
 
 

 

 

Cardiff University 

 

School of Engineering 

 

 

 

Influence of Solidity on the Performance, Swirl 

Characteristics, Wake Recovery and Blade 

Deflection of a Horizontal Axis Tidal Turbine 

 

 

 

A Thesis submitted to Cardiff University,  

for the Degree of Doctor of Philosophy 

 

 

 

By 

Ceri Morris 

 

 

 

 

 



 
 

 

Abstract 

The main focus of this thesis was to investigate the influence of solidity on the 
performance, swirl characteristics, wake length and blade deflection of a Horizontal 
Axis Tidal Turbine (HATT) using the simulation software package Ansys. An existing 
laboratory scale prototype HATT was modified to improve upon previously 
gathered experimental data and provide further confidence of the validity of the 
numerical models. The solidity was varied by altering the number of blades in the 
numerical models.  

The work presented in this thesis shows that, for this blade profile, increasing the 
solidity increases the peak Cθ and peak Cp and reduces the λ at which these occur. 
Ct was found to be approximately the same at peak Cp, which was assumed to be 
the normal operating condition. At λ above peak Cp, near freewheeling, Ct 
continued to increase for the 2 bladed turbine, remained approximately constant 
for the 3 bladed turbine and decreased for the 4 bladed turbine, due to the change 
in pitch angle required to maintain optimum power. This indicates that higher 
solidity rotors would have to withstand lower loads in the event of a failure. In 
addition, the thrust per blade was shown to increase with reducing number of 
blades.  

The swirl characteristics in the wake were found to agree with swirl theory and the 
swirl was found to increase with solidity whilst being weak or very weak in each 
case. Swirl number was found to be dependent on solidity only up to distances of 
10 diameters downstream. 

At higher turbulent intensities, the wake recovery was only influenced by solidity up 
to 15 diameters downstream of the HATT but at low turbulence intensities the 
wake length increased with solidity indicating that low solidity rotors may offer 
higher overall array efficiencies in areas of low turbulent intensity. 

Blade deflection was shown to increase with a reduction in the number of blades, 
due to the increased thrust per blade. The power output of the 3 bladed turbine 
was shown to decrease by 0.4% with a deflection of 0.12 m. However, the power 
output of the 2 and 4 bladed turbines was found to increase with deflections as it 
was subsequently found that the pitch settings found in a previous study were not 
fully optimised for a rigid blade. At deflections above 0.20 m the power output of 
the 4 bladed turbine was found to decrease. It is expected that the power output of 
the 2 bladed turbine would eventually decrease with further deflections but no 
decrease was found for the maximum deflection considered, of 0.35m.  

This thesis therefore shows that the optimum number of blades may vary from site 
to site and even from one location within an array to another. It also shows that 
blade deflection will alter the power output and that blades could be designed so as 
to reach their optimum setting at a given blade deflection. 
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1 Introduction 

1.1 Current Status of Renewables 

It is widely understood and accepted that in order to ensure security of supply, the 

energy mix must diversify to include a wider variety of resources (DECC, 2013). 

There is also a drive to reduce the emissions that contribute to global warming in an 

attempt to mitigate the effects of climate change. The current targets for the EU 

are set at a 20% reduction from the 1990 baseline level by 2020, with 20% of total 

energy consumption derived from renewable sources (European Union Committee, 

2008). Each member state has an individual renewable energy target based on the 

proportion of energy provided by renewables when the targets were set and the 

potential for increasing this proportion.  The UKs renewable energy target is 15% of 

the total annual energy consumption (DECC, 2011). In addition to this 2020 target, 

the UK has also set a longer term target to achieve an 80% reduction in greenhouse 

gas emissions from the 1990 baseline level by 2050 (National Archives, 2008). 

Continued research and investment into emerging technologies and sectors which 

may not have a significant impact on the 2020 target is therefore vital if the UK is to 

meet its longer term objective.  

The amount of energy from renewables required to meet these targets depends on 

the total energy consumption. The Department of Energy and Climate Change 

(DECC) projected a renewable energy supply in 2020 of 234 TWh in their UK 

Renewable Energy Roadmap (DECC, 2011), but this has since been revised 

downwards in their Annual updates (DECC 2012, 2013)  to give the estimations 

shown in Table 1.1.   

Table 1.1. UK Renewable Energy Targets for 2020 (DECC, 2013) 

Year Renewable Energy Target/ TWh 

2011 234 

2012 223-230 

2013 216-225 
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The progress towards the 2020 target is given in Figure 1.1. Clearly the largest 

contribution towards the target has so far been from the electricity sector and this 

sector has also shown the most growth since 2008 (DECC, 2013).   

 

Figure 1.1 Progress in renewable electricity, heat and transport (Source: UK 
Renewable Energy Roadmap Update, 2013) 

 

A breakdown of the renewable sources that have been exploited to produce this 

electricity is given in Figure 1.2 for each quarter from the start of 2010 to the 

second quarter of 2013, (DECC, 2013). The most recent data show that the largest 

contribution is from bioenergy, followed by onshore wind and offshore wind, with 

relatively small contributions from solar PV, wave and tidal and hydro power. None 

of the renewable sources are completely carbon free due to the infrastructure 

required to exploit them. However, there is particular debate regarding energy 

from biomass and whether it truly contributes to significant emissions reductions 

(Cho, 2011; Environment Agency, 2009), but this is outside the scope of this work 

and will not be discussed further.  Other renewables such as wind and solar 

photovoltaic (PV), whilst providing a valuable contribution to the energy mix, are 

unpredictable in the medium to long term and therefore cannot replace 

conventional fossil fuelled power plants. The energy in the tides can be accurately 
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predicted weeks, months and even years in advance. This predictability is the main 

advantage of tidal energy. Another advantage is the limited visual impact when 

compared with, for example, wind turbines. 

 

Figure 1.2 Renewable electricity share of total generation (Source: Renewable 
Energy Roadmap Update, 2013) 

 

1.2 Tidal Energy 

Tidal energy technologies generally fall into two categories; tidal range and tidal 

stream. Tidal range schemes extract energy by using a barrage or impoundment to 

create a head difference and then releasing water through turbines to generate 

electricity whereas tidal stream devices extract energy directly from the currents. 

Since this thesis is based on tidal stream devices, tidal range schemes will not be 

covered. The technologies used to exploit the tidal stream resource discussed here 

are described in Chapter 2.    

1.2.1 Tidal Stream Resource 

The UK is ideally situated to exploit tidal stream energy, with 10-15% of the global 

resource and around 50% of the European resource located in its national waters 

(Black and Veatch, 2005). A study by Black and Veatch (2005) found that within the 
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UK, 58% of the national resource is found off the coast of Scotland, in the Pentland 

region, 15% around Alderney, 4% around Rathlin Island and 3.7% around the Mull 

of Galloway, as shown in Figure 1.3. However, they have since revised these 

estimates to give approximately the same proportion of the resource in England, 

Scotland and Wales (Black and Veatch, 2011). Variability in topography, ratio of 

flow velocity in flood to ebb tide, depth requirement due to shipping and velocity 

profile are all site specific and optimum device spacing guidelines have not yet been 

established, hence it is difficult to estimate the total potential extractable energy. 

Quoted figures for the total exploitable resource in the UK range from 18 TWh/yr 

(Black and Veatch, 2005) to 29 TWh/yr (Black and Veatch, 2011), with ABP mer 

(2007) estimating figure of 27 TWh/yr for the top 10 sites combined. Salter (2005) 

and Mackay (2007), however, argue that these estimates should be far higher by 

considering the flow as a tidal wave and including the potential as well as the 

kinetic energy.  

 

Figure 1.3 UK Tidal Stream Resource (BERR, 2008) 
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1.2.2 Current Status of the Sector and Research Drivers 

Currently there is only one prototype witha rated power of over 1MW situated 

within UK waters, which is the Seagen device installed in 2008 in Strangford Lough, 

Northern Ireland by Marine Current Turbines (MCT). Many other devices have been 

tested in the European Marine Energy Centre (EMEC) in the Pentland Firth, as well 

as in other parts of the UK (Renewable UK, 2011) and some of these are described 

in Chapter 2. To reach the required contribution toward the renewable energy 

targets, arrays of multiple devices must be installed. This stage has not yet been 

reached but MCT plan to begin installation of a 9 device array, in the Anglesey 

Skerries in the summer of 2014.   

The performance of a tidal stream device is crucial in determining its financial 

viability and length of payback and will be affected by factors including blade or 

hydrofoil design and solidity. Any changes in performance with blade deflection 

under loading will also affect the overall efficiency of a device and its energy 

extraction over a tidal cycle, again influencing the economics of an installation. In 

addition to the performance of each individual device, the amount of energy that 

can be extracted from an array of devices will determine whether tidal stream 

energy can contribute sufficient electricity to the grid to play a significant role in 

meeting the UK’s long term renewable energy and emissions reduction targets. This 

will depend upon the spacing of the devices, which will in turn depend on the 

velocity recovery in the wake of each device. Since the power is proportional to the 

cube of the velocity, a relatively small reduction in incoming flow velocity will result 

in a large reduction in power output so the devices must be located where the 

velocity has recovered sufficiently.  

