internal

reference configuration, hence the sum over I is limited to one configuration.

ηDpE = 1
2
〈0|ÊF

Ep|0〉〈0|ÊD
Gp|0〉 1

2
T abGpT

Fp
ab (3.102)

The transition density matrices can be shown to reduce to the identity matrix

〈0|ÊGp
D |0〉 = Z

(p)
G,klZ

(p)
D,ij 〈0|Êik,jl|0〉 (3.103)

= δDG (3.104)

ηDpE = δDG δEF
1
2
T abGpT

Fp
ab (3.105)

= 1
2
T abFpT

Ep
ab (3.106)

This is the required norm for the single reference theory and is the same as the η matrix

used in the single reference LPF+1 theory.

In the special case when there are only 2 electrons there will only be 1 non-redundant

pair, hence η is a 1-by-1 matrix.

ηDpD = 1
2
T abDpT

Dp
ab (3.107)

Also the correct norm of the special case.

The multireference case 2 electrons (only 1 non-redundant pair)

As noted, for 2 electrons case there will only ever be 1 non-redundant excitation oper-

ator, therefore the U matrix will be only 1 element in size.

ηDpE = 〈0|ÊF
Ep|I〉〈I|ÊD

Gp|0〉 1
2
T abGpT

Fp
ab (3.108)

ηDpD = 〈0|I〉〈I|0〉 1
2
T abDpT

Dp
ab (3.109)

= c0Ic0I
1
2
T abDpT

Dp
ab (3.110)

This gives the norm required if the square of the reference coefficients sums to 1, i.e.∑
I c

2
0I = 1, (as it does in the single reference case or with any reference normalised

to 1). If this condition is satisfied then the η matrix introduces the pair norm.

η = (T Ppab )2 (3.111)
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which is the norm. This is also shown to give the norm for the 2-reference, 2-electron

model system below (in the next subsection).

The general multireference case of more than 2 electrons

ηDpE = 〈0|ÊF
Ep|I〉〈I|ÊD

Gp|0〉 1
2
T abGpT

Fp
ab (3.112)

ηDpE = 〈0|IFE 〉〈I|0DG〉 1
2
T abGpT

Fp
ab (3.113)

Or expressed slightly differently,

ηDpE = 〈0|IFE 〉〈IGD |0〉 1
2
T abGpT

Fp
ab (3.114)

In this form it is easy to see that when only 1 reference function is used, or in the mul-

tireference case of 2 electrons, then the trace of the η matrix gives the norm. However

it is also clear to see that for a general multireference case of more than 2 electrons

then the matrix products scale the norm by some factor.

3.2.3 The Transformation Matrix

Like the single reference LPF theories, the transformation matrix is defined as the

identity matrix plus the η matrix found above. The addition of the identity matrix

ensures the correct behaviour when considering the binomial expansion of the powered

U matrix that is used to transform the amplitudes.

U = 1 + η

U
D(p)
E = δDE + η

D(p)
E (3.115)

qT
Dp
ab =

(
U−

q
2

)D
E
TEpab (3.116)

This matrix is required to give the norm of the wavefunction, local to a particular

electron pair.

A look at the limiting cases can show the behaviour of the η matrix, is that which is

required.

〈ψabijp|ψcdklq〉 = 1
2
δpq (δacδbd + δadδbc) 〈Êik,jl + pÊil,jk〉

= 1
2
δpq (δacδbd + δadδbc) S

(p)
ij,kl (3.117)
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3.2.4 Diagonals of U

The transformation of the amplitudes does not give the correct normalisation for 2-

electrons, it should include 〈0|ĉ†ĉ|0〉 in the normalisation, as this is contained in the

MRCI denominator,

〈0|Ĉ†Ĉ|0〉 + 〈0|T̂ †T̂ |0〉 (3.118)

Therefore 〈0|Ĉ†Ĉ|0〉 must be introduced via the transformation. The diagonal ele-

ments of the U matrix must therefore contain c†c, the dot product of the internals

coefficient vectors.

qT
Dp
ab =

(
U−

q
2

)D(p)

E
TEpab (3.119)

U
D(p)
E = δDE + η

D(p)
E (3.120)

η
D(p)
E = 1

2
〈0|ÊF

Ep|I〉〈I|ÊD
Gp|0〉12T

D(p)
cd T cdE(p) (3.121)

This gives the same normalisation as MRCI in the limiting 2-electron case. The

terms involving the transformed amplitudes are now correct for the 2-electron MR

case.

3.2.5 Positivity of the Transformation Matrix

The MRLPF+1D method involves introducing a local linked denominator for each am-

plitude via a matrix transformation of that amplitude, where the transformation matrix

is the U matrix defined above, powered to a either -1 or −1
2
. In order for the inverse

of a matrix to be guaranteed to exist, its determinant must not be 0 and its eigenvalues

must all be positive. If the matrix is positive-definite then the matrix inverse exists, it

is therefore very important that the U matrix is positive-definite.

In order to look at the positive definite-ness of U, the component matrices must be

analysed.

U = c†c δ + η (3.122)

U
(p)
DE =

(
c†c δDE

)
+ 〈0|ÊF

Ep|I〉 〈I|ÊD
Gp|0〉 1

2
T abGpT

Fp
ab (3.123)
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U
(p)
DE =

(
c†c δDE

)
+ 〈0|IFE 〉〈I|0DG〉 1

2
T abGpT

Fp
ab (3.124)

This shows that all elements of the matrices 〈0|ÊF
Ep|I〉 and 〈I|ÊD

Gp|0〉 are defined as

inner products of a set of vectors. It follows that the η matrix is a Grammian matrix and

is therefore positive-semi-definite, meaning the lowest possible eigenvalue is 0 [108].

The addition of the unit matrix will shift the eigenvalues U when compared to η.

The dot product c†c is necessarily positive as it is the inner product of the two vectors.

Addition of this to the diagonals of ∆ shifts the eigenvalues of ∆ by the scalar value

of the dot product. In this work, intermediate normalisation is used, meaning the dot

product of the internal coefficient vectors is greater than 1, therefore shifting the eigen-

values to be positive. This results in the lowest possible eigenvalue now being positive

and hence U is positive definite, meaning it is non-singular and negative matrix powers

can be found.

The removal of linear dependencies either via a singular value decomposition (as de-

scribed above), or by simply deleting electron pairs until there is no redundancy, is

vital in ensuring that the η matrix is positive-definite, and that the matrix inverse ex-

ists. Without this property the determinant of the matrix is 0 and the method collapses

because there is no denominator introduced and no binomial series approximation to

the 3rd order VCC infinite series. In fact, the η matrix itself, which is the Gram matrix

of a set of vectors is positive definite if the set of vectors are linearly independent.

Hence, η and U are positive-definite.

3.2.6 Complexity of Making U

The difficulty in making U lies in the difficulty of making η.

U =
(
c†c δ

)
+ η (3.125)

U
(p)
DE =

(
c†c δDE

)
+ 〈0|ÊF

Ep|I〉 〈I|ÊD
Gp|0〉 1

2
T abGpT

Fp
ab (3.126)

η
D(p)
E = Z

(p)
F,mnZ

(p)
E,kl

(
〈0|Êmn

klp |I〉
)

Z
(p)
D,ijZ

(p)
G,rs

(
〈I|Êij

rsp|0〉
)

1
2
T abG T

F
ab (3.127)

η
D(p)
E = 〈0|ÊF

Ep|I〉 〈I|ÊD
Gp|0〉∆

G(p)
F (3.128)

η
D(p)
E = 〈0|ÊF

Ep|I〉Y
(I)(p)
DF (3.129)

η
D(p)
E = N

(I)(p)
FE Y

(I)(p)
DF (3.130)
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η
D(p)
E = M

(I)(p)
EF Y

(I)(p)
DF (3.131)

Where the intermediates and their computational scaling are given,

M
(I)(p)
DG = 〈I|ÊD

Gp|0〉 (3.132)

N
(I)(p)
FE = 〈0|ÊF

Ep|I〉 (3.133)

∆
(p)
GF =

1

2

∑
ab

T abGpT
Fp
ab . . .O(n2

P .v
2) (3.134)

Y
(I)(p)
DF = M

(I)(p)
DG ∆

(p)
GF . . .O(n3

P .nI) (3.135)

η
D(p)
E = N

(I)(p)
FE Y

(I)(p)
DF . . .O(n3

P .nI) (3.136)

Where np is the number of orthogonal pairs, nI the number of internal configurations

and v, the number of virtual orbitals. The intermediate M (I)(p) (and by extensions

its Hermitian conjugate N (I)(p)) are evaluated efficiently via the method of Knowles

and Werner[58, 109]. The most demanding step in the construction of U is no more

demanding than steps involved in the construction of MRCI objects. Evaluating the

4th-order density matrix as a product of two 2nd-order transition density matrices is

done efficiently using the method of Knowles and Werner in the existing icMRCI im-

plementation in MOLPRO. This method is efficient as the formulism allows relatively

small objects to be stored in high-speed memory, with the computational bottleneck

being matrix multiplication, which on modern machines is done very efficiently. This

method is considered quick enough to be used to recalculate objects each time they are

needed instead of writing the large amount of data to a filesystem which furthers slows

the process. The evaluation of the transition density matrices is an efficient process

already carried out in the icMRCI theory, and their recalculation for inclusion in the η

matrix causes no steep increase in computational cost.

Matrix Inversion

The simplest matrix inversion routines which use Gauss-Jordan elimination scale as

the cube of the side length, with more optimised routines reducing the scaling. The

inversion of the U matrix therefore has a maximum cost of the cube of the number of

non-redundant pairs, O
(
n3
p

)
. However, the U is blocked according to the irreducible

representations of the symmetry point group, which significantly reduces the cost of

inversion.
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3.2.7 Transformation Model

The η matrix is evaluated here for a general 2-electron, 2-reference model, in order to

show dependence on reference coefficients and pair amplitudes. The η matrix is then

evaluated for the specific model case, using the reference coefficients and amplitudes

previously defined.

