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Summary 

Three topics are considered in this thesis. The first is evaluation of the effective elastic 

moduli of porous materials and considers materials such as porous glass, sandstone, 

sintered bronze and iron materials, porous ceramics. Models with spherical pores were 

first considered showing good agreement for some materials but not for materials 

prepared by powder sintering. A number of modifications of increasing complexity 

were introduced accounting for non-spherical pores and their interaction. The models 

then compare well with experimental data for sintered materials. 

The other topics of the thesis can be used to model mixed lubrication in plain bearings 

where part of the load is carried by contacting asperities and part by the lubricant film. 

The roughness features affect the ability of the lubricant to flow in the gap between 

the surfaces and surface deflection is caused by asperity contact pressures only.  

A method is presented to solve dry contact problems for nominally plane surfaces 

using a simple elastic-plastic model at asperity contacts and a differential formulation 

for the elastic deflection. Periodic roughness defined over a representative area is 

incorporated using Fourier transforms to calculate the convolutions. The method is 

validated by comparison with the results of an elastic-plastic rough surface contact 

analysis obtained using a finite element method. 

A method is then developed to model the mixed lubrication problem based on the 

homogenised Reynolds equation where the effect of the roughness features is isolated 

from that of the global geometry of the bearing. Local rough problems are solved and 

the average effect of the roughness on lubricant flow expressed in terms of flow 

factors, which are functions of global film thickness. When direct asperity contact 

occurs the deflected shape is obtained from dry contact analysis of the representative 

roughness area. The global problem is then solved using the Reynolds equation 

modified with appropriate flow factors taking the mean contact pressure obtained 

from the local problem into account in load determination. 

The homogenised method is validated against the series of deterministic solutions and 

cases of surfaces with measured roughness are presented 
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1. Introduction 

The work discussed in this thesis was carried out within the framework of the 

multidisciplinary project MINILUBES (Mechanisms of interactions in nano-scale of 

novel ionic lubricants with functional surfaces). This was a 12 partner Marie Curie 

Initial Training Network aimed at thorough investigation of ionic liquids as potential 

lubricants. The role of the author in this network was to develop mixed lubrication 

analysis methods for plain bearings with surface roughness taken into account with a 

view to modelling applications in the field of porous bearings. Porous bearings are a 

potential application for ionic liquid lubricants because of their low rates of 

evaporation. In this chapter ionic liquids are discussed, as well as the particular role of 

the author in the project and the work that has been carried out by the author. The 

structure of the thesis and a general literature review are given.  

1.1. Ionic liquids as potential lubricants 

In most of the applications the term Ionic liquids (ILs) refers to organic salts with a 

melting point of below 100C. As indicated in the review of Freemantle (1998) they 

were first discovered in 1970s and were used as electrolytes in batteries. ILs were also 

proposed as a new class of green solvents by e.g. Appleby and Seddon (1986). The 

chemical properties, synthesis and applications of ILs are reviewed by Welton (1999) 

and Earle and Seddon (2000) who are quite well-known scientists in the field of ILs. 

According to the paper of Minami (2009), where application of ILs in the field of 

tribology is reviewed, the first record of using ionic liquids as lubricants is by Smith 

(1961) in application to high temperature bearings for a nuclear power plant. A 

mixture of lithium fluoride, beryllium di-fluoride and uranium tetra-fluoride was used 

as a lubricant operating in the temperature range of 650-815C. 

Forty years later the use of room temperature organic liquids as lubricants was first 

suggested by Ye et al (2001). ILs are attractive in lubrication for their non-flammability, 

high thermal stability and low volatility as indicated by e.g. Earle and Seddon (2000) 

and Liu et al (2002). For this reason ILs are considered as potentially advantageous 

lubricants in high temperature and/or low ambient pressure (vacuum) conditions 

(Minami, 2009).  

Ionic liquids consist of an anion ionically bound to a cation. Typical anions for ionic 

lubricants are tetra-fluoroborate [BF4]-, hexa-fluorophosphate [PF6]-, 
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bis(trifluoromethylsulphonyl)imide [Tf2N]-, sulphates [mSO4]- and sulphonates [mSO3]-, 

although there are many other possibilities. The cation moieties typical for ionic 

lubricants are based on imidazolium, ammonium or phosphonium with alkyl chains of 

various lengths as mentioned by e.g. Minami (2009). 

Varying the chemical structure of either anion or cation (or both) as well as extending 

the length of the alkyl chain changes the chemical and tribological properties of ILs. 

Indeed, it was shown by e.g. Pagano et al (2012) that the higher carbon numbers 

(longer alkyl chains) in hexa-ethyleneglycol and oligo-ethyleneglycol cations led to 

improved tribological behaviour. The effect of longer alkyl chains of IL components is 

the same as that of fatty acids in conventional lubricants described by Bowden and 

Tabor (1945). They explained that longer alkyl chains help to form a protective 

tribofilm covering the working surfaces. However, Pagano et al (2012) as well as other 

researchers e.g. Liu et al (2006) indicated strong corrosive effects of ILs. Therefore it 

was suggested to use ILs as additives to conventional oils so that the corrosive effect is 

minimised. It was shown by Pagano et al that even a small amount of dicationic ILs in 

the lubricant significantly reduced friction and wear in steel/steel contacts.  

In other research papers the effect of the anion on the tribological properties has also 

been investigated. In the work of Kronberger et al (2012) it was shown that the 

tribological behaviour of the ILs based on sulphates and sulfonates as anions was 

superior to those based on bis(trifluoromethylsulfonyl)imide anion, which were less 

soluble in the base oil. Efficiently reducing friction, sulphates and particularly 

sulphonates however caused higher wear rate supposedly due to tribo-corrosion. 

Pejakovic et al (2012) showed similar results for different cations. It was confirmed 

that tribofilm formed by ILs creates efficient protection against friction and abrasive 

wear and the main wear mechanism when using ILs is a result of corrosion. 

The important point of the three works mentioned is that friction can be significantly 

reduced even when using ILs as additives and the effect of corrosion can be minimised 

by choosing the optimal concentration of ILs in the mixture. Also, it was shown that 

the advantages of ILs become more pronounced for elevated temperatures (100-

150C). The variety of cation and anion combinations, as well as the adjustable length 

of the side alkyl chains allows the properties of the ILs to be tailored for the required 

conditions. 
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1.2. The MINILUBES project 

The acronym MINILUBES stands of Mechanisms of Interaction of Novel Ionic 

LUBricants with Functional Surfaces. As mentioned, the overall aim of the project was 

to investigate various aspects of using the ionic liquids as lubricants. The parties 

involved include 7 Universities in UK, France, Germany, Spain, Slovenia, Poland and 

Romania, 2 non-academic research organisations in Austria and Spain, and 3 industrial 

partners from Germany, Italy and Austria. The research was divided into four major 

topics: synthesis of ILs, analysis, tribology, and numerical simulations.  

Synthesis was done mainly at the University of Vigo, Spain, the University of Halle-

Wittenberg, Germany and the University of PetruPoni, Romania. As mentioned 

previously, the choice of the anion-cation couples and the configuration of the side 

chains affect the chemical, rheological and tribological properties of ILs. This part of 

the team was responsible for developing and improving methods of obtaining the 

required chemical structure as well as for the characterisation of prepared substances 

by means of mass-spectrometry, chromatography and x-ray crystallography. See e.g. 

Mahrova et al (2012) for more information on synthesis and characterization of alkane 

sulphate and sulphonate based ILs, Zare et al (2012) for poly-ethylene glycol based ILs 

and Ranetcaia et al (2013) for modified poly(dimethylsiloxane–alkylene oxide) graft co-

polymers. 

The analysis group specialised in studying the degradation of ILs in the presence of air, 

toxicity and ecological impact and was primarily carried out in AC2T Research GmbH, 

Austria, University of Gdansk, Poland, and non academic research and development 

organisation IK4 Tekniker, Spain. For example it was shown by Pisarova et al (2012) 

that ILs based on (2-methoxyethyl)- and (2-hydroxyethyl) trimethyl-ammonium cation 

and products of their degradation can be classified as harmful or even toxic to aquatic 

organisms and therefore they are not recommended for general use in IL-based 

lubricants. On the other hand pyrrolidinium and butyl-trimethyl-ammonium cations 

have been shown to be harmless to aquatic organisms as indicated by Stolte et al 

(2012) and therefore applicable for use as potential lubricants. As for anions, according 

to Stolte et al (2012) sulphates and sulphonates are a preferable choice over 

bis(trifluoromethylsulphonyl)imide and other fluorine containing anions. 

The tribological aspects of ionic liquids included the measurements of friction and 

wear as well as corrosion associated with the use of ILs as lubricants. The institutions 
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responsible for these aspects were the University of Ljubljana, Slovenia, IK4 

Foundation Tekniker, Spain and AC2T Research, Austria. The research carried out by 

these partners included the works of Kronberger et al (2012), Pejakovic et al (2012) 

and Pagano et al (2012). All studies confirmed that the tendency to reduce friction and 

wear remains even if ILs are added to the reference oil (glycerol) in concentration of 

2.5wt% (Kronberger et al, 2012,  Pagano et al, 2012) and 0.625wt% (Pejakovic et al, 

2012). It was also shown that the improved tribological behaviour of ILs is more 

pronounced for higher temperatures of 100-150C. However, despite of the apparent 

improvement in tribological behaviour of neat ILs in comparison to reference oil, 

corrosion caused by using ILs remains the major concern. Therefore using ILs as 

additives appears to be more promising (Pagano et al, 2012). For this purpose the 

optimal concentration of ILs has to be established as well as the optimal choice of 

anion and cation moieties. 

The simulation group included researchers based in Cardiff University, UK, University 

of Blaise Pascal, France and AC2T Research, Austria. One of the responsibilities of the 

simulation group was to perform the molecular dynamics simulations aimed at 

connecting the chemical structure to the global physical and rheological properties of 

ILs. The pressure-viscosity dependence of ILs was presented in e.g. the work of 

Pensado et al (2008a) mainly consisting of the experimental data, however the 

experimental techniques have limited pressure and temperature ranges. Mendonca et 

al (2012) applied a method based on molecular dynamics simulations to calculations of 

the viscosity of ILs at high pressure and temperature values using the known viscosity 

at ambient conditions. This method is similar to the one developed by Pensado et al 

(2008b) Other aspects of the project covered by the simulations group were the 

modelling of hydrodynamic lubrication in porous journal bearings at AC2T and 

modelling of the mixed lubrication in plain bearings by the author at Cardiff University. 

These models were developed in terms of a general formulation with the possibility of 

incorporating the properties of the ILs.  

1.3. Porous bearings 

One of the industrial partners of the project was GKN SinterMetals, Bruneck, Italy, 

which is a manufacturer of sintered porous bearings. These bearings are produced 

from metal powders. The metals used can be copper, tin, iron and others. During the 

manufacturing process the powders are mixed, pressed in the required form of the 
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component (bearing, bushing, thrust washer etc). After that the parts are placed in an 

oven and baked (sintered) at a temperature that is below the melting point of each of 

the metals used. For example the high temperature sintering of the iron, nickel, 

chromium, silicon and molybdenum mixture requires the temperature of 1200C with 

the melting points of the components being from 1200C for iron and 2600C for 

molybdenum as specified in the manufacturer’s brochure. The iron bearings are 

typically sintered at a temperature of 800C. This process creates sufficiently strong 

bonds between the grains of the metals for the material to support the bearing loads. 

However it results in the material containing pores, which are spaces between the 

grains. These pores are then impregnated with the lubricant oil. This technology allows 

the bearings to be self-lubricated and as a result they can be long lasting with low 

maintenance requirements. The use of ILs instead of conventional oils is of high 

interest for the manufacturers of porous bearings. Having low volatility, ILs evaporate 

very slowly and may persist within the porous bearing structure for longer time than 

conventional lubricants. 

In spite of these advantages of using porous bearings they do have a serious 

disadvantage. The porous structure of the material significantly reduces the load 

carrying capacity. This limits the range of applicability to moderate load conditions, 

with bearing radial load of up to 20MN/m2 at surface velocities of up to 0.2m/s and 

load of up to 0.2MN/m2 at velocities of up to 20m/s according to the manufacturer’s 

recommendations. The limits on the load conditions are due to the load carrying 

capacity of the bearing, whereas velocity limits are typically imposed due to lubrication 

failure and scuffing damage associated with frictional heating, which increases at 

higher velocities. Specifications of the porous bearings can also be found in the 

handbook edited by Neale (1995). The type of the material used is prescribed by the 

specific needs.  

In this thesis Chapter 2 is dedicated to a model developed for predicting the effective 

elastic properties, such as Young’s modulus and Poisson’s ratio in the porous materials 

in terms of the properties of the metal and the nature of the material porosity. 

Two main types of pores can be distinguished in porous materials prepared by the 

powder sintering: first are the materials which contain isolated pores and second are 

materials with so called open pores, which can be described as a complex network of 

channels connected to the surface of the bearing. The total volume of pores can be 
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measured by comparing the volume of the raw material used to prepare the product 

and the total volume of the product. The fraction of each type of pore can be 

distinguished by weighing the product placed in a vessel filled with fluid. The data 

obtained by the author by means of personal communication with Pahl (2010) 

indicates that materials used by the manufacturer of porous bearings with the total 

porosity value greater than 18-20% have all the pores connected. 

1.4. Structure of the thesis 

This thesis is mainly based on research carried out by the author within the framework 

of the MINILUBES project. The particular role of the author involved the evaluation of 

the effective elastic properties of sintered porous bearings as well as the investigation 

of the effect of roughness on the lubrication of plain bearings.  

The first part of the work is presented in Chapter 2, where a semi-analytical model is 

developed for predicting the effective elastic properties of the porous materials as a 

function of porosity. The chapter starts with a review of existing models used to 

evaluate the effective elastic properties of porous materials. The majority of the 

models examined are based on the mechanics of composites. A series of assumptions 

on the porous microstructure are made and the associated models are developed. 

Experimental data for a number of porous materials are compared to the predictions 

of the various models presented, and their combinations. It is shown that the porous 

microstructure and the associated elastic behaviour depend on the manufacturing 

process of the porous material significantly. The models developed can be applied to 

porous materials in general as well as to sintered materials. However, in the case of 

sintered bearings, a dry porous material is considered. It is expected, that pores filled 

with the liquid lubricant will behave differently to the dry ones. A paper has been 

published by the author based on the methods and results discussed in this chapter 

(Manoylov et al, 2013a). 

The second major part of the thesis is concerned with the dry contact analysis of rough 

surfaces which is presented in Chapter 3. This chapter starts with the literature review 

relevant to the subject, continues with the theoretical background and formulation of 

the problem and finishes with the implementation and validation of the model. The 

model is designed to evaluate the deflected shape of the rough surface and the 

contact pressure distribution corresponding to the given displacement. In the case of 

the elastic pressure exceeding the given maximum value (nominally equal to the 
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hardness value of the material) at a contact area, the further deflection is assumed to 

be plastic and the resulting residual deflection of the surface is established. The results 

of the model are compared with those obtained by means of finite element analysis. 

The method discussed in this chapter and the corresponding results were published by 

the author (Manoylov et al, 2013b). 

The third part of the thesis presents the mixed lubrication model applicable to the 

plain bearings. This model is based on the theory of flow factors, which are the 

measure of the average effect of roughness on the flow of liquid lubricant. In the case 

of the film thickness not being sufficient to prevent direct contact of the asperities, the 

deflected shape and the associated contact load are evaluated by means of the dry 

contact analysis. This model is presented in Chapters 4 to 6. Chapter 4 gives a review of 

mixed lubrication models based on the theory of flow factors and proceeds to present 

the general concept of homogenisation in application to the Reynolds’ equation and 

the theoretical derivation of the flow factors. In Chapter 5 the method of evaluating 

the flow factors numerically is described and the flow factors obtained are compared 

to those calculated analytically. Flow factors are evaluated for various surface 

roughness functions, including surface roughness examples measured by a Taylor-

Hobson profilometer. Various shapes of the flow factor functions are illustrated and 

their physical interpretation discussed. 

Finally, the application of the mixed lubrication model based on the theory of flow 

factors to inclined pad bearings is considered. In Chapter 6 first the description of 

inclined pad bearings is given and the geometry of the problem is formulated. The 

mixed lubrication of the inclined pad bearing can be modelled using the homogenised 

Reynolds equation. The numerical methods of solving the homogenised Reynolds 

equation are discussed and it is suggested that the multigrid method is suitable and 

beneficial. The multigrid method is quite a complex technique which is therefore 

described in detail in Chapter 6, Section 6.4. After that solutions of the homogenised 

Reynolds equation are presented which includes a series of cases for which the 

deterministic solution is available as well as the cases of measured surface roughness. 

Various properties of the roughness, such as wavelength, orientation of surface lay to 

the entrainment direction, and the proximity of the rough surface to the counterface 

are illustrated as well as how these effects are captured by the homogenised solution. 
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Finally, the conclusions to the thesis are given as well as suggestions for future 

development. 

1.5. Evolution of the contact mechanics methods 

The third chapter of the thesis is concerned with modelling of the dry contact of rough 

surfaces. In this thesis the model developed is used as a part of the mixed lubrication 

analysis; however it has a meaningful standalone application in the field of contact 

mechanics. The review of the literature relevant to the dry contact of rough surfaces is 

provided in Chapter 3, whereas in this section the more general review of the 

evolution of the contact mechanics methods is given. 

The foundation of the classical contact mechanics is associated with Hertz and his early 

work of 1881 Ueber die Beruehrung elastischer Koerper (On Contact Between Elastic 

Bodies). Hertz described the contact of two elastic bodies with curved surfaces. 

Hertzian theory is used nowadays where the non-adhesive contact of curved surfaces 

is considered.  

Bradley (1932) was the first who considered attractive forces between two contacting 

absolutely rigid spheres. He calculated point wise the attraction between the spheres. 

Derjaguin (1934) pointed out that elastic deformations of the spheres need to be 

accounted as well as the adhesive interactions. He presented the first attempt to 

consider the problem of adhesion between elastic spheres: calculating the deformed 

shape of the spheres using Hertzian contact theory, he evaluated the work of adhesion 

assuming only the pair wise interactions of the closest surface elements. The 

interaction energy per unit area between small elements of curved surfaces was 

assumed the same as for parallel planes. Almost all common models of adhesive 

contact do not use the point-wise calculations of the adhesive force and are based 

(sometimes implicitly) on the Derjaguin approximation. 

On the other hand, Johnson (1958) made an attempt to solve the adhesive contact 

problem by combining the Hertzian spherical contact problem and the problem of a 

rigid flat-ended punch. According to Kendall (2001, pages 185-186), Johnson et al. 

(1971) applied Derjaguin’s idea to equate the work done by the surface attractions 

against the work of deformation in the elastic spheres to Johnson’s combined stress 

superposition. This resulted in the creation of the famous JKR (Johnson, Kendall, and 

Roberts) theory of adhesive contact.  
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Nowadays there are several well-established classic models of adhesive contact that 

include the JKR model, the DMT (Derjaguin-Muller-Toporov) model, and the Maugis 

transition solution between the JKR and DMT models. A detailed description of the 

theories is given by Maugis (2000). These models propose methodologies to predict 

the adhesion force between contacting spherical surfaces (Johnson et al. 1971, 

Derjaguin et al. 1975, Maugis 1992). These classic models are very helpful for studying 

various phenomena that involve molecular adhesion. For example, a method has been 

introduced by Borodich and Galanov (2008) for the determination of the work of 

adhesion and of the elastic contact modulus of the materials from the indentation 

experiments. This method is based on the Maugis theory and it was shown to be fast 

and robust (Borodich et al. 2012). 

Although the phenomenon of adhesion plays an important role in some problems of 

contact mechanics, it is however not considered in this thesis. Numerous studies of 

adhesive contact showed a rapid decay of adhesive force when the real contact area 

decreases (see e.g. Kendall, 2001). As discussed later, the real contact area in the 

presence of roughness is significantly smaller than the nominal contact area obtained 

considering the geometrical shape of the surfaces. Moreover, in the mixed lubrication 

analysis considered in the thesis only occasional contacts occur which makes the effect 

of adhesion negligible in comparison to other forces. 

As for the contact of rough surfaces, its importance in contact mechanics was first 

emphasized by Bowden and Tabor (1939). They were measuring the electrical 

conductivity between contacting bodies and found that the real area where the 

surfaces touch is significantly smaller than the apparent area. This discovery had a 

drastic effect on the understanding of friction, which was known to be due to adhesive 

forces and therefore proportional to the area of contact. According to the Hertz theory 

for point contact, the area of contact is proportional to the normal load in the power 

2/3, therefore in case of elastic deformation the classical Amonton’s law of friction 

being proportional to the normal load did not hold. Zhuravlev (1940) built a theoretical 

justification of the Amonton’s law in the case of rough surface contact. He assumed 

surface asperities having hemispheric shape and behaving as individual elastic Hertzian 

contacts. Using the same main assumptions as in Zhuravlev (1940, 2007) model, 

Greenwood and Williamson (1966) considered the contact of two nominally flat 

surfaces whose height distributions of asperity caps are Gaussian. According to 

Greenwod and Williamson (1966), although the distribution of the asperity height 
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tends to be Gaussian rather than exponential, the exponential distribution is a good 

approximation to the highest 25% of the asperities of most surfaces. Moreover, using 

the exponential distribution allowed the exact formulae to be derived for load, contact 

area and conductance. Using this approach they showed that the contact area is 

directly proportional to the external compressing load. They have also extended the 

model to the case of contact between elastic-plastic asperities (see also discussion by 

Borodich, 2007).  

Several models of contact between the rough surfaces incorporating the effect of 

adhesion were developed, see e.g. Maugis (2000), Galanov et al (2010). They are based 

on the Derjaguin (1934b) model of friction. A contribution of Archard (1957) should 

also be mentioned here, who has shown experimentally that the Amonton’s law is 

obeyed for the surfaces with a large number of contacts.  

Treating the surface asperities as individual spherical contacts allows the Hertzian 

theory to be used for establishing the contact pressure values. However, as shown by 

Bush et al (1975), theories based on this assumption fail once the interaction of 

adjoining asperities becomes too significant for them to be treated independently This 

leads to the need for a method that allows the elastic contact problem to be solved for 

the general shape of the surface roughness, i.e. the solution of the equation with an 

unknown complicated boundary. The solution for bi-sinusoidal surface roughness was 

presented by Johnson et al (1984). They gave a numerical solution for the whole range 

of loads based on Kalker’s (1977) procedure of minimising the total complementary 

energy. They also gave asymptotic closed form solutions for the cases of very light and 

very heavy loads, when the surface had either isolated circular contact zones, or all of 

the asperities were significantly flattened leaving isolated circular trapped volumes. 

They stated that an analytical solution might not be possible due to the shape of the 

contact areas being circular for light loads and approximately square for higher loads.  

The development of computers and numerical analysis allowed the elastic contact 

problem with unknown boundary to be solved numerically. The theoretical foundation 

for the numerical methods, such as that given by Kalker (1977) is the solution of the 

deflection of the linearly elastic half space caused by the concentrated normal or 

tangential load obtained by Boussinesq and Cerutti respectively (see Love, 1952). The 

superposition of contact pressures at different points leads to the Boussinesq-Cerutti 

integral used for calculating the deflection at a given point on the half space. The 
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method developed in Chapter 3 of this thesis is also based on Kalker’s numerical 

solution. Further review of the methods of solving the dry contact of the rough 

surfaces problem is provided in Chapter 3. 

1.6. Mixed lubrication in plain bearings 

Mixed lubrication is a condition where the working surfaces are mostly separated by 

the fluid film, although direct mechanical contact occasionally occurs at surface 

asperity features. In this thesis only the lubrication of the plain bearings is considered, 

which consist of two conformal working surfaces in relative motion separated by a 

lubricant film. Typical types of the plain bearings are journal bearings, slider or linear 

motion bearings, inclined pad bearings or tilting pad bearings. Although the methods 

developed in this thesis are applied to study the effect of roughness on the lubrication 

of the inclined pad bearing, they can be easily adapted to consider different bearing 

geometries or to study the effect of lubricant viscosity in mixed lubrication, for 

example. In the thesis the inclined pad bearings are commonly referred to as tilted pad 

bearings, although this definition is correct only as far as the tilting angle is fixed. 

The hydrodynamic lubrication was first studied by Beauchamp Tower in 1883, who 

conducted experiments of the journal bearing dipped in the oil bath. He pointed out 

the importance of the bearing being fully lubricated (Reynolds, 1886, Rayleigh, 1918). 

The first mathematical theory of the lubrication was developed by Reynolds (1886) 

that explained all these experiments perfectly well. The main observation made by 

Tower and theoretically justified by Reynolds was that the film “wedge” forms 

underneath or around the shaft which creates the hydrodynamic pressure that carries 

the load. The improvements of the Reynolds theory allowed the hydrodynamic 

pressure distribution to be predicted for the tilting pad bearing, designed by Michell 

(1905), or step bearing designed by Rayleigh (1918). 

The majority of models in the field of lubrication are based on solving the well known 

Reynolds equation. Closed form solutions of the Reynolds’ equation are available for 

some simple geometries and boundary conditions. Cameron and Wood (1958) for 

example gave an analytical solution of the isoviscous Reynolds equation for the (finite) 

parallel surface thrust bearing based on the Bessel functions. This and other solutions 

however considered bearings with smooth surfaces only.  
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According to Tzeng and Saibel (1967) a number of researchers pointed out the 

significance of the roughness on the pressure distribution during hydrodynamic 

lubrication. For the general case of surface roughness the analytical solution of the 

Reynolds equation is not possible. The general cases of the rough surfaces could not be 

solved numerically at that time due to the lack of computational power.  

A number of research papers were published based on the probabilistic approach, i.e. 

by introducing the probability density function of the surface asperity heights. Tzeng 

and Saibel (1967) gave the closed form solution for the load and friction force in the 

case of one dimensional Beta distribution of the surface asperity heights. Christensen 

and Tonder (1971, 1972) developed the stochastic Reynolds equation for the 

longitudinal and transverse roughness in application to journal and slider bearings.  

All the stochastic models showed the increased effect of roughness as the distance 

between the surfaces decreases. Johnson et al (1972) considered the mixed lubrication 

case based on a stochastic representation of the roughness. They assumed that part of 

the load is carried by the pressurised lubricant whereas another part is due to the 

direct contact of the asperities. The contact part of the load was calculated using the 

Greenwood and Williamson’s (1966) contact theory which considered Gaussian 

distribution of the asperity heights. Christensen (1972) noted that in case of the mixed 

lubrication the friction between the working surfaces is governed by the contacting 

asperities whereas the load is mainly controlled by the hydrodynamic properties of the 

bearings. This is why it is extremely important to understand the effect of roughness in 

the mixed lubrication regime. 

Patir and Cheng (1978) noted that the existing methods of the mixed lubrication 

analysis based on stochastic approach do not consider real rough surfaces. Indeed, the 

stochastic analysis of the two dimensional surface roughness function is rather 

sophisticated. They introduced a method to study the effects of an arbitrary surface 

roughness through flow simulation. For this purpose they compared the average flow 

of the lubricant through an area of the rough surface bearing and corresponding flow 

in the smooth bearing. The ratio between these two flows gave a quantitative measure 

of the effect of roughness on the flow of lubricant. In 1979 they extended their theory 

to account for the rough surface Couette flow. 

The first of the new class of methods based on the homogenised Reynolds equation 

was the one introduced by Bayada (1988, 1989). These methods consider a two scale 
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approach to the rough surface bearing: the global scale being the shape of the smooth 

bearing, and the local one being the roughness. The effects of the local roughness and 

the global shape are treated separately. The local roughness is assumed to be periodic, 

so that the solution can be sought for a small representative area. The averaged 

solution of the local problem summarises the effect of the roughness on the flow in a 

set of so called flow factors, which are then incorporated into the smooth surface 

Reynolds equation. The homogenisation theory has been subsequently developed by 

Jai (1995), Kane and Bou-Said (2004), Almqvist and Dasht (2006) and others. Bou-Said 

noted that as opposed to stochastic methods the theory of homogenisation gives 

accurate results in the case of the arbitrary orientation of the characteristic roughness 

features. For the cases of isotropic, longitudinal or trasverse roughness the 

homogenised solution was shown to agree well with the Patir and Cheng theory (Sahlin 

et al, 2010a). It was however noted that in the case of anisotropic roughness the Patir 

and Cheng theory does not take into account the diversion of the flow of lubricant 

caused by the asperities (Almqvist et al, 2011). This was accounted for in the 

homogenised Reynolds equation by introduction of cross derivative terms. 

Patir and Cheng theory allowed direct contact of the asperities to be considered, 

however the elastic deflection of the surface roughness features was not considered. 

Sahlin et al (2010a, 2010b) developed a mixed lubrication analysis method based on 

the homgenisation theory and incorporated the elastic and plastic deflection of the 

surface asperities evaluated by means of dry contact analysis.  

This thesis presents a method similar to the one developed by Sahlin et al (2010a, 

2010b) in the sense that it incorporates the dry contact analysis described in Chapter 

3. The homogenisation theory in this thesis applies the formulae developed by Bayada 

(2005) for the oblique sinusoidal roughness to real roughness. The procedure for 

evaluating the flow factors is validated where possible and the method developed is 

applied to study various effects of roughness on the mixed lubrication in the pad 

bearings. Note that the EHL effects are not considered in this thesis, which makes the 

method developed inapplicable to the cases of concentrated contacts. 
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2. The effective elastic properties of porous materials 

2.1. Introduction 

Porous materials are heterogeneous media that contain a number of voids. The main 

material that is used in the manufacturing process is called the host material or matrix. 

For example, the host material can be a metal, ceramic or polymer. The voids or pores 

may have a rather different nature: in sintered materials they are the spaces between 

the grains of host material that occurred during the manufacturing process, whereas in 

foamed materials such as porous glass or titanium foam they are gas bubbles. 

Assuming that the porous material is a linear elastic isotropic solid, the elastic 

behaviour can be defined by any two constants selected from such material 

characteristics as elastic modulus (𝐸), Poissons ratio (𝜈), bulk modulus (𝐾), shear 

modulus (𝜇) and Lame parameter (𝜆). These elastic characteristics are connected by 

the following relations (see e.g. Timoshenko, 1970): 

𝐾 =
𝐸

3(1 − 2𝜈)
,    𝜇 =

𝐸

2(1 + 𝜈)
,    𝜆 =

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
. 

(2.1) 

If the pores are filled with gases, their elastic stiffness may be assumed negligible. 

Therefore the effective elastic properties of the porous material are different to those 

of the host material. The effective elastic properties of porous materials are the object 

of interest of this chapter. In a wide class of approaches to estimation of the elastic 

characteristics of a porous material it is assumed that the porous structure of the 

medium repeats a certain periodic pattern. The elastic fields are calculated over the 

representative unit cell (RUC) and homogenisation theory is applied to evaluate the 

global stress-strain behaviour (see, e.g. Bakhvalov, 1974). The periodic structures 

representing the porous medium can be chosen in various ways. For example, 

Chapman and Higdon (1994) considered the porous medium as a packed set of 

spheres; Poutet et al (1996) considered three types of unit cells: deterministic, fractal 

and random; Garboczi and Berryman (2001) and Roberts and Garboczi (2002) used the 

finite element method to calculate the elastic properties of periodic porous media with 

quasi-random RUCs. The methods based on the concept of an RUC are easy to 

implement, however, real materials have a rather random micro-structure, and it is 

difficult to justify the periodic structure assumption (see Figure 2. in Section 2.4). 
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A number of empirical relations of elastic characteristics of a porous medium with its 

porosity have also been published such as the classical Ryshkewitch-Duckworth and 

Spriggs equations (see e.g. Wang, 1984a, 1984b):  

𝑆 = 𝑆0𝑒
−𝛼𝑝 ,    𝐸 = 𝐸0𝑒

−𝛽𝑝 , 
(2.2) 

where 𝑝 is the value of porosity, i.e. the volume fraction of pores per unit volume of 

the material, 𝐸 and 𝑆 are the elastic modulus and the strength of the porous 

material respectively, and 𝛼, 𝛽 are empiric parameters related to the host material. 

Here and henceforth, the subscript 0 means that the elastic characteristic is attributed 

to the host material. These and other similar methods require a set of experimental 

measurements and are not based on the micro-mechanical behaviour of pores in the 

material.  

Many approaches to calculate the effective elastic properties are based on physics of 

composite materials. These approaches consider a material with inclusions subjected 

to a uniform field, that can have an electrical, elastic or other nature. A statistically 

homogeneous material is considered and the individual disturbance of the field caused 

by a particular inclusion is assumed to vanish far from the disturbance. This leads to a 

system of equations for the effective properties of the material. The classical models of 

physics of composites include the effective medium approximation (EMA) introduced 

by Bruggeman (1935) for various physical properties of a composite, and average field 

approximation (AFA), presented by Polder and Vansanten (1946). These models were 

intensively studied and further developed by e.g. Avellaneda (1987), Milton (1981, 

1984) and others. The homogenization methods developed can be applied to calculate 

both the effective dielectric and elastic properties of the composite; however, the 

interest of the current paper is in its mechanical properties. 

The EMA and AFA methods are limited to cases of inclusions of the same shapes and 

sizes. Therefore a class of differential schemes for calculating the effective properties 

of composite materials was developed by e.g. Berryman (1980, 2006). In these 

methods, first a solution for a single inclusion is considered. If the inclusion has a shape 

of elliptical origin (sphere, disk, cylinder, prolate or oblate spheroid, arbitrary ellipsoid) 

then the general procedure for calculating the elastic field outside an ellipsoidal 

inclusion obtained by Eshelby (1957, 1959) can be applied. The differential methods 

assume constructing a composite by adding a group of inclusions incrementally to the 
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material. The effective properties are calculated at each step and are used as 

properties of the host matrix for the next iteration. The increment of inclusion phase is 

then considered to be continuous which leads to ordinary differential equations for the 

effective characteristics of the material. Salganik (1973) and Vavakin and Salganik 

(1975, 1978) considered media with pores and rigid inclusions for both two- and 

three-dimensional cases. Pores were either randomly oriented cracks or isolated 

spheres of different radii. Based on these works the effective characteristics of layered 

media with flattened pores were obtained by Borodich (1984, 1987). Norris (1985a) 

and Norris et al (1985b) generalized the differential scheme and assumed a fictitious 

media where inclusions of two or more phases were added incrementally until the 

point is reached where the volume fraction of the matrix vanishes. A review of 

methods based both on periodic and homogenized boundaries is given by e.g. Pindera 

(2009). 

Sevostianov and Kachanov (2012) stated that a common drawback of any differential 

scheme is adopting the assumption of dilute concentration of the newly added group 

of inclusions in the matrix. The differential schemes therefore neglect the interaction 

between the individual inclusions within the same group. The interactions between 

inclusions from different groups are taken into account only in the homogenised sense, 

i.e. the homogenised contribution of the latest group on the effective properties of the 

material with inclusions of all the previous groups. 

The purpose of the present work is to give a general procedure for evaluation of the 

effective elastic properties of porous materials with particular interest in properties of 

sintered materials. These properties can then be used in modelling engineering 

applications. The approach developed may be considered as a combination of a 

differential scheme similar to the Vavakin-Salganik (VS) method and a self consistent 

embedding scheme (see e.g. Willis (1977) and Talbot and Willis (1987). Because the 

classic form of the VS approach is restricted to spherical pores and does not consider 

the specific statistical distribution of pore radii, the VS approach has been modified so 

that it can take various distributions of pore radii into account. In an attempt to 

account for the interaction of the spherical inclusions of the same or different groups 

the probability that the spherical pores overlap and form doublets was calculated. The 

effect of overlapped pores is then treated as one of ellipsoidal inclusions with each 

having the same volume as the overlapping pores that it replaces. This modification 
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helps to overcome the dilute concentration limitation of differential schemes 

mentioned above. It is shown that introducing the elliptical pores into the model 

improves the predictions of the elastic properties of porous materials with merged 

pores. However, the micrographic analysis of sintered materials shows (see Figures 2.5 

and 2.9) a much more complex structure of pores, which cannot be approximated by 

isolated and overlapped spheres only. An additional modification has been developed 

that treats complex agglomerates of pores, which cannot be approximated as spherical 

or elliptical ones, as damaged material. It is assumed that the damaged material does 

not transfer any load. This approach is similar to the one described by Rabotnov (1979) 

and Kachanov (1974) for materials with a large number of cracks. The comparison of 

the predictions given by models presented to the available experimental data shows 

that a good fit can be achieved with an appropriate choice of the model according to 

the complexity of the porous micro-structure. The predictions of the model are limited 

to determining the homogenized material properties which is the objective of the 

study.  

2.2. Vavakin-Salganik (VS) model 

Using results obtained by Eshelby (1957, 1959) and assuming a dilute concentration of 

spherical pores such that their interaction can be neglected, the following formulae 

were derived by Krivoglaz and Cherevko (1959) for elastic modulus and Poisson's ratio 

of a material with pores of equal size:  

𝐸 = 𝐸0  1 − 𝑝
3 1−𝜈0  9+5𝜈0 

2 7−5𝜈0 
 ,    𝜈 = 𝜈0 + 𝑝

3 1−𝜈0
2  1−5𝜈0 

2 7−5𝜈0 
  

(2.3) 

In Equations (2.3) 𝐸 and 𝜈 are the effective elastic modulus and Poisson's ratio of 

the medium with pores, 𝐸0  and 𝜈0  are the characteristics of the host matrix, and 𝑝 

is the volume fraction of pores in the unit volume of the host material. 

Vavakin and Salganik (1975, 1978) considered the porous medium with spherical pores 

of 𝑛 different radii 𝑟1, . . . , 𝑟𝑛  arranged in increasing order, so that  

𝑟𝑖+1 > 𝑟𝑖 , for 𝑖 = 1 to 𝑛,    𝑟1 = 𝑟𝑚𝑖𝑛 ,    𝑟𝑛 = 𝑟𝑚𝑎𝑥   
(2.4) 

where 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥  are the minimal and maximal radii respectively. Using the above 

assumptions Equations (2.3) were written in terms of the concentration parameter :  
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𝐸 = 𝐸0  1 − 2𝜋ρ
(1 − 𝜈0)(9 + 5𝜈0)

(7 − 5𝜈0)
 ,    𝜈 = 𝜈0 + 2𝜋𝜌

(1 − 𝜈0
2)(1 − 5𝜈0)

2(7 − 5𝜈0)
, 

(2.5) 

For the case of single size spherical pores 𝜌 is defined as  

𝜌 = 𝑁𝑟3  
 (2.6) 

where 𝑁 is the number of pores of radius 𝑟 per unit volume of the material. 

In order to calculate the effective elastic moduli for the material with pores of different 

sizes the differential scheme was used, where formulae (2.5) were applied at each step 

to the medium where only pores of smaller radii are present, starting from the host 

material as shown schematically on the flowchart of   

Figure 2.1. For this purpose the concentration term ρ in (2.5) was replaced by 𝑑ρ𝑖  

which is the concentration of pores of radius 𝑟𝑖  per unit volume of the space between 

pores of greater radii 𝑟 > 𝑟𝑖:  

𝑑𝜌𝑖 =
𝑁𝑖𝑟𝑖

3

1 −
4
3
𝜋 ‍𝑗 >𝑖 𝑁𝑗𝑟𝑗

3
,    𝑖 = 1, . . , 𝑛. 

 (2.7) 

In other words, 𝑑𝜌𝑖  is the increment of the concentration parameter 𝜌 due to 

adding a set of pores of radius 𝑟 = 𝑟𝑖 . The increment 𝑑𝜌𝑖  is then assumed to be 

continuous.  

  
Figure 2.1 The bottom-up iterative approach: starting from the host material pores of a 
particular radius are added into the specimen. Their contribution to the effective elastic 
properties is calculated and used as the properties of the host material for the set of pores of 
the next radius 

The change in porosity 𝑑𝑝 corresponding to taking into consideration pores of radius 

𝑟𝑖  is connected to 𝑑𝜌𝑖  by the following relation:  
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𝑑𝑝 =
4

3
𝜋𝑑𝜌𝑖(1 − 𝑝),    𝜌 = −

3

4𝜋
𝑙𝑛(1 − 𝑝), 

 (2.8) 

where the loss of volume due to presence of smaller pores is accounted for by the 

multiplier (1 − 𝑝).  

To calculate the elastic properties 𝐸𝑖  and 𝜈𝑖  of the medium with pores of radii 

𝑟1, . . . , 𝑟𝑖  the formulae (2.5) were modified using 𝑑ω𝑖:  

𝐸𝑖 − 𝐸 = −2𝜋𝑑𝜌𝑖
(1 − 𝜈)(9 + 5𝜈)

(7 − 5𝜈))
,    𝜈𝑖 − 𝜈 = 2𝜋𝑑𝜌𝑖

(1 − 𝜈2)(1 − 5𝜈)

(7 − 5𝜈)
, 

(2.9) 

where 𝐸 = 𝐸𝑖−1  and 𝜈 = 𝜈𝑖−1 are the elastic moduli of the material with pores of 

radius 𝑟 < 𝑟𝑖  obtained from the previous step. The moduli of the host material 𝐸0  

and 𝜈0  are used as initial values. 

In a similar way to the definition (2.7) of the change in the concentration value 𝑑ω𝑖  

due to adding pores of the next group, the increments 𝑑𝐸𝑖  and 𝑑𝜈𝑖  were introduced 

as corresponding changes in the 𝐸𝑖  and 𝜈𝑖  values:  

𝑑𝐸𝑖 = 𝐸𝑖 − 𝐸𝑖−1 ,    𝑑𝜈𝑖 = 𝜈𝑖 − 𝜈𝑖−1  
(2.10) 

In the limit this leads to the following system of ordinary differential equations:  

𝑑𝐸

𝑑𝜌
= −2𝜋𝐸

(1 − 𝜈)(9 + 5𝜈)

(7 − 5𝜈)
,    

𝑑𝜈

𝑑𝜌
= 2𝜋

(1 − 𝜈2)(1 − 5𝜈)

(7 − 5𝜈)
, 

(2.11) 

with initial conditions 𝐸 = 𝐸0  , 𝜈 = 𝜈0  when 𝜌 = 0. Vavakin and Salganik showed 

that the Poisson's ratio 𝜈 → 0.2 when porosity 𝑝 → 1. The influence of 𝜈 on the 

value of 𝐸 is neglected in the VS model for simplicity, therefore 𝜈(𝜌) is assumed to 

be constant. For 𝜈0 = 0.2 and 𝜈(𝜌) = 𝑐𝑜𝑛𝑠𝑡 the former Equations (2.11) can be 

integrated as  

𝐸 = 𝐸0𝑒
−2𝜌 ,    𝜈 = 0.2.  

(2.12) 

Substituting (2.8) to (2.12) results in  

𝐸 = 𝐸0(1 − 𝑝)2,    𝜈 = 0.2,  
(2.13) 

and this solution is referred to as the VS model. 

In the original VS approach the general case of a distribution of pores by size is 

approximated by an asymptotic solution. No specific distribution of pores by size is 
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considered and therefore it does not allow the influence of pores of a particular radius 

𝑟𝑖  on the elastic properties of the material to be considered. In addition, the change in 

the Poisson’s ratio due to increasing porosity is neglected. For the 2-dimensional case 

Vavakin and Salganik (1975, 1978) showed an excellent agreement of their model with 

experiments carried out by stretching a plate with a number of circular holes of 

different sizes drilled in it. For the 3-dimensional case the comparison is presented in 

the Section 2.4. The current work is based on the VS model described above.  

2.3. The extended VS approach 

In the current work the VS approach is extended to take particular distributions of 

pores by size into account. 

Let the distribution of pores by size be defined as a discrete probability density 

function 𝑓(𝑟𝑖):  

𝑓(𝑟𝑖) =
𝑁𝑖

 ‍𝑛
𝑖=1 𝑁𝑖

,     ‍

𝑛

𝑖=1

𝑓(𝑟𝑖) = 1. 

(2.14) 

The extension of the VS model is implemented by step by step application of formulae 

(2.9) to the porous material with pores of radius 𝑟𝑖 , where the elastic moduli 𝐸𝑖−1  

and 𝜈𝑖−1  are the effective properties of the material where pores of radii 𝑟1, . . 𝑟𝑖−1  

only are present. The use of (2.9) is not reduced to the differential Equations (2.11) as 

in VS model and therefore more sophisticated numerical experiments can be 

implemented including various statistical distribution of pore sizes. This extended 

model is referred to as the extended VS model.  

Various distributions of pores by size with the same value of total porosity have been 

examined. A group of continuous distribution functions 𝑓(𝑟) with 𝑟 ∈ [𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 ] 

based on the Gaussian distribution is given below. These distributions   

    • Normal : 𝑓(𝑟) =
1

 2𝜋𝜍2
𝑒

(𝜇−𝑟)2

2𝜍2 ,  𝜇 =
𝑟𝑚𝑎𝑥 +𝑟𝑚𝑖𝑛

2
,    𝜍 =

𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛

6
  

    • Left normal: 𝑓(𝑟) =
1

 2𝜋𝜍1
2
𝑒

(𝜇 1−𝑟)2

2𝜍1
2

, 𝜇1 =
𝑟𝑚𝑎𝑥 +2𝑟𝑚𝑖𝑛

3
,    𝜍 =

𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛

6
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    • Right normal: 𝑓(𝑟) =
1

 2𝜋𝜍1
2
𝑒

(𝜇 3−𝑟)2

2𝜍1
2

, 𝜇3 =
2(𝑟𝑚𝑎𝑥 +𝑟𝑚𝑖𝑛 )

3
,    𝜍 =

𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛

6
  

    • Double normal : 𝑓 𝑟 =
1

 2𝜋𝜍2
2
𝑒

(𝜇 2−𝑟)2

2𝜍1
2

+
1

 2𝜋𝜍2
2
𝑒

(𝑟𝑚𝑎𝑥 −𝜇 2−𝑟)2

2𝜍2
2

; 

 𝜇2 =
𝑟𝑚𝑎𝑥 +2𝑟𝑚𝑖𝑛

3
,    𝜍 =

𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛

12
 

 Uniform: 𝑓(𝑟) =
1

𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛
  

are shown in Figure 2.2 together with the uniform distribution, which provides the 

same number of pores of each radius. 

Skewed distributions such as   

    • Linear descending: 𝑓(𝑟) = 𝐴(
𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛

2
− 𝑟) +

1

𝑟𝑚𝑎 𝑥−𝑟𝑚𝑖𝑛
 

 𝐴 =
8

3(𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛 )2
  

    • Linear ascending: 𝑓(𝑟) = 𝐴(𝑟 −
𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛

2
) +

1

𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛
,  

𝐴 =
8

3(𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛 )2
  

    • 1/𝑅3 distribution: 𝑓(𝑟) =
1

𝑟3
  

    • Gamma left: 𝑓(𝑟) =
𝑟𝜅−1𝑒

−
𝑟
𝜃

𝜃𝜅Γ(𝜅)
, 𝜅 = 5,    𝜃 =

3(𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛 )

20
  

    • Gamma right: 𝑓(𝑟) =
(𝑟𝑚𝑎𝑥 −𝑟)𝜅−1𝑒

−
𝑟𝑚𝑎𝑥 −𝑟

𝜃

𝜃𝜅Γ(𝜅)
, 𝜅 = 5,    𝜃 =

3(𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛 )

20
  

are illustrated in Figure 2.3. The 1/𝑅3 distribution provides the same volume fraction 

of groups of pores of each radius. 
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Figure 2.2 Distributions of pores by size.  Normal (solid), Left normal (dashed), 
Uniform(dotted), Double normal(dashed and dotted); 

 
Figure 2.3 Distributions of pores by size. 1/R3 distribution (solid), Linear descending (dashed 
thin), Linear ascending (dashed and dotted thin), Gamma right (dashed and dotted thick), 
Gamma left (dashed thick) 

Note that for modelling purposes the discrete distribution functions 𝑓(𝑟𝑖) are used 

where the set of radii 𝑟𝑖  is discretized as:  

𝑟𝑖 = 𝑟𝑚𝑖𝑛 + Δ𝑟 𝑖 − 1 ,    Δ𝑟 =
𝑟𝑚𝑎𝑥 −𝑟𝑚𝑖𝑛

𝑛−1
,    𝑖 = 1 to 𝑛.  

(2.15) 

The effect of different distribution of pores by size on the elastic properties of the 

material was examined. This effect is summarized in Figure 2.4, which shows the 

variation in elastic modulus with volume fraction of pores for all the distributions 

considered. It is clear that the maximum difference does not exceed 1% for porosity of 

𝑝 ≤ 0.7 . Hence, the difference between the various statistical distributions of pore 
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sizes is considered as negligible for 𝑝 ≤ 0.7, and the extended VS model with various 

statistical distributions of pore sizes has an excellent agreement with the classical VS 

model. Higher values of porosity (>0.7) where small differences in E/E0 do occur are 

not considered as they are not practical materials for the engineering applications that 

are of interest in this thesis. Thus, it can be concluded that the governing parameter of 

the models for materials with isolated spherical pores is the total porosity 𝑝 and the 

VS model can be applied to describe the elastic characteristics of the materials. The 

uniform distribution of pores by size is thus considered in this study. 

 
Figure 2.4  Variation of calculated elastic modulus for the VS model and the extended VS 
models corresponding to the different distributions considered.    

2.4. Comparison of the extended VS model with experiments 

A literature survey was carried out to find published experimental data on the 

influence of the porosity on the elastic moduli of porous materials. The data used in 

the present paper include experimental values of elastic characteristics for natural 

materials, foams and sintered materials. If the bulk modulus 𝐾 values are examined 

in the paper then substituting 𝐸 and 𝜈 obtained from the extended VS model into 

(2.1) allows the predictions of bulk modulus 𝐾 to be calculated and compared with 

given experimental values. 

The experimental data are available for (i) natural materials and foams with isolated 

pores such as: glass foams (Walsh et al, 1965), synthetic sandstone (Berge et al, 1995), 

sandstone and clay (Mukerji et al, 1995), sandstone and shale (Mukerji et al, 1995, Ji et 

al, 2006), titanium foam (Shen et al, 2006) as well as for (ii) sintered materials such as 

silicon carbide (Reynaud et al, 2005), sintered alumina oxides (Wang, 1984b) and 
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synthetic sandstone (Berge et al, 1995); and (iii) other sintered materials including 

titanium aluminide compacts (Matikas, 1997), sintered titanium (Oh et al, 2003), 

alumina oxides (Spriggs, 1961, Knudsen, 1962), magnesium oxides (Spriggs, 1962) , 

magnesium and alumina oxide aggregates (Porter, 1977).. For comparison purposes 

the experimental data are divided into three groups ((i), (ii) and (iii)) as specified in the 

tables below.   

Table 2.1 Sources of experimental data on elastic properties of natural porous materials and 
synthetic foams (group (i))  

Porous material Reference 

Glass foams 𝑝 from 0 to 70% Walsh et al, (1965) 

Synthetic analogue of sandstone prepared from 
glass beads 𝑝 from 0 to 43% 

Berge et al, 1995), 

Natural sandstone Mukerji et al (1995) 

Natural sandstone and shales Mukerji et al (1995), Ji et al(2006), 

Titanium foam Shen et al (2006) 

The natural porous materials considered are clean and clay-bearing sandstones and 

shale. The laboratory data consists of normalized bulk moduli 𝐾/𝐾0  for dry 

sandstones under 40𝑀𝑃𝑎 confining pressure as given in Mukerji et al (1995). 

Experimental data for both clean and clay-bearing sandstones (with up to 10% of clay) 

was obtained from Mukerji et al (1995). For the clean sandstones, the elastic moduli of 

the host matrix (𝐸0 , 𝜈0) or (𝐾0, 𝜇0) were those of quartz; while for the clay-bearing 

ones, they were obtained from the zero porosity interception of linear regression for 

shaly sandstones (𝐾0 = 31𝐺𝑃𝑎 and 𝜇0 = 34𝐺𝑃𝑎). 