The performance of a device, the change in performance under loading and the 

wake recovery may all be related to the solidity, which is a function of the chord 

length of the blade and the number of blades, as will be discussed in Chapter 3. The 

wake recovery may also depend on the swirl characteristics of the wake which 

again may be a function of solidity. As such, this work investigates the effect of 

solidity on the performance, swirl characteristics, wake length and blade deflection 

of a tidal stream turbine.  
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1.3 Thesis aims and objectives 

The aim of this work was to investigate the effect of solidity of the performance, 

swirl characteristics, wake length and blade deflection of a horizontal axis tidal 

stream turbine. This was met by the following objectives: 

 To modify the existing laboratory scale prototype Horizontal Axis Tidal 

Turbine (HATT) to reduce data scatter and improve model validation using a 

controlled environment. 

 To compare the performance characteristics of the 2, 3 and 4 bladed 

turbines using Computational Fluid Dynamics (CFD) modelling. 

 To investigate the swirl characteristics in the wake of each turbine. 

 To compare the velocity recovery in the wake of each turbine based on the 

centre line velocity and the velocity over the swept area of a downstream 

turbine. 

 To develop a fully 2 way coupled Fluid Structure Interaction (FSI) model of 

each turbine and use these models to assess blade deflection and change in 

performance characteristics for 2, 3 and 4 bladed turbines.  

 

1.4 Thesis Layout 

 Chapter 1 introduces the drivers for research into tidal energy and the 

current status of the sector along with the aims and objectives of this work. 

 Chapter 2 reviews the relevant literature, outlining the devices under 

development and some of the key design considerations. 

 Chapter 3 presents the applicable theory used to model the turbine and 

assess its performance and swirl characteristics.  

 Chapter 4 describes the numerical methodology used to apply the theory 

presented in Chapter 3. 

 Chapter 5 explains the experimental methodology and validation of the 

numerical models. 

 Chapter 6 presents and discusses the performance characteristics of each of 

the turbine configurations considered. 
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 Chapter 7 analyses the swirl characteristics in the wake of each turbine. 

 Chapter 8 compares the velocity recovery in the wake of each of turbine. 

 Chapter 9 investigates the effect of blade deflection on the performance 

characteristics. 

 Chapter 10 summarises the main conclusions from the work and makes 

recommendations for further work. 
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2 Literature Review 

Tidal Stream technology has seen a rapid expansion in recent years with over 50 

devices now in development, several devices at the commercial deployment stage 

and arrays of devices in the planning stage. This chapter outlines the different types 

of device under development and identifies some of the design considerations and 

areas in which research is being undertaken to ensure that tidal stream becomes a 

full commercial reality and contributes towards the renewable energy targets 

discussed in Chapter 1.   

2.1 Types of device 

There are many types of device in development, most of which can be categorised 

based on whether they produce a rotational or linear motion, the direction of the 

rotational axis or linear motion and the inclusion of any flow acceleration 

mechanism. The main categories into which most devices fall are horizontal axis 

tidal turbines (HATTs), vertical axis tidal turbines (VATTs), venturi effect devices and 

oscillating hydrofoils.  

2.1.1 Horizontal Axis Tidal Turbines 

The main feature which identifies a HATT is that the rotational axis of the turbine is 

parallel to the tidal flow (EMEC, 2012). In comparison with VATTs, HATTs tend to 

have higher efficiencies but are more complex in design; requiring blades which 

incorporate twist and taper to achieve this (Khan et al., 2009). Typical peak 

efficiencies range from around 39% to 48% (Mason-Jones, 2010; Jo et al., 2013; 

Faudot et al., 2013; Walker et al., 2013). The direction of the flow is of importance 

meaning that the rotor or the blades must be rotated between the ebb and flood 

tides or bi-directional blades used (Liu and Veitch, 2012; Nicholls-Lee, 2011). Along 

with the higher efficiency, HATTs also tend to have higher rotational velocities than 

VATTs, which although still significant, reduces the problem of generator matching 

(Khan et al., 2009).  
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Figure 2.1 Marine Current Turbines’ SeaGen Device (Taylor, 2007) 

 

There are many forms of HATT, differing on how many blades the rotor has and 

how the device is fixed in position. The most developed HATT is the 1.2 MW SeaGen 

developed by Marine Current Turbines (MCT), shown in Figure 2.1, which is pile 

driven and has two rotors, each with 2 blades. Installed in 2008, it is the first 

commercial scale tidal stream turbine to generate power in UK waters (Sea 

Generation Ltd., 2007). Other devices at varying degrees of development are the 1 

MW TidEl from SMD (SMD, 2012), Open Hydro (Open Hydro, 2012), the 500 kW 

Deep Gen from Tidal Generation Ltd (Tidal Generation, 2010) (now Alstom) and the 

1.2 MW Delta Stream from Tidal Energy Ltd scheduled to be deployed at Ramsey 

Sound in Pembrokeshire in the near future (Tidal Energy, 2012a). Like SeaGen, TidEl 

also has two, 2 bladed rotors, Figure 2.2a, whereas Delta Stream, Figure 2.2b, and 

Deep Gen, Figure 2.2c, have 3 bladed rotors and Open Hydro has many blades and 

an open centre, Figure 2.2d. Prior to developing the Delta Stream device, Tidal 

Energy Ltd also undertook trials on a 4 bladed rotor, Figure 2.2e, under the previous 

company name of Tidal Hydraulic Generators Ltd (Tidal Energy, 2012b).  
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(a) TidEl (SMD, 2012)        (b) DeltaStream (Tidal Energy, 2012a) 

    

(c) DeepGen (Alstom, 2013)     (d) OpenHydro (OpenHydro, 2012) 

 

(e) Tidal Hydraulic Generators Ltd (Tidal Energy, 2012b). 

Figure 2.2 HATT devices under development 

 

2.1.2 Vertical Axis Tidal Turbines (VATTs) 

VATTs extract energy from the flow in a similar way to HATTs, but the rotational 

axis of the turbine is perpendicular to the tidal flow (Renewable UK, 2011). There 

are very few VATTs in development in comparison to HATTs. The main advantage of 

a VATT is that it can operate regardless of the direction of tidal flow without loss of 

operational efficiency and without the need for any pitch or yaw mechanism to 

rotate the blades or rotor (Eriksson et al., 2008). A VATT can have straight blades, 
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reducing the design and manufacturing costs when compared with the more 

complex HATT blades (Khan et al., 2009). In addition, since the rotational velocity of 

a VATT tends to be lower, they produce less noise (Riegler, 2003) and pose a 

reduced risk of collision (Eriksson et al., 2008) which may be beneficial for marine 

life. However, a reduction in noise may result in marine life coming in closer 

proximity to the device which would counteract the reduced collision risk due to 

lower blade velocity. The disadvantages of a VATT include lower efficiency (Khan et 

al., 2009), with typical peak values of around 37% to 40% (Han et al., 2013; Eriksson 

et al., 2008), although Eriksson et al. (2008), state that the lower efficiencies could 

be a result of more research based on horizontal turbines than on vertical turbines 

in the wind industry. Other disadvantages of VATTs include the low starting torque, 

meaning that unlike most HATTs they may need a starting mechanism (Khan et al., 

2009), and the torque ripple due to the changing angle of attack through the 

rotation cycle (Eriksson et al., 2008). 

              

(a) Kobold Turbine (University of Naples, 2012)  (b) Gorlov Turbine (Appleyard, 

2012) 

Figure 2.3 Examples of VATTs 

VATTs can be divided into two main groups depending on the blade design. The first 

type is a straight bladed VATT known as a Darrieus turbine, for example the Kobold 

Turbine, Figure 2.3a, (University of Naples, 2012) and the second type has helically 

shaped blades, an example of which is the Gorlov Turbine, Figure 2.3b (Appleyard, 

2012). 
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2.1.3 Oscillating hydrofoil 

Oscillating Hydrofoils use an oscillating motion rather than a rotary motion to 

extract energy from the flow and consist of a hydrofoil mounted on a pivoting arm. 

The tidal flow over the hydrofoil causes the arm to reciprocate in either a vertical or 

horizontal plane due to the hydrodynamic lift and drag forces on the wing. 

Examples of such devices include the seabed mounted Stingray (The Engineering 

Business Ltd., 2003), bioSTREAM (BioPower Systems, 2013) and Pulse Stream 

(Renewable UK, 2011). Stingray, Figure 2.4a, and Pulse Stream, oscillate in the 

vertical plane whereas bioSTREAM, Figure 2.4b, oscillates in the horizontal plane. 