General Model System

Elements of S(p)

S
(p)
ij,kl = 〈0|Êik,jl + pÊil,jk|0〉 (3.137)

S
(1)
11,11 = 〈0|Ê11Ê11|0〉 − δ11〈0|Ê11|0〉 + p〈0|Ê11Ê11|0〉 − δ11p〈0|Ê11|0〉

= 〈0|Ê11Ê11|12〉c01 − δ11〈0|Ê11|12〉c01 + 〈0|Ê11Ê11|22〉c02

− δ11〈0|Ê11|22〉c02 + p〈0|Ê11Ê11|12〉c01 − δ11〈0|Ê11|12〉c01

+ p〈0|Ê11Ê11|22〉c02 − δ11p〈0|Ê11|22〉c02

= 4c2
01 − 2c2

01 + 4pc2
01 − 2pc2

01 = 4c2
01 (3.138)

S
(1)
22,22 = 〈0|Ê22Ê22|0〉 − δ22〈0|Ê22|0〉 + p〈0|Ê22Ê22|0〉 − δ22p〈0|Ê22|0〉

= 4c2
02 − 2c2

02 + 4pc2
02 − 2pc2

02 = 4c2
02 (3.139)

S
(1)
11,22 = 〈0|Ê12Ê12|0〉 + p〈0|Ê12Ê12|0〉

= 〈0|12〉c02 + p〈0|12〉c02

= 2 c01 c02 + 2p c01 c02 = 4 c01 c02 (3.140)

S
(1)
22,11 = 4 c01 c02 (3.141)

Giving the matrix:

S =

 4c2
01 4c01c02

4c01c02 4c02
02


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The S matrix has eigenpairs,

(
0
)− c02

c01

1

 and
(

4 (c2
01 + c2

02)
) c01

c02

1

 (3.142)

This highlights the redundancies because one eigenvalue is 0.

Following the method to remove redundancies defined in a previous section, the trans-

formation matrix to transform between orthogonal and non-orthogonal representa-

tions

Z(p) = Vs−
1
2 =

(
c01

4(c201+c202)
c02

4(c201+c202)

)

TDpab =
(

2
√
c2

01 + c2
02 (c01T

11
ab + c02T

22
ab )

)
The η matrix can be formed using the previously defined intermediates (see 3.2.6).

∆ =
(

4 (c2
01 + c2

02)
∑

ab (c01T
11
ab + c02T

22
ab )

2
)

Transition density matrix elements

〈0|Êik,jl + pÊil,jk|I〉 (3.143)

〈0|Êik,jl + pÊil,jk|12〉 =

 4c01 0

4c02 0


〈0|Êik,jl + pÊil,jk|22〉 =

 0 4c01

0 4c02


Orthogonalisation of transition density matrices

M I
DE = Z(p)

E,klZ
(p)

D,ij〈0|Êik,jl + pÊil,jk|I〉 (3.144)

M1 =
(
c01

)
M2 =

(
c02

)
Product of orthogonal transition density matrix and ∆

Y I
DF = M I

DG∆GF (3.145)
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Y 1 =
(
c01∆1

)
Y 2 =

(
c02∆1

)
Multiplication of orthogonal transition density matrix and Y

ηIDE = M I
EFY

I
DF (3.146)

η1 =
(

4 c2
01∆11

)
η2 =

(
4 c2

02∆11

)
Sum over internal configurations to form complete η matrix

η =
(

4 (c2
01 + c2

02) ∆11

)
This is the same as the pair norm.

〈0| T̂ †T̂ |0〉 = 4
(
c2

01 + c2
02

)
∆11 (3.147)
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Specific Model System

Follwoing the evaluation of the model system using general amplitudes and coefficients

(above), the transformation is evaluation using the coefficents of the specific model

system (see Appendix).

S =

 4 cos2 θ 4 cos θ sin θ

4 cos θ sin θ 4 sin2 θ


Following the singular value decomposition (SVD)

TDpab =
(

2
√
c2

01 + c2
02

(
c01T

ab
111 + c02T

ab
221

) )

TDpab =
(

2
√

cos2 θ + sin2 θ
(
cos2 θµ+ sin2 θµ

)
= 2µ

)

∆ =
(

4 (cos2 θ + sin2 θ)
∑

ab

(
cos2 θµ+ sin2 θµ

)2
)

Transition density matrix elements

〈0|Êik,jl + pÊil,jk|I〉 (3.148)

〈0|Êik,jl + pÊil,jk|12〉 =

 4 cos θ 0

4 sin θ 0


〈0|Êik,jl + pÊil,jk|22〉 =

 0 4 cos θ

0 4 sin θ


Orthogonalisation of transition density matrices

M I
DE = Z(p)

E,klZ
(p)

D,ij〈0|Êik,jl + pÊil,jk|I〉 (3.149)

M1 =
(

cos θ
)

M2 =
(

sin θ
)

Product of orthogonal transition density matrices and ∆

Y I
DF = M I

DG∆GF (3.150)



Construction of the Transformation 113

Y 1 =
(

4µ2 cos θ
)

Y 2 =
(

4µ2 sin θ
)

Multiplication of tdm(orth).Y

ηIDE = M I
EFY

I
DF (3.151)

η1 =
(

4µ2 cos2 θ
)

η2 =
(

4µ2 sin2 θ
)

Sum over I to form complete η matrix

η =
(

4µ2

)
This is the same as the pair norm.

〈0| T̂ †T̂ |0〉 = 4µ2 (3.152)

The Transformation matrix is of side length of the number of non-redundant pairs, for

the model this results in a 1× 1 matrix.

U = c†c + µ2

Using the definitions and relations for the model system (see Appendix),

|Ψ〉 = |0〉 + σ|1〉 + µ|32〉

|0〉 = cos θ|12〉 + sin θ|22〉

c0 = (cos θ sin θ)

(1 + ĉ)|0〉 = |0〉+ |1〉

|1〉 = σ(− sin θ|12〉 + cos θ|22〉)

c′ = σ (− sin θ cos θ)

c = c0 + c′

c = (cos θ − σ sin θ sin θ + σ cos θ)
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c0
†c0 = 1

c0
†c′ = (cos θ + sin θ)(1− σ)

c0
†c = 1

c†c = 1 + σ2

U = 1 + σ2 + µ2 (3.153)

qT
Dp
ab =

(
U−

q
2

)D
E
TEpab (3.154)

qT
1
ab =

2µ

(1 + σ2 + µ2)
q
2

(3.155)

This shows that the transformation introduces the MRCI denominator for the simple 2-

electron model system. The transformed amplitudes must be embedded in the energy

terms.

Inclusion in Energy

Looking at the term: 2〈0|(1 + ĉ†) (Ĥ − E0) 2T̂ |0〉

Evaluating gives:

2〈0|(1 + ĉ†) (Ĥ − E0) |32〉 2T
1
33 =

2cI〈I| (Ĥ − E0)|32〉2µ
1 + σ2 + 4µ2

(3.156)

Now the term: 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉

The transformation of the pair amplitude introduces the same division as MRCI.

1T
1
33〈32|(Ĥ − E0)|32〉 1T

1
33 =

〈32|(Ĥ − E0)|32〉4µ2

1 + σ2 + 4µ2
(3.157)

Which matches the terms in MRCI for this model case, and for any 2 electron sys-

tem.

One condition for the method to work, which is implied by the SVD, is that the pair

amplitude vector T has to be an eigenvector of the pair overlap matrix S.

3.2.8 As an Approximation to VCC

Apart from giving the correct norm in the limiting cases, the amplitude transforma-

tion is required to generate correctly the equivalent of the -3C 3rd order VCC energy
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diagram.

Looking at the binomial expansion,

(U−1
(p))

D
ET

Ep
cd = TDpcd − η

Dp
E TEpcd + . . . (3.158)

= TDpcd −
(
〈0|ÊF

Ep|I〉〈I|ÊD
Gp|0〉12T

Fp
ab T

Gp
ab

)
TQpcd + . . . (3.159)

The term introduced looks like a multireference version of diagram -3C, similar to that

seen in the analysis in the previous chapter using explicit orbital labels. As such this

can be seen as a simple approximation to an MRVCC. In the single reference limit,

it was shown earlier that U reduces to the single reference LPF+1 U matrix, and the

transformation defined here gives the same as the LPF+1D theory (within limits of

operators used).

However, the above binomial expansion is only true when the closed form expression

is of the form,

U = (1 + η)−1 (3.160)

To agree with MRCI for the model system, c†c is used on the diagonals of the U matrix.

This is not in general 1, but 1 + Y , so when considering the binomial expansion, the

first and second terms above get scaled by 1
c†c

and 1

(c†c)
2 respectively.

This method is still correct for the model system, but its behaviour in the general case

is to be determined. More theoretical work must be done to investigate this, including a

rigorous re-expression of MRVCC terms in an orthogonal basis. The focus of the work

in this chapter was to develop a transformation that acts to correct MRCI, as such, the

above analysis is yet to be done, but is required. Subject to this analysis, the use of c†c

on the diagonals may change, as it is included to mimic MRCI (for the model system),

but may cause errors in the energy. Numerical results will also aid in testing whether

or not the diagonals are defined as 1 or c†c.
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3.3 Internals Energy

The icMRCI energy can be written as follows,

E
MRCI

= E0 +
〈0|
(

1 + ĉ + T̂
)† (

Ĥ − E0

) (
1 + ĉ + T̂

)
|0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉
(3.161)

where |Ψ〉 = |0〉 + ĉ|0〉 + T̂ |0〉

The |0〉 wavefunction is the starting 0th order CASSCF wavefunction. Expanding and

separating terms,

Ecorr =
〈0| (1 + ĉ)†

(
Ĥ − E0

)
(1 + ĉ) |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉

+
2〈0| (1 + ĉ)† (Ĥ − E0)T̂ |0〉 + 〈0|T̂ †(Ĥ − E0)T̂ |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉
(3.162)

This energy functional is a basis for comparison for the MRLPF method, as it is ex-

act for the 2-electron case. Parts of the expression look familiar to MRLPF but terms

involving T̂ do not use the full denominator, instead a local linked denominator is intro-

duced via a matrix transformation. This matrix transformation also acts to approximate

VCC at 3rd order and capture a subset of VCC terms to infinite order. Using the trans-

formation of the doubles amplitudes to introduce the required norm for 2-electrons, the

energy equation may be re-written.

