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Abstract  

The geology of the Muslim Bagh area comprises the Indian passive continental 

margin and suture zone, which is overlain by the Muslim Bagh Ophiolite, Bagh Complex 

and a Flysch Zone of marine–fluvial successions. The Muslim Bagh Ophiolite has a 

nearly-complete ophiolite stratigraphy. The mantle sequence of foliated peridotite is 

mainly harzburgite with minor dunite and contains podiform chromite deposits that grade 

upwards into transition zone dunite. The mantle rocks (harzburgite/dunite) resulted from 

large degrees of partial melting of lherzolite and have also been affected by melt–
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peridotite reaction. The Muslim Bagh crustal section has a cyclic succession of 

ultramafic-mafic cumulate with dunite at base, that grades into wehrlite/pyroxenite with 

gabbros (olivine gabbro, norite and hornblende gabbro) at the top. The sheeted dykes are 

immature in nature and are rooted in crustal gabbros. The dykes are mainly 

metamorphosed dolerites, with minor intrusions of plagiogranites. The configuration of 

the crustal section indicates that the crustal rocks were formed over variable time periods, 

in pulses, by a low magma supply rate. The whole rock geochemistry of the gabbros, 

sheeted dykes and the mafic dyke swarm suggests that they formed in a supra-subduction 

zone tectonic setting in Neo-Tethys during the Late Cretaceous. The dykes of the mafic 

swarm crosscut both the ophiolite and the metamorphic sole rocks and have a less-

marked subduction signature than the other mafic rocks. These dykes were possibly 

emplaced off-axis and can be interpreted to have been generated in the spinel peridotite 

stability zone i.e., <50-60km, and to have risen through a slab window. The Bagh 

Complex is an assemblage of Triassic–Cretaceous igneous and sedimentary rocks, 

containing tholeiitic, N-MORB-like basalts and alkali basalts with OIB-type signatures. 

Nb-Ta depletion in both basalt types suggests possible contamination from continental 

fragments incorporated into the opening Tethyan oceanic basin during break-up of 

Gondwana. The lithologies and ages of the Bagh Complex imply that these rocks formed 

in an area extending from the continental margin over the Neo-Tethyan ocean floor. The 

Bagh Complex was then juxtaposed with the Muslim Bagh Ophiolite in the final stage of 

tectonic emplacement.  

Keywords: ophiolite; Tethyan; Bagh Complex; geochemistry; Cretaceous 
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1. Introduction 

Ophiolites are fragments of oceanic lithosphere that have been emplaced tectonically 

along continental margins in accretionary prisms during orogenic processes. They are either 

intact; having almost a complete stratigraphy, or are preserved in a dismembered state i.e., an 

ophiolitic mélange (e.g., Robertson, 2002). The Muslim Bagh Ophiolite, in Balochistan, Pakistan 

is a relatively intact ophiolite consisting of thick mantle peridotites, with a mantle-crust transition 

zone which passes into layered ultramafic–mafic cumulates and a less well-developed sheeted 

dyke complex with no basaltic extrusive cover (Figures 1; 2).  

Two tectonic models have been proposed for Muslim Bagh Ophiolite; a) a back-arc basin 

(BAB) setting (Siddiqui et al., 1996) and a composite tectonic setting (Khan et al., 2007). The 

latter has divided the ophiolite into two nappes; 1) an ophiolite sequence of island arc affinity 

and 2) the underlying Bagh Complex which was interpreted to have formed in a mid-ocean ridge 

setting.  However, detailed mapping of the ophiolite (Kakar, 2011), the Bagh Complex (Mengal 

et al., 1994; Naka et al., 1996) and the metamorphic sole (Kakar et al., 2012) along with the new 

geochemical analysis reported in this paper, indicates that both previous interpretations are 

problematic. The objectives of this paper are therefore to test and evaluate the previous 

hypotheses about the origin and mechanism of emplacement of the ophiolite using new detailed 

petrological and geochemical data.   

 

2. Regional tectonic setting and geology of the Muslim Bagh area 

The rocks of the Muslim Bagh area along with the Bela, Khanozai, Zhob and Waziristan 

ophiolites originally formed part of the Neo-Tethyan Ocean and are exposed along the western 

suture zone between the Asian and Indian plates (e.g., Asrarullah et al., 1979; Sengor, 1987). 
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During the late Jurassic and early Cretaceous, India separated from Western Australia (Powell et 

al., 1988; Muller et al., 2000) and Antarctica (Ali and Aitchison, 2005) (Figure 3a).  

The Bagh Complex consists of two main volcanic units: a) oceanic tholeiite to alkaline 

basalts intercalated with pelagic sediments and known as the basalt-chert unit (Bbc), and b) a 

basaltic hyaloclastite-mudstone unit (Bhm). The ages of these volcanic units range from Early-

Late Cretaceous and Albian-Maastrichtian, respectively (Kojima et al., 1994). A very similar 

basalt-chert unit is also reported below the Waziristan Ophiolite (Beck et al., 1995, 1996), the 

Bela Ophiolite (Gnos et al., 1997), and along the Indus –Yarlung Tsangbo – suture at the north of 

the Himalayas (Gopel et al., 1984; Xiao, 1984, Xiao et al., 2003; Malpas et al., 2003). This 

basalt-chert unit has been interpreted to represent the oceanic crust of Neo-Tethys, which formed 

during the Middle to Late Cretaceous (Figure 3b) (Kojima et al., 1994). According to Gnos et al. 

(1997), in the Cretaceous quiet period, reorganization of plates took place in some parts of Neo-

Tethys. Part of this reorganization involved the separation of the Indian plate from Madagascar 

resulting in compression and subduction along the NW edge of Indian plate. The consequent arc 

with basic volcanism ultimately formed the present day Muslim Bagh Ophiolite.  

Zircon in a plagiogranite from the Muslim Bagh Ophiolite has yielded a U-Pb 

crystallization age of 80.2 ± 1.5 Ma (Kakar et al., 2012) and this age is interpreted as the age of 

the formation of ophiolite. This age is in good agreement with K-Ar hornblende ages (81-80 Ma; 

Sawada et al., 1995) but in conflict with amphibole Ar-Ar ages (70.7 ±5 Ma; Mahmood et al., 

1995). Hornblende has also been dated from the amphibolites in the subophiolitic metamorphic 

rocks and these yielded a K-Ar age of 80.5 ± 5.3 (Sawada et al., 1995) and an Ar-Ar plateau age 

of 68.7 ± 1.5 Ma (Mahmood et al., 1995). These younger ages have been interpreted as the age 

of ophiolite emplacement and if these ages are correct then the Muslim Bagh Ophiolite was 
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relatively young at the time of emplacement onto the western margin of the Indian plate 

(Plummer, 1996; Gnos et al., 1997, Figure 3c).  

Gnos et al. (1997) proposed that the final emplacement of ophiolite and the underlying 

Bagh Complex onto the margin of the Indian plate was coeval with the separation of India from 

the Seychelles micro-continent at the Cretaceous/Tertiary boundary. This emplacement also 

coincided with the Reunion hotspot-related volcanism of: the Deccan flood basalts (e.g., 

Hofmann et al., 2000; Hooper et al., 2010); basalts on the Seychelles (Plummer and Belle, 1995); 

volcanism along the western suture in Bela area (Gnos et al., 1998), and in the Muslim Bagh area 

(Mahoney et al., 2002; Kerr et al., 2010). Finally, India collided with Eurasia; in the Late 

Paleocene to Early Eocene period (Figure 3d; e.g., Searle et al., 1997; Zhu, et al., 2005; Green, et 

al., 2008), around the Eocene/Oligocene boundary (e.g., 34 Ma; Aitchison, et al., 2007; Najman 

et al., 2010). 

The rocks in the Muslim Bagh area can be broadly divided into: the passive margin, the 

Muslim Bagh Ophiolite, the Bagh Complex and the Flysch Zone (Figure 1). In the south, the 

tectonically lowermost zone is the Calcareous zone of the Indian passive continent margin and 

consists of Triassic to Paleocene limestones, sandstones, shales, marls and occasional 

conglomerates; these include the Bibai Formation of Campanian-Maastrichtian age (Kazmi, 

1984), comprising volcanic conglomerate, lava flows and ash. The Calcareous Belt is thrusted 

over by the suture zone; lying between the Indian plate and Afghan Block (Gansser, 1964; Figure 

1) and consists of the Muslim Bagh Ophiolite and Bagh Complex. The Muslim Bagh Ophiolite 

and Bagh Complex are described in detail below. The Flysch Belt, which comprises marl, shale, 

sandstone and conglomerate, lies to the north of the suture zone (Figure 1) and unconformably 

overlies the ophiolite (Kasi et al., 2012). 
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3. Geology and petrography of the Muslim Bagh Ophiolite 

The Muslim Bagh Ophiolite mainly comprises two massifs: the western Jang Tor Ghar 

Massif (JTGM) and the eastern Saplai Tor Ghar Massif (STGM) (Figure 1). The two blocks are 

belong to the same ophiolite nappe, and overlie subophiolitic mélange and sediments of the Bagh 

Complex (Mahmood et al., 1996; Naka et al., 1996; Figure 1). The JTGM is mainly composed of 

mantle rocks and covers ~150 km
2
, whereas the STGM covers ~180 km

2 
and consists of a near-

complete ophiolitic sequence ranging from foliated peridotite at the base through the mantle–

crust transition zone to crustal rocks at top (Figure 2). Numerous mafic dykes cross-cut the 

STGM at all structural levels. The ophiolite preserves a series of subophiolitic metamorphic 

rocks at the north-western side of the JTGM and at the west of STGM (Figure 1).  

