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Abstract

This thesis sets out the case and foundations for a new way to think about, and model,

Macroeconomics. This framework aims to describe the fluctuations and differing

growths of economies, not in terms of the choice and exchange of Microeconomics,

but rather in terms of the enforcement relationships that allow that exchange and other

cooperation between people. It first establishes just why this is necessary, with a thor-

ough methodological critique of the way Macroeconomics is done right now. It then

presents computational models of two presumably competing kinds of enforcement re-

lationship. The first of these is the third party supervision that we are most familiar

with as enforcement from every day life, and which has received some of the longest

running philosophical discussion. This hierarchical model reproduces economic fluc-

tuations, through occasional collapses of large parts of the hierarchy. To assess the

scientific merit of this model on the terms of conventional Macroeconomics, I develop

a compatible hypothesis testing strategy. The second kind of enforcement considered

is what would commonly be called peer pressure. For this I derive a preliminary result,

that would allow further development of an overarching research program.
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Chapter 1

Past Failures and Future Possibilities

1.1 Introduction

This introductory chapter lays the foundations for the subsequent exploration of a new

paradigm in modelling Macroeconomics. That paradigm is based not on the descrip-

tions of choice and exchange that have occupied microeconomics, and by extension

conventional macroeconomics, but on the enforcement of the agreements that make

both exchange and most other social cooperation possible.

Section 1.2 explains the setting, a scientific discipline that has not yet achieved either of

its intended goals. Section 1.3 sketches the ideas that underlie an alternative paradigm

for this discipline. A review of models from Network Science, a promising language

to use in developing this new paradigm, starts with notation and terminology in section

3.3. This is followed by descriptions of static models in section 3.3.1, and dynamic

models in section 3.3.2. Section 1.6 concludes, and ties these foundations into the

development of an enforcement based Macroeconomics in subsequent chapters.
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1.2 Motivation

1.2.1 Perceived Failings of Anti-Recessionary Policy

In 2007 and 2008, the economic powerhouses of the OECD saw the sudden onset of

the greatest recession for nearly a century. A downturn that started in the housing and

construction industries was exacerbated by the 2008 failure of Lehman Brothers, an in-

stitution too big and connected to fail. Even after other financial institutions were pre-

vented from failing, and began to control their liabilities, a further sovereign debt crisis

in Europe started to threaten the world economy; the recession dragged on. There could

be no more powerful reminder, than this avalanche of recessions and solvency crises,

that Macroeconomics has yet to make progress on its founding question of stabilising

the economy. But, 2008’s reminder came after two decades of increasing optimism,

some might say hubris, inspired by the relative stability of western economies over the

period known as the Great Moderation. So ebullient was the macroeconomic ortho-

doxy that its figurehead and president of the American Economics Association, Robert

Lucas, famously declared in his 2003 presidential address that the “central problem of

depression-prevention has been solved” (Lucas, 2003).

With the onset of the recession this overconfidence was rewarded with serious reprim-

ands from the lay public and even some prominent microeconomists, as Paul Krug-

man in the New York Times and James Heckman in the Observer both lambasted

the New Neoclassical Synthesis school for theoretical inconsistency and disconnec-

tion from empirical evidence (Krugman, 2009; Heckman, 2010). Criticisms generally

highlighted the lack of realism in certain modelling assumptions, but put most em-

phasis on the fact that the recession had not been predicted. This former criticisms

generally missed the fact that those particular unrealistic assumptions were actually

too dependent on others to even be compared to empirical reality. Meanwhile, the lat-

ter neglected to mention that macroeconomic models treated the drivers of recession as

entirely unpredictable, making predictive failure at least consistent with these models,
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even if it undermined their utility. None questioned the deeper foundations of the mod-

els or Economics generally, the concepts of price-equilibrium and aggregated supply

and demand. Indeed, many mainstream macroeconomists were vocal in their defence

of the Dismal Science. But their defences seemed predicated on what we know about

the economy, which in the details actually consisted of what theorists take for granted.

The problems of 2008 were, of course, nothing new to economics. Undesirable fluc-

tuations in the economy were first academically acknowledged in Sismondi’s critique

of classical political economy in the early 1800s. The popular liberalism of the time

quickly answered this critique, as Dunoyer argued for cycles of activity and relapse

within the classical theoretical framework. Whereas Sismondi saw fluctuations as

crises that required government intervention, Dunoyer made them inevitable and ir-

repressible features of a healthy entrepreneurial economy (Benkemoune, 2009).

This attitude wasn’t seriously challenged again until the rise of Keynesianism following

the Great Depression. It was in the work of Keynes that Macroeconomics as an inde-

pendent discipline came into existence, with its principal goal to prevent subsequent

recessions. With the observation of the Phillips Curve relationship between inflation

and unemployment, Keynesian Macroeconomics came to believe that it had a tool, in

inflation, with which to manage unemployment. Keynesian Econometrics then began

to model the economy as the conjunction of goods markets that could be influenced by

government spending, and financial markets influenced by government interest rates

and the monetary stock. The structure of these models was determined by theory, but

the specific numbers that parametrised them were determined by statistical treatment

of macroeconomic data in the spirit of the Phillips Curve. Briefly, Macroeconomics

believed that it had addressed the issue of Economic fluctuation, but this came undone

in the 1970s when the Phillips Curve relationship was broken by simultaneous inflation

and economic stagnation.

Macroeconomics adapted, and the response to the Phillips Curve’s failure focussed

on questions of whether the correlations underlying Econometrics truly represented
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causation. This coalesced into the famous Lucas Critique which argued for microfoun-

ded macroeconomic models developed from microeconomic theory. The Dynamic

Stochastic General Equilibrium models that emerged from this research programme

coincided with the Great Moderation, and so were at the heart of the confident Mac-

roeconomic profession that was caught so off guard by the 2008 crisis.

Whether the crisis could have been predicted or not, the fact remains that it was no

more prevented by Macroeconomics than the crises that inspired Sismondi, Keynesian-

ism, or the Neoclassical resurgence that followed it. By definition this can be nothing

but a failure on the problem of recessions, for which Macroeconomics was originally

conceived.

1.2.2 Perceived Failings of Development Policy

Although the fluctuations of the “business cycle” have remained the dominant topic

in modern Macroeconomics, it has another great interest that harks back to the very

origins of Economics. Adam Smith’s seminal treatment of the economy, in book three

of his great treatise, focussed on the growth in productivity of nations over time. Lucas,

as the representative neoclassicist, more recently reconfirmed the topic (Lucas, 1988).

Growth is studied extensively in the context of Western and emerging economies, but

is most visible and relevant in the context of Less Developed Countries where greater

growth would arguably make the greatest difference to quality of life.

Nevertheless, the past fifty years of Development Economics can be characterised as

a flurry of silver bullets (or perhaps buckshot), with each only seen to have missed

the target once the smoke had cleared. Only in the past decade has prevailing opinion

swung away from hopes of such a panacea toward an appreciation of more nuanced

answers. Nevertheless, the last of these silver bullets, the so called Washington Con-

sensus, continued to have some currency in the policies of the world’s major develop-

ment institutions until the financial crisis of 2008. This was despite discontent bubbling
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up to lay attention in 2002, with the release of popular books by Stiglitz (2003) and

Easterly (2002) — though both held quite different views on how else to proceed.

The first silver bullet of Development Economics was the injection of capital to make

up for a shortfall of internal investment, as recommended by the Harrod-Domar model.

This was designed for post-war Western countries with massive pools of trained labour

but, in Development Economics, was used to advise policies in countries with little

human capital or institutional infrastructure. African fields produced a bumper crop

of rusting donated machinery. Next came the Solow model, also originally intended

only for the United States, which suggested that only short term growth could be in-

fluenced by capital accumulation, and then only up to a point. It promised permanent

growth only as a response to improving technologies, and counselled sitting back to let

interest rates drive what growth could be driven. Poor countries remained poor. Fol-

lowing Lucas’ growth accounting, human capital was postulated as the link Solow had

missed, and so massive aid investment in education was the response. Yet, the missing

productivity turned out not to be education alone (Easterly, 2002). Finally, with the

apparent stabilisation of Western economies under market liberalisation and controlled

inflation, the panacea became imitating this model. The result was recessions across

the developing world (Stiglitz, 2003).

Stiglitz’s attack on the Washington Consensus did not end with his best-seller; in 2004

he arranged for a round table discussion of Development policy, between an interna-

tional team of esteemed Development academics. This meeting was embedded in the

Universal Forum of Cultures in Barcelona, with the enthusiastic support of European

politicians, and so the moniker “Barcelona Consensus” was suggested for its recom-

mendations (Serra and Stiglitz, 2008). This framework emphasised that Development

policy be led not by the donors, but by the individual recipients of aid, to ensure they

were tailored to context. Specific obstacles to growth were to be identified case by

case, and microeconomic tools used alongside macroeconomic theory to identify how

best to leverage them. Finally the target in each case was to institutionalise the reform,
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rather than trying to force it through simple legislation.

Despite all this vocal opposition from two former World Bank employees, it seems that

the death knell for the Washington Consensus didn’t come until the whole Neoliberal

perspective was challenged, in the wake of the 2008 global recession. Whether rightly

or not, deep public dissatisfaction was turned against Growth Economics as well as

the economics of recessions. This groundswell against the Washington Consensus was

finally recognised by the international establishment in the so called Seoul Consensus

of 2010 (of the G20 members, 2010). The Leader’s Declaration of the Seoul Summit

put special emphasis on context, through countries’ self-determination of Development

policy:

The Seoul Development Consensus for Shared Growth that sets out our

commitment to work in partnership with other developing countries, and

LICs in particular, to help them build the capacity to achieve and maximize

their growth potential...

It goes on to stress structural considerations in the execution of these partnerships,

with contextual prioritisation:

...in particular: strengthening bilateral and multilateral work on surveil-

lance covering financial stability, macroeconomic, structural and exchange

rate policies, with increased focus on systemic issues...

Despite this turn toward planning, it retains an emphasis on a regulated private sector’s

preeminent role in economic convergence, leaving it more balanced than the Washing-

ton Consensus’s free markets first doctrine.

Assuming that the earlier policy recommendations actually represented the conditions

that worked for the development of the western economies, what was so different about

developing countries that the same policies should have failed? The answer to this
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question might be quite obvious to subjectivists in Anthropology (Fforde, 2005), but

anyone hoping for generalisable mechanisms of macroscopic society might well hes-

itate to open the pandora’s box of other potentially relevant variables. Robinson and

Acemoglu (2012) provide a summary of some common choices — geography, culture,

and as yet unknown market failures — but come to the conclusion that institutions are

the favourite cause for the divergence of poor and rich countries1. They suggest that

tensions between de jure and de facto power can lead to significant inefficiency.

Since the Wrong (1967) critique, Sociology has been willing enough to look for mech-

anical explanations of macroscopic social phenomena that economics refuses to con-

sider. Network Sociologists might not be as hasty as Robinson and Acemoglu to draw a

line between culture and institutions, with informal social institutions potentially inter-

acting with formal ones. Indeed, Putnam et al. (1994) suggests that failed convergence

can be caused by an inherent lack of social capital in a particular culture, causing fric-

tions in the operation of public institutions. Whether formal or informal institutions

are the weakest link, as the orthodoxy in Economics look for new direction, post reces-

sion, both Robinson and Acemoglu’s and Putnam’s ideas look like fertile ground, so

long as the right tools are available to satisfy the Seoul Consensus’ call for contextual

specificity. I shall return to the idea of social capital in section 1.3.

1.2.3 Can Economics do better?

Ultimately a scientific research project must be based on some methodological assump-

tions, as these determine what evidence is relevant in support of any argument —in-

cluding the method itself. It is now generally agreed that foundationalist schemes like

Popper’s falsificationism, which try to give a fundamental prescription for the scientific

process, are too limited in scope. This prevents us from rejecting any research project

for its methodological foundation, only for inconsistency with any such foundation

1Survey evidence certainly suggests a correlation between institutional trust and wellbeing (Hudson,
2006)
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(Caldwell, 2003; Dow, 2004). Nevertheless, scientific discourse loses its purpose if

anything goes, with different research projects using different language and following

different agendas (Dow, 2004). The failures described above suggest that something

may be quite wrong with the way Economics is being done. So, in chapter 2 of this

thesis I frame key theoretical findings in a methodological argument which confirms

this suspicion. Rather than leave Economics up in the air, and despite the relativism

of the methodological community, I also make the case for a fundamental scientific

prescription that would give structure to change.

Chapter 2 suggests that many of the drawbacks of the prevailing Dynamic Stochastic

General Equilibrium approach to modelling arise from the assumption of homogeneous

agents connected only indirectly via the omniscient Walrasian auctioneer. Where do

we end up when we depart these assumptions? First of all, without equilibrium prices

simply imposed on the system from the top, we find ourselves looking to the forces

between agents for stability. What’s more, we lose the convenient fallacy of compos-

ition that lent the macroeconomy exactly the same behaviour as individual agents; so

the regularity we observe in real economies need not come from a strict optimisation

problem imposed from the top. Instead, it is now possible to turn to the idea of emer-

gence, from Complexity Science, as a mechanism by which mostly selfish local action

leads in the aggregate to the global stability of Smith’s invisible hand.

The canonical example of believable emergence comes from Self Organised Criticality

in Physics, itself exemplified by the Sandpile model of Bak, Tan and Wiesenfeld (Bak

et al., 1993). In such non-equilibrium systems a critical point state, where compon-

ents can be correlated across the whole system, is an attractor; so even though grains

of sand falling on a peaked pile are likely to cause cascades of sand spreading across

large areas of the surface, their subsequent accumulation returns the pile to the same

unstable shape. Hence, in the aggregate we see the emergence of regular, albeit un-

stable, behaviour that is not obvious from the properties of its components. Without

assuming the global synchronisation of prices, it is mechanisms like this that must be
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trusted to return the economy, and society to the status quo after financial, political, or

cultural cascades (Kirman, 2010; Gatti et al., 2011). The problems with conventional

Macroeconomics make complex systems models an appealing alternative.

A central feature of complex systems is interrelationships between the constituent parts

of the system that mean their behaviour cannot be simply aggregated. In order to pre-

cisely describe these systems of relationships, models make use of the mathematics of

Graph Theory, which gives a clear language to describe networks of relations. Eco-

nomics has recently begun to see an explosion of interest in Network Theory, which is

sometimes classed as a sub-discipline, but includes non-dynamic models. From section

3.3 onwards I will give an overview of Network Science as applied to Economics, to

provide support and contrast to the more specific research program that I will develop.

1.3 Incentives, Institutions and Enforcement

In the remainder of this chapter I will outline several different perspectives on how in-

teraction between heterogeneous individuals can impact on the economy. I, however,

take inspiration for my focus from Easterly; when we strip away the invisible hand

as an axiom, economics’ spirit might well be captured by the maxim “people respond

to incentives”. If people respond to incentives, then which incentives align behaviour

which is collectively desirable with that which is individually desirable when we no

longer assume these to be the same? The obvious answer is that where it prevails,

the collective good is enforced by some mechanism that reduces the incentive to the

individually preferred action. These enforcement mechanisms may be greatly varied,

and it would be hard to deny that moral and religious beliefs play an important role too

nuanced to model. Nevertheless, if we subscribe to an evolutionary model of enforce-

ment institutions then it is hard to believe that moral values can persist against immoral

mutant beliefs unless they are backed up by some more tangible mechanism support-

ing them. I propose that we can describe these more tangible mechanisms in terms
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of just two general descriptions: third party enforcement, where agreements between

individuals are enforced by the threat of punitive action from a third party with asym-

metric power to the individuals; and peer-pressure based enforcement, administered by

a group against its members who stray from some prescribed behaviour. In both cases

asymmetric power is needed (either inherent, or in numbers) in order to prevent the

disincentive itself being disincentivised by retaliation.

A formal description of peer-pressure based enforcement emerges from the relatively

young, but extremely popular topic of Social Capital, in Sociology. In the definition of

Social Capital by Coleman (1988), the collective good is described in terms of obliga-

tions to reciprocity:

If A does something for B and trusts B to reciprocate in the future, this

establishes an expectation in A and an obligation on the part of B. This

obligation can be conceived as a credit slip held by A for performance by

B. If A holds a large number of these credit slips, for a number of persons

with whom A has relations, then the analogy to financial capital is direct.

These credit slips constitute a large body of credit that A can call in if

necessary —unless, of course, the placement of trust has been unwise, and

these are bad debts that will not be repaid...

Of course a purposive agent must not only believe that their counterpart recognises an

obligation but must also believe that they have incentive to abide by it. This idea was

formalised in the work of Robert Axelrod and Anatol Rapoport, which pioneered Evol-

utionary Game Theory: various computer programs (representing particular strategies),

interacted in a strategic situation where ongoing cooperation was threatened by instant-

aneous rewards to breaking that cooperation, and those that were most successful were

selected. The most successful of all was the Tit-for-Tat strategy, which consisted of

cooperating until the opposing program broke cooperation, and then always breaking

cooperation. Although there was no forward looking rationality to the strategy, through
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evolution this strategy had come to effectively collateralise instantaneous cooperation

by the future value of the relationship. This collateralisation can be extended to groups

of others, as Coleman does with his concept of closure, whether the parties to a rela-

tionship both have relationships with a common third party; because whether a partner

abides by obligations is an observable behaviour, its violation can be punished by any

observers who also see it as an obligation. In Sociology this punishment is generally

assumed to be ostracism by sufficient numbers of the agents’ community to disin-

centivise not meeting the obligation. Compliance of observers to this sanction is then

itself enforced by a second order obligation to conformity, according to which failing

to sanction incurs a sanction too. In this way, pro-social behaviour is collateralised by

the future value of many more relationships than just the ones affected by the specific

action of the agents. This same idea was captured quite concisely by Cicero two mil-

lennia before Coleman: “There is no duty more indispensable than that of returning a

kindness. All men distrust one forgetful of a benefit” (Putnam et al., 1994).

In contrast to peer-pressure’s enforcement between equals stands the sovereign of

Thomas Hobbes (1651), a third party capable of meting out punishment without danger

of retaliation. Hobbes argued that this sovereign would ensure the rule of law out of

pride for the prosperity of their nation. But, John Locke (1821) later argued that it was

the threat of having their third party enforcer status removed that was motivation, and

that this represented a social contract between sovereign and subject.

Ken Binmore’s epic work Game Theory and the Social Contract redefines the social

contract of Hobbes and Locke as a particular equilibrium selection convention of the

massive strategic-coordination problem inherent in human society, the so called Game

of Life (Binmore, 1994, 1998). He therefore includes third party enforcement, peer-

pressure, and any other enforcing belief under this term, which is why I have taken it

for the title of this thesis.

The elegance of peer-pressure as an enforcement strategy should now be more appar-

ent, in that it harnesses collective action for a greater good, with no greater punitive
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threat than ostracism from collective-controlled resources; all without relying on the

investment of power in a particular individual who is thereby enabled to extract rent.

That being said, in reality we recognise that groups on all scales of society also choose

leaders to be third party enforcers, and may well cede to them power beyond any in-

herent in their situation2. The presence of leaders, and leaders’ leaders (etcetera) give

societies a hierarchical structure. For power to be ceded freely in a world of even

bounded or evolutionary rationality, there must be some gain in efficiency from so do-

ing. Binmore (1998) briefly mentions the usefulness of an executive, but generally

considers social hierarchy a remnant of our feudal past, and maladapted to modern so-

ciety. In this he perhaps overestimates the ability of a leader with only de jure power to

smooth the volatility of the de facto mob3, and that the present power of our executives

might well be a Pareto improvement over a freer society. Focussed on individual insti-

tutions, rather than society as a whole, this idea is reminiscent of the New Institutional

School of Economics, which treats firms not as atomic entities, but as coordination

mechanisms (Ménard and Shirley, 2005).

As both enforcement mechanisms ultimately achieve the same purpose, I propose

that the local balance between the formal and informal economies, and the efficacy

of formal institutions, may be determined by the local competition between formal

and informal enforcement mechanisms. This competition could inform models of in-

stitutional effects on economic activity and provide a description of the institutional

differences between countries. That is, it promises an approach to the second great

question of Macroeconomics, the differing growth rates of different nations. Mean-

while, practical models may be developed that might explicitly suggest an optimal

2To clarify this point, it is worth imagining a world stripped of the social norms and laws we take
for granted. We might note that here no possession exists that can imbue power without simply being
vulnerable to theft by a stronger group of other. For example, the influence that comes with great wealth
only exists when that wealth cannot simply be taken by a temporary alliance with greater combined
strength. Because no person is strong enough alone to capture and keep the wealth of a nation, we might
imagine that every dictator rules with the consent of a majority of strength —or perhaps through inertia
from a time when they did.

3Or, indeed, its capacity to temporarily adopt other maladapted strategies in a dynamic setting —an
obvious extension of his argument.



1.4 Answers to the question of Recessions 13

balance of formal and informal stabilisation mechanisms, minimising the day to day

risk that people face. It is this idea that inspires the research program developed in this

thesis, but in chapters 3 and 4 I find that third party enforcement alone might be enough

to produce the fluctuations that define the other great question of Macroeconomics. I

then begin to work on describing peer-pressure based enforcement in chapter 5, with

the hope of setting both modes of enforcement competing in a growth model.

The remainder of this chapter puts this proposed macroeconomic paradigm in more

intuitive terms. It does this by comparing the stories told by my enforcement based

macroeconomics, and by more traditional conceptions.

1.4 Answers to the question of Recessions

I have suggested that the great questions of macroeconomics remain unsatisfactorily

answered. I have pointed out an aspect of human interaction that might lead to new

answers. But, getting the reader thinking along these new lines will need a more tan-

gible illustration of both points. In this section, I will be much more specific about how

both traditional macroeconomics and my proposed paradigm go about answering the

question of our time; why was the world hit by recession in 2008?

1.4.1 The Keynesian Story

The original Keynesian school suggested several causes for recession. But, the most

intuitive of these, and the one most used in explanation of the recent crisis, is that

of “Animal Spirits” —a call to the dependence of human behaviour on instincts and

heuristics. According to this view, people’s investment is driven by their confidence

in the economy. So, a Keynesian might argue that the crisis of 2008 corresponded to

a dramatic change in the, mostly arbitrary, confidence of consumers in the economy’s

growth. That is, some investors suddenly got spooked that property prices might not
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continue to rise, and this belief quickly spread throughout the economy, thereby under-

mining the value of the sub-prime assets that the financial sector had become dependent

on.

It is, of course, hard to argue that participants in the economy behave without a full

knowledge of that economy or its current state, and that instinct and heuristic would

have to take the place of rational decision making. But, the Keynesian story doesn’t fall

down, it falls short: it is easy to talk about collapsed confidence, but a formal model

is not so easy. A widely accepted model of how individuals’ confidence is determined

has not been forthcoming. Nor have models of how confidence might spread between

individuals received much attention in Economics.

Outside of economics, contagion has been more rigorously studied, and these mod-

els could presumably be extended to the spread of confidence through an economy.

But, these models are unified in Prakash et al. (2012), giving the conditions for wide

propagation across an arbitrarily connected society and arbitrary transmission mech-

anism. Unfortunately for the Keynesian story of consumer confidence, these models

show one of two behaviours divided by an abrupt transition: either the transmission

is relatively contained, or it becomes an epidemic across the whole society. When it

comes to collapses of economic confidence, we see a whole range of scales between

local and global —a scale free property that will be elaborated on in chapter 3. This

certainly suggests that it is not in contagion versus non-contagion of falling confidence

that drive recessions.

The problem of crises of confidence, is precisely that they are not well defined. But,

the model I will outline in this thesis could be interpreted as a model of recessions

driven by lost confidence, and so not wholly incompatible with the Keynesian story.

The difference is that the confidence (or lack thereof) is quite well justified, and it is

the reason for its loss, rather than the confidence itself which is modelled.
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1.4.2 The Neoclassical Story

In Neoclassical Economics, the economy functions perfectly so that prices reflect the

valuations of all consumers and producers. This view of the world is obviously hard

to reconcile with dramatic changes in the economy. Rather than being driven by the

behaviour of any agents within the economy, these changes have to be driven by out-

side, exogenous, forces. What might these forces be, is never entirely clear, particularly

when the disruption to the economy is as great as that in 2008.

Other than throwing our hands in the air and pleading ignorance, as many leading

Neoclassical economists did during the crisis, the best Neoclassical story might be to

label the exogenous disruption financial. That is, it was a technological change in the

financial sector that suddenly reduced the economy’s productivity. This might be in-

terpreted as a sudden realisation that sub-prime lending was dependent on bad maths

—a by no means uncommon narrative. But, arguably the maths of sub-prime lending

had been known from the start. It’s problem was that the assets’ values depended on

diversification by holding many risky assets that were only related through the overall

economy. So although sub-prime assets could have been an accelerant of the crisis,

they lost value because of a change to economic circumstances rather than a change

to our understanding of them. Like other Neoclassical invocations of external disturb-

ances of the economy, like oil prices or misjudged monetary policy, it is apparent that

the disturbance was anything but external.

1.4.3 The Enforcement Story

My story is simple enough. While the banks we regard as responsible for the 2008

crisis may be treated as distinct entities by the law, they are in fact highly interrelated

—in ownership, in interaction, and in intercommunication. Not only can we see in-

dividual banks as hierarchical structures of executives enforcing agreements between

managers, but I would argue that the many informal interactions that must take place
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between employees of these banks can only be sustained if there are informal hierarch-

ies spanning the banks —more on this in chapter 3. With this highly interconnected

hierarchy spanning the whole economy, if one senior individual is rendered unable to

enforce agreements between their subordinates then it could have wide-ranging reper-

cussions. I argue, and my formal model shows, that the loss of enforcement of product-

ive agreements at these senior levels can cause an avalanche of unenforced agreements

throughout the hierarchy.

The 2008 crisis started, in my view, with some small issue affecting a very senior

executive or shareholder in the financial sector. This individual was then no longer able

to enforce agreements between those looking for them to lay down the law. Without

these agreements, those subordinates no longer had the means to give them asymmetric

power to individuals below them in the hierarchy. Without this power, the subordinates

could no longer act as enforcers for the agreements between their own subordinates,

and so the avalanche continued. In the end, much of the informal collaboration and

sharing of information that had made the financial institutions function could no longer

happen. This led to a fall in transactions over property that was superficially seen as an

economy-wide collapse in property prices, and the subsequent recession. This collapse

of trust within and between institutions is borne out by the collapse of interbank lending

for a long period following the crisis.

1.5 Answers to the question of divergent growth

The other question posed by macroeconomics, is the different degrees of develop-

ment shown by different countries. This is perhaps exemplified by the rapid growth of

Europe during the latter half of the 2nd millennium, suddenly outstripping the formerly

larger economies of China and the Muslim Caliphate(s). In this section I will illustrate

both orthodox Economic explanations of this divergence, and my own. This divergence

is shown in figure 1.1.
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Figure 1.1: Historic GDP per capita from 1000CE

1,000 1,200 1,400 1,600

400

600

800

1,000

Time period

G
D

P
(c

ur
re

nt
do

lla
rs

/p
er

so
n) Western Asia

China
Western Europe

1.5.1 The Solow-Swan Story

The Solow-Swan model mentioned in section 1.2 is the mainstay of orthodox Macroe-

conomics’s Exogenenous Growth Theory. It makes the stark prediction that econom-

ies’ rates of per capita growth will depend only on the rate of technological change, in

the long run - because capital will flow across borders until capital intensity is at an

optimum level.

There is, of course, no explanation in this result for why countries might have different

long run growth rates. In order to reconcile it with reality, human capital can be added

to the model. This would then suggest that the reason Europe accelerated beyond

the Middle East and China, was because of education levels. But, the Renaissance in

Europe, that coincided with the accelerated growth, happened largely on the back of

knowledge recovered from the Islamic world. There seems no compelling reason to

believe that European populations should have had higher standards of education than

their Muslim or Chinese counterparts.
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1.5.2 The Endogenous Growth Story

Dissatisfaction with the exogenous nature of technological development in Solow-

Swan and its derivatives led to the development of models in which productivity growth

was identified with factors in which governments could intervene —such as human

capital. In these models, the returns to investment do not ultimately die out, and so

growth becomes a product of behaviour inside the model.

Endogenous growth models are diverse, but an obvious implication of a simple model

with constant returns to capital would be to try and lift a country out of poverty with

investment. But, as section 1.2 made clear, international development has seen massive

external investment in physical and human capital that ultimately did not drive conver-

gence. Indeed, when the European powers carved up the former Muslim world, during

the colonial era, they failed to make the region converge. Similarly, the more recent

failure of the Washington Consensus also undermines any interpretation of endogen-

ous growth models as a call for market liberalisation to make less developed economies

more like the models.

1.5.3 The Enforcement Story

Whereas the story of enforcement made recessions a necessary product of hierarchies,

I argue that divergent growth is caused by their absence. Their absence, I propose, can

be due to the presence of an alternative enforcement mechanism in the form of peer-

pressure. Peer pressure might be highly effective for less developed economies, where

the enforced agreements are generally within networks of peers. But, reliance on this

system can lock economies in to it, and prevent them from investing in the hierarchical

institutions that allow agreements over long distances, between anonymous parties.

In the second millennium case of the divergence of Europe from the Muslim and

Chinese worlds, an enforcement story needs no more than the differences in population

density at the time to generate a plausible divergence —an argument borrowed from
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Kumar and Matsusaka (2009). At the time China and the Muslim Caliphate had vast

economies, but economies based predominantly on local trade between known parties.

Because populations were denser than Europe, these economies required more invest-

ment in the relationships that made up the peer pressure networks supporting trade.

Europe on the other hand, with a lower population density and more long-distance ex-

change, would have had to invest more in formal legal systems based on hierarchical

enforcement. As global technologies changed, and brought greater advantage to trade

over large distances, Europe’s legal hierarchy based enforcement allowed expansion.

Meanwhile, the peer-pressure based enforcement of the other economies continued to

demand investment to maintain essential local agreements, and thereby prevented the

development of legal institutions to support long distance trade.

1.6 How to Proceed?

The first half of this chapter briefly outlined the failures of Macroeconomics and then

made some broad suggestions for an alternative avenue to explore. Indeed, this ex-

ploration will constitute the remainder of this thesis and will beg continuation as an

ongoing research program. Chapter 2 establishes, in firm methodological terms, why

the current macroeconomic paradigm should not see the investment of resources that it

does. It concludes that pluralism is what Macroeconomics needs right now. Chapter 3

then describes a model of the hierarchical third party enforcement discussed in section

1.3, that aims to address the failure of conventional macroeconomics in its first project

of economic stability. Chapter 4 develops the empirical methods needed to assess the

empirical value of this new approach on the terms of conventional Macroeconomics.

Finally, chapter 5 begins to explore questions fundamental to developing a model of

the peer-pressure enforcement also discussed in section 1.3.

Before the formal exposition of the following chapters, the second half of this chapter

tried to make more intuitive this proposed approach to macroeconomics. It did this with
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comparisons of informal stories about the recent recession and the growing divergence

of more and less developed economies. These comparisons should have convinced the

reader that thinking about short and long term societal change purely in terms of the

goods-exchange of traditional economics is unnecessarily narrow. Instead, a simple

and believable account of much more general human behaviours can quickly suggest

the features we see on a societal scale. Of course, though these intuitive accounts

may be convincing, we would expect more rigour from a modern scientific research

program. Because the question this thesis addresses is so ambitious, and large, the

following chapters take that technical rigour to very different dimensions of scientific

enquiry: methodology and philosophy, modelling, and empirical testing. Such breadth

and depth might at times be daunting to the reader. But, throughout, I hope referring

back to this chapter’s stories will keep the context and motivations clear.
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Chapter 2

The Methodological Call for New

Microfoundations

2.1 Introduction

As the preceding chapter explained, conventional Macroeconomics is widely seen as

having not yet succeeded in either of its two great projects: mitigating the negative im-

pacts of recessions, and encouraging economic growth in Less Developed Countries.

In this chapter I carefully explain why conventional microfounded Macroeconomics,

embodied in the Dynamic Stochastic General Equilibrium model, should not be expec-

ted to address these or any other empirical problems.

There are other critiques of the neoclassical microfoundations (Ackerman, 2001; Rizvi,

1997), but they tend to stop after making the points that I do in section 2.3, establishing

that General Equilibrium is not realistic. I have found in debates with more conven-

tional macroeconomists that this is not nearly enough, and that decisive criticism has

to extend to the actual performance of DSGE models. The greatest contribution of this

chapter, to the methodological literature, is to combine these criticisms into a single

structured argument, by identifying them as addressing the distinct perspectives on de-

scribing phenomena of Holism and Reductionism —or Methodological Individualism

as it manifests in the Social Sciences. This means that they can be handled separately.

I address the second perspective in 2.4, and this then leaves no empirical defence for
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DSGE.

I also make a further contribution, to deep economic methodology. Modern Philosophy

of Science is relativistic, and reluctant to be prescriptive about the foundations of the

Scientific Method. Ultimately this could allow a proponent of the Neoclassical School

to argue a case for DSGE based on the prophetic intuition of the school’s big names

taking priority over other considerations. This argument defies common sensibilities

but, to make this chapter a complete refutation, I undertake the much more ambitious

project of giving a prescription for the Scientific Method that specifically prohibits

such an argument. This prescription, in section 2.6, is essentially a refined inductive

inference with emphasis on parsimony, and addresses the classic criticisms of induc-

tion. It works on both the level of subjective experience and the level of science as

a social endeavour. Above all, it aims to be operational by tying into the Minimum

Description Length principle for statistics, which differs from and is more sound than

Frequentist and Bayesian statistics, but retains many useful techniques from each. To

my knowledge, this is the first piece in the Economics literature introducing MDL.

2.2 Why explicit methodology might matter

Economists are trained to think of institutions evolved to an optimal state, and to prefer

distributed institutions over centralised ones. It could be seen as natural, then, that

many should think of methodologists planning the institutions of Science as either

redundant or inefficient. The evolutionary arguments are of course over-simplistic, be-

cause they assume that the environmental pressures guiding the evolution of scientific

methods align perfectly with what society needs from Science. In this section I will

explore some of the reasons why the two might misalign, and why one might need

to question the optimality of the Scientific Method in Economics. The most apparent

evidence of such a divide between the objectives for economics from inside and out,

is the corresponding divide between economic methodologists and economic theorists:
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renowned theorists regard methodologists as aloof (Solow, 2002), while methodolo-

gists believe their recommendations are simply ignored (Frey, 2001).

Given that Macroeconomics has had questionable success in predicting either of its

principal topics, economic fluctuations and growth, we see a remarkable obeisance to

the more than century old core economic theory. This conservatism could be easily at-

tributed to the rational self-interest that is often assumed in economic theory: scientists

whose human capital is concentrated in the orthodoxy (the mathematics of optimisa-

tion on convex sets, say, for Economics), and would find it hard to adapt, have every

incentive to promote conservative interpretations of evidence against that orthodoxy.

But this is an objectionably cynical perspective, because anyone working in Science

will find it at odds with the way they view themselves and their colleagues. Any sci-

ence is an inherently social enterprise, and so naturally we might look instead to Social

Psychology for help in modelling this conservatism. A tool here is the idea of cognitive

dissonance, that individuals feel a drive to reconcile all their ideas and behaviours in

the same way that they are driven to eat or sleep. The author of Cognitive Dissonance,

Festinger (1962), gives the basics in terms of a smoker who is presented with evidence

that smoking is bad for their health, and I will do the same. The smoker feels discom-

fort, akin to hunger, because they believe that they rationally choose to smoke but also

that they love life and their own health, which are mutually exclusive ideas. A natural

response would be to stop smoking and remove that disquiet by changing the beha-

viour. But, if that change is itself too painful, because of their nicotine addiction, then

an alternative response is to change the belief that smoking is bad for their health, or

the belief that they care about prolonging their life. The smoker may then decide that

the evidence is ill founded and choose evidence of their own, or regard their later life

as more miserable and less worth prolonging. Applied to Macroeconomics, or Science

more generally, it is easy to imagine a similar response from a researcher confronted

with evidence or an argument against their paradigm, that a neutral outsider would con-

sider strong evidence against it. If that researcher has a world view deeply integrated

with that paradigm (the inefficiency of central planning, say, or the primacy of indi-
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vidual choice) then we might expect them to discount that evidence/argument in order

to avoid the dissonant belief that the way in which they understand much of their world

will not square with it. In this way, the institutions of Science can find a pressure from

within towards conservatism, without the scientists even being aware of it. When a

system of thought has been so persistent that it is used outside academia, like meaning-

fully aggregated supply and demand or the idea of a God active on the physical world,

then there will be pressures from the Cognitive Dissonance of individuals outside the

institutions too. In this way the evolutionary environment of a Scientific institution

might well favour conservatism over description or prediction of phenomena because,

for example, those apportioning the funding only understand research described in fa-

miliar terms. There is evidence that economists are more subject to such bias in their

research, than other scientists, with a significantly higher bias towards the publication

of positive results than the biological and physical sciences. This suggests either that

Economists have better intuition than scientists elsewhere or, more likely, that they are

somehow promoting positive results through their interpretation of evidence (Fanelli,

2010).

Conservatism need not be driven solely by individual preferences, it is argued to be an

inevitable feature of the prevailing method in Science, that of falsification. The Duhem-

Quine Thesis, a famous argument in the Philosophy of Science, points out that rejection

of a particular model is not a rejection of all the assumptions of that model but only

of that combination of assumptions. Because individual assumptions must be tested

together in a complete model, rather than in isolation, this means that some theoretical

assumptions can be part of many rejected models without ever being abandoned, being

protected by an ever changing cloud of auxiliary hypotheses of almost limitless supply

(see Curd and Cover (1998)). An example of the Duhem-Quine Thesis accessible

to any economist would be the Efficient Markets Hypothesis. Broadly, it states that

market prices will reflect all available information determining the value of a good.

Unfortunately, we do not know what the value of that good should be otherwise. For

this reason, we cannot test the Efficient Market Hypothesis alone, but can only test the
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joint hypothesis of whether market prices reflect the good’s price according to some

pricing model —a problem known as Market Indeterminacy (Fama, 1991; McGovern,

2006).

As well as rational cause for concern over the institutional structure of Science gener-

ally, there are also criticisms focussed on the institutions of Economics in particular. It

is argued explicitly by Colander (2010) that the institutional structure of the Economics

profession does not promote real-world fit, and therefore will not drive methodology

to promote this:

The Economics profession is primarily an academic profession, which

sees itself as predominantly concerned with the science of economics, not

with hands on applied policy advice. The institutional structure of the

academic Economics profession is not structured to reward economists for

the correctness of their real-world predictions, nor for their understanding

of the real economy. Within academia, hands-on research, in which the

researcher gains first-hand knowledge through working in the institutions

he or she is studying, generally receives little reward.

Indeed, in his reflection on institutional causes of the 2008 financial crisis, Colander ar-

gues that universities and funding do not support a “representative researcher” thinking

about all aspects of economic research, including the limitations of models for policy.

Researchers are rather specialists, focussed only on specific questions within a research

program, because this is how they will most likely progress up the career ladder. Cru-

cially, there are no incentives to think about the merits of that research program as a

whole, nor to leave it even if they thought it unlikely to succeed. For these reasons,

Colander argues that Dynamic Stochastic General Equilibrium became predominant

in Macroeconomics not because it offered the best chances of predictive success, but

because it was easy to make incremental progress on it and build a profession around

that progress. He talks of a profession that seeks to dot i’s and cross t’s rather than

“...explore multiple models in a creative exploratory way”. His diagnosis is of a peer
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review process which is too restricted to individuals from a small set of universities

and traditions, with nothing to stop them limiting the publication of other universities

and traditions: “...too narrow a genetic pool, and too much inbreeding”. Obviously, a

review system promoting minor modifications to existing models is particularly prone

to the Duhem-Quine Thesis, with the inherent problems described above.

There is a dichotomy in software engineering of the Cathedral and the Bazaar, dif-

ferentiating projects developed by a small closed group from open source projects to

which anyone can try to contribute. The successes of the latter are attributed to the

fact that more pairs of eyes are more likely to quickly find errors. Now it may be that

with the now trivial costs of distributing research, a Bazaar-model institution could

be established that still promoted research and researchers that were more central to

the scientific endeavour. The integer search ranking of research, rather than the binary

published/unpublished, would then need to reflect its quality. Basing this and academic

rankings on eigenvector centrality (as per Google’s page rank), in the citations network,

might be enough to marginalise crackpot researchers while still allowing promising

heterodox ideas to come in from the periphery. Nevertheless, in the absence of such

an innovation, the Cathedral and closed peer review seem the best system we have for

improving and filtering research; we must accept its limitations and make a deliberate

intervention on methodology.

2.2.1 Reductionism and Holism

Apart from the institutional features discussed in the previous subsection, there is a

problem peculiar to current Macroeconomic theory, in that it can be, and is, argued to

represent macroeconomic phenomena in two very different ways: as a representation

of aggregate phenomena only, immune to criticism of theoretical assumptions; OR, as

a representation based on the disaggregated components, immune to criticism of its

empirical performance. This provides an additional line of defence for macroeconom-

ists because, whenever their work is criticised from one perspective, they can simply
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claim its relevance comes from the other. My criticism of the DSGE paradigm will

be more complete than those elsewhere because it assesses the models from both per-

spectives, and finds them wanting from both. For simplicity I will henceforth refer to

these perspectives with the terms Holism and Reductionism.

Holism and Reductionism are terms used in subtly different ways by different authors.

Here, I choose the more natural use for the term Holism as the description of an object

that does not take into account the behaviour of its components, considering only the

whole object. Note that this is not a normative statement on what description should

be adopted, only an attempt to classify some descriptions as independent of how com-

ponents are thought to behave. For example, a holistic description of a bicycle tells us

that turning the pedals makes the bike move, but it is agnostic about how: our model

is a black box. As a complement to my definition of Holism, Reductionism is then

the practice of describing an object’s behaviour in terms of the behaviour of its com-

ponents. For the bicycle, this means having a description of how the links of the chain

articulate and engage with the gear such that the turning of the pedal causes the rotation

of the rear wheel.

To understand the merit of Holism, note that no child needs to understand the mech-

anism of the chain and gears to start riding a bike; moreover, no adult can understand

how to ride a bike based only an understanding of quantum mechanics. Reductionism

is the pursuit of a description in terms of components’ properties. To understand its

merits, note that one could not anticipate the need to oil a chain without understanding

the properties of its constituent metal, nor the problems of friction for the articulation

of its links and the propulsion of the bike. In more general terms: Reductionism may

needlessly complicate a description, or make description infeasible; Holism may deny

relevant information from someone who wishes to predict. The following criticism

of current microfounded macroeconomics stresses that its models fail from both these

perspectives, and therefore fail in general.

Reductionism has a long history in the Social Sciences, where it is seen in the special
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case known as Methodological Individualsim. Methodological Individualism holds

that social phenomena can only be understood with a model of how they arise from the

behaviour of the individuals involved. That is, it is Reductionism where the object of

interest is a social phenomenon, and the components of interest are individual people.

Although the term has much currency in the Economics literature, my general aim in

this chapter is to discuss Economics in more universal methodological terms. I will

therefore use the term Reductionism extensively, because it makes clear that there is a

general case for comparison and that the Social Sciences do not merit exceptional (and

overly leniant) methodology. It should be noted as well that the Economy can be, and

is, described in terms of other components besides individuals —most obviously the

goods, labour, and credit, markets of traditional Keynesian Macroeconomics.

Why should there be much difference between the holistic and reductionist description

of an economy? The economy simply behaves like a market, which in turn behaves

like an agent, right? Although much of modern Macro rests on this assumption, it

is generally invalid. It has been long established that many relevant aggregations in

Science are non-linear, in the sense that properties of the aggregate are not simply the

sum of the components’ properties. This was realised in Economics at least as far back

as Hayek:

The overall order of actions in a group is... more than the totality

of regularities observable in the actions of the individuals and cannot be

wholly reduced to them... a whole is more than the mere sum of its parts

but presupposes also that these elements are related to each other in a par-

ticular manner.

Indeed, Hayek didn’t argue for the invisible hand from a reductionist perspective at

all, but from the holistic perspective of evolution driving social institutions towards

optimality1. What prevents linear aggregation? Put simply, the non-trivial interaction
1Of course here he fell foul of non-linearity himself, neglecting that the environment to which a

society’s culture adapts is partly made up of other societies; the more recent concept of an evolutionary
landscape would have been more useful (Bak, 1996).
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of the components: the effects of any influence components have directly upon one

another will not be captured if one ceases to consider the components and only the

aggregate. The approach taken in the DSGE literature, assuming that the components

only interact trivially, is sometimes known as Naive Reductionism or the Fallacy of

Composition. In section 2.3 I will present several prominent results on exactly how the

relationships in DSGE models, along with the agents themselves, are unrealistic.

2.2.2 Friedman’s Instrumentalism as Holism

How could assumptions have been retained despite being shown to be unrealistic? In

economics, Friedman’s methodological writing (Friedman, 1953), which is seminal

among the orthodox community, is often taken as justification for putting canonical

economic theory before observations of actual microscopic components. This is partly

a paraphrasing of Friedman’s famous F-twist: “...the more significant the theory, the

more unrealistic the assumptions...”. Mäki (2003) shows that Friedman can be taken

to argue any one of many different philosophical positions during his fairly incoherent

text, which should be reason enough not to blindly follow its recommendations. How-

ever, Friedman himself approved the formal interpretation laid out by Boland (1979),

of the F-twist as Instrumentalism —which was conceived in physics as a response to

the contradictions between Einsteinian and Quantum Physics. This amounts to say-

ing that the model is an account only of the phenomenon of study —the photoelectric

effect, say. Hence, those other objects appearing in the model do not correspond to

real objects observable by any other means; they are merely instruments in the de-

scription —i.e. photons are not real objects but a descriptive device for the discreet

energy levels of the photoelectric effect. Running counter to Instrumentalism is Real-

ism, which commits to the idea that models represent an objective reality —so Photons

must be real objects if they appear in the description. Abandoning Realism is all well

and fine when all we seek to do is to describe a particular phenomenon. I will discuss

Realism and its counter-intuitive pitfalls more deeply in section 2.6. When we seek to
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relate one phenomenon to others through Reductionism — say macroeconomic volat-

ility to microscopic decision making — Instrumentalism clearly runs counter to our

intent, because the observability of the other phenomena is central to our objective.

So, if we embrace Friedman’s as-if methodology, in the General Equilibrium context,

we are embracing Holism and saying its “agents” are mere instruments and agents in

name only.

If even a good description of past macroeconomic behaviour doesn’t seem to work

outside the sample for which it was chosen (into the future or other policy conditions),

we might hope for more luck by finding a description of its components that does,

and then using that description to find the behaviour of their aggregate. In this way we

could see Reductionism compensating for an inadequate sample of observations of one

phenomenon, by including information about related phenomena. As just explained,

the Holistic interpretation of Friedman does not allow this, as we need microfounda-

tions that are actually descriptions of the economy’s components. But how good must

these descriptions be? Which components matter? Obviously we cannot implement

a reductionist model of the economy if we must describe every person in Britain, and

the minutae of their relationships. The obvious answer is that we can omit only those

details that don’t stop our model reproducing macroeconomic behaviour, but now we

start to sound like a different Friedman. As Maki (2000) argues, we don’t have to aban-

don Instrumentalism and take a stance on Realism, rather we must find some sense of

the “realisticness” of assumptions. To clarify this microfoundation-friendly take on the

“as-if” maxim, we can adopt the typology of Musgrave (1981): negligibility assump-

tions involve the omission of component details that have no effect on the aggregate

behaviour; domain assumptions involve abstractions from detail that have no effect for

certain states of the aggregate; while, heuristic assumptions involve abstraction of de-

tails that change the behaviour of the aggregate. If a model is to be used generally, then

it must have only negligibility assumptions, and so any reductionist model should meet

this criterion. Musgrave makes clear that a model involving any heuristic assumptions

at all is not appropriate for prediction. My criticism in the next section, of current
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microfounded Macroeconomics from the reductionist perspective, will revolve around

showing that not just one, but many, of the assumptions central to General Equilibrium

are heuristic in nature.

2.3 DSGE as Reductionism

To reprise the previous section, if we can’t find a reliable description of some phe-

nomenon, an alternative might be to identify it with a collection of components that

we can describe predictably. It is in this spirit that one might interpret the argument

of Lucas (1976), in the paper credited with starting the microfoundations revolution

in Macroeconomics. Lucas wrote this in the context of a then orthodoxy that was re-

ductionist in a very different way. The Keynesian Macroeconomics of the time tried

to reduce the economy to aggregate markets for goods, labour, and investment —de-

scribed with the traditional intersecting supply and demand curves. Lucas’s argument

was in fact no more sophisticated than to assume the truth of microeconomics’ Gen-

eral Equilibrium models and condemn Keynesian Econometrics for not using them.

His claim was that the aggregate markets in these models might be expected to change

qualitatively as agent behaviour responded to new policy conditions, and that robust

models had to be parametrised by production technology and the preferences of con-

sumers, which he took to be uninfluenced by policy. I don’t think it controversial to

take this as an endorsement of reductionism, particularly when Lucas (1991) talks in

terms of describing micro and macro phenomena with the same theory:

The most interesting recent developments in macroeconomic theory

seem to me to be describable as the reincorporation of aggregative prob-

lems such as inflation and the business cycle within the general frame-

work of “microeconomic” theory. If these developments succeed, the term

’macroeconomic; will simply disappear from use and the modifier micro

will become superfluous. We will simply speak, as did Smith, Ricardo,



2.3 DSGE as Reductionism 35

Marshall and Walras, of economic theory. If we are honest, we will have

to face the fact that at any given time there will be phenomena that are

well-understood from the point of view of the economic theory we have

and other phenomena that are not. We will be tempted I am sure, to re-

lieve the discomfort induced by discrepancies between theory and facts by

saying that the ill-understood facts are the province of some other, differ-

ent kind of economic theory. Keynesian ‘macroeconomics’ was, I think,

a surrender...to this temptation. It led to the abandonment, for a class of

problems of great importance, of the use of the only ‘engine for the dis-

covery of truth’ that we have in economics.

In this passage Lucas shows his reductionist bent, but seems oblivious to the Fallacy

of Composition, treating it as unproblematic to think of many interacting markets in

exactly the same terms we think of those micro components. The microeconomic the-

ory to which he refers is that built around the concept of General Equilibrium, and it

is the naive reductionism of General Equilibrium rather than microfoundations gener-

ally that is challenged in this section. Comprehensive surveys of the negative results

for General Equilibrium exist (for example see Ackerman (2001); Rizvi (1997)), and I

will mostly recapitulate here with only a few refinements and extra details.

2.3.1 Equilibrium

It is an old idea in Economics that market forces produce an equilibrium price vec-

tor that leaves no participants with incentives to change their behaviour. A common

historical narrative is that the early neoclassical economists, like Walras and Pareto,

emulated the mathematics of static equilibrium, and the maximisation of utility (min-

imisation of potential energy), from the physics of the time(Ackerman, 2001). Mean-

while, in the early 20th century, mathematics became infatuated with the axiomatic

formulation of the Bourbaki group. Gerard Debreu was educated in this context, and
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so his formalisation of the market equilibrium concept put no small emphasis on a min-

imal set of fundamental axioms (Kirman, 2006). The Arrow-Debreu formalisation of

General Equilibrium that emerged was lauded for its simple clarity, reducing the eco-

nomy to stark descriptions of many producer and consumer agents who produced and

consumed in response to prices that automatically took on a value that left no excess

demand. This automatic equilibration was described as the action of some Auctioneer

in the Walrasian tradition, perhaps supposed to implicitly represent some other market

process.

The Arrow-Debreu framework gained momentum so quickly that by the time neg-

ative results began to emerge, nothing could dampen the profession’s enthusiasm.

Sonnenschein (1972), Mantel (1974), and Debreu (1974) himself, found that within the

Arrow-Debreu framework applied to goods exchange the uniqueness of an equilibrium

cannot be assumed when the number of agents exceeds the number of goods, unless

patently unrealistic assumptions are made about preferences2 — henceforth known as

the SMD results. More specifically, the results showed that the function representing

aggregated excess demand need not have the properties that ensured a unique equilib-

rium, even if those properties had been assumed for the individual agents. As explained

in the previous section, this non-linearity is typical of systems with many interacting

components, so it should hardly have been surprising. Indeed, the equilibrium sets of

prices (attractors) that ensured no excess demand could allow oscillating or even ap-

parently random prices. Although this extreme behaviour is seen only for a trivial set

of initial endowments, the more general case of locally unique equilibria would permit

all kinds of dynamics when perturbed by the shocks of a DSGE model. Nevertheless,

these results did not stop the Arrow-Debreu General Equilibrium from being integrated

into Macroeconomics as a response to the Lucas (1976) Critique.

The SMD results mean that simply assuming a unique equilibrium exists, without spe-

cifying some demonstrably realistic preferences that guarantee it, is a Heuristic As-

2Specifically, the property of Gross Substitutability across goods, which specifies that when the
price of one good rises the demand for every other good should fall (Mas-Colell et al., 1995).
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sumption in the typology of Musgrave (1981) and renders the model invalid for pre-

diction. Specifically, the assumption blinds us to all kinds of dynamic behaviour just

as possible at equilibrium as a stable fixed price. Moreover, comparative statics are

compromised even at a locally unique equilibrium, because any kind of discontinu-

ous disturbance, like those assumed in macroeconomic models, could knock the sys-

tem into the basin of attraction of another equilibrium. Indeed, Kemp-Benedict (2012)

shows that general equilibrium’s assumptions make it comparable to a topological field

theory, which in turn implies the possibility of abrupt transitions between equilibria.

Much of the DSGE literature dodges the SMD result by simply assuming that the con-

sumers in an economy can be replaced by a single Representative Agent responding to

aggregate variables. This practice is clearly another heuristic assumption, as relaxing

the abstraction to the more realistic multiple agents leads to different general model

behaviour. Given that the SMD results allow oscillatory behaviour at equilibrium, a

model of a rational decision maker is no more representative of General Equilibrium

than is a model of a pendulum. But, the limitations of condensing all the economy’s

agents to a single representative do not end there. Kirman (1992) extends the SMD res-

ult to economies arbitrarily close to having homogeneous agents. He also reproduces

a simple example in which the preference of a representative agent over two possible

scenarios is the opposite of the preference of the two agents they represent.

Of course, the main concern of the DSGE literature in Macroeconomics is not goods

markets, but rather the intertemporal allocation of investment resources, which is sup-

posedly influenced by monetary policy. Here, Krusell et al. (1998) show that hetero-

geneity does not radically alter behaviour from the representative agent case, because

long-run planning makes the Marginal Propensity to Consume effectively constant —

allowing linear aggregation. Nevertheless, Carroll (2000) shows that Krusell et al.

(1998) employs heuristic assumptions, because those generating a realistic income dis-

tribution also make the representative agent a poor approximation. This is of little con-

sequence, however, because the SMD results for the goods market are not orthogonal
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to these intertemporal decisions anyway: the choice between consuming now or in the

future will be interrelated with the leisure-consumption trade-off in the present, which

is subject to the SMD results, and faces conditions that could jump around unpredict-

ably.

2.3.2 Absent Dynamics

While the historical narrative attributes the equilibrium concept in Economics to emu-

lation of Physics, Economics did not stay in step for long. Physics went on to include

Hamiltonian dynamics, with a measurable quantity conserved even out of equilibrium,

in the form of energy. Economics’ utility minimisation could not be meaningfully

extended to conservation in a dynamic setting, and so this new maths could not be

borrowed (Mirowski, 1990). If there was any will to develop a dynamic theory of

Economics after Keynes’s emphasis on disequilibrium, it had to die with the Arrow-

Debreu framework which continued to marginalise dynamics away from equilibria.

The Walrasian Auctioneer was a black box that hid whatever process was responsible

for arriving at those equilibria, and one can understand its appeal; ignoring dynam-

ics saved economists the burden of modelling all the complexities of actual market

exchange, and let them skip straight to the simpler ideal outcome of that exchange.

Unfortunately, without explicit dynamics equilibria are not what economists treat them

as, because it is dynamics that would determine whether the economy moved towards

that equilibrium or away from it. Hence, there is again a heuristic assumption in use

when economists employ even comparative statics, because they do not know whether

the economy will then diverge from the equilibrium they are studying.

There have been attempts to introduce dynamics into the general equilibrium story, first

by making explicit the common intuition that prices change in response to excess de-

mand. It can be shown that the simplest of such rules does not guarantee convergence,

but of more concern is the informational requirements of such a process. This is be-

cause the Auctioneer must represent some actual physical process of interacting agents
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with finite information processing capacity. Saari (1985) shows that the Walrasian

Auctioneer cannot be replaced by any algorithm, based on just excess demand, that

does not require infinite information to always converge. This is because either the

process must be continuous, and hence process a continuum of information, or must

have access to an infinite number of derivatives of the excess demand function if dis-

crete. That is, no realistic mechanism could find a vector of prices by responding only

to excess demand, in order to eliminate that excess.

Other processes can be considered that allow global convergence, by also including

price information. But, Jean-Jacques Herings (2002) has shown that all these es-

tablished mechanisms depend on Browder’s fixed point theorem. This requires the

adjustment process to be continuous, again requiring infinite information processing

capability. Hence, for economists to invoke the Walrasian Auctioneer is a heuristic

assumption, because then relaxing the abstraction of infinite information processing

changes the behaviour of the model.

2.3.3 New Keynesian Equilibrium

Those familiar with DSGE will find the last two subsections to be only a partial refuta-

tion, because only DSGE models in the Real Business Cycle tradition are based on the

General Equilibrium concept as Arrow and Debreu described it. The New Keynesian

DSGE models eschew the auctioneer and market clearing in favour of Monopolistic

Competition, wherein firms choose prices for their differentiated goods so as to max-

imise profits. But, these changes to the supply side of the economy do not address

the problems of the demand side captured by the SMD result: the individual firms

still face aggregate demand curves that do not necessarily inherit the convexity of indi-

vidual demand curves, making the uniqueness of a profit maximising equilibrium just

as arbitrary an assumption. This result was established by Roberts and Sonnenschein

(1977) before Monopolistic Competition had even been given formal microfoundations

by Hart (1982), in the paper that laid the foundations for the New Keynesian models.
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In fact, Hart explicitly stated that,

Unfortunately, as is well-known by now, the Cournot-Nash assumption

introduces a serious non existence problem (see Roberts and Sonnenschein

[1977]). We avoid this by considering a particularly simple model, and by

making a number of strong assumptions about demand functions. There is

no doubt, however, that generalizing the model significantly could be hard.

For this reason, the analysis presented here should be considered more as

an extended example than as a general model.

These words of caution were not heeded, however, by the authors who elaborated on

this structure. For example, Taylor (1979) simply assumes an objective demand curve

in his seminal New Keynesian model with staggered price adjustments by firms.

In his more tractable revision of Taylor, Calvo (1983) replaces this objective demand

curve with one based on the maximising behaviour of a set of Sidauski agents. But,

such agents are assumed to be identical, thereby forcing past the SMD result with

heuristic assumptions (Brock, 1974). So, in the New Keynesian case too, microfound-

ations do not actually represent Reductionism because they do not reflect the actual

interaction of the descriptions of agents.

I am not aware of a published result for the New Keynesian framework that parallels the

problems of the auctioneer’s infinite information requirements. But, the New Keyne-

sian firm’s profit maximisation problem is much like the auctioneer’s problem in that

an equilibrium must be found based on an unknown excess demand. One might there-

fore expect exactly the same informational requirements, and count another criticism

that carries to the setting of Monopolistic Competition.
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2.3.4 Undefined Aggregate Stochasticity

The Stochastic part of a Dynamic Stochastic General Equilibrium model takes the

form of aggregate disturbances to the whole economy. The reason that unknowns at

the micro scale are not thought relevant to the unpredictability of aggregates is the

Law of Large Numbers, the property of finite-variance distributions that sample aver-

ages approach the population mean with sample size. Here the problem for DSGE is

not simply that parts of the model do not correspond to the actual components of the

economy, but also that it is sometimes unclear just what components they actually cor-

respond to. Chari et al. (2009) argue that the shocks in New Keynesian models, such as

the exemplar of Smets and Wouters, do not all have obvious real world interpretations.

For example, they note that the suggested distribution of random changes in the sub-

stitutability of workers cannot be realistic, and go on to show that this stochastic term

could be interpreted in different ways with radically different policy implications.

Meanwhile Aoki and Yoshikawa (2012) question how well the mean of an economy’s

future time path describes its potential behaviour. That the mean should give us a

good enough idea of how the economy can move depends on idiosyncratic shocks

to its individual agents not having ramifications for the whole economy, that is on

the Law of Large Numbers. However, the Law of Large Numbers depends on the

variance of successively large samples growing more slowly than the mean. This would

usually be described by a coefficient of variation that shrinks to zero with sample size.

However, in at least one important class of stochastic processes, that Aoki considers

more realistic, this property breaks down. The implication is that the time path of the

mean of the macro system, such as that of the Representative Agent, will not adequately

describe its actual path under certain stochastic structures. Empirically, this vanishing

coefficient of variation property would clearly collapse if shocks’ volatility grew fast

enough with the variable of interest for an agent. This lends the criticism even more

bite, given that firm size, and personal income seem to follow fat tailed distributions

that may suggest conditions proportional to their size (Gatti, 2008).
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A similar concern for the law of large numbers might be that if the idiosyncratic micro-

shocks in a system propagate enough, even if of standard variance, then once again the

variance of successively large aggregates need not grow more slowly than the mean.

To make this criticism more concrete, one might consider the quite general model of

Acemoglu et al. (2012). Acemoglu and Ozdaglar find that should the connectedness

of one agent within an otherwise neoclassical economy remain proportional to that

economy’s size, in the limit, then the law of large numbers may only be applicable

to much larger economies or may fail entirely. Further, they find that even where one

agent’s direct relationships are not too many, if they are indirectly related to sufficiently

many other agents (say, if they are related to a just-above-average number of agents

who are in turn all related to a just-above-average number of agents) then the law of

large numbers again breaks down. They then find that the indirect links of sectors in

the US supply network suggests that sectoral shocks might have significant aggregate

effects.

2.3.5 Agents and Markets

Beyond the above problems with the way agents and markets are aggregated in the

General Equilibrium tradition, there are also well known problems with the way both

are represented. In line with the Neoclassical school, Agents’ decision making is as-

sumed to be an optimal response to their environment. After Samuelson this optimality

was defined with respect to a revealed preference relation over the possible combin-

ations of goods consumed, at specific times, in specific states of the world. Whereas

the classical utility based foundation of demand was underdetermined, because it did

not otherwise correspond to observable phenomena, revealed preference was theoretic-

ally operational because it could be measured by individuals’ choices between offered

combinations of goods. For the preference relation detected in this way to be equi-

valent to a demand curve, it had to satisfy the Strong Axiom of Revealed Preference

by not allowing indifference between any two combinations of goods. Unfortunately,
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strict preference between two combinations is observationally equivalent to indiffer-

ence, in which case exactly the same combination might be chosen. This immediately

introduces a behavioural assumption into the use of revealed preference, that is no less

ad hoc than classical utility theory. Of course, in purely operational terms there is

also the problem that observed choice behaviour doesn’t cover nearly enough pairs of

alternatives to give a usable preference relation (Rabin and Koszegi, 2007).

The unobservability of preferences obviously means that rationality as a description of

individuals’ behaviour can only be tested in combination with assumptions about the

goals of that rational action. This brings us back to the Duhem-Quine Thesis, and at-

tendant problems, which makes it difficult to assess whether or not rational agents are a

realistic description of individuals at all. When consistency of preferences is assumed,

rationality can be tested by giving experimental subjects the same choices presented

in different ways. Here the evidence is generally against rational decision making:

people struggle to perceive choices through the way they are presented, to predict their

own preferences at later times, and to make short term decisions consistent with their

long term choices (Rabin, 1998). One of the exciting things about decision theory, is

the reflexivity between how the modelled decision makers build up knowledge and the

method by which the researcher themself builds knowledge of their subject. In section

2.6 I will give some clue as to why describing decision makers as rational might not be

appropriate, when they deal with decisions about anything but very regular phenomena

— for instance, decisions involving an economy that is influenced by so many different

phenomena we cannot yet predict.

Another way in which some have attempted to save General Equilibrium3 is through

using simpler descriptions of agents, but aggregated in a more sophisticated way. Both

Hildenbrand (1983) and Grandmont (1987) try to derive a well behaved aggregate de-

mand curve from the distributions of observable characteristics of consumers. To do so,

both choose a more minimal description of individual agents’ behaviours; Hildenbrand

3Albeit at the cost of losing the Fundamental Theorems of Welfare Economics, and hence any
normative properties of market equilibrium.
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only assumes Revealed Preference at the individual level, not the Strong Axiom, while

Grandmont makes the even starker assumption that budget constraints are satisfied. In

Hildenbrand’s model, well behaved aggregate partial demands4 are then implied by

his cited distributions of consumers’ responses to changing income5. But, this distri-

bution is only observable from cross-sectional data if one assumes that individuals’

choice behaviour is locally independent of their income level, which is not something

that can be established from available data (Evstigneev et al., 1997). Of course, once

again, infeasibility and the evidence against persistent preferences prevent Revealed

Preference from being a good description of individual behaviour, and also undermine

Hildenbrand’s approach. Grandmont’s approach is simpler in its assumptions about

individuals, but its distributional assumptions are expressed in terms of a metric over

preferences that cannot be applied to observable data, and so it also fails to employ

descriptions of the economy’s actual components.

While the description of agents employed in DSGE is a questionably negligible ab-

straction, the description of markets is of far less ambiguous quality. Douglas North

famously wrote:

It is a peculiar fact that the literature on economics...contains so little

discussion of the central institution that underlies neoclassical economics

— the market.

Indeed, it is argued that Walras had misunderstood the operation of the Paris bourse

when he tried to relate it to his original discussion of market equilibrium. Kirman

(2006) argues that the Arrow-Debreu framework scarcely resembles actual market

activity, which involves information besides price signals and introspection. Of course,

each of us will have plenty of experience of the bilateral nature of much economic

activity, where prices are agreed for a single idiosyncratic exchange rather than being

4But note, not the full aggregate demand needed for an equilibrium (Grandmont, 1987).
5Specifically, he shows that a continuous decreasing density of the distribution implies that prefer-

ence or indifference can be established for the aggregate over every pair of goods.
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posted in some centralised marketplace. Indeed, even in supermarkets where prices are

not open to bilateral negotiation, systems like loyalty cards allow prices to effectively

be tailored to individual customers by introducing a second set of prices that interact

with their spending in a complex way.

To describe the descriptions of agents and markets in DSGE models as based on heur-

istic assumptions would be to assume that they can be relaxed, in order to see the effect

on model behaviour. In neither case is this possible while retaining any of the character

of the model.

2.3.6 Failed Reductionism

From a policy design perspective, in light of the heuristic assumptions described above,

reductionist DSGE models should be employed with great care. As deductive theory,

these models’ results will necessarily be tautologous to the set of (unrealistic) axioms

on which they are based. This means that even when institutions like government are

incorporated into a DSGE model, any roles of their policies that are already abstracted

into assumed smoothness of markets will be neglected in the recommended allocation

of resources to them: if we assume a Walrasian auctioneer, then of course we’ll find

that market regulation is unnecessary; meanwhile, even if we find a role for money

in such models, if it doesn’t conform to the actual behaviour of money in the eco-

nomy there is no reason to think that policy recommendations will be relevant. Indeed,

whenever modellers employ a heuristic ceteris paribus assumption, made for the sake

of tractability, their results will only be relevant to policy questions that are wholly

orthogonal to mechanisms they have assumed away (Boumans and Morgan, 2002).

To summarise, the arguments above do suggest that the assumptions of general equilib-

rium are not realistic in a meaningful sense, and this renders microfoundations based

on general equilibrium obsolete: if the agents are not contextual approximates to real

people, and nor are the relationships between them and the economy contextual ap-
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proximates, then the model components share only their names with actual economic

agents and there is no reason a-priori to think they will help describe economic activity.

So even ignoring the unrealisticness of rational man as a description for individuals’ be-

haviour, with any realistic link to the macroeconomy severed, the representative agent

would still no more represent a consumer/producer than they would a child trading

marbles in a playground somewhere. The latter would recommend a policy of finding

the child and carefully managing their trades, and yet we don’t pursue it!

The conclusion from this section should be that General Equilibrium Macroeconomics

fails completely if interpreted from a reductionist perspective. A response to this might

be to invoke Friedman’s argument, that the macroeconomy might anyway behave “as-

if” it were a DSGE model, even though its structure bears no relation. Invoked in

this way, I established in section 2.2 that we are invoking Instrumentalism (if we are

invoking anything meaningful). Because we have plenty of information about the mi-

croscopic objects in our models, Instrumentalism takes on a subtly different interpret-

ation in Economics from that in Physics. In the latter it is effectively a statement about

whether theories can contradict one another, but in economics it divorces macro the-

ory from micro theory: it simply becomes Holism. Whether current Macroeconomics

succeeds on these terms is a question I will pursue in the next section.

2.4 DSGE as Holism

Using Friedman’s “as-if” argument to defend DSGE’s lack of realisticness through In-

strumentalism, is valid from a philosophical perspective, and so any criticism must be

based on the models’ performance from this perspective. Instrumentalism is usually

discussed as an agnosticism over the realism vs anti-realism debate. In the context

of Economics, no one would deny that micro theory tries to describe agents that ac-

tually exist. This then makes the significant implication of Instrumentalism that the

“agents” of the macro model do not correspond to the agents of micro theory. This
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Holism means that the only evaluation of DSGE models can be their power to describe

macroeconomic phenomena.

Anyone subscribing to the Lucas critique might already object to this interpretation

of DSGE, and they perhaps pre-empt some of my arguments. But, it should be noted

that, interpreted any more widely than the context of Keynesian Econometrics, Lucas’s

critique misses the point that a holistic description might already include the response

of policy makers in some way — just as one Taylor rule is now argued to capture all

manner of complex responses from a central bank. If one was to look for a criticism

of holistic DSGE in Lucas (1976), they could note that his attack also has bite against

the VAR representations generally used to implement DSGE models: unstable vector-

difference equation parameters are suggestive of a non-stationary process that cannot

be described by a VAR, but could still be described with other holistic models. I will

reprise this point after first describing some more current criticisms.

For the sake of clarity I will focus on a specific DSGE model, that of Smets and

Wouters which is widely regarded as a successful example of New Keynesian Model-

ling, and is used for policy analysis by the European Central Bank (Smets and Wouters,

2007) — this model is described in detail in chapter 4 of this thesis. Because a Holistic

model is only qualified by its performance on the macro data, we can dismiss DSGE

as a holistic endeavour if the best of existing DSGE models fails: to argue that the

promise of microfoundations justify continuing the program would be to invoke reduc-

tionism instead. The currency of this model makes it a fair candidate to stand trail for

the whole research program.

The Smets-Wouters model is parametrised by Bayesian methods: the researchers rep-

resent their prior knowledge of the model’s parameters with probability distributions,

and then revise these distributions in light of the macroeconomic data using Bayes’s

Rule. This introduces subjectivity into the choice of parameters. As I explain in sec-

tion 2.6.4, there is nothing wrong with this subjectivity per se. But, it does allow for

potential (even unwitting) abuse, by introducing even more flexibility to the model for
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researchers to a-theoretically bend behaviour to match data. What I am suggesting here

is an extreme extension of the Duhem-Quine Thesis, where a large research program

trying many auxiliary assumptions and prior distributions on only a few short data

sets, can effectively act as if data-mining. In this case, forecasting or descriptive power

driven by trial and error might seem like it was driven by the soundness of theoretical

assumptions. This is similar to an argument used by Fama to challenge any evidence

in the Efficient Markets Hypothesis debate (McGovern, 2006):

With many clever researchers, on both sides of the efficiency fence,

rummaging for forecasting variables, we are sure to find instances of “re-

liable” return predictability that are in fact spurious (1991, p. 1585)

Regardless of these concerns, the Smets-Wouters model is not successful at forecasting

or describing macroeconomic data, at least by the sensible standards that I will explain.

This argument only serves to explain why a DSGE model might match the performance

of certain statistical models with more free parameters.

2.4.1 Forecasting

Foremost among the criticisms of Macroeconomics as a Holistic endeavour, quite nat-

urally, are the persistent predictive failures of DSGE models, which tend to be outper-

formed by simpler econometric models on macroscopic data (Herbst and Schorfheide,

2012; Wickens, 2012; Edge and Gurkaynak, 2010).

Smets and Wouters themselves judge their model to be good at forecasting, because

it produces forecasts that are comparable to Vector AutoRegressive processes with

both maximum likelihood and Bayesian parameterisations — these are minimalistic

descriptions of elements in a vector time series as a linear combinations of their preced-

ing values. This good relative performance is echoed elsewhere (Edge and Gurkaynak,

2010), but there is a catch. Relative performance is a deceptive criterion, because
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in absolute terms DSGE models, naive VARs, B-VARs, and traditional econometric

models are all found to perform badly, both over the recent economic crisis (Wick-

ens, 2012) and (even less forgivably) over the preceding calm of the Great Moderation

(Edge and Gurkaynak, 2010). That is, no model succeeded in predicting many of the

significant changes in GDP or inflation since 1992, predicted the great recession, nor

predicted economic variables after the great recession. This poor performance is based

on single variable forecasts, assessed using root-mean-squared-error, and Herbst and

Schorfheide (2012) question whether the power of DSGE might lie in joint forecasting

(calling on reductionist arguments). They construct a measure of this performance, but

find the Smets-Wouters model does not offer a clear improvement over a three equation

DSGE model — the size that might be taught in a classroom for its simplicity.

Despite the poor forecasting performance they find, neither Wickens (2012) nor Edge

and Gurkaynak (2010) interpret this as grounds to dismiss the DSGE program. In

fact, both point out that the models themselves predict their own inability to forecast

well in the given conditions. That those conditions cover both calm and crisis between

the two studies leads one to question whether this consistency is of any value. But,

both papers argue that DSGE models should instead be assessed on other grounds —

again, cognitive dissonance might help description here. Wickens (2012) argues that

DSGE models are too much driven by unpredictable exogenous variables for them

to forecast economic behaviour, and that they should therefore be assessed in-sample

rather than out-of-sample. I will address DSGE models’ descriptive performance in

the next subsection.

Herbst and Schorfheide (2012) remark that DSGE, VAR, and B-VAR, are all outper-

formed by more sophisticated time series models. But this is not the only reason that

DSGE’s comparable performance to VAR and B-VAR is not a small victory for its

proponents. I established in the previous section that DSGE does not work from a

reductionist perspective, and that to escape this we have to appeal to Holism. The

implication of a holistic perspective is that the model must be judged solely by its
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performance on macroeconomic evidence. The “microfoundations” of DSGE are not,

therefore, an advantage over the alternatives, they are a needless complication of the

description of this data. This means that DSGE cannot be defended by its forecasting

performance so long as Science values a neat, parsimonious, description of phenom-

ena. I argue in section 2.6 that this is in fact the only criterion Science need employ.

2.4.2 Description

The response to DSGE’s early predictive failures by its founding fathers, Lucas and

Prescott, was to simply move the goalposts and ask instead only that models described

recorded behaviour of the macroeconomy well (Evans and Honkapohja, 2005). This

might seem like the response cognitive dissonance would predict to the empirical con-

tradiction of a beloved theory, but it should be noted that the relaxation of standards

from Maximum Likelihood prediction of paths to pattern description is in line with

Hayek’s beliefs about the modeling of complex systems — a view that is supported by

the proponents of complexity science (Gatti et al., 2011). Indeed, Lucas had previously

espoused such a viewpoint and was actually in agreement with authors as diametrically

opposed as Herbert Simon (Boumans, 1997).

In developing a more sophisticated method for assessing DSGE models on these terms,

Le et al. (2012) comment on the argument for the change away from forecasting:

Supporters of DSGE models ... argued that these models were ‘mis-

specified’ or ‘false’ and so should not be tested by the usual econometric

methods which would always reject them. Rather they should be evalu-

ated by whether in simulation they could generate behaviour mimicing the

‘stylised facts’. This mimicry could not be evaluated by statistical infer-

ence; rather it was an informal comparison.

This early method of comparing “stylised facts” generally amounted to comparison

of statistics for the observed data with the same statistics’ distributions in simulated
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data. The statistics generally used were correlations between macro variables, and the

Impulse Response Functions generated by introducing one of the orthogonal stochastic

shocks, and tracking the subsequent behaviour of the model’s variables. Le et al. (2010)

argue that this approach is inadequate because it fails to consider the joint distribution

of the statistics. This would allow a model to go unrejected because its correlations

between output, inflation, and unemployment, were often close to the data, even if in

any one simulation at least one of these correlations was very different. The proposed

solution is a technique called Indirect Inference, which estimates the statistics on each

of many simulations, and then condenses the joint distribution of those statistics into

a single Wald statistic. This simulated Wald distribution can be compared to the Wald

statistic for the observed macroeconomic data, and the model can be rejected if the

observed Wald is very unlikely.

So how do DSGE models perform at describing the behaviour of macroeconomic vari-

ables? Again, I will discuss the exemplar Smets-Wouters model only, because of its

currency and claim of success. Le et al. (2011) find that the model is thoroughly rejec-

ted by Indirect Inference, both in its original form and augmented with flexible prices.

Only an arbitrary mixture of these two models is not rejected at the 99% significance

level, and then only for a much shorter span of data (matching the “Great Moderation”

period) and reduced sets of no more than three variables. Worse, in chapter 4 I find

that for the single variable tests, where almost all of the model’s 99% significance is

seen, Indirect Inference has very little power to reject quite dramatically misspecified

models.

Just as with forecasting, the performance is being assessed in Le et al. (2011) relative

to a VAR, both because this is what the Smets-Wouters model is reduced to in practice

and because a VAR is the statistic compared between observed and simulated data.

So, once again we are confronted with the problem that, even had the description been

good, it would necessarily be no better than the best fitting VAR description. Because

we are speaking as Holists, we are accepting that the theoretical terms of the model
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contribute nothing to its validity and we only care about its description of the macro

data. Hence, our ultimate problem with the “stylised facts” method and its successors

is that the best Holistic model is simply the “stylised fact” itself! In 2.6 I give the

foundations for a method that would give a less tautological criterion for descriptive

success, namely simple parsimony in describing the whole data set.

2.4.3 Policy Evaluation

Another response to the Lucas critique, was that of Sims (1980) to move away from

theory and use naive models, such as unrestricted VARs, to describe the economy.

This, too, amounts to Holism. The resounding criticism of this line of research has

been that, without an explicit policy variable in the model, there is no way to judge

the effects of interventions on the macroeconomy. That is, the model may provide

a description of the macroeconomic variables given to it, but the interest rate here is

determined by the other variables rather than an outside decision. The obvious policy

instruments, then would be the innovations to monetary variables. But, when the in-

novation vector is correlated, the component affecting these variables directly is tied

to contemporaneous innovations affecting other variables too, which one would not

expect of policy interventions. Many transformations of the vector space would make

the innovations orthogonal, and so it is not obvious which one isolates a true interest

rate intervention. Supporters of DSGE therefore consider policy evaluation a fatal flaw

of Simms’s Holistic macroeconomic tradition.

Little do those invoking such a criticism realise that, if they also invoke “as-if” argu-

ments with any meaning, DSGE models commit exactly the same error. Again, this

is because the “as-if” argument supposes that the only important quality of a macroe-

conomic model is its description of the macroeconomic data in question, so that the

features of the model named after agents and firms are no longer supposed to reflect

the agents and firms of microeconomic theory or have the same relationships to policy.

So in this case too, any identity is lost for the stochastic innovations to monetary policy
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and there is no clear policy advice to be taken from the models.

2.4.4 Failed Holism

Conventional microfounded macroeconomic models do not predict or describe their

subject phenomenon. This is all that can be concluded, given the above, and it means

that the DSGE program fails from a holistic perspective. Part of the reason may be

that DSGE models have been implemented in such a way that they could not ad-

dress the time series properties Lucas (1976) originally decried; that DSGE models

are generally reduced to VARs means that they cannot describe the shifting parameters

of econometric difference equations, except through some exogenous process — like

Markov switching. Of course, tacking on such an exogenous process to a DSGE model

might improve its fit, but does not render the theoretical part any less superfluous. In

chapters 3 and 4 of this thesis I will present a time series model that better describes

the properties of macroeconomic time series, in the form of fractional integration.

I argue that the theoretical component of DSGE models is superfluous because: it

fails at reductionism, and so does not allow information to be introduced from micro

evidence; from a holistic perspective it only complicates the model without any gain

in performance. Of course, for this argument to be a decisive reason to look elsewhere

besides current Macroeconomics, I have to make clear that needless complication takes

precedence over other concerns — like the intuition of some great theorist, say.

2.5 Describing Methodology

Before I can make prescriptions for methodology in Economics, one might ask that I

first properly describe the current methodology. Section 2.2 suggested that economists

themselves don’t spend much time breaking methodology down past simple conven-

tion. But, that doesn’t necessarily mean that those methodological conventions are
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completely anarchic. In this section, I review some of the attempts to fit the Economic

methodology that is, into some of the more traditional descriptive frameworks from the

Post-Positivist Philosophy of Science: those of Thomas Kuhn and Imre Lakatos. These

frameworks may be the most familiar to working Economists who have experience of

methodology, and I choose them for this relatability. But, Methodologists in Econom-

ics moved away from these descriptions some time ago, to the even more relativistic

positions of the Sociology of Science and to the Pragmatism that motivates my later

prescriptivism (Hands, 2002).

The frameworks of Kuhn and Lakatos are mostly descriptive, rather than prescriptive

like the methodology I will discuss in the next section. Both philosophers were students

of Karl Popper, whose Falsification-centred methodology of Critical Rationalism is

even better known among economists. But, Popper’s ideas are generally regarded as a

weak description even in Physics, for which they were conceived (Janssen, 1991). This

weakness comes from their specificity, and they are so specific that they can also be

interpreted as prescriptive. For this reason, I will deal with them in much more depth

later, in section 2.6.

2.5.1 Kuhn’s Paradigms and Revolutions

In short, Thomas Kuhn’s model of Science is that a particular scientific community will

be bound to a collection of theories, called its paradigm. Kuhn describes periods of

Normal Science in which the peripheral theoretical details of a particular paradigm are

fleshed out incrementally. He contrasts these with revolutionary periods of Extraordin-

ary Science where the paradigm comes under doubt due to (vaguely defined) empirical

failings, and entirely new paradigms can come to the fore (Caldwell, 2003).

Historians of Economics differ on what its central paradigm is, with the Classical, Neo-

classical, and Kaynesian schools variously tried in the Kuhnian mould (Coats, 1969;

Gordon, 1965). In terms of actual theoretical propositions, Gordon (1965) makes in-
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dependent rational agents the paradigm of Economics. Several methodologists go on

to specifically identify Arrow-Debreu General Equilibrium as the Kuhnian paradigm

(Dow, 1981; Coats, 1969). It could be argued that the revolution between these two

paradigms was the Marginalist revolution. But, this is dubious because the latter is

simply a formalisation of the former. Authors rather identify the transition to Keyne-

sian Economics as extraordinary science (Coats, 1969).

2.5.2 Lakatosian Scientific Research Programmes

Lakatos’s ideas build on, and reconcile, those of Kuhn and Popper: Kuhn’s paradigms

become a hard core of immutable theory held by a particular community or Scientific

Research Program, while the standard for empirical validity of peripheral theoretical

details is explicitly referred to as Popper’s falsification. Rather than a single Paradigm

undergoing distinct phases of Normal and Extraordinary Science, Lakatos describes

coexisting (and strangely independent) Scientific Research Programs. Over time the

many possible peripheral theoretical details around an SRP’s hard core are tested and

variously rejected. In this way, Lakatos takes on the Duhem-Quine theorem by ac-

knowledging that the hard core will not itself be confronted empirically. He even

describes the peripheral theoretical assumptions as a protective belt. Lakatos also con-

fronts the infinite number of possible peripheral assumptions, by identifying positive

heuristics that scientists use to choose the next assumptions to test (Caldwell, 2003).

As with Kuhn’s paradigms, Lakatos’s descriptions can be variously applied to schools,

theories, and Economics as a whole (Janssen, 1991).

Lakatos does not prescribe how to do useful science, but he does tell us how to spot

it. He describes Progressive SRPs, as those which provide new successful predictions

of empirical evidence at a greater rate than paradoxical evidence is found (Caldwell,

2003). Otherwise, Lakatos considers an SRP to be degenerative. This distinction

means that Lakatosian ideas could at least be used to judge whether the methodology

of conventional Macroeconomics is indeed defective.
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The literature’s verdict is inconclusive, on whether current Macroeconomics is a pro-

gressive or regressive Scientific Research Program. Janssen (1991) recounts Wein-

traub’s finding that General Equilibrium is progressive, but also gives detailed criti-

cism of Weintraub’s arguments, to leave it as a regressive SRP. Weintraub’s Lakatosian

characterisation gives General Equilibrium the following hard core assumptions:

HC1. there exist economic agents;

HC2. agents have preferences over outcomes;

HC3. agents independently optimize subject to constraints;

HC4. choices are made in interrelated markets;

HC5. agents have full relevant knowledge;

HC6. observable economic outcomes are coordinated, so they must be discussed with

reference to equilibrium states.

This then leaves all the theory relating General Equilibrium to the macroeconomy as

part of the protective belt, to be modified according to Weintraub’s much less well

defined positive heuristics. To get a more decisive verdict on whether General Equi-

librium based Macroeconomics is progressive or regressive would need an extensive

review of the entire DSGE literature. But, this undertaking might be of little value,

given some widely recognised flaws with the Lakatosian model.

2.5.3 Limits of Post-Positivistic Descriptions

Ultimately, Janssen (1991) abandons the Lakatosian framework for describing General

Equilibrium, and Economics more generally. He is not alone in considering the post-

positivist models of science to be inadequate.
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Like Popper’s Falsificationism, the Kuhnian and Lakatosian frameworks are elegantly

simple. But, like Popper’s system, they are oversimplistic to the point of fatal vaguery.