E
MRLPF

= E0 +
〈0| (1 + ĉ)†

(
Ĥ − E0

)
(1 + ĉ) |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉

+ 2〈0|(1 + ĉ†) (Ĥ − E0) 2T̂ |0〉 + 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉 (3.163)

In the MRLPFD method, the active-active excitations are not actually included and in

fact ĉ simply allows the internal coefficients to vary, which is equivalent to the presence

of internal active-active excitations. The exclusion of active-active excitations in this

way is also carried out in icMRCC theory [53, 55].

|0〉 = ĉ0|Ψ0〉 =
1

nact!

∑
uv..z

âuv..z|Ψ0〉cuv..z (3.164)
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= c0I |I〉 (3.165)

ĉ|0〉 = cI |I〉 (3.166)

〈0|ĉ|0〉 = 0 (3.167)

If the MRLPF method is to be exact for the 2-electron case, then a comparison with

MRCI (above, top of page) must be made, as MRCI is exact for that limiting case.

3.3.1 Exactness for 2-Electrons

The terms involving only internal excitations (〈0|(Ĥ − E0)ĉ|0〉 and 〈ĉ†(Ĥ − E0)ĉ|0〉)

have a different denominator in MRLPF than in MRCI; the MRCI denominator con-

tains 〈0|T̂ †T̂ |0〉 while MRLPF does not contain this contribution.

It may seem undesirable to introduce the pair norm to a part of the energy that contains

no mention of the pair excitations, but in order to be exact for the 2-electron case,

the method must be the same as MRCI. Hence the internal excitations must have a

denominator containing 〈0|T̂ †T̂ |0〉, but, as discussed at length earlier, this terms leads

to size-extensivity issues so it is not desirable to include it in the denominator (this was

the initial motivation for the LPF and MRLPF theories).

To repeat, this is the same issue that terms involving the doubles amplitudes faced,

resulting in the development of the LPF methods, and the transformation of the pair

amplitudes defined earlier. Accordingly, efforts were made here to introduce a linked

denominator via the matrix transformation applied to the pair amplitudes, so that the

electrons in the pair amplitudes are related to the electrons occupied in the specific

internal configuration (the fact they are related shows why part of the pair norm is

needed). In order to use the same transformation matrix as that used by the pair ampli-

tudes, internal configurations must be associated to a pair of electrons in order to have

indices to transform around.

The definition of the internally contracted MRCI wavefunction shows that the inter-

nal configurations are generated from the multiconfigurational reference function by

deletion and creation of 2 electrons. These internal states have previously been written
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here as |I〉.

cI |I〉 =
∑
tuvw

ctuvwÊtu,vw|0〉 (3.168)

The definition of the internal configurations in this way immediately associates the

configurations to a pair of orbital indices. These can be used to link to the powered

U transformation matrix. However, the U is indexed by orthogonal pairs, not explicit

orbital labels, so cannot be linked to the internal coefficients.

Several further attempts were made to associate the internal configuration with an elec-

tron pair, one such attempt is given below.

c
′
= Xc (3.169)

XIJ = 〈I|ÊP
Qp|J〉

(
U−

1
2

)
PQ

(3.170)

Using orthogonal pairs means U is 1x1 for the model case and this generates the correct

denominator for the 2 electron model.

XIJ = 〈I|J〉
(

U−
1
2

)
11

(3.171)

XIJ = δIJ

(
U−

1
2

)
11

(3.172)

E cI = 〈K|Ĥ|J〉cKcJ
(
U−1

)
(3.173)

This is only correct for the 2-electron model and the behaviour in the general case is

unknown. This is also impractical for computational implementation, as it requires all

pair annihilations and pair creations on each internal configuration, whose number may

be> 105 and increases rapidly with an increase in internal orbitals. Although relatively

efficient construction of the X matrix may be achieved by careful accumulation of the

contributions, this is still computationally demanding and wasteful.

These efforts at developing a transformation of the internal coefficients does not give

anything satisfactory for the general case, hence it is appropriate to look at how the

icMRCC of Evangelista & Gauss [53] accounts for the internal excitations.

Heff
µν cν = 〈µ|e−T̂ Ĥ eT̂ |ν〉cν = Ecµ (3.174)

Analogously, we are guided by unitary coupled cluster, and define an effective Hamil-

tonian.

〈I|e(T̂ †−T̂) Ĥ e(T̂
†−T̂)|J〉 = EcI (3.175)
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Making a linear approximation of this in a non-orthogonal spin orbital basis (illustra-

tive),

〈I|i†j†lk Ĥ m†n†po|J〉 = EcI (3.176)

The normalisation can be introduced via the U matrix transformation,

〈I|i†j†lk Ĥ m†n†po|J〉cJ
(

U−
1
2

)
ij,kl

(
U−

1
2

)
mn,op

= EcI (3.177)

〈I ′|Ĥ|J ′〉cJ = EcI (3.178)

|I ′〉 = i†j†lk|I〉
(

U−
1
2

)
ij,kl

(3.179)

This associates an internal configuration with indices ij because ij are occupied in that

configuration, therefore a linked denominator should link to ij. This idea can be re-

formulated using orthogonal pairs, with only 1 pair existing for a 2 electrons system,

the correct norm can be achieved for the model case.

|I ′〉 = Q†P |I〉
(

U−
1
2

)
QP

(3.180)

|I ′〉 = 1†1|I〉
(

U−
1
2

)
11

(3.181)

E cI =
〈I| Ĥ |J〉

1 + 〈Ĉ†Ĉ〉 + 〈T̂ †T̂ 〉
(3.182)

For the 2 electron case the introduced denominators multiply to give the effect of

U−1, ensuring the correct denominator, but the behaviour for the general case is un-

known.

However, again this method of generating a linked denominator is computationally de-

manding, requiring the generation of many configurations. Therefore the above efforts

to include a linked denominator for the internal coefficients either is unsatisfactory in

the general case or far too computationally demanding to account for the mall increase

in accuracy.

The simplest method of dealing with the size-extensivity problem of the denominator is

to use the ACPF or AQCC factors, making the denominator almost intensive. Using the

ACPF factors is computationally extremely simple to compute, and has the benefit of

giving the exact denominator for the 2 electron case. It is therefore a pragmatic choice
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to deal with unlinked nature of the denominator when a actual linked denominator

cannot be introduced.

E = E0 +
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

〈1 + ĉ†|1 + ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

+ 2〈0|(1 + ĉ†) (Ĥ − E0) 2T̂ |0〉 + 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉 (3.183)

Evaluation For MR 2 Electron Model

The term in the energy containing only internal configurations,

〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

〈1 + ĉ†|1 + ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

(3.184)

=
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

1 + σ2 + 2
2
µ2〈32|32〉

(3.185)

=
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

1 + σ2 + µ2
(3.186)

This ensures the method is exact for 2 electrons and 2 references. The factor of 2
n

also

ensures it is correct for two identical but separate 2-electron systems, such as separated

Helium atoms.

3.3.2 Single Reference Limit

In the above equations there is an assumption, without which the theory would not

reduce exactly to the single reference LPF theory or correspond theoretically to the CI

case. The assumption is that the coefficient of the reference is 1, giving 1 + c2 in the

denominator and on the diagonals of the U matrix. This is intermediate normalisation,

and must be imposed when equation solving. Both limits are only satisfied when the

constraint, c†0c = 1, is imposed, giving intermediate normalisation. To impose the

constraint, the Lagrange multiplier method is used.
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E
MRLPF

= E0 +
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

〈1 + ĉ†|1 + ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

+ 2〈0|
(
1 + ĉ†

)
(Ĥ − E0) 2T̂ |0〉 + 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉

(3.187)

L = E
MRLPF

+ λ(c0
†c− 1) (3.188)
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3.4 Full Energy Expression

Using intermediate normalisation and an ACPF like denominator, for reasons given

in the previous sections, the full expression for the MRLPF+1 energy can now be

defined.

E = E0 +
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

〈1 + ĉ†|1 + ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

+ 2〈0|(1 + ĉ†) (Ĥ − E0) 2T̂ |0〉 + 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉 (3.189)

Where the transformed amplitudes are given by,

qT
Dp
ab =

(
U−

q
2

)D(p)

E
TEpab (3.190)

U
D(p)
E = c†cδDE + η

D(p)
E (3.191)

η
D(p)
E = 1

2

(
〈0|ÊF

Ep|I〉〈I|ÊD
Gp|0〉12T

D(p)
cd T cdE(p)

)
(3.192)

3.4.1 Full Energy Evaluation for the Model System

Full evaluation of the energy equation for the two electrons system, to show equiva-

lence to MRCI for this limiting case. This is done above, in part, for the transformation

but is included here for completeness.

Model

S =

 4 cos2 θ 4 cos θ sin θ

4 cos θ sin θ 4 sin2 θ


Following a singular value decomposition (SVD)

CDp
ab =

(
2
√
c2

1 + c2
2 (c1 cos θµ+ c2 sin θµ)

)

∆ =
(

4 (c1c2 + c2
2)
∑

ab (c1 cos θµ+ c2 sin θµ)2
)

tdm Elements

〈0|Êik,jl + pÊil,jk|I〉 (3.193)
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〈0|Êik,jl + pÊil,jk|12〉 =

 4 cos θ 0

4 sin θ 0


〈0|Êik,jl + pÊil,jk|22〉 =

 0 4 cos θ

0 4 sin θ


Orthogonalisation of tdms

M I
DE = Z(p)

E,klZ
(p)

D,ij〈0|Êik,jl + pÊil,jk|I〉 (3.194)

M1 =
(

cos θ
)

M2 =
(

sin θ
)

Product of orthogonal tdm and ∆

Y I
DF = M I

DG∆GF (3.195)

Y 1 =
(

4µ2 cos θ
)

Y 2 =
(

4µ2 sin θ
)

Multiplication of tdm(orth).Y

ηIDE = M I
EFY

I
DF (3.196)

η1 =
(

4µ2 cos2 θ
)

η2 =
(

4µ2 sin2 θ
)

Sum over I to form complete η matrix

η =
(

4µ2

)
This the same as the pair norm.