 

3.1. The metamorphic sole rocks 

The metamorphic sole rocks beneath the Muslim Bagh Ophiolite consist of basal peridotite (part 

of the ophiolite) and sub-ophiolitic metamorphic rocks which display an inverted metamorphic 

sequence grading from garnet amphibolite facies, to amphibolite facies, to lower greenschist 

facies near the mélange contact. The sole rocks are likely to be a composite of rocks developed at 

different pressures and temperatures, at different times along a thrust plane, which were 

subsequently amalgamated into a single unit beneath the hot advancing ophiolitic crust (e.g., 

Lytwyn and Casey, 1995). The basal peridotite shows mylonitic textures formed in response to 

ductile lithospheric deformation during the initiation of intra-oceanic subduction (e.g., Nicolas, 

1989; Mahmood et al., 1995), whereas going upward asthenospheric microstructures 

predominate. The foliation plane in the Jang Tor Ghar sole rocks strikes NE–SW and dips an 
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average 50º towards the SE. The majority of the lineations display NE – E orientation and 

suggest E and NE thrusting initiated at temperatures between 900-1,000 °C (cf., Nicolas, 1989), 

forming mylonitic peridotite and continuing eventually downwards to high grade amphibolite 

conditions (Kakar, 2011). 

 

3.2. The mantle section and the mantle-crust transition zone  

The Muslim Bagh Ophiolite has a thick mantle section exposed in both massifs with a 

combined thickness of ~11 km (Siddiqui et al., 1996 and Figure 1). The mantle section of the 

Muslim Bagh Ophiolite is sub-divided into foliated peridotite and a mantle–crust transition zone. 

Both the sections have segregated bodies of chromitite. 

The foliated peridotite, found in both ophiolite massifs, represents the upper mantle 

segment of oceanic lithosphere. Additionally, the STGM is also overlain by a dunite rich 

transition zone (Figures 2 and 3). Both massifs consist mostly of foliated, variably serpentinized 

harzburgite with minor dunite; however, lherzolite (or clinopyroxene-bearing harzburgite in the 

STGM) is also reported from the lower part of the massifs (Mahmood et al., 1995). The 

peridotites grade downward into basal peridotite; with a mylonitic-to-porphyroclastic texture 

characterized by prominent dunite/harzburgite compositional banding. Both areas have numerous 

chromite deposits and are intruded by mafic dyke swarms and gabbroic intrusions (Figure 1). In 

the peridotites, foliation and lineations are marked by elongated spinel and orthopyroxene grains. 

The dunite present in the mantle section is either interlayered with harzburgite, or occurs within 

the harzburgite as larger bodies with segregated podiform chromite deposits. The transition zone 

chromite bodies are larger in size and lower in grade compared to those found in the dunite of the 

lower foliated peridotite rocks of the mantle section. 
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Petrographically, the rocks of the mantle section comprise lherzolite, harzburgite, , 

dunite, serpentinite, wehrlite and pyroxenite. The lherzolites are medium to coarse grained and 

porphyroclastic-to-mylonitic in texture with 70 %
1
 olivine, 15–20 % orthopyroxene, 5–10 % 

clinopyroxene and 2 % spinel (Mahmood et al., 1995). Harzburgites are generally coarse grained 

and show autoclastic and hypidiomrophic granular textures in relatively fresh varieties, while a 

granoblastic texture predominates in altered rocks. The harzburgites are composed of 25–35 % 

orthopyroxene, 5-10 % olivine, 56-60 % serpentine and 3–6 % chromium spinel with ~2 % 

clinopyroxene (Siddiqui et al., 1996). The harzburgites in the upper part of the STGM are much 

more depleted in orthopyroxene (Siddiqui et al., 1996). The dunites are medium-coarse grained 

with a granoblastic texture comprising olivine (0-15 %) which is found as relict cores surrounded 

by a mesh of serpentine (75-80 %), antigorite and occasionally iddingsite. Clinopyroxene (2-

3%), orthopyroxene (1-2 %) and spinel (2-3 %) comprise the rest of the rock (Siddiqui et al., 

1996).  

The 5-6 km thick mantle-crust transition zone of the Muslim Bagh Ophiolite is only 

exposed in the STGM and is characterized by a dunite sequence with minor chromite, wehrlite, 

pyroxenite and gabbro as discontinuous bands or lenses. A well-exposed transition zone south of 

Nisai (Figure 1) is rich in dunite and grades downwards into depleted harzburgite. The dunite is 

several hundred metres thick and is intruded by numerous dykes, sills and veins of gabbros, 

anorthosite and pyroxenite in its upper section near the base of the gabbro (Boudier and Nicolas, 

1995; Mahmood et al., 1995). 

 

3.3. The crustal section 

                                                           
1
 All mineralogical proportions are modal abundances 
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The crustal section of the Muslim Bagh Ophiolite is exposed in the eastern portion of 

STGM (Figures 1-2) and is characterized by a cyclic sequence of ultramafic–mafic cumulates 

and a sheeted dyke complex. 

 

3.3.1. Ultramafic–mafic cumulates  

The mafic-ultramafic cumulate sequence is mainly composed of single or cyclic 

successions (Figure 2) each 200 to 1500 m thick (Salam and Ahmed, 1986). Each cycle typically 

has basal dunite grading upwards into wehrlite followed by clinopyroxenite, gabbro (Figure 2) 

and occasionally anorthosite at the top. Generally, the thickness of (occasionally layered or 

foliated) gabbros in individual cycles increases upwards (Figure 4a). Many small and medium-

sized dolerite dykes (~1–3 m wide) have intruded the lower mafic-ultramafic cumulate sequence.  

In the dunite, olivine (altered mostly to serpentine) occurs either, as subhedral or anhedral 

grains or, in irregular fractures filled with serpentine, chromite and magnetite. Some samples 

contain a few grains of enstatite and diopside. Wehrlite is medium to coarse grained with 

granular porphyritic, hypidiomorphic and occasional granoblastic textures. The wehrlite is 

comprised of anhedral granoblasts (~15%) of olivine (partially altered to antigorite) with large 

subhedral to euhedral grains of diopside (20-30 %). These crystals are surrounded by a mostly 

serpertinised groundmass (50-55 %) with a mesh texture containing small amounts of magnetite, 

spinel and enstatite. Pyroxenite is medium to coarse grained with a poikilitic to subpoikilitic 

texture and contains abundant diopside (90–95 %), with accessory amounts of orthopyroxene, 

olivine and opaque minerals with rare bytownite plagioclase. 

At their base, the gabbroic rocks comprise olivine gabbro, gabbronorite and norite while 

hornblende-rich gabbro is common nearer the top of the sequence. The gabbroic rocks are 
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melanocratic, holocrystalline, and medium to coarse grained (Figure 4b), with well-developed 

thin layering in some varieties. The norites and gabbronorites consist of 45–70 % plagioclase, 

15–30 % clinopyroxene, 10–20 % orthopyroxene, with minor magnetite, ilmenite and secondary 

hornblende, tremolite, chlorite and sericite. Olivine gabbros contain up to 8 % olivine, and their 

plagioclase is more calcic (An70-72) than the other gabbroic rocks of the crustal section. 

Hornblende-rich gabbros comprise 45–50 % labradorite, 30–40 % hornblende, 3–5 % augite, 

with minor olivine, magnetite and apatite.  

 

3.3.2. The sheeted dyke complex 

The ~1 km thick sheeted dyke complex crops out in the east of the STGM (Figure 1) 

(Sawada et al., 1992; Mahmood et al., 1995; Siddiqui et al., 1996; 2011). The dykes comprise 

dolerites, diorite and plagiogranites but have undergone greenschist and amphibolite facies 

metamorphism. The complex is rooted in the underlying gabbros and was emplaced over a 

protracted time period since the dykes range from highly foliated and mylonitizatised varieties 

that have undergone amphibolite metamorphism, through those that are discordant, weakly 

foliated and metamorphosed (amphibolite/greenschist facies), to intrusions without foliation and 

metamorphism that are discordant to foliation or layering.  

The dykes range in thickness from 10–100 cm and generally strike between 140
o 

–160
o 

and dip 55
o
, on average towards the northeast. Interestingly, sheeted dykes of the Muslim Bagh 

Ophiolite are less well-developed compared to those of other Tethyan ophiolites (e.g., Troodos; 

Varga, 2003) (Figure 4c). Petrographically, the dolerites consist of hornblende, ferro-hornblende, 

ferro-actinolite, ferro-tremolite, plagioclase and minor quartz (Figure 4d). Hornblende occurs as 

small prismatic euhedral to subhedral crystals while plagioclase (An12-54) forms euhedral to 
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subhedral and tabular crystals which often contain small grains of apatite, ilmenite, magnetite 

and hematite.  

Plagiogranite is found as small dykes and inclusions (Figure 4e) in sheeted dykes and is 

granular and medium grained with micropegmatitic intergrowths between quartz and sodic 

plagioclase (Figure 4f). This rock comprises 43–50 % plagioclase, 8–20 % hornblende and 24–

30 % quartz, with minor pyroxene, chlorite and opaques and accessory apatite and zircon. 

 

3.4. The mafic dyke swarm 

One of the striking features of the Muslim Bagh Ophiolite is the presence of numerous 

mafic dykes which crosscut almost the whole ophiolite and the metamorphic sole rocks. 