This is illustrated well by the flexible designation what parts of Economics count as

paradigms and Scientific Research Programs.

More fatal for the Kuhnian account is the criticism brought by Weintraub (1979). He

argues that Economics has developed as a continuous accumulation of knowledge, not

punctuated by the abrupt changes of revolution. This is quite evident in the large over-

lap between classical and neoclassical “paradigms”, and the integration of Keynesian

thought into a single orthodoxy.

The further difficulty for Lakatosian descriptions of Economics comes from the ap-

plicability of his empirical criterion. Firstly, unidentifiable positive heuristics mean

that any economic model requires ad hoc assumptions about how its variables relate

to measurable empirical evidence, unlike the experiments of Physics for which Laka-

tos originally conceived his model. Where falsification is a matter of interpretation,

the rate of successful new predictions is flexible how one chooses to interpret what

models are saying empirically. Janssen (1991) also points out a deeper problem, in

that accounting for the rate of successful prediction relative to falsification, across all

the predictions of a research program, would involve a review of all research being

undertaken in that program. When one considers that models making unsuccessful

predictions are generally harder to publish, one realises that a proper accounting of

whether a program is producing more good than bad predictions is impossible.

Even though post-positivist descriptions of the methodology in conventional macroe-

conomics are plainly not a recommendation of the DSGE program, the problems listed

above make this far from the final decisive criticism needed. In the next section I ad-

dress the vagueness of these frameworks, on how empirical evidence is handled, by

looking only at operationalised approaches to handling empirical evidence.
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2.6 Disciplining Methodology

The preceding sections should be persuasive to common sensibilities that modern mac-

roeconomics has taken a misstep. But, the principal criticism, that macroeconomic

models are not as parsimonious as other comparable descriptions, is only fatal if there

is no more important criterion by which to select predictions. This is an expansive

question that exposes the clay foundations of Science in general but, for those uncon-

vinced by the above, I now attack these fundamental issues in pursuit of a decisive

verdict. In simple terms the argument, of subsections 2.6.1 through 2.6.4, is that we

have no technology by which to identify truths about a future objective reality, and

we should instead embrace a self-consistent rule for subjective prediction. The rule I

offer, in subsection 2.6.5 onwards, is that of assuming the persistent simplicity of the

simplest description of everything we are instantaneously aware of — Occam’s Razor

applied only to subjective experience. I argue that this implies a Scientific Method

along the same lines and, in particular, that we now have the language to follow this

method formally in the form of the Minimum Description Length principle.

To discuss the goal and process of Economics the science we first need some basic

terminology from the philosophy of science:

Deduction is a process on logical relations wherein we move from special instances

to general properties: e.g. if we decide that all swans are birds (are a subset of

the set of birds), and that a particular animal is a swan (they are a member of

the set of swans), then we can deduce that the animal is a bird (they are also a

member of the set of birds).

Abduction is the reverse process, of guessing a specific instance from a general class:

e.g. if we think that only some birds are swans (the set of swans is a subset of

the set of birds), and we have a specific bird (a member of the set of birds), then

we can abduce that the bird is a swan (they may also be a member of the set of

swans).
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Induction is the assumption, if two things have many common features, that they will

then both share other features: e.g. if all the things we have seen that have the

shape and behaviour of a swan (are members of many of the same sets) are white

(are also common members of another set), then we predict that any subsequent

things with all these swan-like features will also be white (subsequent members

of the observed sets will also be members of the unobserved set). Of course in

the case of swans we would predict wrongly!

Ontology is a particular designation of what things can be described as existing: e.g.

one might say that one person exists, but that the number one itself does not.

Epistemology is a particular designation of how one acquires knowledge and learns

the ontology: e.g. one might be said (naively) to verify the truth of the statement

“all swans will be white” by observing many instances where this statement has

applied.

I only consider it worth discussing epistemologies that have been operationalised as

some methodology, and this spares us a good deal of the more academic philosophy

of science. That said, the epistemologies usually associated with both the mainstream

statistical methodologies (Frequentism and Bayesianism) can both be used to save cur-

rent macroeconomics. Broadly, this is the case because both epistemologies refuse

to address the origin of the theoretical terms used in deduction, and leave the pro-

cess producing those theoretical terms as a black box within individual researchers’

minds. This stance, which I will refer to as Rationalism, ultimately allows abduction,

through the intuition of researchers, to take priority over all other considerations like

descriptive power and parsimony. In the following subsections I will dismantle each

epistemology’s Rationalism in turn, and then go on to describe a way of thinking that

retains both statistical methodologies, successful scientific practice, and the common

sense of my macroeconomics critique.

Induction lies at the heart of the increasing empiricism that has coincided with what

many regard as social progress. But, for those who hold deduction above other modes
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of inference, induction has the problem (known as Hume’s Problem) that establishing

its validity by the success of past predictions is a circular argument: Induction must

assume consistency of phenomena over time, this is justified by consistency between

previous time periods; but, to make future predictions based on past cases is itself an

induction.

More practically, we must justify using induced models to recommend actions/policies,

even though they can’t tell us whether statements about policy outcomes are true. I can

offer two rough arguments:

Consistency — our prescription applied to questions of inference should lead to pre-

scribing itself — as, indeed, induction can because of the circularity described

above.

Relevance — without inducing that our objectives (as referenced in past experience)

will continue into the future, cost-benefit analyses of the future are impossible

and prediction becomes irrelevant.

Ultimately, though, the simple induction described here is incomplete, because we

must ask what exactly will be continuous through time. We might worry that what is

expected to persist depends on how we have chosen to describe what exists now. To

begin to answer this question, we need to be clearer about what we can know exists.

2.6.1 The Truth about Empirical Truth

It is well established that we can’t justify induction in the pursuit of objective truth, but

the discussion of Instrumentalism in section 2.2.2, which refuses to specify an onto-

logy, provokes a revision of how we think about the goal of empirical Science gener-

ally. If we can describe Science without an objective reality then we can’t describe its

goal as working towards understanding objective reality. Some working scientists may

well believe that this or some other is their end purpose, but for my purposes I will treat
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Science as a quest for predictions of future observations, to aid decision making. The

Realists’ assumption of persistent real entities means that predictions about an object’s

behaviour are a necessary consequence of understanding it, because the formulation

of a definition encompasses its regular behaviour. So, this definition is inclusive of

Realists’ activities. I also find it especially appropriate to Economics, where ultimately

policy decisions will be made on the strength of models. Because people can also act

without much consideration, and may do so on the basis of predictions of sorts, I will

restrict my definition to conscious decision making. Hence,

Science — consists of social activities with the aim of predicting future empirical ob-

servations for the purpose of conscious decision making.

If we are discussing science in terms of knowing about future observations, then I

should be more precise about what constitutes an observation. Henceforth, the term

will mean one individual taking in empirical information. Because we are aware at

most times of peripheral sensations to which we do not necessarily ascribe an object,

and because on memorable occasions we misidentify objects from the sensations we

have, I claim it is unquestionable that this empirical information only comes in the

form of sensations:

Fundamental empirical truth — a continuum of sensory information is fundamental

to what we identify in our stream of consciousness as discreet logical objects.

I am arguing that we describe these sensations as the objects we perceive, which are not

themselves part of sensory information. Crucially, this means that the objects cannot be

exactly identified with the sensory information, and we can deduce nothing from either

about the other. The remaining components of one’s stream of consciousness are the

remembering/imagining of such logical objects, which I do not class as empirical truth:

Memory — is the information in our stream of consciousness, in the form of sets of

discreet logical objects, that we identified as having happened previously.
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Imagination — is the information in our stream of consciousness, in the form of sets

of discreet logical objects, over which we feel we have control at any instant in

time.

Conventionally, the word truth may be used as a blanket category for these inform-

ations, and this allows deductions between these classes. I don’t mean to challenge

that usage elsewhere, only to clarify here that the properties attached to “truth” can

vary significantly. Finally, I also think it uncontroversial, after a little contemplation,

to make the following definition:

Conscious Decision Making — is the processing of information in the stream of con-

sciousness wherein action is chosen, through the sensations we can control,

based on imagined information that we expect to become remembered informa-

tion.

The purpose of these definitions is to give a clean classification of the informations

involved in conscious decision making, and a precise definition of that process. Cru-

cially, this lets me argue that it is a category error to treat the non-empirical information

in the same way that we treat the objects we construct from empirical information:

Assertion 2.6.1 — because information in the stream of consciousness that refers to

future events falls into the imagination category, we cannot deduce from it em-

pirical information or remembered information, and the common designation of

statements about the empirical future being true or not, in the same sense as

statements about the past, are not logically valid.

That is, seeing that the swan is white is a distinct category of information from remem-

bering a swan being white, and imagining that a future swan will be white. We cannot,

therefore, deduce from seeing a white swan that imagined swans must be white, nor the
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future sight of a white swan from an imagined swan being white: these things are fun-

damentally different experiences, not related through deductive logic. We must choose

another rule by which to relate them.

What I am getting at is that a science which seeks to establish the truth of logical

statements for conscious decision making, empirically, is inherently illogical, because

the objects in a statement are a collection of different classes of which only one is

directly related to empirical information. I am using my own language here, with the

hope of making it accessible to another non-Philosopher with similar experience, but

this rejection of truth status for statements about future empirical information is well

established in the Philosophy of Science under the name of Fallibilism. It might seem

that my emphasis on sense data as fundamental invokes the Phenomenalism of J.S.

Mill or C.I. Lewis, but I will now argue that the above leads away from the Realism

that has caused trouble for these ideas (see Bolender (1998) for a recent defence of this

Phenomenalism).

If we recognise that statements about future observation cannot be described as true,

then the statement that there is an objective reality is also meaningless, and we are

led away from Realism to an agnostic position akin to Instrumentalism. This does not

mean that behaving as if there is an objective reality will be useless, and I will reconcile

these two in section 2.6.5. But, it does mean that we cannot treat objective reality as

a given. An important consequence of this for methodology is that prescriptions for

scientific activity cannot assume the existence of other scientists. Instead, a method

must be consistent for both the scientific community, and an isolated individual treating

the scientific community as a phenomenon to be predicted. Again, I will reconcile these

needs in subsection 2.6.5.

Cognitive Dissonance (and common sense) would suggest that the reader’s mind is

now rebelling at the suggestion that there is not an objective reality. I hope that it will

sooth a little to again clarify that:

An objective reality may well be the best description of everything in
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each of our daily experience, and we should continue to behave as if there

is an objective reality except in describing phenomena a long way from

daily experience.

What I mean by “best” will become clear in subsection 2.6.5.

To summarise this subsection, we are left with three features a prescription for scientific

activity should have:

Consistency — the prescription should prescribe itself.

Subjectivity — the prescription should not require an objective reality that is know-

able through sense-data: it should be operational in terms of only our instantan-

eous stream of consciousness.

Objectivity — to be a prescription for Science, as a community, the subjective un-

derstanding must give us a concept of other people with which its behavioural

prescriptions are compatible.

2.6.2 The Austrians’ A-Priorism

An operational epistemology that unambiguously supports Realism, by simply reject-

ing empiricism, is the A-Priorism of the Austrian School of economics. It holds that

objects are transcendental and inherently known to us, along with their future beha-

viour (Caldwell, 2003). That is, we already possess an ontology in some way. This

denies uncertainty, but can be reconciled by the diluted position that there are some

underlying mechanical relationships between such natural objects which are neverthe-

less deducible from fundamental truths that we inherently know. Indeed, even with

the wane of the Austrian School (Caldwell, 2003) it is considered to still have cur-

rency in general (Hands, 2002). Nor is this position as unintuitive as it might at first

seem; anyone reading about the repeated failures of economic policies could be for-

given for wondering whether formal empirical methods are too unwieldy to describe a
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phenomenon as complex as an economy, or a person, and instead consider introspec-

tion as a basis for models. Indeed, the flight to abstract theory described by Colander

(2010) might be explained the same way.

This epistemology allows descriptions of future behaviour (models) to be derived purely

by introspection; something which has often left the Austrian school at odds with

its empirical counterparts, but which cannot be rejected by the criteria of a different

epistemology. Indeed, theoretical predictions are generally reconciled with observed

counterexamples by either invoking some flaw in the deductive process, or some fail-

ure to identify the fundamental truths (Caldwell, 2003). Nevertheless, in admitting

that fundamental truths can be misidentified we lose any decisive method by which

to select them introspectively, and must return to empirical evidence as a means of

confirming our inherent (but uncertain) knowledge of objects’ mechanical relation-

ships. This problem can be phrased in terms of the language of the previous section:

possessing the ontology for logical objects does not allow deduction about empirical

information. This empirical checking of theories derived by other means then looks

a lot more like Karl Popper’s critical rationalism, an epistemology widely subscribed

to across the scientific community which is arguably operationalised in the statistical

hypothesis testing that I will discuss next.

To put the Austrians’ beliefs in context, consider the evidence against the model of

rational utility maximisation described in section 2.3.5. The stereotypical Austrian

methodology described above would pay no heed to such evidence, because the as-

sumption of utility maximisation would be considered a self-evident fundamental truth.

However, not all Austrians believe in utility maximisation: Caplan (1999) describes a

schism in modern Austrianism between those comfortable with Neoclassical assump-

tions and those who reject them outright. This means that these two groups consider

different sets of fundamental assumptions to be self-evident. My criticism of Austrian-

ism stems from the question of how one establishes which of these fundamental truths

should be believed.
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To summarise, without this empirical extension, a-priorism fails the subjectivity and

objectivity criteria, because it is not a complete prescription of activity.

2.6.3 Hypothesis Testing as an Incomplete Methodology

Similar interpretations are shared by both R.A. Fisher’s hypothesis testing and the

Falsificationism at the heart of Popper’s epistemology. Both confront beliefs about

an objective reality with some criticism based on empirical observation. For Popper

the observation should show the belief to be absolutely false, which is a weak criterion

against stochastic models that give finite probability to a continuum of statements. Hy-

pothesis testing, on the other hand, only seeks to show that an observation is very

unlikely given a certain belief. This unlikeliness is defined in terms of the Frequentist

interpretation of probability: an objective reality is assumed to exist with the possib-

ility of infinite repetition of any given circumstance; probability is then the relative

frequency of a certain outcome over those infinite repetitions. A hypothesis is rejec-

ted, then, if observed phenomena would have a very low relative frequency were that

hypothesis true.

Both kinds of falsification can also be interpreted as part of an evolutionary epistemo-

logy that slowly promotes scientific beliefs that are more consistent with evidence, by

successively killing off those beliefs that are not. There is a difficulty here, however, in

that neither could be expected to explore an infinite space of possible beliefs (relation-

ships between variables) in finite time. So, there is an implicit assumption that these

beliefs are abduced in such a way that they are more likely than random to be good

predictors. It is the ambiguity in how these hypotheses are selected that introduces

Rationalism into hypothesis testing, and Rationalism ultimately allows conventional

microfoundations to persist while minor auxiliary assumptions are tried and discarded

— as per the Duhem-Quine Thesis. Recall that the epistemology Rationalism assumes

that new empirical knowledge can be deduced from imagination and memory, without

sense data.
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Confronting this incompleteness of the method then becomes a matter of replacing

the black-box of Rationalism with an explicit prescription for suggesting hypotheses.

Before this can be done, however, we need to be sure that the black-box which has

so far helped scientific prediction can indeed be opened. Two arguments, that it can-

not are common: first, the creation of hypotheses might be some mechanical process

in the brain that we cannot replicate formally, due to the brain’s complexity; second

that, as the Austrians believe, we have access to some a-priori knowledge about future

empirical information, not itself derived from empirical information.

If Rationalism is supposed to be some function of the brain that we cannot replicate

formally, then the problem of subsection 2.6.1 still applies. That is, anything that your

brain is able to discern from empirical evidence cannot be turned into a truth or false-

hood about an objective world. This is of course at odds with a method that aims only

to decisively reject false theories. There is also a problem in that Popperian philosophy

would suggest that hypotheses be tested against new information, out of sample, in the

way that General Relativity predicted gravity lensing. Clearly if a hypothesis is de-

veloped in the brain from sensory information, then that sensory information was also

available to the conscious mind, and can’t be tested out of sample. This then means

that the black box is simply finding a good description of data, which is something

that we might hope to replicate formally — more on this later. In the specific case of

Macroeconomics, we see the converse problem in that data sets are so few, limited, and

abstracted from what they represent, that the brain could be processing them only in

the way that a computer might data mine — a black box that can definitely be opened.

Instead, one could argue that the black box of Rationalism cannot be opened because

the brain has access to information that is not available to the senses. Opposing this

position is the successful set of models in physics that limit the transfer of information

at the macroscopic scale to local regions of space forward through time, which would

make the method inconsistent with its own conclusions. In its favour is the attempt of

the physicist Roger Penrose to revive the concept of platonic ideals, through quantum
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mechanics in the brain. Penrose argues that there are structures within the brain cap-

able of amplifying activity from the quantum scale, so that non-sensory information

can effectively influence cognitive processes (Penrose and Gardner, 1999). However,

Penrose’ model has been widely rejected by both theorists and evidence (Tegmark,

2000), again making it inconsistent with its own conclusions.

Regardless of the provenance of the objects used for the deduction of new knowledge,

there is a problem with Rationalism’s limitation to deductive logic. Since the heyday

of Critical Rationalism there has been a large amount of work on other logics, for in-

stance: Fuzzy Logic acknowledges the ambiguity of set membership, because language

is learned from experience and borderline cases exist (Zadeh, 1965); Subjective Logic

acknowledges that set allocation may change over time, because Science is still devel-

oping our description of many phenomena (Jøsang, 2001); and Constructivist Logic

denies the law of the excluded middle (the existence of set complements), because

truth values cannot be established from empirical observation (Tieszen, 1998). These

alternatives to classical deduction all raise the question of how it is justified as relevant

to empirical experience, when the way in which we process logical objects isn’t clear.

Of course, even were we to accept the primacy of deduction, and deduce knowledge

about objects through decisive rejection, one still relies on induction to tell us that we

are still observing the same object before we can apply that knowledge. This brings

us right back to the problem of induction, and means that ultimately we are gaining

nothing for all the extra complexity, in describing scientific activity, that Rationalism

introduces. Again we are tempted toward a view of Science that doesn’t seek to estab-

lish truths, but is at least self-consistent in its prescription for behaviour.

To put this discussion in the context of economic models. Much of the criticism based

on the SMD results of section 2.3.1 has been from the perspective of whether General

Equilibrium is testable. The hope would be that a testable theory of General Equilib-

rium could be supported empirically by showing that it is not incompatible with what

we see the economy do. My argument here is that this focus is too narrow for several
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reasons. First, this focus on whether or not a particular theory is testable stops shorts

of asking how we arrive at testable theories, so it allows General Equilibrium to remain

in focus perpetually in the hope that some subtle modification will correct this prob-

lem. Second, it is treated as a given that rejection of a model now will mean that the

model is forever irrelevant, because a method based around natural laws is inflexible

to changing phenomena. The economy at the micro level is forever changing as new

technologies emerge; assumptions like all markets being centralised might be rejected

now, but could become a reality in the future. This second argument might be seen

as coming full circle, back to Austrian arguments against empirical tests (Caldwell,

2003):

One reason that it is senseless to try to falsify economic theories is that

there are no ‘constants’ in the social world equivalent to those encountered

in the natural sciences.

As a final thought, Popper’s promotion of Rationalism used Einstein’s theory of Gen-

eral Relativity as an exemplar (Popper, 2002). But, though it was a radical departure

from conventional physics, it should be remembered that General Relativity is only

a particular implementation of Riemann Geometry, and that it was made possible by

the evolution of a descriptive language for other subjects. Rather than relying on an

inspired few to propose new theory from pure intuition, this suggests far more that

science has proceeded by trying existing descriptions against new information. This

is an idea that I will reprise after the next subsection. First we must consider instead

the Bayesian epistemology, which isn’t tied to the idea of objective truth, but instead

describes subjective beliefs being revised in light of new information.

To summarise, falsification based on Rationalism fails the consistency criterion, be-

cause it has promoted a theory of brain function that doesn’t allow non-sensory in-

formation about the world. Meanwhile, without Rationalism it fails the subjectivity

and objectivity criteria, because it does not give a complete prescription.
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2.6.4 Bayesianism as a Category Mistake

Bayesian statistical techniques have seen a great deal of interest in Macroeconomics

over the past decade, and the library of associated techniques is as impossible to cover

well here as that for Frequentist statistics. The fundamental idea, however, is quite

simple with the researcher representing their states of knowledge, before and after

some new observation, with probability distributions. Their degree of belief in a given

model before the new observation, represented by a prior distribution ( P(H) ), is

informed by the likelihood of the observation under that model ( P(X | H) ) to give

their updated degree of belief in the model, or posterior probability ( P(H | X) ). This

is done according to Bayes’s Rule,

P(H | X) =
P(H)P(X | H)

P(X)

Crucially, this allows competing models of the world to be (partially) believed simul-

taneously, and when applied to parametric models can give rise to well behaved prior

and posterior probability distributions over the parameters of the model.

A common criticism raised against Bayesian statistics is the subjectivity of this prior

distribution. Such criticisms fail to understand the epistemology behind Bayesian prob-

ability: knowledge is inherently subjective, and the modification of the prior probab-

ility to give the posterior simply makes explicit the way in which it is assumed that

knowledge grows. Those who have used Bayesian statistics in practice, however, will

be familiar with a conceptual problem with the prior probability; in order to represent

a state of ignorance probability theory would recommend a uniform prior, giving equal

probability to all possible parameterisations (or, in the extreme, all models). To have

some other prior would be to introduce non-empirical information, in the Rationalist

way criticised above. But, a uniform prior over an infinite space would break the axiom

of probability that the probability of some event happening be exactly one. Expressed

another way, probability theory is capable of describing ignorance over an effectively
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bounded set of possibilities, but not true ignorance where we do not want to commit

to any assumptions about the future. This dichotomy of ignorance was recognised

in Statistics as early as Savage, and in Economics even earlier by Knight (Binmore,

2007).

For an everyday example of the difference between these two states of ignorance, con-

sider the difference between a roulette wheel and high energy particle accelerator. The

roulette wheel exists to provide situations of unpredictability for gambling where we

can price the various outcomes, so when we spin the wheel we must know that there

are a particular set of numbers that can come up. We are completely ignorant about

which number will come up, but we have a very effective description for any of the

outcomes when it arises: we are dealing with known unknowns, or Knightian Risk as it

is sometimes called. With the particle accelerator, however, we may have some theory

to suggest outcomes but ultimately we do not know what the outcome will be because

we have never experienced a particle collision at this energy before. Our models may

describe some of what we observe, but ultimately there will be a lot that cannot be

described easily and for which we will have to extend the models: we are dealing with

unknown unknowns, or Knightian Uncertainty6.

That Bayesian statistics conflates these two states of ignorance is a category error that

ultimately undermines the whole epistemology. This is because Knightian uncertainty,

as the lack of a language tying certain present observations to certain future obser-

vations, is isomorphic to the problem of induction. To discuss it in terms of events

that might happen would therefore be the same as having knowledge of future obser-

vation. But, as I have noted already, we cannot logically derive knowledge of future

observations from empirical sources.

If one believes that our own decision making faculties have evolved to be a near optimal

approach to learning about our environment, then more evidence against the Bayesian
6This latter example may not seem particularly “everyday”, but the very nature of Knightian Un-

certainty makes describing examples difficult: such complete uncertainty is familiar to all of us, but
because there is no regularity from which to predict we necessarily do not have language to describe the
specific situations.
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epistemology comes in the form of the Ellsberg Paradox. Here a decision maker is

presented with the choice between two gambles, where one has known probabilities

and the other does not. For example, one gamble might be winning ??1 million if a

black ball is chosen from an urn with 100 black balls and 100 whites, while the second

gamble was identical but with unknown numbers of black and white balls. Real de-

cision makers confronted with this problem show a preference for the former gamble,

that would suggest they didn’t give equal prior probability to black and white draws in

the latter — a violation of uniform prior probabilities. Further, offering them the same

bets on white draws instead yields the same result, suggesting that their prior probabil-

ity for any ball being drawn was less than one in the latter gamble — a violation of the

definition of probability.

Extensions of probability theory exist to address the Ellsberg Paradox, and I find two

of these notable. Choquet Capacities effectively place a lower bound on the prob-

ability of an event (Binmore, 2007), but this is an unsatisfactory solution to Knightian

Uncertainty as it still describes some knowledge about the future. Subjective Logic, in-

troduces a second dimension to probabilistic descriptions of future events, allowing for

it to be more or less uncertain as well as more or less likely (Jøsang, 2001). Although

this addresses some problems for describing decision making and could find fruitful

application in Microeconomic models, it offers no prescription for learning about the

world and does not redeem the Bayesian epistemology.

In the specific context of Macroeocnomics, Bayesian statistics is used for the empirical

part of such prominent work as the Smets Wouters model described in section 2.4. The

epistemological criticism here does not undermine the choice of priors used in Smets

and Wouters (2007), but rather the meaning attributed to the whole exercise. Because

Bayesian probabilities are not a good representation of subjective beliefs about phe-

nomena, the prior and posterior distributions lose their meanings. The Minimum De-

scription Length framework described in the next subsection allows for some Bayesian

techniques to still be used despite this problem.
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To summarise, Bayesianism fails the subjectivity and objectivity criteria, because it

cannot effectively describe the state of ignorance at the start of the learning process.

2.6.5 Empiricism through Minimum Description Length

Having decided that deductive and probabilistic logic do not everywhere help us de-

scribe the Scientific Process, the indispensable component we are left with is induction.

As I argued above, induction is at least self-consistent, because our experience gener-

ally suggests the continuity of our world as a best guess when in a state of ignorance.

But, Nelson Goodman famously argued that implementing induction was entirely de-

pendent on the language with which we chose to do so: he argued that we could invent

a term grue that denoted something green up until the present but blue thereafter, and

we would then struggle to choose inducing that grass would be green or grue in future.

What is needed for induction alone to successfully describe Science is a rule for what

language we induce from. This is where the Minimal Description Length Principle

comes in.

That we should prefer a minimal description of phenomena is not a new idea. Aristotle

et al. (1999) (book V) famously said “Nature operates in the shortest way possible”,

and the term Ockham’s Razor has been used extensively in Science to describe various

similar notions. It was with the advent of Information Theory that this idea began to

take a more definite shape, in the work of Ray Solomonoff.

The length of a description of phenomenal data is dependent on the language, or lan-

guages, in which it is expressed. Solomonoff argued that the fundamental language

should be the instructions needed to instruct a computer to reproduce the data from

only basic operations. He showed that for large sets of data, the precise way in which

this computer was programmed didn’t matter and could be treated as if there was a uni-

versal computer language. This led to the concept of Kolmogorov Complexity as the

length of this shortest universal computer language program that reproduced the data.
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This idea does not lead to an automatic induction engine, because there is no way of

finding the Kolmogorov Complexity of a given set of data, but it does give us an ideal

on which a more practical inductive principle could be built. This was mainly done by

Jorma Rissanen, who summarises the philosophy behind this Minimum Description

Length principle in a way that satisfies the discussion earlier in this section on using

the truth concept for predictions:

We never want to make the false assumption that the observed data

actually were generated by a distribution of some kind, say Gaussian, and

then go on to analyse the consequences and make further deductions. Our

deductions may be entertaining but quite irrelevant to the task at hand,

namely, to learn useful properties from the data.

He believes that induction should be based on finding as much regularity as possible

in data, and assuming that these regularities will persist. This leads to considering sci-

entific models as languages, rather than representations of a knowable reality. So that

a minimal description of data involves the shortest combination of model description

and data description relative to that model. The ideas of theory and hypothesis as truth

statements have no place in this inductive system, they are only parts of a model that

is qualified by how much of the regularity it describes, rather than by any property of

these theories (Grunwald, 2007).

Again, I might expect the scientific reader to find such a demotion of theory objection-

able, given the predictive successes of Theoretical Science. As part of the way many

models are constructed, successful theories are still very important in this system of

thinking. I will elaborate on how shortly, but for now consider that a description of all

the data one has will involve all the models used in that description, the more theory is

common to these models then the shorter will be their description and the total descrip-

tion. In the extreme this generalisation becomes unification, where the same model is

used for data from two different sources.
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Another immediate complaint might be that in practice models involve error. The crit-

ical reader may already have questioned whether the minimal description of data is

a trivial description that simply accepts massive error. This is not the case, because

stochasticity is fully accounted for in MDL, but takes on a very different interpretation

from the probability of Frequentist or Bayesian thinking. In short, the probability dis-

tribution determined by a minimum description length model is isomorphic to the dis-

tribution of description lengths for data in that model’s language: it guides the choice

of which data are described with short words, and which with long. That is, a high

probability datum is given a very short description, while a low probability datum is

given a long description. This allocation of word lengths means that when calculating

the expected description length, the short words will get the most weight, and the long

words the least, so that the expected description length is minimal. In this way a model

cannot be chosen so as to be all error, because those errors have to be described in the

model’s language too, and high variance distributions will mean long descriptions.

The split with Frequentist and Bayesian thinking does not cost followers of MDL

the entirety of mainstream statistical techniques. On the contrary, MDL actually en-

compasses many methods from both schools of thought and allows their comparison

(Hansen and Yu, 1998), it only rejects the way they interpret probability. For instance,

if we restrict our possible models to a particular parametric family, then implementing

MDL simply becomes the Frequentist staple Maximum Likelihood estimation, because

maximising the joint likelihood of the data means allocating the shortest possible de-

scription for that data (Hansen and Yu, 1998). Hypothesis testing would take on the

interpretation of abandoning any model by which it would be too longwinded to de-

scribe the set of data more extreme than that observed, and I will reprise this point in

chapter 4. Meanwhile, in more sophisticated MDL techniques we see the Bayesian

marginal distribution, which is the average of models over the prior distribution: MDL

allows us to decide even before observing data what model, relative to some set of mod-

els, will give us the best performance; one such is the Bayes Universal Model, which

is the Bayesian marginal distribution with respect to some prior (Grunwald, 2007).
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I have given a very cursory introduction here to the ideas underlying MDL, because

going into technical depth is beyond the scope of this chapter. For the underlying math-

ematics, specifics of implementation, and a fuller discussion of common criticisms, the

reader is directed to Grunwald (2007). For the remainder of this subsection I will ar-

gue that a more idealised global interpretation of MDL, applied to all the phenomenal

information we have, answers the demands made earlier in this section of a sensible

prescription for scientific activity. In turn, this will definitively reject current micro-

foundations in macroeconomics, by prioritising models’ simplicity over the intuition

of their creators.

Does MDL make sense, at least heuristically, as a prescription of subjective behaviour,

based only on what we are certain of and without the assumption of an objective real-

ity and other scientists? That is, how is it expressed in terms of the instantaneous

conscious awareness of subsection 2.6.1? I argued there that the data we have at any

one point is a combination of sense data, memory-object data, and imagined-object

data. A global MDL, applied to all conscious thought, then becomes the process of

instantaneously choosing the simplest way to fit together these different data: linking

sense-data to thought objects in a minimal way. This means that where sense data

doesn’t fit well with remembered objects then new objects have to be conceived, and

perhaps some old ones re-conceived: a description of conscious learning. Prediction

with imagined-objects then naturally becomes induction, because minimising the de-

scription of conscious data prompts the imagined data to be steered into correspond-

ence with the minimal description of memory and sense data, taking on the same set of

objects and their behaviours. If we were to posit a similar process without conscious

control, then Festinger’s Cognitive Dissonance makes sense as the drive to minimise

description length by reconciling objects and behaviours that are doing double duty

describing the same data. In this subjective context we can give a special interpretation

to the unification effect I mentioned above in the context of MDL for specific data sets.

Say that I am getting the visual sense data that is best described as my being close to

a swan with my hand extended, and that every time I experience this I also experience
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the sense data of feeling feathers on a very large animal under my fingers. In this cir-

cumstance I can unify the visual and touch descriptions into a single model, “swan”,

and have reduced the global description length.

As I argue in subsection 2.6.1, it is necessary for a scientific prescription to be valid

from the subjective perspective of one’s stream of consciousness, but not sufficient. To

be a prescription for the scientific community’s behaviour it must make sense for every

individual in the community to interact in a way that makes the prescription a social

activity too. Here MDL succeeds because of the unification effect just described. In-

teracting with other people (or, rather, the sense data we minimally describe as being

other people) we can unify the sense data corresponding to verbal communication with

the memory-objects in our stream of consciousness. As verbal communication takes

on more and more subjective meaning in this way, we are forced to keep our global de-

scription length short by carrying over relationships between verbal objects into being

relationships between our remembered objects, thereby communicating information

about phenomena. To help understand this, consider an equivalent effect in the setting

of a blind man and his cane. He comes to identify the sense data experienced directly

through his hand manipulating objects with the sense data experienced indirectly as he

manipulates objects with the cane. So even though the sensation in his hand is quite

different when he touches a table with his hand and with his cane, he still comes to

describe the table as a single object. I am suggesting that we can describe Science as a

community of individuals using one another as canes.

This scientific-communication-as-a-cane idea addresses the debate between Realism

and Instrumentalism raised in subsection 2.6.1. MDL doesn’t try to discover informa-

tion about an objective reality, so is akin to Instrumentalism. But, although our descrip-

tion is always tentative, any memory-objects that can be unified with sense regularities

from communicating with others can be treated as objective. So, global MDL is not

simply a description of scientific social activity, but all our social learning. As long

as we can unify much of our other sense and memory data with the communicated
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sense data, we are justified in maintaining realist beliefs in daily life. But, if we don’t

everywhere assume objective reality, surely my earlier dichotomy of Holism and Re-

ductionism from section 2.2 is also lost, along with the existence of real objects and

their components? This is not the case if we extend the definition of component to data

regularities. Consider that we may have identified a regularity, A, that we often recog-

nise many instances of simultaneously, or within close temporal proximity. Consider

that this collection of regularity As always coincides with the experience of a second

regularity, B. We may then unify a collection of regularity As and regularity B, and

label A as a component of B. That is, if we can derive B from A, then we no longer

need the separate description B and have reduced the global description length.

With these ideas (and I, your cane) in hand, let us consider the greatest priority from

subsection 2.6.1 for a prescription of scientific, or any other, behaviour: self-consistency,

that the prescription leads to prescribing itself. As already mentioned, induction auto-

matically has this in a loose way, because our experience tells us that it often works to

assume that we will continue to experience the same sense-data. This will extend to

MDL so long as MDL is a minimal description of past behaviour that led to predict-

ive success. The criticism often raised against inductive inference as a description of

successful Science, is that prediction of new phenomena seems to have been made by

deduction from theories for related phenomena. Here we can apply my argument above

about the role of theory in MDL: the global description length, includes all models, and

so generalising a theory, or trying mathematics from elsewhere, to as yet unobserved

phenomena is reducing the global description length. So, for example, when General

Relativity predicted Gravity Lensing it was not a success of Einstein’s abduction, but

rather of reducing global description length by re-using Riemann geometry elsewhere.

With the success of abductive Rationalism described, MDL becomes a minimal de-

scription of successful scientific activity relative to the alternatives, and hence satisfies

its own criterion and is self-consistent. MDL therefore addresses all the criticisms of

other operational scientific methods that I describe above and, crucially, makes parsi-

mony of models a priority over the (thus far unsuccessful) intuition of theorists.
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2.7 Conclusions for Moving Macroeconomics Forward

This chapter should have been a conclusive refutation of conventional microfounded

Macroeconomics, for any reader. We are then left with the question of how to move

Macroeconomics forward. I would argue that it should be considered a blank slate,

onto which researchers should freely sketch diverse new ideas, and “...explore multiple

models in a creative exploratory way”, as Colander (2010) suggests.

But, in their explorations of new models, researchers should bear in mind several les-

sons produced by this critique:

Describing the macroeconomy with microfoundations is only introducing more em-

pirical evidence from those micro components if it doesn’t involve heuristic as-

sumptions that change the behaviour of the aggregate model: sacrificing realist-

icness for tractability, may sacrifice everything

Describing the macroeconomy with microfoundations that employ heuristic assump-

tions makes the model a Holistic one, that must be judged solely on how well it

describes the macroeconomy.

Parsimony is the crucial criterion for a model being a successful description, so be-

loved (but unsuccessful) economic theory should be left by the wayside, with

useful descriptions from any other domain as the first candidates to replace them:

interdisciplinism should replace conventionalism.

Parsimony can be operationalised through statistical methods based on the Minimum

Description Length principle.

Followed fully, the final of these points would mean significant changes to the way

econometrics is done. So, for the sake of keeping my modelling work accessible to

the Economics community, I do not use MDL proper in the empirical parts of this

thesis. In chapters 3 and 4 I develop empirical methods based on hypothesis testing,
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to show that my models can succeed on the terms of conventional macroeconomics. I

consider it a vital extension to also apply MDL proper. That said, hypothesis testing is

still in keeping with the broad scientific principle I outline in section 2.6.5, because it

establishes whether a particular model will provide a description of data that is of the

reasonable length that corresponds to a particular significance level.

Given the small irregular datasets we have in Macroeconomics there is still a compel-

ling argument for reductionism, as a way to use better descriptions of components to

help describe the aggregate. For this reason, reductionism remains a promising ap-

proach, and in the next chapter I explore a new kind of microfoundations based on

enforcement rather than exchange.
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Chapter 3

Macroeconomic Fluctuations from

Hierarchical Enforcement Avalanches

3.1 Introduction

The death of the Representative Agent is not the end of Macroeconomics. In the previ-

ous chapter I gave compelling reasons why macroeconomics based on General Equi-

librium can not give us the whole dynamic picture of economic aggregates, but this

should only open our eyes to the myriad of possible alternatives. In this chapter I at-

tempt to lay foundations for a new path to modelling macroeconomic volatility — what

might be inaccurately described as the Business Cycle. The non-equilibrium model I

present instead reproduces this aggregate volatility of boom and bust, based on a hier-

archy of enforcement relationships which occasionally undergoes a cascade of failing

enforcers that prevents productive agreements being fulfilled.

The chapter is organised as follows: section 3.2 reviews the motivation for the enforce-

ment perspective, and seminal philosophical treatments of third party enforcement;

section 3.4 gives both intuitive and technical explanations of the model; while section

3.5 describes the method used to assess this model as a description of macroeconomic

data and 3.6 gives the outcome; finally, section 3.7 provides a summary of my findings,

a proposed extension to the other great question of economics, and bottom up policy

implications.
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3.2 Enforcement and hierarchies

3.2.1 Why Enforcement?

A tempting response to the criticisms of the previous chapter would be to try and

build some other model of exchange, using other well established tools from microe-

conomics like Game Theory. After all, it would be far less painful to overcome the

unrealistic assumptions of the Walrasian Auctioneer and single price market by a more

realistic representation of how markets operate, while still retaining familiar ideas from

decision theory. There are two important disconnections between microeconomic the-

ory and observed reality that limit its intuitive relevance to building useful aggregate

models: first, the irregularity of human choice when compared to decision theoretic

descriptions; second, the irregularity of our myriad modes of exchange, once we stop

pretending that multilateral single price markets describe it all, and the inevitable in-

teraction of that exchange with other aspects of society.

Game theory gives a useful language for discussing decisions when facing regular

scenarios, by giving a benchmark in which there is a sense of optimality towards which

decisions strive. However, in practice this description does not offer good predictions

of individuals’ behaviour in strategic situations (Binmore, 2007; Rabin, 1998). Game

Theory also suffers from the problem that Nash equilibria, where no individual has an

incentive to change their behaviour, often isn’t specific enough to give a single clear

prediction. All this said, crucially, no other decision theoretic description seems to per-

form much better (Harless and Camerer, 1994). A more definite limitation of Decision

Theory generally is seen in those decision situations that involve unknowns that can-

not be described by probability distributions, because even the range of outcomes isn’t

known (Binmore, 2007). This is what is known as Knightian Uncertainty, and I discuss

it in more detail in the previous chapter. It is important to realise that this uncertainty is

different from that treated in Bayesian Game Theory, which revolves around the insight

of Harsanyi that equilibrium beliefs must promote a behaviour that is a best response
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to other players’ best response, given their own equilibrium beliefs. That it actually

pays the agents to behave in this way assumes one of two things: if they are rationally

choosing their response, that they act as if there is a known world bounding future

possibilities, to which they can respond rationally; if they are adapting their beliefs

and behaviours over time, that then the environment must be stable enough to allow an

equilibrium to be found. For both, the decision has to be in a regular setting, in which

pressures act on beliefs much more quickly than the regularities of the environment

that define the decision change. This is almost certainly not the case in any system that

we can not yet describe, like technological advance. So any decision problem that is

likely to be subject to faster technological change than learning is not a good subject

for game theory. Clearly if we are considering all the decisions taking place across the

economy, then unknowable technological change will have a significant role.

Even if we could describe the parameters of every decision being made in the eco-

nomy, we would still have the problem that there is no obvious way to aggregate all

these specific decisions, or which could be abstracted away. Indeed, as Kirman (2010)

explains, just describing exchange would involve describing a vast array of different in-

stitutional arrangements, be they multilateral, bilateral, or otherwise. Aggregating this

variety in a feasible way would have to involve finding more generalities between them

than has thus far been found. The solution of Neoclassical Economics was to assume

a Walrasian Auctioneer that could not actually represent a real process, as I explained

in the previous chapter. The Auctioneer’s lack of realism was perhaps an inevitable

consequence of Economics’s focus on prices; it seems to me that there couldn’t be a

worse focus than prices for a general description of exchange, because the way they

are determined is one of the most obvious differences between different kinds of ex-

change — for instance consider the varied mechanisms described in Auction Theory.

That said, hoping to find regularity across all exchange seems optimistic when one

considers that the vast amount of exchange that goes on depends on the differences

between the objects being exchanged.
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This incompatibility, between microeconomics and the generalisations needed to simply

aggregate the great variety of economic activity, suggests that a more fruitful kind of

Reductionism in Economics might revolve around some other person level behaviour

besides choice and exchange. Of course, once we stop focussing on markets we see

a wider problem with economic theory: the assumption that economic exchange is

somehow orthogonal to other social interaction is the only way that a picture involving

only markets could be supported. However, there are well known examples of social

unrest and change following economic depression. In fact macroeconomic time series

share similar properties with series describing civil conflict, which I will describe in

more detail in section 3.4.

Rather than address all these problems head on, then, with some even more elabor-

ate descriptions of human decision making, I abstract from exchange and focus on

the enforcement that mediates it — and much of the rest of social interaction. My

justification is that we can describe general features of enforcement quite simply, be-

cause unlike exchange it doesn’t depend on the differences between the objects we

are describing. I argue that the general features we can describe are enough to give

us aggregate volatility. This would mean that we could abstract away from much of

the activity around enforcement, without compromising the realism of the relationship

between our description and macroscopic society.

There are, of course many modes of enforcement, but I feel only one puts one com-

ponent in a position to impact a significant portion of the rest of society: third party

enforcement, where agreements between two individuals are enforced by the threat of

punitive action from a third party with asymmetric power compared to the individuals.

This influence of the one enforcer on the aggregate is important to produce aggregate

dynamics, because if the aggregate uncertainty is going to come from the components,

then it must come from the natural uncertainties associated with the behaviour of each

component. But, if all the components have equally small influence over the others,

then the Law of Large Numbers tells us that the uncertainties around each will can-
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cel out over the whole of society. Of course the dynamics of the aggregate could be

driven by things on the scale of the aggregate, but then we are left with the problem of

identifying these sources of uncertainty.

It is precisely because of the Law of Large Numbers that, in the neoclassical story,

fluctuations in the aggregate economy are not the sum of separate fluctuations in its

component markets. Instead, the aggregate dynamics do have to be driven by some

exogenous force at the aggregate level. What that exogenous force represents is hard to

pin down. In the previous chapter I mention some complaints, along these lines, raised

against the prominent New Keynesian DSGE model of Smets and Wouters. More gen-

erally, however, “technology” shocks are attributed the greatest effect, and yet are often

explicitly regarded as unobserved. If we were to consider them as literally technology

shocks, then we might struggle to identify a technological change that simultaneously

affected enough of the economy to have a decisive impact. After all, technological ad-

option is not instantaneous, and even something as world changing as the internet took

a decade to gradually integrate into the way work is done over the whole economy. A

common alternative is to interpret the technology shocks more broadly, so as to include

energy supply. Finn (1995) found the Solow residual to have a correlation of −0.55

with Oil prices, which could be taken for a connection. However, the price of Oil is

almost certainly endogenous and the causal direction with productivity reversed, and

this is what Finn concludes from her analysis.

Recent work by Acemoglu et al. (2012) illustrates how the right interrelationship between

market members could give rise to significant aggregate fluctuations, arising from

shocks to only those members. Integrated with market equilibrium this model has

all the problems described above. It also has no explicit dynamics, and the network

structure is exogenous with no reason given for why the economy should remain in

such a volatile state. Nevertheless, the asymmetry they describe in actors’ influences

seems a fair means for local failures to propagate upwards to the whole economy, and

it is in this spirit that I look to the asymmetric relationship between enforcer and en-
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forcees. The model I construct here will be dynamic, and will justify the network

structure endogenously. But, it cannot be assessed empirically in the same way that

Acemoglu et al. (2012) illustarte their model. This is because that model relates the

network structure to only the relationships for the exchange of factors of production,

while the model here will involve a network of enforcement relationships.

3.2.2 Existing Descriptions of Enforcement

My conclusions from the previous chapter were that Science should start its search for

new descriptions of phenomena with language that has been useful for describing other

phenomena. Along these lines, my choice to focus on enforcement is motivated by the

very long tradition in renaissance thought of describing third party enforcement, along

with the hierarchies of third party enforcers that I will soon expand on.

The modern liberal tradition on third party enforcement was initiated by Hobbes (1651),

with his Sovereign as the only thing standing between social order and anarchy:

The finall Cause, End, or Designe of men, (who naturally love Liberty,

and Dominion over others,) in the introduction of that restraint upon them-

selves, (in which wee see them live in Common-wealths,) is the foresight

of their own preservation, and of a more contented life thereby; that is

to say, of getting themselves out from that miserable condition of Warre,

which is necessarily consequent (as hath been shewn) to the naturall Pas-

sions of men, when there is no visible Power to keep them in awe, and tye

them by feare of punishment to the performance of their Covenants...

This interpretation of subjugation as self-initiated might grate against the ideals of

Western Liberalism, but is intuitive enough when we consider the day to day instances

in which we willingly defer authority to others. These day to day examples of au-

thorities within smaller social groups also points to the natural extension of Hobbes’
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description, to different levels of what we might call a social hierarchy. As econom-

ists we are perhaps used to ignoring the importance of governments’ enforcement,

but Dasgupta (2003) is quick to point out its indispensability to the market’s opera-

tion: it might become invisible through habit, but the legal system implicitly mediates

between firms, banks and grocers simply by allowing the possibility of punitive action.

It guarantees the quality of goods, and the payment for them – whatever its medium.

It restricts the practices of manufacturers, to minimise negative externalities, and it en-

sures that investors can fuel innovation with the safety net of bankruptcy. The trust that

lies behind all these anonymous market transactions, then, is ultimately backed by the

overwhelming martial authority of the state.

Once invested with authority, however, one might question what incentive there is for

the sovereign to actually carry out their enforcement role. This raises the question of

why people should continue to trust the institution of third party enforcement? Hobbes

(1651) would respond that out of want for taxable income, or if nothing else then for

paternal vanity, the sovereign’s own self-interest would drive it to nurture a wealthy ef-

ficient society. Meanwhile, Locke (1821) would argue that a “tyrannical” sovereign’s

subjects would simply unseat it and select a new government. It is Locke’s mechanism

that Dasgupta chooses, arguing that a democratic government under the scrutiny of a

“free and inquisitive” press has incentive enough not to err from its sovereign duties.

Thus, he suggests citizens of such a government should trust the legal framework. Fur-

ther, with the Arab Spring fresh in our collective memory, we might be tempted to

believe that the machinery of democracy is hardly a prerequisite of an effective right to

revolution. It can easily be argued, then, that the effectiveness of third party enforce-

ment depends on the fact that enforcers are removed from their role when they fail in

its execution. Of course enforcers may fail in their role for other reasons, and it’s also

reasonable and intuitive to believe that sometimes enforcers are removed not because

of malfeasance, but because they have been unexpectedly left without the resources

they need to carry out their role. I will rely on this argument for the cause of collapses

in the model, and hence the origin of aggregate volatility.
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One of my arguments for this choice of component to a macroeconomic model, over the

more traditional decision theoretic microfoundations, was that they are more common

than centralised markets — i.e. they approximate far more of the local behaviour of

the people that make up an economy, or indeed society. To convince the reader of this

claim, let us consider some commonplace examples of behaviour that can be effectively

described in terms of hierarchical enforcement, with the possibility of collapse:

The Firm A firm’s production is contingent on the coordination of efforts by a large

number of employees. Should employees cease to cooperate, because one is try-

ing to do less than their share of the work, then a manager exists to monitor and

mediate. In this way, the manager is acting as a third party enforcer, because they

can administer punitive action against those not cooperating for the greater good.

We might also note that in large firms managers tend themselves to have man-

agers, arranged in a hierarchical structure. Collapse is seen whenever employees

lose faith in their manager and cease to carry out their roles as effectively, an pre-

sumably familiar occurrence for anyone who has worked in a sufficient number

of organisations.

The Union A union’s power to negotiate with wage setters is entirely contingent on

the members’ coordinated refusal to work, as an inherent agreement between

them. Monitoring this coordination and keeping track of the scabs is done by

the head of a local chapter or branch, who is acting as a third party enforcer.

Again, these heads are themselves monitored by third party enforcers further

up the structure, who can also take punitive action against malfeasant heads,

and chapters that betray the other chapters. Collapses can take place when the

members of a chapter put a vote of no confidence in their representative.

The Black Market The defining characteristic of the Black Market is that it foregoes

legal enforcement of contracts. Many agreements will instead rely on the value

of protecting ongoing relationships as collateral for agreements, and I begin to
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explore this mechanism in chapter 5. Still, we are all familiar through popu-

lar culture, and some through more direct experience or anecdote, of organised

crime with a leadership structure that allows agreements to be mediated by a

third party capo or boss. Collapses here are certainly part of the common story,

and tend to be a lot more bloody!

Law Enforcement Both branches, of enforcement and justice, in the UK have tiered

structures. The third party enforcement afforded by these structures helps pre-

vent all parties from becoming corrupted and undermining the function of the

whole system.

Bank Runs Although they also carry out the functions of matching and liquidising,

banks too can be thought of as third party enforcers between creditors and debt-

ors: as punitive action they deny further membership in the system of credit and

lending to those who do not meet their agreements. In 2008 and previous re-

cessions we saw the spontaneous collapse of some enforcers in this system, and

the subsequent flight from savings that severely reduced lender-borrower agree-

ments.

Feudalism The most easily recognised social hierarchies are those enshrined in the in-

stitutions of feudal societies. An example of contemporary feudalism, where our

observations can’t be subject to historical revisionism, is that of Saudi Arabia.

In Saudi Society it is a central role of the members of each level of the hierarchy

to adjudicate on disputes between members of the level below.

3.3 Network notation and existing models

Because the hierarchiesof section 3.2 are elaborate networks of changing relationships,

I will describe them formally using Graph Theory and Network Science. The math-

ematics of graphs and networks is now fairly mature, and there is relative uniformity



3.3 Network notation and existing models 99

b

cd

e

a

Figure 3.1: Example network

of terminology and notations. In order to summarise the more substantive theory, I’ll

first, here, list the necessary definitions of terms used to describe networks. As Jackson

(2010) has provided such well rounded summary text, I will follow his notation where

there is ambiguity, and then adapt others’ to conform later:

Node Those objects which are linked within a network —this could be an agent, a

firm, or some more abstract object in some uses: i ∈ N . For example a in figure

3.1 is a node, as are b, c, etc.

Edge; Link A connection between two nodes, denoting a relationship of some kind

between them: ij ∈ g ⊆ {(k, l) : l, k ∈ N}. For example, the line connecting

a, and b, in figure 3.1 represents an edge.

Graph; Network A collection of Nodes and Edges: (N, g). The entirety of figure 3.1

is an example of a graph.

Neighbourhood (immediate) The set of nodes which share an edge from g with a par-

ticular subject node, i: Ni = {j ∈ N : ij ∈ g}. In figure 3.1, the neighbourhood

of a would be {b, d, e}.

Degree The number of other nodes to which a particular subject node, i, is connec-

ted; the cardinality of that node’s immediate neighbourhood: di =| Ni |. For

instance, the degree of a is 3.

Neighbour A node which shares an edge from g with a particular subject node, i:

j ∈ Ni. So b is just one neighbour of a.
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Neighbourhood The set of nodes that can be reached by crossing no more than a

certain number, d , of edges of g, i : Nd
i = {j ∈ N : ∃ p = (ii2, ...iI−1j) , |p| ≤

d}

Path A sequence of edges between two nodes, i and j say, including other nodes at

most once: (i1i2, ...iI−1iI) s.t. ikik+1 ∈ g i1 = i, iI = j andik 6= il∀k, l ∈ N .

For instance, (ad, de) is the path shown in red in figure 3.1.

Connectedness Two nodes are connected when there is a path between them. A graph

is then called connected, if every pair of nodes is connected, and disconnected

otherwise.

Component A subset of nodes between every pair of which there is a path, but from

no element of which there is a path to any other node:
⋃∞
n=1 N

n
i (g). So, in figure

3.1, the set {a, b, d, e} is one component, while {c} is the other.

Diameter The largest, among all pairs of nodes, of shortest paths between them.

Where a graph is disconnected, this often ignores all nodes not in the largest

component. So in figure 3.1 the diameter is 2, because two edges have to be

travelled to get from b to e, while all other pairs of nodes, in the largest compon-

ent, can be traversed using a single edge.

Tree A network or component in which there is only one path between any two nodes.

Star network A tree in which one node shares an edge with every other node; a hub

and spokes formation.

Complete Graph A network in which every possible link is present.

Though the distribution of nodes’ degrees alone captures useful features of a network,

it by no means describes everything on which an agent network’s dynamics might

depend. As such I now give some popular measures of other network properties:
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Clustering Clustering roughly captures the probability with which neighbours share

a common neighbour, a kind of density of the network’s edges. Within this loose

definition there are several more specific measures employed in practice. The most

common measure of clustering is the relative number of completed triads, that is, the

number of occasions when two neighbours are also neighbours:

Cl(g) =

∑
ij,ik∈g 1(jk ∈ g)

|ij, ik ∈ g|

Recent theoretical work suggests that a subtly different measure of density is in fact

more relevant to contract enforcement (Jackson et al., 2012). This support is defined

as the number of edges whose corresponding nodes share a common neighbour:

S(g) =

∑
ij∈g 1(∃k ∈ Ns.t.ik, jk ∈ g)

|g|

The only difference is, of course, the weight given to each triad. However, the second

measure is argued to better capture the way in which the presence of triads contributes

to peer-pressure-like enforcement; I will expand on this point below, where I discuss

dynamic models of Social Capital.

Centrality In contrast to clustering, which is a global measure of the localisation of

relationships, centrality describes the directness of a specific node’s connection to all

other nodes in its component. Where indirect connections count for nodes’ utility,

centrality gives an idea of the importance of a particular node to the efficiency of a

whole network. The crudest measure of centrality is degree centrality, the proportion of

other nodes to which a node is connected. Degree centrality, however, fails to account

for indirect connections, and can therefore easily miss the property we want to capture.

A richer measure is the betweeness centrality, which captures the frequency with which

a node lies on the shortest paths between other nodes:
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CeBi (g) =
∑

6=k 6=j: 6=k 6=i 6=j

proportion of shortest paths j → k including i
(n− 1)(n− 2)/2

A more abstract concept of centrality has recurrently been found to be important in the

theoretical literature. This so called Bonacich centrality is defined recursively from the

matrix representation of a network, wherein the presence of edges, ij ∈ g, is expressed

as the presence of a 1 in the ijth entry of a matrix (also denoted g, for convenience).

This representation is useful because indirect connection, of n links, are captured by the

nth power of the matrix. With this notation in hand, one can define Bonacich centrality

as proportional to the sum of neighbours’ Bonacich centrality:

Ce(g) =
gCe(g)

λ

Intuitively, this captures the idea that a node becomes more important to the structure

of a network, the more often they act as a bridge between other important nodes. Using

matrix notation allows the well understood techniques of linear algebra to be brought to

bear, and the above definition clearly makes Bonacich centrality an eigenvector1 of g.

Intuitively, if we think of pre-multiplying a vector of quantities by g as investing each

quantity, of a perishable good, by the node of the same index in their available neigh-

bours’ production. As an eigenvector, the Bonacich centrality is an initial allocation

of the perishable good, for which everyone investing the same particular proportion of

their stock in each neighbour’s (one to one) production leads to the same allocation

next period - that is, larger stocks invested among several less central nodes with smal-

ler stocks are compensated exactly by there being more neighbours of that centrality

than those neighbours themselves have2.

1That is, the basis vector of a dimension which is mapped to itself by g.
2This may still sound counterintuitive, as fixed proportions of the higher centrality going out will

be larger than the same proportion of their less central neighbours’ stocks coming back along the links.
It is the fact that g is conventionally given ones along its leading diagonal that balances the equation;
that is, the nodes invest the same proportion of the perishable stock in their own production. So a bigger
stock leads to more stock produced locally next period
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Power Law and other fat tailed distributions

Power law distributions seem to describe at least the upper tail of the distributions for

many key economic variables (Kirman, 2010; Gatti et al., 2008), and indeed all stable

distributions3 besides the normal look like power laws in their upper tail. These other

stable distributions’ infinite variance has unpleasant implications for many statistical

techniques, and for standard economic intuition. Nevertheless, to ignore fat tails des-

pite their ubiquity would be to ignore their potentially deep structural implications. In-

deed, leptokurtosis of macro-errors need not suggest infinite variance of micro-errors;

if the superposition principle breaks down because the micro-errors are not independ-

ent, then summation is not the appropriate description of aggregation and the stable

distributions will no longer be attractors. With structural correlation in the system, fi-

nite variance micro-errors might still give rise to macro-kurtosis through cascades (Bak

et al., 1993).

Power Law distributions are characterised by the probability mass function, or probab-

ility density function:

f(x) = axγ a,

This seemingly over simple form gives them the property of being scale-invariant,

which is to say that the relative probability of different values depends only on their

relative size, rather than their absolute size. This then implies that the scale against

which they are measured does not matter.

3That is, distributions which are attractors under summation and normalisation. This translates as
those distributions that would tend to arise in systems of superpositioned objects over multiple scales.
The best known stable distributions are the Levy, Cauchy, and Normal (for which the vanilla Central
Limit Theorem shows stability) distributions.
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3.3.1 Static network formation

Economics, particularly macroeconomics, has become increasingly focussed on equi-

libria derived through fixed point proof (Giocoli, 2003). This means a science that

has very well developed statics, but whose orthodoxy pays little heed to the dynamic

behaviour of objects (Dopfer, 2011). This is an obvious drawback in prediction of an

inherently dynamic world, but so long as those statics can be shown to approximate

the limit of some dynamic model4 they may well be relevant. Indeed, I would still

imagine these models to be predictively useful, when the convergence of a system to

equilibrium is fast enough compared to the arrival of disturbances5: in which case the

equilibria are dots which can be joined for an approximate trajectory of the system.

For the sake of integration with this orthodoxy, and the discipline’s existing human

capital, I will begin my summary of network modelling with those frameworks that

focus exclusively on statics.

The stylised facts of static networks

As discussed first in chapter 1, interest in networks stems from a concern that social

systems are too non-linear for their behaviour to be usefully approximated by that of in-

dividual components. In order for a system to be otherwise, the behaviour and proper-

ties of any individual component must be as good as independent from its neighbours’.

It is a general departure from this independence, in the presence of relationships, that is

the domain of the networks literature —indeed, heterogeneity of structure is a possible

explanation for the distribution of other heterogeneous properties across the popula-

4As is indeed suggested by the experimental research of Binmore (1998) and others; these experi-
ments suggest that decision making adapts from some predetermined broad heuristic towards a rational
response to others’ behaviour and the environment, but that this may take some time depending on the
complexity and persistence of the game, and the power of its incentives. Indeed, Grosskopf and Na-
gel (2008) more recently find evidence that further supports such adaptive behaviour over the second
alternative of rational response to irrationality - which is often observationally equivalent.

5This is contrary to the more dogmatic position of some Complexity oriented modellers, who seem
to prefer a realistic treatment of time even when it is at the expense of valuable mathematical precision
(Kirman, 2010; Gatti et al., 2011)
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tion, as I will soon discuss. In order to see this heterogeneity, we need to contrast

real networks with the benchmark structure of Gilbert’s random graph model, in which

links are formed independently of neighbouring links.

Formally, the Gilbert model has every edge, between a set of nodes N, be present with

equal probability:

P (ij ∈ g) = p ∀ i, j ∈ N

As this framework leaves each node with a degree from the binomial distribution,

which is approximated by the (more combinatorially manageable) Poisson distribu-

tion, such graphs are also dubbed Poisson Random Networks.

It turns out that this random attachment does not adequately describe the distribu-

tions of degrees generally observed. These are better described by power law dis-

tributions, or some weighted average of a power law and a Poisson (Jackson, 2010;

Kirman, 2010). That is to say that there are more nodes with high degree, and more

nodes with low degree, than one might expect of random link formation. As such, it

is argued that some preferential attachment must play a role in the formation of those

networks, whereby the probability of a link being present is affected by those links

already present around it.

Power laws are not just common among degree distributions, but are actually present

everywhere in nature, and particularly in social science data. Vilfriedo Pareto was the

first to recognise such a power law distribution, and the associated scaling behaviour,

in data. He originally noticed that income distributions tended toward a power law

in their upper tail, and thereby earned such distributions the name Pareto. This result

has been confirmed many times since. More recently the distributions of both US and

international firms’ sizes have been found, by several authors, to follow power laws.

Less well studied, the productivity distribution of firms has been shown to be fat tailed

(Gatti et al., 2008). More strikingly, stock market returns have been suggested to follow
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a power law, so that crashes needn’t be dismissed as outliers (Gabaix, 2009). The

prevalence of fat tailed distributions in macroscopic data could be taken as evidence of

interrelation among micro-components.

A long standing, and popular, feature of observed networks is the small worlds phe-

nomenon famously highlighted by the six degrees of separation experiment. Simply

put, real networks seem to have much smaller diameters than random networks, so that

any two nodes are joined by far fewer links than one might expect. That this result

is counter-intuitive lends credibility to random networks as a benchmark. Despite this

small diameter, however, the small worlds phenomenon is generally seen to coexist

with higher levels of clustering in social networks, than one would see with random

connections (Jackson, 2005). That is, even though there tends to be a pretty direct path

between any two agents, most agents’ neighbours are very likely to be connected to

exactly the same agents.

As well as there often being more nodes of high and low degree observed than one

might expect, there is at least anecdotal evidence that these extreme nodes are them-

selves related by more than uniform probability. This correlation of neighbours’ de-

grees is termed positive assortativity, and is hypothesised to routinely take different

signs in broadly different contexts (Jackson, 2010). Jackson gives the example of a

negative correlation in the network of trade agreements between countries, with the

hypothetical explanation that powerful countries tend to attract collections of weaker

cronies.

Random networks

Network models that randomly assign links to pairs of individuals, such as the Gilbert

model, are quite obviously not the product of any explicit interactions between com-

ponents. Instead, they could be regarded as holistic attempts to reproduce the static

stylised facts of networks, without any reductionist extrapolation from the behaviour

of their components —and hence less robust when carried over to previously unob-
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served domains of the variables, as discussed in chapter 2. Though this makes the

structure exogenous, it still allows the modelling of components’ behaviour within the

particular network, and the prediction of aggregate variables besides those describing

network structure. For these predictions to be useful, we would have to assume that

any effect on network structure, of the endogenous variables’ behaviour, was negli-

gible. There are reasonably tractable random static graphs that capture some of the

stylised facts detailed in the previous section.

My interest is in social engineering, which relies on social networks having endogen-

ous structure. Nevertheless, there may be aspects of the relationships between indi-

viduals that may change too slowly to be endogenous, such as the physical locations

of population centres or resources, that are best described by a random graph. I will

therefore briefly elaborate on Random Networks here.

Perhaps the simplest elaboration on Gilbert’s Poisson Random Graph is the Markov

Random Graph. Here, the principal graph is obviously still stochastic, but the dis-

tribution of links on this graph is parametrised by a second, constant, graph. This

second graph has all the potential links of the first graph as its nodes, while the pres-

ence of edges between these nodes signifies inter-dependence between the probabilit-

ies of those links appearing in the random graph. This means that any independently

formed links, in the first graph, are represented in the second graph by nodes with no

connections. The advantage of such a description, of a non-independent graph’s link

distribution, is that it gives a neat expression for the probability of the entire graph. Un-

fortunately, interesting properties, such as the degree distribution, are not so tractable

(Jackson, 2010).

Degree distributions are much more manageable when using the Configuration Model

and Expected Degree Model. This is simply because both pre-specify a degree distri-

bution which then acts as a constraint on the random network formed. Such graphs

only behave definitively like social networks in the limit, and so they may only be used

to prove limiting results for given network properties. Of course a limiting behaviour
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is not necessarily usefully close to the behaviour of a particular finite population. Jack-

son suggests mixed inference from limiting results on general parameter values, and

simulation from specific parameter values. This does perhaps make for a good guard

against sensitivity to parameter values, but it is the simulations here that do the bulk

of the work. I will not, therefore, go into any more detail on these two approaches,

though a full explanation can be found in Jackson (2010).

Game theoretical networks

Holistic reproductions of networks are perfectly scientific but, as in Lucas’ famous

critique (?), we should be wary of assuming that some object’s behaviour will be con-

sistent out of sample (whether in terms of time or space) when the components of that

object may vary in their behaviour or numbers. For this reason we might seek to break

away from networks that relegate components’ behaviour to uncertainty, and instead

let the structure emerge endogenously from explicit behaviour of the components. For

static models we must expect all forces of individual behaviour to balance out. That is,

we expect the system of components, that make up the whole, to be in equilibrium.

If we are explicit about the origin of the forces acting on the components, and we

believe that human decision making tends toward rational behaviour, then the equilibria

of the system will be described by the pure or mixed strategy Nash equilibria of some

strategic game.

A pure strategy equilibrium, s ∈ S, ascribes to each individual a specific strategy — a

set of contingent actions — from the set of all such combinations, S. The equilibrium

derives from that fact that no individual would gain from deviating, so long as every

other player subscribes to their corresponding strategy:

ui
(
si, s−i

)
≥ ui

(
s, s−i

)
∀s ∈ S

Meanwhile, a mixed strategy equilibrium describes a tuple of subjective probability



3.3 Network notation and existing models 109

distributions, σ ∈ ∆rn, for the r strategies available to each of the n players. When a

player describes their uncertainty over their opponents’ actions by these distributions,

it is optimal for them to play their own strategies with the probabilities described by

their own distribution — though what this randomisation could mean in terms of actual

human decision making is unclear.

Eui
(
σi, σ−i

)
≥ Eui

(
σ, σ−i

)
∀σ ∈ ∆1

An early model of strategic network formation is that of Aumann and Myerson, which

orders the possible links in the network, and then sequentially allows the nodes joined

by those links to choose whether or not it should exist. When a link is chosen to be

omitted the next link in the sequence comes under consideration. When a link is chosen

to be in the network, the process returns to the first potential link in the sequence that

was already omitted. There is then another chance for the two nodes to allow that

link. Once allowed however, a link can not subsequently be omitted from the network.

Despite this on second thought feature, ordering significantly affects the equilibrium

networks formed. Moreover, the game is typically one of full information, where all

chosen links and all players’ future behaviour figures in the decision calculus. It is

therefore very difficult to analyse for any but the most simplistic networks, and no

general results have been developed (Jackson, 2003; Demange and Wooders, 2005).

A more tractable network formation game has all players simultaneously pick their

desired neighbours, and then those mutual selections confirmed as edges of the graph.

Though this contemporaneous formation makes analysis more straightforward, there

are too many equilibria, of too great a variety, for anything useful to be said. It is

for this reason that noncooperative game theory is often given up in favour of refined

equilibrium concepts, specific to network formation (Demange and Wooders, 2005).

Matthew Jackson (2003) and various co authors are responsible for several network

specific equilibrium concepts. The earliest of these was pairwise stability, but it still
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finds a place in Jackson (2010). For a network to be pairwise stable, two conditions

must be satisfied:

PS1: ∀ij ∈ g ui(g) ≥ ui(g − ij) and uj(g) ≥ uj(g − ij)

that is, no party to a link should have greater utility if that link is removed from the

network; and,

PS2: ∀ij /∈ g ifui(g + ij) ≥ ui(g) then uj(g + ij) < uj(g)

that is, if some party to an absent link can increase their utility by introducing that link,

then the other party must lose utility by its introduction. Together these conditions

ensure that when two agents both gain from having a link, all else being equal, then it

will exist. This is in contrast to the Nash concept, where it is also an equilibrium for

the link to not exist — there being no gain to requesting the link should the other party

not. Jackson justifies his departure from a noncooperative framework as a simplifying

assumption to achieve obvious conditions.

A further step towards cooperative game theory is taken with the concept of strong

stability (Jackson, 2003). Here, coalitions of more than two nodes are considered,

so that more than one link is under consideration at any one time. Explicitly, strong

stability requires that there be no Pareto improvements for members of some set of

nodes S, whenever that coalition of nodes can obtain another network, g′, via the

following conditions:

SS1: ij ∈ g′ and ij /∈ g ⇒ {i, j} ⊆ S

that is, the coalition, S, can unilaterally add any link needed to obtain g′ from g because

both parties to every additional link needed belong to the coalition; and,
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SS2: ij ∈ g and ij /∈ g′ ⇒ {i, j} ∩ S 6= ∅

that is, the coalition can unilaterally delete any links to obtain g′ from g because at least

one party to every excess link belongs to the coalition. So when both these conditions

hold, and g′ is obtainable from g, then it cannot Pareto improve the lot of S:

SS3: SS1 and SS2⇒ ∀i ∈ S if ui(g′) ≥ ui(g) then ∃j ∈ S s.t. uj(g′) < uj(g)

Though this is a fairly natural extension of pairwise stability’s abstraction from ne-

gotiations, it suffers the eternal problem of cooperative game theory: once network

formation begins, rational agents would need some credible threat to stop them defect-

ing from a coalition. In the absence of this threat, the agents would therefore have no

reason to fear any other coalition. Modellers of other networks might be happy to ig-

nore such details, but as I am interested specifically in the enforcement of agreements

it would be inconsistent to adopt a framework with such a hole.

3.3.2 Dynamic network formation

Where the tendency of a system to equilibrium is much slower than the rate of disturb-

ances to that system6, the equilibria cannot be hoped to usefully approximate future

behaviour. They may even be irrelevant. To guard against this possibility, Evolution-

ary Economics models economies composed of individuals whose behaviour deviates

systematically from that which would be rational7. Instead, individuals’ strategies are

based on an induced model of the world, which adapts with each new piece of in-

formation. It is those successful strategies that are most likely to persist, and so the

6As could fairly be supposed in a world of rapid technological change, globe trotting diseases, and
chaotic climate.

7Which is to say, even the mean behaviour of agents does not correspond to the rational behaviour.
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behaviour is seen to evolve. This is not inconsistent with perfectly rational equilib-

ria, as these have often been shown to be limits of such adaptive processes (Binmore,

1998).

Mean field approximations and Representative Agents

A familiar difficulty of dealing with systems of interacting heterogeneous agents is its

mathematical intractability. No small part of that is contributed by the combinator-

ial problems of simply counting how many of each type of relationship are present.

This problem is often countered by the technique of mean field approximation, which

replaces many bodies and their interactions with a single body and a representative

external field, capturing the effects of all the interactions. If this sounds a lot like

Representative Agent analysis, that’s because the RA is an example of a mean field

approximation; so all the criticisms given in chapter 2 should counsel caution in us-

ing such an approach, especially dependence on the law of large numbers (Gatti et al.,

2011). Still, while the RA assumes a star shaped network with the Walrasian auctioneer

at the centre, mean field approximations can be taken for networks with more nuanced

and localised interaction than in the DSGE case.

Because of its conventional description in the Hamiltonian notation of physics, and a

lack of such uniform notation for many body economic systems, mean field approxim-

ation is difficult to formalise in a general framework. Informally, it involves:

1. Representing agents’ characteristics as their stochastic deviation from mean;

2. Expanding the description of their dynamics and effects on one another in terms

of means and deviations;

3. Discarding higher order terms.

When and where mean field approximations are good approximations remains largely

unknown, and is generally explored case by case using simulations (Jackson, 2010).
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Dynamic stylised facts

As a relatively new area of interest, with inherent difficulties and additional costs in

its measurement, Network Science does not yet have any canonical stylised facts for

co-movements of network measures. Nevertheless, there are dynamic stylised facts

regarding the distribution of the network’s population, for at least economic variables.

For instance, Gatti et al. (2008), find that the size distribution of firms varies system-

atically over the business cycle, but that this variation follows no discernable pattern

between countries.

Dynamic Random Networks

The obvious random dynamic network is a variation on the Poisson static random

graph, described in the previous section, which grows over time as new nodes are

added. Each new node randomly attaches to a fixed number of existing nodes, m, and

in this way degree distributions of old nodes grow up from m links with time. Ap-

proximating this process with a continuous one and then using a simple mean field

approximation, it can be shown that the degree distribution after a large number of

periods is approximately the exponential distribution,

Ft(d) = 1− e−
d−m
m

Clearly an exponential distribution does not have the fat tails observed in most real

networks, and so some form of preferential attachment must be introduced — as it was

with Markov random networks, or the configuration model in the previous section. The

simplest way to produce more high degree and low degree nodes is for the m initial

attachments to be made with more probability to high degree nodes. Jackson (2010)

simply makes the probabilities proportional to the existing node’s degree. Using the

same two approximations, we find that the distribution function of degrees is now a

power law with exponent −3,
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Ft(d) = 1− m2

d2

Though they are fat tailed, degree distributions tend to lie somewhere between power

laws and random distributions. In light of this fact the above models can be combined,

with some proportion, α, of new links assigned randomly and the remainder with pref-

erential attachment. This scheme leads to an approximate cumulative distribution of,

Ft(d) = 1−
m+ 2αm

1− alpha

d+ 2αm
1− alpha

2
1−α

Despite their dynamic nature, growing random graphs are most important for their long

run structural features, rather than necessarily reproducing dynamic behaviour of real

networks - though of course the reason for their desirable properties might well be re-

lated to an accurate imitation of real network growth. As well as a fat tailed degree

distribution, they can also show positive assortativity. The clustering seen in real net-

works is, however, not present in the limit. To counter this, the preferential attachment

of the previous models can be modified so that rather than having increased probability

of attaching to any high degree node, new nodes attach first uniformly at random to

mr nodes, and then uniformly to mn neighbours of those mr initial links (Jackson and

Rogers, 2005a). In this way high degree nodes are favoured (as these are more likely

to themselves be neighbours of the random initial neighbours) but additional probabil-

ity is also given to sharing neighbours, that is, to clustering. This leads to a fat tailed

degree distribution of,

Ft(d) = 1− mrm

mn

1+mr
mn d+

mrm

mn

2
1−α

Moreover, mean field approximation leads to an analytical limiting approximate for

the clustering in this network, as measured by the fraction of transitive triples among

triples,
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ClTT →


1

m(mr
mn

+1)
if mr

mn
≥ 1

(m−1)mr
mn

m(m−1)(1+mr
mn

)mr
mn
−m(1−mr

mn
)

if mr
mn
≤ 1

Dynamic Strategic Networks

Once again, looking at holistic dynamic models, that ignore underlying mechanisms,

Lucas’ critique kicks in and we might worry about the out of sample performance of

random models parametrised for data with different microscopic conditions. Again,

the obvious response is to build models in which the macro-properties of the whole

network emerge endogenously from the imposed micro-properties of its components.

This leads us to consider the strategic choices of individuals in a dynamically forming

network environment.

One solution to random models’ silence on the small worlds feature of data comes

in the form of the Islands-Connections Model of Jackson and Rogers (2005b). This

model assumes agents receive utility from being linked to others, that decays expo-

nentially with the length of the shortest path between them, `(i, j). That is, an agent

receives utility δ from an immediate neighbour, δ2 from a neighbour of a neighbour,

and δ`(i,j) from some agent with a minimum path of `(i, j) between them. For the sake

of tractability a maximum path length that can provide utility is set asD. With this dis-

tance based utility in place, links are given a two-tier cost structure. This is explained

intuitively as it costing c to link with an agent on the same island, Ii, and C to link with

agents on other islands, I−i, with 0 < c < C. This gives each agent a payoff of,

ui(g) =
∑

j 6=i:`(i,j)≤D

δ`(i,j) −
∑
j:ij∈g

[c1(j ∈ Ii) + C1(j ∈ I−i)]

It can then be shown that pairwise stable networks must involve every agent on each

island being directly connected, that diameter is no greater than D + 1, and that clus-

tering is tightly bounded. However, this relies on a cost structure such that it pays to be
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connected directly to agents on the same island, and directly to one agent on another

island who is similarly connected. Hence, the model gives a potential explanation for

small worlds with high clustering, but both predictions are somewhat obvious from

the model setup and represent pretty weak out of sample confirmation of the model-

ling assumptions, leaving us to wonder how many other of the infinite possible setups

might equally reproduce the stylised facts - it would be far better here to match a more

specific observed micro-structure with its corresponding observed macro properties.

A starker dynamic analog of the static networks in the previous section is achieved

by introducing or deleting edges one by one, according to whether a randomly selec-

ted edge satisfies pairwise stability — that is, if it is to be added it offers both nodes

improved utility, while if it is already present its deletion offers at least one node im-

proved utility. This process has the downside of becoming trapped in pairwise stable

networks from which another pairwise stable network cannot be reached by a single

addition or deletion of an edge. To overcome this problem, and ensure that all pairwise

stable configurations are possible, Jackson and Watts introduce a trembling hand er-

ror, whereby agents’ desired action is carried out with some probability, 1− ε and the

opposite is carried out the rest of the time ε. This randomisation means that pairwise

stable networks can be left even when it is not optimal, and allows the whole set of

equilibria to be explored (Jackson, 2003).

With every equilibrium reachable, the question becomes the same as for static net-

works: what utility functions and payoff structures reproduce the stylised facts? How-

ever, the dynamics of these properties could not be fully determined by ε, which seems

likely to produce punctuated equilibrium dynamics like those of similar evolutionary

game theory equilibrium concepts — specifically stochastic stability (Young, 2004).

The overall validity of the model therefore depends on both deeper knowledge of dy-

namic stylised facts for networks, and on a fuller investigation of the model’s general

dynamic behaviour.
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Dynamic network models applied to peer-pressure enforcement

A prototypical network formation paper (certainly for my purposes) is that of Vega-

Redondo (2006), modelling the emergence of social networks under the peer-pressure

enforcement mentioned in chapter 1. It examines first static network equilibria, and

then a dynamic formation process, under shifting incentives, by both simulation and

mean field approximation. The model is one of perfectly rational agents, for whom a

common edge means competing in an infinitely repeated prisoner’s dilemma — rep-

resenting some collective action problem — but also a source of information on the

conformity of every agent in the component — though news of defection from the

common norm strategy is transferred by only one edge each period. This informa-

tion transfer service increases conformity of partners to the collaborative strategy, and

therefore serves as collateral against defection. In its dynamic form, the network grows

in a way that borrows from both strategic models described above: at each time period

each agent is randomly given the opportunity to form a link with another node within

their component of the network or to form a link with any node in the network. Whether

or not a link is formed is then determined by whether it offers a Pareto improvement to

both agents. With no variation in the idiosyncratic payoffs to the prisoners’ dilemma

games, the network almost surely converges to the complete network. However, when

the payoffs for each link are redrawn each period, with some incremental probability

ε, any equilibrium network arrived at eventually ceases to be an equilibrium and so the

system evolves away from it. The process does not arrive at a fixed configuration, but

is ergodic and has an unconditional long run distribution (invariant measure) that can

be found by simulation.

In this framework it is found that increased volatility (ε) leads to: lower network dens-

ity, through more depreciated social capital (collateral) each period; lower diameter of

components, making what collateral there is more robust to collapsing relationships; a

smaller largest component, again representing the instability of less dense social cap-

ital; lower average payoff, because with less certain value to relationships it pays to
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defect more often and so the worst case equilibrium of the prisoners’ dilemma is real-

ised more easily.

In contrast to models like that above, where the network’s value is partly derived from

the information it brings on others’ defection, Jackson et al. (2012) proposes a model

with full information, where peer-pressure is the only value of common neighbours.

The benefit of this simplification is that it allows an analytical solution.

The network formation process has two stages each time period: first, in the man-

ner of the simultaneous move game described in the previous section, agents choose

which links they would like to retain from the previous period; second, a favour is

asked at random, by node i of node j, and if it is not performed then the link ij is re-

moved. As with many repeated game scenarios, one equilibrium is the grim trigger

strategy wherein all agents maintain links and perform favours until one defects, and

then all agents sever all links. This is just one of infinitely many possible sub-game

perfect strategies, and so the authors introduce an equilibrium refinement concept of

renegotiation–proof–ness. This makes strategies robust to reconsideration of the grim

trigger after defection, by requiring in any subgame that continuing the renegotiation

proof strategy (and the network it produces) not be Pareto dominated by some other

renegotiation proof strategy (and the resulting network).

The authors characterise the actual set of renegotiation proof networks recursively,

for a particular cost structure. They then further refine their equilibrium concept by

looking for robust networks, in which the network arrived at after the grim trigger is

only changed locally — that is, networks in which there are no cascades of broken

relationships after a single defection. They find that this promotes a unique network

structure of complete subnetworks linked in a tree-like structure8. These social quilts

have the high clustering we look for in imitations of the real world phenomena, but the

authors find the support measure of density more apt.

As stressed at various points, there are serious drawbacks to powerfully unrealistic

8With no cycles as large as the complete subnetworks.



3.3 Network notation and existing models 119

assumptions like perfect information. Nevertheless, the concept of robust renegotiation

proof networks is an intuitive and powerful extension of the existing game theoretical

tools for networks. It should be noted, however, that the tractability of the model

is dependent on a growth process that involves only deletion of links. The model is

therefore quiet on issues of how networks initially form.

Dynamic models applied to the Economics of recessions

Models such as Vega-Redondo’s abstract from real world features that are clearly relev-

ant. As explained in chapter 2, such heuristical ceteris paribus assumptions invalidate

any policy implications drawn from the model. For this reason the eventual aim of any

model development exercise, should allow for all conceivably relevant variables that

are found to have an effect — a macro-socioeconomic model. A strong step in this

direction comes in the form of Bottom-up Adaptive Macroeconomic (BAM) models,

developed as part of the CATS program for computational experiments on Complex

AdapTive Systems (Gatti et al., 2011; Delli Gatti et al., 2010; Gatti et al., 2008; Gaffeo

et al., 2008; Gatti et al., 2006).

These models could not stand in starker contrast to the RA paradigm of the New Neo-

classical Synthesis: they rely on simulation rather than analytical solution; rational

choice is dropped in favour of adaptive-behavioural algorithms based directly on sur-

vey evidence of actual context specific human behaviour; and most important, they are

populated by heterogeneous agents who interact locally. There are obvious drawbacks

to behaviourism, when a simple algorithm is used to capture something as complex

as the human mind. Still, in fixed roles, that could likely not be described any more

dynamically by tractable games, it seems as robust a description as we can get to mac-

roscopic change.

BAM model specifics vary, from firms only with an equilibrium credit market (Gatti

et al., 2008) to all markets and R & D being agent based (Gatti et al., 2011), and

from fixed network structure (Gatti et al., 2006) to macro structure that emerges from
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strategic partner selection (Delli Gatti et al., 2010). What are common features of

the models however, are a fat tailed distribution of firms’ sizes, a regular cycle for eco-

nomic output punctuated by periodic cascade events (resembling great recessions), and

correlations of typical economic variables that closely match the orthodox economic

stylised facts (Gaffeo et al., 2008).

In the latest BAM model (Gatti et al., 2011) network formation follows a general pat-

tern of search for best price among a (mostly) random set of partners: in the labour

market, firms post wage offers for fixed term contracts and unemployed workers apply

first to their former employer (as long as they were not fired) and then sequentially to a

random set by descending wage; meanwhile, in the goods market firms post prices and

agents check the prices of an (almost) random subset of firms and buy from that with

the lowest price and outstanding stock — they show some preferential attachment by

always including the largest firm from their last search in the new set, and this is im-

portant to the dynamics. Such schemes might seem ad hoc, but when based on actual

behaviour, observed over many macroeconomic states, they are robust to the question

mark that hangs over the rational choice model’s domain of relevance — if not to radic-

ally different macroeconomic circumstances. In this way the stylised facts of aggregate

fluctuations and co-movements of variables, that are generally pursued by DSGE Mac-

roeconomics, are reproduced reasonably well without any stochastic buffeting of the

whole system. Unfortunately, this model still relies on descriptions of markets with

a single equilibrium price. As I will explain in the next chapter, even alone this ab-

straction causes serious problems. A further concern for this research program is the

feasibility of simulating populations that approach those of the actual economy: the

law of large numbers might be expected to significantly reduce any volatility seen in

hundred agent models as the simulation becomes populated by millions of agents.
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Hierarchical Networks

Although not exhaustive, this literature review gives a diverse cross section of net-

work and complex models. Several of the dynamic models tried to address the issue

of enforcement, from the peer-pressure perspective described in chapter 1. But, none

attempted to model the hierarchical enforcement that I have chosen to study in this

chapter. This gap in the literature adds value to my modeling effort. But, it does not

undermine this literature review, because several useful tools have been introduced in

the study of peer-pressure enforcement and simulated economies: powerful descrip-

tions of relationships through graph theory, and simulation techniques to compensate

for intractability, to name just two.

