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ABSTRACT 

This thesis is primarily concerned with experimental tests and computer simulations to 

determine the high frequency and transient performance of earth electrode systems. The 

work has involved an extensive review of published literature, theoretical and analytical 

investigations of earth electrode systems.  

The experimental investigations on earth electrodes were carried out an outdoor site 

prior to electrode testing   the test site soil resistivity were undertaken. Specifically, the 

soil resistivity was obtained at the location of the vertical test rod. In order to obtain 

better understanding of the soil stratification, fourteen profiles of soil resistivity were 

measured at the field site. From the measurements 2D soil models were constructed to 

visualise both horizontal and vertical resistivity variation.   

High frequency and impulse characteristics of vertical test rods up to 6m length and 

horizontal electrodes up to 88m buried in a non-uniform soil outdoor test site were 

tested. DC, AC and impulse test results show that increasing the length of electrode 

reduces the earthing resistance but not impedance. It was shown that, the earth 

resistance/impedance is constant over a low frequency range, while higher or lower 

impedance values are observed in the high-frequency range due to inductive or 

capacitive effects, depending on the length of earth electrode. 

Improved high- frequency and transient response of earth rods was determined 

experimentally by connecting horizontal electrode enhancements in star or cross 

formation at the top of vertical rods. Using these additional enhancements, a reduction 

in both resistance and impedance has been demonstrated.  

The addition of horizontal enhancements to the vertical rod can reduce the earth 

potential rise (EPR) by approximately 70% and 48% for 1.2m and 6m rods respectively.   

Voltage and current distributions of earth electrode systems under low/high frequency 

and impulse conditions, for different lengths of vertical rods with horizontal electrode 

enhancements and along a horizontal electrode with and without insulated conductor, 

were investigated experimentally and verified by computer simulation. In the case of the 

of the rods with an added ‘4-cross’ horizontal conductor enhancement, it was shown that 

the rods carry the majority of the current at low frequency, but this proportion decreases 

significantly as frequency increases The field test results show that current distribution 

in earth conductor systems is significantly different under high-frequency and impulse 

energisation compared with power frequency conditions. Close agreement was obtained 

between the measured and computed current and voltage 

High voltage tests in the ground around the vertical electrodes were investigated 

experimentally. It was observed that when a sufficiently high current magnitude is 

injected through vertical electrodes, a significant reduction in the impulse resistance by 

increase in current with a sudden fall of voltage is observed which is called soil 

ionisation. Such phenomenon does not occur when the vertical electrodes with 

horizontal enhancements is tested, where the current through all earth electrodes is 

small.     
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CHAPTER ONE: INTRODUCTION 

 

1.1 Introduction  

Earthing systems are designed to dissipate high magnitude fault current to earth and 

provide safety to persons working in or living near power system installations. It is 

also necessary that earthing systems are designed with low-magnitude earth impedance 

so that the high magnitude and fast transient surges are dissipated to earth. High 

voltage distribution and transmission systems are protected from lightning, and 

effective protection requires a good connection to earth. In high voltage substations, 

buried earth grids, vertical rods and horizontal electrodes are used in combination to 

provide a low impedance connection to earth.  

Investigations of the earthing systems under high frequency and transient behaviour 

experimentally and theoretically studies were conducted in the first half of the 

twentieth century, which is summarized by Sunde, Towne and other researchers [1.1]. 

In spite of the large amount of work that has been devoted to this subject, there is still 

no consensus on how to apply present knowledge to the design of actual earthing for 

better high frequency and transient performance. 

1.2 Earthing System Functions and Components 

 Although earthing systems are designed primarily to provide protection under power 

frequency earth fault conditions, they are also required to conduct satisfactorily under 

fast-front surges so that the power system can be protected against excessive voltages. 

The characteristics of an earthing system under these conditions are very different 

from those under power frequency and, therefore, the design of earthing systems to 

perform satisfactory under such conditions is more difficult. This is due to that of the 
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behaviour of high frequency has more significant influence on inductive and capacitive 

effects. In contrast to the power frequency response (50Hz), at high frequency the 

inductance of a small earthing system, such a rod, has a significant effect and the 

effective length of such systems can be very small. 

Earth electrodes generally comprise solid copper conductors, buried below the 

equipment to be protected. Earthing system components include vertical earth 

electrode, horizontal electrodes or a combination of both. In larger substations, earth 

electrodes are arranged in the form of a buried grid occupying the entire area under 

where the equipment is installed.  

In case of transient currents, the standard EA TS 41-24 [1.2] recommends the 

installation of a ‘‘high frequency earth electrode’’, usually a vertical earth electrode. 

The phrase ‘‘high frequency earth electrode’’ proposes that the role of the earth rod is 

to disperse to earth the high frequency components of the transient. In reality, every 

single part of the earthing system may play a role in the dispersion of both power 

frequency and transient currents. 

1.3 National and International Standards for Earthing Design 

There are a number of UK and international standards that provide guidelines 

concerning earthing system design under transient conditions.  A recommendation 

common to all the standards is that the earth connection between substation equipment 

involved in the dissipation of surges and the buried earth electrode system should be of 

low resistance and reactance, and to obtain this, it should be as short and as straight as 

possible [1.2]. In addition, the standards provide a number of methods to improve 

earthing performance under surge conditions. In substations, local ‘high frequency 

electrode’ earth electrodes in the form of earth rods are recommended to be placed 
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directly under the item of plant to be earthed [1.2]. In rocky areas where a rod 

electrode cannot be installed easily, it is recommended that two or four radial 

horizontal 10m electrodes are used instead. However, this standard also recommends 

that the ‘high frequency earth electrode’ earth be bonded to the main earth grid [1.2]. 

IEEE Std. 80-2000 [1.3] discusses and outlines important aims of earthing systems 

including measurement and testing of earthing impedance, earthing design and   

methods for installing the earth electrodes, and useful investigations on soil resistivity. 

However, this is restricted to power frequency performance under earth faults. 

The main applications of the earth electrodes such as the vertical rods are to improve 

power frequency performance when the rods applied at the perimeter of grid. Also, it is 

recommended that rods are applied at point where high-frequency and transient current 

will be discharged into ground [1.2]. In addition, horizontal earth electrodes are 

commonly used to enhance earthing systems located in areas with high soil resistivity, 

to reduce overall earth impedance; for example, to interconnect adjacent earthing grids 

or the individual earthing systems of turbines on wind farms [1.3]. Furthermore, there 

are outdoor transmission substation earthing grids which can encompass large areas 

reaching more than 30,000 m
2
, while indoor substations are more compact with 

smaller earth grids. 

For surge arresters, BS 7430 [1.4] and EA TS 41-24 [1.2] recommend that the earth 

connection should be located as close as possible to the equipment being protected.  

EN 62305-3 standards [1.5] recommends that the whole earth termination network for 

the structure should have a resistance of less than 10.  
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1.4 Modeling and Measurement of High Frequency and Transient Performance   

The majority of testes have been carried out on simple electrodes. The theoretical 

studies have sought to establish suitable models to describe the observed experimental 

behaviour of these simple electrodes and have been extended to describe earth grid and 

grid-rod combination.   

Computer based earth analysis techniques are used to verify measurements in the field 

and in the laboratory, and also contribute to a better understanding of the earthing 

system behaviour under high frequency and transient performance. Earthing systems 

are also required to dissipate high frequency currents, such as those generated by 

lightning strikes. Many authors have investigated the high frequency and transient 

behaviour of earthing systems from experimental [1.6-1.10] and computational [1.11-

1.16] points of view. The impedance of earth electrode systems can be determined 

using equivalent circuit models or field theory based techniques. Lumped parameter 

models are commonly used to describe the low frequency performance of simple earth 

electrodes. At high frequency, the distributed parameter model can provide a more 

accurate solution for simple earth electrode configurations such as rods and horizontal 

earth electrodes [1.15, 1.16-1.18]. Field theory techniques can provide advantages over 

a circuit-based approach in that they can be used to analyse complex and arbitrarily 

oriented buried earth conductor systems such as transmission substation earthing 

systems. 

Many studies [1.19-1.25] of soil breakdown around earth electrodes under high current 

magnitudes were conducted to introduce a better understanding of soil conduction 

under these conditions. These studies involved laboratory, field tests and computer 

models. These investigations showed that a reduction in earth resistance occurs at high 
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current magnitudes. However, details about the conduction process that causes soil 

ionisation behaviour under high magnitude at field test sites are not well understood.  

1.5 Safety Considerations 

The earth potential rise (EPR) of the substation when the fault current flows through its 

earthing systems must be limited to an acceptable value so that it can protect the 

people who are working inside the substation from touching conductive material, such 

as the fence of the substation. There are limits placed on the permissible EPR of an 

earthing system as reported in International Telecommunication Union ITU-T [1.26]. 

These limits are: 

• 650V for sites fed from high reliability lines where faults are rare and cleared 

quickly (200ms maximum). 

• 430V for sites fed from lines having standard protection. 

The voltage difference between the earth surface potential experienced by an operator 

bridging a 1m distance, without touching any earthed structure, is referred to step 

voltage [1.3].  

The touch voltage is the voltage difference between the earth potential rise at the metal 

and the earth surface potential where a person is standing at a normal maximum reach 

(1m) from the earthed structure. Most earthing standards provide the worst case of step 

and touch voltage scenarios where the current density and, hence, the potential 

gradient are the highest at the corners of earth grids.   

Step voltages are usually considered less hazardous than touch voltages. This is 

because the human body can tolerate higher currents for a path from foot to foot than 

current from hand to feet which passes through the chest, and the step voltage is less 
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than the prospective touch voltage, as described in IEC 479-1 [1.27].  As given by 

IEEE 80-2000[1.3], the minimum and maximum step voltages according to soil 

resistivity values of 500m and 4500m are 1162V and 6082V, respectively (100ms 

maximum). However, at the same conditions the touch voltages are 469.5V and 

1743.8V respectively.   

Many standards [1.2-1.5, 1.28-1.30] provide safe step and touch voltage thresholds 

applicable to persons who are working within and around the substation. The 

thresholds are found from tolerable current magnitude and duration, and using 

assumed magnitudes of the human body impedance.  

1.6 Aims and objective 

The aims and objectives of this thesis are as follows: 

 To review published studies of earthing systems under variable frequency and 

transient conditions, and to develop a good understanding of the behaviour of earth 

electrode systems when subjected to high impulse currents (Chapter 2),  

  To analyse the test results of soil resistivity surveys obtained at the University’s 

earthing test site, and to extract 2D resistivity plots (Chapter 3), 

 To develop a novel technique to improve high frequency and transient performance 

of earth rods (Chapters 4 and 5),   

 To investigate the current distribution in the individual conductive paths of 

electrode systems. DC/low frequency test results are compared with those obtained 

under high frequency and fast rise-time impulse energisations, permitting detailed 

evaluation of the effectiveness of the electrode enhancements (Chapter 6),    
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 To conduct high voltage impulse tests on vertical rods, both with and without 

horizontal enhancements, and to examine non-linear behaviour or the earth 

resistance for large impulse current magnitudes (Chapter 7).           

1.7 Contribution of Thesis 

The investigations conducted in this work have led to the following contributions: 

1. An extensive critical review of earthing systems performance under high frequency 

and transient conditions was carried out, and identified that a case for investigation 

of enhancements to horizontal and vertical earth electrodes.   

2. Better characterisation of soil resistivity at the Llanrumney field test site. 

3. The behaviour of earth electrode systems when subject to low/high-frequency 

currents up to 10MHz was investigated experimentally and using computer models. 

Experimental evidence is shown for inductive and capacitive effects in earthing 

systems. 

4. A new technique to improve the high-frequency and transient performance of earth 

electrode systems by using additional horizontal electrode enhancements to the 

vertical electrode. Good agreement was obtained between the experimental results 

and simulations.     

5. A comprehensive analytical and experimental analysis of the current distribution 

under high frequency/transient conditions was compared with that at power 

frequency. Two specific earthing arrangements are the subject of this study: (i) a 

vertical rods with horizontal electrode enhancements and (ii) a horizontal electrode 

with a parallel insulated interconnected conductor. Experimental studies of these 
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systems are presented and, by analysing the current distribution, the contribution of 

the additional conductors is clarified.  

6. In addition, an improved understanding the phenomenon of soil ionisation for 

vertical rods with and without horizontal enhancements was established.  

1.8 Thesis Layout 

The thesis is divided into eight chapters. References are numbered in square brackets 

and correspond to a full list at the end of the thesis. The content of each main chapter is 

summarised as follows. 

Chapter 2: Performance of Earth Electrodes under High Frequency and Transient 

Conditions: Review of Previous Work  

An extensive review of published studies on the high frequency and transient analysis 

of earthing systems is presented in this chapter. The review based on field tests, 

laboratory measurements and computational methods. The work on characterisation of 

the non-linear behaviour is also reviewed. It is shown in most published investigations 

that the behaviour of vertical electrodes of different lengths with and without 

horizontal enhancements under low/high-frequency and impulse performance at test 

site, have not yet been investigated.  

Chapter 3: Long Term Soil Resistivity Analysis at Llanrumney Field Site 

A comprehensive soil resistivity survey for long term data at Cardiff University 

facilities is conducted. Measurements were carried out using two different instruments. 

The soil resistivity at the location of the test earth electrodes before installation is 

measured, and the soil resistivity layer is estimated for use in computer simulations.  
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Chapter 4: Low Voltage Variable Frequency Characterisation of Proposed Enhanced 

Earth Electrode Systems 

In this chapter, an experimental investigation on the high-frequency response of 

vertical earth is described. Rods of different lengths are installed at the Cardiff 

University outdoor earthing test facility. The tests were carried out for a range of 

frequencies between DC and 10 MHz using variable-frequency AC current sources. 

The variations of the measured earth impedance with frequency are determined for 

characterising the frequency behaviour of the tested earth electrodes. The experimental 

results are compared with computation results using different models. The new 

proposal suggests the use of horizontal enhancement electrodes (star/cross-shaped) 

with various lengths of vertical earth electrode to decrease the earthing impedance at 

low frequency, and to reduce the inductive effect at high frequency. 

Chapter 5: Proposed Enhanced Earth Electrode Systems under Impulse Energisation 

This chapter describes the experimental tests on various lengths of vertical electrodes 

with and without proposer horizontal enhancements using a similar experimental 

arrangements and test circuits as adopted in Chapter 4. Low magnitude impulse current 

with variable magnitude and shape was injected into the vertical earth electrode with 

and without horizontal enhancements. The impulse impedance was measured and 

simulated as a function of the injected impulse rise time. The effect of an additional 

above ground conductor with different lengths of the bare horizontal electrode is also 

conducted at Cardiff University earthing test facilities. The analysed measurement 

results are then compared with computer simulations. 

Chapter6: Improved Voltage and Current Distributions in Enhanced Earth Electrode 

Systems 
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The measurement results of the voltage and current distributions of different lengths of 

vertical earth electrodes with horizontal enhancements under low/high-frequency and 

transient performance are performed.  For each electrode system, both variable 

frequency and impulse tests were carried out. The current work focuses on current 

distribution in the individual component paths in the electrode systems. Also, the 

current distributions at each segment of the 88m horizontal earth electrode with and 

without above-ground insulated conductor under low/high-frequency and transient 

conditions are investigated. The tests are extended to consider the effect of impulse 

rise-time on current distribution. The percentage of current dissipation of the 

horizontal electrode with an additional conductor was calculated, and compared with 

simulation results.   

  Chapter7: High Current Impulse Characteristics of Enhanced Electrode Systems 

This chapter involves investigation of earthing characteristics of a vertical earth 

electrode under high impulse current. In this section, a wireless measurement system 

was described. A high impulse current is injected into the vertical rods, and the 

impulse resistances were determined as a function of current magnitude. The soil 

ionisation phenomenon around the vertical rod was demonstrated on the recorded 

voltage and current traces. The effect of an additional 8-point star to the vertical rods 

was also investigated, and the results were compared with previous research work. 

Chapter Eight: gives the overall conclusions and suggestions are proposed for future 

work. 
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CHAPTER TWO: PERFORMANCE OF EARTH ELECTRODES UNDER 

HIGH FREQUENCY AND TRANSIENT CONDITIONS: REVIEW OF 

PREVIOUS WORK 

2.1 Introduction 

Work to investigate the characteristics of the transient performance of earthing systems 

began at the start of the last century.  Early work concentrated on the performance of 

earthing systems through experiments and simulations using circuit models for simple 

earth electrode systems such as vertical earth electrodes and horizontal electrodes. 

These simple earth electrodes are widely used today in earthing systems and in 

lightning protection systems either as main earth electrodes or as reinforcing electrodes 

to help reduce the earth impedance and improve the system’s high frequency and 

transient performance. The most significant outcomes of these studies resulted in an 

improvement in the design of earthing systems subjected to power frequency faults and 

fast transient currents. The most recent work analysing the performance of an earthing 

system subjected to impulse currents has used computer simulation packages which 

enable investigation of complex earthing systems configurations. 

This chapter provides a review of work describing the behaviour of earth electrodes 

under variable frequency and impulse performance. A review of quantitative studies 

performed by previous authors is carried out to obtain further understanding of the 

phenomenon of soil breakdown under high impulse currents. Finally, the effects of 

length and area are considered.  

2.2 Soil Resistivity 

Soil resistivity is a measure of how much the soil resists the flow of electrical current. 

It is a main factor in earthing designs that rely on passing current through the earth’s 
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surface. Understanding soil resistivity and how it changes with depth in the soil is very 

important for designing the earthing system of an electrical power substation, or for 

specifying lightning conductors. A wide range of typical soil resistivity values have 

been reported in the literature. 

2.2.1 Typical Resistivites for Various Soil Types 

Soil resistivity values vary widely, depending on the type of ground, for instance, silt 

on riversides may have a resistivity value around 1.5Ωm, while dry sand or granite in 

mountainous country may have values higher than 10,000Ωm, but the range typically 

encountered in earthing system design varies from about 10m in clays to 1000m in 

granites [2.1, 2.2]. It is found that earth resistivity varies from 0.01 to 1Ωm for sea 

water, and up to 10
9
Ωm for sandstone [2.3].  

2.2.2 Measuring and Modelling of Soil Resistivity 

It is very important to find an accurate soil resistivity model as a basis for designing an 

earthing system, and there are a lot of different methods and extensive sources of 

information available. Methods, such as geological maps, borehole data, seismic 

testing [2.4, 2.5] and ground penetrating radar, are beneficial for determining physical 

boundaries in the soil. The measured value of soil resistivity is referred to as the 

apparent resistivity that is used in the calculation of the soil model, and is not the 

actual value of resistivity. There are some electrical techniques to investigate soil 

resistivity, the most common of which is the Wenner method and its variants [2.6, 2.7, 

2.8, 2.9]. The Wenner method uses four electrodes arranged in a straight line and all 

four electrodes are moved after each reading, with the spacing between each adjacent 

pair remaining the same [2.3]. If the electrode spacing is increased, then the average 

soil resistivity is measured to a greater depth. If the average resistivity increases as the 

http://en.wikipedia.org/wiki/Resistivity


13 

 

electrode spacing increases, there is a region of soil that has resistivity at a greater 

depth. Apparent resistivity curves obtained from the measurements may indicate 

complex soil structures of many layers. It may become more complicated to establish a 

simple soil model for earthing system applications when the soil structure increases in 

complexity. A simpler method can be used to achieve an effective equivalent value of 

soil resistivity from the apparent resistivity data as described in [2.7, 2.10, 2.11, 2.12].         

2.3 Methods to Reduce Earthing Resistance 

Due to the complex structure of soil layers, the measured earthing resistance of 

electrodes buried into the earth directly may not reach the earthing resistance required. 

Therefore, common methods used to lower earthing resistance can be classified into 

physical reduction and chemical reduction techniques. 