Individual dykes range in thickness from a metre to tens of metres and extend along strike up to 

10 km (Figures 1-2). The dykes strike 140° to 170° and are abundant in the STGM with a few 

dykes found on the western side of the JTGM. The trend of the mafic dyke swarm is parallel to 

that of the sheeted dyke complex (Figure 1), suggesting that they were emplaced parallel to the 

ridge during, or soon after, ophiolite obduction. The dykes possess chilled margins and have 

thermally metamorphosed their immediate country rocks. Field observations reveal that these 

dykes appear to feed a few small magma chambers (gabbroic plutons). At the base of these 

gabbro plutons a transition zone has developed between the top of dykes and the base of the 

gabbro (Khan et al., 2007). Petrographically, dolerites are medium to fine grained, often showing 

ophitic texture with 15–30 % pyroxene (augite and pigeonite) crystals and 55–60 % plagioclase 

(An62) laths (variably sericitised) with opaques and secondary minerals. 

 

4. Geology and petrography of the Bagh Complex  
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The Bagh Complex is a tectonic mélange (Ahmad and Abbas, 1979) which Naka et al. 

(1996) on the basis of lithology, age and structural similarities correlated with similar complexes, 

found beneath the Semail Ophiolite of Oman (e.g., Robertson and Searle, 1990; Bernoulli, et al., 

1990). The Bagh Complex is in thrusted contact with the overlying Muslim Bagh Ophiolite 

(Figure 1) and this contact is commonly marked by a serpentinite and mudstone mélange. 

Following Mengal et al. (1994) the Bagh Complex is divided into a mélange unit, a basalt-chert 

unit, a hyaloclastite-mudstone unit, and a sedimentary unit (Figure 1) with each unit forming an 

individual thrust sheet. 

The mélange unit (~100-500 m thick) consists of serpentinite mélange near the thrust 

contact with ophiolite (Figure 1) and is underlain by a mudstone mélange. The serpentinite 

mélange includes blocks of ultramafic-mafic rocks, metamorphic rocks and sedimentary rocks in 

a serpentinite matrix. The ultramafic-mafic rocks are likely to be derived from the Muslim Bagh 

Ophiolite along with basalt and sedimentary rocks from the Bagh Complex. The mudstone 

mélange includes basalt, radiolarian chert, limestone and shale blocks surrounded by mudstone 

and are most likely derived from the basalt-chert unit and the sedimentary unit in the Bagh 

Complex. Similar mélange units are found beneath other Tethyan ophiolites (e.g., Polat and 

Casey, 1995; Polat et al., 1996). 

The basalt-chert unit (Bbc) of the Bagh Complex (Figure 1) was previously regarded to 

be the upper basaltic member of the Muslim Bagh Ophiolite (Ahmad and Abbas, 1979). The unit 

is characterized by predominantly pillowed basaltic rocks and volcanic breccias with bedded 

chert (containing radiolarian fossils spanning the whole Cretaceous period; Kojima et al., 1994), 

micritic limestone and hemi-pelagic mudstone. The unit is faulted and sheared but Mengal et al. 

(1994) have proposed that the basaltic rocks originally comprised the lower part of the unit and 
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were overlain by limestone-chert and siliceous shale. The basalts of this unit are hypocrystalline, 

sub-porphyritic to sub-intersertal in texture, with plagioclase, augite, minor chlorite and ilmenite 

along with secondary actinolite and epidote. Some basalts contain hornblende phenocrysts and 

devitrified glass in the groundmass. 

The hyaloclastite-mudstone unit (Bhm) consists of thick pillowed basalt and massive 

basanite, alkali basalt, tephrite and trachy-basalt that also occur as hyaloclastite and reworked 

volcanic breccias. These volcanic rocks are interbedded with mudstone, limestone and shale in 

the upper-middle part of the unit and are in places intruded by basalt and dolerite. Radiolarian 

assemblages from lower part of this unit yield an Early Cretaceous age (Kojima et al., 1994). The 

basanite and alkali basalt contain phenocrysts of hornblende and augite set in a groundmass of 

plagioclase, pargasite, phlogopite, opaques and glassy material. In the tephrite and trachybasalt 

phenocrysts of plagioclase, augite, olivine, pargasite and phlogopite are embedded in the 

groundmass of plagioclase with Ti-augite, pargasite, phlogopite, apatite, ilmenite and devitrified 

glass. 

The rocks of the sedimentary unit (Bs) are Triassic–Jurassic in age i.e., slightly older than 

the two volcanic units. These sediments consist of limestone with alternating beds of mudstone, 

mudstone, sandstone, and conglomerate and are considered an integral part of the Calcareous 

Zone / Indian passive margin (Manan, 2013; Figure 1).  

The Bagh Complex is in thrusted contact with both the Muslim Bagh Ophiolite and the 

Calcareous Belt to the south (Figure 1). Both these thrusted contacts strike NE-SW, dip steeply, 

and are consistent with the attitude of bedding in the Bagh Complex. This similarity implies that 

the boundary fault was originally nearly horizontal and was later folded during the deformation 

event that was also responsible for folding the Bagh Complex (Ahmad and Abbas, 1979; Otsuki, 
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et al., 1989). All the units within the Bagh Complex are bounded by north-dipping thrust faults 

(Figure 1).  

 

5. Geochemistry  

5.1.Analytical methods 

Samples were collected for analyses from each of the major igneous units, (approximate 

sample locations are given on Figure 2 and detailed information on each sample are given in 

Online Appendix 1) Following removal of weathered surfaces the samples were crushed in a 

steel jaw crusher and powdered using an agate Tema mill at Cardiff University. Two grams of 

sample powder were then heated in a porcelain crucible to 900 °C for 2 hours to determine loss 

on ignition. Major and trace elements were analysed using a JY Horiba Ultima 2 inductively 

coupled plasma optical emission spectrometer (ICP-OES) and a Thermo X7 series inductively 

coupled plasma mass spectrometer (ICP-MS) at Cardiff University, Wales.  

The ignited powders were prepared for analysis by fusion of 0.1 g of sample with 0.4 g of 

lithium tetraborate flux in a platinum crucible on a Claisse Fluxy automated fusion system. The 

mixture was then dissolved in 30 ml of 10% HNO3 and 20 ml of de-ionised water. After the 

sample was fully dissolved, 1 ml of 100 ppm Rh spike was added and the solution was made up 

to 100 ml with de-ionised water. ~20 ml of this solution was run on the ICP-OES to obtain the 

major element abundances. 1 ml of the solution was added to 1 ml of Tl and 8 ml of 2% HNO3 

and analysed on the ICP-MS to obtain the trace element abundances. Accuracy and precision of 

the data were assessed using the international reference materials NIM-G, JB-1A and BIR-1 

(Online Appendix 2). The full data set can be found in Online Appendix 3 with a representative 

data set in Table 1. 
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Nine samples: sheeted dykes (1), plagiogranite (1), mafic dyke swarm (3), gabbros (2), 

basalt Bbc (1) and basalt Bhm (1); were analysed for Sm–Nd and Rb–Sr isotopes. Samples were 

crushed in a stainless steel jaw crusher after removal of weathered rims. A split was ground to <2 

mm grain size in a tungsten carbide ring mill. Following dissolution in Teflon bombs and column 

separation by ion exchange, 
143

Nd/
144

Nd and 
87

Sr/
86

Sr isotope ratios and Nd and Sm 

concentrations (by isotope dilution) were measured at Geology and Geophysics at the University 

of Adelaide, on the Finnigan MAT 262 TIMS in multi-dynamic mode. Methods used in the 

Adelaide laboratories have been described in detail by Elburg et al. (2003) and more recently by 

Payne et al., (2006). During the interval over which analysis was undertaken the in-house Nd 

standard (J and M specpure Nd2O3) gave 0.511604 ± 9. The La Jolla standard gave 0.511842 ±15 

and BCR-1 yielded 0.512636 ±16. Blanks are in the order of 100-300 pg for Nd and < 200pg for 

Sm. All samples used for Sm–Nd analyses were spiked with mixed 
149

Sm–
150

Nd spike. 

Reproducibility of the 
147

Sm/
144

Nd ratio was better than 0.8%. The average 
87

Sr/
86

Sr ratio for 

SRM987 during the period when the samples were run was 0.710278 ±26 (2, n=45). Whole 

procedure blanks for Sr are better than 1 ng. 

 

5.2. Alteration and element mobility 

As has already been noted, the rocks of the complex are variably metamorphosed to 

greenschist-amphibolite facies and have undergone a substantial degree of hydrothermal 

alteration. These processes have invariably mobilised the large-ion lithophile elements and most 

of the major elements leading to considerable scatter on geochemical diagrams involving these 

elements and oxides. Consequently, these more-mobile elements have been excluded from the 

following discussion in favour of elements generally regarded to be relatively immobile (e.g., 
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Winchester and Floyd 1976; Pearce, 1982; Pearce 1996; Hastie et al., 2007) under the 

hydrothermal and metamorphic conditions experienced by these rocks (i.e., the high-field 

strength elements and the rare earth elements). 

 

5.3. Gabbros 

The gabbros range in MgO content from 3.7-14.4 wt.% with most in the range 7.5-9.5 

wt.% MgO (Figure 5). This variability is also borne out by the Co vs. Th and Nb/Y vs. Zr/Ti 

classification diagrams (Figure 6a-b). On the Co-Th diagram, the gabbros range from basaltic to 

dacitic-rhyolitic compositions in terms of their Co contents, and while most of the gabbros have 

Th contents consistent with an island arc tholeiite (IAT) signature, several gabbros (C47A; C34) 

have elevated Th contents suggestive of a more calc-alkaline signature. The samples display less 

scatter on Figure 6b with all of the samples plotting in the basaltic field with the exception of one 

sample that classifies as a basaltic andesite. Sc, Zr, TiO2, and Th (along with Hf, Al2O3, Y and Sr 

– not shown) broadly increase with decreasing MgO (Figure 5), whereas Co (Figure 5c), V, Ni, 

Cr decrease with increasing MgO. All the remaining relatively immobile elements, including the 

REE do not correlate with MgO contents (e.g., Figure 5c).  