Table 2.2 Sources of experimental data on elastic properties of sintered materials (group (ii)) 

Porous material Reference 

 Porous polycrystalline 𝑆𝑖𝐶 aggregates 𝑝 < 42% Reynaud et al (2005) 

 Porous alumina Wang (1984b) 

 Synthetic analogue of sandstone prepared from glass 

beads 𝑝 from 0 to 43% 
Berge et al (1995) 

Table 2.3 Sources of experimental data on elastic properties of sintered materials (group (iii)) 

 Porous material Reference 

 Porous titanium aluminide compacts Matikas (1997) 
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 Sintered titanium compacts Oh et al (2003) 

 porous 𝐴𝑙2𝑂3 𝑝 < 40% Spriggs (1961) 

 porous 𝐴𝑙2𝑂3 polycrystalline aggregates 𝑝 < 30% Knudsen (1962), 

 porous 𝑀𝑔𝑂 aggregates 𝑝 < 40% Spriggs (1962) 

 Polycrystalline spinel 𝑀𝑔𝐴𝑙2𝑂4  aggregates prepared by 

hot pressing 
Porter (1977).. 

The group of materials also includes foamed titanium, porous glass and synthetic 

sandstone. The properties of a porous titanium foam have been investigated by Shen 

et al (2006). Results of a number of experiments on the bulk moduli 𝐾 of glass foams 

of different porosities are published by Walsh et al (1995) and Ji et al (2006). The pores 

in the samples were nearly spherical and non-interconnecting (see e.g. Figure 2.5). The 

elasticity of synthetic sandstone was obtained in Berge et al (1995). The samples were 

prepared using sintered glass beads and were in essence porous glass specimens with 

porosities ranging from 0 to 0.43. The glass characteristics are 𝐸0 = 72.3𝐺𝑃𝑎 and 

𝜇0 = 29.2𝐺𝑃𝑎. 

The experimental data of the natural materials and foams in group (i) are summarized 

and compared with the predictions given by the extended VS model in Figure 2.6 

where the influence of the porosity value on the normalized bulk modulus 𝐾/𝐾0 is 

shown. 
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Figure 2.5 The metallographic cross-sections of titanium foam with porosity of 0.15, showing 
that pores are roughly spherical and isolated. Figure taken from Shen et al (2006). 

The remaining experimental data considers the materials prepared from different 

powders by compressing and sintering. The powders used include alumina, titanium, 

silicon-carbide, alumina and magnesium oxides and others. 

The comparison of experimental data on elastic modulus of porous materials in group 

(ii) with the predictions given by the extended VS model is given in Figure 2.7, and the 

comparisons for the materials in group (iii) are given in Figure 2.8. In these figures the 

non-dimensional elastic modulus 𝐸/𝐸0  is plotted against the value of porosity. 

Experimental data for both clean and clay-bearing sandstones (with up to 10% of clay) 

were obtained from Mukerji et al (1995). For the clean sandstones, the elastic moduli 

of the host matrix (𝐸0 , 𝜈0) or (𝐾0 , 𝜇0) were those of quartz; while for the clay-bearing 

ones, they were obtained from the zero porosity interception of linear regression for 

shaly sandstones (𝐾0 = 31𝐺𝑃𝑎 and 𝜇0 = 34𝐺𝑃𝑎). 
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Figure 2.6 The influence of the total porosity on the bulk modulus of the materials of group 
(i) with isolated spherical pores: predictions given by the extended VS model (solid line), the 
experimental data for the materials given in Table 2.1 

Two main observations can be made from data plotted in Figure 2.6-Figure 2.8. First, 

the data on bulk modulus of natural materials and foams is in good agreement with 

the predictions of the extended VS model. This can be explained by the fact that pores 

are roughly spherical and isolated as is observed in the optical micrograph of 

metallographic cross-section for a titanium foam with porosity of 0.15 (Figure 2.5). In 

section 2.3 the extended VS model was shown to be equal to the classical VS model, 

therefore all the statements about the extended VS model can be assumed to be true 

for the classical VS model. 
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Figure 2.7 The influence of the total porosity on the elastic modulus of the sintered materials 
of group (ii): the predictions given by the extended VS model (solid line) compared with 
experimental data for various materials. Experimental data for materials given in Table 2.2. 

 
Figure 2.8 The influence of the total porosity on the elastic modulus of the sintered materials 
of group (iii): the predictions given by the extended VS model (solid line) compared with 
experimental data for various materials. Experimental data for materials given in Table 2.3 

Second, the data on elastic modulus of materials prepared by sintering does not fit to 

the predicted values. This can be explained by the different type of porous structure 

present in the sintered materials. Indeed, the metallographic picture of the sintered 

bearing (Figure 2.) shows that pores merge to form complex agglomerates and can 

interconnect to form an open pore structure. 
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It can be concluded that for materials whose pores can be approximated as isolated 

spheres (Figure 2.5) the extended VS model gives good predictions, while for materials 

with merged pores (Figure 2.) further development of the physical model is required. 

 
Figure 2.9 The metallographic cross-sections of sintered iron bearing with porosity of 0.2 
(GKN Sinter Metals Bruneck, Italy)    

2.5. Merged pores model (MPM) 

Both the analysis of the micro structure of the porous materials (Figure 2.) and 

comparison of the existing differential scheme with the experimental results shown in 

Figures 2.5 to 2.7 suggest that the assumption of a dilute concentration is applicable 

for the class of porous materials given in Table 2.1 but not for materials given in Tables 

2.2 and 2.3. To improve the physical model of the materials with merged pores a new 

differential scheme is presented in this section. In this scheme isolated spherical pores 

are treated according to the extended VS model, while each merged pore occurrence 

is approximated by an ellipsoid having the same volume as the merged pores. The 

effect of merged pores on the elastic properties of the porous material is more 

significant than the effect of isolated pores of the same volume, consequently the 

model has been extended to account for the interaction between individual pores. In 
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order to estimate the number of merged pores the theory of geometrical probabilities 

has been exploited.  

Geometrical probabilities have been intensively studied, see e.g. Kendall and Moran 

(1963) and Elias and Hyde (1980). In particular, Armitage (1949) studied a problem of 

overlapping particles in an application concerned with the counting of cells in 

biological experiments. In the paper a number of particles were considered randomly 

distributed on a plate and then the probability of the circular particles being isolated, 

forming doublets, and forming triplets was calculated. In the present paper the 

approach of Armitage to overlapping particles was generalized to a 3-dimensional case 

of spherical pores that may overlap. For this problem the probability density function 

for the distance 𝑑 between two points placed randomly inside the volume 𝑉 is  

 ϕ(𝑑) =
4𝜋𝑑2

𝑉
.  

(2.16) 

The spatial distribution of the point in the volume is assumed to be homogeneous. The 

merging distance 𝑑 for the two spherical pores of radii 𝑟𝑖  and 𝑟𝑗  is defined as the 

distance between their centres that allows the pores to overlap, i.e. 𝑟𝑖 < 𝑑 < 𝑟𝑖 + 𝑟𝑗 . 

The probability 𝑃𝑚𝑒𝑟𝑔𝑒 (𝑟𝑖 , 𝑟𝑗 ) for a pore of radius 𝑟𝑖  to overlap a pore of the radius 

𝑟𝑗  is then calculated as the volume of points that are within merging distance from the 

center of the 𝑟𝑖-pore per total volume 𝑉. This leads to the following formula for 

𝑃𝑚𝑒𝑟𝑔𝑒 (𝑟𝑖 , 𝑟𝑗 ):  

 𝑃𝑚𝑒𝑟𝑔𝑒 (𝑟𝑖 , 𝑟𝑗 ) =  ‍
𝑟𝑖+𝑟𝑗
𝑟𝑖

ϕ(𝑑)d𝑑 

(2.17) 

 Substituting (2.16) into (2.17) gives  

  

𝑃𝑚𝑒𝑟𝑔𝑒 (𝑟𝑖 , 𝑟𝑗 ) =  ‍
𝑟𝑖+𝑟𝑗

𝑟𝑖

4𝜋𝑠2

𝑉
𝑑𝑠 =

4𝜋((𝑟𝑖 + 𝑟𝑗 )3 − 𝑟𝑖
3)

3𝑉
 

(2.18) 

If the distribution of pores by size is given by the probability density function 𝑓(𝑟) for 

the pore of radius 𝑟, and the total number of pores is 𝑁 then the number of pores of 

a particular radius 𝑟𝑖  is 𝑁𝑓(𝑟𝑖) and therefore the number 𝑁𝑖𝑖  of pairs of pores of 

the same radius 𝑟𝑖  is  

 𝑁𝑖𝑖 =
𝑁𝑓(𝑟𝑖)

2
.  

(2.19) 
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 Similarly,  

 𝑁𝑖𝑗 = 𝑚𝑖𝑛(𝑁𝑓(𝑟𝑖), 𝑁𝑓(𝑟𝑗 ))  
(2.20) 

is the total number of pairs of pores of different radii 𝑟𝑖  and 𝑟𝑗 , 𝑟𝑖 > 𝑟𝑗 . The 

concentration of merged pores in the representative volume is then  

𝑝𝑖𝑖
𝑚𝑒𝑟𝑔𝑒𝑑

=
28𝜋𝑟𝑖

3𝑁𝑓(𝑟𝑖)

3𝑉
𝑁𝑖𝑖 , 

(2.21) 

 for merged pores of the same radius 𝑟𝑖 , and, similarly,  

𝑝𝑖𝑗
𝑚𝑒𝑟𝑔𝑒𝑑

=
4𝜋((𝑟1 + 𝑟2)3 − 𝑟1

3)𝑁𝑓(𝑟𝑖)

3𝑉
𝑁𝑖𝑗 , 

(2.22) 

 for the merged spherical pores of different radii 𝑟𝑖 > 𝑟𝑗 .  

The contribution of the merged pores of radii 𝑟𝑖  and 𝑟𝑗  to the mechanical properties 

of the porous material has been calculated using the results obtained by Luo and 

Stevens (1996) for the material with randomly oriented elliptic inclusions. Merged 

spherical pores are approximated by ellipsoids (prolate spheroids, see sketch of Figure 

2.10) of the same volume. 

 
Figure 2.10 The influence of two merged spherical pores on the elastic properties of the 
porous material is approximated by that of the prolate spheroid of the same volume.   

In order to account for the merged pores of different sizes the iterative method similar 

to the extended VS model described in Section 2.3 was developed as follows:    

• Introduce spherical pores of radius 𝑟1 into the host material with elastic modulus 

𝐸0.  

• At each 𝑖 − 𝑡𝑕 step calculate the probabilities 𝑃𝑚𝑒𝑟𝑔𝑒 (𝑟𝑖 , 𝑟𝑗 ) of spheres with radii 

𝑟𝑖  to merge with spheres of radii 𝑟𝑗  for any 𝑟𝑗 ≥ 𝑟𝑖 .  
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• Obtain the number of merged pores for each 𝑗 ≥ 𝑖.  

• Update the number of isolated spherical pores of radius 𝑟𝑖  subtracting number of 

pores involved in merged pairs.  

• Calculate the effective modulus 𝐸𝑖 ,0  of the host material with isolated spherical 

pores as in extended VS model (Section 2.3).  

• Calculate the effective modulus 𝐸𝑖 ,𝑖  of the material with merged pores of same 

radius 𝑟𝑖 . Use 𝐸𝑖 ,0 as the property of the host material.  

• Calculate the effective modulus 𝐸𝑖 ,𝑗  of the material with merged pores of radii 𝑟𝑖  

and 𝑟𝑗  for all 𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑛. Use 𝐸𝑖 ,𝑗−1  as the property of the host material.  

• The procedure is repeated for all 𝑖 = 1, . . . , 𝑛.  

The algorithm is schematically illustrated on the flowchart of Figure 2.11. 

In this work the above model is referred to as merged pores model (MPM).   

 

Figure 2.11 The bottom-up iterative approach for merged pores; 𝑬𝒊,𝟎 is the effective 

modulus of the media, where isolated spherical pores of radius 𝒓𝒊 are placed into medium 
with effective modulus 𝑬𝒊−𝟏,𝒏; then the contribution of merged pores of same radius 𝒓𝒊 is 
taken into account which leads to the effective modulus 𝑬𝒊,𝒊; merged pores of radii 𝒓𝒊 and 

𝒓𝒋 are then added into the material consequently which results in the effective moduli 

𝑬𝒊,𝒋,    𝒋 = 𝒊 + 𝟏, 𝒊 + 𝟐, . . . , 𝒏.   

2.6. Comparison of the MPM model with experiments 

In this section the predictions given by the MPM model are compared with the 

experimental data which is described in detail in Section 2.4. Since the elastic field 

outside the ellipsoidal inclusion is different to that of two isolated spherical pores of 

the same total volume, the current extension allows the interaction between pores to 

be taken into account. The difference can be summarized by the graphs shown in 
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Figures 2.12 and 2.13 for the materials in group (iii). In these figures the predictions 

given by both the extended VS model and the MPM are compared to the experimental 

data. The results obtained by approximation of merged pores as ellipsoids give an 

improved fit to the data for the sintered materials in group (ii) (Figure 2.). For the 

sintered materials in group (iii), although the MPM model gives an improved fit to the 

data in comparison with the extended VS model (Figure 2.13), it is not a good fit to the 

data. The difference in behaviour between these two groups of materials is proposed 

to be due to the group (iii) materials containing a number of complex structures of 

interconnected pores which are in essence gaps between the grains of the raw 

material (see Figure 2.9). These structures are commonly referred to as open pores 

and cannot be approximated by either spheres or ellipsoids. The presence of open 

pores reduces the elastic moduli more significantly than predicted by the merged 

pores model. Hence, the influence of open pores has to be incorporated into the 

model. 

2.7. Open pores model (OPM)  

  The model presented in this section considers the material with open pores to be a 

damaged material with reduced load carrying capacity. In the 1960s Rabotnov and 

Kachanov (see books by Rabotnov, 1979 and Kachanov 1974) investigated the creeping 

behaviour of material with a large number of micro-cracks , and introduced two 

parameters: a damage parameter of the material, 𝜔 (Rabotnov), and an integrity 

parameter ϕ = 1 − 𝜔 (Kachanov). The damage parameter is a scalar associated with 

the area fraction of cracks or the area fraction of undamaged material in an arbitrary 

section of a sample. 

In an axially loaded bar with a large number of cracks the real stress 𝜍𝑟𝑒𝑎𝑙  is 

calculated as load 𝑊 over the effective cross-section area:  

 𝜍𝑟𝑒𝑎𝑙 =
𝑊

𝐴𝑒𝑓𝑓
,    𝐴𝑒𝑓𝑓 = 𝐴(1 − 𝜔),  

(2.23) 

where 𝐴 is the nominal cross-section area of the loaded sample, 𝜔 is the damage 

parameter of the material, and 𝐴𝑒𝑓𝑓  is the effective undamaged area that carries all 

the load. 
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Figure 2.12 The influence of the total porosity on the elastic modulus of the sintered 
materials of group (ii): predictions given by the extended VS model (solid line), MPM (dashed 
line) compared with the experimental data for various materials. Experimental data for the 
materials given in Table 2.2  

 
Figure 2.13  The influence of the total porosity on the elastic modulus of the sintered 
materials of group (iii): predictions given by the extended VS model (solid line), MPM 
(dashed line) compared with the experimental data for various materials. Experimental data 
for the materials given in Table 2.3 

This makes the nominal uniaxial stress 𝜍𝑛𝑜𝑚  to be equal to  

 𝜍𝑛𝑜𝑚 =
𝑊

𝐴
= 𝜍𝑟𝑒𝑎𝑙 (1 − 𝜔).  

(2.24) 

The effective elastic modulus 𝐸𝑒𝑓𝑓  is defined from Hooke’s law for the nominal stress:  
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𝜍𝑛𝑜𝑚 = 𝐸𝑒𝑓𝑓 𝜀 = 𝜍𝑟𝑒𝑎𝑙 (1 − 𝜔),

𝜍𝑟𝑒𝑎𝑙 = 𝐸𝑐𝜀,
 

(2.25) 

where 𝜀 is the elastic strain and 𝐸𝑐  is the elastic modulus of the host undamaged 

material. It follows from (2.25) that the effective elastic modulus 𝐸𝑒𝑓𝑓  of the 

damaged material can be obtained as  

 𝐸𝑒𝑓𝑓 = 𝐸𝑐(1 − 𝜔).  
(2.26) 

The validity of the Rabotnov-Kachanov approach in application to fracture mechanics 

was discussed by Salganik and Gotlib (2000) and indicated as questionable. Recently, 

Kusoglu et al (2008, 2009) applied the Rabotnov-Kachanov idea to porous polymer 

membranes. They considered materials with open porosity and assumed that the load 

is transferred only through the non-porous volume as in the Rabotnov-Kachanov 

approach for damaged bars. Here this approach is used as one of the simplest ways of 

describing the strong effect of the open pores on the effective moduli of the materials, 

namely that the stiffness of the material around the open pores is very low. 

In the present study this idea is generalized and applied to porous materials with both 

open and isolated pores. The proposed approach can be interpreted as assuming that 

the entire load is being carried by the parts of the material with isolated pores only 

and the mechanical model is illustrated schematically in Figure 2.14. Hence, the value 

of elastic modulus obtained by MPM for the material with isolated and merged 

spherical pores is used to define 𝐸𝑐 , while the damage parameter 𝜔  can be 

connected to the amount of open pores:  

 𝜔 =
𝐴𝑜𝑝𝑒𝑛

𝐴
,  

(2.27) 

where 𝐴𝑜𝑝𝑒𝑛  is the area of the cross-section of the material that is occupied by open 

pores. Then for the case of open pores, one obtains  

 𝐴𝑒𝑓𝑓 = 𝐴 − 𝐴𝑜𝑝𝑒𝑛 = 𝐴(1 −
𝐴𝑜𝑝𝑒𝑛

𝐴
) = 𝐴(1 − 𝜔),  

(2.28) 

To use this approach the effective area 𝐴𝑒𝑓𝑓  that carries all the load has to be 

established for the known value of open porosity.  If the value of open porosity of the 

sample is 𝑝𝑜𝑝𝑒𝑛  then the volume of open pores can be calculated as following:  

 𝑉𝑜𝑝𝑒𝑛 = 𝑝𝑜𝑝𝑒𝑛 𝑉𝑡𝑜𝑡𝑎𝑙   
(2.29) 

where 𝑉𝑡𝑜𝑡𝑎𝑙  is the total volume of the sample. 
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Figure 2.14 The mechanical model of the medium with developed open porosity, where all 
the load is carried by part of the material where no open pores are present 

Let the representative volume of the material be a cube with a side 𝑕 and let the 

Cartesian coordinate system be defined so that its origin is on the bottom side of the 

cube. The 𝑍 axis is defined perpendicular to the bottom side of the cube. In order to 

study the three-dimensional porous structure of the material, it is convenient to adopt 

the methods of stereology. Stereology is largely concerned with the three-dimensional 

interpretation of planar sections of materials or tissues. It provides practical 

techniques for extracting quantitative information about a three-dimensional material 

from measurements made on two-dimensional planar sections of the material.  

It follows from the approach of stereology (see Elias and Hyde, 1980) that the volume 

of a three dimensional body can be approximated using the sequence of cross-sections 

with measured area. The same approach was applied to approximate the volume of 

open pores as the integration of the cross-sectional area occupied by open pores over 

the height of the sample:  

 𝑉𝑜𝑝𝑒𝑛 =  ‍
𝑕

0
𝐴𝑜𝑝𝑒𝑛 (𝑧)𝑑𝑧  

(2.30) 

where 𝐴𝑜𝑝𝑒𝑛 (𝑧) is the area occupied by open pores in the cross-section of the 

representative volume parallel to the bottom side of the cubic representative volume, 

and 𝑧 ∈ [0, 𝑕] is the position of the cross-section on the 𝑍 axis. 

Since a uniform spatial distribution of pores is considered then 𝐴𝑜𝑝𝑒𝑛 (𝑧) is assumed 

to be constant. Let 𝐴𝑜𝑝𝑒𝑛 (𝑧) = 𝐴𝑜𝑝𝑒𝑛 . Then (2.30) can be presented as 𝑉𝑜𝑝𝑒𝑛 =

𝑕𝐴𝑜𝑝𝑒𝑛  which together with Equations Error! Reference source not found. leads to  

 𝐴𝑜𝑝𝑒𝑛 = 𝑝𝑜𝑝𝑒𝑛
𝑉𝑡𝑜𝑡𝑎𝑙

𝑕
= 𝑝𝑜𝑝𝑒𝑛 𝐴  

(2.31) 
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Therefore, the damage parameter 𝜔 in the Equations (2.26) is equal to the value of 

open porosity 𝑝𝑜𝑝𝑒𝑛 :  

 𝜔 =
𝐴𝑜𝑝𝑒𝑛

𝐴
= 𝑝𝑜𝑝𝑒𝑛 .  

(2.32) 

Thus, the effective elastic modulus for the material with developed open porosity can 

be derived from Equations (2.26) as:  

 𝐸𝑒𝑓𝑓 = 𝐸𝑐(1 − 𝑝𝑜𝑝𝑒𝑛 )  
(2.33) 

where 𝐸𝑐  is calculated according to the MPM with isolated spherical and elliptical 

pores, and 𝑝𝑜𝑝𝑒𝑛  is the volume of the open pores within the representative volume of 

the sample. In this work the above model is referred to as the open pores model 

(OPM).  

For the OPM the volume fraction of open pores needs to be established. Laboratory 

data on open porosity of porous material was obtained from the literature. In the work 

of Altman et al (1966) the relationship between the total and open porosity of sintered 

Cu-Sn-C materials has been investigated. Other experimental data for open porosity of 

the sintered titanium compacts was taken from results obtained by Oh et al (2003). 

Data on total and open porosity of porous bearings sintered from Fe-Cu-Sn powders 

has been provided by the manufacturer of porous bearings (GKN Sinter Metals 

Bruneck, Italy) by means of personal communication. 

In the present study the relationship between the total and open porosity of the 

materials has been approximated by an analytical function, which is a curve fit to the 

available experimental data:  

 𝑝𝑜𝑝𝑒𝑛 =
𝑝𝑡𝑜𝑡𝑎𝑙

1+𝐴𝑝−𝛼   

(2.34) 

where the coefficients 𝐴, 𝛼 were selected to fit the available experimental data. 

Values 𝐴 = 10−6 , 𝛼 = 5  were used in further calculations as they provide a 

reasonably good fit to the experimental data on sintered materials obtained by Oh et 

al (2003). Values 𝐴 = 2.5 ∗ 10−5 , 𝛼 = 5 were used to fit the experimental data on 

sintered Cu-Sn-C materials presented by Altman et al (1966), however, no data on 

elastic characteristics for was available for these materials. 

The relation is summarized on the Figure 2.15 where the fraction of open pores within 

the total porous structure is plotted against the total porosity. The OPM model 

provides a better agreement with experimental data than the previous model. The 
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comparison of the predictions given for the sintered materials by both MPM and OPM 

models with the experimental data is plotted in Figure 2.16 for the group (ii) materials 

and Figure 2.17 for the group (iii) materials. 

 
Figure 2.15 Fraction of open pores within the total porous structure plotted against the total 
porosity value. The approximate curve is compared with available experimental data. Solid 

line (𝑨 = 𝟏𝟎−𝟓, 𝜶 = 𝟓) shows good agreement with data for Fe-Cu-Sn sintered bearings 
(GKN Sinter Metals Bruneck, Italy) and titanium compacts(Oh et al, 2003). Dashed line 

(𝑨 = 𝟏𝟎−𝟔, 𝜶 = 𝟓) shows a better fit for Cu-Sn-C sintered materials (Altman, 1966). 

 
Figure 2.16 The influence of the total porosity on the elastic modulus of the sintered 
materials of group (ii): predictions given by the MPM (dashed line), OPM (dotted line) 
compared with the experimental data for various sintered materials. Experimental data for 
the materials given in Table 2.2 
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Figure 2.17 The influence of the total porosity on the elastic modulus of the sintered 
materials of group (iii): predictions given by the MPM (dashed line), OPM (dotted line) 
compared with the experimental data for various sintered materials. Experimental data for 
the materials given in Table 2.3 

2.8. Combined model (OPMPM) 

  The combined model (OPMPM) of the present paper is a combination of the MPM 

and OPM and incorporates all the extensions described in the previous sections.   

    • Initially the calculation is performed according to the extended VS model for 

isolated spherical pores as described in Section 2.3.  

    • The influence of merged pores is calculated as by Luo and Stevens (1996) and 

incorporated in the model in a step by step manner as described in Section 2.5.  

    • The volume occupied by open pores is evaluated by the relation (2.34) with 

appropriate coefficients 𝐴, 𝛼 selected for a particular material. Then the elastic 

modulus of the porous medium with developed open porosity is calculated as given by 

Equations (2.33) in Section 2.7.  

The comparison of the predictions given by the combined model with experimental 

data is shown in Figures 2.18 and 2.19 for the group (ii) and (iii) materials, respectively. 

A good agreement is apparent between the proposed combined model and the 

materials given by Table 2.3. This can be explained by the choice of the function (2.34) 

approximating the amount of open pores: it is selected to fit the data for sintered 

titanium and sintered porous bearings (see Figure 2.). To allow a better agreement 
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with properties of other materials, their open porosity to total porosity ratio has to be 

evaluated.  

2.9. Conclusions 

 The analysis presented has shown that the elastic characteristics of a porous material 

are highly dependent on the porous micro-structure of the samples. Hence, the 

manufacturing process used to prepare the material is an important factor for 

choosing a proper model for prediction of the elastic characteristics of the material. 

Both the classic Vavakin-Salganik model and its extended modification with an 

arbitrary statistical distribution of pore radii (e.g. the uniform distribution function) 

show good results for materials with isolated spherical pores. 

It is proposed that the theory of geometric probabilities is used to estimate the 

number of overlapping pores. 

Overlapping spherical pores are treated as merged and approximated by ellipsoids 

which allows a better fit to the experimental results. This approach has been shown to 

be effective and it can be used in various applications related to the properties of 

multi-phase materials. A further modification of geometrical probabilities approach, 

not implemented in the current study, considers calculating the probability that three 

or more spherical pores merge. 

For materials with developed porous micro-structure (open porosity), the volume 

fraction of open pores to the total volume of pores has to be established. The elastic 

properties of sintered materials may be affected not only by pores but also by cracks 

that could appear during the manufacturing process (see a discussion by Salganik and 

Fedotov, 2012). However the consideration of isolated cracks is outside the scope of 

the present paper. It is assumed that the load is transferred by the material containing 

closed pores that are either spherical or elliptical. The parts of the material containing 

open pores have very low stiffness and, therefore, do not carry any load. The function 

used to approximate the amount of open pores was selected to fit the experimental 

data for sintered titanium and sintered porous bearings. This results in a good 

agreement between the proposed combined elastic properties model for both merged 

and open pores with experimental results for these materials and other similar 

materials (see e.g. Table 2.3, Figure 2.19). 
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Figure 2.18 The influence of the total porosity on the modulus of the sintered materials of 
group (ii): predictions given by the OPM model (dotted line) and OPMPM model (dashed and 
dotted line) compared with the experimental data for various sintered materials. 
Experimental data for the materials given in Table 2.2.  

 
Figure 2.19 The influence of the total porosity on the elastic modulus of the sintered 
materials of group (iii): predictions given by the OPM model (dotted line) and OPMPM model 
(dashed and dotted line) compared with the experimental data for various sintered 
materials. Experimental data for the materials given in Table 2.3. 
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3 Dry contact analysis of rough nominally flat surfaces 

3.1 Introduction 

Plain bearing problems are usually treated as having perfectly conforming smooth 

surfaces. In principle, waviness features can be incorporated in their analysis at the 

global scale. However, roughness features will obstruct the flow when the film 

becomes thin and will make contact when mixed lubrication occurs. To consider 

roughness effects a dry contact analysis of plane parallel surfaces is required, and in 

this thesis this is achieved using a repeated representative roughness area. As 

discussed later, the repeated roughness is a requirement for using the Fourier 

convolution theorem and is convenient for defining periodic boundary conditions in 

both dry contact analysis in this chapter and local scale flow analysis considered in 

Chapters 4 and 5. 

This chapter is concerned with developing a method to model the elastic-plastic 

contact of nominally plane parallel surfaces where their local separation is significantly 

influenced by surface roughness. In this chapter the dry contact of rough surfaces is 

considered, however the method developed can be applied to the mixed lubrication 

analysis of plane bearings based on the theory of flow factors. The lubrication analysis 

based on the theory of flow factors is described in detail in Chapters 5 and 6.  

The solution for the dry contact of rough surfaces has evolved considerably as a 

standalone method. The majority of methods developed in this area are based on 

calculating the elastic deflection of the surfaces using the classical Boussinesq-Cerutti 

integral of the contact pressures with a convolution kernel. The two main challenges 

for these methods are the following:   

 A time consuming procedure of calculating the convolution integral which needs 

to be recalculated every time the pressure distribution has changed; 

 A slow decay of the convolution kernel which makes even quite distant contact 

pressures highly influential on the deflection at the point of interest. This can 

result in a slow convergence of the numerical methods aimed to obtain the 

solution for contact pressures.  
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Techniques based on multi-level multi-summation and the conjugate gradient method 

were developed by Polonsky and Keer (1999). Ju and Farris (1996), Stanley and Kato 

(1997) and Liu et al (2000) used Fourier transform (FT) methods to obtain the 

deflection as a convolution integral. All these works assumed purely elastic 

deformation of the materials. Subsequently, Keer and Wang (2005) adopted FT for 

evaluating stress and strain fields in a three dimensional elastic-plastic contact 

problem. Introducing a third dimension into the model allowed them to calculate von 

Mises subsurface stresses and, therefore, predict the plastic deformation of the body. 

A similar solution to the elastic-plastic contact problem was presented by Nelias et al 

(2007). Both linear and Swift’s hardening laws were applied. These and other 

semi-analytical techniques were shown to be much faster than solutions based on 

finite element analysis (FEA) as indicated by Nelias et al (2007). 

These semi-analytical methods use fast Fourier transform (FFT) with zero padding 

surrounding the pressure distribution in order to overcome the border aliasing error 

otherwise occurring (see e.g. Keer and Wang, 2005). Chen et al. (2008) used FFT 

methods without zero padding so that the resulting deflection convolution included 

the effect of periodic repeats of the pressure distribution in a semi-analytical method 

for elastic-plastic contacts similar to Nelias et al (2007) and Keer and Wang (2005). 

Sahlin and colleagues (2010a, 2010b) used FFT methods in the same way to obtain the 

deflection of the surface caused by the contact pressures. These methods thus solve 

for contact between surfaces with periodic repetition of a two dimensional 

representative roughness pattern which can be measured on real components using 

surface metrology techniques. Another difference of Sahlin’s model was to include an 

evaluation of plastic deformation assuming limiting the elastic pressure value. 

The current chapter presents a simple iterative approach to solving the harmonic 

contact problem based on a differential equation for the elastic and plastic 

deformations that is able to incorporate contact occurring at points on the boundary 

of the representative roughness and needs no special properties of the roughness on 

these boundaries. It is an extension of the differential deflection technique developed 

by Evans and Hughes (2000) to solve the mixed lubrication problem in concentrated 

contacts. The plastic deflection is accounted for in the same way as in Sahlin et al 

(2010a, 2010b) i.e. by limiting the maximum pressure to a hardness value of the 

material and determining the corresponding plastic deflection that limits the pressure 
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being developed at contacting points to this maximum value. Neglecting the hardening 

behaviour allows the deformations of the surface to be calculated as a function of 

contact pressures without introducing a third dimension. A comparison of the results 

obtained by the method presented and by an elastic-plastic FE analysis is provided in 

Section 3.4. The method benefits in time requirements and the resulting loaded shape 

can be used in a flow factor approach to mixed lubrication problems. It may also be 

possible to extend the method to the mixed lubrication problem which is currently 

being successfully approached by colleagues at Cardiff using the same differential 

formulation for the elastic deflection. 

3.2 Theoretical background 

3.2.1 Formulation 

The formulation of the problem considers two semi-infinite bodies in dry contact at 

their nominally plane contact surface. The lower body is elastic and has a rough 

nominally plane surface. The upper body is a plane, smooth semi-infinite body. The 

bodies are illustrated in (i) unloaded, and (ii) loaded configuration in Figure 3.1. The 

upper body is regarded as rigid as far as formulating the contact problem is concerned.  

The configuration can represent contact between two elastic bodies by a suitable 

choice of contact modulus, E’, and both surfaces can be rough if the lower surface is 

given a roughness that is the sum of the surface roughness of the two surfaces. In the 

loaded configuration of Figure 3.1 (ii) the unloaded position of the rough surface is 

shown as a broken curve. 

Figure 3.1 shows a normal section through the contact and illustrates the notation 

adopted: h(x,y) is the gap between the surfaces, r(x,y) is the (composite) roughness 

which defines the surface heights with respect to an arbitrary datum. The maximum 

and minimum roughness heights for the rough surface(s) are Rmax and Rmin. The bodies 

are brought into dry contact by moving the upper surface towards the lower surface 

until contact occurs at zero load at the highest asperity tip. Further displacement of 

the upper body causes a contact load to be developed at that asperity and this 

additional displacement is called the approach distance and denoted S. The value of S 

thus controls the load developed at the asperity contacts. As S increases the number of 

asperities in contact increases, and the maximum contact pressure at each asperity 

contact, calculated based on elastic deflection, also increases.  
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Figure 3.1. Section through contacting surfaces (i) showing undeformed non-contacting 
surfaces, and (ii) deformed contact under load for a specified value of approach distance, S , 
with the undeformed position of the hatched elastic body shown as a broken curve. 

The obstruction of flow caused by the presence of elastically deformed asperities 

differs from that caused by the undeformed shape of the surfaces. Flow factors based 

on elastic contact analysis allows mixed lubrication to be considered in an approximate 

way. If plastic deformation occurs in the area adjacent to the contacting asperities 

then the elastic contact model overestimates the contact load and does not calculate 

the deformation of the shape correctly. An approximate plasticity model is introduced 

based on limiting the contact pressure by the value of Pmax which is selected equal to 

the hardness value of the material. This model does not provide an accurate solution 

for the plastic deformation however it aims to improve the evaluation of the deflected 

shape of the surface and contact load in comparison to the pure elastic analysis. The 

model has shown a promising level of agreement with FEA as presented in Section 3.4 

In the proposed model the contact is assumed to be elastic whilst the maximum 

pressure remains below the maximum value Pmax, but when the elastic contact 

pressure exceeds Pmax a plastic deflection is assumed to occur. This results in a change 

in the undeformed shape of the rough surface(s) that allows the contact load to be 
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carried elastically with a contact pressure less than or equal to Pmax  as a result of 

asperity shape changes that have occurred due to plastic deformation. This change of 

shape is referred to as the plastic deflection, dplast(x,y).  

The aim of the work is to determine the values of contact pressure p(x,y) and surface 

gap h(x,y) for a given composite roughness r(x,y) and S value and so to determine the 

load compliance behaviour based on this simple ‘elastic-plastic’ model of surface 

deflection. The solution is obtained by numerical means on the finite computational 

domain 𝛺 = [0,𝑁𝑥 − 1] × [0,𝑁𝑦 − 1]  

The gap between the surfaces when S=0 is 𝑕(𝑥, 𝑦) =  𝑅max  −  𝑟(𝑥, 𝑦)  and the gap 

between the surfaces when S>0 and the contact is under load is given by 

𝑕(𝑥, 𝑦) =  𝑅max  −  𝑟(𝑥, 𝑦)   + 𝑑𝑒𝑙𝑎𝑠𝑡 (𝑥, 𝑦)  + 𝑑𝑝𝑙𝑎𝑠𝑡 (𝑥, 𝑦)  −  𝑆 
(3.1) 

Here delast(x,y) is the normal surface displacement caused by elastic deflection of the 

surface(s) and dplast(x,y) is the reduction in asperity height due to plastic deflection. 

3.2.2 Elastic deflection 

The elastic deflection at the point (x,y) is given by Boussinesq Cerutti integral (see e.g. 

Love, 1952 and Timoshenko and Goodier, 1970): 

𝑑𝑒𝑙𝑎𝑠𝑡 (𝑥, 𝑦) = −
2

𝜋𝐸′
 

𝑝(𝑠, 𝑡)

 (𝑠 − 𝑥)2 + (𝑡 − 𝑦)2
𝑑𝑠𝑑𝑡

𝑝>0

 

(3.2) 
which can be written as 

𝑑𝑒𝑙𝑎𝑠𝑡  𝑥, 𝑦 = −
2

𝜋𝐸′
 𝑔 𝑥 − 𝑠, 𝑦 − 𝑡 𝑝 𝑠, 𝑡 𝑑𝑠𝑑𝑡

𝑝>0

 

(3.3) 
where s,t are the dummy variables, and the weighting function g(x,y) is defined as 

𝑔(𝑥, 𝑦) =
2

𝜋𝐸′ 𝑥2 + 𝑦2
 

(3.4) 
For numerical evaluation of Equation (3.3) on an Nx by Ny rectangular mesh with 

spacing x and y in the x and y directions quadrature can be used to obtain the 

discrete weighting function Gi,j that gives the deflection at the mesh points as the 

discrete summation 

𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡 =   𝐺𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙

Ny−1

l=0

Nx−1

k=0
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(3.5) 

This study uses lower case symbols for continuous variables and upper case symbols 

for discrete variables. Note that Gk,l is defined for 𝑘, 𝑙 ∈ [−Nx + 1,𝑁𝑥 − 1] × [−Ny +

1,𝑁𝑦 − 1] to account for the influence of all pressures in the area of interest.  

3.2.3 Differential deflection formulation 

The differential deflection method casts Equation (3.1) in a differential form as 

originally proposed by Evans and Hughes (2000) for elastic deflection:  

∇2𝑕(𝑥, 𝑦)   =   −∇2𝑟(𝑥, 𝑦)   + ∇2𝑑𝑒𝑙𝑎𝑠𝑡 (𝑥, 𝑦)  + ∇2𝑑𝑝𝑙𝑎𝑠𝑡 (𝑥, 𝑦)  
(3.6) 

This equation is solved numerically to obtain the gap h(x,y), the pressure distribution 

p(x,y), and the residual plastic deflection dplast(x,y). These variables must also satisfy 

one of the contact conditions: 

𝑕 𝑥, 𝑦 > 0,              𝑝 𝑥, 𝑦 = 0,            𝑑𝑝𝑙𝑎𝑠𝑡  𝑥, 𝑦 = 0                                                   𝑎 

𝑕 𝑥, 𝑦 = 0,     0 < 𝑝 𝑥, 𝑦 < 𝑃𝑚𝑎𝑥 ,      𝑑𝑝𝑙𝑎𝑠𝑡  𝑥, 𝑦 = 0                                                   𝑏 

𝑕 𝑥, 𝑦 = 0,              𝑝 𝑥, 𝑦 = 𝑃𝑚𝑎𝑥 ,      𝑑𝑝𝑙𝑎𝑠𝑡  𝑥, 𝑦 > 0                                                   𝑐 

 

(3.7) 

which represent positions with (a) no contact, (b) elastic contact and (c) elastic-plastic 

contact. 

It is clear from (3.7) that plastic deflection occurs only at the points where the pressure 

value is equal to the hardness of the material, which represents a perfectly plastic 

behaviour. The subsurface plasticity and hardening are therefore neglected. 

Discrete numerical evaluation of ∇2𝑑𝑒𝑙𝑎𝑠𝑡 (𝑥, 𝑦) on the rectangular mesh can be 

obtained in the form  

∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡 =   𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙

Ny−1

l=0

Nx−1

k=0

 

(3.8) 

The matrix of Fi,j coefficients can be calculated by analytical means using quadrature 

(Evans and Hughes, 2000) or as a linear combination of the Gi,j obtained by differencing 

Equation (3.5) as in Elsharkawy et al (2006). As with Gk,l, the discrete function Fk,l is 

defined for 𝑘, 𝑙 ∈ [−𝑁𝑥 + 1,𝑁𝑥 − 1] × [−𝑁𝑦 + 1,𝑁𝑦 − 1]. 

The benefits of the differential approach are that the effect of pressure values Pk,l on 

the Laplacian 2 Delast(x,y)  is much more localised as shown in Figure 3.2 where 
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normalised F0,l and G0,l coefficients are plotted against the distance in number of mesh 

points. This localisation allows the elastic- plastic contact problem to be solved with a 

simple iterative procedure, which is described in detail in Section 3.3. This approach 

has considerable advantages in the mixed EHL problem as it allows both the elastic and 

hydrodynamic differential equations to be solved simultaneously, see e.g. Holmes et al 

(2005) and Elsharkawy et al (2006). 

 

Figure 3.2 Normalised absolute values of F and G coefficients along the main symmetry axis 

3.2.4 Convolution theorem 

The deflection delast(x,y) and its Laplacian 2 delast(x,y)  are convolution integrals of the 

pressure distribution p(x,y) with appropriate influence coefficients g(s,t) and f(s,t). The 

convolution theorem for the continuous Fourier transform states that a convolution of 

two functions can be obtained as the inverse transform of the product of the individual 

transforms, i.e.  

ϕ 𝑔 ⊗ 𝑝  =  ϕ 𝑔 • ϕ 𝑝    ⇒    𝑔 ⊗ 𝑝 =  ϕ−1 ϕ 𝑔 • ϕ 𝑝   
(3.9) 

where  denotes Fourier transform and ● is the point-wise product of two functions. 

In the numerical implementation the continuous convolution for x,y,s,t  ℝ is 

replaced by discrete summation over the finite computational domain for 𝑖, 𝑗, 𝑘, 𝑙 ∈

[0, 𝑁𝑥
∗ − 1] × [0, 𝑁𝑦

∗ − 1]. The continuous Fourier transform is replaced by the discrete 

Fourier transform operator (DFT) Φ for the finite domain: 

Φ 𝑃 𝑖 ,𝑗 =  exp −2𝜋𝜄
 𝑘𝑖

𝑁𝑥
∗  exp −2𝜋𝜄

 𝑙𝑗

𝑁𝑦
∗ 

𝑁𝑦
∗−1

𝑙=0

𝑁𝑥
∗−1

𝑘=0

 𝑃𝑘𝑙 , 𝑤𝑕𝑒𝑟𝑒  𝜄 =  −1

𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖, 𝑗 ∈   0,𝑁𝑥
∗ − 1 ×  0,𝑁𝑦

∗ − 1 
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(3.10) 

For discrete sequences of finite length, the convolution theorem takes the form of the 

‘circular convolution theorem’ also called linear convolution with aliasing (see e.g. 

Oppenheim et al, 1999, p. 577) and Equation (3.5) can be evaluated as: 

   𝐷𝑖 ,𝑗
𝑒𝑙𝑎𝑠𝑡   =   Φ−1 Φ 𝐺 • Φ 𝑃  =   𝐺𝑖−𝑘,𝑗−𝑙

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑃𝑘,𝑙

𝑁𝑦
∗−1

l=0

𝑁𝑥
∗−1

k=0

 

(3.11) 

where 

   𝐺𝑖,𝑗
𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 =   𝐺𝑖−𝑎𝑁𝑥∗ ,   𝑗−𝑏𝑁𝑦

∗

∞

𝑏=−∞

∞

𝑎=−∞

   

a and b are integers, and GPeriodic is a periodic summation term caused by aliasing. The 

comparison of (3.12) with (3.5) makes it clear, that calculating the elastic deflection as 

the inverse Fourier image results in including the pressure repeats into the 

consideration. 

Similarly the differential deflection 2Delast(x,y)  can be calculated as 

   ∇2𝐷𝑖 ,𝑗
𝑒𝑙𝑎𝑠𝑡   =   Φ−1 Φ 𝐹 • Φ 𝑃  =   𝐹𝑖−𝑘,𝑗−𝑙

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑃𝑘,𝑙

𝑁𝑦
∗−1

l=0

𝑁𝑥
∗−1

k=0

 

(3.12) 

Equations (3.11) and (3.12) represent the deflection and differential deflection caused 

not by pressure distribution Pi,j but by the periodic extension, such that: 

  𝑃𝑖+𝑎𝑁𝑥 ,𝑗 +𝑏𝑀𝑦
  =   𝑃𝑖,𝑗  ,    ∀ 𝑎, 𝑏 ∈  ℤ,   𝑖, 𝑗 ∈   0,𝑁𝑥

∗ − 1 ×  0,𝑁𝑦
∗ − 1  

(3.13) 

The physical meaning of this periodic extension is that the elastic deflection is caused 

by contact of a rough surface which has a spatially periodic profile.  

In a number of papers e.g. Ju and Farris (1996), Stanley and Kato (1997) and Liu et al 

(2000) the DFT is used to speed up the calculation of the convolution. The effect of 

periodic extension is suppressed by zero-padding which separates the unique pressure 

distribution from its periodic repeats so that the influence of the repeats becomes 

negligible. In the current work, however, the effect of periodic extension is exploited 

to calculate the deflection caused by the contact of the infinitely large surface with 

periodic roughness profile, as developed in Sahlin et al (2010a, 2010b). 
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In order to calculate the circular convolution of Equations (3.11) and (3.12) by DFT Pk,l , 

Gi,j and Fi,j must have the same dimensions, and Gi,j and Fi,j are written in wrap-around 

order, so that: 

𝐺−𝑖,−𝑗   =   𝐺2𝑁𝑥−𝑖,2𝑁𝑦−𝑗

𝐹−𝑖,−𝑗   =   𝐹2𝑁𝑥−𝑖,2𝑁𝑦−𝑗
 ,    ∀  𝑖, 𝑗 ∈  0,𝑁𝑥 − 1 ×  0, 𝑁𝑦 − 1  

(3.14) 

Figure 3.3 and Figure 3.4 give illustrated sketches of this process where weighting 

function Gi,j is shown in both symmetric and wrap-around forms. 

In addition Pi,j is defined on   𝑖, 𝑗 ∈  [0,𝑁𝑥 − 1] × [0,𝑁𝑦 − 1] , whereas after 

wrap-around modification Gi,j and Fi,j are defined on   𝑖, 𝑗 ∈  [0, 2𝑁𝑥 − 1] × [0, 2𝑁𝑦 −

1]. Consequently, Pi,j is repeated so that it is defined on 𝑖, 𝑗 ∈  [0, 2𝑁𝑥 − 1] ×

[0, 2𝑁𝑦 − 1]. 

The discrete Fourier transform (3.11) or (3.12) is therefore performed on a 2Nx×2Ny 

grid, so that 𝑁𝑥
∗=2Nx and 𝑁𝑦

∗=2Ny. Figure 3.5(a) shows schematically the unique 

pressure distribution defined on   𝑖, 𝑗 ∈  [0,𝑁𝑥 − 1] × [0,𝑁𝑦 − 1]  which is then 

repeated to fill the twice larger domain. Figure 3.5(b) illustrates implementation of the 

convolution algorithm with zero padding which allows the aliasing effect of repeated 

pressure to be neglected. 

 
Figure 3.3. (a) Example of symmetric response function; (b) Corresponding function in wrap 
around order  

Note that the periodic summation term GPeriodic in Equation (3.12) contains 

components Gi-aNx*,j-bNy*, whereas Gk,l is defined on 𝑘, 𝑙 ∈ [−𝑁𝑥 + 1,𝑁𝑥 − 1] × [−𝑁𝑦 +

1,𝑁𝑦 − 1] before the wrap-around modification. The values of Gk,l outside of the 

definition domain are then assumed to be zero. The same applies to the periodic 

summation term FPeriodic and Equation (3.12). The physical meaning of this is that the 

0

i

Nx-1 2Nx-1Nx

G(i,0)

0

i

Nx-1-Nx+1

G(i,0) (b) (a) 
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Figure 3.4.  (a) Example of axisymmetric discrete response function (2D); (b) Corresponding 
function in wrap around order  

 

Figure 3.5 Example of a unique pressure distribution on a computational domain (a) doubled 
in both directions as a necessity for the discrete Fourier convolution; (b) surrounded by 
zero-padding in both directions 

influence of the pressures which are more than one period (Nx or Ny mesh grid 

distances) further away from the point of interest is assumed negligible. Therefore, the 

periodic pressure distribution (3.13) includes not the infinite number of repeats but 

only eight adjacent repeats, as illustrated in Figure 3.6 by the dark grey area. 

The equality in dimensions of the signal function (pressure) and response function (Gi,j  

and Fi,j coefficients) is a necessary requirement for the discrete convolution procedure. 

This requirement can be satisfied without doubling the pressure distribution function 

by reducing the domain of Gi,j and Fi,j coefficients down to 𝑖, 𝑗 ∈  1 −
𝑁x

2
,
𝑁𝑥

2
− 1 ×

 1 −
𝑁y

2
,
𝑁y

2
− 1  as schematically shown in Figure 3.7.  

The reduced function Gi,j was used in many papers including Sahlin et al (2010a, 

2010b). This modification of Gi,j allows the computational area to be of the same size 

as the area of interest and therefore saves computational time and memory. However, 

by reducing Gi,j down to  1 −
𝑁x

2
,
𝑁𝑥

2
− 1 ×  1 −

𝑁y

2
,
𝑁y

2
− 1  the effect of the 

pressures at the points further than half the size of the original domain from the point 

of interest is neglected. The zone outside of the original computational domain where 

i

j

Nx-1

-Nx+1

-Ny+1

Ny-1

2Nx-1
i

j

2Ny-1

(b) (a) 

(b) (a) 
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the repeated pressures are taken into account when using the reduced function of 

influence coefficients is marked by the dashed rectangle in Figure 3.6. 

 

Figure 3.6 The original computational domain (textured), eight adjacent periodic repeats 
(dark grey), infinite set of periodic repeats (light grey);  

 

Figure 3.7. Reduced function of G coefficients and its wrap around order modification 

3.2.5 Harmonic roughness and periodic boundary 

All the functions of interest defined on 𝑖, 𝑗 ∈ [0,𝑁𝑥 − 1] × [0,𝑁𝑦 − 1] are assumed 

to be doubly periodic so that Equation (3.13) also holds for H, R, Delast and Dplast, and 

for their Laplacians. 

The differential deflection Equation (3.6) is therefore a Poisson equation with right 

hand side γ(x,y) that is periodic with periods L=Nxx, W=Nyx in the axis directions: 

∇2𝑕(𝑥, 𝑦) =   𝛾(𝑥, 𝑦)     =  −∇2𝑟(𝑥, 𝑦)   + ∇2𝑑𝑒𝑙𝑎𝑠𝑡 (𝑥, 𝑦)  + ∇2𝑑𝑝𝑙𝑎𝑠𝑡 (𝑥, 𝑦)      
(3.15) 

0

i

N-1-N+1

G(i,0)

-N/2 N/2 0 iN-1

G(i,0)
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Mason (1905) has considered the conditions necessary for a Poisson equation to have 

a periodic solution, and for a periodic solution h(x,y) with periods L, W to exist for 

Equation (3.15) the conditions 

  𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 𝑊

 0

 L

 0

    =   0     𝑎𝑛𝑑    𝛾(𝑥 + 𝑎𝐿, 𝑦 + 𝑏𝑊)   =   𝛾(𝑥, 𝑦), ∀𝑎, 𝑏 ∈ ℤ 

(3.16) 

are necessary and sufficient, provided that h(x,y) has continuous derivatives 

everywhere. 

This solution will however not be unique. Indeed, if h1(x,y) and h2(x,y) are both periodic 

solutions of Equation (3.15) then 

∇2𝑕1(𝑥, 𝑦) =   𝛾(𝑥, 𝑦)     and   ∇2𝑕2(𝑥, 𝑦) =   𝛾(𝑥, 𝑦) 

so that ∇2 𝑕1(𝑥, 𝑦) − 𝑕2(𝑥, 𝑦) =  0    which is the Laplace equation.  