2.3.1 Soil Treatment to Reduce an Electrode’s Earth Resistance 

A high earthing resistance value may adversely affect the operation of protection 

equipment within power substations. Various methods have been used to reduce the 

earth resistance of the earthing system [2.13-2.21]. Sunde, in his book [2.1], described 

the effect of chemical treatment on the soil. He suggested that if the resistance of earth 

containing one or more earth rods is to be reduced, it may be useful to use chemical 

treatment such as salt instead of adding more rods to reduce the resistivity, especially 

where the resistivity is very high. However, he paid attention to the property of the 

salt, which has a tendency to be absorbed by the earth so that the reduction in earth 

resistance may not continue for many years. IEEE Std [2.3] described the utilisation of 

this phenomenon as an advantage, for instance use of sodium chloride, magnesium etc. 

to increase the conductivity of the soil surrounding the earth electrodes, but this 
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technique may not be permitted by government legislation because of possible 

pollution to surrounding areas. Further, the salt must be renewed periodically.  

2.3.2 Use of Reinforced Concrete to Reduce Earth Resistance 

This method is useful for medium and high resistivity soils because just one metallic 

electrode encased in concrete would give a lower earth resistance than a similar 

electrode installed directly in the earth. However, the earth resistance might be 

increased after years due to corrosion of the concrete reinforcing bar material [2.22].  

2.4 Measuring and Modelling of Earth Electrodes under Impulse Conditions  

A number of impulse studies on soils have been carried out in the field and laboratory 

[2.23-2.43]. The investigations were classified according to the type of earth electrode: 

vertical rods, horizontal electrodes and the mesh electrodes. 

2.4.1 Vertical Earth Electrode 

In 1928, Towne [2.23] conducted measurements to investigate the characterisation of 

the impulse behaviour of vertical electrodes used to earth lightning arresters. 

Galvanised iron pipes up to 6.1m in length and 21.3mm in diameter buried in loose 

gravel soil were used. Discharge current magnitudes of up to 1500A with rise-times 

between 20s and 30s were applied. It was shown that when the impulse current was 

injected into the rod, the resistance fell from 24 (measured at 60Hz) to 17. This 

was due to arcing in the soil surrounding the electrode, and this was confirmed 

visually. The ׳impulse resistance׳ was defined as the ratio of the measured voltage to 

current at any instant. In 1941, Bellaschi [2.24] presented the fundamentals of the 

impulse data on the actual driven rods under injection of high impulse currents. The 

performance of earthing systems under power frequency fault conditions had been 
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improved by installing parallel vertical electrodes and suitably treating the soil with 

common salt. Experiments were conducted on four steel rods of one-inch diameter 

(25.4mm), which were installed in natural soil and up to 9ft (2.7m) length with earth 

resistance magnitudes between 30 and 40 at 60Hz. 2000 to 8000A impulse current 

values were applied in these measurements with rise-time values of 6s and 13s. 

Bellaschi neglected the effect of inductance and capacitance when he defined impulse 

resistance as the ratio between voltage peak value to current peak value, in which he 

agrees with Towne [2.23]. These measurements however, might include inductive 

effects. The impulse resistance was found to decrease with current magnitudes and to 

have lower values lower than the 60Hz earth resistance, which was attributed to the 

soil ionisation process. He summarised his work through the characteristic curve that 

contains the ratio of impulse to 60Hz resistance shown in Figure 2.1.    

 

Figure 2.1: Characteristics of driven grounds (reproduced from reference [2.24]) 

Bellaschi, in his subsequent paper [2.25], added experimental work with 12 earth-

driven electrodes in the field, seven rods were located in clay soil with earth resistance 
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values between 10 and 40. Another two driven rods were installed in naturally dry 

and gravelly soil and one in sand, and their earth resistance measured from 60 to 

220. The remaining two driven rods were installed in soil that contained mixture of 

clay and stone and with 60Hz measured resistance values from 25 to 190. The rods 

were buried into the earth at depths ranging from 2.44m (8ft) to 9.144m (30ft). The 

impulse current value, a range of 400 to 15,500A with various rise-times of 20/50s, 

8/125s and 25/65s, were applied. It was found that the degree of reduction of 

impulse resistance, which is calculated by the ratio of impulse resistance to 60-cycle 

resistance, is dependent on the properties of soil and electrode arrangement but 

independent of the current rise-time. A similar result was obtained by Vainer [2.26], 

who found also that the reduction in resistance under high impulse currents depended 

on AC earth resistance. In these experiments, impulse voltages of 1.5 and 0.8MV were 

applied to vertical rods of 10m to 140m in length. Here, Vainer defined the impulse 

impedance as the ratio of crest voltage to the corresponding current at crest voltage. It 

was confirmed that there is a small reduction of impulse impedance for an electrode of 

lower AC earth resistance, which is similar to Bellaschi’s results [2.25].  

Liew and Darvenzia [2.27] conducted experiments on 0.61m (2ft) long vertical rods 

with a diameter of 12.7mm and 25.4mm buried in soil and a 152.4mm-diameter buried 

under the surface of the soil with a range of resistivities from 5,000cm to 

31,000cm. A current impulse value in the range of up to 20kA with different rise-

times between 10s and 54s was applied. The impulse resistance was presented as 

the instantaneous ratio of voltage to current as time varied. Figure 2.2 shows this 

dynamic model which has three stages: (a) constant soil resistivity in all directions 

called the ‘no ionisation zone’; (c) the current density exceeds the critical current 

density value Jc ,and the soil resistivity decreases exponentially and is constrained by a 
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magnitude defined as ‘ionisation time constant’; (b) if the current density has a value 

greater than the critical value then the soil recovers to the initial value in an 

exponential manner. A reduction of impulse resistance with increasing current 

magnitudes was obtained, and was attributed to soil ionisation. It was found that the 

reduction of impulse resistance depended on the characteristics of the soil and lower 

breakdown gradients. Moreover, individual vertical rods exhibited a greater reduction 

than multiple rods due to the current density around the rods being higher, therefore, to 

a great extent, ionisation was shown to reduce the localised resistivity of the soil. It 

was found from tests at 100kA impulse current injected value that the impulse 

resistance decreased significantly, and more than in the case of 15kA injected current. 

The authors showed that the impulse resistance of the vertical electrodes was 

dependent on impulse current rise-times which contradicted the results found by 

Bellaschi et al. [2.25], who concluded that the impulse resistance is independent of the 

current rise-times. Dick and Holliday [2.28] carried out tests on metal earth rods of 

different dimensions, under high impulse and alternating currents. The results showed 

that, under high impulse current, the earth resistance decreased for all tests, which is 

attributed to the soil ionisation process. From experimental field results, it was found 

that the characteristics of the soil would become non-linear when subjected to high 

impulse current magnitudes. It was also found that the degree of soil conduction non-

linearity is dependent on the DC earth resistance value. High voltage tests were 

conducted on a concrete pole with soil resistivity of about 170Ωm behaviour by 

Sekioka et al. [2.29] to examine the soil ionisation. High impulse currents of several 

tens of kA were injected into a concrete pole. The impulse impedance of the pole was 

determined as the ratio of Vpeak to Ipeak. The impulse pole impedance was found to 

reduce with increasing current magnitude due to the soil ionisation process, as shown 

in Figure 2.3.  
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Figure 2.2: Soil ionisation process (reproduced from reference [2.27]) 

Almeida et al. [2.30] conducted tests on a 0.6m vertical rod with a radius of 0.075m 

and installed into sand/gravel soil. An impulse current value of 3.5kA with an impulse 

shape of 5/16.5s was injected into a single vertical rod. Figure 2.4 shows the new 

proposed model of impulse resistance. It was observed that at the time of ionisation, 

the soil resistivity decreased due to high current density. The results showed that the 

resistance of electrodes reduced according to the ionisation region, as suggested by 

Liew and Darveniza [2.27].  
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 Figure 2.3: Impulse impedance as function of current (reproduced from 

reference [2.29]) 

 

Figure 2.4: Impulse resistance vs. of current (reproduced from reference [2.30]) 

Constant Ionisation  

Deionisation  
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2.4.2 Horizontal Earth Electrodes 

Bewley [2.31] carried out tests on two parallel counterpoises of lengths 281m and 

465m .An impulse current magnitude of 900A with a rise time of 2s was applied. The 

initial value of the transient impedance was 100, and it fell very quickly to a value of 

9. It was observed that a counterpoise of over 91.4m (300ft) in length gave little 

further benefit, but that using an additional parallel counterpoise would be useful. In 

addition, no soil ionisation was obtained, which might be due to the low impulse 

current value. Bewley continued his work [2.32] and conducted more experiments on 

counterpoises to verify his calculation model. The high voltage impulse values of 

15kV and 90kV with a rise-time of 0.5s was applied on 61m, 152m and 282m 

counterpoises. In common with his previous paper, it was observed that the transient 

impedance reduced rapidly from the initial surge impedance to the leakage resistance, 

consistent with the findings of [2.31].  

Gupta et al. [2.33] provided an empirical formula for the impulse impedance of 

substation earth grids. Here, the impulse impedance defined as the ratio of the voltage 

peak measured at the injection point to the peak value of the current injection. 

However, as we know the peak value of the voltage does not always occur at the same 

time as the peak value of the current due to mainly inductive effects. The authors 

mention that the impulse impedance depends on factors such as the shape of the earth 

grid, the distance between electrodes, the point of injection, the magnitude and wave 

shape of the injected impulse current, and the characteristics of the soil. Tests on 16 

mesh square grids of copper wire in a 6m hemispherical tank were conducted, and 

found that when the current was injected at the centre point, the impulse impedance 

value was much lower than the injection at the corner. It was concluded that the effect 

of soil ionisation was very small when using an earthing grid and could be neglected. 
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In a subsequent paper by Gupta et al. [2.34], the work was extended to investigate 

rectangular earthing grids. The results showed that for the same area of a square and 

rectangle, the impulse resistance for the rectangle is higher than that of the square.  

The soil characteristics of horizontal electrodes at field measurements have been 

carried out by Sonoda et al. [2.35]. Injected currents up to 30kA and impulse voltage 

up to 3MV were used for testing two dimensional square grids; (i) 10m
2
 and (ii) 20m

2
, 

and two horizontal earth electrodes of lengths 5m and 20m. The results have shown 

that both horizontal electrodes showed strong current dependency which is attributed 

to the soil ionisation process, as shown in Figure 2.5a. However, the impulse resistance 

remained almost constant for all current values for grid (ii) for both injections points of 

applied currents (corner and centre injections) as shown in Figure 2.5b. Yanqing et al. 

[2.36] presented a model to investigate the transient characteristics of earthing grids 

under impulse currents. An earthing grid of 2020m
2
 was used as a study case, buried 

at 0.8m depth in a soil resistivity value of 500m and permittivity of r=9. Impulse 

currents up to 10kA with a 2.6/50s wave shape were injected into the corner and 

centre locations of the earthing grid. From their results, the characteristics of the 

impulse resistance were found to depend on the parameters of the earthing grid, the 

waveform and the magnitude of the current and injection location. The results were 

shown that the impulse resistance exhibited a higher value for current injection at the 

corner of the grid than for injection at the grid centre, which is in agreement with 

Gupta [2.35]. This was thought to be due to the effect of the inductance of the earthing 

conductor, which obstructs the impulse current to flow in other directions in the case 

of a corner injection point, but, at the centre injection point, the earthing conductor has 

a small inductive effect. 
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a) Horizontal electrodes 

 

b) Earthing grid 

Figure 2.5: Current dependency of earthing resistance (reproduced from 

reference [2.35]) 
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2.4.3 Comparative Investigations 

Ottle et al. [2.37] conducted impulse measurements on vertical and horizontal earth 

electrodes buried in two soil conditions (dry and wet). The applied impulses had 

voltage magnitudes up to 250kV and current magnitudes up to 5kA peak and a rise 

time of 10 s. The impulse resistance was calculated as the ratio of voltage to current 

and as a function of time. At higher currents, the impulse resistance reduced for all 

conditions which can be described by thermal and ionisation processes of the soil 

conduction processes. Geri et al. [2.38] carried out experiments on two earth electrode 

configurations; a 1m steel vertical rod and a 5m steel wire horizontal electrode were 

buried in soil of uniform resistivity. An impulse current value of up to 30kA with a 

rise-time of 2.5s was applied in these tests. He defined the impulse resistance as the 

ratio between the peak value of voltage and the peak value of current. It was found 

from the measurements that when the impulse current was increased from 5kA to 

30kA, the impulse resistance decreased from 17.6 to 8.1 for a rod, and from 10 to 

6.9 for a wire.  

Sekioka et al. [2.39] carried out tests on different types of earth electrode, which 

included an 8.1m concrete pile, a 17m single vertical electrode and grounding net with 

dimensions of 3424.8m
2
. The earth resistance measured for each electrode was 

38.5, 71.7 and 3.2 respectively. In their experiments, the authors applied 40kA 

impulses with a rise-time of a few microseconds. The impulse resistance was taken as 

the ratio of the peak value of the voltage to the peak value of the current. The earthing 

resistance of the concrete pile and a single rod decreased with increasing current 

magnitudes, which means that the earthing resistance was completely dependent on the 

peak value of the current. However, the earthing resistance of the ground net was 

almost constant due to its large surface area, as shown in Figure 2.6.  
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Figure 2.6: Earthing resistance vs. the peak of injected current value (reproduced 

from reference [2.39]) 

Vander et al. [2.40] described the impulse behaviour of four different earth electrodes 

of 5m vertical earth rod, 5 to 20m horizontal earth rods and a 100100m
2
 grid 

electrode with four meshes by using an electromagnetic-field analysis program 

(CDEGS) [2.41]. The current magnitude of 1A was injected into each arrangement. 

Their study of the 5m earth rod showed that the transient earth potential rise (TEPR) 

increases with increasing soil resistivity but decreases with increasing permittivity in 

soils with significant resistivity values. The horizontal rod exhibited inductive 

behaviour in low resistivity soils, and in the medium to high range of resistivity, the 

20m horizontal rod was seen to exhibit lower TEPR than the 5m horizontal and 

vertical rods. This variation is presented in the graph shown in Figure 2.7 for the same 

impulse shapes and soil properties.  

   Grounding net 

   8.1m buried conductor  

   17m earth conductor 
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Figure 2.7: The comparison of TGPR for 5m and 20m horizontal rods 

(reproduced from reference [2.40]) 

2.4.4 Hemispherical Test Geometry 

Berger [2.42] carried out tests on a hemispherical pit of 2.5m in diameter, was half 

buried in the soil in a hemispherical tank. Tests were conducted on various sizes of 

electrodes and different type of soils. 3.8kA to 11.4kA peak impulse currents with rise-

times between 3s to 30s were applied in these tests. At high current magnitudes, for 

rise-times less than 3s on the current front, a linear v-i curve was obtained and the 

impulse resistance magnitudes were similar to the earth resistance measured at 

60Hz.Figure 2.8 shows the impulse resistance as a function of time for different 

current magnitudes where the higher reduction in the resistance observed with higher 

current magnitude. Petropoulos [2.43] used a similar hemispherical model. The 

behaviour of earth resistance under high impulse currents was concentrated. Iron 

electrodes buried at about 20mm depth were used and he found that the resistance 

started falling when the current is increasing and fell rapidly when the breakdown 
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occurred. In addition, the results showed that when the length of spikes is increased, 

the impulse resistance decreased.  

 

 

1, imax=250A  2, imax=560A  3, imax=975A 

4, imax=1800A  5, imax=2400A  6, imax=5300A 

Figure 2.8: Impulse resistance vs. time at different peak current values 

(reproduced from reference [2.42])  

 

2.5 Measurement and Simulation of Earth Electrodes under High Frequency  

Brourg et al. [2.44] conducted an experimental study on short electrodes (4m) buried 

in high resistivity soil and found that there was a reduction in earth impedance 

magnitude with a frequency of up to 1MHz. In the same investigation, experiments on 

a 32m rod showed that the earth impedance is constant at low frequency range up to a 

threshold frequency, above which the earthing impedance increased sharply. Grcev 
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[2.45] investigated the main parameters that can govern the high-frequency behaviour 

of long earth rods in high soil resistivity, and also compared his experimental results 

with Brourg’s results [2.44]. He conducted experiments on different lengths of vertical 

electrode in the range of 2m to 32m. The soil resistivity surrounding the rods had a 

value of 1m after covering the rods with low soil resistivity material (LRM), while 

the resistivity of the surrounding soil was measured at 1,300m. The results confirmed 

the conclusions in [2.44] that, in the soil with poor conductivity, the impedance of 

earth rods is purely resistive up to 10 kHz, becoming capacitive at high frequencies for 

rods shorter than about 8m, and inductive for long vertical electrodes. It was 

recommended that if the current is injected at the midpoint of the earth electrode, high 

frequency performance can be improved as shown in Figure 2.9. Choi et al. [2.46] 

carried out tests on a medium-sized grid (279m
2
). The results showed a reduction in 

impedance over the range dc to 200 kHz, attributed to capacitive effects in a high 

resistivity medium. Visacro et al. [2.47] simulated the frequency response of a buried 

horizontal earth electrode systems. The results showed that the earth impedance 

reduced with frequency and then increased above a particular frequency related to 

electrode length.  

In another study, Nekhoul et al. [2.48] presented FEM modelling on 2m to 8m vertical 

electrodes, and predicted a significant reduction of impedance with frequency up to a 

threshold value in the frequency range 10 kHz to 100 kHz. The threshold frequency at 

which the impedance started to rise again was calculated. It was observed that the 

frequency threshold reduced as the length of the electrode increased, indicating an 

increase in self-inductance with length. 
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Figure 2.9: Frequency response of earth rods in soil with =300m (reproduced 

from reference [2.45])  

Papalexopoulos et al. [2.49] developed a new model in which a simple system of aerial 

and buried conductors was used, and the analytical studies of numerous earthing 

systems were performed. A conductor buried in the soil was used and divided it into N 

small segments; when the current flows in these segments it induces a voltage. At high 

frequency, the reactance of the earthing system is very influential and cannot be 

neglected, while at 60Hz the resistance is roughly equal to the DC resistance. Davies et 

al. [2.50] have undertaken extensive analysis of the high frequency behaviour of 

vertical earthing electrodes. Frequencies of 50Hz, 100kHz, 1MHz and 10MHz were 

chosen, and the effects of soil resistivity, rod radius and rod length were studied. Using 

earthing software [2.41], the results of the distributed and lumped parameters with the 

simulation results for different current injection points were compared. The length and 

radius of the vertical rod were 5m and 7mm respectively, the soil was assumed to be 
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homogenous with a resistivity of 100m, and that the relative permittivity and 

permeability were taken to be unity. The authors state that the inductance of the rod 

has much effect, and appears at high frequency above 1MHz but, above 10MHz, the 

phase angle is affected by the capacitive behaviour. The permittivity, thus, affects the 

impedance only at high frequencies. Zedan et al. [2.51] studied the frequency response 

of rod, horizontal and grid earth electrodes at 10MHz using the same program in 

[2.41]. The effective length of the vertical and horizontal earth rods was calculated. 

For the horizontal earth electrode, the inductive effect appears at specific frequencies, 

and is also related to the resistivity of the soil. The authors observed a resonance effect 

above 1MHz. Grcev et al. [2.52] compared simple equivalent circuits to 

electromagnetic field theory (EMF). 3m and 30m lengths of vertical electrode with 

30m and 300m soil resistivity were computed by lumped circuit model, distributed 

parameter circuit model and EMF. The radius of the rod modelled was 1.25cm, and the 

soil permittivity was 10. The computer simulation showed that the RLC and the 

lumped parameter model overestimate the earth rod impedance, particularly at high 

frequency, compared with the EMF model which gave much better results while the 

distributed parameter model was found to overestimate to a lesser degree. To reduce 

these overestimations, the authors suggest using the EMF model at high frequency. 