       

(a) Stingray (BBC, 2002)  (b) bioStream (BioPower Systems, 

2013) 

Figure 2.4 Examples of Oscillating Hydrofoils 

2.1.4 Venturi Effect devices 

There are two general types of Venturi Effect devices. The first is essentially a HATT 

or VATT with a duct around the turbine which increases the flow velocity, such as 

the Lunar Tidal Turbine (Lunar Energy, 2012) and the Neptune Proteus (Renewabl, 

2010), shown in Figure 2.5a and Figure 2.5b.  

The second utilises a venturi and uses the reduced fluid pressure at the throat to 

draw a secondary fluid through a separate turbine, for example the Spectral Marine 

Energy Converter (VerdErg, 2012).  
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(a) Lunar Tidal Turbine  (b) Neptune Proteus (Renewabl.com) 

(Lunar Energy, 2012) 

Figure 2.5 Venturi Effect Devices 

 

2.1.5 Other types of device 

There are some tidal stream devices which cannot be placed into any of the 

categories described above. Examples of these are the Flumill Power Tower, Figure 

2.6a, and the DeepGreen developed by Minesto, Figure 2.6b. The Flumill Power 

Tower consists of two counter-rotating helical screws mounted parallel to each 

other (Flumill, 2012). The device is buoyant and is fixed to the seabed using a 

flexible mooring system. It can generate in tidal flows as low as 0.5 m/s.  

    

(a) Flumill Power Tower (Flumill, 2012)      (b) Deep Green Device (Minesto, 

2012) 

Figure 2.6 Other types of tidal stream device 
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The Deep Green device is essentially a wing with a turbine attached to the 

underside. The device is tethered to the seabed and moves through the water with 

a motion similar to that of a kite, due to the hydrodynamic lift created by the flow 

over the wing. The Deep Green also has the advantage of being able to operate in 

low velocity flows as the device can move at up to ten times the speed of the 

current; which creates sufficient flow through the turbine (Minesto, 2012). 

 

2.1.6 Rotor design used in this work  

Since most of the commercial prototypes in development are HATTs and the 

majority have 2, 3 or 4 bladed rotors, this work is based on these configurations. 

 

2.2 Environmental Impacts 

The characteristic behaviour of the ocean depends on many factors such as depth, 

bathymetry and weather. These factors contribute to the decision of where to 

locate devices and in fact what type of device, with each device having a minimum 

rated flow velocity and a securing mechanism that may only be suitable for a given 

depth of bathymetry. 

Construction and operation of one or more tidal stream devices will have direct and 

indirect effects on the surrounding environment and on the life within it. The 

protection of the environment, of species and human health, as well as the 

prevention of interference with legitimate uses of the sea, such as shipping, are the 

main factors that a government has to consider when assessing a marine licence 

application. In some cases, getting the necessary consent and licence imposes great 

difficulties and huge time delays for developers.  

Many tidal stream devices are still in various stages of development and hence 

there have been few studies into the environmental effects of these technologies. 

The studies which have been carried out to date are mostly either based on 

predictions or are unverified (US Department of Energy, 2009), with the exception 
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of Marine Current Turbines who have had an independent study conducted, led by 

Royal Haskoning, for the deployment of SeaGen (Royal Haskoning, 2011). This study 

found that there were no major environmental impacts as a result of the project. 

The quality of the water surrounding tidal stream devices could change 

significantly. For example, a change in turbidity is possible due to the effects on 

sediment transport and deposition caused by the altered tidal flows and current 

streams which may occur due to these devices (Sustainable Development 

Commission, 2007). The effect of this on marine life is uncertain. Thriving species 

could be negatively affected and vacate the area whereas the opposite is also a 

possibility; where new species are attracted. Although, water quality was not 

included in the SeaGen environmental monitoring programme; a species of mussel 

not found in the area prior to deployment was subsequently found on the mono-

pile structure and was considered a positive addition to the biodiversity (Royal 

Haskoning, 2011). 

The effect on shipping is a concern and this may limit the location and size of device 

arrays. Pollution from the machinery used should also be considered such as the 

release of hydraulic fluids, lubricants, etc. (Sustainable Development Commission, 

2007).  No evidence has yet been found that Electromagnetic fields from generators 

and cables affect the migratory and feeding habits of marine mammals and fish – 

however, this is still a controversial area (Switzer and Meggitt, 2010). 

There is a small possibility of creatures such as fish, mammals or even diving birds, 

striking turbines. There are also concerns of the cavitation effects causing sudden 

pressure changes that could harm fish (Byrne et al, 2011). Some device developers 

have attempted to mitigate the risk to marine life in their designs such as the Open 

Hydro and the Alstom Hydro, which both incorporate an open centre allowing safe 

passage for fish and marine mammals (Renewable UK, 2011; Open Hydro, 2012).  

Installation of tidal stream devices can have an effect on the surrounding 

environment, from mooring systems such as anchors and foundations to the laying 

of transmission cables and pipes. In the case of SeaGen this was found to be 

temporary and the structure has since become a thriving habitat for marine 
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creatures (Royal Haskoning, 2011). There is also likely to be a temporary issue with 

the high noise levels during construction (Frid and Andonegi, 2012), though 

operational noise is a different issue and could act to keep marine creatures away. 

Royal Haskoning estimate that the operational noise of SeaGen is audible to marine 

mammals up to 1.4km from the device and have found a local avoidance of around 

250m from the device, although this may not be due to noise as the same 

observation was made when the turbine was not operating (Royal Haskoning, 

2011).  

 

2.3 Securing, Installation and Maintenance 

Devices can be secured through a number of methods and Fraenkel (2002) 

described a number of techniques from piled through to floating structures, which 

include:- 

1. Gravity base, where the device is attached to a weighted structure, as used by 

OpenHydro, Figure 2.2b;  

2. Piled devices, either mounted to single or multiple piles, as used by SeaGen, 

Figure 2.1; 

3. Flexible Moorings which consist of a tether using chains, cables or ropes and 

anchor to secure the device to the seabed allowing alignment with oncoming waves 

or tidal flows. Some devices include contra-rotating rotors, either with separate but 

parallel rotational axes, such as TidEl, Figure 2.2a, or on the same rotational axis, as 

investigated by Clarke et al. (2008). This results in zero net torque and hence the 

device stays aligned with the flow.   

Other methods of securing devices have been proposed including multiple 

hydrofoils mounted to the structure which hold the device in place using down 

forces created by tidal flows (EMEC, 2012). Whichever system is chosen, all aspects 

relating to safety and reliability must be considered, and it must be cost effective 

(Harris et al., 2004). Piled foundations are likely to be expensive and with current 

technology are limited to depths of 40 m or less (Clarke et al. 2010). 
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The installation procedure must also be thoroughly planned and well executed as 

poorly installed devices could result in large unforeseen costs. For example, the 

estimated cost to rectify 164 poorly installed offshore wind turbines was ~£13M 

(Renewable Energy World, 2010).  

Economic viability of marine energy devices requires lengthy life spans, leading to 

the requirement of costly maintenance procedures due to the remote locations and 

harsh environments. There are several proposed methods for maintenance, 

including detachment from moorings and towing ashore and removal of the turbine 

and generation unit as one leaving the main structure on the seabed (Lunar Energy, 

2010). Piled devices offer relatively easy access for maintenance as submerged 

devices can be raised out of the water and maintenance undertaken in situ. 

However, the time frame for maintenance undertaken in situ is limited by the 

duration of slack water.  

2.4 Design Considerations of a HATT 

The tidal stream turbine modelled in this study is of the HATT type. Therefore, the 

main design considerations discussed will focus on this type of device. 

2.4.1 Solidity 

For a given rotor diameter, solidity is a function of chord length and the number of 

blades. It has been shown by Hau (2006) that increasing the number of blades on 

the rotor of a wind turbine increases its power output but with diminishing returns 

so that there is a smaller benefit for each additional blade, as shown in Figure 2.7. 

An increase in the number of blades also reduces the operational range and the 

optimum tip speed ratio (λ), also shown in Figure 2.7 (Hau, 2006). The increased 

power and reduction in both operational range and optimum λ was shown by 

(Consul et al., 2009) to also be true for a VATT but only two blade configurations 

were modelled and therefore the diminishing returns could not be confirmed. 

Shiono et al. (2000) found that for a fixed number of blades the power output of a 

VATT increased with solidity from a solidity of 0.108 to 0.179 and then decreased 

with further increases in solidity.  
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The majority of horizontal axis wind turbines (HAWTs) are 3 bladed and the reasons 

for this include aesthetics, noise and engineering considerations. It is generally 

thought that 3 bladed rotors are more aesthetically pleasing than 2 bladed rotors 

and are quieter due to a lower rotational speed (Cottrell, 2002). Although 

aesthetics will not be an issue for tidal stream turbines, noise generation may be a 

problem for marine life (DTI, 2007). In addition to noise, higher rotational speeds 

may also increase the risk of cavitation and injury or death to marine mammals.     