Although most of the chondrite-normalised REE patterns of the gabbros are broadly flat, 

several samples (C47A; C34) have a more-enriched light (L)REE signature and C191 has a 

depleted LREE signature (Figure 7c). All the Muslim Bagh gabbros have a flat heavy (H)REE 

pattern, and several samples have slight positive Eu anomalies. N-MORB-normalised 

incompatible trace element patterns show most of the same features and additionally reveal that 

all samples possess a negative Nb-Ta anomaly (Figure 8). 
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In terms of ratio:ratio trace element diagrams (Figure 9) the gabbros appear to be derived 

from a broadly MORB-like source region with a subduction input (Figure 9d). The Dy/Yb vs. 

Dy/Dy* diagram (Figure 9c) also appears to indicate a role for amphibole in the crystal 

fractionation/accumulation history of these gabbros.  

 

5.4. Sheeted dyke complex including the plagiogranites 

The sheeted dykes span a relatively narrow range in MgO content from 4.8-6.9 wt.% , 

whereas the plagiogranites all contain <0.6 wt.% MgO (Figure 5). On the Co-Th classification 

diagram (Figure 6a) the sheeted dykes range from basaltic to dacitic-rhyolitic compositions with 

all but two of the samples (C43; C52) having a calc-alkaline signature. Like the gabbros, the 

sheeted dykes display less scatter on the Nb/Y vs. Zr/Ti classification diagram, as opposed to the 

Co-Th diagram, with all of the samples plotting in a tight field straddling the basalt/basaltic 

andesite boundary (Figure 6b). Unsurprisingly, the plagiogranites mostly plot in the dacite-

rhyolite fields on both classification diagrams (Figure 6). The sheeted dykes generally have more 

coherent trends than the gabbros when plotted against MgO (Figure 5), with La, Zr, TiO2, Th and 

Co (along with Hf, V, Y, Nb and the REE – not shown) broadly increasing with decreasing 

MgO, whereas Sc and Al2O3 (not shown) decrease with increasing MgO. The plagiogranites 

have generally low trace element contents (Figure 5). 

With the exception of C43 (the least evolved sample) chondrite-normalised REE patterns 

of the sheeted dykes form a reasonably coherent group with near-parallel LREE-enriched and 

flat HREE patterns (Figure 7b). Several samples have slight negative Eu anomalies. N-MORB-

normalised incompatible trace element patterns have essentially flat HREE and HFSE patterns 

with variable negative Nb-Ta and Ti anomalies (Figure 8b). This, and the evidence from 
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ratio:ratio diagrams, indicates that the sheeted dykes are derived from a broadly MORB-like 

source region with a subduction input. The plagiogranites have chondrite-normalised REE 

patterns that vary from one sample with a flat pattern and a negative Eu anomaly (C37), through 

to several LREE enriched (Lan/Smn ~7) samples (C136; C35) with flat HREE patterns (~2-3 x 

chondrite) and positive Eu anomalies (Figure 7d). Like the sheeted dykes, all the plagiogranites 

have negative Nb-Ta and Ti anomalies on an N-MORB- normalised diagram (Figure 8d). 

 

5.5. Mafic dyke swarm 

The mafic dyke swarm range in MgO content from 4.3-8.0 wt.% (Figure 5). On the Co-

Th classification diagram (Figure 6a) all the samples (with the exception of the most evolved 

dyke, C26, which plots as a dacite) classify as island arc tholeiite basalts. The mafic dykes form 

a coherent group on Figure 6b with all of the samples (except C30) lying in the basalt field. The 

dykes generally show coherent trends when plotted against MgO, with La, Zr, TiO2, and Th 

(along with Hf, V, Y, Nb and the other REE – not shown) broadly increasing with decreasing 

MgO, whereas Sc, Cr, Ni (Figure 5) and Al2O3 (not shown) decrease with increasing MgO. 

Chondrite-normalised REE patterns of the mafic dyke swarm are flat to slightly LREE-

depleted, with some samples having a very slight negative Eu anomaly (Figure 7a). N-MORB- 

normalised incompatible trace element patterns show flat N-MORB-like patterns and although 

all the samples possess a negative Nb-Ta anomaly this is much less marked than in the sheeted 

dykes (Figure 8a). Figure 9 indicates that the rocks of the mafic dyke swarm are derived from a 

MORB-like source region probably with less of a subduction influence than either the gabbros or 

sheeted dykes. The Dy/Yb vs. Dy/Dy* diagram may also indicate a limited role for amphibole 

fractionation in their petrogenesis (Figure 9c). 
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5.6. Lavas of the Bagh Complex 

On the basis of their geochemistry the lavas of the Bagh Complex can be divided into: a 

tholeiitic, MORB-like type found only in the basalt-chert unit and alkalic, ocean island basalt 

(OIB)-like type found in the hyaloclastite-mudstone unit (Figure 6b)  

The MORB-like and OIB-like lavas range in MgO contents from 2.3-8.2 wt.% and 5.7-

11.6 wt.% respectively (Figure 5). On the Co-Th diagram all but the most evolved MORB-like 

lava (C62; an andesite) are classified as basalts (Figure 6a) and on the Nb/Y vs. Zr/Ti diagram all 

plot as basalts (Figure 6b). The tholeiitic- alkalic nature of the two groups is clearly borne out on 

Figure 6b. 

These two groups are also very evident on MgO variation diagrams, particularly for the 

most incompatible elements, although there are no coherent fractionation trends for these 

incompatible trace elements for either the MORB-like or the OIB-like types (Figure 5). Clearer 

fractionation trends are however observed for the compatible elements, e.g., Sc (along with Ni 

and V – not shown).  

The chondrite-normalised REE patterns of the OIB-like lavas are enriched in the LREE 

and depleted in the HREE (Figure 7e) and plot slightly above the enriched end of the tramlines 

on Figure 9b. These lavas also plot within and slightly below the Iceland (plume) array on Figure 

9a. With the exception of sample C83 the more-depleted Bbc lavas have LREE-depleted and flat 

HREE patterns. Sample C83 has moderately-enriched LREE with flat HREE patterns (Figure 

8e). On Figure 9a all the depleted samples (except C83, which plots in the plume array) plot 

below the lower tramline in the field of present-day MORB. On Figure 9c the enriched samples 

lie in the OIB field while the more depleted samples have MORB-like signatures. 
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Significantly, the N-MORB- normalised incompatible trace element patterns also reveal 

that all but one of the samples (in both groups) possess a negative Nb anomaly and, for most 

samples, a negative Ta anomaly (Figs.8e-f). The most pronounced negative Nb-Ta signatures 

occur in the MORB-like samples. Most of the samples in these two groups plot above the 

MORB-OIB array in Figure 9b indicating elevated Th in their source region. 

 

 

5.7. Sr and Nd isotopes 

A small subset of samples have been analysed for Nd and Sr isotopes (Figure 6c). 

However, given the extent of sub-solidus hydrothermal alteration and metamorphism that the 

samples have undergone it is likely that the Sr isotope systematics in these samples have been 

disturbed and so do not represent magmatic values and this is borne out by the elevated age-

corrected 
87

Sr/
86

Sr of some of the samples and so Sr isotope values will not be considered 

further. 

The rocks of the Muslim Bagh Ophiolite range in (Nd)i from +7.5 to +3.2, with the 

mafic dyke swarm generally having the highest values (Figure 6c), in keeping with their more 

depleted LREE patterns, while the gabbros have broadly lower values. The analysed Bbc sample 

has a MORB-like LREE signature and a (Nd)i of +5.8 that falls within the more-enriched end of 

the MORB array , while and OIB-like Bhm sample has and (Nd)i of +3.9 (Figure 6c) 

 

6. Discussion  

6.1. The nature and composition of mantle section 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Kakar et al.                                                   Muslim Bagh Ophiolite                                                Page 21 

The Muslim Bagh mantle section is dominated by foliated harzburgite with subordinate  

dunite. Such harzburgitic mantle sections of ophiolitic complexes have often been explained as 

depleted peridotite resulting from large degrees of partial melting of a lherzolite source (e.g., 

Nicolas, 1989; Baker and Beckett, 1999). This harzburgite may also be affected by magma–

mantle interaction involving precipitation of orthopyroxene and olivine (e.g., Kelemen et al., 

1992). Petrographically, the Muslim Bagh harzburgites are porphyritic with low modal 

clinopyroxene and the dunites are also poor in pyroxene, indicating that they are residual after 

significant melting. The deformed relict primary minerals and the irregular shape of the spinel 

grains in the peridotite further indicate residual mantle that has undergone high-temperature 

deformation under upper mantle plastic flow conditions (e.g., Nicolas, 1989; Mahmood et al., 

1995; O’Hara et al., 2002).  

Experimental studies on peridotite show that progressive melting of lherzolite rapidly 

eliminates clinopyroxene and gradually reduces the proportion of orthopyroxene (Mysen and 

Kushiro, 1977; Jaques and Green, 1980). As melting proceeds, forsterite and NiO contents of 

olivine, Mg# of pyroxene, and Cr # of spinel increase, and Al2O3 contents of the residual spinel 

and pyroxene and of the whole rock decrease (Dick and Bullen, 1984; O’Hara et al., 2002). The 

Muslim Bagh mantle rocks possess higher Cr# and Mg# in accessory spinel and orthopyroxene, 

thus implying that they are the result of a high-degree of partial melting of a depleted mantle 

source (Siddiqui et al., 1996; Arif and Jan, 2006). All these features indicate a residual upper 

mantle origin or a higher degree of partial melting (30-45%) of a depleted mantle source, for the 

Muslim Bagh peridotite (cf., Dick and Fisher, 1984).  