3.4 A Hierarchical Enforcement Model

To compete with the inertial resistance of well established theory, any alternative paradigm

has to be as accessible as it is effective. I therefore open the innovative part of this pa-

per with an intuitive account of this framework, before giving a precise mathematical

formulation.

3.4.1 Intuition for the model

As many of the specific examples in section 3.2 showed, third party enforcement can

be (and is) applied in a finer grained way than Hobbes or Locke discussed. Because of

the limits to individual enforcers’ abilities to monitor and interact with individuals, we

tend to see hierarchies of enforcers in almost all institutional settings; so that the en-

forcement provided by the sovereign is actually the result of their enforcement between

sub-sovereigns, who in turn enforce between sub-sub-sovereigns etc.. My aim is there-

fore to capture the essence of an enforcement hierarchy, in which the failure of some

one enforcer can cascade down to significantly affect the aggregate - in the way that a
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single bank’s collapse might affect the solvency of its client firms, or economic failures

in the West might lead to the collapse of its client governments in the developing world.

I therefore abstract away from many features of real societies, which, it is hoped, have

negligible impact on the overall behaviour. This is made possible by the ubiquity of

third party enforcement relationships: anywhere that some decision maker acts as an

arbiter of some defectable relationship between other parties, one can describe this as

a third party enforcement relationship. Hierarchies arise where the enforcers are them-

selves subject to the enforcement of others, like the banks just described which are

enforcers between lenders and borrowers but are also intermediated by a legal system

resting on the government’s authority. The firm, a single entity under the old econom-

ics, here becomes the hierarchy of cooperative relationships described in the previous

section, with each regulated by some manager in the tier above, until a final enforcer is

reached, whose relationship with shareholders is enforced by government.

Why should we include all these sub-sovereigns in our description, and not just stick

to the sovereign of Hobbes? Omitting the fine granularity of hierarchical enforcement

would mean only the sudden losses of all contracts, when the highest sovereign failed,

rather than a scalable disturbance. This suggests that abstracting to a single enforcer

would not be a negligible assumption, because it would change the behaviour of the

model.

The intuition for this scalable volatility arising from the mechanism is simple: as in

section 3.2, the third party enforcers only have an incentive to carry out their role if

they will lose it otherwise. But, when error or a lack of resources causes them to fail in

their responsibility they will still presumably lose their place as enforcer. This volat-

ility will be reflected in output because, if an enforcer is removed then no contracts

can be enforced until a replacement is installed, whether those contracts contribute to

economic output or some less measurable social outcome. How could aggregate output

be affected by a few middle managers failing? Because the enforcers will themselves

need contracts enforced, they must also have an enforcer, stretching above them in
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a hierarchy. These occasional breakdowns in enforcement, and the resulting loss of

productive contracts, deny subordinate enforcers the resources needed to themselves

enforce agreements. This can cause their failure too, and give rise to significant ag-

gregate volatility through large cascades or avalanches of failed enforcement. That

is, in a hierarchical society where enforcers enforce contracts between enforcers (who

themselves enforce contracts between enforcers...), it is easy to see how one small error

could lead to an avalanche of succeeding errors, all adding up to a significant aggregate

effect.

The story this model tells is a departure both from the technology and policy driven

recessions of monetarist macroeconomics, and from the amplifying price frictions of

new Keynesians. Nor are recessions driven by wild over-valuation of goods, com-

pared to some objective measure that somehow escapes the subjective, conventional,

nature of value. Instead, recessions are paralleled by massive coordination failures,

where formerly productive relationships break down for lack of enforcement against

conflicts of interest. Contagion of these coordination failures would be carried by the

dependence of other enforcers’ potency on the resources from their own enforced re-

lationships. Further, civil unrest and revolution enter the picture: the Arab Spring,

and western rioting, formally become part of the same phenomenon as the contempor-

aneous global recession, rather than an addendum outside the theory. This constant

disequilibrium is not necessarily inefficient either (Bak, 1996): the need for the en-

forcement relationships to collapse in order to prevent malfeasance, could be essential

to the value they bring while intact - although elaborating on these fine mechanics is a

matter for further research.

Intuitive support for the approach also comes from formal statistical evidence, old and

new. Pareto laws are distributions with hyperbolic decay of density into their tails and,

therefore, infinite variance9. These are observed widely in economics, and elsewhere,

with income distributions and firm size distributions often argued to follow power-

9Infinite variance arises because, as we move into the tail, the squared difference from mean grows
more quickly than the density decays.
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laws in their upper tails (Gatti et al., 2008). One established mechanism for generating

power-law distributions is Herbert Simon’s preferential attachment, sometimes dubbed

“the rich get richer”, which is often seen in the network literature. Preferential attach-

ment connotes a situation wherein the growth of a value is proportional to its size. With

firms thought of as sub-graphs within the hierarchy, below some highest direct subject

of the government, preferential attachment is clearly a relevant mechanism to their size

distribution. Indeed, the effect is realised here simply by having an equal probability

that new enforcement relationships are formed with every node in the network, so that

larger components have a larger probability of being joined.

More recently, evidence has started to build that neither of the traditionally compet-

ing views of macroeconomic time series’ dynamics holds: variables like GNP are not

stationary, and nor are the series of changes between observations. Instead, they are

better described by the intermediate representation of fractional integration (Mayoral,

2005). Fractionally integrated series are the discreet analogue of what physicists would

call 1/f-noise10. There are several known models that produce 1/f-noise, but one of the

most prominent is the Self-Organised Criticality framework of Bak (1996). In the ca-

nonical SOC model and its phenomenal analogue, the Rice Pile, one sees power law

distributed avalanches removed from a slowly regenerating whole; this obviously cor-

responds closely to the structure currently being sketched, and gives more intuitive

support for the suggestion that it might replicate macroeconomic dynamics.

Crucially, for the argument that societal volatility can be described by the same mech-

anism as Economic fluctuations, cutting edge sociological research also suggests frac-

tionally integrated time series for conflict data. This, soon to be released, work is based

on the GDELT discrete event data set, a coded record of global news from the last 30

years, with over 200 million political events. Some of the events recorded are scaled

descriptions of conflict across the world, be it civil strife or war. The time series of

these events’ severity, for particular countries, shows the same fractional integration

10This is a signal which, in the frequency domain, shows a power law decay in its power-spectral
density (Mandelbrot and Van Ness, 1968).
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behaviour as GNP. It will be an important supplement to this research to see whether

the precise properties of that series compare to economic fluctuations.

To recapitulate my conclusions from chapter 2: with the shortcomings of the con-

ventional microfoundations, an attempt should be made at a new reductionist model

for macroeconomics; this should start with a description of behaviour, for compon-

ents of the economy, that has already proved an efficient way to capture information,

and predict continuity. What I am proposing here is to take for that purpose the well

established and useful descriptions of third party enforcement and hierarchical social

structure. These are descriptions so useful that they transcend scientific, or even tech-

nical, discourse and are used in everyday language.

3.4.2 The formal model

The model is populated by a set of agents N , in a directed network g — so that a

link from agent i to agent j, ij, has a different meaning from a link from agent j to

agent i, ji. Each agent, i ∈ N , can act as an enforcer to any other agents j ∈ N ,

ij ∈ g, and as an enforcee to any one agent k ∈ N , ki ∈ g, meaning that k enforces

i’s productive contracts with other agents. The number of direct enforcees that each

enforcer is capable of sustaining is limited to some positive integer, m.

Enforcement is transitive: if i is an enforcer to j and k, ij, ik ∈ g, while l and m are

enforcees of j and k respectively, jl, km ∈ g, then l and m’s productive relationship

is enforced. This means that a productive relationship will exist between every pair of

enforcees in a component — a particular hierarchy g′ ⊂ g wherein every two agents

share an enforcer either directly or indirectly, and share none with any agent outside of

g′.

Figure 3.2 shows a hierarchical enforcement structure graphically. Let us compare this

to two of the examples from section 3.2, a firm and a drug cartel (as a black market

institution). In our firm node 1 represents the general manager of Clips stationary.
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Figure 3.2: A hierarchical enforcement network
...

1

2b

3bb3ba

· · · × l . . .2a

3ab· · · × k . . .3aa

Node 2a is the head of accounts, and 2b is the head of IT, while all the other nodes

connected to 1 are other department heads. The 3xx nodes are subordinates in these

two departments. In the case of the drug cartel, 1 represents some lieutenant in the drug

cartel, with a drug lord somewhere above them (along the dotted line). 2a represents

a buyer, with 3aa, 3ab, and others as producers that they coordinate. 2b and the other

2x nodes are local distributors, with 3ba and 3bb as the street level dealers that they

coordinate.

Time is discreet, and every period a network growth event takes place, consisting of a

series of steps:

NG.1 Enforcee search — an agent, i ∈ N , is chosen to be offered a new enforcer,

uniformly at random from those agents with no relationships;

NG.2 Enforcer search — another agent, j ∈ N , is chosen uniformly at random to

be offered as an enforcer; while j has m or more enforcees, j is redrawn from N

uniformly at random;

NG.3 Relationship formation — ji is added to g.

The value of every productive relationship is assumed to be of the same order. Hence,

within any one hierarchical component, C, the production taking place, yC , has the

same proportional relationship to the number of pairs of enforcees in that hierarchy:

yC ∝ nC × (nC − 1) where nC = |{j ∈ C|∃ij ∈ g}|
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Figure 3.3: A network growth event, between top and bottom
...

1

2b

3bb3ba

· · · × l . . .2a

3ab· · · × k3aa

Growth...

1

2b

3bb3ba

· · · × l . . .2a

3ab· · · × k3aa

Assuming that the largest component is the formal economy, this then makes aggregate

production, y, simply the production of that component:

y =
∑
C

yC

Figure 3.3 illustrates this growth process: as time progresses between the left and right

hand figures the formerly disconnected node, 3bb, is offered 2b as an enforcer. Since

2b has fewer than m enforcees, this relationship is allowed.

In the context of our first example, 3bb is a potential new employee for the IT depart-

ment. After coming to trust the IT manager’s regulation of their interaction with other

employees, 2b contributes their full effort in collaborating with the other members of

the firm, and adds to its productivity by the number of other employees whose pro-

ductivity they are enhancing. Meanwhile, in the context of our second example, 3bb

is a budding street-level dealer who starts paying for the protection of 2b. As part of

the same component, under the enforcement of the single drug lord, there is now the
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infrastructure in place for producers’ output to be supplied to 3bb without fear of non-

payment or supply interruption. Moreover, now that there is an institution by which to

settle territorial conflicts with other dealers, the productivity of all the other 3x dealers

is increased. In this latter case, the nodes would all be part of some component other

than the largest, which is the formal economy.

At a fixed interval, τ , a network collapse event takes place, consisting of a conditionally

repeated series of steps:

NC.1 Enforcer failure — an agent, i ∈ N , is chosen to fail, uniformly at random;

NC.2 Enforcee severance — with a certain contagion probability, p, each link between

i and its enforcees, N i = {j ∈ N | ij ∈ g}, are removed from g;

NC.3 Contagion — if any links were removed in the previous step, |N i| > 0, all

steps are repeated for every other agent adjoining those links, j ∈ N i, in order to

capture the immediate contingency of their ability to enforce on the value from

their own enforced relationships.

Figure 3.4 describes a Network Collapse event. As 1 fails, it becomes unable to enforce

between the other nodes below it. A fraction of its 2x enforcees, that on average would

be p, then also fail. In this instance 2a is one of those failures. 2a is then unable to

enforce between pairs of nodes beneath it, and these relationships’ productivity is lost

to the economy.

In our first example, of a firm, we can think of the general manager having some ran-

dom disturbance in their private life. Let’s say that they start to go through a divorce, so

that they spend less time on their job and are generally distracted. If this prevents them

from effectively enforcing the interaction of the different departments below them,

then these departments will no longer trust their contribution to the firm’s output to

be properly recognised, and they cease to cooperate. Now that the accounts manager,

2b, cannot get IT to support the accounts staff, those staff lose trust in that manager’s
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Figure 3.4: A network collapse event, between top and bottom
...

1

2b

3bb3ba

· · · × l . . .2a

3ab· · · × k3aa

Collapse...

1

2b

3bb3ba

· · · × l . . .2a

3ab· · · × k3aa

efficacy. Without trust in their manager’s enforcement, the accounts staff worry that

their work won’t be properly attributed, and that their colleagues will not put in full

effort; they stop contributing, and the firm’s output drops.

In drug cartel of the second example the failure of the lieutenant, 1, could represent

their assassination by a member of a rival group. With the loss of the lieutenant’s

protection, the local distributors have no means to settle their disputes with one another.

2b is killed by one such, and can no longer enforce relationships between the street level

dealers beneath them. With conflict breaking out between these street level dealers, the

productivity of this part of the black economy falls proportionally to the number of

conflicts breaking out.

In keeping with my methodological prescription from the previous chapter, this model

is based on very successfully used descriptions of society. It adds very little else to this,

and so comparison to other mathematical models is not particularly necessary. The

greatest influence from a mathematical model, is that of the Self Organised Criticality
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paradigm described in the previous subsection, due to Per Bak (Bak et al., 1993; Bak,

1996). It should be noted, however, that other than allowing for the obvious collapses in

third party enforcement I take nothing from this literature. Specifically, my abstractions

have not been tailored to mimic the mechanisms found to underlie SOC by Vespignani

and Zapperi (1998).

3.4.3 Robustness Check: Swapping Enforcers

In chapter 2 of this thesis I concluded that a reductionist model of the economy was

only valid if the descriptions of its components could be made more realistic without

changing the model’s qualitative behaviour. Because a model with complete detail of

all components of the economy is not feasible, this criterion can never be assessed

outright. What can be done, as I did with DSGE models in the previous chapter, is

to show when a modelling assumption fails this criterion. To begin applying the same

rigours in my own research programme, I also test a version of the model in which

one of the obvious abstractions is relaxed, namely the fact that enforcees never swap

their enforcer. In observing hierarchies in the real world, it is plainly the case that

individuals swap from being enforced by one third party to another. For example,

people frequently move between and within firms, swapping one manager for another.

Between network components too, we see individuals swapping enforcer, like those

moving between the formal and informal economies. The formal model described

in this section abstracts from this by assuming that an individual will only take on a

new enforcer after a collapse event, in the hope that the effect is trivial. To check

whether it is indeed trivial, I introduce a variant of my model in which agents who

already have enforcers are offered a new enforcer, and choose whether to swap. A

difficulty here is describing the way in which agents choose between enforcers. A

very rich description of the benefits of having different enforcers would reduce both

the model’s generality and its parsimony. Instead, I keep things simple by making an

observation about real world hierarchies: the higher up a given enforcement hierarchy,
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is an agent, the less likely they are to leave in favour of another. We see this both

in rogue states and criminal organisations, where the high-ups are committed to their

position while the lowest members of the hierarchy often chose to move over to a the

larger hierarchy of the international community or formal economy. Indeed, that this

observation can be made about two different scales of hierarchy helps us to specify

the conditions for swapping. The variables determining the swap here are the size of

the enforcement hierarchy, and the position in the hierarchy. In order for the relative

value of these two to determine agents’ choice of hierarchy regardless of the size of the

hierarchies in question, the importance of each must grow at the same rate. Because

the number of agents in these tree-like enforcement networks will grow exponentially

in the number of levels, with base m, the importance of hierarchical position must be

of the order of mhierarchical position. So, were agent 3aa in 3.2 to weigh up agent 2a as

an enforcer against agent 1, they would compare the ratios component size
m2 and component size

m

respectively. Obviously, they would choose to have agent 1 as enforcer here because

they get closer to the top of the hierarchy, while still having the same number of other

agents with whom they can make enforced agreements, because they remain in the

same component. Intuitively this importance of hierarchical position makes sense,

because third party enforcement is dependent on asymmetrical power between enforcer

and enforcee, and we can imagine easily enough that agents prefer more power.

Put simply, the condition for swapping is described in step 3 of a revised Growth Event

with Swapping:

NGS.1 Enforcee search — an agent, i ∈ N , is chosen to be offered a new enforcer,

uniformly at random from those agents with no relationships;

NGS.2 Enforcer search — another agent, j ∈ N , is chosen uniformly at random to

be offered as an enforcer; while j has m or more enforcees, j is redrawn from N

uniformly at random;

NGS.3 Enforcer choice — if i already has an enforcer, k ∈ N , i swaps j for k, and

proceeds to the next step, only if this would increase the ratio component size
mhierarchical position ;
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Figure 3.5: Production enabled by hierarchical enforcement, initial behaviour
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NGS.4 Relationship formation — ji is added to g, and ki is removed from g.

The empirical testing of this second modelling set up, as a robustness check on tests of

the first model, are described in section 3.6.3.

3.4.4 Sense Check: Small population model behaviour

Were this model to run with a realistic number of agents, it would be nigh on impossible

for a human to keep track of the path of any individual agent. This is the essence of

Complexity Science: regular aggregate patterns, despite our being unable to follow

regularity in the individual components. But, in order to demonstrate some model

behaviour we can run it with a very small population of agents, for a relatively short

number of periods. Table 3.1 and figure 3.5 show exactly this. The model has just 10

agents, a maximum of 3 enforcees per enforcer, an enforcer failing every 2 periods,

and a 95 percent chance of failure causing failure of each sub-enforcer.

Although the coarse granularity at this scale makes for a very abrupt step process, we

already see the behaviour we might hope for in the properly callibrated model. There

are periods of steady growth, as agents find enforcers and hierarchies develop. Each
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Time Production Commentary
1 0 No pairs of enforcees share an enforcer.
2 0 ...as before...
3 2 Two enforcees now share an enforcer.
4 2 ...as before...
5 0 Their enforcer fails.
6 0 No pairs of enforcees share an enforcer.
7 0 ...as before...
8 0 ...as before...
9 0 ...as before...
10 0 ...as before...
11 0 ...as before...
12 2 Two enforcees now share an enforcer.
13 2 ...as before...
14 2 Any new enforcement is being...
15 2 ...countered by collapse.
16 2 ...as before...
17 2 ...as before...
18 6 Three enforcees now share an enforcer.
19 12 Fourth enforcee joins largest component.
20 12 Only smaller components grow/collapse.
21 6 A sub-enforcer has failed!
22 12 The freed enforcee was replaced.
23 12 Only smaller components grow/collapse.
24 12 ...as before...
25 12 ...as before...
26 12 ...as before...
27 2 Enforcer of main component fails!
28 6 Three enforcees now share an enforcer.
29 6 Only smaller components emerge/collapse.
30 12 Fourth enforcee joins largest component.
Best freq. 1

Table 3.1: Initial production levels of model with population of 10 agents

additional agent joining the largest component (the formal economy) means an extra

unit of trade for every existing enforcee. But, periodically one of the enforcers in a

hierarchy fails, as do many of the sub-enforcers below them in the hierarchy. This

leads to sudden drops in production, like recessions striking a real economy.
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Figure 3.6: Energy Capture over 60 centuries (relative to Contemporary Era), as
a measure of socio-economic activity.
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3.4.5 Reality Check: Complete Social Collapse

One way in which we could immediately dismiss the model, is to consider whether any

of the more extreme behaviours it describes are completely out of keeping with what

we have previously observed about the Macroeconomy. The most extreme feature

of the model, is its ergodicity: once a hierarchy has grown to include every single

agent, which can happen with finite probability, there is then a finite probability that

the highest enforcer is subject to a collapse event so that all enforcement relationships

are broken. Such a collapse of all social order is an extreme prediction and we have

to compare it to what we have observed, to see if there is any precedent for such a

property. As it happens there are (at least) two such massive social collapses in world

history, neither of which yet has a conclusive explanation: the fall of the Western

Roman Empire, and the Bronze Age Collapse.

As an indicator of general social development Morris and Farrar (2010) estimate the

gross amount of energy being captured by Western Civilisation at various points since

14000BCE. The evidence ranges from modern statistical digests to literary accounts of

farming, industry, and lifestyles, to archaeological evidence for diet, crafts, and quality
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of life, to ice core evidence of Roman era industrial polution. Figure 3.6 shows this

measure of the progression of the western world, and two obvious and massive drops

can be seen. The first, around 1200BCE, is known as the Bronze Age Collapse. It

corresponds to an arguably sudden transition in the western Mediterranean, from a set

of large highly interrelated states connected by robust trade routes to isolated villages

using only local resources — a period known as the Greek Dark Ages. The second,

more significant, drop represents the collapse of the Western Roman Empire, wherein

a massive military and trade infrastructure that spanned much of Western Europe dis-

solved over a relatively short period of time, leading to the Dark Ages in Europe.

This digression into history is, of course, not active support for the model. It is simply

the failure of an obvious criticism. In the next section I develop a formal method for

assessing whether mine is a reasonable description of macroeconomic data.

3.5 Empirical Method

Tractability of aggregate non-equilibrium dynamics is rare, more so when they are ex-

pected to display long-range dependence –because the degrees of freedom bearing on

the state of any constituent element become too numerous to track individual compon-

ents. For this reason, any empirical assessment methodology, used to test the model,

will have to be compatible with simulated data. The recent growth in computational

approaches to DSGE models has brought with it empirical methods designed to cope

with exactly this problem, and here I adopt a prominent example, Indirect Inference.

Although I find that my model does indeed generate long memory in its output, I cannot

show this analytically. Not understanding Why long memory is generated is, of course,

limiting. But, as explained in section 3.3.2, it is common in Network and Complexity

Science to accept this limitation. After all, it is often worth sacrificing some of our

understanding of a model, in order to better understand the relationship of the model

to empirical evidence.
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3.5.1 Indirect Inference Testing

The inference of models’ conformance to an observed phenomenon is said to be indir-

ect when it is judged through the similarity in descriptions of both according to some

other, auxiliary, model. For example, in Le et al. (2011) the model being tested is a

DSGE variant and the auxiliary model is a Vector Autoregressive Process on a stand-

ard set of macroeconomic variables. The stochasticity of the tested model means that

a distribution of different time series will be generated by the model for different real-

isations of the random variables. This distribution will give rise to a distribution of

the parameters chosen to best describe these time series in VAR terms. Meanwhile,

a VAR fitted to the actual observed macroeconomic data will have specific parameter

values. The higher the likelihood of seeing these observed parameter values under the

distribution generated by the model, the more credence is lent to the model.

To summarise Indirect Inference testing in step-by-step form (Le et al., 2010):

IIT.1 — Estimate the auxiliary model for the observed data;

IIT.2 — Repeatedly simulate the economic model, and estimate the auxiliary model

on the simulated samples to produce a distribution of the auxiliary parameters;

IIT.3 — Compute the Wald Statistic –the squared difference between observed and

average simulated auxiliary model parameters, scaled by the simulated paramet-

ers’ variance –and compare this to a χ2 distribution with number of degrees of

freedom corresponding to the number of parameters.

It would be unusual to think of macroeconomic data itself as the object of interest in

economics. Therefore, this approach is not unlike the regular comparison of a the-

oretical model to an unobserved data generating process, by comparison of the data

produced by each, in that some information is acknowledged as already having been

lost. Indeed, comparing an arbitrary number of moments as the auxiliary model would



3.5 Empirical Method 137

be equivalent to a more traditional likelihood test. If our objective is prediction of fu-

ture phenomena11, then this loss of information needn’t be cause for concern, so long

as we believe the retained information is all that which is likely to recur in those phe-

nomena. Unfortunately, VAR-based descriptions have been shown repeatedly to fail at

capturing any persistent features of macroeconomic data (Wieland and Wolters, 2011)

– that is, to forecast behaviour outside the observed sample. The evidence for frac-

tionally integrated processes better describing economic fluctuations (Mayoral, 2005)

makes them preferable as auxiliary models.

3.5.2 Indirect Estimation through Simulated Annealing

The microscopic observations that lead to the structure of my model were uninform-

ative as to its parameters’ values. In order to test only the model’s general ability to

reproduce observed behaviour, it is reasonable to give it the best possible chance, by

choosing parameters that bring it closest to that behaviour. Staying close to our Indir-

ect Inference method of appraisal, we can compare an auxiliary representation of the

data to the auxiliary representation for simulations of different parameterisations of the

model, to judge which is best.

To summarise Indirect Inference estimation in step-by-step form:

IIE.1 — Estimate the auxiliary model for the observed data;

IIE.2 — Simulate the economic model for various parameterisations, and estimate

the auxiliary model on the simulated samples to produce a range of auxiliary

parameters;

IIE.3 — Select the parameterisation that minimises the distance between the ob-

served auxiliary parameters and the simulated auxiliary parameters.

11As opposed to, say, the self-satisfaction of fitting the observed phenomenon neatly into our existing
set of models.
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In practice, one must choose the range of parameter values for which one simulates,

and one must necessarily do so without prior knowledge of whether the best of this

range will be close to the best possible. The greater the range, of course, the more

likely that the best is close to the Best, BUT the more costly will be the process. The

practical solution is to have an algorithm try successive parameterisations, basing its

exploration of the parameter space at each stage on what has been found so far. For

a distance between theoretical and observed auxiliary parameters that is a continuous

function, one cannot get to a globally smaller distance without passing through locally

smaller distances. This recommends a greedy algorithm, which explores close para-

meterisations and only progresses to one closer to the observed auxiliary parameters

for the next step.

Of course, local minima may exist, separated from the desired global minimum by

parameterisations that yield a larger distance. In order to avoid getting stuck in such

a shallow valley, one can modify the greedy algorithm to occasionally choose similar

parameterisations that in fact increase the distance between simulated and observed

auxiliary parameters. This would be what is called an epsilon greedy algorithm — the

“epsilon” representing a small probability of error. Of course, for this algorithm to ever

settle on a particular minimum, the epsilon would have to fall to zero at some point.

It is in this modification that we see the spirit of an algorithm class called Simulated

Annealing.

Simulated Annealing has its roots in the statistical mechanics of metallurgy, as the

name suggests. Kirkpatrick et al. (1983) were the first to draw parallels between the

behaviour of equilibrium systems with many degrees of freedom, and multivariate op-

timisation. In metal annealing the temperature is lowered only slowly, so that every

part of the system approaches order at the same time and the configuration is globally

ordered (minimum possible energy). The alternative is rapidly cooling and becoming

locally ordered in small subsets but disordered between these subsets (a local minimum

in the space of all system states). This rapid cooling is analogous to the simple greedy
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algorithm above, but for an algorithm to match the slow cooling it would need first

to allow substantial movement across the optimisation space (like the easy transmis-

sion of atoms and local temperature through a hot substance), and slowly reduce this

movement to allow stabilisation at the optimum (like the substance settling into large

crystals). The epsilon of the epsilon greedy algorithm is therefore reduced as if it were

the tendency of atoms to change state under falling temperature.

To summarise Simulated Annealing in step-by-step form:

SA.1 — Randomly choose a neighbour of the current state;

SA.2 — Evaluate the objective function at that neighbouring state;

SA.3 — If the neighbour improves the objective function, then it becomes the current

state; if it does not improve, then it may still become the current state with some

probability dependent on the system temperature;

SA.4 — The temperature is reduced according to the number of iterations thus far.

3.5.3 Fractional integration and Whittle estimation

Having recognised that unfiltered economic data is likely better described by a frac-

tionally integrated process, I here give a brief overview of that class of models. This

is followed by a description of the popular Whittle estimation technique for fraction-

ally integrated time series, and other AutoRegressive Fractionally Integrated Moving

Average models.

Fractional integration is a generalisation of the more conventional idea of an integer-

order integrated time series,

yt+1 = yt + εt ⇔ (1− L)yt+1 = εt ∼ N(0, σ2)
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It relies on fractional summation, wherein the contribution of summands is reduced

according to their distance from the latest in the series:

(1− L)dyt+1 = εt ∼ N(0, σ2) | d ∈ (0, 1)

In this way, the effects of past random innovations, {εs | s < t}, are not permanent

but rather highly persistent. Indeed, while d ∈ (0, 0.5) the correlation function for the

process is fixed, but decays hyperbolically:

ρk ∝ k2d−1

US GNP has previously been proposed to have a difference parameter in the range

(0.5, 1.0) for which second moments are not defined, but reversion to the mean can be

expected.

The Local Whittle semi-parametric estimation method is a frequency domain based

estimator for d, that is both strongly consistent and asymptotically efficient (Dahlhaus,

1989). It is based on the computationally efficient Whittle Approximation of Gaus-

sian likelihood12, which makes use of the similarity between a time series covariance

matrix’s eigenvectors and the frequencies of the Fourier series representation of a time

series. But the orthogonality of these frequencies allows the procedure to focus only

on the low frequencies, determined by the difference parameter, and remain agnostic

about short run dynamics — thereby giving a semiparametric estimator (Shimotsu,

2010). In its most basic form, it relies on the minimisation of the discretised function,

Qn(ζ) =
1

2n

n−1∑
j=1

(
lnfX(ωj, ζ) +

I(ω)

fX(ω, ζ)
dω

)

with respect to the parameters ζ , for the spectral density function fX on frequency

component ω, with periodogram I(ω). In order to compensate for non-stationarity

12This is, of course, appropriate for non-Gaussian stationary stochastic processes because of their
Wold Decomposition.
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of the data, along with the unknown mean and a potentially polynomial time trend, I

implement a modified version of the above developed by Shimotsu (2010). This Two-

Stage Exact Whittle Estimator is efficient for a greater range of difference parameters

than any other, d ∈ (−0.5, 2.2), a range which easily encompasses any proposed in

the literature for macroeconomic time series. The conventional Whittle Approxima-

tion employs an estimate of the periodogram, which is poor for non-stationary time

series, but the Exact Whittle Approximation, used in the second stage of the two step

estimator, corrects for this with an exact manipulation of the periodogram rather than

an approximation. This leads to the minimisation of the following objective function,

for frequencies λ and ∆dXt = (1− L)dXt,

Q̂n(G, d) =
1

n

n∑
j=1

(
ln(f∆dX(λj)λ

−2d
j ) +

I∆dX(λj)

f∆dX(λj)

)

A preceding step is needed, estimating the differencing parameter, because this ex-

act estimator requires a known mean and time trend. This preceding step uses the

tapered Whittle estimator of Velasco (1999), which tapers the time series to remove

long memory before estimating the fractional difference parameter. Although valid for

the same range of parameters as the exact, this estimator is not efficient which makes

the second stage necessary. With this estimate in place however, a suitable estimator of

the mean can be selected from between the time series’ mean (for d < 3
4
) and its first

observation (for d > 1
2
).

3.6 Empirical Performance of the Model

3.6.1 Data

The observed data used for US Gross National Product is taken from the extensive

collection of GNP time series compiled by Maddison. This time series runs from

1870 to 2008. Maddison was chosen precisely because fractional integration implies
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Figure 3.7: Time series behaviour of: simulated data from the hierarchical en-
forcement model (left); and observed US GDP from Maddison (right).

interdependence of observations over very large time separations, which makes using

data with the largest reliable time separations important for the accurate estimation of

the difference parameter.

For visual comparison with the observed US GDP data in the right hand pane of figure

3.7, the left hand pane shows the behaviour of a selected sample from a simulation of

the model with an arbitrary parameterisation13. One notes the same upward trend and

saw-tooth pattern. This sample was chosen specifically to imitate the behaviour of the

observed sample, and cannot necessarily be considered representative. Nevertheless,

the broad description I am aiming for with this model need not have the observed data

as a representative sample either.

The simulated data used for the actual testing comes from ten thousand simulations

of the model over twenty thousand periods, with a population of ten thousand agents.

These numbers were chosen to make the computation feasible, but are in line with

simulation numbers from the DSGE literature, such as in Le et al. (2012). Clearly ten

thousand is a much smaller population than the US economy, and one might expect

the behaviour to have subtle differences for a larger population. But, the Law of Large

13This simulation was over ten million periods with m = 10, τ = 5, and p = 0.95.
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Numbers should be less applicable because of the highly interconnected nature of the

population.

Because there is a finite probability of the collapse of the whole network, should the

highest enforcer fail, the process is ergodic, and so I considered it unproblematic to

start all simulations from an empty network. As the process is intended to exhibit long

memory, however, the initial state should be expected to influence behaviour for many

periods. To allow this initial state to become trivial, the first ten thousand observa-

tions of each sample were burned. The population size was chosen for the burn period

in order to give every agent time to acquire an enforcer. The the remaining data was

then sampled for estimation of the difference parameter. There is nothing in the micro-

scopic mechanism I have described that specifies a time scale, and so the sampling was

done at different frequencies to generate a set of different time-series from each simu-

lation run, with different intervals between observations. Difference parameters were

estimated for each of these sampling frequencies, but this is expensive, so sampling

frequencies were explored by doubling the interval each time: the first time-series kept

every consecutive observation, the second skipped every other, the third took every

fourth observation, etc. Sample size was kept constant, and equal to size of the ob-

served sample. This limited the maximum sampling interval to the closest integer to

log(10000)/ log(2). It also meant that samples with shorter intervals did not span the

length of the unburned simulation data. In order to maximise the burn period, samples

were therefore taken from the end of the initially unburned sample of ten thousand.

3.6.2 Results

Applied to the current problem Simulated Annealing searches one point at a time,

through a subset of a grid in the parameter space — which is three dimensional. The

size of the grid is chosen somewhat arbitrarily, based intuitively on the duration for

each simulation and acceptable exploration time. The parameters controlling the max-

imum number of enforcees and the interval between collapse events were allowed to
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change by one at each step, while the contagion probability was allowed to change by

0.01. Specifically, the algorithm then becomes:

IISA.1 — One of the six neighbouring parameterisations on the grid is chosen at

random;

IISA.2 — Ten thousand simulations of the model with these parameters are carried

out. The distribution of the difference parameter for this parameterisation is es-

timated using the Whittle Estimator on the simulated data, sampled at frequen-

cies that are powers of two;

IISA.3 — The difference parameter for the observed data is compared to these distri-

butions; If the highest p-value is greater than that for the previous parameterisa-

tion, then this parameterisation becomes the new state for the algorithm; if it is

not greater, then it still becomes the current state with probability e−
improvement
temperature ;

IISA.4 — The temperature becomes the initial temperature divided by the number of

iterations thus far.

I also modify the algorithm to at all times keep track of the global best so far, in case

the system jumps out of the global minimum before the complete cooling.

This annealing algorithm selected a parameterisation such that: each enforcer could

support at most five enforcees, m = 5; Network Collapse events happen at the same

frequency as Network Growth events, τ = 1; and the probability of a failing enforcer

losing each enforcee was close to unity p = 0.99, leading to long cascades.

It was unexpected that higher sampling intervals would display less mean reverting

behaviour, as is described by difference parameters closer to unity in table 3.2: major

collapses should be more likely over a longer timeframe, while the steady growth of

the network should be present at all sampling frequencies. This feature of the tabulated

statistics suggests that once the network is fully grown, after the burn in period, the
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Sampling Interval E(d̄) VAR(d̄)
1 0.81 0.12
2 0.90 0.08
4 0.97 0.03
8 0.98 0.01
16 0.99 0.01
32 0.98 0.01
64 0.95 0.02
Best freq. 1

Table 3.2: Moments of the long memory parameter for different sampling inter-
vals.

agents who lose enforcement often join a new enforcement network that is large enough

to quickly make up the fall in production.

Data series d̄ var
(
d̄
)

Observed 0.846 n/a
Simulated 0.810 0.123
Wald stat. 0.011
p-value 0.99

Table 3.3: Moments of the long memory parameter for optimised simulated data,
with Wald statistic and p-value for the observed difference parameter.

Table 3.3 shows the results of the Indirect Inference hypothesis test for the optimised

parameterisation; the model can clearly not be rejected as an efficient description of

the data, with the set of more extreme values having very small measure under the

null. As can be seen from figure 3.8, the Wald value for the observed data falls ex-

tremely high up the single tail of the asymptotically-Chi-square distribution. It should

be stressed that this was not a foregone conclusion, as mathematical models produ-

cing long memory are by no means commonplace. For instance, a representative agent

equilibrium model such as those employed by mainstream economics should not be

able to produce this long memory endogenously. This is because these models do not

involve the aggregation of many different units, seen in every other model generating

long memory —as described in chapter 4. Long memory could likely only be intro-

duced into a representative agent model by introducing it directly into the stochastic



3.6 Empirical Performance of the Model 146

Figure 3.8: Wald distribution for optimised parameterisation, with observed
value (red).
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processes describing exogenous factors.

A word of caution is needed, however, because the objective of this chapter was never

as ambitious as providing a decisive replacement for DSGE. The results suggest only

that the heirarchical enforcement description is compatible with one feature of the

macroeconomy. Whether it is the best model for the job of managing aggregate volat-

ility, or the minimal description in the language of chapter 2, is a far more expansive

question.

Such a resoundingly positive result from a model that was only a first sketch, should

also prompt caution about the methodology used. The large variance of the difference

parameter over simulated samples means that many values could perhaps be described

by this model, including non-mean-reverting processes with very different long run be-

haviour. This clearly makes the result less decisive. Moreover, the method of Indirect

Inference is innovative, but that means it is still subject to many questions regarding
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its real world effectiveness. In particular, the power of the method to reject false hypo-

theses (i.e. bad descriptions) is reasonable for three variables jointly (Le et al., 2012),

but is unknown for single variable series. The established results are also only for a

stationary DSGE model, and so the power in non-stationary situations is also unknown.

It is these questions of power that I will pursue in the next chapter.

3.6.3 Empirical Robustness Check

As discussed in section 3.4.3, I also test a second version of the model which allows the

more realistic feature of agents changing enforcers. Simulated annealing again chooses

the parameterisationm = 5, τ = 1, p = 0.99, but this time at a lower sampling interval

of 8 periods.

Data series d̄ var
(
d̄
)

Observed 0.846 n/a
Simulated 0.889 0.062
Wald stat. 0.030
p-value 0.99

Table 3.4: Moments of the long memory parameter for optimised simulations of
the model with swapping.

Once again, as 3.4 shows, the p-value for this parameterisation is very close to unity,

and we can absolutely not reject the model as a good description of the data’s long

memory properties.

This represents the failure of a first attack on the reductionist credentials of this model.

But, as explained in section 3.4.3, there can be no decisive confirmation of these cre-

dentials and the model should continue to be tested with relaxed abstractions wherever

feasible.
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3.7 Conclusions and extensions

In this chapter I presented a model that tries to reproduce the macroeconomic fluc-

tuations generally misnamed the “Business Cycle”. Rather than being a description

based only on observations of a macroeconomy, it is a reductionist model that draws

on information from the components of the economy to strengthen our evidence base.

The information in question is an abstract description of the hierarchical structures un-

derlying third party enforcement of agreements, including the productive agreements

underlying the formal economy. My empirical investigation shows that this model can

provide a good description of a long sample of US GDP data.

In the previous chapter I made some strong prescriptions for Scientific method. Spe-

cifically, I suggested that:

1 new models should be based on successful descriptions from other domains

2 parsimony should be the objective for modelling14

3 reductionism was only valid when the description of the components made no ab-

stractions that changed the model’s behaviour

The model presented here follows (1) by employing the very widely used social de-

scriptions of third party enforcement and hierarchical structure components of the eco-

nomy. It attempts to satisfy (2) by describing (long memory) statistical properties of

the data, that conventional models do not, while using these component descriptions

with all of the other detail of their circumstances stripped away. Obviously, this ab-

straction is potentially antagonistic to (3); it is an important further question for this

new research programme, whether relaxations of that abstraction preserve the model’s

general behaviour. This is a condition that the conventional Macroeconomic modelling

paradigm has been shown to fail in many ways (see Chapter 2), and it remains to be

seen whether my attempt is any better in this dimension.
14In a specific sense that allows for error in stochastic descriptions.
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Given the flaws in the conventional Macroeconomic paradigm, a broader objective of

this research was not simply to improve on those models but to rather show how easy it

can be to develop a very different macroeconomic paradigm. My hope is that this will

lead other researchers to “...explore multiple models in a creative exploratory way”, as

Colander (2010) suggests in his institutional critique of Economics. This may describe

an Economics community spread more thinly, but it is by spreading out that one finds

something, not by all looking in the same place.

3.7.1 The other great question of economics

My new paradigm finds the origin of “boom and bust” not in instant economy-wide

changes to technology, but rather in the breakdown of productive relationships due to

enforcement failures. These failures are able to affect significant portions of the eco-

nomy because they cause avalanches of failing enforcement, as enforcers who lose

their own productive relationships lose the resources to enforce those between their

enforcees. All this said, the volatility of the macroeconomy’s boom and bust is not the

only feature of interest in Macroeconomics. Adam Smith’s seminal treatment of the

macroeconomy, in book three of his great treatise, focusses on the growth in productiv-

ity of nations over time. In modern Economics growth is considered no less important,

with Lucas (1988) famously saying of growth’s welfare implications,

Once one starts to think about them, it is hard to think about anything

else.

These thoughts are echoed on the other side of the Neoclassical-Keynesian divide,

with Mankiw (1995) stating that growth is “...perhaps more important – than short-run

fluctuations”.

Growth is an obvious feature of the model described in this paper, as the number

of enforced relationships slowly builds over time. Why growth rates should differ
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between countries is less well explained. Indeed, the massive and persistent disparity

in GDP between different nations would seem to suggest a sensitivity to initial con-

ditions more enduring than seen in this ergodic process. The extension I intend to

pursue in subsequent work, that might reproduce such divergence requires the intro-

duction of a second, competing, enforcement mechanism. While Hobbes’s third party

enforcement is a long standing theme in social philosophy, a more recently proposed

mechanism comes in the Social Capital of Coleman (1988). This much abused term

was original intended to describe the collateral value provided by the future value of

relationships. In this way, short term conflicts of interest over contracts are enforced by

the threat of losing the relationship with the other party and peers. I envisage this peer

pressure based enforcement being described by the clustering in a network (the aver-

age number of common neighbours between each pair) but in conflict with the value of

path lengths, which is an antagonistic property. This would let a single network model

capture both mechanisms and the competition between them. However, in chapter 5 I

give evidence that such a mechanism cannot be so easily described.

To sketch how competition between different enforcement mechanisms might lead

to economic divergence, consider that with more peer-pressure based enforcement in

place there is less incentive for individuals to subjugate themselves to third party en-

forcement. Hence, even if third party enforcement should become more effective with

technological improvement, an initially high level of social capital might stop these

gains in efficiency from being realised.

3.7.2 Policy implications

What are we to do with this new framework? What policies does it promote?

Traditionally macroeconomics has been obsessed with trying (or not trying) to con-

trol the economy by manipulating the money supply, either directly or through interest

rates. To my knowledge there is no persistent statistical relationship between economic



3.7 Conclusions and extensions 151

aggregates and any measure of the money supply —but, of course, this would be the

justification for a theoretical model linking the two. That said, there is no explicit treat-

ment of money as a medium of exchange in DSGE models; it is merely a factor of the

price level. The model here may similarly have seemed to ignore money and its actual

role in exchange. But, this is not so. As fiat currencies rely on a legal mandate making

them obligatory tender, they essentially act as a contract that must be enforced by the

formal hierarchy. In this way money, and people’s faith in a government enforcing the

value of money, is actively considered in my model. That said, the precise numbers of

coins and notes in circulation does not have an explicit link to the efficacy of the gov-

ernment’s enforcement. Manipulating the money supply is therefore not policy tool in

a Macroeconomics of Social Contracts, and it doesn’t need to be.

That we can capture economic fluctuations without thinking about money or interest

rates frees the central banker’s hand to concern themselves with other issues, like

solvency. Likewise, the unimportance of fiscal policy lets the government instead

choose spending that will address social concerns arising from the coordination failure

— redistribution to those who have lost jobs etc. More radically, an origin of economic

fluctuations in enforcement relationships suggests changes to enforcement that might

counter such problems. Specifically, any technology allowing more contracts to be en-

forced without a third party, would remove some of the dependence on a hierarchical

structure that can be subject to avalanches.

One candidate is the social enforcement through peer pressure just discussed, the Social

Capital of Coleman (1988). The power of community enforcement is limited to groups

of about 150 people by our cognitive capacity to keep track of community structure,

the so called Dunbar Number (Dunbar, 1992). To beat the Dunbar number, a technical

solution would have to keep track of community structure for us, in a decentralised,

secure, way that could not be abused by its administrator. This is a solution I pursue

elsewhere.

Explicit enforcement need not be the only hierarchy that could be replaced by a techno-
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logical alternative. Our society could soon be transformed by blind ballots conducted

cheaply over the internet. Political parties in several Western democracies have begun

to experiment with Liquid Democracy and Crowd Source Governance. Further, Iceland

and Estonia have both seen internet voting actually deployed in local policy making. If

these newly feasible delegative and direct democratic systems replaced representative

democracy at a national level in large countries, then the global governance hierarchy

would find itself significantly less hierarchical. A policy to stabilise the economy might

then be to enable transitions to these systems of governance.

Although the model doesn’t suggest a precise relationship between money supply and

economic aggregates, unpredictable central banking could be speculated as undermin-

ing the credibility of currency guaranteeing exchange agreements. Hence, taking de-

cisions over the money stock out of central bankers’ hands could be seen as dismant-

ling some of society’s unstable enforcement hierarchy. The advent of the decentralised

currency BitCoin15 promises exactly this scenario.

A particularly important set of agreements that need enforcing are those ensuring the

veracity of information passed around society. This can be surprisingly hierarchical,

where an editor vouches for the quality of articles in a newspaper or academic journal

and acts as an enforcer of the exchange. But, this position of information gatekeeper,

puts such editors in a position to cause the cascades described by my model. An-

other recommendation system for quality information might therefore be preferable. In

chapter 2 I parenthetically suggested that the role of academic journal editors might be

replaced by topological metrics of the citation network. My suggestion is the Bonacich

Centrality of the citation-coauthorship network. Like BitCoin, this system could be en-

tirely decentralised: the desire to have a high centrality and be trusted would motivate

authors of articles to log their references and coauthors, using encryption, and mul-

tiple records would secure against manipulation. So, another policy implication of

15BitCoin works through transparently keeping multiple independent accounts of every transaction
that has ever taken place, so that the ownership of BitCoins (obligations to exchange with others) can be
easily traced.
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this model would be to develop a system along these lines to further dismantle social

hierarchies.

3.7.3 Robustness: the power of indirect inference for long memory

processes

This discussion of extensions and policy implications might be getting ahead of ourselves.

The result in this chapter is some support for the hierarchical enforcement model as a

description for macroeconomic fluctuations. But, more evidence is needed, particularly

on the implications of the model for civil fluctuations, and the common parameters we

would expect this to have with economic fluctuations. Even more important is the

validity of the empirical method used here, and in the next chapter, I assess the power

of Indirect Inference for a more conventional non-stationary model; I find support for

its efficacy, that bolsters the empirical support found for my model in this chapter.
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3.A Simulation Codes

All the models used in this chapter were implemented in Java, in order to give the greatest cross
platform portability. Because Java is an object oriented language, the program is expressed in
the form of several interrelated sub-programs, each keeping track of its own set of data. This
functionality is intended to control the ways in which variables can be changed, by compart-
mentalising the program, to prevent unintended behaviour resulting from unintended access.
But, for a program this size there is little danger, so I apologise to the reader for any difficulties
they may have in reading object oriented code.

3.A.1 The standard hierarchical enforcement model

EnforceAgent.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package e n f o r c e r s ;
import j a v a . i o . ∗ ;

http://ideas.repec.org/a/eee/econom/v91y1999i2p325-371.html
http://ideas.repec.org/a/eee/econom/v91y1999i2p325-371.html
http://ideas.repec.org/a/spr/joecth/v47y2011i2p247-292.html
http://ideas.repec.org/a/spr/joecth/v47y2011i2p247-292.html
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import u t i l . ∗ ;

/∗ T h i s c l a s s r e p r e s e n t s an a g e n t which m a i n t a i n s e n f o r c e m e n t
r e l a t i o n s h i p s w i t h

∗ o t h e r a g e n t s
∗ /
p u b l i c c l a s s Enfo rceAgen t implements S e r i a l i z a b l e
{

i n t i n d e x ;
i n t numSubjec t s ;
Bag s u b j e c t s ;
Bag domain ;
Bag s u p e r S o v e r e i g n s ;
Bag component ;

p u b l i c Enfo rceAgen t ( i n t i n d e x )
{

t h i s . i n d e x = i n d e x ;
numSubjec t s = 0 ;
s u b j e c t s = new Bag ( ) ;
domain = new Bag ( ) ;
s u p e r S o v e r e i g n s = new Bag ( ) ;

}
}

Hierarchy.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e GNU Genera l P u b l i c L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package e n f o r c e r s ;
import u t i l . ∗ ;

/∗ ∗ T h i s c l a s s c o n t a i n s t h e methods which r e p r e s e n t e v e n t s
a f f e c t i n g t h e

∗ e n f o r c e m e n t h i e r a r c h y :
∗ − a ne twork growth e v e n t
∗ − a ne twork c o l l a p s e e v e n t
∗ − a measur ing o f p r o d u c t i v e a c t i v i t y
∗
∗ TERMINOLOGY ( f o r sake o f r e a d a b i l i t y ) : e n f o r c e r = s o v e r e i g n

; e n f o r c e e = s u b j e c t ;
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∗ domain = a l l s u b j e c t s o f a s o v e r e i g n , a l l t h o s e s u b j e c t s ’
s u b j e c t s e t c ;

∗ s u p e r S o v e r e i g n s = a l l t h o s e o t h e r a g e n t s who i n c l u d e t h e
s p e c i f i c a g e n t i n

∗ t h e i r domains ∗ /
p u b l i c c l a s s H i e r a r c h y {

i n t numAgents ;
i n t maxSub jec t s ;
double c o n t a g i o n P r o b ;

Bag freeMen ;
Bag components ;

M e r s e n n e T w i s t e r F a s t random ;
Bag a g e n t s ;
i n t [ ] d o m a i n D i s t r i b u t i o n ;

/∗ we ’ l l use a d i r e c t e d network , t o c a p t u r e t h e d i r e c t e d
n a t u r e o f

∗ e n f o r c e m e n t ∗ /
p u b l i c H i e r a r c h y ( i n t numAgents , i n t maxSubjec t s , double

c o n t a g i o n P r o b ) {
t h i s . numAgents = numAgents ;
t h i s . maxSub jec t s = maxSub jec t s ;
t h i s . c o n t a g i o n P r o b = c o n t a g i o n P r o b ;

freeMen = new Bag ( ) ;

random = new M e r s e n n e T w i s t e r F a s t ( System .
c u r r e n t T i m e M i l l i s ( ) ) ;

a g e n t s = new Bag ( ) ;
d o m a i n D i s t r i b u t i o n = new i n t [ numAgents ] ;

}

/∗ Ag en t s w i t h o u t s o v e r e i g n s are o f f e r e d a new s o v e r e i g n ∗ /
p u b l i c vo id s u b j u g a t e ( ) {

i f ( ! f reeMen . i sEmpty ( ) )
{

/∗ A new node l o o k s f o r an e n f o r c e r , chosen a t
random from t h o s e

∗ w i t h o u t l i n k s ∗ /
Enfo rceAgen t newSub jec t

= ( Enfo rceAgen t ) freeMen . o b j s [ random . n e x t I n t
( f reeMen . numObjs ) ] ;
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/∗ a p o t e n t i a l e n f o r c e r i s chosen a t random from
a l l nodes ∗ /

Enfo rceAgen t s o v e r e i g n =
( Enfo rceAgen t ) a g e n t s . o b j s [ random .

n e x t I n t ( numAgents ) ] ;
/∗ t h e r e i s g u a r a n t e e d t o be some s o v e r e i g n o u t

t h e r e who doesn ’ t
∗ have f u l l degree , by v i r t u e o f t h e t r e e

s t r u c t u r e hav in g l e a v e s ∗ /
whi le ( s o v e r e i g n . e q u a l s ( newSub jec t ) | | ! ( s o v e r e i g n .

numSubjec ts < maxSub jec t s )
| | s o v e r e i g n . s u p e r S o v e r e i g n s . c o n t a i n s (

newSub jec t ) ) {
s o v e r e i g n = ( Enfo rceAgen t ) a g e n t s . o b j s [ random .

n e x t I n t ( numAgents ) ] ;
}

s o v e r e i g n . s u b j e c t s . add ( newSub jec t ) ;
f reeMen . remove ( newSub jec t ) ;
f reeMen . remove ( s o v e r e i g n ) ;

s o v e r e i g n . numSubjec t s ++;
/∗ The s o v e r e i g n ’ s domain , a long w i t h a l l t h e i r

super−s o v e r e i g n s ’
∗ domains , w i l l now a l s o i n c l u d e t h e n e w S u b j e c t

and a l l t h e i r
∗ e x i s t i n g domain ∗ /

s o v e r e i g n . domain . add ( newSub jec t ) ;
s o v e r e i g n . domain . a dd Al l ( newSub jec t . domain ) ;
Bag s u p e r S o v e r e i g n s = s o v e r e i g n . s u p e r S o v e r e i g n s ;
i n t numSupers = s u p e r S o v e r e i g n s . numObjs ;
f o r ( i n t s u p e r I n d e x =0; s u p e r I n d e x <numSupers ;

s u p e r I n d e x ++) {
Bag superDomain = ( ( Enfo rceAgen t )

s u p e r S o v e r e i g n s . o b j s [ s u p e r I n d e x ] )
. domain ;

superDomain . add ( newSub jec t ) ;
superDomain . add Al l ( newSub jec t . domain ) ;

}
/∗ meanwhile , t h e n e w S u b j e c t w i l l now s h a r e a l l t h e

s o v e r e i g n ’ s
∗ super−s o v e r e i g n s ∗ /

newSub jec t . s u p e r S o v e r e i g n s . add ( s o v e r e i g n ) ;
newSub jec t . s u p e r S o v e r e i g n s . a dd Al l ( s o v e r e i g n .

s u p e r S o v e r e i g n s ) ;
/∗ As s h o u l d e v e r y member o f t h e i r domain ! ∗ /
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Bag subDomain = newSub jec t . domain ;
i n t numSubjec t s = subDomain . s i z e ( ) ;
f o r ( i n t s u b j e c t I n d e x =0; s u b j e c t I n d e x < numSubjec t s ;

s u b j e c t I n d e x ++) {
Bag s u b S u p e r S o v e r e i g n s =

( ( Enfo rceAgen t ) subDomain . o b j s [
s u b j e c t I n d e x ] )

. s u p e r S o v e r e i g n s ;
i f ( ! s u b S u p e r S o v e r e i g n s . c o n t a i n s ( s o v e r e i g n ) )

s u b S u p e r S o v e r e i g n s . add ( s o v e r e i g n ) ;
s u b S u p e r S o v e r e i g n s . ad dA l l ( s o v e r e i g n .

s u p e r S o v e r e i g n s ) ;
}

}
}

p u b l i c vo id s o v e r e i g n F a i l ( ) {
Bag f a i l u r e s = new Bag ( ) ;

/∗ randomly choose an a g e n t t o f a i l − t hough t h e y may
have no s u b j e c t s ∗ /

Enfo rceAgen t i n i t i a l F a i l u r e =
( Enfo rceAgen t ) a g e n t s . o b j s [ random . n e x t I n t (

numAgents ) ] ;
f a i l u r e s . add ( i n i t i a l F a i l u r e ) ;

/∗ a l l s u p e r s o v e r e i g n s w i l l l o s e t h i s i n i t i a l F a i l u r e ’ s
domain from

∗ t h e i r own domains ∗ /
Bag s u p e r S o v e r e i g n s = i n i t i a l F a i l u r e . s u p e r S o v e r e i g n s ;
i n t numSupers = s u p e r S o v e r e i g n s . numObjs ;
f o r ( i n t s u p e r I n d e x =0; s u p e r I n d e x <numSupers ; s u p e r I n d e x

++) {
( ( Enfo rceAgen t ) s u p e r S o v e r e i g n s . o b j s [ s u p e r I n d e x ] ) .

domain
. removeAl l ( i n i t i a l F a i l u r e . domain ) ;

}
/∗ t h e y l o s e t h e i r s u b j e c t s and domain ∗ /
i n i t i a l F a i l u r e . numSubjec t s = 0 ;
i n i t i a l F a i l u r e . domain = new Bag ( ) ;

/∗ i f t h e i n i t i a l F a i l u r e had no s u p e r s o v e r e i g n s , t h e n
t h e y are a f r e e

∗ man aga in ∗ /
i f ( s u p e r S o v e r e i g n s . i sEmpty ( ) ) {

i f ( ! f reeMen . c o n t a i n s ( i n i t i a l F a i l u r e ) ) {
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f reeMen . add ( i n i t i a l F a i l u r e ) ;
}

}

/∗ meanwhile , some sub−s o v e r e i g n s l o s e e v e r y t h i n g and
become freeMen

∗ − I ’ l l do t h i s w i t h a loop t h a t c o n s t r u c t s a Bag o f
each s u b s e q u e n t

∗ t i e r , r a t h e r than by r e c u r s i o n t h a t r i s k s s t a c k
o v e r f l o w s ( power law

∗ o f cascade s i z e s means some v e r y b i g cascades , and
deep r e c u r s i o n s ) ∗ /

Bag u n e n f o r c e d = i n i t i a l F a i l u r e . s u b j e c t s ;
Bag l o w e r T i e r F a i l = new Bag ( ) ;
Bag l o w e r T i e r S a f e = new Bag ( ) ;
whi le ( u n e n f o r c e d . numObjs >0) {

Enfo rceAgen t s u b j e c t = ( Enfo rceAgen t ) u n e n f o r c e d .
o b j s [ 0 ] ;

/∗ w i t h a c e r t a i n p r o b a b i l i t y each s u b j e c t w i l l
f a i l t o o ∗ /

i f ( random . n e x t B o o l e a n ( c o n t a g i o n P r o b ) ) {
l o w e r T i e r F a i l . add ( s u b j e c t ) ;
f a i l u r e s . add ( s u b j e c t ) ;

}
e l s e l o w e r T i e r S a f e . add ( s u b j e c t ) ;
/∗ r e g a r d l e s s o f whe ther t h e s u b j e c t f a i l s , t h e

e n f o r c e m e n t
∗ r e l a t i o n s h i p s from t h o s e above w i l l be l o s t ∗ /

s u b j e c t . s u p e r S o v e r e i g n s = new Bag ( ) ;
u n e n f o r c e d . remove ( s u b j e c t ) ;

}
whi le ( ( l o w e r T i e r F a i l . numObjs >0) | | ( l o w e r T i e r S a f e .

numObjs >0) ) {
Bag n e x t T i e r F a i l = new Bag ( ) ;
Bag n e x t T i e r S a f e = new Bag ( ) ;
f o r ( i n t s u b j e c t I n d e x =0;

s u b j e c t I n d e x < l o w e r T i e r F a i l . numObjs ;
s u b j e c t I n d e x ++) {

Enfo rceAgen t s o v e r e i g n
= ( Enfo rceAgen t ) l o w e r T i e r F a i l . o b j s [

s u b j e c t I n d e x ] ;
/∗ t h i s s o v e r e i g n l o s e s t h e i r s u b j e c t s and

domain ∗ /
s o v e r e i g n . numSubjec t s = 0 ;
s o v e r e i g n . domain = new Bag ( ) ;
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/∗ . . . r e t u r n s t o t h e s e t o f a g e n t s w i t h o u t a
s o v e r e i g n ( i f t h e y

∗ weren ’ t a l r e a d y ) . . . ∗ /
i f ( ! f reeMen . c o n t a i n s ( s o v e r e i g n ) ) freeMen . add (

s o v e r e i g n ) ;
e l s e System . o u t . p r i n t l n ( " s u b j e c t a l r e a d y f r e e " )

;
/∗ . . . and each o f t h e i r s u b j e c t s w i l l s u f f e r

t h e same f a t e ∗ /
u n e n f o r c e d = s o v e r e i g n . s u b j e c t s ;
whi le ( u n e n f o r c e d . numObjs >0) {

Enfo rceAgen t s u b j e c t = ( Enfo rceAgen t )
u n e n f o r c e d . o b j s [ 0 ] ;

/∗ w i t h a g i v e n p r o b a b i l i t y , t h i s s u b j e c t
f a i l s t o o ∗ /

i f ( random . n e x t B o o l e a n ( c o n t a g i o n P r o b ) ) {
n e x t T i e r F a i l . add ( s u b j e c t ) ;

}
e l s e {

n e x t T i e r S a f e . add ( s u b j e c t ) ;
}
/∗ even i f t h e y do n o t f a i l , t h i s s u b j e c t

w i l l s t i l l l o s e
∗ t h e i r r e l a t i o n s h i p s w i t h t h e e n f o r c e r s

above ∗ /
s u b j e c t . s u p e r S o v e r e i g n s = new Bag ( ) ;
u n e n f o r c e d . remove ( s u b j e c t ) ;

}
}
f o r ( i n t s o v e r e i g n I n d e x =0;

s o v e r e i g n I n d e x < l o w e r T i e r S a f e . numObjs ;
s o v e r e i g n I n d e x ++) {

Enfo rceAgen t s o v e r e i g n
= ( Enfo rceAgen t ) l o w e r T i e r S a f e . o b j s [

s o v e r e i g n I n d e x ] ;
/∗ Each o f t h e i r s u b j e c t s w i l l a l s o l o s e any

s o v e r e i g n s who have
∗ f a i l e d above them
∗ ( t h e Bag pa ss ed here w i l l a l s o c o n t a i n

s o v e r e i g n s who have
∗ f a i l e d i n d i f f e r e n t b r a n c h e s o f t h e

e n f o r c e m e n t h i e r a r c h y ,
∗ b u t as t h e y ca nn o t be e n f o r c e r s i n any o t h e r

way t h e r e i s no
∗ harm p a s s i n g them t o t h e r e m o v e A l l method ∗ /

Bag l e s s E n f o r c e d = s o v e r e i g n . s u b j e c t s ;
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f o r ( i n t s u b j e c t I n d x =0;
s u b j e c t I n d x < l e s s E n f o r c e d . numObjs ;
s u b j e c t I n d x ++) {

Enfo rceAgen t s u b j e c t
= ( Enfo rceAgen t ) l e s s E n f o r c e d . o b j s [

s u b j e c t I n d x ] ;
/∗ t h i s s u b j e c t ’ s s u b j e c t s w i l l a l s o l o s e

s u p e r S o v e r e i g n s ∗ /
n e x t T i e r S a f e . add ( s u b j e c t ) ;
/∗ and t h i s s u b j e c t must l o s e t h o s e

s u p e r s o v e r e i g n s t h a t
∗ have f a i l e d ∗ /

s u b j e c t . s u p e r S o v e r e i g n s . removeAl l ( f a i l u r e s )
;

}
}
l o w e r T i e r F a i l = n e x t T i e r F a i l ;
l o w e r T i e r S a f e = n e x t T i e r S a f e ;

}
}

/∗ t h e f o r m a l economy w i l l p re sumab ly be t h e l a r g e s t
component , o u t p u t w i l l

∗ t h e r e f o r e be p r o p o r t i o n a l t o t h e number o f p a i r s o f
a g e n t s i n t h a t

∗ component ∗ /
p u b l i c double g e t O u t p u t ( ) {

double o u t p u t = 0 ;
/∗ r e f r e s h t h e r e c o r d o f components , f o l l o w i n g growth

and c o l l a p s e ∗ /
d i scove rComponen t s ( ) ;

/∗ move t h r o u g h t h e components one by one , c a l c u l a t i n g
t h e o u t p u t and

∗ k e e p i n g t r a c k o f t h e h i g h e s t ; t h i s w i l l be t h e
f o r m a l economy ∗ /

i n t numComponents = components . numObjs ;
f o r ( i n t component Index =0; componentIndex <numComponents ;

component Index ++) {
i n t c o m p o n e n t S u b j e c t s = ( ( Bag ) components . o b j s [

component Index ] )
. numObjs − 1 ;

double componentOutput
= ( double ) c o m p o n e n t S u b j e c t s ∗ ( double ) (

componen tSub j ec t s −1) ;
i f ( componentOutput > o u t p u t )
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o u t p u t = componentOutput ;
}
i f ( o u t p u t <0) System . e r r . p r i n t l n ( " n e g a t i v e o u t p u t , i n

ne twork o b j e c t ! " ) ;
re turn o u t p u t ;

}

void d i scove rComponen t s ( ) {
/∗ r e f r e s h t h e bag o f components ∗ /
components = new Bag ( ) ;

/∗ any a g e n t w i t h no s u p e r S o v e r e i g n s w i l l be e i t h e r
t h e i r own component

∗ or t h e s o v e r e i g n t o a component , so we need o n l y
e x p l o r e t h e

∗ components o f such a g e n t s ∗ /
f o r ( i n t a g e n t I n d e x =0; a g e n t I n d e x <numAgents ; a g e n t I n d e x

++) {
Enfo rceAgen t a g e n t = ( Enfo rceAgen t ) a g e n t s . o b j s [

a g e n t I n d e x ] ;
i f ( a g e n t . s u p e r S o v e r e i g n s . i sEmpty ( ) )
{

Bag newComponent = new Bag ( a g e n t . domain ) ;
newComponent . add ( a g e n t ) ;
components . add ( newComponent ) ;
i n t numMembers = newComponent . numObjs ;
f o r ( i n t memberIndex =0; memberIndex <numMembers ;

memberIndex ++)
{

( ( Enfo rceAgen t ) newComponent . o b j s [
memberIndex ] ) . component

= newComponent ;
}

}
}

}

}

3.A.2 HierarchySim.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
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See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package e n f o r c e r s ;

import j a v a . i o . B u f f e r e d W r i t e r ;
import j a v a . i o . F i l e ;
import j a v a . i o . F i l e N o t F o u n d E x c e p t i o n ;
import j a v a . i o . IOExcep t ion ;
import j a v a . n i o . c h a r s e t . C h a r s e t ;
import j a v a . n i o . c h a r s e t . S t a n d a r d C h a r s e t s ;
import j a v a . n i o . f i l e . F i l e s ;
import j a v a . n i o . f i l e . Pa th ;
import j a v a . n i o . f i l e . P a t h s ;
import j a v a . t e x t . DateFormat ;
import j a v a . t e x t . S impleDateFormat ;
import j a v a . u t i l . Date ;
import j a v a . u t i l . c o n c u r r e n t . ∗ ;
import u t i l . FELW2St ;

/∗ ∗ − E n c a p s u l a t e s and runs a h i e r a r c h i c a l e n f o r c e m e n t model
f o r p a r t i c u l a r

∗ parame te r v a l u e s
∗ − Samples t h e g e n e r a t e d da ta a t v a r i o u s f r e q u e n c i e s , t o s e e

which b e s t
∗ r e p r o d u c e s t h e long−memory p r o p e r t i e s o f t h e o b s e r v e d

da ta
∗ /
p u b l i c c l a s s Hie ra rchyS im implements C a l l a b l e {

f i n a l s t a t i c C h a r s e t ENCODING = S t a n d a r d C h a r s e t s . UTF_8 ;
s t a t i c f i n a l S t r i n g OUTPUT_FILE_NAME = " sovs . csv " ;
s t a t i c f i n a l S t r i n g SUMMARY_FILE_NAME = " summary . csv " ;
s t a t i c f i n a l S t r i n g OUTPUT_PATH_NAME = "D : \ \ s i m u l a t e \ \ sovs "

;

i n t r u n V e r s i o n ;
double t r u e D i f f ;

i n t numAgents ;
i n t s i m D u r a t i o n ;
i n t numSims ;
i n t b u r n S i z e ;
i n t s a m p l e S i z e ;

i n t maxSub jec t s ;
i n t f a i l P e r i o d ;
double c o n t a g i o n P r o b ;
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H i e r a r c h y s o c i e t y ;

Hie ra rchyS im ( i n t r unVer s ion , double t r u e D i f f , i n t numAgents ,
i n t s imDura t ion ,

i n t numSims , i n t bu rnS ize , i n t sampleS ize , i n t
maxSubjec t s ,

i n t f a i l P e r i o d , double c o n t a g i o n P r o b ) {
t h i s . r u n V e r s i o n = r u n V e r s i o n ;
t h i s . t r u e D i f f = t r u e D i f f ;
t h i s . numAgents = numAgents ;
t h i s . s i m D u r a t i o n = s i m D u r a t i o n ;
t h i s . numSims = numSims ;
t h i s . b u r n S i z e = b u r n S i z e ;
t h i s . s a m p l e S i z e = s a m p l e S i z e ;

t h i s . maxSub jec t s = maxSub jec t s ;
t h i s . f a i l P e r i o d = f a i l P e r i o d ;
t h i s . c o n t a g i o n P r o b = c o n t a g i o n P r o b ;

s o c i e t y = new H i e r a r c h y ( numAgents , maxSubjec t s ,
c o n t a g i o n P r o b ) ;

}

p u b l i c double [ ] c a l l ( ) {
DateFormat d a t e F o r m a t = new SimpleDateFormat ( "MMdd" ) ;
Date d a t e = new Date ( ) ;
S t r i n g d i r e c t o r y = OUTPUT_PATH_NAME

+" _ "+ numAgents +" _ "+ r u n V e r s i o n +" _ "+
d a t e F o r m a t . f o r m a t ( d a t e )

+ " \ \ " ;
new F i l e ( d i r e c t o r y ) . mkdi r s ( ) ;
/∗ a 2D a r r a y w i l l ho ld t h e d i s t r i b u t i o n s o f d i f f e r e n c e

p a r a m e t e r s f o r
∗ t h e v a r i o u s s a m p l i n g f r e q u e n c i e s − b u t we need t o

work o u t what
∗ f r e q u e n c i e s are c o m p a t i b l e w i t h t h e sample s i z e we

want , IF sample
∗ f r e q u e n c y i s t o do ub l e each i t e r a t i o n ∗ /

i n t numFreq = 0 ;
i n t minSample = s a m p l e S i z e ;
whi le ( minSample <= s i m D u r a t i o n ) {

minSample ∗= 2 ;
numFreq ++;

}
double [ ] [ ] p a r D i s t = new double [ numSims ] [ numFreq ] ;
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f o r ( i n t sim =0; sim <numSims ; sim ++) {
/∗ r e s e t t h e H i e r a r c h y o b j e c t ∗ /
s o c i e t y = new H i e r a r c h y ( numAgents , maxSubjec t s ,

c o n t a g i o n P r o b ) ;
f o r ( i n t a g e n t =0 ; agen t <numAgents ; a g e n t ++) {

newAgent = new Enfo rceAgen t ( a g e n t )
s o c i e t y . a g e n t s . add ( newAgent ) ;
s o c i e t y . f reeMen . add ( newAgent ) ;

}
/∗ t h e da ta i s s i m u l a t e d f o r t h e s e p a r a m e t e r s ∗ /
double [ ] s imData = new double [ s i m D u r a t i o n ] ;
i n t f a i l T i m e r = f a i l P e r i o d ;
f o r ( i n t t ime =0; t ime < b u r n S i z e ; t ime ++) {

/ / new s o v e r e i g n−s u b j e c t r e l a t i o n s h i p
s o c i e t y . s u b j u g a t e ( ) ;

/ / e v e r y f a i l P e r i o d o f t ime , a s o v e r e i g n i s
s e l e c t e d t o f a i l

i f ( f a i l T i m e r <1) {
s o c i e t y . s o v e r e i g n F a i l ( ) ;
f a i l T i m e r = f a i l P e r i o d ;

}
f a i l T i m e r −−;
/∗ g e t o u t p u t i s run t o r e f r e s h component s i z e s

∗ /
s o c i e t y . g e t O u t p u t ( ) ;

}
f o r ( i n t t ime =0; t ime < s i m D u r a t i o n ; t ime ++) {

/ / new s o v e r e i g n−s u b j e c t r e l a t i o n s h i p
s o c i e t y . s u b j u g a t e ( ) ;

/ / e v e r y f a i l P e r i o d o f t ime , a s o v e r e i g n i s
s e l e c t e d t o f a i l

i f ( f a i l T i m e r <1) {
s o c i e t y . s o v e r e i g n F a i l ( ) ;
f a i l T i m e r = f a i l P e r i o d ;

}
f a i l T i m e r −−;

/ / f i n a l l y , o u t p u t i s checked and r e c o r d e d
s imData [ t ime ] = s o c i e t y . g e t O u t p u t ( ) ;

}

i n t sampleFreq = 1 ;
f o r ( i n t f r e q I n d x =0; f r e q I n d x <numFreq ; f r e q I n d x ++) {

double [ ] sample = new double [ s a m p l e S i z e ] ;
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i n t s i m P o i n t = s i m D u r a t i o n − sampleFreq ∗
s a m p l e S i z e − 1 ;

f o r ( i n t d a t a P o i n t =0 ;
d a t a P o i n t < s a m p l e S i z e ;
d a t a P o i n t ++) {

sample [ d a t a P o i n t ] = s imData [ s i m P o i n t ] ;
s i m P o i n t += sampleFreq ;

}

p a r D i s t [ sim ] [ f r e q I n d x ] = new
FELW2St ( sample , ( i n t ) Math . f l o o r ( Math . pow

( sampleS ize , 0 . 6 5 ) ) , 3 )
. e s t i m a t e ( ) ;

s ampleFreq ∗= 2 ;
}

/∗ backup t h i s e x p e n s i v e simData i n case o f l a t e r
need ∗ /

t r y {
/ / t h e o u t p u t f i l e needs t o be named so as t o

be u n i q u e l y i d e n t i f i e d
/ / ( hence t h e d a t e ) , b u t g i v e r e l e v a n t

i n f o r m a t i o n q u i c k l y ( hence params )
Pa th o u t p u t P a t h = P a t h s . g e t ( d i r e c t o r y +

maxSub jec t s +" _ "+
f a i l P e r i o d +" _ "+ c o n t a g i o n P r o b +" _ "+

sim + OUTPUT_FILE_NAME ) ;
F i l e o u t p u t F i l e = new F i l e ( o u t p u t P a t h . t o S t r i n g

( ) ) ;
o u t p u t F i l e . c r e a t e N e w F i l e ( ) ;

t r y ( B u f f e r e d W r i t e r w r i t e r = F i l e s .
n e w B u f f e r e d W r i t e r ( o u t p u t P a t h ,

ENCODING) ) {
/ / L e t ’ s p r i n t o u t t h e whole parame te r l i s t
w r i t e r . w r i t e ( " Enfo rcemen t model p a r a m e t e r s :

maxSub jec t s = "
+ maxSub jec t s + " , f a i l P e r i o d = " +

f a i l P e r i o d
+ " , c o n t a g i o n P r o b = " +

c o n t a g i o n P r o b ) ;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " S i m u l a t e d GDP . . . " ) ;
w r i t e r . newLine ( ) ;
f o r ( i n t t ime =0; t ime < s i m D u r a t i o n ; t ime ++) {
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w r i t e r . w r i t e ( Double . t o S t r i n g ( s imData [
t ime ] ) ) ;

w r i t e r . newLine ( ) ;
}

}
}
catch ( F i l e N o t F o u n d E x c e p t i o n e )
{

System . e r r . p r i n t l n ( " F i l e N o t F o u n d E x c e p t i o n : " +
e . ge tMessage ( ) ) ;

}
catch ( IOExcep t ion e )
{

System . e r r . p r i n t l n ( " Caught IOExcep t i on : " + e .
ge tMessage ( ) ) ;

}
}

/∗ f i n d t h e sampleFrequency t h a t g e t s t h e mean d i f f P a r
c l o s e s t t o

∗ t r u e D i f f ∗ /
double b e s t D i f f P a r = 0 . 0 ;
double b e s t D i f f P a r V a r = 0 . 0 ;
double b e s t P V a l = 0 . 0 ;
double [ ] b e s t W a l d D i s t = new double [ numSims ] ;
i n t f r e q = 1 ;
i n t b e s t F r e q = 1 ;
i n t b e s t F r e q I n d x = 1 ;
double [ ] d i f f P a r D i s t = new double [ numFreq ] ;
double [ ] d i f f P a r V a r D i s t = new double [ numFreq ] ;
f o r ( i n t f r e q I n d x =0; f r e q I n d x <numFreq ; f r e q I n d x ++) {

double meanDi f fPa r = 0 . 0 ;
double v a r D i f f P a r = 0 . 0 ;
f o r ( i n t sim =0; sim <numSims ; sim ++) {

double d i f f P a r = p a r D i s t [ sim ] [ f r e q I n d x ] ;
meanDi f fPa r += d i f f P a r ;
v a r D i f f P a r += d i f f P a r ∗ d i f f P a r ;

}
meanDi f fPa r /= numSims ;
d i f f P a r D i s t [ f r e q I n d x ] = meanDi f fPa r ;
v a r D i f f P a r /= numSims ;
v a r D i f f P a r −= meanDi f fPa r ∗meanDi f fPa r ;
d i f f P a r V a r D i s t [ f r e q I n d x ] = v a r D i f f P a r ;
/∗ we now produce t h e Wald d i s t r i b u t i o n , and c o u n t

t h e p−v a l u e f o r



3.A Simulation Codes 173

∗ t h e h y p o t h e s i s t h a t t h e da ta g e n e r a t i n g
mechanism has t h e same

∗ l ong memory p r o p e r t i e s as t h e t h e o r e t i c a l model
∗ /

double [ ] w a l d D i s t = new double [ numSims ] ;
double t rueWald = ( t r u e D i f f − meanDi f fPa r ) ;
t rueWald ∗= t rueWald ;
t rueWald /= v a r D i f f P a r ;
/∗ s e q u e n t i a l l y compare wald v a l u e s w i t h t r u e v a l u e

and t r a c k how many
∗ are more e x t r e m e ∗ /

double pVal = 0 . 0 ;
f o r ( i n t sim =0; sim <numSims ; sim ++) {

double waldVal = ( p a r D i s t [ sim ] [ b e s t F r e q I n d x ] −
meanDi f fPa r ) ;

waldVal ∗= waldVal ;
waldVal /= v a r D i f f P a r ;
w a l d D i s t [ sim ] = waldVal ;
i f ( waldVal > t rueWald ) {

pVal += 1 . 0 ;
}

}
pVal /= ( double ) numSims ;
i f ( pVal > b e s t P V a l ) {

b e s t D i f f P a r = meanDi f fPa r ;
b e s t D i f f P a r V a r = v a r D i f f P a r ;
b e s t W a l d D i s t = w a l d D i s t ;
b e s t P V a l = pVal ;
b e s t F r e q = f r e q ;
b e s t F r e q I n d x = f r e q I n d x ;

}
f r e q ∗= 2 ;

}

/∗ r e c o r d t h e b e s t f r e q u e n c y and d i f f e r e n c e parame te r
f o r t h e s e par s ∗ /

t r y {
/ / t h e o u t p u t f i l e needs t o be named so as t o be

u n i q u e l y i d e n t i f i e d
/ / ( hence t h e d a t e ) , b u t g i v e r e l e v a n t i n f o r m a t i o n

q u i c k l y ( hence params )
Pa th o u t p u t P a t h = P a t h s . g e t ( d i r e c t o r y + maxSub jec t s

+" _ "+
f a i l P e r i o d +" _ "+ c o n t a g i o n P r o b +

SUMMARY_FILE_NAME ) ;
F i l e o u t p u t F i l e = new F i l e ( o u t p u t P a t h . t o S t r i n g ( ) ) ;
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o u t p u t F i l e . c r e a t e N e w F i l e ( ) ;

t r y ( B u f f e r e d W r i t e r w r i t e r = F i l e s . n e w B u f f e r e d W r i t e r
( o u t p u t P a t h ,

ENCODING) ) {
/ / L e t ’ s p r i n t o u t t h e whole parame te r l i s t
w r i t e r . w r i t e ( " Enfo rcemen t model p a r a m e t e r s :

maxSub jec t s = "
+ maxSub jec t s + " , f a i l P e r i o d = " +

f a i l P e r i o d
+ " , c o n t a g i o n P r o b = " + c o n t a g i o n P r o b )

;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " I m p l e m e n t a t i o n p a r a m e t e r s :

numAgents = "
+ numAgents + " , b u r n S i z e = " +

b u r n S i z e
+ " , s a m p l e S i z e = " + s a m p l e S i z e + " ,

numSims = "
+ numSims + " , t r u e D i f f = " + t r u e D i f f )

;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " Bes t f r a c t i o n a l d i f f e r e n c e

p a r a m e t e r = "
+ b e s t D i f f P a r ) ;

w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " V a r i a n c e f o r b e s t f r e q u e n c y = " +

b e s t D i f f P a r V a r ) ;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " Bes t f r e q u e n c y = " + b e s t F r e q ) ;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " p−Value f o r d a t a based Wald v a l u e

= " + b e s t P V a l ) ;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " Othe r f r e q u e n c i e s : " ) ;
f r e q = 1 ;
f o r ( i n t f r e q I n d x =0; f r e q I n d x <numFreq ; f r e q I n d x

++) {
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( f r e q +" , "+ d i f f P a r D i s t [

f r e q I n d x ]
+" , "+ d i f f P a r V a r D i s t [ f r e q I n d x ] ) ;

f r e q ∗= 2 ;
}
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " b e s t wald d i s t r i b u t i o n : " ) ;
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f o r ( i n t sim =0; sim <numSims ; sim ++) {
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( Double . t o S t r i n g ( b e s t W a l d D i s t [

sim ] ) ) ;
}

}
}
catch ( F i l e N o t F o u n d E x c e p t i o n e )
{

System . e r r . p r i n t l n ( " F i l e N o t F o u n d E x c e p t i o n : " + e .
ge tMessage ( ) ) ;

}
catch ( IOExcep t ion e )
{

System . e r r . p r i n t l n ( " Caught IOExcep t i on : " + e .
ge tMessage ( ) ) ;

}

double [ ] o u t p u t = new double [ 2 ] ;
o u t p u t [ 0 ] = b e s t D i f f P a r ;
o u t p u t [ 1 ] = b e s t P V a l ;
re turn o u t p u t ;

}
}

ThirdParties.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package e n f o r c e r s ;
import j a v a . i o . ∗ ;
import j a v a . t e x t . ∗ ;
import j a v a . u t i l . ∗ ;
import u t i l . M e r s e n n e T w i s t e r F a s t ;

/∗ Use s i m u l a t e d a n n e a l i n g t o f i n d t h e parame te r c h o i c e s t h a t
b e s t match t h e

∗ l ong memory p r o p e r t i e s o f US GNP w i t h t h o s e o f a growing and
c o l l a p s i n g

∗ e n f o r c e m e n t ne twork
∗ /
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p u b l i c c l a s s T h i r d P a r t i e s {
/ / t h e o u t p u t f i l e needs t o be named so as t o be u n i q u e l y

i d e n t i f i e d
/ / ( hence t h e d a t e ) , b u t g i v e r e l e v a n t i n f o r m a t i o n q u i c k l y

( hence params )
DateFormat d a t e F o r m a t = new SimpleDateFormat ( "MMdd" ) ;
Date d a t e = new Date ( ) ;

S t r i n g o u t p u t F i l e N a m e = " s v r n s . t x t " ;
S t r i n g outputPa thName = "C : \ \ s i m u l a t e \ \ sovsaw " ;
F i l e o u t p u t F i l e ;
F i l e o u t p u t P a t h ;
P r i n t W r i t e r o u t ;

s t a t i c double d e f a u l t T r u e D i f f = 0 . 8 4 5 6 ;

s t a t i c i n t d e f a u l t R u n V e r s i o n = 1 ;
s t a t i c i n t defau l tNumAgents = 10000 ;

s t a t i c i n t d e f a u l t M a x S u b j e c t s = 5 ;
s t a t i c i n t d e f a u l t F a i l P e r i o d = 3 ;
s t a t i c double d e f a u l t C o n t a g i o n P r o b = 0 . 9 5 ;

s t a t i c i n t d e f a u l t I n o v S u b j e c t s = 1 ;
s t a t i c i n t d e f a u l t I n o v P e r i o d = 1 ;
s t a t i c double d e f a u l t I n o v P r o b = 0 . 0 1 ;

s t a t i c i n t d e f a u l t L B o u n d S u b j e c t s = 1 ;
s t a t i c i n t d e f a u l t L B o u n d P e r i o d = 1 ;
s t a t i c double de fau l tL Bou ndP rob = 0 . 0 1 ;

s t a t i c i n t d e f a u l t U B o u n d S u b j e c t s = 2 0 ;
s t a t i c i n t d e f a u l t U B o u n d P e r i o d = 5 0 ;
s t a t i c double defau l tUBoundProb = 1 . 0 0 ;

s t a t i c i n t d e f a u l t T i m e B u d g e t = 1000 ;
s t a t i c double d e f a u l t M i n P V a l = 0 . 9 5 ;

/ / s t a t i c do ub l e d e f a u l t M a x D i s c r e p a n c y = 0 . 0 1 ;
s t a t i c double d e f a u l t I n i t i a l T e m p = 1 0 0 0 . 0 ;

s t a t i c i n t d e f a u l t D u r a t i o n = 10000 ;
s t a t i c i n t d e f a u l t B u r n S i z e = 10000 ;
s t a t i c i n t d e f a u l t S a m p l e S i z e = 150 ;
s t a t i c i n t defaul tNumSims = 1000 ;
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p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
/ / p r i n t h e l p
i f ( k e y E x i s t s ( "−h e l p " , a rg s , 0 ) ) {

System . e r r . p r i n t l n (
" Format : j a v a − j a r mason . j a r [−

numAgents n ] . . . \ n \ n " +
"−h e l p Shows t h i s message and e x i t s

. \ n \ n " +
"−r u n V e r s i o n i n t > 1 : a d e s i g n a t i o n f o r

t h i s t h r e a d \ n \ n " +
"−numAgents i n t > 1 : t h e number o f

a g e n t s i n t h e s i m u l a t i o n \ n \ n " +
"− t r u e D i f f do ub l e : t h e t a r g e t

d i f f e r e n c e p a r a m e t e r v a l u e \ n \ n " +
"−maxSub jec t s i n t > 1 : t h e maximum number

o f s u b j e c t s a l l o w e d \ n \ n " +
"− f a i l P e r i o d i n t > 1 : t h e number o f

ne twork growth e v e n t s be tween \ n "
+ " each ne twork c o l l a p s e e v e n t