The only periodic solution of the Laplace equation is a constant (see Mason, 1905) 

therefore 

𝑕1(𝑥, 𝑦)  − 𝑕2(𝑥, 𝑦) =   constant     
(3.17) 

Hence, the discretised version of Equation (3.6) 

∇2𝐻𝑖 ,𝑗     =    −∇2𝑅𝑖 ,𝑗   + ∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡  + ∇2𝐷𝑖,𝑗

𝑝𝑙𝑎𝑠𝑡
   =   𝛤𝑖 ,𝑗  

(3.18) 

has the unique periodic solution Hi,j if: 

 Hi,j is defined for at least one point, and 

 the right hand side i,j  satisfies the conditions of Equation (3.16). 

In order to satisfy the first of these conditions the value of Hi,j is specified at a selected 

point i0,j0 to be Hmax. The point i0,j0 is selected as the deepest valley of the surface, to 

ensure that no contact occurs at that point and, therefore, both 𝑃𝑖0 ,𝑗0
= 0 and 

𝐷𝑖0 ,𝑗0

𝑝𝑙𝑎𝑠𝑡
= 0. The rigid body movement S can then be calculated from Equation (3.1) 

with the given value Hmax: 

𝑆 =  𝑅max  − 𝑅min   + 𝐷𝑖0 ,𝑗0

𝑒𝑙𝑎𝑠𝑡  −  𝐻max  
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The discretised form of the integral in Equation (3.16) is the double summation: 

  𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑊

 0

 𝐿

 0

    ⇒      𝛤𝑖,𝑗

𝑁𝑦−1

𝑗=0

𝑁𝑥−1

𝑖=0

   =    −∇2𝑅𝑖,𝑗   + ∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡  + ∇2𝐷𝑖,𝑗

𝑝𝑙𝑎𝑠𝑡  

𝑁𝑦−1

𝑗=0

𝑁𝑥−1

𝑖=0

 

Consider   ∇2𝑅𝑖,𝑗  
𝑁𝑦−1

𝑗=0

𝑁𝑥−1
𝑖=0 =   

∂2𝑅𝑖,𝑗

∂𝑥2

2

  
𝑁𝑦−1

𝑗=0

𝑁𝑥−1
𝑖=0 +    

∂2𝑅𝑖,𝑗

∂𝑦2

2

  
𝑁𝑦−1

𝑗=0

𝑁𝑥−1
𝑖=0  

 
∂2𝑅𝑖,𝑗

∂𝑥2

𝑁𝑥−1
𝑖=0  =    

𝑅𝑖+1,𝑗+𝑅𝑖−1,𝑗−2𝑅𝑖,𝑗

Δ  𝑥
 2  

𝑁𝑥−1
𝑖=0   =  

1

Δ  𝑥
 2
 𝑅𝑖+1,𝑗
𝑁𝑥−1
𝑖=0  +

1

Δ  𝑥
 2
 𝑅𝑖−1,𝑗
𝑁𝑥−1
𝑖=0 −

2

Δ  𝑥
 2
 𝑅𝑖 ,𝑗
𝑁𝑥−1
𝑖=0   =  

1

Δ  𝑥
 2
 𝑅𝑖 ,𝑗
𝑁𝑥
𝑖=1  +

1

Δ  𝑥
 2
 𝑅𝑖 ,𝑗
𝑁𝑥−2
𝑖=−1 −

2

Δ  𝑥
 2
 𝑅𝑖,𝑗
𝑁𝑥−1
𝑖=0   

which due to the periodicity of Rij gives 

  
∂2𝑅𝑖 ,𝑗
∂𝑥2

𝑁𝑥−1

𝑖=0

   =    
1

Δ 𝑥
 2
 𝑅𝑖,𝑗

𝑁𝑥−1

𝑖=0

 +
1

Δ 𝑥
 2
 𝑅𝑖 ,𝑗

𝑁𝑥−1

𝑖=0

−
2

Δ 𝑥
 2
 𝑅𝑖 ,𝑗

𝑁𝑥−1

𝑖=0

  ≡   0 

Similarly,  

 
∂2𝑅𝑖,𝑗

∂𝑦2

𝑁𝑦−1

𝑗=0
 ≡   0   and consequently   ∇2𝑅𝑖 ,𝑗  ≡   0  

𝑁𝑦−1

𝑗=0

𝑁𝑥−1
𝑖=0  

The periodicity of  𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡   and  𝐷𝑖 ,𝑗

𝑝𝑙𝑎𝑠𝑡
  means that   

  ∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡  ≡   0  

𝑁𝑦−1

𝑗=0

𝑁𝑥−1
𝑖=0 and   ∇2𝐷𝑖 ,𝑗

𝑝𝑙𝑎𝑠𝑡
 ≡   0  

𝑁𝑦−1

𝑗=0

𝑁𝑥−1
𝑖=0                 

so that    𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 𝑊

 0

 𝐿

 0
    ⇒      𝛤𝑖 ,𝑗

𝑁𝑦−1

𝑗=0

𝑁𝑥−1 
𝑖=0    ≡   0   as required.  

3.3 Numerical implementation 

In this section the iterative procedure for solving Equation (3.18) with the contact 

conditions of Equations (3.7) is explained in detail. Equation (3.18) is 

∇2𝐻𝑖 ,𝑗     =    −∇2𝑅𝑖 ,𝑗   + ∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡  + ∇2𝐷𝑖,𝑗

𝑝𝑙𝑎𝑠𝑡
  

The pressure enters into the equation via the term ∇2𝐷𝑖 ,𝑗
𝑒𝑙𝑎𝑠𝑡  given by Equation (3.8) 

∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡  =   𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙

𝑁𝑦−1

𝑙=0

𝑁𝑥−1

𝑘=0

    

The summation is considered to be made up of three terms as follows 

∇2𝐷𝑖 ,𝑗
𝑒𝑙𝑎𝑠𝑡  = 𝐹0,0𝑃𝑖,𝑗   +  𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙𝑘,𝑙 ∈ 𝑛𝑒𝑎𝑟   +  𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙𝑘 ,𝑙  ∈ 𝑓𝑎𝑟 . 



Section 3.3 Numerical implementation 

56 

The near region consists of the eight points with indices k= i-1, i, i+1 and l = j-1, j, j+1 

excluding point i,j. The far region consists of the remaining points in the total 

summation, and pressures in this region have less influence on ∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡  as can be 

appreciated from Figure 3.2. 

The remaining terms in Equation (3.18) are discretised using central differences as 

∇2𝐻𝑖 ,𝑗  =  
𝐻𝑖+1,𝑗 + 𝐻𝑖−1,𝑗 − 2𝐻𝑖 ,𝑗

Δ 𝑥
 2

  +
𝐻𝑖 ,𝑗+1 + 𝐻𝑖 ,𝑗−1 − 2𝐻𝑖 ,𝑗

Δ𝑦 2
 

and    ∇2𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

 =  
𝐷𝑖+1,𝑗
𝑝𝑙𝑎𝑠𝑡

+𝐷𝑖−1,𝑗
𝑝𝑙𝑎𝑠𝑡

−2𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

Δ  𝑥
 2   +

𝐷𝑖,𝑗+1
𝑝𝑙𝑎𝑠𝑡

+𝐷𝑖,𝑗−1
𝑝𝑙𝑎𝑠𝑡

−2𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

Δ𝑦
 2       

This involves the values of these variables at the point of interest and the near region 

and the discretised equation can be written as: 

  𝐵𝜆 𝐻𝑖 ,𝑗
𝜆 − 𝐷𝑖,𝑗

𝑝𝑙𝑎𝑠𝑡 ,𝜆
 − 𝐹𝜆𝑃𝑖,𝑗

𝜆      =   

8

𝜆=0

 𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙

𝑘 ,𝑙  ∈ 𝑓𝑎𝑟

   − ∇2𝑅𝑖,𝑗   

(3.19) 

where the auxiliary index  = 0,1,…8 denotes the point i,j and its near neighbours as 

illustrated in Figure 3.8.  The coefficients  B  and F are then as follows: 

𝐵2 =  𝐵6  =  1/Δ 𝑥
 2  ,     𝐵4 =  𝐵8  =  1/Δ 𝑦

 2  ,      𝐵0  =  −2/Δ𝑥
 2 − 2/Δ 𝑦

 2

𝐵1 =  𝐵3  =  𝐵5  =  𝐵7  = 0 ,
  

𝐹0 =  𝐹0,0       𝐹1 =  𝐹−1,−1      𝐹2 =  𝐹0,−1        𝐹3 =  𝐹1,−1        𝐹4 =  𝐹1,0     

𝐹5 =  𝐹1,1       𝐹6 =  𝐹0,1       𝐹7 =  𝐹−1,1       𝐹8 =  𝐹−1,0       
  

 

Figure 3.8  Grid point i,j and the near region points as denoted by auxiliary index . 

Equation (3.19) consists of NxNy equations in the 3 NxNy unknowns 𝑃𝑖,𝑗 , 𝐻𝑖 ,𝑗  and 

𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

. Additional constraints must be applied in the form of compatibility Equations 

(3.7). One of these equations will apply at each point in the mesh, and each of these 

equations prescribes values for two of the unknowns so that there are in fact 3NxNy 

equations in the 3NxNy unknowns.  The solution is obtained by iteration using 
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Equation (3.19) and one of Equations (3.7) at each point in the mesh. Equation (3.19) is 

rearranged as follows 

𝐵0 𝐻𝑖 ,𝑗 −𝐷𝑖 ,𝑗
𝑝𝑙𝑎𝑠𝑡  − 𝐹0𝑃𝑖,𝑗   = 𝐴𝑖 ,𝑗     

(3.20) 

Where  

𝐴𝑖,𝑗   = 𝑅𝐻𝑆𝑖 ,𝑗 −  𝐵𝜆 𝐻𝑖 ,𝑗
𝜆 − 𝐷𝑖,𝑗

𝑝𝑙𝑎𝑠𝑡 ,𝜆 − 𝐹𝜆𝑃𝑖,𝑗
𝜆     8

𝜆=1

and  𝑅𝐻𝑆𝑖 ,𝑗   =  𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙𝑘 ,𝑙  ∈ 𝑓𝑎𝑟  − ∇2𝑅𝑖,𝑗
    

(3.21) 

The term 𝑅𝐻𝑆𝑖,𝑗  remains fixed during each stage of the iterative procedure and the 

far pressure summation is obtained for the trial pressure in the outer loop. For each 

point in the mesh 𝐴𝑖 ,𝑗  is evaluated using the current values of 𝑃𝑖 ,𝑗 , 𝐻𝑖 ,𝑗  and 𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

. 

Equation (3.20) is then solved with the appropriate compatibility conditions from 

Equations (3.7) to give new values for P, H and Dplast at the point according to the value 

of 𝐴𝑖,𝑗  as follows, noting that B0 and F0 are negative. 

if  𝐴𝑖,𝑗 < 0                       ⇒    𝑃𝑖 ,𝑗 = 0,     𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

= 0      𝐻𝑖 .𝑗 = 𝐴𝑖,𝑗 /𝐵0   

if  0 < 𝐴𝑖,𝑗 < −𝐹0𝑃max  ⇒   𝐻𝑖 .𝑗 = 0,     𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

= 0      𝑃𝑖,𝑗 = −𝐴𝑖 ,𝑗 /𝐹0   

if  −𝐹0𝑃max < 𝐴𝑖,𝑗           ⇒   𝐻𝑖 .𝑗 = 0,     𝑃𝑖,𝑗 = 𝑃𝑚𝑎𝑥 ,   𝐷𝑖 ,𝑗
𝑝𝑙𝑎𝑠𝑡

= − 𝐴𝑖,𝑗 + 𝐹0𝑃𝑚𝑎𝑥  /𝐵0   

(3.22) 

The new values of 𝑃𝑖,𝑗 , 𝐻𝑖 ,𝑗  and 𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

. are used to calculate  𝐴𝑖,𝑗  from Equation 

(3.21) as soon as they are available.  The iterative changes are applied to each point 

in the mesh to form a single sweep through the mesh, and convergence is assessed in 

terms of the changes made to 𝑃𝑖 ,𝑗 , 𝐻𝑖 ,𝑗  and 𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡

 during a sweep.  No iterative 

changes are applied at the point i0,j0 where the variables take the values 

𝐻𝑖0,𝑗0  =  𝐻max    ,    𝑃𝑖0,𝑗0   = 0,     𝐷𝑖0,𝑗0
𝑝𝑙𝑎𝑠𝑡

= 0  

(3.23) 

When the changes occurring during an iterative sweep have become small the trial 

pressure is replaced by the new pressure distribution in the outer loop.  Also in the 

outer loop an adjustment is made to ensure that the elastic deflection at point i0,j0 is 

consistent with the imposed value of 𝐻𝑖0,𝑗0  =  𝐻max .  The discretised form of 

Equation (3.1) at point i0,j0 is 

𝐻𝑖0,𝑗0 =  𝑅max  −  𝑅min   + 𝐷𝑖0 ,𝑗0

𝑒𝑙𝑎𝑠𝑡   − 𝑆    

(3.24) 

If the problem is solved for a specified value of 𝐻max  then the value of S is modified 

in the outer loop according to  
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𝑆 =  𝑅max  −  𝑅min   + 𝐷𝑖0 ,𝑗0

𝑒𝑙𝑎𝑠𝑡   − 𝐻max  

(3.25) 

If the problem is solved for a specified approach distance S then 𝐻max is updated in 

the outer loop using Equation (3.24). 

3.3.1 Flowchart of the differential deflection method 

1. Set up roughness function 𝑅𝑖 ,𝑗  

2. Calculate ∇2𝑅𝑖 ,𝑗  

3. Calculate 𝐺𝑘,𝑙  for𝑘, 𝑙 ∈ [−Nx + 1,𝑁𝑥 − 1] × [−𝑁𝑦 + 1,𝑁𝑦 − 1]  according to 

(3.4) 

4. Calculate 𝐹𝑘,𝑙  for𝑘, 𝑙 ∈ [−Nx + 1,𝑁𝑥 − 1] × [−𝑁𝑦 + 1,𝑁𝑦 − 1] 

5. Calculate Fourier images Φ 𝐺 , Φ 𝐹   

6. Calculate    𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡 =   Φ−1 Φ 𝐹 • Φ 𝑃   

7. Calculate    ∇2𝐷𝑖,𝑗
𝑒𝑙𝑎𝑠𝑡 =   Φ−1 Φ 𝐹 • Φ 𝑃𝑜𝑙𝑑    

8. Update 𝐻𝑖 ,𝑗
𝑜𝑙𝑑 =   𝐻max +  𝑅min − 𝑅𝑖,𝑗   + 𝐷𝑖,𝑗

𝑒𝑙𝑎𝑠𝑡    − 𝐷𝑖0 ,𝑗0

𝑒𝑙𝑎𝑠𝑡 + 𝐷𝑖 ,𝑗
𝑝𝑙𝑎𝑠𝑡 ,𝑜𝑙𝑑

 

according to (3.1) and (3.24) or (3.25). 

9. Calculate far contributions   𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙
𝑜𝑙𝑑

𝑘,𝑙  ∈ 𝑓𝑎𝑟  = ∇2𝐷𝑖 ,𝑗
𝑒𝑙𝑎𝑠𝑡 − 𝐹0,0𝑃𝑖,𝑗

𝑜𝑙𝑑   −

 𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙
𝑜𝑙𝑑

𝑘,𝑙  ∈ 𝑛𝑒𝑎𝑟   

10. Calculate 𝐴𝑖,𝑗   =  𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙
𝑜𝑙𝑑

𝑘,𝑙  ∈ 𝑓𝑎𝑟  −   𝐵𝜆 𝐻𝑖 ,𝑗
𝜆 ,𝑛𝑒𝑤 −𝐷𝑖,𝑗

𝑝𝑙𝑎𝑠𝑡 ,𝜆,𝑛𝑒𝑤  −8
𝜆=1

𝐹𝜆𝑃𝑖,𝑗
𝜆,𝑛𝑒𝑤      where 𝑃𝑖 ,𝑗

𝜆 ,𝑛𝑒𝑤 are the most recent neighbouring P values 

11. Apply contact condition system (3.22) to obtain new values  𝑃𝑖,𝑗
𝑛𝑒𝑤 , 𝐻𝑖 ,𝑗

𝑛𝑒𝑤 ,

𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡 ,𝑛𝑒𝑤

from 𝐴𝑖,𝑗  

12. Repeat 10-12 for all 𝑖, 𝑗 ∈ [0,𝑁𝑥 − 1] × [0,𝑁y − 1] until converged for fixed 

value of far contributions term   𝐹𝑖−𝑘,𝑗−𝑙𝑃𝑘,𝑙
𝑜𝑙𝑑

𝑘,𝑙 ∈ 𝑓𝑎𝑟   

13. 𝑃𝑖,𝑗
𝑛𝑒𝑤 ⇒ 𝑃𝑖 ,𝑗

𝑜𝑙𝑑 ,    𝐻𝑖 ,𝑗
𝑛𝑒𝑤 ⇒ 𝐻𝑖 ,𝑗

𝑜𝑙𝑑 , 𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡 ,𝑛𝑒𝑤

⇒  𝐷𝑖,𝑗
𝑝𝑙𝑎𝑠𝑡 ,𝑜𝑙𝑑

 

14. Repeat steps 6-13 until converged. 
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3.4 Results and discussion 

The method described in the preceding sections has been applied to contact between 

two plane rough surfaces. A series of simulations was carried out for different types of 

surface roughness. The surface roughness is defined over a representative rectangular 

area LW and is doubly periodic with periodic lengths L and W. The different types of 

roughness considered were: 

 analytic surfaces such as one- and two- dimensional sinusoidal waves  

 stochastic, where Ri,j is obtained as a quasi-random set of heights, and 

 measured surface roughness obtained by profilometer.  

For each of the rough surfaces considered a sequence of simulations was carried out 

for different Hmax values in the range 0 < Hmax < Rmax-Rmin where Hmax = Rmax-Rmin 

corresponds to S = 0 where contact occurs at the highest asperity under zero load, and 

Hmax = 0 means that all the asperities have been flattened. Note that according to the 

asperity persistence concept introduced by Williamson and Hunt (1972) the asperities 

in real surface contacts are never completely flattened, therefore the case of Hmax = 

Rmax-Rmin is not realistic. The load on the doubly periodic surfaces analysed is expressed 

as the mean contact pressure over the surface.  

The case of pure elastic contact of a surface with sinusoidal waviness was validated via 

the comparison with the closed form solution obtained by Westergaard (1939). This 

comparison is given in Section 3.4.1. The results obtained for a 2D stochastic surface 

are presented in Section 3.4.2. The case of an extruded roughness problem with 

measured profile given by profilometer is provided in Section 3.4.3. These results are 

compared with 2D FEA solution for the same measured profile. Section 3.4.4 gives a 

comparison of the results obtained by the method developed with those obtained by 

3D FEA which became recently available to the author (Yastrebov et al, 2011). 

3.4.1 Westergaard solution 

Westergaard (1939) studied elastic contact of nominally flat surfaces with extruded 

sinusoidal waviness of wavelength L. A sequence of loading conditions were 

considered starting from the case where surfaces have periodic contact spots of width 

2a0 up to the case where the waviness has been completely flattened. Based on the 

Hertizan formulae for cylindrical contact, Westergaard (1939) derived a closed form 

solution for the contact pressure distribution P(x): 
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𝑃 𝑥 =  −
2𝑃𝑚𝑒𝑎𝑛 𝑐𝑜𝑠  

𝜋𝑥
𝐿  

sin2  
𝜋𝑎
𝐿  

 sin2  
𝜋𝑎

𝐿
 − sin2  

𝜋𝑥

𝐿
  

(3.26) 

where Pmean is the load expressed by means of homogeneous pressure distribution 

applied to one of the surfaces, a is a half-width of each contact spot, L is the period of 

the waviness. Note that Equation 3.26 defines the pressure distribution function which 

takes real and non zero values at the periodic contact spots of width 2a. In order to 

validate the method developed in the thesis for the pure elastic case, an extruded 

sinusoidal surface of period L has been considered and the contact pressure 

distribution was calculated for a sequence of penetrations (S). For each case the mean 

pressure Pmean and half width of the contact area a were calculated and substituted 

into Equation 3.26 to evaluate the corresponding Westergaard solution. The 

comparison of the DDM method and the Westergaard solution is given in Figures 3.9 

and 3.10 where pressure and gap distributions are shown for the half of the sinusoidal 

feature. Note that the x coordinate is normalised with respect to L, i.e. the interval 

-0.5<x<0.5 denotes the whole period of the waviness. 

The comparison of the solutions given in Figure 3.9 shows a perfect agreement of the 

DDM method and the Westergaard solution with minor deviations of the DDM method 

at the boundaries of the contact zones caused most probably by the numerical 

approximation error. Note that the Westergaard solution plotted depends on the Pmean 

and a values calculated from the corresponding DDM solution, therefore the 

comparison is independent of the dimensions of the problem, material properties and 

amplitude of the waviness. For this comparison the material properties were selected 

as those of hardened steel (Elastic modulus 200 GPa, Poisson’s ratio 0.3), whereas 

each waviness feature is 100 µm wide and has 1 µm amplitude with respect to the 

mean line. Analysis using DDM has been carried out assuming that the deformed gap 

at the lowest points of the surface has the value of Hmax and there is no deformation at 

this point. The sequence of penetration values S used were then calculated according 

to Equation (3.25) from Hmax values.  
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Figure 3.9. Sequence of pressure distributions obtained by DDM elastic (solid lines) and 
Westergaard solution (dashed lines) plotted against normalised x coordinate. Arrow 
indicates the sense of increasing the load until the wavy features are completely flattened. 

  
Figure 3.10   Undeformed gap (dashed line) and sequence of gap distributions obtained by 
DDM elastic (solid lines)) plotted against normalised x coordinate. Arrow indicates the sense 
of increasing the load until the wavy features are completely flattened. 

3.4.2 Two-dimensional roughness 

In this section the results are presented for a rough surface with 2-dimensional profile 

obtained by the method developed by Chilamakuri and Bhushan (1998). A 

quasi-random surface with non-Gaussian distribution of heights is generated which has 

specified roughness parameters standard deviation, σ, skewness, Ssk, and kurtosis, Sku. 

For the current paper the values specified were σ= 1.47 m, Ssk=-1.34, and Sku=8.45 

and the rough surface generated is illustrated in Figure 3.11. The material properties 

used are those of steel and the maximum pressure value of Pmax = 4.37 GPa is 

specified. The variation of contact load with approach distance for this surface is 

shown in Figure 3.12 which is obtained by numerical solution of the harmonic contact 
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problem at different values of Hmax. When contact first occurs it is at a single asperity 

and the load behaviour with increasing S represents the load compliance behaviour of 

that particular asperity.  As S is increased, further asperities make contact and 

existing asperity contacts develop higher elastic pressures before becoming plastic. 

 
Figure 3.11 2D visualisation of the representative 2D random surface  

 

Figure 3.12 Variation of load with approach distance, S, for the 2D stochastic surface (empty 
circles), load cases selected for comparison (solid circles), corresponding to (A) S = 15 μm, (B) 
S = 30 μm, (C) S = 70 μm;, trend line (solid curve), Pmax (broken curve). 

The total dimensions of the rough surface are 2.5 mm by 2.5 mm and this is resolved 

using 256 by 256 mesh points. For the sake of clarity a 1 mm by 1 mm part is selected 

for illustration. Contact areas of the selected part are illustrated in Figure 3.13 for 

mean pressures of 90, 550 and 2200 MPa in this sequence with approach distances of 

15, 30 and 70 m. In these figures the analysis area is represented by neighbouring 

pixels in a rectangular grid with each pixel coloured with the colour representing 

no-contact, elastic contact, or elastic-plastic contact.  
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Figure 3.13 Illustration of contact condition over the representative contact area,  - no 
contact,  - elastic contact,   - plastic contact; Broken line denotes sections selected 
for comparison; (A) S = 15 μm, (B) S = 30 μm, (C) S = 70 μm. 

Comparison shows how contact load increases through an increased number of 

contacts and through existing and new contacts graduating from fully elastic to 

elastic-plastic conditions. Most of the asperity contacts are in the elastic-plastic 

condition, particularly at the higher of the three loads considered. This is because the 

asperities have low radii of relative curvature at the contact points and that these 

rapidly become plastic as the contact load increases. 
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Figures Figure 3.14, Figure 3.15 and Figure 3.16 show contact conditions on central 

horizontal sections of Figure 3.13(A, B, C) at the three loads considered. In Figure 3.14 

the roughness profiles are illustrated above the rigid counterface (i.e. in the sense of 

Figure 3.1 inverted).  The sections are 1 mm long and are made up of 103 mesh 

points. The comparison of these sections shows how the individual asperity contacts 

develop.   

 
Figure 3.14 (i) Gap between surfaces on selected sections of Figure 8 A, B and C at the three 
loads considered (ii) subsection corresponding to 𝒙 ∈ [𝟎.𝟔, 𝟎. 𝟕]   

 
Figure 3.15 (i) Pressure distribution on selected sections of Figure 8 A, B and C at the three 
loads considered (ii) subsection corresponding to 𝒙 ∈ [𝟎.𝟔, 𝟎. 𝟕]   

 
Figure 3.16. (i) Residual deflection on selected sections of Figure 8 A, B and C at the three 
loads considered, (ii) subsection corresponding to𝒙 ∈ [𝟎.𝟔, 𝟎. 𝟕]   
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First, consider the asperity contact that occurs at 2 elastic contact points at x = 0.65 

mm and x=0.67 mm for the lowest load (see subsections of Figures Figure 3.14, Figure 

3.15 and Figure 3.16, corresponding to x from 0.6 to 0.7 mm). At the intermediate load 

the contact has extended to comprise neighbouring points, and is mostly plastic. The 

plastic deflection can be observed in Figure 3.16. At the highest load the contact area 

spreads beyond the subsection with all contact points plastic except that at the left 

boundary of the subsection zone. The pattern of new elastic contact points becoming 

plastic as the load is increased happens in both x and y directions as can be seen in 

Figure 3.13. 

3.4.3 Extruded roughness profile 

In order to validate the results of the simple elastic-plastic contact model of harmonic 

roughness a comparison was made with the same problem subjected to a finite 

element contact analysis (FEA) which takes subsurface stresses and plastic behaviour 

into account in an elastic-plastic material model. The von Mises criterion of plasticity is 

used in the FEA analysis and the hardening behaviour is neglected. The problem 

chosen for this comparison is of one rough surface contacting a smooth plane surface. 

The FEA was for plane strain conditions to simulate the line contact analysis of a 

ground surface, i.e. in terms of Figure 3.1 the roughness profile is extruded 

perpendicular to the x-z plane. To specify the harmonic roughness problem a 0.1 mm 

length of profile taken from a test gear surface was mirrored repeatedly to form a 

rough nominally flat surface which was loaded against a rigid smooth surface using the 

ABAQUS FEA software system by Bryant (2013). The transverse deflection of the plane 

strain FEA model was restrained at its (mirror image) transverse boundaries so that 

analysis of the single 0.1 mm length gives the solution to the full periodic problem. The 

dimension of the model in a direction measured normal to the contacting surfaces was 

sufficient to ensure effective semi-infinite deflection behaviour and the load was 

applied with a uniformly distributed force at this boundary. Simulation of repeated 

loading at the same load shows that the residual plastic deformation at an asperity 

occurs almost entirely in the first loading event (Evans et al, 2012).  

In order to specify the symmetry boundary conditions for the differential deflection 

method (DDM) the 0.1 mm long profile was reflected to give the surface roughness 

and then extruded to form the representative roughness area that is repeated 

periodically in the harmonic analysis. This is illustrated in Figure 3.17 which shows the 
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0.1 mm roughness profile schematically on AB. This is reflected at B to give profile BC, 

and the whole profile AC is extruded to form the representative 2D roughness area 

ACA’C’.  The representative area ACA’C’ is a rectangular computational domain of 

2048x128 points which is naturally repeated in both directions as a consequence of 

using circular Fourier convolution theorem. Although the model performs a 2D point 

contact analysis, the 2D solution for the current problem should have no variation in 

the y direction and this was found to be the case. The value of Pmax was taken to be 2.7 

times the yield strength of 1.61 GPa specified in the FEA model, i.e. Pmax =4.37 GPa. 

 
Figure 3.17 Schematic showing how the 2D periodic roughness analysis is created from the 
single profile AB by reflection to form profile AC and extrusion to form the representative 
area ACA’C’. 

In the DDM the load is imposed by specifying the Hmax value, which is the depth of the 

deepest valley after the deformation occurs; load is then calculated as the sum of the 

pressures, generated at the points which are in contact. In order to compare the DDM 

results with available FEM results for the same surface profile, a number of problems 

were solved by the DDM for a sequence of Hmax values. The results were then 

compared with those from the FEA model for the same mean pressure or for the same 

contact area.  

The FE model used a roughness profile that consisted of 1001 points in AB section (see 

Figure 3.17). For use in the DDM this profile was adapted to a 1024 nodes grid, using a 

linear interpolation. The reflected profile AC has therefore 2048 nodes. The execution 

time of the FE contact analysis on Intel i3 32bit processor for a single load case varies 

from 1 h 45 min to 3 hours 45 min increasing for higher loads. The execution time of 

the DDM varies from 1 to 5 minutes, depending on the number of asperities which are 

in the transition range of the contact/no-contact or pure elastic/elastic-plastic 

conditions, i.e. very low pressure or gap values or pressure close to Pmax value. The 

stated times are based on simple point iteration and have the potential for significant 
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reduction. This possibility is not covered by the present work. The relative error is 10-7 

for each node value for both methods. 

Figure 3.18 shows the variation of mean contact pressure with contact length for the 

DDM model and includes the results for five load cases with Pmean varying from 220 

MPa to 1025 MPa evaluated using the FEA method. The results given by DDM were 

compared to those obtained by FEA with the same contact length. The difference in 

Pmean at the lowest load is about 5% and at the highest load is about 10%. The reason 

for this discrepancy is discussed below.  

 
Figure 3.18 Comparison of mean contact pressure with profile contact length for differential 
deflection (empty circles) and FEA (solid circles) contact solutions; trend line for DDM 
solutions (solid line) 

Figure 3.19 gives the load compliance behaviour for the DDM over the full range of 

loading possible. The highest approach distance used of 1.65 m corresponds to 

almost complete surface contact, and at that stage the mean contact pressure is very 

close to Pmax which has the value 4.37 GPa for this analysis.  
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Figure 3.19 Variation of mean contact pressure with approach distance for differential 
deflection contact solution (empty circles), trend line (solid curve), Pmax (broken curve). 

Figure 3.20 and Figure 3.21 make a detailed comparison of the contact results 

obtained for the two FEA analysis load cases. The comparison is made on the basis of 

equal contact areas.  

Figure 3.20 compares the results for the lower FEA load case which has Pmean = 375 

MPa.  The figure shows the results from the two methods superimposed and shows 

the contact pressure and the contact gap for the two analyses.  The contact gap is 

plotted in the positive downward sense so that the figure reflects the contact 

geometry in Figure 3.1. This also aids clarity as it has the advantage of preventing the 

pressure and film gap curves overlapping. The agreement between the contact gap 

between the two analyses is very good and since this is the key calculation as far as 

providing information for determining the influence of roughness on lubricant flow it is 

an encouraging level of agreement between the full FEA model and the simplified DDM 

model.  
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Figure 3.20 Comparison of contact pressure and surface gap for differential deflection and 
FEA contact solutions at FEA contact load of 375 MPa. 

The comparison of pressure distributions indicates differences in pressure detail but a 

good general agreement. The difference apparent in the contact pressures is that the 

DDM tends to calculate asperity contacts with greater areas experiencing the hardness 

pressure Pmax than is the case with the FEA model. This is because of the simplified 

treatment of plastic effects and explains the observation that the DDM model tends to 

overestimate contact load.  

Figure 3.21 makes the corresponding comparison for the FEA load case with Pmean = 

1025 MPa. Note that the DDM solution was selected from the sequence of solutions as 

the closest fit to the FEA analysis in terms of contact length value. The contact gap 

agreement is not as good in this case as that of Figure 3.20 and the load is 

overestimated by a greater factor. The higher load brings more asperities into contact, 

where part of the contact is plastic and in these cases the effect of plastic flow is more 

significant, which is reflected in the level of agreement in the gap for the higher load. 

For application of dry contact to predict elastic-plastic load compliance behaviour as 

part of a mixed lubrication analysis the most appropriate comparison is that on the 

basis of the approach distance, S, but that information is not available for the current 

FEA analysis which is loaded by application of the mean pressure. The distance of 
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common approach then reflects the strain in the contacting bodies which are not 

semi-infinite. 

 
Figure 3.21 Comparison of contact pressure and surface gap for differential deflection and 
FEA contact solutions at FEA contact load of 1025 MPa. 

Another comparison made between the models is that of the residual deflection 

obtained by both the FEM and DDM analyses. For the FEM solution this is the 

difference between the residual shape of the unloaded surface and the original 

surface. For the DDM the residual deflection is Dplast(x,y) value. Figure 3.22 gives the 

comparison for the lower of the two loads. This shows that for the FEA analysis the 

residual surface deflection may be negative in the areas adjacent to the contact area 

and this is a consequence of subsurface flow causing an upwelling of the material 

around the asperity contacts.  

This effect is not obtained with the DDM analysis where the effect of plastic 

deformation is currently restricted to the contact points experiencing Pmax pressures. 

To improve this aspect of the DDM model the effect of the subsurface plastic flow 

would need to be incorporated in some way. For example a concept of asperity 

persistence introduced by Williamson and Hunt (1972) could be adopted locally in the 

areas adjacent to the high pressure points. 
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Figure 3.22 Comparison of residual deflection for differential deflection and FEA contact 
solutions at FEA contact load of 375 MPa. 

However, the relative residual deflection between the contact points and the 

neighbouring non contact points is captured quite well. Figure 3.23 makes the 

corresponding comparison for the higher load case and has a different ordinate scale. 

Here there is a greater degree of residual deflection, and the upwelling of the surface 

areas surrounding the asperity contacts is greater. Here again it is apparent that in 

spite of its inability to predict the upwelling, the DDM predicts the relative residual 

deflection well. 

 
Figure 3.23 Comparison of residual deflection for differential deflection and FEA contact 
solutions at FEA contact load of 1025 MPa. 
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The final comparison made between the results obtained by FEA and DDM for 

extruded rough surfaces is that of the free volume between the deformed surface and 

its rigid counterface. This comparison is considered to be relevant in application to the 

mixed lubrication as it demonstrates the capability of the load in plain bearing to be 

supported hydrodynamically despite the occasional contacting asperities. Figure 3.24 

presents the free volume values (i.e. the volume between the surfaces) relative to the 

undeformed surface case plotted against the contact length of the profile. It can be 

observed that the results obtained via FEM are in a good agreement with 

corresponding solutions obtained via DDM with simple elastic-plastic model. 

 
Figure 3.24 Comparison of relative free volume between the deformed rough surface and its 
rigid counterpart obtained via DDM (empty circles) and FEA (solid circles) . 

3.4.4 Full 3D FEA comparison 

Comparison of the dry contact analysis using DDM and that obtained by means of FEM 

using ABAQUS has shown good agreement of the pressure distribution, contact zone 

and free volume for the one dimensional case with measured roughness profile. The 

difference between the deflected shapes obtained by the two methods was explained 

by the DDM being incapable of accounting for the subsurface plastic flow. The DDM 

method however is developed for solving a point contact problem, therefore a 

comparison of the method with full 3D FEA is considered beneficial. 

Yastrebov et al (2011) developed a simplified dry contact analysis method based on 

the constitutive behaviour of the material calibrated using a FEA solution of a single 

asperity problem. For validation purposes they have also conducted a full 3D FEA of a 
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indicated by Yastrebov et al (2011), the resolution of the asperity peaks plays an 

important role in creating a discrete mesh for the FEA study. For this purpose 

Yastrebov et al (2011) enriched the measured surface using a bi-cubic Bezier 

smoothing step which resulted in a surface representation using 330x330 nodes. Each 

asperity was then represented by 460 nodes on average. This surface containing 

330x330 nodes was made available to the current author and interpolated onto a grid 

of 512x512 nodes, optimised for the FFT algorithm. The rough surface used is shown in 

Figure 3.25 in isometric view, and cross sections parallel to X and Y axis are given in 

Figures 3.26 and 3.27 respectively. 

The FE analysis conducted by Yastrebov et al (2011) considered a representative 

volume element (RVE) with lateral dimensions 54x63 µm and depth of 72 µm. The top 

face of the RVE was rough and touching a rigid counterface. The loaded state was 

induced by specifying the vertical displacement at the bottom face of the RVE and by 

restraining the vertical displacement of the rigid counterface. Symmetry boundary 

conditions were imposed on the side faces of the RVE, i.e. no lateral displacements 

were allowed at these faces.  

The material properties were those of NOREM alloy, which is a hardfacing alloy 

developed by Electric Power Research Institute for nuclear energy industry and its 

chemical composition is mostly iron with additions of chromium (25%), magnesium 

(4.5%), nickel (4%), molybdenum (2%) and other metals (<2%). 

The material properties used were elastic modulus E=1.75 GPa and Poisson’s ratio 0.3. 

In the work of Yastrebov et al (2011) an isotropic hardening law was considered with 

the yield stress defined as follows: 

𝜎𝑌 = 𝑅0 + 𝑄(1 − 𝑒−𝑏𝑝 ) 

where the values R0=442.7 MPa, Q=493.5 MPa and b=242.2 Pa-1.   

In the case of elastic perfectly plastic FE contact analysis considered in previous section 

the limiting pressure value Pmax of the simple plasticity model of the DDM method was 

selected as approximately 2.7 times the yield stress of the material, which is the 

contact pressure observed over the contact zone after it is completely surrounded by 

the plastically deformed material. For comparison with a case that includes hardening 

it is not clear which value should be given for Pmax. For this reason a sequence of 

analyses were performed for a range of Pmax=2.6-4.3 GPa. The case of 2.6 GPa is 

approximately 2.7 times (R0+Q).  
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Figure 3.25 Sandblasted surface used in full 3D FEA, isometric view 

  
Figure 3.26 Sandblasted surface used in full 3D FEA, cross section parallel to the X axis, 
Y=13.6 µm 

  
Figure 3.27 Sandblasted surface used in full 3D FEA, cross section parallel to the Y axis, 
X=15.8 µm 
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The comparison of the full 3D FEA with the DDM method using a simple plasticity 

model is summarised in Figures 3.28 and 3.29, where the force values are plotted 

against the contact area and relative free volume between the deformed surface and 

rigid counterface are plotted against force. Note that the contact area is displayed as a 

fraction of the total nominal area, the force is acting on the representative element 

and free volume values are relative to those corresponding to the undeformed surface. 

  
Figure 3.28 Contact area plotted against force obtained using full 3D FEA and DDM method 
for a sequence of Pmax values. Arrow indicates the sense of increasing Pmax value from 2.6 GPa  
to 4.3 GPa. 

Figure 3.28 shows a progressively better agreement of the area-force curves obtained 

via 3D FEA and DDM methods as the Pmax value down is decreased from 4.3 GPa to 2.6 

GPa, which is equal to approximately 2.7*(R0+Q). 

  

Figure 3.29 Free volume plotted against force obtained using full 3D FEA and DDM method 
for a sequence of Pmax values. Arrow indicates sense of increasing Pmax value from 2.6 GPa to 
4.3 GPa. 
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On the other hand the free volume values obtained via DDM using Pmax=2.6 GPa show 

the worst agreement with those from 3D FEA, see Figure 3.29. The relative difference 

however does not exceed 10% for this case. This discrepancy can be explained by the 

fact that high pressure values generated at the most prominent surface asperities 

result in subsurface plasticity which forces the material adjacent to the plastic 

deformation zone to upwell, carry part of the load and thus prevent further reduction 

of the valley depth. In case of DDM if pressure exceeds Pmax at the asperity tips the 

material is effectively removed allowing the depth of all the valleys to be decreased. 

The level of agreement is however very good considering that DDM requires 

significantly less computational resources. The full 3D FE analysis for the whole range 

of loads requires several days on a high performance computer (8 bi-core processors 

Intel Xeon X5550 2.67 GHz, 160 Gb RAM). The analysis of a single load case for the 

same problem using DDM takes approximately 8 mins on Intel I3 32 bit processor with 

2 Gb RAM. Total of 15 load cases were evaluated for comparison in approximately two 

hours.  

Final comparison of the contact analysis using DDM and full 3D FEA is made based on 

the contact zones obtained for the same elastic approach S=1 µm. The results are 

shown for Pmax=2.6 GPa and 4.3 GPa in Figures 3.30 and 3.31 respectively. In both 

cases of Pmax value all the contact zones were captured by the DDM method correctly 

with better agreement in the case of Pmax=2.6 GPa. Contact zones obtained via DDM 

(dark red) are embedded in the larger contact areas predicted by the FE analysis. The 

larger area corresponds the upwelling of the material caused by subsurface plastic 

flow.  

3.5 Conclusions 

A simple iterative method to solve the rough surface contact problem for plane 

surfaces with periodic 2D roughness has been presented. The method is based on 

formulating the elastic deflection as a second order differential equation of the 

Poisson type that can be solved with periodic boundary conditions. The method 

requires no special properties of the specified roughness at the periodic boundaries. In 

case of elastic deformations only the solution obtained using DDM was validated via 

comparison with closed form solution obtained by Westergaard (1939). Results are 

also presented for a surface with 2D roughness showing the development of plastic 

contact zones. A detailed comparison with a 2 dimensional Finite Element 
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elastic-plastic contact analysis is included as well as a comparison with full 3D FEA 

obtained from literature. 

The method has been shown to give very good prediction of the deflected shape of the 

surface under moderate loads. Under high loads the method is less accurate due to 

simple model of plastic behaviour. However the DDM is 60-80 times faster than 2D FEA 

for the problem of the same resolution of the roughness profile. The DDM method is 

also significantly less computationally demanding than full 3D FE analysis. These 

considerations show that the DDM method is applicable in solving plane bearing mixed 

lubrication problems as a preliminary dry contact analysis to prepare for a 

homogenised Reynolds equation approach. 

 
Figure 3.30 Overlapping contours of the contact zones obtained via full DDM (dark red, top 
layer) and full 3D FEA (light red, bottom layer). Pmax = 2.6 GPa. Circles denote contacts 
captured by the simplified analysis developed by Yastrebov et al (2011). 
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Figure 3.31 Overlapping contours of the contact zones obtained via full DDM (dark red, top 
layer) and full 3D FEA (light red, bottom layer). Pmax = 4.3 GPa. Circles denote contacts 
captured by the simplified analysis developed by Yastrebov et al (2011). 
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4 Theory of flow factors 

4.1 Introduction 

In a lubrication analysis the type of geometry considered is one where the gap 

between the working surfaces is significantly smaller than the characteristic 

dimensions of the system. This makes the Reynolds’ equation applicable for describing 

the flow of liquid lubricant. The flow is then governed by the motion of the surfaces, 

the pressure gradients and local variations of the geometry. Real surfaces are never 

smooth, and the roughness features can play a significant role in the lubrication 

analysis because the separation of the working surfaces is small enough in comparison 

to the dimensions of the roughness features. A treatment of the problem based on an 

assumption of smooth surfaces will then be inaccurate. Large pressures are generated 

in the interaction regions of the most prominent surface asperities. Numerical 

treatment of lubrication problems of the rough surfaces requires a very fine resolution 

and large computational resources. Before those resources were available a number of 

efforts were made to analyse the effect of roughness on the flow of lubricant without 

taking into account the contribution of each individual asperity. 

The first significant contribution was that of Patir and Cheng (1978, 1979) who 

introduced flow factors to modify the Reynolds equation so as to take roughness 

effects into account in an averaged way. The elastic deflection of the surface asperities 

was not taken into account in their work which limits the accuracy of the method in 

the case of mixed lubrication. The Greenwood and Tripp (1971) stochastic model for 

contact between two rough surfaces has been used extensively to model this aspect of 

the problem. The approach has been generalised (Tripp, 1983) and extended in many 

ways by a number of researchers, including incorporation of inter-asperity cavitation 

as in the work of Harp and Salant (2001). The flow factor approach has been 

subsequently generalised by Bayada and Chambat (1988), Bayada and Faure (1989) for 

example, leading to a homogenised Reynolds Equation which has also been developed 

by Kane and Bou-Said (2004) and Almqvist and Dasht (2006). In these approaches the 

surface is assumed to have a periodic roughness function which is superimposed on 

the global geometry of the problem. The flow factors are evaluated as functions of the 

surface roughness and separation of the mean lines of the surfaces, and the contact of 

the surfaces is not considered.  
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Sahlin et al (2010a, 2010b) incorporated the direct interaction of prominent surface 

asperities through a dry contact elastic analysis and the associated load-compliance 

behaviour. Flow factors are then calculated for the loaded surface shape obtained. 

Another route to incorporate the mechanical contact of the asperities into the flow 

factors approach was presented by Scaraggi et al (2011). They used a stochastic 

method for evaluating the average deformed shape of the surface developed by 

Persson (2001), which was heavily criticised by Borodich (2002) and Manners and 

Greenwood (2006).  

The interest in the current work is in developing a mixed lubrication analysis method 

based on the homogenised Reynolds equation using the approach initially proposed by 

Bayada and Chambat (1988), Bayada and Faure (1989) and later used by Kane and 

Bou-Said (2004), Almqvist et al (2006) and others. In the case of low clearance values 

between the surfaces, the dry contact analysis method discussed in Chapter 3 is 

incorporated in order to calculate the effect of the deflected surface on the 

lubrication.  

4.2 Classical Reynolds’ equation 

The classical Reynolds equation was first derived by Osborne Reynolds in 1886 in order 

to describe the flow of viscous liquids and create a first theory of lubrication in journal 

bearings. It is based on the Navier-Stokes equations for the motion of a viscous fluid 

and the conservation of mass in the fluid. The use of Reynolds equation in lubrication 

theory is justified under the following assumptions: 

1. The film thickness is much smaller than the relative radius of curvature of the 

contact. 

2. The film thickness is much smaller than the dimensions of the lubricated 

contact.  

3. Reynolds number is small, flow is laminar and inertia terms are negligible. 

4. No slip at the solid/lubricant boundaries. 

5. Fluid is Newtonian; shear stress is proportional to shear strain rate. 

6. Pressure, density and viscosity do not vary across the lubricant film, i.e. they 

only vary in the plane of the film. 
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Modifications of the Reynolds equation are possible where the last 4 of these 

conditions are relaxed. In the case of rough surface lubrication care should be taken 

that the radius of curvature of the asperities is big enough in comparison to the film 

thickness. 

The Reynolds’ equation consists of two main parts: the variation of flow of lubricant 

due to the pressure gradients and variation of flow caused by motion of the surfaces. If 

the origin of coordinates is fixed at the point of lowest film thickness such that the gap 

between the surfaces does not change with time then the time dependant terms can 

be omitted. If in addition one of the axes coincides with the motion direction of the 

surfaces, then the Reynolds’ equation takes the commonly used form: 

∂

∂𝑥
 
𝜌𝑕3

12𝜂

∂𝑝

∂𝑥
 +

∂

∂𝑦
 
𝜌𝑕3

12𝜂

∂𝑝

∂𝑦
 =

∂ 𝜌𝑢 𝑕 

∂𝑥
 

(4.1) 

where 

 

 
 
 
 

 
 
 
𝑥 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑐𝑜𝑖𝑛𝑐𝑖𝑑𝑖𝑛𝑔  𝑤𝑖𝑡𝑕  𝑡𝑕𝑒  𝑚𝑜𝑡𝑖𝑜𝑛  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑦 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  𝑖𝑛  𝑡𝑕𝑒  𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑝 𝑥, 𝑦 − 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑕 𝑥, 𝑦 − 𝑔𝑎𝑝  𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑡𝑕𝑒  𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠
𝜌 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝜂 − 𝑑𝑦𝑛𝑎𝑚𝑖𝑐  𝑣𝑖𝑠cos𝑖𝑡𝑦
𝑢 − 𝑚𝑒𝑎𝑛  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑜𝑓  𝑡𝑕𝑒  𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠

  

If the system operates within a low pressure range then the lubricant can be assumed 

incompressible and isoviscous, i.e. =0 and  =0. The viscosity dependence on 

pressure for a liquid lubricant is found to be approximately  

  0

pep    

where coefficient  is called the pressure viscosity coefficient which has values in the 

range 10-40 GPa-1 (van Leeuwen, 2009). When the pressure exceeds 1/ the viscosity 

becomes high and very sensitive to pressure. Lubrication becomes 

elasto-hydrodynamic. For low pressures in comparison to 1/ the variation of viscosity 

is not significant. Plain bearings are usually analysed by considering the lubricant to be 

isoviscous. In the method based on the flow factors this restriction can be relaxed at 

the global scale, i.e. non-isoviscous lubricant can be considered, however the viscosity 

variation within the local representative cells is assumed negligible and local problems 

are isoviscous. 
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Under the assumption of an isoviscous fluid the Reynolds’ equation can be modified as 

follows: 

∂

∂𝑥
 𝑕3

∂𝑝

∂𝑥
 +

∂

∂𝑦
 𝑕3

∂𝑝

∂𝑦
 = 𝜆

∂𝑕

∂𝑥
 

(4.2) 

where 𝜆 = 12𝜂𝑢 . The left hand side of Equation (4.2) is the variation of flow in both x 

and y directions caused by pressure gradients. This flow is commonly referred to as 

Poiseuille flow. The right hand side is the variation of flow caused by entrainment in 

the x direction. This flow is referred to as Couette flow. The variation of the Poiseuille 

flow is then equated with the variation of the Couette flow. 

4.3 Periodic roughness and two-scale expansion 

As mentioned in Section 4.1, the numerical solution for the rough surface lubrication 

problem requires very high resolution so that it is fine enough to represent each 

asperity with a sufficient number of mesh points. This results in a vast number of 

degrees of freedom and significantly increases the computational costs of the analysis. 

The main idea of the lubrication models based on the flow factors is to separate the 

effect of roughness on the flow of lubricant from the effect of the global shape.  

For this purpose in addition to the system of global Cartesian coordinates (x,y) a 

system of local coordinates () is introduced as follows: 

 𝜉 =
𝑥

𝜀
;     𝜓 =

𝑦

𝜀
 ; 

𝜉,𝜓 ∈ 𝛺 
(4.3) 

where  is a scaling parameter and  is the domain of the local coordinates. The global 

and local coordinate systems are illustrated in Figure 4.1. 

Following the perturbation approach (Nayfeh, 2004) the pressure distribution for the 

rough surface lubrication problem can be approximated as a power series (known as 

perturbation series) of a small parameter, . The accuracy of the perturbation 

approach is good provided the local scale problem defined by the parameter  is small 

compared to the global scale of the problem. For rough surfaces it is convenient to 

take  as the size of the measured representative roughness area which needs to be 

small in comparison to the global geometry. If there are only few asperities in the 

representative area then it must be ensured that their lateral dimensions are at least 
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100 times smaller than the dimensions of the global problem. In the case of sinusoidal 

waviness considered in Chapter 6 the representative area consists of a single sinusoidal 

wave. It is shown that the homogenised solution is in a better agreement with the 

deterministic one if 128 or 64 waves are considered, rather than 32 or 16 waves, i.e. 

showed better results than 1/16 and1/16as expected 

  

Figure 4.1 Global and local systems of coordinates 

The first term in the series corresponds to the solution of the global (smooth) problem, 

whereas further terms represent the perturbation of the solution due to the deviations 

in the problem, i.e. the superimposed roughness:  

𝑝𝜀 𝑥, 𝑦, 𝜉, 𝜓 = 𝑝0 𝑥, 𝑦, 𝜉, 𝜓 + 𝜀𝑝1 𝑥, 𝑦, 𝜉, 𝜓 + 𝜀2𝑝2 𝑥, 𝑦, 𝜉, 𝜓 +..  
(4.4) 

According to the perturbation theory the limit of the approximated solution (4.4) tends 

to the exact solution for the rough problem when  approaches to zero: 

𝑝𝜀
𝜀→0
   𝑝0 

which is the homogenised limit. Note that only p0 and p1 are preserved while the 

higher order terms are truncated.  