Figure 2.10 shows the comparison between the computed results for 'the harmonic 

impedance׳ of 3m and 30m rods. Llovera et al. [2.53] carried out tests on a 

hemispherical electrode in the laboratory, buried in soils with a range of resistivities, 

and a 1m vertical electrode with a diameter of 1.5cm. The authors connected seven 

rods, of length 2m and diameter of 1.5cm in diameter arranged in a circular 

configuration leaving the studied rod (a 1m long and 1.5cm in diameter copper rod) in 

the centre of the distribution. The distance between the studied rod and each of the 
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other rods was 10m. The measurement results showed capacitive behaviour for both 

low soil resistivity (281m) and high soil resistivity (1900m) up to 1MHz. However, 

when the frequency was increased to 10MHz, the inductive effect was dominant for 

high soil resistivity. This was thought to be due to the inductance of the connection 

cables. Figure 2.11 shows the effect of adding auxiliary vertical rods on the earthing 

impedance. These measurements showed that adding rods reduced the inductance of 

the connection cables and increased the capacitance between the studied rod and the 

additional rods, which improved the earthing impedance at high frequency. Griffiths 

[2.54] presented the variation of impedance magnitude at various frequencies for a 

100m horizontal earth electrode. The impedance magnitude of horizontal electrode was 

found to increase above a particular frequency for low soil resistivities. When the soil 

resistivity is high, there is resonance in the response for frequencies above 1MHz, and 

the impedance decreases above a particular frequency. Choi et al. [2.55] carried out 

tests on a 40m horizontal electrode with a radius of 0.28cm. High conductivity 

powdered carbon was mixed with the soil at one end of the counterpoise to study the 

earthing impedance. The dissipating current rates were measured when the current was 

injected at both ends of the counterpoise buried in a ground with two-layered soil 

resistivity. The authors measured the earth resistance arising from current injection at 

both ends of the 10m-long electrode, yielding values of 45.5 and 21.6. The results 

showed that the earthing impedance of the horizontal electrode is related to the current 

dissipation. In addition, the results also showed that the earth impedance at the low 

resistivity location (current injection point 2) was lower than the earth impedance at 

the high resistivity end (current injection point 1) for both the low and high frequency 

ranges, as shown in Figure 2.12. Alipio et al. [2.56] presented the effect of frequency 

dependence on soil parameters. A horizontal earth electrode with lengths ranging from 
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5m to 90m and a radius of 7mm was used, buried at a depth of 0.5m in soils of low and 

high resistivity (300m and 3km). For the simulation, a Hybrid Electromagnetic 

Model (HEM) was used for low and high frequencies up to 1MHz, and for computing 

the impulse response. Figure 2.13 shows the measurement results for the frequency 

responses of the 30m horizontal earth electrode. At low frequency, the earthing 

impedance was frequency-independent and equal to the low frequency resistance for 

both resistivities. However, at high frequency the results showed that for both low and 

high soil resistivity, the frequency dependence of soil parameters caused a reduction in 

earthing impedance due to capacitive effects. Recently, Griffiths et al. [2.57] presented 

a numerical simulation for the frequency dependence of the earth impedance of a rod, 

horizontal and grid electrodes in the range DC to 10MHz, and for a wide range of 

resistivities of 10m-10km using CDEGS software [2.41]. Equations to calculate the 

upturn frequency, downturn frequency and frequency of oscillations in high resistivity 

media were also derived. The 5m vertical rod, 100m horizontal earth electrode, 

100100m
2
 and the number of meshes was 22 for earth grid electrode and all 

connecting conductors selected in this investigation were assumed to be of cylindrical 

copper construction with 1cm radius. The simulation results showed that inductive 

effects were dominant for all earth electrodes above a particular frequency, termed the 

upturn frequency, which is related to soil resistivity. In high soil resistivity the authors 

expected a reduction in earth impedance, above a particular downturn frequency due to 

capacitive effects.  
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Figure 2.10: High frequency response of vertical electrodes: (a) l=3m, (b) l=30m 

(reproduced from reference [2.52]) 

 

 

Figure 2.11: Effect of increasing the number of rods on the impedance modulus 

(reproduced from reference [2.53])  
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Figure 2.12: Frequency response of a 40m horizontal electrode buried in the two-

layered soils (reproduced from reference [2.55]) 
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Figure 2.13: Frequency response for a 30m horizontal electrode (reproduced 

from reference [2.56]) 

 

2.6 Effective Length of Horizontal Earth Electrode 

The effective length of earthing horizontal electrodes under lightning fast transient is 

very important when the earthing system is being designed. Many investigations into 

effective length have been published [2.58-2.65]. The effective length of a single 

buried horizontal electrode is that from the point of injected current to the point at 

which the voltage approaches 3% of its value at current entrance point [2.58]. 

Lorentzou et al. [2.59] presented another definition, which is the length above which 

no further reduction in the earthing impedance of a horizontal electrode is noticed, 

when the length of the electrode exceeds a certain value. In addition, ‘the maximum 

transient voltage at injection point will not decrease any more, when the length of the 

conductor exceeds a certain value ‘was defined by Liu et al. [2.60].  
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Mazzeti et al. [2.61] conducted investigations of horizontal electrodes placed in soil 

having a resistivity of 30m with the injected current having a waveshape of 

25/100µs. The results showed that when the soil has low resistivity, a voltage drop 

occurs along the conductor due to the effect of inductance. Therefore, a certain 

effective length of conductor can be defined which governs current dispersion into the 

soil. They also found that the effective length of a horizontal electrode increases with 

increasing resistivity.  

A new formula to calculate the effective area of grid electrode with current injected at 

the corner or centre location was obtained by Gupta and Thapar [2.33]. Their formula 

for determining the effective length of a horizontal earth electrode is: 

 

                                     (2.1) 

Where L is the length of conductor in meters,  is the soil resistivity in (m), and  is 

the rise-time of the impulse of injected current in second. The coefficient k is in 

(m/.sec) 
0.5

, and is 1.4 for a horizontal electrode fed at one end while it is 1.55 when 

the current is injected into the middle of the conductor.  

In another study by Munshi et al. [2.62], the authors used an analytical model of a 

horizontal electrode based on an equivalent transmission line. No significant benefit 

could be obtained by increasing the length of a horizontal electrode beyond the 

effective length. Lorentzou et al. [2.59] carried out simulations on a horizontal 

electrode under high impulse current of 31kA with a rise-time of 8/20s. The results 

showed that the voltage peak per unit of peak injected current decreases when the 

length of electrode increases until it approaches a constant value at the electrode's 
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‘effective length’. Griffiths et al. [2.63] studied the effective length using the 

distributed parameter model of earth electrodes over a range of frequencies 1MHz to 

10MHz. They concluded that the electrode impedance decreases with an increase in 

the length of electrode until it reaches the characteristic impedance at the effective 

length.  

The effect of the length of horizontal earth electrodes under high impulse current was 

simulated, and a new formula to calculate the effective length proposed by Chonghui 

et al. [2.64]. Using lumped parameters, they simulated a horizontal electrode with 

radius of 10mm, buried at a depth of 0.8m in soil of resistivity of 100m and relative 

permittivity of 9. The impulse current had up to 50kA injected value with a rise-time 

of 2.6/50 s. The simulation showed that the impulse earthing resistance reduces with 

the increasing length of the horizontal electrode, reaching a constant value when the 

length of electrode reaches a certain value, and this was thought to be due to the 

inductive effect of the earthing conductor increase with the increment of the conductor 

length, which gives rise to non-uniform current leakage along the conductor.  

Griffiths et al. [2.65] conducted extensive computer simulations using a distributed 

parameter model and computer mode (CDEGS) to calculate the impedance of earth 

horizontal electrodes of different lengths in a range of frequencies up to 10MHz and 

resistivity values of 10m to 10km. They presented a new simple analytical equation 

to determine the effective length of horizontal electrodes. Elmghairbi et al. [2.66, 267] 

proposed a new technique for increasing this effective length for horizontal electrodes. 

Extensive tests were carried out under impulse conditions on an 88m horizontal 

electrode having cross-sectional area of 50mm
2
, buried to a depth of 30cm. The aim of 

this technique was to connect an additional insulated conductor with a bare 

underground horizontal electrode at points along its length. The effective length of the 
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electrode was determined from the curves of impulse resistance. The results showed 

that a reduction in the impulse resistance of 22% was obtained in the case of the 

addition of a parallel-insulated conductor, representing an increase in the electrode's 

effective length. 

2.7 Effective Area of Earth Grid 

To obtain a reduction in the earth impedance of a grid electrode, the area of the grid is 

increased. However, this area has a limiting value, termed the ‘effective area’, beyond 

which no further reduction in earth grid impedance can be attained. Gupta and Thapar 

[2.33] reach this conclusion, and present a formula to determine the effective radius of 

an earth grid.  

 

                     (2.2) 

Where re is in meters, k is the coefficient factor in (m/.sec) 
0.5 

 , and is (1.45-0.05s for 

centre fed, 0.6-0.025s for corner fed),  is soil resistivity in (m), T is the impulse 

rise-time in second and s is the distance between grid conductors in meter.  

They showed that the effective area for centre injection is higher than that for corner 

injection due to the increased inductance of the current path.  

Grcev [2.68] conducted investigations on the effective area in which an 

electromagnetic field approach was used. Different sizes of area were selected ranging 

from 100×100m
2
 to 120×120m

2
. Impulse currents of fast rise-time were injected into 

the earthing grid electrode. The author found from the results that the effective area of 

earth grid as constrained to less than 20×20m
2
 for fast impulse rise-time and corner 

injection point. It was observed that under high frequency and fast-front impulse 
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injection, significant reduction in earth grid impedance cannot be achieved when the 

area of earth grid exceeds the effective area. Grcev presented in his recent paper [2.69] 

a new formula to determine the effective area of the earthing grid. He reported that the 

formula suggested by [2.33] would be valid only for slow rise-time because the fast 

impulse has high frequency content. Grcev’s formula is: 

 

                                (2.3) 

Where: ɑeff is in meter, k=1 for centre fed or 0.5 for corner fed current,  is soil 

resistivity (m) and T is the impulse rise-time and is in second. 

Figure 2.14 shows a comparison of different formula results [2.33, 2.64, 2.69] for the 

effective area. It shows similar trends but gives quite substantial differences, which 

may be attributed to the difference in definitions of effective area.  

 

Figure 2.14: Comparison between different formulas for calculation of the 

effective area of a grid electrode (reproduced from reference [2.69]) 

[2.33] 

[2.64] 

 Grecev [2.69] 
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2.8 Current Distribution of Earth Electrode Systems 

Xishan et al. [2.70] carried out tests on an earthing grid in water under laboratory 

condition, in order to measure current distributions in the vicinity of the electrode. The 

grid had an area of 0.30.3m
2
 and the number of meshes was 22. Current magnitudes 

up to 100mA were injected into the earthing electrodes. The results showed that the 

current distributions in the earth grid electrode were near symmetrical, while the 

current flowing into the vertical rods was dependent on the value of their resistances.  

Tao et al. [2.71] carried out tests to investigate the current distribution in earthing 

electrodes with various structures under impulse conditions. Measurements were 

conducted inside a 5m-diameter hemispherical sand pond. A range of high impulse 

current transients with various magnitudes, and a fixed rise-time of 8/20s, were 

injected into a single horizontal electrode, a vertical electrode, and a cross and star-

shaped electrode. The results showed that the current distribution at points in the same 

electrode is not symmetrical, and that the current magnitude in the conductor reduces 

with the distance from the injection point and near to zero at the end of the electrode.  

Ahmeda et al. [2.72] conducted experiments on a 88.5m counterpoise with a cross-

sectional area of 0.2cm
2
 and buried to a depth of 30cm. A current impulse of 5.41A 

with wave shape 5.8/16s was applied, and the voltage and current measured at 

different points along the horizontal electrode. The authors found that the reduction in 

current peak value was not uniform, as obtained by [2.71].  

In addition, a time delay was observed on the voltage and current waveforms measured 

at different points, and this was attributed to the travel time of the surge throughout the 

length of the electrode. Most of the current injected was dissipated near to the injection 
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point, and the proportion was found to be independent of the magnitude of the injected 

current.  

Choi et al. [2.73] tested a horizontal earth electrode of 40m length and 3mm diameter 

buried in a two-layer soil structure at a depth of 0.5m. The authors divided the length 

of the 40m horizontal electrode into four sections, each section 10m long. The soil was 

mixed with high conductivity powdered carbon at one end of the horizontal electrode, 

defined as point 2, while the high soil-resistivity end is defined as point 1. An impulse 

current with waveshape 2.4/81.9s was injected into the 40m horizontal electrode. It 

was observed that for fast impulse rise-time, the behaviour of the earthing impedance 

was inductive, while the slow rise-time presented a resistive behaviour. The results 

showed that the majority of the injected current was dissipated near to the injection 

point, which is consistent with the result of [2.72], and the current was more easily 

dissipated into the sections with low soil resistivity (point 2), than those in the sections 

with a high soil resistivity (point 1).  

A subsequent paper [2.74], reported a series of current distribution tests on a 50m 

horizontal earth electrode with the same specifications as in [2.73]. Impulse currents 

with rise-times of 4s and 39s were applied. It was observed from the measurements 

that the current dispersion into the soil in the case of the slow rise-time was dependent 

on the soil resistivity, and the majority of the injected current was dissipated near the 

injection point, as shown in Figure 2.15. 
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Figure 2.15: Current distribution waveforms for a 50m horizontal earth 

electrode: a) rise-time = 4s, b) rise-time = 39s (reproduced from reference 

[2.74]) 
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2.9 Conclusions 

In this chapter, an extensive review of high frequency and transient performance of 

earth electrodes has been undertaken. Published field tests, laboratory tests and 

computational work since the 1920s have been investigated. Special emphasis has been 

given to the high frequency and transient performance of earthing systems, including 

vertical, horizontal and grid earth electrodes, and the voltage and current distributions 

of earth electrode systems. In addition, studies have attempted to investigate the 

behaviour of earth electrodes using different approaches. Work has included high-

voltage measurements, both in the laboratory and on electrodes installed in the field.  

Most of the work reviewed presents the results of simulating high frequency and 

transient conditions using computer software. However, very little has been published 

on field tests at high frequency up to 10MHz. This aspect will, therefore, be the main 

thread of experimental work and simulation techniques presented in this thesis. 

Many researchers have investigated the high frequency and transient performance of 

vertical earth electrodes. In this thesis, an improvement in the low/high frequency and 

impulse performance of vertical earth electrodes using horizontal enhancements is 

proposed and the results are reported, for rods buried in non-homogenous soil of low 

resistivity (Chapter 4, 5).     

To date, there has been no publication of a comprehensive or detailed method for 

measuring detailed current distribution in earth electrode systems in the field. 

Accordingly, Chapter 6 will measure and simulate the voltage and current distributions 

for different earth electrode structures under low/high frequency and transient 

conditions. The aim here is to understand more clearly the role of enhancing the 

electrodes and their contribution to improve both low and high frequency performance.  
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Non-linear soil behaviour under high current magnitudes have been investigated by 

many researchers, and they found that the impulse resistance decreases when 

increasing the current magnitude but with dependence on the factors such as soil 

resistivity, area of earth electrode and current magnitude. However, no detailed studied 

to examine different length rods with horizontal enhancements at the same location 

were investigated.  
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CHAPTER THREE: LONG TERM SOIL RESISTIVITY ANALYSIS AT 

LLANRUMNEY FIELD SITE 

3.1 Introduction 

Given that the earth electrode resistance is proportional to the resistivity of the soil in 

which it is buried; soil resistivity tests are a very important first stage in the design of 

earthing installations. Therefore, accurate modelling of soil resistivity is an important 

prerequisite for predicting the performance of a particular earthing system in designing 

a new system. The most reliable means of getting the soil resistivity investigation is by 

conducting soil resistivity measurements around the location of the earthing systems 

prior to installation.  

Soil resistivity is principally affected by the type of soil (clay, shale, etc.), moisture 

content, electrolytes content (minerals and dissolved salts) and temperature [3.1]. Soil 

resistivity will, therefore, exhibit seasonal variation.   

In this chapter, the results of a long term investigation of the soil resistivity over a 

number of years [2002- 2003] and [2008- 2011] at four locations at the Cardiff 

University earthing test site at Llanrmuney are analysed. The results in this thesis from 

2002 to 2003 and from 2008 to 2009 are the work of previous researchers, and results 

from 2010 to 2011 were obtained by the candidate.  The tests were carried out at the 

test site using two different instruments: (i) Megger DET 2/2; (ii) the ABEM 

Terrameter and difference between readings obtained from the two meters are 

investigated. The effect of seasonal variation of the soil resistivity is included, and a 

soil resistivity survey at the location of test electrodes is also investigated. Finally, 2D 

soil resistivity inversion at selected locations is performed, so that the degree of 

reliability of the resistivity imaging was increased.  
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3.2 Factors Influencing Soil Resistivity 

The earthing of an electrical system requires electrical connection to the general mass 

of earth [3.2]. The resistivity of the soil depends on many factors such as temperature, 

grain size distribution and packing of soil and concentration of dissolved salts in the 

contained water, and has a significant effect on an earthing system’s performance 

[3.1]. Examples of typical soil resistivity ranges for various soil types are shown in 

Table 3.1 [3.2]. The values are given for normal to high rainfall conditions (greater 

than 500mm per year). 

Table 3.1: Examples of soil resistivity (m)[3.2] 

Type of soil Typical resistivity range (.m)  

Clay 5-20 

Marls 10-30 

Porous limestone 30-100 

Porous sandstone 30-300 

Quartzities, compact and crystalline limestone 100-1000 

Clay slates, saltey shales and granite 300-3000 

Igneous rock 1000 upwards 

 

3.3 Review of Soil Resistivity Measurement Techniques 

Measuring the resistivity of the soil gives details about its physical structure which 

may be used in the model. The simplest soil model assumes a single homogenous layer 

of infinite depth. This single layer representation is usually considered to be overly 

simplistic, as per standard [3.3], and a more realistic representation is suggested by 

increasing the number of layers as shown in Figure 3.1. 
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Generally, the top layer has a higher resistivity than the bottom layers due to increasing 

water content with depth. For a substation, the upper layer can often be assumed to 

have a high resistivity due the use of stone chippings on the surface [3.4]. Soil 

resistivity measurement generally involves injecting a current into the general mass of 

the earth and measurement of the surface potential at specific locations in the 

immediate vicinity of the injection point. The classical methods as proposed by Frank 

Wenner in 1915 [3.5] are still widely used today [3.1].   

3.3.1 Wenner Configuration  

The Wenner configuration is the most commonly used test method to investigate the 

resistivity of soil [3.6]. The Wenner configuration is depicted in Figure 3.2. Four 

vertical electrodes are driven into the ground, equally spaced along a straight line. A 

current is circulated between outer two electrodes C1 and C2 , producing a potential 

on the surface V  which is measured between the inner two electrodes P1 and P2. 

The Wenner configuration is characterised by an equal spacing between all of the 

electrodes, that is termed the ‘Wenner spacing’, ‘a’.  

1 1 

2 

3 

2 

h1 

∞ 

h1 

h2 

∞ 

Figure 3.1: Two and three soil layer model representations 
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From these electrode configurations C1, P1, C2, and P2, the soil resistivity can be 

calculated from Equation (3.1) [3.5]: 

 

  
    

  
  

√      
 

  

√       

           (3.1) 

Where: 

: is the apparent soil resistivity (.m) 

R: is ratio of measured voltage to injected current 

a: is the distance between electrodes 

h: is the depth of electrode 

The distance between electrodes, a, is generally much greater than the driven depth, h. 

To measure the resistivity of the soil at different depths, the distance between 

electrodes, a, is increased and the measurements repeated. Therefore, the apparent 

 V 

C1 P1 P2 

Current (I) Current (I) 

h 

SOIL 

Figure 3.2: The Wenner configuration 

    a     a 

   

C2 

    a 
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resistivity as function of the distance between two electrodes, a, which provides an 

indication of the change in soil resistivity of the earth as a function of depth. The 

advantage of the four electrode technique arises from the separate current and potential 

circuits. This allows potential drop in the potential circuit due to electrode contact and 

lead resistance to be eliminated. Therefore, the voltage difference measured at the 

voltmeter terminals is equal to that on the soil surface between the potential electrodes 

(neglecting any induced effects) [3.5].The ratio of the potential difference divided by 

the current passed, provides the measured resistance.  