The origin and petrogenesis of the transition zone in ophiolites has also been widely 

debated, with some advocating an origin by olivine fractionation and accumulation from picritic 
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magma (e.g., Coleman, 1977; Malpas, 1978; Elthon et al., 1982), while others propose a residual 

mantle origin (e.g., Nicolas and Prinzhofer, 1983; Boudier and Nicolas, 1995; Kelemen et al., 

1995; and Zhou et al., 1996). More recently Suhr et al. (2003) and Zhou et al. (2005) have 

suggested that the transition zone formed by processes of mantle-melt reaction and proposed it 

was an integral part of the mantle sequence.  

Although in the Muslim Bagh Ophiolite the characteristics of some of the dunite 

especially in the uppermost part of the transition zone is more supportive of a cumulate origin as 

proposed by Siddiqui et al.(1996), no cumulates have been found in most of the transition zone 

dunites. The presence of clinopyroxene and plagioclase in the uppermost part of the transition 

zone is probably the result of magmatic impregnation and so could represent a crystal-melt 

mixture, and the lenses and dykes/sills of gabbros may have been injected laterally due to 

compaction (e.g., Benn et al., 1988). Therefore, the uppermost cumulate part of transition-zone 

dunite in the Muslim Bagh is likely to have formed by crystal fractionation from crustal magma 

chambers during the first stages of crystallization, (e.g., Malpas, 1978), whereas the textures in 

lower part of the transition-zone are more indicative of high degrees of partial melting and 

extensive melt–rock interaction (e.g., Nicolas and Prinzhofer, 1983; Suhr et al., 2003; Zhou et 

al., 2005). In contrast, Siddiqui et al. (1996), proposed that the dunite rich transition zone 

between the residual mantle and crustal rocks was composed completely of ultramafic 

cumulates. However, our detailed field and petrographic work has revealed that the lower 

reaches of transition zone show no evidence of cumulate textures and are, at least in part, the 

products of mantle-melt reaction. 

 

6.2. Petrogenesis of the crustal rocks 
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The crustal part of the Muslim Bagh Ophiolite comprises a cyclic succession of 

ultramafic-mafic cumulates. Each cycle differs in its lithological thickness and sequential 

arrangement and this is likely to be due to the different timing of crystallization of cumulus 

minerals resulting from the supply rate of magma to the chamber. Most of the Muslim Bagh 

gabbros are tholeiitic in nature, although a few have a distinct calc-alkaline signature (Figure 6a), 

and contain both cumulus and non-cumulus phases, with olivine, pyroxene and plagioclase all 

involved in the fractionation processes. This is borne out by the whole-rock geochemical range 

from basaltic-dacitic compositions and the slight positive Eu anomaly observed in some samples 

(Figure 7a). The lack of correlation of MgO with many incompatible elements (e.g., Figure 5) is 

likely to be a reflection of the cumulate nature of many of the gabbros. Furthermore, although 

not obvious from the petrography, the Dy/Lu vs. Dy/Dy* diagram also suggests that amphibole 

fractionation/accumulation played a significant role in the crystallisation history of these rocks. 

This indicates that the magmas were ‘wet’ and this, in conjunction with their negative Nb-Ta 

anomaly (Figure 8c), suggests formation in a supra-subduction zone. Based on a much smaller 

data set on a restricted range of elements Siddiqui et al. (1996) interpreted this ophiolite to have 

formed in a back arc basin, however, our geochemical data is more consistent with formation in a 

supra-subduction zone. Although the mantle source region of the gabbros is broadly MORB-like 

there is some evidence from the (Ce/Ce*)Nd vs. Th/La diagram for a subduction component 

derived from continental detritus, suggesting proximity to a continental margin. 

The Muslim Bagh Ophiolite has a well-developed cyclic repetition of ultramafic to mafic 

rocks at the base with a relatively less well-developed, more-evolved cumulate crustal section. 

These features are characteristic of gabbros that form in a slow to ultra-slow-spreading 

environment and indicate that the rocks may have formed over differing lengths of time as a 
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result of a low magma supply in pulses (e.g., Cannat et al., 1995, 2006; Nicolas et al., 1999; 

Michael, et al., 2003).  

The configuration of the crustal section with a poorly developed sheeted dyke complex 

and well-developed plutonic sequence (Figure 2) also indicates that these sheeted dykes are 

formed in a tectonic setting with a slow spreading rate. Our field and petrographic observations 

from the Muslim Bagh Ophiolite support the proposal of Robinson et al. (2008) that well-

developed sheeted dyke complexes are uncommon in supra-subduction zone environments 

because the spreading rate and magma supply rate are rarely balanced. 

Like the gabbros, the sheeted dykes are tholeiitic to calc-alkaline in nature and their much 

more coherent trends (than the gabbros) on element vs. MgO diagrams reflects the significant 

role played by fractionation (olivine, clinopyroxene and possibly amphibole; Figures 5a-b, e, 9b) 

in their petrogenesis. Again, similar to the gabbros, the source region of the sheeted dykes is 

broadly MORB-like with a subduction input (Figure 8b). As noted above, the Muslim Bagh 

plagiogranites are found both at the top of the gabbro plutons and in the sheeted dykes and they 

also possess a tholeiitic to calc-alkaline signature. The highly variable trace element signature of 

the plagiogranites (Figure 8d) suggests that either they represent highly fractionated magma 

chamber differentiates (i.e., those samples with negative Eu anomalies indication plagioclase 

fractionation) or late stage crystal (plagioclase) cumulates (i.e., the samples with positive Eu 

anomalies implying plagioclase accumulation). Alternatively, the plagiogranites may be the 

result of hydrous partial melting of oceanic gabbros as proposed by Koepke et al. (2004; 2007). 

Although the low TiO2 content of the Muslim Bagh plagiogranites (Figures 5b and 8d) is 

consistent with an origin by partial melting of altered (hydrous) gabbro (Koepke et al. 2007), 

their variable Eu anomalies (positive and negative) are more difficult to reconcile with this 
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model. Further speculation on the origin of plagiogranite is beyond the scope of this paper, 

however, the subduction-related signature of the Muslim Bagh plagiogranites and their intimate 

association with both the gabbros and the sheeted dykes strongly indicates a co-genetic 

relationship. 

Khan et al. (2007) proposed that the later mafic dyke swarm were subduction related. 

However, our study indicates that these dykes represent a later intrusion event are geochemically 

distinctive from the rest of the Muslim Bagh Ophiolite, in that they are tholeiitic and have 

generally much flatter to slightly LREE-depleted REE patterns. Additionally, the mafic dyke 

swarm has much less-pronounced negative Nb-Ta anomalies than the rest of the complex (Figure 

8a). All these features in conjunction with the evidence from Figure 9b indicate that the mafic 

dyke swarm have a less-marked subduction signature than, particularly, the sheeted dykes. This 

weaker subduction signature is also reflected in the lower (Nd)i values of the mafic dyke swarm 

rocks (Figure 6c). Contrary to the model of Khan et al. (2007) these features imply that the dykes 

formed further from the supra-subduction zone than the rest of the complex and may have risen 

through a slab-window (Figure 10e; cf., Lytwyn and Casey, 1995; Dilek et al., 1999; Celik, 

2007; Xu, et al., 2008). 

 

6.3. Tectonic setting and petrogenesis of the Bagh Complex basaltic rocks 

As reviewed in Section 2, paleontological evidence indicates that the basaltic rocks of the 

Bagh Complex are generally older (Early–Late Cretaceous; Sawada et al., 1992; Kojima et al., 

1994) than the Muslim Bagh Ophiolite suite (80.2 ± 1.5 Ma; Kakar et al., 2012) and so cannot be 

regarded as part of the ophiolite as proposed by Khan et al. (2007). Siddiqui et al. (1996) 
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proposed that these rocks formed in the same back-arc basin as the rest of the ophiolite, however, 

the geochemistry of the Bagh Complex lavas and their older age makes this improbable.  

The rocks of the Bagh Complex are distinctive in terms of their geochemistry, with both 

tholeiitic MORB-like signatures (in the basalt-chert unit) and alkalic OIB-like signatures (in the 

hyaloclastite-mudstone unit) (e.g., Figure 8e-f). It is likely that the tholeiitic rocks represent Neo-

Tethyan ocean floor, formed during the Cretaceous (Kojima et al., 1994), after the breakup of 

Gondwana, and although only one of these samples was analysed for isotopes, the MORB-like 

(Nd)i of +5.8 supports this assertion. However, the rocks are not as depleted in LREE as N-

MORB (Figure 8e) and have negative Nb-Ta anomalies, the significance of which will be 

discussed below. The OIB-like volcanics that comprise significant exposures of basalts in Bagh 

Complex have been neglected in models of the tectonic setting of Muslim Bagh Ophiolite 

Complex by previous workers (e.g., Siddiqui et al., 1996 and Khan et al., 2007). These alkaline 

rocks are clearly a result of a relatively small degree of mantle melting in the garnet-lherzolite 

stability zone (>60km), so it is likely that melting occurred off-axis below relatively thick 

oceanic lithosphere. This evidence suggests that these rocks are most likely to have formed by 

melting of a hotspot-derived source region during Middle–Late Cretaceous. The high-MgO 

contents (>10 wt.%) of some of the OIB-like lavas also supports a hotspot source as does the fact 

that the samples plot within or slightly below the Iceland (plume) array on Figure 9a. 