The gap between the surfaces, h(x,y,), or the film thickness, is then presented as a 

combination of the globally defined function of (x,y) and a local function of (x,y,): 

𝑕𝑡𝑜𝑡𝑎𝑙  𝑥, 𝑦, 𝜉, 𝜓 = 𝑕0 𝑥, 𝑦 + 𝑕1 𝑥, 𝑦, 𝜉, 𝜓  
(4.5) 

where h0(x,y) is the global shape of the system and h1(x,y,) is roughness function. 

The roughness function h1(x,y,) is assumed to be periodic, therefore it is 

independent of the global coordinates (x,y):  

𝑕1 𝑥, 𝑦, 𝜉, 𝜓 = 𝑕1 𝜉, 𝜓 . 
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The separation of the gap function into the global geometry and local roughness is 

schematically illustrated in Figures Figure 4.2 and Figure 4.3. Figure 4.2 shows the 

global shape (smooth surface) problem which in this illustration is a cylindrical roller 

contacting a plane surface. Figure 4.3 shows the periodic roughness function, and 

Figure 4.4 shows the total gap distribution of Equation (4.5). 

Introducing the local coordinates modifies the derivatives so as to take into account 

the variation of the function with respect to ():  

𝑓 𝑥, 𝑦, 𝜉, 𝜓 = 𝑓  𝑥, 𝑦,
𝑥

𝜀
,
𝑦

𝜀
 

∂𝑓

∂𝑥
=

∂𝑓

∂𝑥
+

1

𝜀

∂𝑓

∂𝜉
∂𝑓

∂𝑦
=

∂𝑓

∂𝑦
+

1

𝜀

∂𝑓

∂𝜓

 

(4.6) 

The classical Reynolds’ equation for incompressible and isoviscous fluid (4.2) then 

takes the following form: 

∂

∂𝑥
 𝑕3  

∂𝑝

∂𝑥
+

1

𝜀

∂𝑝

∂𝜉
  +

1

𝜀

∂

∂𝜉
 𝑕3  

∂𝑝

∂𝑥
+

1

𝜀

∂𝑝

∂𝜉
  

∂

∂𝑦
 𝑕3  

∂𝑝

∂𝑦
+

1

𝜀

∂𝑝

∂𝜓
  +

1

𝜀

∂

∂𝜓
 𝑕3  

∂𝑝

∂𝑦
+

1

𝜀

∂𝑝

∂𝜓
  = 𝜆

∂𝑕

∂𝑥
+ 𝜆

1

𝜀

∂𝑕

∂𝜉

 

(4.7) 

where 𝜆 = 12𝜂𝑢 . 

 

Figure 4.2 Global shape: smooth cylindrical roller 

 

Figure 4.3 Local shape: repeated roughness profile and its period  
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Figure 4.4 Total geometry: periodic roughness superimposed on a smooth global shape of a 
roller 

This yields 

∂

∂𝑥
 𝑕3

∂𝑝

∂𝑥
 +

1

𝜀

∂

∂𝑥
 𝑕3

∂𝑝

∂𝜉
 +

1

𝜀

∂

∂𝜉
 𝑕3

∂𝑝

∂𝑥
 +

1

𝜀2

∂

∂𝜉
 𝑕3

∂𝑝

∂𝜉
 +

∂

∂𝑦
 𝑕3

∂𝑝

∂𝑦
 +

1

𝜀

∂

∂𝑦
 𝑕3

∂𝑝

∂𝜓
 +

1

𝜀

∂

∂𝜓
 𝑕3

∂𝑝

∂𝑦
 +

1

𝜀2

∂

∂𝜓
 𝑕3

∂𝑝

∂𝜓
 = 𝜆

∂𝑕

∂𝑥
+ 𝜆

1

𝜀

∂𝑕

∂𝜉

 

In order to reduce the algebraic transforms the following auxiliary notation is adopted, 

similar to the one used by Bayada: 

  

𝐴1 ⋅ =
∂

∂𝜉
 𝑕3 ∂ · 

∂𝜉
 +

∂

∂𝜓
 𝑕3 ∂ · 

∂𝜓
 

𝐴2 ⋅ =
∂

∂𝜉
 𝑕3 ∂ · 

∂𝑥
 +

∂

∂𝜓
 𝑕3 ∂ · 

∂𝑦
 +

∂

∂𝑥
 𝑕3 ∂ · 

∂𝜉
 +

∂

∂𝑦
 𝑕3 ∂ · 

∂𝜓
 

𝐴3 ⋅ =
∂

∂𝑥
 𝑕3 ∂ · 

∂𝑥
 +

∂

∂𝑦
 𝑕3 ∂ · 

∂𝑦
 

𝐵
𝜉

= 𝜆
∂  ⋅ 𝑕 

∂𝜉
    𝐵

𝜓
= 𝜆

∂  ⋅ 𝑕 

∂𝜓

𝐵𝑥 = 𝜆
∂  ⋅ 𝑕 

∂𝑥
    𝐵

𝑦
= 𝜆

∂  ⋅ 𝑕 

∂𝑦

 

(4.8) 

where (·) denotes any function of (x,y,). With the notation of Equations (4.8), 

Equation (4.7) is equivalent to: 

1

𝜀2
𝐴1 𝑝 +

1

𝜀
𝐴2 𝑝 + 𝐴3 𝑝 =

1

𝜀
𝐵
𝜉

+ 𝐵𝑥  

(4.9) 

Rough surface problems have two important directions, the direction of the 

entrainment velocity and the direction of the periodic roughness, and these do not 

necessarily coincide. 

Now consider the case where the direction of motion does not coincide with the x-axis, 

in shown on the Figure 4.5. If the direction of the entrainment velocity u  is inclined 

at an angle  with respect to the axis of periodic expansion, then: 

𝑢 = 𝑖  𝑢 cos𝜃 − 𝑗  𝑢 sin𝜃 

where 𝑖  and 𝑗  are the basis vectors in the (x,y) coordinate system. 
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The right hand side of the Equation (4.2) therefore includes the term corresponding to 

the motion in Oy direction: 

∂

∂𝑥
 𝑕3

∂𝑝

∂𝑥
 +

∂

∂𝑦
 𝑕3

∂𝑝

∂𝑦
 = 𝜆

∂𝑕

∂𝑥
cos𝜃 − 𝜆

∂𝑕

∂𝑦
sin𝜃

𝑤𝑕𝑒𝑟𝑒 𝜆 = 12𝜂𝑢 

 

(4.10) 

 

Figure 4.5 The case where the direction of motion of the surfaces does not coincide with the 
axes of periodic expansion . 

Note, that 𝑢  is the velocity in the entrainment direction. Equation (4.9) then becomes 

1

𝜀2
𝐴1 𝑝 +

1

𝜀
𝐴2 𝑝 + 𝐴3 𝑝 =

1

𝜀
𝐵
𝜉

cos𝜃 −
1

𝜀
𝐵
𝜓

sin𝜃 + 𝐵𝑥 cos𝜃 − 𝐵
𝑦

sin𝜃 

(4.11) 

Substituting the approximate solution (4.4) into Equation (4.11) above leads to 

1

𝜀2
𝐴1 𝑝0 + 𝜀𝑝1 + 𝜀2𝑝2 +

1

𝜀
𝐴2 𝑝0 + 𝜀𝑝1 + 𝜀2𝑝2 + 𝐴3 𝑝0 + 𝜀𝑝1 + 𝜀2𝑝2 =

1

𝜀
𝐵
𝜉

cos𝜃 −
1

𝜀
𝐵
𝜓

sin𝜃 + 𝐵𝑥 cos𝜃 − 𝐵
𝑦

sin𝜃

 

By equating the coefficients for the powers of 𝜀0, 𝜀−1, 𝜀−2terms the following system 

of equations is obtained: 

 

 
 

 
𝜀0: 𝐴1 𝑝2 + 𝐴2 𝑝1 + 𝐴3 𝑝0 = 𝐵𝑥 cos𝜃 − 𝐵

𝑦
sin𝜃

1

𝜀
: 𝐴1 𝑝1 + 𝐴2 𝑝0 = 𝐵

𝜉
cos𝜃 − 𝐵

𝜓
sin𝜃

1

𝜀2 : 𝐴1 𝑝0 = 0

  

which is equivalent to 

 

𝐴1 𝑝0 = 0

𝐴1 𝑝1 = 𝐵
𝜉

cos𝜃 − 𝐵
𝜓

sin𝜃 − 𝐴2 𝑝0 

𝐴1 𝑝2 = 𝐵𝑥 cos𝜃 − 𝐵
𝑦

sin𝜃 − 𝐴2 𝑝1 − 𝐴3 𝑝0 

  

(4.12) 
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Note that the higher order terms 𝜀1, 𝜀2are omited from the consideration for not 

contributing into the solution.  

The equations in the system (4.12) are elliptic equations in the domain of local 

coordinates  of the type 𝐴1 𝑞 = 𝐹. All the functions are assumed to be periodic in 

, as the local film thickness h1 is periodic. By integrating both sides of such equation 

and applying Green formula (Bayada, 1989) it is easy to show that the necessary 

condition for a periodic solution to exist is   

𝐴1 𝑞 = 𝐹 ⇒  𝐹 𝜉,𝜓 𝑑𝜉𝑑𝜓 = 0

Ω

𝑞, 𝐹 − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐  𝑤𝑖𝑡𝑕  𝑝𝑒𝑟𝑖𝑜𝑑   Ω 

 

(4.13) 

From the Equation𝐴1 𝑝0 = 0 in the system (4.12) it follows, that p0 must be constant, 

i.e.  

𝑝0 𝑥, 𝑦, 𝜉, 𝜓 = 𝑝0 𝑥, 𝑦 

∂𝑝0

∂𝜉
=

∂𝑝0

∂𝜓
≡ 0

 

(4.14) 

In some papers, e.g. Kane and Bou-Said (2004) and Almqvist and Dasht (2006) this 

statement is taken as an assumption but it is actually a consequence of the first 

equation in the system (4.12).  . 

According to (4.13) the necessary condition for the second equation in the system 

(4.12) to exist is that 

  𝐵
𝜉

cos𝜃 − 𝐵
𝜓

sin𝜃 − 𝐴2 𝑝0  𝑑𝜉𝑑𝜓 = 0

Ω

 

(4.15) 

The condition for existence of the third equation in system (4.12) is considered later. 

Equation (4.15) is equivalent to: 

  
∂

∂𝜉
 𝑕3

∂𝑝0

∂𝑥
 +

∂

∂𝜓
 𝑕3

∂𝑝0

∂𝑦
  𝑑𝜉𝑑𝜓

Ω                         
=0

+   −𝜆
∂ 𝑕 

∂𝜉
cos𝜃 + 𝜆

∂ 𝑕 

∂𝜓
sin𝜃 𝑑𝜉𝑑𝜓

Ω                         
=0

+

  
∂

∂𝑥
 𝑕3

∂𝑝0

∂𝜉
 +

∂

∂𝑦
 𝑕3

∂𝑝0

∂𝜓
  

                   
=0

𝑑𝜉𝑑𝜓

Ω

= 0

 

The last term is equal to zero because of (4.14) whereas the first two integrals are zero 

because of the periodicity of h in the coordinates ().  
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The second equation in system (4.12) has the following full form: 

∂

∂𝜉
 𝑕3

∂𝑝1

∂𝜉
 +

∂

∂𝜓
 𝑕3

∂𝑝1

∂𝜓
 +

∂

∂𝜉
 𝑕3

∂𝑝0

∂𝑥
 +

∂

∂𝜓
 𝑕3

∂𝑝0

∂𝑦
 +

∂

∂𝑥
 𝑕3

∂𝑝0

∂𝜉
 +

∂

∂𝑦
 𝑕3

∂𝑝0

∂𝜓
 

= 𝜆
∂ 𝑕 

∂𝜉
cos𝜃 − 𝜆

∂ 𝑕 

∂𝜓
sin𝜃

 

Bearing in mind Equation (4.14) and the fact that 
∂

∂𝜉
 
∂𝑝0

∂𝑥
 ≡

∂

∂𝑥
 
∂𝑝0

∂𝜉
 ≡ 0 it yields 

∂

∂𝜉
 𝑕3

∂𝑝1

∂𝜉
 +

∂

∂𝜓
 𝑕3

∂𝑝1

∂𝜓
 +

∂𝑕3

∂𝜉

∂𝑝0

∂𝑥
+
∂𝑕3

∂𝜓

∂𝑝0

∂𝑦
= 𝜆

∂ 𝑕 

∂𝜉
cos𝜃 − 𝜆

∂ 𝑕 

∂𝜓
sin𝜃 

(4.16) 

Equation (4.16) connects the local pressure p1 with the global pressure p0. Note that p1 

is presented in the frame of the local Reynolds equation 𝐴1 𝑝1 . To be able to 

uncouple local and global pressures the following auxiliary functions  are 

introduced as the solutions of the local problem: 

𝐴1 𝜒1 = −
∂𝑕3

∂𝜉
    𝐴1 𝜒2 = −

∂𝑕3

∂𝜓
    𝐴1 𝜒3 =

∂𝑕

∂𝜉
    𝐴1 𝜒4 =

∂𝑕

∂𝜓
 

(4.17) 

The functions  are assumed to be periodic. 

The physical meaning of the solutions function andis the reduction of the gap 

between the global smooth surfaces due to presence of the roughness on the local 

scale. The reduced gap creates obstruction for the Poiseuille flow on the local scale. 

The values of andare measured in meters in SI units. The physical meaning of 

the auxiliary functions andis that they introduce the change in geometry due to 

presence of roughness in so far as it affects the Couette flow in the local 

representative cell caused by the motion of global surfaces.  

Substituting (4.17) into (4.16) yields  

𝐴1 𝑝1 − 𝐴1 𝜒1 
∂𝑝0

∂𝑥
− 𝐴1 𝜒2 

∂𝑝0

∂𝑦
= 𝜆𝐴1 𝜒3 cos𝜃 − 𝜆𝐴1 𝜒4 sin𝜃 

Bearing in mind that the operator A1 is linear, and also the fact that A1 is an operator in 

the local coordinates () only 

𝐴1  𝑝1 − 𝜒1

∂𝑝0

∂𝑥
− 𝜒2

∂𝑝0

∂𝑦
− 𝜆𝜒3cos𝜃 + 𝜆𝜒4sin𝜃 = 0 

From this it follows that  

𝑝1 − 𝜒1

∂𝑝0

∂𝑥
− 𝜒2

∂𝑝0

∂𝑦
− 𝜆𝜒3cos𝜃 + 𝜆𝜒4sin𝜃 = 𝐶 𝑥, 𝑦 ⇔

𝑝1 = 𝜒1

∂𝑝0

∂𝑥
+ 𝜒2

∂𝑝0

∂𝑦
+ 𝜆𝜒3cos𝜃 − 𝜆𝜒4sin𝜃 + 𝐶 𝑥, 𝑦 

 

(4.18) 
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This relation connects the local pressure p1 with the global pressure p0.  Note that in a 

number of papers e.g. Kane and Bou-Said (2004) the statement (4.18) is postulated to 

exist, and C(x,y) is assumed to be 0. 

From (4.18) the partial derivatives can be calculated: 

∂𝑝1

∂𝜉
=

∂𝜒1

∂𝜉

∂𝑝0

∂𝑥
+
∂𝜒2

∂𝜉

∂𝑝0

∂𝑦
+ 𝜆

∂𝜒3

∂𝜉
cos𝜃 − 𝜆

∂𝜒4

∂𝜉
sin𝜃

∂𝑝1

∂𝜓
=

∂𝜒1

∂𝜓

∂𝑝0

∂𝑥
+
∂𝜒2

∂𝜓

∂𝑝0

∂𝑦
+ 𝜆

∂𝜒3

∂𝜓
cos𝜃 − 𝜆

∂𝜒4

∂𝜓
sin𝜃

 

(4.19) 

Now returning to the third equation in the system (4.12), which is shown below for 

convenience: 

𝐴1 𝑝2 = 𝐵𝑥 cos𝜃 − 𝐵
𝑦

sin𝜃 − 𝐴2 𝑝1 − 𝐴3 𝑝0  
(4.20) 

the necessary requirement for the solution of (4.20) to exist is similar to (4.15): 

  𝐵𝑥 cos𝜃 − 𝐵
𝑦

sin𝜃 − 𝐴2 𝑝1 − 𝐴3 𝑝0  𝑑𝜉𝑑𝜓 = 0

Ω

 

(4.21) 

Substituting the expression for p1 of Equation (4.18) into Equation (4.21), with all terms 

multiplied by -1 for convenience, gives:  

 

 

 
 

∂

∂𝜉
 𝑕3

∂𝑝1

∂𝑥
 +

∂

∂𝜓
 𝑕3

∂𝑝1

∂𝑦
 

                 
∗∗∗

+
∂

∂𝑥
 𝑕3

∂𝑝1

∂𝜉
 +

∂

∂𝑦
 𝑕3

∂𝑝1

∂𝜓
 

+
∂

∂𝑥
 𝑕3

∂𝑝0

∂𝑥
 +

∂

∂𝑦
 𝑕3

∂𝑝0

∂𝑦
 − 𝜆

∂𝑕

∂𝑥
cos𝜃 + 𝜆

∂𝑕

∂𝑦
sin𝜃

 

 
 
𝑑𝜉𝑑𝜓 = 0

Ω

 

(4.22) 

Note that the term (***) can be omitted as  

  
∂

∂𝜉
 𝑕3

∂𝑝1

∂𝑥
 +

∂

∂𝜓
 𝑕3

∂𝑝1

∂𝑦
  𝑑𝜉𝑑𝜓 = 0

Ω

 

because of the periodicity of h and p1 in .  Substituting (4.19) into (4.22) yields: 

 

 
  
 

  
 
∂

∂𝑥
 𝑕3  

∂𝜒1

∂𝜉

∂𝑝0

∂𝑥
+
∂𝜒2

∂𝜉

∂𝑝0

∂𝑦
+ 𝜆

∂𝜒3

∂𝜉
cos𝜃 − 𝜆

∂𝜒4

∂𝜉
sin𝜃  

+
∂

∂𝑦
 𝑕3  

∂𝜒1

∂𝜓

∂𝑝0

∂𝑥
+
∂𝜒2

∂𝜓

∂𝑝0

∂𝑦
+ 𝜆

∂𝜒3

∂𝜓
cos𝜃 − 𝜆

∂𝜒4

∂𝜓
sin𝜃  

+
∂

∂𝑥
 𝑕3

∂𝑝0

∂𝑥
 +

∂

∂𝑦
 𝑕3

∂𝑝0

∂𝑦
 − 𝜆

∂𝑕

∂𝑥
cos𝜃 + 𝜆

∂𝑕

∂𝑦
sin𝜃

 
  
 

  
 

𝑑𝜉𝑑𝜓 = 0

Ω

 

Taking into account that the integration with respect to () is independent of 

differentiation with respect to (x,y) the order of integration and differentiation 

operations can be interchanged.  
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∂

∂𝑥
  𝑕3  

∂𝑝0

∂𝑥

∂𝜒1

∂𝜉
+
∂𝑝0

∂𝑦

∂𝜒2

∂𝜉
+ 𝜆

∂𝜒3

∂𝜉
cos𝜃 − 𝜆

∂𝜒4

∂𝜉
sin𝜃 𝑑Ω

Ω

 

+
∂

∂𝑦
  𝑕3  

∂𝑝0

∂𝑥

∂𝜒1

∂𝜓
+
∂𝑝0

∂𝑦

∂𝜒2

∂𝜓
+ 𝜆

∂𝜒3

∂𝜓
cos𝜃 − 𝜆

∂𝜒4

∂𝜓
sin𝜃 𝑑Ω

Ω

 

+
∂

∂𝑥
  𝑕3

∂𝑝0

∂𝑥
𝑑Ω

Ω

 +
∂

∂𝑦
  𝑕3

∂𝑝0

∂𝑦
𝑑Ω

Ω

 = 𝜆  
∂𝑕

∂𝑥
Ω

𝑑Ωcos𝜃 − 𝜆  
∂𝑕

∂𝑦
Ω

𝑑Ωsin𝜃

 

Rearranging the terms according to the differentiation involved: 

∂

∂𝑥
  𝑕3

∂𝑝0

∂𝑥
𝑑Ω

Ω

 +
∂

∂𝑥
  𝑕3  

∂𝑝0

∂𝑥

∂𝜒1

∂𝜉
+
∂𝑝0

∂𝑦

∂𝜒2

∂𝜉
 𝑑Ω

Ω

  

+
∂

∂𝑦
  𝑕3

∂𝑝0

∂𝑦
𝑑Ω

Ω

 +
∂

∂𝑦
  𝑕3  

∂𝑝0

∂𝑥

∂𝜒1

∂𝜓
+
∂𝑝0

∂𝑦

∂𝜒2

∂𝜓
 𝑑Ω

Ω

  

= 𝜆  
∂𝑕

∂𝑥
Ω

𝑑Ωcos𝜃 −
∂

∂𝑥
  𝑕3  𝜆

∂𝜒3

∂𝜉
cos𝜃 − 𝜆

∂𝜒4

∂𝜉
sin𝜃 𝑑Ω

Ω

  

−𝜆  
∂𝑕

∂𝑦
Ω

𝑑Ωsin𝜃 −
∂

∂𝑦
  𝑕3  𝜆

∂𝜒3

∂𝜓
cos𝜃 − 𝜆

∂𝜒4

∂𝜓
sin𝜃 𝑑Ω

Ω

  

Collecting the terms having the same derivatives of pressure: 

∂

∂𝑥
  𝑕3  

∂𝑝0

∂𝑥
 1 +

∂𝜒1

∂𝜉
  𝑑Ω

Ω

 +
∂

∂𝑥
  𝑕3  

∂𝑝0

∂𝑦

∂𝜒2

∂𝜉
 𝑑Ω

Ω

 

+
∂

∂𝑦
  𝑕3  

∂𝑝0

∂𝑥

∂𝜒1

∂𝜓
 𝑑Ω

Ω

 +
∂

∂𝑦
  𝑕3   

∂𝜒2

∂𝜓
+ 1 

∂𝑝0

∂𝑦
 𝑑Ω

Ω

 

= 𝜆
∂

∂𝑥
  𝑕cos𝜃 − 𝑕3  

∂𝜒3

∂𝜉
cos𝜃 −

∂𝜒4

∂𝜉
sin𝜃 𝑑Ω

Ω

 

−
∂

𝜆 ∂𝑦
  𝑕sin𝜃 + 𝑕3  

∂𝜒3

∂𝜓
cos𝜃 −

∂𝜒4

∂𝜓
sin𝜃 𝑑Ω

Ω

 

 

Using the fact that p0 is a function of (x,y) only all p0 entries can be removed from 

being under the integration sign: 

∂

∂𝑥
  𝑕3  1 +

∂𝜒1

∂𝜉
 𝑑Ω

∂𝑝0

∂𝑥
Ω

 +
∂

∂𝑥
  𝑕3

∂𝜒2

∂𝜉
𝑑Ω

∂𝑝0

∂𝑦
Ω

 

+
∂

∂𝑦
  𝑕3

∂𝜒1

∂𝜓
𝑑Ω

∂𝑝0

∂𝑥
Ω

 +
∂

∂𝑦
  𝑕3  

∂𝜒2

∂𝜓
+ 1 𝑑Ω

∂𝑝0

∂𝑦
Ω

 

= 𝜆
∂

∂𝑥
  𝑕cos𝜃 − 𝑕3  

∂𝜒3

∂𝜉
cos𝜃 −

∂𝜒4

∂𝜉
sin𝜃 𝑑Ω

Ω

 

−
∂

∂𝑦
  𝑕sin𝜃 + 𝑕3  𝜆

∂𝜒3

∂𝜓
cos𝜃 − 𝜆

∂𝜒4

∂𝜓
sin𝜃 𝑑Ω

Ω
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Scaling by the global part of the geometry h0 and separating the entries which 

represent the effect of local roughness: 

∂

∂𝑥
 𝑕0

3   
𝑕3

𝑕0
3  1 +

∂𝜒1

∂𝜉
 𝑑Ω

Ω

 
∂𝑝0

∂𝑥
 +

∂

∂𝑥
 𝑕0

3   
𝑕3

𝑕0
3

∂𝜒2

∂𝜉
𝑑Ω

Ω

 
∂𝑝0

∂𝑦
  

+
∂

∂𝑦
 𝑕0

3   
𝑕3

𝑕0
3

∂𝜒1

∂𝜓
𝑑Ω

Ω

 
∂𝑝0

∂𝑥
 +

∂

∂𝑦
 𝑕0

3   
𝑕3

𝑕0
3  

∂𝜒2

∂𝜓
+ 1 𝑑Ω

Ω

 
∂𝑝0

∂𝑦
 = 

= 𝜆
∂

∂𝑥
 𝑕0   

𝑕

𝑕0
−
𝑕3

𝑕0

∂𝜒3

∂𝜉
𝑑Ω

Ω

 cos𝜃 + 𝑕0   
𝑕3

𝑕0

∂𝜒4

∂𝜉
𝑑Ω

Ω

 sin𝜃  

−
∂

∂𝑦
 𝑕0   

𝑕

𝑕0
−
𝑕3

𝑕0

∂𝜒4

∂𝜓
𝑑Ω

Ω

 sin𝜃 + 𝑕0   
𝑕3

𝑕0

∂𝜒3

∂𝜓
𝑑Ω

Ω

 cos𝜃  

(4.23) 

4.4 Flow factors 

In this section eight scalar functions called flow factors are introduced as defined in 

Equations (4.24) and (4.25): 

𝑎11 𝑕0 =  
𝑕3

𝑕0
3

Ω

 1 +
∂𝜒1

∂𝜉
 𝑑Ω;    𝑎12 𝑕0 =  

𝑕3

𝑕0
3

∂𝜒2

∂𝜉
Ω

𝑑Ω;    

𝑎21 𝑕0 =  
𝑕3

𝑕0
3

∂𝜒1

∂𝜓
Ω

𝑑Ω;    𝑎22 𝑕0 =  
𝑕3

𝑕0
3

Ω

 1 +
∂𝜒2

∂𝜓
 𝑑Ω

 

(4.24) 

𝑏11 𝑕0 =   
𝑕

𝑕0
−
𝑕3

𝑕0

∂𝜒3

∂𝜉
 

Ω

𝑑Ω;    𝑏12 𝑕0 =  
𝑕3

𝑕0

∂𝜒4

∂𝜉
Ω

𝑑Ω;    

𝑏21 𝑕0 =  
𝑕3

𝑕0

∂𝜒3

∂𝜓
Ω

𝑑Ω;    𝑏22 𝑕0 =   
𝑕

𝑕0
−
𝑕3

𝑕0

∂𝜒4

∂𝜓
 

Ω

𝑑Ω

 

(4.25) 

After substituting these functions Equation (4.23) takes the following form: 

∂

∂𝑥
 𝑕0

3𝑎11

∂𝑝0

∂𝑥
+ 𝑕0

3𝑎12

∂𝑝0

∂𝑦
 +

∂

∂𝑦
 𝑕0

3𝑎21

∂𝑝0

∂𝑥
+ 𝑕0

3𝑎22

∂𝑝0

∂𝑦
 

= 𝜆
∂

∂𝑥
 𝑕0𝑏11cos𝜃 + 𝑕0𝑏12sin𝜃 − 𝜆

∂

∂𝑦
 𝑕0𝑏21cos𝜃 + 𝑕0𝑏22sin𝜃 

 

(4.26) 

which is called the homogenised equation.  

From comparing the homogenised Equation (4.26) with the original one Error! 

Reference source not found. it becomes clear that the flow factors act as modifiers of 

the flow. The functions (4.24) modify the terms involved in the Poiseuille flow and are 

called Poiseuille flow factors whereas functions (4.25) modify the terms involved in the 
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Couette flow and are called Couette flow factors. In other papers they are called 

pressure and shear flow factors respectively, e.g. Patir and Cheng (1979) Almqvist and 

Dasht (2006). 

In addition, the homogenised equation contains cross terms, i.e. the variation of the 

flow in X direction caused by the pressure gradient in Y direction and vice versa. The 

physical meaning of these terms is the additional flow created by the presence of the 

local asperities. This also applies to the Couette flow: additional flow caused by the 

motion of the surfaces can be diverted by the local asperities. These effects are 

qualified by a12 and a21, and b12 and b21 respectively.  

In order to maintain the flow factors non dimensional all the integrations can be 

replaced by averaging over the   domain without violating the homogenised 

Equation (4.26): 

𝑎11 𝑕0 =
1

 Ω 
 
𝑕3

𝑕0
3

Ω

 1 +
∂𝜒1

∂𝜉
 𝑑Ω;    𝑎12 𝑕0 =

1

 Ω 
 
𝑕3

𝑕0
3

∂𝜒2

∂𝜉
Ω

𝑑Ω;    

𝑎21 𝑕0 =
1

 Ω 
 
𝑕3

𝑕0
3

∂𝜒1

∂𝜓
Ω

𝑑Ω;    𝑎22 𝑕0 =
1

 Ω 
 
𝑕3

𝑕0
3

Ω

 1 +
∂𝜒2

∂𝜓
 𝑑Ω

 

(4.27) 

𝑏11 𝑕0 =
1

 Ω 
  

𝑕

𝑕0
−
𝑕3

𝑕0

∂𝜒3

∂𝜉
 

Ω

𝑑Ω;    𝑏12 𝑕0 =
1

 Ω 
 
𝑕3

𝑕0

∂𝜒4

∂𝜉
Ω

𝑑Ω;    

𝑏21 𝑕0 =
1

 Ω 
 
𝑕3

𝑕0

∂𝜒3

∂𝜓
Ω

𝑑Ω;    𝑏22 𝑕0 =
1

 Ω 
  

𝑕

𝑕0
−
𝑕3

𝑕0

∂𝜒4

∂𝜓
 

Ω

𝑑Ω

 

(4.28) 

4.5 Flow factors for oblique roughness 

In the previous section the flow factors have been calculated for the system of 

coordinates coinciding with the axis of periodicity. The direction of motion of the 

surfaces was however not coincident with the axes of periodicity of the surface 

roughness. In this section the flow factors are calculated in the system of coordinates 

where the axes coincide with the entrainment and transverse directions. These flow 

factors are then calculated in the axis of periodicity and the direction of motion is 

defined by applying the rotational formulae to the flow factors. It can be used e.g. for  
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Figure 4.6 The rough surface of a thrust washer prepared by uni-directional grinding.. The 
counter surface is subjected to the counter clock wise circular motion. The 2 red squares 
represent the areas where the same roughness features are rotated at different angles 
relative to the motion direction  

studying the effect of the oblique roughness with various angle of rotation on the 

pressure distribution in the system with the same direction of motion. The flow factors 

can also be applied to the systems where the roughness profile rotates with respect to 

the direction of motion, e.g. in the case of thrust washer (see Figure 4.6) with 

roughness created as a result of uni-directional grinding. 

Consider the case of (X,Y) coordinates corresponding to the axis system which is 

aligned with the direction of periodicity, and (x,y) being those aligned with the 

entrainment and transverse directions as shown in Figure 4.7 . 

If the angle between the axes of the systems (X,Y) and (x,y) is equal to , then the 

homogenised equation defining the problem in (X,Y) is 

∂

∂𝑋
 𝑕0

3𝑎11

∂𝑝0

∂𝑋
+ 𝑕0

3𝑎12

∂𝑝0

∂𝑌
 +

∂

∂𝑌
 𝑕0

3𝑎21

∂𝑝0

∂𝑋
+ 𝑕0

3𝑎22

∂𝑝0

∂𝑌
 

= 𝜆
∂

∂𝑋
 𝑕0𝑏11 cos𝜃 + 𝑕0𝑏12sin𝜃 − 𝜆

∂

∂𝑌
 𝑕0𝑏21cos𝜃 + 𝑕0𝑏22sin𝜃 

 

(4.29) 

which is identical to (4.26) with the only difference that it is solved in (X,Y) coordinates. 

In order to get the solution in (x,y) coordinates, which are aligned with the 

entrainment and transverse directions then the rotational formulae are applied: 

 
𝑋 𝑥, 𝑦 = 𝑥cos𝜃 + 𝑦sin𝜃

𝑌 𝑥, 𝑦 = −𝑥sin𝜃 + 𝑦cos𝜃
 ⇔  

𝑦 = 𝑋sin𝜃 + 𝑌cos𝜃
𝑥 = 𝑋cos𝜃 − 𝑌sin𝜃

  

(4.30) 
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The derivatives are then modified by the following rules: 

∂𝑓 𝑥 𝑋, 𝑌 , 𝑦 𝑋, 𝑌  

∂𝑋
=

∂𝑓

∂𝑥

∂𝑥

∂𝑋
+
∂𝑓

∂𝑦

∂𝑦

∂𝑋
=

∂𝑓

∂𝑥
cos𝜃 +

∂𝑓

∂𝑦
sin𝜃

∂𝑓 𝑥 𝑋, 𝑌 , 𝑦 𝑋, 𝑌  

∂𝑌
=

∂𝑓

∂𝑥

∂𝑥

∂𝑌
+
∂𝑓

∂𝑦

∂𝑦

∂𝑌
= −

∂𝑓

∂𝑥
sin𝜃 +

∂𝑓

∂𝑦
cos𝜃

 

(4.31) 

for every function f(X,Y). 

 
Figure 4.7 Coordinates X,Y correspond to the system aligned with the directions of 
periodicity whereas x,y to the entrainment and transverse directions. 

First consider modifying the derivatives in the Equation (4.29) according to the 

differentiation rules (4.31):  

𝜆
∂

∂𝑥
 𝑕0 𝑏11cos𝜃 + 𝑏12sin𝜃  cos𝜃 + 𝜆

∂

∂𝑦
 𝑕0 𝑏11cos𝜃 + 𝑏12 sin𝜃  sin𝜃

−𝜆
∂

∂𝑦
 𝑕0 𝑏22 sin𝜃 + 𝑏21 cos𝜃  cos𝜃 + 𝜆

∂

∂𝑥
 𝑕0 𝑏22sin𝜃 + 𝑏21cos𝜃  sin𝜃

=
∂

∂𝑥
 𝑕0

3𝑎11  
∂𝑝0

∂𝑥
cos𝜃 +

∂𝑝0

∂𝑦
sin𝜃 + 𝑕0

3𝑎12  −
∂𝑝0

∂𝑥
sin𝜃 +

∂𝑝0

∂𝑦
cos𝜃  cos𝜃 +

∂

∂𝑦
 𝑕0

3𝑎11  
∂𝑝0

∂𝑥
cos𝜃 +

∂𝑝0

∂𝑦
sin𝜃 + 𝑕0

3𝑎12  −
∂𝑝0

∂𝑥
sin𝜃 +

∂𝑝0

∂𝑦
cos𝜃  sin𝜃

−
∂

∂𝑥
 𝑕0

3𝑎22  −
∂𝑝0

∂𝑥
sin𝜃 +

∂𝑝0

∂𝑦
cos𝜃 + 𝑕0

3𝑎21  
∂𝑝0

∂𝑥
cos𝜃 +

∂𝑝0

∂𝑦
sin𝜃  sin𝜃 +

∂

∂𝑦
 𝑕0

3𝑎22  −
∂𝑝0

∂𝑥
sin𝜃 +

∂𝑝0

∂𝑦
cos𝜃 + 𝑕0

3𝑎21  
∂𝑝0

∂𝑥
cos𝜃 +

∂𝑝0

∂𝑦
sin𝜃  cos𝜃

 

Arranging sine and cosine products it becomes: 

𝜆
∂

∂𝑥
 𝑕0 𝑏11cos2𝜃 + 𝑏12 sin𝜃cos𝜃  + 𝜆

∂

∂𝑦
 𝑕0 𝑏11sin𝜃cos𝜃 + 𝑏12sin2𝜃   
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−𝜆
∂

∂𝑦
 𝑕0 𝑏22 sin𝜃cos𝜃 + 𝑏21cos2𝜃  + 𝜆

∂

∂𝑥
 𝑕0 𝑏22sin2𝜃 + 𝑏21sin𝜃cos𝜃  = 

∂

∂𝑥
 𝑕0

3𝑎11  
∂𝑝0

∂𝑥
cos2𝜃 +

∂𝑝0

∂𝑦
sin𝜃cos𝜃 + 𝑕0

3𝑎12  −
∂𝑝0

∂𝑥
sin𝜃cos𝜃 +

∂𝑝0

∂𝑦
cos2𝜃   

+
∂

∂𝑦
 𝑕0

3𝑎11  
∂𝑝0

∂𝑥
sin𝜃cos𝜃 +

∂𝑝0

∂𝑦
sin2𝜃 + 𝑕0

3𝑎12  −
∂𝑝0

∂𝑥
sin2𝜃 +

∂𝑝0

∂𝑦
sin𝜃cos𝜃   

−
∂

∂𝑥
 𝑕0

3𝑎22  −
∂𝑝0

∂𝑥
sin2𝜃 +

∂𝑝0

∂𝑦
sin𝜃cos𝜃 + 𝑕0

3𝑎21  
∂𝑝0

∂𝑥
sin𝜃cos𝜃 +

∂𝑝0

∂𝑦
sin2𝜃   

+
∂

∂𝑦
 𝑕0

3𝑎22  −
∂𝑝0

∂𝑥
sin𝜃cos𝜃 +

∂𝑝0

∂𝑦
cos2𝜃 + 𝑕0

3𝑎21  
∂𝑝0

∂𝑥
cos2𝜃 +

∂𝑝0

∂𝑦
sin𝜃cos𝜃   

Collecting coefficients then gives: 

𝜆
∂

∂𝑥
 𝑕0  𝑏11cos2𝜃 + 𝑏12sin𝜃cos𝜃 + 𝑏22 sin2𝜃 + 𝑏21 sin𝜃cos𝜃                                    

𝐵1

 

+  𝜆
∂

∂𝑦
 𝑕0  𝑏11sin𝜃cos𝜃 + 𝑏12sin2𝜃 − 𝑏22 sin𝜃cos𝜃 − 𝑏21 cos2𝜃                                    

𝐵2

 

=
∂

∂𝑥

 
 
 

 
 𝑕0

3  𝑎11cos2𝜃 − 𝑎12sin𝜃cos𝜃 − 𝑎21sin𝜃cos𝜃 + 𝑎22sin2𝜃                                    
𝐴11

∂𝑝0

∂𝑥

+𝑕0
3  𝑎11sin𝜃cos𝜃 + 𝑎12cos2𝜃 − 𝑎21sin2𝜃 − 𝑎22sin𝜃cos𝜃                                    

𝐴12

∂𝑝0

∂𝑦  
 
 

 
 

+ 

+
∂

∂𝑦

 
 
 

 
 𝑕0

3  𝑎11sin𝜃cos𝜃 − 𝑎12sin2𝜃 − 𝑎22sin𝜃cos𝜃 + 𝑎21 cos2𝜃                                    
𝐴21

∂𝑝0

∂𝑥

+𝑕0
3  𝑎11sin2𝜃 + 𝑎12sin𝜃cos𝜃 + 𝑎21sin𝜃cos𝜃 + 𝑎22cos2𝜃                                    

𝐴22

∂𝑝0

∂𝑦  
 
 

 
 

 

 (4.32) 

The square bracket terms (under braced) in Equation  (4.32) are the oblique flow 

factors A11, A12, A21, A22, B1 and B2  which are defined as: 

𝐴11 = 𝑎11cos2𝜃 −  𝑎12 + 𝑎21 sin𝜃cos𝜃 + 𝑎22 sin2𝜃

𝐴12 = 𝑎12cos2𝜃 +  𝑎11 − 𝑎22 sin𝜃cos𝜃 − 𝑎21 sin2𝜃

𝐴21 = 𝑎21cos2𝜃 +  𝑎11 − 𝑎22 sin𝜃cos𝜃 − 𝑎12sin2𝜃

𝐴22 = 𝑎11sin2𝜃 +  𝑎12 + 𝑎21 sin𝜃cos𝜃 + 𝑎22cos2𝜃

𝐵1 = 𝑏11 cos2𝜃 +  𝑏12 + 𝑏21 sin𝜃cos𝜃 + 𝑏22 sin2𝜃

𝐵2 = 𝑏12𝑠in2𝜃 +  𝑏11 − 𝑏22 sin𝜃cos𝜃 − 𝑏21cos2𝜃

 

(4.33) 

Flow factors a11,a12, a21, a22, b11, b12, b21, b22 are calculated in the axis of periodicity as 

specified by (4.27) and (4.28). 

With the oblique flow factors the homogenised Reynolds Equation (4.26) becomes  
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∂

∂𝑥
 𝑕0

3𝐴11

∂𝑝0

∂𝑥
+ 𝑕0

3𝐴12

∂𝑝0

∂𝑦
 +

∂

∂𝑦
 𝑕0

3𝐴21

∂𝑝0

∂𝑥
+ 𝑕0

3𝐴22

∂𝑝0

∂𝑦
 

= 𝜆
∂

∂𝑥
 𝑕0𝐵1 + 𝜆

∂

∂𝑦
 𝑕0𝐵2  

(4.34) 

Note, that the Ox axis coincides with the direction of motion, therefore no velocity 

component in the transverse direction should be present. The last term in the Equation 

(4.34) represents the flow in the transverse direction diverted by the oblique 

roughness feature (as shown schematically on Figure 4.8). 

 
Figure 4.8 Diversion of the Couette flow by an oblique roughness feature 

Oblique asperity
Flow of liquid

Diverted flow

Direction of the Couette flow 
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5 Evaluation of the flow factors 

5.1 Solving the local problems 

In order to calculate the flow factors the solutions of the local problems (4.17) are 

required. For convenience the full formulation of the local problems is provided below:  

 
 
 
 
 

 
 
 
 

∂

∂𝜉
 ℎ3

∂𝜒1

∂𝜉
 +

∂

∂𝜓
 ℎ3

∂𝜒1

∂𝜓
 = −

∂ (ℎ3)

∂𝜉

∂

∂𝜉
 ℎ3

∂𝜒2

∂𝜉
 +

∂

∂𝜓
 ℎ3

∂𝜒2

∂𝜓
 = −

∂(ℎ3)

∂𝜓
∂

∂𝜉
 ℎ3

∂𝜒3

∂𝜉
 +

∂

∂𝜓
 ℎ3

∂𝜒3

∂𝜓
 =

∂ℎ

∂𝜉
∂

∂𝜉
 ℎ3

∂𝜒4

∂𝜉
 +

∂

∂𝜓
 ℎ3

∂𝜒4

∂𝜓
 =

∂ℎ

∂𝜓

  

(5.1) 

The left hand side of all the equations for the local problem is exactly like Reynolds’ 

equation defined on the local scale in the coordinates (). Note, that h is the total 

gap between the surfaces as defined by Equation (4.5). However, bearing in mind that 

the system is solved in local coordinates the only connection to the global coordinates 

(x,y) is the value of h0(x,y). Therefore the solutions obtained for 1,2,3, and 4 can be 

considered as functions of (h0,). 

In the general case the analytic solution of Equations (5.1) is not available, however it 

is obtained in Sections 5.1.2 and 5.1.3 for 1, 3 in the case of an extruded sinusoidal 

surface. In the following section the technique for solving the system (5.1) numerically 

is considered. 

5.1.1 Numerical solution 

 Discretisation 

The left hand side of the equations from the system (5.1) is discretised using central 

differences. The second derivative terms are discretised using the values at the inter 

nodal points to maintain the conservation of flow. The sketch of the mesh points is 

shown in Figure 5.1.  

For convenience the index of the local solution functions 1,2,3,4 is specified as the 

superscript: 

𝜒1 𝑖, 𝑗 ≡ 𝜒𝑖,𝑗
(1)

;     𝜒2 𝑖, 𝑗 ≡ 𝜒𝑖,𝑗
(2)

;     𝜒3 𝑖, 𝑗 ≡ 𝜒𝑖 ,𝑗
(3)

;     𝜒4 𝑖, 𝑗 ≡ 𝜒𝑖 ,𝑗
(4)
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Figure 5.1 The nodes and inter nodal points used for the discretisation of the derivatives 

The second derivative with respect to  is then discretised as follows: 

∂

∂𝜉
 ℎ3

∂𝜒

∂𝜉
 =

 ℎ3 ∂𝜒
∂𝜉 

𝑖+0.5,𝑗

−  ℎ3 ∂𝜒
∂𝜉 

𝑖−0.5,𝑗

Δ𝜉

=
ℎ𝑖+0.5,𝑗

3 𝜒𝑖+1,𝑗 − 𝜒𝑖 ,𝑗

Δ𝜉 − ℎ𝑖−0.5,𝑗
3 𝜒𝑖 ,𝑗 − 𝜒𝑖−1,𝑗

Δ𝜉

Δ𝜉
 

(5.2) 

The index of the function is omitted as the same discretisation applies for all four 

functions. The value of a variable at the internodal point is assumed to be mean 

between the values of the two neighbouring nodes. In particular the values of h3 at the 

internodal points are: 

ℎ𝑖+0.5
3 =

ℎ𝑖+1,𝑗
3 + ℎ𝑖 ,𝑗

3

2
 

The second derivative (5.2) then yields 

∂

∂𝜉
 ℎ3

∂𝜒

∂𝜉
 =

ℎ𝑖+1,𝑗
3 + ℎ𝑖 ,𝑗

3

2
 𝜒𝑖+1,𝑗 − 𝜒𝑖 ,𝑗  −

ℎ𝑖−1,𝑗
3 + ℎ𝑖,𝑗

3

2
 𝜒𝑖 ,𝑗 − 𝜒𝑖−1,𝑗  

Δ𝜉2
=

ℎ𝑖+1,𝑗
3 + ℎ𝑖,𝑗

3

2Δ𝜉2
𝜒𝑖+1,𝑗 +

ℎ𝑖−1,𝑗
3 + ℎ𝑖,𝑗

3

2Δ𝜉2
𝜒𝑖−1,𝑗 −

ℎ𝑖+1,𝑗
3 + 2ℎ𝑖,𝑗

3 + ℎ𝑖−1,𝑗
3

2Δ𝜉2
𝜒𝑖,𝑗

 

Same applies to the second derivative with respect to : 

∂

∂𝜓
 ℎ3

∂𝜒

∂𝜓
 =

ℎ𝑖 ,𝑗+1
3 + ℎ𝑖,𝑗

3

2Δ𝜓2
𝜒𝑖 ,𝑗+1 +

ℎ𝑖 ,𝑗−1
3 + ℎ𝑖,𝑗

3

2Δ𝜓2
𝜒𝑖 ,𝑗−1 −

ℎ𝑖 ,𝑗+1
3 + 2ℎ𝑖,𝑗

3 + ℎ𝑖 ,𝑗−1
3

2Δ𝜓2
𝜒𝑖 ,𝑗  

For the right hand sides the variation of the function between the two neighbouring 

inter nodal points is used as well, however, as the function is assumed to be linear 

between the nodes, it yields: 
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∂ℎ3

∂𝜉
=

ℎ𝑖+0.5𝑗
3 − ℎ𝑖−0.5,𝑗

3

Δ𝜉
=

ℎ𝑖+1𝑗
3 − ℎ𝑖−1,𝑗

3

2Δ𝜉
 

The four equations of the system (5.1) are discretised in exactly the same way with the 

only difference being the right hand side (note that the multiplier 2 is cancelled 

everywhere): 

ℎ𝑖+1,𝑗
3 + ℎ𝑖 ,𝑗

3

Δ𝜉2
𝜒𝑖+1,𝑗

(𝑘)
+

ℎ𝑖−1,𝑗
3 + ℎ𝑖 ,𝑗

3

Δ𝜉2
𝜒𝑖−1,𝑗

(𝑘)
+

ℎ𝑖,𝑗+1
3 + ℎ𝑖,𝑗

3

Δ𝜓2
𝜒𝑖 ,𝑗+1

(𝑘)
+

ℎ𝑖,𝑗−1
3 + ℎ𝑖,𝑗

3

Δ𝜓2
𝜒𝑖 ,𝑗−1

(𝑘)

− 
ℎ𝑖+1,𝑗

3 + 2ℎ𝑖,𝑗
3 + ℎ𝑖−1,𝑗

3

Δ𝜉2
+

ℎ𝑖,𝑗+1
3 + 2ℎ𝑖,𝑗

3 + ℎ𝑖,𝑗−1
3

Δ𝜓2
 𝜒𝑖,𝑗

(𝑘)
= 𝐸𝑖 ,𝑗

(𝑘)

 

(5.3) 

where k=1..4 and the right hand sides corresponding to the functions 1,2,3,4 are   

𝐸𝑖 ,𝑗
 1 

= −
ℎ𝑖+1,𝑗

3 −ℎ𝑖−1,𝑗
3

Δ𝜉
;  𝐸𝑖 ,𝑗

 2 
= −

ℎ𝑖,𝑗+1
3 −ℎ𝑖,𝑗−1

3

Δ𝜓
;  

 𝐸𝑖 ,𝑗
 3 

=
ℎ𝑖+1,𝑗 − ℎ𝑖−1,𝑗

Δ𝜉
;  𝐸𝑖 ,𝑗

 4 
=

ℎ𝑖 ,𝑗+1 − ℎ𝑖,𝑗−1

Δ𝜓
 

(5.4) 

 Gauss-Seidel iterative method 

Equations (5.3) can be treated as systems of linear equations with sparse matrix of 

coefficients. Indeed, the matrix would be 3-diagonal for a 1-dimensional case, and in a 

2 dimensional case each row and each column have only 5 non zero components 

corresponding to the terms related to the neighbouring points. These systems can 

then be solved using the iterative Gauss-Seidel method. 

The Gauss-Seidel method is based on presenting the value at the current node using 

the old values at the succeeding nodes and new values at the preceding nodes. The 

concept is schematically shown on Figure 5.2. The piece-wise algebraic formula for the 

new value at the point (i,j) is given below:  

𝜒𝑖 ,𝑗
𝑛𝑒𝑤 =

 
ℎ𝑖+1,𝑗

3 + ℎ𝑖,𝑗
3

Δ𝑥2 𝜒𝑖+1,𝑗
𝑜𝑙𝑑  +

ℎ𝑖 ,𝑗
3 + ℎ𝑖−1,𝑗

3

Δ𝑥2 𝜒𝑖−1,𝑗
𝑛𝑒𝑤    +

ℎ𝑖,𝑗 +1
3 + ℎ𝑖 ,𝑗

3

Δ𝑦2 𝜒𝑖 ,𝑗+1
𝑜𝑙𝑑  +

ℎ𝑖,𝑗
3 + ℎ𝑖 ,𝑗−1

3

Δ𝑦2 𝜒𝑖 ,𝑗−1
𝑛𝑒𝑤 − 𝐸𝑖,𝑗

(𝑘)

ℎ𝑖+1,𝑗
3 + 2ℎ𝑖,𝑗

3 + ℎ𝑖−1,𝑗
3

Δ𝑥2 +
ℎ𝑖,𝑗 +1

3 + 2ℎ𝑖 ,𝑗
3 + ℎ𝑖,𝑗 −1

3

Δ𝑦2  

 

(5.5) 

The Gauss Seidel method is faster than the traditional Jacobi iterative method in the 

case of sparse matrices, however, there is room for potential improvement of the 

algorithm for solving the local problems (5.1). The convergence of the numerical 

solution of the local problems is discussed in Section 5.1.1. The results obtained by 
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numerical technique are compared with the available analytical solutions obtained in 

Sections 5.1.2 and 5.1.3. 