3.4 Description of Test Site and Locations of Resistivity Surveys 

The first location at the university test site is shown in Figure 3.4, showing the survey 

lines from the first round of tests using the MEGGER DET2/2 tester (2002) [3.7]. 

Seven lines perpendicular to the line route (orthogonal lines) were selected to the right 

of the tower (labelled R1 to R7), and eight lines to the left (labelled L1 to L8). The lateral 

spacing between these lines was fixed at 10m. A further nine (labelled H1 to H9) lines 

were chosen at 20m intervals in a direction parallel to the transmission line route. The 

adopted survey line lengths were 180m for the Megger DET 2/2 and 240m for the 

ABEM Terrameter system. Figure 3.5 shows the satellite image of a second location of 

resistivity tests in Llanrumney in 2009. Figure 3.6 shows the location of soil resistivity 

measurement for a third round of tests (2009-2010). The fourth test location for soil 

resistivity measurement is shown in Figure 3.7 (2010-2011), with an area of 

240×65m
2
. Fourteen profiles were selected with 5m separation between profiles to 

investigate the soil resistivity An ABEM Terrameter SAS 1000 [3.8] and associated 

LUND imaging system earth tester were used. 2D resistivity inversion software [3.9] 

was then used to analyse the measured data. Post-test analysis enabled 2-D map of the 

subsurface soil resistivity to be obtained.  
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Figure 3.4:  Diagram showing lines used for soil resistivity survey for location 1 

(2002) (reproduced from reference [3.7]) 

 

Figure 3.5: Satellite image of measurement location 2 

88m buried Horizontal earth 

electrode 



50 

 

 

Figure 3.6: Satellite image of measurement location 3 at Llanrumney field site. 

 

Figure 3.7: Satellite image of measurement location 4 at Llanrumney fields 
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3.5 Description of Test Instruments and Electrode Setup 

This section describes the two instruments used for measuring the soil resistivity at the 

test site; the Megger Det 2/2 and the Lund/ Abem SAS 1000 Terrameter.  

3.5.1 Megger Det 2/2 Earth Tester 

The MEGGER DET 2/2 is a switched d.c. test instrument, manufactured specifically 

for field testing. It can measure earth resistances ranging from 10m to 20k with a 

resolution of 1m [3.10]. The instrument can also deliver a maximum current of 

50mA, at different frequencies between 108Hz and 150Hz with a default frequency of 

128Hz. The current is injected between the two current terminals C1 and C2, and the 

potential difference measured between two potential terminals P1 and P2. Two multi-

core cable reels of 100m each and a switch box allowed long and short Wenner 

spacings to be achieved for a given line without the need to change electrode positions 

[3.10].  

 

Figure 3.8: Soil resistivity measurement set-up using DET2/2 earth tester 
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Electrode spacings of 1m, 2m, 3m, 6m, 9m, 14m, 18m, 27m, 42m and 60m were used 

[3.7]. Figure 3.8 shows the experimental setup of the DET2/2, where the switch box 

and the measuring instrument are maintained in the middle of the array. The manual 

switch was used to change between positions. The reading is provided as a ratio of the 

potential difference to current injected, and then the soil resistivity is calculated using 

Equation (3.1). 

3.5.2 Lund/ Abem SAS 1000 Terrameter 

 The Abem SAS1000 meter with Lund imaging system is shown in Figure 3.9. The 

Abem SAS1000 earth tester injects a dc current of up to 1A between the current 

electrodes, with a voltage of up to 400V. It offers the ability to display values for both 

earth resistance and soil resistivity. In the field test site, this instrument has been used 

with the Lund electric imaging system [3.11] which is designed for automatic 

resistivity profiling. The Lund is a multi electrode device employing a switched 

sequential measurement process. The system has a built-in microprocessor, which 

enables an automatic measurement process and data storage [3.11]. 

 High-resolution graphical presentation and depth interpretation can be obtained by 

means of 2D inversion software.  The probes are arranged in a straight line and are 

equally spaced, establishing an electrical contact with the earth at each point. During 

the survey, a minimum and a maximum electrode spacing were chosen as 3m and 72m 

respectively. A total of 61 electrodes were used along each survey line of 240m length. 

Table 3.2 summarises the number of readings per spacing.  

 

 



53 

 

 

Figure 3.9: Test set-up for the ABEM/LUND imaging system 

Table 3.2: Number of readings per spacing 

Spacing (m) Number of reading 

3 38 

6 55 

9 34 

12 34 

18 32 

24 26 

36 14 

48 3 

60 9 

72 5 

Total number of 

readings 

250 

 

3.6 Test Results  

This section describes the test results of soil resistivity at the Llanrumney field test site 

at different location and date. 
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3.6.1 Soil Resistivity Results Obtained between at 2002 and 2003  

Figure 3.10 shows the apparent resistivity results as a function of Wenner spacing as 

they were measured in 2002 [3.7]. The measurement results collected along the 

orthogonal lines are depicted in Figure 3.4. The minimum value of resistivity measured 

was 70m, along line R5 to the right of the tower with 60m Wenner spacing. The 

maximum value of resistivity measured was 165m along line L8 with the same (60m) 

Wenner spacing.  For the survey, lines parallel to the tower line route (H1 to H9) and a 

20m separation between survey lines was adopted. Figure 3.11 shows the apparent 

resistivity results plotted against Wenner spacing. The minimum value of resistivity 

recorded is 60m at the line H5 while the maximum value recorded is 314m in the 

line H7. For these surveys presented, the minimum inter-electrode spacing was set to 

3m and maximum to 6m. 61 electrodes were used along each survey line of length 

240m.  

 

Figure 3.10: Resistivity curve measured at the Llanrumney site (DET 2/2), 

orthogonal to tower line (reproduced from reference [3.7]) 
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Figure 3.11: Resistivity curve measured in the Llanrumney site (DET 2/2), 

parallel to tower line (reproduced from reference [3.7]) 

 

3.6.2 Comparison of Soil Resistivity at Different Location and Date  

Selected results of measured apparent resistivity curves are shown in Figure 3.12, 

where the average apparent resistivity of lines L1, L2 and R1 are taken and plotted as a 

function of Wenner spacing. Soil resistivity measurements were performed along two 

parallel survey lines close to the earth rod location (the rod being located 

approximately 1.5m from each line) at the third location, as shown in Figure 3.6. 

Although the two profiles were only 10m apart, the results show that there are 

differences between the two profiles and that the soil is not strictly uniform within one 

layer of the same profile. For modelling purposes, the resistivity values measured at 

each electrode spacing (Wenner spacing) were averaged and a simplified average 

resistivity curve produced as shown in Figure 3.13. 
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A fourth location was chosen as per Figure 3.7, and fourteen profiles were measured 

with the separation between profile lines fixed. As has already been seen, the 

resistivity of the top layer varies significantly from one point to another, likely 

reflecting differences in water content in the upper and lower soil layers. The average 

values of the apparent soil resistivity are shown in Figure 3.14 for this fourth location. 

From Figure 3.14, the minimum and maximum values for the largest and smallest 

electrode spacings are 69m and 294m respectively. Generally, all the profiles 

represent the high value of soil resistivity in the upper layer, reducing with increased 

depth. From the curves obtained previously with the ABEM Terrameter for lines (13) 

and (14), a point-wise comparison cannot be considered because of the different profile 

locations. However, the range of values obtained with the same instrument give similar 

trends. Figure 3.15 shows the results for parallel lines (13) and (14), spaced 5m apart. 

Results of the survey lines 1 and 14, with a spacing of 65m, are shown in Figure 3.16. 

From this plot, it can be seen that the apparent soil resistivity along line 14 is higher 

than along line 1 with both the shortest and longest electrode spacing, which might be 

attributed to variation in soil moisture content.  

Figure 3.17 shows the results of soil resistivity measurement along line R1 of Figure 

3.1 (at location 1). These measurements were taken at the same location on three 

separate dates in 2002 and 2003. From this figure, the value of the maximum soil 

resistivity increases significantly at the shortest electrode spacing, from 185m in 

March 2002 to 359 m in July 2003. At the largest electrode spacing, the resistivity 

decreases from 110m in March 2002 to 60m in October 2002 and July 2003. From 

these results, it is clear that seasonal variation of soil conditions has a significant effect 

on the observed soil resistivity at any given location. The soil resistivities were 

surveyed on 23/01/2009 and 01/04/2009 along the line selected for installation of the 
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88m horizontal electrode (location 2). Although, both measurements were conducted 

on different dates, there are no significant differences of the resistivities at the shortest 

electrode (the top layer) and the longest electrode spacing (the bottom layer) [3.12]  

For the measurements conducted at Llanrumney test site, minimum and maximum 

electrode spacings were chosen as 3m and 72m respectively. A total of 61 electrodes 

were used to survey a line of 240m. For each survey set, 276 voltage and current 

readings at various positions and spacing were taken using the Wenner configuration. 

Figure 3.18 shows the average apparent resistivity for both sets of measurements 

plotted as a function of the Wenner electrode spacing. As can be seen from the figure, 

the apparent resistivity curves indicate a higher resistivity for shorter spacing (up to 

10m) and a gradual fall up to 72m spacing. Such curves indicate the potential to apply 

a simplified 2-layer soil model with higher resistivity upper layer. The variations in 

measured soil resistivity with Wenner spacing, at location 3 between 2008-2010, are 

summarised in Figure 3.19. From the curve, it can be seen that the resistivity 

associated with the greatest electrode spacing varied between 138m in 2009 to 65m 

in 2010. The measured resistivity with the smallest electrode spacing varied between 

296m in 2008 to 116m in 2009.  Table 3.3 illustrates a comparison of the estimated 

values of the soil resistivity at different locations at Llanrumney test site. As can be 

seen from the table, the soil resistivity varies with time and location across the site. In 

addition, soil resistivity varies widely at the top layer due to changes seasonally and 

variations in the soil’s moisture content and temperature.  
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Table 3.3: Summary of calculated values of soil resistivity from different test 

dates and locations 

 

 

 

Figure 3.12: Average soil resistivity curves with the Lund imaging system 

(reproduced from reference [3.7]) 
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Figure 3.13: Average apparent soil Resistivity 

 

Figure 3.14: Apparent soil resistivity measured by ABEM Terrameter 
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Figure 3.15: Selected results of average apparent resistivity obtained using 

ABEM meter at the Llanrumney field site 

 

 

Figure 3.16: Average of apparent soil resistivity for line 1 and line 14 at 

Llanrumney site 
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Figure 3.17: Soil resistivity measurements at line R1 with different date 

(reproduced from reference [3.7]) 

 

 

Figure 3.18: Average soil resistivity curves obtained for both lines (reproduced 

from reference [3.11]) 
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Figure 3.19: Selected results of apparent resistivity surveys obtained by ABEM 

Terrameter for location 2 

 

The basic test (4 terminal measurements) was carried out 16 times at two different 

locations in 2010 and 2011. Figure 3.20 shows the examples of the average, minimum 

and maximum values at two locations, lines L1 to L2 for location one while L3 to L8 

for location 4. As can be seen that, variations are due to different test spacing, different 

positions, changes in soil moisture, temperature and current test magnitude which is 

not always constant.  Also mention that a single repeat test was carried out for one test 

location to establish repeatability of the commercial test meter and automated survey 

switching system/rest set up.  Mention also that significant effect in variation in values 

is due to position, spacing and soil moisture which leads to a level of uncertainly in 

any assumed model. Further, that this helps to justify the adoption of a relatively 

simplified two layer model. 
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Figure 3.20: Maximum, minimum and average for different lines 

 

3.6.3 Comparison between Results Obtained with Megger DET2/2 and ABEM 

Terrameter 

This section describes a comparison of measured results from two earth testers. In 

order to compare results obtained by the both the conventional Wenner and the 2-D 

setup using Wenner technique, average values were calculated for lines H1 and L1 in 

2002. During the test, a number of readings were taken at each electrode spacing at 

different locations along the survey lines as shown in the Table 3.2. Therefore, the 

average values correspond to one reading per spacing for the purpose of comparison. 

Figure 3.21 shows a comparison of the results obtained for each line with the two test 

instruments. Although the results obtained with the DET2/2 correspond to single 

spacing and for a shorter line, the curves generally agree with the subsurface soil 

structure (two layer soil model). 
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Figure 3.21: Comparisons between ABEM and DET2/2 survey results 

(reproduced from reference [3.7]) 

 

3.6.4 Different Dimensional Resistivity Models 

Soil resistivity modelling has developed greatly, from the traditional 1D model which 

use only horizontal layering to 2D and 3D models which give a more detailed picture 

of the subsurface resistivity; three models are shown in Figure 3.22. 

The major limitation of the 2D geoelectrical resistivity imaging is that measurements 

made with large electrode spacing are often affected by the deeper sections of the 

subsurface as well as structures at a larger horizontal distance from the survey line 

[3.9]. The software uses a least-squares inversion technique to generate a 2D map of 

the soil structure from the input survey data. Fourteen earth resistivity lines as depicted 

in Figure 3.7 were surveyed at the Llanrumney field test site.(location 4). For each test 

profile, the apparent resistivity distribution and the curves of the maximum, minimum 
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and average apparent resistivity values as well as 2D inverse models were derived. 

Figure 3.23 a and b show an example of a 2-D resistivity inversion for a test lines (13) 

and (14). The contours indicate an upper soil layer having a depth of 5m with 

resistivity values ranging from 230m to 312m, and a bottom layer with a depth of 

23m and resistivity around 70m.    

The results of soil resistivity inversion at location 3 are shown in Figure 3.24 (a) for 

line L1 while (b) for line 2. From the 2D soil structure maps, the contours indicate a 

top soil layer for all the results having different depth with different values of 

resistivity. Although the top soil layer have values ranging between 120Ωm and 

160Ωm and a bottom layer with soil resistivity ranging between 45 Ωm and 60Ωm, the 

maps give an improved view of the subsurface resistivity stratification.   

  

 

 Figure 3.22: Different models used in the investigation of resistivity tests 

(reproduced from reference [3.13]) 
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(a)                                                                       (b) 

Figure 3.23 a, b: Selected results of inverse model 2D-plot for two lines of location 

3: a) line 13 and a) line 14 

 

a) Survey line 1 
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b) Survey line 2 

Figure 3.24: Inverse model 2D-plot for line 1and 2 at location3  

 

3.7 Adopted Models for Test Electrode Locations 

The soil resistivity was measured prior to installation of vertical and a horizontal 

electrode at the Cardiff University earthing field test facility at Llanrumney. 

Soil resistivity measurements were performed along two parallel survey lines close to 

the earth rod location (the rod being located approximately 1.5m from each line). 

High-resolution graphical presentation and depth interpretation can be obtained by 2D 

inversion software in the form of colour resistivity maps. Figure 3.25 shows an 

example of 2-D resistivity mapping for the two profiles. 
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(a) Line 1 

 

(b) Line 2 

Figure 3.25: 2D model for Line 1 and line 2 at the rod location of test site 

The contours indicate a top soil layer having a depth of about 10m with resistivity 

ranging between 120m and 160m, and a bottom layer with soil resistivity ranging 

between 45 and 60m. Based on actual measurements, a computational soil model 

was proposed having a top layer resistivity of 150Ωm to a depth of 10m and a bottom 

layer of infinite depth having a resistivity of 55Ωm 

The soil resistivity measurements at the location of the 88m horizontal electrode before 

installation were conducted on two different dates. Figure 3.26 shows the 2-D apparent 

resistivity pseudosections obtained for the data measured on 23/01/2009, giving best 

agreement between measured and calculated apparent resistivity. The figure shows 

significant lateral variations in the resistivity of the top layer. The distribution of the 

soil resistivity in the immediate subsurface region shows a range of localised values 

from 23Ωm to 300Ωm. In general, however, the soil resistivity occupies the range 
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130Ωm to 200Ωm. A similar observation can be made for the model based on data 

collected on 01/04/2009. Based on these measurements, a computational soil model 

was proposed having a top layer resistivity of 180Ωm to a depth of 9m and a bottom 

layer of infinite depth having a resistivity of 70Ωm [3.12].  

 

 

(a) 

 

(b) 

 

Figure 3.26: 2D soil resistivity inversion maps: a) 01/04/2009, b) 23/01/2009 

(reproduced from reference [3.12]) 

3.8 Conclusions  

Measurements of soil resistivity at the Llanrumney fields university test site are 

described. Two dc earth testers have been used: the MEGGER DET 2/2 and the 

ABEM SAS 1000 meter associated with the Lund imaging system. The Wenner 

technique was adopted for the survey, since it offers both convenience of use and 

accuracy of results.  
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Although, a point-to-point comparison cannot be made due to different experimental 

arrangements and profiling extent. However, the range of values obtained with both 

instruments is comparable and both curves exhibit similar trends. An apparent soil 

resistivity was measured at the earth electrode locations before installation. Inversion 

software to produce the 2D survey images was used, and the estimation value of soil 

resistivity was suggested. Although, the distance between two profiles was not 

exceeded 3m, the results showed that the resistivity is non-uniform, and a two soil 

layer models was obtained. 

Considerable lateral variation in soil resistivity was found within the site, as was seen 

from the results obtained by both testers and the extent of the lateral variation is more 

easily detected by the 2-D measurement technique. The soil resistivity models have 

been adopted after actual tests at both locations (vertical and horizontal electrodes) and 

used in Chapters 4, 5, 6 and 7 in this thesis. 
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CHAPTER FOUR: LOW VOLTAGE VARIABLE FREQUENCY 

CHARACTERISATION OF PROPOSED ENHANCED EARTH ELECTRODE 

SYSTEMS 

 

4.1 Introduction  

The high-frequency performance of vertical earth rods is important for designing 

earthing systems and lightning protection systems. In high voltage substations, buried 

earth grid, vertical rods and horizontal electrodes in combination provide a low 

impedance connection to earth [4.1]. 

 As described in Chapter 2, much of the previous experimental work on vertical rod 

electrodes dealt with experimental and measurement techniques using low magnitude 

DC, low frequency AC and impulse currents. Besides, experimental work was 

confined on the whole to small laboratory tests with restricted space and theoretical 

studies [4.1-4.15].  

In this chapter, the DC earth resistance and high-frequency characteristics of vertical 

rods up to 6m in length buried in a non-uniform soil, with and without proposer 

enhancements of horizontal electrodes in 4-point cross and 8-points star 

configurations, are investigated. In addition, the frequency response of 43m and 88m 

horizontal electrodes, with and without insulated conductor, are measured over the 

range from DC to 10MHz. The tests were carried out at the Cardiff University outdoor 

earthing test facility at Llanrumney test field. Simulated results are compared with 

measured results for vertical earth electrode, and the equivalent two-layer soil model is 

described in Chapter 3.  
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4.2 Equivalent Circuit Models Used 

The lumped parameter equivalent circuit applied to earth rods was proposed by 

Rudenberg [4.16] and is shown in Figure 4.1 below.     

 

Figure 4.1: The basic arrangement of a vertical earth rod (a) and its equivalent 

circuit (b) 

Where: 

r: Series resistance of the earth electrode. 

L: Series self-inductance of earth electrode. 

R: Shunt earth resistance of the soil. 

C: Shunt capacitance of the soil. 

Some equations which are relevant to the circuit model parameters for vertical rods 

have been suggested by Rudenberg [4.16], Tagg [4.17], Sunde [4.18] .Table 4.1 shows 

the relevant equations for the circuit model elements suggested by these authors.  

 

 

Injection current 

Earth rod 
Soil  

,, 

(a) (b) 
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Table 4.1: Formulae for earth resistance, inductance and capacitance of a vertical 

earth electrode 

 Resistance (R) Inductance (L) Capacitance (C) 

Tagg  Not calculated Not calculated 

Sunde   
 

Rudenberg 
  

 

 

A distributed circuit model applied to an earth electrode and the impedance of the earth 

electrode can be determined by combined over the whole length [4.19]. Using this 

model, the open-circuit impedance of a vertical rod electrode can be calculated by 

Equation (4.1) [4.20]: 

    √
  

  
    ( √    )           (4.1) 

Where, ZC: Series impedance (/m), YC: Parallel admittance (/m) and ℓ: The length 

of earth electrode (m). 