\ n \ n " +
"−c o n t a g i o n P r o b 0< do ub le <1: t h e

p r o b a b i l i t y wi th which each s u b j e c t \ n "
+ " t h e m s e l v e s f a i l \ n \ n " +

"− i n o v S u b j e c t s i n t > 1 : t h e maximum number
o f s u b j e c t s a l l o w e d \ n \ n " +

"− i n o v P e r i o d i n t > 1 : t h e number o f
ne twork growth e v e n t s be tween \ n "

+ " each ne twork c o l l a p s e e v e n t
\ n \ n " +

"−i n o v Pr o b 0< do ub le <1: t h e
p r o b a b i l i t y wi th which each s u b j e c t \ n "

+ " t h e m s e l v e s f a i l \ n \ n " +
"−l B o u n d S u b j e c t s i n t > 1 : t h e maximum number

o f s u b j e c t s a l l o w e d \ n \ n " +
"−l B o u n d P e r i o d i n t > 1 : t h e number o f

ne twork growth e v e n t s be tween \ n "
+ " each ne twork c o l l a p s e e v e n t

\ n \ n " +
"−lBoundProb 0< do ub le <1: t h e

p r o b a b i l i t y wi th which each s u b j e c t \ n "
+ " t h e m s e l v e s f a i l \ n \ n " +

"−uBoundSub jec t s i n t > 1 : t h e maximum number
o f s u b j e c t s a l l o w e d \ n \ n " +

"−uBoundPer iod i n t > 1 : t h e number o f
ne twork growth e v e n t s be tween \ n "
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+ " each ne twork c o l l a p s e e v e n t
\ n \ n " +

"−uBoundProb 0< do ub le <1: t h e
p r o b a b i l i t y wi th which each s u b j e c t \ n "

+ " t h e m s e l v e s f a i l \ n \ n " +
"−t imeBudge t 0< i n t : t h e c o n v e r g e n c e

c r i t e r i o n \ n \ n " +
"−maxDiscrepancy 0< do ub le <1: t h e

p r o b a b i l i t y wi th which each s u b j e c t
t h e m s e l v e s f a i l \ n \ n " +

"−s i m D u r a t i o n i n t > 0 : t h e s i m u l a t i o n must
s t o p when N\ n " +

" s i m u l a t i o n s t e p s have
t r a n s p i r e d . \ n \ n " +

"− i n i t i a l T e m p i n t > 0 : t h e \ " t e m p e r a t u r e \ "
f o r s i m u l a t e d a n n e a l i n g . \ n \ n " +

"−b u r n S i z e i n t > 0 : t h e number o f sim
s t e p s t o i g n o r e . \ n \ n " +

"−s a m p l e S i z e i n t > 0 : number o f
o b s e r v a t i o n s on which t o \ n " +

" e s t i m a t e t h e d i f f e r e n c e
p a r a m e t e r . \ n \ n " +

"−numSims i n t > 0 : number o f
s i m u l a t i o n s f o r some p a r s . \ n \ n " ) ;

System . e x i t ( 0 ) ;
}

j a v a . t e x t . NumberFormat n = j a v a . t e x t . NumberFormat .
g e t I n s t a n c e ( ) ;

n . s e t M i n i m u m F r a c t i o n D i g i t s ( 0 ) ;

/ / s e t t r u e P a r a m e t e r o b j e c t i v e
double t r u e D i f f = d e f a u l t T r u e D i f f ;
S t r i n g t r u e D i f f _ s = argumentForKey ( "− t r u e D i f f " , a rgs ,

0 ) ;
i f ( t r u e D i f f _ s != n u l l )

t r y {
t r u e D i f f = Double . p a r s e D o u b l e ( t r u e D i f f _ s ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ t r u e D i f f ’

v a l u e : "
+ t r u e D i f f _ s + " , must be i n u n i t

i n t e r v a l " ) ;
}
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/ / s e t r u n V e r s i o n
i n t r u n V e r s i o n = d e f a u l t R u n V e r s i o n ;
S t r i n g r u n V e r s i o n _ s = argumentForKey ( "−r u n V e r s i o n " ,

a rgs , 0 ) ;
i f ( r u n V e r s i o n _ s != n u l l )

t r y {
r u n V e r s i o n = I n t e g e r . p a r s e I n t ( r u n V e r s i o n _ s ) ;
i f ( r u n V e r s i o n < 2) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ r u n V e r s i o n

’ v a l u e : "
+ r u n V e r s i o n _ s + " , must be g r e a t e r

t h a n 1 " ) ;
}

/ / s e t numAgents
i n t numAgents = defau l tNumAgents ;
S t r i n g numAgents_s = argumentForKey ( "−numAgents " , a rg s ,

0 ) ;
i f ( numAgents_s != n u l l )

t r y {
numAgents = I n t e g e r . p a r s e I n t ( numAgents_s ) ;
i f ( numAgents < 2) throw new E x c e p t i o n ( ) ;
}

ca tch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ numAgents ’

v a l u e : "
+ numAgents_s + " , must be g r e a t e r t h a n

1 " ) ;
}

/ / s e t m a x S u b j e c t s
i n t maxSub jec t s = d e f a u l t M a x S u b j e c t s ;
S t r i n g m a x S u b j e c t s _ s = argumentForKey ( "−maxSub jec t s " ,

a rgs , 0 ) ;
i f ( m a x S u b j e c t s _ s != n u l l )

t r y {
maxSub jec t s = I n t e g e r . p a r s e I n t ( m a x S u b j e c t s _ s ) ;
i f ( maxSub jec t s < 2) throw new E x c e p t i o n ( ) ;
}

ca tch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

maxSub jec t s ’ v a l u e : "
+ m a x S u b j e c t s _ s + " , must be g r e a t e r

t h a n 1 " ) ;
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}

/ / s e t f a i l u r e p e r i o d
i n t f a i l P e r i o d = d e f a u l t F a i l P e r i o d ;
S t r i n g f a i l P e r i o d _ s = argumentForKey ( "− f a i l P e r i o d " ,

a rgs , 0 ) ;
i f ( f a i l P e r i o d _ s != n u l l )

t r y {
f a i l P e r i o d = I n t e g e r . p a r s e I n t ( f a i l P e r i o d _ s ) ;
i f ( f a i l P e r i o d < 1)

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ f a i l P e r i o d

’ v a l u e : "
+ f a i l P e r i o d _ s + " , must be g r e a t e r

t h a n 1 " ) ;
}

/ / s e t c o n t a g i o n p r o b a b i l i t y
double c o n t a g i o n P r o b = d e f a u l t C o n t a g i o n P r o b ;
S t r i n g c o n t a g i o n P r o b _ s = argumentForKey ( "−c o n t a g i o n P r o b

" , a rgs , 0 ) ;
i f ( c o n t a g i o n P r o b _ s != n u l l )

t r y {
c o n t a g i o n P r o b = Double . p a r s e D o u b l e (

c o n t a g i o n P r o b _ s ) ;
i f ( c o n t a g i o n P r o b > 1 . 0 | | c o n t a g i o n P r o b < 0 . 0 )

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

c o n t a g i o n P r o b ’ v a l u e : "
+ c o n t a g i o n P r o b _ s + " , must be i n u n i t

i n t e r v a l " ) ;
}

/ / s e t l B o u n d S u b j e c t s
i n t l B o u n d S u b j e c t s = d e f a u l t L B o u n d S u b j e c t s ;
S t r i n g l B o u n d S u b j e c t s _ s = argumentForKey ( "−

l B o u n d S u b j e c t s " , a rg s , 0 ) ;
i f ( l B o u n d S u b j e c t s _ s != n u l l )

t r y {
l B o u n d S u b j e c t s = I n t e g e r . p a r s e I n t (

l B o u n d S u b j e c t s _ s ) ;
i f ( l B o u n d S u b j e c t s < 2) throw new E x c e p t i o n ( ) ;
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}
catch ( E x c e p t i o n e ) {

throw new Run t imeExcep t ion ( " I n v a l i d ’
l B o u n d S u b j e c t s ’ v a l u e : "

+ l B o u n d S u b j e c t s _ s + " , must be g r e a t e r
t h a n 1 " ) ;

}

/ / s e t lBoundure p e r i o d
i n t l B o u n d P e r i o d = d e f a u l t L B o u n d P e r i o d ;
S t r i n g l B o u n d P e r i o d _ s = argumentForKey ( "−l B o u n d P e r i o d " ,

a rgs , 0 ) ;
i f ( l B o u n d P e r i o d _ s != n u l l )

t r y {
l B o u n d P e r i o d = I n t e g e r . p a r s e I n t ( l B o u n d P e r i o d _ s )

;
i f ( l B o u n d P e r i o d < 1)

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

l B o u n d P e r i o d ’ v a l u e : "
+ l B o u n d P e r i o d _ s + " , must be g r e a t e r

t h a n 1 " ) ;
}

/ / s e t lBound p r o b a b i l i t y
double lBoundProb = d e fa u l t LBo und Pr ob ;
S t r i n g lBoundProb_s = argumentForKey ( "−lBoundProb " ,

a rgs , 0 ) ;
i f ( lBoundProb_s != n u l l )

t r y {
lBoundProb = Double . p a r s e D o u b l e ( lBoundProb_s ) ;
i f ( lBoundProb > 1 . 0 | | lBoundProb < 0 . 0 )

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ lBoundProb

’ v a l u e : "
+ lBoundProb_s + " , must be i n u n i t

i n t e r v a l " ) ;
}

/ / s e t u B o u n d S u b j e c t s
i n t uBoundSub jec t s = d e f a u l t U B o u n d S u b j e c t s ;
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S t r i n g u B o u n d S u b j e c t s _ s = argumentForKey ( "−
uBoundSub jec t s " , a rgs , 0 ) ;

i f ( u B o u n d S u b j e c t s _ s != n u l l )
t r y {

uBoundSub jec t s = I n t e g e r . p a r s e I n t (
u B o u n d S u b j e c t s _ s ) ;

i f ( uBoundSub jec t s < 2) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

uBoundSub jec t s ’ v a l u e : "
+ u B o u n d S u b j e c t s _ s + " , must be g r e a t e r

t h a n 1 " ) ;
}

/ / s e t uBoundure p e r i o d
i n t uBoundPer iod = d e f a u l t U B o u n d P e r i o d ;
S t r i n g uBoundPer iod_s = argumentForKey ( "−uBoundPer iod " ,

a rgs , 0 ) ;
i f ( uBoundPer iod_s != n u l l )

t r y {
uBoundPer iod = I n t e g e r . p a r s e I n t ( uBoundPer iod_s )

;
i f ( uBoundPer iod < 1)

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

uBoundPer iod ’ v a l u e : "
+ uBoundPer iod_s + " , must be g r e a t e r

t h a n 1 " ) ;
}

/ / s e t uBound p r o b a b i l i t y
double uBoundProb = defau l tUBoundProb ;
S t r i n g uBoundProb_s = argumentForKey ( "−uBoundProb " ,

a rgs , 0 ) ;
i f ( uBoundProb_s != n u l l )

t r y {
uBoundProb = Double . p a r s e D o u b l e ( uBoundProb_s ) ;
i f ( uBoundProb > 1 . 0 | | uBoundProb < 0 . 0 )

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ uBoundProb

’ v a l u e : "
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+ uBoundProb_s + " , must be i n u n i t
i n t e r v a l " ) ;

}

/ / s e t i n o v S u b j e c t s
i n t i n o v S u b j e c t s = d e f a u l t I n o v S u b j e c t s ;
S t r i n g i n o v S u b j e c t s _ s = argumentForKey ( "− i n o v S u b j e c t s " ,

a rgs , 0 ) ;
i f ( i n o v S u b j e c t s _ s != n u l l )

t r y {
i n o v S u b j e c t s = I n t e g e r . p a r s e I n t ( i n o v S u b j e c t s _ s )

;
i f ( i n o v S u b j e c t s < 2) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

i n o v S u b j e c t s ’ v a l u e : "
+ i n o v S u b j e c t s _ s + " , must be g r e a t e r

t h a n 1 " ) ;
}

/ / s e t i n o v u r e p e r i o d
i n t i n o v P e r i o d = d e f a u l t I n o v P e r i o d ;
S t r i n g i n o v P e r i o d _ s = argumentForKey ( "− i n o v P e r i o d " ,

a rgs , 0 ) ;
i f ( i n o v P e r i o d _ s != n u l l )

t r y {
i n o v P e r i o d = I n t e g e r . p a r s e I n t ( i n o v P e r i o d _ s ) ;
i f ( i n o v P e r i o d < 1)

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ i n o v P e r i o d

’ v a l u e : "
+ i n o v P e r i o d _ s + " , must be g r e a t e r

t h a n 1 " ) ;
}

/ / s e t i n o v p r o b a b i l i t y
double i n o v Pr o b = d e f a u l t I n o v P r o b ;
S t r i n g i n o v P r o b _ s = argumentForKey ( "−i n o v Pr o b " , a rgs ,

0 ) ;
i f ( i n o v P r o b _ s != n u l l )

t r y {
i n o v Pr o b = Double . p a r s e D o u b l e ( i n o v P r o b _ s ) ;
i f ( i n o v P r o b > 1 . 0 | | i n o v P r o b < 0 . 0 )
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throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ i n o vP r o b ’

v a l u e : "
+ i n o v P r o b _ s + " , must be i n u n i t

i n t e r v a l " ) ;
}

/ / s e t t h e c o n v e r g e n c e c r i t e r i o n
double minPVal = d e f a u l t M i n P V a l ;
S t r i n g minPVal_s = argumentForKey ( "−minPVal " , a rgs , 0 ) ;
i f ( minPVal_s != n u l l )

t r y {
minPVal = Double . p a r s e D o u b l e ( minPVal_s ) ;
i f ( minPVal > 1 . 0 | | minPVal < 0 . 0 )

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ minPVal ’

v a l u e : "
+ minPVal_s + " , must be i n u n i t

i n t e r v a l " ) ;
}

/ / s e t t h e t i m e bu dg e t
i n t t imeBudge t = d e f a u l t T i m e B u d g e t ;
S t r i n g t i m e B u d g e t _ s = argumentForKey ( "−t imeBudge t " ,

a rgs , 0 ) ;
i f ( t i m e B u d g e t _ s != n u l l )

t r y {
t imeBudge t = I n t e g e r . p a r s e I n t ( t i m e B u d g e t _ s ) ;
i f ( t imeBudge t < 1)

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ t imeBudge t

’ v a l u e : "
+ t i m e B u d g e t _ s + " , must be i n u n i t

i n t e r v a l " ) ;
}

i n t s i m D u r a t i o n = d e f a u l t D u r a t i o n ;
S t r i n g s i m D u r a t i o n _ s = argumentForKey ( "−s i m D u r a t i o n " ,

a rgs , 0 ) ;
i f ( s i m D u r a t i o n _ s != n u l l )
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t r y {
s i m D u r a t i o n = I n t e g e r . p a r s e I n t ( s i m D u r a t i o n _ s ) ;
i f ( s i m D u r a t i o n < 0) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

s i m D u r a t i o n ’ v a l u e : " + s i m D u r a t i o n _ s + " ,
must be an i n t e g e r >= 0 " ) ;

}

double i n i t i a l T e m p = d e f a u l t I n i t i a l T e m p ;
S t r i n g i n i t i a l T e m p _ s = argumentForKey ( "− i n i t i a l T e m p " ,

a rgs , 0 ) ;
i f ( i n i t i a l T e m p _ s != n u l l )

t r y {
i n i t i a l T e m p = Double . p a r s e D o u b l e ( i n i t i a l T e m p _ s )

;
i f ( i n i t i a l T e m p < 0) throw new E x c e p t i o n ( ) ;
}

ca tch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

i n i t i a l T e m p ’ v a l u e : " + i n i t i a l T e m p _ s + " ,
must be a do ub l e >= 0 " ) ;

}

i n t b u r n S i z e = d e f a u l t B u r n S i z e ;
S t r i n g b u r n S i z e _ s = argumentForKey ( "−b u r n S i z e " , a rgs ,

0 ) ;
i f ( b u r n S i z e _ s != n u l l )

t r y {
b u r n S i z e = I n t e g e r . p a r s e I n t ( b u r n S i z e _ s ) ;
i f ( b u r n S i z e < 0) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ b u r n S i z e ’

v a l u e : " + b u r n S i z e _ s + " , must be an
i n t e g e r >= 0 " ) ;

}

i n t s a m p l e S i z e = d e f a u l t S a m p l e S i z e ;
S t r i n g s a m p l e S i z e _ s = argumentForKey ( "−s a m p l e S i z e " ,

a rgs , 0 ) ;
i f ( s a m p l e S i z e _ s != n u l l )

t r y {
s a m p l e S i z e = I n t e g e r . p a r s e I n t ( s a m p l e S i z e _ s ) ;
i f ( s a m p l e S i z e < 0) throw new E x c e p t i o n ( ) ;
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}
catch ( E x c e p t i o n e ) {

throw new Run t imeExcep t ion ( " I n v a l i d ’ s a m p l e S i z e
’ v a l u e : " + s a m p l e S i z e _ s + " , must be an
i n t e g e r >= 0 " ) ;

}

i n t numSims = defaul tNumSims ;
S t r i n g numSims_s = argumentForKey ( "−numSims " , a rgs , 0 ) ;
i f ( numSims_s != n u l l )

t r y {
numSims = I n t e g e r . p a r s e I n t ( numSims_s ) ;
i f ( numSims < 0) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ numSims ’

v a l u e : " + numSims_s + " , must be an i n t e g e r
>= 0 " ) ;

}

/∗ now f o r s i m u l a t e d a n n e a l i n g :
∗ − run s i m u l a t i o n s f o r a random s e t o f par s

n e i g h b o u r i n g t h e i n i t i a l ones
∗ − t r y a l l t h e d i f f e r e n t sample f r e q u e n c i e s t o f i n d

t h e b e s t
∗ − move t o a n o t h e r s t a t e w i t h p r o b a b i l i t y g i v e n by

t h e f r e e e ne rg y o f
∗ t h e s y s t e m
∗ − r e c o r d t h e s t a t e o f t h e s y s t e m and t h e par s i n

case o f c r a s h ∗ /
double b e s t D i f f P a r = 0 . 0 ;
i n t b e s t M a x S u b j e c t s = maxSub jec t s ;
i n t b e s t F a i l P e r i o d = f a i l P e r i o d ;
double b e s t C o n t a g i o n P r o b = c o n t a g i o n P r o b ;

i n t i t e r a t i o n s = 1 ;
double t e m p e r a t u r e = i n i t i a l T e m p ;
double pVal = 0 . 0 ;
M e r s e n n e T w i s t e r F a s t random = new M e r s e n n e T w i s t e r F a s t ( ) ;
whi le ( pVal <minPVal && i t e r a t i o n s < t imeBudge t ) {

/∗ choose a random n e i g h b o u r − one o f t h e v a r i a b l e s
t o p e t e r b ∗ /

i n t newMaxSubjects = maxSub jec t s ;
i n t n e w F a i l P e r i o d = f a i l P e r i o d ;
double newContagionProb = c o n t a g i o n P r o b ;
double v a r S e l e c t = random . nex tDoub le ( ) ;
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/∗ u n i f o r m p r o b a b i l i t y o f one o f s i x moves , d e r i v e d
by d i v i d i n g t h e

∗ u n i t i n t e r v a l i n t o s i x : ∗ /
double boundary = 1 . 0 / 6 . 0 ; / / cheaper t o m u l t i p l y

than d i v i d e l a t e r
i f ( v a r S e l e c t < boundary ) {

i f ( maxSub jec t s > l B o u n d S u b j e c t s ) {
newMaxSubjects −= i n o v S u b j e c t s ;

}
e l s e {

newMaxSubjects += i n o v S u b j e c t s ;
}

}
e l s e i f ( v a r S e l e c t < 2 . 0∗ boundary ) {

i f ( maxSub jec t s < uBoundSub jec t s ) {
newMaxSubjects += i n o v S u b j e c t s ;

}
e l s e {

newMaxSubjects −= i n o v S u b j e c t s ;
}

}
e l s e i f ( v a r S e l e c t < 3 . 0∗ boundary ) {

i f ( f a i l P e r i o d > l B o u n d P e r i o d ) {
n e w F a i l P e r i o d −= i n o v P e r i o d ;

}
e l s e {

n e w F a i l P e r i o d += i n o v P e r i o d ;
}

}
e l s e i f ( v a r S e l e c t < 4 . 0∗ boundary ) {

i f ( f a i l P e r i o d < uBoundPer iod ) {
n e w F a i l P e r i o d += i n o v P e r i o d ;

}
e l s e {

n e w F a i l P e r i o d −= i n o v P e r i o d ;
}

}
e l s e i f ( v a r S e l e c t < 5 . 0∗ boundary ) {

i f ( c o n t a g i o n P r o b > lBoundProb ) {
newContagionProb −= i n o v P r o b ;

}
e l s e {

newContagionProb += i n o v P r o b ;
}

}
e l s e {
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i f ( c o n t a g i o n P r o b < uBoundProb ) {
newContagionProb += in o v P r o b ;

}
e l s e {

newContagionProb −= i n o v P r o b ;
}

}

/∗ s i m u l a t e t h e n e i g h b o u r ∗ /
double [ ] o u t p u t = new Hie ra rchyS im ( runVer s i on ,

t r u e D i f f , numAgents ,
s imDura t ion , numSims , bu rnS ize , sampleS ize ,

newMaxSubjects ,
n e w F a i l P e r i o d , newContagionProb ) . c a l l ( ) ;

double n e i g h b o u r D i f f = o u t p u t [ 0 ] ;
double newPVal = o u t p u t [ 1 ] ;
double improvement = pVal − newPVal ;
i f ( improvement < 0) {

/∗ t h i s n e i g h b o u r i m p r o v e s on t h e p r e v i o u s pars
, t h e n we move ∗ /

maxSub jec t s = newMaxSubjects ;
f a i l P e r i o d = n e w F a i l P e r i o d ;
c o n t a g i o n P r o b = newContagionProb ;
pVal = newPVal ;
/∗ and we a l s o upd a t e t h e g l o b a l b e s t s ∗ /
b e s t M a x S u b j e c t s = newMaxSubjects ;
b e s t F a i l P e r i o d = n e w F a i l P e r i o d ;
b e s t C o n t a g i o n P r o b = newContagionProb ;
b e s t D i f f P a r = n e i g h b o u r D i f f ;

}
/∗ i f not , we s t i l l move w i t h a p r o b a b i l i t y t h a t

d i m i n i s h e s w i t h
∗ bo th s y s t e m " t e m p e r a t u r e " and t h e d e t e r i o r a t i o n
∗ /

e l s e i f ( random . nex tDoub le ( ) < Math . exp(− improvement
/ t e m p e r a t u r e ) ) {

maxSub jec t s = newMaxSubjects ;
f a i l P e r i o d = n e w F a i l P e r i o d ;
c o n t a g i o n P r o b = newContagionProb ;
pVal = newPVal ;

}

i t e r a t i o n s ++;
t e m p e r a t u r e = i n i t i a l T e m p / ( double ) i t e r a t i o n s ; / /

Cauchy a n n e a l i n g s c h e d u l e
}
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/∗ o u t p u t t h e b e s t par s we ’ ve seen ∗ /
System . o u t . p r i n t f ( " Opt imal p a r s : maxSub jec t s =" +

b e s t M a x S u b j e c t s +
" , f a i l P e r i o d =" + b e s t F a i l P e r i o d +
" , c o n t a g i o n P r o b =" + b e s t C o n t a g i o n P r o b + " \ n \ n "

+
" Opt imal p−v a l u e =" + pVal + " \ n " +
" Opt imal d i f f e r e n c e p a r a m e t e r =" + b e s t D i f f P a r ) ;

System . e x i t ( 0 ) ;
}

s t a t i c S t r i n g argumentForKey ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t ) {
f o r ( i n t x =0; x< a r g s . l e n g t h −1;x ++) / / key can ’ t be t h e

l a s t s t r i n g
i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) )

re turn a r g s [ x + 1 ] ;
re turn n u l l ;
}

s t a t i c boolean k e y E x i s t s ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t ) {

f o r ( i n t x =0; x< a r g s . l e n g t h ; x ++) / / key can ’ t be t h e
l a s t s t r i n g

i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) )
re turn true ;

re turn f a l s e ;
}

}

3.A.3 Utilities used in this simulation

Bag.java

/∗
C o p y r i g h t 2006 by Sean Luke and George Mason U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /

package u t i l ;
import j a v a . u t i l . ∗ ;
import j a v a . l a n g . r e f l e c t . ∗ ;
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/∗ ∗ M a i n t a i n s a s i m p l e a r r a y ( o b j s ) o f O b j e c t s and t h e number
o f o b j e c t s ( numObjs ) i n t h e a r r a y
( t h e a r r a y can be b i g g e r than t h i s number ) . U n l i k e V e c t o r

or A r r a y L i s t , Bag i s d e s i g n e d
t o encourage d i r e c t a c c e s s o f t h e a r r a y . I f you a c c e s s t h e

o b j e c t s d i r e c t l y , t h e y are
s t o r e d i n p o s i t i o n s [0 . . . numObjs−1]. I f you wish t o

e x t e n d t h e array , you s h o u l d c a l l
t h e r e s i z e method .

<p>By p r o v i d i n g d i r e c t a c c e s s t o t h e array , Bags are abou t
t h r e e and a h a l f t i m e s f a s t e r than A r r a y L i s t s

( whose g e t / s e t methods u n f o r t u n a t e l y a t p r e s e n t c o n t a i n un−
i n l i n a b l e range bounds c h e c k s ) and f o u r t i m e s f a s t e r

than V e c t o r s ( whose methods a d d i t i o n a l l y are s y n c h r o n i z e d ) .
Even Bag ’ s b u i l t −i n g e t ( ) and s e t ( ) methods ,

c o m p l e t e w i t h range bounds checks , are t w i c e t h e speed o f
A r r a y L i s t s . To g e t f a s t e r

than a Bag , you ’ d have t o go t o a raw f i x e d−l e n g t h a r r a y o f
t h e s p e c i f i c c l a s s t y p e o f your o b j e c t s .

A c c e s s i n g a Bag ’ s O b j e c t a r r a y and c a s t i n g i t s O b j e c t s i n t o
t h e a p p r o p r i a t e c l a s s i s abou t 50% s l o w e r

than a c c e s s i n g a f i x e d−l e n g t h a r r a y o f t h a t c l a s s i n t h e
f i r s t p l a c e .

<p>Bag i s n o t s y n c h r o n i z e d , and so s h o u l d n o t be a c c e s s e d
from d i f f e r e n t t h r e a d s w i t h o u t l o c k i n g on i t

or some a p p r o p r i a t e l o c k o b j e c t f i r s t . Bag a l s o has an
unusua l , f a s t method f o r removing o b j e c t s

c a l l e d remove ( . . . ) , which removes t h e o b j e c t s i m p l y by
swapping t h e t o p m o s t o b j e c t i n t o i t s

p l a c e . T h i s means t h a t a f t e r remove ( . . . ) i s c a l l e d , t h e
Bag may no l o n g e r have t h e same o r d e r

( hence t h e re as on i t ’ s c a l l e d a " Bag " r a t h e r than some
v a r i a n t on " V e c t o r " or " Array " or " L i s t " ) . You can

g u a r a n t e e o r d e r by c a l l i n g r e m o v e N o n d e s t r u c t i v e l y ( . . . )
i n s t e a d i f you wish , b u t t h i s i s O( n ) i n t h e w o r s t case .

<p>Bags p r o v i d e i t e r a t o r s b u t you are s t r o n g l y encouraged
t o j u s t a c c e s s t h e a r r a y i n s t e a d . I t e r a t o r s

are s low . Bag ’ s i t e r a t o r p e r f o r m s i t s remove o p e r a t i o n by
c a l l i n g r e m o v e N o n d e s t r u c t i v e l y ( ) .

L i k e a r r a y acces s , i t e r a t o r usage i s u n d e f i n e d i f o b j e c t s
are p l a c e d i n t o t h e Bag or
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removed from t h e Bag i n t h e mi dd l e o f t h e i t e r a t o r usage (
e x c e p t by u s i n g t h e i t e r a t o r ’ s remove

o p e r a t i o n o f c o u r s e ) .
∗ /

p u b l i c c l a s s Bag implements j a v a . u t i l . C o l l e c t i o n , j a v a . i o .
S e r i a l i z a b l e , C loneab le , Indexed
{
p u b l i c O b j e c t [ ] o b j s ;
p u b l i c i n t numObjs ;

p u b l i c Bag ( ) { numObjs = 0 ; o b j s = new O b j e c t [ 1 ] ; }

/∗ ∗ C r e a t e s a Bag w i t h a g i v e n i n i t i a l c a p a c i t y . ∗ /
p u b l i c Bag ( i n t c a p a c i t y ) { numObjs = 0 ; o b j s = new O b j e c t [

c a p a c i t y ] ; }

/∗ ∗ Adds t h e o b j e c t s from t h e o t h e r Bag w i t h o u t c o p y i n g
them . The s i z e o f t h e

new Bag i s t h e minimum n e c e s s a r y s i z e t o ho ld t h e
o b j e c t s . ∗ /

p u b l i c Bag ( f i n a l Bag o t h e r )
{
i f ( o t h e r == n u l l ) { numObjs = 0 ; o b j s = new O b j e c t [ 1 ] ; }
e l s e

{
numObjs = o t h e r . numObjs ;
o b j s = new O b j e c t [ numObjs ] ;
System . a r r a y c o p y ( o t h e r . ob j s , 0 , ob j s , 0 , numObjs ) ;
}

}

p u b l i c i n t s i z e ( )
{
re turn numObjs ;
}

p u b l i c boolean i sEmpty ( )
{
re turn ( numObjs <= 0) ;
}

p u b l i c boolean ad dA l l ( f i n a l C o l l e c t i o n o t h e r )
{
i f ( o t h e r i n s t a n c e o f Bag ) re turn ad dA l l ( ( Bag ) o t h e r ) ;

/ / a v o i d an a r r a y b u i l d
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re turn ad dA l l ( numObjs , o t h e r . t o A r r a y ( ) ) ;
}

p u b l i c boolean ad dA l l ( f i n a l i n t index , f i n a l C o l l e c t i o n
o t h e r )
{
i f ( o t h e r i n s t a n c e o f Bag ) re turn ad dA l l ( index , ( Bag )

o t h e r ) ; / / a v o i d an a r r a y b u i l d
re turn ad dA l l ( index , o t h e r . t o A r r a y ( ) ) ;
}

p u b l i c boolean ad dA l l ( f i n a l i n t index , f i n a l O b j e c t [ ] o t h e r
)

{
/ / t h r ows N u l l P o i n t e r E x c e p t i o n i f o t h e r == n u l l ,
/ / A r r a y I n d e x O u t O f B o u n d s E x c e p t i o n i f i n d e x < 0 ,
/ / and I n d e x O u t O f B o u n d s E x c e p t i o n i f i n d e x > numObjs
i f ( i n d e x > numObjs ) { th rowIndexOutOfBoundsExcep t ion (

i n d e x ) ; }
i f ( o t h e r . l e n g t h == 0) re turn f a l s e ;
/ / make Bag b i g enough
i f ( numObjs+ o t h e r . l e n g t h > o b j s . l e n g t h )

r e s i z e ( numObjs+ o t h e r . l e n g t h ) ;
i f ( i n d e x != numObjs ) / / make room

System . a r r a y c o p y ( ob j s , index , ob j s , i n d e x + o t h e r . l e n g t h
, o t h e r . l e n g t h ) ;

System . a r r a y c o p y ( o t h e r , 0 , ob j s , index , o t h e r . l e n g t h ) ;
numObjs += o t h e r . l e n g t h ;
re turn true ;
}

p u b l i c boolean ad dA l l ( f i n a l Bag o t h e r ) { re turn ad dA l l (
numObjs , o t h e r ) ; }

p u b l i c boolean ad dA l l ( f i n a l i n t index , f i n a l Bag o t h e r )
{
/ / t h r ows N u l l P o i n t e r E x c e p t i o n i f o t h e r == n u l l ,
/ / A r r a y I n d e x O u t O f B o u n d s E x c e p t i o n i f i n d e x < 0 ,
/ / and I n d e x O u t O f B o u n d s E x c e p t i o n i f i n d e x > numObjs
i f ( i n d e x > numObjs ) { th rowIndexOutOfBoundsExcep t ion (

i n d e x ) ; }
i f ( o t h e r . numObjs <= 0) re turn f a l s e ;
/ / make Bag b i g enough
i f ( numObjs+ o t h e r . numObjs > o b j s . l e n g t h )

r e s i z e ( numObjs+ o t h e r . numObjs ) ;
i f ( i n d e x != numObjs ) / / make room
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System . a r r a y c o p y ( ob j s , index , ob j s , i n d e x + o t h e r .
numObjs , o t h e r . numObjs ) ;

System . a r r a y c o p y ( o t h e r . ob j s , 0 , ob j s , index , o t h e r . numObjs )
;

numObjs += o t h e r . numObjs ;
re turn true ;
}

p u b l i c O b j e c t c l o n e ( ) throws C l o n e N o t S u p p o r t e d E x c e p t i o n
{
Bag b = ( Bag ) ( super . c l o n e ( ) ) ;
b . o b j s = ( O b j e c t [ ] ) o b j s . c l o n e ( ) ;
re turn b ;
}

/∗ ∗ R e s i z e s t h e i n t e r n a l a r r a y t o a t l e a s t t h e r e q u e s t e d
s i z e . ∗ /

p u b l i c vo id r e s i z e ( i n t t o A t L e a s t )
{
i f ( o b j s . l e n g t h >= t o A t L e a s t ) / / a l r e a d y a t l e a s t as

b i g as r e q u e s t e d
re turn ;

i f ( o b j s . l e n g t h ∗ 2 > t o A t L e a s t ) / / wor th d o u b l i n g
t o A t L e a s t = o b j s . l e n g t h ∗ 2 ;

/ / now r e s i z e
O b j e c t [ ] newobjs = new O b j e c t [ t o A t L e a s t ] ;
System . a r r a y c o p y ( ob j s , 0 , newobjs , 0 , numObjs ) ;
o b j s = newobjs ;
}

/∗ ∗ R e s i z e s t h e o b j s a r r a y t o max ( numObjs , d e s i r e d L e n g t h ) ,
u n l e s s t h a t v a l u e i s g r e a t e r than or e q u a l t o o b j s .
l e n g t h ,

i n which case no r e s i z i n g i s done ( t h i s o p e r a t i o n o n l y
s h r i n k s −− use r e s i z e ( ) i n s t e a d ) .

T h i s i s an O( n ) o p e r a t i o n , so use i t s p a r i n g l y . ∗ /
p u b l i c vo id s h r i n k ( i n t d e s i r e d L e n g t h )

{
i f ( d e s i r e d L e n g t h < numObjs ) d e s i r e d L e n g t h = numObjs ;
i f ( d e s i r e d L e n g t h >= o b j s . l e n g t h ) re turn ; / / no re as on

t o b o t h e r
O b j e c t [ ] newobjs = new O b j e c t [ d e s i r e d L e n g t h ] ;
System . a r r a y c o p y ( ob j s , 0 , newobjs , 0 , numObjs ) ;
o b j s = newobjs ;
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}

/∗ ∗ R e t u r n s n u l l i f t h e Bag i s empty , e l s e r e t u r n s t h e
t o p m o s t o b j e c t . ∗ /

p u b l i c O b j e c t t o p ( )
{
i f ( numObjs <= 0) re turn n u l l ;
e l s e re turn o b j s [ numObjs−1];
}

/∗ ∗ R e t u r n s n u l l i f t h e Bag i s empty , e l s e removes and
r e t u r n s t h e t o p m o s t o b j e c t . ∗ /

p u b l i c O b j e c t pop ( )
{
/ / t h i s c u r i o u s arrangemen t makes me s m a l l enough t o be

i n l i n e d (35 b y t e s ; r i g h t a t t h e l i m i t )
i n t numObjs = t h i s . numObjs ;
i f ( numObjs <= 0) re turn n u l l ;
O b j e c t r e t = o b j s [−−numObjs ] ;
o b j s [ numObjs ] = n u l l ; / / l e t GC
t h i s . numObjs = numObjs ;
re turn r e t ;
}

/∗ ∗ Synonym f o r add ( o b j ) −− s t y l i s t i c a l l y , you s h o u l d add
i n s t e a d u n l e s s you

want t o t h i n k o f t h e Bag as a s t a c k . ∗ /
p u b l i c boolean push ( f i n a l O b j e c t o b j )

{
/ / t h i s c u r i o u s arrangemen t makes me s m a l l enough t o be

i n l i n e d (35 b y t e s )
i n t numObjs = t h i s . numObjs ;
i f ( numObjs >= o b j s . l e n g t h ) d o u b l e C a p a c i t y P l u s O n e ( ) ;
o b j s [ numObjs ] = o b j ;
t h i s . numObjs = numObjs +1;
re turn true ;
}

p u b l i c boolean add ( f i n a l O b j e c t o b j )
{
/ / t h i s c u r i o u s arrangemen t makes me s m a l l enough t o be

i n l i n e d (35 b y t e s )
i n t numObjs = t h i s . numObjs ;
i f ( numObjs >= o b j s . l e n g t h ) d o u b l e C a p a c i t y P l u s O n e ( ) ;
o b j s [ numObjs ] = o b j ;
t h i s . numObjs = numObjs +1;
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re turn true ;
}

/ / p r i v a t e f u n c t i o n used by add and push i n o r d e r t o g e t
them below

/ / 35 b y t e s −− a lways d o u b l e s t h e c a p a c i t y and adds one
void d o u b l e C a p a c i t y P l u s O n e ( )

{
O b j e c t [ ] newobjs = new O b j e c t [ numObjs ∗2 + 1 ] ;
System . a r r a y c o p y ( ob j s , 0 , newobjs , 0 , numObjs ) ;
o b j s = newobjs ;
}

p u b l i c boolean c o n t a i n s ( f i n a l O b j e c t o )
{
i n t numObjs = t h i s . numObjs ;
O b j e c t [ ] o b j s = t h i s . o b j s ;
f o r ( i n t x =0; x<numObjs ; x ++)

i f ( o== n u l l ? o b j s [ x ]== n u l l : o== o b j s [ x ] | | o .
e q u a l s ( o b j s [ x ] ) ) re turn true ;

re turn f a l s e ;
}

p u b l i c boolean c o n t a i n s A l l ( f i n a l C o l l e c t i o n c )
{
I t e r a t o r i t e r a t o r = c . i t e r a t o r ( ) ;
whi le ( i t e r a t o r . hasNext ( ) )

i f ( ! c o n t a i n s ( i t e r a t o r . n e x t ( ) ) ) re turn f a l s e ;
re turn true ;
}

p u b l i c O b j e c t g e t ( f i n a l i n t i n d e x )
{
i f ( index >=numObjs ) / / | | i n d e x < 0)

t h rowIndexOutOfBoundsExcep t ion ( i n d e x ) ;
re turn o b j s [ i n d e x ] ;
}

/∗ ∗ i d e n t i c a l t o g e t ( i n d e x ) ∗ /
p u b l i c O b j e c t g e t V a l u e ( f i n a l i n t i n d e x )

{
i f ( index >=numObjs ) / / | | i n d e x < 0)

t h rowIndexOutOfBoundsExcep t ion ( i n d e x ) ;
re turn o b j s [ i n d e x ] ;
}
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p u b l i c O b j e c t s e t ( f i n a l i n t index , f i n a l O b j e c t e l e m e n t )
{
i f ( index >=numObjs ) / / | | i n d e x < 0)

t h rowIndexOutOfBoundsExcep t ion ( i n d e x ) ;
O b j e c t r e t u r n v a l = o b j s [ i n d e x ] ;
o b j s [ i n d e x ] = e l e m e n t ;
re turn r e t u r n v a l ;
}

/∗ ∗ i d e n t i c a l t o s e t ( index , e l e m e n t ) ∗ /
p u b l i c O b j e c t s e t V a l u e ( f i n a l i n t index , f i n a l O b j e c t

e l e m e n t )
{
i f ( index >=numObjs ) / / | | i n d e x < 0)

t h rowIndexOutOfBoundsExcep t ion ( i n d e x ) ;
O b j e c t r e t u r n v a l = o b j s [ i n d e x ] ;
o b j s [ i n d e x ] = e l e m e n t ;
re turn r e t u r n v a l ;
}

p u b l i c boolean removeAl l ( f i n a l C o l l e c t i o n c )
{
boolean f l a g = f a l s e ;
I t e r a t o r i t e r a t o r = c . i t e r a t o r ( ) ;
whi le ( i t e r a t o r . hasNext ( ) )

i f ( remove ( i t e r a t o r . n e x t ( ) ) ) f l a g = t rue ;
re turn f l a g ;
}

p u b l i c boolean r e t a i n A l l ( f i n a l C o l l e c t i o n c )
{
boolean f l a g = f a l s e ;
f o r ( i n t x =0; x<numObjs ; x ++)

i f ( ! c . c o n t a i n s ( o b j s [ x ] ) )
{
f l a g = t rue ;
remove ( x ) ;
x−−; / / c o n s i d e r t h e newly−swapped−i n i t e m
}

re turn f l a g ;
}

/∗ ∗ Removes t h e o b j e c t a t t h e g i v e n index , s h i f t i n g t h e
o t h e r o b j e c t s down . ∗ /

p u b l i c O b j e c t r e m o v e N o n d e s t r u c t i v e l y ( f i n a l i n t i n d e x )
{
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i f ( index >=numObjs ) / / | | i n d e x < 0)
t h rowIndexOutOfBoundsExcep t ion ( i n d e x ) ;

O b j e c t r e t = o b j s [ i n d e x ] ;
i f ( i n d e x < numObjs − 1) / / i t ’ s n o t t h e t o p m o s t

o b j e c t , must swap down
System . a r r a y c o p y ( ob j s , i n d e x +1 , ob j s , index ,

numObjs − i n d e x − 1) ;
o b j s [ numObjs−1] = n u l l ; / / l e t GC
numObjs−−;
re turn r e t ;
}

/∗ ∗ Removes t h e o b j e c t , moving t h e t o p m o s t o b j e c t i n t o i t s
p o s i t i o n . ∗ /

p u b l i c boolean remove ( f i n a l O b j e c t o )
{
i n t numObjs = t h i s . numObjs ;
O b j e c t [ ] o b j s = t h i s . o b j s ;
f o r ( i n t x =0; x<numObjs ; x ++)

i f ( o== n u l l ? o b j s [ x ]== n u l l : o== o b j s [ x ] | | o .
e q u a l s ( o b j s [ x ] ) )
{
remove ( x ) ;
re turn true ;
}

re turn f a l s e ;
}

/∗ ∗ Removes m u l t i p l e i n s t a n t i a t i o n s o f an o b j e c t ∗ /
p u b l i c boolean r e m o v e M u l t i p l y ( f i n a l O b j e c t o )

{
i n t numObjs = t h i s . numObjs ;
O b j e c t [ ] o b j s = t h i s . o b j s ;
boolean f l a g = f a l s e ;
f o r ( i n t x =0; x<numObjs ; x ++)

i f ( o== n u l l ? o b j s [ x ]== n u l l : o== o b j s [ x ] | | o .
e q u a l s ( o b j s [ x ] ) )
{
f l a g = t rue ;
remove ( x ) ;
x−−; / / t o check t h e n e x t i t e m swapped i n . . .
}

re turn f l a g ;
}
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/∗ ∗ Removes t h e o b j e c t a t t h e g i v e n index , moving t h e
t o p m o s t o b j e c t i n t o i t s p o s i t i o n . ∗ /

p u b l i c O b j e c t remove ( f i n a l i n t i n d e x )
{
i n t _numObjs = numObjs ;
i f ( i n d e x >= _numObjs ) / / | | i n d e x < 0)

t h rowIndexOutOfBoundsExcep t ion ( i n d e x ) ;
O b j e c t [ ] _ o b j s = t h i s . o b j s ;
O b j e c t r e t = _ o b j s [ i n d e x ] ;
_ o b j s [ i n d e x ] = _ o b j s [ _numObjs−1];
_ o b j s [ _numObjs−1] = n u l l ; / / l e t GC
numObjs−−;
re turn r e t ;
}

p r o t e c t e d void t h rowIndexOutOfBoundsExcep t ion ( f i n a l i n t
i n d e x )

{
throw new IndexOutOfBoundsExcep t ion ( " "+ i n d e x ) ;
}

/∗ ∗ Removes a l l o b j e c t s i n t h e Bag . T h i s i s done by
c l e a r i n g t h e i n t e r n a l a r r a y b u t

n o t r e p l a c i n g i t w i t h a new , s m a l l e r one . ∗ /
p u b l i c vo id c l e a r ( )

{
/ / l o c a l v a r i a b l e s are f a s t e r
i n t l e n = numObjs ;
O b j e c t [ ] o = o b j s ;

f o r ( i n t i = 0 ; i < l e n ; i ++)
o [ i ] = n u l l ; / / l e t GC

numObjs = 0 ;
}

p u b l i c O b j e c t [ ] t o A r r a y ( )
{
O b j e c t [ ] o = new O b j e c t [ numObjs ] ;
System . a r r a y c o p y ( ob j s , 0 , o , 0 , numObjs ) ;
re turn o ;
}

/ / r e v i s e d f o r new Java p r o t o c o l r e q u i r e m e n t s : r e t u r n e d
a r r a y must be same component
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/ / t y p e as t h e pa s s ed i n a r r a y ; pa s s ed i n a r r a y i s n o t used
i f i t i s t o o s m a l l ;

/ / n u l l p o i n t e r e x c e p t i o n i s thrown .
p u b l i c O b j e c t [ ] t o A r r a y ( O b j e c t [ ] o )

{
i f ( o . l e n g t h < numObjs ) / / w i l l throw a n u l l p o i n t e r

e x c e p t i o n ( p r o p e r l y ) i f o i s n u l l
o = ( O b j e c t [ ] ) ( Array . n e w I n s t a n c e ( o . g e t C l a s s ( ) .

getComponentType ( ) , numObjs ) ) ;
e l s e i f ( o . l e n g t h > numObjs )

o [ numObjs ] = n u l l ;
System . a r r a y c o p y ( ob j s , 0 , o , 0 , numObjs ) ;
re turn o ;
}

/∗ ∗ NOT f a i l − f a s t . Use t h i s method o n l y i f you ’ re
concerned abou t a c c e s s i n g numObjs and o b j s d i r e c t l y .
∗ /

p u b l i c I t e r a t o r i t e r a t o r ( )
{
re turn new B a g I t e r a t o r ( t h i s ) ;
}

/∗ ∗ Always r e t u r n s n u l l . T h i s method i s t o adhere t o
I n d e x e d . ∗ /

p u b l i c C l a s s componentType ( )
{
re turn n u l l ;
}

/∗ ∗ S o r t s t h e bag a c c o r d i n g t o t h e p r o v i d e d compara tor ∗ /
p u b l i c vo id s o r t ( Compara tor c )

{
A r r ay s . s o r t ( ob j s , 0 , numObjs , c ) ;
}

/∗ ∗ R e p l a c e s a l l e l e m e n t s i n t h e bag w i t h t h e p r o v i d e d
o b j e c t . ∗ /

p u b l i c vo id f i l l ( O b j e c t o )
{
/ / t e e n y b i t f a s t e r
O b j e c t [ ] o b j s = t h i s . o b j s ;
i n t numObjs = t h i s . numObjs ;

f o r ( i n t x =0; x < numObjs ; x ++)
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o b j s [ x ] = o ;
}

/∗ ∗ S h u f f l e s ( r a n d o m i z e s t h e o r d e r o f ) t h e Bag ∗ /
p u b l i c vo id s h u f f l e ( Random random )

{
/ / t e e n y b i t f a s t e r
O b j e c t [ ] o b j s = t h i s . o b j s ;
i n t numObjs = t h i s . numObjs ;
O b j e c t o b j ;
i n t r and ;

f o r ( i n t x=numObjs−1; x >= 1 ; x−−)
{
r and = random . n e x t I n t ( x +1) ;
o b j = o b j s [ x ] ;
o b j s [ x ] = o b j s [ r and ] ;
o b j s [ r and ] = o b j ;
}

}

/∗ ∗ S h u f f l e s ( r a n d o m i z e s t h e o r d e r o f ) t h e Bag ∗ /
p u b l i c vo id s h u f f l e ( u t i l . M e r s e n n e T w i s t e r F a s t random )

{
/ / t e e n y b i t f a s t e r
O b j e c t [ ] o b j s = t h i s . o b j s ;
i n t numObjs = t h i s . numObjs ;
O b j e c t o b j ;
i n t r and ;

f o r ( i n t x=numObjs−1; x >= 1 ; x−−)
{
r and = random . n e x t I n t ( x +1) ;
o b j = o b j s [ x ] ;
o b j s [ x ] = o b j s [ r and ] ;
o b j s [ r and ] = o b j ;
}

}

/∗ ∗ R e v e r s e s o r d e r o f t h e e l e m e n t s i n t h e Bag ∗ /
p u b l i c vo id r e v e r s e ( )

{
/ / t e e n y b i t f a s t e r
O b j e c t [ ] o b j s = t h i s . o b j s ;
i n t numObjs = t h i s . numObjs ;
i n t l = numObjs / 2 ;
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O b j e c t o b j ;
f o r ( i n t x =0; x < l ; x ++)

{
o b j = o b j s [ x ] ;
o b j s [ x ] = o b j s [ numObjs − x − 1 ] ;
o b j s [ numObjs − x − 1] = o b j ;
}

}

s t a t i c c l a s s B a g I t e r a t o r implements I t e r a t o r , j a v a . i o .
S e r i a l i z a b l e
{
i n t o b j = 0 ;
Bag bag ;
boolean canRemove = f a l s e ;

p u b l i c B a g I t e r a t o r ( Bag bag ) { t h i s . bag = bag ; }

p u b l i c boolean hasNext ( )
{
re turn ( o b j < bag . numObjs ) ;
}

p u b l i c O b j e c t n e x t ( )
{
i f ( o b j >= bag . numObjs ) throw new

NoSuchElementExcept ion ( "No More Elemen t s " ) ;
canRemove = t rue ;
re turn bag . o b j s [ o b j + + ] ;
}

p u b l i c vo id remove ( )
{
i f ( ! canRemove ) throw new I l l e g a l S t a t e E x c e p t i o n ( "

remove ( ) b e f o r e n e x t ( ) , o r remove ( ) c a l l e d t w i c e
" ) ;

/ / more c o n s i s t e n t w i t h t h e f o l l o w i n g l i n e than ’
o b j > bag . numObjs ’ would be . . .

i f ( o b j − 1 >= bag . numObjs ) throw new
NoSuchElementExcept ion ( "No More Elemen t s " ) ;

bag . r e m o v e N o n d e s t r u c t i v e l y ( obj −1) ;
obj−−;
canRemove = f a l s e ;
}

/ / s t a t i c i n n e r c l a s s −− no need t o add a
s e r i a l V e r s i o n U I D

}
}
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Indexed.java

/∗
C o p y r i g h t 2006 by Sean Luke and George Mason U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /

package u t i l ;

/∗ ∗ A s i m p l e i n t e r f a c e ( s i m p l e r than L i s t ) f o r a c c e s s i n g
random−a c c e s s o b j e c t s w i t h o u t chang ing t h e i r s i z e . Adhered

t o by Bag , In tBag , and DoubleBag ∗ /

p u b l i c i n t e r f a c e Indexed
{
/∗ ∗ Shou ld r e t u r n t h e base component t y p e f o r t h i s I n d e x e d

o b j e c t , or
n u l l i f t h e component t y p e s h o u l d be q u e r i e d v i a

g e t V a l u e ( i n d e x ) . g e t C l a s s . ge tComponentType ( ) ∗ /
p u b l i c C l a s s componentType ( ) ;
p u b l i c i n t s i z e ( ) ;
/∗ ∗ Throws an I n d e x O u t O f B o u n d s E x c e p t i o n i f i n d e x i s

i n a p p r o p r i a t e , and I l l e g a l A r g u m e n t E x c e p t i o n
i f t h e v a l u e i s i n a p p r o p r i a t e . Not c a l l e d s e t ( ) i n

o r d e r t o be c o n s i s t e n t w i t h g e t V a l u e ( . . . ) ∗ /
p u b l i c O b j e c t s e t V a l u e ( f i n a l i n t index , f i n a l O b j e c t v a l u e )

throws IndexOutOfBoundsExcept ion ,
I l l e g a l A r g u m e n t E x c e p t i o n ;

/∗ ∗ Throws an I n d e x O u t O f B o u n d s E x c e p t i o n i f i n d e x i s
i n a p p r o p r i a t e . Not c a l l e d g e t ( ) because

t h i s would c o n f l i c t w i t h g e t ( ) methods i n In tBa g e t c .
which don ’ t r e t u r n o b j e c t s . ∗ /

p u b l i c O b j e c t g e t V a l u e ( f i n a l i n t i n d e x )
throws IndexOutOfBoundsExcep t ion ;

}

MersenneTwister.java

package u t i l ;
import j a v a . i o . ∗ ;
import j a v a . u t i l . ∗ ;
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/∗ ∗
∗ <h3>M e r s e n n e T w i s t e r and M e r s e n n e T w i s t e r F a s t </ h3>
∗ <p><b>V e r s i o n 16 </b > , based on v e r s i o n MT199937 ( 9 9 / 1 0 / 2 9 )
∗ o f t h e Mersenne T w i s t e r a l g o r i t h m found a t
∗ <a h r e f =" h t t p : / / www. math . k e i o . ac . j p / matumoto / emt . h tm l ">
∗ The Mersenne T w i s t e r Home Page </a > , w i t h t h e i n i t i a l i z a t i o n
∗ improved u s i n g t h e new 2 0 0 2 / 1 / 2 6 i n i t i a l i z a t i o n a l g o r i t h m
∗ By Sean Luke , October 2004 .
∗
∗ <p><b>MersenneTwis t e r </b> i s a drop−i n s u b c l a s s r e p l a c e m e n t
∗ f o r j a v a . u t i l . Random . I t i s p r o p e r l y s y n c h r o n i z e d and
∗ can be used i n a m u l t i t h r e a d e d e n v i r o n m e n t . On modern VMs

such
∗ as HotSpot , i t i s a p p r o x i m a t e l y 1 / 3 s l o w e r than j a v a . u t i l .

Random .
∗
∗ <p><b>M e r s e n n e T w i s t e r F a s t </b> i s n o t a s u b c l a s s o f j a v a . u t i l

. Random . I t has
∗ t h e same p u b l i c methods as Random does , however , and i t i s
∗ a l g o r i t h m i c a l l y i d e n t i c a l t o M e r s e n n e T w i s t e r .

M e r s e n n e T w i s t e r F a s t
∗ has hard−code i n l i n e d a l l o f i t s methods d i r e c t l y , and made

a l l o f them
∗ f i n a l ( we l l , t h e ones o f consequence anyway ) . Fur ther ,

t h e s e
∗ methods are <i >not </ i > s y n c h r o n i z e d , so t h e same

M e r s e n n e T w i s t e r F a s t
∗ i n s t a n c e c an no t be sha re d by m u l t i p l e t h r e a d s . But a l l t h i s

h e l p s
∗ M e r s e n n e T w i s t e r F a s t a c h i e v e w e l l ove r t w i c e t h e speed o f

M e r s e n n e T w i s t e r .
∗ j a v a . u t i l . Random i s abou t 1 / 3 s l o w e r than

M e r s e n n e T w i s t e r F a s t .
∗
∗ <h3>About t h e Mersenne T w i s t e r </ h3>
∗ <p>T h i s i s a Java v e r s i o n o f t h e C−program f o r MT19937 :

I n t e g e r v e r s i o n .
∗ The MT19937 a l g o r i t h m was c r e a t e d by Makoto Matsumoto and

T a k u j i Nishimura ,
∗ who ask : "When you use t h i s , send an e m a i l t o : matumoto@math

. k e i o . ac . j p
∗ w i t h an a p p r o p r i a t e r e f e r e n c e t o your work " . I n d i c a t e t h a t

t h i s
∗ i s a t r a n s l a t i o n o f t h e i r a l g o r i t h m i n t o Java .
∗
∗ <p><b>R e f e r e n c e . </b>
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∗ Makato Matsumoto and T a k u j i Nishimura ,
∗ " Mersenne T w i s t e r : A 623−D i m e n s i o n a l l y E q u i d i s t r i b u t e d

Uniform
∗ Pseudo−Random Number Genera to r " ,
∗ <i >ACM T r a n s a c t i o n s on Model ing and . Computer S i m u l a t i o n , < / i

>
∗ Vol . 8 , No . 1 , January 1998 , pp 3−−30.
∗
∗ <h3>About t h i s Vers ion </ h3>
∗
∗ <p><b>Changes S i n c e V15 : </ b> Added s e r i a l V e r s i o n U I D t o q u i e t

c o m p i l e r warn ings
∗ f rom Sun ’ s o v e r l y v e r b o s e c o m p i l e r s as o f JDK 1 . 5 .
∗
∗ <p><b>Changes S i n c e V14 : </ b> made s t r i c t f p , w i t h S t r i c t M a t h .

l o g and S t r i c t M a t h . s q r t
∗ i n n e x t G a u s s i a n i n s t e a d o f Math . l o g and Math . s q r t . T h i s i s

l a r g e l y j u s t t o be s a f e ,
∗ as i t p r e s e n t l y makes no d i f f e r e n c e i n t h e speed ,

c o r r e c t n e s s , or r e s u l t s o f t h e
∗ a l g o r i t h m .
∗
∗ <p><b>Changes S i n c e V13 : </ b> c l o n e ( ) method

C l o n e N o t S u p p o r t e d E x c e p t i o n removed .
∗
∗ <p><b>Changes S i n c e V12 : </ b> c l o n e ( ) method added .
∗
∗ <p><b>Changes S i n c e V11 : </ b> s t a t e E q u a l s ( . . . ) method added .

M e r s e n n e T w i s t e r F a s t
∗ i s e q u a l t o o t h e r M e r s e n n e T w i s t e r F a s t s w i t h i d e n t i c a l s t a t e ;

l i k e w i s e
∗ M e r s e n n e T w i s t e r i s e q u a l t o o t h e r M e r s e n n e T w i s t e r w i t h

i d e n t i c a l s t a t e .
∗ T h i s i s n ’ t e q u a l s ( . . . ) because t h a t r e q u i r e s a c o n t r a c t o f

i m m u t a b i l i t y
∗ t o compare by v a l u e .
∗
∗ <p><b>Changes S i n c e V10 : </ b> A d o c u m e n t a t i o n e r r o r s u g g e s t e d

t h a t
∗ s e t S e e d ( i n t [ ] ) r e q u i r e d an i n t [ ] a r r a y 624 long . In f a c t ,

t h e a r r a y
∗ can be any non−z e r o l e n g t h . The new v e r s i o n a l s o c h e c k s f o r

t h i s f a c t .
∗
∗ <p><b>Changes S i n c e V9 : </ b> r e a d S t a t e ( s t r ea m ) and w r i t e S t a t e

( s t r e am )
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∗ p r o v i d e d .
∗
∗ <p><b>Changes S i n c e V8 : </ b> s e t S e e d ( i n t ) was o n l y u s i n g t h e

f i r s t 28 b i t s
∗ o f t h e seed ; i t s h o u l d have been 32 b i t s . For smal l−number

s e e d s t h e
∗ b e h a v i o r i s i d e n t i c a l .
∗
∗ <p><b>Changes S i n c e V7 : </ b> A d o c u m e n t a t i o n e r r o r i n

M e r s e n n e T w i s t e r F a s t
∗ ( b u t n o t M e r s e n n e T w i s t e r ) s t a t e d t h a t n e x t D o u b l e s e l e c t s

u n i f o r m l y from
∗ t h e f u l l −open i n t e r v a l [ 0 , 1 ] . I t does n o t . n e x t D o u b l e ’ s

c o n t r a c t i s
∗ i d e n t i c a l a c r o s s M e r s e n n e T w i s t e r F a s t , MersenneTwis t e r , and

j a v a . u t i l . Random ,
∗ namely , s e l e c t i o n i n t h e h a l f−open i n t e r v a l [ 0 , 1 ) . That i s ,

1 . 0 s h o u l d
∗ n o t be r e t u r n e d . A s i m i l a r c o n t r a c t e x i s t s i n n e x t F l o a t .
∗
∗ <p><b>Changes S i n c e V6 : </ b> L i c e n s e has changed from LGPL t o

BSD .
∗ New t i m i n g i n f o r m a t i o n t o compare a g a i n s t
∗ j a v a . u t i l . Random . R ec en t v e r s i o n s o f HotSpo t have h e l p e d

Random i n c r e a s e
∗ i n speed t o t h e p o i n t where i t i s f a s t e r than

M e r s e n n e T w i s t e r b u t s l o w e r
∗ t han M e r s e n n e T w i s t e r F a s t ( which s h o u l d be t h e case , as i t ’ s

a l e s s complex
∗ a l g o r i t h m b u t i s s y n c h r o n i z e d ) .
∗
∗ <p><b>Changes S i n c e V5 : </ b> New empty c o n s t r u c t o r made t o

work t h e same
∗ as j a v a . u t i l . Random −− namely , i t s e e d s based on t h e c u r r e n t

t i m e i n
∗ m i l l i s e c o n d s .
∗
∗ <p><b>Changes S i n c e V4 : </ b> New i n i t i a l i z a t i o n a l g o r i t h m s .

See
∗ ( s e e <a h r e f =" h t t p : / / www. math . k e i o . ac . j p / matumoto / MT2002 /

emt19937ar . h tm l " </a>
∗ h t t p : / / www. math . k e i o . ac . j p / matumoto / MT2002 / emt19937ar . html </

a >)
∗
∗ <p>The M e r s e n n e T w i s t e r code i s based on s t a n d a r d MT19937 C / C

++
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∗ code by T a k u j i Nishimura ,
∗ w i t h s u g g e s t i o n s from Topher Cooper and Marc R i e f f e l , J u l y

1997 .
∗ The code was o r i g i n a l l y t r a n s l a t e d i n t o Java by Michae l

Lecuyer ,
∗ January 1999 , and t h e o r i g i n a l code i s C o p y r i g h t ( c ) 1999 by

Michae l Lecuyer .
∗
∗ <h3>Java n o t e s </ h3>
∗
∗ <p>T h i s i m p l e m e n t a t i o n i m p l e m e n t s t h e bug f i x e s made
∗ i n Java 1 . 2 ’ s v e r s i o n o f Random , which means i t can be used

w i t h
∗ e a r l i e r v e r s i o n s o f Java . See
∗ <a h r e f =" h t t p : / / www. j a v a s o f t . com / p r o d u c t s / j d k / 1 . 2 / docs / a p i /

j a v a / u t i l / Random . h tm l ">
∗ t h e JDK 1 . 2 j a v a . u t i l . Random documen ta t i on </a> f o r f u r t h e r

d o c u m e n t a t i o n
∗ on t h e random−number g e n e r a t i o n c o n t r a c t s made .

A d d i t i o n a l l y , t h e r e ’ s
∗ an undocumented bug i n t h e JDK j a v a . u t i l . Random . n e x t B y t e s ( )

method ,
∗ which t h i s code f i x e s .
∗
∗ <p> J u s t l i k e j a v a . u t i l . Random , t h i s
∗ g e n e r a t o r a c c e p t s a long seed b u t doesn ’ t use a l l o f i t .

j a v a . u t i l . Random
∗ u s e s 48 b i t s . The Mersenne T w i s t e r i n s t e a d u s e s 32 b i t s (

i n t s i z e ) .
∗ So i t ’ s b e s t i f your seed does n o t e x ce e d t h e i n t range .
∗
∗ <p>M e r s e n n e T w i s t e r can be used r e l i a b l y
∗ on JDK v e r s i o n 1 . 1 . 5 or above . E a r l i e r Java v e r s i o n s have

s e r i o u s bugs i n
∗ j a v a . u t i l . Random ; o n l y M e r s e n n e T w i s t e r F a s t ( and n o t

M e r s e n n e T w i s t e r nor
∗ j a v a . u t i l . Random ) s h o u l d be used w i t h them .
∗
∗ <h3>L i c e n s e </ h3>
∗
∗ C o p y r i g h t ( c ) 2003 by Sean Luke . <br>
∗ P o r t i o n s c o p y r i g h t ( c ) 1993 by Michae l Lecuyer . <br>
∗ A l l r i g h t s r e s e r v e d . <br>
∗
∗ <p> R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i t h

or w i t h o u t
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∗ m o d i f i c a t i o n , are p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g
c o n d i t i o n s are met :

∗ <ul >
∗ < l i > R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above

c o p y r i g h t n o t i c e ,
∗ t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
∗ < l i > R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above

c o p y r i g h t n o t i c e ,
∗ t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e

d o c u m e n t a t i o n
∗ and / or o t h e r m a t e r i a l s p r o v i d e d w i t h t h e d i s t r i b u t i o n .
∗ < l i > N e i t h e r t h e name o f t h e c o p y r i g h t owners , t h e i r

employers , nor t h e
∗ names o f i t s c o n t r i b u t o r s may be used t o e n d o r s e or promote

p r o d u c t s
∗ d e r i v e d from t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n

p e r m i s s i o n .
∗ </ ul >
∗ <p>THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS "
∗ AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT

LIMITED TO , THE
∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE
∗ DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT OWNERS OR

CONTRIBUTORS BE
∗ LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL ,

EXEMPLARY , OR
∗ CONSEQUENTIAL DAMAGES ( INCLUDING , BUT NOT LIMITED TO ,

PROCUREMENT OF
∗ SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE , DATA , OR PROFITS ;

OR BUSINESS
∗ INTERRUPTION ) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY ,

WHETHER IN
∗ CONTRACT, STRICT LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR

OTHERWISE)
∗ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE
∗ POSSIBILITY OF SUCH DAMAGE.
∗
@version 16
∗ /

/ / Note : t h i s c l a s s i s hard− i n l i n e d i n a l l o f i t s methods .
T h i s makes some o f
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/ / t h e methods we l l−n igh u n r e a d a b l e i n t h e i r c o m p l e x i t y . In
f a c t , t h e Mersenne

/ / T w i s t e r i s f a i r l y easy code t o u n d e r s t a n d : i f you ’ re t r y i n g
t o g e t a ha nd l e

/ / on t h e code , I s t r o n g l y s u g g e s t l o o k i n g a t M e r s e n n e T w i s t e r .
j a v a f i r s t .

/ / −− Sean

p u b l i c s t r i c t f p c l a s s M e r s e n n e T w i s t e r F a s t implements
S e r i a l i z a b l e , C l o n e a b l e
{
/ / S e r i a l i z a t i o n
p r i v a t e s t a t i c f i n a l long s e r i a l V e r s i o n U I D =
−8219700664442619525L ; / / l o c k e d as o f V e r s i o n 15

/ / Pe r i od p a r a m e t e r s
p r i v a t e s t a t i c f i n a l i n t N = 624 ;
p r i v a t e s t a t i c f i n a l i n t M = 397 ;
p r i v a t e s t a t i c f i n a l i n t MATRIX_A = 0 x9908b0df ; / /

p r i v a t e s t a t i c f i n a l ∗ c o n s t a n t v e c t o r a
p r i v a t e s t a t i c f i n a l i n t UPPER_MASK = 0 x80000000 ; / / most

s i g n i f i c a n t w−r b i t s
p r i v a t e s t a t i c f i n a l i n t LOWER_MASK = 0 x 7 f f f f f f f ; / / l e a s t

s i g n i f i c a n t r b i t s

/ / Tempering p a r a m e t e r s
p r i v a t e s t a t i c f i n a l i n t TEMPERING_MASK_B = 0 x9d2c5680 ;
p r i v a t e s t a t i c f i n a l i n t TEMPERING_MASK_C = 0 xefc60000 ;

p r i v a t e i n t mt [ ] ; / / t h e a r r a y f o r t h e s t a t e v e c t o r
p r i v a t e i n t mti ; / / m t i==N+1 means mt [N] i s n o t i n i t i a l i z e d
p r i v a t e i n t mag01 [ ] ;

/ / a good i n i t i a l s eed ( o f i n t s i z e , though s t o r e d i n a
long )

/ / p r i v a t e s t a t i c f i n a l l ong GOOD_SEED = 4357;

p r i v a t e double _ _ n e x t N e x t G a u s s i a n ;
p r i v a t e boolean __haveNex tNex tGauss i an ;

/∗ We ’ re o v e r r i d i n g a l l i n t e r n a l data , t o my knowledge , so
t h i s s h o u l d be okay ∗ /

p u b l i c O b j e c t c l o n e ( )
{
t r y
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{
M e r s e n n e T w i s t e r F a s t f = ( M e r s e n n e T w i s t e r F a s t ) ( super

. c l o n e ( ) ) ;
f . mt = ( i n t [ ] ) ( mt . c l o n e ( ) ) ;
f . mag01 = ( i n t [ ] ) ( mag01 . c l o n e ( ) ) ;
re turn f ;
}

catch ( C l o n e N o t S u p p o r t e d E x c e p t i o n e ) { throw new
I n t e r n a l E r r o r ( ) ; } / / s h o u l d n e v e r happen

}

p u b l i c boolean s t a t e E q u a l s ( O b j e c t o )
{
i f ( o== t h i s ) re turn true ;
i f ( o == n u l l | | ! ( o i n s t a n c e o f M e r s e n n e T w i s t e r F a s t ) )

re turn f a l s e ;
M e r s e n n e T w i s t e r F a s t o t h e r = ( M e r s e n n e T w i s t e r F a s t ) o ;
i f ( mt i != o t h e r . mt i ) re turn f a l s e ;
f o r ( i n t x =0; x<mag01 . l e n g t h ; x ++)

i f ( mag01 [ x ] != o t h e r . mag01 [ x ] ) re turn f a l s e ;
f o r ( i n t x =0; x<mt . l e n g t h ; x ++)

i f ( mt [ x ] != o t h e r . mt [ x ] ) re turn f a l s e ;
re turn true ;
}

/∗ ∗ Reads t h e e n t i r e s t a t e o f t h e M e r s e n n e T w i s t e r RNG from
t h e s t r e am ∗ /

p u b l i c vo id r e a d S t a t e ( D a t a I n p u t S t r e a m s t r e a m ) throws
IOExcep t i on

{
i n t l e n = mt . l e n g t h ;
f o r ( i n t x =0; x< l e n ; x ++) mt [ x ] = s t r e a m . r e a d I n t ( ) ;

l e n = mag01 . l e n g t h ;
f o r ( i n t x =0; x< l e n ; x ++) mag01 [ x ] = s t r e a m . r e a d I n t ( ) ;

mt i = s t r e a m . r e a d I n t ( ) ;
_ _ n e x t N e x t G a u s s i a n = s t r e a m . readDoub le ( ) ;
__haveNex tNex tGauss i an = s t r e a m . r e a d B o o l e a n ( ) ;
}

/∗ ∗ W r i t e s t h e e n t i r e s t a t e o f t h e M e r s e n n e T w i s t e r RNG t o
t h e s t r e am ∗ /

p u b l i c vo id w r i t e S t a t e ( Da taOu tpu tS t r eam s t r e a m ) throws
IOExcep t i on

{
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i n t l e n = mt . l e n g t h ;
f o r ( i n t x =0; x< l e n ; x ++) s t r e a m . w r i t e I n t ( mt [ x ] ) ;

l e n = mag01 . l e n g t h ;
f o r ( i n t x =0; x< l e n ; x ++) s t r e a m . w r i t e I n t ( mag01 [ x ] ) ;

s t r e a m . w r i t e I n t ( mt i ) ;
s t r e a m . w r i t e D o u b l e ( _ _ n e x t N e x t G a u s s i a n ) ;
s t r e a m . w r i t e B o o l e a n ( __haveNex tNex tGauss i an ) ;
}

/∗ ∗
∗ C o n s t r u c t o r u s i n g t h e d e f a u l t s eed .
∗ /

p u b l i c M e r s e n n e T w i s t e r F a s t ( )
{
t h i s ( System . c u r r e n t T i m e M i l l i s ( ) ) ;
}

/∗ ∗
∗ C o n s t r u c t o r u s i n g a g i v e n seed . Though you pas s t h i s

s eed i n
∗ as a long , i t ’ s b e s t t o make s u r e i t ’ s a c t u a l l y an

i n t e g e r .
∗
∗ /

p u b l i c M e r s e n n e T w i s t e r F a s t ( f i n a l long s eed )
{
s e t S e e d ( seed ) ;
}

/∗ ∗
∗ C o n s t r u c t o r u s i n g an a r r a y o f i n t e g e r s as seed .
∗ Your a r r a y must have a non−z e r o l e n g t h . Only t h e f i r s t

624 i n t e g e r s
∗ i n t h e a r r a y are used ; i f t h e a r r a y i s s h o r t e r than t h i s

t h e n
∗ i n t e g e r s are r e p e a t e d l y used i n a wrap−around f a s h i o n .
∗ /

p u b l i c M e r s e n n e T w i s t e r F a s t ( f i n a l i n t [ ] a r r a y )
{
s e t S e e d ( a r r a y ) ;
}
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/∗ ∗
∗ I n i t a l i z e t h e pseudo random number g e n e r a t o r . Don ’ t
∗ pass i n a long t h a t ’ s b i g g e r than an i n t ( Mersenne

T w i s t e r
∗ o n l y u s e s t h e f i r s t 32 b i t s f o r i t s s eed ) .
∗ /

synchronized p u b l i c vo id s e t S e e d ( f i n a l long s eed )
{
/ / Due t o a bug i n j a v a . u t i l . Random c l e a r up t o 1 . 2 , we

’ re
/ / do ing our own Gauss ian v a r i a b l e .
__haveNex tNex tGauss i an = f a l s e ;

mt = new i n t [N ] ;

mag01 = new i n t [ 2 ] ;
mag01 [ 0 ] = 0x0 ;
mag01 [ 1 ] = MATRIX_A;

mt [ 0 ] = ( i n t ) ( s eed & 0 x f f f f f f f f ) ;
f o r ( mt i =1 ; mti <N; mt i ++)

{
mt [ mt i ] =

(1812433253 ∗ ( mt [ mti −1] ^ ( mt [ mti −1] >>> 30) )
+ mt i ) ;

/∗ See Knuth TAOCP Vol2 . 3 rd Ed . P . 1 0 6 f o r
m u l t i p l i e r . ∗ /

/∗ In t h e p r e v i o u s v e r s i o n s , MSBs o f t h e seed
a f f e c t ∗ /

/∗ o n l y MSBs o f t h e a r r a y mt [ ] .
∗ /

/∗ 2 0 0 2 / 0 1 / 0 9 m o d i f i e d by Makoto Matsumoto
∗ /

mt [ mt i ] &= 0 x f f f f f f f f ;
/∗ f o r >32 b i t machines ∗ /
}

}

/∗ ∗
∗ S e t s t h e seed o f t h e M e r s e n n e T w i s t e r u s i n g an a r r a y o f

i n t e g e r s .
∗ Your a r r a y must have a non−z e r o l e n g t h . Only t h e f i r s t

624 i n t e g e r s
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∗ i n t h e a r r a y are used ; i f t h e a r r a y i s s h o r t e r than t h i s
t h e n

∗ i n t e g e r s are r e p e a t e d l y used i n a wrap−around f a s h i o n .
∗ /

synchronized p u b l i c vo id s e t S e e d ( f i n a l i n t [ ] a r r a y )
{
i f ( a r r a y . l e n g t h == 0)

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " Array l e n g t h
must be g r e a t e r t h a n z e r o " ) ;

i n t i , j , k ;
s e t S e e d (19650218) ;
i =1 ; j =0 ;
k = (N> a r r a y . l e n g t h ? N : a r r a y . l e n g t h ) ;
f o r ( ; k ! = 0 ; k−−)

{
mt [ i ] = ( mt [ i ] ^ ( ( mt [ i −1] ^ ( mt [ i −1] >>> 30) ) ∗

1664525) ) + a r r a y [ j ] + j ; /∗ non l i n e a r ∗ /
mt [ i ] &= 0 x f f f f f f f f ; /∗ f o r WORDSIZE > 32 machines
∗ /

i ++;
j ++;
i f ( i >=N) { mt [ 0 ] = mt [N−1]; i =1 ; }
i f ( j >= a r r a y . l e n g t h ) j =0 ;
}

f o r ( k=N−1; k ! = 0 ; k−−)
{
mt [ i ] = ( mt [ i ] ^ ( ( mt [ i −1] ^ ( mt [ i −1] >>> 30) ) ∗

1566083941) ) − i ; /∗ non l i n e a r ∗ /
mt [ i ] &= 0 x f f f f f f f f ; /∗ f o r WORDSIZE > 32 machines
∗ /

i ++;
i f ( i >=N)

{
mt [ 0 ] = mt [N−1]; i =1 ;
}

}
mt [ 0 ] = 0 x80000000 ; /∗ MSB i s 1 ; a s s u r i n g non−z e r o

i n i t i a l a r r a y ∗ /
}

p u b l i c f i n a l i n t n e x t I n t ( )
{
i n t y ;
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i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

re turn y ;
}

p u b l i c f i n a l s h o r t n e x t S h o r t ( )
{
i n t y ;
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i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

re turn ( s h o r t ) ( y >>> 16) ;
}

p u b l i c f i n a l char n e x t C h a r ( )
{
i n t y ;
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i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

re turn ( char ) ( y >>> 16) ;
}

p u b l i c f i n a l boolean n e x t B o o l e a n ( )
{
i n t y ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
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{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

re turn ( boolean ) ( ( y >>> 31) != 0) ;
}

/∗ ∗ T h i s g e n e r a t e s a c o i n f l i p w i t h a p r o b a b i l i t y < t t >
p r o b a b i l i t y </ t t >

o f r e t u r n i n g t r u e , e l s e r e t u r n i n g f a l s e . < t t >
p r o b a b i l i t y </ t t > must
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be be tween 0 . 0 and 1 . 0 , i n c l u s i v e . Not as p r e c i s e a
random r e a l

e v e n t as n e x t B o o l e a n ( d oub l e ) , b u t t w i c e as f a s t . To
e x p l i c i t l y

use t h i s , remember you may need t o c a s t t o f l o a t f i r s t .
∗ /

p u b l i c f i n a l boolean n e x t B o o l e a n ( f i n a l f l o a t p r o b a b i l i t y )
{
i n t y ;

i f ( p r o b a b i l i t y < 0 . 0 f | | p r o b a b i l i t y > 1 . 0 f )
throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " p r o b a b i l i t y

must be between 0 . 0 and 1 . 0 i n c l u s i v e . " ) ;
i f ( p r o b a b i l i t y ==0.0 f ) re turn f a l s e ; / / f i x

h a l f−open i s s u e s
e l s e i f ( p r o b a b i l i t y ==1.0 f ) re turn true ; / / f i x

h a l f−open i s s u e s
i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e

{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
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y ^= y >>> 1 1 ; / /
TEMPERING_SHIFT_U ( y )

y ^= ( y << 7) & TEMPERING_MASK_B; / /
TEMPERING_SHIFT_S ( y )

y ^= ( y << 15) & TEMPERING_MASK_C; / /
TEMPERING_SHIFT_T ( y )

y ^= ( y >>> 18) ; / /
TEMPERING_SHIFT_L ( y )

re turn ( y >>> 8) / ( ( f l o a t ) (1 << 24) ) < p r o b a b i l i t y ;
}

/∗ ∗ T h i s g e n e r a t e s a c o i n f l i p w i t h a p r o b a b i l i t y < t t >
p r o b a b i l i t y </ t t >

o f r e t u r n i n g t r u e , e l s e r e t u r n i n g f a l s e . < t t >
p r o b a b i l i t y </ t t > must

be be tween 0 . 0 and 1 . 0 , i n c l u s i v e . ∗ /

p u b l i c f i n a l boolean n e x t B o o l e a n ( f i n a l double p r o b a b i l i t y )
{
i n t y ;
i n t z ;

i f ( p r o b a b i l i t y < 0 . 0 | | p r o b a b i l i t y > 1 . 0 )
throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " p r o b a b i l i t y

must be between 0 . 0 and 1 . 0 i n c l u s i v e . " ) ;
i f ( p r o b a b i l i t y = = 0 . 0 ) re turn f a l s e ; / / f i x

h a l f−open i s s u e s
e l s e i f ( p r o b a b i l i t y = = 1 . 0 ) re turn true ; / / f i x h a l f−

open i s s u e s
i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e

{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
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{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( z >>> 1) ^ mag01 [ z & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( z >>> 1) ^ mag01 [ z & 0

x1 ] ;
}

z = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( z >>> 1) ^ mag01 [ z & 0x1 ] ;
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mti = 0 ;
}

z = mt [ mt i + + ] ;
z ^= z >>> 1 1 ; / /

TEMPERING_SHIFT_U ( z )
z ^= ( z << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( z )
z ^= ( z << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( z )
z ^= ( z >>> 18) ; / /

TEMPERING_SHIFT_L ( z )

/∗ d e r i v e d from n e x t D o u b l e d o c u m e n t a t i o n i n j d k 1 . 2
docs , s e e t o p ∗ /

re turn ( ( ( ( long ) ( y >>> 6) ) << 27) + ( z >>> 5) ) / (
double ) (1L << 53) < p r o b a b i l i t y ;

}

p u b l i c f i n a l byte n e x t B y t e ( )
{
i n t y ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
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mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

re turn ( byte ) ( y >>> 24) ;
}

p u b l i c f i n a l vo id n e x t B y t e s ( byte [ ] b y t e s )
{
i n t y ;

f o r ( i n t x =0; x< b y t e s . l e n g t h ; x ++)
{
i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e

{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y

& 0x1 ] ;
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}
y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &

LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

b y t e s [ x ] = ( byte ) ( y >>> 24) ;
}

}

p u b l i c f i n a l long nextLong ( )
{
i n t y ;
i n t z ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
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mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0
x1 ] ;

}
y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( z >>> 1) ^ mag01 [ z & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( z >>> 1) ^ mag01 [ z & 0

x1 ] ;
}

z = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( z >>> 1) ^ mag01 [ z & 0x1 ] ;

mt i = 0 ;
}
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z = mt [ mt i + + ] ;
z ^= z >>> 1 1 ; / /

TEMPERING_SHIFT_U ( z )
z ^= ( z << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( z )
z ^= ( z << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( z )
z ^= ( z >>> 18) ; / /

TEMPERING_SHIFT_L ( z )

re turn ( ( ( long ) y ) << 32) + ( long ) z ;
}

/∗ ∗ R e t u r n s a long drawn u n i f o r m l y from 0 t o n−1. S u f f i c e
i t t o say ,
n must be > 0 , or an I l l e g a l A r g u m e n t E x c e p t i o n i s r a i s e d

. ∗ /
p u b l i c f i n a l long nextLong ( f i n a l long n )

{
i f ( n <=0)

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " n must be
p o s i t i v e , g o t : " + n ) ;

long b i t s , v a l ;
do

{
i n t y ;
i n t z ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}
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f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y

& 0x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( z >>> 1) ^ mag01 [ z & 0

x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( z >>> 1) ^ mag01 [ z

& 0x1 ] ;
}
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z = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( z >>> 1) ^ mag01 [ z & 0x1 ] ;

mt i = 0 ;
}

z = mt [ mt i + + ] ;
z ^= z >>> 1 1 ; / /

TEMPERING_SHIFT_U ( z )
z ^= ( z << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( z )
z ^= ( z << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( z )
z ^= ( z >>> 18) ; / /

TEMPERING_SHIFT_L ( z )

b i t s = ( ( ( ( ( long ) y ) << 32) + ( long ) z ) >>> 1) ;
v a l = b i t s % n ;
} whi le ( b i t s − v a l + ( n−1) < 0) ;

re turn v a l ;
}

/∗ ∗ R e t u r n s a random d ou b l e i n t h e h a l f−open range from
[ 0 . 0 , 1 . 0 ) . Thus 0 . 0 i s a v a l i d

r e s u l t b u t 1 . 0 i s n o t . ∗ /
p u b l i c f i n a l double nex tDoub le ( )

{
i n t y ;
i n t z ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
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{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( z >>> 1) ^ mag01 [ z & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( z >>> 1) ^ mag01 [ z & 0

x1 ] ;
}

z = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( z >>> 1) ^ mag01 [ z & 0x1 ] ;
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mti = 0 ;
}

z = mt [ mt i + + ] ;
z ^= z >>> 1 1 ; / /

TEMPERING_SHIFT_U ( z )
z ^= ( z << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( z )
z ^= ( z << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( z )
z ^= ( z >>> 18) ; / /

TEMPERING_SHIFT_L ( z )

/∗ d e r i v e d from n e x t D o u b l e d o c u m e n t a t i o n i n j d k 1 . 2
docs , s e e t o p ∗ /

re turn ( ( ( ( long ) ( y >>> 6) ) << 27) + ( z >>> 5) ) / (
double ) (1L << 53) ;

}

p u b l i c f i n a l double n e x t G a u s s i a n ( )
{
i f ( __haveNex tNex tGauss i an )

{
__haveNex tNex tGauss i an = f a l s e ;
re turn _ _ n e x t N e x t G a u s s i a n ;
}

e l s e
{
double v1 , v2 , s ;
do

{
i n t y ;
i n t z ;
i n t a ;
i n t b ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
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f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s
are s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y

& 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^

mag01 [ y & 0x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0
x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s

are s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
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z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &
LOWER_MASK) ;

mt [ kk ] = mt [ kk+M] ^ ( z >>> 1) ^ mag01 [ z
& 0x1 ] ;

}
f o r ( ; kk < N−1; kk ++)

{
z = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( z >>> 1) ^

mag01 [ z & 0x1 ] ;
}

z = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( z >>> 1) ^ mag01 [ z & 0
x1 ] ;

mt i = 0 ;
}

z = mt [ mt i + + ] ;
z ^= z >>> 1 1 ; / /

TEMPERING_SHIFT_U ( z )
z ^= ( z << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( z )
z ^= ( z << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( z )
z ^= ( z >>> 18) ; / /

TEMPERING_SHIFT_L ( z )

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s

are s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
a = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( a >>> 1) ^ mag01 [ a

& 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
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{
a = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( a >>> 1) ^

mag01 [ a & 0x1 ] ;
}

a = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( a >>> 1) ^ mag01 [ a & 0
x1 ] ;

mt i = 0 ;
}

a = mt [ mt i + + ] ;
a ^= a >>> 1 1 ; / /

TEMPERING_SHIFT_U ( a )
a ^= ( a << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( a )
a ^= ( a << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( a )
a ^= ( a >>> 18) ; / /

TEMPERING_SHIFT_L ( a )

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s

are s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
b = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( b >>> 1) ^ mag01 [ b

& 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
b = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( b >>> 1) ^

mag01 [ b & 0x1 ] ;
}
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b = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( b >>> 1) ^ mag01 [ b & 0
x1 ] ;

mt i = 0 ;
}

b = mt [ mt i + + ] ;
b ^= b >>> 1 1 ; / /

TEMPERING_SHIFT_U ( b )
b ^= ( b << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( b )
b ^= ( b << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( b )
b ^= ( b >>> 18) ; / /

TEMPERING_SHIFT_L ( b )

/∗ d e r i v e d from n e x t D o u b l e d o c u m e n t a t i o n i n j d k
1 . 2 docs , s e e t o p ∗ /

v1 = 2 ∗
( ( ( ( ( long ) ( y >>> 6) ) << 27) + ( z >>> 5) ) /

( double ) (1L << 53) )
− 1 ;

v2 = 2 ∗ ( ( ( ( ( long ) ( a >>> 6) ) << 27) + ( b >>>
5) ) / ( double ) (1L << 53) )
− 1 ;

s = v1 ∗ v1 + v2 ∗ v2 ;
} whi le ( s >= 1 | | s ==0) ;

double m u l t i p l i e r = S t r i c t M a t h . s q r t (−2 ∗ S t r i c t M a t h
. l o g ( s ) / s ) ;

_ _ n e x t N e x t G a u s s i a n = v2 ∗ m u l t i p l i e r ;
__haveNex tNex tGauss i an = t rue ;
re turn v1 ∗ m u l t i p l i e r ;
}

}

/∗ ∗ R e t u r n s a random f l o a t i n t h e h a l f−open range from [ 0 . 0
f , 1 . 0 f ) . Thus 0 . 0 f i s a v a l i d

r e s u l t b u t 1 . 0 f i s n o t . ∗ /
p u b l i c f i n a l f l o a t n e x t F l o a t ( )

{
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i n t y ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are s l i g h t l y

f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] & LOWER_MASK) ;
mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
y ^= ( y << 15) & TEMPERING_MASK_C; / /

TEMPERING_SHIFT_T ( y )
y ^= ( y >>> 18) ; / /

TEMPERING_SHIFT_L ( y )

re turn ( y >>> 8) / ( ( f l o a t ) (1 << 24) ) ;
}

/∗ ∗ R e t u r n s an i n t e g e r drawn u n i f o r m l y from 0 t o n−1.
S u f f i c e i t t o say ,
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n must be > 0 , or an I l l e g a l A r g u m e n t E x c e p t i o n i s r a i s e d
. ∗ /

p u b l i c f i n a l i n t n e x t I n t ( f i n a l i n t n )
{
i f ( n <=0)

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " n must be
p o s i t i v e , g o t : " + n ) ;

i f ( ( n & −n ) == n ) / / i . e . , n i s a power o f 2
{
i n t y ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y

& 0x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
y ^= ( y << 7) & TEMPERING_MASK_B; / /

TEMPERING_SHIFT_S ( y )
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y ^= ( y << 15) & TEMPERING_MASK_C; / /
TEMPERING_SHIFT_T ( y )

y ^= ( y >>> 18) ; / /
TEMPERING_SHIFT_L ( y )

re turn ( i n t ) ( ( n ∗ ( long ) ( y >>> 1) ) >> 31) ;
}

i n t b i t s , v a l ;
do

{
i n t y ;

i f ( mt i >= N) / / g e n e r a t e N words a t one t i m e
{
i n t kk ;
f i n a l i n t [ ] mt = t h i s . mt ; / / l o c a l s are

s l i g h t l y f a s t e r
f i n a l i n t [ ] mag01 = t h i s . mag01 ; / / l o c a l s are

s l i g h t l y f a s t e r

f o r ( kk = 0 ; kk < N − M; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk+M] ^ ( y >>> 1) ^ mag01 [ y & 0

x1 ] ;
}

f o r ( ; kk < N−1; kk ++)
{
y = ( mt [ kk ] & UPPER_MASK) | ( mt [ kk +1] &

LOWER_MASK) ;
mt [ kk ] = mt [ kk +(M−N) ] ^ ( y >>> 1) ^ mag01 [ y

& 0x1 ] ;
}

y = ( mt [N−1] & UPPER_MASK) | ( mt [ 0 ] &
LOWER_MASK) ;

mt [N−1] = mt [M−1] ^ ( y >>> 1) ^ mag01 [ y & 0x1 ] ;

mt i = 0 ;
}

y = mt [ mt i + + ] ;
y ^= y >>> 1 1 ; / /

TEMPERING_SHIFT_U ( y )
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y ^= ( y << 7) & TEMPERING_MASK_B; / /
TEMPERING_SHIFT_S ( y )

y ^= ( y << 15) & TEMPERING_MASK_C; / /
TEMPERING_SHIFT_T ( y )

y ^= ( y >>> 18) ; / /
TEMPERING_SHIFT_L ( y )

b i t s = ( y >>> 1) ;
v a l = b i t s % n ;
} whi le ( b i t s − v a l + ( n−1) < 0) ;

re turn v a l ;
}

/∗ ∗
∗ T e s t s t h e code .
∗ /

p u b l i c s t a t i c vo id main ( S t r i n g a r g s [ ] )
{
i n t j ;

M e r s e n n e T w i s t e r F a s t r ;

/ / CORRECTNESS TEST
/ / COMPARE WITH h t t p : / / www. math . k e i o . ac . j p / matumoto /

CODES/ MT2002 / mt19937ar . o u t

r = new M e r s e n n e T w i s t e r F a s t ( new i n t [ ] { 0 x123 , 0x234 , 0
x345 , 0 x456 } ) ;

System . o u t . p r i n t l n ( " Outpu t o f M e r s e n n e T w i s t e r F a s t w i th
new ( 2 0 0 2 / 1 / 2 6 ) s e e d i n g mechanism " ) ;

f o r ( j =0 ; j <1000; j ++)
{
/ / f i r s t , c o n v e r t t h e i n t from s i g n e d t o " u n s i g n e d "
long l = ( long ) r . n e x t I n t ( ) ;
i f ( l < 0 ) l += 4294967296L ; / / max i n t v a l u e
S t r i n g s = S t r i n g . va lueOf ( l ) ;
whi le ( s . l e n g t h ( ) < 10) s = " " + s ; / / b u f f e r
System . o u t . p r i n t ( s + " " ) ;
i f ( j %5==4) System . o u t . p r i n t l n ( ) ;
}

/ / SPEED TEST

f i n a l long SEED = 4357 ;



3.A Simulation Codes 237

i n t xx ; long ms ;
System . o u t . p r i n t l n ( " \ nTime t o t e s t g r a b b i n g 100000000

i n t s " ) ;

Random r r = new Random (SEED) ;
xx = 0 ;
ms = System . c u r r e n t T i m e M i l l i s ( ) ;
f o r ( j = 0 ; j < 100000000; j ++)

xx += r r . n e x t I n t ( ) ;
System . o u t . p r i n t l n ( " j a v a . u t i l . Random : " + ( System .

c u r r e n t T i m e M i l l i s ( )−ms ) + " I g n o r e t h i s : "
+ xx ) ;

r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
ms = System . c u r r e n t T i m e M i l l i s ( ) ;
xx =0;
f o r ( j = 0 ; j < 100000000; j ++)

xx += r . n e x t I n t ( ) ;
System . o u t . p r i n t l n ( " Mersenne T w i s t e r F a s t : " + ( System .

c u r r e n t T i m e M i l l i s ( )−ms ) + " I g n o r e t h i s : "
+ xx ) ;

/ / TEST TO COMPARE TYPE CONVERSION BETWEEN
/ / M e r s e n n e T w i s t e r F a s t . j a v a AND M e r s e n n e T w i s t e r . j a v a

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 b o o l e a n s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . n e x t B o o l e a n ( ) + " " ) ;
i f ( j %8==7) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %8==7) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab 1000 b o o l e a n s o f i n c r e a s i n g
p r o b a b i l i t y u s i n g n e x t B o o l e a n ( do ub l e ) " ) ;

r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . n e x t B o o l e a n ( ( double ) ( j / 9 9 9 . 0 ) ) +

" " ) ;
i f ( j %8==7) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %8==7) ) System . o u t . p r i n t l n ( ) ;
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System . o u t . p r i n t l n ( " \ nGrab 1000 b o o l e a n s o f i n c r e a s i n g
p r o b a b i l i t y u s i n g n e x t B o o l e a n ( f l o a t ) " ) ;

r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . n e x t B o o l e a n ( ( f l o a t ) ( j / 9 9 9 . 0 f ) ) +

" " ) ;
i f ( j %8==7) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %8==7) ) System . o u t . p r i n t l n ( ) ;

byte [ ] b y t e s = new byte [ 1 0 0 0 ] ;
System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 b y t e s u s i n g

n e x t B y t e s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
r . n e x t B y t e s ( b y t e s ) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( b y t e s [ j ] + " " ) ;
i f ( j %16==15) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %16==15) ) System . o u t . p r i n t l n ( ) ;

byte b ;
System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 b y t e s −− must

be same as n e x t B y t e s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( ( b = r . n e x t B y t e ( ) ) + " " ) ;
i f ( b != b y t e s [ j ] ) System . o u t . p r i n t ( "BAD " ) ;
i f ( j %16==15) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %16==15) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 s h o r t s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . n e x t S h o r t ( ) + " " ) ;
i f ( j %8==7) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %8==7) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 i n t s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
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f o r ( j = 0 ; j < 1000 ; j ++)
{
System . o u t . p r i n t ( r . n e x t I n t ( ) + " " ) ;
i f ( j %4==3) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %4==3) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 i n t s o f
d i f f e r e n t s i z e s " ) ;

r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
i n t max = 1 ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . n e x t I n t ( max ) + " " ) ;
max ∗= 2 ;
i f ( max <= 0) max = 1 ;
i f ( j %4==3) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %4==3) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 l o n g s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . nextLong ( ) + " " ) ;
i f ( j %3==2) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %3==2) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 l o n g s o f
d i f f e r e n t s i z e s " ) ;

r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
long max2 = 1 ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . nextLong ( max2 ) + " " ) ;
max2 ∗= 2 ;
i f ( max2 <= 0) max2 = 1 ;
i f ( j %4==3) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %4==3) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 f l o a t s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
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System . o u t . p r i n t ( r . n e x t F l o a t ( ) + " " ) ;
i f ( j %4==3) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %4==3) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 d o u b l e s " ) ;
r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . nex tDoub le ( ) + " " ) ;
i f ( j %3==2) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %3==2) ) System . o u t . p r i n t l n ( ) ;

System . o u t . p r i n t l n ( " \ nGrab t h e f i r s t 1000 g a u s s i a n
d o u b l e s " ) ;

r = new M e r s e n n e T w i s t e r F a s t (SEED) ;
f o r ( j = 0 ; j < 1000 ; j ++)

{
System . o u t . p r i n t ( r . n e x t G a u s s i a n ( ) + " " ) ;
i f ( j %3==2) System . o u t . p r i n t l n ( ) ;
}

i f ( ! ( j %3==2) ) System . o u t . p r i n t l n ( ) ;

}
}

FELW2ST.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package u t i l ;
import edu . emory . mathcs . j t r a n s f o r m s . f f t . DoubleFFT_1D ;

/∗ ∗ A t r a n s c r i p t i o n o f t h e MATLAB i m p l e m e n t a t i o n ( by Katsumi
S h i m o t s u ) o f t h e

∗ F e a s i b l e Exac t Loca l W h i t t l e 2−STage e s t i m a t o r d e s c r i b e d i n
S i m o t s u ( 2 0 1 0 )

∗
∗ WARNING: − n o t c o m p a t i b l e w i t h complex−number da ta
∗
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∗ T h i s v e r s i o n u s e s quas i−Netwon u p d a t i n g i n s t e a d o f Newton
s t e p s .