Furthermore, the occurrence of other Cretaceous hotspot-derived lavas and intrusions in the 

accreted Tethyan sequences of the region (e.g., Sawada et al., 1992; Mahoney et al., 2002; Kerr 

et al., 2010) also lends support to a mantle plume origin for the OIB-type lavas in this study. It 

should also be remembered that the Cretaceous represents one of the most intense periods of 
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mantle plume-related volcanism over the last 250 m.y. particularly in the oceans (e.g., Kerr, 

2014). 

Somewhat enigmatically, for magmatic rocks that all the evidence suggests formed in an 

ocean basin, most of the OIB-like and MORB-like lavas of the Bagh Complex possess negative 

Nb (and Ta) anomalies on an N-MORB normalised diagram. This implies that these rocks either 

contain a subduction component or continental crust. In an oceanic setting the simplest way to 

impart a negative Nb-Ta anomaly to a suite of magmatic rocks is to introduce the component into 

the upper asthenosphere by subduction (i.e., by the release of Nb-Ta depleted fluids from a 

descending slab); however the problem with this mechanism for the rocks of the Bagh Complex 

lies in the fact that both shallow-derived MORB-like lavas and the deep mantle plume-derived 

OIB-like lavas show this signature. It is difficult to envisage how contamination of the upper 

asthenosphere with a subduction-derived fluid could substantially modify the composition of a 

mantle plume that probably originates from at least the 660km discontinuity, and possibly the 

core-mantle boundary.  

Alternatively, it is possible that substantial fragments of continental crust were 

incorporated into the Tethyan ocean basin during the breakup of Gondwana. We envisage that 

this could have occurred in a manner similar to what has been proposed for the similarly-aged 

lavas of the Kerguelen Plateau in the Indian Ocean that are contaminated with continental crust 

from fragments incorporated during Gondwana continental break-up (e.g., Frey et al. 2002). 

Continental fragments, if incorporated into the opening Tethyan oceanic basin during break-up 

could have contaminated both the MORB- and OIB-like basalts preserved in the Bagh Complex 

and we would contend is a more plausible explanation than a subduction-derived component in 
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the upper asthenosphere, which can only really explain the Nb-Ta depletion in the MORB-like 

rocks. 

 

6.4 Comparison of Muslim Bagh Ophiolite with Bela and Waziristan Ophiolites  

There are several similarities as well as differences between the Muslim Bagh Ophiolite 

and the other ophiolites of the western Indian suture such as Waziristan and Bela ophiolites. The 

Waziristan Ophiolite, located north of the Muslim Bagh Ophiolite (Figure 1) is highly 

dismembered and consists of three main nappes, from east to west these are: the Vezhda Sar 

Nappe, comprised only of pillow basalts; the Boya Nappe, made up of accretionary wedge and 

mélange with ultramafic and gabbroic rocks that are irregularly distributed as fault-bounded 

blocks within a larger mass of pillow basalt; and the Datta Khel Nappe, mostly comprising 

sheeted dykes with smaller proportions of other components such as gabbros and pillow basalts 

(Khan, S-R, 2000). Faunal evidence suggests that the ophiolite is of Tithonian-Valanginian age 

(151-136 Ma). It was thrust over the Mesozoic shelf-slope sediments of the Indian Plate to the 

east during the Paleocene and is unconformably overlain by sedimentary rocks of Early to 

Middle Eocene age to the west (Beck et al., 1995; Khan S-R et al., 2007).  

The Bela Ophiolite is located south of the Muslim Bagh Ophiolite (Figure 1) and is the 

largest outcrop of the oceanic lithosphere in the western suture zone. The Bela Ophiolite is 

divided into two sub units; the Bela Ophiolite suite; and the lower Subduction-Accretion 

Complex. The dismembered Bela Ophiolite suite can be reconstructed into one single thrust 

sheet and consists of peridotite and sheeted dykes and small outcrops of basalts (Khan, 1999). 

The ophiolite unit records 
40

Ar–
39

Ar magmatic ages of 70-68 Ma and emplacement ages of 66-64 

Ma (Gnos et al., 1998; Xiong, et al., 2011). The lower unit of accretionary wedge-trench 
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sediments consists of imbricated sheets of 50 to 1500 m thick and half a kilometre long. Each 

imbricate sheet contains a complete or partial sequence of oceanic ridge-related pillow lavas with 

geochemical signature of E-MORB (Gnos et al., 1998) that is covered by pelagic to hemi pelagic 

cherts, shales and limestones that are intruded by doleritic dykes. These sediments contain fossils 

of Aptian to Lower Maastrichtian age (Sarwar, 1992; Xiong, et al., 2011).  

These three Tethyan ophiolite complexes each consist of an ophiolite suite and an 

underlying subduction-accretion complex (Khan, 1999; Khan S-R, 2000; Khan et al., 2007). The 

ophiolite sequence (upper units) of these ophiolites have geochemical signatures of an island arc 

implying a supra-subduction zone tectonic setting, and are considered to represent the western 

extension of Spontang Ophiolite that formed in the Neo-Tethys ocean 80-70 Ma and was then 

emplaced on the continental margin between 70-65 Ma (Corfield et al., 2001; Khan et al., 2009; 

Kakar et al., 2012).  

 

 

6.5. New model for the origin and emplacement of Muslim Bagh Ophiolite  

In the Middle Jurassic the northwestern margin of the Indian and Afro-Arabian plates 

began to rift apart (e.g., Ali, and Aitchison, 2008; Figure 10a). Continued spreading resulted in a 

narrow sea, or a branch of Tethys, that gradually widened up to the end of the Jurassic (e.g., 

Naka et al., 1996; Ali, and Aitchison, 2005, 2008). The Bbc unit represents the Neo-Tethyan 

ocean floor that formed along mid-Tethyan ridge near the northern and northwestern continental 

slope of the Indian plate (Kojima et al., 1994; Siddiqui et al., 1996; Figure 10b). The intra-plate 

alkali basalts within the Bagh Complex erupted in the mid-late Cretaceous when Neo-Tethyan 

oceanic lithosphere passed over a hotspot, possibly Réunion (e.g., Sawada et al., 1992; Mahoney 
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et al., 2002; Kerr et al., 2010; Figure 10b-c). Many of these oceanic basalts are apparently 

contaminated with continental crust, possibly present as rafted blocks that were trapped within 

the oceanic lithosphere during the Jurassic rifting event (cf., Frey et al. 2002). 

The oceanic lithosphere that ultimately was to become the Muslim Bagh Ophiolite 

formed ~80 Ma (Kakar et al., 2012) in a supra-subduction zone tectonic setting related to the 

west or northwest dipping subduction of a narrow branch of Neo-Tethyan ocean and the 

formation of a nascent arc (Gnos et al., 1997; Kakar et al., 2012; Figure 10c), followed by 

subduction rollback due to splitting of the nascent arc (Figure 10d) in a manner similar to that 

proposed by Dilek and Flower (2003) and Flower and Dilek (2003) further west in the Tethyan 

ocean. The formation of a metamorphic sole and initial intra-oceanic detachment/obduction of 

ophiolite due to extension in the nascent arc and slab rollback (Shervais, 2001; Flower and Dilek, 

2003) was followed by the intrusion of mafic dykes (from a depleted mantle source) into both the 

metamorphic sole and the mantle section of the ophiolite. These off-axis magmas are likely have 

risen through a slab window (Figure 10e; cf., Lytwyn and Casey, 1995; Dilek et al., 1999; Celik, 

2007; Xu, et al., 2008), The rocks of the mafic dyke swarm therefore exhibit a much weaker 

geochemical subduction signature than the rest of the Muslim Bagh rocks due to partial melting 

of a depleted source. Furthermore, this limited subduction signature also indicates that these 

dykes are genetically unrelated to the crustal mafic-ultramafic cumulates of the Muslim Bagh 

Ophiolite as proposed in the model of Khan et al. (2007).  

The Indian plate continued to move northwards with the accretion of mélange between 

the Muslim Bagh Ophiolite and the Eurasian continental margin (Figure 10f). According to 

Mahmood et al. (1995), the Muslim Bagh Ophiolite was transported on the margin of the Indian 

continental plate during closure of Neo-Tethys until collision with the Eurasian continental plate. 
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At this time (50-35Ma) the Muslim Bagh Ophiolite was obducted over the Indian Platform along 

with underlying Bagh Complex (Naka et al., 1996; Searle et al., 1997; Zhu, et al., 2005; Green, et 

al., 2008; Aitchison, et al., 2007; Najman et al., 2010; Figure 10f). Finally, the ophiolite was 

overlain by unconformable Early–Middle Eocene shallow marine strata (Allemann, 1979; Beck 

et al., 1995; Figure 10g). These shallow marine strata of the Nisai Formation along with 

immature turbidites of the Khojak Formation (Figure 1) were deposited in the Katawaz Basin; a 

narrow basin and a remnant Neo-Tethyan ocean which existed until the late Oligocene (Qayyum 

et al., 1996, 1997). 

 

7. Conclusions 

1. The Muslim Bagh Ophiolite has a thick residual mantle section with characteristics 

consistent with formation in a supra-subduction zone setting. 

 

2. The Muslim Bagh Ophiolite crustal sequence comprises a well-developed cyclic succession 

of ultramafic to mafic rocks at the base with a less well-developed, more evolved crustal 

cumulate section. This crustal sequence is interpreted to have formed over differing lengths 

of time as a result of a low magma supply rate in pulses, probably in a slow to ultra-slow 

spreading environment. The gabbros are derived from a MORB-like mantle source region 

and a negative Nb-Ta anomaly suggests formation in a supra-subduction zone.  