 

 

Figure 2.7 Power coefficient curves for wind turbines with increasing numbers of 
blades (Hau, 2006) 

 

The number of blades is a particular concern for pile driven and gravity based 

structures since as a blade passes in front of the support stanchion, or behind for 

some designs, tower shadow effects occur, leading to a reduction in torque and 

thrust (Mason-Jones et al., 2013). According to Jo et al. (2012) a 2 bladed rotor 

would suffer from unacceptable tower shadow affects but a 3 bladed rotor can 

maintain stable disk characteristics and therefore more blades are unnecessary, 

since they will increase the cost of the rotor. However, an increase in the number of 

blades would reduce the overall tower effects for designs where only one blade 

passes in front of the support stanchion at a time, such as the MCT Seagen device, 
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since the ratio of blades affected by the tower to the total number of blades would 

be lower. For designs where 2 blades pass in front of the support stanchion at the 

same time, this may not be the case. For example, with MCTs SeaFlow device, 

Figure 2.8, a 4 bladed rotor would result in 2 out of 4 blades in the tower shadow at 

one time, in comparison with 1 out of 3 for a 3 bladed rotor. A reduced overall 

tower effect would be beneficial from a generation point of view, since the output 

would be more consistent. However, depending on the design of support stanchion, 

reducing the overall tower effect may have a negative effect on the drive train 

components due to misalignments caused by imbalances of the forces on the rotor. 

A tethered mooring system may alleviate problems associated with tower shadow.  

 

Figure 2.8 Marine Current Turbines' SeaFlow Device (Murdoch University, 2008) 

 

Although there have been few studies on solidity for HATTs, findings from work on 

HAWTs may be transferable. Duquette et al. (2003a) investigated the effect of 

solidity on a HAWT by changing both the chord length of each blade and the 

number of blades. The study was based on numerical predictions with solidity 

values ranging from 0.05 to 0.45 and blade numbers of 3, 6 and 12. The findings 

showed that for a fixed solidity, maximum power output increased with the number 

of blades. For a fixed number of blades the maximum power output varied with 
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solidity but to a differing extent depending on the number of blades. However, 

experimental work by Duquette et al. (2003,b) contradicted the numerical 

predictions and showed a reduction in power output for an increased number of 

blades at a constant solidity. The authors suggest that this may be due to low 

Reynolds number and blockage effects in the experimental set-up. Mason-Jones et 

al. (2012) and Tedds et al. (2011) have shown that low Reynolds number can reduce 

the power output but it is likely that this would affect all of the results. In addition 

the constant solidity would result in the same blockage ratio throughout the 

experiments so these explanations may not be justified. 

When considering the design of a theoretical turbine for a study on composite 

blades, Wadia et al. (2011) state that higher solidity rotors will be less prone to 

blade erosion and cavitation since the optimum λ is lower and therefore the flow 

velocity over the blades is lower. They also assert that a lower λ should result in a 

reduced effect from the drag caused by marine fouling.  

While it is stated above that fewer blades can reduce the cost of the rotor, it can 

also reduce the cost of the gearbox, since the operating λ is higher and therefore 

closer to that of a generator (Jo et al., 2013). However, other factors such as tower 

shadow effects, installation, maintenance and lifespan will contribute to the 

economic considerations; all of which may be dependent on the number of blades.     

 

2.4.2 Interaction with Stanchion 

As discussed above, the interaction with the stanchion can affect the performance 

and loading on a tidal stream turbine. In addition to the number of blades, the 

magnitude of the effect is also influenced by the geometry of the stanchion 

(Mason-Jones et al., 2013) and the distance between the rotor and the stanchion 

(Frost et al., 2014). The former study found that the power output of a turbine with 

an elliptical or hydrofoil shaped stanchion is around 20% higher than with a square 

stanchion and the total thrust around 35% lower. The latter work showed that the 

power output increased by around 10% when the rotor to stanchion distance was 

increased from 1 to 2 hub diameters with the turbine upstream of the stanchion. 
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Furthermore, although the average power output was found to reduce by only 

around 7% when the rotor was downstream of the stanchion, the fluctuations in 

power over the rotational cycle increased from around 2.5% to around 30% and the 

fluctuations in thrust from 1% to 15%. 

2.4.3 Wake Length 

There are little published data regarding the wake of a full-scale tidal turbine and 

none could be found in the public domain. Small scale experiments have been 

undertaken by Myers et al. (2008, 2010), using mesh disks to simulate rotors. These 

studies showed a recovery to 90% of the upstream flow velocity along the centre 

line of the disk at a downstream distance of ~20 diameters. The representation of 

rotors as mesh disks neglects the swirl imparted on the flow but the authors state 

that these effects dissipate rapidly and only affect the near-wake region, the end of 

which is defined as “the point at which the shear layer reaches the centre line”. The 

results of this work suggest that the thrust on a turbine affects only the near wake 

with the far wake depending mainly on ambient turbulence, proximity to the 

surface and sea bed and local bathymetry.      

In contradiction to the assumptions of Myers et al. (2008, 2010), McCombes et al. 

(2008) predict that the vortices shed from the blade will have a significant effect on 

the wake recovery and state that traditional CFD may underestimate wake length 

due to the diffusion of vorticity.  

Research in the wind industry has shown that in wind tunnel experiments the 

velocity at x/D=16 is less than 90% of the upstream value (Vermeer et al., 2003). 

However, Helmis et al. (1995) argue that the length of the near wake region is 

overestimated by wind tunnel experiments with their field measurements showing 

negligible velocity deficit at x/D=10-12. This could be due to differences in the 

physical surroundings which cannot be accurately modelled in a wind tunnel and 

could also be applicable to tidal stream turbine wakes. Masters et al. (2013) 

investigated the effect of flow acceleration on wake recovery by including a sloping 

surface in their models and found that a surface gradient of -0.01 reduced the 

distance to 80% velocity recovery by almost 50%. In addition to this, Olczak et al. 
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(2013) found that surface waves can improve velocity recovery and reduce wake 

length, with larger waves having a greater effect. These findings highlight the 

necessity of extensive field data for a site prior to installation and the inclusion of as 

many physical features as practical in a physical or numerical model of a proposed 

site.  

2.4.4 Blade Loading 

The loads which the blades must withstand are a critical design requirement, with 

expensive and embarrassing blade failures occurring for several prototype turbines 

in recent years. While the failure of the Atlantis AR1000 blades was due to a 

manufacturing defect, both the OpenHydro and Verdant Power failures were 

caused by a larger than expected incoming velocity and hence load (Liu and Veitch, 

2012), again underlining the importance of accurate site specific field data including 

turbulence and wave effects.  

The dynamic loading on a tidal stream turbine can be separated into periodic loads, 

caused by velocity shear and rotor-stanchion interaction, and stochastic loads 

caused by turbulence and waves. Collier et al. (2013) showed that the fatigue 

loading is dominated by the stochastic loads. Most full scale prototypes have 

composite blades and according to Wadia et al. (2011) fatigue is unlikely to be 

critical for glass/carbon laminates but can be significant for metal parts. This would 

include, for example, bolts used to secure the blades to the hub. 

Wadia et al. (2011) also state that seawater saturation reduces the fibre strength of 

a composite by ~10% and the resin-based strength by 25% which must be 

accounted for in the design process. They also found that a longitudinal web along 

the length of the blade reduced the bending moment by a factor of 4. Additional 

material combined with a longitudinal web will limit the minimum thickness of the 

blade but Liu and Veitch (2012) found that increasing the thickness of the blades by 

a small amount to improve the strength has little effect on the power output of the 

turbine. In addition to external loads, Wadia et al. (2011) also considered the 

internal loads at the tips if the blades are water filled, due to the increase in 

pressure caused by centripetal acceleration. Their findings led them to conclude 
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that the blades of a TST could be approximately 50% lighter than those of a wind 

turbine with the same rated power but at 75% of the cost. 

2.5 Modelling 

Modelling of a full scale turbine, either by scaled prototype or numerically, is an 

essential part of the design process, providing developers and investors with 

estimates of power, loads, and flow characteristics. This section considers published 

modelling in the field, focussed on HATTs, since the tidal stream turbine used for 

the work in this study is of this type.  

2.5.1 Physical Modelling 

Physical scale modelling has been undertaken in towing tanks, recirculating flumes, 

rivers and harbours and offshore. Towing tank experiments have been carried out 

by, for example, Faudot et al. (2013) in their work on runaway situations and Clarke 

et al (2008). when developing their contra-rotating prototype. Towing tank tests 

can provide a controlled environment but can only be used with plug flows and 

cannot simulate velocity profiles. Recirculating flume testing has been undertaken 

by several research groups and can include velocity profiles (Tedds et al., 2013) and 

waves (Olczak et al. 2013). However, recirculating flumes tend to have a smaller 

cross section than towing tanks and therefore rotor diameters can be limited by 

blockage effects.      

River, harbour and offshore testing include work by Orme and Masters (2004), 

Starzmann et al. (2013) and Clarke et al. (2008). Unlike towing tanks and 

recirculating flumes, river, harbour and offshore testing does not provide a 

controlled environment. It is therefore less suitable for validating numerical models 

but does give an insight into the effects of variable flow velocity and turbulence and 

provides valid information regarding turbine performance in a more realistic 

environment.  