∗ I t p r o d u c e s more s t a b l e e s t i m a t e s than t h e p r e v i o u s
v e r s i o n when m i s s m a l l .

∗
∗ T h i s code u s e s a m o d i f i e d v e r s i o n o f C h r i s Sims ’ BFGS

o p t i m i z a t i o n s o f t w a r e ,
∗ s p e c i f i c a l l y b f g s i _ k s . m, c s m i n i t _ k s . m, c s m i n w e l _ k s .

m, and numgrad .m.
∗
∗ V i s i t C h r i s Sims ’ webpage h t t p : / / www. p r i n c e t o n . edu / ~

s ims f o r t h e o r i g i n a l code
∗ and i t s d o c u m e n t a t i o n . I t h a n k C h r i s Sims f o r

g e n e r o u s l y making h i s Matlab codes
∗ p u b l i c l y a v a i l a b l e .
∗
∗ 2 4 / 0 4 / 2 0 1 3 − o u t p u t compared t o MATLAB code o u t p u t f o r

d a t a s e t from Mayoral , 2006
∗ ( Oxford B u l l e t i n o f Economics and S t a t i s t i c s , 68)
∗ Outcome : i d e n t i c a l o u t p u t
∗ /
p u b l i c c l a s s FELW2St {

s t a t i c double [ ] d a t a ;
s t a t i c i n t numFreq ;
s t a t i c i n t t a p e r O r d e r ;

p u b l i c FELW2St ( double [ ] da t a , i n t numFreq , i n t t a p e r O r d e r ) {
t h i s . d a t a = d a t a ;
t h i s . numFreq = numFreq ;
t h i s . t a p e r O r d e r = t a p e r O r d e r ;

}

p r i v a t e s t a t i c c l a s s G r a d i e n t {
double g r a d i e n t ;
boolean b a d G r a d i e n t ;

G r a d i e n t ( double g r a d i e n t , boolean b a d G r a d i e n t ) {
t h i s . g r a d i e n t = g r a d i e n t ;
t h i s . b a d G r a d i e n t = b a d G r a d i e n t ;

}
}

p r i v a t e s t a t i c c l a s s CSMinPass {
double w h i t t l e V a l ;
double p a r Va l ;
i n t w h i t t l e C o u n t ;
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i n t r e t u r n C o d e ;
/∗ 0 => normal s t e p ; 1 => z e r o g r a d i e n t ; 2 , 4 => back

and f o r t h a d j u s t m e n t
∗ o f s t e p s i z e d idn ’ t f i n i s h ; 3 => s m a l l e s t s t e p s i z e

s t i l l i m p r o v e s t o o
∗ s low ; 5 => l a r g e s t s t e p s i z e s t i l l i m p r o v e s t o o f a s t ;

6 => no
∗ improvement found ∗ /

CSMinPass ( double w h i t t l e V a l , double parVal , i n t
w h i t t l e C o u n t , i n t r e t u r n C o d e ) {

t h i s . w h i t t l e V a l = w h i t t l e V a l ;
t h i s . p a rV a l = pa rV a l ;
t h i s . w h i t t l e C o u n t = w h i t t l e C o u n t ;
t h i s . r e t u r n C o d e = r e t u r n C o d e ;

}
}

p u b l i c double e s t i m a t e ( ) {
/∗ f i r s t m i n i m i s e V e l a s c o ’ s t a p e r e d l o c a l W h i t t l e

l i k e l i h o o d ∗ /
double i n i t i a l P a r = fminbnd (−1 ,3) ;
double c o n v e r g e n c e C r i t e r i o n = Math . pow ( 1 0 . 0 , −1 2 . 0 ) ;
i n t m a x I t e r a t i o n s = 100 ;

/∗ now m i n i m i s e t h e e x a c t W h i t t l e l i k e l i h o o d ∗ /
re turn csminwel_ks ( i n i t i a l P a r , 4 , c o n v e r g e n c e C r i t e r i o n ,

m a x I t e r a t i o n s , t rue ) ;
}

/∗ t h i s i s a s t r a i g h t up renaming o f S t e v e V e r r i l l ’ s
t r a n s l a t i o n o f t h e

∗ FORTRAN Fmin . His header :
∗ T h i s c l a s s was t r a n s l a t e d by a s t a t i s t i c i a n from t h e

FORTRAN
∗ v e r s i o n o f fm in . I t i s NOT an o f f i c i a l t r a n s l a t i o n . When
∗ p u b l i c domain Java o p t i m i z a t i o n r o u t i n e s become a v a i l a b l e
∗ f rom p r o f e s s i o n a l n u m e r i c a l a n a l y s t s , t h e n <b>THE CODE

PRODUCED
∗BY THE NUMERICAL ANALYSTS SHOULD BE USED</b >.
∗
∗<p>
∗Meanwhile , i f you have s u g g e s t i o n s f o r i m p r o v i n g t h i s
∗ code , p l e a s e c o n t a c t S t e v e V e r r i l l a t steve@www1 . f p l . f s .

f e d . us .
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∗
∗@author S t e v e V e r r i l l
∗@version . 5 −−− March 24 , 1998 ∗ /
s t a t i c double fminbnd ( double parMin , double parMax ) {

double g o l d e n R a t i o = . 5 ∗ ( 3 . 0 − Math . s q r t ( 5 . 0 ) ) ;
double i n c r e m e n t = 0 . 0 ;

/ / 1 .1102 e−16 i s machine p r e c i s i o n

double m i n i s c u l e = Math . s q r t ( 1 . 2 e−16) ;

double o l d e r P a r = parMin + g o l d e n R a t i o ∗ ( parMax−parMin ) ;
double o l d P a r = o l d e r P a r ;
double d i f f P a r = o l d e r P a r ;
double f u r t h e s t F r o m B o u n d = 0 . 0 ;
double w h i t t l e = v e l t a p e r ( d i f f P a r ) ;
double o l d e r W h i t t l e = w h i t t l e ;
double o l d W h i t t l e = w h i t t l e ;
double t o l e r a n c e 3 = Math . pow ( 1 0 . 0 , −1 2 . 0 ) / 3 . 0 ;

double parMean = 0 . 5 ∗ ( parMin + parMax ) ;
double t o l e r a n c e 1 = m i n i s c u l e ∗Math . abs ( d i f f P a r ) +

t o l e r a n c e 3 ;
double t o l e r a n c e 2 = 2 . 0∗ t o l e r a n c e 1 ;

/ / main loop
whi le ( Math . abs ( d i f f P a r−parMean ) > ( t o l e r a n c e 2 − 0 . 5 ∗ (

parMax−parMin ) ) ) {
double p = 0 . 0 ;
double q = 0 . 0 ;
double r = 0 . 0 ;
i f ( Math . abs ( f u r t h e s t F r o m B o u n d ) > t o l e r a n c e 1 ) {

/ / f i t t h e p a r a b o l a e
r = ( d i f f P a r−o l d P a r ) ∗ ( w h i t t l e−o l d e r W h i t t l e ) ;
q = ( d i f f P a r−o l d e r P a r ) ∗ ( w h i t t l e−o l d W h i t t l e ) ;

p = ( d i f f P a r−o l d e r P a r ) ∗q − ( d i f f P a r−o l d P a r ) ∗ r ;
q = 2 . 0 ∗ ( q−r ) ;

i f ( q > 0 . 0 ) {
p = −p ;

}
e l s e {

q = −q ;
}
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r = f u r t h e s t F r o m B o u n d ;
f u r t h e s t F r o m B o u n d = i n c r e m e n t ;

/ / b race below c o r r e s p o n d s t o s t a t e m e n t 50
}

i f ( ( Math . abs ( p ) < Math . abs ( . 5 ∗ q∗ r ) )
&& ( p > q ∗ ( parMin−d i f f P a r ) )
&& ( p < q ∗ ( parMax−d i f f P a r ) ) ) {

/ / a p a r a b o l i c i n t e r p o l a t i o n s t e p
i n c r e m e n t = p / q ;
double newPar = d i f f P a r + i n c r e m e n t ;

/ / v e l t a p e r must n o t be e v a l u a t e d t o o c l o s e t o
parMin or parMax

i f ( ( ( newPar−parMin ) < t o l e r a n c e 2 ) | | ( ( parMax−
newPar ) < t o l e r a n c e 2 ) ) {

i n c r e m e n t = t o l e r a n c e 1 ;
i f ( d i f f P a r >= parMean ) i n c r e m e n t = −

i n c r e m e n t ;
}

/ / b race below c o r r e s p o n d s t o s t a t e m e n t 60
}
e l s e {

/ / a golden−s e c t i o n s t e p
i f ( d i f f P a r < parMean ) {

f u r t h e s t F r o m B o u n d = parMax−d i f f P a r ;
}
e l s e {

f u r t h e s t F r o m B o u n d = parMin−d i f f P a r ;
}
i n c r e m e n t = g o l d e n R a t i o ∗ f u r t h e s t F r o m B o u n d ;

}

/ / v e l t a p e r must n o t be e v a l u a t e d t o o c l o s e t o
d i f f P a r

double newPar = 0 . 0 ;
i f ( Math . abs ( i n c r e m e n t ) >= t o l e r a n c e 1 ) {

newPar = d i f f P a r + i n c r e m e n t ;
}
e l s e {

i f ( i n c r e m e n t > 0 . 0 ) {
newPar = d i f f P a r + t o l e r a n c e 1 ;

}
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e l s e {
newPar = d i f f P a r − t o l e r a n c e 1 ;

}
}

double newWhi t t l e = v e l t a p e r ( newPar ) ;

/ / Update parMin , parMax , v , w , and d i f f P a r
i f ( w h i t t l e <= newWhi t t l e ) {

/∗ no improvement means narrowing t h e s e a r c h t o
d i f f P a r ’ s s i d e o f

∗ newPar ∗ /
i f ( newPar < d i f f P a r ) {

parMin = newPar ;
}
e l s e {

parMax = newPar ;
}
/ / b race below c o r r e s p o n d s t o s t a t e m e n t 140

}

i f ( newWhi t t l e <= w h i t t l e ) {
/∗ an improvement means narrowing s e a r c h t o

newPar ’ s s i d e o f
∗ d i f f P a r ∗ /

i f ( newPar < d i f f P a r ) {
parMax = d i f f P a r ;

}
e l s e {

parMin = d i f f P a r ;
}

o l d e r P a r = o l d P a r ;
o l d e r W h i t t l e = o l d W h i t t l e ;
o l d P a r = d i f f P a r ;
o l d W h i t t l e = w h i t t l e ;
d i f f P a r = newPar ;
w h i t t l e = newWhi t t l e ;

/∗ r e s e t t h e f o l l o w i n g f o r t h e new parMin ,
parMax and d i f f P a r ∗ /

parMean = 0 . 5 ∗ ( parMin + parMax ) ;
t o l e r a n c e 1 = m i n i s c u l e ∗Math . abs ( d i f f P a r ) +

t o l e r a n c e 3 ;
t o l e r a n c e 2 = 2 . 0∗ t o l e r a n c e 1 ;
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/ / b race below c o r r e s p o n d s t o s t a t e m e n t 170
}
e l s e {

/∗ no improvement means r e p l a c i n g one o f t h e
o t h e r r e f e r e n c e

∗ p o i n t s ∗ /
i f ( ( newWhi t t l e <= o l d W h i t t l e ) | | ( o l d P a r ==

d i f f P a r ) ) {
/∗ t h e more r e c e n t r e f e r e n c e v a l u e i s

bea ten , and r e p l a c e d ∗ /
o l d e r P a r = o l d P a r ;
o l d e r W h i t t l e = o l d W h i t t l e ;
o l d P a r = newPar ;
o l d W h i t t l e = newWhi t t l e ;

parMean = 0 . 5 ∗ ( parMin + parMax ) ;
t o l e r a n c e 1 = m i n i s c u l e ∗Math . abs ( d i f f P a r ) +

t o l e r a n c e 3 ;
t o l e r a n c e 2 = 2 . 0∗ t o l e r a n c e 1 ;

}
e l s e i f ( ( newWhi t t l e > o l d e r W h i t t l e ) && (

o l d e r P a r != d i f f P a r )
&& ( o l d e r P a r != o l d P a r ) ) {

/∗ t h e new v a l u e i s worse than a l l
r e f e r e n c e v a l u e s ! ∗ /

parMean = 0 . 5 ∗ ( parMin + parMax ) ;
t o l e r a n c e 1 = m i n i s c u l e ∗Math . abs ( d i f f P a r ) +

t o l e r a n c e 3 ;
t o l e r a n c e 2 = 2 . 0∗ t o l e r a n c e 1 ;

}
e l s e {

/∗ o t h e r w i s e t h e l e s s r e c e n t r e f e r e n c e
v a l u e i s r e p l a c e d ∗ /

o l d e r P a r = newPar ;
o l d e r W h i t t l e = newWhi t t l e ;

parMean = 0 . 5 ∗ ( parMin + parMax ) ;
t o l e r a n c e 1 = m i n i s c u l e ∗Math . abs ( d i f f P a r ) +

t o l e r a n c e 3 ;
t o l e r a n c e 2 = 2 . 0∗ t o l e r a n c e 1 ;

}
}

/ / b race below c o r r e s p o n d s t o s t a t e m e n t 190
}
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re turn d i f f P a r ;
}

/∗ t e s t e d : behaves l i k e MATLAB ( f o r d =0.52 , p=3 , m=22 , da ta
from mdata . c s v ) ∗ /

s t a t i c double v e l t a p e r ( double d i f f P a r ) {
i n t d a t a S i z e = d a t a . l e n g t h ;

double [ ] t a p e r e d D a t a = d a t a . c l o n e ( ) ;
i f ( t a p e r O r d e r == 2) {

double median = Math . c e i l ( ( double ) d a t a S i z e / 2 . 0 ) ;
f o r ( i n t t =0 ; t < d a t a S i z e ; t ++)

t a p e r e d D a t a [ t ] ∗= ( 1 . 0 − Math . abs ( t +1.0−median ) /
median ) ;

}
e l s e {

i n t c o n v o l v i n g L e n g t h = ( i n t ) Math . f l o o r ( ( d a t a S i z e
+ 2 . 0 ) / 3 . 0 ) ;

f o r ( i n t t =0 ; t < d a t a S i z e ; t ++) {
double t a p e r i n g = 0 . 0 ;
f o r ( i n t s =1; s <= c o n v o l v i n g L e n g t h ; s ++) {

i f ( t +1 >= s && s > t +1 − c o n v o l v i n g L e n g t h )
t a p e r i n g += s ;

i f ( t +1−c o n v o l v i n g L e n g t h < s+ c o n v o l v i n g L e n g t h
&& s + c o n v o l v i n g L e n g t h <= t +1)

t a p e r i n g += c o n v o l v i n g L e n g t h − s ;
}
t a p e r e d D a t a [ t ] ∗= t a p e r i n g ;

}
}

double [ ] f t T a p e r e d D a t a = new double [2∗ d a t a S i z e ] ;
f o r ( i n t i =0 ; i < d a t a S i z e ; i ++) {

f t T a p e r e d D a t a [2∗ i ] = t a p e r e d D a t a [ i ] ;
}
new DoubleFFT_1D ( d a t a S i z e ) . complexForward ( f t T a p e r e d D a t a )

;
double f r e q u e n c y = 2 . 0∗Math . PI / ( double ) d a t a S i z e ;
/∗ The complex da ta v e c t o r now has r e a l components

f o l l o w e d by i m a g i n a r y
∗ components i n s e q u e n c e ; m u l t i p l i c a t i o n w i t h exp ( i ∗

lambda ) w i l l have t o
∗ be done two e n t r i e s a t a t i m e ∗ /

double pe r iodog ram = 0 . 0 ;
double logFreqSum = 0 . 0 ;
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f o r ( i n t k= t a p e r O r d e r ; k<=numFreq−1; k+= t a p e r O r d e r ) {
double t h i s F r e q = f r e q u e n c y ∗ ( double ) k ;
logFreqSum += Math . l o g ( t h i s F r e q ) ;
/∗ f i r s t t o f i n d t h e r e a l and i m a g i n a r y p a r t s o f
∗ c o n j ( f f t ( c o n j ( d i f f D a t a ) ) ) ∗ exp ( i ∗ f r e q u e n c y ) . . . ∗ /

double r e a l P a r t = f t T a p e r e d D a t a [2∗ k ] ∗ Math . cos (
t h i s F r e q )

+ f t T a p e r e d D a t a [2∗ k +1] ∗ Math . s i n ( t h i s F r e q ) ;
/ / − i ∗ i = 1

double i m a g i n a r y P a r t = f t T a p e r e d D a t a [2∗ k ] ∗ Math . s i n
( t h i s F r e q )

− f t T a p e r e d D a t a [2∗ k +1] ∗ Math . cos ( t h i s F r e q ) ;
/ / − i ∗ 1 = − i

/∗ now t o add t o t h e per iodogram wdx∗ c o n j ( wdx ) = re ∗
re + im∗ im ∗ /

pe r iodog ram += Math . pow ( t h i s F r e q , 2 . 0 ∗ d i f f P a r )
∗ ( r e a l P a r t ∗ r e a l P a r t + i m a g i n a r y P a r t ∗

i m a g i n a r y P a r t ) ;
}
pe r iodog ram ∗= 1 . 0 / ( 2 . 0 ∗Math . PI ∗ ( double ) d a t a S i z e ) ;
pe r iodog ram ∗= ( double ) t a p e r O r d e r / ( double ) numFreq ;

/∗ r e t u r n t h e W h i t t l e l i k e l i h o o d ∗ /
re turn Math . l o g ( pe r iodog ram )

− 2 . 0∗ d i f f P a r ∗ logFreqSum ∗ ( double ) t a p e r O r d e r / (
double ) numFreq ;

}

s t a t i c double csminwel_ks ( double i n i t i a l P a r , double
i n i t i a l H e s s ,

double c o n v e r g e n c e C r i t e r i o n , i n t m a x I t e r a t i o n s ,
boolean e s t i m a t e F i r s t D a t u m ) {

boolean done = f a l s e ;
i n t r e t c o d e = 0 ;
i n t i t e r a t i o n s = 0 ;
i n t w h i t t l e C o u n t = 0 ;
i n t s n i t = 100 ;

/∗ g e t i n i t i a l e x a c t w h i t t l e e s t i m a t e ∗ /
double i n i t i a l W h i t t l e = e w h i t t l e ( i n i t i a l P a r ,

e s t i m a t e F i r s t D a t u m ) ;

/∗ check workab le i n i t i a l parame te r has been pa s s ed ∗ /
i f ( i n i t i a l W h i t t l e > Math . pow ( 1 0 . 0 , 5 0 . 0 ) )

throw new Run t imeExcep t ion ( " Bad i n i t i a l p a r a m e t e r . " )
;
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/∗ now n u m e r i c a l g r a d i e n t e s t i m a t i o n ∗ /
G r a d i e n t g r a d i e n t = numgrad ( i n i t i a l P a r ,

e s t i m a t e F i r s t D a t u m ) ;
r e t c o d e = 101 ;

/∗ t h e i t e r a t i o n s b e g i n ∗ /
double p a r Va l = i n i t i a l P a r ;
double w h i t t l e V a l = i n i t i a l W h i t t l e ;
double h e s s V a l = i n i t i a l H e s s ;
boolean b a d G r a d i e n t = f a l s e ;

whi le ( ! done ) {
i t e r a t i o n s ++;
CSMinPass cSMinPass1

= c s m i n i t _ k s ( parVal , w h i t t l e V a l , g r a d i e n t ,
hessVal , e s t i m a t e F i r s t D a t u m ) ;

w h i t t l e C o u n t += cSMinPass1 . w h i t t l e C o u n t ;
/∗ i f t h e g r a d i e n t i s n o t e f f e c t i v e l y z e r o we need

i t s new v a l u e . . . ∗ /
G r a d i e n t g r a d i e n t 1 = new G r a d i e n t ( 0 . 0 , t rue ) ;
i f ( cSMinPass1 . r e t u r n C o d e != 1) {

/∗ u n l e s s t h e back and f o r t h a d j u s t m e n t o f
s t e p s i z e d idn ’ t f i n i s h ∗ /

i f ( cSMinPass1 . r e t u r n C o d e == 2 | | cSMinPass1 .
r e t u r n C o d e == 4) {

g r a d i e n t 1 . b a d G r a d i e n t = t rue ;
}
e l s e g r a d i e n t 1 = numgrad ( cSMinPass1 . parVal ,

e s t i m a t e F i r s t D a t u m ) ;
}
/∗ i f i t i s e f f e c t i v e l y zero , t h e n t h e w h i t t l e

l i k e l i h o o d can ’ t have
∗ changed ∗ /

e l s e cSMinPass1 . w h i t t l e V a l = w h i t t l e V a l ;

CSMinPass cSMinPassh
= new CSMinPass ( w h i t t l e V a l , parVal ,

cSMinPass1 . w h i t t l e C o u n t , cSMinPass1 .
r e t u r n C o d e ) ;

G r a d i e n t g r a d i e n t h ;

/∗ i f t h e new w h i t t l e v a l u e i m p r o v e s on t h e p r e v i o u s
one , and t h e

∗ g r a d i e n t i s n o t bad , t h e n ∗ /
double w h i t t l e R e d u c t i o n = w h i t t l e V a l − cSMinPass1 .

w h i t t l e V a l ;
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boolean s t u c k = ( Math . abs ( w h i t t l e R e d u c t i o n ) <
c o n v e r g e n c e C r i t e r i o n ) ;

i f ( c o n v e r g e n c e C r i t e r i o n < w h i t t l e R e d u c t i o n
&& g r a d i e n t 1 . b a d G r a d i e n t == f a l s e ) {

/∗ i f t h e g r a d i e n t i s n o t e f f e c t i v e l y zero , t h e n
t h e w h i t t l e

∗ l i k e l i h o o d must be upda ted . . . ∗ /
cSMinPassh = cSMinPass1 ;
g r a d i e n t h = g r a d i e n t 1 ;

}
e l s e {

i f ( cSMinPass1 . w h i t t l e V a l < w h i t t l e V a l )
cSMinPassh=cSMinPass1 ;

g r a d i e n t h = numgrad ( parVal , e s t i m a t e F i r s t D a t u m ) ;
g r a d i e n t h . b a d G r a d i e n t = t rue ;

}
i f ( ! g r a d i e n t . b a d G r a d i e n t && ! g r a d i e n t h . b a d G r a d i e n t

&& ! s t u c k )
h e s s V a l = b f g s i _ k s ( hessVal ,

g r a d i e n t h . g r a d i e n t − g r a d i e n t . g r a d i e n t ,
cSMinPassh . parVal−p a r Va l ) ;

w h i t t l e V a l = cSMinPassh . w h i t t l e V a l ;
p a r Va l = cSMinPassh . p a r Va l ;
g r a d i e n t = g r a d i e n t h ;

/∗ we can s t o p i f t h e r e d u c t i o n i s l e s s than t h e
c o n v e r g e n c e c r i t e r i o n

∗ OR i f we have e x c e e d e d t h e a l l o w e d i t e r a t i o n s ∗ /
i f ( s t u c k | | ( i t e r a t i o n s > m a x I t e r a t i o n s ) ) done = t rue ;

}
re turn p a r Va l ;

}

/∗ t e s t e d : behaves l i k e MATLAB ( f o r d =0.52 , p=3 , m=22 , da ta
from mdata . c s v ) ∗ /

s t a t i c double e w h i t t l e ( double d i f f P a r , boolean
e s t i m a t e F i r s t D a t u m ) {

double [ ] t a p e r e d D a t a = d a t a . c l o n e ( ) ;
i n t d a t a S i z e = d a t a . l e n g t h ;
i f ( e s t i m a t e F i r s t D a t u m ) {

double we ig h t = ( ( d i f f P a r <= 0 . 5 ) ? 1 . 0 : 0 . 0 )
+ 0 . 5 ∗ ( 1 . 0 + Math . cos (−2.0∗Math . PI + 4 . 0∗Math . PI
∗ d i f f P a r ) )
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∗ ( ( d i f f P a r > 0 . 5 ) ? 1 . 0 : 0 . 0 ) ∗ ( ( d i f f P a r < 0 . 7 5 )
? 1 . 0 : 0 . 0 ) ;

double dataSum = 0 . 0 ;
f o r ( i n t i =0 ; i < d a t a S i z e ; i ++) {

dataSum+= d a t a [ i ] ;
}
double myu = we ig h t ∗dataSum / ( double ) d a t a S i z e + (1.0−

we ig h t ) ∗ d a t a [ 0 ] ;

f o r ( i n t i =0 ; i < d a t a S i z e ; i ++) {
t a p e r e d D a t a [ i ] = d a t a [ i ] − myu ;

}
}

double [ ] d i f f D a t a = f r a c d i f f ( t a p e r e d D a t a , d i f f P a r ) ;
double [ ] f t D i f f D a t a = new double [2∗ d a t a S i z e ] ;
f o r ( i n t i =0 ; i < d a t a S i z e ; i ++) {

f t D i f f D a t a [2∗ i ] = d i f f D a t a [ i ] ;
}
new DoubleFFT_1D ( d a t a S i z e ) . complexForward ( f t D i f f D a t a ) ;
double f r e q u e n c y = 2 . 0∗Math . PI / ( double ) d a t a S i z e ;
/∗ The complex da ta v e c t o r now has r e a l components

f o l l o w e d by i m a g i n a r y
∗ components i n s e q u e n c e ; m u l t i p l i c a t i o n w i t h exp ( i ∗

lambda ) w i l l have t o
∗ be done two e n t r i e s a t a t i m e ∗ /

double pe r iodog ram = 0 . 0 ;
double logFreqSum = 0 . 0 ;
/∗ we want t o drop t h e f i r s t o b s e r v a t i o n , ∗ /
f o r ( i n t k =1; k<numFreq +1; k ++) {

double t h i s F r e q = f r e q u e n c y ∗ ( double ) k ;
logFreqSum += Math . l o g ( t h i s F r e q ) ;
/∗ f i r s t t o f i n d t h e r e a l and i m a g i n a r y p a r t s o f
∗ c o n j ( f f t ( c o n j ( d i f f D a t a ) ) ) ∗ exp ( i ∗ f r e q u e n c y ) . . . ∗ /

double r e a l P a r t = f t D i f f D a t a [2∗ k ] ∗ Math . cos (
t h i s F r e q )

+ f t D i f f D a t a [2∗ k +1] ∗ Math . s i n ( t h i s F r e q ) ; / /
− i ∗ i = 1

double i m a g i n a r y P a r t = f t D i f f D a t a [2∗ k ] ∗ Math . s i n (
t h i s F r e q )

− f t D i f f D a t a [2∗ k +1] ∗ Math . cos ( t h i s F r e q ) ; / /
− i ∗ 1 = − i

/∗ now t o add t o t h e per iodogram wdx∗ c o n j ( wdx ) = re ∗
re + im∗ im ∗ /

pe r iodog ram += r e a l P a r t ∗ r e a l P a r t + i m a g i n a r y P a r t ∗
i m a g i n a r y P a r t ;
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}
pe r iodog ram ∗= 1 . 0 / ( 2 . 0 ∗Math . PI ∗ ( double ) d a t a S i z e ∗ ( double

) numFreq ) ;

/∗ r e t u r n t h e W h i t t l e l i k e l i h o o d ∗ /
re turn Math . l o g ( pe r iodog ram ) − 2 . 0∗ d i f f P a r ∗ logFreqSum /

( double ) numFreq ;
}

/∗ t e s t e d : behaves l i k e MATLAB ( f o r d =0.52 , p=3 , m=22 , da ta
from mdata . c s v ) ∗ /

p u b l i c s t a t i c double [ ] f r a c d i f f ( double [ ] demeanedData ,
double d i f f P a r ) {

i n t d a t a S i z e = demeanedData . l e n g t h ;
double [ ] d i f f D a t a = new double [ d a t a S i z e ] ;

double l a g M u l t i p l i e r = 1 . 0 ;
f o r ( i n t k =0; k< d a t a S i z e ; k ++) {

f o r ( i n t j =k ; j < d a t a S i z e ; j ++) {
d i f f D a t a [ j ] += l a g M u l t i p l i e r ∗ demeanedData [ j−k

] ;
}
l a g M u l t i p l i e r ∗= ( k−d i f f P a r ) / ( k +1) ;

}

re turn d i f f D a t a ;
}

s t a t i c CSMinPass c s m i n i t _ k s ( double i n i t i a l P a r , double
i n i t i a l W h i t t l e ,

G r a d i e n t i n i t i a l G r a d i e n t , double i n i t i a l H e s s ,
boolean e s t i m a t e F i r s t D a t u m ) {

f i n a l double ANGLE = 0 . 0 0 5 ;
f i n a l double THETA = 0 . 3 ;
f i n a l i n t WHITTLE_CHANGE = 1000 ;
f i n a l double MIN_STEP = Math . pow ( 1 0 . 0 , −9 . 0 ) ;
f i n a l double MIN_FACTOR_CHANGE = 0 . 0 1 ;

i n t w h i t t l e C o u n t = 0 ;
double s t e p S i z e = 1 . 0 ;
double parOut = i n i t i a l P a r ;
double w h i t t l e V a l = i n i t i a l W h i t t l e ;
double w h i t t l e O u t = i n i t i a l W h i t t l e ;
double g r a d i e n t = i n i t i a l G r a d i e n t . g r a d i e n t ;
boolean b a d G r a d i e n t = i n i t i a l G r a d i e n t . b a d G r a d i e n t ;
double grad i en tNorm = Math . abs ( g r a d i e n t ) ;
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double parChange = 0 . 0 ;
double parChangeNorm = 0 . 0 ;

CSMinPass cSMinPass = new CSMinPass ( w h i t t l e V a l , parOut ,
w h i t t l e C o u n t , 0 ) ;

/∗ a l r e a d y done i f t h e g r a d i e n t i s e f f e c t i v e l y z e r o ∗ /
i f ( g rad i en tNorm < Math . pow ( 1 0 . 0 , −1 2 . 0 ) && ! b a d G r a d i e n t ) {

cSMinPass . r e t u r n C o d e = 1 ;
parChangeNorm = 0 . 0 ;

}
/∗ o t h e r w i s e , can b e g i n e x p l o r i n g f o r a minimum ∗ /
e l s e {

parChange = − i n i t i a l H e s s ∗ g r a d i e n t ;
parChangeNorm = Math . abs ( parChange ) ;
i f ( parChangeNorm > Math . pow ( 1 0 . 0 , 1 2 . 0 ) ) {

/∗ near s i n g u l a r h e s s i a n ∗ /
parChange = parChange ∗WHITTLE_CHANGE/

parChangeNorm ;
}
double w h i t t l e O u t C h a n g e = parChange ∗ i n i t i a l G r a d i e n t .

g r a d i e n t ;
i f ( ! b a d G r a d i e n t ) {

/∗ t e s t f o r a l i g n m e n t o f t h e change i n parame te r
w i t h g r a d i e n t ∗ /

i f (ANGLE > −w h i t t l e O u t C h a n g e / ( g rad i en tNorm ∗
parChangeNorm ) ) {

parChange −= g r a d i e n t ∗ (ANGLE∗parChangeNorm /
g rad i en tNorm

+ w h i t t l e O u t C h a n g e / ( g rad i en tNorm ∗
grad i en tNorm ) ) ;

/∗ t o keep t h e s c a l e i n v a r i a n t t o t h e a n g l e
c o r r e c t i o n . . . ∗ /

parChange ∗= parChangeNorm / Math . abs (
parChange ) ;

w h i t t l e O u t C h a n g e = parChange ∗ g r a d i e n t ;
}

}
/∗ now a d j u s t l e n g t h o f s t e p u n t i l min and max

improvement c r i t e r i a
∗ are met ∗ /

boolean done = f a l s e ;
double f a c t o r = 3 . 0 ;
boolean s h r i n k = t rue ;
double s tepMin = 0 . 0 ;
double stepMax = Double . POSITIVE_INFINITY ;
double s t e p P e a k = 0 . 0 ;
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double w h i t t l e P e a k = i n i t i a l W h i t t l e ;
double s t e p O u t = 0 . 0 ;
whi le ( ! done ) {

double t e s t P a r = i n i t i a l P a r +parChange ∗ s t e p S i z e ;
w h i t t l e V a l = e w h i t t l e ( t e s t P a r , e s t i m a t e F i r s t D a t u m

) ;

i f ( w h i t t l e V a l < w h i t t l e O u t ) {
w h i t t l e O u t = w h i t t l e V a l ;
pa rOut = t e s t P a r ;
s t e p O u t = s t e p S i z e ;

}
w h i t t l e C o u n t ++;
boolean s h r i n k S i g n a l = ( ! b a d G r a d i e n t

&& ( i n i t i a l W h i t t l e −w h i t t l e V a l
< Math . max(−THETA∗w h i t t l e O u t C h a n g e ∗

s t e p S i z e , 0 . 0 ) ) )
| | ( b a d G r a d i e n t && ( i n i t i a l W h i t t l e −

w h i t t l e V a l < 0 . 0 ) ) ;
boolean g r o w S i g n a l = ! b a d G r a d i e n t && ( ( s t e p S i z e

> 0 . 0 )
&& ( i n i t i a l W h i t t l e − w h i t t l e V a l
> −(1−THETA) ∗w h i t t l e O u t C h a n g e ∗ s t e p S i z e ) )

;

i f ( s h r i n k S i g n a l && ( ( s t e p S i z e > s t e p P e a k ) | | (
s t e p S i z e < 0 . 0 ) ) ) {

i f ( ( s t e p S i z e > 0 . 0 )
&& ( ! s h r i n k | | ( s t e p S i z e / f a c t o r <=

s t e p P e a k ) ) ) {
s h r i n k = t rue ;
f a c t o r = Math . pow ( f a c t o r , 0 . 6 ) ;
whi le ( s t e p S i z e / f a c t o r <= s t e p P e a k )

f a c t o r = Math . pow ( f a c t o r , 0 . 6 ) ;

i f ( Math . abs ( f a c t o r −1)<MIN_FACTOR_CHANGE)
{

i f ( Math . abs ( s t e p S i z e ) <4 .0 ) cSMinPass
. r e t u r n C o d e = 2 ;

e l s e cSMinPass . r e t u r n C o d e = 7 ;
done = t rue ;

}
}
i f ( ( s t e p S i z e <stepMax ) && ( s t e p S i z e > s t e p P e a k )

) stepMax = s t e p S i z e ;
s t e p S i z e = s t e p S i z e / f a c t o r ;
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i f ( Math . abs ( s t e p S i z e ) <MIN_STEP ) {
/∗ we t r y go ing a g a i n s t t h e g r a d i e n t ,

which may be
∗ i n a c c u r a t e , i f t h e r e was no ga in i n

l i k e l i h o o d ∗ /
i f ( ( s t e p S i z e > 0 . 0 ) && ( i n i t i a l W h i t t l e

<= w h i t t l e O u t ) )
s t e p S i z e = −s t e p S i z e ∗Math . pow ( f a c t o r

, 0 . 6 ) ;
e l s e {

i f ( s t e p S i z e < 0 . 0 ) cSMinPass .
r e t u r n C o d e = 6 ;

e l s e cSMinPass . r e t u r n C o d e = 3 ;
done = t rue ;

}
}

}
e l s e i f ( g r o w S i g n a l && ( s t e p S i z e > 0 . 0 )

| | ( s h r i n k S i g n a l && ( ( s t e p S i z e <=
s t e p P e a k )&&(s t e p S i z e > 0 . 0 ) ) ) ) {

i f ( s h r i n k ) {
s h r i n k = f a l s e ;
f a c t o r = Math . pow ( f a c t o r , 0 . 6 ) ;
i f ( Math . abs ( f a c t o r − 1) <

MIN_FACTOR_CHANGE) {
i f ( Math . abs ( s t e p S i z e ) <4 .0 )

cSMinPass . r e t u r n C o d e = 4 ;
e l s e cSMinPass . r e t u r n C o d e = 7 ;
done = t rue ;

}
}

i f ( ( w h i t t l e V a l < w h i t t l e P e a k ) && ( s t e p S i z e
> 0 . 0 ) ) {

w h i t t l e P e a k = w h i t t l e V a l ;
s t e p P e a k = s t e p S i z e ;
i f ( stepMax <= s t e p P e a k ) stepMax = s t e p P e a k
∗ f a c t o r ∗ f a c t o r ;

}
s t e p S i z e ∗= f a c t o r ;
i f ( Math . abs ( s t e p S i z e ) >Math . pow ( 1 0 . 0 , 2 0 . 0 ) ) {

cSMinPass . r e t u r n C o d e = 5 ;
done = t rue ;

}
}
e l s e {

done = t rue ;
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i f ( f a c t o r < 1 . 2 ) cSMinPass . r e t u r n C o d e = 7 ;
e l s e cSMinPass . r e t u r n C o d e = 0 ;

}
}

}
cSMinPass . p a r Va l = parOut ;
cSMinPass . w h i t t l e V a l = w h i t t l e O u t ;
cSMinPass . w h i t t l e C o u n t = w h i t t l e C o u n t ;
re turn cSMinPass ;

}

s t a t i c G r a d i e n t numgrad ( double parVal , boolean
e s t i m a t e F i r s t D a t u m ) {

G r a d i e n t g r a d i e n t = new G r a d i e n t ( 0 . 0 , f a l s e ) ;

double i n f i n i t e s i m a l = Math . pow ( 1 0 . 0 , −6 . 0 ) ;

double i n i t i a l W h i t t l e = e w h i t t l e ( parVal ,
e s t i m a t e F i r s t D a t u m ) ;

double gradVa lue = ( e w h i t t l e ( p a r V a l + i n f i n i t e s i m a l ,
e s t i m a t e F i r s t D a t u m )

− i n i t i a l W h i t t l e ) / i n f i n i t e s i m a l ;

i f ( Math . abs ( g radVa lue ) < Math . pow ( 1 0 . 0 , 1 5 . 0 ) ) g r a d i e n t .
g r a d i e n t = g radVa lue ;

e l s e { g r a d i e n t . g r a d i e n t = 0 . 0 ; g r a d i e n t . b a d G r a d i e n t =
t rue ; }

re turn g r a d i e n t ;
}

s t a t i c double b f g s i _ k s ( double i n i t i a l H e s s , double
g r a d i e n t C h a n g e ,

double parChange ) {
double hessOu t ;
/∗ a s l i g h t n o m e n c l a t u r e change t o a l l o w names f o r some

c o n v e n i e n t t e r m s :
∗ " d " p r e f i x d e n o t e s change , " x " d e n o t e s m u l t i p l i c a t i o n

∗ /
double hessxdGrad = i n i t i a l H e s s ∗ g r a d i e n t C h a n g e ;
double dGradxdPar = g r a d i e n t C h a n g e ∗ parChange ;
/∗ p r o v i d i n g t h e denomina tor won ’ t cause prob lems ∗ /
i f ( Math . abs ( dGradxdPar ) > 1 . 0 e−12)

hes sOu t = i n i t i a l H e s s
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+ ( parChange + hessxdGrad − 2∗ hessxdGrad ) /
g r a d i e n t C h a n g e ;

e l s e hessOu t = i n i t i a l H e s s ;

re turn hessOu t ;
}

}

3.A.4 The alternative model for the robustness check

This is identical to the simpler model, except for the main methods of the Hierarchy object:

HierarchySwap.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package e n f o r c e r s ;
import u t i l . ∗ ;

/∗ ∗ T h i s c l a s s c o n t a i n s t h e methods which r e p r e s e n t e v e n t s
a f f e c t i n g t h e

∗ e n f o r c e m e n t h i e r a r c h y :
∗ − a ne twork growth e v e n t
∗ − a ne twork c o l l a p s e e v e n t
∗ − a measur ing o f p r o d u c t i v e a c t i v i t y
∗
∗ TERMINOLOGY ( f o r sake o f r e a d a b i l i t y ) : e n f o r c e r = s o v e r e i g n

; e n f o r c e e = s u b j e c t ;
∗ domain = a l l s u b j e c t s o f a s o v e r e i g n , a l l t h o s e s u b j e c t s ’

s u b j e c t s e t c ;
∗ s u p e r S o v e r e i g n s = a l l t h o s e o t h e r a g e n t s who i n c l u d e t h e

s p e c i f i c a g e n t i n
∗ t h e i r domains ∗ /
p u b l i c c l a s s HierarchySwap {

i n t numAgents ;
i n t maxSub jec t s ;
double c o n t a g i o n P r o b ;

M e r s e n n e T w i s t e r F a s t random ;
Bag components ;
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Bag a g e n t s ;
i n t [ ] d o m a i n D i s t r i b u t i o n ;

/∗ we ’ l l use a d i r e c t e d network , t o c a p t u r e t h e d i r e c t e d
n a t u r e o f

∗ e n f o r c e m e n t ∗ /
p u b l i c HierarchySwap ( i n t numAgents , i n t maxSubjec t s , double

c o n t a g i o n P r o b ) {
/∗ d i r e c t e d by d e f a u l t ∗ /
super ( ) ;
t h i s . numAgents = numAgents ;
t h i s . maxSub jec t s = maxSub jec t s ;
t h i s . c o n t a g i o n P r o b = c o n t a g i o n P r o b ;

random = new M e r s e n n e T w i s t e r F a s t ( System .
c u r r e n t T i m e M i l l i s ( ) ) ;

a g e n t s = new Bag ( ) ;
d o m a i n D i s t r i b u t i o n = new i n t [ numAgents ] ;

}

/∗ Ag en t s w i t h o u t are o f f e r e d a new s o v e r e i g n ∗ /
p u b l i c vo id s u b j u g a t e ( ) {

/∗ A new node l o o k s f o r an e n f o r c e r ∗ /
Enfo rceAgen t newSub jec t

= ( Enfo rceAgen t ) a g e n t s . o b j s [ random . n e x t I n t (
numAgents ) ] ;

En fo rceAgen t s o v e r e i g n =
( Enfo rceAgen t ) a g e n t s . o b j s [ random . n e x t I n t (

numAgents ) ] ;
/∗ t h e r e i s g u a r a n t e e d t o be some s o v e r e i g n o u t t h e r e

who doesn ’ t
∗ have f u l l degree , by v i r t u e o f t h e t r e e s t r u c t u r e

ha v i ng l e a v e s ∗ /
whi le ( s o v e r e i g n . e q u a l s ( newSub jec t ) | | ! ( s o v e r e i g n .

numSubjec ts < maxSub jec t s )
| | s o v e r e i g n . s u p e r S o v e r e i g n s . c o n t a i n s ( newSub jec t

) ) {
s o v e r e i g n = ( Enfo rceAgen t ) a g e n t s . o b j s [ random .

n e x t I n t ( numAgents ) ] ;
}
/∗ t h i s s o v e r e i g n w i l l be chosen over an e x i s t i n g

s o v e r e i g n i f i t means
∗ ha v i ng a b e t t e r component , b u t o n l y r e l a t i v e t o t h e

number o f s u p e r s o v e r e i g n s :
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∗ − i n t h e r e a l world , t h e b i g g e r a component t h e l e s s
l i k e l y i t s h igh ups

∗ are t o l e a v e f o r a n o t h e r : t h e more t h e i r p r o x i m i t y
t o t h e t o p m a t t e r s

∗ − t o r e p r o d u c e t h i s , t h e compar i son o f component v s
s u p e r s o v e r e i g n s has

∗ t o g i v e component s i z e d e c r e a s i n g w e i g h t
∗ numAgents MUST NOT BE GREATER THAN 40000 , OR

CONVERSION TO DOUBLE IS
∗ NEEDED TO PREVENT INTEGER WRAP−AROUND ∗ /

Boolean sameComponent = s o v e r e i g n . component . c o n t a i n s (
newSub jec t ) ;

i f ( ( sameComponent
&&(newSub jec t . s u p e r S o v e r e i g n s . numObjs
> s o v e r e i g n . s u p e r S o v e r e i g n s . numObjs +1) )
| | ( ( ! sameComponent )

&&( s o v e r e i g n . component . numObjs+ newSub jec t .
domain . numObjs

∗ f a s t I n t P o w ( maxSubjec t s , newSub jec t .
s u p e r S o v e r e i g n s . numObjs )

>( newSub jec t . component . numObjs−1)
∗ f a s t I n t P o w ( maxSubjec t s , s o v e r e i g n .

s u p e r S o v e r e i g n s . numObjs +1) ) ) ) {
s o v e r e i g n . s u b j e c t s . add ( newSub jec t ) ;

/∗ e v e r y super−s o v e r e i g n o f t h e s u b j e c t must l o s e
t h e s u b j e c t ’ s

∗ domain and t h e s u b j e c t from t h e i r own ∗ /
Bag o l d S u p e r S o v e r e i g n s = newSub jec t . s u p e r S o v e r e i g n s

;
Bag los tDomain = new Bag ( newSub jec t . domain ) ;
l o s tDomain . add ( newSub jec t ) ;
i n t numOldSupers = o l d S u p e r S o v e r e i g n s . numObjs ;
f o r ( i n t s u p e r I n d e x =0; s u p e r I n d e x <numOldSupers ;

s u p e r I n d e x ++) {
Enfo rceAgen t o l d S u p e r = ( Enfo rceAgen t ) (

o l d S u p e r S o v e r e i g n s . o b j s [ s u p e r I n d e x ] ) ;
o l d S u p e r . domain . removeAl l ( lo s tDomain ) ;
/∗ t h e o l d s o v e r e i g n has t o be found and r e s e t
∗ /

i f ( o l d S u p e r . s u b j e c t s . c o n t a i n s ( newSub jec t ) ) {
o l d S u p e r . s u b j e c t s . remove ( newSub jec t ) ;
o l d S u p e r . numSubjec ts−−;

}
}
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/∗ e v e r y member o f t h e s u b j e c t ’ s domain must l o s e
t h e s u b j e c t ’ s

∗ super−s o v e r e i g n s ∗ /
Bag oldDomain = newSub jec t . domain ;
Bag l o s t S u p e r s = new Bag ( newSub jec t . s u p e r S o v e r e i g n s

) ;
i n t numOldDomain = oldDomain . numObjs ;
f o r ( i n t domainIndex =0; domainIndex <numOldDomain ;

domainIndex ++) {
( ( Enfo rceAgen t ) oldDomain . o b j s [ domainIndex ] ) .

s u p e r S o v e r e i g n s
. removeAl l ( l o s t S u p e r s ) ;

}
/∗ t h e n e w S u b j e c t needs t o have t h e s u p e r s bag

e m p t i e d t o o ∗ /
newSub jec t . s u p e r S o v e r e i g n s = new Bag ( ) ;

s o v e r e i g n . numSubjec t s ++;
/∗ The s o v e r e i g n ’ s domain , a long w i t h a l l t h e i r

super−s o v e r e i g n s ’
∗ domains , w i l l now a l s o i n c l u d e t h e n e w S u b j e c t

and a l l t h e i r
∗ e x i s t i n g domain ∗ /

s o v e r e i g n . domain . add ( newSub jec t ) ;
s o v e r e i g n . domain . a dd Al l ( newSub jec t . domain ) ;
Bag s u p e r S o v e r e i g n s = s o v e r e i g n . s u p e r S o v e r e i g n s ;
i n t numSupers = s u p e r S o v e r e i g n s . numObjs ;
f o r ( i n t s u p e r I n d e x =0; s u p e r I n d e x <numSupers ;

s u p e r I n d e x ++) {
Bag superDomain = ( ( Enfo rceAgen t )

s u p e r S o v e r e i g n s . o b j s [ s u p e r I n d e x ] )
. domain ;

superDomain . add ( newSub jec t ) ;
superDomain . add Al l ( newSub jec t . domain ) ;

}
/∗ meanwhile , t h e n e w S u b j e c t w i l l now s h a r e a l l t h e

s o v e r e i g n ’ s
∗ super−s o v e r e i g n s ∗ /

newSub jec t . s u p e r S o v e r e i g n s . add ( s o v e r e i g n ) ;
newSub jec t . s u p e r S o v e r e i g n s . a dd Al l ( s o v e r e i g n .

s u p e r S o v e r e i g n s ) ;
/∗ As s h o u l d e v e r y member o f t h e i r domain ! ∗ /
Bag subDomain = newSub jec t . domain ;
i n t numSubjec t s = subDomain . s i z e ( ) ;
f o r ( i n t s u b j e c t I n d e x =0; s u b j e c t I n d e x < numSubjec t s ;

s u b j e c t I n d e x ++) {
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Bag s u b S u p e r S o v e r e i g n s =
( ( Enfo rceAgen t ) subDomain . o b j s [

s u b j e c t I n d e x ] )
. s u p e r S o v e r e i g n s ;

i f ( ! s u b S u p e r S o v e r e i g n s . c o n t a i n s ( s o v e r e i g n ) )
s u b S u p e r S o v e r e i g n s . add ( s o v e r e i g n ) ;

s u b S u p e r S o v e r e i g n s . ad dA l l ( s o v e r e i g n .
s u p e r S o v e r e i g n s ) ;

}
}

}

p u b l i c vo id s o v e r e i g n F a i l ( ) {
Bag f a i l u r e s = new Bag ( ) ;

/∗ randomly choose an a g e n t t o f a i l − t hough t h e y may
have no s u b j e c t s ∗ /

Enfo rceAgen t i n i t i a l F a i l u r e =
( Enfo rceAgen t ) a g e n t s . o b j s [ random . n e x t I n t (

numAgents ) ] ;
/∗ t h e f a i l u r e Bag w i l l keep t r a c k o f t h e

s u p e r S o v e r e i g n s t o remove from
∗ a g e n t s down t h e h i e r a r c h y whose immed ia t e

s u p e r S o v e r e i g n doesn ’ t f a i l ∗ /
f a i l u r e s . add ( i n i t i a l F a i l u r e ) ;
f a i l u r e s . a dd Al l ( i n i t i a l F a i l u r e . s u p e r S o v e r e i g n s ) ;

/∗ a l l s u p e r s o v e r e i g n s w i l l l o s e t h i s i n i t i a l F a i l u r e ’ s
domain from

∗ t h e i r own domains ∗ /
Bag s u p e r S o v e r e i g n s = i n i t i a l F a i l u r e . s u p e r S o v e r e i g n s ;
i n t numSupers = s u p e r S o v e r e i g n s . numObjs ;
f o r ( i n t s u p e r I n d e x =0; s u p e r I n d e x <numSupers ; s u p e r I n d e x

++) {
( ( Enfo rceAgen t ) s u p e r S o v e r e i g n s . o b j s [ s u p e r I n d e x ] ) .

domain
. removeAl l ( i n i t i a l F a i l u r e . domain ) ;

}
/∗ t h e y l o s e t h e i r s u b j e c t s and domain ∗ /
i n i t i a l F a i l u r e . numSubjec t s = 0 ;
i n i t i a l F a i l u r e . domain = new Bag ( ) ;

/∗ meanwhile , some sub−s o v e r e i g n s l o s e e v e r y t h i n g and
become freeMen

∗ − I ’ l l do t h i s w i t h a loop t h a t c o n s t r u c t s a Bag o f
each s u b s e q u e n t
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∗ t i e r , r a t h e r than by r e c u r s i o n t h a t r i s k s s t a c k
o v e r f l o w s ( power law

∗ o f cascade s i z e s means some v e r y b i g cascades , and
deep r e c u r s i o n s ) ∗ /

Bag u n e n f o r c e d = i n i t i a l F a i l u r e . s u b j e c t s ;
Bag l o w e r T i e r F a i l = new Bag ( ) ;
Bag l o w e r T i e r S a f e = new Bag ( ) ;
whi le ( u n e n f o r c e d . numObjs >0) {

Enfo rceAgen t s u b j e c t = ( Enfo rceAgen t ) u n e n f o r c e d .
o b j s [ 0 ] ;

/∗ w i t h a c e r t a i n p r o b a b i l i t y each s u b j e c t w i l l
f a i l t o o ∗ /

i f ( random . n e x t B o o l e a n ( c o n t a g i o n P r o b ) ) {
l o w e r T i e r F a i l . add ( s u b j e c t ) ;
f a i l u r e s . add ( s u b j e c t ) ;

}
/∗ r e g a r d l e s s o f whe ther t h e s u b j e c t f a i l s , t h e

e n f o r c e m e n t
∗ r e l a t i o n s h i p s from t h o s e above w i l l be l o s t ∗ /

e l s e l o w e r T i e r S a f e . add ( s u b j e c t ) ;

s u b j e c t . s u p e r S o v e r e i g n s = new Bag ( ) ;

u n e n f o r c e d . remove ( s u b j e c t ) ;
}
whi le ( ( l o w e r T i e r F a i l . numObjs >0) | | ( l o w e r T i e r S a f e .

numObjs >0) ) {
Bag n e x t T i e r F a i l = new Bag ( ) ;
Bag n e x t T i e r S a f e = new Bag ( ) ;
f o r ( i n t s u b j e c t I n d e x =0;

s u b j e c t I n d e x < l o w e r T i e r F a i l . numObjs ;
s u b j e c t I n d e x ++) {

Enfo rceAgen t s o v e r e i g n
= ( Enfo rceAgen t ) l o w e r T i e r F a i l . o b j s [

s u b j e c t I n d e x ] ;
/∗ t h i s s o v e r e i g n l o s e s t h e i r s u b j e c t s and

domain ∗ /
s o v e r e i g n . numSubjec t s = 0 ;
s o v e r e i g n . domain = new Bag ( ) ;
/∗ . . . and each o f t h e i r s u b j e c t s w i l l s u f f e r

t h e same f a t e ∗ /
u n e n f o r c e d = s o v e r e i g n . s u b j e c t s ;
whi le ( u n e n f o r c e d . numObjs >0) {

Enfo rceAgen t s u b j e c t = ( Enfo rceAgen t )
u n e n f o r c e d . o b j s [ 0 ] ;
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/∗ w i t h a g i v e n p r o b a b i l i t y , t h i s s u b j e c t
f a i l s t o o ∗ /

i f ( random . n e x t B o o l e a n ( c o n t a g i o n P r o b ) ) {
n e x t T i e r F a i l . add ( s u b j e c t ) ;

}
e l s e {

n e x t T i e r S a f e . add ( s u b j e c t ) ;
}
/∗ even i f t h e y do n o t f a i l , t h i s s u b j e c t

w i l l s t i l l l o s e
∗ t h e i r r e l a t i o n s h i p s w i t h t h e e n f o r c e r s

above ∗ /
s u b j e c t . s u p e r S o v e r e i g n s = new Bag ( ) ;
u n e n f o r c e d . remove ( s u b j e c t ) ;

}
}
f o r ( i n t s o v e r e i g n I n d e x =0;

s o v e r e i g n I n d e x < l o w e r T i e r S a f e . numObjs ;
s o v e r e i g n I n d e x ++) {

Enfo rceAgen t s o v e r e i g n
= ( Enfo rceAgen t ) l o w e r T i e r S a f e . o b j s [

s o v e r e i g n I n d e x ] ;
/∗ Each o f t h e i r s u b j e c t s w i l l a l s o l o s e any

s o v e r e i g n s who have
∗ f a i l e d above them
∗ ( t h e Bag pa ss ed here w i l l a l s o c o n t a i n

s o v e r e i g n s who have
∗ f a i l e d i n d i f f e r e n t b r a n c h e s o f t h e

e n f o r c e m e n t h i e r a r c h y ,
∗ b u t as t h e y ca nn o t be e n f o r c e r s i n any o t h e r

way t h e r e i s no
∗ harm p a s s i n g them t o t h e r e m o v e A l l method ∗ /

Bag l e s s E n f o r c e d = s o v e r e i g n . s u b j e c t s ;
f o r ( i n t s u b j e c t I n d x =0;

s u b j e c t I n d x < l e s s E n f o r c e d . numObjs ;
s u b j e c t I n d x ++) {

Enfo rceAgen t s u b j e c t
= ( Enfo rceAgen t ) l e s s E n f o r c e d . o b j s [

s u b j e c t I n d x ] ;
/∗ t h i s s u b j e c t ’ s s u b j e c t s w i l l a l s o l o s e

s u p e r S o v e r e i g n s ∗ /
n e x t T i e r S a f e . add ( s u b j e c t ) ;
/∗ and t h i s s u b j e c t must l o s e t h o s e

s u p e r s o v e r e i g n s t h a t
∗ have f a i l e d ∗ /
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s u b j e c t . s u p e r S o v e r e i g n s . removeAl l ( f a i l u r e s )
;

}
}
l o w e r T i e r F a i l = n e x t T i e r F a i l ;
l o w e r T i e r S a f e = n e x t T i e r S a f e ;

}
}

/∗ t h e f o r m a l economy w i l l p re sumab ly be t h e l a r g e s t
component , o u t p u t w i l l

∗ t h e r e f o r e be p r o p o r t i o n a l t o t h e number o f p a i r s o f
a g e n t s i n t h a t

∗ component ∗ /
p u b l i c double g e t O u t p u t ( ) {

double o u t p u t = 0 ;
/∗ r e f r e s h t h e r e c o r d o f components , f o l l o w i n g growth

and c o l l a p s e ∗ /
d i scove rComponen t s ( ) ;

/∗ move t h r o u g h t h e components one by one , c a l c u l a t i n g
t h e o u t p u t and

∗ k e e p i n g t r a c k o f t h e h i g h e s t ; t h i s w i l l be t h e
f o r m a l economy ∗ /

i n t numComponents = components . numObjs ;
f o r ( i n t component Index =0; componentIndex <numComponents ;

component Index ++) {
i n t c o m p o n e n t S u b j e c t s = ( ( Bag ) components . o b j s [

component Index ] )
. numObjs − 1 ;

double componentOutput
= ( double ) c o m p o n e n t S u b j e c t s ∗ ( double ) (

componen tSub j ec t s −1) ;
i f ( componentOutput > o u t p u t )

o u t p u t = componentOutput ;
}
re turn o u t p u t ;

}

void d i scove rComponen t s ( ) {
/∗ r e f r e s h t h e bag o f components ∗ /
components = new Bag ( ) ;

/∗ any a g e n t w i t h no s u p e r S o v e r e i g n s w i l l be e i t h e r
t h e i r own component
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∗ or t h e s o v e r e i g n t o a component , so we need o n l y
e x p l o r e t h e

∗ components o f such a g e n t s ∗ /
f o r ( i n t a g e n t I n d e x =0; a g e n t I n d e x <numAgents ; a g e n t I n d e x

++) {
Enfo rceAgen t a g e n t = ( Enfo rceAgen t ) a g e n t s . o b j s [

a g e n t I n d e x ] ;
i f ( a g e n t . s u p e r S o v e r e i g n s . i sEmpty ( ) )
{

Bag newComponent = new Bag ( a g e n t . domain ) ;
newComponent . add ( a g e n t ) ;
components . add ( newComponent ) ;
i n t numMembers = newComponent . numObjs ;
f o r ( i n t memberIndex =0; memberIndex <numMembers ;

memberIndex ++)
{

( ( Enfo rceAgen t ) newComponent . o b j s [
memberIndex ] ) . component

= newComponent ;
}

}
}

}

i n t f a s t I n t P o w ( i n t base , i n t e x p o n e n t ) {
i n t power = 1 ;
f o r ( i n t p r o d u c t =0; p r o d u c t < e x p o n e n t ; p r o d u c t ++) {

power ∗= base ;
}
re turn power ;

}
}
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Chapter 4

The Power of Indirect Inference under

Long Memory

4.1 Introduction

This chapter takes as its starting point a question in the conclusion of the previous

chapter: does the method of Indirect Inference Testing have power to reject bad de-

scriptions of data when it has significant autocorrelation between distant observations

—a property known as Long Memory, explained in section 4.3.

As explained in section 4.2, Indirect Inference involves two different models, one re-

ductionist model that relates the data to microfoundations, and one statistical auxiliary

model that is used for comparison of the data and the first model. This allows long

memory to play two very different roles: it can be a feature of the data and reduc-

tionist model, or it can be a feature of the auxiliary model used to describe them. I

explore both these roles. In keeping with chapter 3’s use, however, I restrict attention

to univariate data, specifically economic output.

In order to make this investigation relevant to the wider Economics community, I

choose reductionist models, with and without long memory, that are already popu-

lar in the literature —described in detail in section 4.4. I mirror this in choosing the

most standard of auxiliary models, in the form of an Autoregressive process and a

Fractionally Integrated Autoregressive process —described in section 4.3.
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In section 4.5, the investigation finds that Indirect Inference Testing, using a long-

memory auxiliary model, has reasonable power to distinguish good descriptions of

long memory data. It also offers an improvement over a short memory auxiliary model

for data without long memory. However, I find that for data without long memory

Indirect Inference testing has very little power generally.

To my knowledge, this is the only investigation of the effects of long memory on In-

direct Inference.

4.1.1 Notation

Throughout, let Xt denote a vector of observations from some process. Let L denote

the lag operator such that LXt = Xt−1 and L−1Xt = Xt+1. εt will denote an inde-

pendent normal innovation, ∼ N(0, σ2).

4.2 Indirect Inference and Testing

Indirect Inference describes techniques wherein observed data and a structural model,

based on theory, are described using the same auxiliary model and the descriptions are

compared. The auxiliary model here would usually be a statistical description of data

such as (joint) moments or their VAR representation, but could instead be any function

of data that was deemed important, such as Macroeconomics’ “stylised facts”. It is

most obviously useful, above conventional methods, where calculation or estimation

of a likelihood function for the theoretical model is not possible, but cheap simulation

is. This simulation allows samples from the structural model to be generated. The

auxiliary model can be fitted to such samples and its parameters compared to those

fitted to the observed data.

Gregory and Smith (1991) were the first to use Indirect Inference to estimate the para-

meters of a theoretical model. Explicitly, such estimation selects parameters for a the-
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oretical model, that best reproduce observed phenomena, according to the following

recipe:

1. The auxiliary model is fitted to the observed data;

2. Next, the auxiliary model is fitted to data from simulations of the structural

model for various parameter values;

3. These structural data fittings are compared to the fitting for the observed data,

and structural parameters are chosen that lead to auxiliary parameters as close as

possible to those for the observed data, according to some measure.

Other examples can be found in Gourieroux et al. (1993) and others. This chapter does

not make use of this method, and it is included here only for clarification and contrast

with the actual method of interest, Indirect Inference Testing. Indirect Inference Test-

ing is a more recent adaptation of this approach to allow the appraisal and comparison

of different models’ efficacy. This appraisal is based on the classical statistical method

of hypothesis testing: it sets a bar that a theoretical model must clear in order to be

considered a good description of the data. The intuition is that if a theoretical model

correctly captures the relationship between the phenomenon and its components then it

should have the same description as our observation of that phenomenon, when using

the auxiliary model —for example, the same moments as the real-world observed data.

The bar chosen in practice is a lower limit on the likelihood of auxiliary parameters

more extreme than those observed: it checks that, were the theoretical model correct,

there would be a high probability of seeing more extreme data than we observed. Us-

ing simulations of the theoretical model to sketch out a distribution for the auxiliary

model’s parameters, we then have the following recipe:

1. The auxiliary model is fitted to the observed data;

2. The structural model is simulated many times to get a distribution of samples

from it;
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3. The auxiliary model is fitted to each simulated sample to give a distribution for

its parameters, θ, under the null hypothesis that this parameterisation of the struc-

tural model is true;

4. We count the number of simulated cases (the fraction of the distribution) for

which the auxiliary parameters are more extreme than the observed auxiliary

parameters; if this is fewer than a certain significance level then we reject this

parameterisation of the theoretical model as correct —it is a bad description of

the data.

The extremity of the auxiliary parameters’ deviation cannot be measured directly, be-

cause setting separate confidence bounds for each parameter could not guarantee a

given significance level without taking their correlations into account. That is, if we

choose critical values in each of p parameters’ marginal distributions so as to reject

5%/p of true models, then we will only reject 5% of all true models if the parameters

are uncorrelated. Rather than adjust the critical values to take account of correlations

between variables, it is more convenient to combine all the parameter values into a

single statistic that has a well behaved distribution. From the central limit theorem, it

can be shown that a Wald statistic,

W = θ′Σ−1θ

is distributed according to a χ2 distribution, giving it smooth exponential tails that al-

low clear rejection of models that give a value too far into the upper tail. The concept

of truth about future observations, central to hypothesis testing, is trickier than natural

language would have us believe. As I explained in chapter 2, this is because we have

no technology that can identify such truth, and hence no way of appraising guesses at

it or methods of guessing. This means that a methodology whose objective is identify-

ing truth cannot be justified by its own criterion — which fatally undermines positive

science. Such a criticism of hypothesis testing is not fatal, because the method can be

viewed in a different light: it can be seen as ensuring that an observed statistic can be
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described in at most a given length of description. Chapter 2 explains that assumptions

about the future based on a Minimum Description Length can be self-consistent be-

cause it efficiently describes existing predictive methods and thereby advocates their,

and its own, continued use. I explored this methodological issue in more depth in

chapter 2, along with its implications for Macroeconomics. But, for the purposes of

this study it need not bear further thought.

Throughout this paper I remain close to the method employed in Le et al. (2012), for

assessing the power of rival methods. Their comparison is between Indirect Inference

Testing, Likelihood Ratio, and the Del Negro-Schorfheide DSGE-Var weight, and they

find that Indirect Inference has comparatively high power. My study takes for gran-

ted the validity of Indirect Inference, and addresses a more specific question about

the paradigm: I restrict my attention to different Auxiliary models within the Indirect

Inference Testing method.

4.3 Long Memory

Long memory is defined in many ways across the disciplines in which it is used (Sam-

orodnitsky, 2007), but the general sense is of a process for which observations long

past still carry relevant information on future behaviour: statistical dependence decays

only slowly with time separation. Some more specific definitions are:

1. slower-than-exponential decay of the autocorrelation function;

2. slower-than-exponential decay of the power spectral density;

3. extremal power spectral density close to zero.

Making those first two definitions even more explicit, much of the literature on long

memory focusses on processes with autocorrelation and power spectral densities that
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decay hyperbolically, because they become Gaussian noise once fractionally differ-

enced (i.e. Xt s.t. (1 − L)dXt ∼ N(µ, σ2) for d ∈ (0, 1)). It is such a hyperbolic

decay model that I will use as an exemplar of long memory dynamics in section 4.4.

Meanwhile, it is the last, loosest, definition that will be exploited by the Local Whittle

Estimator that I employ in section 4.5: focussing on the power spectral density only

around zero gives it the power to describe models with hyperbolic long-memory in the

tail, but remain agnostic about shorter term dynamics.

A proper description of long memory was first developed by Benoit Mandelbrot in

explanation of price movements (Mandelbrot, 1969), and the observations of Hurst

(1951) in hydrology. Hurst was studying the flow of water in the Nile through its

Rescaled Range Statistic,

R

S
(X1, ..., Xn) =

max0≤i≤n(Si − i
n
Sn)−min0≤i≤n(Si − i

n
Sn)(

1
n

∑n
i=1(Xi − 1

n
Sn)2

) 1
2

For a process with exponentially decaying autocorrelation, the Central Limit Theorem

dictates that his statistic should grow as the square root of the sample size. But, Hurst

found that it consistently grew like n0.74, which became an outstanding paradox known

as the Hurst Phenomenon (Samorodnitsky, 2007). Meanwhile Benoit Mandelbrot had

been examining financial time series; he found both that they were punctuated by dra-

matic changes, and that these changes were clustered together in time (Mandelbrot,

1983). These properties were profoundly non-Gaussian, and led Mandelbrot to a math-

ematics that would describe both phenomena characterised by hyperbolic rather than

exponential distributions.

Despite arriving in economics before any other discipline, economists were very slow

to address long memory with theory and it still goes unconsidered by much of the or-

thodoxy. Physics on the other hand did not have a formal description for long memory

until Mandelbrot later imported it, but then began to identify processes that could gen-

erate it like Self Organised Criticality (Bak et al., 1987). Whether models are based on

Self-Organising Criticality, a Shot noise process (Lowen and Teich, 2005), a cluster-



4.3 Long Memory 272

ing Poisson point process (Grüneis and Musha, 1986), collections of reversible Markov

Chains (Erland and Greenwood, 2007), or its special case of combined AutoRegressive

processes (Granger, 1980), they generally rely on the aggregation of many components.

Indeed, it is aggregation which has so far been used in Economic models to produce

long memory.

Bak et al. (1993) import the mechanism of self-organised criticality into economics,

in a model that aggregates the discontinuous inventory dynamics of the many interme-

diate producers in an economy, and finds avalanches of production activity that give

rise to long memory. In order to reconcile unit root findings with beta convergence,

Michelacci and Zaffaroni (2000) develop a heterogeneous sector Solow-Swan growth

model that displays long memory on aggregation. A long memory Autocorrelation

function very much like that of economic data is produced by Abadir and Talmain

(2002), through the non-linear aggregation of monopolistically competitive firms —

that is, the arithmetic mean is taken over productivities that are autoregressive in logs,

and so grow geometrically. Davidson and Sibbertsen (2005) show that long memory

could arise from the aggregation of firms represented by short memory processes that

have means that change randomly at power law distributed intervals. Perhaps the most

approachable model thus far sees Haubrich and Lo (2001) make use of the result of

Granger (1980) to derive long range dependence from firms’ random linear production

technology, distributed according to a Beta distribution. It is this last model that I will

use as an exemplar of theoretical long memory models, for the appraisal of Indirect

Inference Testing in section 4.4.

4.3.1 Fractional Integration

The canonical long memory process is, as mentioned above, one with Gaussian Frac-

tional differences, I(d) with d ∈ (0, 1), known as Fractional Integration (Granger and
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Joyeux, 1980):

(1− L)dXt = ut1(t > 0) where ut ∼ N(µ, σ2) and t ∈ N

Xt − dXt−1 +
d(d− 1)

2!
Xt−2 − ... = ut

Because the differencing parameter, d, lies in the unit interval, these models form a

neat bridge between the more familiar econometric concepts of unit root (d = 1) and

canonical time series (d = 0). But, this bridge does not display a neat spectrum of

behaviour: there is an important discontinuous transition at d = 0.5 between stationary

processes for d < 0.5, and for d > 0.5 those which are non-stationary (like unit root

processes) but still mean reverting (like a canonical short memory time series). That

is, as d becomes greater than 0.5 departures from mean can suddenly be so prolonged

that the variance becomes infinite — because the probability of data a given distance

from mean decays no faster than the square of that distance grows. It is to this non-

stationary category that macroeconomic output belongs, according to recent evidence

(Mayoral, 2006). Such non-stationarity after the transition is not without complications

for empirical investigation: most statistical techniques rely on the existence of a second

moment. For this reason the estimators explored below evolve towards techniques that

remove the effects of non-stationarity.

In the interval d ∈ (0, 0.5) for which Fractional Integration is stationary, it can be

shown that the autocorrelation function, ρ(s), decays hyperbolically in the tail (Granger

and Joyeux, 1980):

ρ(s) ∼ s2d−1 for s→∞, d ∈ (0, 0.5)

What’s more, if we use f(w) to denote the Spectral Density of a fractionally integrated

process, it can be shown that this too follows a power-law for low frequencies (Granger

and Joyeux, 1980):

f(ω) ∼ κ−2d as ω → 0
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As an estimate of the Spectral Density of a process, the Periodogram for data drawn

from a fractionally integrated model should therefore also be hyperbolic. These last

two features are critical to the estimation procedures described below.

The famous critique by Lucas (1976), of the then prevailing macroeconometric paradigm,

was based on the apparent instability of relationships in a vector difference equation

of economic aggregates. This instability is precisely what would be expected in a

short memory representation of a non-stationary process. Notably, however, modern

Dynamic Stochastic General Equilibrium analysis doesn’t address these time series

properties either, because the model is generally reduced to a short memory VAR. This

is yet another reason that such processes deserve more attention in the Economics lit-

erature.

4.3.2 AutoRegressive Fractionally Integrated Moving Average

Fractional integration provides the slower than exponential decay in autocorrelation

demanded of a description of long memory, but it has very specific short run dynam-

ics. In order to describe richer short term behaviour, the fractional integration can be

combined with autoregressive and moving average behaviour, in much the same way

that they combine with a random walk in an Error Correction Model:

Xt ∼ ARFIMA(p, d, q) ⇒ Φ(L)(1− L)dXt = Θ(L)εt

where,

Φ(L) = 1− φ1L− ...− φpLp = 1−
p∑
i=1

φiL
i

and,

Θ(L) = 1 + θ1L+ ...+ θqL
q = 1 +

q∑
i=1

θiL
i

When in such a form, a difference operator allows the data to be differenced down to

a strictly stationary ARMA(p, q) — as opposed to one where the difference operator
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was applied after the autoregressive polynomial. That is,

Φ(L)(1− L)dXt = Θ(L)εt ⇒ Φ(L)Ut = Θ(L)εt with E(U2
t ) <∞

It therefore allows the use of conventional estimation techniques for the parameters of

Φ and Θ, once the difference parameter, d, has been estimated.

4.3.3 Estimators for Fractional Integration

Since long memory became a topic of interest several fundamentally different ap-

proaches have been followed, for the estimation of the fractional difference parameter,

d. The most natural route to estimating the factional difference parameter would be to

mimic the seminal observation of Hurst (1951) in hydrology or the subsequent analysis

by Mandelbrot (1969). One approach that this would recommend is to estimate Hurst’s

Rescaled Range statistic. However, Bhattacharya et al. (1983) show that this estimator

cannot cope with non-stationary series. A second approach from simple statistical

observations on long-memory series is that of Aggregated Variances: a fractionally in-

tegrated series is divided into bins of equal length, such that their means themselves

represent a series; the variance of these means then has a power-law relationship to

their size if the series was fractionally integrated; this relationship makes the ratio of

log-variance to log-bin size an estimator of the difference parameter. This method fails

more dramatically, as Giraitis et al. (1999) show it to be systematically biased.