 

3. The poorly developed sheeted-dyke complex and well-developed plutonic sequence also 

indicates a tectonic setting with a slow spreading rate. The geochemical signature of the 

source region of the sheeted dykes is broadly MORB-like with a subduction input. The 
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plagiogranites also have subduction-related signature are intimately associated with both 

the gabbros and the sheeted dykes indicating a co-genetic relationship. 

 

4. The mafic dyke swarm crosscut both the ophiolite and the metamorphic sole rocks and 

have a less-marked subduction signature than, particularly, the sheeted dykes. This weaker 

subduction signature suggests that these melts may have passed through a slab window and 

that these dykes are not co-genetic with the gabbros and ultramafic rocks of the ophiolite. 

 

5. The tholeiitic MORB-like basalts of the Bagh Complex represent Neo-Tethyan ocean floor, 

formed during the Cretaceous period after the breakup of Gondwana, whereas the 

associated OIB-like alkaline rocks are probably derived from a hotspot during Middle–Late 

Cretaceous. Most of the OIB-like and MORB-like lavas of the Bagh Complex possess 

negative Nb-Ta anomalies, consistent with continental crust contamination from fragments 

of crust that were incorporated into the Tethyan ocean basin during the breakup of 

Gondwana. 

 

6. The Muslim Bagh Ophiolite has the geology of oceanic lithosphere but arc like 

geochemistry and so is more likely to formed in a supra-subduction zone environment, 

rather than a back-arc basin. 
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Figure Captions  

Figure 1: Geological Map of the Muslim Bagh area showing the Muslim Bagh Ophiolite, Bagh 

Complex, the Flysch Zone and the Indian passive margin sediments, (after Hunting 

Survey Corporation (1960), Van Vloten (1967), Siddiqui et al. (1996) and this study. 

Figure 2: Schematic log of the Muslim Bagh Ophiolite showing the ophiolite suite and the 

attached metamorphic sole rocks. Not to scale. The inset is log of the cumulate sequence 

of the crustal rocks from the Muslim Bagh Ophiolite (after Salam and Ahmed, 1986). 

Figure 3 a-d: Paleo-tectonic reconstruction of Muslim Bagh Ophiolite and Bagh Complex from 

Early Cretaceous to present 145-0Ma. Based on published work, see the text for detail. 

Key: Bs=Bagh Sedimentary unit, Bbc=Bagh basalt-chert unit, Bhm=Bagh hyaloclastite-

mudstone unit, M=Marion, R=Reunion hotspot, NER= Ninety East Ridge. 

Figure 4: a) Layered gabbros from the plutonic section of crustal rocks; b) Photomicrograph of 

gabbro showing subhedral to anhedral plagioclase (Pl), subpoikilitic clinopyroxene (Cpx) 

containing minor olivine (Ol) (crossed polars x 55); c) Sheeted dykes showing a trend 

from upper right to lower left corner; d) Amphibolite after dolerite showing altered 

plagioclase (Alt Pl) and secondary amphibole (Amp) (plane polarized light x10); e) 

Plagiogranite inclusions in dolerites of the sheeted dyke complex; f) Interlocking grains 

of plagioclase (Pl) and quartz (Qz) in plagiogranite, small grains of zircon can also seen 

(crossed polars x10). 

Figure 5: Variation diagrams of representative major and trace elements against MgO, for the 

different rock types of the Muslim Bagh Ophiolite and the Bagh Complex. 

Figure 6: (a) Co-Th classification plot (Hastie et al., 2007); (b) Nb/Y vs. Zr/Ti classification plot 

(Pearce, 1996); (c) plot of (
87

Sr/
86

Sr)i vs. (Nd)i (where i = 80 Ma for the Muslim Bagh 
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Ophiolite rocks and 100 Ma for the Bagh Complex rocks). Indian Ocean MORB field at 

80 Ma from Mahoney et al. (1998); Kerguelen data sources listed in Kerr (2014). 

Figure 7: Chondrite-normalised (Sun and McDonough, 1989) REE plots for the Muslim Bagh 

Ophiolite and the Bagh Complex. 

Figure 8: N-MORB-normalised (Sun and McDonough, 1989) multi-element diagrams for the 

Muslim Bagh Ophiolite and the Bagh Complex. 

Figure 9: Plots of (a) Zr/Y vs. Nb/Y. Icelandic plume array from Fitton et al. (1997). Indian 

Ocean MORB (Central Indian Ridge and Southwest Indian Ridge) and East Pacific Rise 

(EPR) fields compiled from compiled data available on the PETDB website 

(http://www.earthchem.org/petdb - accessed 25/7/2013); (b) Nb/Yb vs. Th/Yb  after 

Pearce and Peate (1995); (c) Dy/Yb vs. Dy/Dy* [after Davidson et al. (2013) – Dy/Dy* 

defined as: DyN/(LaN
4/13

*YbN
9/13

) (where N denotes chondrite normalised values) and is a 

measure of the ‘concavity’ of a REE pattern]. MORB/OIB fields and the amphibole trend 

are also from Davidson et al. (2013). (d) (Ce/Ce*)Nd vs. Th/La [after Hastie et al. (2013) 

(Ce/Ce*)Nd defined as: CeN/(LaN 

2/3
×NdN

1/3
) (where N denotes chondrite normalised 

values) Detritus fields, GLOSS II and N-MORB are also from Hastie et al. (2013). 

Figure 10: Schematic cross sections showing the proposed tectonic evolution of the Muslim 

Bagh Ophiolite Complex. See text for more details. A) Separation of India from Afro-

Arabia and Australia-Antarctica, B) Emplacement of Bbc and Bhm units, C) Short lived 

subduction, D) slab roll-back due to splitting of the nascent arc and the formation of the 

Muslim Bagh Ophiolite crust, E) The formation of the metamorphic sole and initial intra-

oceanic detachment/obduction of ophiolite followed by the emplacement of mafic dyke 

swarm into both the metamorphic sole and the mantle section of the ophiolite through a 
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slab window, F) The juxtaposition and emplacement of the Muslim Bagh Ophiolite along 

with underlying Bagh Complex onto the Indian continental margin, G) The present-day 

Muslim Bagh Ophiolite.  

 

Tables 

Table 1 - Representative major oxides, trace elements and Sr-Nd isotopes of the Muslim Bagh 

Ophiolite and the Bagh Complex. 

Online Appendix 1 - Sample number, rock type, co-ordinates, field features, lithology and 

mineralogical and textural features. 

Online Appendix 2 - International reference materials JB-1A, NIM-G and BIR-1 repeatedly 

analysed during the course of the study. 

Online Appendix 3 - Full data set of major oxides (wt.%) trace elements (ppm) and Sr-Nd 

isotopes of Muslim Bagh Ophiolite mafic rocks and the volcanic rocks of 

Bagh Complex. 
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Table 1. Representative major oxides, trace elements and Sr-Nd isotopes of the Muslim Bagh ophiolite and the Bagh complex 

Rock  Mds Mds Mds Plag Gr Plag Gr Sd Sd Sd Gabbro 

Sample C16 C28 C29 C136 C37A C39 C40 C43 C34 

SiO2 (wt.%) 51.21 49.05 50.34 74.61 78.50 54.15 54.22 49.17 50.22 

TiO2 0.66 0.82 1.03 0.20 0.08 0.87 1.09 0.42 1.09 

Al2O3 15.09 14.73 15.00 12.47 11.95 15.17 15.06 18.75 14.66 

Fe2O3 9.51 9.44 11.92 2.97 0.91 11.68 12.66 9.05 11.77 

MnO 0.16 0.16 0.22 0.04 0.01 0.22 0.06 0.27 0.22 

MgO 6.50 8.03 5.80 0.57 0.52 4.83 5.26 6.92 5.15 

CaO 9.91 12.49 8.30 4.52 3.63 8.63 8.91 12.88 9.93 

Na2O 3.85 2.90 4.45 2.95 3.35 3.22 1.07 2.05 4.33 

K2O 1.09 0.17 0.57 0.18 0.38 0.44 0.22 0.38 0.65 

P2O5 0.08 0.06 0.08 0.03 0.01 0.19 0.18 0.04 0.13 

LOI 2.44 2.74 2.45 0.55 1.02 1.06 2.04 0.95 1.97 

Total 100.50 100.59 100.17 99.09 100.38 100.46 100.76 100.88 100.12 

          Sc (ppm) 36.2 50.1 37.9 2.8 7.7 32.0 31.2 40.9 34.0 

V 281 290 413 52 20 303 326 207 409 

Cr 97 220 49 30 4 30 5 56 21 

Co 44.2 50.2 58.6 9.6 2.2 37.3 12.7 27.0 43.0 

Ni 66 107 80 99 3 12 13 43 23 

Cu 76.6 118.7 165.8 34.1 8.5 105.8 13.9 18.7 90.7 

Zn 67.2 68.8 114.6 23.4 12.6 89.1 20.4 69.5 90.6 

Ga 12.2 11.7 14.4 10.4 9.6 15.0 16.0 13.3 12.6 

Rb 26.4 3.3 11.7 1.8 4.5 3.7 2.5 5.2 7.6 

Sr 142 338 178 211 194 296 287 153 355 

Y 19.3 22.9 24.3 3.9 10.3 24.8 30.4 14.4 28.6 

Zr 42 56 54 98 72 77 84 31 77 

Nb 1.23 1.10 1.48 1.04 2.61 2.25 4.25 1.42 4.58 

Sn 0.79 0.93 1.24 1.08 0.46 0.96 1.04 0.75 0.83 

Cs 0.51 0.76 1.42 0.08 0.25 0.06 0.09 0.08 5.18 

Ba 103 54 110 120 77 108 47 97 322 

La 3.04 2.10 2.74 5.39 4.87 13.05 12.96 3.07 10.05 

Ce 8.14 6.08 7.37 8.35 7.94 25.34 26.53 7.00 21.29 

Pr 1.24 1.00 1.18 0.83 1.00 3.09 3.31 0.97 2.78 

Nd 6.43 5.58 6.36 3.04 4.50 13.38 14.57 4.71 12.75 

Sm 1.94 1.94 2.13 0.54 1.23 3.20 3.60 1.37 3.26 

Eu 0.66 0.63 0.71 0.65 0.34 0.96 1.05 0.52 1.02 

Gd 2.29 2.43 2.61 0.65 1.25 3.35 3.86 1.72 3.56 

Tb 0.44 0.49 0.51 0.10 0.21 0.57 0.68 0.32 0.64 

Dy 2.81 3.24 3.38 0.57 1.64 3.54 4.23 2.10 4.12 
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Ho 0.56 0.65 0.69 0.12 0.33 0.71 0.85 0.42 0.83 