〈0| T̂ †T̂ |0〉 = 4µ2 (3.197)

MRLPF Energy

E
MRLPF

= E0 +
〈0| (1 + ĉ)†

(
Ĥ − E0

)
(1 + ĉ) |0〉

1 + σ2 + 2
2
µ2
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+
2〈0| (1 + ĉ)† (Ĥ − E0)T̂ |0〉 + µ〈32|(Ĥ − E0)|32〉

1 + σ2 + µ2
(3.198)

MRCI Energy

Ecorr =
〈0| (1 + ĉ)†

(
Ĥ − E0

)
(1 + ĉ) |0〉

1 + σ2 + 2
2
µ2

+
2〈0| (1 + ĉ)† (Ĥ − E0)T̂ |0〉 + 〈0|T̂ †(Ĥ − E0)T̂ |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉
(3.199)

Ecorr =
〈0| (1 + ĉ)†

(
Ĥ − E0

)
(1 + ĉ) |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|T̂ †T̂ |0〉

+
2〈0| (1 + ĉ)† (Ĥ − E0)T̂ |0〉 + µ〈32|(Ĥ − E0)|32〉

1 + σ2 + µ2
(3.200)

These are the same, meaning the MRLPF+1D method performs as expected for the

model 2 electron, 2 reference case.
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3.5 Direct CI

The solutions of the CI equation are found by minimisation of the Rayleigh quo-

tient,

ρ =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= E

∂ρ

∂c
= 0 (3.201)

Giving the eigenvalue equation

H ck = Ekc
k (3.202)

Conventional-CI approaches explicitly construct the full Hamiltonian matrix. However

this is computationally demanding and requires the storage of the full matrix whose

dimensions may approach 106 × 106.

Alternatively the result of matrix-vector products are accumulated, and only they are

stored. Differentiating the CI energy as above gives an eigenvalue equation to be

solved, splitting this into the different spaces gives

〈ψabDp|Ĥ − E|Ψ〉 = 0 (3.203)

〈ψaS|Ĥ − E|Ψ〉 = 0 (3.204)

〈ψI |Ĥ − E|Ψ〉 = 0 (3.205)

This defines the residual vectors,

〈ψabDp|Ĥ − E|Ψ〉 = Rab
Dp =

(
1

2

(
GDp + p(GDp)†

)
− ETDp

)
ab

(3.206)

〈ψaS|Ĥ − E|Ψ〉 = Ra
S =

[
gS − ETS

]
a

(3.207)

〈ψI |Ĥ − E|Ψ〉 = RI = gI − E cI (3.208)

The contributions GDp, gS and gI are calculated directly in operator form from the

integrals. These contributions to the residual vectors are accumulated throughout the

program, requiring only the storage of these residual vectors rather than the full size

Hamiltonian matrix. This is a form of Direct-CI.

Within MOLPRO The contributions to the residual vectors are calculated in parts

throughout the CI code. The evaluation of these residual vectors, along with the up-

dates to the amplitudes occur in the macroiterations of the direct-CI code.
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The use of microiterations is designed to speed up convergence, by using relatively

cheap iterations to optimise coefficients, which will ultimately result in fewer expen-

sive macroiterations being needed. The microiterations use the Davidson subspace

method [110] and are described later.

3.5.1 Pair Residual

As stated above, differentiation of the CI energy with respect to the amplitudes, T,

yields an eigenvalue equation.

RDp
ab = 〈φDpab |Ĥ − ECID

|ψ
CID
〉 = 0 (3.209)

These equations can be solved iteratively, each iteration computing the residual R.

RDp
ab = GDp

ab − ε
CID

TDpab (3.210)

GDp
ab = 〈φDab|Ĥ − E0|ψCID〉 (3.211)

ε
CID

= E
CID
− E0 is the correlation energy introduced by CID.

The MRLPF+1 pair residual is more complicated than that of MRCI due to the use

of transformed amplitudes. Care must be take to account for the change in the trans-

formed amplitudes as a result of a change in the underlying amplitudes. The methodol-

ogy to do this is based on the corrected LPF+1 residual by Robinson & Knowles [33],

that showed how to differentiate the transformed amplitudes with respect to the change

in the underlying T amplitude. The multireference MRLPF+1 residual makes use of

this differentiation to minimise the MR-Linked Pair Functional theory with respect to

the doubles amplitudes.

Preliminary Definitions

Energy expression:

E = E0 +
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

〈1 + ĉ†|1 + ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

+ 2〈0|(1 + ĉ†) (Ĥ − E0) 2T̂ |0〉 + 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉 (3.212)
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using definitions:

T̂ =
∑
i≥j

∑
p

∑
ab

T ijpab Ê
ab
ijp Êab

ijp = 1
2
(Êai,bj + pÊbi,aj) (3.213)

=
∑
D

∑
p

∑
ab

TDpab Ê
ab
Dp (3.214)

Êab
Dp =

∑
i≥j

Êab
ijpZ

(p)
D,ij (3.215)

T ijpab =
∑
D

Z
(p)
D,ij T

Dp
ab (3.216)

qT
Dp
ab =

(
U−

q
2

)Dp
Ep
TEpab (3.217)

U
D(p)
E = c†cδDE + η

D(p)
E (3.218)

η
D(p)
E = 1

2

(
〈0|ÊF

Ep|I〉〈I|ÊD
Gp|0〉12T

D(p)
cd T cdE(p)

)
(3.219)

Finding The Residual

The energy defined above can be written in simple terms of an internals and terms

involving pair excitations

E = E0 + EI + EP (3.220)

EP = 2〈0|(1 + Ĉ†) (Ĥ − E0) |Φab
Dp〉2T

Dp
ab + 〈0| 1T̂ †(Ĥ − E0) |Φab

Dp〉1T
Dp
ab (3.221)

EI =
〈0|
(

1 + Ĉ†
)

(Ĥ − E0)
(

1 + Ĉ
)
|0〉

〈1 + Ĉ†|1 + Ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

(3.222)

This separation aids in finding the target 1
2

∂E

∂TDpab
.

1
2
dE =

1

2

∂EI

∂TDpab

TDpab +
1

2

∂EP

∂TDpab

TDpab (3.223)

1
2
dE = Rab

DpT
Dp
ab (3.224)

1

2

∂EI

∂TDpab

= ΩDp
ab (3.225)
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The partial derivatives can be written,

1

2

∂EP

∂TDpab

= 2〈0|(1 + Ĉ†) (Ĥ − E0) |Φab
Dp〉 d(2T

Dp
ab ) + 〈0| 1T̂ †(Ĥ − E0) |Φab

Dp〉 d(1T
Dp
ab )

(3.226)

1

2

∂EP

∂TDpab

=
(

1G
ab
Dp + 2G

ab
Dp

)
(3.227)

1

2

∂E

∂TDpab

=
(

1G
ab
Dp + 2G

ab
Dp

)
+ Ωab

Dp (3.228)

1

2

∂E

∂TDpab

=
(
Gab
Dp

)
+ Ωab

Dp (3.229)

1

2

∂E

∂TDpab

= Rab
Dp (3.230)

1
2
dE = Rab

DpdT
Dp
ab (3.231)

The problem is now to find Gab
Dp, by performing the appropriate differentiations, and

with the following definitions,

2V
ab
Dp = 〈Φ0|Ĥ|Φab

Dp〉

1V
ab
Dp = 〈Φ0|1T̂ †Ĥ|Φab

Dp〉 (3.232)

Unlinked terms must be removed from 1V ab
Dp.

1V
ab
Dp = 〈Φ0|1T̂ † (Ĥ − E0) |Φab

Dp〉 (3.233)

1V
ab
Dp = 〈Φ0|1T̂ †Ĥ|Φab

Dp〉 − 〈Φ0|1T̂ †E0|Φab
Dp〉 (3.234)

1V
ab
Dp = 〈Φ0|1T̂ †Ĥ|Φab

Dp〉 − TErcd 〈ΦEr
cd |Φab

Dp〉E0 (3.235)

1V
ab
Dp = 〈Φ0|1T̂ †Ĥ|Φab

Dp〉 − TErab ΓDpErE0 (3.236)

1V
ab
Dp = 〈Φ0|1T̂ †Ĥ|Φab

Dp〉 − TEpab Γ
D(p)
E E0 (3.237)

1V
ab
Dp = 〈Φ0|1T̂ †Ĥ|Φab

Dp〉 − TDpab E0 (3.238)

we may write the following.

1

2

∂E

∂TDpab

=
2∑
q=1

qV
ab
Dpd( qT

Dp
ab ) + ΩDp

ab (3.239)
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i.e. =
(

1G
ab
Dp + 2G

ab
Dp

)
+ ΩDp

ab (3.240)

= Rab
Dp (3.241)

This involves the derivative of U as given.

U
D(p)
E = (c†c)δDE + 〈0|ÊF

Ep|I〉〈I|ÊD
Gp|0〉12T

D(p)
cd T cdE(p) (3.242)

dU
D(p)
E = d

(
〈0|ÊF

Ep|I〉〈I|ÊD
Gp|0〉12T

D(p)
cd T cdE(p)

)
(3.243)

= 〈0|ÊF
Ep|I〉〈I|ÊD

Gp|0〉
(

1
2
dT

G(p)
cd T cdF (p) + 1

2
T
G(p)
cd dT cdF (p)

)
The problem of how to differentiate the transformed amplitudes was solved by Robin-

son and Knowles, and is shown below.

d( qT
Dp
ab ) =

(
U
− q

2
(p) dT + d

[
U
− q

2
(p)

]
T

)Dp
ab

=

(
U
− q

2
(p) dT

)Dp
ab

+

(
d

[
U
− q

2
(p)

]
T

)Dp
ab

(3.244)

Inserting this into our expression for the derivative, gives:

1

2

∂E

∂TDpab

=
2∑
q=1

qV
ab
Dp

(
U
− q

2
(p) dT + d(U

− q
2

(p) )T

)Dp
ab

+ ΩDp
ab dT

Dp
ab

=
2∑
q=1

qA
ab
DpdT

Dp
ab +

∑
p

2∑
q=1

qB
E(p)
D d(U

− q
2

(p) )DE + ΩDp
ab dT

Dp
ab

=
2∑
q=1

qG
ab
DpdT

Dp
ab + ΩDp

ab dT
Dp
ab

= Rab
Dp (3.245)

The difficult step is finding G, similar to the LPF+1 residual. The working for the first

term, A, is complete, so focus must lie on the second term B. The evaluation of A is

simple, but the second term, B, requires the derivative of the transformed amplitudes.