Perhaps an equally natural approach is that of Geweke and Porter-Hudak (1983). This

makes use of the fact that a power law distribution, like the periodogram for a fraction-

ally integrated process, is just a straight line with a slope of 2d − 1 on a log-log plot.

Thus, taking logs of both frequency components and a deterministic regressor, one

can use linear regression to estimate the differencing parameter. An obvious drawback

would be that on a log-log plot those few observations in the heavy tail of a power-law

distribution have undue influence on the estimate of the slope, leading to systematic
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bias (Clauset et al., 2009). Geweke and Porter-Hudak (1983) counter this by only re-

gressing on the lowest frequency components. A drawback that is not overcome is the

inefficiency of this method (Velasco, 1999), although Giraitis et al. (1999) prove its

asymptotic normality and unbiasedness.

An estimator that is based on the likelihood of a fractionally integrated process is de-

veloped by Sowell (1992). A more tangible benefit of this approach is that AR and

MA parameters of an ARFIMA model can be estimated at the same time as the differ-

encing parameter, avoiding bias from estimating each separately. Despite the obvious

gains from working with an exact likelihood function, the procedure is dependent on

the existence of second moments, and therefore invalid for non-stationary processes.

An alternative, computationally more efficient, likelihood approach is based around

the Whittle approximation of the likelihood function for a Gaussian series — like the

correctly differenced version of the data, (Ut)t>0, according to the Wold Decomposi-

tion. Further, it is semi-parametric, allowing it to estimate the long memory properties

independently of short run dynamics. The likelihood, for parameters ζ (including the

fractional difference parameter), n-dimensional differenced data, U , and covariance

matrix, Σn,ζ , is well known to be,

L(ζ) = (2π)−n/2
1√
|Σn,ζ |

exp

(
−1

2
Ux′Σn,ζ−1Ux

)

The evaluation here of the inverse of the covariance matrix is computationally expens-

ive, and may be prohibitive for large data sets. Instead, we can recognise that all the

left-right diagonals of the covariance matrix are constant, because they are assumed

to follow the same marginal process. This makes the covariance matrix, Σn,ζ a Toep-

litz matrix, which in turn means that its eigenvectors will be well approximated by

the basis of a discrete fourier transform of the differenced data, and its eigenvalues by

the corresponding spectral density, fU , components and periodogram, IU . Inverting

the diagonalised covariance matrix then produces an expression in the spectral density
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values that is the Whittle Approximation to the likelihood,

logL(ζ) ≈ 2n log 2π +
n−1∑
j=0

(
log fU(ωj, ζ) +

IU(ωj)

fUj(ωj, ζ)

)

Where ωj = 2πj/n. Clearly we don’t have the periodogram for Ut, only for Xt. This

is fixed by replacing IU with an approximation, namely ω2d
j IX , and the Jacobian term∑m

j=1 logω−2d
j (Shimotsu, 2010). As only the fractional difference parameter, d in ζ ,

will be relevant at very low frequencies, ω, restricting attention to these frequencies

allows us to ignore short run dynamics while maximising the likelihood contribution

of d. This then involves minimising the negative term in the likelihood (Velasco, 1999),

Rm(d) = log

(
1

m

m∑
j=1

ω2d
j I(ωj)

)
− 2d

1

m

m∑
j=1

logωj

Fox and Taqqu prove that the Whittle estimator is consistent and asymptotically nor-

mal, while Dahlhaus (1989) proves its efficiency.

The Whittle Estimator is still not robust to non-stationarity when d > 0.75, but two

workarounds have been developed. The first is to treat the data with a taper beforehand,

so as to remove non-stationarity in a controlled way (Hurvich and Ray, 1995). A taper

is a sequence of weights that are multiplied by the elements of a time series before

Fourier transformation, usually in order to reduce the effects of outliers on the spectral

density estimates. In this context, however, the taper reduces the departures from mean

of a non-stationary or polynomial-deterministic process in a controlled way. This way

the difference parameter’s relationship with the spectral density is unchanged, and the

Whittle Estimator remains consistent (Velasco, 1999). An unfortunate implication of

the tapering is that the variance of the estimator is significantly greater (Hurvich and

Chen, 2000).

The second workaround for non-stationarity in the Whittle estimator is to replace an

estimate of the periodogram in the conventional Whittle Approximation with an Exact
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expression (Shimotsu, 2010). This leads to the Exact Whittle Estimator based on the

minimisation of the following objective function, for ∆dXt = (1− L)dXt,

Q̂n(G, d) =
1

n

n∑
j=1

(
ln(f∆dX(ωj)ω

−2d
j ) +

I∆dX(ωj)

f∆dX(ωj)

)

This estimator is robust to non-stationarity and is efficient, unlike the Tapered Whittle.

But, it relies on a known mean and the absence of a deterministic trend (Shimotsu,

2010).

To take advantage of the strengths of both the Tapered and Exact Whittle Estimators,

they can be combined into a two-step procedure:

Step 1 - the Velasco (1999) Tapered Whittle is used to derive an initial estimate of

the difference parameter; this estimate can then be used to partially-difference

the data, and an estimate of the mean can then be selected from between the

time series’s mean (for d < 3
4
) and its first observation (for d > 1

2
), along with

an estimate of any polynomial trend by regression on successive powers of a

deterministic term;

Step 2 - next, having adjusted the data for the mean and polynomial trend, the Exact

Local Whittle Estimator is used to derive an efficient estimate of the difference

parameter, d.

Shimotsu (2010) shows that this estimator inherits the best of both individual Whittle

estimators, with an efficient N(0, 1
4
) asymptotic distribution, and an unprecedented

range of validity for underlying long memory, d ∈ (−1
2
, 7

4
), even in the presence of an

underlying polynomial time-trend.
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4.4 Theoretical Models

In this paper I gauge the implications of long memory for Indirect Inference Testing,

in both the auxiliary and theoretical models.

4.4.1 Long memory model

Because of its simplicity, the model of Haubrich and Lo (2001) is cited in several

empirical works as an example of theoretical justification for interest in long memory

econometrics (Sowell, 1992; Mayoral, 2006). The model builds on a conventional

Real Business Cycle model, but produces long memory by using the aggregation result

of Granger (1980) over heterogeneous sectors, each contributing a component to the

N × 1 output vector, Yt, and consumption vector, Ct. The model is populated by N

infinitely lived agents, each maximising the same quadratic personal utility function

parametrised by a (diagonal) matrix B,

∞∑
t=0

βt
(
Ct′1−

1

2
Ct′BCt

)

The maximisation is limited by a resource constraint imposed by the economy’s output,

Yt = Ct + St1

Where S is a matrix with i, jth entry corresponding to the investment of sector i’s

product in sector j’s production the next period. That production takes place based on

the input-output productivity matrix A in a V AR(1) process,

Yt = ASt1 + ηt

with ηi ∼ N(0, σ2) i ∈ [1, N ]. For convenience, it is assumed that each sector uses

only its own output productively to produce more, making A diagonal. An analytical
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solution to the agents’ maximisation problem is then,

Cit =
2βPiA

2
ii

2βPiA2
ii −B2

ii

Yit −
βqiAii − 1

Bii − 2βPiA2
ii

Sit =
Bii

Bii − 2βPiA2
ii

Yit +
βqiAii − 1

Bii − 2βPiA2
ii

with

Pi = Bii

(
Aii −

√
(1 + 4β)A2

ii − 4

4βAii

)
and the qi are constants. These solutions then give rise to the dynamics of output:

Yit+1 =
AiiBii

Bii − 2βPiA2
ii

Yit +Ki + ηit

for constant Ki. Aggregation of these sectors gives rise to an ARMA(N ,N − 1) pro-

cess for the aggregate. Clearly such a process is unmanageable for more than a few

sectors. But if the square of the AR coefficient for Yt follows a Beta(p,q) distribution,

the aggregate parameters happen to be well approximated by those in the expansion of

a fractionally integrated process,

Xt − dXt−1 +
d(d− 1)

2!
Xt−2 − ... = ut

with d ≈ 1− q
2
. Although this approximation will be good towards the limit, there is no

reason to believe that the other aggregate parameter, p, will not affect autocorrelations

for finite samples and at high frequencies. The theoretical model is fully identified,

so given enough data its structural parameters could be estimated. For the sake of

computational ease, I instead use Indirect Inference to test values for the aggregate

parameters p, q, and σ.
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4.4.2 Short memory model

Le et al. (2012) observe that further autoregressive terms improve the power of indirect

inference testing for the popular short memory DSGE model of Smets and Wouters.

Even though the DSGE model is reduced to a VAR, as is generally done for DSGE

models, it should be no surprise that a higher order auxiliary VAR captures more model

behaviour: the authors’ investigation is limited to a subset of variables, and so their

lower-dimensional VAR may therefore exclude sources of persistence from the larger

reduced form VAR that are regained by increasing the order. It is therefore possible

that the greater persistence of an ARFIMA auxiliary model may also better describe the

model, and lend greater power to indirect inference in general. It is true that the Local

Whittle estimator specifically excludes high frequency behaviour, but this is precisely

why it could conceivably pick up contributions of more persistent but less immediately

dominant variables omitted from the auxiliary VAR.

As I am following Le et al. (2012), it is appropriate that I base my assessment of

auxiliary models on the same Smets-Wouters model. But, it is anyway an exemplar

DSGE model, and one actually used in policy, so there could be no more worthwhile

case to explore.

Since the prototypical Real Business Cycle model of Kydland and Prescott (1982), the

DSGE class of macroeconomic models has grown to predominance within academia.

These models seek to find the origin of whatever patterns may exist in and between

aggregate variables, based ultimately on the principles of microeconomics. The main

argument for such a method is the Lucas Critique: patterns in aggregate behaviour

cannot be trusted to persist through changes in policy unless they are described in terms

of fundamentals that cannot change — that is, the nature of human decision making

(Lucas, 1976). What’s more, a basis in microeconomics allows the microeconomic

concept of welfare, as the satisfaction of agents’ preferences by the allocation of scarce

resources, to be imported into macroeconomics for the welfare assessment of policy

changes. These models are subject to serious criticisms, which I gave in chapter 2,
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but their currency (despite an abstraction from currency!) makes it important that an

assessment of Indirect Inference not neglect them.

In all forms, the fluctuations of variables in DSGE models are driven by external

economy-wide disturbances (shocks) to some of those variables — on top of stead-

ier exogenous or endogenous gains to productivity driving up the stock variables. The

RBC literature narrows these shocks to only those directly affecting productivity and

preferences. Like most DSGE analyses, the RBC literature models the aggregate eco-

nomy as if it behaved like a single rational decision maker, with perfect knowledge

of the economy’s physical constraints. On its own this of course means that historical

values of flow variables don’t contain information on the future. This feature is con-

tradicted by the substantial serial correlation observed in their observed time series.

Models therefore introduce time to build, delays in the realisation of stock variable

adjustments, and capital utilisation rates, leaving capital stock variables in place but

unemployed.

Further dependence on past states is introduced in the more elaborate DSGE models

of the New Keynesian school with the microfoundations expanded to allow excess

demand or supply, as proposed in Hart (1982). This then leads to agents on one side

of the market facing a maximum constraint on their quantity, and market output being

equal to the minimum of these:

Quanitity = min(Supply(Price),Demand(Price))

This is brought into a dynamic setting by the staggering of Taylor (1979), made more

tractable by Calvo (1983): having the prices update to an equilibrium value for only

a (stochastic) fraction of firms over a given period, so that the others face a price that

leaves excess supply or demand.

The Smets-Wouters model is described by the authors as an extension of the small scale

models above, and indeed it includes all those features mentioned. After the optimisa-
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tion problem has been reduced to Euler conditions, and these log-linearised around a

long run steady-state, the model consists of several simple linear equations that can be

represented by a structural VAR. For output, yt, consumption, ct, investment, it, and

capital (kt) utilisation rate, zt, with steady state values denoted by a subscript, xy, and

unanticipated change, εgt , to government spending, g, we have the aggregate resource

constraint,

yt = cyct + iyit + zyzt + εgt

cy = 1− gy − iy

iy = (γ − 1 + δ)ky

zy = Rk
?ky

εgt = ρgε
g
t−1 + ηgt + ρgaη

a
t ηxt ∼ N(0, σ2

x)

WhereRk
? is the steady state rental rate for capital, γ is the external productivity growth

rate for the economy, and everything else is a parameter to be estimated. The first two

equations are accounting identities, while the third tells us that investment compensates

for depreciation, and then goes on to take advantage of the productivity growth. The

auto behaviour of the To maximise a non-separable utility function in leisure, lt, and

goods consumption (relative to habit), the representative agent follows consumption

plan,

ct = c1ct−1 + (1− c1)Etct+1 + c2(lt − Etlt+1)− c3(rt − Etπt+1 + εbt)

c1 =
λ/γ

1− λ/γ

c2 =
(σc − 1)W h

? L?/C?
σc(1 + λ/γ)

c3 =
1− λ/γ

σc(1 + λ/γ)

εbt = ρbε
b
t−1 + ηbt
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Where λ describes the degree to which habit affects preferences, and σc parametrises

the relationship between consumption and leisure in the utility function. εbt is the

agent’s error in their forecast of the real interest rate, rt. While the first two terms

clearly correspond to habit and to anticipated future consumption, the third is not so

transparent; it shows the dependence of consumption on the anticipated growth in hours

worked for the next period. The investment decision involves the real value of the cap-

ital stock, qt, and two new parameters: the rate at which the consumer exponentially

discounts the present value of future consumption in their plans, β; and φ, the steady

state elasticity of the capital adjustment cost function.

it = i1it−1 + (1− i1)Etit+1 + i2qt + εit

i1 =
1

1− βγ1−σc

1

(1 + βγ1−σc)γ2φ

That real value of capital is determined by a no-arbitrage argument, captured in the

linear equation,

qt = q1Etqt+1 + (1− qt)Etrkt+1 − (rt − πt+1 + εbt)

q1 = βγ−σc(1− δ)

For a real rental rate for capital of,

rkt = −(kt − lt) + wt

Output in the economy is produced using capital and labour (lt), according to,

yt = Φp(αk
s
t + (1− α)lt + εat )

Where productivity, εat is an autoregressive process, εat = ρaε
a
t−1 +ηat . The time to build
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feature described above, means that capital doesn’t contribute to output for one whole

period after its purchase. Combined with the partial utilisation of capital, this is why

the equation features effective capital instead:

kst = kt−1 + zt

That capital utilisation rate takes on a simple form when minimised as zt = z1r
k
t , with

z1 a function of the elasticity of capital utilisation adjustment cost. The base capital

doesn’t accumulate simply either, with an unpredictable efficiency of investment com-

pounding the effects of depreciation:

kt = k1kt−1 + (1− k1)it + k2ε
i
t

where k1 = (1 − δ)/γ and k2 = (1 − (1 − δ)/γ)(1 + βγ1−σc)γ2φ. The New Keyne-

sian feature of delayed price adjustment gives rise to the Phillips Curve relationship

between inflation, πt, and output (via the capital-labour ratio, productivity shock, and

real wage, wt):

πt = π1πt−1 + π2Etπt+1 − π3[α(kst − lt) + εat − wt] + εpt

with π1 = ιp
1+βγ1−σc ιp

, π2 = βγ1−σc

1+βγ1−σc ιp
, and

π3 =
1

1 + βγ1−σcιp

(1− βγ1−σcξp)(1− ξp)
ξp(1 + (φp − 1)εp)

The Smets Wouters set up doesn’t strictly follow the New Keynesian staggering, as

firms that do not revise their prices to the equilibrium still update their prices according

to simple rule based on past inflation; ιt refers to the degree to which firms index on

past inflation. The mean rate of price revision is itself captured by the ξp parameter,

while εp describes the degree of disparity among the production scales of different

industries. The same New Keynesian features are also present in the labour market,
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giving rise to an analogous wage rate inflation:

wt = w1wt−1(1−w1)(Etwt+1+Etπt+1)−w2πtw3πt−1−w4

(
wt −

(
σllt +

1

1− λ
(ct − λct−1)

))
+εwt

Where w1 = 1
1+βγ1−σc

, w2 = 1+βγ1−σc ιw
1+βγ1−σc

, w3 = ιw
1+βγ1−σc

, and

w4 =
1

1 + βγ1−σc

1− βγ1−σcξw
ξw(1 + (φw − 1)εw)

Again, the presence of lagged wages is due to suppliers who can’t equilibrate their

prices following a simple rule instead. Inflation and expected inflation have obvious

roles, while the second to last term represents the average margin added to prices by

the monopolistic but partially-substitutable firms. For both inflation and wages, the

unpredictable change εxt follows an ARMA(1,1) process, to atheoretically improve the

description of data. The final equation in the model represents the actions of the mon-

etary authority in setting the interest rate, in response to inflation, output, and the po-

tential output, ypt , that would eventually prevail were free entry to markets allowed to

undermine the market power of monopolists without being disturbed by the unforeseen

disturbances εwt and εpt :

rt = ρrt−1(1− ρ) (rππt + ry(yt − ypt )) + r∆y

(
(yt − ypt )− (yt−1 − ypt−1)

)
+ εrt

Such a Taylor Rule is intended to represent Monetarist interventions in the economy,

with εrt being the unpredictable errors in this intervention.

4.5 Power of Indirect Inference Testing

In order to avoid the complications of fractional cointegration (Aloy and de Truchis,

2012; Gil-Alana, 2003), and to stay close to my previous use of Indirect Inference with

long memory in chapter 3, I restrict attention to testing models through the behaviour
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of a single variable, economic output. Java codes for the simulation of models are

available in the online appendix. Java codes for the implementation of Indirect Infer-

ence are also available, and each stage of this statistical processing was cross-checked

using other applications.

4.5.1 Short versus Long memory Auxiliary Models for a Long Memory

Theoretical Model

In order to assess the power of Indirect Inference for a parameterisation of the model

that is relevant to practice, I choose parameter values that are likely to produce an auto-

correlation function exponent in the order of US GNP. Because long memory relates

observations over very long lags, it is important to use the longest data sets available.

For this reason I employ the, efficient, Two-Step Exact Local Whittle estimator on the

historical US GDP series of Maddison, which spans 138 years. The fractional dif-

ference parameter is estimated as 0.85. With this estimate in hand, Haubrich and Lo

(2001) suggests beta parameters of around 0.2, which I pair with a unit shock variance

for simplicity. To assess the test’s power, I test a false model with parameters that devi-

ate by a range of percentages including both trivial adjustments, and the extreme case

of stationary behaviour ( d = 0.4 ). These deviations are positive, because the restric-

tion of the Beta distribution’s parameters to positive values prevents the Haubrich-Lo

model from having qualitatively different behaviour with reductions in its parameters.

The results of the Monte Carlo experiments, in table 4.1 are broadly as one might ex-

pect, given the implied deviations in difference parameter shown in the second column.

Despite my cautious speculation in the conclusion of chapter 3, indirect inference test-

ing using long memory auxiliary models has some power to identify misspecification

of a long memory theoretical model. That is, the test always abandons models when

the parameterisation is so different that it enters another phase, with different statist-

ical properties. Here, the model has stationary behaviour for d < 0.5, and borderline

behaviour at d = 0.5. Meanwhile the rejection rate is reasonable for misspecifications
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Rejection Rates
%deviation =⇒ d AR(1) ARFIMA(1, d, 0) AR(3) ARFIMA(3, d, 0)

0 0.90 0.05 0.05 0.05 0.05
10 0.89 0.04 0.07 0.05 0.08
20 0.88 0.03 0.10 0.05 0.10

100 0.80 0.01 0.54 0.08 0.52
200 0.70 0.58 0.93 0.15 0.92
300 0.60 0.94 0.99 0.27 0.99
400 0.50 1.00 1.00 0.50 1.00
500 0.40 1.00 1.00 1.00 1.00

Table 4.1: Rejection rates for long memory Data Generating Process, using dif-
ferent auxiliary models.

that would throw out the difference parameter by more than 10% — that is, parameter

values more than 100% greater than the realistic ones chosen.

For short memory auxiliary models, the story is quite different. Decisively different

behaviour, where d < 0.5 can be firmly rejected, but there is little power otherwise,

even at the borderline case of d = 0.5 where non-stationarity is lost. Again, this is what

might have been expected given the quite different nature of short and long memory

processes. What is unexpected is that more AutoRegressive terms can actually reduce

the power of Indirect Inference to spot misspecification; comparison of the third and

fifth columns shows that for significant parameter changes the AR(3) actually has

less power than the AR(1). The reason for this effect is unclear, but it is seen to a

minor extent in its effects on the long memory auxiliary tests, where the addition of

more short memory structure leads to a (minor) reduction in power. That is, more

AutoRegressive terms can actually impede the performance of long memory auxiliary

models for substantial misspecification that does not change the qualitative behaviour

of the theoretical model.
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4.5.2 For a Short Memory Theoretical Model

Again, I choose a parameterisation that would be relevant to practice. In this case,

I follow Le et al. (2012) in using that from the original Smets and Wouters (2007).

Likewise, the range of percentage deviations for the false model’s parameters is chosen

to parallel that in Le et al. Their results showed that testing three variables with a VAR

auxiliary model gives reasonable power, with rejection of 100% of false models when

misspecification was more than 10%.

Consistent with the findings of Le et al. (2012), I find that additional autocorrelation

structure in the auxiliary model generally improves the power of indirect inference

testing on the Smets Wouters model - i.e. its ability to reject incorrect parameterisa-

tions. This is the case regardless of whether the additional autocorrelation is described

using short or long memory auxiliary models. That fractional differencing would do

this was not a foregone conclusion, because the Smets Wouters model reduces to a

VAR with exponential decay in its autocorrelation function that is very different from

the hyperbolic decay of a fractionally differenced process. Nevertheless, it is clear

that the improvement in approximating short term autocorrelation structure is greater

than any loss of accuracy from misspecifying longer term persistence — at least for

the lengths of time series for which we actually have macroeconomic data. Table 4.2

shows the power to reject models with parameters perturbed by various percentages

when using four different auxiliary models: an AR(1), ARFIMA(1, d, 0), AR(3),

and ARFIMA(3, d, 0). By comparing the AR(p) and ARFIMA(p, d, 0) columns,

we see the clear gains from introducing the difference parameter over a short memory

autoregressive auxiliary model.

By comparing the second and third columns of table 4.2, we see that the introduction

of the difference parameter actually improves power by more than the introduction of

two more autoregressive terms, with the false model often rejected for substantially

more simulations. This suggests that the autoregressive expansion of the long memory
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Rejection Rates
%deviation AR(1) ARFIMA(1, d, 0) AR(3) ARFIMA(3, d, 0)

0 0.05 0.05 0.05 0.05
1 0.13 0.71 0.28 0.71
3 0.17 0.58 0.32 0.58
5 0.50 0.69 0.23 0.69
7 0.01 0.28 0.16 0.28

10 0.58 0.74 0.17 0.74
15 0.21 0.70 0.13 0.70
20 0.17 0.27 0.42 0.27

Table 4.2: Rejection rates for short memory Data Generating Process using dif-
ferent auxiliary models.

auxiliary model,

yt = εt + dyt−1 +
d(d− 1)

2!
yt−2 + ...

improves the approximation of the autoregressive expansion for a single variable from

the 10-variable Smets-Wouters reduced form V AR(1). Or at least, it improves relative

to just a few autoregressive terms in a small AR model, even if this remains a poor

approximation. To illustrate how this could be possible, figure 4.1 shows the autore-

gressive representation of a V AR(1) alongside the autoregressive representations for

each of the auxiliary models (AR(3) and ARFIMA(1, d, 0)). The parameterisations

were chosen to produce similar behaviour, but clearly the AR(3) can not reproduce

the slow decay of autoregressive terms effectively seen for each variable in a Vector

AutoRegression. In Indirect Inference the role of the auxiliary model is to describe the

data generally, not necessarily in the most efficient way that identifies the most regu-

larities, as would be the case if we were using the auxiliary model for induction. For

this reason, the relative values of the two auxiliary models is not as simple as the lower

reduction in the degrees of freedom that come with one difference parameter over two

autoregressive parameters.

Despite the performance gained by using a long memory auxiliary model, it is import-

ant to note that in all cases indirect inference has very low power to reject false hypo-

theses on a single variable. We see in table 4.2 that even as parameters are perturbed by
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Figure 4.1: Univariate autoregressive-form parameters for 3-variable VAR, frac-
tional integration, and simple AR(3).

as much as 20% indirect inference cannot regularly distinguish the model’s behaviour

from that generating the data. Meanwhile, for a 7 % perturbation of the parameters,

indirect inference through an AR(1) actually rejects fewer instances of the false model

than of the true model. This latter result suggests that output in the Smets Wouters

model behaves more like a short AR process for some perturbations than for others, or

for the true parameterisation. This would then mean that for certain values the variance

of the false model estimates was lower relative to that for the true model, making the

Wald statistics for the true parameterisation more variable. When this greater variance

of the Wald statistics for the true model dominated the difference in dynamics between

the true and false models, we would see the false distribution more contained within

the true and a lower rejection rate:

It should be noted that this would not be possible if the parameterisation had been

obtained using indirect inference estimation for the same auxiliary model, because the

variance would then be minimal for the true model. But, as the parameterisation was
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Figure 4.2: Wald distributions for misspecified models, and data generating
model.
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chosen by Bayesian estimation there is no such guarantee that the AR(1) or AR(3)

will have maximum likelihood parameters. It would not be appropriate to repeat my

experiments using true parameters estimated on an AR(1) or AR(3) auxiliary model,
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as the argument above suggests the estimated values would be driven more by what

these auxiliary models are capable of describing rather than the theoretical model’s

dynamics. Indeed, my results are a cautionary tale on the use of Indirect Inference,

using an auxiliary model that cannot capture important time series properties. Figure

4.2 shows the overlap of the Wald distributions for various degrees of perturbation.

This illustrates the reason for the low power, as the Wald statistics’ distributions do not

vary significantly with the perturbation of the tested model’s parameters. Unlike Le

et al. (2012) I do not here compare Indirect Inference to any other testing procedure,

so statements on its performance cannot be put in context. It would be a worthwhile,

but expansive, exercise to examine the implications for policy making of such poor

power — that is, whether the policy recommendations were too ambiguous, or could

lead to undesirable outcomes. The immediate implications of these results are relative

to Indirect Inference on several variables, which actually has power.

4.6 Conclusions

This chapter set out to investigate a question tangential to the main research program of

the thesis. It asked whether the technique of Indirect Inference testing could meaning-

fully distinguish between good and bad descriptions of data, when distantly separated

data points have high correlation — that is, under the property known as long memory.

It approached this question in two dimension: first, the presence of long memory in the

description being assessed; second, the use of an auxiliary model that has long memory

properties.

In the first dimension, it was found that indirect inference has reasonable power to

reject bad descriptions of even univariate data, although its power is not fantastic for

middling misspecification. Surprisingly, it was found that Indirect Inference has very

low power when testing descriptions of univariate short memory data. This is an im-

portant result, as it has been used for exactly this purpose in the literature — Le et al.
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(2011) for instance.

Now the second dimension, the question of long memory in the auxiliary model. Un-

surprisingly, it was found that a long memory auxiliary was essential to the testing of a

long memory description, unless the misspecification led to radically different qualitat-

ive behaviour. Less expected was the finding that a long memory auxiliary model can

improve the power of Indirect Inference against misspecification of a short memory

descriptive model.

In the context of the research program advanced by this thesis, the results in this chapter

offer some support to those from the previous chapter: the hierarchical enforcement

model of chapter 3 is unlikely to have been significantly misspecified, and can be

considered a reasonable reductionist description of US GDP until its simplifying as-

sumptions are successfully challenged.
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4.A Simulation Codes

4.A.1 Auxiliary parameter distributions for simulated data

The first of these objects generates data according to the Haubrich and Lo (2001) model, and
fits an ARFIMA to these series. The second reads in external data, as produced by the Smets-
Wouters implementation of Le et al. (2012), and does the same.

PercentPower.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package i i p o w e r ;

import FELW. FELW2St ;
import com . numer i ca lme tho d . suanshu . s t a t s . t i m e s e r i e s . l i n e a r .

u n i v a r i a t e . s t a t i o n a r y p r o c e s s . arma . ARMAModel ;
import com . numer i ca lme tho d . suanshu . s t a t s . t i m e s e r i e s . l i n e a r .

u n i v a r i a t e . s t a t i o n a r y p r o c e s s . arma . C o n d i t i o na l S u m O f S q u a r e s ;
import j a v a . i o . B u f f e r e d W r i t e r ;
import j a v a . i o . F i l e ;
import j a v a . i o . F i l e N o t F o u n d E x c e p t i o n ;
import j a v a . i o . IOExcep t ion ;
import j a v a . n i o . c h a r s e t . C h a r s e t ;
import j a v a . n i o . c h a r s e t . S t a n d a r d C h a r s e t s ;
import j a v a . n i o . f i l e . F i l e s ;
import j a v a . n i o . f i l e . Pa th ;
import j a v a . n i o . f i l e . P a t h s ;
import j a v a . t e x t . DateFormat ;
import j a v a . t e x t . S impleDateFormat ;
import j a v a . u t i l . A r r a y L i s t ;
import j a v a . u t i l . Date ;

/∗ ∗ R e p e a t e d l y s i m u l a t e s t h e Haubrich Lo ( 2 0 0 1 ) model f o r an
i n i t i a l

http://dx.doi.org/10.1111/1467-9892.00127
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∗ p a r a m e t e r i s a t i o n , and t h e n f o r v a r i o u s p e r c e n t a g e s o f
m i s s p e c i f i c a t i o n . In a l l

∗ cases , ARFIMA p a r a m e t e r s are r e c o r d e d f o r t h e g e n e r a t e d da ta
sample s .

∗ /
p u b l i c c l a s s P e r c e n t P o w e r {

f i n a l s t a t i c C h a r s e t ENCODING = S t a n d a r d C h a r s e t s . UTF_8 ;
s t a t i c f i n a l S t r i n g OUTPUT_FILE_NAME = " i ipow . csv " ;
s t a t i c f i n a l S t r i n g OUTPUT_PATH_NAME = "D : \ \ s i m u l a t e \ \ i i pow

" ;

s t a t i c double [ ] d e f a u l t P a r s = { 0 . 2 , 0 . 2 , 1 . 0 } ;
s t a t i c double [ ] d e f a u l t M i s S p e c =

{ 0 . 0 , 0 . 1 , 0 . 2 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 } ;

s t a t i c i n t defaul tNumARpars = 1 ;
s t a t i c i n t defaultNumMApars = 0 ;
s t a t i c i n t d e f a u l t S i m L e n g t h = 5000 ;
s t a t i c i n t d e f a u l t S a m p l e L e n g t h = 1000 ;
s t a t i c i n t d e f a u l t S i m S i z e = 10000 ;
s t a t i c i n t defaul tNumSims = 10000 ;

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
DateFormat d a t e F o r m a t = new SimpleDateFormat ( "MMdd" ) ;
Date d a t e = new Date ( ) ;

i f ( k e y E x i s t s ( "−h e l p " , a rg s , 0 ) )
{
System . e r r . p r i n t l n (

" Format : j a v a − j a r
I n d i r e c t I n f e r e n c e P o w e r . j a r [−mode m] "+

"[− t r u e P a r s t ] [− f a l s e P a r f s f ] [− sampleLeng th n
] \ n \ n " +

"−h e l p Shows t h i s message and e x i t s
. \ n \ n "+

" 0 i s Bak Chen Schenkman and
Woodford 1992 \ n "+

" 2 i s Haubr i ch and Lo 2001 \ n
"+

" 1 i s Davidson and S i b b e r t s e n
2002 \ n "+

"−p a r s do ub l e [ ] : t h e min v a l u e i n
t h e r a n g e of p a r a m e t e r s \ n \ n " +

"−numARpars do ub l e : t h e AR p a r a m e t e r s o f
t h e a u x i l i a r y ARFIMA\ n \ n " +
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"−numMApars do ub l e : t h e MA p a r a m e t e r s o f
t h e a u x i l i a r y ARFIMA\ n \ n " +

"−s imLength i n t > 0 : t h e d u r a t i o n o f t h e
s i m u l a t i o n \ n \ n "+

"−sampleLeng th i n t > 0 : t h e s i z e o f t h e
sample t o t a k e \ n \ n "+

"−s i m S i z e i n t > 0 : t h e number o f u n i t s
t o be a g g r e g a t e d \ n \ n "+

"−numSims i n t > 0 : t h e number o f t i m e s
t h e f a l s e model \ n "+

" i s s i m u l a t e d t o d e r i v e t h e
d i s t r i b u t i o n \ n \ n "+

"−misSpec i n t > 0 : t h e number o f t i m e s
t h e f a l s e model \ n "+

" i s s i m u l a t e d t o d e r i v e t h e
d i s t r i b u t i o n \ n \ n " ) ;

System . e x i t ( 0 ) ;
}

j a v a . t e x t . NumberFormat n = j a v a . t e x t . NumberFormat .
g e t I n s t a n c e ( ) ;

n . s e t M i n i m u m F r a c t i o n D i g i t s ( 0 ) ;
System . e r r . p r i n t l n ( " I n d i r e c t I n f e r e n c e P o w e r , f o r

a s s i s t a n c e t y p e ’ −h e l p ’ a t end . " ) ;

/ / s e t sample s i z e
i n t sampleLeng th = d e f a u l t S a m p l e L e n g t h ;
S t r i n g sampleLeng th_s = argumentForKey ( "−sampleLeng th " ,

a rgs , 0 ) ;
i f ( s ampleLeng th_s != n u l l ) {

t r y
{
sampleLeng th = I n t e g e r . p a r s e I n t ( s ampleLeng th_s )

;
i f ( sampleLeng th < 1) {

throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’

sampleLeng th ’ v a l u e : "
+ sampleLeng th_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}
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/ / s e t sample s i z e
i n t s imLength = d e f a u l t S i m L e n g t h ;
S t r i n g s imLeng th_s = argumentForKey ( "−s imLength " , a rgs ,

0 ) ;
i f ( s imLeng th_s != n u l l ) {

t r y
{
s imLength = I n t e g e r . p a r s e I n t ( s imLeng th_s ) ;
i f ( s imLength < sampleLeng th ) {

throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’ s imLength ’

v a l u e : "
+ s imLeng th_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / s e t number o f u n i t s t o a g g r e g a t e
i n t s i m S i z e = d e f a u l t S i m S i z e ;
S t r i n g s i m S i z e _ s = argumentForKey ( "−s i m S i z e " , a rgs , 0 ) ;
i f ( s i m S i z e _ s != n u l l ) {

t r y
{
s i m S i z e = I n t e g e r . p a r s e I n t ( s i m S i z e _ s ) ;
i f ( s i m S i z e < 1) {

throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’ s i m S i z e ’

v a l u e : "
+ s i m S i z e _ s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / s e t number o f s i m u l a t i o n s
i n t numSims = defaul tNumSims ;
S t r i n g numSims_s = argumentForKey ( "−numSims " , a rgs , 0 ) ;
i f ( numSims_s != n u l l ) {
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t r y
{
numSims = I n t e g e r . p a r s e I n t ( numSims_s ) ;
i f ( numSims < 1) {

throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’ numSims ’

v a l u e : "
+ numSims_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / s e t number o f A u t o R e g r e s s i v e r o o t s
i n t numARpars = defaul tNumARpars ;
S t r i n g numARpars_s = argumentForKey ( "−numARpars " , a rg s ,

0 ) ;
i f ( numARpars_s != n u l l ) {

t r y
{
numARpars = I n t e g e r . p a r s e I n t ( numARpars_s ) ;
i f ( numARpars < 0) {

throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’ numARpars ’

v a l u e : "
+ numARpars_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / s e t number o f Moving Average r o o t s
i n t numMApars = defaultNumMApars ;
S t r i n g numMApars_s = argumentForKey ( "−numMApars " , a rgs ,

0 ) ;
i f ( numMApars_s != n u l l ) {

t r y
{
numMApars = I n t e g e r . p a r s e I n t ( numMApars_s ) ;
i f ( numMApars < 0) {
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throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’numMApars ’

v a l u e : "
+ numMApars_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / s e t par s
double [ ] p a r s = d e f a u l t P a r s ;
f o r ( i n t x =0; x< a r g s . l e n g t h −1;x ++) {

i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( "−p a r s " ) ) {
i f ( x+3>= a r g s . l e n g t h ) {

throw new Run t imeExcep t ion ( " Not enough
a rgumen t s p r o v i d e d t o "

+ "−p a r s . I t needed 3 " ) ;
}
f o r ( i n t p a r I n d e x =0; pa r Index <3; p a r I n d e x ++) {

S t r i n g p a r _ s = a r g s [ x+ p a r I n d e x + 1 ] ;
i f ( p a r _ s != n u l l | | p a r _ s . c ha rA t ( 0 ) != ’− ’

) {
t r y {

p a r s [ p a r I n d e x ] = Double .
p a r s e D o u b l e ( p a r _ s ) ;

/ / we ’ l l check e l s e w h e r e
whe ther t h e par v a l u e s are
a p p r o p r i a t e

}
catch ( E x c e p t i o n e ) {

throw new Run t imeExcep t ion ( "
I n v a l i d ’− p a r s ’ v a l u e a t "

+ " p o s i t i o n " +
p a r I n d e x + " . Did
you p r o v i d e "

+ 3 + " ? " ) ;
}

}
e l s e {

throw new Run t imeExcep t ion ( " Too few
p a r s g i v e n t o ’− p a r s ’ "
+ " , needed " + 3 + " , b u t r e c e i v e d

"
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+ p a r I n d e x ) ;
}

}
}

}

/ / s e t p r o p o r t i o n a l m i s S p e c i f i c a t i o n s
double [ ] misSpec = d e f a u l t M i s S p e c ;
f o r ( i n t x =0; x< a r g s . l e n g t h −1;x ++) {

i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( "−misSpec " ) ) {
A r r a y L i s t <Double > m i s S p e c L i s t = new A r r a y L i s t

< >() ;
i n t i n d e x = 0 ;
S t r i n g misSpec_s = a r g s [ x + 1 ] ;
whi le ( misSpec_s != n u l l | | misSpec_s . c ha rA t ( 0 )

!= ’− ’ ) {
t r y {

m i s S p e c L i s t . add ( Double . p a r s e D o u b l e (
misSpec_s ) ) ;

}
catch ( E x c e p t i o n e ) {

throw new Run t imeExcep t ion ( " I n v a l i d ’−
misSpec ’ v a l u e a t "

+ " p o s i t i o n " + i n d e x ) ;
}
i n d e x ++;
misSpec_s = a r g s [ x+ i n d e x + 1 ] ;

}
misSpec = new double [ m i s S p e c L i s t . s i z e ( ) ] ;
f o r ( i n d e x =0; index < m i s S p e c L i s t . s i z e ( ) ; i n d e x ++)

{
misSpec [ i n d e x ] = m i s S p e c L i s t . g e t ( i n d e x ) .

doub leVa lue ( ) ;
}

}
}

i n t numLMpars = numARpars + 1 + numMApars ;
i n t numSMpars = numARpars + numMApars ;
S t r i n g d i r e c t o r y = OUTPUT_PATH_NAME + " Haubr ich01_ "

+ s i m S i z e +" _ "+ numARpars +" _ "+ numMApars +" _ "
+ d a t e F o r m a t . f o r m a t ( d a t e ) +" \ \ " ;

new F i l e ( d i r e c t o r y ) . mkdi r s ( ) ;

f o r ( i n t p a r s I n d x =0; p a r s I n d x <misSpec . l e n g t h ;
p a r s I n d x ++) {
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double f i r s t B e t a P a r = ( 1 . 0 + misSpec [ p a r s I n d x ] ) ∗ p a r s
[ 0 ] ;

double s e c o n d B e t a P a r = ( 1 . 0 + misSpec [ p a r s I n d x ] ) ∗ p a r s
[ 1 ] ;

double shockVar = ( 1 . 0 + misSpec [ p a r s I n d x ] ) ∗ p a r s [ 2 ] ;
double [ ] [ ] l m P a r D i s t = new double [ numSims ] [

numLMpars ] ;
double [ ] [ ] smParDi s t = new double [ numSims ] [

numSMpars ] ;

/∗ Now , f o r t h e s i m u l a t i o n s ∗ /
f o r ( i n t sim =0; sim <numSims ; sim ++) {

double [ ] s imData = I n d i r e c t I n f e r e n c e P o w e r .
h a u b r i c h 0 1 ( s imLength , s imSize ,

f i r s t B e t a P a r , s econdBe taPa r , shockVar ) ;
double [ ] sample = new double [ sampleLeng th ] ;
i n t t ime = s imLength − sampleLeng th ;
f o r ( i n t obs =0; obs < sampleLeng th ; obs ++) {

sample [ obs ] = s imData [ t ime ] ;
t ime ++;

}
double d i f f P a r = new

FELW2St ( sample , ( i n t ) Math . f l o o r ( Math . pow
( sampleLength , 0 . 6 5 ) ) , 3 )

. e s t i m a t e ( ) ;
/ / e s t i m t e ARMAs f o r bo th t h e d i f f e r e n c e d and

u n d i f f e r e n c e d
/ / da ta
ARMAModel smARMA = new

C o n d i t i o n a l S u m O f S q u a r e s ( sample ,
numARpars , 0 , numMApars )

. getARMAModel ( ) ;
ARMAModel lmARMA = new

C o n d i t i o n a l S u m O f S q u a r e s ( FELW2St .
f r a c d i f f ( sample

, d i f f P a r ) , numARpars , 0 , numMApars ) .
getARMAModel ( ) ;

/∗ f i r s t we ’ l l r e c o r d t h e AR p a r a m e t e r s f o r t h e
s h o r t− and

∗ long− memory a u x i l i a r y models ∗ /
i n t d i s t I n d x ;
f o r ( i n t ARpar =0; ARpar<numARpars ; ARpar ++) {

l m P a r D i s t [ sim ] [ ARpar ] = lmARMA.AR( ARpar +1) ;
smParDi s t [ sim ] [ ARpar ] = smARMA.AR( ARpar +1) ;

}
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/∗ Now t o d e a l w i t h t h e d i f f e r e n c i n g parame te r
i n t h e long−

∗ memory a u x i l i a r y model ∗ /
l m P a r D i s t [ sim ] [ numARpars ] = d i f f P a r ;
/∗ f i n a l l y come t h e MA p a r a m e t e r s f o r t h e s h o r t
− and long−

∗ memory a u x i l i a r y models ∗ /
f o r ( i n t MApar =0; MApar<numMApars ; MApar++) {

i n t a r r a y I n d x = MApar + numARpars ;
l m P a r D i s t [ sim ] [ a r r a y I n d x +1] = lmARMA.MA(

MApar+1) ;
smParDi s t [ sim ] [ a r r a y I n d x ] = smARMA.MA(

MApar+1) ;
}

}
t r y {

/ / t h e o u t p u t f i l e needs t o be named so as t o
be u n i q u e l y i d e n t i f i e d

/ / ( hence t h e d a t e ) , b u t g i v e r e l e v a n t
i n f o r m a t i o n q u i c k l y ( hence params )

Pa th o u t p u t P a t h = P a t h s . g e t ( d i r e c t o r y +
f i r s t B e t a P a r

+ " _ " + s e c o n d B e t a P a r + " _ " + shockVar
+ " _ "

+ OUTPUT_FILE_NAME) ;
F i l e o u t p u t F i l e = new F i l e ( o u t p u t P a t h . t o S t r i n g

( ) ) ;
o u t p u t F i l e . c r e a t e N e w F i l e ( ) ;

t r y ( B u f f e r e d W r i t e r w r i t e r = F i l e s .
n e w B u f f e r e d W r i t e r ( o u t p u t P a t h ,

ENCODING) ) {
/ / L e t ’ s p r i n t o u t t h e whole parame te r l i s t
w r i t e r . w r i t e ( " Economic model p a r a m e t e r s :

f i r s t B e t a P a r "
+ f i r s t B e t a P a r + " , s e c o n d B e t a P a r "
+ s e c o n d B e t a P a r + " , shockVar " +

shockVar ) ;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( numARpars + " , " + numMApars

+ " , Long−memory a u x i l i a r y model :
ARIMA( "+numARpars

+" , d , "+numMApars+" ) ; "
+ " Shor t−memory a u x i l i a r y model :

ARMA( "+numARpars
+" , "+numMApars+" ) " ) ;
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w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " D i s t r i b u t i o n ( s ) . . . " ) ;
w r i t e r . newLine ( ) ;
/ / Now t h e d i s t r i b u t i o n s t h e m s e l v e s
f o r ( i n t sim =0; sim <numSims ; sim ++) {

f o r ( i n t ARpar =0; ARpar<numARpars ; ARpar
++)

w r i t e r . w r i t e ( l m P a r D i s t [ sim ] [ ARpar ]
+" , " ) ;

w r i t e r . w r i t e ( l m P a r D i s t [ sim ] [ numARpars ]+
" , " ) ;

f o r ( i n t MApar=numARpars +1; MApar<
numLMpars ; MApar++)

w r i t e r . w r i t e ( l m P a r D i s t [ sim ] [ MApar ]+
" , " ) ;

f o r ( i n t ARpar =0; ARpar<numARpars ; ARpar
++)

w r i t e r . w r i t e ( smParDi s t [ sim ] [ ARpar ]+
" , " ) ;

f o r ( i n t MApar=numARpars ; MApar<
numSMpars ; MApar++)

w r i t e r . w r i t e ( smParDi s t [ sim ] [ MApar ]+
" , " ) ;

w r i t e r . newLine ( ) ;
}

}
}
catch ( F i l e N o t F o u n d E x c e p t i o n e )
{

System . e r r . p r i n t l n ( " F i l e N o t F o u n d E x c e p t i o n : " +
e . ge tMessage ( ) ) ;

}
catch ( IOExcep t ion e )
{

System . e r r . p r i n t l n ( " Caught IOExcep t i on : " + e .
ge tMessage ( ) ) ;

}
}

}

s t a t i c S t r i n g argumentForKey ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t )
{
f o r ( i n t x =0; x< a r g s . l e n g t h −1;x ++) / / key can ’ t be t h e

l a s t s t r i n g
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i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) )
re turn a r g s [ x + 1 ] ;

re turn n u l l ;
}

s t a t i c boolean k e y E x i s t s ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t )
{
f o r ( i n t x =0; x< a r g s . l e n g t h ; x ++) / / key can ’ t be t h e

l a s t s t r i n g
i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) )

re turn true ;
re turn f a l s e ;
}

}

ExtData.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package i i p o w e r ;

import FELW. FELW2St ;
import com . numer i ca lme tho d . suanshu . s t a t s . t i m e s e r i e s . l i n e a r .

u n i v a r i a t e . s t a t i o n a r y p r o c e s s . arma . ARMAModel ;
import com . numer i ca lme tho d . suanshu . s t a t s . t i m e s e r i e s . l i n e a r .

u n i v a r i a t e . s t a t i o n a r y p r o c e s s . arma . C o n d i t i o na l S u m O f S q u a r e s ;
import j a v a . i o . B u f f e r e d W r i t e r ;
import j a v a . i o . B u f f e r e d R e a d e r ;
import j a v a . i o . F i l e ;
import j a v a . i o . F i l e N o t F o u n d E x c e p t i o n ;
import j a v a . i o . IOExcep t ion ;
import j a v a . n i o . c h a r s e t . C h a r s e t ;
import j a v a . n i o . c h a r s e t . S t a n d a r d C h a r s e t s ;
import j a v a . n i o . f i l e . D i r e c t o r y S t r e a m ;
import j a v a . n i o . f i l e . F i l e S y s t e m s ;
import j a v a . n i o . f i l e . F i l e s ;
import j a v a . n i o . f i l e . Pa th ;
import j a v a . n i o . f i l e . P a t h s ;
import j a v a . t e x t . DateFormat ;
import j a v a . t e x t . S impleDateFormat ;
import j a v a . u t i l . A r r a y L i s t ;
import j a v a . u t i l . Date ;
import j a v a . u t i l . I t e r a t o r ;
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/∗ ∗Reads s i m u l a t i o n da ta from t h e f i l e s i n a g i v e n d i r e c t o r y ,
and f i t s an

∗ a u x i l i a r y ARFIMA model t o them , r e c o r d i n g t h e parame te r
d i s t r i b u t i o n s .

∗ /
p u b l i c c l a s s ExtData {

s t a t i c Pa th i n p u t F o l d e r ;
f i n a l s t a t i c C h a r s e t ENCODING = S t a n d a r d C h a r s e t s . UTF_8 ;
s t a t i c f i n a l S t r i n g OUTPUT_FILE_NAME = " i ipow . csv " ;
s t a t i c f i n a l S t r i n g OUTPUT_PATH_NAME = "D : \ \ s i m u l a t e \ \ i i pow

" ;

s t a t i c S t r i n g d e f a u l t D i r N a m e = "D : \ \ s i m u l a t e \ \ iiSWy \ \ y \ \ " ;

s t a t i c i n t defaul tNumARpars = 1 ;
s t a t i c i n t defaultNumMApars = 0 ;
s t a t i c i n t defaul tNumSims = 10000 ;
s t a t i c double d e f a u l t P a r D e v i a t i o n = 0 . 0 ;

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws IOExcep t i on {
DateFormat d a t e F o r m a t = new SimpleDateFormat ( "MMdd" ) ;
Date d a t e = new Date ( ) ;

i f ( k e y E x i s t s ( "−h e l p " , a rg s , 0 ) )
{
System . e r r . p r i n t l n (

" Format : j a v a − j a r
I n d i r e c t I n f e r e n c e P o w e r . j a r [−mode m] "
+ "[− t r u e P a r s t ] [− f a l s e P a r f s

f ] [− sampleLeng th n ] \ n \ n " +
"−h e l p Shows t h i s message and e x i t s

. \ n \ n " +
"−dirName s t r i n g : t h e l o c a t i o n o f t h e

s i m u l a t i o n . CSVs \ n \ n " +
"−p a r D e v i a t i o n do ub l e : f o r r e c o r d t h e

p e r c e n t a g e d e v i a t i o n \ n \ n " +
"−numARpars do ub l e [ ] : t h e AR p a r a m e t e r s

o f t h e a u x i l i a r y ARFIMA\ n \ n " +
"−numMApars do ub l e [ ] : t h e MA p a r a m e t e r s

o f t h e a u x i l i a r y ARFIMA\ n \ n " +
"−numSims i n t > 0 : t h e number o f t i m e s

t h e f a l s e model \ n "
+ " i s s i m u l a t e d t o d e r i v e t h e

d i s t r i b u t i o n \ n \ n " ) ;
System . e x i t ( 0 ) ;
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}

j a v a . t e x t . NumberFormat n = j a v a . t e x t . NumberFormat .
g e t I n s t a n c e ( ) ;

n . s e t M i n i m u m F r a c t i o n D i g i t s ( 0 ) ;
System . e r r . p r i n t l n ( " I n d i r e c t I n f e r e n c e P o w e r , f o r

a s s i s t a n c e t y p e ’ −h e l p ’ a t end . " ) ;

/ / s e t dirName
S t r i n g dirName = d e f a u l t D i r N a m e ;
S t r i n g dirName_s = argumentForKey ( "−dirName " , a rgs , 0 ) ;
i f ( dirName_s != n u l l ) {

dirName = dirName_s ;
}

/ / s e t p a r D e v i a t i o n
double p a r D e v i a t i o n = d e f a u l t P a r D e v i a t i o n ;
S t r i n g p a r D e v i a t i o n _ s = argumentForKey ( "−p a r D e v i a t i o n " ,

a rgs , 0 ) ;
i f ( p a r D e v i a t i o n _ s != n u l l ) {

t r y
{
p a r D e v i a t i o n = Double . p a r s e D o u b l e (

p a r D e v i a t i o n _ s ) ;
i f ( p a r D e v i a t i o n < 0 . 0 | | p a r D e v i a t i o n > 1 0 0 . 0 )

{
throw new E x c e p t i o n ( ) ;

}
}

catch ( E x c e p t i o n e )
{
throw new Run t imeExcep t ion ( " I n v a l i d ’

p a r D e v i a t i o n ’ v a l u e : "
+ p a r D e v i a t i o n _ s + " , must be a do ub l e

i n [ 0 . 0 , 1 0 0 . 0 ] " ) ;
}

}

/ / s e t number o f s i m u l a t i o n s
i n t numSims = defaul tNumSims ;
S t r i n g numSims_s = argumentForKey ( "−numSims " , a rgs , 0 ) ;
i f ( numSims_s != n u l l ) {

t r y
{
numSims = I n t e g e r . p a r s e I n t ( numSims_s ) ;
i f ( numSims < 1) {
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throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’ numSims ’

v a l u e : "
+ numSims_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / s e t number o f A u t o R e g r e s s i v e r o o t s
i n t numARpars = defaul tNumARpars ;
S t r i n g numARpars_s = argumentForKey ( "−numARpars " , a rg s ,

0 ) ;
i f ( numARpars_s != n u l l ) {

t r y
{
numARpars = I n t e g e r . p a r s e I n t ( numARpars_s ) ;
i f ( numARpars < 0) {

throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )

{
throw new Run t imeExcep t ion ( " I n v a l i d ’ numARpars ’

v a l u e : "
+ numARpars_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / s e t number o f Moving Average r o o t s
i n t numMApars = defaultNumMApars ;
S t r i n g numMApars_s = argumentForKey ( "−numMApars " , a rgs ,

0 ) ;
i f ( numMApars_s != n u l l ) {

t r y
{
numMApars = I n t e g e r . p a r s e I n t ( numMApars_s ) ;
i f ( numMApars < 0) {

throw new E x c e p t i o n ( ) ;
}

}
catch ( E x c e p t i o n e )
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{
throw new Run t imeExcep t ion ( " I n v a l i d ’numMApars ’

v a l u e : "
+ numMApars_s + " , must be p o s i t i v e

i n t e g e r " ) ;
}

}

/ / t h e r e seems l i t t l e p o i n t c r e a t i n g an i n s t a n c e o f t h e
c l a s s ; t h e t e s t

/ / i s s i m p l e enough t o be run here as i f p r o c e d u r a l
/ / I n d i r e c t I n f e r e n c e P o w e r powerTes t = new

I n d i r e c t I n f e r e n c e P o w e r ( ) ;

i n t numLMpars = numARpars + 1 + numMApars ;
i n t numSMpars = numARpars + numMApars ;
S t r i n g d i r e c t o r y = OUTPUT_PATH_NAME + " e x t D a t a " + " _ "

+ d a t e F o r m a t . f o r m a t ( d a t e ) + " \ \ " ;
new F i l e ( d i r e c t o r y ) . mkdi r s ( ) ;

double [ ] [ ] l m P a r D i s t = new double [ numSims ] [ numLMpars ] ;
double [ ] [ ] smParDi s t = new double [ numSims ] [ numSMpars ] ;

/∗ Now t o b u s i n e s s : we need t o i t e r a t e t h r o u g h t h e
f i l e s i n t h e d i r e c t o r y ∗ /

/∗ BUT we want a f i l t e r t o e n s u r e we o n l y l o o k a t . t x t
f i l e s ∗ /

D i r e c t o r y S t r e a m . F i l t e r <Path > f i l t e r = new
D i r e c t o r y S t r e a m . F i l t e r <Path > ( ) {

@Override
p u b l i c boolean a c c e p t ( Pa th f i l e ) throws

IOExcep t i on {
re turn ( f i l e . getName ( f i l e . getNameCount ( ) −1) .

t o S t r i n g ( )
. endsWith ( " . c sv " ) ) ;

}
} ;

i n p u t F o l d e r = P a t h s . g e t ( dirName ) ;
t r y ( D i r e c t o r y S t r e a m <Path > d i r S t r e a m

= F i l e s . n e w D i r e c t o r y S t r e a m ( F i l e S y s t e m s .
g e t D e f a u l t ( )

. g e t P a t h ( dirName ) , f i l t e r ) ) {
/ / now t o g e t t h e f i r s t run o f s i m u l a t e d da ta and

i n i t i a l i s e t h e
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/ / A r r a y L i s t t o a v o i d n u l l p o i n t e r e x c e p t i o n s i n
t h e o r d e r i n g

/ / l oop
double [ ] sample ;
i n t sampleLeng th ;
I t e r a t o r <Path > d i r I t e r a t o r = d i r S t r e a m . i t e r a t o r ( ) ;
/∗ Now , f o r each o f t h e s u b s e q u e n t s i m u l a t i o n s , t h e

parame te r
∗ e s t i m a t e s w i l l be added t o t h e A r r a y L i s t s i n

a s c e n d i n g o r d e r ∗ /
i n t sim = 0 ;
whi le ( d i r I t e r a t o r . hasNext ( ) ) {

Pa th f i l e = d i r I t e r a t o r . n e x t ( ) ;
A r r a y L i s t <Double > t i m e S e r i e s = new A r r a y L i s t

< >() ;
t r y ( B u f f e r e d R e a d e r r e a d e r

= F i l e s . newBuf fe redReade r ( f i l e ,
ENCODING) ) {

S t r i n g l i n e = n u l l ;
/∗ we read t h r o u g h t h e r e m a i n i n g l i n e s . . .
∗ /

whi le ( ( l i n e = r e a d e r . r e a d L i n e ( ) ) != n u l l ) {
t i m e S e r i e s . add ( Double . p a r s e D o u b l e ( l i n e )

) ;
}

}
sampleLeng th = t i m e S e r i e s . s i z e ( ) ;
sample = new double [ sampleLeng th ] ;
f o r ( i n t t ime =0; t ime < sampleLeng th ; t ime ++) {

sample [ t ime ] = t i m e S e r i e s . g e t ( t ime ) .
doub leVa lue ( ) ;

}
double d i f f P a r = new

FELW2St ( sample , ( i n t ) Math . f l o o r ( Math . pow
( sampleLength , 0 . 6 5 ) ) , 3 )

. e s t i m a t e ( ) ;
/ / e s t i m t e ARMAs f o r bo th t h e d i f f e r e n c e d and

u n d i f f e r e n c e d
/ / da ta
ARMAModel smARMA = new

C o n d i t i o n a l S u m O f S q u a r e s ( sample ,
numARpars , 0 , numMApars )

. getARMAModel ( ) ;
ARMAModel lmARMA = new

C o n d i t i o n a l S u m O f S q u a r e s ( FELW2St .
f r a c d i f f ( sample , d i f f P a r ) ,
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numARpars , 0 , numMApars ) .
getARMAModel ( ) ;

/∗ f i r s t we ’ l l r e c o r d t h e AR p a r a m e t e r s f o r t h e
s h o r t− and

∗ long− memory a u x i l i a r y models ∗ /
f o r ( i n t ARpar =0; ARpar<numARpars ; ARpar ++) {

l m P a r D i s t [ sim ] [ ARpar ] = lmARMA.AR( ARpar +1) ;
smParDi s t [ sim ] [ ARpar ] = smARMA.AR( ARpar +1) ;

}
/∗ Now t o d e a l w i t h t h e d i f f e r e n c i n g parame te r

i n t h e long−
∗ memory a u x i l i a r y model ∗ /

l m P a r D i s t [ sim ] [ numARpars ] = d i f f P a r ;
/∗ f i n a l l y come t h e MA p a r a m e t e r s f o r t h e s h o r t
− and long−

∗ memory a u x i l i a r y models ∗ /
f o r ( i n t MApar =0; MApar<numMApars ; MApar++) {

i n t a r r a y I n d x = MApar + numARpars ;
l m P a r D i s t [ sim ] [ a r r a y I n d x +1] = lmARMA.MA(

MApar+1) ;
smParDi s t [ sim ] [ a r r a y I n d x ] = smARMA.MA( MApar

+1) ;
}
sim ++;

}
}

t r y {
/ / t h e o u t p u t f i l e needs t o be named so as t o be

u n i q u e l y i d e n t i f i e d
/ / ( hence t h e d a t e ) , b u t g i v e r e l e v a n t i n f o r m a t i o n

q u i c k l y ( hence params )
Pa th o u t p u t P a t h = P a t h s . g e t ( d i r e c t o r y +

p a r D e v i a t i o n + " _ "
+ OUTPUT_FILE_NAME) ;

F i l e o u t p u t F i l e = new F i l e ( o u t p u t P a t h . t o S t r i n g ( ) ) ;
o u t p u t F i l e . c r e a t e N e w F i l e ( ) ;

t r y ( B u f f e r e d W r i t e r w r i t e r = F i l e s . n e w B u f f e r e d W r i t e r
( o u t p u t P a t h ,

ENCODING) ) {
/ / L e t ’ s p r i n t o u t t h e whole parame te r l i s t
w r i t e r . w r i t e ( " Economic model p a r a m e t e r s d e v i a t e

by = "
+ p a r D e v i a t i o n + " p e r c e n t " ) ;
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w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( numARpars + " , " + numMApars

+ " , Long−memory a u x i l i a r y model : ARIMA
( "+numARpars

+" , d , "+numMApars+" ) ; "
+ " Shor t−memory a u x i l i a r y model : ARMA( "

+numARpars
+" , "+numMApars+" ) " ) ;

w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " D i s t r i b u t i o n ( s ) . . . " ) ;
w r i t e r . newLine ( ) ;
/ / Now t h e d i s t r i b u t i o n s t h e m s e l v e s
f o r ( i n t sim =0; sim <numSims ; sim ++) {

f o r ( i n t ARpar =0; ARpar<numARpars ; ARpar ++)
{

w r i t e r . w r i t e ( l m P a r D i s t [ sim ] [ ARpar ] +" ,
" ) ;

}
w r i t e r . w r i t e ( l m P a r D i s t [ sim ] [ numARpars ]+ " , "

) ;
f o r ( i n t MApar=numARpars +1; MApar<numLMpars ;

MApar++) {
w r i t e r . w r i t e ( l m P a r D i s t [ sim ] [ MApar ]+ " , "

) ;
}
f o r ( i n t ARpar =0; ARpar<numARpars ; ARpar ++)

{
w r i t e r . w r i t e ( smParDi s t [ sim ] [ ARpar ]+ " , "

) ;
}
f o r ( i n t MApar=numARpars ; MApar<numSMpars ;

MApar++) {
w r i t e r . w r i t e ( smParDi s t [ sim ] [ MApar ]+ " , "

) ;
}
w r i t e r . newLine ( ) ;

}
}

}
catch ( F i l e N o t F o u n d E x c e p t i o n e )
{

System . e r r . p r i n t l n ( " F i l e N o t F o u n d E x c e p t i o n : " + e .
ge tMessage ( ) ) ;

}
catch ( IOExcep t ion e )
{
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System . e r r . p r i n t l n ( " Caught IOExcep t i on : " + e .
ge tMessage ( ) ) ;

}
}

s t a t i c S t r i n g argumentForKey ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t ) {
/ / key can ’ t be t h e l a s t s t r i n g
f o r ( i n t x =0; x< a r g s . l e n g t h −1;x ++) {

i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) ) {
re turn a r g s [ x + 1 ] ;

}
}
re turn n u l l ;

}

s t a t i c boolean k e y E x i s t s ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t ) {

/ / key can ’ t be t h e l a s t s t r i n g
f o r ( i n t x =0; x< a r g s . l e n g t h ; x ++) {

i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) ) {
re turn true ;

}
}
re turn f a l s e ;

}
}

4.A.2 Comparison of Wald distributions

IIPowerCompare.java

/∗
C o p y r i g h t 2013 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package i i p o w e r c o m p a r e ;
import j a v a . i o . ∗ ;
import j a v a . n i o . c h a r s e t . C h a r s e t ;
import j a v a . n i o . c h a r s e t . S t a n d a r d C h a r s e t s ;
import j a v a . n i o . f i l e . ∗ ;
import j a v a . u t i l . A r r a y L i s t ;
import org . o j a l g o . m a t r i x . B a s i c M a t r i x ;
import org . o j a l g o . m a t r i x . P r i m i t i v e M a t r i x ;
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/∗ ∗ A s s e s s e s t h e power o f i n d i r e c t i n f e r e n c e on v a r i o u s models :
∗ − s i m u l a t e d d i s t r i b u t i o n o f A u x i l i a r y parame te r v a l u e s i s

read i n f o r
∗ t r u e model
∗ t h e f o l l o w i n g i s r e p e a t e d f o r each p e r c e n t a g e d e v i a t i o n :
∗ − s i m u l a t e d d i s t r i b u t i o n s f o r f a l s e model aux−par

d i s t r i b u t i o n s are read
∗ − means and c o v a r i a n c e m a t r i c e s are c a l c u l a t e d f o r f a l s e

model aux−par
∗ d i s t r i b u t i o n s
∗ − t h e WALD v a l u e s are found f o r bo th d i s t r i b u t i o n s , and t h e

95− p e r c e n t i l e s
∗ c a l c u l a t e d f o r t h e F a l s e d i s t r i b u t i o n
∗ − t h e number o f t r u e model Wald s t a t s t h a t f a l l o u t s i d e t h e

95 p e r c e n t i l e
∗ f o r t h e f a l s e model are c o u n t e d ; t h i s i s t h e p r o b a b i l i t y

t h a t t h e f a l s e
∗ model i s r e j e c t e d a c c o r d i n g t o t h e L2 norm
∗
∗ WARNING: t h i s i s n o t s u i t a b l e f o r a u x i l i a r y models w i t h MA

p a r a m e t e r s ∗ /
p u b l i c c l a s s I i powercompare {

f i n a l s t a t i c double SIGNIFICANCE = 0 . 9 5 ;
f i n a l s t a t i c C h a r s e t ENCODING = S t a n d a r d C h a r s e t s . UTF_8 ;
s t a t i c f i n a l S t r i n g INPUT_PATH = "C : \ \ u s e r s \ \ tom \ \ "

+ " dropbox \ \ i iHLy \ \ a r 3 l o n g \ \ " ;
s t a t i c f i n a l S t r i n g FALSE_MODEL_PATTERN = " _i ipow . csv " ;
s t a t i c f i n a l S t r i n g TRUE_MODEL_DATA = " 0 . 0 _ i ipow . csv " ;
s t a t i c f i n a l S t r i n g OUTPUT_FILE = " i ipow . csv " ;
s t a t i c f i n a l S t r i n g OUTPUT_PATH = "C : \ \ u s e r s \ \ tom \ \ "

+ " dropbox \ \ i iHLy \ \ a r 3 l o n g \ \ " ;

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws IOExcep t i on {
/∗ t h e d i s t r i b u t i o n o f t h e p a r a m e t e r s s h o u l d be read i n

f o r t h e t r u e
∗ model − f o r bo th t h e s h o r t memory and long memory

a u x i l l i a r y models ∗ /
double [ ] [ ] t r ueLMParDi s t ;
double [ ] [ ] t r u e S M P a r D i s t ;
i n t numARpars ;
i n t numMApars ;
i n t numPars ;
i n t numTrueObs ;
Pa th t r u e P a t h = F i l e S y s t e m s . g e t D e f a u l t ( ) . g e t P a t h (

INPUT_PATH ,TRUE_MODEL_DATA) ;
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c l a s s D o u b l e A r r a y L i s t ex tends A r r a y L i s t <Double > { }

t r y ( B u f f e r e d R e a d e r r e a d e r
= F i l e s . newBuf fe redReade r ( t r u e P a t h , ENCODING) ) {

/ / s k i p t h e parame te r l i s t and s t a t s
System . o u t . p r i n t l n ( r e a d e r . r e a d L i n e ( ) ) ;
/∗ read i n t h e numbers o f AR and MA pars ∗ /
S t r i n g l i n e = r e a d e r . r e a d L i n e ( ) ;
S t r i n g [ ] b r o k e n L i n e = l i n e . s p l i t ( " , " ) ;
numARpars = I n t e g e r . p a r s e I n t ( b r o k e n L i n e [ 0 ] ) ;
numMApars = I n t e g e r . p a r s e I n t ( b r o k e n L i n e [ 1 ] ) ;
numPars = numARpars + numMApars ;
/∗ s k i p t h e " d i s t r i b u t i o n s . . . " l i n e ∗ /
System . o u t . p r i n t l n ( r e a d e r . r e a d L i n e ( ) ) ;
System . o u t . p r i n t l n ( r e a d e r . r e a d L i n e ( ) ) ;
System . o u t . p r i n t l n ( r e a d e r . r e a d L i n e ( ) ) ;
System . o u t . p r i n t l n ( r e a d e r . r e a d L i n e ( ) ) ;
System . o u t . p r i n t l n ( r e a d e r . r e a d L i n e ( ) ) ;

/ / now t o read t h e d i s t r i b u t i o n from t h e f i l e i n t o
a l i s t

A r r a y L i s t < S t r i n g > p a r L i s t = new A r r a y L i s t < >() ;
whi le ( ( l i n e = r e a d e r . r e a d L i n e ( ) ) != n u l l ) {

p a r L i s t . add ( l i n e ) ;
}
numTrueObs = p a r L i s t . s i z e ( ) ;
t r ueLMParDi s t = new double [ numTrueObs ] [ numPars + 1 ] ;
t r u e S M P a r D i s t = new double [ numTrueObs ] [ numPars ] ;
f o r ( i n t obs =0; obs <numTrueObs ; obs ++) {

b r o k e n L i n e = p a r L i s t . g e t ( obs ) . s p l i t ( " , " ) ;
f o r ( i n t p a r =0; par <numPars ; p a r ++) {

t rueLMParDi s t [ obs ] [ p a r ] = Double .
p a r s e D o u b l e ( b r o k e n L i n e [ p a r ] ) ;

t r u e S M P a r D i s t [ obs ] [ p a r ]
= Double . p a r s e D o u b l e ( b r o k e n L i n e [

numPars + 1 + p a r ] ) ;
}
/∗ now t h e long memory parame te r ∗ /
t r ueLMParDi s t [ obs ] [ numPars ] = Double .

p a r s e D o u b l e ( b r o k e n L i n e [ numPars ] ) ;
}

}

/∗ we ’ l l o u t p u t t o a s i n g l e f i l e f o r a l l o f t h e f a l s e
models read i n ∗ /

Pa th o u t P a t h
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= F i l e S y s t e m s . g e t D e f a u l t ( ) . g e t P a t h (OUTPUT_PATH,
OUTPUT_FILE ) ;

t r y ( B u f f e r e d W r i t e r w r i t e r = F i l e s . n e w B u f f e r e d W r i t e r (
o u t P a t h , ENCODING) ) {

/∗ w r i t e a header f o r t h e f i l e ∗ /
w r i t e r . w r i t e ( " numARpars = "+ numARpars +" ,

numMApars = "+ numMApars ) ;
w r i t e r . newLine ( ) ;
w r i t e r . w r i t e ( " p e r c e n t a g e d e v i a t i o n ; l ong memory aux

model , r e j e c t i o n "
+ " r a t e u s i n g Wald norm ; long memory aux

model , r e j e c t i o n "
+ " r a t e u s i n g i n f t y norm ; s h o r t memory aux

model , "
+ " r e j e c t i o n r a t e u s i n g Wald norm ; s h o r t

memory aux "
+ " model , r e j e c t i o n r a t e u s i n g i n f t y norm . "

) ;
w r i t e r . newLine ( ) ;

/ / we need a f i l t e r t o make s u r e o n l y . CSVs o f t h e
r i g h t k i n d are read i n

D i r e c t o r y S t r e a m . F i l t e r <Path > f i l t e r = new
D i r e c t o r y S t r e a m . F i l t e r <Path > ( ) {

p u b l i c boolean a c c e p t ( Pa th f i l e ) throws
IOExcep t i on {

re turn ( f i l e . getName ( f i l e . getNameCount ( )
−1) . t o S t r i n g ( )

. endsWith (FALSE_MODEL_PATTERN) ) ;
}

} ;
/∗ Now t o check , f o r e v e r y f a l s e model aux−par

d i s t r i b u t i o n , how
∗ many o f t h e t r u e model s i m u l a t i o n s are r e j e c t e d
∗ /

t r y ( D i r e c t o r y S t r e a m <Path > d i r S t r e a m
= F i l e s . n e w D i r e c t o r y S t r e a m ( F i l e S y s t e m s .

g e t D e f a u l t ( )
. g e t P a t h ( INPUT_PATH ) , f i l t e r ) ) {
f o r ( Pa th f a l s e P a t h : d i r S t r e a m ) {

/∗ need t h e f i r s t p a r t o f t h e f i l e n a m e i n
o r d e r t o keep

∗ t r a c k o f t h e p e r c e n t a g e f a l s e n e s s ∗ /
double p a r D e v i a t i o n = Double . p a r s e D o u b l e (

f a l s e P a t h
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. ge tF i l eName ( ) . t o S t r i n g ( ) . s p l i t ( " _ "
) [ 0 ] ) ;

i n t numFalseObs ;
double [ ] [ ] f a l s e L M P a r D i s t ;
double [ ] [ ] f a l s e S M P a r D i s t ;
double [ ] falseLMMean ;
double [ ] falseSMMean ;
double [ ] [ ] falseLMCov ;
double [ ] [ ] falseSMCov ;
A r r a y L i s t <Double > fa lseLMWaldDis t ;
A r r a y L i s t <Double > fa l seSMWaldDis t ;
double propLMRejectWald ;
double propSMRejectWald ;
/∗ now t o read i n t h e d i s t r i b u t i o n ∗ /
t r y ( B u f f e r e d R e a d e r r e a d e r

= F i l e s . newBuf fe redReade r ( f a l s e P a t h
, ENCODING) ) {

/∗ s k i p t h e parame te r l i s t ∗ /
f o r ( i n t i =0 ; i <7 ; i ++) {

System . o u t . p r i n t l n ( r e a d e r . r e a d L i n e
( ) ) ;

}
S t r i n g l i n e = n u l l ;
S t r i n g [ ] b r o k e n L i n e = n u l l ;
/ / now t o read t h e d i s t r i b u t i o n from

t h e f i l e i n t o a l i s t
A r r a y L i s t < S t r i n g > p a r L i s t = new

A r r a y L i s t < >() ;
whi le ( ( l i n e = r e a d e r . r e a d L i n e ( ) ) !=

n u l l ) {
p a r L i s t . add ( l i n e ) ;

}

/∗ read i n t h e d i s t r i b u t i o n s and
c a l c u l a t e s t a t s ∗ /

numFalseObs = p a r L i s t . s i z e ( ) ;
f a l s e L M P a r D i s t = new double [ numFalseObs

] [ numPars + 1 ] ;
f a l s e S M P a r D i s t = new double [ numFalseObs

] [ numPars ] ;
falseLMMean = new double [ numPars + 1 ] ;
falseSMMean = new double [ numPars ] ;
falseLMCov = new double [ numPars + 1 ] [

numPars + 1 ] ;
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falseSMCov = new double [ numPars ] [
numPars ] ;

f o r ( i n t obs =0; obs <numFalseObs ; obs ++) {
b r o k e n L i n e = p a r L i s t . g e t ( obs ) . s p l i t

( " , " ) ;
f o r ( i n t p a r =0; par <numPars ; p a r ++) {

double lmPar = Double .
p a r s e D o u b l e ( b r o k e n L i n e [ p a r ] )
;

double smPar = Double
. p a r s e D o u b l e ( b r o k e n L i n e

[ numPars + 1 + p a r ] )
;

f a l s e L M P a r D i s t [ obs ] [ p a r ] =
lmPar ;

f a l s e S M P a r D i s t [ obs ] [ p a r ] =
smPar ;

/∗ t h e c o n t r i b u t i o n t o means ∗ /
falseLMMean [ p a r ] += lmPar ;
falseSMMean [ p a r ] += smPar ;

/∗ t h e c o n t r i b u t i o n t o
c o v a r i a n c e s ∗ /

f o r ( i n t o t h e r P a r =0; o t h e r P a r <=
p a r ; o t h e r P a r ++) {

falseLMCov [ p a r ] [ o t h e r P a r ]
+= lmPar ∗

f a l s e L M P a r D i s t [
obs ] [ o t h e r P a r ] ;

falseSMCov [ p a r ] [ o t h e r P a r ]
+= smPar∗

f a l s e S M P a r D i s t [
obs ] [ o t h e r P a r ] ;

}
}
/∗ now t h e long memory d i f f e r e n c e

parame te r
∗ NOTE: t h i s i s broken i f t h e r e

are MA pars ∗ /
double d i f f P a r = Double . p a r s e D o u b l e

( b r o k e n L i n e [ numPars ] ) ;
f a l s e L M P a r D i s t [ obs ] [ numPars ] =

d i f f P a r ;
falseLMCov [ numPars ] [ numPars ] +=

d i f f P a r ∗ d i f f P a r ;
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f o r ( i n t o t h e r P a r =0; o t h e r P a r <
numPars ; o t h e r P a r ++) {

falseLMCov [ numPars ] [ o t h e r P a r ]
+= d i f f P a r ∗

f a l s e L M P a r D i s t [ obs ] [
o t h e r P a r ] ;

}
}

}
/∗ now we f i n i s h t h e s t a t s ∗ /
falseLMMean [ numPars ] /= numFalseObs ;
falseLMCov [ numPars ] [ numPars ] /= numFalseObs

;
falseLMCov [ numPars ] [ numPars ]

−= falseLMMean [ numPars ]∗ falseLMMean
[ numPars ] ;

f o r ( i n t p a r =0; par <numPars ; p a r ++) {
falseLMMean [ p a r ] /= numFalseObs ;
falseSMMean [ p a r ] /= numFalseObs ;

f o r ( i n t o t h e r P a r =0; o t h e r P a r < p a r ;
o t h e r P a r ++) {

falseLMCov [ p a r ] [ o t h e r P a r ] /=
numFalseObs ;

falseLMCov [ p a r ] [ o t h e r P a r ]
−= falseLMMean [ p a r ]∗

falseLMMean [ o t h e r P a r ] ;
falseLMCov [ o t h e r P a r ] [ p a r ] =

falseLMCov [ p a r ] [ o t h e r P a r ] ;
falseSMCov [ p a r ] [ o t h e r P a r ] /=

numFalseObs ;
falseSMCov [ p a r ] [ o t h e r P a r ]

−= falseSMMean [ p a r ]∗
falseSMMean [ o t h e r P a r ] ;

falseSMCov [ o t h e r P a r ] [ p a r ] =
falseSMCov [ p a r ] [ o t h e r P a r ] ;

}
falseLMCov [ numPars ] [ p a r ] /= numFalseObs

;
falseLMCov [ numPars ] [ p a r ]

−= falseLMMean [ p a r ]∗ falseLMMean
[ numPars ] ;

falseLMCov [ p a r ] [ numPars ] = falseLMCov [
numPars ] [ p a r ] ;

}
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/∗ now t o i n v e r t t h e c o v a r i a n c e m a t r i c e s ∗ /
f i n a l B a s i c M a t r i x . F a c t o r y <?> m a t r i x F a c t o r y

= P r i m i t i v e M a t r i x .FACTORY;
B a s i c M a t r i x invCovLM = m a t r i x F a c t o r y . rows (

falseLMCov )
. i n v e r t ( ) ;

B a s i c M a t r i x invCovSM = m a t r i x F a c t o r y . rows (
falseSMCov )

. i n v e r t ( ) ;

/∗ and c r e a t e t h e v a c t o r s o f means f o r
l a t e r ∗ /

B a s i c M a t r i x meanLM = m a t r i x F a c t o r y . rows (
falseLMMean ) ;

B a s i c M a t r i x meanSM = m a t r i x F a c t o r y . rows (
falseSMMean ) ;

/∗ now t h e p r e p a r a t i o n s b e f o r e b u i l d i n g t h e
Wald

∗ d i s t r i b u t i o n s ∗ /
fa l seLMWaldDis t = new A r r a y L i s t < >() ;
fa l seSMWaldDis t = new A r r a y L i s t < >() ;
/∗ To o r d e r l a t e r , we need t o p o p u l a t e w i t h

t h e f i r s t ∗ /
B a s i c M a t r i x c e n t r a l i s e d P a r s

= m a t r i x F a c t o r y . rows ( f a l s e L M P a r D i s t
[ 0 ] )

. s u b t r a c t (meanLM) ;
double f a l s e W a l d

= invCovLM . m u l t i p l y L e f t (
c e n t r a l i s e d P a r s )

. m u l t i p l y V e c t o r s ( c e n t r a l i s e d P a r s ) .
doub leVa lue ( ) ;

fa l seLMWaldDis t . add ( f a l s e W a l d ) ;
c e n t r a l i s e d P a r s

= m a t r i x F a c t o r y . rows ( f a l s e S M P a r D i s t
[ 0 ] )

. s u b t r a c t ( meanSM ) ;
f a l s e W a l d

= invCovSM . m u l t i p l y L e f t (
c e n t r a l i s e d P a r s )

. m u l t i p l y V e c t o r s ( c e n t r a l i s e d P a r s ) .
doub leVa lue ( ) ;

fa l seSMWaldDis t . add ( f a l s e W a l d ) ;
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/∗ now s u b s e q u e n t v a l u e s can be compared t o
t h e s e ∗ /

f o r ( i n t obs =1; obs <numFalseObs ; obs ++) {
/∗ B u i l d up t h e Wald D i s t r i b u t i o n s ∗ /
c e n t r a l i s e d P a r s

= m a t r i x F a c t o r y . rows (
f a l s e L M P a r D i s t [ obs ] )

. s u b t r a c t (meanLM) ;
f a l s e W a l d

= invCovLM . m u l t i p l y L e f t (
c e n t r a l i s e d P a r s )

. m u l t i p l y V e c t o r s (
c e n t r a l i s e d P a r s ) . doub leVa lue
( ) ;

boolean o r d e r e d = f a l s e ;
f o r ( i n t ordrdObs =0;

ordrdObs < fa lseLMWaldDis t . s i z e ( )
;

o rdrdObs ++) {
i f ( f a l s eWald < fa lseLMWaldDis t . g e t (

o rdrdObs ) ) {
fa l seLMWaldDis t . add ( ordrdObs ,

new Double ( f a l s e W a l d ) ) ;
o r d e r e d = t rue ;
break ;

}
}
i f ( o r d e r e d == f a l s e ) {

fa l seLMWaldDis t . add ( new Double (
f a l s e W a l d ) ) ;

}
c e n t r a l i s e d P a r s

= m a t r i x F a c t o r y . rows (
f a l s e S M P a r D i s t [ obs ] )

. s u b t r a c t ( meanSM ) ;
f a l s e W a l d

= invCovSM . m u l t i p l y L e f t (
c e n t r a l i s e d P a r s )

. m u l t i p l y V e c t o r s (
c e n t r a l i s e d P a r s ) . doub leVa lue
( ) ;

o r d e r e d = f a l s e ;
f o r ( i n t ordrdObs =0;

ordrdObs < fa l seSMWaldDis t . s i z e ( )
;

o rdrdObs ++) {
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i f ( f a l s eWald < fa l seSMWaldDis t . g e t (
o rdrdObs ) ) {

fa l seSMWaldDis t . add ( ordrdObs ,
new Double ( f a l s e W a l d ) ) ;

o r d e r e d = t rue ;
break ;

}
}
i f ( o r d e r e d == f a l s e ) {

fa l seSMWaldDis t . add ( new Double (
f a l s e W a l d ) ) ;

}
}
/∗ now c o u n t t h e p r o p o r t i o n o f t r u e

s i m u l a t i o n s t h a t
∗ f a l l i n t h e r e j e c t i o n r e g i o n o f Wald

d i s t r i b u t i o n ∗ /
double alphaWald = ( 1 . 0 − SIGNIFICANCE ) ;
i n t uBoundWaldIndx

= ( i n t ) Math . round ( (1 .0− alphaWald ) ∗ (
double ) numFalseObs ) ;

double uBoundWaldLM = falseLMWaldDis t . g e t (
uBoundWaldIndx ) . doub leVa lue ( ) ;

double uBoundWaldSM = fa l seSMWaldDis t . g e t (
uBoundWaldIndx ) . doub leVa lue ( ) ;

i n t numLMReject = 0 ;
i n t numSMReject = 0 ;
f o r ( i n t obs =0; obs <numTrueObs ; obs ++) {

double t rueWald ;
c e n t r a l i s e d P a r s

= m a t r i x F a c t o r y . rows (
t rueLMParDi s t [ obs ] )

. s u b t r a c t (meanLM) ;
t rueWald

= invCovLM . m u l t i p l y L e f t (
c e n t r a l i s e d P a r s )

. m u l t i p l y V e c t o r s (
c e n t r a l i s e d P a r s ) . doub leVa lue
( ) ;

i f ( t rueWald >uBoundWaldLM ) {
numLMReject ++;

}
c e n t r a l i s e d P a r s

= m a t r i x F a c t o r y . rows (
t r u e S M P a r D i s t [ obs ] )

. s u b t r a c t ( meanSM ) ;
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t rueWald
= invCovSM . m u l t i p l y L e f t (

c e n t r a l i s e d P a r s )
. m u l t i p l y V e c t o r s (

c e n t r a l i s e d P a r s ) . doub leVa lue
( ) ;

i f ( t rueWald >uBoundWaldSM ) {
numSMReject ++;

}
}
propLMRejectWald = ( double ) numLMReject / (

double ) numTrueObs ;
propSMRejectWald = ( double ) numSMReject / (

double ) numTrueObs ;

/∗ now t o w r i t e t h e s e t o t h e o u t p u t f i l e ∗ /
w r i t e r . w r i t e ( p a r D e v i a t i o n +" \ t "+

propLMRejectWald +" \ t "+
propSMRejectWald ) ;

w r i t e r . newLine ( ) ;
}

}
catch ( IOExcep t ion e )
{

System . e r r . p r i n t l n ( " Caught IOExcep t i on : " + e .
ge tMessage ( ) ) ;

}
}
catch ( F i l e N o t F o u n d E x c e p t i o n e )
{

System . e r r . p r i n t l n ( " F i l e N o t F o u n d E x c e p t i o n : " + e .
ge tMessage ( ) ) ;

}
catch ( IOExcep t ion e )
{

System . e r r . p r i n t l n ( " Caught IOExcep t i on : " + e .
ge tMessage ( ) ) ;

}
}

}

4.A.3 Estimation of the fractional difference parameter

See FELW2St.java in appendix 3.A.3.
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4.A.4 Utilities used in this testing

See MersenneTwisterFast.java in appendix 3.A.3.
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Chapter 5

Limits on the Formation of Small

World Networks by Strategic Action

5.1 Introduction

The preceding chapters 3 and 4 established a model of macroeconomic volatility based

not on exchange, but rather on the enforcement of agreements between individuals.