2.5.2 Numerical Modelling 

In order to minimise the time and cost taken to move from initial concept to 

commercial deployment, numerical modelling can be used to reduce the number of 

design iterations in the physical prototype. The approach taken depends on time 
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and computational constraints and is often based on one or more of the following 

methods. 

2.5.2.1  Blade Element Momentum Theory 

Blade Element Momentum theory (BEMT) is based on a combination of momentum 

theory and the lift and drag coefficients of a blade profile. It is faster and less 

computationally expensive than other numerical methods such as Computational 

Fluid Dynamics (CFD) and is therefore the basis for commercial wind and tidal 

design tools such as Garrad Hassan’s Bladed and Tidal Bladed due to the number of 

design iterations that can be performed in a short period of time (Bahaj et al., 

2007). However, it does not account for any flow perpendicular to the blade profile, 

along the length of the blade and assumes the forces on the rotor are rotationally 

averaged (Malki et al., 2013; Batten et al., 2013).  

Malki et al. (2013) have developed a coupled BEM-CFD model which is based on 

momentum source terms from a BEM model being fed into a RANS model. The 

authors state that where the incoming flow is non-uniform, as is likely in most 

practical cases, this method can give more realistic predictions than the classical 

BEM method.  

Batten et al. (2013) have also used this method and state that it is suitable for 

assessing the interactions of wakes in an array but not for obtaining predictions for 

the loading on each individual blade since the time-averaged nature of the actuator 

disk still applies. The results of this work also indicate that this method over 

predicts overall loading and under predicts performance which could contribute to 

over engineering and unfavourable economics if used for the final design of an 

individual turbine.   

2.5.2.2 Computational Fluid Dynamics 

CFD can give more detailed information on the forces on an individual turbine and 

can be used for optimising a turbine, after initial blade design. For example, Mason-

Jones (2010) found that a blade which was predicted to have an optimum pitch 

angle of 7o using BEM was later found to have an optimum of 6o using CFD.  



 
25 

 

CFD involves solving the Reynolds Averaged Navier Stokes (RANS) equations by 

Finite Volume method, using semi-empirical turbulence models. Several turbulence 

models have been developed and range in complexity and applicability. The 

majority of CFD studies in the field have used either the k-ε model (Gant and 

Stallard; 2008, Malki, 2013) or the k-ω Shear Stress Transport (SST) model 

(McSherry et al.; 2011, Afgan et al.; 2013, Fleming et al., 2013), although Mason-

Jones et al. (2008) used the Reynolds Stress Model (RSM). Those used in this work 

are discussed in Chapter 3. 

Early CFD work in the field of tidal stream turbines was based on extracting energy 

from the flow by modelling the turbine as a porous disk (Gant and Stallard, 2008). 

Unlike the coupled BEM-CFD method, no swirl is introduced to the flow and hence 

this is a highly simplified representation of a tidal stream turbine. It has limited use 

in estimating wake lengths and their interactions in arrays, but again does not give 

detailed information about the turbine, such as blade loading. It therefore cannot 

be used in the development of Fluid-Structure Interaction (FSI) models, discussed 

later in this chapter. 

In 2008, Mason-Jones et al. (2008) modelled a horizontal axis tidal turbine using the 

full turbine geometry and this method is now being used by several research groups 

(McSherry, 2011; McNaughton, 2013; Fleming, 2013). One issue that has become 

apparent through these studies is the decay in turbulence from the inlet through 

the length of the domain (Gant and Stallard, 2008; Mason-Jones, 2010). Velocity 

profiles and bed shear have been included in attempt to mitigate this problem 

(Fleming et al, 2013), but this again relies on accurate field data to give realistic 

results.   

Further complexity in the flow field can be modelled using Large Eddy Simulation 

(LES). LES involves filtering the Navier-Stokes equations to remove eddies which are 

smaller than the grid spacing, and resolving the large eddies which remain. The 

small scale turbulence is then modelled assuming an isotropic eddy viscosity 

(ANSYS, 2010). LES requires a very fine mesh and is therefore very computationally 

expensive. 
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A study on LES and RANS was conducted by Afgan et al. (2013). They concluded that 

the LES models did not offer significant advantages over the RANS models for mean 

and instantaneous power and load predictions but did capture unsteady loads 

which were not captured by the RANS models. It is therefore likely that a LES would 

offer useful fatigue and life prediction data toward the end of the design process. 

However, this study showed the computational expense of LES with 2048 

processors used for these models.    

A compromise between RANS and LES can be achieved using hybrid RANS/LES 

models such as the Detached Eddy Simulation (DES) available within ANSYS FLUENT 

(2010) and the Dynamic Hybrid RANS/LES (DHRL) model developed by Bhushan et al 

(2013). These models operate in RANS mode in the boundary layer near walls and 

in LES mode in the free stream flow. 

Due to the requirement to develop a 2-way coupled Fluid Structure Interaction (FSI) 

model, as discussed in Section 1.3, the RANS modelling approach was taken for the 

work in this thesis. This was because details on the loads on each blade were 

required and therefore an actuator disk model would be insufficient, but the 

computational expense of DES or LES would result in an unreasonable run time 

when coupled with FEA.  

2.5.2.3 Fluid-Structure Interaction 

In recent years, Fluid Structure Interaction (FSI) modelling has been used for 

analysis of wind turbine blades, although much of this research involves the 

coupling of BEM codes with FEA, as in the work by Lee et al. (2012) in their work on 

FSI of FRP (fibre reinforced plastic) wind turbine blades. 

Previous FSI studies of marine turbines include Nicholls-Lee et al. (2011). In their 

work a surface panel code was used for the CFD and ANSYS 12.1 for the FEA. 

Matlab was used as the FS interface to enable the transfer of force and 

displacement data between the CFD and FEA codes.  This work gives a valid insight 

to the effects of fluid structure interaction and its consequences on cavitation, 

power attenuation and stresses on the structure. While it is stated by Nicholls-Lee 

et al. (2011) that the panel method performs well for undeviating flows it is clear 
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that where it becomes necessary to include intricacy in the hydrodynamic flow 

field, the use of RANS, DES and LES solvers are required to model the 

hydrodynamics. Moreover, with an increased knowledge of a hydrodynamic flow 

field under extreme conditions such as an upstream velocity profile and rotor 

stanchion interaction it becomes necessary to consider the strong coupling effects 

between the fluid and the structure. 

Another approach to FSI is to use a RANS solver for the hydrodynamics and a 

simplified solver for the structural analysis such as that employed by Arnold et al. 

(2013), where the Simpack multibody method was coupled with ANSYS CFX. This 

method is less computationally expensive than FEA but relies on a reduced number 

of degrees of freedom and does not offer the same level of accuracy as an FEA 

solver. 

Furthermore, simplified models can be used for both the fluid and structural 

analyses, such as in the work by Bercin et al. (2013) on an efficient method for 

analysing FSI of HATT blades, which is based on coupling a BEM code with beam 

theory and modal decomposition. 

While the above methods all provide valid approximations required at an early 

stage of development, at a more advanced design stage the coupling of CFD and 

FEA solvers can provide detailed predictions for the flow field, performance, 

deformation and loading, and can help to minimise the number of physical 

prototypes and modifications to these prototypes that are required for successful 

deployment.    

Research based on coupling of CFD and FEA solvers includes that by Jo et al. (2013), 

who investigated the performance of a horizontal axis tidal turbine with blade 

deformation and found a 2.2% drop in the power output with a maximum blade tip 

deflection of 0.216m. However, this work was based on a one-way coupling where 

the results from a CFD study were exported to a FEA model and the deformed 

structure was fed back to the CFD model to find the change in power output for a 

given blade deflection. However, the single coupling iteration does not account for 

the change in blade deflection associated with the altered flow field.   



 
28 

 

A fully coupled 2-way FSI using a symmetry boundary and single blade was 

undertaken by Park et al. (2013). In this 2-way study ANSYS CFX 13.0 and ANSYS 

Transient Structural were used. From the results it was suggested by Park, et al. 

(2013) that although the deflection of the blades was relatively small in their study 

it was still necessary to consider blade deformation due to a 1.7% drop in maximum 

power extraction. Moreover, the latter research indicated that a possible over 

estimate of the maximum negative pressure on the suction side of the blade, as was 

found with a rigid blade, has the potential to lead to a corresponding over 

prediction on the initiation of cavitation. 

The FSI work in this thesis is based on fully-coupled two-way FSI models of a 

horizontal turbine hub and all blades.  

2.6 Summary of Literature Review 

There are various different types of tidal stream devices and various methods of 

securing them to the sea bed. This work is based on a HATT rotor. The design 

considerations of a HATT include solidity, wake length and blade loading which are 

all investigated in this study. Other areas of research include interaction with the 

support stanchion, securing, installation and mainteneance and environmental 

impacts but these are beyond the scope of this work. 