The horizontal earth electrode can be represented by a ladder network equivalent 

circuit model, shown in Figure 4.2, as suggested by Velazquez and Mukhedkar [4.21]. 

Each parameter in this circuit is calculated as per-metre quantities, and the earth 

electrode is split into n sections, each of length 1m. Each parameter of the circuit 

model can be calculated by Sunde’s equations [4.18] as shown below. 

  
 

   
(  (

  

√   
)   )           (4.2) 
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                          (4.4) 

 

Figure 4.2: Equivalent ladder circuit model of a horizontal earth electrode 

 (Reproduced from reference [4.21])  

 

4.3 Installation of the Earth Electrodes 

After the soil resistivity had been measured and modelled in Chapter 3, the horizontal 

enhancements (cross/star-shaped) and 1.2m rod were installed. Figure 4.3 shows 

different stages of the installation of the 8-point star and the 1.2m vertical rod at the 

test field facility at Llanrumney playing fields. A trencher, shown in Figure 4.3(a), was 

used to dig channels to a depth of 30cm. The angle between electrodes in the star was 

fixed at 45
0
. A further 2.4m rod was installed to act as a return current electrode, 

situated approximately 150m from the electrode under test. An aluminium ring was 

used to connect the horizontal enhancements to the rod, as shown in Figure 4.3(b). A 

vertical rod was connected to either the 4-point cross or the 8-point star electrodes by 

an aluminium ring. The rod was installed at the centre of the aluminium ring to avoid 

any contact between the vertical electrodes with horizontal enhancements during the 

experimental tests for rods only.   

 

C C C

LRS

RP
RP RP

LRS LRS
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(a)       

 

 

 

(b)                                                 (c) 

Figure 4.3: Installation of vertical rod and horizontal enhancements 

 

4.4 Description of Experimental Setups of Test Electrodes 

Figure 4.4 shows a schematic diagram of the experimental setup used for DC, high 

frequency and impulse tests. Because of its high conductivity and withstand to 

corrosion, earth electrodes made from copper material were selected. The test 

electrodes used are 1.2m, 2.4m, 3.6m, 4.8m-and 6m rod in length, with a diameter of 

14mm are used. The rods were connected, in turn, to ‘cross’ and ‘star’ configured 

horizontal rod conductors of 1m length and 8mm diameter, buried at a depth of 30 cm. 

The main reason of connecting the horizontal enhancements at the top of the rods that 

high frequency content will dissipate into the earth easily. Also, providing multiple 

paths for current injection into the earth decreases current density at earth electrode 
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interface which can reduce the over voltages. However, connecting enhancements at 

the bottom of the rod decreases the earth impedance at low frequency only.   

Figure 4.5 shows the second test setup for the 88m horizontal earth electrode, buried in 

non-uniform soil at the Cardiff University earthing test facility. The horizontal bare 

electrode under test is 88m in length and has a cross-sectional area of 50mm
2
, buried at 

a depth of 30cm. A recently proposed technique for reducing the impedance of 

horizontal electrodes is the addition of an insulated parallel conductor, bonded to the 

bare underground horizontal earth electrode at multiple points to increase the effective 

length of the electrode [4.22, 4.23].  

This conductor is enhanced with new ground surface insulated conductor with cross-

sectional area of 25mm
2
, and this conductor is bonded to the buried bare conductor at 

points along its length. The bare conductor is divided into 14 sections of graded 

lengths such that the section lengths are smallest close to the injection point and 

increase with distance along the conductor. There are 14 test pits installed above each 

intersection, to allow measurement of the voltage and current at different electrode 

positions. The test pits can be used to make and break connections so as to vary the 

bare conductor length, thus enabling measurement of current and voltage distributions 

for electrodes of different dimensions. The insulated conductor, sectionalised in the 

same lengths as the bare buried electrode, was laid on the ground surface for testing 

purposes and bonded to the bare underground horizontal electrode at section points 

along its length. If such an enhancement were to be used in a practical installation, it is 

envisaged that the insulated conductor to be buried just below the ground surface 
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Figure 4.5: Installation B under test: (a) plan view (b) side view 

 

A 
B C D E F G H I J K L M 

2
m 

4
m 

6
m 

10m 14m 19m 25m 33m 43m 53m 68m 88m 

IG 

Reference voltage electrode (100m) Current return 
electrode (150m) 

(a) Plan view 

(b) Side view 

1
m 

N 

 

A 

B C D E F G H I J K L M 

2
m 

4
m 

6
m 

10m 14m 19m 25m 33m 43m 53m 68m 88m 

IG 

1
m N 

 
0.3m 

I 
V 

Figure 4.4: Plan and side views of experimental set-up of Installation A:  
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4.4.1 AC Test Sources 

Two sources were employed for AC tests over a wide frequency range: A variable 

frequency impedance measurement system (IMS), which was developed by Cardiff 

University for this type of test [4.24], and an RF system based on a Marconi 2019A 

signal generator and power amplifier systems [4.25]. The IMS consists of two EG&G 

7260 Lock in Amplifiers and a QSC Audio Power Amplifier. The lock-in amplifier can 

recover measurement signals in the presence of an overwhelming noise background, or 

alternatively, it can be used to provide high resolution measurements of relatively 

clean signals over several orders of magnitude and frequency [4.25]. The applied 

frequency was varied from the lock-in amplifier in the range 10Hz to 120 kHz. The 

amplitude and phase angle were recorded for the resistance and readings were taken 

directly from the IMS. The audio-frequency (AF) and radio frequency (RF) signal 

generators and corresponding AF and RF power amplifiers (up to 2.4kW) were used to 

inject AC currents of several hundred milli-amperes for frequencies up to 10MHz 

frequency. Figure 4.6 shows the picture of the IMS and Marconi instruments. The 

current return electrode was located 100m from the test object, and the reference 

potential electrode, fixed 150m away, was connected by a lead placed orthogonal to 

the current return lead. Current transformers of 0.1V/A sensitivity with a bandwidth of 

20MHz, and high-bandwidth differential voltage transducers were used for the current 

and voltage measurements. An oscilloscope (LeCroy WaveJet 354) with 2GS/s 

sampling rate and a bandwidth of 500MHz was used to capture the voltage and current 

waveforms. An isolation transformer was also used in mains supply circuit to eliminate 

stray earth currents.  
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Figure 4.6 Pictures of IMS and Marconi instruments at field test site 

4.4.2 DC Resistance Tests 

The MEGGER DET 2/2 instrument, designed to measure earth electrode resistance 

and soil resistivity, performs four terminal continuity tests (see Figure 4.7). 

Preliminary DC resistance measurements were carried out on the vertical rods and 

horizontal electrodes with a MEGGER DET 2/2 instrument, with and without 

enhancements. The degree of variation in electrode performance was evaluated by 

repeating the DC resistance measurements several times over the testing period. 

Similar test circuits in Figures 4.4 and 4.5 were used to measure the dc earth resistance 

for both installation electrodes A and B. 

 

 

IMS Marconi 
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Figure 4.7: DET 2/2 earth tester 

4.5 Test Results for Installation A 

4.5.1 DC Resistance Test Results for Installation A 

In order to study the effect of additional horizontal enhancements to the vertical earth 

electrode on the earthing resistance, the DC resistance of the various earthing 

configurations was measured and compared with computed results. The test electrode 

was simulated using the HIFREQ module of the CDEGS software [4.26]. The 

computer simulation requires the vertical and horizontal electrodes to be simulated as 

cylindrical conductors, with radii much smaller than their lengths. A two-layer soil 

model was used, with an upper layer soil resistivity of 150Ωm to a depth of 10m, and 

bottom layer of soil resistivity is 55Ωm as given in Chapter 3 Section 3.7. The results 

are summarised in Table 4.2. 
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Table 4.2: DC resistance of earth rod systems 

 

As can be seen from the table, as the length of the earth rod increases, both the earth 

resistance and its rate of fall-off decrease with length. The addition of the star and 

cross electrodes reduces significantly the overall DC earth resistance for all rod 

lengths. The CDEGS computed results, also given in Table 4.2, show some differences 

with the measured values of the DC earth resistance, which may be attributed to the 

simple soil resistivity model used. Figure 4.8 shows the results of computation of the 

DC earth resistance of the rods only and with cross/star enhancements. From Figure 

4.8, the computed DC resistances have slightly higher than the measured results. 

It is known that there are seasonal variations in soil resistivity and this affects the 

resistance of earth electrodes and potentials developed in their close vicinity. For 

example, in raining season, there is a wet surface soil layer with decreased resistivity 

 DC Resistance() 

Configuration Measured CDEGS 

1.2m rod 131.1 133.8 

1.2m rod with cross-shaped electrode 47.4 49.4 

1.2m rod with star-shaped electrode 36.6 38.5 

2.4m rod 55.7 59.2 

2.4m rod with cross-shaped electrode 29.3 33.9 

2.4m rod with star-shaped electrode 22.7 25.5 

3.6m rod 40.4 44.9 

3.6m rod with cross-shaped electrode 27.1 32 

3.6m rod with star-shaped electrode 20.4 24 

4.8m rod 35.0 39.7 

4.8m rod with cross-shaped electrode 25.0 28.6 

4.8m rod with star-shaped electrode 18.0 23.9 

6m rod 30.6 33.4 

6m rod with cross-shaped electrode 18.4 24.7 

6m rod with star-shaped electrode 16.4 22 
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while, in the frozen season, the resistivity of the frozen soil increases to several to ten 

times that in normal season [4.27].  Figure 4.9 shows the variation of the DC resistance 

of the different length rods of the testing period. The greatest variation in resistance is 

seen with the 1.2m rod and, although no detailed rainfall measurements were taken at 

the site, it was noted that the period March-April 2011 was particularly dry, and this 

corresponded to the highest recorded values of resistance. Also, from the figure, it can 

be seen that, for the longer rods subsequently installed, there was less variation in 

measured resistance. This may be explained by the expected lower variation in soil 

moisture at greater depth. 

Calculations of the earthing resistance of different lengths of the vertical electrodes up 

to 6m, with diameter of 14mm, were carried out using equations of Rudenberg’s, 

Tagg’s and Sunde’s [4.16-4.18] as given in Table 4.1. An average soil resistivity value 

of 150 m was compared with the measurement results using the DET2/2 test 

instrument while a two-layer soil model was used for CDEGS software, with an upper 

layer soil resistivity of 150Ωm to a  depth of 10m, and a bottom layer of soil resistivity 

is 55Ωm (See Chapter 3 Section 3.7).  

Figure 4.10 shows a comparison between the various calculated and measured results. 

From the figure, it can be seen that the measured dc resistance values show reasonably 

close agreement with those obtained from different simplified equations, with Sunde’s 

equation giving the closest match. In addition, the CDEGS and Rudenberg computed 

results are in good agreement. Furthermore, Table 4.2 shows some differences between 

the measured and calculated values of the DC resistance of the rods.  

The numbers of test repetitions for each length of rod at the test site were carried out, 

as shown in Figure 4.11 a, b. The transducers (voltage and current transformers) used 
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in this work were calibrated and the measurement error in the results estimated to be 

±4%. The results showed that the different potential transducers tested had a measured 

error of less than ± 3% over a complete frequency range, and the LILCO current 

transformer showed less than 2% error [4.19]. From the figure it can be seen that the 

temporal variation in measured DC resistance is far greater than that allowed by the 

calculated error margin. The conclusion can be drawn that the major factors in the 

resistance is the resistivity of the bulk of the soil surrounding the electrode is liable to 

variations with moisture content and temperature. 

 

Figure 4.8: Computed and measured DC resistances of rods only and with 

enhancements   
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Figure 4.9: Variation in measured DC resistance of rod electrodes 

 

Figure 4.10: Comparison of calculated and measured resistance of rods up to 6m 

in length using DET2/2 earth tester 
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(a) 

 

(b) 

Figure 4.11: Repetitions of measured DC resistances for: a) 1.2m rod; b) 2.4m, 

3.6m, 4.8m and 6m rod 
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4.5.2 Variable Frequency Test Results for Installation A 

 The results of the variable frequency tests are shown in Figure 4.12 for the 1.2m and 

2.4m rods. The impedance magnitude shown in Figure 4.12 indicates that each curve 

has, i) a lower frequency response range over which the impedance magnitude is 

almost constant, indicating that the electrode is predominantly resistive, and ii) a 

higher frequency range where inductive and capacitive effects can be observed. As can 

be seen from the figure, over the low frequency range (10-10kHz), extending the earth 

rod from 1.2m to 2.4m provides a significant reduction in earth impedance which is 

consistent with the measured DC resistances in Table 4.2. At higher frequencies, above 

100 kHz, a slight fall in earth impedance is observed in the case of the 1.2m rod. 

However, this fall in impedance is not seen in the case of the 2.4m rod. In contrast, the 

impedance of the longer rod increases over the range 100 kHz to 1 MHz. Above 

1MHz, the impedance of the 2.4m rod exceeds that of the 1.2m rod. 

Figure 4.13 shows the frequency responses for the 3.6m and 4.8m rods. It is clear that 

the impedance magnitude for a 6m vertical rod is lower than that for 3.6m and 4.8m 

rods, up to a particular frequency which depends on the soil resistivity. Generally, at 

these lengths, the effect of inductance is more pronounced with sharper upturns 

occurring at a lower frequency (50 kHz). Following the first maximum (at 200 

kHz), the impedances follow an oscillatory pattern with frequency, and the second 

peak is considerably higher for the 4.8m rod.  
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Figure 4.12: Frequency responses of the 1.2m and 2.4m earth rods. 

  

Figure 4.13: Frequency responses of the 3.6m, 4.8m and 6m earth rods 
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The seasonal effect on earthing resistance has been investigated by many authors 

[4.28-4.32]. Here, seasonal variation in resistance and impedance magnitude under 

variable frequency up to 10MHz was investigated for 1.2m vertical rod buried at the 

test site. Figure 4.14 shows an example of the frequency response of the 1.2m vertical 

earth electrode measured on different dates. As can be seen, the impedance at low 

frequency increases by around 11% in the winter season (15/12/2010) compared to that 

in the summer (02/06/2011). As can be seen from figure, the impedance over the 

frequency range DC to 2MHz was higher on the winter day compared with the summer 

day, and this could be attributed to a particularly dry winter period in that year. Over 

2MHz, the difference between the measured earth impedance on the two different 

dates becomes less significant. 

  

 

Figure 4.14: Comparison of impedance magnitude of 1.2m rod on two different 

dates 
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4.6 Test Results for Installation B 

4.6.1 Variable Frequency Test Results for Installation B 

The injection frequency was varied from 10 to 10MHz, and the frequency response of 

the 43m and 88m horizontal electrodes is shown in Figure 4.15. Over low frequency 

range 10 to 3 kHz, the earthing resistance of the 43m horizontal electrodes is twice that 

of the 88m horizontal electrodes. At high frequency where inductive effects start to 

appear, a sharp upturn is seen in the earth impedance curve at 30 kHz and 10 kHz for 

the 43m and 88m horizontal electrode respectively. Above 100 kHz, the earthing 

impedances for both horizontal electrodes are almost the same. 

As for the differences between earthing impedance readings on different dates, further 

sets of experiments were undertaken on the 29/04/2012 and 01/03/2013. Figure 4.16 

shows the effects of the weather on the impedance of the 88m horizontal electrode, 

showing a reduction in low frequency resistance of approximately 6.4% between tests. 

Therefore, there is no major variation in impedance at low frequency, and up to 10kHz. 

Above 10kHz, a significant difference was observed, with this difference itself 

increasing with frequency. At 1MHz, a maximum percentage reduction in the 

impedance of 55% was observed. Between 2 and 10MHz, the measured results showed 

the occurrence of some peaks on the first test, but such behaviour is not seen in the 

second test.  
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Figure 4.15 Frequency response of different length of the horizontal earth 

electrode 

 

Figure 4.16: Measured of impedance magnitude of the 88m horizontal electrode on 

two different dates  
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4.7 Frequency Response of Vertical Electrodes with Enhancements 

Tests on the earth electrode (Installation A) were extended to investigate the benefit of 

adding supplementary electrodes to the individual rods in the form ‘star’ formation 

horizontal conductors, as shown in Figure 4.4. The addition of the 8-point star 

enhancements had a beneficial effect on the measured earth impedance, for all rod 

lengths considered. Figure 4.17 shows the results of an 8-point star enhancement 

applied to a 1.2m rod. From the figure, it can be seen that there is a considerable 

reduction in earth resistance/impedance over the entire frequency range.  

The frequency response of the 2.4m rod with and without an 8-point star enhancement 

is shown in Figure 4.18. The results in Figure 4.18 also demonstrate that there is a 

significant benefit at low and high frequency by adding the additional enhancements. 

Figure 4.19 shows the results for the 8-point star applied to the 3.6m rod. As with the 

short 1.2m rod, benefits are obtained over the entire frequency range, although the 

average impedance between 100 kHz and 10 MHz is lower for the system with the 

shortest (1.2m) rod. As can be seen from the figure, the inductive contribution can be 

also reduced by adding horizontal enhancements with the 3.6m rod at high frequency 

range.  

Figure 4.20 shows the effect of 8-point star enhancements on the 6m rod. It is clear 

from the figure that a significant reduction in impedance compared to the rod alone 

occurs only at low frequency (approximately 41%), indicating that horizontal 

enhancements can reduce the impedance of long vertical electrodes at low frequency. 

Above 100 kHz, the impedance of rods with horizontal enhancements is still lower 

than the impedance of the rod alone, up to a frequency of 1MHz. However, above 

1MHz, the effect of horizontal enhancements decreases due to the increase in inductive 
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effects, dominating the impedance at high frequency. Horizontal enhancements can be 

said to offer some reduction in impedance up to 1MHz for the 6m rod, but beyond this 

frequency, the beneficial is not clear. 

 

 

Figure 4.17: Effect of 8-point star enhancement on the impedance of a 1.2m rod 
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Figure 4.18: Effect of 8-point star enhancement on the impedance of a 2.4m rod 

 

 

Figure 4.19: Effect of 8-point star enhancement on the impedance of a 3.6m rod 
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Figure 4.20: Effect of 8-point star enhancement on the impedance of a 6m rod 

4.8 Frequency Response of Horizontal Electrodes with Enhancements 

The frequency-dependent earthing impedance measured for different lengths of 

horizontal electrodes (installation earth electrode B) in two-layered soils, with and 

without insulated conductor, are shown in Figure 4.21. The earth resistance of the 43m 

counterpoise was found to be 12, reducing to 11 with the addition of an above 

ground insulated conductor. The DC earth resistances of the 88m counterpoise only 

and with insulated conductor were 7 and 6 respectively. From the figure, a slight 

reduction in earthing impedances is observed for frequencies from 10Hz up to 10 kHz 

for 43m and 88m horizontal earth electrodes, both with and without above-ground 

insulated conductors. Above 10 kHz, the impedance increases significantly, indicating 

an inductive behaviour. The upturn frequency is lowered with an increase in the length 

of the horizontal electrode, due to the increased influence of self-inductance in the 

longer electrode.  
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In general, the addition of a parallel insulated conductor has no major effect on the 

impedance of the earth electrode at low frequency.  However, at high frequencies, a 

reduction in impedance becomes apparent, starting at 300 kHz for a 43m horizontal 

electrode, and at 400 kHz for the 88m electrode. This can be attributed to the 

connections between the buried bare earth conductor and the above-ground-insulated 

conductor. It is thought that the drop in earth impedance occurs due to a reduction in 

electrode inductance compared to that of the bare conductor alone.  
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(b) 

Figure 4.21: Frequency response of the horizontal earth electrode with and 

without above-ground insulated conductor: (a) 43m, (b) 88m 

4.9 Computer Models of Tested Electrodes 

The earthing systems shown in Figure 4.4 were also simulated using CDEGS-HIFREQ 

software [4.27], as shown in Figure 4.22. In the software, a detailed geometric model 

of the test electrodes was established including the current return electrode, remote 

potential electrode and the current and voltage leads. Based on the detailed soil 

resistivity measurements carried out at the location prior to the earth electrode 

installation, a two-layer soil model was adopted (See Chapter 3 Section 3.7) for the 

simulations with a top layer having a depth of 10m and resistivity 150m and bottom 

layer with a resistivity of 55m. The variable frequency simulations were carried out 

at each of the test frequencies. 
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Figure 4.23 shows the results of variable frequency simulations of the 1.2 m vertical 

rod and the same rod with the 8-point star enhancement. From the figure, it can be seen 

that there is very close agreement at low frequencies. In addition, the oscillating trends 

seen in the measured impedance magnitude at high frequencies are reproduced by the 

computer model, although there are differences between the measured and simulated 

peak and trough values. In addition, the slight fall off in impedance, seen in the mid-

frequency range (10 kHz-1MHz) with the measured values, is not reproduced by the 

computer model. This difference may be attributed to the assumed constant medium 

parameters (resistivity and permittivity). 