The aggregate volatility came about in the context of hierarchies of third party enfor-

cers, putting just a few high up enforcers in a position to influence the productivity

of many. Recessions were then the product of successive failure to enforce of whole

avalanches of these enforcers. But, chapters 1 and 2 had called for more than just new

models of macroeocnomic volatility. They had shown that another important mac-

roeconomic phenomenon also remained unsatisfactorily modelled, namely the differ-

ences in growth between different economies. In chapter 1 I sketched an intuitive

model by which this phenomenon too could arise through considerations of enforce-

ment alone. But, in this case, it wasn’t only the hierarchical third-party enforcement

that was needed. I proposed that third-party enforcement would coexist and compete

with peer-pressure based enforcement. This latter mechanism would rely on the value

of future interaction with a community of individuals to act as collateral for present

interactions between those individuals. In terms of growth, my supposition was that

dense communities, established for the sake of providing this collateral, could prevent
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the development of the hierarchical enforcement even when advancing technology had

made the latter preferable. Without the formal legal frameworks of that hierarchical en-

forcement, I suggested that long distance trade and Economic growth would be stifled,

thereby explaining the divergence of Western economies from formerly comparable

economies elsewhere. In order to proceed in modelling this interaction of peer-pressure

and hierarchy based enforcement, we first need to establish models of peer-pressure

enforcement alone. This chapter is a starting point along that path.

As proposed in Chapters 1 and 3, the growing work on agent-networks, and the dynam-

ics of complex systems1, more generally offers an opportunity to reunify the study of

society, against Pareto’s split into the dubiously orthogonal Economics and Sociology.

Towards this goal too, of predictively useful socio-economic models, this chapter con-

tributes to answering the question of how observed social network structure might arise

from the behaviour of its constituent agents.

The particular structural feature on which I focus, for both enforcement and more gen-

eral social structure, is the “small worlds” property named for the famous experiments

of Travers and Milgram (1969). The popular concept of “six degrees of separation”

captures the Small World property: imagine I should pick another person at random,

and pass a message for them to an acquaintance of mine, and that acquaintance to an

acquaintance of their own etc.; I might describe the society as a small world if relatively

few such passes are needed for the message to reach its recipient. Formally, we call

the vector of acquaintance relationships a path, and the number of passes along it the

path length. Consider a network generating mechanism, that picks the relationships for

a social network within a previously unconnected population; the small worlds prop-

erty just described will be related to the shortest paths between each pair of agents

in the generated network. For a population of millions to have these “six degrees of

separation”, it is obvious that the shortest path lengths must have increased, relative

to the population, at a sub-linear rate from the minimal population of just two agents,

1Complex System is usually taken to denote a collection of adaptive agents, with emergent collective
behaviour (different from that of the agents) arising in a distributed way (Boccara, 2004).
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with one degree of separation. Using the average to describe the set of these shortest

path length, we then say that the mechanism has the Small Worlds property if, as we

increase the size of population to which it is applied, the average grows at the same

speed as the natural logarithm of the population size.

Observed social networks often tend to exhibit both the small worlds property and

high clustering —which is the tendency of two neighbouring nodes to share a common

neighbour, a kind of density to the graph (Jackson, 2010). These are, in a sense, op-

posite properties, with one requiring minimal closed paths within the network (being

wastes of links that could reach new nodes) and the other requiring as many closed

paths of length three as possible. This presents an obvious problem for strategic mod-

els, where the behaviour of individual agents must therefore include drives for both

short closed paths (or cycles) and long open paths. Nevertheless, Methodological Indi-

vidualist strategic models2 are essential where one wishes to predict changes to social

network topology arising from unprecedented changes to agents or the environment.

The focus of this chapter is, therefore, the potential for strategic behaviour to promote

the Small Worlds property, in the face of a constant pressure towards clustering. In

order to simplify the analysis, the pressure towards clustering is non-strategic, being

imposed through the search mechanism by which potential relationships are available

for strategic consideration.

The topological peculiarity of combined high clustering and small worlds is intimately

related to the intuitive growth model I sketched above and in chapter 1. Peer pressure

enforcement demands that the two parties to an agreement each have agreements with

many of the same individuals, as per the closure of Coleman (1988). Only then can

the future value of all those agreements act as collateral to any one agreement until it

is satisfied. In a network of agreements, this sharing of counterparts is described by

high clustering. Conversely, regardless of whether their agreements are enforced by

peer-pressure or third-parties, if exchange is going to quickly move products around a

2As explained in chapter 2, Methodological Individualism is an application of Reductionism to the
Social Sciences, where the component to which social phenomena are broken down is individual agents.
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society then there need to be as few exchange agreements as possible separating any

two individuals. This requirement is obviously equivalent to the small worlds property.

In order for agents to substitute away from clustering when third party enforcement

becomes preferable, there needs to be some cost to that clustering. It is establishing

that cost in the form of a reduced small worlds property, that is the objective of this

exercise.

My finding is, however, negative: although strategic behaviour with global information

about the network can effectively select a structure with short average path lengths,

realistically local information is not enough: when only local information is available,

in my model, the network is too unstable to consistently outweigh a pressure towards

clustering (see section 5.5).

There exist already several strategic models producing a combination of small worlds

and high clustering (see section 5.3), but these all rely on agents each having complete

knowledge of the structure of the network; a patently unrealistic assumption. For vari-

ous reasons, economics has previously employed methodologies that reject the need

for observably realistic assumptions, most notably in the As-If methodology of Fried-

man. But, as chapter 3 explains, this begs two questions: why restrict what are then

effectively holistic models to a structure of “strategic agents”, when these do not cor-

respond to the agents that actually make up society? And, when there is often as great

a shortage of reliable information on the macroscopic system of interest, as on the mi-

croscopic components, why deny oneself the use of what microscopic evidence one has

by neglecting its relationship to the macro? To properly supplement weak macroscopic

data with empirical evidence from microscopic components, and to avoid the vaguer-

ies of abduction, I argued that it was desirable to ensure abstraction only ever removes

properties of components that do not affect their aggregate behaviour —negligibility

assumptions in the popular typology of Musgrave (1981). In this case a strategic model

must not require agents to have global information, unless this assumption can be re-

laxed with trivial change to the model’s behaviour. This chapter therefore extends the
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Figure 5.1: Example network

question of whether strategic behaviour can achieve the small-worlds property with

only realistically local information.

The chapter is organised as follows: section 5.2 provides a lexicon for network science,

reviews the documented evidence for the small worlds property, and details holistic

models producing the property; while section 5.3 reviews existing Methodological In-

dividualist models that generate the small worlds property; section 5.4 gives a technical

explanation of my approach here; while sections 5.5 describes the model’s simulated

dynamic and steady state behaviour; finally, section 5.6 provides a summary of my

findings.

5.2 The small worlds property

5.2.1 Terminology and notation

Let us refresh the mathematical lexicon and relevant literature for networks, first given

in chapter 3, all the while using figure 5.1 as a visual reference:

Node Those objects which are linked within a network — this could be an agent, a

firm, or some more abstract object in some uses: i ∈ N . For example a in figure

5.1 is a node, as are b, c, etc.
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Edge; Link A connection between two nodes, denoting a relationship of some kind

between them: ij ∈ g ⊆ {(k, l) : l, k ∈ N}. For example, the line connecting

a, and b, in figure 5.1 represents an edge.

Graph; Network A collection of Nodes and Edges: (N, g). The entirety of figure 5.1

is an example of a graph.

Path A sequence of edges between two nodes, i and j say, including other nodes at

most once: (i1i2, ...iI−1iI) s.t. ikik+1 ∈ g, i1 = i, iI = j and ik 6= il ∀ k, l ∈

N . For instance, (ad, de) is the path shown in red in figure 5.1.

Neighbourhood (immediate) The set of nodes which share an edge from g with a par-

ticular subject node, i: Ni = {j ∈ N : ij ∈ g}. In figure 5.1, the neighbourhood

of a would be {b, d, e}.

Degree The number of other nodes to which a particular subject node, i, is connec-

ted; the cardinality of that node’s immediate neighbourhood: di =| Ni |. For

instance, the degree of a is 3.

Neighbour A node which shares an edge from g with a particular subject node, i:

j ∈ Ni. So b is just one neighbour of a.

Neighbourhood The set of nodes that can be reached by crossing no more than a

certain number, d , of edges of g, i : Nd
i = {j ∈ N : ∃ p = (ii2, ...iI−1j) , |p| ≤

d}

Component A subset of nodes between every pair of which there is a path, but from

no element of which there is a path to any other node: N∞i . So, in figure 5.1,

{a, b, d, e} is one component, and {c} is the other.

Tree A network or component in which there is only one path between any two nodes.

So the graph in figure 5.1 is not a tree.

Clique A sub-network in which every possible link is present: N ′ ∈ N : ∀i, j ∈

N ′ ij ∈ g. So the set {a, d, e} is a clique, and in this case a 3-clique or triad.
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Network Measures

Though the distribution of nodes’ degrees alone captures useful features of a network,

it fails to differentiate some features typical of observed networks. This motivates some

other popular measures of network topology:

Clustering roughly captures the probability with which neighbours share a common

neighbour, a kind of density of the network’s edges. Within this loose definition there

are several more specific measures employed in practice. Local clustering will be

considered here, and by extension average clustering will be used to describe the global

properties.

Cl(g) =

∑
ij,ik∈g 1(jk ∈ g)

|ij, ik ∈ g|

Diameter is the largest, among all pairs of nodes, of shortest paths between two nodes.

When something is spreading through a network, the diameter gives an idea of how

long it will take to reach all nodes.

Shortest average path length is a diameter-like measure of typical distances, that is

more robust to outliers. Typically it is taken over the largest component of a network.

5.2.2 The holistic literature on small worlds

Evidence of small-worlds and clustering in social networks (and other networks) is

given in many sources, two prominent such are Watts and Strogatz (1998) and Jackson

(2010).

Watts and Strogatz’s (1998) seminal work, on the small worlds-clustering paradox,

contrasts the conventional random networks of Erdos and Renyi with regular lattices:

the former (with relatively small degree) have the small worlds property but trivial clus-

tering; the latter have high clustering, but average path lengths that grow algebraically



5.3 Existing models of strategic network formation 337

with network size. Instead Watts and Strogatz propose a model of network formation

with both properties. Starting out with a lattice (say, a ring of nodes each connected

to two nearest neighbours on each side) existing edges are rewired to connect two ran-

domly selected nodes. The effect is to bring the best of both topologies, with the high

clustering of the original lattice and the logarithmic growth in path length of random

connections.

In Jackson and Rogers (2005a) an alternative mechanism is presented in the form of

two different modes of link selection —search in their words: nodes are selected se-

quentially; they are then given links to other nodes randomly selected from those with

some links already; finally, the node is given some links to nodes neighbouring those

they were just linked to. Among other desirable properties, this means that the com-

plete randomness of the second step leads to small worlds, while the third step naturally

leads to clustering. It is a slight refinement of this model that I will use to provide a

controlled pressure towards clustering.

5.3 Existing models of strategic network formation

5.3.1 Existing models

The islands connections model of Jackson and Rogers (2005b) is a highly abstracted

static equilibrium model that recreates the small worlds property. This model assumes

agents receive utility from being linked to others, that decays exponentially with the

length of the shortest path between them, `(i, j). That is, an agent receives utility δ

from an immediate neighbour, δ2 from a neighbour of a neighbour, and δ`(i,j) from

some agent with a minimum path of `(i, j) between them. For the sake of tractability

a maximum path length that can provide utility is set as D. With this distance based

utility in place, links are given a two-tier cost structure. This is explained intuitively as

it costing, c to link with an agent on the same island, Ii, and C to link with agents on
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other islands, I−i, with 0 < c < C. This gives each agent a payoff of,

ui(g) =
∑

j 6=i:`(i,j)≤D

δ`(i,j) −
∑
j:ij∈g

(c1(j ∈ Ii) + C1(j ∈ I−i))

It can then be shown that stable networks must involve every agent on each island being

directly connected, that diameter is no greater than D+ 1, and that clustering is tightly

bounded. However, no dynamics are specified for this framework, so it is unclear

whether the equilibrium represents an attractive point. Moreover, agents’ consent to

links in equilibrium assumes that they have information on distant topology. Both these

elements leave in question the status of the model as Methodological Individualist.

The enforcement based model of Jackson et al. (2012) is more sophisticated, with peer

pressure introduced as the explicit value of common neighbours, but it suffers from

similar problems of dependence on full information.

The network formation process has two stages each time period: first, agents choose

which links they would like to retain from the previous period; second, a favour is

asked at random, by node i of node j, and if it is not performed then the link ij is

removed. As with many repeated game scenarios, one equilibrium is the grim trigger

strategy wherein all agents maintain links and perform favours until one defects, and

then all agents sever all links. This is just one of infinitely many possible sub-game

perfect strategies, and so the authors introduce an equilibrium refinement concept of

renegotiation–proof–ness. This makes strategies robust to reconsideration of the grim

trigger after defection, by requiring in any subgame that continuing the renegotiation

proof strategy (and the network it produces) not be Pareto dominated by some other

renegotiation proof strategy (and the resulting network).

The authors characterise the actual set of renegotiation proof networks recursively,

for a particular cost structure. They then further refine their equilibrium concept by

looking for robust networks, in which the network arrived at after the grim trigger is

only changed locally — that is, networks in which there are no cascades of broken
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relationships after a single defection. They find that this promotes a unique network

structure of complete subnetworks linked in a tree-like structure3. These social quilts

have the high clustering we look for in imitations of the real world phenomena, and a

tree-like structure outside those clusters would ensure a logarithmic growth in shortest

average path length.

It should be noted that the tractability of the model is dependent on a growth process

that involves only deletion of links. The network formation mechanism is therefore not

truly dynamic. Moreover, in order for agents to judge whether a link they are offered

will be robust, they must again have information of their entire component’s topology.

As almost any link, added randomly to a quilt, would create a cycle of illicit length,

evolutionary pressures cannot be relied upon either to eliminate networks without quilt-

like structure — or networks would be continually destroyed by cascades.

Vega-Redondo’s enforcement model (2006) does, in contrast, consider dynamic beha-

viour. It examines first static network equilibria, and then a dynamic formation pro-

cess, under shifting incentives, by both simulation and mean field approximation4. The

model is one of perfectly rational agents, for whom a common edge means compet-

ing in an infinitely repeated prisoner’s dilemma — representing some collective action

problem — but also a source of information on the conformity of every agent in the

component — though news of defection from the common norm strategy is transferred

by only one edge each period. This information transfer service increases conform-

ity of partners to the collaborative strategy, and therefore serves as collateral against

defection. In its dynamic form, the network grows in a way that borrows from both

holistic models described above: at each time period each agent is randomly given the

opportunity to form a link with another node within their component of the network

or to form a link with any node in the network. Whether or not a link is formed is

then determined by whether it offers a Pareto improvement to both agents. With no

3With no cycles as large as the complete subnetworks.
4A mean field approximation makes a stochastic model deterministic by represents stochastic inputs

with their mean value.
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variation in the idiosyncratic payoffs to the prisoners’ dilemma games, the network

almost surely converges to the complete network. However, when the payoffs for each

link are redrawn each period, with some incremental probability, ε, any equilibrium

network arrived at eventually ceases to be an equilibrium and so the system evolves

away from it. The process does not arrive at a fixed configuration, but is ergodic and

has an unconditional long run distribution (invariant measure), that can be found by

simulation.

It is found that, in this framework, increased volatility ( ε ) leads to: lower network

density, through more depreciated social capital (collateral) each period; more co-

hesion, that is, lower diameter of components, making what collateral there is more

robust to collapsing relationships; a smaller largest component, again representing the

instability of less dense social capital; lower average payoff, because with less certain

value to relationships it pays to defect more often and so the worst case equilibrium of

the prisoners’ dilemma is realised more easily.

Despite the more complete treatment, the agents’ strategic considerations still rely on

having full knowledge of how information will propagate through the network, and

hence global topology.

The locality of information is missing from all these treatments, and appears to be an

important gap in the literature; I will attempt to address it, starting in the next section.

5.4 The Model

5.4.1 Trade

In order for realistically local strategic behaviour to drive a small diameter, which is a

global network property, the relevant global topological information must be available

to the agent in some local signal. Here that signal is each agent’s vector of goods held

from the last period; as it is influenced by that of their neighbours, and hence indirectly
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by neighbours of neighbours, etc.. As the good could represent anything of value

passed during an interaction between individuals, exchange of goods encompasses all

interfaces between strategic behaviour and topology.

In Acemoglu et al. (2012) broadly similar production influences are carried to neigh-

bours instantaneously. Here, however, it is felt that the transfer of goods between

neighbours are more realistically conceived as on a similar timescale to production.

Hence, a dynamic law of motion is used for the transfer of goods through the network.

Basic trade notation consists of:

xktij the amount of good k transferred from agent i to agent j, at time t;

ykti the amount of good k produced by agent i at time t.

The type of the good will have implications for the law of motion. If it is rivalrous (e.g.

any physical good), then the total value passed to neighbours cannot exceed the value

received or produced in the previous period:

∑
j∈Nt+1

i

xkt+1
ij ≤ ykt+1

i +
∑
j∈Nt

i

xktji

However, if the good is non-rivalrous (e.g. information) then it may be transferred

in quantity equal to that received. Conversely, it cannot be received more than once.

This means that only the shortest path to the source will have value — except where

topology has recently changed and earlier bits have not been received by that shortest

path. Where there is any depreciation of the good as it passes through the network, the

shortest path will be captured by the maximum quantity of the good among transfers:

xkt+1
ij ≤ max{ykt+1

i , xktli : l ∈ N t
i }
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The literature on social networks largely treats the value transmitted through a network

as being information. Because of this, and because it is more tractable, I will focus on

non-rivalrous goods in this chapter.

The Law of Motion could take many conceivable forms, depending on how agents

choose to allocate the good among their neighbours. Indeed, in reality one might expect

strategic bargaining, and some attempts at manipulation. For simplicity, I will assume

non-rivalrous goods are offered to all neighbours without exception. Whether this

approximating abstraction is trivial is a matter for further enquiry, but there seems no

intuitive reason that it would affect the system’s behaviour. It would also be reasonable

to conceive of a good like information degrading in quality as it is passed through the

network (the game Chinese Whispers relies on this property); hence, a depreciation

multiplier, δ, is included. The law of motion for a non-rivalrous good then becomes,

xkt+1
ij = δmax{ykt+1

i , xktli : l ∈ N t
i }

5.4.2 The Agents

The stated aim of this chapter is to establish the limits of strategic effects on small-

worlds topology under realistically local information. Clearly this requires a precise

and intuitive model of individual agent behaviour.

Agent specific goods production will be assumed, meaning that each agent produces

a unique good; in order to encourage short paths between every pair of nodes there

needs to be value for each agent, of paths to each other agent, that cannot be perfectly

substituted. Letting this production be of a uniform amount, π, across agents,

= π if i = k (5.1)

ykti (5.2)

= 0 if i 6= k (5.3)
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A bound on the number of neighbours that an agent can have is introduced, so as to

prevent the network simply building up links until it becomes complete. Although a

complete network would have unit diameter, it is quite patently unrealistic for every

person in a society to interact directly with every other. I will designate this bound as

M .

Linear utility in the various goods, is a simplifying abstraction from the more con-

ventional and intuitive convex case. With utility only consumed from a single source,

however, there can be no competition between incentives for single and multiple paths

to other agents. Intuitively therefore, convexity should not change the basic incentives

to have minimal path lengths to as many other agents as possible — only the value

of many long paths relative to a few short paths. Simulation of the system with ex-

ponential utility confirms this intuition, as there is no qualitative change in behaviour

— however I do not reproduce those results here. Hence, agents’ utility from their

relationships will be captured by the function,

uti =
1

|N |
∑
k∈N

zkti

I also assume quasi-myopic decision making: spacial locality of information is an as-

sumed property of the physical world, in all but the quantum realm, so limiting strategy

to local space should not be controversial to readers. There is, however, experimental

and simulation evidence suggesting that real humans’ decision making is likely also

bounded in its temporal scope: repeated game equilibrium refinements like backward

induction are not supported by experimental evidence (Johnson et al., 2002); time in-

consistency (hyperbolicity) is often observed in the time preferences of humans in ex-

perimental settings (Strotz, 1955-56); meanwhile, simple trial and error algorithms do

not distinguish well between subgame perfect and other Nash equilibria (Samuelson,

1994). For this reason, I choose not to model agents’ decision making as taking account

of all future transactions.
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Because the goods are not spoilable, agents will carry their stocks of goods from an old

topology to their position in a new topology. The value of these instantaneous transfers

are an obvious bias in the short run, and so nor do I treat decision making simply as

myopic. Instead, each agent will approximate the goods bundle to be expected under

the new topology, by the goods bundle expected one period after the topology change.

That is, they subtract any goods the new neighbour would have received from the

neighbour they abandon, and (trivially) add the goods bundle they would pass to the

new neighbour.

The search mechanism, for new neighbours, will serve two purposes: it will allow

agents the opportunity to choose between different neighbours, thereby bringing their

strategic behaviour to bear on network topology; it will also reproduce a constant pres-

sure towards high clustering, in opposition to any strategic pressure towards short path

lengths. Toward this purpose, I employ a mechanism with both conventional global

random search and local search encouraging clustering. This mechanism is closest to

that of Vega-Redondo (2006). Each period, the search illustrated in figure 5.2 consists

of:

i: A subject agent is chosen uniformly at random from the population;

iia: EITHER, with probability p, a second agent is then chosen uniformly from those

that are not currently neighbour to the first;

iib: OR, with probability 1 − p, a neighbour of the agent is chosen uniformly at ran-

dom, and a neighbour of theirs chosen as a potential new neighbour — if any

neighbour is not also a neighbour to the subject, otherwise a different existing

neighbour is chosen uniformly from the remaining neighbours;
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1-p p

Figure 5.2: The neighbour search process

5.4.3 The sequence of events

In light of the above modelling framework, the following series of decisions and events

will take place within each time period:

1: Exchange Transfers are made between all pairs of neighbours, and their subsequent

stocks of the goods are updated;

2: Search As detailed above, an agent is chosen uniformly at random, and a new

potential neighbour is found for them according to the search algorithm;

3: Decisions Each of the newly selected pair of agents observes the other’s neighbour-

hood. They then judge what maximal combination, of their existing neighbours

and the new neighbour, would maximise their utility. If the other agent already

has a maximal number of relationships, it is assumed in strategising that they

would retain the most valuable combination of size one less than the maximum;
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5.5 Behaviour of the model

Even where agents are otherwise perfectly homogeneous, the importance of their posi-

tion within a network can lead to extremely high dimensionality when describing their

collective behaviour — unless, say, the topology were itself somehow forced to be reg-

ular. For this reason, it is rarely possible to capture the precise dynamics of a network

system, and we must settle instead for either: approximations, such as mean-field ana-

lysis; or a precise account of behaviour for only some finite set of parameter values,

in the form of simulated data. In order to understand the dynamic behaviour of this

model, I focus here on the latter option; all the while conscious that some behaviours

may remain unobserved in the gaps between tested parameters.

Initial conditions are likely to be important for the models, as they can easily be seen to

be non-ergodic 5. Nevertheless, it may be assumed that any social network starts with

some disconnected state, as the members will all have finite lifespans. For this reason,

the initial condition for each simulation will be a network with no relationships.

Stability will be important for the emergence of the small worlds property in a network,

under a competing pressure for clustering: it necessarily takes time to build up paths

between many pairs of nodes. So, even if links are initially selected in such a way that

path lengths should be minimised, if there is not also a pressure to maintain these links

then short paths will not build up.

5.5.1 Steady state behaviour

My principal interest is in the long run behaviour of topological properties. Without

ergodicity the system may spend time in states that will not then be revisited. These

states will be of trivial importance in the long run, and so they should be disregarded

in an investigation of the topological properties. I therefore include a burn in period

5In order for links to be severed, another link must be created. Hence, the system can never return
to a fully disconnected state.
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in the simulations, before taking the mean of topological properties over subsequent

iterations to capture long run properties. The sets of states other than these transient

ones may be regarded as steady states. As the system is stochastic, different paths may

be taken, and different steady states entered on different instantiations of the model.

For this reason the behaviour of the models must also be considered over multiple

repetitions starting from the initial conditions. For figure 5.3 I average across these

repetitions in order to gain a description of general behaviour. This specific example

is a network of 100 agents, each able to sustain at most 4 relationships. Values are

averages over 20 simulations. Each simulation consisted of 50,000 iterations, with the

first 10,000 abandoned to allow a steady state to be approached. Means of each metric

were then taken over the following 40,000 iterations, before being averaged.

Full Information

The topology under perfect information is a useful benchmark for the local information

case. For the non-rivalrous good, where only the shortest path a good can take to the

agent is relevant, full information involves knowing these path lengths for any given

configuration of neighbours. The first step of the process above then becomes trivial.

Meanwhile, in the third step agents now base their decisions on the known path lengths

rather than the topological-information contained in neighbours’ inventories.

Observation 5.5.1 Regardless of the pressure towards clustering, 1−p, strategic agents

acting on full information of path lengths will maintain a connected network with

path lengths comparable to a network built by random global search.

Simulations support this observation, under a broad range of parameters; figure 5.3

shows behaviour for the illustrative example of 100 agents, each capable of maintaining

relationships to four other agents. It can be seen that networks generated by these

hyperopic agents have extremely stable properties as the probability of search being

local varies. Notably, the average path length remains that of a fully random network,
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Figure 5.3: Steady state values of key network metrics for varying probabilities
of local search.

while the search mechanism alone diverges towards the path length we would expect of

a geometric relationship —given the component sizes. While the graphs generated by

search are connected for values of p above a certain point, they become disconnected

when local search becomes too common. The strategic agents, however, maintain a

connected graph for all values of the search parameter.
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Local information

Non-rivalrous goods can capture path lengths in the form of the least depreciated sup-

ply among neighbours; in the important example of information, we can imagine recog-

nising the expertise of a particular neighbour on a given topic by the additional detail of

their account. Is there enough topological information contained in this measure? The

answer is no, arguably because goods we have previously passed to neighbours mask

whether they could also have received those same goods (with the same depreciation)

via another path of the same length. More formally,

Observation 5.5.1 As the pressure towards clustering, 1−p, increases, strategic agents

acting on only local information fail to compensate for pressures towards clus-

tering: the average path length within the generated network diverges from the

logarithmic case.

Simulations support this observation, under a broad range of parameters; figure 5.3

shows behaviour for the illustrative example of 100 agents, each capable of maintain-

ing relationships to four other agents. In contrast to the full information case, it is

apparent that average path lengths grow as p falls. This is despite the fact that the

component over which these paths are being measured shrinks. The shrinkage is also

notable because it exceeds that of the purely random generating mechanism. A clue to

both differences in behaviour comes in the average degrees of the agents in the various

models. It is found that agents maintain full degree in both the random and full inform-

ation models, for all values of p; meanwhile, in the local information case agents fail to

maintain full degree, and this worsens as p falls. The mechanisms’ design applies con-

stant pressure towards agents achieving full degree (of four in the example), and so this

failure can only occur because of some instability causing a large set of relationships

to be broken even after being chosen.

An intuitive justification for this difference in behaviour, from the full information

case, comes with the realisation that a good passed on to a neighbour by the agent
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masks other sources of the good to that neighbour. This prevents the agent from com-

pensating for goods in a neighbour’s possession that have come from the agent them-

self. Without compensating for these reflected goods, even when a unique path exists

through a neighbour to some good’s source the agent will perceive that there is an-

other path via each of their other neighbours. These reflected paths will each have a

length only three steps greater than the true unique path: a step to the agent from the

neighbour hosting the unique path; a step from the agent to the other neighbour; and a

step back from that other neighbour to the agent. For this reason, agents will willingly

allow unique paths between many of the network’s nodes to be destroyed, thinking that

there are alternatives. In our information example, once we have already told a piece

of news to a friend, we cannot then know whether they could also have heard this news

from another source —at least, not from the simple fact of them knowing the news.

5.5.2 Dynamic behaviour

In light of finding that the model with local information does not converge to a single

state, its dynamic behaviour becomes of interest to its long run properties. This dy-

namic behaviour is illustrated in figure 5.4 for five simulations with local information

(left), and with full information (right). This specific example is a network of 100

agents, each able to sustain at most 4 relationships.

Highly unstable behaviour is observed, as guessed, for the model with local inform-

ation only in figure 5.4: as local search probability, the pressure towards clustering,

increases the strategic pressure towards a single component with short path lengths

becomes insufficient to overcome it. This is in stark contrast to the model with full

information on path lengths, in which convergence is slowed but still assured even un-

der high pressure towards clustering. For the local information case, it might appear

that extremely short paths are still sometimes achieved. However, comparison with the

component sizes makes it clear that these periods of low average shortest paths coin-

cide with periods where the network has only a small largest component — with low
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Figure 5.4: Dynamic development of simulations under extremal values of local
search probability.

average shortest paths a necessary consequence.

5.6 Conclusions and extensions

5.6.1 This chapter

I have argued that the current literature on strategically formed networks neglects real-

istic limits on the locality of information, with regard to generally observed small

worlds property. Further, the case was made that small worlds could not arise without

some strategic mechanism, that can work on local information only, in the presence of

a constant pressure towards the widely observed stylised fact of high clustering. Hav-
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ing constructed a natural strategic model of network formation, simulations showed

that local information is not sufficient to produce the topological features observed in

reality. This observation should be taken very seriously by any modeller choosing a

mechanism for clustering that provides unchanging incentives, as can be seen in such

staples as the islands-connections model of Jackson and Rogers (2005b). It does not,

however, rule out the small worlds property emerging in a Methodological Individu-

alist model: given that random search can produce the property when not opposed by

pressure towards clustering, it seems likely that this would suffice so long as incentives

towards high clustering disappear in the presence of high clustering.

In order for my research program to further its attempt at describing economic growth,

I have suggested that peer-pressure based enforcement should be modelled and set in

opposition to the hierarchical enforcement modelled in chapter 3. In order for such

a model to successfully describe social networks, the problems raised in this chapter

must be addressed. I leave this a topic for further research.

5.6.2 This research program

The negative result of this chapter marks a premature conclusion to the Macroeco-

nomics of Social Contracts. But, in truth it should be no more than a hiatus. The

methodological arguments of chapter 2 still urge for new approaches to Macroeco-

nomics, besides the logically and epistemologically flawed General Equilibrium based

models. Meanwhile, chapters 3 and 4 lay the foundations for a logically superior, and

as yet unrefuted alternative model of macroeocnomic fluctuations. As stated above,

the result above does not prohibit the intuitive model of macroeconomic growth that I

have sketched here and in chapter 1. I hope that I have impressed on the reader a need

to help me continue this work. If not that, then I hope that I have at least shown that

there is nothing to fear in leaving the well trodden path of Orthodox Macroeconomics,

and that the vast virgin wilderness beyond is ripe with opportunity.
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5.A Simulation Codes

5.A.1 Standard Exchange Network Model

Agent.java

/∗
C o p y r i g h t 2011 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package a n a r c h y t r a d e ;
import u t i l . ∗ ;
import j a v a . t e x t . ∗ ;
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/∗ T h i s i s an a g e n t o b j e c t t h a t p o p u l a t e s a s o c i a l ne twork . I t
a s s e s s e s

∗ r e l a t i o n s h i p s a c c o r d i n g t o l o c a l i n f o r m a t i o n , and l o o k s
ahead o n l y

∗ one s t e p .
∗ /
p u b l i c c l a s s Agent {

DecimalFormat d f = new DecimalFormat ( " # .### " ) ;

/ / f i x e d
f i n a l i n t i n d e x ;
f i n a l i n t numAgents ;
f i n a l i n t m a x R e l a t i o n s h i p s ;
f i n a l double d e p r e c i a t i o n ;
f i n a l double i n n o v a t i o n ;
f i n a l double invNumAgents ;
f i n a l double i m i t a t i o n ;

/ / v a r i a b l e
double [ ] d i v e r s i t y ;
double d i v e r s i t y M e a s u r e ;
double [ ] e s t i m a t e d D i v e r s i t y ;
double e s t i m a t e d D i v M e a s u r e ;
double e s t i m a t e d U t i l i t y ;
i n t g u e s s R e j e c t e d I n d ;
i n t p r o d u c t ;

Bag n e i g h b o u r s ;
Bag o l d N e i g h b o u r s ;
Bag component ;

i n t f i r s t N e i g h b o u r I n d e x ;
double f i r s t N e i g h b o u r D i v e r s i t y ;

p u b l i c Agent ( i n t numAgents , i n t index , i n t m a x R e l a t i o n s h i p s
,

double d e p r e c i a t i o n , double i n n o v a t i o n ) {
t h i s . i n d e x = i n d e x ;
t h i s . numAgents = numAgents ;
t h i s . m a x R e l a t i o n s h i p s = m a x R e l a t i o n s h i p s ;
t h i s . d e p r e c i a t i o n = d e p r e c i a t i o n ;
t h i s . i n n o v a t i o n = i n n o v a t i o n ;

invNumAgents = 1 . 0 / ( double ) numAgents ;
i m i t a t i o n = 1 . 0 − i n n o v a t i o n ;
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d i v e r s i t y = new double [ numAgents ] ;
d i v e r s i t y [ i n d e x ] = 1 . 0 ;

n e i g h b o u r s = new Bag ( ) ;
o l d N e i g h b o u r s = new Bag ( ) ;
component = new Bag ( ) ;

}

/∗ With a l l t h e a g e n t s ’ ownProducts e s t a b l i s h e d we now need
t o t a k e

∗ t r a n s f e r s i n t o a c c o u n t
∗ /

p u b l i c double [ ] r e c e i v e T r a n s f e r s ( ) {
double [ ] u p d a t e d D i v e r s i t y = new double [ numAgents ] ;

i n t numNeighbours = n e i g h b o u r s . numObjs ;

/∗ We ’ l l work o u t t h e q u a n t i t y , t h a t t h e a g e n t has , o f
each p r o p e r t y ∗ /

f o r ( i n t p r o p e r t y =0; p r o p e r t y <numAgents ; p r o p e r t y ++) {
double newPrope r ty = 0 . 0 ;
i f ( p r o p e r t y == i n d e x )

newPrope r ty = i n n o v a t i o n ;
e l s e {

f o r ( i n t n b r I n d e x =0; nbr Index <numNeighbours ;
n b r I n d e x ++) {

Agent n e i g h b o u r = ( Agent ) n e i g h b o u r s . o b j s [
n b r I n d e x ] ;

double n b r P r o p e r t y = n e i g h b o u r . d i v e r s i t y [
p r o p e r t y ] ;

i f ( n b r P r o p e r t y > newPrope r ty )
newPrope r ty = n b r P r o p e r t y ;

}
newPrope r ty ∗= d e p r e c i a t i o n ;

}
u p d a t e d D i v e r s i t y [ p r o p e r t y ] = newPrope r ty ;

}
re turn u p d a t e d D i v e r s i t y ;

}

p u b l i c vo id removeNeighbours ( Bag f o r m e r N e i g h b o u r s ) {
f o r ( i n t i =0 ; i < f o r m e r N e i g h b o u r s . numObjs ; i ++) {

/ / we remove t h e n e i g h b o u r
n e i g h b o u r s . remove ( f o r m e r N e i g h b o u r s . o b j s [ i ] ) ;

}
}
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}

SocialNetwork.java

/∗
C o p y r i g h t 2011 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package a n a r c h y t r a d e ;
import u t i l . ∗ ;

/∗ Anarchy Trade model a l l o w s a g e n t s t o p r e d i c t t h e e f f e c t s o f
add ing n e i g h b o u r s

∗ on t h o s e n e i g h b o u r s ’ d i v e r s i t i e s !
∗ /
p u b l i c c l a s s S o c i a l N e t w o r k {

Bag a l l N o d e s ;
M e r s e n n e T w i s t e r F a s t random ;

f i n a l boolean l o c a l S e a r c h ;

f i n a l i n t numAgents ;
f i n a l i n t m a x R e l a t i o n s h i p s ;
f i n a l i n t exchangeRa te ;
f i n a l double g l o b a l S e a r c h P r o b ;

f i n a l double d e p r e c i a t i o n ;
f i n a l double i n n o v a t i o n ;

f i n a l double invNumAgents ;

Bag newEdges ;

i n t edgesRemoved ;
boolean s t a t s T a k e n ;
Bag components ;
Bag l a r g e s t C o m p o n e n t ;
Bag secondComponent ;

/ / i n s t a n t a n e o u s ne twork s t a t i s t i c s :
double a v e r a g e D e g r e e ;
i n t [ ] d e g r e e D i s t r i b u t i o n ;
double a v e r a g e C l u s t e r i n g ;
double [ ] c l u s t e r i n g D i s t r i b u t i o n ;
double c l u s t e r i n g ;
double s u p p o r t ;
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double [ ] c e n t r a l i t y ;
double l a r g e s t C o m p o n e n t S h a r e ;
double secondComponentShare ;
double a v e r a g e S h o r t e s t P a t h ;
double averageEdgeAge ;

Bag p a r e n t s ;

/ / dynamic ne twork s t a t i s t i c s :
double a v e r a g e P r o d u c t ;
double a v e r a g e D i v e r s i t y M e a s u r e ;
i n t n u m R e l a t i o n s h i p s ;
double c o m p l e t e n e s s ;
i n t r e l a t i o n s h i p s B r o k e n ;

p u b l i c S o c i a l N e t w o r k ( boolean l o c a l S e a r c h , i n t numAgents ,
i n t m a x R e l a t i o n s h i p s ,

i n t exchangeRate , double g l o b a l S e a r c h P r o b , double
d e p r e c i a t i o n ,

double i n n o v a t i o n ) {
t h i s . l o c a l S e a r c h = l o c a l S e a r c h ;

t h i s . numAgents = numAgents ;
t h i s . m a x R e l a t i o n s h i p s = m a x R e l a t i o n s h i p s ;
t h i s . exchangeRa te = exchangeRa te ;
t h i s . g l o b a l S e a r c h P r o b = g l o b a l S e a r c h P r o b ;
t h i s . d e p r e c i a t i o n = d e p r e c i a t i o n ;
t h i s . i n n o v a t i o n = i n n o v a t i o n ;

invNumAgents = 1 . 0 / ( double ) numAgents ;

newEdges = new Bag ( ) ;

random = new M e r s e n n e T w i s t e r F a s t ( ) ;
}

/ / T r a n s f e r s are now c a l l e d i n from t h e v a r i o u s agen t s , and
t h e n r e d i s t r i b u t e d

p u b l i c vo id e x c h a n g e T r a n s f e r s ( ) {
double [ ] [ ] d i v e r s i t i e s = new double [ numAgents ] [

numAgents ] ;

/ / f i r s t , l e t ’ s c a l l i n each o f t h e upda ted d i v e r s i t y
a r r a y s

f o r ( i n t a g e n t I n d e x =0; a g e n t I n d e x <numAgents ; a g e n t I n d e x
++) {
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Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ a g e n t I n d e x ] ;
d i v e r s i t i e s [ a g e n t I n d e x ] = a g e n t . r e c e i v e T r a n s f e r s ( ) ;

}

/ / now , w i t h a l l a g e n t s ’ d i v e r s i t i e s updated , t h e
o r i g i n a l d i v e r s i t i e s

/ / are no l o n g e r needed and can be r e p l a c e d
f o r ( i n t a g e n t I n d e x =0; a g e n t I n d e x <numAgents ; a g e n t I n d e x

++) {
Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ a g e n t I n d e x ] ;
a g e n t . d i v e r s i t y = d i v e r s i t i e s [ a g e n t I n d e x ] ;

}
}

/∗ A f t e r t r a n s f e r s b u t b e f o r e c h o i c e s , t h i s p r o v i d e s new
n e i g h b o u r s t o t h o s e

∗ a g e n t s t h a t can s u s t a i n them
∗ /

p u b l i c vo id n e i g h b o u r S e a r c h ( ) {
Bag c l a s s i f i e d s = new Bag ( a l l N o d e s ) ;

/∗ l o c a l s e a r c h s h o u l d happen f i r s t , t o r ed uc e t h e
p o s s i b i l i t y

∗ t h a t t h e r e are no v i a b l e l o c a l s e a r c h c h o i c e s l e f t
i n c l a s s i f i e d s :

∗ − i f t h e r e i s a c l i q u e t h e r e c o u l d s t i l l be no l o c a l
s e a r c h c h o i c e s ∗ /

Agent a g e n t =
( Agent ) c l a s s i f i e d s . o b j s [ random . n e x t I n t (

c l a s s i f i e d s . numObjs ) ] ;

/ / we c r e a t e a new bag t o keep t r a c k o f n e i g h b o u r s we ’
ve v i s i t e d

/ / i n l o c a l s e a r c h
Bag n e i g h b o u r s = new Bag ( a g e n t . n e i g h b o u r s ) ;

/ / now a s p e c i f i c c l a s s i f i e d s bag s t o p p i n g us s e l e c t i n g
/ / i n a p p r o p r i a t e new l i n k s f o r t h i s p a r t i c u l a r a g e n t
Bag t e m p C l a s s i f i e d s = new Bag ( c l a s s i f i e d s ) ;
t e m p C l a s s i f i e d s . remove ( a g e n t ) ;
t e m p C l a s s i f i e d s . removeAl l ( n e i g h b o u r s ) ;
i f ( t e m p C l a s s i f i e d s . i sEmpty ( ) ) {

c l a s s i f i e d s . remove ( a g e n t ) ;
}
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/ / w i t h a g i v e n p r o b a b i l i t y a new n e i g h b o u r i s found by
g l o b a l s e a r c h

i f ( random . n e x t B o o l e a n ( g l o b a l S e a r c h P r o b ) ) {
i n t p o t e n t i a l C l a s s i f i e d =

random . n e x t I n t ( t e m p C l a s s i f i e d s . numObjs ) ;
Agent p o t e n t i a l N e i g h b o u r = ( Agent ) t e m p C l a s s i f i e d s

. o b j s [ p o t e n t i a l C l a s s i f i e d ] ;
/∗ now we add t h e s e a g e n t s as a p a i r t o t h e bag o f

new edges
∗ t o check o u t ∗ /

newEdges . add ( new Agent [ ] { agen t , p o t e n t i a l N e i g h b o u r } )
;

c l a s s i f i e d s . remove ( a g e n t ) ;
c l a s s i f i e d s . remove ( p o t e n t i a l N e i g h b o u r ) ;

}
/ / o t h e r w i s e l o c a l s e a r c h i s used − may n o t be

s u c c e s s f u l !
e l s e i f ( l o c a l S e a r c h ) {

/ / f i r s t we randomly choose a n e i g h b o u r from whom
t o p i c k a

/ / common n e i g h b o u r
whi le ( ! n e i g h b o u r s . i sEmpty ( ) ) {

i n t n e i g h b o u r I n d e x = random . n e x t I n t ( n e i g h b o u r s .
numObjs ) ;

Agent v i a N e i g h b o u r = ( Agent ) n e i g h b o u r s . o b j s [
n e i g h b o u r I n d e x ] ;

Bag p o t e n t i a l s = new Bag ( v i a N e i g h b o u r .
n e i g h b o u r s ) ;

p o t e n t i a l s . remove ( a g e n t ) ;

/ / now we randomly s e a r c h t h r o u g h t h a t a g e n t ’ s
/ / n e i g h b o u r s
whi le ( ! p o t e n t i a l s . i sEmpty ( ) ) {

i n t p o t e n t i a l I n d e x = random . n e x t I n t (
p o t e n t i a l s . numObjs ) ;

Agent p o t e n t i a l = ( Agent ) p o t e n t i a l s . o b j s [
p o t e n t i a l I n d e x ] ;

i f ( t e m p C l a s s i f i e d s . c o n t a i n s ( p o t e n t i a l ) ) {
newEdges . add ( new Agent [ ] { agen t ,

p o t e n t i a l } ) ;

c l a s s i f i e d s . remove ( a g e n t ) ;
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c l a s s i f i e d s . remove ( p o t e n t i a l ) ;
re turn ;

}
e l s e p o t e n t i a l s . remove ( p o t e n t i a l ) ;

}
n e i g h b o u r s . remove ( v i a N e i g h b o u r ) ;

}
}

}

/∗ Ag en t s e v a l u a t e r e l a t i o n s h i p s , t h e y are t h e n ranked , and
t h i s i s f o l l o w e d

∗ by t h e a c t u a l change t o ne twork t o p o l o g y
∗ /

p u b l i c vo id ne ighbourChoose ( ) {
Bag [ ] neighboursToRemove = new Bag [ numAgents ] ;
i n t numNewEdges = newEdges . numObjs ;

/∗ When a g e n t s are making c h o i c e s abou t l i n k s , t h e y may
assume t h a t t h e i r

∗ n e i g h b o u r s ’ s e t s o f n e i g h b o u r s w i l l remain unchanged
( as t h e i r d e c i s i o n

∗ w i l l have no e f f e c t on t h i s )
∗ You can , t h e r e f o r e , work o u t e v e r y a g e n t ’ s b a s i c

t r a n s f e r v a l u e
∗ be forehand , and new v a l u e s need o n l y be c a l c u l a t e d

f o r t h e a g e n t s
∗ p a r t y t o a p o t e n t i a l new l i n k i n each c o m b i n a t i o n ∗ /

double [ ] [ ] t r a n s f e r V a l u e s = new double [ m a x R e l a t i o n s h i p s
+ 1 ] [ numAgents ] ;

f o r ( i n t a g e n t I n d e x =0; a g e n t I n d e x <numAgents ; a g e n t I n d e x
++) {

double [ ] e s t m t d N b r P r o p e r t i e s = new double [ numAgents
] ;

Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ a g e n t I n d e x ] ;
Bag n e i g h b o u r s = a g e n t . n e i g h b o u r s ;
i n t numNeighbours = n e i g h b o u r s . numObjs ;
double t r a n s f e r V a l u e = 0 . 0 ;
/∗ We ’ l l work o u t t h e q u a n t i t y , t h a t t h e a g e n t has ,

o f each p r o p e r t y ∗ /
f o r ( i n t p r o p e r t y =0; p r o p e r t y <numAgents ; p r o p e r t y ++)

{
/∗ The a g e n t w i l l i n h e r i t , f rom t h e i r

ne ighbour s , a s h a r e o f
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∗ o n l y t h e l a r g e s t v a l u e o f a p a r t i c u l a r
p r o p e r t y ∗ /

double newPrope r ty = 0 . 0 ;
i f ( a g e n t . i n d e x == p r o p e r t y ) {

newPrope r ty = i n n o v a t i o n ;
}
e l s e {

f o r ( i n t n b r I n d e x =0; nbr Index <numNeighbours ;
n b r I n d e x ++) {
double n b r P r o p e r t y = ( ( Agent ) n e i g h b o u r s

. o b j s [ n b r I n d e x ] )
. d i v e r s i t y [ p r o p e r t y ] ;

i f ( n b r P r o p e r t y > newPrope r ty ) {
newPrope r ty = n b r P r o p e r t y ;

}
}
newPrope r ty ∗= d e p r e c i a t i o n ;

}
t r a n s f e r V a l u e += newPrope r ty ;
e s t m t d N b r P r o p e r t i e s [ p r o p e r t y ] = newPrope r ty ;

}
t r a n s f e r V a l u e ∗= invNumAgents ;
t r a n s f e r V a l u e s [ 0 ] [ a g e n t I n d e x ] = t r a n s f e r V a l u e ;
a g e n t . e s t i m a t e d D i v e r s i t y = e s t m t d N b r P r o p e r t i e s ;
a g e n t . e s t i m a t e d D i v M e a s u r e = 0 . 0 ;
a g e n t . g u e s s R e j e c t e d I n d = −1;
a g e n t . e s t i m a t e d U t i l i t y = 0 . 0 ;

}

newEdgeLoop : f o r ( i n t newEdgeIndex =0; newEdgeIndex <
numNewEdges ; newEdgeIndex ++) {

Agent [ ] a g e n t s = ( Agent [ ] ) newEdges . o b j s [
newEdgeIndex ] ;

Agent [ ] r e j e c t s = new Agent [ 2 ] ;

/∗ The u t i l i t y w i l l be d e r i v e d from a number o f
t r a n s f e r s

∗ c o r r e s p o n d i n g t o exchangeRa te . The p r e d i c t i o n
f o r u t i l i t y w i l l

∗ t h e r e f o r e t a k e i n t o a c c o u n t
∗ − a s i n g l e t r a n s f e r based on t h e new n e i g h b o u r ’ s

f o rm er ne ighbourhood
∗ − a s e r i e s o f t r a n s f e r s based on t h e i r would−be

ne ighbourhood
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∗ ( t h e s e c o u l d be d i s c o u n t e d e x p o n e n t i a l l y , or
h y p e r b o l i c a l l y )

∗
∗ For t h e sake o f t h e i r new n e i g h b o u r p r e d i c t i n g

t h e
∗ i n d i r e c t t o p o l o g i c a l e f f e c t s o f i n i t i a t i n g a

r e l a t i o n s h i p ,
∗ t h e f o l l o w i n g loop w i l l a s s e s s which o f each

n e i g h b o u r ’ s e x i s t i n g
∗ r e l a t i o n s h i p s i s t h e l e a s t v a l u a b l e t o them
∗ a g e n t s w i l l t h e n assume t h a t t h e i r n e i g h b o u r

abandons t h e i r l e a s t
∗ v a l u a b l e r e l a t i o n s h i p i n j u d g i n g t h e i r v a l u e ∗ /

f o r ( i n t nodeIndex =0; nodeIndex <2; nodeIndex ++) {
Agent a g e n t = a g e n t s [ nodeIndex ] ;

Bag n e i g h b o u r s = new Bag ( a g e n t . n e i g h b o u r s ) ;

i n t numNeighbours = n e i g h b o u r s . numObjs ;
i n t maxNeighbours = m a x R e l a t i o n s h i p s −1;
/∗ i f t h e a g e n t can s u s t a i n a l l l i n k s , t h e n

t h e y w i l l − i t i s
∗ assumed t h a t a l l l i n k s w i l l p r o v i d e p o s i t i v e

v a l u e or d e f e c t i o n
∗ w i l l j u s t l e a d t o e q u a l v a l u e ∗ /

i f ( numNeighbours < m a x R e l a t i o n s h i p s ) c o n t in u e ;
/∗ i f t h e r e are t o o many n e i g h b o u r s t o s u s t a i n ,

t h e n we ’ l l a s s e s s
∗ t h e v a l u e o f a l l c o m b i n a t i o n s ( s i z e o f

m a x R e l a t i o n s h i p s −1) ∗ /
Bag c o m b i n a t i o n = new Bag ( ) ;
Bag c o m b i n a t i o n s = new Bag ( ) ;
g e t C o m b i n a t i o n s ( n e i g h b o u r s , −1, maxNeighbours ,

combina t ion ,
c o m b i n a t i o n s ) ;

i n t numCombinat ions = c o m b i n a t i o n s . s i z e ( ) ;
Bag b e s t C o m b i n a t i o n = new Bag ( ) ;
double b e s t C o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ now t o e x p l o r e a l l t h e p o s s i b l e c o m b i n a t i o n s
o f n e i g h b o u r s ∗ /

f o r ( i n t c o m b i n a t i o n I n d e x =0;
c o m b i n a t i o n I n d e x <numCombinat ions ;
c o m b i n a t i o n I n d e x ++) {

c o m b i n a t i o n = ( Bag ) c o m b i n a t i o n s . o b j s [
c o m b i n a t i o n I n d e x ] ;
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/∗ now an i m p l e m e n t a t i o n w i t h non−s e p a r a b l e
u t i l i t y :

∗ − as t h e e f f e c t s o f t h e edge ’ s o t h e r
p a r t y are n o t b e i n g

∗ c o n s i d e r e d , t h e r e i s no need t o
c o n s i d e r d i f f e r e n t

∗ d i f f e r e n t i n i t i a l and s u b s e q u e n t
n e i g h b o u r h o o d s ∗ /

double c o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ Now t o add t h e t r a n s f e r s f o r each o f t h e
n e i g h b o u r s i n

∗ t h i s c o m b i n a t i o n ∗ /
f o r ( i n t p r o p e r t y =0; p r o p e r t y <numAgents ;

p r o p e r t y ++) {
double combProper ty = 0 . 0 ;

/∗ here we g e t t h e a g e n t ’ s r e t a i n e d
p r o p e r t y , as would

∗ have been r e c e i v e d t h e p r e v i o u s
p e r i o d g i v e n t h e i r

∗ ne ighbourhood i n t h i s c o m b i n a t i o n ∗ /
i f ( p r o p e r t y == a g e n t . i n d e x ) {

combProper ty += a g e n t . i n n o v a t i o n ;
}
f o r ( i n t n b r I n d x =0; nbr Indx <

maxNeighbours ; n b r I n d x ++) {
Agent n e i g h b o u r = ( Agent )

c o m b i n a t i o n . o b j s [ n b r I n d x ] ;

double n b r P r o p e r t y = n e i g h b o u r .
d i v e r s i t y [ p r o p e r t y ] ;

i f ( n b r P r o p e r t y > combProper ty ) {
combProper ty = n b r P r o p e r t y ;

}
}
combProper ty ∗= d e p r e c i a t i o n ;

/∗ here we add each n e i g h b o u r ’ s
e s t i m a t e d p r o p e r t y ∗ /

f o r ( i n t nbrCombIndex =0;
nbrCombIndex <maxNeighbours ;
nbrCombIndex ++) {
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Agent n e i g h b o u r = ( Agent )
c o m b i n a t i o n . o b j s [ nbrCombIndex ] ;

combProper ty += n e i g h b o u r .
e s t i m a t e d D i v e r s i t y [ p r o p e r t y ] ;

}

c o m b i n a t i o n V a l u e += combProper ty ;
}
c o m b i n a t i o n V a l u e ∗= invNumAgents ;

/∗ I f t h i s c o m b i n a t i o n g e n e r a t e s a h i g h e r
u t i l i t y t han t h e

∗ e x i s t i n g b e s t , t h e n t h i s w i l l r e p l a c e i t
∗ /

i f ( combina t ionVa lue > b e s t C o m b i n a t i o n V a l u e ) {
b e s t C o m b i n a t i o n = c o m b i n a t i o n ;
b e s t C o m b i n a t i o n V a l u e = c o m b i n a t i o n V a l u e

;
}

}
/∗ Having found t h e b e s t c o m b i n a t i o n o f

n e i g h b o u r s f o r t h i s agent ,
∗ we f i n d t h e n e i g h b o u r t h a t i t does n o t

c o n t a i n ∗ /
f o r ( i n t n b r I n d e x =0; nbr Index < n e i g h b o u r s . numObjs

; n b r I n d e x ++) {
i f ( ! b e s t C o m b i n a t i o n . c o n t a i n s ( n e i g h b o u r s .

o b j s [ n b r I n d e x ] ) ) {
r e j e c t s [ nodeIndex ] = ( Agent ) n e i g h b o u r s .

o b j s [ n b r I n d e x ] ;
a g e n t . g u e s s R e j e c t e d I n d = r e j e c t s [

nodeIndex ] . i n d e x ;
}

}
}

/∗ t h e f o l l o w i n g loop w i l l a s s e s s t h e o p t i o n s f o r
each agent ,

∗ c o n t i n u i n g t h e t h i s E d g e loop i f e i t h e r
d i s s a p p r o v e s , b u t a l l o w i n g

∗ t h e l i n k t o be added i f bo th approve ∗ /
Bag [ ] b e s t C o m b i n a t i o n = new Bag [ 2 ] ;
f o r ( i n t nodeIndex =0; nodeIndex <2; nodeIndex ++) {

Agent a g e n t = a g e n t s [ nodeIndex ] ;
Agent newNeighbour = a g e n t s [ ( nodeIndex +1) %2];
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Bag n e i g h b o u r s = new Bag ( a g e n t . n e i g h b o u r s ) ;
n e i g h b o u r s . add ( newNeighbour ) ;

i n t numNeighbours = n e i g h b o u r s . numObjs ;
/∗ i f t h e a g e n t can s u s t a i n a l l l i n k s , t h e n

t h e y w i l l − i t i s
∗ assumed t h a t a l l l i n k s w i l l p r o v i d e p o s i t i v e

v a l u e or d e f e c t i o n
∗ w i l l j u s t l e a d t o e q u a l v a l u e ∗ /

i f ( numNeighbours <= m a x R e l a t i o n s h i p s ) c o n t in u e ;

/∗ I f a l i n k i s formed , t h e n t h e t r a n s f e r v a l u e
o f t h e

∗ newNeighbour w i l l be d i f f e r e n t from t h a t
produced above .

∗ T h i s a g e n t w i l l assume t h a t t h e new
n e i g h b o u r w i l l , i f

∗ f o r m i n g a l i n k , abandon t h e o l d n e i g h b o u r
t h a t d idn ’ t f e a t u r e

∗ i n t h e i r most v a l u a b l e c o m b i n a t i o n o f o t h e r
n e i g h b o u r s ∗ /

double newNbrTrans fe rVa lue = 0 . 0 ;
double [ ] n e w N b r D i v e r s i t y = new double [ numAgents

] ;
Agent n b r R e j e c t = r e j e c t s [ ( nodeIndex +1) %2];
Bag n b r N e i g h b o u r s = newNeighbour . n e i g h b o u r s ;

i f ( n b r N e i g h b o u r s . numObjs < m a x R e l a t i o n s h i p s ) {
newNbrTrans fe rVa lue

= t r a n s f e r V a l u e s [ 0 ] [ newNeighbour .
i n d e x ] ;

n e w N b r D i v e r s i t y = newNeighbour .
e s t i m a t e d D i v e r s i t y ;

}
e l s e {

f o r ( i n t p r o p e r t y =0; p r o p e r t y <numAgents ;
p r o p e r t y ++) {

double combProper ty = 0 . 0 ;

i f ( p r o p e r t y ==newNeighbour . i n d e x ) {
combProper ty += newNeighbour .

i n n o v a t i o n ;
}

double r e j e c t L o o p P r o p = n b r R e j e c t .
d i v e r s i t y [ p r o p e r t y ] ;
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r e j e c t L o o p P r o p ∗= r e j e c t L o o p P r o p ;
f o r ( i n t n b r I n d x =0; nbr Indx <

m a x R e l a t i o n s h i p s ; n b r I n d x ++) {
Agent n e i g h b o u r = ( Agent )

n b r N e i g h b o u r s . o b j s [ n b r I n d x ] ;

double n b r P r o p e r t y = 0 . 0 ;
i f ( n e i g h b o u r != n b r R e j e c t ) {

n b r P r o p e r t y = n e i g h b o u r .
d i v e r s i t y [ p r o p e r t y ] ;

}
i f ( n b r P r o p e r t y > combProper ty ) {

combProper ty = n b r P r o p e r t y ;
}

}
double a g e n t P r o p e r t y = a g e n t . d i v e r s i t y [

p r o p e r t y ] ;
i f ( a g e n t P r o p e r t y > combProper ty )

combProper ty = a g e n t P r o p e r t y ;

combProper ty ∗= d e p r e c i a t i o n ;

newNbrTrans fe rVa lue += combProper ty ;
n e w N b r D i v e r s i t y [ p r o p e r t y ] =

combProper ty ;
}

newNbrTrans fe rVa lue ∗= invNumAgents ;
newNeighbour . e s t i m a t e d D i v M e a s u r e =

newNbrTrans fe rVa lue ;
}

/∗ i f t h e r e are t o o many n e i g h b o u r s t o s u s t a i n ,
t h e n we ’ l l a s s e s s

∗ t h e v a l u e o f a l l c o m b i n a t i o n s ( s i z e o f
m a x R e l a t i o n s h i p s ) ∗ /

Bag c o m b i n a t i o n = new Bag ( ) ;
Bag c o m b i n a t i o n s = new Bag ( ) ;
g e t C o m b i n a t i o n s ( n e i g h b o u r s , −1,

m a x R e l a t i o n s h i p s , combina t ion ,
c o m b i n a t i o n s ) ;

i n t numCombinat ions = c o m b i n a t i o n s . s i z e ( ) ;
double b e s t C o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ now t o e x p l o r e a l l t h e p o s s i b l e c o m b i n a t i o n s
o f n e i g h b o u r s ∗ /



5.A Simulation Codes 368

f o r ( i n t c o m b i n a t i o n I n d e x =0;
c o m b i n a t i o n I n d e x <numCombinat ions ;
c o m b i n a t i o n I n d e x ++) {

c o m b i n a t i o n = ( Bag ) c o m b i n a t i o n s . o b j s [
c o m b i n a t i o n I n d e x ] ;

/∗ For each combina t ion , we need t o f i n d
t h e v a l u e t o t h e a g e n t

∗ o f t h i s s e t o f edges :
∗ − The n e i g h b o u r h o o d s o f bo th t h e a g e n t

and t h e new
∗ n e i g h b o u r w i l l change , b u t o n l y a f t e r

t h e f i r s t exchange
∗ HOWEVER WE WILL ASSUME THE FORMER

NEIGHBOUR ’ s PROPERTIES
∗ THAT WOULD HAVE BEEN CARRIED OVER FOR

THE FIRST EXCHANGE
∗ WILL BE OFFSET BY A COST TO NEW

RELATIONSHIPS ∗ /

double c o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ Now t o add t h e t r a n s f e r s f o r each o f t h e
n e i g h b o u r s i n

∗ t h i s c o m b i n a t i o n ∗ /
f o r ( i n t p r o p e r t y =0; p r o p e r t y <numAgents ;

p r o p e r t y ++) {
double combProper ty = 0 . 0 ;

/∗ t h e a g e n t w i l l consume a l l o f t h e i r
own p r o d u c t t h a t

∗ i s n o t t r a n s f e r r e d ;
∗ here we g e t t h e a g e n t ’ s upda ted

p r o p e r t y i n t h i s
∗ c o m b i n a t i o n ∗ /

i f ( p r o p e r t y == a g e n t . i n d e x ) {
combProper ty += a g e n t . i n n o v a t i o n ;

}

f o r ( i n t n b r I n d x =0; nbr Indx <
m a x R e l a t i o n s h i p s ; n b r I n d x ++) {

Agent n e i g h b o u r = ( Agent )
c o m b i n a t i o n . o b j s [ n b r I n d x ] ;

double n b r P r o p e r t y = n e i g h b o u r .
d i v e r s i t y [ p r o p e r t y ] ;

i f ( n b r P r o p e r t y > combProper ty ) {
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combProper ty += n b r P r o p e r t y ;
}

}
combProper ty ∗= d e p r e c i a t i o n ;

/∗ t h e a g e n t w i l l a l s o consume a s h a r e
o f t h e p r o d u c t o f

∗ each n e i g h b o u r ;
∗ here we add each o f t h e n e i g h b o u r s ’

e s t i m a t e d
∗ p r o p e r t y f o r t h e n e x t p e r i o d ∗ /

f o r ( i n t nbrCombIndex =0;
nbrCombIndex < m a x R e l a t i o n s h i p s ;
nbrCombIndex ++) {

Agent n e i g h b o u r = ( Agent )
c o m b i n a t i o n . o b j s [ nbrCombIndex ] ;

i f ( n e i g h b o u r != newNeighbour ) {
combProper ty +=

n e i g h b o u r .
e s t i m a t e d D i v e r s i t y [
p r o p e r t y ] ;

}
e l s e {

combProper ty += n e w N b r D i v e r s i t y
[ p r o p e r t y ] ;

}
}
c o m b i n a t i o n V a l u e += combProper ty ;

}
c o m b i n a t i o n V a l u e ∗= invNumAgents ;

/∗ I f t h i s c o m b i n a t i o n g e n e r a t e s a h i g h e r
u t i l i t y t han t h e

∗ e x i s t i n g b e s t , t h e n t h i s w i l l r e p l a c e i t
∗ /

i f ( combina t ionVa lue > b e s t C o m b i n a t i o n V a l u e ) {
b e s t C o m b i n a t i o n [ nodeIndex ] =

c o m b i n a t i o n ;
b e s t C o m b i n a t i o n V a l u e = c o m b i n a t i o n V a l u e

;
a g e n t . e s t i m a t e d U t i l i t y =

c o m b i n a t i o n V a l u e ;
}

}
}
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/∗ I f we ’ ve g o t t h i s f a r , t h e n t h e edge has been
approved by bo th

∗ ne ighbour s , which means i t needs t o be added ,
and t h e d e p r e c a t e d

∗ l i n k s removed ∗ /
a g e n t s [ 0 ] . n e i g h b o u r s . add ( a g e n t s [ 1 ] ) ;
a g e n t s [ 1 ] . n e i g h b o u r s . add ( a g e n t s [ 0 ] ) ;
f o r ( i n t nodeIndex =0; nodeIndex <2; nodeIndex ++) {

f o r ( i n t n e i g h b I n d e x =0;
ne ighb Index < a g e n t s [ nodeIndex ] .

n e i g h b o u r s . numObjs ;
n e i g h b I n d e x ++) {

i f ( ! b e s t C o m b i n a t i o n [ nodeIndex ]
. c o n t a i n s ( a g e n t s [ nodeIndex ] .

n e i g h b o u r s . o b j s [ n e i g h b I n d e x ] ) ) {
i f ( neighboursToRemove [ a g e n t s [ nodeIndex

] . i n d e x ]== n u l l ) {
neighboursToRemove [ a g e n t s [ nodeIndex

] . i n d e x ]
= new Bag ( ) ;

}
neighboursToRemove [ a g e n t s [ nodeIndex ] .

i n d e x ]
. add ( a g e n t s [ nodeIndex ] .

n e i g h b o u r s . o b j s [ n e i g h b I n d e x
] ) ;

i f ( neighboursToRemove [ ( ( Agent ) a g e n t s [
nodeIndex ]

. n e i g h b o u r s . o b j s [ n e i g h b I n d e x ] ) .
i n d e x ]== n u l l ) {

neighboursToRemove [ ( ( Agent ) a g e n t s [
nodeIndex ]

. n e i g h b o u r s . o b j s [
n e i g h b I n d e x ] ) . i n d e x ]

= new Bag ( ) ;
}
neighboursToRemove [ ( ( Agent ) a g e n t s [

nodeIndex ] . n e i g h b o u r s . o b j s [
n e i g h b I n d e x ] ) . i n d e x ]

. add ( a g e n t s [ nodeIndex ] ) ;
edgesRemoved ++;
break ;

}
}

}
}
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f o r ( i n t i =0 ; i <numAgents ; i ++) {
Agent s u b j e c t = ( Agent ) a l l N o d e s . o b j s [ i ] ;
s u b j e c t . removeNeighbours ( neighboursToRemove [ i ] ) ;
/∗ Now t h a t t o p o l o g i c a l changes are comple te , we ’ l l

r e c o r d t h i s
∗ n e i g h b o u r s Bag as t h e o l d N e i g h b o u r s Bag f o r t h e

n e x t p e r i o d ∗ /
s u b j e c t . o l d N e i g h b o u r s = new Bag ( s u b j e c t . n e i g h b o u r s )

;
}

newEdges . c l e a r ( ) ;
}

/∗ a r e c u r s i v e method t o c o n s t r u c t c o m b i n a t i o n s ∗ /
void g e t C o m b i n a t i o n s ( Bag s u p e r S e t , i n t l a s t P i c k , i n t

r e m a i n i n g S p a c e s ,
Bag combina t i on , Bag c o m b i n a t i o n s ) {

i f ( r e m a i n i n g S p a c e s == 0) {
c o m b i n a t i o n s . add ( c o m b i n a t i o n ) ;
re turn ;

}
i n t t h i s C h o i c e B o u n d = s u p e r S e t . numObjs −

r e m a i n i n g S p a c e s + 1 ;
i n t remainingSpacesNow = r e m a i n i n g S p a c e s − 1 ;
f o r ( i n t p i c k I n d e x = l a s t P i c k +1; p i c k I n d e x <

t h i s C h o i c e B o u n d ; p i c k I n d e x ++) {
O b j e c t o b j = s u p e r S e t . o b j s [ p i c k I n d e x ] ;
Bag combCtd = new Bag ( c o m b i n a t i o n ) ;
combCtd . add ( o b j ) ;
g e t C o m b i n a t i o n s ( s u p e r S e t , p i c k I n d e x ,

remainingSpacesNow , combCtd ,
c o m b i n a t i o n s ) ;

}
}

void d i scove rComponen t s ( ) {
/ / r e f r e s h t h e bag o f components
components = new Bag ( ) ;

/ / node by node , check d i s c o v e r e d components
s e q u e n t i a l l y f o r membership .

/ / i f absen t , i t becomes t h e s t a r t node o f a new
component e x p l o r a t i o n

f o r ( i n t i =0 ; i <numAgents ; i ++) {
Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ i ] ;
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boolean componentFound = f a l s e ;

f o r ( i n t component Index =0;
componentIndex <components . numObjs ;
component Index ++) {

Bag e x i s t i n g C o m p o n e n t = ( Bag ) components . o b j s [
component Index ] ;

i f ( e x i s t i n g C o m p o n e n t . c o n t a i n s ( a g e n t ) ) {
componentFound = t rue ;

}
}

i f ( componentFound ) c o n t i nu e ;

/ / i f an e x i s t i n g component i s n ’ t t h a t o f t h e agent
, we s t a r t a new

/ / one and e x p l o r e
Bag newComponent = new Bag ( ) ;
newComponent . add ( a g e n t ) ;
components . add ( newComponent ) ;
a g e n t . component = newComponent ;
exp loreComponent ( agen t , newComponent ) ;

}
}

void exploreComponent ( Agent s u b j e c t , Bag component ) {
Bag n e i g h b o u r s = s u b j e c t . n e i g h b o u r s ;

f o r ( i n t i =0 ; i < n e i g h b o u r s . numObjs ; i ++) {
Agent n e i g h b o u r

= ( Agent ) n e i g h b o u r s . o b j s [ i ] ;
i f ( ! component . c o n t a i n s ( n e i g h b o u r ) ) {

component . add ( n e i g h b o u r ) ;
n e i g h b o u r . component = component ;
exp loreComponent ( ne ighbour , component ) ;

}
}

}

i n t s h o r t e s t P a t h ( i n t pa thLeng th , O b j e c t d e s t i n a t i o n N o d e ,
O b j e c t avoidNode ,

Bag v i s i t e d N o d e s , Bag o l d T i e r ) {
p a t h L e n g t h ++;
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Bag newTier = new Bag ( ) ;
f o r ( i n t i =0 ; i < o l d T i e r . numObjs ; i ++) {

Agent a g e n t = ( Agent ) o l d T i e r . o b j s [ i ] ;
Bag n e i g h b o u r s = a g e n t . n e i g h b o u r s ;

/ / f i r s t we ’ l l go t h r o u g h t h e n e i g h b o u r s From which
t h e In edges come

f o r ( i n t j =0 ; j < n e i g h b o u r s . numObjs ; j ++) {
Agent n e i g h b o u r = ( Agent ) n e i g h b o u r s . o b j s [ j ] ;

/ / we want t o make s u r e t h a t n e i g h b o u r i s n o t
t h e o r i g i n a l node ,

/ / avoidNode
/ / we o n l y want t o c o n t i n u e i f we have n o t

a l r e a d y found a
/ / f a s t e r r o u t e t o t h a t node : i f i t i s n o t i n a

lower t i e r
i f ( ! ( n e i g h b o u r . e q u a l s ( avoidNode ) )

&& ( ! v i s i t e d N o d e s . c o n t a i n s ( n e i g h b o u r ) ) )
{

/ / we check whe ther we ’ ve reached t h e
d e s t i n a t i o n

i f ( n e i g h b o u r . e q u a l s ( d e s t i n a t i o n N o d e ) ==
t rue ) {

re turn p a t h L e n g t h ;
}
/ / i f not , we e x t e n d t h e pa th so f a r by t h e

c u r r e n t node ,
/ / and s e a r c h on from t h e r e
e l s e {

newTier . add ( n e i g h b o u r ) ;
v i s i t e d N o d e s . add ( n e i g h b o u r ) ;

}
}

}
}

/ / ha v i ng b u i l t t h e n e x t t i e r we want t o pas s i t t o a
d ee pe r r e c u r r e n c e

/ / o f t h e same a l g o r i t h m , a l l t h e w h i l e k e e p i n g t r a c k
o f t h e number o f

/ / t i e r s
i f ( ! newTier . i sEmpty ( ) ) {

p a t h L e n g t h = s h o r t e s t P a t h ( pa thLeng th ,
d e s t i n a t i o n N o d e , avoidNode ,

v i s i t e d N o d e s , newTier ) ;
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re turn p a t h L e n g t h ;
}
e l s e {

/ / t h i s s h o u l d n ’ t happen
System . o u t . p r i n t l n ( "No p a t h found t o " + ( ( Agent )

d e s t i n a t i o n N o d e ) . i n d e x
+ " from " + ( ( Agent ) avoidNode ) . i n d e x ) ;

re turn numAgents ;
}

}

/∗ p u b l i c v o i d u p d a t e S t a t s ( )
∗ c h e c k s v a r i o u s ne twork s t a t i s t i c s
∗ we want t h i s t o be run o n l y on r e q u e s t , t o up da t e and

r e p o r t t h e s t a t s
∗ f o r t h e ne twork
∗ so we want c l u s t e r i n g d i s t r i b u t i o n , d eg re e d i s t r i b u t i o n ,

c e n t r a l i t y ,
∗ ne twork c l u s t e r i n g and s u p p o r t ,
∗ and component s i z e s − p o s s i b l y t h e component s i z e

d i s t r i b u t i o n
∗ /

p u b l i c vo id u p d a t e S t a t s ( ) {
a v e r a g e D e g r e e = 0 ;
a v e r a g e C l u s t e r i n g = 0 ;
averageEdgeAge = 0 ;
c l u s t e r i n g = 0 ;
s u p p o r t = 0 ;
d e g r e e D i s t r i b u t i o n = new i n t [ numAgents ] ;
c l u s t e r i n g D i s t r i b u t i o n = new double [ numAgents ] ;

n u m R e l a t i o n s h i p s = 0 ;
a v e r a g e P r o d u c t = . 0 ;
a v e r a g e D i v e r s i t y M e a s u r e = 0 . 0 ;
i n t m a x T o t a l R e l a t i o n s h i p s = 0 ;

i n t l a r g e s t C o m p o n e n t S i z e = 0 ;
i n t secondComponentSize = 0 ;
i n t t o t a l P o t e n t i a l T r i a d s = 0 ;
i n t c o m p l e t e T r i a d s = 0 ;
i n t s u p p o r t e d L i n k s = 0 ;
i n t p o t e n t i a l S u p p o r t = 0 ;

d i s cove rComponen t s ( ) ;

f o r ( i n t i =0 ; i <numAgents ; i ++) {
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Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ i ] ;
Bag a g e n t R e l a t i o n s h i p s = a g e n t . n e i g h b o u r s ;

n u m R e l a t i o n s h i p s += a g e n t R e l a t i o n s h i p s . s i z e ( ) ;
m a x T o t a l R e l a t i o n s h i p s += m a x R e l a t i o n s h i p s ;

a v e r a g e P r o d u c t += a g e n t . p r o d u c t ;

Bag component = ( Bag ) a g e n t . component ;
i n t componen tS ize = component . numObjs ;
i f ( componentSize > l a r g e s t C o m p o n e n t S i z e ) {

secondComponentSize = l a r g e s t C o m p o n e n t S i z e ;
secondComponent = l a r g e s t C o m p o n e n t ;

l a r g e s t C o m p o n e n t S i z e = componen tS ize ;
l a r g e s t C o m p o n e n t = component ;

}
e l s e i f ( componentSize > secondComponentSize

&& componen tS ize != l a r g e s t C o m p o n e n t S i z e ) {
secondComponentSize = componen tS ize ;
secondComponent = component ;

}

i n t d e g r e e = a g e n t . n e i g h b o u r s . numObjs ;
d e g r e e D i s t r i b u t i o n [ i ] = d e g r e e ;
a v e r a g e D e g r e e = a v e r a g e D e g r e e + ( double ) d e g r e e ;

i n t commonNeighbours = 0 ;
i n t p o t e n t i a l T r i a d s = 0 ;
boolean [ ] s u p p o r t F o u n d = new boolean [

a g e n t R e l a t i o n s h i p s . numObjs ] ;

f o r ( i n t j =0 ; j < a g e n t R e l a t i o n s h i p s . numObjs ; j ++) {
Agent n e i g h b o u r = ( Agent ) a g e n t R e l a t i o n s h i p s .

o b j s [ j ] ;
Bag n e i g h b o u r R e l a t i o n s h i p s = n e i g h b o u r .

n e i g h b o u r s ;

/ / s u p p o r t i s a l i n k p r o p e r t y ; one and o n l y one
s u p p o r t i n g node

/ / ( edge−p a i r ) need be found t o q u a l i f y t h a t
edge as s u p p o r t e d

/ / t h e way i t ’ s s e t up here you w i l l c o u n t each
l i n k t w i c e −

/ / once w i t h each p a r t i c i p a n t as t h e s u b j e c t ,
a g e n t
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s u p p o r t F o u n d [ j ] = f a l s e ;
p o t e n t i a l S u p p o r t ++;

kLoop : f o r ( i n t k =0; k< j ; k ++) {
Agent o t h e r N e i g h b o u r = ( Agent )

a g e n t R e l a t i o n s h i p s . o b j s [ k ] ;
Bag o t h e r N e i g h b o u r N e i g h b o u r s =

o t h e r N e i g h b o u r . n e i g h b o u r s ;

/ / t h i s p a i r o f n e i g h b o u r s r e p r e s e n t s a
p o t e n t i a l t r i a d ,

/ / r e g a r d l e s s o f whe ther t h e y a c t u a l l y are
p o t e n t i a l T r i a d s ++;

f o r ( i n t l =0 ; l < o t h e r N e i g h b o u r N e i g h b o u r s .
numObjs ; l ++) {

Agent possCommonNeighbour
= ( Agent )

o t h e r N e i g h b o u r N e i g h b o u r s .
o b j s [ l ] ;

i f ( n e i g h b o u r R e l a t i o n s h i p s . c o n t a i n s (
possCommonNeighbour ) ) {

i f ( s u p p o r t F o u n d [ j ]== f a l s e ) {
s u p p o r t e d L i n k s ++;
s u p p o r t F o u n d [ j ] = t rue ;

}
i f ( s u p p o r t F o u n d [ k ]== f a l s e ) {

s u p p o r t e d L i n k s ++;
s u p p o r t F o u n d [ k ] = t rue ;

}
/ / as t h i s p a i r o f n e i g h b o u r s are

t h e m s e l v e s
/ / ne ighbour s , t h e c l u s t e r i n g w i l l

i n c r e a s e by 1
commonNeighbours ++;
break ;

}
}

}
}
t o t a l P o t e n t i a l T r i a d s = t o t a l P o t e n t i a l T r i a d s +

p o t e n t i a l T r i a d s ;
i f ( p o t e n t i a l T r i a d s >0) c l u s t e r i n g D i s t r i b u t i o n [ i ] = (

double ) commonNeighbours / ( double ) p o t e n t i a l T r i a d s ;
a v e r a g e C l u s t e r i n g = a v e r a g e C l u s t e r i n g +

c l u s t e r i n g D i s t r i b u t i o n [ i ] ;
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c o m p l e t e T r i a d s = c o m p l e t e T r i a d s + commonNeighbours ;
}

averageEdgeAge = averageEdgeAge / n u m R e l a t i o n s h i p s ;
n u m R e l a t i o n s h i p s = n u m R e l a t i o n s h i p s / 2 ;

c o m p l e t e n e s s =
( double ) n u m R e l a t i o n s h i p s /

m a x T o t a l R e l a t i o n s h i p s ;
a v e r a g e P r o d u c t = a v e r a g e P r o d u c t / numAgents ;
a v e r a g e D i v e r s i t y M e a s u r e = a v e r a g e D i v e r s i t y M e a s u r e /

numAgents ;

r e l a t i o n s h i p s B r o k e n = edgesRemoved ;
edgesRemoved = 0 ;

/ / c a l c u l a t e c l u s t e r i n g and s u p p o r t
i f ( t o t a l P o t e n t i a l T r i a d s >0) c l u s t e r i n g

= ( double ) c o m p l e t e T r i a d s / ( double )
t o t a l P o t e n t i a l T r i a d s ;

i f ( p o t e n t i a l S u p p o r t >0) s u p p o r t
= ( double ) s u p p o r t e d L i n k s / ( double )

p o t e n t i a l S u p p o r t ;

/ / t u r n sums i n t o averages , and a b s o l u t e s i z e s i n t o
p o p u l a t i o n s h a r e s

a v e r a g e D e g r e e = a v e r a g e D e g r e e / numAgents ;
a v e r a g e C l u s t e r i n g = a v e r a g e C l u s t e r i n g / numAgents ;
l a r g e s t C o m p o n e n t S h a r e = ( double ) l a r g e s t C o m p o n e n t S i z e /

numAgents ;
secondComponentShare = ( double ) secondComponentSize /

numAgents ;

/ / i f t h e ne twork i s connec t ed , t h e n we want t o check
t h e average

/ / s h o r t e s t pa th l e n g t h
a v e r a g e S h o r t e s t P a t h = 0 . 0 ;
f o r ( i n t i =0 ; i < l a r g e s t C o m p o n e n t S i z e ; i ++) {

Agent s t a r t A g e n t = ( Agent ) l a r g e s t C o m p o n e n t . o b j s [ i ] ;
f o r ( i n t j =0 ; j < i ; j ++) {

Agent f i n i s h A g e n t = ( Agent ) l a r g e s t C o m p o n e n t .
o b j s [ j ] ;

Bag o l d T i e r = new Bag ( ) ;
o l d T i e r . add ( s t a r t A g e n t ) ;
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a v e r a g e S h o r t e s t P a t h += s h o r t e s t P a t h ( 0 ,
f i n i s h A g e n t ,

s t a r t A g e n t , new Bag ( o l d T i e r ) , o l d T i e r ) ;
}

}
a v e r a g e S h o r t e s t P a t h = a v e r a g e S h o r t e s t P a t h ∗ 2 . 0 / (

numAgents ∗ ( numAgents−1) ) ;
}

}

TradeSafer.java

/∗
C o p y r i g h t 2011 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package a n a r c h y t r a d e ;
import j a v a . i o . ∗ ;
import j a v a . u t i l . Date ;
import j a v a . t e x t . DateFormat ;
import j a v a . t e x t . S impleDateFormat ;

/∗ ∗Houses a main method t h a t runs a s e r i e s o f s i m u l a t i o n s o f
an exchange ne twork

∗ model , w i t h endogenous t o p o l o g y , over a range o f p a r a m e t e r s
f o r t h e

∗ p r o b a b i l i t y o f s e a r c h i n g g l o b a l l y f o r a new r e l a t i o n s h i p
∗ /
p u b l i c c l a s s T r a d e S a f e r {

s t a t i c S t r i n g o u t p u t F i l e N a m e = " compstd . t x t " ;
s t a t i c S t r i n g outputPa thName = "C : \ \ s i m u l a t e \ \ s a f e r " ;
s t a t i c F i l e o u t p u t F i l e ;
s t a t i c F i l e o u t p u t P a t h ;
s t a t i c P r i n t W r i t e r o u t ;

/ / S i m u l a t i o n p a r a m e t e r s
s t a t i c i n t defaul tNumSims = 1 0 ;
s t a t i c i n t d e f a u l t S i m D u r a t i o n = 50000 ;
s t a t i c i n t defau l tNumAgents = 100 ;
s t a t i c i n t d e f a u l t O u t p u t P e r i o d = 100 ;

/ / a g e n t s ’ p a r a m e t e r s
s t a t i c i n t d e f a u l t M a x R e l a t i o n s h i p s = 4 ;
s t a t i c double d e f a u l t D e p r e c i a t i o n = 0 . 9 ;
s t a t i c double d e f a u l t I n n o v a t i o n = 1 . 0 ;
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/ / s o c i a l N e t w o r k ’ s p a r a m e t e r s
s t a t i c boolean d e f a u l t L o c a l S e a r c h = t rue ;
s t a t i c double d e f a u l t G l o b a l S e a r c h P r o b = 0 . 5 ;
s t a t i c double d e f a u l t I n t e r v a l = 0 . 2 5 ;
s t a t i c i n t d e f a u l t I n c r e m e n t s = 5 ;
s t a t i c i n t d e f a u l t S e a r c h P e r i o d = 1 0 ;

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s )
{

/ / p r i n t h e l p ?
i f ( k e y E x i s t s ( "−h e l p " , a rg s , 0 ) )

{
System . e r r . p r i n t l n (

" Format : j a v a − j a r mason . j a r [−
numAgents n ] [− r i s k A v e r s i o n r ] [− f a v o u r S h a r e

f ] \ \ \ n " +
" [− h e l p ] [− r e p e a t R] [−

s eed S ] [− u n t i l U] \ \ \ n " +
" [− f o r F ] [− t ime T ] [−

d o c h e c k p o i n t D] [− c h e c k p o i n t C] \ n \ n " +
"−h e l p Shows t h i s message and e x i t s

. \ n \ n " +
"−numAgents i n t > 1 : t h e number o f

a g e n t s i n t h e s i m u l a t i o n \ n \ n " +
"−m a x R e l a t i o n s h i p s i n t > 1 : t h e maximum number

o f n e i g h b o u r s a l l o w e d \ n \ n " +
"− l o c a l S e a r c h b o o l e a n i n { 0 , 1 } : whe the r

l i n k s t o n e i g h b o u r s o f n e i g h b o u r s a r e \ n " +
" o f f e r e d wi th h i g h e r

p r o b a b i l i t y t h a n t h o s e t o o t h e r a g e n t s \ n \ n "
+

"−g l o b a l S e a r c h P r o b 0< do ub le <1: t h e i n i t i a l
p r o b a b i l i t y wi th which a new n e i g h b o u r i s
met each p e r i o d \ n \ n " +

"− i n t e r v a l t h e i n t e r v a l above t h i s ove r
which p r o b a b i l i t i e s w i l l be t r i e d \ n \ n " +

"− i n n o v a t i o n do ub l e >0: t h e ammount o f
t h e good produced by each a g e n t each p e r i o d
\ n \ n " +

"−d e p r e c i a t i o n 0< do ub le <1: t h e r a t e a t
which p r o d u c t s l o s e v a l u e wi th d i s t a n c e
t r a v e l e d \ n \ n " +

"−s e a r c h P e r i o d i n t >0: t h e number o f
p e r i o d s between each exchange e v e n t \ n \ n " +

"−o u t p u t P e r i o d t h e number o f s t e p s
between w r i t i n g s t a t i s t i c s t o t h e o u t p u t
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f i l e \ n \ n " +
"−numSims Long v a l u e > 0 : Runs t h e j o b

R t i m e s . Un le s s o v e r r i d d e n by a \ n " +
" c h e c k p o i n t r e c o v e r y ( s e e −

c h e c k p o i n t ) , t h e random seed f o r \ n " +
" each j o b i s t h e p r o v i d e d −

s eed p l u s t h e j o b # ( s t a r t i n g a t 0 ) . \ n " +
" D e f a u l t : r u n s once on ly : j o b

number i s 0 . \ n \ n " +
"−s eed Long v a l u e n o t 0 : t h e random

number g e n e r a t o r seed , u n l e s s \ n " +
" o v e r r i d d e n by a c h e c k p o i n t

r e c o v e r y ( s e e −c h e c k p o i n t ) . \ n " +
" D e f a u l t : t h e sys tem t ime i n

m i l l i s e c o n d s . \ n \ n " +
"−s i m D u r a t i o n Long v a l u e >= 0 : t h e

s i m u l a t i o n must s t o p when N\ n " +
" s i m u l a t i o n s t e p s have

t r a n s p i r e d . \ n " +
" D e f a u l t : don ’ t s t o p . \ n \ n " ) ;

System . e x i t ( 0 ) ;
}

j a v a . t e x t . NumberFormat n = j a v a . t e x t . NumberFormat .
g e t I n s t a n c e ( ) ;

n . s e t M i n i m u m F r a c t i o n D i g i t s ( 0 ) ;
System . e r r . p r i n t l n ( " S t a r t i n g s i m u l a t i o n " ) ;

/ / s e t numAgents
i n t numAgents = defau l tNumAgents ;
S t r i n g numAgents_s = argumentForKey ( "−numAgents " , a rg s ,

0 ) ;
i f ( numAgents_s != n u l l )

t r y {
numAgents = I n t e g e r . p a r s e I n t ( numAgents_s ) ;
i f ( numAgents < 2) throw new E x c e p t i o n ( ) ;
}

ca tch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ numAgents ’

v a l u e : "
+ numAgents_s + " , must be g r e a t e r t h a n

1 " ) ;
}

/ / s e t m a x R e l a t i o n s h i p s
i n t m a x R e l a t i o n s h i p s = d e f a u l t M a x R e l a t i o n s h i p s ;
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S t r i n g m a x R e l a t i o n s h i p s _ s = argumentForKey ( "−
m a x R e l a t i o n s h i p s " , a rgs , 0 ) ;

i f ( m a x R e l a t i o n s h i p s _ s != n u l l )
t r y {

m a x R e l a t i o n s h i p s = I n t e g e r . p a r s e I n t (
m a x R e l a t i o n s h i p s _ s ) ;

i f ( m a x R e l a t i o n s h i p s < 2) throw new E x c e p t i o n ( )
;

}
catch ( E x c e p t i o n e ) {

throw new Run t imeExcep t ion ( " I n v a l i d ’
m a x R e l a t i o n s h i p s ’ v a l u e : "

+ m a x R e l a t i o n s h i p s _ s + " , must be
g r e a t e r t h a n 1 " ) ;

}
/ / s e t l o c a l S e a r c h
boolean l o c a l S e a r c h = d e f a u l t L o c a l S e a r c h ;
S t r i n g l o c a l S e a r c h _ s = argumentForKey ( "− l o c a l S e a r c h " ,

a rgs , 0 ) ;
i f ( l o c a l S e a r c h _ s != n u l l )

t r y {
l o c a l S e a r c h = Boolean . p a r s e B o o l e a n (

l o c a l S e a r c h _ s ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

l o c a l S e a r c h ’ v a l u e : "
+ l o c a l S e a r c h _ s + " , must be 0 or 1 " ) ;

}
/ / s e t g l o b a l S e a r c h P r o b
double g l o b a l S e a r c h P r o b = d e f a u l t G l o b a l S e a r c h P r o b ;
S t r i n g g l o b a l S e a r c h P r o b _ s = argumentForKey ( "−

g l o b a l S e a r c h P r o b " , a rgs , 0 ) ;
i f ( g l o b a l S e a r c h P r o b _ s != n u l l )

t r y {
g l o b a l S e a r c h P r o b = Double . p a r s e D o u b l e (

g l o b a l S e a r c h P r o b _ s ) ;
i f ( g l o b a l S e a r c h P r o b < 0 . 0 | | g l o b a l S e a r c h P r o b

> 1 . 0 )
throw new E x c e p t i o n ( ) ;

}
catch ( E x c e p t i o n e ) {

throw new Run t imeExcep t ion ( " I n v a l i d ’
g l o b a l S e a r c h P r o b ’ v a l u e : "

+ g l o b a l S e a r c h P r o b _ s + " , must l i e i n
t h e u n i t i n t e r v a l " ) ;
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}
/ / s e t e x p l o r a t i o n i n t e r v a l f o r g l o b a l S e a r c h P r o b
double i n t e r v a l = d e f a u l t I n t e r v a l ;
S t r i n g i n t e r v a l _ s = argumentForKey ( "− i n t e r v a l " , a rg s ,

0 ) ;
i f ( i n t e r v a l _ s != n u l l )

t r y {
i n t e r v a l = Double . p a r s e D o u b l e ( i n t e r v a l _ s ) ;
i f ( i n t e r v a l < 0 . 1 | | i n t e r v a l > 1 . 0 )

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ i n t e r v a l ’

v a l u e : "
+ i n t e r v a l _ s + " , must l i e i n t h e u n i t

i n t e r v a l " ) ;
}

/ / s e t number o f i n c r e m e n t s f o r g l o b a l S e a r c h P r o b
i n t i n c r e m e n t s = d e f a u l t I n c r e m e n t s ;
S t r i n g numIncremen t s_s = argumentForKey ( "− i n c r e m e n t s " ,

a rgs , 0 ) ;
i f ( numIncrement s_s != n u l l )

t r y {
i n c r e m e n t s = I n t e g e r . p a r s e I n t ( numIncrement s_s ) ;
i f ( i n c r e m e n t s < 0)

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ i n c r e m e n t s

’ v a l u e : "
+ numIncremen t s_s + " , must be p o s i t i v e

" ) ;
}

/ / s e t s e a r c h P e r i o d
i n t s e a r c h P e r i o d = d e f a u l t S e a r c h P e r i o d ;
S t r i n g m e e t i n g R a t e _ s = argumentForKey ( "−s e a r c h P e r i o d " ,

a rgs , 0 ) ;
i f ( m e e t i n g R a t e _ s != n u l l )

t r y {
s e a r c h P e r i o d = I n t e g e r . p a r s e I n t ( m e e t i n g R a t e _ s ) ;
i f ( s e a r c h P e r i o d < 0)

throw new E x c e p t i o n ( ) ;
}

ca tch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

s e a r c h P e r i o d ’ v a l u e : "
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+ g l o b a l S e a r c h P r o b _ s + " , must be
p o s i t i v e " ) ;

}
/ / s e t d e p r e c i a t i o n
double d e p r e c i a t i o n = d e f a u l t D e p r e c i a t i o n ;
S t r i n g d e p r e c i a t i o n _ s = argumentForKey ( "−d e p r e c i a t i o n " ,

a rgs , 0 ) ;
i f ( d e p r e c i a t i o n _ s != n u l l )

t r y {
d e p r e c i a t i o n = Double . p a r s e D o u b l e (

d e p r e c i a t i o n _ s ) ;
i f ( d e p r e c i a t i o n < 0 . 0 | | d e p r e c i a t i o n > 1 . 0 )

throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

d e p r e c i a t i o n ’ v a l u e : "
+ d e p r e c i a t i o n _ s + " , must l i e i n t h e

u n i t i n t e r v a l " ) ;
}

/ / s e t i n n o v a t i o n
double i n n o v a t i o n = d e f a u l t I n n o v a t i o n ;
S t r i n g i n n o v a t i o n _ s = argumentForKey ( "− i n n o v a t i o n " ,

a rgs , 0 ) ;
i f ( i n n o v a t i o n _ s != n u l l )

t r y {
i n n o v a t i o n = Double . p a r s e D o u b l e ( i n n o v a t i o n _ s ) ;
i f ( i n n o v a t i o n < 0 . 0 ) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ i n n o v a t i o n

’ v a l u e : "
+ i n n o v a t i o n _ s + " , must be p o s i t i v e " ) ;

}
long s eed = System . c u r r e n t T i m e M i l l i s ( ) ;
S t r i n g s e e d _ s = argumentForKey ( "−s eed " , a rgs , 0 ) ;
i f ( s e e d _ s != n u l l )

t r y
{
seed = Long . pa r seLong ( s e e d _ s ) ;
i f ( s eed == 0) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e )
{
throw new Run t imeExcep t ion ( " I n v a l i d ’ s eed ’

v a l u e : "
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+ s e e d _ s + " , must be a non−z e r o
i n t e g e r , o r n o n e x i s t e n t "

+ " t o seed by c l o c k t ime " ) ;
}

i n t s i m D u r a t i o n = d e f a u l t S i m D u r a t i o n ;
S t r i n g s i m D u r a t i o n _ s = argumentForKey ( "−s i m D u r a t i o n " ,

a rgs , 0 ) ;
i f ( s i m D u r a t i o n _ s != n u l l )

t r y {
s i m D u r a t i o n = I n t e g e r . p a r s e I n t ( s i m D u r a t i o n _ s ) ;
i f ( s i m D u r a t i o n < 0) throw new E x c e p t i o n ( ) ;
}

ca tch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

s i m D u r a t i o n ’ v a l u e : "
+ s i m D u r a t i o n _ s + " , must be an i n t e g e r

>= 0 " ) ;
}

i n t numSims = defaul tNumSims ;
S t r i n g numSims_s = argumentForKey ( "−numSims " , a rgs , 0 ) ;
i f ( numSims_s != n u l l )

t r y {
numSims = I n t e g e r . p a r s e I n t ( numSims_s ) ;
i f ( numSims <= 0) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’ numSims ’

v a l u e : "
+ numSims + " , must be a p o s i t i v e

i n t e g e r " ) ;
}

i n t o u t p u t P e r i o d = d e f a u l t O u t p u t P e r i o d ;
S t r i n g o u t p u t P e r i o d _ s = argumentForKey ( "−o u t p u t P e r i o d " ,

a rgs , 0 ) ;
i f ( o u t p u t P e r i o d _ s != n u l l )

t r y {
o u t p u t P e r i o d = I n t e g e r . p a r s e I n t ( o u t p u t P e r i o d _ s )

;
i f ( o u t p u t P e r i o d <= 0) throw new E x c e p t i o n ( ) ;
}

catch ( E x c e p t i o n e ) {
throw new Run t imeExcep t ion ( " I n v a l i d ’

o u t p u t P e r i o d ’ v a l u e : "
+ o u t p u t P e r i o d + " , must be a p o s i t i v e

i n t e g e r " ) ;
}
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/∗ S e t up t h e o u t p u t u n i v e r s a l s ∗ /
j a v a . t e x t . NumberFormat r a t e F o r m a t = j a v a . t e x t .