 
Figure 5.2 Schematic illustration of the Gauss-Seidel iterative method 

 Boundary conditions 

As described in Section 4.4, the solutions k) of the local problems are assumed to be 

periodic in . Therefore the periodic boundary conditions can be applied provided that 

there is a point () in such that the value k)() is known. Let k)()=c, 

where c is a constant. Note however that the formulae for calculating the flow factors 

(4.27) and (4.28) use the derivatives of the ∂k) /∂and ∂k) /∂ of the local solutions 

k). Therefore, the choice of the constant c does not affect the calculation of the flow 

factors in any way. Hence let c=0. 

Chapters 4 and 5 describe the general procedure for calculating the flow factors. As 

discussed the deflected shape of the rough surface obtained by means of the dry 

contact analysis may be used to take into account the effect of the deformed shape on 

the flow of lubricant. In such cases there is not flow in the areas of direct contact of 

the asperities. This adds a complication to the boundary conditions of the local 

problems. Indeed, the contact spots must be excluded from the solution and a no flow 

condition should be applied at the boundaries of the contact spots. In the current 

work, as well as in the works of Almqvist and Dasht (2006), Sahlin et al (2010a, 2010b) 

this issue is resolved by considering a small gap of 10-9 m between the surfaces at the 

areas of direct contact. It is assumed that the flow through this gap is trivial and does 

not compromise the values of k in the area adjacent to the contacts.  
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5.1.2 Analytical solution for 1 . 

In this section the analytical solution is obtained for the first equation from system 

(5.1): 

∂

∂𝜉
 ℎ3

∂𝜒1

∂𝜉
 +

∂

∂𝜓
 ℎ3

∂𝜒1

∂𝜓
 = −

∂ℎ3

∂𝜉
 

(5.6) 

First, let us define the surface as an extruded cosine wave: 

ℎ 𝑥, 𝑦, 𝜉, 𝜓 = ℎ0 𝑥, 𝑦 + ℎ𝑟cos  2𝜋
𝜉

𝐿
𝑘  

(5.7) 

where L is the length of the area of interest, hr is the amplitude of the waviness and k 

is the number of waves across the area of interest.  

Since extruded geometry is considered the solution is expected to be extruded as well.  

So there will be no variation with  and Equation (5.6) becomes:  

∂

∂𝜉
 ℎ3

∂𝜒1

∂𝜉
 = −

∂ℎ3

∂𝜉
 

Integrating with respect to : 

ℎ3
∂𝜒1

∂𝜉
= −(ℎ3 − ℎ𝑐

3) 

where ℎ𝑐
3 is an integration constant and the cubed form is used for convenience. The 

equation can be written as 

∂𝜒1

∂𝜉
= −

(ℎ3 − ℎ𝑐
3)

ℎ3
 

(5.8) 

and finally integrated to give 

𝜒1 ξ = 𝜒𝑐 −  
 ℎ 𝑠 3 − ℎ𝑐

3 

ℎ 𝑠 3

ξ

0

𝑑𝑡 = 𝜒𝑐 − 𝜉 + ℎ𝑐
3  

𝑑𝑠

ℎ 𝑠 3

𝜉

0

 

(5.9) 

where c is an additive integration constant and s is a dummy variable. 

 Evaluating the integral 

The integral used in the equation can be transformed into the following form:  
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𝑑𝑠

ℎ3
=

𝜉

0

 
𝑑𝑠

 ℎ0 + ℎ𝑟cos  2𝜋
𝑠
𝐿 𝑘  

3

𝜉

0

=  𝑡 = 2𝜋
𝑠

𝐿
𝑘 =

𝐿

2𝜋𝑘
 

𝑑𝑡

 ℎ0 + ℎ𝑟cos𝑡 3

2𝜋
𝜉
𝐿
𝑘

0

=

𝐿

2𝜋𝑘ℎ𝑟
3

  
ℎ0

ℎ𝑟
+ cos𝑡 

−3

𝑑𝑡

2𝜋𝑘
𝜉
𝐿

0

=  𝜏 =
ℎ0

ℎ𝑟
 =

𝐿

2𝜋𝑘ℎ𝑟
3

 
𝑑𝑡

 𝜏 + cos𝑡 3

2𝜋𝑘
𝑥
𝐿

0

 

The parameter h0/hr is introduced henceforth as the global film thickness relative to 

the amplitude of the local roughness. The square brackets “[ ]” in the sequence of 

equalities denote the condition used on which this sequence is continued. 

The integral above is equivalent to the one calculated in Appendix A taking the dummy 

constant a= According to (A.12), this is equal to 

∫
0

𝜉
𝑑𝑠

ℎ3
=

𝐿

2𝜋𝑘ℎ𝑟
3 𝐹  tan  𝜋

𝜉

𝐿
𝑘  

𝐹 𝑧 =  𝑛 + 1 𝜋𝐹1 + 𝐹1arctan
𝑧

𝑚
+ 𝐹2

𝑧

 z2 + 𝑚2 
+ 𝐹3

𝑧

 𝑧2 + 𝑚2 2

 

(5.10) 

where 

𝑛 =  
 

2𝜋𝑘𝜉
𝐿 − 𝜋 

2𝜋
 ;   𝑚2 =  

τ + 1 

τ − 1
 ; τ =

ℎ0

ℎ𝑟
 

The brackets ⌊ ⌋ denote rounding down to the nearest interger value, which makes n 

the number of full periods within the current value of Note that for =0 the value of 

𝑛 = ⌊−1/2⌋ = −1  whereas for =L the value of 𝑛 = ⌊k − 1/2⌋ = k − 1 . The 

coefficients F1, F2, F3 are given by Equation (A.10) : 

𝐹1 =
2𝜏2 + 1

 𝜏 − 1 2.5 𝜏 + 1 2.5
;     𝐹2 = −

4𝜏 + 1

 𝜏 − 1 3 𝜏 + 1 2
;     𝐹3 =

2

 𝜏 − 1 4 𝜏 + 1 
 

 (5.11) 

Equation (5.9) then yields: 

𝜒1 ξ = 𝜒𝑐 − 𝜉 +
𝐿ℎ𝑐

3

2𝜋𝑘ℎ𝑟
3 𝐹  tan  𝜋

𝜉

𝐿
𝑘  

𝑤ℎ𝑒𝑟𝑒  𝐹 𝑧 =  𝑛 + 1 𝜋𝐹1 + 𝐹1arctan
𝑧

𝑚
+ 𝐹2

𝑧

 z2 + 𝑚2 
+ 𝐹3

𝑧

 𝑧2 + 𝑚2 2

 

(5.12) 
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 Boundary conditions 

The solution of the local problem 1 is assumed to be a periodic function. Therefore 

the periodic boundary conditions are applicable to the problem:  

𝜒1 0 = 𝜒1 𝐿  

Substituting into (5.12) 

𝜒1 0 = 𝜒𝑐 +
𝐿ℎ𝑐

3

2𝜋𝑘ℎ𝑟
3
 𝑛 + 1 𝜋𝐹1 = 𝜒𝑐  

(5.13) 

The other terms are cancelled because for =0 the value of z=tan(0)=0 and 

n=floor(-1/2)=-1. Bearing in mind, that for =L the value of z=tan(k)=0 and n 

=floor(k-1/2)=k-1: 

𝜒1 L = 𝜒𝑐 − 𝐿 +
𝐿ℎ𝑐

3

2ℎ𝑟
3 𝐹1 

(5.14) 

Equating (5.13) and (5.14) the periodic condition becomes: 

𝜒𝑐 = 𝜒𝑐 − 𝐿 +
𝐿ℎ𝑐

3

2ℎ𝑟
3 𝐹1 ⇔ 𝐿 =

𝐿ℎ𝑐
3

2ℎ𝑟
3 𝐹1 ⇔ ℎ𝑐

3 =
2ℎ𝑟

3

𝐹1
 

Taking  (5.11) into account: 

ℎ𝑐
3 = 2ℎ𝑟

3
 𝜏 − 1 2.5 𝜏 + 1 2.5

2𝜏2 + 1
 

 (5.15) 

The second constant, c is not defined. As discussed in Section 5.1.1 defining of the 

additive constant is unnecessary because the derivatives of the local solutions are used 

for calculating the flow factors (4.19) and (4.24). 

 Summary 

This section summarises the previous sections and gives the final formula for the  

solution of the local problem (5.6) for the extruded cosine waviness defined by (5.7). 

Using the solution (5.12) and substituting the formulae (5.11) the analytical solution 

yields: 

𝜒1 ξ = 𝜒𝑐 − 𝜉 +
𝐿

2𝜋𝑘

ℎ𝑐
3

ℎ𝑟
3
 𝐹1  𝜋 𝑛 + 1 + arctan

𝑧

𝑚
 + 𝐹2

𝑧

 𝑧2 + 𝑚2 
+ 𝐹3

𝑧

 𝑧2 + 𝑚2 2
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(5.16) 

Where 

𝑧 = tan  𝜋
𝜉

𝐿
𝑘 ;     𝑛 =  

𝑘𝜉

𝐿
−

1

2
 ;   𝑚2 =  

𝜏 + 1

𝜏 − 1
 ;    ℎ𝑐

3 = 2ℎ𝑟
3
 𝜏 − 1 2.5 𝜏 + 1 2.5

2𝜏2 + 1
 

and the coefficients F1 to F3 are given by  (5.11) Note that the brackets ⌊ ⌋ denote 

rounding down to the nearest integer value. 

The expressions inside the curly brackets are non-dimensional and the solution 1.has 

the dimensions of metres. 

 Comparison of the analytical and numerical solutions 

The solution (5.17) allows a comparison to be made between the analytical solution 

and the solution obtained by numerical means as described in Section 5.1.1. The 

numerical solution was obtained on a square computational domain resolved in 64x64 

mesh points. The analytical solution (5.17) was evaluated for 256 sampling points on 

the domain of the same size.   

The surface geometry corresponds to the local roughness for the surface (5.7): 

ℎ 𝜉,𝜓 = ℎ0 + ℎ𝑟cos  2𝜋
𝜉

𝐿
𝑘  

 and for the comparison the parameters given in Table 5.1 are used. 

The geometry is shown in Figure 5.3, where the straight line illustrates the global film 

thickness h0 and the sinusoidal curve is the local roughness. Asperities are oriented 

upside down, so that the plane h()=0 represents the smooth counterface.  

The sequence of Figures 5.4-5.11 illustrates the comparison between the 1 obtained 

by analytical and numerical means for various global film thicknesses h0 given by Table 

5.1. For convenience the total film thickness, h, is also plotted on every figure. The 

solution 1 starts from smooth sinusoidal function for high values of h0. See e.g. the 

solution of 1 obtained for h0=10m which is plotted in Figure 5.4. As the value of the 

global film thickness h0 reduces the values of 1 cycles become progressively skewed in 

the direction opposite to the direction of motion as can be observed in Figures 5.4-5.9.  
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Table 5.1 Parameters used to formulate the local problems 

Parameter Description Value Units 

hr Amplitude 1.0 m 

h0 Global film thickness 

10.0, 5.0; 

2.0; 1.4;1.2; 

1.1;1.0;0.9 

m 

L Length of the local domain () 200 m 

W Width of the local domain 200 m

k Number of waves per local cell 2  

N Number of mesh points 64  

 Number of sampling points for analytical 
solution  

256  

The solution of 1 systematically approaches the saw-toothed form corresponding to 

the limiting case of the analytic solution for h0=1.001m which is plotted on Figure 

5.11. Note that the case of h0=1.0m corresponds to the contact of the surfaces. For 

an extruded surface this means the total blockage of the fluid flow which invalidates 

the formulation of the problem. The values of 1 obtained by analytical means are in 

perfect agreement with those obtained numerically for the whole range of h0 which is 

illustrated by the close fit of the markers on top of the analytical curves in Figures 

5.4-5.11. The difference between the solutions is trivial and can be explained by the 

numerical inaccuracies.  

 

Figure 5.3 The local roughness (blue) and the mean line (red) of the extruded cosine surface 

with amplitude hr=1.0m and global film thickness h0=3.0m 
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Figure 5.4 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=10.0m. Secondary 
axis: total film thickness.  

 

Figure 5.5 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=5.0m. Secondary axis: 
total film thickness.  
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Figure 5.6 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=2.0m. Secondary axis: 
total film thickness.  

 

Figure 5.7 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.4m. Secondary axis: 
total film thickness. 
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Figure 5.8 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.3m. Secondary axis: 
total film thickness. 

 

Figure 5.9 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.2m. Secondary axis: 
total film thickness. 
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Figure 5.10 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.1m. Secondary axis: 
total film thickness. 

 

Figure 5.11 Primary axis: solutions for the local problem 1 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.001m. Secondary 
axis: total film thickness. 

The sequence of the numerical solutions obtained for the whole range of global film 

thicknesses h0=10.0-0.9m is plotted on Figure 5.12 where arrows indicate the sense 

of reducing h0. The development of the solution from the smooth sinusoidal curve for 

large h0 values to the saw tooth shaped curves for the critical case of direct asperity 

contact can be observed on the graph. Note that the solutions are anti-symmetric with 

respect to the point of minimum film thickness and 1 reaches its maximum and 

0

2

4

6

8

10

12

-6.0E-05

-4.0E-05

-2.0E-05

0.0E+00

2.0E-05

4.0E-05

6.0E-05

0 50 100 150 200

h
,[


m
]

χ 1
,[

m
]

[m]

numerical analytical H

0

2

4

6

8

10

12

-6.0E-05

-4.0E-05

-2.0E-05

0.0E+00

2.0E-05

4.0E-05

6.0E-05

0 50 100 150 200

h
,[


m
]

χ 1
,[

m
]

[m]

numerical analytical H



Section 5.1 Solving the local problems 

110 

minimum values just before and immediately after the asperity tip. These positions 

correspond to the large fluid pressures generated before meeting the asperity 

followed by the pressure drop afterwards, where the fluid can potentially cavitate. The 

maximum and minimum values of 1 move towards the asperity tip as the gap 

decreases thus demonstrating the increased effect of roughness on the flow for 

smaller gaps. The numerical solution for the deflected surface roughness is also shown 

for h0=0.9m however it is equivalent to the case of h0=1.0m.  

 

Figure 5.12 Primary axis: The sequence of numerical solutions χ1 for global film thickness 

value h0 in the range 10.0-0.9m . Secondary axis: the total film thickness for the value 

h0=1.0m  

5.1.3 Analytical solution for χ3 

Consider the third equation in the system (5.1) 

∂

∂𝜉
 ℎ3

∂𝜒3

∂𝜉
 +

∂

∂𝜓
 ℎ3

∂𝜒3

∂𝜓
 =

∂ℎ

∂𝜉
 

(5.17) 

An extruded cosine wave is used (5.7) as in the previous section, and as there is no 

variation of the equation coefficients in  direction the solution of 3  is assumed to 

be extruded as well. Then 

∂

∂𝜉
 ℎ3

∂𝜒3

∂𝜉
 =

∂ℎ

∂𝜉
⇔ ℎ3

∂𝜒3

∂𝜉
= ℎ − ℎ∗ 

where h* is an integration constant. Furthermore, 
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∂𝜒3

∂𝜉
=

ℎ − ℎ∗

ℎ3
⇔ 𝜒3 𝜉 = 𝜒∗ +  

ℎ − ℎ∗

ℎ3
𝑑𝑠

𝜉

0

 

 (5.18) 

where * is an additive integration constant and s is a dummy integration constant. 

Therefore 

𝜒3 𝜉 = 𝜒∗ +  
𝑑𝑠

ℎ2

𝜉

0

− ℎ∗  
𝑑𝑠

ℎ3

𝜉

0

 

 (5.19) 

 Indefinite integrals 

Equation (5.19) contains two integrals. First, 

 
𝑑𝑠

ℎ2
=

𝜉

0

 
𝑑𝑠

 ℎ0 + ℎ𝑟cos  2𝜋
𝑠
𝐿 𝑘  

2

𝜉

0

=  𝑡 = 2𝜋
𝑠

𝐿
𝑘 =

𝐿

2𝜋𝑘
 

𝑑𝑡

 ℎ0 + ℎ𝑟cos𝑡 2

2𝜋
𝜉
𝐿
𝑘

0

=
𝐿

2𝜋𝑘ℎ𝑟
2

  
ℎ0

ℎ𝑟
+ cos𝑡 

−2

𝑑𝑡

2𝜋𝑘
𝜉
𝐿

0

=  𝜏 =
ℎ0

ℎ𝑟
 =

𝐿

2𝜋𝑘ℎ𝑟
2

 
𝑑𝑡

 𝜏 + cos𝑡 2

2𝜋𝑘
𝑥
𝐿

0

 

where τ =  ℎ0/ℎ𝑟  is a non dimensional ratio of the global film thickness to the 

roughness amplitude. Taking the dummy constant a= this integral is equivalent to the 

one calculated analytically in Appendix B. Substituting (B.8):  

 
𝑑𝑠

ℎ2
=

𝜉

0

𝐿

2𝜋𝑘ℎ𝑟
2
𝐺  tan  𝜋

𝜉

𝐿
𝑘  

𝐺 𝑧 =  𝑛 + 1 𝜋𝐺1 + 𝐺1arctan
𝑧

𝑚
+ 𝐺2

𝑧

 z2 + 𝑚2 

 

(5.20) 

where  

𝑛 =  
 2𝜋𝑘𝜉/𝐿 − 𝜋 

2𝜋
 ;   𝑚2 =  

𝜏 + 1

𝜏 − 1
 ;  τ =

ℎ0

ℎ𝑟
 

The brackets ⌊ ⌋ denote the rounding down to the nearest integer. The coefficients G1 

and G2 are given by (B.6): 

𝐺1 =
2𝜏

 𝜏 − 1 2.5 𝜏 + 1 2.5
;     𝐺2 =

2

 𝜏 − 1 2 𝜏 + 1 
 

 (5.21) 
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The second integral is exactly the same as given in Section 5.1.2, see (5.10) and (5.11).  

Equation (5.19) then becomes: 

𝜒3 𝜉 = 𝜒∗ +
𝐿

2𝜋𝑘ℎ𝑟
2
𝐺  tan  𝜋

𝜉

𝐿
𝑘  − ℎ∗

𝐿

2𝜋𝑘ℎ𝑟
3 𝐹  tan  𝜋

𝜉

𝐿
𝑘   

(5.22) 

The two constants h* and  should be defined from the boundary conditions.  

 Boundary conditions 

 Periodic boundary conditions are applied, meaning that 

𝜒3 0 = 𝜒3 𝐿  

Substituting into (5.22) 

𝜒3 0 = 𝜒∗ +
𝐿

2𝜋𝑘ℎ𝑟
2
𝐺 tan0 − ℎ∗

𝐿

2𝜋𝑘ℎ𝑟
3 𝐹 tan0 = 𝜒∗ 

(5.23) 

The other terms are cancelled because for =0 the value of n=-1 . Bearing in mind, that 

for =L the value of n =k-11: 

𝜒3 𝐿 = 𝜒∗ +
𝐿

2𝜋𝑘ℎ𝑟
2
𝐺 tan𝜋𝑘 − ℎ∗

𝐿

2𝜋𝑘ℎ𝑟
3
𝐹 tan𝜋𝑘 =

𝜒∗ +
𝐿

2𝜋𝑘ℎ𝑟
2
 𝑛 + 1 𝜋𝐺1 −

𝐿

2𝜋𝑘ℎ𝑟
3 ℎ∗ 𝑛 + 1 𝜋𝐹1 = 𝜒∗ +

𝐿

2ℎ𝑟
2
𝐺1 −

𝐿

2ℎ𝑟
3 ℎ∗𝐹1

 

(5.24) 

Equating (5.23) and (5.24), 

𝜒∗ = 𝜒∗ +
𝐿

2ℎ𝑟
2
𝐺1 −

𝐿

2ℎ𝑟
3 ℎ∗𝐹1 ⇔

𝐿

2ℎ𝑟
2
𝐺1 =

𝐿

2ℎ𝑟
3 ℎ∗𝐹1 ⇔ ℎ∗ = ℎ𝑟

𝐺1

𝐹1
 

Taking into account  (5.11) and (5.21): 

ℎ∗ = ℎ𝑟

2𝜏

 𝜏 − 1 1.5 𝜏 + 1 1.5

 𝜏 − 1 2.5 𝜏 + 1 2.5

2𝜏2 + 1
= ℎ𝑟

2𝜏 𝜏2 − 1 

2𝜏2 + 1
 

(5.25) 

As before the additive constant 0 is not defined, since the local solutions enter the 

formulae for calculating the flow factors (4.19) and  (4.25) in a form of derivatives. 

                                                             
1
 For =0 the value of 𝑛 = ⌊ −1/2⌋ = 1, whereas for =L the value of 𝑛 = ⌊ 𝑘 − 1/2⌋ = 𝑘− 1 
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 Summary 

This section summarises the previous sections and give the final formula for the 3 

solution of the local problem (5.17) for the extruded cosine waviness defined by (5.7). 

Using the solution (5.22) and substituting the formulae (5.10) and (5.20) the analytical 

solution yields: 

𝜒3 𝜉 = 𝜒∗ +
𝐿

2𝜋𝑘ℎ𝑟
2
  𝐺2 − 𝐹2

ℎ∗

ℎ𝑟
 

𝑧

 z2 + 𝑚2 
− 𝐹3

ℎ∗

ℎ𝑟

𝑧

 𝑧2 + 𝑚2 2
  

(5.26) 

Where 

𝑧 = tan  𝜋
𝜉

𝐿
𝑘 ;    𝑚2 =  

𝜏 + 1

𝜏 − 1
 ;     ℎ∗ = ℎ𝑟

2𝜏 𝜏2 − 1 

2𝜏2 + 1
 

and the coefficients F2, F3 and G2  are given by  (5.11) and (5.21)  Note, that the 

terms multiplied by the coefficients G1 and F1 were cancelled, as:  

𝐿

2𝜋𝑘ℎ𝑟
2
𝐺1 =

ℎ∗𝐿

2𝜋𝑘ℎ𝑟
3 𝐹1 

The functions G(z) and F(z) are non-dimensional, therefore the units of the solution are 

defined by the multipliers 
𝐿

2𝜋𝑘ℎ𝑟
2 and 

ℎ∗𝐿

2𝜋𝑘ℎ𝑟
3 which have units [m-1].  

 Comparison of the analytical and numerical solutions 

In this section the obtained analytical solution (5.26) is compared to the 3 values 

obtained by numerical means (see Section 5.1). 

Again this is made for surface geometry corresponding to the local roughness for the 

surface given in Equation (5.7): 

ℎ 𝜉,𝜓 = ℎ0 + ℎ𝑟cos  2𝜋
𝜉

𝐿
𝑘  

 (5.27) 

with the parameters given by Table 5.1. The geometry is shown on Figure 5.3 and 

sequence of Figures 5.13-5.20 illustrate the comparison between the 3 obtained by 

analytical and numerical means for the global film thickness h0 given by Table 5.1. 

Equation (5.17) is in essence the isoviscous incompressible Reynolds’ equation on the 

scale of local roughness. Indeed, the right hand side of the equation represents the 

variation of the Couette flow with respect to the local coordinate . The term u 

[Pa·m] is removed which makes the units of 3 to be [m-1] The physical meaning of 3 is 

then the perturbation of pressure caused by the presence of the local roughness.   
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Solutions for the function 3 start from smooth waves slightly skewed in the direction 

of entrainment, with largest values being generated just before the fluid meets the 

asperity feature and the lowest values occurring immediately after it. This skewness is 

explained by the fluid motion being restricted by the surface asperities thus reflecting 

the effect of roughness on the Couette flow, see for example Figures 5.13 and 5.14. 

Bringing the rough surface closer to its counterface increases the effect of the 

asperities interacting with the flow. Indeed, Figures 5.14 and 5.15 show higher peak 

values in the position before the asperities and lower minimum values after it.  

The last figure of the series (Figure 5.20) shows the solutions for the global film 

thickness h0=1.001m, where the cosine surface is 1.0nm away from contacting the 

counterface. As the surface is extruded, the contact would mean complete blockage of 

the flow, which invalidates the formulation of the problem. The apparent tendency is 

that the values of 3 in the positions before and after the asperity yield to plus and 

minus infinity as the surface approaches to the contact condition. Note that the 

necessary requirement for the analytical solutions to exist is that a=h0/hr>1, otherwise 

the integrals (A.8) and (B.4) are invalid.  

The difference for the analytical and numerical solutions remains trivial for the most of 

the range of the global film thickness values (h0=10.0-1.2m) and becomes apparent 

for the lowest global film thickness values h0=1.1-1.001m as shown in Figures 5.19 

and 5.20. This is considered to be due to discretisation inaccuracy.  

 

Figure 5.13 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=10.0m. Secondary 
axis: total film thickness. 
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Figure 5.14 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=5.0m. Secondary axis: 
total film thickness. 

 

Figure 5.15 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=2.0m. Secondary axis: 
total film thickness. 
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Figure 5.16 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.4m. Secondary axis: 
total film thickness. 

 

Figure 5.17 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.3m. Secondary axis: 
total film thickness. 

0

2

4

6

8

10

12

-1.8E+07

-9.0E+06

0.0E+00

9.0E+06

1.8E+07

0 50 100 150 200

h
,[


m
]

χ 3
,[

m
-1

]

ξ,[μm]

analytical numerical H

0

2

4

6

8

10

12

-2.7E+07

-1.8E+07

-9.0E+06

0.0E+00

9.0E+06

1.8E+07

2.7E+07

0 50 100 150 200

h
,[


m
]

χ 3
,[

m
-1

]

ξ,[μm]

analytical numerical H



Chapter 5. Evaluation of the flow factors 

117 

 

Figure 5.18 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.2m. Secondary axis: 
total film thickness. 

 

Figure 5.19 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.1m. Secondary axis: 
total film thickness. 
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Figure 5.20 Primary axis: solutions for the local problem 3 obtained by analytical (solid line) 

and numerical (empty circles) means for the global film thickness h0=1.001m. Secondary 
axis: total film thickness. 

The effect of the proximity of the surface roughness to the counterface on the local 

solution 3 is summarised in Figure 5.21 where the solutions are shown for the whole 

sequence of global film thicknesses given by Table 5.1. All curves plotted on the same 

scale which makes apparent the negligible effect of roughness on the local solution for 

the large global film thickness values (h0=10.0-2.0m) and the developing effect as the 

asperity clearance approaches contact. For convenience the roughness profile is 

plotted on the same graph using the secondary Y axis. The arrows indicate sense of 

reducing h0. 

Bearing in mind that the local solution enters the homogenised Equation (4.23) in a 

form of derivative it is reasonable to consider the derivative ∂3/∂ which is plotted 

against  in Figure 5.22. Note that the dimensions of the derivative are m-2 which 

multiplied by h3/h0 makes it non dimensional (see Equation (4.23)). The physical 

meaning of this value is the modification of the Couette flow term in Reynolds’ 

equation due to obstructions caused by the presence of roughness. The arrows plotted 

on the graph illustrate how the effect of roughness increases as the contact case is 

approached. This effect reaches its maximum just before the fluid meets the asperity 

tip and immediately after it.  
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Figure 5.21 The effect of the proximity of the rough surface to the counterface on the 

solution for the local problem 3 for varying h0. The total film thickness h is plotted on the 
secondary Y axis. 

 

Figure 5.22 The effect of the proximity of the rough surface to the counterface on the 

derivative of solution for the local problem ∂χ3/∂ with varying h0.  
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in Section 5.2.2. These analytical expressions are compared with the numerical 

solutions in Section 5.2.3. 

The flow factors for an oblique cosine roughness are calculated using the formulae 

(4.33) and the effect of obliqueness is discussed in Section 5.2.4. In addition, the flow 

factors for double sinusoidal surfaces with transverse and oblique roughness are 

presented in that section. 

5.2.1 Numerical evaluation of the flow factors 

As stated previously converging the local problems can be time consuming. However, 

the errors in the approximation for the local solution will be smoothed when 

calculating the integrals (4.27) and (4.28). Therefore, an iterative algorithm has been 

implemented to ensure that converging of the local solutions continues only while the 

new approximation affects the values of the flow factors. The routine then have an 

outer loop where the flow factors are calculated based on the current approximations 

for the local solutions. The convergence of the flow factors is then checked and if they 

are not converged then a (small) number of relaxation sweeps is performed to improve 

the approximated solution of the appropriate local problem. Note that the solution for 

each local problem is required for calculating a pair of flow factors and these 

calculations are independent of other local solutions. The algorithm for solving the 

local problems is discussed in the Section 5.1, whereas that for calculating the flow 

factors is schematically shown in the flowchart of Figure 5.23. The convergence of the 

flow factors is checked on the basis of trivial changes. In addition to that the relative 

changes to the solutions of the local problems are checked and the residual error of 

the local solutions.  

5.2.2 Analytical calculation of flow factors 

For an extruded cosine surface (5.7) the flow factors can be calculated analytically 

using the solution (5.16) and (5.26). Note in the case of an extruded surface the 

cross-flow factors a12 ,b12, a21 and b21 are equal to zero. Indeed, the right hand sides of 

the second and fourth equations in (5.1) are zero, which makes the solutions for 2=0 

and 4=0.. In addition, the derivatives ∂1/∂, and ∂3/∂ due to the extruded 

nature of the solutions for 1, 3 . : 
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 𝑎12 ℎ0 = ∫
Ω

ℎ3

ℎ0
3

∂𝜒2

∂𝜉
𝑑Ω = 0;    𝑎21 ℎ0 = ∫

Ω

ℎ3

ℎ0
3

∂𝜒1

∂𝜓
𝑑Ω = 0;

𝑏12 ℎ0 = ∫
Ω

ℎ3

ℎ0

∂𝜒4

∂𝜉
𝑑Ω = 0;    𝑏21 ℎ0 = ∫

Ω

ℎ3

ℎ0

∂𝜒3

∂𝜓
𝑑Ω = 0;

 

The remaining flow factors a11, a22, b11, and b22 are calculated in the sections below. 

 Calculating the flow factor a11 

Considering the extruded solution of 1 Equation (5.6) takes form (5.8), which is given 

below for convenience: 

∂𝜒1

∂𝜉
= −

(ℎ3 − ℎ𝑐
3)

ℎ3
 

Using this expression the formula (4.24) for the flow factor a11 becomes: 

𝑎11 ℎ0 =
1

 Ω 
∫
Ω

ℎ3

ℎ0
3  1 −

ℎ3 − ℎ𝑐
3

ℎ3
 𝑑Ω =

1

 Ω 

1

ℎ0
3 ∫

Ω
ℎ𝑐

3𝑑Ω =
ℎ𝑐

3

ℎ0
3 

. where h0(x,y) is the global film thickness and ℎ𝑐
3 is the integration constant which is 

calculated in 5.1.2 using the periodic the boundary conditions for 1. 

Substituting (5.15) gives:   

𝑎11 𝜏 = 2
 𝜏 − 1 2.5 𝜏 + 1 2.5

2𝜏2 + 1
 

(5.28) 

where =h0/hr is the parameter introduced in 5.1.2 as the global film thickness value 

relative to the amplitude of the cosine wave. 

The expression for flow factor a11 given by (5.28) is in agreement with the flow factors 

obtained by Bayada (2005) with the only difference being that the flow factors in the 

current work are divided by the global film thickness ℎ0 
3 (𝑥, 𝑦)  to maintain 

non-dimensionality. Note, that the flow factor a11 does not directly depend on either 

h0 or hr, being a function of their ratio only. 

 Calculating the flow factor a22 

In order to calculate the transverse flow factor a22 Equation (4.24) is modified taking 

into account the fact that 2=0: 

   𝑎22 ℎ0 =
1

 Ω 
∫
Ω

ℎ3

ℎ0
3  1 +

∂𝜒2

∂𝜓
 𝑑Ω =

1

 Ω 
∫
Ω

ℎ3

ℎ0
3 𝑑Ω 
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Figure 5.23 Flowchart of the algorithm for solving the local problems and calculating the flow 
factors.  

The routine stops when all the flow 

factors are converged 

The routine starts from zero 

solution of all the local problems 
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After substituting the roughness function (5.7) and the dimensions of the local domain 

Ω =  0, 𝐿 ×  0,𝑊 this integral becomes: 

   𝑎22 ℎ0 =
1

 Ω ℎ0
3   ℎ0 + ℎ𝑟cos  2𝜋

𝑘𝜉

𝐿
  

3

𝑑Ω

Ω

=
1

𝐿𝑊

1

𝜏3
   𝜏 + cos2𝜋

𝑘𝜉

𝐿
 

3

𝑑𝜉𝑑𝜓

𝑊

0

𝐿

0

 

Note that the amplitude of the cosine waves and the denominator ℎ0 
3   are replaced 

by 1/3. Bearing in mind that the sub integral function does not depend on 

   𝑎22 ℎ0 =
1

𝐿

1

𝜏3
  𝜏 + cos  2𝜋

𝑘𝜉

𝐿
  

3

𝑑𝜉

𝐿

0

 

For convenience the substitution t=2k/L is used: 

 𝑎22 ℎ0 =
1

𝐿

1

𝜏3
  𝜏 + cos  2𝜋

𝑘𝜉

𝐿
  

3

𝑑𝜉

𝐿

0

=  
𝑡 = 2𝜋

𝑘𝜉

𝐿

𝑑𝜉 =
𝐿

2𝜋𝑘
𝑑𝑡

 

=
1

2𝜋𝑘

1

𝜏3
  𝜏 + cos𝑡 3𝑑𝑡

2𝜋𝑘

0

 

Taking into account the periodicity of the integrand, the integral over the range [0,2k] 

is equal to summation of k integrals over the period 2: : 

 𝑎22 ℎ0 =
1

2𝜋𝑘
𝑘

1

𝜏3
  𝜏 + cos𝑡 3𝑑𝑡

2𝜋

0

=
1

2𝜋

1

𝜏3
  𝜏 + cos𝑡 3𝑑𝑡

2𝜋

0

 

Expanding the integrand, the integral becomes the summation of the following 

integrals: 

 𝑎22 ℎ0 =
1

2𝜋

1

𝜏3
  𝜏 + cos𝑡 3𝑑𝑡

2𝜋

0

=

1

2𝜋

1

𝜏3
 𝜏3𝑑𝜉

2𝜋

0

+
1

2𝜋

1

𝜏3
 3𝜏2cos𝑡𝑑𝜉

2𝜋

0

+
1

2𝜋

1

𝜏3
 3𝜏cos2𝑡𝑑𝜉

2𝜋

0

+
1

2𝜋

1

𝜏3
 cos3𝑡𝑑𝜉

2𝜋

0

=

1 +  3

2𝜋

1

𝜏
sin𝑡 

0

2𝜋

         
=0

+  3

2𝜋

1

𝜏2

1

2
 𝑡 + sin𝑡cos𝑡  

0

2𝜋

+
1

𝜏3
 
cos𝑡sin𝑡

3
+

2

3
sin𝑡 

0

2𝜋

               
=0

 

Collecting all the terms gives: 

 𝑎22 𝜏 = 1 +
3

2

1

𝜏2
 

(5.29) 

As well as the flow factor a11 the formula (5.29) is not directly dependent on either h0 

or on hr and differs from the transverse flow factor a22 obtained by Bayada (2005) by 

the multiplier ℎ0 
3 (𝑥, 𝑦).  
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 Calculating the flow factor b11  

Considering the extruded solution of 3, Equation (5.17) takes form (5.18), which is 

given below for convenience: 

∂𝜒3

∂𝜉
=

ℎ − ℎ∗

ℎ3
 

Substituting into the formula for the flow factor b11 (4.25) gives: 

𝑏11 ℎ0 =
1

 Ω 
∫
Ω

 
ℎ

ℎ0
−

ℎ3

ℎ0

ℎ − ℎ∗

ℎ3
 𝑑Ω =

1

 Ω 
∫
Ω

ℎ∗

ℎ0
𝑑Ω =

ℎ∗

ℎ0
 

where h0(x,y) is the global film thickness and h* is the integration constant calculated in 

5.1.3 using the periodic boundary conditions for 3.  Substituting expression (5.25) for 

h* gives: 

𝑏11 𝜏 =
ℎ∗

ℎ0
=

2 𝜏2 − 1 

2𝜏2 + 1
 

(5.30) 

which is equal to the non-dimensional modification of this factor calculated by Bayada 

(2005) and is dependent on the ratio of h0 and hr only.. 

 Calculating the flow factor b22 

In order to calculate the flow factor b22 expression (4.25) is used. Bearing in mind that 

4=0 it yields: 

𝑏22 ℎ0 =
1

 Ω 
∫
Ω

ℎ

ℎ0
𝑑Ω =

1

ℎ0

1

 Ω 
∫
Ω

 ℎ0 + ℎ𝑟cos  2𝜋
𝑘𝜉

𝐿
  𝑑Ω 

Using the rectangular dimensions of the local domain : 

𝑏22 ℎ0 =
1

ℎ0

1

𝐿𝑊
   ℎ0 + ℎ𝑟cos  2𝜋

𝑘𝜉

𝐿
  𝑑𝜉𝑑𝜓

𝑊

0

𝐿

0

=
1

ℎ0

1

𝐿
  ℎ0 + ℎ𝑟cos  2𝜋

𝑘𝜉

𝐿
  𝑑𝜉

𝐿

0

 

Integrating by substitution of the function t=2k/L: 

𝑏22 ℎ0 =
1

ℎ0

1

𝐿
  ℎ0 + ℎ𝑟cos  2𝜋

𝑘𝜉

𝐿
  𝑑𝜉

𝐿

0

=  
𝑡 = 2𝜋

𝑘𝜉

𝐿

𝑑𝜉 =
𝐿

2𝜋𝑘
𝑑𝑡

 

=
1

ℎ0

1

2𝜋𝑘
  ℎ0 + ℎ𝑟cos𝑡 𝑑𝑡

2𝜋𝑘

0

 

Bearing in mind the periodicity of the sub integral function: 

   0 0,L ,W  
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𝑏22 ℎ0 =
1

ℎ0

1

2𝜋
  ℎ0 + ℎ𝑟cos𝑡 𝑑𝑡

2𝜋

0

= 1 +  1

ℎ0

1

2𝜋
ℎ𝑟cos𝑡 

0

2𝜋

           
=0

 

The value of the Couette flow factor b22=1 is explained by the fact that the surface is 

extruded and there is no modification of the flow in the direction of extrusion. Note 

that the Couette flow in Y direction can be non zero if the direction of motion does not 

coincide with the directions of periodicity. 

5.2.3 Comparison of the analytical and numerical flow factors 

In this section the flow factors evaluated analytically are compared with those 

calculated numerically. In a general case the analytic evaluation of the flow factors is 

not possible. In the current work the flow factors have been evaluated analytically for 

an extruded cosine surface only. However, as shown in Section 5.2.2, the mixed flow 

factors a12,a21,b12 and b21 are equal to zero for an extruded surface. The surface 

geometry corresponds to the local roughness for the surface (5.7): 

ℎ 𝜉, 𝜓 = ℎ0 + ℎ𝑟cos  2𝜋
𝜉

𝐿
𝑘  

and for the comparison the parameters given in Table 5.2 are used. 

Table 5.2 Parameters of the surface used to calculate the flow factors 

Parameter Description Value Units 

Geometry 

hr Amplitude 1.0 m 

h0 Global film thickness 6.0-0.05 m 

L Length of the local domain ( ) 200 m 

W Width of the local domain 200 m 

k Number of waves per local cell 2  

N Number of mesh points 64  

 Orientation of roughness 0, 15, 30, 45, 60, 90 (degrees) 

Material properties 

 Elastic modulus 200 GPa 

 Poisson’s ratio 0.32  

Pmax Maximum pressure 4.3 GPa 

Note that the analytical solution is not available for the case of direct contact 

asperities. The numerical solution can use the deflected shape of the surface obtained 
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by means of the dry contact analysis. For this analysis the elastic properties of the 

material are given in Table 5.2.  

Figures 5.24 to 5.27 show the Poiseuille (a11,a22) and Couette (b11,b22) flow factors 

calculated for an extruded cosine roughness given by Equation (5.7). The solid curves 

on both figures represent the analytical solutions (5.28)-(5.30) whereas the open 

squares and circles show the flow factors calculated numerically. The dashed solid 

black lines are given by equations x=1 and y=1. As the ratio =h0/hr is the x coordinate, 

the line x=1 represents the case of h0=hr which means direct contact of the tips of the 

surface asperities with the counterface. The line y=1 means that the flow factors are 

equal to unity, i.e. according to the homogenised Equation (4.34) the roughness has 

trivial effect on the flow of the lubricant and the homogenised equation is identical to 

the commonly used isoviscous incompressible Reynolds Equation (4.2). Note that the 

analytical solution is available only for >1.0 i.e. for no contact cases. 

 
Figure 5.24 Poiseuille flow factors calculated by numerical (empty circles and squares) and 
analytical (solid lines) means.  

Figure 5.24 shows a perfect match between the flow factors obtained by analytical and 

numerical methods until the direct contact of the surface asperities occurs. The values 

of both flow factors a11 and a22 for >5 are very close to unity which means that 

roughness has no effect on the lubrication analysis when the global film thickness is 

more than four times greater than the amplitude of the surface asperities.  

The physical meaning of the Poiseuille flow factors can be clarified by considering the 

reduced volume terms a11h3 and a22h3. It is clear from the homogenised Equation 

(4.34) that the values of a11 and a22 can be considered as a reduction of fluid volume 
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transferred by the pressure gradients across and along the roughness features 

respectively. Note that the values of a11 (blue curve, blue empty circles) are always less 

than unity. This means that less volume can be moved in the entrainment direction 

due to the presence of roughness. This results in higher pressures being generated as 

the lubricant encounters the roughness features. The values of a22 (red curve, empty 

squares) on the other hand are always above unity. The reason for this is the additional 

flow created in the transverse direction due to the lubricant being trapped between 

the asperities, which enhances the flow along the extruded roughness features. This 

effect is summarised in Figure 5.25 where the effective fluid volume values a11h3, a22h3 

and nominal volume h3
 are plotted representing the volume of fluid that is able to flow 

across and along the roughness features for a rough surface and in both directions for 

a smooth case.  

 

Figure 5.25 Effective volume of fluid a11h3 (blue circles), a22h3 (red squares) and nominal 
volume h3 (solid black line) 

Note that the values of <1 correspond to direct contact which means total blockage of 

the flow across the extruded roughness features. This can be illustrated by both zero 

values of the flow factor a11 in Figure 5.24 and zero effective volume in Figure 5.25.  

The increasing value of a22 tends to infinity as approaches zero. This is explained by 

the fact that as the global film thickness approaches zero the rough surface deforms 

and keeps the roughness features which can store fluid whereas the nominal volume 

becomes zero. Indeed, the red squares in Figure 5.25 show a slight decrease of the 
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volume that can be transferred in the direction along the roughness features. This 

decrease corresponds to flattening of the asperities and thus a reduction in the depth 

of the valleys caused by contact pressures. The lowest value of the modified volume 

𝑎22ℎ
3 is non zero as it would be zero when the asperities are completely flattened, 

which is far beyond the consideration of the mixed lubrication analysis. The schematic 

sketch of the fluid trapped between the deformed asperities in shown in Figure 5.26, 

where the nominal gap is the global film thickness h0, the actual gap is the total film 

thickness which takes the roughness into account and solid and dashed curves 

represent the deformed and undeformed shape of the asperities. 

 

Figure 5.26 Fluid trapped between the deformed asperities in direct contact 

Figure 5.27 shows the Couette flow factors b11(blue circles, blue line) and b22(red 

squares, red line). As the Couette flow depends on the gap between the surfaces the 

Couette flow factors can be considered as an effective film thickness, modified due to 

presence of the roughness in comparison with the global film thickness.  

The values of b22 are equal to unity until the contact occurs as the extruded roughness 

features do not cause any obstruction to the Couette flow in the direction of extrusion. 

As with the Poiseuille flow factor a22, after the contact occurs the b22 value tends to 

infinity as  approaches to zero. The reason for this is that the deformed surface 

preserves the valleys which makes the effective gap greater than a nominal gap 

corresponding to the film thickness of a smooth case as shown in Figure 5.26. The 

effective gap is shown in Figure 5.28 where the solid black line corresponds to the 

nominal gap (h0), whereas red squares and blue circles denote the effective gap in the 
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directions along and across the roughness features of the surface 𝑏22ℎ and 𝑏11ℎ. As 

with the Poiseuille flow factors, the b11 term is equal to zero after the contact occurs as 

the Couette flow is completely blocked by the asperities, whereas the b22 term decays 

slowly decays due to deflection of the roughness features. Note that the effective gap 

becomes equal to zero only when the asperities are completely flattened. 

 

Figure 5.27 Couette flow factors calculated by numerical (empty circles and squares) and 
analytical (solid lines) means. 

 

Figure 5.28 Effective film thickness due to the presence of roughness: along the roughness 
features (red squares), across the roughness features (blue circles), smooth case (solid black 
line).  
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5.2.4 The effect of the roughness orientation 

The effect of oblique roughness is of interest when the rough surface has directions of 

periodicity not coinciding with the direction of motion as shown schematically in 

Figure 4.7. The flow factors calculated using Equations (4.27) and (4.28) are properties 

of the surface roughness and global film thickness only. The flow factors for oblique 

roughness are calculated by applying the formulae given by Equation (4.33) to these 

flow factors. This allows the effect of orientation of the characteristic roughness 

features with respect to the direction of motion on the flow of lubricant to be clearly 

illustrated. 

In this section an extruded cosine roughness function given by Equation (5.7) is 

considered. The parameters given by Table 5.2 are used. Note that the flow factors 

a12= a21= b12 = b21=0 for an extruded surface, therefore Equation (4.3) becomes: 

𝐴11 = 𝑎11cos2𝜃 + 𝑎22sin2𝜃 

 𝐴12 = 𝐴21 =  𝑎11 − 𝑎22 sin𝜃cos𝜃 

 𝐴22 = 𝑎11sin2𝜃 + 𝑎22 cos2𝜃 

 𝐵1 = 𝑏11 cos2𝜃 + 𝑏22sin2𝜃  

𝐵2 =  𝑏11 − 𝑏22 sin𝜃cos𝜃 

(5.31) 

If the direction of entrainment coincides with the direction of motion then =0 and 

Equation (5.31) yields: 

 𝐴11 = 𝑎11 ;     𝐴22 = 𝑎22 ;     𝐵1 = 𝑏11 ;   𝐴12 = 𝐴21 = B2 = 0  

These flow factors have been considered in the previous section. Here the oblique flow 

factors are calculated for =0, 15, 45, 60, 75 and 90. The case of =0 is a case of 

pure transverse roughness, i.e. the direction of extrusion coincides with the transverse 

direction, whereas =90 corresponds to the pure longitudinal roughness, i.e. the 

asperities are extruded in the entrainment direction. The contour plots of the surfaces 

with oblique roughness are shown in Figures 5.29-5.35 where the number of waves 

k=16 for demonstration purposes. In all of the cases it is assumed that the entrainment 

and transverse directions are aligned with x and y axes respectively. 

Figure 5.36 illustrates the development of the flow factor A11 as the orientation angle 

increases from 0 up to 90 degrees. This flow factor reflects the effect of roughness on 

the Poiseuille flow in x direction. As in the previous section the dashed black line x=1 

indicates the case when the direct contact of the asperities occurs, whereas y=1 means 

no effect of roughness.  
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Figure 5.29 Oblique extruded cosine surface 

 =0 

  
Figure 5.30 Oblique extruded cosine surface 

 =15 

  
Figure 5.31 Oblique extruded cosine surface 

 =30 

  
Figure 5.32 Oblique extruded cosine surface 

 =45 

  
Figure 5.33 Oblique extruded cosine surface 

=60 

  
Figure 5.34 Oblique extruded cosine surface 

 =75 

  
Figure 5.35 Oblique extruded cosine surface 

=90 
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Figure 5.36 Oblique flow factor A11 for a range of roughness orientations from pure 
transverse to pure longitudinal roughnesses. Arrow indicates the sense of increasing the 

orientation angle from 0 to 90 degrees. 

Note that the values of A11 for transverse roughness only (=0) become zero after the 

contact occurs. This is explained by the flow in x direction being blocked by the 

contacting asperities as discussed in Section 5.2.3. On the other hand the flow factors 

with non transverse orientation tend to infinity as the nominal film thickness 

approaches to zero, which means that the asperities are being deformed. As well as 

the flow factor a22 in Figure 5.24 the infinite values of A11 for oblique roughness mean 

that as the nominal film thickness decreases the fluid flow becomes blocked by the 

contacting asperities. However, the trapped fluid may flow along the oblique asperities 

as shown in Figure 5.37 which results in non zero flow in both x and y directions. Note 

also that the values of A11 for the orientation angle >45 are above the y=1 line. This 

is explained by the fact that as the lubricant is partially constricted between the 

extruded asperities from both sides in y direction the average fluid flow in the x 

direction is increased.  

Figure 5.38 shows the sequence of flow factors A22 for a range of roughness 

orientations from =0 to =90. Comparing this chart to the one in Figure 5.36 makes 

it clear, that they are identical if the order of the data series is reversed, i.e. the value 

of A11 for =1 is equal to the value of A22 for =90-1. This follows from the 

expressions for A11 and A22 given in Equation (5.31). 
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Figure 5.37 The x and y components of the Poiseuille flow diverted in front of the asperity 

 

Figure 5.38 Oblique flow factor A22 for a range of roughness orientations from pure 
transverse to pure longitudinal roughnesses. Arrow indicates the sense of increasing the 
orientation angle from 0 to 90 degrees. 

Figure 5.39 below shows the flow factor A12(=A21) for the range of roughness 

orientations from 0 to 90 degrees. As seen from the homogenised Equation (4.34) 

the cross flow factor A12 reflects the additional flow in x direction caused by the 

pressure gradient in y direction in the presence of an oblique asperity. Note that A12=0 

for =0 and =90 which makes the cross term 
∂

∂𝑥
 𝐴12ℎ

3 ∂𝑝

∂𝑦
  equal to zero. It is clear 

from Figure 5.39 that the contribution of the cross terms to the Poiseuille flow reaches 

its maximum value for the orientation angle =45. Also the value of A12 calculated for 

the orientation =1 is equal to the one calculated for =90-1. 
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The next Figures 5.40 and 5.41 illustrate the Couette flow factors B1 and B2 for the 

range of roughness orientation angles from 0 to 90 degrees. As seen for A11 and A22, 

the family of B1 curves lies between the B1 values calculated for the transverse and the 

longitudinal roughnesses. Again, if the roughness is oblique, the flow in the direction of 

entrainment is not completely blocked as soon as the contact of the surfaces occurs.  

The behaviour of the cross term B2 is similarly to that of the term A12 in the sense that 

it is most pronounced for the orientation =45. The similarity of behaviour between 

the Poiseuille and Couette factors as the orientation changes is not surprising as the 

oblique roughness features divert the Couette and Poiseuille flows in the same way. 

 

Figure 5.39 Oblique flow factor A12 for a range of roughness orientations from pure 
transverse to pure longitudinal roughnesses. Arrows indicate the sense of increasing the 

orientation angle from 0 to 45 and from 45 to 90 degrees. 

5.2.5 Double cosine roughness 

In this section the flow factors for the double sinusoidal (cosine) surface are 

considered. These factors are of interest as the average flow is not blocked by the 

asperities as they come into contact. 

The double cosine roughness is defined as follows: 

ℎ 𝑥, 𝑦, 𝜉, 𝜓 = ℎ0 𝑥, 𝑦 + ℎ𝑟cos  2𝜋
𝑘1𝜉

𝐿
 cos  2𝜋

𝑘2𝜓

𝑊
  

(5.32) 

where L and W are the dimensions of a rectangular representative area, , k1 and k2 

define the number of waves in x and y directions respectively and hr is the amplitude. 
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Figure 5.40 Oblique flow factor B1 for a range of roughness orientations from pure transverse 
to pure longitudinal roughnesses. Arrow indicates the sense of increasing the orientation 

angle from 0 to 90 degrees. 