Intermediates can be defined to reduce computational complexity. The method of how

to find the derivative of the transformed amplitudes was derived in [11], and casts the
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problem into spectral form, where X is the matrix of eigenvectors of the U trans-

formation matrix, and ε the associated eigenvalues. For a detailed description of this

derivation, the reader is directed to [11]. The method is used here, with only different

intermediates defined due to the difference in the form of the U matrix.

2∑
q=1

qBE

D
d(U−

q
2 )D

E

=
2∑
q=1

qB
(p)
DE
d(U

− q
2

(p) )
ED

=
2∑
q=1

qB
(p)
DE

np∑
F,G

dU (p)
FG

 np∑
k=1,l=1
k 6=l,εk 6=εl

ε
− q

2
k − ε

− q
2

l

εk − εl
X(p)
El
X(p)
Dk
X(p)
Fl
X(p)
Gk
− q

2

np∑
k=1

ε
− q

2
−1

k X(p)
Ek
X(p)
Ek
X(p)
Fk
X(p)
Gk


=

2∑
q=1

np∑
i,F,G

dU (p)
FG

 np∑
k=1,l=1
k 6=l,εk 6=εl

ε
− q

2
k − ε

− q
2

l

εk − εl
X(p)
Ek
X(p)
Fl
X(p)
Gk q

C(p)
Dl
− q

2

np∑
k=1

ε
− q

2
−1

k X(p)
Dk
X(p)
Fk
X(p)
Gk q

C(p)
Dk


=

2∑
q=1

np∑
F,G

dU (p)
FG

 np∑
k=1,l=1
k 6=l,εk 6=εl

ε
− q

2
k − ε

− q
2

l

εk − εl
X(p)
Fl
X(p)
Gk q

D
(p)
lk −

q
2

np∑
k=1

ε
− q

2
−1

k X(p)
Fk
X(p)
Gk q

D
(p)
kk


=

2∑
q=1

np∑
F,G

dU (p)
FG

[
np∑
k=1

X(p)
Gk q

F (p)
kF
− q

2 q
E(p)
FG

]

=
2∑
q=1

np∑
F,Gm,n

dU (p)
FG

[
qH

(p)
FG
− q

2 q
E(p)
FG

]
=

2∑
q=1

np∑
F,G

dU (p)
FG qI

(p)
FG

=
2∑
q=1

dUF (p)
G qIFG

= 1
2

2∑
q=1

(
〈0|ÊD

Gp
|I〉〈I|ÊF

Ep
|0〉
(
T E(p)
ab dT ab

D(p) + dT E(p)
ab T ab

D(p)

))
qIFG

= 1
2

2∑
q=1

(
N I(p)
DG

M I(p)
FE

(
T E(p)
ab dT ab

D(p) + dT E(p)
ab T ab

D(p)

))
qIFG

= 1
2

2∑
q=1

N I(p)
DG

OI(p)
EG

(
T E(p)
ab dT ab

D(p) + dT E(p)
ab T ab

D(p)

)
= 1

2

2∑
q=1

M I(p)
GD

OI(p)
EG

(
T E(p)
ab dT ab

D(p) + dT E(p)
ab T ab

D(p)

)
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= 1
2

2∑
q=1

qPDE

(
T E(p)
ab dT ab

D(p) + dT E(p)
ab T ab

D(p)

)
= 1

2

2∑
q=1

(
P + (P )T

)
D

E

T ab
D(p)dT

E(p)
ab

= 1
2

2∑
q=1

qQDE
T ab
D(p)dT

E(p)
ab

= 1
2

2∑
q=1

qK
ab
E(p)

dT E(p)
ab

(3.246)

Where X is the matrix containing the eigenvectors of U as its columns, and ε is the

diagonal matrix of eigenvalues corresponding to X.

Combining this with the first component of G, we get the following.

∂E

∂TDpab

=
2∑
q=1

[
qA

ab
Dp + 1

2 q
Kab
Dp

]
+ ΩDp

ab (3.247)

From this, we can read off the new, correct contribution to the residual.

Gab
Dp =

2∑
q=1

[
qA

ab
Dp + 1

2 q
Kab
Dp

]
(3.248)

The definitions of the intermediates quantities used are as follows.

qA
ab
Dp = (U

− q
2

(p) )ED qV
ab
Ep (3.249)

qB
D(p)
E = 1

2 q
V ab
DpT

E(p)
ab (not symmetric) (3.250)

qC
(p)
DE =

np∑
k=1

qB
(p)
DkX

(p)
kE (3.251)

qD
(P )
DE =

np∑
k=1

qC
(p)
kDX

(p)
kE (3.252)

qE
(p)
DE =

np∑
k=1

ε
− q

2
−1

k X
(p)
DkX

(p)
Ek qD

(p)
kk (3.253)

qF
(P )
DE =

np∑
k=1,k 6=i,εk 6=εi

ε
− q

2
i − ε

− q
2

k

εi − εk
X

(p)
Ek qD

(p)
kD (3.254)

qH
(p)
DE =

np∑
k=1

X
(p)
Ek qF

(p)
kD (3.255)
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qI
(p)
DE = qH

(p)
DE −

q
2 q
E

(p)
DE (3.256)

qM
I(p)
DE = 〈I|ÊD

E |0〉 (3.257)

qN
I(p)
DE = 〈0|ÊD

E |I〉 (3.258)

qOI

DE(p) = M
I(p)
DF qI

(p)
FE (3.259)

qPDE(p) = M
I(p)
FE O

I
GE(p) (3.260)

qQDE(p) = PDE + PED (3.261)

qK
ab
E(p) = QDE(p)T

ab
Dp (3.262)

When there are four indices, each index belongs to the set of electrons or holes (for

i,j,k,... and a,b,c,... respectively). When there are two indices, each index belongs to

the set of electron or hole pairs (for i,j,k,... and a,b,c,... respectively).

It should be noted that the only difference between this residual and that of the original

LPF+1 residual of Robinson & Knowles lies in the definition of U and hence small

changes in the intermediates needed.

The final contribution Ω for the residual R must be found.

EI =
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉

〈1 + ĉ†|1 + ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

(3.263)

ΩDp
ab =

1

2

∂EI

∂TDpab

= −
〈0|
(
1 + ĉ†

)
(Ĥ − E0) (1 + ĉ) |0〉(

〈1 + ĉ†|1 + ĉ〉 + 2
n
〈0|T̂ †T̂ |0〉

)2
4
n
TDpab (3.264)

Finding The Update

The pair amplitudes, TDpab , are updated using the residuals obtained above, and simple

perturbation theory.

RDp
ab = GDp

ab + ΩDp
ab (3.265)

∆TDpab =
−RDp

ab

〈Φab
Dp|Ĥ − Em|Φab

Dp〉
(3.266)
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3.5.2 Internals Residual

The derivative of the energy with respect to the change in the internal coefficients is

required.

∂E

∂c
I

=
2
(
〈0|Ĥ|I〉+ 〈I|Ĥ|J〉cJ

)(
1 + c2

J + 2
n
〈0|T̂ †T̂ |0〉

)
(1 + c2

J + 2
n
〈0|T̂ †T̂ |0〉)2

−

(
4〈0|Ĥ|J〉cJ + 2cK〈K|Ĥ|J〉cJ

)
cJ

(1 + c2
J + 2

n
〈0|T̂ †T̂ |0〉)2

+
∂2 cI〈I|Ĥ 2T̂ |0〉

∂cI
+

∂〈1T̂ Ĥ 1T̂ 〉
∂cI

(3.267)

The derivatives of the terms involving transformed amplitudes now must be found.

The transformed amplitudes themselves have dependence on cI , due to the c†c on the

diagonal of the U matrix. The coefficients used in making the transformed amplitudes

are fixed, thus cannot be changed when considering the change in the energy with

respect to the change in internal coefficients. As a result, a linear approximation of the

derivative must be made.

The U matrix must therefore be differentiated with respect to the change of the inter-

nal coefficients. For the general case the matrix differentiation technique of Robin-

son & Knowles, previously used for differentiation with respect to the change in the

T abij doubles amplitudes, can be used. However, the matrix dU can be defined as the

derivative of the U matrix with respect to a change in the internal coefficients, which

only affects the diagonal elements of the U matrix. This means that U and dU com-

mute, so the basic chain rule of differentiation can be used, without using the compli-

cated method of Robinson & Knowles.

d (Ux) = x dU Ux−1 (3.268)

d

(
U−

1
2

)
= −1

2
dU U−

3
2 (3.269)

d
(
U−1

)
= −dU U−2 (3.270)

dU = d (U)PQ = d (UPQ) =
∂UPQ

∂cI
= δPQ 2 cI (3.271)

Using these;

∂
(
cI〈I|Ĥ 2T̂ |0〉

)
∂cI

(3.272)
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= 〈I|Ĥ 2T̂ |0〉 + cI 〈I|Ĥ|φabQp〉
∂ 2T

Qp
ab

∂cI

=
(
−〈I|Ĥ|φabQp〉(U−1)QP (dU)PR (U−1)RS T

S
ab

)
cI + 〈I|Ĥ 2T̂ |0〉

=
(
−〈I|Ĥ|φabQp〉(U−1)QR (U−1)RS T

S
ab

)
2c2
I + 〈I|Ĥ 2T̂ |0〉 (3.273)

∂
(
〈0|1T̂ Ĥ 1T̂ |0〉

)
∂cI

(3.274)

= 2 〈0|1T̂ Ĥ|φabQp〉
∂ (U−

1
2 )QP T

Pp
ab

∂cI

= −1

2
2 cJ 〈0|1T̂ Ĥ|φabQp 〉(U−

3
2 )QPT

Pp
ab

= −2 cJ 〈0|1T̂ Ĥ|φabQp〉 (U−
3
2 )QPT

Pp
ab (3.275)

Inserting the definitions of the terms involving transformed amplitudes into the deriva-

tive expression, the full first derivative can be defined.