NumberFormat . g e t I n s t a n c e ( ) ;
r a t e F o r m a t . s e t M a x i m u m F r a c t i o n D i g i t s ( 5 ) ;
r a t e F o r m a t . s e t M i n i m u m I n t e g e r D i g i t s ( 1 ) ;
DateFormat d a t e F o r m a t = new SimpleDateFormat ( "MMdd" ) ;
Date d a t e = new Date ( ) ;

o u t p u t P a t h = new F i l e ( ou tputPa thName
+ " . " + numAgents + " . " + m a x R e l a t i o n s h i p s + "

\ \ " ) ;
t r y {

i f ( ! o u t p u t P a t h . e x i s t s ( ) ) o u t p u t P a t h . mkdi r s ( ) ;
}
catch ( E x c e p t i o n e ) {

System . e r r . p r i n t f ( " Could n o t c r e a t e o u t p u t
d i r e c t o r y " ) ;

}

/ / Now t o g e t underway , e x p l o r i n g t h e range o f g l o b a l
s e a r c h p r o b a b i l i t i e s

double i n c r e m e n t S i z e = i n t e r v a l / ( double ) i n c r e m e n t s ;
f o r ( i n t i n c r e m e n t =0; i n c r e m e n t < i n c r e m e n t s ; i n c r e m e n t ++)

{
/∗ s e t t h e g l o b a l s e a r c h p r o b a b i l i t y f o r t h i s run
∗ /

double c u r r e n t P r o b = g l o b a l S e a r c h P r o b
+ ( double ) i n c r e m e n t ∗ i n c r e m e n t S i z e ;

/∗ g e t many s i m u l a t i o n s ’ wor th o f da ta ∗ /
f o r ( i n t sim =0; sim <numSims ; sim ++) {

/ / i n s t a n t i a t e t h e s o c i a l ne twork
S o c i a l N e t w o r k s o c i e t y = new S o c i a l N e t w o r k (

l o c a l S e a r c h , numAgents ,
m a x R e l a t i o n s h i p s , s e a r c h P e r i o d ,

c u r r e n t P r o b ,
d e p r e c i a t i o n , i n n o v a t i o n ) ;

/ / i n s t a n t i a t e t h e a g e n t s
f o r ( i n t i n d e x =0; index <numAgents ; i n d e x ++) {

Agent a g e n t = new Agent ( numAgents , index ,
m a x R e l a t i o n s h i p s ,

d e p r e c i a t i o n , i n n o v a t i o n ) ;
s o c i e t y . a l l N o d e s . add ( a g e n t ) ;

}



5.A Simulation Codes 386

/∗ S e t up t h e o u t p u t s p e c i f i c s ∗ /
S t r i n g f i l eName = outputPa thName +" . "+

numAgents
+" . "+ m a x R e l a t i o n s h i p s +" \ \ "+

g l o b a l S e a r c h P r o b +" _ "
+ d e p r e c i a t i o n +" _ "+ sim +" _ "+

d a t e F o r m a t . f o r m a t ( d a t e )
+" _ "+ o u t p u t F i l e N a m e ;

t r y ( B u f f e r e d W r i t e r o u t
= new B u f f e r e d W r i t e r ( new F i l e W r i t e r (

f i l eName ) ) ) {

/ / L e t ’ s p r i n t o u t t h e whole parame te r l i s t
o u t . w r i t e ( " Outpu t p a r a m e t e r s : o u t p u t P e r i o d

"+ o u t p u t P e r i o d +" \ n " ) ;
o u t . w r i t e ( " S o c i a l ne twork p a r a m e t e r s :

numAgents=" + numAgents +
" , s e a r c h P e r i o d =" + s e a r c h P e r i o d +
" , d e p r e c i a t i o n =" + d e p r e c i a t i o n +
" , g l o b a l S e a r c h P r o b =" +

g l o b a l S e a r c h P r o b +" \ n " ) ;
o u t . w r i t e ( " Agent p a r a m e t e r s :

m a x R e l a t i o n s h i p s ="
+ m a x R e l a t i o n s h i p s +" , i n n o v a t i o n ="+

i n n o v a t i o n +" \ n " ) ;
}
catch ( F i l e N o t F o u n d E x c e p t i o n e ) {

System . e r r . p r i n t l n ( " F i l e N o t F o u n d E x c e p t i o n :
" + e . ge tMessage ( ) ) ;

}
catch ( IOExcep t ion e ) {

System . e r r . p r i n t l n ( " Caught IOExcep t i on : " +
e . ge tMessage ( ) ) ;

}

/∗ now a s i m u l a t i o n i s run ∗ /
i n t o u t p u t W a i t = o u t p u t P e r i o d ;
i n t s e a r c h W a i t = s e a r c h P e r i o d ;
f o r ( i n t s t e p s =0; s t e p s < s i m D u r a t i o n ; s t e p s ++) {

/∗ new n e i g h b o u r s are o f f e r e d and j ud ged ∗ /
i f (−− s e a r c h W a i t < 0 ) {

s o c i e t y . n e i g h b o u r S e a r c h ( ) ;
s o c i e t y . ne ighbourChoose ( ) ;
s e a r c h W a i t = s e a r c h P e r i o d ;

}
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/∗ a g e n t s exchange , and l e a r n abou t one
a n o t h e r ∗ /

s o c i e t y . e x c h a n g e T r a n s f e r s ( ) ;

/∗ o u t p u t t h e s t a t i s t i c s d e s c r i b i n g c u r r e n t
ne twork t o p o l o g y ∗ /

i f (−−o u t p u t W a i t < 0 ) {
s o c i e t y . u p d a t e S t a t s ( ) ;
o u t . p r i n t ( " Average degree , " + s o c i e t y .

a v e r a g e D e g r e e + " , " ) ;
o u t . p r i n t ( " Average c l u s t e r i n g , "+

s o c i e t y . a v e r a g e C l u s t e r i n g + " , " ) ;
o u t . p r i n t ( " C l u s t e r i n g , " + s o c i e t y .

c l u s t e r i n g + " , " ) ;
o u t . p r i n t ( " Suppor t , " + s o c i e t y . s u p p o r t

+ " , " ) ;
o u t . p r i n t ( " L a r g e s t Component , "+ s o c i e t y

. l a r g e s t C o m p o n e n t S h a r e + " , " ) ;
o u t . p r i n t ( " Second Component , "+ s o c i e t y .

secondComponentShare + " , " ) ;
o u t . p r i n t ( "Avg s h o r t e s t pa th , "+ s o c i e t y

. a v e r a g e S h o r t e s t P a t h + " , " ) ;
o u t . p r i n t ( " R e l a t i o n s h i p s , "+ s o c i e t y .

n u m R e l a t i o n s h i p s + " , " ) ;
o u t . p r i n t ( " Comple teness , " + s o c i e t y .

c o m p l e t e n e s s + " , " ) ;
o u t . p r i n t ( " Broken l i n k s , "+ s o c i e t y .

r e l a t i o n s h i p s B r o k e n ) ;
o u t . p r i n t l n ( ) ;
o u t p u t W a i t = o u t p u t P e r i o d ;

}
}
i f ( o u t != n u l l ) {

System . o u t . p r i n t l n ( " C l o s i n g P r i n t W r i t e r " ) ;
o u t . p r i n t ( " S i m u l a t i o n Complete " ) ;
o u t . c l o s e ( ) ;

}
e l s e {

System . o u t . p r i n t l n ( " P r i n t W r i t e r n o t open " ) ;
}
System . o u t . p r i n t l n ( " Qu i t " ) ;
s eed ++;
}

}
System . e x i t ( 0 ) ;
}
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s t a t i c S t r i n g argumentForKey ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t )
{
f o r ( i n t x =0; x< a r g s . l e n g t h −1;x ++) / / key can ’ t be t h e

l a s t s t r i n g
i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) )

re turn a r g s [ x + 1 ] ;
re turn n u l l ;
}

s t a t i c boolean k e y E x i s t s ( S t r i n g key , S t r i n g [ ] a rgs , i n t
s t a r t i n g A t )
{
f o r ( i n t x =0; x< a r g s . l e n g t h ; x ++) / / key can ’ t be t h e

l a s t s t r i n g
i f ( a r g s [ x ] . e q u a l s I g n o r e C a s e ( key ) )

re turn true ;
re turn f a l s e ;
}

}

5.A.2 Model version with full information

This model is identical except for one method in the social network object.

NetworkFullInf.java

/∗
C o p y r i g h t 2011 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package a n a r c h y f u l l i n f ;
import u t i l . ∗ ;

/∗ Anarchy Trade model a l l o w s a g e n t s t o p r e d i c t t h e e f f e c t s o f
add ing n e i g h b o u r s

∗ on t h o s e n e i g h b o u r s ’ d i v e r s i t i e s !
∗ /
p u b l i c c l a s s N e t w o r k F u l l I n f {

Bag a l l N o d e s ;
M e r s e n n e T w i s t e r F a s t random ;

f i n a l boolean l o c a l S e a r c h ;
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f i n a l i n t numAgents ;
f i n a l i n t m a x R e l a t i o n s h i p s ;
f i n a l i n t exchangeRa te ;
f i n a l double g l o b a l S e a r c h P r o b ;

f i n a l double d e p r e c i a t i o n ;
f i n a l double i n n o v a t i o n ;

f i n a l double invNumAgents ;

Bag newEdges ;

i n t edgesRemoved ;
boolean s t a t s T a k e n ;
Bag components ;
Bag l a r g e s t C o m p o n e n t ;
Bag secondComponent ;

/ / i n s t a n t a n e o u s ne twork s t a t i s t i c s :
double a v e r a g e D e g r e e ;
i n t [ ] d e g r e e D i s t r i b u t i o n ;
double a v e r a g e C l u s t e r i n g ;
double [ ] c l u s t e r i n g D i s t r i b u t i o n ;
double c l u s t e r i n g ;
double s u p p o r t ;
double [ ] c e n t r a l i t y ;
double l a r g e s t C o m p o n e n t S h a r e ;
double secondComponentShare ;
double a v e r a g e S h o r t e s t P a t h ;
double averageEdgeAge ;

Bag p a r e n t s ;

/ / dynamic ne twork s t a t i s t i c s :
double a v e r a g e P r o d u c t ;
double a v e r a g e D i v e r s i t y M e a s u r e ;
i n t n u m R e l a t i o n s h i p s ;
double c o m p l e t e n e s s ;
i n t r e l a t i o n s h i p s B r o k e n ;

p u b l i c N e t w o r k F u l l I n f ( boolean l o c a l S e a r c h , i n t numAgents ,
i n t m a x R e l a t i o n s h i p s ,

i n t exchangeRate , double g l o b a l S e a r c h P r o b , double
d e p r e c i a t i o n ,

double i n n o v a t i o n ) {
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t h i s . l o c a l S e a r c h = l o c a l S e a r c h ;

t h i s . numAgents = numAgents ;
t h i s . m a x R e l a t i o n s h i p s = m a x R e l a t i o n s h i p s ;
t h i s . exchangeRa te = exchangeRa te ;
t h i s . g l o b a l S e a r c h P r o b = g l o b a l S e a r c h P r o b ;
t h i s . d e p r e c i a t i o n = d e p r e c i a t i o n ;
t h i s . i n n o v a t i o n = i n n o v a t i o n ;

invNumAgents = 1 . 0 / ( double ) numAgents ;

newEdges = new Bag ( ) ;

random = new M e r s e n n e T w i s t e r F a s t ( ) ;
}

/ / T r a n s f e r s are now c a l l e d i n from t h e v a r i o u s agen t s , and
t h e n r e d i s t r i b u t e d

p u b l i c vo id e x c h a n g e T r a n s f e r s ( ) {
double [ ] [ ] d i v e r s i t i e s = new double [ numAgents ] [

numAgents ] ;

/ / f i r s t , l e t ’ s c a l l i n each o f t h e upda ted d i v e r s i t y
a r r a y s

f o r ( i n t a g e n t I n d e x =0; a g e n t I n d e x <numAgents ; a g e n t I n d e x
++) {

Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ a g e n t I n d e x ] ;
d i v e r s i t i e s [ a g e n t I n d e x ] = a g e n t . r e c e i v e T r a n s f e r s ( ) ;

}

/ / now , w i t h a l l a g e n t s ’ d i v e r s i t i e s updated , t h e
o r i g i n a l d i v e r s i t i e s

/ / are no l o n g e r needed and can be r e p l a c e d
f o r ( i n t a g e n t I n d e x =0; a g e n t I n d e x <numAgents ; a g e n t I n d e x

++) {
Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ a g e n t I n d e x ] ;
a g e n t . d i v e r s i t y = d i v e r s i t i e s [ a g e n t I n d e x ] ;

}
}

/∗ A f t e r t r a n s f e r s b u t b e f o r e c h o i c e s , t h i s p r o v i d e s new
n e i g h b o u r s t o t h o s e

∗ a g e n t s t h a t can s u s t a i n them
∗ /

p u b l i c vo id n e i g h b o u r S e a r c h ( ) {
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Bag c l a s s i f i e d s = new Bag ( a l l N o d e s ) ;

/∗ l o c a l s e a r c h s h o u l d happen f i r s t , t o r ed uc e t h e
p o s s i b i l i t y

∗ t h a t t h e r e are no v i a b l e l o c a l s e a r c h c h o i c e s l e f t
i n c l a s s i f i e d s :

∗ − i f t h e r e i s a c l i q u e t h e r e c o u l d s t i l l be no l o c a l
s e a r c h c h o i c e s ∗ /

Agent a g e n t =
( Agent ) c l a s s i f i e d s . o b j s [ random . n e x t I n t (

c l a s s i f i e d s . numObjs ) ] ;

/ / we c r e a t e a new bag t o keep t r a c k o f n e i g h b o u r s we ’
ve v i s i t e d

/ / i n l o c a l s e a r c h
Bag n e i g h b o u r s = new Bag ( a g e n t . n e i g h b o u r s ) ;

/ / now a s p e c i f i c c l a s s i f i e d s bag s t o p p i n g us s e l e c t i n g
/ / i n a p p r o p r i a t e new l i n k s f o r t h i s p a r t i c u l a r a g e n t
Bag t e m p C l a s s i f i e d s = new Bag ( c l a s s i f i e d s ) ;
t e m p C l a s s i f i e d s . remove ( a g e n t ) ;
t e m p C l a s s i f i e d s . removeAl l ( n e i g h b o u r s ) ;
i f ( t e m p C l a s s i f i e d s . i sEmpty ( ) ) {

c l a s s i f i e d s . remove ( a g e n t ) ;
}

/ / w i t h a g i v e n p r o b a b i l i t y a new n e i g h b o u r i s found by
g l o b a l s e a r c h

i f ( random . n e x t B o o l e a n ( g l o b a l S e a r c h P r o b ) ) {
i n t p o t e n t i a l C l a s s i f i e d =

random . n e x t I n t ( t e m p C l a s s i f i e d s . numObjs ) ;
Agent p o t e n t i a l N e i g h b o u r = ( Agent ) t e m p C l a s s i f i e d s

. o b j s [ p o t e n t i a l C l a s s i f i e d ] ;
/∗ now we add t h e s e a g e n t s as a p a i r t o t h e bag o f

new edges
∗ t o check o u t ∗ /

newEdges . add ( new Agent [ ] { agen t , p o t e n t i a l N e i g h b o u r } )
;

c l a s s i f i e d s . remove ( a g e n t ) ;
c l a s s i f i e d s . remove ( p o t e n t i a l N e i g h b o u r ) ;

}
/ / o t h e r w i s e l o c a l s e a r c h i s used − may n o t be

s u c c e s s f u l !
e l s e i f ( l o c a l S e a r c h ) {
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/ / f i r s t we randomly choose a n e i g h b o u r from whom
t o p i c k a

/ / common n e i g h b o u r
whi le ( ! n e i g h b o u r s . i sEmpty ( ) ) {

i n t n e i g h b o u r I n d e x = random . n e x t I n t ( n e i g h b o u r s .
numObjs ) ;

Agent v i a N e i g h b o u r = ( Agent ) n e i g h b o u r s . o b j s [
n e i g h b o u r I n d e x ] ;

Bag p o t e n t i a l s = new Bag ( v i a N e i g h b o u r .
n e i g h b o u r s ) ;

p o t e n t i a l s . remove ( a g e n t ) ;

/ / now we randomly s e a r c h t h r o u g h t h a t a g e n t ’ s
/ / n e i g h b o u r s
whi le ( ! p o t e n t i a l s . i sEmpty ( ) ) {

i n t p o t e n t i a l I n d e x = random . n e x t I n t (
p o t e n t i a l s . numObjs ) ;

Agent p o t e n t i a l = ( Agent ) p o t e n t i a l s . o b j s [
p o t e n t i a l I n d e x ] ;

i f ( t e m p C l a s s i f i e d s . c o n t a i n s ( p o t e n t i a l ) ) {
newEdges . add ( new Agent [ ] { agen t ,

p o t e n t i a l } ) ;

c l a s s i f i e d s . remove ( a g e n t ) ;
c l a s s i f i e d s . remove ( p o t e n t i a l ) ;
re turn ;

}
e l s e p o t e n t i a l s . remove ( p o t e n t i a l ) ;

}
n e i g h b o u r s . remove ( v i a N e i g h b o u r ) ;

}
}

}

/∗ In t h i s h y p e r o p i c v e r s i o n o f t h e model , t h e a g e n t p a r t y
t o t h e o f f e r e d

∗ l i n k w i l l a c t u a l l y s e e t h e s h o r t e s t p a t h s t o e v e r y o t h e r
agent , and w i l l

∗ c a l c u l a t e t h e i r e x p e c t e d u t i l i t y a c c o r d i n g t o t h e s e ∗ /
p u b l i c vo id ne ighbourChoose ( )
{

Bag [ ] neighboursToRemove = new Bag [ numAgents ] ;
i n t numNewEdges = newEdges . numObjs ;



5.A Simulation Codes 393

newEdgeLoop : f o r ( i n t newEdgeIndex =0; newEdgeIndex <
numNewEdges ; newEdgeIndex ++)

{
Agent [ ] a g e n t s = ( Agent [ ] ) newEdges . o b j s [

newEdgeIndex ] ;
Bag weakLinks = new Bag ( ) ;
Agent [ ] r e j e c t s = new Agent [ 2 ] ;

/∗ L i k e t h e myopic model , we ’ l l assume t h a t t h e
a g e n t s w i l l d i t c h

∗ t h e i n d e p e n d e n t l y l e a s t v a l u a b l e o f t h e i r
n e i g h b o u r s i n f a v o u r

∗ o f t h e o t h e r p a r t y t o t h e l i n k , IF t h a t l i n k
adds v a l u e ∗ /

f o r ( i n t nodeIndex =0; nodeIndex <2; nodeIndex ++)
{

Agent a g e n t = a g e n t s [ nodeIndex ] ;

Bag n e i g h b o u r s = new Bag ( a g e n t . n e i g h b o u r s ) ;

i n t numNeighbours = n e i g h b o u r s . numObjs ;
i n t maxNeighbours = m a x R e l a t i o n s h i p s −1;
/∗ i f t h e a g e n t can s u s t a i n a l l l i n k s , t h e n

t h e y w i l l − i t i s
∗ assumed t h a t a l l l i n k s w i l l p r o v i d e p o s i t i v e

v a l u e or d e f e c t i o n
∗ w i l l j u s t l e a d t o e q u a l v a l u e ∗ /

i f ( numNeighbours < m a x R e l a t i o n s h i p s )
{

c o n t in u e ;
}
/∗ i f t h e r e are t o o many n e i g h b o u r s t o s u s t a i n ,

t h e n we ’ l l a s s e s s
∗ t h e v a l u e o f a l l c o m b i n a t i o n s ( s i z e o f

m a x R e l a t i o n s h i p s −1) ∗ /
Bag c o m b i n a t i o n = new Bag ( ) ;
Bag c o m b i n a t i o n s = new Bag ( ) ;
g e t C o m b i n a t i o n s ( n e i g h b o u r s , −1, maxNeighbours ,

combina t ion ,
c o m b i n a t i o n s ) ;

i n t numCombinat ions = c o m b i n a t i o n s . s i z e ( ) ;
Bag b e s t C o m b i n a t i o n = new Bag ( ) ;
double b e s t C o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ now t o e x p l o r e a l l t h e p o s s i b l e c o m b i n a t i o n s
o f n e i g h b o u r s ∗ /
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f o r ( i n t c o m b i n a t i o n I n d e x =0;
c o m b i n a t i o n I n d e x <numCombinat ions ;
c o m b i n a t i o n I n d e x ++)

{
c o m b i n a t i o n = ( Bag ) c o m b i n a t i o n s . o b j s [

c o m b i n a t i o n I n d e x ] ;

/∗ now an i m p l e m e n t a t i o n w i t h non−s e p a r a b l e
u t i l i t y :

∗ − as t h e e f f e c t s o f t h e edge ’ s o t h e r
p a r t y are n o t b e i n g

∗ c o n s i d e r e d , t h e r e i s no need t o
c o n s i d e r d i f f e r e n t

∗ d i f f e r e n t i n i t i a l and s u b s e q u e n t
n e i g h b o u r h o o d s ∗ /

double c o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ Now t o map o u t t h e s h o r t e s t p a t h s i n t h e
network , i g n o r i n g

∗ t h e n e i g h b o u r t h a t i s n ’ t i n c l u d e d i n
t h i s c o m b i n a t i o n :

∗ − t h i s w i l l r e q u i r e t h e s h o r t e s t pa th ∗ /
f o r ( i n t p r o p e r t y =0; p r o p e r t y <numAgents ;

p r o p e r t y ++)
{

Agent p r o p e r t y P r o d u c e r = ( Agent )
a l l N o d e s . o b j s [ p r o p e r t y ] ;

Bag v i s i t e d = new Bag ( c o m b i n a t i o n ) ;
v i s i t e d . add ( a g e n t ) ;
i n t s h o r t e s t P a t h ;
i f ( p r o p e r t y == a g e n t . i n d e x ) s h o r t e s t P a t h

= 0 ;
e l s e i f ( c o m b i n a t i o n . c o n t a i n s (

p r o p e r t y P r o d u c e r ) )
s h o r t e s t P a t h = 1 ;

e l s e s h o r t e s t P a t h = s h o r t e s t P a t h ( 1 ,
p r o p e r t y P r o d u c e r ,

agen t , v i s i t e d , new Bag (
c o m b i n a t i o n ) ) ;

i f ( s h o r t e s t P a t h >0)
{

double p a t h V a l u e = i n n o v a t i o n ;
double s t e p W e i g h t = d e p r e c i a t i o n ;
f o r ( i n t s t e p =0; s t e p < s h o r t e s t P a t h ;

s t e p ++)
p a t h V a l u e ∗= s t e p W e i g h t ;
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c o m b i n a t i o n V a l u e += p a t h V a l u e ;
/ / c o m b i n a t i o n V a l u e += 1 − Math . exp

( x e n o p h i l i a ∗ p a t h V a l u e ) ;
}

}
c o m b i n a t i o n V a l u e ∗= invNumAgents ;

/∗ I f t h i s c o m b i n a t i o n g e n e r a t e s a h i g h e r
u t i l i t y t han t h e

∗ e x i s t i n g b e s t , t h e n t h i s w i l l r e p l a c e i t
∗ /

i f ( combina t ionVa lue > b e s t C o m b i n a t i o n V a l u e )
{

b e s t C o m b i n a t i o n = c o m b i n a t i o n ;
b e s t C o m b i n a t i o n V a l u e = c o m b i n a t i o n V a l u e

;
}

}
/∗ Having found t h e b e s t c o m b i n a t i o n o f

n e i g h b o u r s f o r t h i s agent ,
∗ we f i n d t h e n e i g h b o u r t h a t i t does n o t

c o n t a i n ∗ /
f o r ( i n t n b r I n d e x =0; nbr Index < n e i g h b o u r s . numObjs

; n b r I n d e x ++)
{

i f ( ! b e s t C o m b i n a t i o n . c o n t a i n s ( n e i g h b o u r s .
o b j s [ n b r I n d e x ] ) )

{
r e j e c t s [ nodeIndex ] = ( Agent ) n e i g h b o u r s .

o b j s [ n b r I n d e x ] ;
a g e n t . g u e s s R e j e c t e d I n d = r e j e c t s [

nodeIndex ] . i n d e x ;
}

}
}

/∗ t h e f o l l o w i n g loop w i l l a s s e s s t h e o p t i o n s f o r
each agent ,

∗ c o n t i n u i n g t h e t h i s E d g e loop i f e i t h e r
d i s s a p p r o v e s , b u t a l l o w i n g

∗ t h e l i n k t o be added i f bo th approve ∗ /
Bag [ ] b e s t C o m b i n a t i o n = new Bag [ 2 ] ;
f o r ( i n t nodeIndex =0; nodeIndex <2; nodeIndex ++)
{

Agent a g e n t = a g e n t s [ nodeIndex ] ;
Agent newNeighbour = a g e n t s [ ( nodeIndex +1) %2];
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Agent n b r R e j e c t = r e j e c t s [ ( nodeIndex +1) %2];

Bag n e i g h b o u r s = new Bag ( a g e n t . n e i g h b o u r s ) ;
n e i g h b o u r s . add ( newNeighbour ) ;

i n t numNeighbours = n e i g h b o u r s . numObjs ;
/∗ i f t h e a g e n t can s u s t a i n a l l l i n k s , t h e n

t h e y w i l l − i t i s
∗ assumed t h a t a l l l i n k s w i l l p r o v i d e p o s i t i v e

v a l u e or d e f e c t i o n
∗ w i l l j u s t l e a d t o e q u a l v a l u e ∗ /

i f ( numNeighbours <= m a x R e l a t i o n s h i p s ) c o n t in u e ;

/∗ i f t h e r e are t o o many n e i g h b o u r s t o s u s t a i n ,
t h e n we ’ l l a s s e s s

∗ t h e v a l u e o f a l l c o m b i n a t i o n s ( s i z e o f
m a x R e l a t i o n s h i p s ) ∗ /

Bag c o m b i n a t i o n = new Bag ( ) ;
Bag c o m b i n a t i o n s = new Bag ( ) ;
g e t C o m b i n a t i o n s ( n e i g h b o u r s , −1,

m a x R e l a t i o n s h i p s , combina t ion ,
c o m b i n a t i o n s ) ;

i n t numCombinat ions = c o m b i n a t i o n s . s i z e ( ) ;
double b e s t C o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ now t o e x p l o r e a l l t h e p o s s i b l e c o m b i n a t i o n s
o f n e i g h b o u r s ∗ /

f o r ( i n t c o m b i n a t i o n I n d e x =0;
c o m b i n a t i o n I n d e x <numCombinat ions ;
c o m b i n a t i o n I n d e x ++)

{
c o m b i n a t i o n = ( Bag ) c o m b i n a t i o n s . o b j s [

c o m b i n a t i o n I n d e x ] ;
/∗ For each combina t ion , we need t o f i n d

t h e v a l u e t o t h e a g e n t
∗ o f t h i s s e t o f edges :
∗ − The n e i g h b o u r h o o d s o f bo th t h e a g e n t

and t h e new
∗ n e i g h b o u r w i l l change , b u t o n l y a f t e r

t h e f i r s t exchange
∗ HOWEVER WE WILL ASSUME THE FORMER

NEIGHBOUR ’ s PROPERTIES
∗ THAT WOULD HAVE BEEN CARRIED OVER FOR

THE FIRST EXCHANGE
∗ WILL BE OFFSET BY A COST TO NEW

RELATIONSHIPS ∗ /
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double c o m b i n a t i o n V a l u e = 0 . 0 ;

/∗ Now t o add t h e t r a n s f e r s f o r each o f t h e
n e i g h b o u r s i n

∗ t h i s combina t ion , assuming non−s e p a r a b l e
u t i l i t y

∗ − which means summing p r o p e r t i e s ∗ /
f o r ( i n t p r o p e r t y =0; p r o p e r t y <numAgents ;

p r o p e r t y ++)
{

Agent p r o p e r t y P r o d u c e r = ( Agent )
a l l N o d e s . o b j s [ p r o p e r t y ] ;

i n t s h o r t e s t P a t h = −1;
i f ( p r o p e r t y == a g e n t . i n d e x ) s h o r t e s t P a t h

= 0 ;
e l s e i f ( c o m b i n a t i o n . c o n t a i n s (

p r o p e r t y P r o d u c e r ) )
s h o r t e s t P a t h = 1 ;

e l s e i f ( c o m b i n a t i o n . c o n t a i n s (
newNeighbour ) )

{
/∗ I f t h e p r o p e r t y i s n ’ t t h a t o f

t h e a g e n t or a
∗ n e i g h b o u r ( i n t h i s c o m b i n a t i o n ) ,

then , when t h e
∗ new n e i g h b o u r i s i n t h e

combina t ion , c o u l d e i t h e r
∗ be
∗ − a pa th n o t v i a t h e

newNeighbour
∗ − or , a pa th v i a t h e

newNeighbour ( r e s t r i c t e d by
∗ t h e l o s s o f t h e i r r e j e c t e d

node ) ∗ /
Bag f i r s t T i e r = new Bag ( c o m b i n a t i o n

) ;
f i r s t T i e r . remove ( newNeighbour ) ;
Bag v i s i t e d = new Bag ( c o m b i n a t i o n ) ;
v i s i t e d . add ( a g e n t ) ;
s h o r t e s t P a t h = s h o r t e s t P a t h ( 1 ,

p r o p e r t y P r o d u c e r ,
agen t , v i s i t e d , f i r s t T i e r ) ;

/∗ now l e t ’ s s e e i f t h e r e ’ s a
f a s t e r pa th v i a t h e

∗ new n e i g h b o u r ∗ /
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f i r s t T i e r = new Bag ( newNeighbour .
n e i g h b o u r s ) ;

f i r s t T i e r . remove ( n b r R e j e c t ) ;
v i s i t e d = new Bag ( f i r s t T i e r ) ;
v i s i t e d . add ( newNeighbour ) ;
v i s i t e d . add ( a g e n t ) ;
i n t s h o r t e s t N e w P a t h =

s h o r t e s t P a t h ( 2 ,
p r o p e r t y P r o d u c e r , agen t ,

v i s i t e d , f i r s t T i e r ) ;
i f ( s h o r t e s t N e w P a t h > 0

&& ( s h o r t e s t N e w P a t h <
s h o r t e s t P a t h

| | s h o r t e s t P a t h < 0) ) {
s h o r t e s t P a t h = s h o r t e s t N e w P a t h ;

}
}
e l s e {

/∗ I f t h i s c o m b i n a t i o n i s t h e
o r i g i n a l ne ighbourhood

∗ o f t h e agent , t h e n t h e r e i s no
need t o worry

∗ abou t t h e newNeighbour ∗ /
Bag v i s i t e d = new Bag ( c o m b i n a t i o n ) ;

v i s i t e d . add ( a g e n t ) ;
s h o r t e s t P a t h = s h o r t e s t P a t h ( 1 ,

p r o p e r t y P r o d u c e r ,
agen t , v i s i t e d , new Bag (

c o m b i n a t i o n ) ) ;
}
i f ( s h o r t e s t P a t h >=0) {

double p a t h V a l u e = i n n o v a t i o n ;
double s t e p W e i g h t = d e p r e c i a t i o n ;
f o r ( i n t s t e p =0; s t e p < s h o r t e s t P a t h ;

s t e p ++)
p a t h V a l u e ∗= s t e p W e i g h t ;

c o m b i n a t i o n V a l u e += p a t h V a l u e ;
}

}
c o m b i n a t i o n V a l u e ∗= invNumAgents ;

/∗ I f t h i s c o m b i n a t i o n g e n e r a t e s a h i g h e r
u t i l i t y t han t h e

∗ e x i s t i n g b e s t , t h e n t h i s w i l l r e p l a c e i t
∗ /

i f ( combina t ionVa lue > b e s t C o m b i n a t i o n V a l u e ) {
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b e s t C o m b i n a t i o n [ nodeIndex ] =
c o m b i n a t i o n ;

b e s t C o m b i n a t i o n V a l u e = c o m b i n a t i o n V a l u e
;

a g e n t . e s t i m a t e d U t i l i t y =
c o m b i n a t i o n V a l u e ;

}
}

}
/∗ I f we ’ ve g o t t h i s f a r , t h e n t h e edge has been

approved by bo th
∗ ne ighbour s , which means i t needs t o be added ,

and t h e d e p r e c a t e d
∗ l i n k s removed ∗ /

a g e n t s [ 0 ] . n e i g h b o u r s . add ( a g e n t s [ 1 ] ) ;
a g e n t s [ 1 ] . n e i g h b o u r s . add ( a g e n t s [ 0 ] ) ;
f o r ( i n t nodeIndex =0; nodeIndex <2; nodeIndex ++) {

f o r ( i n t n e i g h b I n d e x =0;
ne ighb Index < a g e n t s [ nodeIndex ] .

n e i g h b o u r s . numObjs ;
n e i g h b I n d e x ++) {

i f ( ! b e s t C o m b i n a t i o n [ nodeIndex ]
. c o n t a i n s ( a g e n t s [ nodeIndex ] .

n e i g h b o u r s . o b j s [ n e i g h b I n d e x ] ) ) {
i f ( neighboursToRemove [ a g e n t s [ nodeIndex

] . i n d e x ]== n u l l ) {
neighboursToRemove [ a g e n t s [ nodeIndex

] . i n d e x ]
= new Bag ( ) ;

}
neighboursToRemove [ a g e n t s [ nodeIndex ] .

i n d e x ]
. add ( a g e n t s [ nodeIndex ] .

n e i g h b o u r s . o b j s [ n e i g h b I n d e x
] ) ;

i f ( neighboursToRemove [ ( ( Agent ) a g e n t s [
nodeIndex ]

. n e i g h b o u r s . o b j s [ n e i g h b I n d e x ] ) .
i n d e x ]== n u l l ) {

neighboursToRemove [ ( ( Agent ) a g e n t s [
nodeIndex ]

. n e i g h b o u r s . o b j s [
n e i g h b I n d e x ] ) . i n d e x ]

= new Bag ( ) ;
}
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neighboursToRemove [ ( ( Agent ) a g e n t s [
nodeIndex ] . n e i g h b o u r s . o b j s [
n e i g h b I n d e x ] ) . i n d e x ]

. add ( a g e n t s [ nodeIndex ] ) ;
edgesRemoved ++;
break ;

}
}

}
}
f o r ( i n t i =0 ; i <numAgents ; i ++) {

Agent s u b j e c t = ( Agent ) a l l N o d e s . o b j s [ i ] ;
s u b j e c t . removeNeighbours ( neighboursToRemove [ i ] ) ;
/∗ Now t h a t t o p o l o g i c a l changes are comple te , we ’ l l

r e c o r d t h i s
∗ n e i g h b o u r s Bag as t h e o l d N e i g h b o u r s Bag f o r t h e

n e x t p e r i o d ∗ /
s u b j e c t . o l d N e i g h b o u r s = new Bag ( s u b j e c t . n e i g h b o u r s )

;
}

newEdges . c l e a r ( ) ;
}

/∗ a r e c u r s i v e method t o c o n s t r u c t c o m b i n a t i o n s ∗ /
void g e t C o m b i n a t i o n s ( Bag s u p e r S e t , i n t l a s t P i c k , i n t

r e m a i n i n g S p a c e s ,
Bag combina t i on , Bag c o m b i n a t i o n s ) {

i f ( r e m a i n i n g S p a c e s == 0) {
c o m b i n a t i o n s . add ( c o m b i n a t i o n ) ;
re turn ;

}
i n t t h i s C h o i c e B o u n d = s u p e r S e t . numObjs −

r e m a i n i n g S p a c e s + 1 ;
i n t remainingSpacesNow = r e m a i n i n g S p a c e s − 1 ;
f o r ( i n t p i c k I n d e x = l a s t P i c k +1; p i c k I n d e x <

t h i s C h o i c e B o u n d ; p i c k I n d e x ++) {
O b j e c t o b j = s u p e r S e t . o b j s [ p i c k I n d e x ] ;
Bag combCtd = new Bag ( c o m b i n a t i o n ) ;
combCtd . add ( o b j ) ;
g e t C o m b i n a t i o n s ( s u p e r S e t , p i c k I n d e x ,

remainingSpacesNow , combCtd ,
c o m b i n a t i o n s ) ;

}
}
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void d i scove rComponen t s ( ) {
/ / r e f r e s h t h e bag o f components
components = new Bag ( ) ;

/ / node by node , check d i s c o v e r e d components
s e q u e n t i a l l y f o r membership .

/ / i f absen t , i t becomes t h e s t a r t node o f a new
component e x p l o r a t i o n

f o r ( i n t i =0 ; i <numAgents ; i ++) {
Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ i ] ;

boolean componentFound = f a l s e ;

f o r ( i n t component Index =0;
componentIndex <components . numObjs ;
component Index ++) {

Bag e x i s t i n g C o m p o n e n t = ( Bag ) components . o b j s [
component Index ] ;

i f ( e x i s t i n g C o m p o n e n t . c o n t a i n s ( a g e n t ) ) {
componentFound = t rue ;

}
}

i f ( componentFound ) c o n t in u e ;

/ / i f an e x i s t i n g component i s n ’ t t h a t o f t h e agent
, we s t a r t a new

/ / one and e x p l o r e
Bag newComponent = new Bag ( ) ;
newComponent . add ( a g e n t ) ;
components . add ( newComponent ) ;
a g e n t . component = newComponent ;
exp loreComponent ( agen t , newComponent ) ;

}
}

void exploreComponent ( Agent s u b j e c t , Bag component ) {
Bag n e i g h b o u r s = s u b j e c t . n e i g h b o u r s ;

f o r ( i n t i =0 ; i < n e i g h b o u r s . numObjs ; i ++) {
Agent n e i g h b o u r

= ( Agent ) n e i g h b o u r s . o b j s [ i ] ;
i f ( ! component . c o n t a i n s ( n e i g h b o u r ) ) {

component . add ( n e i g h b o u r ) ;
n e i g h b o u r . component = component ;
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exploreComponent ( ne ighbour , component ) ;
}

}
}

i n t s h o r t e s t P a t h ( i n t pa thLeng th , O b j e c t d e s t i n a t i o n N o d e ,
O b j e c t avoidNode ,

Bag v i s i t e d N o d e s , Bag o l d T i e r ) {
p a t h L e n g t h ++;

Bag newTier = new Bag ( ) ;
f o r ( i n t i =0 ; i < o l d T i e r . numObjs ; i ++) {

Agent a g e n t = ( Agent ) o l d T i e r . o b j s [ i ] ;
Bag n e i g h b o u r s = a g e n t . n e i g h b o u r s ;

/ / f i r s t we ’ l l go t h r o u g h t h e n e i g h b o u r s From which
t h e In edges come

f o r ( i n t j =0 ; j < n e i g h b o u r s . numObjs ; j ++) {
Agent n e i g h b o u r = ( Agent ) n e i g h b o u r s . o b j s [ j ] ;

/ / we want t o make s u r e t h a t n e i g h b o u r i s n o t
t h e o r i g i n a l node ,

/ / avoidNode
/ / we o n l y want t o c o n t i n u e i f we have n o t

a l r e a d y found a
/ / f a s t e r r o u t e t o t h a t node : i f i t i s n o t i n a

lower t i e r
i f ( ! ( n e i g h b o u r . e q u a l s ( avoidNode ) )

&& ( ! v i s i t e d N o d e s . c o n t a i n s ( n e i g h b o u r ) ) )
{

/ / we check whe ther we ’ ve reached t h e
d e s t i n a t i o n

i f ( n e i g h b o u r . e q u a l s ( d e s t i n a t i o n N o d e ) ==
t rue ) {

re turn p a t h L e n g t h ;
}
/ / i f not , we e x t e n d t h e pa th so f a r by t h e

c u r r e n t node ,
/ / and s e a r c h on from t h e r e
e l s e {

newTier . add ( n e i g h b o u r ) ;
v i s i t e d N o d e s . add ( n e i g h b o u r ) ;

}
}

}
}
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/ / ha v i ng b u i l t t h e n e x t t i e r we want t o pas s i t t o a
d ee pe r r e c u r r e n c e

/ / o f t h e same a l g o r i t h m , a l l t h e w h i l e k e e p i n g t r a c k
o f t h e number o f

/ / t i e r s
i f ( ! newTier . i sEmpty ( ) ) {

p a t h L e n g t h = s h o r t e s t P a t h ( pa thLeng th ,
d e s t i n a t i o n N o d e , avoidNode ,

v i s i t e d N o d e s , newTier ) ;
re turn p a t h L e n g t h ;

}
e l s e {

/ / t h i s s h o u l d n ’ t happen
System . o u t . p r i n t l n ( "No p a t h found t o " + ( ( Agent )

d e s t i n a t i o n N o d e ) . i n d e x
+ " from " + ( ( Agent ) avoidNode ) . i n d e x ) ;

re turn numAgents ;
}

}

/∗ p u b l i c v o i d u p d a t e S t a t s ( )
∗ c h e c k s v a r i o u s ne twork s t a t i s t i c s
∗ we want t h i s t o be run o n l y on r e q u e s t , t o up da t e and

r e p o r t t h e s t a t s
∗ f o r t h e ne twork
∗ so we want c l u s t e r i n g d i s t r i b u t i o n , d eg re e d i s t r i b u t i o n ,

c e n t r a l i t y ,
∗ ne twork c l u s t e r i n g and s u p p o r t ,
∗ and component s i z e s − p o s s i b l y t h e component s i z e

d i s t r i b u t i o n
∗ /

p u b l i c vo id u p d a t e S t a t s ( ) {
a v e r a g e D e g r e e = 0 ;
a v e r a g e C l u s t e r i n g = 0 ;
averageEdgeAge = 0 ;
c l u s t e r i n g = 0 ;
s u p p o r t = 0 ;
d e g r e e D i s t r i b u t i o n = new i n t [ numAgents ] ;
c l u s t e r i n g D i s t r i b u t i o n = new double [ numAgents ] ;

n u m R e l a t i o n s h i p s = 0 ;
a v e r a g e P r o d u c t = . 0 ;
a v e r a g e D i v e r s i t y M e a s u r e = 0 . 0 ;
i n t m a x T o t a l R e l a t i o n s h i p s = 0 ;
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i n t l a r g e s t C o m p o n e n t S i z e = 0 ;
i n t secondComponentSize = 0 ;
i n t t o t a l P o t e n t i a l T r i a d s = 0 ;
i n t c o m p l e t e T r i a d s = 0 ;
i n t s u p p o r t e d L i n k s = 0 ;
i n t p o t e n t i a l S u p p o r t = 0 ;

d i s cove rComponen t s ( ) ;

f o r ( i n t i =0 ; i <numAgents ; i ++) {
Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ i ] ;
Bag a g e n t R e l a t i o n s h i p s = a g e n t . n e i g h b o u r s ;

n u m R e l a t i o n s h i p s += a g e n t R e l a t i o n s h i p s . s i z e ( ) ;
m a x T o t a l R e l a t i o n s h i p s += m a x R e l a t i o n s h i p s ;

a v e r a g e P r o d u c t += a g e n t . p r o d u c t ;

Bag component = ( Bag ) a g e n t . component ;
i n t componen tS ize = component . numObjs ;
i f ( componentSize > l a r g e s t C o m p o n e n t S i z e ) {

secondComponentSize = l a r g e s t C o m p o n e n t S i z e ;
secondComponent = l a r g e s t C o m p o n e n t ;

l a r g e s t C o m p o n e n t S i z e = componen tS ize ;
l a r g e s t C o m p o n e n t = component ;

}
e l s e i f ( componentSize > secondComponentSize

&& componen tS ize != l a r g e s t C o m p o n e n t S i z e ) {
secondComponentSize = componen tS ize ;
secondComponent = component ;

}

i n t d e g r e e = a g e n t . n e i g h b o u r s . numObjs ;
d e g r e e D i s t r i b u t i o n [ i ] = d e g r e e ;
a v e r a g e D e g r e e = a v e r a g e D e g r e e + ( double ) d e g r e e ;

i n t commonNeighbours = 0 ;
i n t p o t e n t i a l T r i a d s = 0 ;
boolean [ ] s u p p o r t F o u n d = new boolean [

a g e n t R e l a t i o n s h i p s . numObjs ] ;

f o r ( i n t j =0 ; j < a g e n t R e l a t i o n s h i p s . numObjs ; j ++) {
Agent n e i g h b o u r = ( Agent ) a g e n t R e l a t i o n s h i p s .

o b j s [ j ] ;
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Bag n e i g h b o u r R e l a t i o n s h i p s = n e i g h b o u r .
n e i g h b o u r s ;

/ / s u p p o r t i s a l i n k p r o p e r t y ; one and o n l y one
s u p p o r t i n g node

/ / ( edge−p a i r ) need be found t o q u a l i f y t h a t
edge as s u p p o r t e d

/ / t h e way i t ’ s s e t up here you w i l l c o u n t each
l i n k t w i c e −

/ / once w i t h each p a r t i c i p a n t as t h e s u b j e c t ,
a g e n t

s u p p o r t F o u n d [ j ] = f a l s e ;
p o t e n t i a l S u p p o r t ++;

kLoop : f o r ( i n t k =0; k< j ; k ++) {
Agent o t h e r N e i g h b o u r = ( Agent )

a g e n t R e l a t i o n s h i p s . o b j s [ k ] ;
Bag o t h e r N e i g h b o u r N e i g h b o u r s =

o t h e r N e i g h b o u r . n e i g h b o u r s ;

/ / t h i s p a i r o f n e i g h b o u r s r e p r e s e n t s a
p o t e n t i a l t r i a d ,

/ / r e g a r d l e s s o f whe ther t h e y a c t u a l l y are
p o t e n t i a l T r i a d s ++;

f o r ( i n t l =0 ; l < o t h e r N e i g h b o u r N e i g h b o u r s .
numObjs ; l ++) {

Agent possCommonNeighbour
= ( Agent )

o t h e r N e i g h b o u r N e i g h b o u r s .
o b j s [ l ] ;

i f ( n e i g h b o u r R e l a t i o n s h i p s . c o n t a i n s (
possCommonNeighbour ) ) {

i f ( s u p p o r t F o u n d [ j ]== f a l s e ) {
s u p p o r t e d L i n k s ++;
s u p p o r t F o u n d [ j ] = t rue ;

}
i f ( s u p p o r t F o u n d [ k ]== f a l s e ) {

s u p p o r t e d L i n k s ++;
s u p p o r t F o u n d [ k ] = t rue ;

}
/ / as t h i s p a i r o f n e i g h b o u r s are

t h e m s e l v e s
/ / ne ighbour s , t h e c l u s t e r i n g w i l l

i n c r e a s e by 1
commonNeighbours ++;
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break ;
}

}
}

}
t o t a l P o t e n t i a l T r i a d s = t o t a l P o t e n t i a l T r i a d s +

p o t e n t i a l T r i a d s ;
i f ( p o t e n t i a l T r i a d s >0) c l u s t e r i n g D i s t r i b u t i o n [ i ] = (

double ) commonNeighbours / ( double ) p o t e n t i a l T r i a d s ;
a v e r a g e C l u s t e r i n g = a v e r a g e C l u s t e r i n g +

c l u s t e r i n g D i s t r i b u t i o n [ i ] ;
c o m p l e t e T r i a d s = c o m p l e t e T r i a d s + commonNeighbours ;

}

averageEdgeAge = averageEdgeAge / n u m R e l a t i o n s h i p s ;
n u m R e l a t i o n s h i p s = n u m R e l a t i o n s h i p s / 2 ;

c o m p l e t e n e s s =
( double ) n u m R e l a t i o n s h i p s /

m a x T o t a l R e l a t i o n s h i p s ;
a v e r a g e P r o d u c t = a v e r a g e P r o d u c t / numAgents ;
a v e r a g e D i v e r s i t y M e a s u r e = a v e r a g e D i v e r s i t y M e a s u r e /

numAgents ;

r e l a t i o n s h i p s B r o k e n = edgesRemoved ;
edgesRemoved = 0 ;

/ / c a l c u l a t e c l u s t e r i n g and s u p p o r t
i f ( t o t a l P o t e n t i a l T r i a d s >0) c l u s t e r i n g

= ( double ) c o m p l e t e T r i a d s / ( double )
t o t a l P o t e n t i a l T r i a d s ;

i f ( p o t e n t i a l S u p p o r t >0) s u p p o r t
= ( double ) s u p p o r t e d L i n k s / ( double )

p o t e n t i a l S u p p o r t ;

/ / t u r n sums i n t o averages , and a b s o l u t e s i z e s i n t o
p o p u l a t i o n s h a r e s

a v e r a g e D e g r e e = a v e r a g e D e g r e e / numAgents ;
a v e r a g e C l u s t e r i n g = a v e r a g e C l u s t e r i n g / numAgents ;
l a r g e s t C o m p o n e n t S h a r e = ( double ) l a r g e s t C o m p o n e n t S i z e /

numAgents ;
secondComponentShare = ( double ) secondComponentSize /

numAgents ;

/ / i f t h e ne twork i s connec t ed , t h e n we want t o check
t h e average
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/ / s h o r t e s t pa th l e n g t h
a v e r a g e S h o r t e s t P a t h = 0 . 0 ;
f o r ( i n t i =0 ; i < l a r g e s t C o m p o n e n t S i z e ; i ++) {

Agent s t a r t A g e n t = ( Agent ) l a r g e s t C o m p o n e n t . o b j s [ i ] ;
f o r ( i n t j =0 ; j < i ; j ++) {

Agent f i n i s h A g e n t = ( Agent ) l a r g e s t C o m p o n e n t .
o b j s [ j ] ;

Bag o l d T i e r = new Bag ( ) ;
o l d T i e r . add ( s t a r t A g e n t ) ;
a v e r a g e S h o r t e s t P a t h += s h o r t e s t P a t h ( 0 ,

f i n i s h A g e n t ,
s t a r t A g e n t , new Bag ( o l d T i e r ) , o l d T i e r ) ;

}
}
a v e r a g e S h o r t e s t P a t h = a v e r a g e S h o r t e s t P a t h ∗ 2 . 0 / (

numAgents ∗ ( numAgents−1) ) ;
}

}

5.A.3 Model with only random neighbours

/∗
C o p y r i g h t 2011 by Tom W i l k i n s o n and C a r d i f f U n i v e r s i t y
L i c e n s e d under t h e Academic Free L i c e n s e v e r s i o n 3 . 0
See t h e f i l e "LICENSE" f o r more i n f o r m a t i o n
∗ /
package anarchyrandom ;
import u t i l . ∗ ;

/∗ Anarchy Trade model a l l o w s a g e n t s t o p r e d i c t t h e e f f e c t s o f
add ing n e i g h b o u r s

∗ on t h o s e n e i g h b o u r s ’ d i v e r s i t i e s !
∗ /
p u b l i c c l a s s RandomNetwork {

Bag a l l N o d e s ;
M e r s e n n e T w i s t e r F a s t random ;

f i n a l boolean l o c a l S e a r c h ;

f i n a l i n t numAgents ;
f i n a l i n t m a x R e l a t i o n s h i p s ;
f i n a l i n t exchangeRa te ;
f i n a l double g l o b a l S e a r c h P r o b ;

f i n a l double d e p r e c i a t i o n ;
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f i n a l double i n n o v a t i o n ;

f i n a l double invNumAgents ;

Bag newEdges ;

i n t edgesRemoved ;
boolean s t a t s T a k e n ;
Bag components ;
Bag l a r g e s t C o m p o n e n t ;
Bag secondComponent ;

/ / i n s t a n t a n e o u s ne twork s t a t i s t i c s :
double a v e r a g e D e g r e e ;
i n t [ ] d e g r e e D i s t r i b u t i o n ;
double a v e r a g e C l u s t e r i n g ;
double [ ] c l u s t e r i n g D i s t r i b u t i o n ;
double c l u s t e r i n g ;
double s u p p o r t ;
double [ ] c e n t r a l i t y ;
double l a r g e s t C o m p o n e n t S h a r e ;
double secondComponentShare ;
double a v e r a g e S h o r t e s t P a t h ;
double averageEdgeAge ;

Bag p a r e n t s ;

/ / dynamic ne twork s t a t i s t i c s :
double a v e r a g e P r o d u c t ;
double a v e r a g e D i v e r s i t y M e a s u r e ;
i n t n u m R e l a t i o n s h i p s ;
double c o m p l e t e n e s s ;
i n t r e l a t i o n s h i p s B r o k e n ;

p u b l i c RandomNetwork ( boolean l o c a l S e a r c h , i n t numAgents ,
i n t m a x R e l a t i o n s h i p s ,

i n t exchangeRate , double g l o b a l S e a r c h P r o b , double
d e p r e c i a t i o n ,

double i n n o v a t i o n ) {
t h i s . l o c a l S e a r c h = l o c a l S e a r c h ;

t h i s . numAgents = numAgents ;
t h i s . m a x R e l a t i o n s h i p s = m a x R e l a t i o n s h i p s ;
t h i s . exchangeRa te = exchangeRa te ;
t h i s . g l o b a l S e a r c h P r o b = g l o b a l S e a r c h P r o b ;
t h i s . d e p r e c i a t i o n = d e p r e c i a t i o n ;
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t h i s . i n n o v a t i o n = i n n o v a t i o n ;

invNumAgents = 1 . 0 / ( double ) numAgents ;

newEdges = new Bag ( ) ;

random = new M e r s e n n e T w i s t e r F a s t ( ) ;
}

/ / T r a n s f e r s are now c a l l e d i n from t h e v a r i o u s agen t s , and
t h e n r e d i s t r i b u t e d

p u b l i c vo id e x c h a n g e T r a n s f e r s ( ) {
}

/∗ A f t e r t r a n s f e r s b u t b e f o r e c h o i c e s , t h i s p r o v i d e s new
n e i g h b o u r s t o t h o s e

∗ a g e n t s t h a t can s u s t a i n them
∗ /

p u b l i c vo id n e i g h b o u r S e a r c h ( ) {
Bag c l a s s i f i e d s = new Bag ( a l l N o d e s ) ;

/∗ l o c a l s e a r c h s h o u l d happen f i r s t , t o r ed uc e t h e
p o s s i b i l i t y

∗ t h a t t h e r e are no v i a b l e l o c a l s e a r c h c h o i c e s l e f t
i n c l a s s i f i e d s :

∗ − i f t h e r e i s a c l i q u e t h e r e c o u l d s t i l l be no l o c a l
s e a r c h c h o i c e s ∗ /

Agent a g e n t =
( Agent ) c l a s s i f i e d s . o b j s [ random . n e x t I n t (

c l a s s i f i e d s . numObjs ) ] ;

/ / we c r e a t e a new bag t o keep t r a c k o f n e i g h b o u r s we ’
ve v i s i t e d

/ / i n l o c a l s e a r c h
Bag n e i g h b o u r s = new Bag ( a g e n t . n e i g h b o u r s ) ;

/ / now a s p e c i f i c c l a s s i f i e d s bag s t o p p i n g us s e l e c t i n g
/ / i n a p p r o p r i a t e new l i n k s f o r t h i s p a r t i c u l a r a g e n t
Bag t e m p C l a s s i f i e d s = new Bag ( c l a s s i f i e d s ) ;
t e m p C l a s s i f i e d s . remove ( a g e n t ) ;
t e m p C l a s s i f i e d s . removeAl l ( n e i g h b o u r s ) ;
i f ( t e m p C l a s s i f i e d s . i sEmpty ( ) ) {

c l a s s i f i e d s . remove ( a g e n t ) ;
}
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/ / w i t h a g i v e n p r o b a b i l i t y a new n e i g h b o u r i s found by
g l o b a l s e a r c h

i f ( random . n e x t B o o l e a n ( g l o b a l S e a r c h P r o b ) ) {
i n t p o t e n t i a l C l a s s i f i e d =

random . n e x t I n t ( t e m p C l a s s i f i e d s . numObjs ) ;
Agent p o t e n t i a l N e i g h b o u r = ( Agent ) t e m p C l a s s i f i e d s

. o b j s [ p o t e n t i a l C l a s s i f i e d ] ;
/∗ now we add t h e s e a g e n t s as a p a i r t o t h e bag o f

new edges
∗ t o check o u t ∗ /

newEdges . add ( new Agent [ ] { agen t , p o t e n t i a l N e i g h b o u r } )
;

c l a s s i f i e d s . remove ( a g e n t ) ;
c l a s s i f i e d s . remove ( p o t e n t i a l N e i g h b o u r ) ;

}
/ / o t h e r w i s e l o c a l s e a r c h i s used − may n o t be

s u c c e s s f u l !
e l s e i f ( l o c a l S e a r c h ) {

/ / f i r s t we randomly choose a n e i g h b o u r from whom
t o p i c k a

/ / common n e i g h b o u r
whi le ( ! n e i g h b o u r s . i sEmpty ( ) ) {

i n t n e i g h b o u r I n d e x = random . n e x t I n t ( n e i g h b o u r s .
numObjs ) ;

Agent v i a N e i g h b o u r = ( Agent ) n e i g h b o u r s . o b j s [
n e i g h b o u r I n d e x ] ;

Bag p o t e n t i a l s = new Bag ( v i a N e i g h b o u r .
n e i g h b o u r s ) ;

p o t e n t i a l s . remove ( a g e n t ) ;

/ / now we randomly s e a r c h t h r o u g h t h a t a g e n t ’ s
/ / n e i g h b o u r s
whi le ( ! p o t e n t i a l s . i sEmpty ( ) ) {

i n t p o t e n t i a l I n d e x = random . n e x t I n t (
p o t e n t i a l s . numObjs ) ;

Agent p o t e n t i a l = ( Agent ) p o t e n t i a l s . o b j s [
p o t e n t i a l I n d e x ] ;

i f ( t e m p C l a s s i f i e d s . c o n t a i n s ( p o t e n t i a l ) ) {
newEdges . add ( new Agent [ ] { agen t ,

p o t e n t i a l } ) ;

c l a s s i f i e d s . remove ( a g e n t ) ;
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c l a s s i f i e d s . remove ( p o t e n t i a l ) ;
re turn ;

}
e l s e p o t e n t i a l s . remove ( p o t e n t i a l ) ;

}
n e i g h b o u r s . remove ( v i a N e i g h b o u r ) ;

}
}

}

/∗ Ag en t s e v a l u a t e r e l a t i o n s h i p s , t h e y are t h e n ranked , and
t h i s i s f o l l o w e d

∗ by t h e a c t u a l change t o ne twork t o p o l o g y
∗ /

p u b l i c vo id ne ighbourChoose ( ) {
}

void d i scove rComponen t s ( ) {
/ / r e f r e s h t h e bag o f components
components = new Bag ( ) ;

/ / node by node , check d i s c o v e r e d components
s e q u e n t i a l l y f o r membership .

/ / i f absen t , i t becomes t h e s t a r t node o f a new
component e x p l o r a t i o n

f o r ( i n t i =0 ; i <numAgents ; i ++) {
Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ i ] ;

boolean componentFound = f a l s e ;

f o r ( i n t component Index =0;
componentIndex <components . numObjs ;
component Index ++) {

Bag e x i s t i n g C o m p o n e n t = ( Bag ) components . o b j s [
component Index ] ;

i f ( e x i s t i n g C o m p o n e n t . c o n t a i n s ( a g e n t ) ) {
componentFound = t rue ;

}
}

i f ( componentFound ) c o n t in u e ;

/ / i f an e x i s t i n g component i s n ’ t t h a t o f t h e agent
, we s t a r t a new

/ / one and e x p l o r e
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Bag newComponent = new Bag ( ) ;
newComponent . add ( a g e n t ) ;
components . add ( newComponent ) ;
a g e n t . component = newComponent ;
exp loreComponent ( agen t , newComponent ) ;

}
}

void exploreComponent ( Agent s u b j e c t , Bag component ) {
Bag n e i g h b o u r s = s u b j e c t . n e i g h b o u r s ;

f o r ( i n t i =0 ; i < n e i g h b o u r s . numObjs ; i ++) {
Agent n e i g h b o u r

= ( Agent ) n e i g h b o u r s . o b j s [ i ] ;
i f ( ! component . c o n t a i n s ( n e i g h b o u r ) ) {

component . add ( n e i g h b o u r ) ;
n e i g h b o u r . component = component ;
exp loreComponent ( ne ighbour , component ) ;

}
}

}

i n t s h o r t e s t P a t h ( i n t pa thLeng th , O b j e c t d e s t i n a t i o n N o d e ,
O b j e c t avoidNode ,

Bag v i s i t e d N o d e s , Bag o l d T i e r ) {
p a t h L e n g t h ++;

Bag newTier = new Bag ( ) ;
f o r ( i n t i =0 ; i < o l d T i e r . numObjs ; i ++) {

Agent a g e n t = ( Agent ) o l d T i e r . o b j s [ i ] ;
Bag n e i g h b o u r s = a g e n t . n e i g h b o u r s ;

/ / f i r s t we ’ l l go t h r o u g h t h e n e i g h b o u r s From which
t h e In edges come

f o r ( i n t j =0 ; j < n e i g h b o u r s . numObjs ; j ++) {
Agent n e i g h b o u r = ( Agent ) n e i g h b o u r s . o b j s [ j ] ;

/ / we want t o make s u r e t h a t n e i g h b o u r i s n o t
t h e o r i g i n a l node ,

/ / avoidNode
/ / we o n l y want t o c o n t i n u e i f we have n o t

a l r e a d y found a
/ / f a s t e r r o u t e t o t h a t node : i f i t i s n o t i n a

lower t i e r
i f ( ! ( n e i g h b o u r . e q u a l s ( avoidNode ) )
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&& ( ! v i s i t e d N o d e s . c o n t a i n s ( n e i g h b o u r ) ) )
{

/ / we check whe ther we ’ ve reached t h e
d e s t i n a t i o n

i f ( n e i g h b o u r . e q u a l s ( d e s t i n a t i o n N o d e ) ==
t rue ) {

re turn p a t h L e n g t h ;
}
/ / i f not , we e x t e n d t h e pa th so f a r by t h e

c u r r e n t node ,
/ / and s e a r c h on from t h e r e
e l s e {

newTier . add ( n e i g h b o u r ) ;
v i s i t e d N o d e s . add ( n e i g h b o u r ) ;

}
}

}
}

/ / ha v i ng b u i l t t h e n e x t t i e r we want t o pas s i t t o a
d ee pe r r e c u r r e n c e

/ / o f t h e same a l g o r i t h m , a l l t h e w h i l e k e e p i n g t r a c k
o f t h e number o f

/ / t i e r s
i f ( ! newTier . i sEmpty ( ) ) {

p a t h L e n g t h = s h o r t e s t P a t h ( pa thLeng th ,
d e s t i n a t i o n N o d e , avoidNode ,

v i s i t e d N o d e s , newTier ) ;
re turn p a t h L e n g t h ;

}
e l s e {

/ / t h i s s h o u l d n ’ t happen
System . o u t . p r i n t l n ( "No p a t h found t o " + ( ( Agent )

d e s t i n a t i o n N o d e ) . i n d e x
+ " from " + ( ( Agent ) avoidNode ) . i n d e x ) ;

re turn numAgents ;
}

}

/∗ p u b l i c v o i d u p d a t e S t a t s ( )
∗ c h e c k s v a r i o u s ne twork s t a t i s t i c s
∗ we want t h i s t o be run o n l y on r e q u e s t , t o up da t e and

r e p o r t t h e s t a t s
∗ f o r t h e ne twork
∗ so we want c l u s t e r i n g d i s t r i b u t i o n , d eg re e d i s t r i b u t i o n ,

c e n t r a l i t y ,
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∗ ne twork c l u s t e r i n g and s u p p o r t ,
∗ and component s i z e s − p o s s i b l y t h e component s i z e

d i s t r i b u t i o n
∗ /

p u b l i c vo id u p d a t e S t a t s ( ) {
a v e r a g e D e g r e e = 0 ;
a v e r a g e C l u s t e r i n g = 0 ;
averageEdgeAge = 0 ;
c l u s t e r i n g = 0 ;
s u p p o r t = 0 ;
d e g r e e D i s t r i b u t i o n = new i n t [ numAgents ] ;
c l u s t e r i n g D i s t r i b u t i o n = new double [ numAgents ] ;

n u m R e l a t i o n s h i p s = 0 ;
a v e r a g e P r o d u c t = . 0 ;
a v e r a g e D i v e r s i t y M e a s u r e = 0 . 0 ;
i n t m a x T o t a l R e l a t i o n s h i p s = 0 ;

i n t l a r g e s t C o m p o n e n t S i z e = 0 ;
i n t secondComponentSize = 0 ;
i n t t o t a l P o t e n t i a l T r i a d s = 0 ;
i n t c o m p l e t e T r i a d s = 0 ;
i n t s u p p o r t e d L i n k s = 0 ;
i n t p o t e n t i a l S u p p o r t = 0 ;

d i s cove rComponen t s ( ) ;

f o r ( i n t i =0 ; i <numAgents ; i ++) {
Agent a g e n t = ( Agent ) a l l N o d e s . o b j s [ i ] ;
Bag a g e n t R e l a t i o n s h i p s = a g e n t . n e i g h b o u r s ;

n u m R e l a t i o n s h i p s += a g e n t R e l a t i o n s h i p s . s i z e ( ) ;
m a x T o t a l R e l a t i o n s h i p s += m a x R e l a t i o n s h i p s ;

a v e r a g e P r o d u c t += a g e n t . p r o d u c t ;

Bag component = ( Bag ) a g e n t . component ;
i n t componen tS ize = component . numObjs ;
i f ( componentSize > l a r g e s t C o m p o n e n t S i z e ) {

secondComponentSize = l a r g e s t C o m p o n e n t S i z e ;
secondComponent = l a r g e s t C o m p o n e n t ;

l a r g e s t C o m p o n e n t S i z e = componen tS ize ;
l a r g e s t C o m p o n e n t = component ;

}
e l s e i f ( componentSize > secondComponentSize
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&& componen tS ize != l a r g e s t C o m p o n e n t S i z e ) {
secondComponentSize = componen tS ize ;
secondComponent = component ;

}

i n t d e g r e e = a g e n t . n e i g h b o u r s . numObjs ;
d e g r e e D i s t r i b u t i o n [ i ] = d e g r e e ;
a v e r a g e D e g r e e = a v e r a g e D e g r e e + ( double ) d e g r e e ;

i n t commonNeighbours = 0 ;
i n t p o t e n t i a l T r i a d s = 0 ;
boolean [ ] s u p p o r t F o u n d = new boolean [

a g e n t R e l a t i o n s h i p s . numObjs ] ;

f o r ( i n t j =0 ; j < a g e n t R e l a t i o n s h i p s . numObjs ; j ++) {
Agent n e i g h b o u r = ( Agent ) a g e n t R e l a t i o n s h i p s .

o b j s [ j ] ;
Bag n e i g h b o u r R e l a t i o n s h i p s = n e i g h b o u r .

n e i g h b o u r s ;

/ / s u p p o r t i s a l i n k p r o p e r t y ; one and o n l y one
s u p p o r t i n g node

/ / ( edge−p a i r ) need be found t o q u a l i f y t h a t
edge as s u p p o r t e d

/ / t h e way i t ’ s s e t up here you w i l l c o u n t each
l i n k t w i c e −

/ / once w i t h each p a r t i c i p a n t as t h e s u b j e c t ,
a g e n t

s u p p o r t F o u n d [ j ] = f a l s e ;
p o t e n t i a l S u p p o r t ++;

kLoop : f o r ( i n t k =0; k< j ; k ++) {
Agent o t h e r N e i g h b o u r = ( Agent )

a g e n t R e l a t i o n s h i p s . o b j s [ k ] ;
Bag o t h e r N e i g h b o u r N e i g h b o u r s =

o t h e r N e i g h b o u r . n e i g h b o u r s ;

/ / t h i s p a i r o f n e i g h b o u r s r e p r e s e n t s a
p o t e n t i a l t r i a d ,

/ / r e g a r d l e s s o f whe ther t h e y a c t u a l l y are
p o t e n t i a l T r i a d s ++;

f o r ( i n t l =0 ; l < o t h e r N e i g h b o u r N e i g h b o u r s .
numObjs ; l ++) {

Agent possCommonNeighbour
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= ( Agent )
o t h e r N e i g h b o u r N e i g h b o u r s .
o b j s [ l ] ;

i f ( n e i g h b o u r R e l a t i o n s h i p s . c o n t a i n s (
possCommonNeighbour ) ) {

i f ( s u p p o r t F o u n d [ j ]== f a l s e ) {
s u p p o r t e d L i n k s ++;
s u p p o r t F o u n d [ j ] = t rue ;

}
i f ( s u p p o r t F o u n d [ k ]== f a l s e ) {

s u p p o r t e d L i n k s ++;
s u p p o r t F o u n d [ k ] = t rue ;

}
/ / as t h i s p a i r o f n e i g h b o u r s are

t h e m s e l v e s
/ / ne ighbour s , t h e c l u s t e r i n g w i l l

i n c r e a s e by 1
commonNeighbours ++;
break ;

}
}

}
}
t o t a l P o t e n t i a l T r i a d s = t o t a l P o t e n t i a l T r i a d s +

p o t e n t i a l T r i a d s ;
i f ( p o t e n t i a l T r i a d s >0) c l u s t e r i n g D i s t r i b u t i o n [ i ] = (

double ) commonNeighbours / ( double ) p o t e n t i a l T r i a d s ;
a v e r a g e C l u s t e r i n g = a v e r a g e C l u s t e r i n g +

c l u s t e r i n g D i s t r i b u t i o n [ i ] ;
c o m p l e t e T r i a d s = c o m p l e t e T r i a d s + commonNeighbours ;

}

averageEdgeAge = averageEdgeAge / n u m R e l a t i o n s h i p s ;
n u m R e l a t i o n s h i p s = n u m R e l a t i o n s h i p s / 2 ;

c o m p l e t e n e s s =
( double ) n u m R e l a t i o n s h i p s /

m a x T o t a l R e l a t i o n s h i p s ;
a v e r a g e P r o d u c t = a v e r a g e P r o d u c t / numAgents ;
a v e r a g e D i v e r s i t y M e a s u r e = a v e r a g e D i v e r s i t y M e a s u r e /

numAgents ;

r e l a t i o n s h i p s B r o k e n = edgesRemoved ;
edgesRemoved = 0 ;

/ / c a l c u l a t e c l u s t e r i n g and s u p p o r t
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i f ( t o t a l P o t e n t i a l T r i a d s >0) c l u s t e r i n g
= ( double ) c o m p l e t e T r i a d s / ( double )

t o t a l P o t e n t i a l T r i a d s ;
i f ( p o t e n t i a l S u p p o r t >0) s u p p o r t

= ( double ) s u p p o r t e d L i n k s / ( double )
p o t e n t i a l S u p p o r t ;

/ / t u r n sums i n t o averages , and a b s o l u t e s i z e s i n t o
p o p u l a t i o n s h a r e s

a v e r a g e D e g r e e = a v e r a g e D e g r e e / numAgents ;
a v e r a g e C l u s t e r i n g = a v e r a g e C l u s t e r i n g / numAgents ;
l a r g e s t C o m p o n e n t S h a r e = ( double ) l a r g e s t C o m p o n e n t S i z e /

numAgents ;
secondComponentShare = ( double ) secondComponentSize /

numAgents ;

/ / i f t h e ne twork i s connec t ed , t h e n we want t o check
t h e average

/ / s h o r t e s t pa th l e n g t h
a v e r a g e S h o r t e s t P a t h = 0 . 0 ;
f o r ( i n t i =0 ; i < l a r g e s t C o m p o n e n t S i z e ; i ++) {

Agent s t a r t A g e n t = ( Agent ) l a r g e s t C o m p o n e n t . o b j s [ i ] ;
f o r ( i n t j =0 ; j < i ; j ++) {

Agent f i n i s h A g e n t = ( Agent ) l a r g e s t C o m p o n e n t .
o b j s [ j ] ;

Bag o l d T i e r = new Bag ( ) ;
o l d T i e r . add ( s t a r t A g e n t ) ;
a v e r a g e S h o r t e s t P a t h += s h o r t e s t P a t h ( 0 ,

f i n i s h A g e n t ,
s t a r t A g e n t , new Bag ( o l d T i e r ) , o l d T i e r ) ;

}
}
a v e r a g e S h o r t e s t P a t h = a v e r a g e S h o r t e s t P a t h ∗ 2 . 0 / (

numAgents ∗ ( numAgents−1) ) ;
}

}
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License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work,
in any medium, that contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlim-
ited in duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.



License 419

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as “Acknow-
ledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such
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a section when you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use tech-
nical measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY If you publish printed copies (or copies in media that com-
monly have printed covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or state
in or with each Opaque copy a computer-network location from which the general network-
using public has access to download using public-standard network protocols a complete Trans-
parent copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to en-
sure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the Modified Version under
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precisely this License, with the Modified Version filling the role of the Document, thus licens-
ing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher
of that version gives permission. B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the Modified Version, together with
at least five of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement. C. State on the Title page the name of
the publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of
the Document. E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices. F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the terms of this License, in
the form shown in the Addendum below. G. Preserve in that license notice the full lists of
Invariant Sections and required Cover Texts given in the Document’s license notice. H. Include
an unaltered copy of this License. I. Preserve the section Entitled “History”, Preserve its Title,
and add to it an item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence. J.
Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission. K. For any section
Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein. L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equivalent are not considered part of
the section titles. M. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version. N. Do not retitle any existing section to be Entitled
“Endorsements” or to conflict in title with any Invariant Section. O. Preserve any Warranty
Disclaimers. If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
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same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS You may combine the Document with other documents re-
leased under this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document
and other documents released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its
derivatives with other separate and independent documents or works, in or on a volume of a
storage or distribution medium, is called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate, this License does
not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION Translation is considered a kind of modification, so you may distrib-
ute translations of the Document under the terms of section 4. Replacing Invariant Sections
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with translations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these Invari-
ant Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION You may not copy, modify, sublicense, or distribute the Document except
as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish
new, revised versions of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also provides prominent facil-
ities for anybody to edit those works. A public wiki that anybody can edit is an example of
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such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by
that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
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