 

Figure 5.41 Oblique flow factor B2 for a range of roughness orientations from pure transverse 
to pure longitudinal roughnesses. Arrows indicate the sense of increasing the orientation 

angle from 0 to 45 and from 45 to 90 degrees. 

Three types of surfaces are considered: with equal wavelengths of asperities in both 

directions i.e. k1/k2=1, with k1/k2=2 and k1/k2=4. The parameters used are summarised 

in Table 5.3.  

Again, in case of contact the deformed shape obtained by means of the dry contact 

analysis is used for calculating the flow factors. The orientation of the surface 

roughness has been considers for the whole range of  from 0 to 90 degrees. 
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Examples of the surfaces are shown in Figures 5.42-5.44 where arrows indicate the 

orientation of the axis of periodicity with respect to the entrainment direction. For 

demonstration purposes the number of waves per period is selected as k1=16 and k2=8 

for each of these figures. Figure 5.44 shows an isotropic double cosine surface with k1= 

k2=16. 

Table 5.3 Parameters of the surface used to calculate the flow factors 

Parameter Description Value Units 

Geometry 

hr Amplitude 1.0 m 

h0 Global film thickness 6.0-0.05 m 

L Length of the local domain () 200 m 

W Width of the local domain 200 m 

k1 Number of waves in x direction 2, 2, 4  

k2 Number of waves in y direction 2, 1, 1  

Nx Number of mesh points in x direction 64  

Ny Number of mesh points in y direction 64  

 Orientation of roughness 0, 15, 30, 45, 60, 90 (degrees) 

Material properties 

 Elastic modulus 200 GPa 

 Poisson’s ratio 0.32  

Pmax Maximum pressure 4.3 GPa 

The Poiseuille flow factor A11 for the surfaces with local roughness defined by (5.32), 

and the parameters given in Table 5.3 are shown in Figures 5.45-5.47. Wavelength 

ratios k1/k2 are equal to 4 and 2.   

The general behaviour of the flow factors when the values =h0/hr are high is similar to 

that of the flow factor for the extruded surface shown in Figure 5.36 in the sense that 

A111 meaning no effect of roughness. When approaches 0 the values of A11 tend to 

infinity for the reasons explained in Section 5.2.3. However, the values of A11 are non 

zero for the transverse roughness (=0), meaning that the flow of lubricant is not 

blocked when surface is in direct contact with the counterface.   
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Figure 5.42 Double cosine surface, k1/k2=4, =30 

 
Figure 5.43 Double cosine surface k1/k2=2, =60 

 
Figure 5.44 Isotropic double cosine surface, k1/k2=1 
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Figure 5.45 Flow factor A11 for double cosine surface, wavelength ratio k1/k2=4; arrow 

indicates the sense of increasing the orientation angle from 0 to 90 degrees. 

 

Figure 5.46 Flow factor A11 for double cosine surface, wavelength ratio k1/k2=2; arrow 

indicates the sense of increasing the orientation angle from 0 to 90 degrees. 

Another effect observed from comparing Figures 5.36, 5.45 and 5.46 is that the family 

of curves plotted for various roughness orientations  is more narrow for the double 

cosine surface than for the extruded one shown in Figure 5.36. This is explained by a 

less significant effect of the roughness orientation for the double cosine surface. The 

width of the band occupied by the family of curves plotted for various orientation 

angles progressively reduces when the ratio k1/k2 becomes smaller, indicating a 

decrease in the effect of roughness orientation on the flow. For the wavelength ratio 
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k1/k2=1 the flow factor A11 is independent of the orientation angle , which is 

illustrated by overlapped curves in Figure 5.47.   

  

Figure 5.47 Flow factor A11 for double cosine surface, wavelength ratio k1/k2=1, roughness 

orientation  from 0 to 90 degrees. 

The same effects, i.e. non-zero flow factors for the contact case and the reduction of 

the influence of roughness orientation on the flow can be observed from comparing 

the flow factor A22 or B1.  The values of A22 are not plotted, as they are the same as in 

Figures 5.45 and 5.46 with reversed order of the data series. The values of B1 are 

plotted in Figures 5.48- 5.50.  

 
Figure 5.48 Flow factor B1 for double cosine surface, wavelength ratio k1/k2=4; arrow 

indicates the sense of increasing the orientation angle from 0 to 90 degrees. 
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Figure 5.49 Flow factor B1 for double cosine surface, wavelength ratio k1/k2=2, roughness 

orientation  from 0 to 90 degrees. 

  
Figure 5.50 Flow factor B1 for double cosine surface, wavelength ratio k1/k2=1, roughness 

orientation  from 0 to 90 degrees. 

5.2.6 The effect of the local cell dimensions on the flow factors 

In the previous section the same dimensions were used for the local domain  it was 

considered to be a rectangular with sides L=W=200m. In this section the effect of the 

dimensions of the local domain on the flow factors is investigated.  

Consider stretching the roughness, i.e. increasing its wavelength, by a factor and 

denote the new roughness profile h*. Figures 5.51a and 5.51b show the sinusoidal 

roughness profiles with 4 waves per period defined on a 0.2 mm and 0.4 mm 

representative areas. Coordinates 2, 2 and ,   are related by: 

2=2= , 
(5.33) 

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

B
1,

 [
-]

=h0/hr,[-]

B1 0

B1 15

B1 30

B1 45

B1  60

B1  75

B1  90

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

B
1,

 [
-]

=h0/hr,[-]

B1 0

B1 15

B1 30

B1 45

B1  60

B1  75

B1  90

0 

90 



Chapter 5. Evaluation of the flow factors 

141 

The stretched roughness have the property 

h*(2, 2)= h(, ). 
(5.34) 

To evaluate the flow factors in the plane 2, 2 requires the solutions 𝜒1
∗ of the 

equation 
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The chain rule yields: 
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Using (5.34) this can be written as 
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For the unstretched profile 1 is the solution to  
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(5.37) 

So comparing Equations (5.36) and (5.37) it is apparent that 
1

𝜅
χ1
∗ = χ1,   χ1

∗ = κχ1   

To complete the calculation of a11 requires evaluation of the integral 
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(5.38) 
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Figure 5.51 Sinusoidal roughness in the original and stretched coordinates 

andrespectively 

Equation (5.38) is identical to the definition of a11(h0) in terms of h() and so it can 

be concluded that stretching the roughness profile by the same factors in both 

directions leads to no changes in the flow factors a11. The same procedure can be 

applied to other flow factors and thus all the flow factors aij and bij for i,j=1,2 are 

independent of stretching. 

Note also that the analytical expressions for an extruded cosine surface (5.28)-(5.30) 

are not dependent on the dimensions of the area in any way. For a double cosine 

surface this effect can be observed in Figures 5.52 and 5.53 where the flow factors 

were calculated for a surface defined by the formula (5.32) with k1=4, k2=1. The 

dimensions of the area of interest are 200x200 m (solid curve, crosses) and 2x2 mm 

(dashed curve, circles).  
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Figure 5.52 Poiseuille flow factors A11 and A22 for a double cosine surface with number of 
waves k1=4, k2=1 and representative areas 0.2x0.2 mm and 2x2 mm. 

 

Figure 5.53 Couette flow factors B11 and B21 for a double cosine surface with number of 
waves k1=4, k2=1 and representative areas 0.2x0.2 mm and 2x2 mm. 

The data series are in perfect agreement for the values of >1 with minor deviations 

for <0.6. The case of direct contact of the surface asperities (<1) deserves special 

attention. The surface with smaller representative area has smaller wavelength of the 

roughness features for the same roughness function. Therefore the radius of curvature 

of the asperity tips is smaller which according to the Hertzian contact theory results in 

higher pressures. However, as the flow factors are calculated for a specified gap, the 

elastic displacement for both cases is the same. This means that the flow factors are 

independent of the dimensions of the representative area even for the case of contact 
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as long as the pressures are within the elastic limit. This is illustrated in Figures 5.52 

and 5.53 by the coinciding points for the values of 0.6<<1. The pressures for the case 

of smaller dimensions are higher, therefore contact points may exhibit plastic 

deflection while in the larger area all the points are still elastic. This effect can be 

observed in Figures 5.54 and 5.55 where the mean pressure and contact area are 

plotted for both cases. Contact area here is defined as the number of nodes which are 

in contact multiplied by the mesh cell area and mean pressure is defined as the total 

load carried by the asperities divided by the nominal area. It can be observed that both 

the mean pressure and contact area for original roughness remain proportional to the 

case of stretched roughness for the values of  down to 0.6. The coefficient of 

proportionality is for the mean pressure and 1/2 for the contact area. In the 

example shown =2.0/0.2 mm=10, i.e. mean pressure for the stretched roughness 

multiplied by 10 is compared with the mean pressure for the original roughness and 

the contact area for the original roughness is multiplied by 100. For the values of  < 

0.6 the difference between the mean pressure and contact area for the dimensions of 

0.2x0.2 mm and 2x2 mm becomes apparent. The reason for this is that the roughness 

features with smaller tangential dimensions are stiffer and they start experiencing 

plastic deflection when < 0.6 whereas the asperities in the 2x2 mm case remain 

elastic throughout the whole range of . 

5.2.7 Flow factors for measured surfaces 

In this section the flow factors are calculated for measured surfaces. Surface roughness 

was measured using a Taylor-Hobson form profilometer in the traverse (x) direction 

with spacing of 0.5m. The 2 dimensional roughness function was obtained by taking a 

series of such profiles with the sample moved in the transverse (y) direction by a step 

of 0.5m between each profile. The samples used for measurements were machined 

in different ways producing different surface roughness which is summarised in Table 

5.4. The profiles of the surfaces considered are plotted at the same scale in Figure 5.72 

for comparison, and the machining process of each surface is explained in more details 

in the appropriate section. The shape of the measured surfaces and potential waviness 

was removed using high-pass Gaussian filter with a cut off wavelength of 0.25 mm. 



Chapter 5. Evaluation of the flow factors 

145 

 
Figure 5.54 Mean pressure for a double cosine surface with number of waves k1=4, k2=1 and  
representative area 0.2x0.2 mm and 2x2 mm. Mean pressure for a 2x2 mm representative 
area is multiplied by 10. 

  
Figure 5.55 Contact area for a double cosine surface with number of waves k1=4, k2=1 
representative area 0.2x0.2 mm and 2x2 mm. Contact area for a 0.2x0.2 mm representative 
area is multiplied by 100. 

 Axially ground disc 

The first measured surface considered was that of a hardened steel disc, disk A. The 

disk was machined by a coned abrasive wheel which created a crowning and 

(approximately) axial finishing. The principle of axial grinding is illustrated in Figure 

5.56 in plan (A) and side (B) views. 
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Table 5.4 Roughness characteristics for measured surfaces 

Roughness characteristic 
Ground surface 

(Disk A) 
Super finished 

(Disk B) 
EDM 

Highest peak Sp 0.8 m 0.27m 13.81m 

Deepest valley Sv -1.14 m -0.3m -11.7m 

Mean roughness Sa 0.25 m 0.042m 3.02m 

Standard deviation Sq 0.32m 0.056m 3.72m 

Skewness Ssk -0.4 -0.17 0.034 

Kurtosis Sku 2.87 4.4 2.67 

The roughness function obtained for disk A is shown in Figure 5.57. The form of the 

disk (radius and crowning) disk were filtered out from the profile measurements in 

both directions. The surface in Figure 5.57 has an aggressive roughness profile in X 

direction with amplitude of the roughness features of up to 1m corresponding to the 

marks left by the abrasive wheel. In the Y direction the deviations are of the order of 

0.1m along the motion path of abrasive features of a grinding wheel. The resulting 

surface is equivalent to a uni-directionally ground surface and is almost extruded in 

nature. The statistical roughness characteristics of this surface are given in Table 5.4 

and profiles of the cross Sections parallel to x and y axes are given in Figures 5.58 and 

5.59 respectively. 

 

Figure 5.56 Axial grinding using a cone shaped abrasive wheel: plan view(A), side view (B) 
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Figure 5.57 Uni directionally ground surface, isometric view 

  
Figure 5.58 Uni directionally ground surface: profile of a cross section parallel to x axis 

  
Figure 5.59 Uni directionally ground surface: profile of a cross section parallel to y axis 

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0 100 200 300 400 500

z,
 µ

m

x, µm

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0 10 20 30 40 50 60

z,
 µ

m

y, µm



Section 5.2 Calculating of the flow factors 

148 

The flow factors for the surface of disk A are plotted in Figures 5.60 and 5.61. Note 

that these flow factors are plotted against the ratio =h0/Sp. As for the sinusoidal 

roughness the ratio  denotes the distance between the mean planes of the surfaces 

relative to the surface highest peak. Therefore =1 (denoted by a vertical dashed line) 

means that the first contact occurs at the highest asperity peak, however the 

behaviour of the flow factors is not significantly affected until more asperities come 

into contact. 

The first observation that can be made is that the values of the Poiseuille flow factor 

A11 are below the unity value line (shown dashed). The values are also quite low and 

keep decreasing after the contact occurs. This behaviour is similar to the one observed 

for the flow factors calculated for an extruded surface, see e.g. Figure 5.24, as opposed 

to the one which the double cosine surface shows in Figure 5.45. This can be explained 

by the fact that a ground surface is almost extruded in the direction of the grinding lay. 

However, after the contact occurs the small deviations of asperity heights in the y 

direction prevent the roughness features away from making total contact thus 

preventing the complete blockage of flow. This effect is illustrated by non zero values 

of A11 in case of a contact (<1) in Figure 5.60.  

The Couette flow factors plotted in Figure 5.61 also behave in a similar way to the 

extruded surface (see e.g. Figure 5.27) before the contact occurs, while showing non 

zero values after the contact which means that the flow is never completely blocked. 

Note also that both cross terms A12 and B2 are always zero as there is no significant 

side flow caused by the presence of the roughness. 

 Super finished surface 

The second surface was measured on a reground crowned disk. The disk was reground 

in circumferential direction and after that was super finished. The roughness function 

was obtained by filtering out both the radius and circular crowning of the disk from the 

measured data. The roughness function is shown in Figure 5.62 in isometric view and 

profiles of the cross Sections parallel to x and y axes are shown in Figures 5.63 and 5.64 

respectively.  

This surface has a much lower roughness amplitude than the ground one: the 

maximum value does not exceed 0.3m. The more detailed roughness characteristics 

are given in Table 5.4. 
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Figure 5.60 Poiseuille flow factors calculated for the uni directionally ground surface 

 

Figure 5.61 Couette flow factors calculated for the uni directionally ground surface 

The low Sp and Sa values are explained by the super finishing of a disk. However the 

regrinding process left circumferential marks visible even after super finishing, as can 

be seen in Figure 5.64. As opposed to the ground surface these roughness features 

have a longitudinal orientation and the deviations of roughness in the direction of 

entrainment (x) are much smaller than in the transverse direction due to the super 

finishing. Note that the Z axis in Figures 5.58-5.59 and 5.63-5.64 has the same scale. 
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Figure 5.62 Super finished surface: isometric view 

 
Figure 5.63 Super finished surface: profile of a cross section parallel to x axis. 

  

Figure 5.64 Super finished surface: profile of a cross section parallel to y axis. 
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First observation that can be made from the flow factors plotted in Figures 5.65-5.66 is 

that the deviations of A11, A22 and B1 from the unity line are much smaller than that for 

the ground surface (Figures 5.60-5.61). This means that the effect of roughness on the 

flow is much less significant than that for the ground surface. Note also that the flow 

factors are plotted against a non dimensional parameter =h0/Sp i.e. =1 for a ground 

surface is equivalent to =3 for the super finished one in terms of the global film 

thickness.  

Second, the values of the flow factor A11 are above zero, as seen for the surfaces with 

longitudinal roughness (see e.g. Figure 5.36, curve corresponding to =90). Also, it is 

apparent from Figures 5.62 and 5.63 that the cross terms A12 and B2 become non-zero 

when surfaces are in contact which means that the fluid flow diverted by the 

roughness features is non-zero as  approaches 0. 

Surface prepared by electrical discharge machining 

The third measured roughness was obtained from a surface prepared by electrical 

discharge machining (EDM). During this process the material is removed from the work 

piece by a series of rapidly recurring current discharges between two electrodes, 

separated by a dielectric liquid and subject to an electric voltage. This process creates 

a surface with random two dimensional roughness with no characteristic orientation of 

the asperities. The two dimensional roughness function for this surface is shown in 

Figure 5.67 in isometric view and profiles of cross sections parallel to x and y axes are 

shown in Figures 5.68-5.69 respectively. The highest asperity on this surface reaches 

Sp=13.8m while the Sa value is ~3.0m. This means that the first direct contact occurs 

when h0=13.8m for a single asperity; however the flow will not be significantly 

reduced until more asperities come into contact. 

The flow factors for this surface are plotted in Figures 5.70 and 5.71. The first striking 

observation that can be made is that the values of A11 are very close to those of A22. 

This effect is observed in its strongest form for pure isotropic surfaces such as double 

cosine surface (see e.g. Figure 5.44) for which the flow factors are plotted in Figures 

5.47 and 5.50. This is explained by the random nature of the roughness features of the 

surface. 
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Figure 5.65 Poiseuille flow factors for the super finished surface 

 

Figure 5.66 Couette flow factors for the finished surface 

Second observation is that both A11 and A22 values approach infinity as  approaches 0. 

This is caused by the direct contact of the roughness features keeping the surfaces 

apart and thus allowing the fluid flow equally in both directions. Also the flow factor 

being above unity line means that the there is more flow of lubricant in the presence 

of roughness than in the case of smooth surfaces. This effect was explained in Section 

5.2.3 and illustrated in Figure 5.26.  
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Figure 5.67 Surface prepared by electrical discharge machining: isometric view 

  
Figure 5.68 Surface prepared by electrical discharge machining: profile of a cross section 
parallel to x axis 

  
Figure 5.69 Surface prepared by electrical discharge machining: : profile of a cross section 
parallel to y axis 
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Figure 5.70 Poiseuille flow factors for the surface prepared by electrical discharge machining 

 
Figure 5.71 Couette flow factors for the surface prepared by electrical discharge machining 

Figure 5.72 shows profiles of all three surfaces brought at the same scale which makes 

it easier to compare the roughness obtained by different treatment of the surfaces. 

Mean lines are shifted in z direction in order to accommodate all profiles on one chart. 
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Figure 5.72 Profiles parallel to x axis of three surfaces used: ground, super finished and 
prepared by EDM. 
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(intentionally blank) 
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6 Mixed lubrication in plain bearings  

6.1 Introduction 

In this chapter the problem of mixed lubrication in plain bearings is formulated and 

then a solution method is presented based on the homogenised Reynolds equation 

approach. The homogenised Reynolds equation approach is described in Chapter 4 and 

allows the effect of roughness on the flow of liquid lubricant to be taken into account 

in an averaged way. This method is proposed instead of a deterministic one which 

considers the contributions of the individual asperities. The deterministic approach 

requires a very fine resolution and consequently is very demanding computationally. In 

case of the direct contact of surface asperities the solution method based on the 

homogenised approach allows the elastic and plastic deflection of the surface 

asperities obtained by means of the dry contact analysis which is described in Chapter 

3 to be taken into account.  

The method starts from selecting a (small) representative area which captures the 

characteristic roughness features of the surface. The roughness is assumed to be a 

periodic repetition of this representative area. The effect of roughness is included into 

the consideration in the form of flow factors which are functions of the surface 

roughness and the global smooth surface film thickness. If the values of the global film 

thickness are not high enough to prevent the surfaces from making contact, then the 

deflected shape is used to calculate the flow factors. In addition the load carried by the 

contacting asperities is calculated as a function of the global film thickness so that it 

can be taken into account in determining the load to be carried by the lubricant 

pressure in the smooth surface homogenised solution. 

In this work the mixed lubrication problem in tilted pad bearings is considered. The 

reason for this choice is convenience in that the formulation of this problem does not 

consider zones of cavitation of the fluid. Cavitation problems have been addressed by 

e.g. Bayada (2005) and Kane and Bou-Said (2004) in application of the homogenised 

Reynolds equation to the lubrication in journal bearings.  

A photograph and a schematic representation of a tilted pad thrust bearings are shown 

in Figures 6.1 and 6.2. Tilted pad thrust bearings were first introduced and patented by 

Australian engineer George Michell (1905). Michell bearings contain a number of 
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sector-shaped pads, arranged in a circle around the shaft, and which are free to pivot. 

These create regions of pressurised oil between the pads and rotating disc which 

support the applied thrust and eliminate metal-on-metal contact. The tilting angle of 

the pads seriously affects the load carrying capacity of a bearing. Pivoting allows the 

pads to self align for the best performance.  

 

Figure 6.1 A photo of a tilted pad thrust bearing (source: 
http://basicsofmarineengineering.blogspot.co.uk/) 

 

Figure 6.2 A schematic representation of a tilted pad thrust bearing 

6.2 Formulation of a tilted pad problem 

The lubrication of a single tilted pad is considered. A single tilted pad is a sector shaped 

pad placed on a thrust bearing facing the rotating disk. The geometry of a tilted pad is 

shown in Figure 6.3. In the current work the problem is simplified by assuming that a 

tilted pad is a stationary rectangular plate of length L and width W separated from a 

counterface by a minimum distance of hmin and tilted with respect to it at the angle . 

The counterface is assumed to be an area on the flange of the rotating shaft. For 

simplicity the motion of the counterface is considered to be rectilinear rather than 

circumferential. It is clear from the drawing of Figure 6.3 that for a given angular speed 

http://basicsofmarineengineering.blogspot.co.uk/
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of the shaft the linear velocity of a point on the flange depends on the radial position 

of the point, having its minimum value at the position denoted by “c” and maximum at 

“a”. The velocity at the point “b” is used in the formulation of the current problem.  

 

Figure 6.3 Geometry of a tilted pad 

The problem of a single tilted pad in the formulation considered in this thesis is shown 

schematically in Figure 6.4. Note that the configuration of a tilted pad can be defined 

by two variables connecting the gap at the position of the pivot and the angle of tilting 

. In the work of Almqvist and Dasht (2006) the geometry is defined by the film 

thickness values at the entrance and the exit of the lubrication zone. However, in the 

current work the minimum gap hmin and tilting angle are used.  

The system of Cartesian coordinates is introduced so that the x axis is directed along 

the direction of motion of the counterface. The origin is placed at the point of 

maximum clearance with respect to x axis and in the centre of the counterface with 

respect to y axis. Note that the geometry of the problem is extruded in the transverse 

(y) direction. The system of coordinates is shown in Figure 6.5. 

The gap between the tilted pad and the counterface is then defined as follows: 

  (   )      [  
 

 
(   )] 

(6.1) 

where =tan=hmax/L defines the tilting angle of the pad. As explained earlier the 

geometry is constant in the y direction.  The solutions given in this chapter are for a 

fixed position of the tilting pad. 

The surface of a tilted pad is assumed to be rough and stationary while the 

counterface is smooth and subjected to linear motion. This choice of configuration 

makes the film thickness (or gap) function h(x,y) independent of the time variable. 

Also, the origin of the coordinates is fixed at the point of maximum film thickness. 
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Figure 6.4 Lubrication of a single tilted pad 

 
Figure 6.5 System of coordinates for the tilted pad problem 

Taking into account roughness of the tilted pad the film thickness function becomes: 

 (   )    (   )   (   ) 
(6.2) 

where h0(x,y) is called the global film thickness and is defined by the geometry of a 

problem, whereas R(x,y) is the roughness function. In the current case of tilted pad 

bearing the global film thickness is given by Equation (6.1). The problem can then be 

formulated as follows: 

a) Find the load (in a form of pressure distribution) for a specified clearance hmin, 

tilting , and roughness R(x,y)  

b) Find the clearance hmin for a specified load, tilting , and roughness R(x,y)  

c) Find the tilting angle for a specified load, clearance hmin and R(x,y) 
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In this thesis the problem formulation (a) is considered.  

Assuming that the conditions given in Section 4.3 are satisfied, the Reynolds equation 

can be used to solve the problem in formulation (a).  

In this chapter three variations of the problem are considered: the smooth case, the 

rough surface case and the homogenised roughness case. For the smooth and rough 

surface cases the Reynolds Equation (4.1) is solved, or if the lubricant can be assumed 

incompressible and isoviscous the equation can be simplified to the form (4.2). The 

homogenised case is an attempt to solve the problem of mixed lubrication without 

considering the individual effect of the roughness features as described in Chapters 4 

and 5. The homogenised Equation (4.34) is then solved, which is given below for 

convenience: 
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(6.3) 

The six oblique flow factors Aij, and Bi (i,j=1,2) are evaluated as defined by Equation 

(4.33) using the eight flow factors aij, bij (i,j=1,2) calculated in the axis of the roughness 

periodicity according to the formulae (4.27) and (4.28). 

Note that the homogenised Reynolds Equation (6.3) also defines the mixed lubrication 

problem for the smooth case if the values of the flow factors are set as A11=A22=B1=1 

and A12=A21=B2=0. In addition, replacing the global film thickness function h0(x,y) 

defined by (6.1) with the total film thickness function h(x,y) defined by (6.2) gives the 

equation for the rough surface case.  

Homogenised Equation (6.3) is an elliptical second order partial differential equation. It 

is proposed in the next section to solve this equation numerically using the 

Gauss-Seidel method. 

6.3 Solving the Reynolds equation using the Gauss-Seidel method 

The Gauss-Seidel method is described in Section 5.1.1 where it is applied for solving 

the local problems.  

6.3.1 Discretisation 

Equation (6.3) is discretised on a [0..Nx]x[-Ny/2..Ny/2] mesh grid using central 

differences. As in Section 5.1.1 the internodal points are used in discretisation of the 
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second derivative terms in order to maintain the conservation of flow. The sketch of 

the mesh points is shown in Figure 6.6 which is equivalent to Figure 5.1. 

 

Figure 6.6 The nodes and inter nodal points used for the Discretisation of the derivatives 

As the flow factors are functions of h0 the following notations are introduced for 

convenience: 
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(6.4) 

Note that the super scripts 1 to 6 denote the six different  functions and are not 

operations on a single function . Equation (6.3) then becomes: 
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(6.5) 

Using the internodal point the second derivative is discretised as follows: 
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(6.6) 

Similarly, 
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(6.7) 
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Cross derivatives are discretised using the internodal points in a similar manner: 
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(6.8) 

The second cross term: 
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(6.9) 

The right hand side terms are discretised in the same way: 
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(6.10) 

Note that in the current problem the second right hand side term is always zero. If 

homogenised or smooth problem is considered then h(x,y) is defined by Equation (6.1) 

which is extruded in y direction. Therefore, as 6) is a function of h and its derivative 

the 
 

  
 operation results in zero values for these cases. If the rough case is considered 

then h(x,y) is defined by Equation (6.2) and the derivative 
 

  
 is non zero, however 

the flow factor B2 is zero for this case.  

The value of a variable at the inter nodal point is assumed to be the mean of the values 

of the two or four neighbouring nodes. In particular the values of p at the internodal 

points are: 

         
           

 
                  

                           

 
 

(6.11) 

taking into account the discretised derivatives (6.6)-(6.10) and the rule for inter nodal 

points (6.11) Equation (6.5) becomes: 
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Grouping together the coefficients for pressures at the 9 mesh points gives: 
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(6.12) 

Adopting the notation C0, C1, C2, … C8 for the 9 pressure coefficients and Ei,j for the 

right hand side Equation (6.12) can be written as: 

                                            

                                                
 

(6.13) 

The coefficients C0..C8 and Ei,j are defined as follows: 
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For the inter nodal values of 1)(6) the same formulae (6.11) are used: 
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The coefficients C0..C8 and Ei,j then become: 
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(6.14) 

Repeating discretised Equation (6.12) for each i=1..Nx-1 and j=-Ny/2+1..Ny/2-1 gives a 

system of (Nx-1)*(Ny-1) linear equations with a sparse matrix of coefficients as there 

are only 9 nonzero entries in each row and each column of the matrix. The system can 

be written as follows: 

     
(6.15) 

where C is a (    )
  (    )

 
 matrix of coefficients and E is a vector of right 

hand sides of length (    )  (    ). The values of pi,j for i=0..Nx, j=0, Ny or 

i=0,Nx, j=-Ny/2..Ny/2 are assumed to be known from the boundary conditions. 

Introducing the matrix notations here is convenient, as they can then be used in 

describing the multigrid routines. 

The system (6.15) is then solved using the Gauss-Seidel method which is described in 

application to solving the local problems in Section 5.1.1. Point-wise one iteration for a 

point with coordinates (i,j) takes the form: 
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where the superscript “old” denotes the approximated value available from the 

previous iteration whereas “new” stands for a value previously updated in the current 

sweep. The illustration given in Figure 5.2 shows the schematic representation of the 

method. 

6.3.2 Boundary conditions 

The Dirichlet boundary conditions were applied by means of specifying the pressure 

value on the boundary to be equal to the atmospheric pressure ~105Pa. All pressure 

values are assumed to be greater or equal than ~105Pa, i.e. the cavitation effects are 

not considered in this thesis. The geometry of the tilted pad does not presume 

presence of the cavitation zones, which therefore can occur only as a result of surface 

roughness. In this case pressure value is forced to be equal to ~105Pa.  

6.3.3 Convergence 

 Effect of the asperity wavelength on the convergence speed  

Convergence of the solution is assessed based on the relative differences between an 

approximated solution obtained at the previous iteration and the current one. The 

Gauss-Seidel method has proven to reduce efficiently the approximate solution error 

of the wavelength of a few mesh points. When solving Reynolds equation for the 

rough surface this means that the efficiency of Gauss-Seidel method decays as the 

wavelength of the roughness features increases. To illustrate this effect a series of 

numerical analyses has been conducted for the same total number of mesh points and 

double sinusoidal roughness with various wavelengths. Note that when numerical 

analysis is concerned the wavelength is considered to be the number of mesh points of 

a feature rather than physical dimensions. The global shape was considered flat (=1) 

in order to isolate the effect of roughness wavelength from that of the global shape. 

The total number of mesh elements used was 512x512 and the wavelength of the 

roughness was 8, 16, 32, 64, 128 and 512 mesh points which means from 2 up to 64 

waves per total area. The analysis was conducted on Intel i3 32bit processor with 2Gb 

RAM. The solution assumed to be converged when the average relative changes to 

pressure values |pnew-pold|/pold  were less than 10-6. The bar chart of Figure 6.7 shows 

the convergence time in minutes against the wavelength of the asperities in number of 

mesh points. It is apparent from the chart that if the asperities are less than 32 mesh 

points in wavelength, then solving the Reynolds equation for nominally flat surface 
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using the Gauss-Seidel method can be considered efficient, i.e. less than 2 minutes for 

an area of 512x512 mesh points. That is why the Gauss-Seidel method was used in 

Section 5.1.1 to obtain the solutions of the local problems. 

However, introducing the tilting angle creates a perturbation to the solution of a much 

larger wavelength: of the scale of the total area. Therefore the Gauss-Seidel method is 

expected to be inefficient for solving the problem of a tilted pad bearing and this was 

found to be the case. 

 

Figure 6.7 Convergence time for nominally flat sinusoidal surface with various wavelength of 
roughness features. 

 Convergence of a tilted pad bearing problem using the Gauss-Seidel iterative 

method 

The tilted pad bearing problem with a tilting ratio =1.25 and hmin=2.0m was 

considered. The mesh grids used were 64x64, 128x128, 256x256 and 512x512 mesh 

elements. The roughness used is sinusoidal with the wavelength of 8 mesh points for 

each case which makes it 8, 16, 32 and 64 waves in total. Convergence time for the 

tilted pad bearing problem considered is shown in Figure 6.8 against the number of 

mesh points. As before the solution is assumed converged if the average relative 

change to the pressure values is below 10-6.  

Two main observations can be brought forward from the convergence time chart of 

Figure 6.8. First, using the Gauss-Seidel method for a tilted pad bearing problem with a 

number of mesh elements more than 256x256 takes an unreasonably long time. The 

problem with 1024x1024 mesh elements takes more than 12 hours to converge up to 

the accuracy of 10-6. Second, it is clear from comparing the convergence time of a 
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smooth problem with that of the rough one that the presence of roughness does not 

significantly increase the convergence time. From this it can be concluded that the 

Gauss-Seidel method resolves the effect of the global shape very slowly. For this 

reason, the multigrid technique is applied to the tilted pad bearing problem. The 

multigrid technique is discussed in the subsequent sections. 

 

Figure 6.8 Convergence time for a tilted pad bearing problem: smooth and sinusoidal 
roughness 

6.4 The multigrid method 

6.4.1 Introduction 

In order to approximate better the continuous solution of a problem a fine 

discretisation is often used which results in a large number of unknown variables. 

Especially when the rough surface problems are considered the resolution plays vital 

role in taking into account the effect of the individual asperities on the lubrication. This 

one of the reasons to use the homogenised approach based on the flow factors rather 

than deterministic. As shown in the previous section convergence of the solution of a 

rough surface problem can be time consuming. Also in most of the iterative solution 

techniques (such as e.g. Gauss-Seidel iterative method) the error occurred as a result 

of approximation is reduced fast on the scale of few mesh points whereas it takes 

significantly longer to eliminate the error on larger scales. It is proposed in this section 

to use the multigrid method in order to accelerate the convergence of the solutions.  

The multigrid method was first introduced by Brandt (1977) as a general algorithm for 

solving the partial differential equations quickly. This method was subsequently 

applied by a number of researchers to various problems including solving the Reynolds 
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equation in fluid dynamics. Venner and Lubrecht thoroughly described its application 

to the problems of dry contact, hydrodynamic lubrication and elasto-hydrodynamic 

lubrication in their book (2000). 

The main idea behind the method is to introduce a series of mesh grids of different 

resolutions, where the finest resolution is the target grid. Using the restriction and 

interpolation operators to transfer the approximated solution from one grid to another 

a number of relaxation sweeps are performed at each level. This allows errors of 

different wavelengths to be eliminated at the appropriate mesh level, where 

eliminating the error of such wavelength takes the least time.  

In this thesis the multigrid method is used as described by Venner and Lubrecht (2000) 

with minor modifications.  

6.4.2 Fine and coarse grids 

Consider a tilted pad bearing problem discretised on the uniform mesh grid of Nx by Ny 

nodes. This grid is referred to as the target grid, or level 0. Assume that as observed in 

Section 6.3.2 the high frequency components of the error (caused by roughness) are 

reduced efficiently whereas the low frequency components (caused by waviness, 

global shape) converge significantly more slowly. This means that after a small number 

of relaxations the approximation of the effect of roughness cannot improve any more 

without better approximation of the large wavelength components which improve 

only very slowly. It is then suggested that a coarser grid is introduced where 

convergence of the larger wavelength components is more efficient. The improved 

approximation of the larger wavelength components of the solution is then used to 

update the fine grid approximation.  

In the general case a sequence of m mesh grids is introduced, which is shown 

schematically in Figures 6.9 and 6.10. Figure 6.9 shows 3 levels of mesh grids starting 

from the level 0, i.e. the target grid. The spacing x,y of each subsequent grid is 

twice the spacing of the current grid so that: 

{

                      
                                
 
     

              
    

 

(6.16) 
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where x,y is the spacing of the target grid in x and y directions respectively. Note, 

that as oppose to the notation used in [Venner and Lubrecht] the target grid has level 

0 and the level increases for coarser grids. 

The number of mesh cells at each level is half the number of mesh cells at the current 

level, so that:  
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(6.17) 

where Nx and Ny is the number of elements in x and y directions respectively. For this 

reason it is convenient to use powers of 2 as the number of mesh elements.  

The total number of grids depends on the complexity of the input geometry. For 

example for a nominally flat surface with roughness it is sufficient to have 1 or 2 levels 

corresponding to the different frequencies of the roughness features, whereas if the 

geometry consists of the global shape, waviness and short wavelength roughness then 

more levels are required. 

 

Figure 6.9 Mesh grids of levels 0, 1 and 2 and corresponding grid sizes in one dimension 

In this thesis a modification has been proposed where the number of refinement levels 

is different in x and y direction. This modification implies amendments of the intergrid 

routines, however it allows faster error reduction in case if the number of elements in 

x direction Nx is different to that in y direction Ny. 
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Figure 6.10 Fine and coarse mesh grids (levels 0 and 1) and corresponding grid sizes in two 
dimensions 

6.4.3 Intergrid transfers 

 Restriction operator 

The restriction operator is introduced to obtain a coarser grid approximation rk+1 of a 

function rk defined on a finer grid of level k. Function r can be e.g. the pressure 

function p, film thickness function h or the function that defines the boundary 

conditions. The restriction operation is denoted   
   , where the subscript k denotes 

the finer level and k+1 the coarser level:  

       
       

(6.18) 

The restriction therefore transforms a function defined on (  
   )  (  

   ) 

mesh points (i.e.   
    

  mesh elements) to the function defined on (  
     )  

(  
     ) mesh points.  

The simplest way to obtain a coarser grid representation of a function rk is a direct 

injection of the fine grid values into the coinciding nodes of the coarser grid as follows:  

    
          

   
(6.19) 

where I,J are dummy indexes on the coarser grid. The simple injection is schematically 

shown in Figures 6.11 and 6.12 for one and two dimensional cases respectively. 

Another way to obtain a coarse representation of a function defined on the fine grid is 

the so-called full weighting operator. As follows from the name it uses the weighted 

average value at the nodes neighbouring to the coinciding one:  
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(6.20) 

In a one dimensional case it is reduced to  
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(6.21) 

The restriction by weighted averaging is schematically shown in Figures 6.13 and 6.14. 

 

Figure 6.11 Restriction by simple injection in one dimensional case 

 
Figure 6.12 Restriction by simple injection in two dimensional cases 

 

Figure 6.13 Restriction by fully weighted averaging in a one dimensional case 
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Figure 6.14 Restriction by fully weighted averaging in a two dimensional case 

 Interpolation operator 

The second intergrid operator used in the interpolation operator denoted     
 . It is 

used to transfer a function rk+1 defined on a coarser (  
   )  (  

   ) grid to the 

finer grid (   
   )  (   

   ) so that: 

       
      

(6.22) 

The simplest form of the interpolation operator used is based on only the values at the 

nearest nodes: 
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(6.23) 

The interpolation formulae (6.23) is schematically illustrated in Figure 6.15. 

In the one dimensional case the interpolation operator takes the following simplified 

form: 

{
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(6.24) 

The schematic illustration of the one dimensional interpolation operator is given in 

Figure 6.16.  
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Figure 6.15 Linear Interpolation operator in a two dimensional case 

 

Figure 6.16 Linear interpolation operator in a one dimensional case  

The interpolation operator given by formulae (6.23) and (6.24) uses only values at the 

nearest two nodes. For more accurate results higher order interpolation operators are 

possible which use more nodes. In the one dimensional case the influence coefficients 

for the nearest points can be calculated using the Lagrange interpolation formula 

which is given below for convenience: 

 ( )  ∑ (  )  

 

   

 

(6.25) 

where f(x) is the interpolated function, xi are the sampling points for which the values 

of f are known and the coefficients li are as follows: 

   ∏
    

          
   

 

(6.26) 

Note that n here is the number of nodes on the coarse grid used to obtain the 

interpolated value for a point on the fine grid. If n=2 then the interpolation coefficients 
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from Equation (6.26) are linear, whereas if n=4 then Equation (6.26) becomes a 3rd 

order polynomial. Thus for n=2 the interpolation is referred to as linear, whereas in 

case of n=4 the interpolation is referred to as cubic. 

If a value of the function rk at the node on the finer grid is obtained as a result of cubic 

interpolation using four values of rk+1 then formula (6.25) becomes:   

{
   
    

   

     
      

          
          

            
       

 

(6.27) 

where I is the dummy index on the coarse grid. The use of cubic interpolation for the 

finer grid values is schematically illustrated in Figure 6.17 and the influence coefficients 

for the coarser grid values are then as follows: 

     
     
    

   

    
      

    
     
      

   

    
        

    
     
      

   

    
        

    
   

      
 
    

       
 
     

       

 
 

 
 
 

 
 
 

 
  

 

  
 

   
     
      

   

  
        

    
     
      

   

  
        

    
     
      

   

  
        

    
    

     
 
    

      
 
     

       
 
 

 
 
 

 
 
 

 

 
 

  
 

     
     
      

   

    
        

    
     
    

   

    
      

    
     
      

   

    
        

    
    

      
 
   

     
 
     

       
 
 

 
 
 

 
 
 

 

 
 

  
 

     
     
      

   

    
        

    
     
    

   

    
      

    
     
      

   

    
        

    
    

      
 
   

      
 
    

     
 
 

 
 
 

 
 
 

 

  
 

  
 

 

Figure 6.17 Cubic interpolation operator in one dimensional case  

Using cubic interpolation to obtain the finer grid values implies the modification of the 

formulae (6.27) for the nodes close to the boundary: 
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where the coefficients calculated according to (6.26) are: 

   
 

  
        

  

  
         

 

  
        

 

  
 

The schematic illustration of the cubic interpolation close to the border is shown in 

Figure 6.18.  

 

Figure 6.18 Cubic interpolation operator in one dimensional case for the nodes close to the 
boundary 

The same applies to other nodes which are next to the boundary. 

In the case of two dimensions first the values at the coinciding nodes are directly 

injected from the coarser grid to the finer one. Then one dimensional cubic 

interpolation is applied in y direction to the coarse grid nodes producing the values for 

the finer grid nodes which have the x coordinate coinciding with the coarse grid node. 

Then the interpolation is applied in x direction using the values obtained at the 

previous step as shown schematically in Figure 6.19.  

6.4.4 Correction scheme 

This section describes the coarse grid correction scheme used by Venner and Lubrecht. 

Consider the problem discretised on a finer grid of level k. The problem is linearised to 

give the system of linear equations similar to the one given by Equation (6.15). For 

convenience the notations for the Reynolds equation in tilted pad bearing problem is 

used, although the system can represent another linearised problem: 

        
(6.28) 

where p is the vector of the solution (pressure distribution in case of the Reynolds 

equation). C is the matrix of coefficients and E is the vector of right hand sides. The 

superscript k denotes that the quantities are attributed to the grid of level k. 
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Figure 6.19 Two dimensional interpolation carried out by subsequent cubic interpolations in 
the y direction using the coinciding nodes and then in the x direction for the remaining 
nodes.   

A small number of relaxations on the grid of level k results in an approximate solution 

 ̃ . In the current work the relaxations are performed using the Gauss-Seidel iterative 

method, although the multigrid technique does not limit the choice of iterative 

method adopted. A vector of residuals is then introduced as the difference between 

the right hand side E and the result of a linear operator applied to the approximate 

solution: 

         ̃  
(6.29) 

If the vector of residuals rk=0 then the approximate solution  ̃     and the 

problem is solved. Substituting (6.28) yields: 

           ̃    (    ̃ ) 
(6.30) 

The error vector vk is then introduced as difference between the approximation  ̃  

and actual solution pk. System (6.30) is then equivalent to the equation connecting the 

error with residuals: 

        
(6.31) 

As mentioned earlier the Gauss-Seidel method (as well as many other iterative 

methods) require a small number of iterations to reduce the localised error, i.e. the 

component of the error which has a wavelength of a few mesh elements. After a small 

number of relaxations the error on grid k then becomes “smooth” so that it can be 

represented on the coarser grid (level k+1) without a significant loss of accuracy. The 

coarse grid error denoted by vk+1 is then a solution of the following equation: 
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(6.32) 

where the restriction operator is used to translate the finer grid vector of residuals 

onto the coarser grid. The operator Ck+1 is a coarser grid version of the operator Ck. 

Note that use of the multigrid method implies evaluating the coefficients of the matrix 

Ck for every level k using formulae (6.14) or in a different way. The coarse grid operator 

is discussed in Section 6.4.5 in more detail. 

System (6.32) is then solved using the Gauss-Seidel iterative method. After that the 

approximated solution  ̃  is improved by adding the solution of Equation (6.32), vk+1, 

interpolated, onto the finer grid: 

 ̅   ̃      
      

(6.33) 

The procedure described is referred to as one level coarse grid correction as it uses 

only one coarser grid.  

6.4.5 Multi level coarse grid correction scheme 

In most of the cases multiple grids are used are used, therefore the coarse grid 

correction scheme is applied recursively starting from the current grid and down to the 

coarsest one. The flow of the multi-level cycle is shown below. 

1. Consider a problem defined on the level k. A small number of prerelaxations sweeps 

are performed on the level k Equation 

        

resulting in the approximate solution  ̃ . If the current level k is the coarsest then 

the number of relaxations is v0 and the correction cycle is finished, otherwise v1 

relaxations are performed and the following steps are implemented.  

2. Vector of residuals rk is then evaluated as 

         ̃  

3. Introduce a coarse grid problem on level k+1: 

           
      

(6.34) 

where Ck+1 is a coarse grid modification of the operator Ck and the right hand side is 

obtained by restricting the level k residuals. Note that the solution of (6.34) is not 
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the pressure that satisfies the Reynolds equation but the components of pressure 

required to reduce the error of level k solution.  

4. Perform ω correction cycles for the level k+1 resulting in approximated solution 

 ̃    

5. Improve the level k solution using the interpolated values of  ̃   : 

    ̃      
  ̃    

6.  Perform v2 post-relaxations on level k. 

The flow diagrams of the multi level coarse grid correction cycle for ω=1 and ω=2 are 

shown in Figures 6.21 and 6.22. Note that the general structure consists of v1 

pre-relaxations, coarser (k+1) level correction cycle which is highlighted by red circle 

and v2 post-relaxations.  

 

Figure 6.20 The flow diagram of the multi level correction cycle at level k with ω=1 

If ω =2 then two coarser level (k+1) correction cycles are performed. Due to the shape 

of the flow diagram illustrated in Figure 6.21 for the case of ω =1, this is called V-cycle 

whereas the case of ω =2 illustrated in Figure 6.22 is called the W-cycle (see Venner 

and Lubrecht, 2000). According to Venner and Lubrecht (2000) the W-cycle proves to 

be more efficient for non-linear problems however the detailed study of how the 

number ω affects the convergence speed is not considered in the current work. 

The total number Tk of relaxations performed during the multi level correction cycle on 

level k can be calculated using the recursive formula: 

      
 

  
        

where d=1,2 stands for one and two dimensional problem. 
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Figure 6.21 The flow diagram of the multi level correction cycle at level k with ω =2 

Note that the term Tk+1 is divided by 2d as each relaxation sweep on the finer grid (k) is 

equivalent to 2d relaxation sweeps on the coarser level k+1.  Substituting the total 

number of relaxation sweeps caused by the level k+1 correction cycle gives: 

      
 

  
(   

 

  
       )       (  

 

  
)  

  

   
       (  

 

  
) 

This process can be repeated recursively until the coarsest level m: 

        
 

  
         

 

  
      

Substituting all the terms gives: 

   (     ) (  
 

  
 
  

   
   

    

 (   ) 
)  

    

 (   ) 
   

The formula for the geometric series gives  

    (     )
  ( 

  ⁄
)
   

   
  ⁄

 ( 
  ⁄
)
   

   

(6.35) 

This value does not reflect the number of operations required for the intergrid 

transfers. Assume that every sequence of v1 relaxations is followed by a restriction 

operator, whereas every sequence of v2 relaxations is preceded by an interpolation 

operator (see Figures 6.21 or 6.22). Also assume that interpolation from level k+1 to k 

is equivalent to one relaxation sweep on k level, whereas a restriction operator from 

level k down to level k+1 is equivalent to one sweep on level k+1. Equation (6.35) then 

becomes: 

   (           
 )
  ( 

  ⁄
)
   

   
  ⁄

 ( 
  ⁄
)
   

   

(6.36) 
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6.4.6 Full multigrid 

The multi level coarse grid correction cycle described in Section 6.4.5 is dedicated to 

improve the initial approximation of the finest grid solution. However, if the initial 

approximation is not known the convergence may still be quite time consuming. 

Having the infrastructure for working with the multiple grids implemented for the 

correction cycle makes it convenient to apply it also for evaluating the initial 

approximation of the solution on every grid by interpolating the coarser grid solution. 

The full multi-grid routine can then be described by the following recursive rules: 

0. If the current level k is the coarsest one then perform v0 relaxations on the 

coarsest level  

1. If the current level k<m then perform the multigrid routine on the coarser grid 

(level k+1) resulting in a solution  ̅   ; 

2. Obtain an approximated k level solution  ̃  using the cubic interpolation (6.27) of 

the coarser grid solution  ̅   : 

 ̃      
  ̅     

The solution  ̃  serves as an initial approximation of the solution on level k. 

3. Perform nc coarse grid correction cycles on level k. 

The flow diagram of the full multigrid method is shown in Figure 6.23 for 3 grids, level 

0 being the finest (target) grid and level 2 being the coarsest level. Note that the V type 

correction cycle is used, i.e. =1. The variable in the circle denotes the number of 

relaxations on the current level whereas arrows indicate intergrid transfers of the 

solution from the level where the arrow begins to the level where arrow ends. Note 

also that cubic interpolation is used to obtain the initial approximation of the solution 

while linear interpolation is used within the coarse grid correction cycle. 

The total number of relaxations sweeps performed during the execution of the full 

multigrid method on level k is then a sum of relaxations per nc correction cycles and of 

relaxations required for the full multigrid routine on level k+1. For the target grid (level 

0) the total number of relaxations is then equivalent to: 
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(6.37) 

Terms corresponding to the intergrid transfers are marked with asterisk (*) sign. Note 

that the relaxations on the coarsest grid are treated separately as there are no 

correction cycles at this level. 

Consider the example illustrated in Figure 6.23, where the coarsest level is m=2, 

number of correction cycles nc=2 and the type of cycle is “V” i.e. =1. As the two 

dimensional problem is considered then d=2. If v0=v1=v2=1 then 
0

FMGT =6.3125 

excluding the intergrid transfers which can be easily checked using the diagram in 

Figure 6.23 and 
0

FMGT =10.0625 including the intergrid transfers.     

6.4.7 Multigrid boundary conditions 

In case of using the multi grid method for solving the system of PDE the boundary 

condition defined on the target grid (see e.g. Section 6.3.2) should be adapted on all 

the grids. This can be done by simply injecting the nodes on the boundary of the finer 

grid coinciding with the coarser grid. Alternatively, the pressure values on the 

boundary of the coarse grid can be evaluated as fully weighted average of the finer 

grid boundary values using formula (6.21). 

6.5 Solving the tilted pad bearing problem using the multigrid method 

In this section the homogenised Reynolds equation approach is applied for solving the 

tilted pad bearing problem. The problem is solved for the given entrance and exit gap 

values and unknown load. Firstly, the guidelines on using the homogenised roughness 

approach are presented. Then the efficiency of the multigrid technique in solving the 

homogenised Reynolds equation is investigated. A modification to the method 

described by V&L is proposed which has shown to improve the convergence speed. 

Also the problems emerging from applying the multigrid technique to the deterministic 

rough problem are addressed in sub Section 6.5.2. After that a series of cases of the 

cosine and sinusoidal waviness are investigated. In these cases the comparison is made 

between the homogenised solution and the deterministic solution. Finally tilted pad 

bearing problem with measured surface roughness is considered. As opposed to the 

sinusoidal and cosine roughness the deterministic solution for these cases is not 

available due to very high computational resources required. 
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6.5.1 The convergence speed  

The Reynolds Equation (6.5) is solved using the multi grid method. The solutions of the 

smooth, rough and homogenised problems are considered in order to compare the 

convergence time. Note that when using a conventional Gauss-Seidel iterative method 

the solution is considered converged if the average relative changes to the pressure 

are less than a specified value (10-6). Until that point is reached the further relaxations 

are performed on the same grid. In case of the multigrid method the majority of 

relaxation sweeps are not made on the target grid. If the convergence criteria based 

on the relative pressure changes are met on a coarser grid of level k>0 it does not 

necessarily imply that the solution has converged enough on the target grid (level 0). 