∂E

∂c
I

=
2
(
〈0|Ĥ|I〉+ 〈I|Ĥ|J〉cJ

)(
1 + c2

J + 2
n
〈0|T̂ †T̂ |0〉

)
(1 + c2

J + 2
n
〈0|T̂ †T̂ |0〉)2

−

(
4〈0|Ĥ|J〉cJ + 2cK〈K|Ĥ|J〉cJ

)
cJ

(1 + c2
J + 2

n
〈0|T̂ †T̂ |0〉)2

+
(
−〈I|Ĥ|φabQp〉(U−1)QR (U−1)RS T

S
ab

)
2c2
I + 〈I|Ĥ 2T̂ |0〉

− 2 cJ 〈0|1T̂ Ĥ|φabQp〉 (U−
3
2 )QPT

Pp
ab (3.276)

∂L

∂c
I

=
∂E

∂c
I

+ λc0
I (3.277)

λ = −c0
†σ (3.278)

The Lagrange multiplier is found via Schmidt Orthogonalisation.
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3.5.3 Subspace Method

The equations above defining the macroiterations are enough to define the working

equations of the MRLPF+1 method. However, as with CI convergence can be acceler-

ated via use of the Davidson subspace method. The method is outlined here for the CI

case before specific application to the MRLPF+1 equations.

In the Davidson subspace method[110], the eigenvectors are constructed as linear com-

binations of expansion vectors. The first expansion vector is the current optimised vec-

tor, with the others being previous guesses. These expansion vectors form the columns

of a matrix, V,

cI =
∑
i

αiVIi (3.279)

The optimal linear combination for CI is found via the subspace eigenvalue equa-

tion,

VIiHIJVJjαj = VIiVIjαjε (3.280)

H̄~α = S̄~αε (3.281)

In each macroiteration, the residuals, GDp,gS and gI are projected onto the space

of expansion vectors, giving (GDp)(n),(gS)(n) and (gI)(n) for each expansion vec-

tor(m).

Ψn
ext =

∑
S

∑
a

(
T S
)n
a

Ψa
S +

∑
Dp

∑
ab

(
TDp

)n
ab

Ψab
Dp (3.282)

Internal coefficients

Ψ =
∑
I

cIΨI +
∑
n

αnΨn
ext (3.283)

The microiterations optimise the αn coefficients and the coefficients of the internals.

These coefficients are used to get better amplitudes TDpab , T aS and a new expansion

vector is obtained.

The optimisation of the αn coefficients is done simultaneously with the optimisation

of the internal coefficients. To do this the subspace eigenvalue equation is solved
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(3.281), where the first next elements of the vector α are the coefficients of the external

expansion vectors, and the remaining elements are the internal expansion coefficients,

giving a full length α vector of length nint + next. This matrix is typically less than

10 × 10 in dimension which is significantly smaller than the full internal and external

spaces.

However, the method described so far is that carried out for the MRCI problem, the

MRLPF+1 method described in this chapter cannot be formed into an eigenvalue equa-

tion of the form above, so the equations must be solved slightly differently.

The MRLPF+1D energy cannot be written as an eigenvalue equation. Therefore, the

expansion vectors do not contain any information regarding the pair external config-

urations, so in a doubles only theory, the external expansion vectors contain nothing,

hence their Hamiltonian matrix elements in the space of expansion vectors are set to

zero. If singles are included, the external expansion vectors contain only the singles

information.

Ψn
ext =

∑
S

∑
a

(
T S
)n
a

Ψa
S (3.284)

All objects are now written in this new basis, with orthogonalised expansion vec-

tors.

Using the definitions:

cI =
∑
i

αiVIi (3.285)

hij = VIiHIJVJj (3.286)

Sij = VIiVIj (3.287)

qT
Q
ab =

(
(αiSijαj1 + ∆)−

q
2

)
PQ

T Pab (3.288)

The energy can be defined as,

E
MRLPF

= E0 +
αiVIiHIJVJjαj

αiVIiVIjαj + 2
n
〈0|T̂ †T̂ |0〉

+ 2αiVIi〈I|Ĥ 2T̂ |0〉 + 〈0|1T̂ Ĥ 1T̂ |0〉

(3.289)

As mentioned, 〈0|1T̂ Ĥ 1T̂ |0〉 is not covered by the expansion vectors, and the internal

coefficient vector c has been written as a linear combination of internal expansion vec-

tors. The vector corresponding to the “best” linear combination of expansion vectors,
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α, now appears in place of c, including on the diagonals of the U matrix involved in

the pair amplitude transformation.

Implementing the constraint on the internal coefficients, the Lagrangian to be min-

imised is defined,

L = E
MRLPF

+ λ(α†α0 − 1) (3.290)

As seen above in 3.289, unlike the MRCI situation, the MRLPF+1D energy equation

cannot be written as an eigenvalue equation, it has a different form, and must be solved

differently.

To optimise the coefficients in the α vector, i.e. to get “best” linear combination of the

expansion vectors, the derivative of the Lagrangian must be zero with respect to the

change in the coefficients. Accordingly, the derivative must be found.

Derivative Of The Energy With Respect To α

Now look at the derivative of the terms contributing to the energy that involve trans-

formed amplitudes. Firstly, the energy contribution, Ec, containing 2T̂ .

Ec = αiVIi〈I|(Ĥ − E0)2T̂ |0〉 (3.291)

= αiVIi〈I|(Ĥ − E0)|Qab〉
(
(αiSijαj1 + ∆)−1)

PQ
T Pab

= αiVIiGI

∂Ec
∂αi

= VIiGI + αkVIk
∂GI

∂αi

∂GI

∂αi
= −2αjSij 〈I|(Ĥ − E0)|Qab〉

(
(αiSijαj1 + ∆)−2)

PQ
T Pab

∂Ec
∂αi

= VIiGI

+ αkVIk.
(
−2αjSij 〈I|(Ĥ − E0)|Qab〉

(
(αiSijαj1 + ∆)−2)

PQ
T Pab

)

∂Ec
∂αi

= VIi〈I|(Ĥ − E0)|Qab〉
(
(αiSijαj1 + ∆)−1)

PQ
T Pab
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+ αkVIk

(
−2αjSij 〈I|(Ĥ − E0)|Qab〉

(
(αiSijαj1 + ∆)−2)

PQ
T Pab

)
(3.292)

= VIi〈I|(Ĥ − E0)|Qab〉 2T
Q
ab − (2αjSij)αkVIk〈I|(Ĥ − E0)|Qab〉 4T

Q
ab

(3.293)

Secondly, the term involving 1T̂ .

〈0|1T̂ †(Ĥ − E0)1T̂ |0〉 (3.294)

=
(

(αiSijαj1 + ∆)−
1
2

)
SR
T Scd 〈Rcd|(Ĥ − E0)|Qab〉

(
(αiSijαj1 + ∆)−

1
2

)
PQ

T Pab

∂〈0|1T̂ †(Ĥ − E0)1T̂ |0〉
∂αi

=
(

(αiSijαj1 + ∆)−
1
2

)
SR
T Scd 〈Rcd|(Ĥ − E0)|Qab〉

∂
(

(αiSijαj1 + ∆)−
1
2

)
PQ

T Pab

∂αi

=
(

(αiSijαj1 + ∆)−
1
2

)
SR
T Scd 〈Rcd|(Ĥ − E0)|Qab〉

(
(αiSijαj1 + ∆)−

3
2

)
PQ

T Pab (−αjSij)

= 2 1T
R
cd 〈Rcd|(Ĥ − E0)|Qab〉 3T

Q
ab. (−αjSij) (3.295)

Therefore the total derivative of the energy with respect to a change in the α coefficients

is as follows,

∂E
MRLPF

∂αi
=

hijαj

αkSklαl + 2
n
〈T̂ †T̂ 〉

− αkhklαl

αkSklαl + 2
n
〈T̂ †T̂ 〉

(
Sijαj

αkSklαl + 2
n
〈T̂ †T̂ 〉

)

+ VIi〈I|(Ĥ − E0)|Qab〉 2T
Q
ab

− (2αjSij)αkVIk〈I|(Ĥ − E0)|Qab〉 4T
Q
ab

+ 2 1T
R
cd 〈Rcd|(Ĥ − E0)|Qab〉 3T

Q
ab. (−αjSij) (3.296)

∂L

∂αi
=

∂E
MRLPF

∂αi
+ λα0i (3.297)

Where λ = −∂L
∂αi

α0i (3.298)
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The constraint on the coefficients is implemented via Schmidt orthogonalisation.

The coefficients α are then found iteratively using a simple Newton-Raphson proce-

dure or by the Augmented Hessian method of Lengsfield[111].

3.5.4 Singles

single and double excitations. As stated in the introduction, it is common for a method

to include single and double excitations, as is done in CISD and CCSD. This extends

to a multireference wavefunction where singly and doubly-external configurations are

generated, for example in icMRCISD [58], MRACPFSD [32], MRAQCCSD [31],

icMRCCSD [53, 55] and Mk-MRCCSD[49]. In order for the MRLPFD method to

be comparable to other multireference methods and therefore be of use, the method

must allow for the inclusion of single excitations. The inclusion of singles amplitudes

into the single reference LPF transformation has proved problematic as it destroys the

desirable properties possessed by the transformation when only double amplitudes are

present [11]. To avoid this issue, the extensions of LPF (i.e. AVCC, QVCC) use orbital

optimisation to account for single excitations [11, 33, 39]. Due to these difficulties, in

this work singles may be included in the MRLPFD formalism in the same way they

are included in MRCI; in a linear fashion, without use of a transformation.