Research methods in the field include numerical and physical modelling. The 

methods used for this work are based on CFD and FSI numerical modelling. Scaled 

prototype testing in a recirculating flume is used to validate the CFD models.  

To the author’s knowledge, there are no data published using RANS based CFD to 

compare tidal stream turbines with different numbers of blades of the same blade 

design. Also, no published work could be found which involves a fully coupled 2 way 

FSI analysis of a complete tidal stream turbine rotor. 
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3 Theory 

In order to compare devices of different physical sizes subjected to different flow 

conditions, non-dimensional coefficients are used. This chapter gives an overview 

of the relevant theory used to assess the performance of a HATT, define its solidity 

and analyse the swirl it imparts to the flow. Details of the underlying theory of the 

numerical modelling are also given.  

3.1 Performance Characteristics 

The performance of a HATT can be described by the non-dimensional performance 

characteristics below, which are based on Froude’s Momentum Theory for an 

actuator disk (Hansen, 2001). The power coefficient (Cp) is the ratio of the extracted 

energy to the available energy over the swept area of the turbine and is given by 

Equation 3.1. 

   
  

    
                     3.1 

Equation 3.2 gives the torque coefficient (Cθ), which is the ratio of the torque 

generated by the turbine to the maximum theoretical torque. 

   
  

     
                     3.2 

The thrust coefficient (Ct), given by Equation 3.3 is the ratio of the axial load on the 

turbine to the axial load over the swept area of the turbine. 

   
  

    
                     3.3 

The tip speed ratio (λ) is the ratio of the tangential velocity of the blade tip to the 

upstream velocity of the flow and is given by Equation 3.4. Plotting the above 

performance characteristics against λ enables different devices to be compared 

regardless of the turbine diameter or flow conditions.  

  
  

 
           

 3.4 
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3.2 Solidity 

The Solidity of a turbine is given by the ratio of the total blade area to the swept 

area of the rotor and is represented by Equation 3.5 (Duquette and Visser, 2003).  

 = 
BC

 R
                      3.5 

where B is the number of blades and C is the average chord length. 

The solidity values used for the work presented in this thesis and the associated 

number of blades are shown in Table 3.1 and Figure 3.1 below.  

 

Table 3.1 Turbine solidity values 

No of Blades,  Solidity,   

2 0.14 

3 0.21 

4 0.28 

 

      

Figure 3.1 Turbine configurations 
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3.3 Swirl  

Swirl flows are observed in natural flows, such as tornadoes and typhoons, and 

have been widely used, for various reasons, in technical applications, such as 

aeronautics, heat exchange, spray drying, separation, combustion, etc. Their 

importance and complexity have been the subject of many research investigations 

for decades and a full review of the complex nature of the research into swirl and 

vortex breakdown can be found in Lucca-Negro and O’Doherty (2001) and Syred 

(2006). 

In aeronautics, leading-edge vortices shed from a delta wing induce a velocity field 

that results in increased lift and stability of the wing. However, under certain 

conditions related to the angle of attack of the wing, these vortices can undergo a 

sudden and drastic change in structure, known as vortex breakdown, which can 

adversely alter the aerodynamic characteristics of the wing. A similar bursting 

phenomenon has been observed for trailing wing-tip vortices, which is, this time, 

desirable as these vortices represent a hazard to smaller aircraft in areas of dense 

air traffic (Spall et al., 1987). An understanding of the vortices shed from TSTs and 

the ensuing swirl flow is therefore important if these turbines are to operate under 

optimal conditions whilst minimising their spacing within an array.  

A swirl flow is defined as one undergoing simultaneous axial and vortex motions. It 

results from the application of a spiralling motion, a swirl velocity component 

(tangential velocity component) being imparted to the flow, axial-plus-tangential 

entry swirl generators or by direct tangential entry (Gupta et al, 1984). The vorticity 

of such flows is the curl or simply the distortion of the velocity field. This distortion, 

when it exists, results from the different angular velocities of different rings of 

particles. It therefore causes an object travelling on a circular path to rotate about 

its own axis as it goes along. Vorticity is defined as the ratio of the circulation round 

an infinitesimal circuit to the area of that circuit (Massey, 2006) and is given by: - 

pU
area

ncirculatio
vorticity                                                                                        3.6  

Where       u   v   w    
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Flows with a tangential or swirl velocity w of type w = C/r are called potential or 

free vortices. The vorticity of such flows tends to zero and the local flow rotates as a 

fixed body, that is, each element of the moving fluid undergoes no net rotation 

(with respect to chosen coordinate axes) from one instant to another. Hence such 

flows are called irrotational. Flows with solid-body rotation such that the tangential 

velocity is given by w = c’r are called forced vortices. In this case the vorticity does 

not tend to zero and such flows are called rotational, that is each element of the 

moving fluid travels along a circular path and simultaneously rotates about its own 

axis.  

In practice there may be rotational motion in one part of a flow field and 

irrotational motion in another part. In addition, all free vortices in real fluids have a 

central vortex core in which the vorticity is non-zero (Gupta et al, 1984). 

Conservation of angular momentum tends to create a free vortex flow, in which the 

circumferential velocity increases sharply as the radius decreases, w finally decaying 

to zero at r = 0 as viscous forces begin to dominate.  

The free and forced vortices can be distinguished by the radial position of the 

maximum value of the tangential velocity component: in a free vortex, the 

maximum is found near the axis of symmetry while in the forced vortex, the 

maximum is found at the outer edge of the vortex. In some cases, a combined or 

Rankine vortex exists where the forced vortex equation is satisfied at small radial 

distances and the free vortex equation for large radial distances (Figure 3.2).  This 

type of vortex has been shown to develop, for example, when the flow is 

introduced tangentially at the periphery of a cylindrical chamber and exhausted at 

an axial nozzle (Keyes, 1960; Roschke et al.; 1965, Sozou and Swithenbank, 1969). 

The central forced vortex region exhibits flow field and turbulence characteristics, 

which appear to be significantly different from those seen in the surrounding 

irrotational vortex flow field. This central region is often referred to as the inner or 

vortex core. It is described as being shear free, but not vorticity free. The core is 

generally limited to that region of the solid-body rotating flow (Sloan et al., 1986), 

but can also be extended to the radius of maximum tangential velocity. 
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Figure 3.2 Qualitative representation of a Rankine vortex (Gupta et al., 1984) 

The characteristics of each type of vortex can be uniquely defined as summarised in 

Table 3.2. 

Table 3.2: General characteristics of vortices (Gupta et al., 1984) 

 Forced vortex 

(solid-body rotation) 

Free vortex 

(potential vortex) 

Combined vortex 

(Rankine vortex) 

Tangential 

Velocity 

Distribution, w 

             

where n<0 

             

where n>0 
   

  

 
        

  

  
   

Angular velocity, 

ω 

c’ (constant)  

  
 (function of r) function of r 

Circulation, Γ                                   
            

  

  
   

Vorticity,  4 ω = constant 0     

  
        

  

  
   

 

In addition to classifying a swirl flow based on its type of vortex, it is common to 

characterise the degree or intensity of the swirl using the dimensionless local swirl 

number. This is because the degree of swirl has large-scale effects on the flow fields 

(Gupta et al., 1984). For example, introducing swirl into turbulent jets causes an 
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increase in jet growth, rate of entrainment and rate of decay of the jet. The swirl 

number is defined as follows (Lilley, 1973): 

rG

G
S

x




 
                                                                                             3.7 

Where 

r = R, the rotor radius since r is normally defined as the distance from the axis of 

rotation to the geometry edge;  

G is the axial flux of angular momentum and is given by  

  wuRrdruwrG
R

3

0 3

2
2                                                                                              3.8

  

Gx is the axial flux of linear momentum is given by  

22

0
22 uRrdrprdruuG

RR

o
x                                                                                 3.9 

assuming the static pressure is constant over the R, and consequently that the 

pressure term can be omitted (Lucca-Negro, 1999). 

 

The swirl number is typically used to define the level of swirl, such that very weak 

swirl is when S ≤ 0.2, weak swirl corresponds to 0.2 < S ≤ 0.5 and strong swirl is 

when S > 0.5 (Gupta et al, 1984). 

 

3.4 CFD 

The commercial software ANSYS FLUENT was used for all CFD models discussed in 

this thesis. Continuity and momentum equations are solved for all types of flow via 

a finite-volume method. To account for the effects of turbulence, a variety of 

models are available, ranging in complexity from one-equation models to LES. The 

turbulence models used in this work fall into the Reynolds Averaged Navier-Stokes 

(RANS) category, as discussed previously, in Chapter 2. These models are described 

in further detail below. 
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Within ANSYS FLUENT various methods are available to simulate rotation. These 

include 2-D axisymmetric models, Moving Reference Frame (MRF) and dynamic 

meshing. The 2-D axisymmetric models can be used for simple problems where an 

external boundary is rotating. In situations where the rotating body moves through 

the fluid, a MRF or dynamic mesh model is required. As will be discussed in Chapter 

4, a MRF was used for this work and the applicable theory is included below. 