This creates difficulties in continuing the execution of the algorithm until the required 

accuracy has been achieved and terminating the execution once it is achieved. 

Therefore, the configuration parameters (v0-v2, nc, ) should be defined to give enough 

relaxations to achieve the necessary convergence level. 

A modification to the multigrid method described by Venner and Lubrecht (2000) is 

proposed where the particular block of relaxation sweeps on the grid of level k is 

terminated if the convergence criteria based on the relative pressure changes are met 

before the number of relaxations reached the defined maximum values of v0 v1 or v2. 

The execution of the main algorithm is then continued. The positive effect of this 

modification is illustrated later in this section.  

The problem of a tilted pad was considered. The geometry is defined by the 

dimensions of the area L=W=0.04m, tilting ratio =1.25 and hmin=1.0m. The surface 

used was either smooth or having sinusoidal roughness with 8, 16, 32, 64 and 128 

waves of the amplitude hr=0.5m in both x and y directions. The sinusoidal waves 

were discretised using 8 mesh points per wave in both directions. The configuration 

parameters of the multigrid algorithm is provided in Table 6.1. In comparison to the 

method described in Section 6.4.6 an additional modification to the method has been 

made in which v3 relaxations are performed on the target grid after the multigrid 

routine has been executed. This was found especially efficient for the rough surface 

cases , as the coarse grid representation of the roughness features affect the resulting 

pressure differently to the target grid roughness features. The number of grid levels m 

was specified according to following rule: 

 2 2
4 4

x y
m min log l, ogN N    
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Figure 6.22 Flow diagram of the full multi grid method 

The coarsest grid then have 16x16 elements if number of mesh elements on the target 

grid is the same in both directions, i.e. Nx=Ny. If this is not the case then the intergrid 

transfer operators need to be modified in order to consider coarsening and refinement 

with respect to one direction only. 

The efficiency of the multigrid method time is summarised in three charts in Figures 

6.23-6.25 showing the execution time, the accuracy and the effective number of 

relaxation sweeps plotted for smooth, rough and homogenised cases for the target 

grids of 64x64, 128x128, 256x256, 512x512 and 1024x1024 mesh elements. The 

execution time for the homogenised problem does not include time required for the 

evaluation of the flow factors which is carried out once covering the whole range of 
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hmin from 0 to 5m. Note that the actual execution time depends on the current CPU 

usage i.e. the same number of operations can take different time. For this reason an 

average execution time of three identical cases is shown in Figure 6.23. 

Table 6.1 Parameters of the multigrid routine 

Parameter Description Value 

v0 Number of relaxations on the coarsest grid 10 

v1 Number of prerelaxations 20 

v2 Number of post relaxations 60 

v3 Target grid relaxations after the multigrid routine 150 

 Type of the correction cycle 2 

nc Number of correction cycles 2 

m Number of refinement levels 2,3,4,5,6 

Nx,Ny Number of elements in the target grid 64,128,256,512,1024 

 The target accuracy 10-6 

The first observation that can be made from comparing the execution time for the 

rough smooth and homogenised cases in Figure 6.23 is that the homogenised case 

takes approximately the same time as the smooth one whereas the rough case takes at 

least twice as long. This is the consequence of the homogenised equation being in 

essence a solution of the smooth geometry problem with the flow modifying 

coefficients, i.e. flow factors.  

 

Figure 6.23 Execution time of the modified multigrid algorithm for the homogenised smooth 
and rough cases and execution time of the multigrid algorithm with defined maximum 
number of cycles.  

Second, in comparison to the solver based on the conventional Gauss-Seidel iterative 

method (see Figure 6.8) the multigrid method is ~40 times faster for the mesh grid of 
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256x256 elements and the difference increases up to ~250 times faster for 512x512 

grid and more than 1000 times faster for the 1024x1024 grid. The explanation for this 

is that the Gauss-Seidel method is incapable of handling the perturbations of large 

wavelength (i.e. larger than few mesh points). 

Third is that the execution time of the original multigrid algorithm as given by Venner 

and Lubrecht is longer than that of the modified algorithm. Note, that the execution 

time of the original algorithm is a result of the choice of the algorithm parameters 

given in Table 6.1, i.e. each particular block of the algorithm execution has the defined 

maximum number of cycles. With the appropriate choice of these parameters the 

execution time of the original algorithm can be improved. However if the optimal set 

of parameters is not known (from e.g. previous experiments) it is more convenient to 

perform a larger number of relaxations (v0, v1, and v2) at any level with the possibility 

to terminate the execution once the required convergence level is achieved.  

Figure 6.24 shows the average relative changes to the pressure value on the target grid 

obtained by means of the multigrid method for rough smooth and homogenised cases 

for the mesh grids with Nx=64, 128, 256,512 and 1024 elements. 

The y axis is logarithmic with base 10, the positive y direction indicates the sense of 

improving the accuracy, and the target accuracy of 10-6 is shown dashed. It is clear 

from the chart that the convergence improves with increasing the number of mesh 

points. This can possibly be explained by the fact that more nodes allow more 

refinement levels to be used. It can also be observed that smooth and homogenised 

problems converge better than a rough one for the same configuration of the multi 

grid method.  

The rough problem for 64 and 128 elements has not been converged to the target 

accuracy level. The reason for this as mentioned earlier is that the coarse grid 

representation of the roughness features may not reflect the behaviour in the same 

way as on the fine grid.  

The maximum number of relaxation sweeps can be calculated using the formula (6.37). 

It is clear from the chart that the more nodes are used the less relaxation sweeps are 

needed to achieve the required convergence level. The chart with the number of 

relaxations also confirms that for the grids of 64 and 128 elements the rough problem 
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does not give an accurate enough result. Also the convergence of the smooth and 

homogenised cases is equally efficient and better than that of the rough case. 

Figure 6.25 shows the actual effective number of relaxation sweeps for smooth rough 

and homogenised problems discretised using 64, 128, 256, 512 and 1024 elements. It 

is called actual as opposed to the maximum possible number of relaxation sweeps 

defined by the parameters given in Table 6.1.  

6.5.2 Coarse grid roughness problem 

The coarse grid correction scheme described in Section 6.4.4 uses the coarse grid 

operator which is a representation of the linear operator on the grid of the coarser 

level k+1. The matrix of coefficients Ck+1 can then be evaluated by discretising the 

Reynolds equation on the coarser grid. This can be implemented simply by applying 

the formulae (6.14) on the coarser grid of level k+1. The evaluation of coefficients Ck+1 

requires the total clearance function h(x,y) which in the case of the rough surface 

problem includes the roughness function R(x,y). It has been found by the author that 

for some types of roughness (e.g. cosine waves, or double cosine waves) coarsening of 

the operator results in the incorrect representation of the roughness features on the 

coarser grids. This creates instabilities in the course of the algorithm, increases the 

execution time and may produce incorrect results. The general observation is that the 

coarse grid correction fails if the coarse grid representation of the roughness has a 

mean line that is different to that of the finer grid roughness. 

  

Figure 6.24 Average relative changes to the pressures obtained by the multigrid method and 
the target accuracy of 10-6(dashed line) 
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Figure 6.25 Actual effective number of relaxations using multigrid method for smooth rough 
and homogenised cases and the maximum effective number of relaxations defined by the 
multigrid routine parameters given in Table 6.1.  

Figure 6.26 shows cross sections of the surface with extruded cosine waviness for the 

whole range of grid levels from the target grid (level 0) to the coarsest grid which has 

level 6. Starting from the level 0 the surface representation becomes coarser as the 

level increases. Until level 4 surface the roughness features demonstrate the same 

behaviour, i.e. both valleys and peaks coincide.  

The level 4 representation shown by dotted line fails to capture the first peak however 

the remaining features are still correct.. Level 5 and 6 representations demonstrate 

completely different behaviour as shown by dashed and dashed-and-dotted lines. If 

the global film thickness is comparable to the roughness amplitude then these 

incorrect representations result in much higher pressures being generated at the 

coarser levels which leads to instabilities of the method.  

Venner and Lubrecht (2000) addressed this problem in applications of the multi grid 

method to the dry contact analysis. They suggested decreasing the number of 

coarsenings, which however reduces the positive effect of using multiple grids and 

significantly slows down the total convergence time, especially if the roughness 

features are resolved in a few mesh points.  

It was found by the author that treating the surface as smooth on coarser grids results 

in a better stability than incorrect coarse grid representation of the roughness. For this 

reason in this thesis the author suggests truncation of the roughness on the grids 

which are incapable of capturing the peaks and valleys of the rough surface. The ability 

of the grid to resolve the roughness features is judged upon the difference between 
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the mean lines of the roughness function sampled at the current grid and the target 

grid. In the example above the, surface is assumed smooth on levels 5 and above. 

 

Figure 6.26 Representation of the cosine roughness on the grid of levels 0 to 6 

Venner and Lubrecht also suggested an alternative way of evaluating the coarse grid 

operator in the general case (with no relation to the rough problem in particular). This 

way considers applying a restriction operator to both sides of Equation (6.31), which 

results in: 

 1 1k k k k k

k k
I C v I r 

 

where vk and rk are the vector of solution and the vector of residuals at the level k. 

Representing the solution vk vector as the interpolation of vk+1 gives: 

  1 1

1

k k k k k k

k k k
I C I v I r 


     

(6.38) 

The right hand side of Equation (6.38) gives rk+1 which is the right hand side of the 

coarse grid operator as defined by the coarse grid correction scheme, whereas the 

coarse grid operator itself can be defined as follows: 

     1 1

1

k k k k

k k
C I C I 


    

(6.39) 

where ”·” denotes a vector on the coarser grid of level k+1. 

Defining the coarse grid operator as in Equation (6.39) allows the evaluation of the 

coarse grid coefficients to disregard the incorrect representation of roughness on the 

coarse grid. Such method is an alternative to directly discretising the matrix 

coefficients on the coarser grid using formulae (6.14). However, it was found by author 

that the direct discretisation results in a faster convergence of the solution.  
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6.5.3 Extruded cosine roughness 

In this section the tilted pad bearing problem was formulated and solved for a 

sequence of the minimum clearance values. Problem was considered for the smooth, 

rough, and homogenised rough cases. A comparison has been made between the 

solution of the homogenised equation for tilted pad bearing problem developed by 

author and the solution of the identical problem given by Almqvist and Dasht (2006) 

where the latter is available.  

The roughness R(x,y) was assumed to be a cosine wave in x direction and extruded in y 

direction, i.e.  

 (   )         (   
 

 
) 

(6.40) 

The total gap between the rough surface and the smooth counterface is a combination 

of the linear global shape (6.1) and the roughness function (6.40): 
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(6.41) 

The geometry of the tilted pad and the roughness parameters are provided in Table 

6.2. The problem was discretised on a grid mesh of 1024x1024 elements. The number 

of refinement levels used is m=6, i.e. the coarsest grid consists of 16x16 elements.  

The geometry of the rough problem is defined by Equation (6.41), where the number 

of extruded cosine waves was 16, 32, 64 and 128. This makes the resolution of 

roughness features 64, 32, 16 and 8 elements per wave. 

The geometry and physical quantities given in Table 6.2 are identical to those for the 

similar problem considered by Almqvist and Dasht (2006). The minimum clearance 

used is hmin=4.0m. Figure 6.27 shows solutions of the smooth, rough and 

homogenised rough tilted pad bearing problems.  

First, Figure 6.27 is in excellent agreement with the one given in the paper of Almqvist 

and Dasht (2006). Second, the sequence of rough surface solutions shown by thin solid 

lines approaches the homogenised solution which is shown by thick solid line as the 

number of waves increases. This effect is an illustration of the statement (4.4) given in 

Chapter 4 that the homogenised solution is an asymptotic limit of the rough solution 

when the size of the representative roughness area  approaches zero. It was shown in 

Section 5.2.6 that mathematically the flow factors are robust to the proportional 
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stretching as long as no direct contact occurs. This means that the flow factors for 16, 

32, 64 or 128 cosine waves should be the same. However, this statement is true only if 

the same resolution of the roughness is used. In fact, cosine roughness resolved in 

different number of points results in different flow factors. 

Table 6.2 Parameters of the tilted pad bearing problem (Almqvist and Dasht configuration) 

Parameter Value Units Description 

hmin 4.0 m Minimum clearance 

 1.25  Tilting ratio 

Rmax 0.5 m Roughness amplitude 

k1 16  Number of sinusoidal waves 1

k2 32  Number of sinusoidal waves 

k3 64  Number of sinusoidal waves 3 

k4 128  Number of sinusoidal waves 4 

L 10 cm Length 

W 10 cm Width 

u 0.5 m/s Linear velocity of the counterface 

 0.14 Pa·s Viscosity of the fluid 

P0 105 Pa Atmospheric pressure 

Nx,Ny 1024,1024  Number of mesh elements in x and y directions 

The effect of the resolution of the local problem diminishes as the resolution improves: 

for example the flow factors evaluated for the resolution of 64 and 32 elements per 

wave produce identical homogenised solutions, whereas the flow factors that use 8 

elements per wave result in a solution which is slightly different. In Figure 6.27 all four 

homogenised solutions coincide, therefore only one solution is shown. This effect is 

more apparent in  the sequence of Figures 6.29-6.35 where both deterministic and 

homogenised rough solutions are shown for extruded cosine waviness with 16, 32, 64 

and 128 waves. The corresponding flow factors are calculated individually for a single 

cosine wave resolved in 64, 32, 16 and 8 elements respectively to maintain the same 

resolution of roughness on the local scale as on the global scale. In Section 5.2.3 of 

Chapter 5 it was also shown that the flow factors calculated analytically for the 

extruded cosine roughness are in an agreement with the flow factors calculated 

numerically using 32 elements per wave. 
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The difference between the smooth and homogenised rough solutions observed in 

Figure 6.27 is not significant, as can be seen by comparing the solid thick line and 

dashed line. Indeed, the amplitude of roughness Rmax=0.5m makes the ratio = 

hmin/Rmax=8 for the case shown in Figure 6.27. The flow factors for the extruded sine 

wave were calculated in Chapter 5, see Figure 5.24. For the highest value of =6 

available in Figure 5.24 the flow factors are very close to unity, i.e. roughness has 

almost no effect. It is assumed here that the flow factors for the sine waves are 

identical to those for the cosine waves.  

In order to enrich the comparison of the smooth, rough and homogenized rough 

solutions, a sequence of tilted pad bearing problems has been considered, where the 

minimum clearance values used were hmin=3.0, 2.0, 1.5, 1.0, 0.8, 0.6, 0.55 and 0.5 m. 

The ratio = hmin/Rmax is then 6, 4, 3, 2, 1.6, 1.2, 1.1 and 1. 

 
Figure 6.27 Solutions of the tilted pad bearing problem with extruded cosine roughness with 
16, 32, 64 and 128 waves (thin solid lines), homogenized solution (thick solid line), smooth 

solution (dashed black). The minimum clearance hmin=4.0m.  

The lower values of hmin result in a stronger effect of roughness than observed in 

Figure 6.27. Other configuration parameters of the problem are given in Table 6.3. The 

multigrid configuration remains the same throughout the rest of the test cases. Note 

that the dimensions of the area are 1x1cm, as opposed to 10x10cm in Table 6.2.  

Figure 6.28 shows the load evaluated in terms of the mean pressure for the tilted pad 

bearing problem for the smooth, rough and homogenised rough surfaces for the 
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specified sequence of minimum clearance values hmin. Four solutions of the rough 

problem are shown corresponding to the extruded cosine roughness with 128, 64, 32 

and 16 waves. Two solutions of the homogenised problem are also shown which are 

based on the flow factors calculated for cosine roughness resolved in 8 and 32 

elements. These resolutions correspond to 128 and 32 waves respectively. The other 

two homogenised solutions are not present as they were found to be identical to the 

one for 32 waves. 

Table 6.3 Configuration parameters of the tilted pad problem for extruded cosine roughness 

Parameter Value Units Description 

hmin 3.0-0.5 m Minimum clearance range 

 1.25  Tilting ratio 

Rmax 0.5 m Roughness amplitude 

k 64  Number of sinusoidal waves

L 1.0 cm Length 

W 1.0 cm Width 

u 0.5 m/s Linear velocity of the counterface 

 0.14 Pa·s Viscosity of the fluid 

Nx, Ny 1024  Number of mesh elements 

It can be seen from the figure that load for the smooth case is lower than for both 

rough and homogenised rough problems. Also, the load for the rough case is different 

for the cases of different number of cosine waves, i.e. roughness with larger 

wavelength results in a higher load. The load for the homogenised case based on the 

resolution of 8 elements is very close to the load for the rough solution for 128 waves, 

whereas load for other rough solutions differs increasingly from the corresponding 

homogenised load the more so as the wavelength increases. This can be explained by 

the fact that, as described in Chapter 4, mathematically the homogenised solution is an 

asymptotic limit of the rough solution when the roughness wavelength approaches 

zero, i.e. the case of 128 waves is supposed to give the best fit to the homogenised 

solution. However, in case of 128 cosine waves each feature is resolved in 8 elements, 

which is a very poor representation of the cosine function. This explains the fact that 

homogenised solutions that use 16 and more elements per wave are identical, as they 

are a good enough approximation of a cosine function, whereas using 8 elements per 

wave gives a different solution.  
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The sequence of Figures 6.29-6.35 show the smooth, rough and homogenised rough 

solutions of the tilted pad bearing problem with various values of minimum clearance. 

Four rough and four homogenised rough solutions are shown corresponding to the 

resolutions of roughness using 8, 16, 32 and 64 elements, i.e. 128, 32, 64 and 16 waves 

respectively. In the cases of higher minimum film thickness the latter three 

homogenised solutions are indistinguishable.  

 
Figure 6.28 Hydrodynamic load carried by the tilted pad for a sequence of minimum 
clearances for the smooth, rough and homogenized rough problems.  

 

Figure 6.29 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=2.0m 
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Figure 6.30 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=1.5m 

 

Figure 6.31 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=1.0m 

0.0

20.0

40.0

60.0

80.0

0 2 4 6 8 10

P
re

ss
u

re
/[

M
P

a]
 

X/[mm] 

Smooth Homogenised 128 Homogenised 64
Homogenised 32 Homogenised 16 Rough 128
Rough 64 Rough 32 Rough 16

0.0

50.0

100.0

150.0

200.0

0 2 4 6 8 10

P
re

ss
u

re
/[

M
P

a]
 

X/[mm] 

Smooth Homogenised 128 Homogenised 64

Homogenised 32 Homogenised 16 Rough 128

Rough 64 Rough 32 Rough 16



Section 6.5 Solving the tilted pad bearing problem using the multigrid method 

196 

 

Figure 6.32 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=0.8m 

 

Figure 6.33 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=0.6m 
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Figure 6.34 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=0.55m  

  

Figure 6.35 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=0.50m  

The sequence of figures illustrates the evolution of the solution starting from smooth 
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the minimum clearance decreases the point of maximum pressure moves in the 

positive x direction towards the exit of the bearing. The first observation that can be 

brought forward from Figures 6.29-6.35 is that the difference between smooth 

solution and rough and homogenised solutions increases as the hmin value decreases, 

which illustrates the increasing effect of the roughness on the lubrication. The second 

observation is that all the rough solutions have the basic shape coincident with the 

corresponding homogenised solution. The perturbations of the rough surface pressure 

depend on the wavelength of the roughness, i.e. longer wavelength generates higher 

pressures. These perturbations are caused by the effects of the individual asperities, 

which is thus not predicted by the homogenised solution. Note also, that the 

difference between the homogenised solutions based on different resolutions of 

roughness becomes more apparent for lower clearance values which can be seen in 

e.g. Figure 6.32 when comparing the homogenised solutions based on 128 waves with 

other homogenised solutions. The baselines of the pressure distributions for different 

wavelengths of roughness start to deviate for the values of hmin<2m. The 

corresponding homogenised solutions however remain coincident with those 

baselines, until the value of hmin become equal to 0.55m as observed in Figure 6.35. 

Note, that in Figure 6.34 the homogenised solution predicts the average pressure for 

the cases of 128 and 64 waves quite accurately, whereas the higher pressure peaks 

corresponding to the solutions of 32 and 16 waves remain uncaptured by the 

homogenisation process. From this it can be concluded that in case of very thin gaps 

(hmin-Rmax<0.05m) the effect of the individual large wavelength components on the 

pressure overwhelms the global effect of the roughness which therefore cannot be 

predicted by the homogenisation treating the roughness features in an average way 

only. Also, thin gaps result in very high pressure values which create instabilities when 

solving the deterministic rough problem and result in slow convergence of the 

numerical methods. The process of solving the homogenised problem remains stable 

and well converged. 

Figure 6.36 shows the homogenised and rough solutions of the problems with 

minimum clearance hmin=0.45m. The only deterministic rough solution shown is the 

one for 128 waves. Other rough solutions have been found unstable and result in 

unrealistic pressure values. The reason for this is that value of hmin=0.45m is lower 

than the amplitude of the roughness Rmax=0.5m which means that the part of the 

tilted pad starting from the point x=5.6mm is brought into (partial) contact. In the case 
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of the extruded roughness this results in the total blockage of flow. The non zero 

values of pressure beyond the point x=5.6mm are then the numerical artefacts caused 

by the program trying to solve the problem where the flow is blocked. Note also that 

the zero values of the gap h were replaced by the value of 10-9 for numerical reasons.  

  

Figure 6.36 Solution for the tilted pad bearing problem with the smooth, rough and 
homogenized rough surfaces with 16, 32, 64 and 128 waves. Minimum clearance value 

hmin=0.45m  

The elastic load carried by asperities was calculated at the stage of evaluating the flow 

factors and added to the hydrodynamic load in the case of the homogenised solution. 

However in Figure 6.35 the elastic part of the load is not visible as it is too small in 

comparison to the hydrodynamic load. For this reason in Section 6.5.4 the solution of 

the problem is shown where the hydrodynamic load is of the same magnitude as the 

one carried by the contacting asperities. 

6.5.4 Extruded cosine roughness: contact case 

The tilted pad bearing problem with extruded cosine roughness is considered where 

the specific configuration parameters of the problem are given in Table 6.4. 

Note that the viscosity-velocity product was reduced 10 times in comparison to that 

given in Table 6.3. This reduction allows the hydrodynamic load to be of the same 

magnitude as the elastic load carried by asperities in case of the extruded roughness. 

The roughness function is considered extruded in y direction and having 128 cosine 

waves in x direction.  
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Table 6.4 Configuration of the tilted pad bearing problem for the case of contact 

Parameter Value Units Description 

hmin 0.5-0.42 m Minimum clearance range1 

 1.25  Titling ratio 

Rmax 0.5 m Roughness amplitude 

k 128  Number of sinusoidal waves 

L 1.0 cm Length 

W 1.0 cm Width 

u 0.1 m/s Linear velocity of the counterface 

 0.7 Pa·s Viscosity of the fluid 

Figure 6.37 shows the homogenised solutions of the tilted pad bearing problem for the 

minimum clearance values hmin=0.5, 0.48, 0.46, 0.44 and 0.42 m, where the arrow 

indicates the sense of reducing the hmin value from 0.5m down to 0.42m. The elastic 

load supported by the asperities was obtained at the stage of evaluation of the flow 

factors. The load is then divided by the area of the local domain to give mean elastic 

contact pressure as a function of global film thickness. The value of the mean elastic 

contact pressure corresponding to the global film thickness value is subsequently 

added to the hydrodynamic pressure after the homogenised Reynolds equation has 

been solved.  

The solution corresponding to hmin=0.5m (solid line) has no elastic component of the 

pressure in it as the contact occurs only at the exit boundary, i.e. x=1cm. The rest of 

the solutions have a hump in the pressure distribution corresponding to the 

hydrodynamic pressure followed by a drop where the flow of fluid is completely 

blocked by the contacting asperities. The pressure after that drop is the elastic 

pressure generated at the direct asperity contacts. The case of homogenised solution 

for a mixed lubrication problem is also considered in Section 6.5.6 for the two 

dimensional cosine roughness. The two dimensional roughness allows the 

hydrodynamic pressure coexist with the one generated at the asperity contacts. 
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Figure 6.37 Homogenised solution of the tilted pad bearing problem in case of the direct 

contact of the surfaces. Minimum clearance values hmin=0.5, 0.48, 0.46, 0.44 and 0.42 m. 
Arrow indicates sense of decreasing the minimum clearance starting from the case where 
contact first occurs at the exit of the bearing and progressively increasing the area of direct 
contact.  

6.5.5 The oblique roughness effect 

In this section the effect of the oblique roughness on the pressure distribution within 

the tilted pad bearing problem was studied. For this purpose the extruded cosine 

roughness function was considered as given by Equation (6.40). The geometry and 

configuration of the tilted pad problem are given in Table 6.5. The resolution used was 

16 elements per wave i.e. 64 waves in total. The roughness function was rotated at 30 

angle clockwise and the contours of a 2x2mm portion of the rough surface are shown 

in Figure 6.38.  

At the stage of evaluating the flow factors the oblique flow factors formulae (4.33) 

were applied to the flow factors calculated for an extruded cosine surface in Section 

6.5.3. A sequence of Figures (6.39-6.46) show the comparison of the deterministic and 

homogenised rough solutions for the values of minimum clearance hmin=1.5, 0.8, 0.6 

and 0.55m. These figures present the central cross section of the pressure 

distribution parallel to the x axis as well as the contour plot. 
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Table 6.5 Configuration of the tilted pad bearing problem for the case of oblique roughness 

Parameter Value Units Description 

hmin 1.5-0.55 m Minimum clearance range1 

 1.25  Tilting ratio 

Rmax 0.5 m Roughness amplitude 

k 128  Number of sinusoidal waves 

 30  Orientation of the roughness features 

L 1.0 cm Length 

W 1.0 cm Width 

u 0.1 m/s Linear velocity of the counterface 

 0.7 Pa·s Viscosity of the fluid 

 

Figure 6.38 Extruded cosine roughness function rotated at 30 clockwise. 
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Figure 6.39 Central cross section of the pressure distribution parallel to the x axis for 

deterministic rough, homogenized and smooth solutions. Minimum clearance hmin=1.5m 

   

Figure 6.40 Contour plot of the pressure distribution for (a) the deterministic, and (b) the 

homogenised rough solutions. Minimum clearance hmin=1.5m 

The first set of Figures 6.39 and 6.40 correspond to the minimum clearance value 

hmin=1.5m. Firstly, it can be seen that the homogenised solution coincides with the 

base line of the pressure distribution obtained for the deterministic rough case. 

Secondly, although it is clear that both deterministic and homogenised rough cases 

produce results that are different from the smooth one, the shapes of the pressure 

distribution for all three cases do not show any apparent effect of oblique roughness 

as shown on contour plots of Figures 6.40a and 6.40b. This means that on the global 

scale the rough solution behaves in the same way as the smooth one except for the 

ridges corresponding to the effect of the individual roughness features.  
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Figure 6.41 Central cross section of the pressure distribution parallel to the x axis for 

deterministic rough, homogenized and smooth solutions. Minimum clearance hmin=0.8m 

  

Figure 6.42 Contour plot of the pressure distribution for (a) the deterministic and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.8m 

The second set of Figures 6.41 and 6.42 are for the minimum clearance value 

hmin=0.8m. The solution for the deterministic rough case shown in Figure 6.42a 

illustrates the distinctive behaviour of the pressure distribution caused by the oblique 

roughness. The homogenised solution in Figure 6.42b is capable of predicting the same 

distortion of the pressure distribution caused by rotating of the roughness features 

through an angle of 30. The remaining Figures 6.43-6.46 demonstrate the evolution of 

the effect of the oblique roughness as the minimum clearance value hmin decreases 

down to the value of 0.55m.  
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Figure 6.43 Central cross section of the pressure distribution parallel to the x axis for 

deterministic rough, homogenized and smooth solutions. Minimum clearance hmin=0.6m 

  

Figure 6.44 Contour plot of the pressure distribution for (a) the deterministic and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.6m 

The oblique roughness features create a pressure gradient along the oblique direction 

which results in the distortion of the pressure distribution. It is clear from the figures 

that the effect of oblique roughness on the pressure distribution is captured by the 

homogenised method quite well. It can also be observed, that for the higher values of 

hmin>0.6m the relative difference between the homogenised and the smooth solution 

cross sections increases as hmin decreases, whereas for the values hmin=0.6m this 

difference becomes smaller. This can be explained by the fact the maximum pressure 

value moves in the oblique direction. 
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Figure 6.45 Central cross section of the pressure distribution parallel to the x axis for 

deterministic rough, homogenised and smooth solutions. Minimum clearance hmin=0.55m 

  

Figure 6.46 Contour plot of the pressure distribution for (a) the deterministic and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.55m 

6.5.6 The two dimensional roughness problems 

The extruded roughness used in Sections 6.5.3-6.5.5 creates significant obstruction to 

the flow across the roughness features. The extruded surface roughness may 

represent the characteristic roughness features of the surface prepared by grinding 

(see Section 5.2.7) and is well suited for illustrating certain effects of roughness. Real 

surfaces however may well not be extruded, which creates the possibility for the 

lubricant to flow around the asperity features even if the asperities are in direct 

contact. In this section surfaces with a double sinusoidal roughness function have been 

considered on a bearing of 1x1cm area. The reason for selecting the sine function as 
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opposed to the cosine one is the more accurate coarse grid representation of the sin(x) 

function rather than the cos(x) one without any phase shift.  

The double sinusoidal roughness can be defined by an equation similar to (5.32) with 

the cosine function replaced by sine: 

 (   )    (   )         (  
   

 
)    (  

   

 
) 

(6.42) 

where L and W are the dimensions of the total area, k1 and k2 define the number of 

waves in x and y directions respectively and Rmax is the amplitude. The configuration 

parameters of the problem are given in Table 6.6. Note the low velocity u=1cm/s of the 

counterface which is selected to decrease the values of the hydrodynamic pressure in 

order to make them comparable to the contact pressure.  

Table 6.6 Configuration of the tilted pad bearing problem for the double sine surface 

Parameter Value Units Description 

hmin 1.5-0.3 m Minimum clearance values range 

 1.25  Tilting ratio 

Rmax 0.5 m Roughness amplitude 

k1 64  Number of sinusoidal waves in entrainment (x) direction 

k2 16  Number of sinusoidal waves in transverse(y) direction 

 30  Rotation of the roughness features (clock wise) 

L 1 cm Length 

W 1 cm Width 

u 1 cm/s Linear velocity of the counterface 

 0.14 Pa·s Viscosity of the fluid 

P0 105 Pa Atmospheric pressure 

The double sinusoidal roughness function is plotted in Figure 6.48. Note that only a 

2x2mm portion is shown on in this contour plot. For the example chosen for analysis 

the roughness features are extended in y direction (before rotation) by a factor of 

k1/k2=4. 
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Figure 6.47 Double sine surface with 64 and 16 waves in x and y directions respectively. 

Figure 6.48 shows the load-clearance behaviour for the smooth, deterministic and 

homogenised cases. The hydrodynamic and elastic contact components of the 

homogenised load are also shown separately. The deterministic solution is not 

available for the cases of direct contact, i.e. hmin<0.5m, as the elastic deflection is not 

considered in the method of solving the Reynolds equation for the tilted pad bearing 

formulation. In case of the homogenised solution the elastic and plastic deflection of 

the surface are taken into account at the stage of calculating the flow factors, which is 

explained in Chapters 3-5. Note that the elastic contact load carried by the asperities is 

calculated as a function of the global film thickness. The mean contact pressure 

corresponding to the film thickness at each mesh point on the global grid mesh is 

added to the hydrodynamic pressure calculated at that point. 

A clear increase in the total homogenised load can be observed in Figure 6.48 as the 

minimum clearance value hmin is getting smaller. This can be explained by the 

progressively significant obstruction of the flow due to the roughness, which causes 

higher pressures to be generated. The maximum value of the homogenised load is 

reached where hmin=0.5m, i.e. the direct contact of the surface and the counterface 

occurs. The maximum value is followed by a drop which means that the hydrodynamic 
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lubrication mechanism starts to fail. This is confirmed by the drop in the hydrodynamic 

load value when hmin<0.5m. 

  

Figure 6.48 Load-clearance curves obtained for smooth deterministic and homogenised 
solutions. The hydrodynamic and contact parts of the homogenised load are also shown 
separately. 

As the clearance value decreases more and more load is carried by the contacting 

asperities which is illustrated by the contact load curve, shown red with triangular 

markers. The majority of the total homogenised load is then due to the elastic contact 

load. 

Note that the homogenised load (blue line, square markers) agrees quite well with the 

deterministic one (orange circles) until the direct contact occurs, i.e. when hmin=0.5m. 

As before, in case of the low clearance the effect of the individual asperities is much 

higher than the average effect of roughness and therefore it is poorly reflected in the 

homogenised analysis. This inconsistency is expected to vanish for the case of 

measured rough surfaces, where the representative area contains multiple asperity 

features rather than a single sine wave. The detailed comparison of the pressure 

distribution for the deterministic and homogenised solutions is given in Figures 

6.49-6.59. 

The sequence of Figures 6.48-6.58 illustrate the smooth, deterministic and 

homogenised rough solutions for the tilted pad bearing problem with minimum 

clearance values hmin=1.0, 0.6, 0.5, 0.45, 0.4 and 0.3m. In the case of hmin<0.5m 

surface asperities undergo a direct contact with the counterface.  

0.0

4.0

8.0

12.0

16.0

0.0 0.3 0.6 0.9 1.2 1.5

P
m

ea
n
, M

P
a 

hmin, m 

Smooth Deterministic Total homogenised load

Contact load Hydrodynamic load



Section 6.5 Solving the tilted pad bearing problem using the multigrid method 

210 

  

Figure 6.49 Central cross section of the pressure distribution parallel to the x axis for 

deterministic rough, homogenised and smooth solutions. Minimum clearance hmin=1.0m 

   

Figure 6.50 Contour plot of the pressure distribution for (a) the deterministic and (b) the 

homogenised rough solutions. Minimum clearance hmin=1.0m 

Figures 6.49-6.52 correspond to the minimum film thickness value of hmin=1.0 and 

0.6m, i.e. the cases of pure hydrodynamic lubrication. Note that the pressure values 

in this example are much lower (up to 12MPa) than in the previous cases considered. 

This is the result of (i) smaller dimensions, 1x1cm as opposed to 10x10cm in Section 

6.5.4 and (ii) lower velocity of 1cm/s as opposed to that used in the previous sections. 

These parameters were selected in order to make the hydrodynamic pressure 

comparable to the contact pressure. 
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Figure 6.51 Central cross section of the pressure distribution parallel to the x axis for 

deterministic rough, homogenised and smooth solutions. Minimum clearance hmin=0.6m 

 

Figure 6.52 Contour plot of the pressure distribution for (a) the deterministic and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.6m 

The following observations can be brought forward from Figures 6.49-6.52. First, the 

effect of the oblique roughness (30 clockwise rotation) is much smaller than observed 

for the extruded oblique roughness, compare e.g. Figures 6.52 and 6.44 for the same 

hmin value. Since the flow factors are independent of the velocity and viscosity values, 

the less significant effect of the oblique roughness in this section is explained only by 

the roughness being two dimensional, i.e. the lubricant is not forced to flow along the 

roughness features in such a strong way. The second effect that can be observed in 

Figures 6.49-6.52 is that, as before, the homogenised solution follows the shape of the 
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deterministic solution thus predicting the average effect of the roughness on 

lubrication. 

Figure 6.53 shows the case of the minimum clearance value hmin=0.5m. The 

difference between the homogenised and deterministic solutions becomes apparent. 

It was shown in Section 6.5.3 that the smaller is the characteristic wavelength of the 

roughness features the more accurate is the homogenised. In the case considered the 

wavelength of the features is 1/64 of the total length in x direction and 1/16 of the 

total width in y direction.  

  

Figure 6.53 Central cross section of the pressure distribution parallel to the x axis for 

deterministic rough, homogenised and smooth solutions. Minimum clearance hmin=0.5m 

In the next series of Figures 6.54-6.60 the central cross section and contour plots of the 

homogenised solution are shown for the cases where direct contact of the asperities 

occurs. The homogenised pressure shown by red thick line on the cross section charts 

is the sum of the hydrodynamic and elastic contact pressures, which are also shown 

separately by purple dotted and orange dashed curves.  
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Figure 6.54 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=0.45m 

 

Figure 6.55 Contour plot of the pressure distribution for homogenised rough solution. 

Minimum clearance hmin=0.45m 
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Figure 6.56 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=0.4m. Maximum smooth 
surface pressure psmooth=14MPa 

 

Figure 6.57 Contour plot of the pressure distribution for homogenised rough solution. 

Minimum clearance hmin=0.4m 
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Figure 6.58 Central cross Section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=0.3m. Maximum smooth 
surface pressure psmooth=25MPa 

  

Figure 6.59 Contour plot of the pressure distribution for homogenised rough solution. 

Minimum clearance hmin=0.3m 

It can be seen from the sequence of Figures 6.54-6.59 that the hydrodynamic 

component becomes progressively less significant. The maximum hydrodynamic 

pressure moves towards the entrance zone of the bearing, i.e. where the clearance 

value is higher and therefore the lubrication is less affected by the roughness. In Figure 

6.59 the major part of the load is carried by the contacting asperities. 

0.0

3.5

7.0

10.5

14.0

0 2 4 6 8 10

P
re

ss
u

re
/[

M
P

a]
 

X/[mm] 

Homogenised pressure Contact pressure
Hydrodynamic pressure Smooth pressure



Section 6.5 Solving the tilted pad bearing problem using the multigrid method 

216 

6.5.7 Measured roughness cases 

In Sections 6.5.1-6.5.6 the roughness function was considered as cosine, sine or a 2D 

product of the sine functions. For the surface with 16 up to 128 sine waves it was 

possible to solve the deterministic problem for the grid mesh of 1024x1024 elements 

thus resolving each wave in from 64 down to 8 sampling points. It is convenient to 

have the deterministic solution in order to validate the results of the homogenised 

method. However, solving the deterministic rough problem for the real rough surface 

requires a very high resolution which results in high demand of the computational time 

and resources. The main aim of the homogenised method developed is that the 

roughness can be resolved using fine grid mesh on the local scale. The global problem 

then incorporates the average effect of the local scale roughness by means of the 

factors which are functions of the global film thickness.  

In this section the homogenised solution of the tilted pad bearing problem has been 

considered for three real surfaces measured using a Taylor-Hobson profilometer. The 

characteristics of these surfaces and the details of the manufacturing method are 

given in Chapter 5, Section 5.2.7. The surfaces used are: a disk circumferential surface 

prepared by axial grinding (AG), a disk circumferential surface produced by 

superfinishing a reground disk (SF), and a surface prepared by the electric discharge 

machining (EDM). The roughness characteristics for each of the surfaces is given in 

Table 6.7.  

Table 6.7 Roughness characteristics for measured surfaces 

Roughness characteristic AG SF EDM 

Highest peak Sp 0.8 m 0.27m 13.81m 

Deepest valley Sv -1.14 m -0.3m -11.7m 

Mean roughness Sa 0.25 m 0.042m 3.02m 

Standard deviation Sq 0.32m 0.056m 3.72m 

Skewness Ssk -0.4 -0.17 0.034 

Kurtosis Sku 2.87 4.4 2.67 

Note that due to different roughness amplitudes of the measured surfaces, different 

configurations of the tilted pad bearing problem were considered. All three surfaces 

were rotated by 30 clockwise in order to consider the effect of orientation of surface 

lay with the sliding direction for the different roughness types.  
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 Ground surface 

The surface prepared by axial grinding is shown in Figures 5.57-5.59. The machining 

process created the grinding marks parallel to the y axis which makes the surface 

roughness almost extruded. The details of the machining process of this surface are 

explained in Chapter 5, Section 5.2.7.1. The configuration parameters of the tilted pad 

bearing problem are given in Table 6.8.  

Table 6.8 Configuration of the tilted pad bearing problem for the AG surface 

Parameter Value Units Description 

hmin 1.5-0.3 m Minimum clearances range  

 1.25  Tilting ratio 

L 6.0 cm Length 

W 5.0 cm Width 

 30  Orientation of the roughness features 

u 0.1 m/s Linear velocity of the counterface 

 0.07 Pa·s Viscosity of the fluid 

P0 105 Pa Atmospheric pressure 

Figure 6.60 shows the total and contact load for the tilted pad bearing problem with 

ground surface roughness. The load is presented in terms of the mean pressure for the 

smooth and homogenised rough cases. The homogenised pressure is a sum of two 

components: the hydrodynamic pressure and the elastic contact pressure which are 

shown by separate curves. 

In the sections related to the measured roughness problems it is convenient to 

introduce the value  of the average clearance value relative to the standard deviation 

of the roughness. This value helps to indicate the condition where most of the surface 

asperities are in contact as opposed to the contact at the highest peak. The value of  

is calculated as follows: 

  
         

   
 
    (   )

   
 

(6.43) 

where hmin and hmax are the clearance values at the exit and entrance zone of the tilted 

pad bearing respectively.  
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Figure 6.60 Total and contact load for the homogenised solution and load for the smooth 
solution of the tilted pad bearing problem with ground surface roughness. The empty black 
circle denotes the configuration where the first direct asperity contact occurs. 

The behaviour of the load-clearance curves shown in Figure 6.60 is similar to that 

observed in Figure 6.48 for the two dimensional roughness. As before, the total 

homogenised load is equal to the smooth one until the value of hmin=1.5m and the 

total homogenised load increases which illustrates the effect of roughness on the 

lubrication. The local maximum value of the total load is reached for hmin=0.7m 

(, which is beyond the point when the first contact occurs. This means that the 

tilted pad bearing operates in the mixed lubrication regime, i.e. the majority of the 

load is carried by the pressurised lubricant, however part of the load is carried by the 

contacting asperities (shown red, triangles). The condition when the first contact 

occurs is marked by an empty circle on the graph. 

As the value of hmin decreases further, more load is carried by the direct contact, while 

the hydrodynamic load decreases (dashed purple, diamonds). This can be explained by 

the fact, that the roughness features create significant obstruction to the lubricant 

flow which make the lubricant less capable of supporting the load. The increase in the 

total load for the value of the minimum clearance hmin<0.3m can be explained by the 

fact that the lower values of the hydrodynamic load are compensated by the higher 

load carried by the contacting asperities. The  value for these cases is 1.5 and less. 

The more detailed comparison of the homogenised and smooth solutions is given in 

Figures 6.61-6.72 which show the central cross section values and the contour plots for 

the pressure distribution obtained as a solution of a tilted pad bearing problem with 
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smooth and homogenised rough problem. Solution of the smooth problem is shown 

dashed black, whereas the homogenised solution is shown by solid red line. In the case 

of direct contact, additional orange dashed line represent the load carried by the 

contacting asperities. 

  

Figure 6.61 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=1.5m  

   

Figure 6.62 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=1.5m 

Figure 6.61 show the comparison of the solution for the value of the minimum 

clearance hmin=1.5m. It can be observed that the homogenised solution results in 

slightly higher values of the pressure, however the general shape of the pressure 

distribution is not much different from the smooth one, as can be appreciated from 

Figures 6.61a and 6.61b. Note that no effect of the oblique nature of roughness is 

apparent in Figures 6.61a and 6.61b.  
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Figure 6.63  Central cross section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=1.0m 

  

Figure 6.64 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=1.0m 

Figures 6.63-6.66 correspond to the minimum clearance values hmin=1.0 and 0.8m. 

The effect of the oblique roughness can now be clearly seen in Figures 6.64b and 

6.66b. The pressure values increase as the minimum clearance values hmin decreases, 

however the maximum pressure remains closer to the exit zone of the bearing.  
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Figure 6.65  Central cross section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=0.8m 

    

Figure 6.66 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.8m 

In Figures 6.67-6.68 where the solution is given for hmin

maximum pressure value has moved towards the inlet zone of the bearing. This can be 

explained by the fact, that the clearance value reduces as x coordinate approaches the 

exit zone (x=L). For smaller clearance values the lubricant flow is obstructed more 

significantly by the roughness features. Also, in case of the minimum clearance 

hmin=0.6m the direct contact of the asperities occurs over the whole surface of the 

tilted pad. 
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Figure 6.67  Central cross section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=0.6m 

   

Figure 6.68 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.6m 

Figure 6.69 shows the homogenised rough and smooth solutions for hmin=0.5. In this 

figure the ability of the rough surface to support the load hydrodynamically is 

significantly reduced in comparison to the smooth surface. The contact load is 

however not high enough to contribute to the total load carrying capacity.  

Finally, Figures 6.71-6.72 correspond to the minimum clearance value hmin=0.3. The 

smooth solution is not shown in 6.71 as it is ~20 times greater than the homogenised 

one. The contribution of the contact pressure is the most significant however the total 

load is quite low. 
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Figure 6.69  Central cross section of the pressure distribution parallel to the x axis for the 

homogenised and smooth solutions. Minimum clearance hmin=0.5m 

   

Figure 6.70 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.5m 

The analysis of the tilted pad bearing problem with the surface prepared by axial 

grinding can be concluded by stating that the peak load for the homogenised solution 

in comparison with the smooth tilted pad bearing in terms of the load carried is 

achieved when the minimum clearance value hmin=0.7m.  
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Figure 6.71  Central cross section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=0.3m. The maximum smooth pressure 
value psmooth=0.6GPa. 

   

Figure 6.72 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.3m 
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5.62-5.64. It has the longitudinal marks caused by the regrinding which results in the 

highest peak being Sp=0.27m, however the average roughness is quite low: 

Sa=0.042m. The configuration of the tilted pad bearing problem with superfinished 

surface is given in Table 6.9. 

Table 6.9 Configuration of the tilted pad bearing problem for the SF surface 

Parameter Value Units Description 

hmin 1.5-0.3 m Minimum clearances range 

 1.25  Tilting ratio 

 30  Rotation of the roughness features (clock wise) 

L 6.0 cm Length 

W 5.0 cm Width 

 30  Orientation of the roughness features 

u 0.05 m/s Linear velocity of the counterface 

 0.005 Pa·s Viscosity of the fluid 

P0 105 Pa Atmospheric pressure 

Figure 6.71 shows load for the tilted pad bearing problem with smooth and 

superfinished surface roughness. The load is presented in terms of the mean pressure.  

The average film thickness value is calculated at the middle of the tilted pad using 

formula (6.43). The value of is shown in Figure 6.73 as a secondary horizontal axis. 

As before, the point of the first direct contact is marked by black empty circle. 

In case of the homogenised solution the total load as well as the hydrodynamic and 

elastic contact components are shown in Figure 6.73. It is clear from the figure that the 

curve corresponding to the homogenised solution coincides perfectly with the one for 

the smooth solution for the values of hmin>0.3m. This can be explained by the very 

low average roughness Sa=0.027m as a result of the superfinishing process For the 

clearance values between 0.4m and 0.16m the load for the homogenised case is 

slightly higher than the smooth one as the roughness features result in the higher 

pressure values. Also the total homogenised load is equal to its hydrodynamic 

component until the value of minimum clearance becomes hmin=0.16m, which 

corresponds to the average  
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Figure 6.73 Total and contact load for the homogenised solution and load for the smooth 
solution of the tilted pad bearing problem with super finished surface roughness. The empty 
black circle denotes the configuration where the first direct asperity contact occurs. 

For the values of the minimum clearance hmin<0.16m a change in the slope of the 

hydrodynamic load/clearance curve can be observed followed by a drop. The reason 

for this change is that the most prominent surface asperities are flattened bringing 

more asperities into contact and thus increasing the total area of contact. This results 

in significant obstruction of the lubricant flow, therefore the hydrodynamic lubrication 

starts to fail and the hydrodynamic part of the load drops. The increasing contact load 

compensates for the drop in the hydrodynamic component, although the total 

homogenised load is still lower than the smooth one..  

Sequence of Figures 6.74-6.81 show the central cross section values and the contour 

plots for the pressure distribution obtained as a solution of a tilted pad bearing 

problem with smooth and homogenised rough problem. The clearance values 

considered are hmin=0.4, 0.2, 0.16 and 0.1 m. The solution of the smooth problem is 

shown dashed black, whereas the homogenised solution is shown by solid red line. The 

load carried by the contacting asperities is shown by orange dashed line. 

Figures 6.74 and 6.81 show no apparent difference between the smooth and 

homogenised rough solutions for the clearance value hmin=4.0m. As mentioned 

earlier this can be explained by the very low average roughness which has negligible 

effect on the pressure distribution. 
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Figure 6.74 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=0.4m 

  

Figure 6.75 Contour plot of the pressure distribution for (a) the smooth and (b) homogenised 

rough solutions. Minimum clearance hmin=0.4m 

For the clearance value hmin=2.0m the solutions are given in Figures 6.76 and 6.77. 

Note a slight distortion of the homogenised rough solution caused by rotation of the 

longitudinal roughness features by an angle of 30 clockwise. The load for the 

homogenised rough solution is higher than for the smooth one in this case.  
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Figure 6.76 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=0.2m 

  

Figure 6.77 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.2m 

From Figures 6.78-6.81 representing solutions for the minimum clearance hmin=0.16 

and 0.1 m it is clear that the effect of the orientation of the longitudinal features 

created by a faceting tool becomes more significant. The homogenised pressure grows 

due to increased elastic contact pressure. 
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Figure 6.78 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=0.16m 

  

Figure 6.79 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.16m 
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Figure 6.80 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=0.1m. Maximum smooth pressure value 
psmooth=200MPa. 

  

Figure 6.81 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=0.1m 
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 EDM surface 

The surface prepared by the electrical discharge machining is considered in this 

section. The roughness parameters and the details of the manufacturing process of 

such surface are explained in Chapter 5, Section 5.2.7.3. Surface roughness parameters 

are given in Table 6.7 and the surface is shown in Figures 5.67-5.69. Due to the nature 

of the manufacturing process this surface does not have a characteristic orientation of 

the roughness features. In this section it is demonstrated that rotating the surface 

which is naturally isotropic does not show any effect. 

Table 6.10 Configuration of the tilted pad bearing problem for the EDM surface 

Parameter Value Units Description 

hmin 20.0-1.0 m Minimum clearances range  

 1.25  Tilting ratio 

 30  Rotation of the roughness features (clock wise) 

L 6.0 cm Length 

W 5.0 cm Width 

 30  Orientation of the roughness features 

u 0.1 m/s Linear velocity of the counterface 

 0.8 Pa·s Viscosity of the fluid 

P0 105 Pa Atmospheric pressure 

As can be seen from Table 6.7 the roughness of the surface prepared by EDM is 

significantly higher than that of the other surfaces considered. Indeed, the highest 

peak value Sp=13.8m and the average roughness Sa=3.0m. For this reason higher 

minimum clearance values have been considered in order to illustrate the whole range 

of cases from the case of no effect of roughness to the configuration where the 

hydrodynamic lubrication fails. Also, due to the surface roughness, direct contact 

occurs for quite high clearance values. As a result it can be expected that the 

hydrodynamic part of the load would be dominated by the elastic contact part. In 

order to make a more realistic comparison the value of viscosity has been increased up 

to =0.8 Pa·s which corresponds to a high viscosity oil. The surface with such 

roughness would not normally be used in bearings, however it gives a good example of 

the naturally isotropic surface.  
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The load in terms of the mean pressure is plotted against the minimum clearance value 

hmin in Figure 6.82. The load is shown for the smooth and homogenised cases. In the 

homogenised case the hydrodynamic and elastic contact components of the load are 

also shown by separate curves. 

   

Figure 6.82 Total and contact load for the homogenised solution and load for the smooth 
solution of the tilted pad bearing problem with the surface manufactured using the EDM. 
The empty black circle denotes the configuration where the first direct asperity contact 
occurs. 