 

 

Figure 4.22: CDEGS model of test circuit 
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Figure 4.23: Frequency response of the 1.2m vertical rod with and without 8-

point star enhancement: Computed and measured values. 

A comparison between measured and computed results using a lumped-parameter 

circuit model and a distributed-parameter representation for the 2.4m rod was carried 

out. The impedance magnitudes computed with the distributed-parameter model and 

the lumped-parameter model agree with measurements up to 30 kHz, as shown in 

Figure 4.24. However, at high frequencies, despite showing an increase in impedance 

at a frequency of about 1 MHz for the lumped parameter model, while around 3MHz 

and 6MHz for the distributed parameter model, respectively. It can be said from these 

results that these circuit models are not valid for predicting the high-frequency 

behaviour of short vertical rods, especially when buried in a non-uniform soil. 
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Figure 4.24: Comparison between measurement results and computation for a 

2.4m vertical rod 

4.11 Conclusions 

Experimental results of DC earth resistance tests on different lengths of vertical rods 

were reported. The results show that the DC resistance of vertical rods decreases with 

increasing length of the conductor. The measured DC resistance of the short vertical 

rod was found to vary seasonally due to soil resistivity variations over the period of the 

study. 

Variable frequency field tests (DC to 10MHz) on different lengths of earth rod reveal 

the benefits to low frequency performance of extending the rod length, although these 

gains are less significant with longer rods. In addition, the tests indicate that, at higher 

frequencies, rod length extension may be counterproductive, with higher values of 

impedance recorded for the longer rods.  
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A new technique to reduce the earth resistance/ impedance of the earth electrode was 

demonstrated. This technique involves the installation of horizontal enhancements at 

the top of vertical earth electrodes of increasing length. The results show that a 

significant reduction in impedance is achieved over both low and high frequency 

ranges. 

The measurement results indicated that an insulated conductor did not give a 

significant reduction in the earthing impedance at low frequency. However, at high 

frequency, the reduction in the impedance is noticeable and can be explained by a 

reduction in the inductive effect due to the additional parallel current paths. Good 

agreement between experimental and simulation results is obtained.  

Although, the standard recommended that effectiveness of the arrester can be 

improved by connecting it to an earth electrode in the immediate vicinity, for example 

an earth rod (normally 5m long) [4.33], the rod with horizontal enhancements 

presented a significant reduction in impedance magnitude at low frequency and high 

frequency compared with rods only. Therefore, this technique presents a reliable 

earthing system by dissipating high frequency contents into the earth compared with 

the vertical rod only. In addition, from the test results, the vertical rod with horizontal 

electrode enhancement is recommended as the best earth configuration to improve the 

behaviour of earth electrode under low and high frequency response.   
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CHAPTER FIVE: PORPOSED ENHANCED EARTH ELECTRODE SYSTEMS 

UNDER IMPULSE ENERGISATION 

5.1 Introduction  

In the previous chapter, different lengths of vertical rods were tested under DC and AC 

over a range of frequencies.  The effects of additional horizontal enhancements with 

different lengths of vertical earth electrode were measured and investigated. The 

results showed that using horizontal enhancements with the rods gave significant 

reduction of earth resistance at low frequency and served to reduce the earth 

impedance at high frequencies. 

The response of earth electrode systems to impulse currents has been published in 

theoretical [5.1-5.22] and experimental studies [5.23-5.30]. In these studies, a variety 

of impulse currents were investigated, and particular quantities were determined, such 

as the rise in potential of the earth electrode system, the electromagnetic field near the 

earth electrode, and current distribution and dispersion. According to the reviewed 

literature, it appears that a detailed study of the application of ‘4-point cross’ and ‘8-

point star’ enhancements to single rod electrodes has not been attempted before.  

In this chapter, an experimental investigation on the impulse response of vertical earth 

rods up to 6m with and without horizontal enhancements (4-point star and 8-point star-

shaped) is described. In addition, the effects of an additional above-ground insulated 

conductor bonded to the 43 and 88m horizontal earth electrodes are also investigated. 

Moreover, the experimental results are compared with simulations using CDEGS 

HIFREQ and FFT software [5.31].  



102 

 

5.2 Impulse Tests 

In Chapter 4, the experimental setup at Cardiff University’s earthing test facility was 

described (see Figure 4.4). A Haefely recurrent surge generator was used to produce 

double exponential impulse currents of different shapes, with amplitudes up to a few 

amperes. The current return electrode was located 150m from the test object and the 

reference potential electrode, fixed 100m away, was connected by an insulated lead 

arranged orthogonally to the current return lead to avoid ac mutual coupling [5.32]. 

Lilco current transformers of 0.1V/A sensitivity with a bandwidth of 20MHz were 

used for current measurements. Voltage measurement was achieved using a differential 

voltage transducer of 25MHz bandwidth and ratio of 1/20, 1/50 and 1/200 attenuation.  

5.3 Vertical Earth Electrode 

As described previously, vertical earth electrodes are widely used in earthing and 

lightning protection systems, either as main earth electrodes or as reinforcing 

electrodes to help reduce the earth impedance and improve the system’s high 

frequency and transient performance. 

Figure 5.1 shows the transient earth potential rise (TEPR) for different lengths of 

vertical rod electrode for a fixed peak current injection of 1.2A and of 11/36 s shape. 

From the figure, it can be seen that, for this value of current impulse rise-time, the 

voltage and current peaks occur at the same time for all rod lengths, indicating a 

predominantly resistive response. The peak voltage falls as the electrode length 

increases and, with a similar trend to that seen with the DC resistance measurements. 

The decrease in the peak voltage also reduces with rod length.  

Two different definitions of calculating the impulse resistance were used. Equation 

(5.1) defines the impulse resistance as the ratio of voltage peak to current peak, and is 
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valid when the earth electrodes have negligible inductance, and thus impulse voltage 

and current maxima occur at the same time. Equation (5.2) is used where the time of 

the impulse voltage peak and current peaks do not coincide, so as to eliminate any 

inductive effect in the test results [5.33].  

 

     
 

  

  
           (5.1) 

      
    

  
      (5.2) 

Table 5.1 shows the calculated impulse resistance as defined by Equations (5.1) and 

(5.2) from the test results. The DC resistances were tested by a standard earth tester 

(DET 2/2). From the table, it can be seen that, due to the close coincidence of all 

voltage peaks with the current peak, the values of Vp/Ip  (Rimp1) and Rimp2 are very 

similar. The values of impulse resistance are also very close to the measured DC 

resistance values.  

Table 5.1: Performance indices of different length earth 

rods (10/36 current impulse) 

Rod length (m) Rim1() Rimp2() Rdc () 

1.2 119.5 118.4 113 

2.4 52.7 51.8 55.7 

3.6 42.4 42.4 40.4 

4.8 35.2 34.7 35.0 

6 32.1 32 30.6 
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Figure 5.1: Responses of earth rods of different lengths to a 10/36 current impulse 

 

5.4 Vertical Earth Electrode with Horizontal Enhancements 

The transient response of the 1.2m vertical rod with additional ‘cross’ and ‘star’ 

formation horizontal conductors is shown in Figure 5.2. In the figure, it can be seen 

that significant gains are achieved through reduction in peak TEPR. These gains are in 

direct proportion to the reduction in impulse resistance. 

  Figure 5.3 shows the effect of horizontal enhancements on the earth potential rise of a 

2.4m rod. The peak injected current was 1.44A with 3.2s rise time at the injection 

point, and was shown in Figure 4.4 in Chapter 4. From the waveforms presented in 

Figure 5.3, it can be seen that the percentage reduction in the voltage of a rod with 

cross and star enhancements is 40.8% and 54.9% compared to the rod only. 

In order to investigate the effect of increasing the length of the vertical electrode with 
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and without cross/star-shaped electrodes was measured. Figure 5.4 shows the EPR of 

the regular and enhanced 6m rod for an impulse current of 5.5A peak with rise-time of 

around 1.8/4.5s. As can be seen from the figure, significant reduction of the peak 

voltage was obtained in the case of rods with horizontal enhancements, and is in 

agreement with the DC earth resistance shown in Table 4.2 of Chapter 4. The impulse 

resistance for the 6m rod, rod with cross and rod with 8-point star obtained from the 

Equation (5.2) are 28.6, 18.6, and 16 respectively.  

 

 

Figure 5.2: Voltages and current shapes at injection point for the 1.2m rod with 

cross and star-shaped enhancements 
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Figure 5.3: Voltages and current shapes at injection point for the 2.4m rod with 

cross and star-shaped enhancements 

 

 

Figure 5.4: Voltages and current shapes at injection point for the 6m rod with 

cross and star-shaped enhancements 
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5.5 Horizontal Earth Electrode  

The experimental test circuit which was described in Figure 4.5 in Chapter 4 shows the 

current source, the 88m bare conductor under consideration, the current return 

electrode (2.4m rod) and the remote reference potential electrode and cable. A current 

impulse of magnitude 2.375A with rise time of 5.2s is injected into 14m, 19m, 33, 53 

and 88m horizontal earth electrodes and the waveforms of earth potential rise (EPR) 

measured with the same injected current and rise-time values. Figure 5.5 shows a 

sample of the resulting waveforms which illustrates the impulse applied to different 

lengths of the horizontal earth electrode. It is clear from the figure that increasing the 

length of electrode reduces the maximum earth potential rise (EPR). For example, the 

measured voltage peak values at the injection point were 38.7, 32.8, 26.8, 26.8 and 

26.9V for 14m, 19m, 33, 53 and 88m respectively.  

However, it is clear that the peak voltages for all lengths of the horizontal electrode 

occur before the peak injected current, which indicates that the inductive behaviour is 

dominant. Therefore, a longer horizontal earth electrode leads to lower earth resistance 

but larger inductance of the test circuit. Furthermore, when the length of the horizontal 

electrode is increased from 33m to 88m, with no further reduction in the peak voltages 

is observed as the length increases, as explained in Chapter 2 at Section 2.6. This 

might be attributed to the effective length, and it can be verified by comparison with 

Equation (5.3) [5.34]. 

 

           (5.3) 
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Where: 

 : is the soil resistivity in m 

 : is the wave front time in sec 

 A is a constant factor which depends on the location of the injection current point and 

is equal to 1.4 for current injected at one end.  

A value of the 43m horizontal electrode was calculated the effective length using 

Equation (5.3) with a uniform soil resistivity of 180m and front time of 5.3s is 43m. 

Table 5.2 illustrates the peak values of current (A) and the voltage at the instant of 

current peak (V(@Ip)) at the injection point, for an injected current at all electrode 

lengths of 2.375A. The impulse resistance was calculated to be 9.2 for the 88m 

electrode by the ratio of V@Ip/Ip. This ratio remains roughly constant for all electrode 

lengths greater than 33m. Further shortening of the electrode causes an increase of the 

ratio. This means that the impulse resistance is limited by the effective length and no 

further reduction in the impulse resistance may be obtained by extending the electrode. 

Similar results have been reported by [5.35, 5.36].  

Table 5.2: Measured peak current and voltage at injected point 

Length of 

electrode(m) 

Ip(A) V(@Ip)(V) V@Ip/Ip 

14 2.375 38.14 16.1 

19 2.375 31.6 13.3 

33 2.375 23.11 9.7 

53 2.375 22.5 9.5 

88 2.375 21.9 9.2 
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Figure 5.5: Responses of horizontal electrodes of different lengths to a 5/12 s 

current impulse 
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and the impulse resistance was calculated by Equation (5.2). From this table, it is clear 

that an additional above-ground insulated conductor presents a small reduction for both 

the DC and impulse resistances. 

Table 5.3: DC and Impulse Resistance of Horizontal Electrodes 

Configuration DC resistance() Impulse resistance() 

43m bare only 8.4 9.5 

43m with above conductor 8.1 8 

88m bare only 4.73 7.5 

88m with above conductor 4.2 6.2 
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(b) 

Figure 5.6: Impulse responses of horizontal electrodes with and without above-

ground insulated conductors: (a) 43m length (b) 88m length 
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simulations of the 3.6m rod with 4-point cross and 8-point star enhancements. 

Considering the 3.6m rod only, the computed transient voltage impulse has a slightly 

lower peak magnitude compared with the measured value. However, for the 3.6m with 

enhancements, slightly higher magnitudes are predicted by the simulations. Overall, 

there is very good agreement between computed and measured values, and the small 

differences may be due to the uniformity of the stratified soil model used in the 

simulation model. 

 

 Figure 5.7: Transient response of the 3.6m vertical rod to an 11/36 current 

impulse with ‘cross’ and ‘star’ enhancements: Computed and measured values. 
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resistance tests with the longer rod. This results in lower earth potential rise (EPR) as 

discussed in Chapter 4. For the relatively slow-front current shape used in the tests, a 

predominantly resistive behaviour was obtained.  

Furthermore, the earth potential rise (EPR) of vertical rods with additional horizontal 

enhancements was measured. Significant reduction in earth potential rise (EPR) at the 

injection point is obtained when a 4-point cross or 8-point star is connected to the 

vertical rods. Further reduction in TEPR was realised with additional vertical rods 

installed at each ends of the horizontal enhancements, with a 6m vertical rod at the 

centre point.  

In addition, impulse tests on horizontal electrode of different lengths were conducted. 

The results showed that the EPR reduces when the length of electrode increases until it 

reaches a certain value which is attributed to the effective length.  

Experimental tests under impulse injection on the 43m and 88m horizontal earth 

electrodes with and without the above ground-insulated conductor were carried out. 

The results showed that the impulse resistance reduced when the horizontal earth 

electrode was enhanced with an above ground insulated conductor.  

Thus design given above is optimal because it presents minimal earth potential rise 

(EPR) for all length of rods close to the injection point compared to the rod only. In 

addition, reducing the earth potential rise means decrease the step and touch voltages 

near the injection point. Therefore, from the results in Chapter 4 and 5, using the rod 

with enhancements can be recommended to improve the behaviour of the earthing 

system at low, high frequency and impulse response. 

Computed results for the impulse response showed good agreement with measurement 

results.  
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CHAPTER SIX: IMPROVED VOLTAGE AND CURRENT DISTRIBUTIONS 

IN ENHANCED EARTH ELECTRODE SYSTEMS 

6.1 Introduction  

As reviewed in Chapter 2, many papers have attempted to analyse the current 

distribution of earthing electrodes by computer simulation [6.1-6.5] and in the 

laboratory [6.6, 6.7]. However, these analyses do not fully reflect the results of 

experimental investigations in the field, due to the complex current dispersal processes 

involved. This limits the suitability of computation and laboratory studies for 

validation purposes, because precise modelling of the earthing system in representative 

field conditions requires knowledge of both voltage and current distributions in non-

uniform soils. On the other hand, a few researchers have conducted current distribution 

experiments under impulse conditions in the field [6.8, 6.9]. However, these authors 

have studied the current distribution under impulse response for horizontal earth 

electrodes only. To the author’s knowledge, the current distribution in vertical and 

horizontal earth electrodes with enhancements under low/high-frequency and impulse 

conditions was not attempted before. 

In Chapters 4 and 5, a new technique to improve the performance of earthing system 

under high frequency and impulse response was proposed and investigated both 

experimentally and analytically.  

This chapter undertakes an investigation of the voltage and current distributions for 

two electrode systems installed at Cardiff University’s earthing test facility under high 

frequency/transient conditions compared with that at power frequency: (i) vertical 

earth rods of different lengths with horizontal electrode enhancements in cross 

formation, (ii) the long horizontal earth electrode with a parallel interconnected 
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insulated conductor. The measurement results obtained are compared with those 

obtained by computations.  

6.2 Experimental Setup 

Figure 6.1 shows a diagram of the experimental setup used for the first electrode 

system which comprises 1.2m, 2.4m, 3.6m and 4.8m-long vertical rod conductors. 

 

 

 

 

  

 

 

 

 

Five Lilco-58MH100 current transformers were installed at the junction point between 

the vertical and horizontal electrodes, as shown in Figure 6.1, to achieve current 

measurement for  the complete electrode system, the rod component and each of the 

branches (I1-I4) for the cross configuration. The electrode was energised using (i) a 

variable frequency source and (ii) a recurrent surge generator with the current return 

electrode located 100m away. The second earth electrode under test is a horizontal 
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additional above-ground insulated conductor For this electrode system, 5 Lilco-

58MH100 current transformers were installed, in turn, at each junction point (A to N) 

in order to obtain a picture of current distribution in the above-ground insulated 

sections and from this conductor to the bare underground conductor. A similar 

energisation and reference electrode arrangement was used for this electrode. The EPR 

(vertical rod or horizontal electrode) was measured with respect to a remote potential 

reference electrode installed at a distance of 100m from the injection point. To 

eliminate interference including mutual coupling effects, a Nicolet Isobe 3000 fibre- 

optic system was used to transmit the measurement signals to the recording 

instruments. This Nicolet fibre-optic (Isobe 3000) links have an input resistance of 1 

MΩ, and the transmitter has a selectable input range from 0.1 V, 1 V, and 10 V. 

 

 Figure 6.2: Plan and side views of horizontal test earth electrode with 

parallel insulated interconnected conductor: (a) plan view (b) side view 
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6.3 Test Results 

In this part, results from experimental tests to investigate the voltage and current 

distribution of different structure earth electrode under different low/high frequency 

and transient performance are presented. 

6.3.1 Frequency Response 

6.3.1.1 Vertical Earth Rod Systems 

Current distribution in the 2.4m-rod/4-point star earth electrode system is shown in 

Figure 6.3. With reference to the figure, it can be seen that the rod carries a very high 

proportion (220mA) of the total current (530mA) at low frequency with the horizontal 

electrode sharing the remainder in unequal portions. However, as the frequency is 

increased, the magnitude of the current flowing in the rod decreases quite significantly, 

while there is a general increase in magnitude of current in all the horizontal electrodes 

(note that the total injected current was maintained constant over the entire frequency 

range). Figure 6.4 shows the waveforms of current measured at the top of the rod and 

at the beginning of each horizontal enhancement under low and high- frequency. It is 

clear from the figure that the current waveforms at 52Hz and 1MHz are in agreement 

with the results in Figure 6.3. The measured DC earth resistance of the combined 

electrode system together with the values of the resistances of the individual elements 

are shown in Table 6.1. Table 6.1 confirms that, as expected, the majority of current 

flows through the rod at low frequency due to the rod’s much lower resistance 

compared with an individual branch of the cross electrodes. However, the reduced 

proportion of current flowing in the rod at high frequency is not as expected from a 

‘high-frequency earth electrode’ which is recommended to enhance horizontal 
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electrodes or earth grids [6.10]. These present tests indicate that the rod is more 

effective in distributing current at lower frequencies.  