 

3.4.1 RANS 

The RANS equations are derived by splitting the velocity term in the instantaneous 

Navier-Stokes equations into the time averaged and fluctuating components, 

Equation 3.10.  

                                             3.10 

The resulting Reynolds Averaged Navier-Stokes equation for incompressible flow, 

such as that of water flowing around a tidal turbine, is given below in Cartesian 

tensor form (Versteeg and Malalasekara, 2007): 

  
   

  
 

 

   
         

  

   
 

 

   
  

   

   
  

 

   
                       3.11 

where P is the hydrostatic pressure,          are the Reynolds stresses which are 

present due to turbulence and must be evaluated to close the equation  

Many turbulence models, including the k-   SST model used in this work and 

discussed in Section 3.4.2.2, rely on the Boussinesq hypothesis which relates the 

Reynolds stresses to the mean velocity gradients by assuming an isotropic turbulent 

viscosity, μt. This is given by Equation 3.12, (ANSYS, 2010) where k is the turbulent 

kinetic energy and     is the Kronecker delta which is 1 if i=j and 0 otherwise. This 

assumption is reasonable for many types of flow, including boundary layers and 

round jets (ANSYS, 2010) and has been shown to give acceptable predictions for 

HATTs (McSherry et al, 2011; Afgan et al, 2013; Fleming et al, 2013).  
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                              3.12 

An alternative approach is to evaluate the individual stress components, as in the 

Reynolds Stress Model (RSM), also used in this work and outlined in Section 3.4.2.1.  

For all turbulence models available within ANSYS FLUENT, the turbulent kinetic 

energy, k, and turbulence dissipation rate,  , are obtained via Equations 3.13, 3.14 

and 3.15 respectively and the specific dissipation rate ω is approximately equal to 

the ratio of the two (ANSYS, 2010).  

  
 

 
                                       3.13 

   
    

   
 
    

   
 

    

   
                      3.14 

  
 

 
                    3.15 

 

3.4.2 Turbulence Models 

3.4.2.1  RSM 

As stated above, the RSM evaluates the individual stress components to close the 

RANS equations, rather than assuming an isotropic turbulent viscosity. This gives 

the RSM the potential to more accurately predict the flow field variables in complex 

flows involving high levels of swirl and rotation (ANSYS, 2010), such as those which 

may occur in the vicinity of a tidal stream turbine. It also more closely represents 

the turbulence near solid walls which is anisotropic since it is dominated by shear 

due to wall friction (Versteeg and Malalasekara, 2007). 

The transport equations of the Reynolds stresses may be written in the following 

form: 

 

  
                                                                 3.16 
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Where  

    
 

   
            is the convective transport              3.17 

       
 

   
                               is the turbulent diffusion              3.18 

      
 

   
  

 

   
          is the viscous diffusion                          3.19 

            
   

   
       

   

   
  is the stress production                         3.20 

       
    

   
 

    

   
  is the pressure strain                           3.21 

And 

      
    

   

    

   
 is the dissipation, giving the full transport equation as:                3.22 

 

  
            

 

   
             

 

   
                               

 
 

   
  

 

   
                  

   

   
       

   

   
    

    

   
 

    

   
     

    

   
 

∂  j∂xi 2 ∂  i∂xk∂  j∂xk                            

3.23 

To close the equations the turbulent diffusion (     ), pressure strain (      and 

dissipation (   ) must be modelled, using approximations for the unknown terms. 

These approximations are as follows: 

       
 

   
 
  

  

  
   

 

   
                               3.24 

where         and   

      
  

 
                                3.25 
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Equation 3.24 is a simplified form of a generalized gradient-diffusion model (Daly 

and Harlow, 1970) where the value of    was derived by Lien and Leschziner 

(1994). 

        
 

 
        

 

 
             

 

 
                                      3.26 

where        and        

The first term on the right hand side of Equation 3.26 is known as the slow 

pressure-strain term and the second term on the right hand side is known as the 

rapid pressure-strain term where the constants are empirically derived. This 

approach was proposed by Gibson and Launder (1978). The slow pressure-strain 

term is due to mutual interactions of turbulent eddies and the rapid pressure-strain 

term is due to interactions between turbulent eddies and the mean flow. Both 

terms act to reduce the anisotropy of Reynolds stresses (Versteeg and 

Malalasekara, 2007). The actual expression used is modified to include corrections 

to the rapid pressure-strain term to ensure independence from the co-ordinate 

system and a wall reflection term which counteracts the reduction of anisotropy in 

near-wall regions (Versteeg and Malalasekara, 2007; ANSYS, 2010) 

    
 

 
                                     3.27 

The dissipation rate of Reynolds stresses, Equation 3.27, is modelled by assuming 

that the small dissipative eddies are isotropic. 

  

3.4.2.2  k-ω SST 

The transport equations for the standard k-ω model, developed by Wilcox (1998) 

are given below, Equations 3.28 and 3.29. 

 

  
     

 

   
       

 

   
   

  

   
                                  3.28 

 

  
     

 

   
       

 

   
   

  

   
                                 3.29 
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Where   ,    and     are the diffusivity, generation and dissipation of turbulent 

kinetic energy and    ,    and            diffusivity, generation and dissipation of 

   Full expressions for these terms are given in the ANSYS FLUENT theory guide 

(ANSYS, 2010). 

The standard k-ω model accounts for low Re effects in the inner region of the 

boundary layer but is highly sensitive to the values of k and ω in the free stream. 

The SST k-ω model couples the standard k-ω model with a modified version of the 

k-ε model via a blending function so that in the near wall region the standard k-ω 

model solely applies and in the free stream the modified version of the k-ε model 

solely applies with a smooth transition in the region between (ANSYS, 2010).  

The transport equations for the SST k-ω model were developed by Menter (1994) 

and are of a similar form to Equations 3.28 and 3.29 .The expressions for the terms 

  ,   ,   ,   ,    and    are different, with different constants and limiters for the 

turbulent viscosity and production of kinetic energy. The revised model constants 

are based on experience. The limitations on turbulent viscosity and production of 

kinetic energy improve predictions in adverse pressure gradients and prevent build-

up of turbulence in stagnation regions (Versteeg and Malalasekara, 2007). These 

expressions are again given in the ANSYS FLUENT theory guide (ANSYS, 2010).  

There is also an additional cross-diffusion term in the equation for   which arises 

from the modification of the k-ε model into equations based on k and   by 

substitution of ε with kω. This term is given in Equation 3.30. 

          
 

     

  

   

  

   
                             3.30 

where F1 is a blending function and the empirical constant       1.17. 

Through blending both models the SST k-ω model incorporates the advantages 

from both the standard k-ω model and the k-ε model, giving more accurate and 

reliable predictions for many types of flow, including the flow over an airfoil. It is 

therefore recommended by ANSYS to use the SST k-ω model rather than the 

standard k-ω model (ANSYS, 2010). 
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Further improvements in predictions can be achieved with the Transition SST model 

which couples the SST k-ω model with two other transport equations, for 

intermittency and transition onset (Menter et al, 2004). However, use of the 

Transition SST model requires a very fine mesh to capture the transition correctly 

and when used with the mesh described later, in Chapter 4, negligible difference 

was found between this and the SST k- ω model. In addition, the transition region 

usually constitutes a very small proportion of the flow field and therefore errors 

from neglecting it are small (Versteeg and Malalasekara, 2007). The SST results 

presented in this thesis are therefore based on the principles of the SST k- ω model.  

3.4.3 Wall Functions 

The inner boundary layer near the walls can be divided into three layers, as shown 

in Figure 3.3. In order to avoid a very fine mesh resolution required to fully resolve 

the boundary layer near the walls, semi-empirical wall functions based on the work 

of Launder and Spalding (1974) are used.  

 

Figure 3.3 Layers of the near wall boundary layer (Adapted from ANSYS, 2010) 

 

The value of    in Figure 3.3 is given by 

   
    

 
                               3.31 
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where uτ is the friction velocity and is given by  

    
  

 
                               3.32

  

although the law-of-the-wall for mean velocity is based on    since this is 

approximately equal to    in equilibrium turbulent boundary layers (ANSYS, 2010).   

Equations 3.33, 3.36 and 3.37 give the standard wall function for momentum and 

turbulence which are based on the work of Launder and Spalding (1974). These 

functions assume a constant shear stress, which is equal to the wall shear stress, 

and a local equilibrium between the production and dissipation of k, resulting in a 

logarithmic velocity profile near the wall. 

The mean velocity is given by 

   
 

 
                                                                                                                           3.33 

Where U* is the dimensionless velocity and is given by  

   
    

   
  
   

    
                                                                                                                   3.34 

y* is the dimensionless distance to the wall, given by 

   
   

   
  
   

  

 
                                                                                                                  3.35 

And   is a constant where    9.8 for smooth walls. 