The configuration where the direct contact of the asperities occurs first is marked by 

black empty circle on the graph. The first observation that can be made concerning 

Figure 6.82 is that although first direct contact occurs for hmin=13.8m, the majority of 

the homogenised load is hydrodynamic until the minimum clearance becomes 

hmin=10m, which corresponds to the value of =3. Indeed, the total homogenised 

load curve (blue squares) overlaps the curve corresponding to the hydrodynamic load 

(purple crosses). The reason for this is that only few peaks are in contact and the 

majority of the roughness features are separated by the fluid film.. Indeed, the highest 

peak of the EDM surface is Sp=13.8m whereas the average roughness is Sa=3.0m. 

Secondly, it can be observed from Figure 6.82 that as the minimum clearance value 

decreases beyond the value hmin=10m, the total homogenised load increases due to 

the contact load component. The hydrodynamic part grows up slowly up to the 

maximum value of 65MPa for hmin=6m. For the lower values of hmin the 
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hydrodynamic component of the load drops as the contacting roughness features 

significantly obstruct the flow. 

The sequence of Figures 6.83-6.90 shows the central cross section of the pressure 

distribution obtained for smooth and homogenised solutions of the tilted pad bearing 

problem with minimum clearance values hmin=20, 14, 10 and 6m.  

The first case of the sequence shows the case of hmin=20m. There is no apparent 

effect of roughness in Figures 6.83 and 6.84.  

  

Figure 6.83 Central cross section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=20m 

  

Figure 6.84 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=20m 

The second case shown in Figures 6.84-6.85 represents the smooth and homogenised 

rough solutions for the minimum clearance value hmin=14m. The homogenised rough 

solution results in higher pressures caused by presence of the roughness, however the 

0.0

3.4

6.8

10.1

13.5

16.9

0 12 24 36 48 60

P
re

ss
u

re
/[

M
P

a]
 

X/[mm] 

Homogenised pressure Contact pressure Smooth pressure

(a) (b) 



Section 6.5 Solving the tilted pad bearing problem using the multigrid method 

234 

shape of the pressure distribution does not differ much from the smooth solution. This 

means that even though hmin is less than the higher peak value Sp=13.8m, the elastic 

load is still negligible in comparison to the hydrodynamic one. This can be explained by 

the fact that majority of the roughness features are not yet in contact.  

  

Figure 6.85 Central cross Section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=14m 

  

Figure 6.86 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=14m 

In Figures 6.87-6.88 the solutions are shown for hmin=10m. In this case the load 

carried by the contacting asperities has become higher and is shown by orange dashed 

line. It can be seen in Figure 6.87 that the elastic contact pressure is presented by a 

piece-wise linear function. This is due to linear interpolation of the mean contact 

pressure values between the values of the film thickness for which the mean contact 

pressure has been evaluated. Minor distortion of the pressure distribution shape can 
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also be seen in Figure 6.88. The reason for such distortion is that being obstructed 

more significantly in the direction to the exit of the bearing (positive x direction) the 

fluid flow is enhanced in sideways directions. 

  

Figure 6.87 Central cross Section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=10m 

  
Figure 6.88 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=10m 

In case of the minimum clearance value hmin=6m which is shown in Figures 6.89-6.90 

the contact part of the load becomes a significant part of the total load. Further 

decreasing the minimum clearance value down to hmin=6m results in the majority of 

the load being carried by the contacting asperities as can be observed in Figure 6.89. In 

this case the hydrodynamic component of the pressure is lower than the smooth case 

pressure. This value of the minimum clearance hmin=6m corresponds to the maximum 

load supported hydrodynamically. As the clearance decreases further, the obstruction 

of flow overwhelms the increase of the pressure caused by the presence of roughness.  
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Figure 6.89 Central cross Section of the pressure distribution parallel to the x axis for the 

homogenised solution. Minimum clearance hmin=6m 

  
Figure 6.90 Contour plot of the pressure distribution for (a) the smooth and (b) the 

homogenised rough solutions. Minimum clearance hmin=6m 

Note also that none of the Figures 6.83-6.90 show any effect of the oblique roughness. 

This is the result of the rough surface being naturally isotropic. Even in the case of 

contact, where the most prominent roughness features are flattened, no oblique 

effect can be observed. 

Further decrease of the clearance would result is higher total load carried mostly by 

the contacting asperities. These cases are not considered in the thesis because the 

micro-EHL effects at the individual asperities scale become more significant than the 

global effect of roughness. This means that the roughness cannot be treated in a 

homogenised way. 
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6.6 Practical guidelines on using the flow factors approach 

The homogenised Reynolds Equation approach can be applied to the plain bearing 

problem in order to take into account the average effect of roughness. The 

homogenisation of the Reynolds Equation is described in detail in Chapter 4 of this 

thesis. The necessary steps for applying of the homogenised approach to the plain 

bearing problem are summarised in the list below. 

1. Select the representative area of the working surface.  

This area must be sufficiently large to cover the characteristic roughness pattern of the 

surface while being smaller than the total area by a factor 1/100 in both x and y 

directions1. In the examples considered in this thesis it is shown that the agreement 

between the homogenised and deterministic solutions is progressively better for 

=1/16, 1/32, 1/64, and 1/128. In cases of cosine and sine waviness the representative 

area should include at least a single cosine or sine wave. For cases of measured surface 

roughness the dimensions of the measured area should be 100 times smaller than 

each of the dimensions of the total area of the tilted pad. It was shown that for the 

lower values of the minimum clearance the effect of individual asperities becomes 

overwhelming and this is not captured by the homogenised solution particularly well. 

However, in case of the measured surfaces, the representative area has multiple 

asperities, and therefore the homogenised solution can be expected to give accurate 

results for the whole range of applicability.  

2. Formulate the local problems for an appropriate sequence of the global film 

thickness values as described in Chapters 4 and 5. 

The local problems consider a nominally flat surface with periodic roughness which is 

separated from the counterface by a distance equal to the current global film thickness 

value. The range of the global film thickness values needs to be wide enough to cover 

possible global geometries. The resolution used in the formulation of the local problem 

should be sufficient to represent the roughness features well. It was shown that 

resolving the sinusoidal wave in 8 or 16 mesh elements gives different results. 

However, resolutions of 32 or 64 mesh elements per wave result in identical solutions. 

3. Perform the dry contact analysis 

                                                           
1
  is a scaling factor of the local coordinates to the global coordinates. The homogenised solution is an 

asymptotic limit of the deterministic solution when approaches to zero. See Chapter 4 for more 
details. 
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The formulated local problem considers the representative roughness function and the 

mean separation of the nominally flat surface from the counterface. The difference 

between the mean separation and the highest asperity peak of the representative 

roughness then gives the value of the elastic approach. The dry contact analysis 

presented in Chapter 3 aims to evaluate the contact pressure distribution and the 

deflected shape of the rough surface for a given elastic approach distance.  

4. Calculate the flow factors 

The procedure of calculating the flow factors is described in detail in Chapter 5. The 

local problems are solved based on the local film thickness function. In the case of 

contact the local film thickness is equal to the gap between the deflected rough 

surface and the flat rigid counterface. As a result of this procedure eight flow factors 

(aij, bij, i,j=1,2) and the elastic load carried by the contacting asperities are generated as 

functions of the global film thickness value. The number of the global film thickness 

values defined at step 2 must be sufficient for the flow factors functions to be smooth 

and differentiable. As a result of this step a table of flow factors and mean elastic 

contact pressure values for the specified sequence of the global film thickness values 

defined at step 2 is created which determines the effect of the surface asperities on 

the lubrication and contact load for a particular surface roughness. 

5. Take into account the roughness orientation  

The flow factors calculated at the step 4 consider the axes of periodicity of the 

roughness to be coincident with the direction of entrainment and direction normal to 

entrainment. The set of flow factors are modified taking into account the roughness 

orientation, which results in six flow factors Aij, Bi, i,j=1,2.  

6. Create a map of flow factors 

For the given global geometry each point (x,y) on the global mesh grid is associated 

with the flow factors values and the mean elastic contact pressure corresponding to 

the global film thickness h(x,y) at this point. Note that resolution of the global problem 

does not depend on the resolution of the local problems and needs to be sufficient to 

represent the global geometry only. As a result a map of flow factors as functions of 

the global coordinates (x,y) is created. If the value h(x,y) does not coincide with any of 

the sequence of h values specified at the step 2, then the flow factors and the mean 

elastic contact pressure at the point (x,y) are obtained using linear interpolation or 

cubic splines with respect to the sequence of h values. 
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7. Solve the homogenised Reynolds Equation 

The Reynolds Equation modified with flow factors is solved using the multigrid method 

resulting in a hydrodynamic pressure distribution. The elastic contact pressure 

obtained by means of the local dry contact analysis is added to the hydrodynamic one 

at the points, where the lubricant film is not sufficiently thick to prevent direct contact.  

6.7 Discussion 

This section concludes the results of solving the tilted pad bearing problem using 

homogenised roughness approach. First, it was found that the Gauss-Seidel iterative 

method is very inefficient in solving the Reynolds Equation for the tilted pad bearing 

problem. This was explained by the fact that the Gauss-Seidel method can quickly 

reduce the error with the wavelength of a few mesh points but requires a large 

number of iterations to reduce errors that occur at longer wavelengths. The multigrid 

method was introduced which allowed the Gauss-Seidel method to be used in order to 

reduce the error in the most efficient way by using a hierarchy of grids with different 

resolution. As a result convergence of the solution to the required accuracy was then 

achieved very quickly. It was however found that due to the complex nature of the 

method it was not possible to terminate the execution as soon as the necessary level 

of convergence has been achieved. As a result the defined number of iterations and 

correction cycles is either excessive or not sufficient. A modification of the method in 

comparison with the version given by Venner and Lubrecht was proposed in which the 

execution of the method is stopped at a certain level of refinement whereas the 

iterations at the other levels continued. This allowed the total number of cycles and 

the total execution time to be significantly reduced. 

Second, using the extruded cosine roughness of various wavelengths it was shown that 

the homogenised rough solution is an asymptotic limit of the rough solution as the size 

of the cell with representative roughness decreases. In the case of cosine or sine 

roughness a single cosine or sine wave could be used in the representative cell. The 

case of direct contact of the asperities was also considered, however the extruded 

roughness features completely block the flow of lubricant as soon as the first such 

contact occurs. The case of direct contact is therefore more relevant when the 

roughness is two dimensional. Consideration of two-dimensional sinusoidal roughness 

shows that both the hydrodynamic load and the one carried by the contacting 

asperities can then coexist. 
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Third, the effect of the oblique roughness on the lubrication has been studied. It was 

shown that the homogenised solution captures the distortion of the shape of pressure 

distribution caused by rotating of the roughness by 30 clockwise quite well. The effect 

of oblique roughness was also demonstrated for the case of two-dimensional 

sinusoidal waves. As the two dimensional roughness allows the lubricant to flow 

around the oblique roughness features, the effect of oblique roughness is reduced for 

this case in comparison to the extruded oblique roughness. The homogenised solution 

was also shown to be capable of capturing this effect. The formulae for the oblique 

flow factors were obtained by Bayada (2005) , however no published records were 

found where these formulae were applied to the measured surfaces. 

Another effect that the homogenised solution is able to predict is the ability of the 

lubricant to flow around the two dimensional roughness features. This feature was 

shown in the case of the two-dimensional sinusoidal surface and the measured 

surfaces rotated through an angle of 30. This aspect of the homogenised solution is 

driven by so called cross terms of the homogenised Reynolds Equation and the cross 

flow factors a12, a21, and b2. Note that Patir and Cheng (1978, 1979) being the first 

significant contributors to the theory of flow factors did not consider the diagonal 

terms in the Reynolds Equation. Their method therefore was limited to isotropic, pure 

transverse or pure longitudinal roughness. The importance of the cross terms in the 

homogenised Reynolds equation is widely discussed by Almqvist et al (2011). 

The deterministic solution used e.g. for validation of the homogenised method in case 

of sine or cosine roughness functions is not available for the measured surface cases 

due to a very high resolution required. Therefore it was not possible to validate the 

homogenised solution by comparison with a deterministic solution in these cases. 

However, it was shown that the homogenised solution captures any global effect of 

the roughness quite well as long as the individual effects of the asperities do not 

dominate.  

Finally three surfaces measured using a Taylor-Hobson profilometer were considered. 

The results of the analysis conducted for the range of are summarised in Figures 

6.91-6.93 where total load and contributions of hydrodynamic pressure and contact 

pressure are plotted against the value of relative gap, Λ, for all three surfaces 

considered. Scaling the minimum gap hmin with respect to the roughness of the surface 

allows the effect of different types of roughness profiles on the mixed lubrication to be 
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compared on the same chart. It can be seen from Figure 6.91 that in all three cases the 

total load behaves in the same way for the values of Λ>3. In the case of Λ<3 the 

differences between the three surfaces considered become apparent. The values of 

Λ<3 correspond to the condition where the contribution of the load carried by the 

contacting asperities becomes comparable to the total load. This fact can be confirmed 

by the contact pressure contribution shown in Figure 6.92. The hydrodynamic pressure 

contribution is shown in Figure 6.93. It can be seen that the hydrodynamic load first 

increases in the presence of roughness and then decreases for the lower minimum 

clearance values. The maximum value of the hydrodynamic load is reached when some 

of the asperities are in direct contact while the major part of the surface is still 

separated from the counterface. This means that the highest load is carried by the 

bearing operating in a mixed lubrication regime.  

 

Figure 6.91 Total load expressed by means of average pressure plotted against the relative 
gap, Λ, for all three surfaces considered: Axially ground (square markers), Superfinished 
reground (diamond markers), prepared by EDM (circular markers). The case of first direct 
contact is denoted by corresponding solid markers.  

The elastic and perfectly plastic deflection obtained by means of the dry contact 

analysis is taken into account at the stage of evaluation of the flow factors. The dry 

contact analysis is based on the assumption of periodic roughness and differential 

formulation of the deflection. It was shown in Chapter 3 that the predictions of the 

analysis method developed are quite accurate as long as the contact is mostly elastic 

and the zones of plastic deflection are isolated. Therefore the applicability of the 

homogenised method is limited to the cases of mixed lubrication, where the majority 

of the load is hydrodynamic with occasional contacts of the most prominent surface 
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asperities. Bobach et al (2012) presented a model for the EHL contact incorporating 

the roughness effects by means of flow factors. It can be seen that their results do not 

reflect the micro-EHL effects observed by e.g. Evans et al (2012), who presented a 

deterministic solution to the problem. From this it can be concluded that the 

homogenised method is inefficient in the cases where the micro-EHL effects are 

dominant. 

  

Figure 6.92 Contact pressure contribution to the total load plotted against the relative gap, 
Λ, for all three surfaces considered: Axially ground (square markers), Superfinished reground 
(diamond markers), prepared by EDM (circular markers).  

  

Figure 6.93 Hydrodynamic contribution to the total load plotted against the relative gap, Λ, 
for all three surfaces considered: Axially ground (square markers), Superfinished reground 
(diamond markers), prepared by EDM (circular markers). The case of first direct contact is 
denoted by corresponding solid markers. 
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7. Conclusions and potential developments 

7.1. Elastic properties of the porous materials 

1. In approximating pores in the material as isolated spheres, it was shown that the 

total volume of pores is the governing parameter for evaluating the effective elastic 

properties, while the statistical distribution of pores by size has only a second order 

effect.  

2. The model based on isolated spherical pores shows quite accurate results for a 

number of porous materials, such as titanium foam, porous glass and sandstone. The 

model does not require significant improvements as long as it is applied to materials 

such as these, where pores can be considered isolated and roughly spherical, as can be 

seen, for example, in the cross section of titanium foam material in Figure 2.5. 

3. The elastic properties of porous materials prepared by sintering have been shown 

to disagree with predictions given by the model based on isolated spherical pores. This 

is explained by the fact that such materials have much more complex structure of 

pores as can be appreciated from Figure 2.9, for example.  

4. A better fit of the predictions to the data on sintered material has been achieved 

by considering randomly oriented elliptical pores. The amount of elliptical pores and 

their sizes were evaluated using the probability that two spherical pores merge. This 

model can be potentially developed further by assuming agglomerates of three of 

more merged pores. This development however requires a complicated analysis of the 

merging probabilities and further knowledge regarding the effect of various spatial 

configurations of merged pores on the elastic properties of the porous material. 

5. A concept of damaged material has been introduced into the model for predicting 

the effective elastic properties. It was assumed that complex interconnected 

structures of pores, also called open pores, do not carry any load. Firstly, the effective 

characteristics of the material with isolated spherical and elliptical pores were 

evaluated as described earlier. The obtained values were then multiplied by an 

integrity factor which is the volume fraction of the material capable of carrying the 

load, i.e. excluding the volume occupied by open pores. 
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6. The value of the integrity factor has been established using a curve fitting function 

based on the available open porosity data from the literature and from the 

manufacturer of porous bearings.  

7. A model combining the effect of elliptical pores as well as the reduction of load 

carrying capacity caused by open pores was presented in Section 2.8. It was shown 

that with the appropriate choice of the integrity factor function the combined model 

agrees well with the available experimental data on sintered materials.  

8. The elastic properties of porous materials are highly dependent on the type of 

pores that they contain, and thus on the manufacturing process. A detailed analysis of 

the material’s porous microstructure is therefore required for selecting the 

appropriate model and establishing the integrity factor function. 

9.  Another potential development of the model would be to consider constructing a 

porous material by adding spherical grains of the host material of decreasing size into a 

fictitious medium. The fictitious medium would then be removed from the material 

and pores would be modelled as the resulting voids between the grains. This might be 

regarded as a more natural approximation of a material prepared by sintering. 

7.2. Dry contact analysis 

A method of dry contact analysis based on the differential deflection originally 

developed by Evans and Hughes (2000) is developed. The differential formulation of 

the deflection allows the effect of pressure to be more localised which results in a 

faster and more stable convergence of the problem. 

Plasticity is incorporated into the model by limiting the maximum value of the elastic 

pressure to a value Pmax nominally equal to the hardness value of the material. Once 

the maximum value is reached the further deformation is assumed to be plastic. This 

simple plastic model does not take the subsurface plasticity into account and therefore 

the change of surface height due to plastic deflection can only occur at the points 

where the pressure values are equal to Pmax. 

Convolution integrals involved in calculating the deflection and differential deflection 

are evaluated using the Fourier convolution theorem. Aliasing occurring as a result of 

using the circular convolution is exploited to represent a contact problem of a 

periodically repeated rough surface. Periodic boundary conditions are set.  
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1. In the case of pure elastic deformations the developed method was found to be in 

excellent agreement with the closed form solution developed by Westergaard (1937) 

for extruded sinusoidal waviness, as shown in Figure 3.9. 

2.  The results of the method developed are compared with those obtained using 

two-dimensional FE plane strain analysis of the dry contact of extruded rough surface. 

Comparison was based on load, contact area and free surface volume values evaluated 

by both methods for five load cases as well as pressure, gap and residual deflection 

distributions for high and low load cases. Perfect plasticity was considered in the FE 

analysis and von Mises criterion was used. In the case of lower loads a good agreement 

of the pressure, gap and residual deflection distributions can be observed in Figures 

3.20 and 3.22. For the higher load case a minor discrepancy of the deformed gap can 

be observed in Figure 3.21. This is explained by the fact that higher loads result in 

upwelling of the material surrounding the high pressure zones which is not accounted 

for in the simple plasticity model incorporated in the developed dry contact analysis 

method. This can be confirmed by Figure 3.23 where the residual deflection is shown 

obtained by the developed method and by FEA. It can be seen in Figure 3.23 that the 

relative plastic deformation at the points of high pressures is captured quite well by 

the method developed, however the negative values of the plastic deformation 

corresponding to the upwelling of the material are not captured. 

3. The method developed was also compared with the results of a full three 

dimensional FEA conducted by Yastrebov et al (2011). The comparison was based on 

the load, contact area and free surface volume values obtained for a sequence of 

penetration distances. The contours of the contact zones were also compared. 

Comparison showed that with the appropriate choice of the limiting pressure value 

Pmax=2.6 GPa the agreement of the load to contact area relationship is achieved (see 

Figure 3.28). The contours of the contact zones also agree very well as can be seen in 

Figure 3.30. This value of Pmax however results in the free surface volume being 

underestimated by 10%. This disagreement can be explained by the fact that as the 

penetration increases, the subsurface plastic flow and corresponding upwelling of the 

material allow the contact area required for supporting the load to be achieved 

without further reduction of the depth of the valleys. This explanation can also be 

supported by Figure 3.21, where contact zones evaluated by both methods are the 

same, whereas the depth of the valleys is lower when evaluated using the method 

developed. 
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4.  The inaccuracy of the deformed gap obtained by the method developed is 

considered acceptable in application to the mixed lubrication analysis. The method 

benefits significantly in terms of time and the computational resources required. In the 

case of extruded roughness the developed method is approximately 60-80 times faster 

than line contact FEA conducted on Intel i3 32bit 2GB RAM machine. Note that method 

was developed for analysis of two dimensional roughness problems. In the case of 

extruded roughness it can be easily modified to solve the one-dimensional roughness 

problem even faster. In the case of two-dimensional roughness (three dimensional 

contact problem) the time difference for one load case is 10 minutes on Intel i3 laptop 

against one hour on a high performance parallel computing unit (8 bi-core processors 

Intel Xeon X5550 2.67 GHz, 160Gb RAM). 

5. Potential developments of the model include evaluating the plastic deformation in 

the zones adjacent to the high pressure points as a function which has positive values 

at the high pressure points and negative at the neighbouring points corresponding to 

the upwelling of the material.  

7.3. Evaluation of the flow factors 

Chapters 4 and 5 present a theory and method for incorporating the effect of surface 

roughness in mixed lubrication problems into the classical isoviscous Reynolds’ 

equation for smooth surfaces. This is achieved by means of flow factors, which modify 

both Poiseuille and Couette flow terms. Also, cross derivative terms are added into the 

Reynolds’ equation to account for additional flow caused by the presence of roughness 

features. Flow factors are functions of the surface roughness and the nominal surface 

separation corresponding to the geometry of the problem. Flow factors are obtained 

as the solutions of local problems, assuming parallel nominally flat rough surfaces with 

periodic roughness. 

1. An algorithm for solving the local problems numerically was developed and 

validated using the closed form analytical solution obtained by the author for the case 

of extruded sinusoidal waviness.  

2. Flow factors evaluated numerically for the extruded sinusoidal waviness were 

validated using the analytical expressions for such flow factors obtained by Bayada 

(2005), see Figures 5.24 and 5.27. 
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3. The case of extruded sinusoidal waviness in contact was considered. It was shown 

that the flow factors reflect the complete blockage of flow in the direction accross the 

extruded features and the enhancement of flow of the trapped fluid along the 

extruded features, see Figures 5.24-5.28. 

4. The effect of oblique roughness was studied using the formulae obtained by 

Bayada (2005). The evolution of the flow factors values for extruded sinusoidal 

roughness was shown as the rotation of the extrusion direction relative to the 

entrainment direction varies from 0° to 90°, as shown in Figures 5.36-5.41.  

5. Flow factors for two-dimensional sinusoidal waviness were evaluated. It was 

shown that the effect of the oblique features gradually decreases in progressing from 

the case of extruded roughness features down to isotropic features such as double 

sinusoidal waviness with equal wavelength in both x and y directions, as shown in 

Figures 5.45-5.50.  

6. In the case of two dimensional sinusoidal roughness it was also shown that the 

flow is not completely blocked as a result of the direct asperity contact. 

7. The effect of uniform stretching of the representative roughness area on the flow 

factors was studied. It was shown that as long as the original surface asperities do not 

experience plastic contact, stretching of the surface equally in both directions does not 

affect the calculation of the flow factors. For the case of no contact this was also 

confirmed analytically. In case of elastic contact the deformed shape of the stretched 

surface can be obtained by stretching the deformed original surface equally in both x 

and y directions. The original asperities have lower radii of curvature than the 

stretched ones therefore the original surface experiences higher contact pressures for 

the same penetration distance. The mean pressure experienced by the original surface 

is then higher by a factor of stretching. However, if the asperities of the original 

surface experience plastic pressures, and the stretched ones do not, then the flow 

factors are different. This can be observed in Figures 5.52-5.55. 

8. Flow factors for three rough surfaces measured by a profilometer were evaluated. 

The surfaces considered were those of an axially ground disk (AG), superfinished 

circumferentially ground disk (SF), and a surface prepared by the electircal discharge 

machining (EDM) method. The flow factors of the AG surface illustrate behaviour 

similar to those of a surface with roughness extruded across the direction of 
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entrainment. This is explained by the extruded marks left by an abrasive wheel during 

the grinding process across the direction of entrainment. The flow factors calculated 

for the SF surface reflect the effect of superfinishing as well as the effect of 

circumferential marks occurred as a result of regrinding. Finally, the flow factors for 

EDM surface demonstrate behaviour similar to that of an isotropic surface roughness. 

This is due to the random nature of the roughness features created by the EDM 

process. 

7.4. Mixed lubrication analysis based on the theory of flow factors 

1. In Chapter 6 a problem of the lubrication of a single inclined pad is formulated and 

solved using the Gauss-Seidel iterative method. It was shown that the Gauss-Seidel 

method converges quickly if the error is of a low wavelength such as occurs in the 

presence of the roughness features, for example. At the same time the Gauss-Seidel 

method is very slow in resolving the error corresponding to the waviness features and 

to the global geometry of the problem. For this reason a multigrid method was used to 

solve the problem of mixed lubrication of an inclined pad with a rough surface. 

2. The multigrid method was shown to be effective in solving the problem of 

lubrication of inclined pad with smooth, deterministic rough surface and roughness 

incorporated by means of the flow factors. A modification to the multigrid method 

described by Venner and Lubrecht (2000) was introduced which improved the 

convergence speed of the method as shown in Figures 6.23-6.25. 

3. The problem of representing the roughness on the coarser grids was discussed. It 

was found that starting from a certain level the resolution of the coarse grids is not 

high enough to represent the roughness correctly. This significantly reduces the 

stability of the convergence process and may cause incorrect results. It was proposed 

to consider only the global geometry of the problem at the coarse grids which are 

incapable of representing the roughness correctly.  

4. Using extruded cosine waviness it was shown that the deterministic roughness 

solution approaches the homogenised solution as the wavelength of the individual 

roughness features decreases. It can be concluded that the method based on the flow 

factors is accurate as long as contribution of individual asperities does not overwhelm 

the global effect of roughness on the flow of lubricant. This can be achieved by 

ensuring that the tangential dimensions of the individual roughness features are at 
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least 100 times smaller than the dimensions of the global problem, which is easily 

realised when solving real roughness problems. 

5. The mixed lubrication modelling method based on the theory of flow factors is 

capable of capturing the effect of the roughness orientation, as shown in figures 

6.39-6.47. 

6. The effect of non isotropic roughness features on the flow of lubricant was studied 

in Section 5.2.5 by means of the flow factors. Non isotropic features increase the flow 

of lubricant in the direction of their longer side. This behaviour was also observed in 

Section 6.5.6, where the effect of oblique roughness on the flow was significantly 

reduced for two dimensional features in comparison to extruded ones. 

7. Three measured rough surfaces were considered and it was shown that all three 

surfaces have the maximum value of the load carried hydrodynamically when 

operating in mixed lubrication regime.  

8. Considering the fact that direct asperity contact was incorporated into the 

lubrication model by means of the dry contact analysis for the specified nominal gap, it 

can be concluded that the model developed is applicable to the mixed lubrication 

analysis, where the majority of the load is carried by the lubricant with only occasional 

direct asperity contacts occurring. 

9. The method based on the flow factors is significantly faster than those based on 

deterministic roughness due to a very high computational resources required for the 

latter.  

10. A potential improvement of the method would be to introduce the dependence of 

the density and the viscosity of the lubricant on the pressure. This can be achieved by 

considering the incompressible isoviscous problem at the local scale when calculating 

the flow factors, while varying the viscosity and density values according to the 

pressures when solving the global homogenised problem.  
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Appendices 

Appendix A Evaluating the integral of (a+cost)-3 

In this appendix the integral of a function 𝑓 𝑡 =  𝑎 + cos𝑡 −3 is evaluated 

analytically. The analytical expression for this function is used in solving the local 

problems and calculating the flow factors for a surface with extruded cosine roughness 

profile.  

The function h is equal to: 

ℎ 𝑡 = 𝑎 + cos𝑡 

which corresponds to the extruded cosine wave with the mean line a and amplitude 

equal to 1. Mathematically a is an arbitrary constant, however the physical implication 

dictates it to be greater or equal than the amplutitude so that the total gap remains 

positive. 

The aim of this section is to calculated the integral 

𝐹 𝑥 =  
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

0

 

(A.1) 

A.1 The integration by substitution 

First the integration by substitution rule is used1:  

 
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

0

=  
𝑧 = tan

𝑡

2

𝑑𝑡 = 2cos2
𝑡

2
𝑑𝑧

 =  
2cos2 𝑡

2
𝑑𝑧

 𝑎 + cos𝑡 3

𝑥

0

=

 
 
 
 cos2𝑡 =

1 − tan2𝑡

1 + tan2𝑡

cos2𝑡 =
1

1 + tan2𝑡 
 
 
 

=

 
2

1

1+𝑧2 𝑑𝑧

 𝑎 +
1−𝑧2

1+𝑧2 
3

tan
𝑥

2

0

=  
2 1 + 𝑧2 2𝑑𝑧

 1 + 𝑧2 3  𝑎 +
1−𝑧2

1+𝑧2 
3

tan
𝑥

2

0

=  
2 1 + 𝑧2 2𝑑𝑧

 𝑎 1 + 𝑧2 + 1 − 𝑧2 3

tan
𝑥

2

0

 

(A.2) 

Note, that the integration by substitution is applicable only where the substitution 

function is continuous and has a continuous derivative. Function 𝑧 = tan
𝑡

2
 satisfies 

this condition only piece-wise. Indeed, 

𝑧 = tan
𝑡

2
= ±∞ ⇔

𝑡

2
=

𝜋

2
+ 𝜋𝑘 ⇔ 𝑡 = 𝜋 2𝑘 + 1 ,    𝑘 ∈ ℤ 

                                                             
1
 The expressions in square brackets denote the conditions used in the sequence of equalities 
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Therefore, the substitution is applicable on the set of subitnervals where the function 

𝑧 = tan
𝑡

2
 is continuous and differentiatable: 

𝑡 ∈  0, 𝑥 =  0, 𝜋    
𝜋

∪  𝜋, 3𝜋 ∪  3𝜋, 5𝜋 ∪ …∪   2𝑛 − 1 𝜋,  2𝑛 + 1 𝜋                                  
2𝑛𝜋

∪   2𝑛 + 1 𝜋, 𝑥  

(A.3) 

The interval (A.3) is illustrated in Figure A.1. The value of n is a number of full periods 

of the tangential function in the interval [0,x].If the value of x corresponds to the 

position x0 in Figure A.1 then n=-1, otherwise n>=0 and is defined as2: 

𝑛 =  
 𝑥 − 𝜋 

2𝜋
  

(A.4) 

 

Fig. A.1 The substitution function 𝒛 = 𝐭𝐚𝐧
𝒕

𝟐
and sub intervals of the interval [0,x] where it is 

continuous and differentiable 

The integral (A.1) is then equal to a summation of integrals defined on the sequence of 

sub intervals where the integration by substitution is applicable: 

 
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

0

=

 
𝑑𝑡

 𝑎 + cos𝑡 3

𝜋−𝜀

0

+  
𝑑𝑡

 𝑎 + cos𝑡 3

3𝜋−𝜀

𝜋+𝜀

+ ⋯ +  
𝑑𝑡

 𝑎 + cos𝑡 3

 2𝑛+1 𝜋−𝜀

 2𝑛−1 𝜋+𝜀

+  
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

 2𝑛+1 𝜋+𝜀

 

(A.5) 

with  being sufficiently small this equality is correct. 

                                                             
22

 The operation   𝑥   denotes rounding real number x down to the nearest integer  
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From now on when mentioning the integral (A.1) the definition (A.5) is actually used. 

A.2 Integral of the rational functions 

The integral (A.2) can be presented as a combination of integrals of rational functions: 

2 1 + 𝑧2 2

  𝑎 − 1 𝑧2 + 𝑎 + 1 3

=
𝐴𝑧 + 𝐵

  𝑎 − 1 𝑧2 + 𝑎 + 1 3
+

𝐶𝑧 + 𝐷

  𝑎 − 1 𝑧2 + 𝑎 + 1 2
+

𝐸𝑧 + 𝐹

  𝑎 − 1 𝑧2 + 𝑎 + 1 
 

Bringing the terms to the common denominator: 

2 1 + 𝑧2 2 = 𝐴𝑧 + 𝐵 +  𝐶𝑧 + 𝐷   𝑎 − 1 𝑧2 + 𝑎 + 1 
+  𝐸𝑧 + 𝐹   𝑎 − 1 𝑧2 + 𝑎 + 1 2 

Equating the coefficients for the powers of z lead to the following system: 

 
  
 

  
 

1: 2 = 𝐵 + 𝐷 𝑎 + 1 + 𝐹 𝑎 + 1 2

𝑧: 0 = 𝐴 + 𝐶 𝑎 + 1 + 𝐸 𝑎 + 1 2

𝑧2: 4 = 𝐷 𝑎 − 1 + 2𝐹 𝑎2 − 1 

𝑧3: 0 = 𝐶 𝑎 − 1 + 2𝐸 𝑎2 − 1 

𝑧4: 2 = 𝐹 𝑎 − 1 2

𝑧5: 0 = 𝐸 𝑎 − 1 2

  

by solving the system we obtain: 

2 1 + 𝑧2 2

  𝑎 − 1 𝑧2 + 𝑎 + 1 3
= 

 
8

 𝑎−1 2
 

   𝑎 − 1 𝑧2 + 𝑎 + 1 3
+

 
−8

 𝑎−1 2
 

  𝑎 − 1 𝑧2 + 𝑎 + 1 2
+

2

 𝑎−1 2

  𝑎 − 1 𝑧2 + 𝑎 + 1 
= 

 
8

 𝑎 − 1 5
 

1

 𝑧2 +
 𝑎+1 

 𝑎−1 
 

3 +  
−8

 𝑎 − 1 4
 

1

 𝑧2 +
 𝑎+1 

 𝑎−1 
 

2 +
2

 𝑎 − 1 3

1

 𝑧2 +
 𝑎+1 

 𝑎−1 
 
 

Let us adopt the following notations: 

𝑃 =
8

 𝑎 − 1 5
    𝑄 =

−8

 𝑎 − 1 4
    𝑅 =

2

 𝑎 − 1 3
    𝑚2 =  

𝑎 + 1

𝑎 − 1
  

(A.6) 

With this notations the integral (A.1) yields:  

𝐹 𝑧 =  
2 1 + 𝑧2 2𝑑𝑧

  𝑎 − 1 𝑧2 + 𝑎 + 1 3
=  

𝑃𝑑𝑧

 𝑧2 + 𝑚2 3
+  

𝑄𝑑𝑧

 𝑧2 + 𝑚2 2
+  

𝑅𝑑𝑧

 𝑧2 + 𝑚2 
 

(A.7) 
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The integrals of the rational functions above  are calculated using the following 

formulae: 

 
𝑅𝑑𝑧

 𝑧2 + 𝑚2 
= 𝑅

1

𝑚
arctan

𝑧

𝑚

 
𝑄𝑑𝑧

 𝑧2 + 𝑚2 2
= 𝑄

𝑧

2𝑚2 𝑧2 + 𝑚2 
+ 𝑄

1

2𝑚2

1

𝑚
arctan

𝑧

𝑚

 
𝑃𝑑𝑧

 𝑧2 + 𝑚2 3
= 𝑃

𝑧

4𝑚2 𝑧2 + 𝑚2 2
+ 𝑃

3

4𝑚2
 

𝑧

2𝑚2 𝑧2 + 𝑚2 
+

1

2𝑚3
arctan

𝑧

𝑚
 

 

(A.8) 

Note that these solutions are applicable for  
𝑎+1

𝑎−1
 > 0 which creates a restiction on a 

to be strictly greater than 1 or lower than -1. The values a>1 only will be considered, as 

the physical meaning of such choice is that the gap between the surfaces is positive 

and no contact occurs.  

The integral (A.7),(A.1) is then  

𝐹 𝑧 =

 
 

 𝑅
1

𝑚
arctan

𝑧

𝑚
+ 𝑄

𝑧

2𝑚2 𝑧2 + 𝑚2 
+ 𝑄

1

2𝑚2

1

𝑚
arctan

𝑧

𝑚
+

𝑃
𝑧

4𝑚2 𝑧2 + 𝑚2 2
+ 𝑃

3

4𝑚2
 

𝑧

2𝑚2 𝑧2 + 𝑚2 
+

1

2𝑚3
arctan

𝑧

𝑚
 
 
 

 

 

Rearranging the terms in the right hand side: 

𝐹 𝑧 =  
𝑅

𝑚
+

1

2𝑚2

𝑄

𝑚
+

3

4𝑚2

𝑃

2𝑚3
 

                 
𝐹1

arctan
𝑧

𝑚
+  𝑄 +

3𝑃

4𝑚2
 

1

2𝑚2           
𝐹2

𝑧

 𝑧2 + 𝑚2 
+

𝑃

4𝑚2 
𝐹3

𝑧

 𝑧2 + 𝑚2 2
= 𝐹1arctan

𝑧

𝑚
+ 𝐹2

𝑧

 𝑧2 + 𝑚2 
+ 𝐹3

𝑧

 𝑧2 + 𝑚2 2

 

(A.9) 

The coefficients F1, F2, F3 identified in equation (A.9) are calculated as follows: 

𝐹1 =
2

 𝑎 − 1 3
 
𝑎 − 1

𝑎 + 1
−

8

2 𝑎 − 1 4
  

𝑎 − 1

𝑎 + 1
 

3

+
8

 𝑎 − 1 5

3

8
  

𝑎 − 1

𝑎 + 1
 

5

=

2

 𝑎 − 1 2.5 𝑎 + 1 0.5
−

4

 𝑎 − 1 2.5 𝑎 + 1 1.5
+

3

 𝑎 − 1 2.5 𝑎 + 1 2.5
=

2 𝑎 + 1 2 − 4 𝑎 + 1 + 3

 𝑎 − 1 2.5 𝑎 + 1 2.5
=

2𝑎2 + 4𝑎 + 2 − 4𝑎 − 4 + 3

 𝑎 − 1 2.5 𝑎 + 1 2.5
=

2𝑎2 + 1

 𝑎 − 1 2.5 𝑎 + 1 2.5

 

𝐹2 = −
8

2 𝑎 − 1 4
 
𝑎 − 1

𝑎 + 1
 +

8

 𝑎 − 1 5

3

8
 
𝑎 − 1

𝑎 + 1
 

2

=

−
4

 𝑎 − 1 3 𝑎 + 1 
+

3

 𝑎 − 1 3 𝑎 + 1 2
=

−4 𝑎 + 1 + 3

 𝑎 − 1 3 𝑎 + 1 2
=

−4𝑎 − 1

 𝑎 − 1 3 𝑎 + 1 2
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𝐹3 =
8

4 𝑎 − 1 5
 
𝑎 − 1

𝑎 + 1
 =

2

 𝑎 − 1 4 𝑎 + 1 
 

(A.10) 

A.3 Calculating the definite integral on the interval [0,x] 

Using the indefinite integral F(z) obtained in the previous section the expression for 

the definite integral (A.1) on the interval [0,x] can be written as: 

 
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

0

= 𝐹 𝑧 =  𝐹1arctan
𝑧

𝑚
+ 𝐹2

𝑧

 𝑧2 + 𝑚2 
+ 𝐹3

𝑧

 𝑧2 + 𝑚2 2
 

0

tan
𝑥

2
 

However, bearing in mind the modification (A.5) which is a necessary condition for the 

integration by substitution to be valid 

 
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

0

=

 
𝑑𝑡

 𝑎 + cos𝑡 3

𝜋−𝜀

0

+  
𝑑𝑡

 𝑎 + cos𝑡 3

3𝜋−𝜀

𝜋+𝜀

+ ⋯ +  
𝑑𝑡

 𝑎 + cos𝑡 3

 2𝑛+1 𝜋−𝜀

 2𝑛−1 𝜋+𝜀

+  
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

 2𝑛+1 𝜋+𝜀

=

=  𝐹 𝑧  0
+∞ + 𝑛 𝐹 𝑧  −∞

+∞ +  𝐹 𝑧  −∞

tan
𝑥

2 =  𝑛 + 1  𝐹 𝑧  −∞
+∞ +  𝐹 𝑧  0

tan
𝑥

2

 

(A.11) 

Now calculate the values of F(z) for z=±∞ and z=0: 

𝐹 +∞ = lim
𝑧→+∞

 𝐹1arctan
𝑧

𝑚
+ 𝐹2

1

 𝑧 +
𝑚2

𝑧
 

+ 𝐹3

1

 𝑧3 + 2𝑧𝑚2 +
𝑚4

𝑧
 
 = 𝐹1

𝜋

2
 

𝐹 −∞ = lim
𝑧→−∞

 𝐹1arctan
𝑧

𝑚
+ 𝐹2

1

 𝑧 +
𝑚2

𝑧
 

+ 𝐹3

1

 𝑧3 + 2𝑧𝑚2 +
𝑚4

𝑧
 
 = −𝐹1

𝜋

2
 

The values for arctan(z) at z=±∞ are selected so that  𝐹 𝑧  −∞
+∞  covers the whole 

period of 𝑧 = tan
𝑡

2
function. 

𝐹 0 =  𝐹1arctan
𝑧

𝑚
+ 𝐹2

𝑧

 𝑧2 + 𝑚2 
+ 𝐹3

𝑧

 𝑧2 + 𝑚2 2
 = 0 

Therefore, the final formula for the integral (A.1) is:  

 
𝑑𝑡

 𝑎 + cos𝑡 3

𝑥

0

=  𝑛 + 1  𝐹 𝑧  −∞
+∞ +  𝐹 𝑧  0

tan
𝑥

2 =

 𝑛 + 1 𝜋𝐹1 + 𝐹1arctan
tan𝑥/2

𝑚
+ 𝐹2

tan𝑥/2

 tan2𝑥/2 + 𝑚2 
+ 𝐹3

𝑡an𝑥/2

 tan2𝑥/2 + 𝑚2 2

 

(A.12) 

where F1, F2, F3 are defined by (A.10) and 𝑚2 =  
𝑎+1

𝑎−1
 . 
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Appendix B Evaluating the integral of (a+cost)-2 

In this appendix the integral of a function 𝑓 𝑡 =  𝑎 + cos𝑡 −2 is evaluated 

analytically. The same approach is used as in Appendix A therefore some of the 

calculations are omitted.  

The function h equal to: 

ℎ 𝑡 = 𝑎 + cos𝑡 

corresponds to the extruded cosine wave with the mean line a and amplitude equal to 

1. The aim of this section is to calculated the integral 

𝐺 𝑥 =  
𝑑𝑡

 𝑎 + cos𝑡 2

𝑥

0

 

(B.1) 

B.1 The integration by substitution 

Same susbstitution function𝑧 = tan
𝑡

2
is used as in Appendix A: 

 

 
𝑑𝑡

 𝑎+cos 𝑡 2

𝑥

0
=  

𝑧 = tan
𝑡

2

𝑑𝑡 = 2cos2 𝑡

2
𝑑𝑧

 =  
2co s2𝑡

2
𝑑𝑧

 𝑎+cos 𝑡 2

𝑥

0
=  

cos2𝑡 =
1−ta n2𝑡

1+ta n2𝑡

cos2𝑡 =
1

1+ta n2𝑡

 =

 
2

1

1+𝑧2𝑑𝑧

 𝑎+
1−𝑧2

1+𝑧2 
2

tan
𝑥

2
0

=  
2 1+𝑧2 𝑑𝑧

 1+𝑧2 2 𝑎+
1−𝑧2

1+𝑧2 
2

tan
𝑥

2
0

=  
2 1+𝑧2 𝑑𝑧

 𝑎 1+𝑧2 +1−𝑧2 2

tan
𝑥

2
0

 

(B.2) 

The similar piece-wise integration technique is applied, using the sequence of sub 

intervals where the function 𝑧 = tan
𝑡

2
 is continuous and differentiatable: 

𝑡 ∈  0, 𝑥 =  0, 𝜋    
𝜋

∪  𝜋, 3𝜋 ∪  3𝜋, 5𝜋 ∪ …∪   2𝑛 − 1 𝜋,  2𝑛 + 1 𝜋                                  
2𝑛𝜋

∪   2𝑛 + 1 𝜋, 𝑥  
(B.3) 

The interval (B.3) is illustrated on the Fig. A.1 and the value of n is given by (A.4). 

B.2 Integral of the rational functions 

The integral (B.2) can be presented as a combination of integrals of rational functions: 

2 1 + 𝑧2 

  𝑎 − 1 𝑧2 + 𝑎 + 1 2
=

𝐴𝑧 + 𝐵

  𝑎 − 1 𝑧2 + 𝑎 + 1 2
+

𝐶𝑧 + 𝐷

  𝑎 − 1 𝑧2 + 𝑎 + 1 
 

Bringing the terms to the common denominator: 

2 1 + 𝑧2 = 𝐴𝑧 + 𝐵 +  𝐶𝑧 + 𝐷   𝑎 − 1 𝑧2 + 𝑎 + 1  
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Equating the coefficients for the powers of z lead to the following system: 

 
 

 
1: 2 = 𝐵 + 𝐷 𝑎 + 1 

𝑧: 0 = 𝐴 + 𝐶 𝑎 + 1 

𝑧2: 2 = 𝐷 𝑎 − 1 

𝑧3: 0 = 𝐶 𝑎 − 1 

 ⇔

 
 
 

 
 
𝐶 = 0

𝐷 =
2

 𝑎 − 1 
𝐴 = 0

𝐵 = 2 −
2 𝑎 + 1 

 𝑎 − 1 
=

2 𝑎 − 1 − 2 𝑎 + 1 

 𝑎 − 1 
=

−4

 𝑎 − 1 

  

Therefore,  

2 1 + 𝑧2 

  𝑎 − 1 𝑧2 + 𝑎 + 1 2
=

−4

 𝑎 − 1 

1

  𝑎 − 1 𝑧2 + 𝑎 + 1 2
+

2

 𝑎 − 1 

1

  𝑎 − 1 𝑧2 + 𝑎 + 1 
=

−4

 𝑎 − 1 3

1

 𝑧2 +  
𝑎+1

𝑎−1
  

2 +
2

 𝑎 − 1 2

1

 𝑧2 +  
𝑎+1

𝑎−1
  

 

The  integral (B.1) then yields:  

𝐺 𝑧 =  
2 1 + 𝑧2 𝑑𝑧

  𝑎 − 1 𝑧2 + 𝑎 + 1 2
=

−4

 𝑎 − 1 3
 

𝑑𝑧

 𝑧2 + 𝑚2 2
+

2

 𝑎 − 1 2
 

𝑑𝑧

 𝑧2 + 𝑚2 
 

(B.4) 

where 𝑚2 =  
𝑎+1

𝑎−1
  as in Appendix A and again the restiction of a>1 applies. 

Using the formulae for the anti-derivatives of the rational functions  (A.8) the integral 

(B.4) and is then  

𝐺 𝑧 =  
2

 𝑎 − 1 2

1

𝑚
arctan

𝑧

𝑚
−

4

 𝑎 − 1 3

𝑧

2𝑚2 𝑧2 + 𝑚2 

−
4

 𝑎 − 1 3

1

2𝑚2

1

𝑚
arctan

𝑧

𝑚
  

Substituting the expression for m: 

𝐺 𝑧 =

 
2

 𝑎 − 1 2
 
𝑎 − 1

𝑎 + 1
−

4

 𝑎 − 1 3

1

2
 
𝑎 − 1

𝑎 + 1
 
𝑎 − 1

𝑎 + 1
  arctan

𝑧

𝑚
−

4

 𝑎 − 1 3
 
𝑎 − 1

𝑎 + 1
 

𝑧

2 𝑧2 + 𝑚2 
=

 
2

 𝑎 − 1 1.5 𝑎 + 1 0.5
−

2

 𝑎 − 1 1.5 𝑎 + 1 1.5
 arctan

𝑧

𝑚
−

2

 𝑎 − 1 2 𝑎 + 1 

𝑧

 𝑧2 + 𝑚2 
=

2𝑎

 𝑎 − 1 1.5 𝑎 + 1 1.5             
𝐺1

arctan
𝑧

𝑚
−

2

 𝑎 − 1 2 𝑎 + 1            
𝐺2

𝑧

 𝑧2 + 𝑚2 
= 𝐺1arctan

𝑧

𝑚
− 𝐺2

𝑧

 𝑧2 + 𝑚2 

 

(B.5) 

The coefficients G1, G2 identified in equation (B.5) are then: 

𝐺1 =
2𝑎

 𝑎 − 1 1.5 𝑎 + 1 1.5
;     𝐺2 =

2

 𝑎 − 1 2 𝑎 + 1 
 

(B.6) 
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B.3 Calculating the definite integral on the interval [0,x] 

Using the indefinite integral G(z) obtained in the previous section the expression for 

the definite integral (B.1) on the interval [0,x] can be written as: 

 
𝑑𝑡

 𝑎 + cos𝑡 2

𝑥

0

= 𝐺 𝑧 =  𝐺1arctan
𝑧

𝑚
− 𝐺2

𝑧

 𝑧2 + 𝑚2 
 

0

tan
𝑥

2
 

However, bearing in mind the modification (A.5) which is a necessary condition for the 

integration by substitution to be valid 

 
𝑑𝑡

 𝑎 + cos𝑡 2

𝑥

0

=

 
𝑑𝑡

 𝑎 + cos𝑡 2

𝜋−𝜀

0

+  
𝑑𝑡

 𝑎 + cos𝑡 2

3𝜋−𝜀

𝜋+𝜀

+ ⋯ +  
𝑑𝑡

 𝑎 + cos𝑡 2

 2𝑛+1 𝜋−𝜀

 2𝑛−1 𝜋+𝜀

+  
𝑑𝑡

 𝑎 + cos𝑡 2

𝑥

 2𝑛+1 𝜋+𝜀

=

=  𝐺 𝑧  0
+∞ + 𝑛 𝐺 𝑧  −∞

+∞ +  𝐺 𝑧  −∞

tan
𝑥

2 =  𝑛 + 1  𝐺 𝑧  −∞
+∞ +  𝐺 𝑧  0

tan
𝑥

2

 

(B.7) 

Now calculate the values of G(z) for z=±∞ and z=0: 

𝐺 +∞ = lim
𝑧→+∞

 𝐺1arctan
𝑧

𝑚
− 𝐺2

1

 𝑧 +
𝑚2

𝑧
 
 = 𝐺1

𝜋

2
 

𝐺 −∞ = lim
𝑧→−∞

 𝐺1arctan
𝑧

𝑚
+ 𝐺2

1

 𝑧 +
𝑚2

𝑧
 
 = −𝐺1

𝜋

2
 

The values for arctan(z) at z=±∞ are selected so that  𝐺 𝑧  −∞
+∞  covers the whole 

period of 𝑧 = tan
𝑡

2
function. 

𝐺 0 =  𝐺1arctan
𝑧

𝑚
+ 𝐺2

𝑧

 𝑧2 + 𝑚2 
 = 0 

Therefore, the final formula for the integral (B.1) is:  

 
𝑑𝑡

 𝑎 + cos𝑡 2

𝑥

0

=  𝑛 + 1  𝐺 𝑧  −∞
+∞ +  𝐺 𝑧  0

tan
𝑥

2 =

 𝑛 + 1 𝜋𝐺1 + 𝐺1arctan
tan𝑥/2

𝑚
+ 𝐺2

tan𝑥/2

 tan2𝑥/2 + 𝑚2 

 

(B.8) 

where G1,G 2 are defined by (B.6) and 𝑚2 =  
𝑎+1

𝑎−1
 . 
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