Table 6.1 Measured earthing resistance of different configurations 

Configuration 
DC Resistance() 

2.4m rod 4.8m rod 

Rod with cross 25 23 

Rod only 58 35 

Cross only 34 38 

Cross branch 1(R1) 104 115.4 

Cross branch 2(R2) 103 113.2 

Cross branch 3(R3) 93 92.5 

Cross branch 4(R4) 98 104.3 

 

Current distribution in the 4.8m-rod/4-point star earth electrode was also measured, 

with results as shown in Figure 6.5. A current of 553mA was injected at all 

frequencies. As can be seen from the figure, roughly 60% of injected current flows into 

the 4.8m rod, which is higher than the current which flowed into the 2.4m rod at low 

frequency 10Hz, while 9%, 8%, 12% and 11% of injected current value flows into 

cross branches R1, R2, R3 and R4, respectively. However, at 1MHz, only about 38% of 

the injected current flows into the rod, with between 12% and 20% in cross branches.  

The measured DC earth resistance of the 4.8m-rod/4-point star earth electrode, the 

values of the resistances of the individual elements and 4-point cross are also shown in 

Table 6.1. As expected, when the resistance of the rod decreases, most of the current 

flows through the rod at low frequency compared with an individual branch of the 
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cross electrodes. Despite a doubling of the rod length, a higher current was still shown 

to flow in the cross branches compared with the rod at high frequency. 

 

Figure 6.3: Current distribution in the 2.4m rod-horizontal cross electrode 

formation 
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(b) 

Figure 6.4: Alternative current distribution between individual 2.4m rod and 

horizontal cross electrode formation at: 10Hz; b) 1MHz 

 

Figure 6.5: Current distribution in the 4.8m rod-horizontal cross electrode 

formation 
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6.3.1.2 Horizontal Earth Electrode Systems 

Simulations were carried out using CDEGS-HIFREQ software [6.11] based on the 

actual dimensions of the test electrode and an equivalent two-layer soil model (top 

layer 180m to 9m, bottom layer 70m), as shown in Figure 6.6.  

In order to investigate the current distribution in the insulated and bare sections of the 

horizontal electrode system shown in Figure 6.2, reference test was first carried out on 

only the bare horizontal conductor. Several test frequencies were used ranging from 

52Hz to 100 kHz. Different currents were injected under low frequency (52Hz) and 

high frequency (100 kHz) at one end with 642mA and 109mA respectively. The 

current and voltage distributions along the electrode are shown in Figure 6.7 and 

Figure 6.8 at 52Hz and 100 kHz respectively.  

As can be seen from the figure, the current dissipates more rapidly with conductor 

length at high frequency compared with power frequency. Moreover, regarding the 

voltage distribution, the voltage is constant for power frequency (52Hz), as shown in 

Figure 6.7, and this might be due to the relatively low series inductive reactance at this 

frequency. On the other hand, reducing exponentially in magnitude along the length of 

the earth electrodes for the high frequency (100 kHz) due to the inductive effect of the 

horizontal electrode (see Figure 6.8). As can be seen from the Figure 6.7 and 6.8, quite 

close agreement are obtained between measured and simulated current and voltage 

distributions (see). 

The variable frequency test was repeated for the complete electrode system shown in 

Figure 6.2 which includes the additional insulated parallel conductor bonded to the 

bare underground horizontal earth electrode. The test results reported in Figure 6.9 

correspond to a 52Hz current injection. From the figure, it can be seen that the 
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potential distribution along the horizontal electrode is constant due to the relatively 

low inductive reactance at this frequency and the current flowing from the insulated 

conductor to the buried bare conductor, (I3), which is distributed reasonably evenly 

over the length. Variations in section length and soil resistivity along the conductor 

will, however, influence the distribution.  

The test results corresponding to an injection frequency of 100 kHz are shown in 

Figure 6.10. At this higher frequency, it can be observed that both the voltage and 

current distributions in the insulated conductor show a fall in magnitude along the 

length of the conductor. However, the magnitude of the current flowing from the 

insulated conductor to the bare conductor, I3, is of the same order at each intersection.  

The test circuit in Figure 6.2 was simulated by CDEGS software, as shown in Figure 

6.11.  

Figure 6.12 shows the schematic circuit diagram for the 88m horizontal electrode 

under 100kHz and compared with the computed results. Here, the percentages of 

current flowing into the above ground conductor are roughly 59% and 58% of the 

measured and computed results, respectively. In general, the addition of an above 

ground conductor changes the current distribution with respect to that of the bare 

electrode alone (see Figure 6.8), resulting in a reduced current concentration close to 

the point of injection. In addition, the computed values are reasonably close to the 

measured values, with some difference between measured and computed results which 

might be attributed to the soil resistivity estimate used in the simulation. Moreover, the 

variations in the current dissipation over the length of the 88m horizontal electrode 

might be due to the variations in the soil resistivity along the bare conductor.   
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Figure 6.6: CDEGS simulation for the 88m horizontal earth electrode 

 

Figure 6.7: Current and voltage distributions at 52Hz along 88m bare electrode  
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Figure 6.8: Current and voltage distributions at 100 kHz over 88m bare electrode 

length  

 

 

Figure 6.9: Current and voltage distributions at 52Hz along 88m electrode with 
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Figure 6.10: Current and voltage distributions at 100 kHz along 88m electrode 

with parallel insulated conductor 

 

 

Figure 6.11: CDEGS simulation for the 88m bare with insulated conductor 
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6.3.2 Impulse Response 

6.3.2.1 Vertical Rods /4-Point Star Earth Electrode System 

Low voltage impulse tests were carried out on the rod electrode with the horizontal 

cross as shown in Figure 6.1. The measured peak total injected current was 0.81A with 

a rise time of 4.7s, and the peak EPR was measured at 20.9V. Figure 6.13 shows the 

current distribution at each arm of the 4-point cross and in the 2.4m vertical rod. The 

measured impulse response is closer to that measured under variable frequency tests 

with the majority of current flowing in the rod and remainder shared reasonably 

equally between the horizontal conductors. The proportion of peak current flowing in 

the rod is approximately 35% of the total current.  

The current distribution of the 3.6m-rod/4-point star earth electrode is shown in Figure 

6.14. As can be seen from figure, the largest proportion of injected current disperses 

into the path of least resistance, with the rod exhibiting the lowest resistance of all the 

electrode components. Roughly, 40% flows into the rod, while 13.6%, 14.8%, 13.8% 

and 18.3% of the injected current flows into the other four cross branches. 

Figure 6.15 shows the current distribution of the 4.8m-rod/4-point star earth electrode. 

The measured peak current magnitude was 1.02A with a rise time of 3.7s, and the 

peak EPR was measured at 21.4V. As expected, increasing the length of the rod 

electrode caused a reduction in the earth resistance, which was reflected in an increase 

of the current flowing into the 4.8m rod. Approximately, 46% of the injected current 

value flows into the 4.8m rod, while between 15% to 19% flows into cross branches.  

Table 6.3 illustrates the comparison between the computed and measured results of the 

impulse current distribution for the 2.4m-rod/4-point star earth electrode. It can be 

observed that, for the simulation results, the current is the same in all four arms of the 
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star. However, the measured currents in each conductor of the rod-cross configuration 

exhibit an imbalance, which indicates that the numerical simulation does not fully 

model the localised current dispersal processes in the soil. 

 

Table 6.3 Comparison between measurement and simulation results 

  Current (A) 

Configuration Current Measured CDEGS 

2.4mrod with4-

point star  

IRod 0.27 0.36 

I1 0.12 0.11 

I2 0.13 0.11 

I3 0.15 0.11 

I4 0.13 0.11 

 

Figure 6.16 shows the current distribution of the 2.4m-rod/8-point star.  The test setup 

was shown in Figure 6.1. The impulse current has a rise time of 15 s and a time to 

half value of 36 s, with a peak value of 1.5A. A current of 0.23A (23% of the injected 

value) was found to flow into the 2.4m rod, while 1.27A flowed into the 8 horizontal 

electrode enhancements. Generally, the currents measured in the star branches were 

not equal and they are dependent on the value of the soil resistivity immediately 

surrounding each branch of the 8-point star.    
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Figure 6.13: Current distribution in the 2.4m rod-horizontal cross electrode 

formation under impulse 

 

 

Figure 6.14: Current distribution in the 3.6m rod-horizontal cross electrode 

formation under impulse 

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0 4 8 12 16 20 24 28 32 36 40

C
u

rr
e

n
t 
(A

)

Time (s)

I3

I1

I2

I4

Irod

0

0.11

0.22

0.33

0.44

0.55

0.66

0 6 12 18 24 30 36 42 48 54 60

C
u
rr

e
n

t 
(A

)

Time (s)

Irod

I4
I2

I3
I1



130 

 

 

Figure 6.15: Current distribution in the 4.8m rod-horizontal cross electrode 

formation under impulse 

 

Figure 6.16: Current distribution in the 2.4m rod-horizontal star electrode 

formation under impulse 
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6.3.2.2 Horizontal Earth Electrode with and without Enhancement 

Impulse tests were carried out on the 88m counterpoise at the test site. A current 

impulse of magnitude of 4.7A and a wave shape of 7.8/24 s was injected into the 88m 

horizontal electrode. Typical applied impulse current and resulting EPR waveforms at 

the injection point (point A) are shown in Figure 6.17. The significant influence of the 

electrode inductance is indicated during the front of the impulse by a sharp rise in 

electrode voltage. The impulse resistance (V@Ip/Ip) of the 88m horizontal electrode 

was calculated to be 7.5.  

The impulse currents and voltages were measured at 12 points along the 88m 

horizontal electrode, but only 7 points are shown in Figure 6.18. From Figure 6.18, it 

can be seen that the current impulse magnitude is attenuated and a change in the rate of 

rise occurs. This is due to the current being dispersed into the ground as the impulse 

propagates along the electrode. The time delay in the current wave front at 1m, 10m, 

33m, 43m, 53m, and 68m is attributed to the surge travel time.   

The current is seen to disperse over those electrode sections nearest the point of 

injection. Moreover, in the first 10m of the 88m bare horizontal, 14.7% of the injected 

current is dispersed into the ground, whereas in 33m, 43m, 53m and 68m long, the 

amounts of current dissipated are 50.7%, 61.34%, 69.3%, and 82.7%, respectively. It 

was found that the current dispersed into the ground is not equal, the majority of the 

current being dispersed in the first 10m of the horizontal electrode. 

Similarly, the amplitude of the voltage transient along the electrode shows a reduction 

with increasing length, and there is a change in the wave shape at both front and tail, as 

shown in Figure 6.19. The percentage reductions in EPR are 3.44% at length 1m, 
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20.7% at length 10m, 44.82% at length 33m, 50% at length 43m, 56.9% at length 53m 

and 61.2% at length 68m. It was shown that the reductions in EPR are non-uniform. 

Figure 6.20 shows the distribution of peak current, measured using CTs at different 

locations along the 88m horizontal electrode. The currents are normalised to the peak 

current at the injection point (Iinj), for injected impulse currents having amplitudes 

1.31A and 9.4A, with rise times of 2.5s and 17.25s respectively. The results indicate 

that for a horizontal electrode alone, a greater proportion of the total current is 

dissipated over those sections of the electrode closest to the injection point. In 

addition, the results obtained with a current rise time of 2.5s showed a sharper 

decrease when compared with having slower rise-times. Similar trends were reported 

by Ahmeda [6.8]. 

In order to understand how the shape of the impulse current affects its dissipation into 

the ground, the current distribution rate as a function of different rise times is shown in 

Figure 6.21. The average current dispersion was computed from the peak current at 

each junction of the 88m horizontal electrode. For example, the magnitude of the 

current dispersed in the 0-10m section was calculated using the difference between the 

current peak at the injection point and that measured at the 10m node. As can be seen 

from Figure 6.21, for the fastest rise time, the maximum value of the dispersed current 

at section 0-10m is 0.54A, approximately 37% larger than the dispersed current at 

sections 10-19m and 19-33m, and 63.43% larger than the remaining sections. It is 

likely that the lateral variation of the soil resistivity along the 88m horizontal electrode 

gave rise to different peak currents and dispersal of currents into the soil, as explained 

in section 3.7 which showed that the localised soil resistivity is different with vicinity 

where the horizontal electrode is buried.  For the slow rise time, most current was 

dispersed near the injection point, and the highest current was dissipated between node 
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0 and 10m with a magnitude of around 1.26A, while the last section extending between 

nodes 53 and 68m was only 0.9434 and approximately 75% less than the current 

dissipated at the first section.  

Impulse tests were carried out on the 88m counterpoise with the insulated conductor 

enhancement for an injected current magnitude of 3.71A and a rise time of 5.7s as 

shown in Figure 6.22. From the figure, the peak voltage rises sharply and occurs 

before the current peak, which indicates the influence of the electrode inductance. The 

impulse resistance (V@Ip/Ip) was reduced from 7.1 to 6 through the introduction of 

the enhancement.  

Figure 6.23 shows the voltage and current distributions for the 88m bare conductor 

with the above-ground insulated conductor. As can be seen in Figure 6.23, the voltage 

and the current in the insulated conductor reduce with distance along the conductor. 

The current flowing from the insulated conductor to the bare conductor, I3, is well 

distributed along the conductor length. The results indicate that, the voltage and 

current distributions are similar to those seen with the variable frequency injection at 

100 kHz. Therefore, the addition of an above ground insulated conductor to the bare 

horizontal conductor can reduce the current dissipation near the injection point, 

compared with using the horizontal electrode alone.  
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Figure 6.17: Measured voltage and current at injection point of the 88m 

conductor length  

 

 

Figure 6.18: Examples of impulse current waveforms measured at points 1m, 

10m, 33m, 43m, 53m and 68m 
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Figure 6.19: Examples of voltage waveforms measured at points 1m, 10m, 33m, 

43m, 53m and 68m 

 

Figure 6.20: Normalised peak current distribution over the 88m electrode length 
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Figure 6.21: Current distribution as function of various rise times of the injected 

impulse current in six sections of the 88m horizontal electrode 

 

 

Figure 6.22: Measured voltage and current shapes at the point of injection (88m 

horizontal electrode with parallel insulated conductor)  
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Figure 6.23: Peak current and voltage distributions along 88m horizontal 

electrode with insulated conductor enhancement 

 

The measured and computed for the circuit arrangement given in Figure 6.11 results of 

the current distribution under low current impulse for the 88m horizontal electrode are 

shown in Figure 6.24. The results indicate that the current flowing in the above ground 
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conductor had a significant effect on the current distribution, and helps the current to 
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above ground conductor is that the current dispersed near the injection point is much 

lower than the current dissipation for the bare conductor only, which in turn serves to 

minimise the EPR at the injection point. Also, the current dispersed per metre along 

the 88m horizontal electrode was calculated, and the results showed that the current 

dispersed into the soil depends on the value of the soil resistivity surrounding the 

conductor. As can be seen, the computed results show a reasonable agreement with the 

measured results.  
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6.4 Conclusions 

Experimental tests were carried out to investigate current distribution in three earth 

electrode systems. In the case of the 2.4m rod with an added ‘4-cross’ horizontal 

conductor enhancement, it was shown that the rod carries the majority of the current at 

low frequency, but this proportion decreases significantly as frequency increases. 

Accordingly, the addition of horizontal enchantments was found to be optimum design 

of earthing systems due to the dissipation current improved at low and high frequency 

ranges compared with the rod only. Therefore, the author recommends using the rod 

with enhancements to avoid any obstruction of the current to dissipate in to the ground 

under high frequency and impulse performance. 

The low voltage impulse test results show similar trends of current distribution to those 

seen under high frequency. The results presented are not in agreement with the 

industrial standard reference of the rod satisfying the role of a ‘high-frequency earth 

electrode’.  

Current distributions tests on an 88m horizontal earth electrode with the insulated 

conductor enhancement reveal that current distribution is modified by the presence of 

the insulated conductor. As expected, the insulated conductor allows a uniform 

distribution of current from the insulated conductor to the bare conductor at low 

frequency. However, the voltage distributions along the horizontal electrode were 

constant due to the resistive nature of the electrode. At high frequency (100kHz) and 

under current impulse injection, the current magnitude in the intersections between the 

insulated conductor and the bare conductor is well distributed along the conductor 

length although the voltage and current in the insulated conductor falls with distance 

due to the inductive effect. 
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The best earthing system designs minimise the current dissipation at low/high 

frequency and transient conditions near the injection point. This can be achieved by 

increasing a current path by installing the insulated parallel conductor with bare 

conductor.   

The comparison between the measurement and simulation results software carried out 

in this chapter, the computed showed that the currents were uniform for all cross 

branches. However, there were unsymmetrical values in the measurements results of 

the 2.4m rod/ 4-point star electrode. For the 88m horizontal electrode, it was shown 

that the measurement results are in good agreement with the simulated results. 

However, some disparities between the measurement and simulation results are 

expected due to the use of a simplified soil model.  
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CHAPTER SEVEN:  HIGH CURRENT IMPULSE CHARACTERSTICS OF 

ENHANCED ELECTRODE SYSTEMS 

7.1 Introduction  

A comprehensive review of the frequency and transient response was presented in 

Chapter 2. Many authors have investigated the behaviour of earthing systems subjected 

to high impulse current, using both field measurements [7.1-7.4] and laboratory tests 

[7.5-7.9]. However, field tests are commonly performed in non-uniform soil structures 

with both lateral and vertical variations in resistivity, and these conditions are difficult 

to reproduce in the laboratory. In general, the conclusions of these investigations 

attribute the reduction in electrode earth resistance at high impulse current magnitudes 

to soil ionisation. While the high current impulse performance of vertical rod 

electrodes has been widely explored and documented, comparative tests on rods with 

horizontal enhancements have not been performed to date.   

In Chapters 4 and 5, the frequency and transient performances of earthing systems 

were studied both experimentally and analytically, and new developments were 

suggested to improve their performance. 

 In this chapter, extensive simulations using computer software to investigate the touch 

and step voltages prior to field tests are presented. Moreover, high impulse current 

tests have been performed, in which currents up to 7kA were injected into vertical 

electrodes with and without additional horizontal enhancements. Non-linear soil 

conduction effects are obtained, and some soil ionisation breakdown phenomena are 

explored and compared with other work. 
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7.2 Computer Simulations  

To ensure the safety of test personnel, site employees and members of the public in the 

vicinity of the test location, computer simulations were performed using CDEGS 

software [7.10] prior to high voltage tests to determine the worst-case EPR and step 

voltage contours, and to identify any hazardous touch potentials developed by exposed 

metalwork at the site perimeter. Figure 7.1 shows the CDEGS models of the test circuit 

using horizontal and ring current return electrodes.  

  

 
(a) Horizontal current return  electrode 

Rod Electrode: 

Dia:14mm 

Length:1.2m 

 

 

Club 

House 

Inside Profile 



143 

 

 
(b) Ring current return electrode 

Figure 7.1: Physical layout of the simulated test 

configurations 

 

7.2.1 Fence Touch Voltages 

Figure 7.2 illustrates the computed transient peak touch voltages for persons standing 

1m from the perimeter fence (both inside and outside the field), for a 200kV, 1.2/50 

impulse. Use of the ring electrode reduces the worst case touch voltages from 4.5kV to 

600V for persons inside the perimeter, and from 2.2kV to 600V for persons outside, 

which is acceptable according to BS EN 50522-2010[7.11], as shown in Figure 7.3. 

The touch voltage profiles are depicted in Figure 7.2. The magnitude of transferred 

potentials towards the clubhouse is also reduced.  