E
MRLPFSD

= E0 +
〈0| (1 + ĉ + ŝ)†

(
Ĥ − E0

)
(1 + ĉ + ŝ) |0〉

〈0|0〉 + 〈0|ĉ†ĉ|0〉 + 〈0|ŝ†ŝ|0〉 + 2
n
〈0|T̂ †T̂ |0〉

+ 2〈0|(1 + ĉ†) (Ĥ − E0) 2T̂ |0〉 + 〈0| 1T̂ †(Ĥ − E0) 1T̂ |0〉 (3.299)

U =
(
c†c + s†s

)
1 + η (3.300)

This offers no handling of the size extensivity/consistency error introduced by the sin-

gles, but does offer a practical approach to improve the correlation energy.
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3.6 Proposed Tests

The method presented in this chapter, MRLPFD, must be tested to show both its theo-

retically predicted attributes and its performance in comparison to other multireference

methods currently in use. In addition, these numerical tests on the example systems

can aid in the further development of the theory by showing the effects of changes to

the method (for example, changing the normalisation condition c0
†c = 1). An outline

of a proposed set of tests designed to ascertain the performance of MRLPFD is now

given. This list is not exhaustive but has been compiled to include the primary key

tests.

3.6.1 Size Consistency and Extensivity

The theory presented here uses an LPF like transformation of the pair amplitudes in

order to introduce a linked denominator, and additionally approximate VCC. As the

method is implemented within an MRCI code, the emphasis is on the degree to which

the size extensivity and consistency error is improved. In MRCI it is the pair norm

which introduces the major part of the error, but in this work there is a linked denom-

inator, so is extensive. The following proposed numerical tests are required to see the

change in the extensivity/consistency error.

N2 and H2O – This small molecule example, mentioned earlier (1.4.3), has been

widely used to look at the consistency of methods, with comparisons for all methods

outlined in the introduction[89].

CH2 · · ·nHe – The CH2 · · ·nHe model system of Cave and Davidson [112] is a gen-

eral test of size-consistency. This example takes CH2 and places a He atom 10Å

away, along the principal symmetry axis. The calculation is then repeated, each time

adding more helium atoms placed along the symmetry axis at the same regular (10Å)

intervals. This adds a 2 electron system, for which the new MRLPF method should

be exact, to the existing system. Without size-consistency, the description of CH2 gets

worse with every helium atom added, as can be seen via the difference in energy to

FCI. Methods described earlier such as MRACPF, MRAQCC and MRCEPA(0) have

been shown to reduce the MRCI error by an order of magnitude [26] and are termed
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approximately-consistent. The method developed in this thesis must perform at least

as well as the widely used methods of MRACPF and MRAQCC, so numerical testing

and analysis of its size-consistency error is needed.

3.6.2 Potential Energy Curves

As stated, multireference methods are utilised when static correlation is considerable,

which often occurs at long bond lengths. Accordingly, the ability of MRLPFD to re-

produce the correct potential energy curve must be tested. For potential energy curves

it is appropriate not only to look at the standard error compared to FCI, but also the

non-parallelism error (NPE), the difference between the maximum error and minimum

error, This measure gives some indication of how parallel the computed potential en-

ergy curve is to that of FCI, i.e. how precise it is, or conversely, how erratic the PES is.

Aside from the qualitative behaviour, it is desirable for the method to be more accu-

rate than competing multireference methods, recovering more correlation energy. This

accuracy must also be tested.

HF Dissociation – The dissociation of hydrogen fluoride is another widely used model

to test the performance of multireference methods. As such, there is a wide array of

literature to compare against. Interestingly a recent review[50] has shown that for this

system that MRACPF and MRAQCC give smaller NPE errors than most new MRCC

methods. New icMRCC methods have given smaller absolute errors and smaller NPE

errors [53]. The performance of MRACPF and MRAQCC makes it an interesting

model for comparison for the MRLPFD method, where the MRLPFD method would

need to be compared against MRACPF/MRAQCC results from MOLPRO, to remove

differences due to contraction error.

N2 Potential Energy Surface – The stretching of N2 is often used as a test of new

methods because it is a challenging problem, due to the static correlation involved. It is

therefore an appropriate example with which to test the accuracy of MRLPFD. Around

the equilibrium bond distance, the zeroth order wavefunction is dominated by a single

configuration that has doubly occupied bonding π orbitals, and can be described by a

single reference method. However, on stretching the bond the excited configurations

become more important and a multireference method must be used.
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BeH2 Potential Energy Curve – The insertion of beryllium into H2 is a model system

introduced by Purvis et al.[113], where the potential energy curve of the 1A1 ground

state is computed. This system has become a standard test for new multireference

methods [31, 49, 53] as it is a symmetry forbidden reaction where the dominant con-

figuration changes as the beryllium is moved.

The system is set with beryllium placed in the two-dimensional coordinate system

at (0, 0). The hydrogen atoms are then placed at (x, y) and (x,−y), where x is the

distance to the beryllium atom, and y is found via y(x) = 2.54− 0.46x. The energy is

then computed for a range of x, while constrained to a c2v symmetry.

For molecular BeH2, the dominant configuration in the zeroth-order wavefunction

is,

|ψ1〉 = |(1a1)2(2a1)2(1b2)2〉 (3.301)

At large x, when the system exists as Be + H2 (after dissociation), the dominant con-

figuration is,

|ψ2〉 = |(1a1)2(2a1)2(3a1)2〉 (3.302)

An NPE can then be computed for the potential energy surface. This has been a popular

test for multireference methods, and as such, a wide array of comparisons can be made

with other multireference methods,

Symmetric Water Stretch – The symmetric stretch of water is an apt test for MRLPFD

as it requires a large reference space. It has been used many times as a test of both

single- and multi-reference methods [44, 53]. The ground state wavefunction around

the equilibrium geometry is dominated by one configuration and can be described well

by a Hartree-Fock determinant,

ΨHF 〉 = |(1a1)2(2a1)2(1b2)2(3a1)2(1b1)2〉 (3.303)

However, upon stretching the hydrogen-oxygen bonds, a CASSCF wavefunction is re-

quired to qualitatively describe the potential energy surface correctly, with 6 electrons

distributed in 5 orbitals, giving 28 reference configurations [53]. It has been shown

that accuracy of JM based MRCC methods decreases with an increased active space

[50]. This offers the opportunity to compare MRLPFD against the more costly JM

based MRCC methods.
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3.7 Comments and Future Development

The MRLPF+1D method defined in this chapter aims to eliminate the size extensivity

error of MRCI. MRLPF+1D introduces a linked denominator via a transformation of

the pair amplitudes that is similar in nature to the LPF+1 theory[29], and follows the

spirit of coupled pair functional. The transformation also introduces an infinite series

to approximate a multireference variational Coupled Cluster theory.

The pair norm is not the only source of error in MRCI, but it is the largest source of

error, with the pair external excitations being more numerous than any other. There-

fore, it is known that the method is indeed another “approximately extensive” method,

but relative to others such as MRACPF and MRAQCC, the error will, theoretically, be

much less. Numerical tests, such as those mentioned above, are needed to investigate

this.

As an approximation to VCC, the transformation defined here gives a very simple first

approximation to VCC, which, using the framework developed here, can be extended

to capture more VCC terms and give a better approximation. Which other terms to be

captured, and the form of their transformation is work yet to be done.

MRCI itself is invariant to orbital rotations in the separate orbital spaces[52]. The

difference in this work to MRCI do not affect the orbital invariance. The transformation

of the amplitudes is written in tensor notation, and is invariant to orbital rotations. The

use of a linearly independent set of excitation operators is key to ensuring the orbital

invariance of the method, and lack of such a set was one of the key reason why the

“Multireference approximate VCC theory” development was halted. The use of the

MRACPF style denominator for the internals (and singles if included), also does not

affect orbital invariance, as MRACPF is already known to be invariant[31]. A more

detailed theoretical argument may be discussed in the future, but would hinge on the

same comments made here. It is also possible to prove orbital invariance through

numerical calculations within MOLPRO. this has not been done here as, at present, the

code implementation contains bugs.

There also exist two issues within the theory that are open to change based on numeri-

cal calculations (those described in section 3.6), these are, firstly, the use of 〈0|T̂ †T̂0〉
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in the internals denominator, and secondly, the use of c†c on the diagonals of the U

matrix.

The rational behind the use of the pair norm in denominator of the part of the energy

involving only the internals is based on what MRCI does. The author is aware that

it may seem illogical, but the development of the method here has been based on

still being equivalent to MRCI for the model system, which requires the use of the

MRACPF style denominator.

The use of c†c on the diagonals of the U matrix may also unwanted, based on the

arguments in 3.2.8. Again, its inclusion is based on the equivalence to MRCI for the

model case. Whether it should be used or not will be guided by the numerical results

of test calculations such as those outlined earlier.

After taking into account the results of those numerical calculations, the MRLPF+1D

method that is of most use in the general case, can be definitively defined.



Chapter 4

Conclusions and Comments

The aim of the work presented in this thesis was to develop new methods to approx-

imately solve the non-relativistic electronic Schrödinger equation, under the Born-

Oppenheimer approximation; the solution of which can provide valuable insights into

many areas of chemistry, physics and materials science.

The first chapter introduces the subject of electronic structure theory and some of the

most common methods employed in approximate solution of the Schrödinger equa-

tion. We then focus on the need for a multiconfigurational reference wavefunction and

describe some common multireference methods. Of particular importance are MRCC,

MRCI and MRCI based methods, that are relevant to the work developed here.