Er 1.68 1.96 2.02 0.40 1.02 2.15 2.57 1.28 2.54 

Tm 0.28 0.33 0.34 0.07 0.17 0.35 0.42 0.21 0.41 

Yb 1.71 1.94 2.05 0.50 1.22 2.18 2.63 1.31 2.57 

Lu 0.28 0.32 0.34 0.10 0.21 0.36 0.42 0.21 0.42 

Hf 1.04 1.20 1.28 2.27 2.58 1.68 1.87 0.66 1.73 

Ta 0.08 0.08 0.10 0.07 0.17 0.15 0.23 0.08 0.28 

Pb 0.31 0.68 8.90 5.67 0.97 3.40 0.05 0.15 0.53 

Th 0.45 0.22 0.31 0.35 0.98 2.42 2.55 0.36 1.15 

U 0.16 0.06 0.12 0.11 0.18 0.52 0.58 0.09 0.30 

          143
Nd/

144
Nd (m) 0.512926 0.513029 0.512993 0.512940 - - 0.512844 - 0.512889 

2 sigma error 0.000010 0.000009 0.000009 0.000014 - - 0.000012 - 0.000010 
147

Sm/
144

Nd 0.182505 0.210306 0.202584 0.107449 - - 0.149461 - 0.154665 
143

Nd/
144

Nd (i) 0.512830 0.512919 0.512887 0.512884 - - 0.512765 - 0.512808 

Nd (i) 5.76 7.49 6.87 6.81 - - 4.50 - 5.32 

          87
Sr/

86
Sr (m) 0.707628 0.704353 0.705370 0.703991 - - 0.704608 - 0.703927 

2 sigma error 0.000015 0.000014 0.000012 0.000017 - - 0.000038 - 0.000013 
87

Rb/
86

Sr  0.186009 0.009763 0.065767 0.008491 - - 0.082508 - 0.021408 
87

Sr/
86

Sr (i) 0.707015 0.704321 0.705153 0.703963 - - 0.704336 - 0.703856 

           

Table 1. Representative major oxides, trace elements and Sr-Nd isotopes of the Muslim Bagh ophiolite and the Bagh complex 
 Rock  Gabbro Gabbro Bbc Bbc Bbc Bhm Bhm Bhm Bhm Bhm 

  Sample C47 C191 C62 C63 C123 C13 C58 C59 C61 C126 
  SiO2 46.39 46.08 60.03 48.24 47.79 39.25 45.13 34.12 42.88 43.65 
  TiO2 0.08 0.10 1.11 0.98 0.79 3.17 2.98 2.71 3.24 3.72 
  Al2O3 29.58 20.74 14.09 15.05 13.47 12.05 9.64 9.01 11.03 13.04 
  Fe2O3 3.06 5.22 9.99 9.28 9.42 11.52 12.42 11.08 12.08 12.08 
  MnO 0.05 0.09 0.13 0.17 0.20 0.18 0.07 0.15 0.15 0.17 
  MgO 3.70 7.76 2.30 8.18 7.75 8.39 7.94 11.55 10.61 7.23 
  CaO 14.90 17.55 6.63 10.28 10.29 15.21 11.20 15.27 12.90 10.12 
  Na2O 1.11 0.46 5.93 3.25 6.49 2.35 6.40 1.71 1.24 1.06 
  K2O 0.11 0.03 0.09 0.60 0.30 0.99 0.31 1.33 1.75 5.21 
  P2O5 0.01 0.00 0.22 0.07 0.06 0.80 0.57 0.51 0.78 0.67 
  LOI 1.62 0.75 0.56 3.71 2.63 6.57 3.70 11.95 3.55 3.56 
  Total 100.62 98.78 101.22 99.92 99.27 100.83 100.68 99.70 100.57 100.92 
  

             Sc 16.1 36.1 25.9 39.2 38.9 19.9 23.0 23.1 22.5 17.9 
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V 31 147 291 285 213 185 260 112 216 263 
  Cr 7 100 2 527 523 372 797 740 497 150 
  Co 10.2 26.7 18.6 43.3 46.3 53.8 58.5 54.0 56.7 55.3 
  Ni 41 53 85 1516 1090 1775 423 968 725 221 
  Cu 37.6 102.3 54.2 35.0 30.5 58.3 52.9 47.6 79.9 76.5 
  Zn 19.8 34.5 92.0 106.7 143.0 166.4 117.2 118.2 113.3 213.7 
  Ga 12.7 10.3 17.7 16.6 13.5 20.8 14.4 18.1 20.2 26.9 
  Rb 1.4 0.5 1.0 9.5 3.9 18.9 3.3 33.4 27.1 96.1 
  Sr 429 286 108 190 282 562 168 196 619 1285 
  Y 1.1 1.5 28.2 26.0 20.9 27.9 24.0 23.0 29.4 33.3 
  Zr 8 8 83 54 49 225 192 197 287 255 
  Nb 0.36 0.50 2.37 4.09 0.57 29.54 23.65 23.34 26.97 42.94 
  Sn 1.71 1.64 1.21 7.25 0.84 1.66 2.43 2.22 3.04 1.75 
  Cs 0.06 0.10 0.27 0.43 0.25 1.45 0.50 2.65 0.76 2.35 
  Ba 75 28 49 123 125 415 775 176 1570 1521 
  La 0.28 0.05 11.21 2.81 1.67 61.79 39.38 45.60 69.72 65.76 
  Ce 0.75 0.18 21.98 6.92 4.78 117.28 79.10 92.10 131.07 118.96 
  Pr 0.10 0.04 3.04 1.24 0.91 13.99 9.96 10.87 15.57 13.89 
  Nd 0.51 0.35 13.37 6.36 4.97 52.27 39.67 42.18 57.82 51.51 
  Sm 0.17 0.16 3.36 2.27 1.77 9.62 9.89 9.90 13.92 12.58 
  Eu 0.12 0.10 1.13 0.76 0.74 3.04 2.70 2.46 3.57 3.13 
  Gd 0.24 0.32 3.60 2.59 2.23 8.37 7.01 6.93 9.22 8.49 
  Tb 0.04 0.06 0.63 0.47 0.44 1.13 0.98 0.94 1.20 1.13 
  Dy 0.27 0.36 4.74 3.92 3.44 6.00 5.29 5.05 6.31 6.05 
  Ho 0.05 0.07 0.98 0.81 0.74 1.00 0.88 0.83 1.06 1.04 
  Er 0.14 0.19 2.65 2.38 2.01 2.38 2.06 2.00 2.55 2.62 
  Tm 0.02 0.03 0.45 0.37 0.33 0.31 0.26 0.26 0.32 0.34 
  Yb 0.14 0.17 2.98 2.49 2.15 1.91 1.62 1.54 1.96 2.15 
  Lu 0.02 0.03 0.48 0.41 0.35 0.29 0.23 0.23 0.29 0.29 
  Hf 0.17 0.16 2.23 1.46 1.31 5.85 4.66 4.70 6.82 6.53 
  Ta 0.02 0.03 0.12 0.24 0.03 2.09 2.05 2.25 2.18 3.64 
  Pb 0.59 3.72 5.03 7.37 4.32 6.29 5.74 5.32 8.97 12.39 
  Th 0.10 0.11 1.66 0.39 0.31 6.86 4.17 4.91 6.67 7.94 
  U 0.03 0.01 0.40 0.08 0.05 1.62 1.07 1.73 1.98 2.27 
  

             143
Nd/

144
Nd (m) - 0.512848 - - 0.512950 - 0.512797 - - - 

  2 sigma error - 0.000022 - - 0.000011 - 0.000010 - - - 
  147

Sm/
144

Nd - 0.276526 - - 0.215427 - 0.120309 - - - 
  143

Nd/
144

Nd (i) - 0.512703 - - 0.512752 - 0.512733 - - - 
  Nd (i) - 3.27 - - 5.75 - 3.89 - - - 
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87
Sr/

86
Sr (m) - 0.704313 - - 0.706821 - 0.705397 - - - 

  2 sigma error - 0.000012 - - 0.000014 - 0.000017 - - - 
  87

Rb/
86

Sr  - 0.001750 - - 0.013840 - 0.019631 - - - 
  87

Sr/
86

Sr (i) - 0.704307 - - 0.706741 - 0.705332 - - - 
  

              

Abreviations 
 
Mds - mafic dyke swarm; Sd - sheeted dykes; Plag Gr - Plagiogranite;  
 
Bbc - basalt from basalt-chert unit; Bhm - basalt from hyaloclastite-mudstone unit 
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Highlights 

 

7. The Muslim Bagh Ophiolite formed in a supra-subduction zone tectonic setting. 

 

8. The source region of the sheeted dykes is MORB-like with a subduction input.  

 

9. The Bagh Complex basalts are contaminated with continental crust 