 

Outside Profile Inside Profile  
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Figure 7.2: Peak Touch voltage profiles at 1m either side of perimeter fence line 

for both return electrode arrangements 

 

 

Figure: 7.3 Tolerable touch voltages (Reproduced from reference [7.11]) 
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7.2.2 Step Voltage and EPR Contour Maps 

Figure 7.4 shows the step voltage maps for both circuit configurations. It can be 

observed from the figure that, using the installed linear horizontal electrode, transient 

step voltages in excess of 2kV peak are developed beyond the boundary fence, rising to 

4kV at the location of the source. However, using the ring electrode, positioned 20m 

from the fence line at its closest point, step voltages beyond the perimeter are limited to 

a peak value of less than 200V. Figure 7.5 shows the simulated earth potential rise 

(EPR) (relative to remote earth) for both test configurations. Using the existing 

horizontal electrode, the 5kV EPR contour near to the source extends beyond the fence 

line, giving rise to the large transfer touch potentials computed in section 7.2.1. By 

installing a ring electrode as far away as possible from the boundary, the EPR at the 

fence and transferred touch potentials can be minimised. It is observed that a distortion 

of the equipotential contours occurs due to the position of the source on the ring. The 

EPR can be seen to roll off most rapidly in the direction perpendicular to the current 

injection lead. It is suggested that the current injection lead should be arranged 

perpendicular to the fence line where possible. From the simulation results using 

CDEGS software, it can be said that, using the ring electrode as the current earth 

electrode, a reduction in the earth potential rise (EPR), step and touch voltages is 

obtained at the fence compare with the case when a  horizontal earth electrode is used. 
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(a) Horizontal current return 

 

 

 
(b) Ring current return  

Figure 7. 4: Step Voltage Contour Plots for 200kV impulse test  
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(a) Horizontal current return 

 

 

                                 (b) Ring current return  

Figure 7.5: EPR Contour plots for 200kV impulse test  

200kV Source 
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7.3 Test Setup 

The experimental setup consists of an impulse voltage generator (IG) with maximum 

output of 200kV, used to generate a high impulse current up to 10kA, its charging unit 

is supplied from a 25kVA diesel generator. The high impulse current was generated by 

connecting the two, low inductance (0.25H), resistor in parallel. A 4.8k tail resistor 

was used to obtain the required waveform tails. A 30m current injection line connects 

the impulse generator to the electrode under test, suspended from wood poles to a 

height of 1.6m as shown in Figures 7.6 and 7.7.  The earth potential rise (EPR) at the 

top of the 1.2m, 2.4m, 3.6m and 4.8m vertical rod earth electrodes were measured with 

reference to a remote potential imported via a second transmission line using a 

capacitive divider having a ratio of 2000:1. The remote potential reference lead was 

arranged orthogonal to the current injection path so as to minimise circuit coupling. 

The current was measured using a current transformer (CT) (Lilco) with a 50MHz 

bandwidth, 0.01V/sensitivity and a peak impulse current rating of 50 kA. Following 

the initial safety simulation studies in Section 7.2, a bare copper ring earth electrode 

was installed to act as a concentric current return electrode. The ring conductor has a 

length of 188.5m and a cross sectional area of 20mm
2
, and is buried to a depth of 30 

cm, with eight junction boxes allowing reconfiguration and current measurement in the 

electrode segments. Figure 7.7 shows the excavation work undertaken prior to laying 

the ring electrode at Cardiff University test site in Llanrumney.  

A developed wireless data transmission system was used and located at the electrode 

under test with data acquisition achieved using a real-time PC integrated digital storage 

oscilloscope. A PC-based oscilloscope was configured with a wireless LAN adapter 

and antenna for communication via a point-to-point link with a control laptop/PC 

located inside the equipotential working zone established in the equipment trailer. A 
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remote desktop server (Tight VNC) was installed on the oscilloscope, and remote 

control of the scope and established by means of the associated client running on the 

control PC.  

To accommodate the relatively long distances, and based on preliminary on-site tests, 

long range wireless LAN adapters were adopted at both ends to achieve high-reliability 

data transfer. The main advantage of this system is the inherent electrical isolation 

achieved between equipment at the test electrode and the control desk at the test trailer 

[7.12].  

Prior to commencing the high current tests, the DC resistance of the rod and ring 

electrodes was measured using the four pole method by means of a MEGGER DET2/2 

resistance meter. The equivalent low-current impulse resistance was determined using 

a Haefely recurrent surge generator. These measurements are summarised in Table 7.1. 

It can be observed that from the table, the dc resistance decreases with an increase in 

rod length, and only slight differences between the impulse and the dc resistances of 

each earth rod. Could be seen the readings of the dc resistance values of the vertical 

rods in Chapter 4 are found to be significantly lower at this location, which was 

attributed to localised variation in the soil structure and resistivity, changes in soil 

moisture content and temperature. According to [7.13, 7.14], the earth resistance of the 

current return electrode must be significantly lower than the earthing electrode under 

test. The ring electrode was found to have a dc resistance at least an order of magnitude 

smaller than that of the test electrode, which helps to minimise the EPR occurring at 

the chassis of the impulse generator.  
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Table 7.1: Measured DC and Impulse resistances of rod electrodes 

Rod length (m)  2.4 1.2 2.4 3.6 4.8 Ring 

DC resistance ()  106.2 184.4 106.2 74.4 58.6 3.85 

Rimp ()  104.4 183 104.4 69 54.2 4.73 

 

 

Figure 7.6: High-current field test configuration   
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Figure 7.7: High current impulse generator at the field site 

 

 

Figure 7.8: Installation of the 188.5m ring electrode at Llanrumney test site 

 

Ring electrode 
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7.4 Investigation of Soil Ionisation Under Impulse Conditions 

Impulse tests were conducted for increasing current magnitudes on 1.2m, 2.4m, 3.6m, 

4.8m rod electrodes, and up to 3.6m rod with 8-point star at Cardiff University 

earthing test facility.  

7.4.1 Impulse Tests on Vertical Rods 

Extensive measurements were carried out on 1.2m, 2.4m, 3.6m and 4.8m vertical 

electrodes at the field test site: firstly, for low current DC and impulse, and then for 

high impulse currents up to 7kA. Each rod has a diameter of 14mm and installed into 

two layer soil resistivity at Cardiff University earthing facilities.   

Figure 7.9 shows the voltage and current recordings for the tests on the 4.8m rod. 

Impulse test result for the rod electrode shows that a second current peak occurs after a 

short time delay, due to the breakdown of soil in the ionised region surrounding the 

electrode. Therefore, it is important to investigate the aspect of inception time (Ti) and 

introduce another new value, time to second peak [7.15], as shown in Figure 7.9. As 

can be seen from the figure, the indication of the soil ionisation occur at the inception 

time (Ti) corresponding to inception current Ipi and voltage Vpi. After ionisation starts, 

current increases and is accompanied by a sharp fall in voltage. Table 7.2 presents the 

comparison of amplitude of voltage reduction (V), the ionisation times and earth 

resistance magnitudes obtained at low and high voltage for the 4.8m vertical electrode.  

There are two different current peaks which can be used to define two different 

resistances. The pre-ionisation resistance (R1) corresponds to the soil properties prior 

to the influence of soil ionisation [7.16]. It represents the pre- breakdown behaviour of 

the electrode resistance and is subject to thermal effects. Additionally, the pre-

ionisation resistance decreases with increasing current magnitude, which may be due 
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to non-linear thermal effects in the soil. The post-ionisation resistance (R2) is a 

measure of the effective electrode resistance following soil breakdown [7.16]. The 

resistances R1 and R2 can be calculated by using the following equations [7.17]: 

 

   
     

   
           (7.1) 

   
     

   
           (7.2) 

 

Where, V@Ip1 is the voltage at the instant of the first current peak and V@Ip2 is the 

instant of the voltage at the second current peak. From theses equations, the inductive 

effect is eliminated in these results at the instant of peak current, di/dt=0. As can be 

seen from Table 7.2, the pre-ionisation resistance R1 falls slightly in comparison to the 

dc resistance. By contrast, a significant reduction in R2 is observed, which may be 

attributed to a fully developed and highly conductive ionised region in soil. 
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Figure 7.9: Measured results of voltages and applied currents of the 4.8m earth 

rod electrode 

Table 7.2: Measured the time of ionisations, V, Rdc and Rimpulse of test 4.8m 

electrode 

Rod length (m) 4.8 

RDC () 58.6 

V (kV) 8 

Ti(s) 6 

T2(s) 10 

Ip1 (A) 640.7 

Ip2(A) 722.6 

V1@Ip1 (kV) 33.4 

V2@Ip2 (kV) 25.7 

R1() 52.1 

R2() 35.6 

Difference between RDC and R1 (%) 11.1 

Difference between RDC and R2 (%) 56.3 
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7.4.2 Impulse Resistance Characteristics  

Figure 7.10 shows the impulse resistance values obtained for different applied 

voltages. As can be seen from the figure, the impulse resistance values (R1) are close to 

the dc earth resistances at the lowest applied voltage. However, the earth resistance 

values were found to decrease slowly when the current magnitudes increased which 

might be due to the soil ionisation behaviour of the earthing system under high impulse 

current. This reduction of the impulse resistance was also reported in the literature 

[7.14-7.21]. The authors [7.8, 7.19] attribute this reduction to thermal processes, where 

the temperature of the soil is increased by I
2
R (heating the soil), reducing the soil 

resistivity and hence the overall earth resistance.  However, the post-impulse resistance 

R2 decreases gradually to an asymptotic value as the current increases, eventually 

becoming independent of the current. This trend in the relationship between impulse 

resistance (R2) and current may be due to the formation of an increasingly uniform 

hemispheric at ionisation region. As the current increases from 125A to 6.8kA, the 

impulse resistance falls by 94% for a 1.2m rod, 91% for a 2.4m rod, 87% for a 3.6m 

rod and 81% for a 4.8m rod, thus exhibiting similar results to those observed in 

previous research work [7.18- 7.22]. 

The impulse resistance was calculated as the percentage of the DC resistance of earth 

electrodes up to 4.8m as shown in Figure 7.11. It was observed that the percentage 

reduction of the resistance R1 values, were found to decrease slightly with increasing 

length of earth electrodes at current magnitudes up to 641A. However, this fall in 

resistance R2, increases markedly for the earth rod which has the highest Rdc (1.2m 

rod) which indicates that the fall of earth resistance can be linked to its DC earth 

resistance.  
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Figure 7.12 shows the time variation of the ratio of instantaneous voltage and current 

(dynamic resistance) Rimp(t) (Vi(t)/Ii(t)) for the 4.8m rod. Prior to the non-linear region, 

the dynamic resistance presents a value of around 53, which is nearby equal to the 

DC resistance shown in Table 7.2 for the 4.8m rod. Following ionisation, the 

resistance sharply drops from its DC resistance value with strong dependence on the 

applied current. After the first peak of impulse current, the new lower resistance is 

obtained for most of the duration of the impulse, indicating that the ionisation region 

as expanded to its maximum and then decaying at much slower rate as the current 

magnitudes falls to zero. 

 

 

Figure 7.10: Measured impulse resistances of 1.2m, 2.4m, 3.6m and 4.8m rod 
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Figure 7.11: Measured impulse resistances of 1.2m, 2.4m, 3.6m and 4.8m rod with 

current magnitude 

 

 

Figure 7.12 Time variations of the 4.8m vertical electrode impulse resistance 
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7.4.3 Vertical Earth Electrodes with Horizontal Enhancements  

The horizontal enhancements were bonded with the vertical earth electrodes to reduce 

the earth potential rise (EPR) and investigate the behaviour of the soil ionisation. The 

horizontal enhancements were buried at a depth of 30cm; each horizontal electrode has 

length of 1m and diameter of 8 mm. Impulse currents up to 2.4A magnitude with 

different rise times were injected into rods with 8-point star enhancement.  Table 7.3 

shows the DC and impulse resistances of the enhanced vertical electrodes. The impulse 

resistances of the electrodes were calculated by Equation (7.3) [7.15]: 

 

     
    

  
           (7.3) 

As can be seen from the table, the dc resistances for all configurations are close to the 

impulse values. Figure 7.13 shows the effect of additional horizontal enhancements on 

the impulse resistance of the vertical rods. It is clear from the figure that the percentage 

decrease in impulse resistance in comparison with the rod alone is small. This small 

reduction is due to current division between the horizontal enhancements and the rod. 

As can be calculated from Equations (7.4) and (7.5) [7.18], due to the increased 

surface area of earth electrode, a lower current density (Jc) is developed which reduces 

the critical field intensity (Ec), and hence, no non-linear behaviour was observed in the 

electrode resistance.  Soil ionisation can thus be said to have the greatest effect with 

short electrodes having small surface area.  

                (7.4) 

   
  

 
            (7.5) 
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Table 7.3: Measured the dc resistance of the vertical rods with additional 

horizontal enhancements 

Configuration DC resistance () Impulse resistance Rimp() 

1.2m rod with 8-point star 56.6 53.3 

2.4m rod with 8-point star 51.3 51.4 

3.6m rod with 8-point star 42.6 42.1 

 

 

 

Figure 7.13: Variation of impulse resistance with current magnitude for 1.2m and 

3.6m rod with and without horizontal enhancements 

 

7.5 Conclusions  

High current tests on practical grounding electrodes have been performed at the 

Cardiff University earthing test facility. As a precursor to the field tests, extensive 

computer simulations using CDEGS were undertaken which showed that, by 
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rod electrodes up to 4.8m in length subjected to impulse currents of low and high-

magnitude have been studied. At low current magnitude, the impulse and DC 

resistances of vertical electrodes were found to have slightly different values. 

Generally, the impulse resistance of all vertical electrodes decreases with increasing 

current magnitudes. This fall in impulse resistance was attributed to two different 

factors affecting the soil medium. When the impulse current increases, the conductivity 

of the soil increases, therefore, the resistivity of the soil reduces.  Above a certain level 

of voltage applied, the ionisation process starts to take place leading to a further 

reduction of the impulse resistance as the ionisation region expands. The largest fall in 

impulse resistance was obtained for the shortest vertical rod having the largest low-

current DC resistance, as only a relatively small current is required to initiate soil 

ionisation. Vertical electrodes with horizontal enhancements, by contrast, showed only 

small reduction due to their large surface area. Finally, to demonstrate a reduction in 

the impulse resistance of enhanced vertical electrodes for both low and high current 

magnitudes, the addition of horizontal enhancements is recommended as the best 

earthing design. 
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CHAPTER EIGHT: GENERAL DISCUSSION AND CONCLUSIONS  

 

8.1 CONCLUSIONS 

An extensive review of the behaviour of earth electrode systems under high frequency 

and transient conditions has been carried out; revealing that at low frequencies, the 

earth impedance of electrodes is broadly frequency independent, and practically equal 

to the power frequency resistance. At high frequencies, the earthing impedance is 

entirely frequency dependent. Much of the previous experimental work has been based 

on laboratory tests with restricted space requirements, and no established technique is 

as yet available for investigating experimentally the performance of the different 

lengths of vertical earth electrodes with 4-point/8-point star enhancements under 

variable high frequency and impulse conditions. Published works have determined that 

the behaviour of earth electrodes subjected to transients is different to that observed at 

power frequency, high lightning that the impulse resistance of an earth electrode 

differs from its power frequency resistance. The impulse resistance of an earth 

electrode depends on a number of factors, such as electrode geometry, peak value and 

of rise time of impulse current. 

An extensive soil resistivity survey has been performed at the Llanrumney test facility, 

and results exhibiting similar trends were obtained using different instrument types. 

The soil resistivities in the vicinity of vertical and horizontal earth electrodes were 

investigated prior to installations, and 2D inversion software used to obtain the soil 

resistivity sections. 

The measured DC resistance of vertical rods was found to decrease with increasing of 

rod length. The measured DC resistance of the short vertical rod was also found to 

vary seasonally due to soil resistivity variations over the period of the study. Thus, 
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changes in the earth resistance/impedance should be taken into account when 

designing an earthing system for use at a particular location. 

The measured earth impedance characteristics of vertical rods up to 6m in length 

indicated that short earth electrodes present a small reduction in the earth impedance at 

low frequency. It was found that, at high frequencies, the capacitive effect is dominant 

for short electrodes while the inductive effect dominates for the long earth electrode. 

The computed results show a good agreement with the measurements in low frequency 

range, but they overestimate the resistance/impedance at high frequency. This was 

attributed to the uniform single-valued estimate of the soil resistivity used in the 

simulation, which does not fully represent the localised variations in soil resistivity at 

the test site.  

Work was carried out to improve the earth electrode performance under high 

frequencies up to 10MHz. The field tests reveal that the addition of horizontal 

enhancements to vertical earth electrodes can be an effective way to reduce the 

earthing resistance/impedance across the entire frequency spectrum.   

In addition, the effective length of the 88m horizontal electrode was determined by an 

empirical formula reported in literature. The impulse results show that increasing the 

length of the electrode to 6m leads to a reduction in the earth potential rise (EPR).  

Coincidence of the instants of voltage and current peaks for all rod lengths indicates a 

predominantly resistive behaviour.  

A significant reduction in the earth potential rise (EPR) at the injection point was 

achieved with the addition of horizontal enhancements to vertical ground rods buried 

in non-uniform soil at the field test site. The measured impulse response of vertical 

electrodes configurations with and without 4-point/8-point star electrodes were 
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compared with computations, and found to be in satisfactory agreement. It was also 

experimentally demonstrated that the impulse resistance of a horizontal earth electrode 

decreased in the presence of an interconnected insulated above-ground conductor. 

It was shown that significant current flows into a rod at low frequency due to the rod’s 

resistance being much lower than that of the individual branches of the cross 

enhancement. Conversely, only a small proportion of the current flows in the rod at 

high frequency, indicating that results may not be in agreement with the industrial 

standard reference of the rod satisfying the role of a ‘high-frequency earth electrode’.  

In addition, the current and voltage distributions of the 88m horizontal electrode at 

high frequency show that the majority of the current is dissipated close to the injection 

point, and that the voltage falls with distance away from this injection point. Test 

results on the 88m horizontal earth electrode with the insulated conductor enhancement 

reveal that the current distribution is modified by the presence of the insulated 

conductor. The comparison between measurements and computations using CDEGS of 

the rod/4-point star electrode showed an asymmetry in the four branch currents that is 

not predicted by the simulations, though reasonable agreement is still achieved. 

A full safety simulation study was performed to determine the most appropriate current 

return arrangement for carrying out high current tests. In this study, 88m bare 

horizontal and 188.5m diameter ring conductors were selected to act as current return 

electrodes. The simulation results showed that using the ring electrode as current return 

gave a significant reduction in the earth potential rise (EPR), step and touch voltages 

throughout the test area compared to those arising from using a horizontal earth 

electrode. Accordingly, a 188.5m ring earth electrode was installed at Llanrumney test 

site. High voltage tests on the vertical electrodes with and without horizontal 

enhancements were conducted to examine nonlinear behaviour under high impulse 
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current magnitudes. A test method was employed in which a wireless system was used 

to transfer the current and voltage measurements to a local computer in order to 

minimise the effect of coupling between current injection and measurement circuits. 

The test results showed that the measured impulse resistance decreases with increasing 

impulse current, the greatest reduction in impulse resistance occurring with a vertical 

electrode having the highest initial DC resistance. However, vertical electrodes with 

horizontal enhancements exhibited only a small reduction in comparison due to the 

low current density at the electrode-soil interface. The pre-ionisation resistance R1 was 

found to be less dependent on current magnitude compared with the post-ionisation 

resistance R2 was found to decrease with increasing impulse current magnitude.   

Finally, the test results of rods with enhancements under DC, high frequency, low 

impulse injected current value, high impulse injected current magnitudes showed that 

significant reduction in earthing impedance, DC earth resistance and impulse 

resistance was obtained. Also, using the rods with enhancements modified the current 

distribution behaviour. Therefore, this technique is a good design when one requires 

reliable earthing systems. 

  

8.2 FUTURE WORK 

The following suggestions are proposed for future work: 

i) Further experimental investigations on the soil resistivity survey using different 

types of array such as pole-pole, pole-dipole and dipole-dipole electrode arrays 

to produce 3D images (xyz coordinates) by using 3D inversion software might 

be useful for the field test site.  
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ii) Experimental studies could be conducted at the field test site and comparing 

results between various configurations and resistivity of earthing systems, in 

order to develop a greater understanding of the characteristics of earthing 

systems under high frequency and low /high current impulse with various rise-

times. 
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