Chapter 2 shows the development of “MR3VCC”. This is a direct approximation to

a multireference variational Coupled Cluster theory. This approach started with the

3rd order VCC energy and decomposed the 4th order density matrices to allow re-

moval of unlinked terms. The importance of the remaining terms was determined

and an LPF-like transformation was formed to capture the desired 3rd order energy

term, and a subset of VCC terms to infinite order. It was noted that the spin-free form

was not equivalent to the spin-orbital form, only being the same for the two electron

case. Development and implementation of this theory was halted as it was noted dur-

ing the research that the method of redundancy removal was key to retaining orbital

invariance; requiring a singular value decomposition and use of orthogonal electron

pairs. Accordingly, focus switched to an LPF-like method formed using orthogonal

pairs.
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The MRLPF+1 theory of chapter 3 is a direct extension of the LPF+1 theory. It uses the

same basic form of the transformation matrix, with significant complications arising

due to the multiconfigurational reference wavefunction. Importantly this theory uses

a singular value decomposition to remove redundancies and therefore uses orthogonal

pairs, in order to retain orbital invariance. Evaluation of the 2-electron 2-reference

model system is given, as well as limiting case of a single reference function. This

chapter also details how to embed the transformation of the pair amplitudes into the

MRCI energy functional, including inclusion within the efficient Davidson subspace

method for solving the MRCI equations.

This method captures static correlation and uses an approximate Coupled Cluster ap-

proach to describe dynamic correlation. Therefore this method is capable of describing

the many body effects seen in chemistry, such as van de Waals and dispersion forces,

that other cheaper electronic structure methods (like Hartree-Fock) struggle to model.

MRLPF+1 is a multireference method, and can therefore be applied to study bond

breaking, cases of near degenerate states and other multireference situations that sin-

gle reference methods are incapable of describing with chemical accuracy, even the

single reference LPF+1 method.

Numerical tests of the MRLPF+1 method (see 3.6) are required to show how well

the method corrects the MRCI size-extensivity and consistency errors and its general

performance on capturing correlation energy. The properties of extensivity and con-

sistency are most obvious when calculating bond dissociation energies and separating

fragments. As such, the MRLPF+1 method is likely to show strong performance com-

pared to MRCI for such examples. The application of this theory is not limited to those

cases, but is likely to improve upon the performance of MRCI in general, as will high-

lighted by the proposed tests. The method should perform better than existing MRCI

corrections, such as the Davidson and Pople corrections, but must also perform better

than other multireference methods such as MRACPF and MRAQCC. Aside from cor-

recting MRCI, this method approximates variational Coupled Cluster theory. In this

regard it is a simple approximation, but extensions can be made to better approximate

VCC. As it is an approximate Coupled Cluster method, the performance of MRLPF+1

should be compared with that of modern MRCC approaches, such as Mk-MRCC and

the recently developed icMRCC theories of the groups of Gauss and Köhn (outline
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and references in introduction), whose computational scaling is greater than that of

MRLPF+1.

The consideration of cost is important when developing ab initio electronic structure

theories, as methods must be capable of providing relevant information in reasonable

timescales. As noted earlier (see section 3.2.6), the MRLPF+1 method is slightly more

costly than MRCI but doesn’t have an increase in complexity. In addition, the work

presented here is embedded in the internally contracted MRCI theory and implemented

within as such within MOLPRO. This greatly reduces the computational demand as the

number of amplitudes is not dependent on the number of configurations, just the num-

ber of correlated orbitals. Accordingly internally contracted MRCI, although it con-

tains a small contraction error, is far more applicable than the standard uncontracted

MRCI, and as such has been widely used. Embedding MRLPF+1 within the icMRCI

theory should allow the MRLPF+1 method to be used in all situations that icMRCI

is currently used in, examples include the small molecule studies in [114] and [115].

Work in the Werner groups has recently provided a more efficient implementation in

MOLPRO using an integrated tensor framework [116], including an explicitly correla-

tion version [117]. These methods have been used to treat dioxygen-copper complexes

with different ligands [116] and study of the conical intersections of LiF [118] extend-

ing further the applicability of icMRCI. The MRLPF+1 could be implemented within

this new icMRCI framework, which would further reduce computational cost and ex-

tend its applicability.

The MRLPF+1 offers an approximately size-extensive alternative to MRCI, MRACPF

and MRAQCC, but also offers an opportunity to approximate a multireference Cou-

pled Cluster theory (a multireference variational Coupled Cluster theory) that can be

implemented as an extension of existing, efficient, icMRCI software.





Appendix

2-Electron Multi-Reference Model System

A very simple model system is used in this thesis, to help guide the development of the

methods and to compare between methods.

The multireference approximate variational coupled cluster theories must be formu-

lated to be exact for this 2 electron case.

The model consists of two electrons, with 2 reference determinants. There are 2 occu-

pied orbitals with different symmetry and one virtual orbital.

|12〉 = 11̄ (4.1)

|22〉 = 22̄ (4.2)

Due to there being only 1 virtual orbital, there is only 1 excited configuration:

|32〉 = 33̄ (4.3)

and 2 amplitudes, T 11̄
33̄ and T 22̄

33̄

The reference wavefunction:

|0〉 = cos θ|12〉+ sin θ|22〉c0 = (cos θ sin θ) (4.4)

The MRCI wavefunction (without internal excitations):

|Ψ〉 = |0〉 + µ|32〉 (4.5)

Internal Excitations
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For a full energy expression, the internal energy must be considered. The only Internal

excitations,

(1 + ĉ)|0〉 = |0〉+ |1〉

|ΨMRCI〉 = |0〉 + σ|1〉 + µ|32〉

|1〉 = σ(− sin θ|12〉 + cos θ|22〉)

c′ = σ (− sin θ cos θ)

c = c0 + c′

c = (cos θ − σ sin θ sin θ + σ cos θ)

The choice of |1〉 ensures normalisation and orthogonality with the reference:

(1 + ĉ)|0〉 = |0〉 + σ|1〉

= (cos θ − σ sin θ)|12〉 + (σ cos θ − sin θ)|22〉 (4.6)

〈(1 + ĉ†)|1 + ĉ〉 = (cos2 θ + σ2 sin2 θ)〈12|12〉 + (σ2 cos2 θ + sin2 θ)〈22|22〉

= cos2 θ + σ2 sin2 θ + σ2 cos2 θ + sin2 θ

= 1 + σ2 [n.b. sin2 θ + cos2 θ = 1] (4.7)

c0
†c0 = 1

c0
†c′ = (cos θ + sin θ)(1− σ)

c0
†c = 1

c†c = 1 + σ2
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List of Acronyms

ACPF Average Coupled-Pair Functional

AQCC Average Quadratic Coupled Cluster

AVCC Approximate Variational Coupled Cluster

CBH Campbell-Baker-Hausdorff (expansion)

cc-pVXZ correlation consistent polarised valence X-tuple zeta (basis)

CCSD Coupled Cluster Singles and Doubles

CISD Configuration Interaction Singles and Doubles

CEPA Coupled Electron-Pair Approximation

CPF Coupled-Pair Functional

CSE Contracted Schrödinger Equation

CT Canonical Transformation

EPV Exclusion Principle Violating

FCI Full Configuration Interaction

HOMO Highest Occupied Molecular Orbital

icMRCC Internally Contracted MRCC

icMRCI Internally Contracted MRCI

LCCM Linearized Coupled Cluster Method

LPF Linked (electron) Pair Functional

LPFx Linked Pair Functional variant λ = x

LUMO Lowest Unoccupied Molecular Orbital

MCSCF Multi-Configurational Self-Consistent Field

Mk-MRCC Mukherjee’s state specific MRCC

MR Multi-Reference

MRCC MultiReference Coupled Cluster

MRCI MultiReference Configuration Interaction

MRVCC MultiReference Variational Coupled Cluster

MR3VCC 3rd Order Approximate MRVCC

MR-ACPF MultiReference ACPF
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MR-AQCC MultiReference AQCC

MR-CEPA MultiReference CEPA

MR-CEPA(0) MultiReference CEPA(0)

MR-LCCM MultiReference LCCM

MR-SC2-CI MultiReference Self-Consistent Size-Consistent Configuration Interaction

NPE Non-Parallelism Error

PES Potential Energy Surface

QCC Quadratic Coupled Cluster (method)

QVCC Quasi-Variational Coupled Cluster

RDM Reduced Density Matrix. nRDM: n-body RDM.

RHF Restricted Hartree-Fock

SCF Self-Consistent Field

SR Single-Reference

TCC Traditional Coupled Cluster

tdm transition density matrix

VCC Variational Coupled Cluster



Bibliography

[1] D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).

[2] V. Fock, Z. Phys. 61, 126 (1930).

[3] A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Ad-

vanced Electronic Structure Theory, Dover Publications, 1996.

[4] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

[5] G. G. Hall, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 205, 541 (1951).

[6] D. I. Lyakh, M. Musia, V. F. Lotrich, and R. J. Bartlett, Chem. Rev. 112, 182

(2012).

[7] K. A. Brueckner, Phys. Rev. 100, 36 (1955).

[8] J. Goldstone, Proc. R. Soc. A Math. Phys. Eng. Sci. 239, 267 (1957).

[9] T. D. Crawford and H. F. Schaefer, An Introduction to Coupled Cluster Theory

for Computational Chemists, pages 33–136, John Wiley and Sons, Inc., 2007.

[10] E. Merzbacher, Quantum Mechanics, Wiley, New York, 2nd edition, 1970.

[11] J. Robinson, Approximate Variational Coupled Cluster Theories, PhD thesis,

School of Chemistry, Cardiff University, 2012.

[12] T. V. Voorhis and M. Head-Gordon, J. Chem. Phys. 113, 8873 (2000).

[13] J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968

(1987).

[14] J. D. Watts, M. Urban, and R. J. Bartlett, Theor. Chim. Acta 90, 341 (1995).



154 Bibliography

[15] J. Paldus, J. Cizek, and B. Jeziorski, J. Chem. Phys. 90, 4356 (1989).

[16] S. Koch and W. Kutzelnigg, Theor. Chim. Acta 59, 387 (1981).

[17] R. J. Barlett and G. D. Purvis III, Int. J. Quantum Chem. 14, 561 (1978).
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