The production of turbulent kinetic energy is calculated from 

     
  

  
   

  

    
   

  
   

  
                                                                                          3.36 

And the dissipation of turbulent kinetic energy is calculated from 

   
  
   

  
   

  
                                                                                                                        3.37 
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These wall functions are applicable to the k-ε models and the RSM model and allow 

a relatively coarse mesh in the near wall region with an upper limit for y+ of around 

400-500 (Hinze, 1987; Versteeg and Malalasekara, 2007). However, if the mesh is 

too fine the accuracy of the solution will deteriorate and enhanced wall treatment 

is required. Enhanced wall treatment is default for the k-ω models as the ω 

equation can be integrated through the viscous sub-layer. The enhanced wall 

treatment works by blending the log-law layer formulation with the viscous layer 

formulation, giving a single wall law for the entire near wall region and therefore 

maintaining accuracy independent of mesh refinement. The mesh size used for this 

work means that the standard wall functions are sufficient. 

 

3.4.4 Simulating Rotation 

The momentum equation for a non-accelerating frame is given below: 

 

  
                                                            3.38 

Where an MRF is used to simulate rotation, a rotational component is added to the 

velocity to give: 

                                                           3.39 

Using the absolute velocity formulation, the momentum equation for the flow 

within the MRF is given in Equation 3.40 (Ansys, 2010) where an additional 

acceleration term has been added.  

 

  
                                                                       3.40 

All of the results discussed in this thesis are based on steady state models where 

density is constant and therefore the first term in Equation 3.40 is neglected. 
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3.5 FEA 

The Static Structural component within ANSYS Workbench was used for the Finite 

Element Analysis (FEA) models that were coupled with CFD models to create FSI 

models, as is described in Chapter 4. The Static Structural component calculates the 

stresses, strains and displacements of a structure under steady loading conditions, 

using the stress-strain relationships and structural matrices via the finite element 

method.  

The stress-strain relationships for an isotropic linear material at a constant 

temperature are based on Hooke’s Law for elastic behaviour (Ashby and Jones, 

1980) and are given below for the x, y and z directions: 

   
  

 
 

 

 
                                     3.41 
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                               3.46 

E, v and G are related by:  

  
 

      
                               3.47 

Linear deformations of elastic materials can be described by the principle of virtual 

work, which states that the net of internal strain energy and external work due to 

applied loads must be zero. Therefore, it can be shown that: 

         
                   

  
     

                             3.48 

Where      is the element stiffness matrix,    
   is the element foundation stiffness 

matrix,     is the nodal displacement vector,      is the element mass matrix,      is 
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the acceleration vector,    
  
  is the element pressure vector and    

    are the 

nodal forces applied to the element. Full expressions and derivations for these 

vectors and matrices are given in the ANSYS Theory Reference (ANSYS, 2011a). 

The stresses and strains at the integration points are calculated from Equations 3.49 

and 3.50 respectively: 

                                           3.49 

 

                                           3.50 

Where     is the stress vector,     is the elasticity or stiffness matrix,       are the 

strains that cause stresses,     is the strain-displacement matrix and     is the 

nodal displacement vector, as before. 



 
45 

 

4 Numerical Methodology 

 

A series of CFD models were created within ANSYS Workbench to represent the 2, 3 

and 4 bladed turbine configurations. These models were used to assess the 

performance, swirl characteristics and wake recovery and were then coupled with 

FEA models to investigate the effect of blade deflection on the performance 

characteristics.  

4.1 CFD Geometry Creation 

4.1.1 Turbine Geometry 

All turbine geometries were created by first importing the .igs file, created by Egarr 

(et al, 2004) of a 3-bladed turbine with a blade pitch angle of 6o and a diameter of 

10 m, shown in Figure 4.1. The number of blades and blade pitch angle were 

modified to suit, based on previous work carried out at Cardiff University, and the 

fluid domain was then built around the turbine.  The original file was created by 

joining several faces to form each blade and, rather than merge these faces to form 

a single face, they were retained to allow additional control when creating the 

mesh. 

 

Figure 4.1 Three Bladed Turbine Geometry 
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4.1.1.1  Two Blades 

In the case of the 2-bladed turbine, two of the original blades were removed by 

highlighting all of their faces and using the function “face delete”. The pin at the 

root of the remaining blade was also removed in the same way. The remaining 

blade was then rotated by -3o about the axis through the centre of its pin to give a 

blade pitch angle of 3o but the same blade profile and twist as the original 3 bladed 

turbine. The pitch angle of 3o was based on previous work carried out at Cardiff 

University. A copy of this blade was made and rotated by 180o about the rotational 

axis of the turbine. Finally the pins were formed by creating a cylinder which 

extended from the root of the original blade, through the hub, to the root of the 

copied blade. This merged the blades with the pins and the hub, forming a single 

body which could be used to represent the 2-bladed turbine, shown in Figure 4.2. 

 

Figure 4.2 Two Bladed Turbine Geometry 

 

4.1.1.2  Three Blades 

As stated above, the 3 Bladed turbine geometry was already available from 

previous work by (Egarr et al, 2004) and no changes were required. 
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4.1.1.3  Four Blades 

The 4-bladed turbine geometry was created in a similar manner to that of the 2-

bladed turbine. In this case, the remaining blade was rotated by 3o about the axis 

through the centre of its pin to give a blade pitch angle of 9o, again with the same 

blade profile and twist as the 2 and 3 bladed configurations. The pitch angle was 

again based on previous work. Three copies of the blade were made and spaced 

evenly about the rotational axis of the turbine, at 90o apart, using the pattern 

function. Two cylinders were created to form the pins and again, the blades were 

merged with the pins and hub to create a single body representing the 4-bladed 

turbine, shown in Figure 4.3.   

 

Figure 4.3 Four Bladed Turbine Geometry 

 

4.1.2 Cylindrical Subdomain (MRF) 

To simulate rotation of the turbine, a cylindrical sub-domain of 14 m in diameter 

and 5 m in length was created around the turbine, as shown in Figure 4.4. The 

turbine was then subtracted from the cylindrical sub-domain using the Boolean 

function but was suppressed rather than deleted, so that it could be used later for 

the FSI modelling discussed in Chapter 3.   
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Figure 4.4 Turbine with surrounding cylindrical sub-domain 

  

4.1.3 Main domain 

The main domain, surrounding the cylindrical sub-domain, was a 400 m long 

channel with a square cross section 50 m in width and 50 m in depth. These 

dimensions were based on previous work by Mason-Jones (2010) which showed 

that a domain of this size was adequate to isolate the turbine from boundary 

effects.  The cylindrical sub-domain was located within the main domain such that 

the centre of rotation of the turbine was 100 m downstream of the inlet, 25 m from 

each side, 35 m from the top and 15 m from the bottom. This location was chosen 

to allow for future comparisons with previous work where a velocity profile was 

included (Mason-Jones, 2010). The rotational axis was aligned with the z-axis and 

also with the direction of the flow. This is shown in Figure 4.5. Additional cylinders 

were created upstream and downstream of the cylindrical subdomain for the 

purpose of mesh refinement in these areas. The cylindrical sub-domain was 

subtracted from the main domain, again using the Boolean function.  
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Figure 4.5 Turbine geometry surrounded by cylindrical sub-domain and main 
domain 

 

4.2 Mesh for CFD models  

4.2.1 Global mesh settings 

The domain was split into the required control volumes by creating a mesh. The 

physics preference was set to CFD, with the solver preference set to Fluent. This 

sets defaults for meshing controls which are most suited to the solver being used, in 

this case Fluent. When CFD is selected as the physics preference the option to Use 

Advanced Size Function defaults to “On: Curvature” which refines the mesh based 

on the change in angle over a surface or edge. This was changed to “On: Proximity 

and Curvature” where, in addition to changes in angle, the mesh is also refined in 

areas between two edges, faces or bodies, based on the distance between them. 

The smoothing setting options are low, medium and high and this determines the 

number of iterations where nodes are moved to improve the quality of the cells. 

For the meshes created in this work the setting was medium. The Transition setting 

affects the rate at which adjacent cells grow and was set to slow to prevent large 

cells immediately next to small cells which could result in large gradients of flow 

variables. The Span Angle Centre setting affects the angle each element can span in 

areas where the mesh is refined based on curvature. The options are coarse, 

medium and fine and the medium option was selected.  The default growth rate of 

1.2 was used resulting in an edge length in each layer of cells of 1.2 times the edge 

length in the preceding layer. Small features in the geometry are removed 
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according to the defeaturing tolerance which was set to be smaller than the 

minimum cell size. The mesh metric skewness was used to determine the quality of 

the mesh where a value of 0 indicates a perfect cell with equal edge lengths, face 

sizes and internal angles. ANSYS (2010) classifies cells as excellent if they have a 

skewness of 0-0.25, good with a skewness of 0.25-0.5, fair with a skewness of 0.5-

0.75, poor with a skewness of 0.75-0.9 and bad with a skewness of above 0.9. It is 

recommended by ANSYS (2010) that for 3D modelling, “most cells should be good 

or better, but a small percentage will generally be in the fair range and there are 

usually even a few poor cells”.   

 

4.2.2 Turbine Domain 

The original .igs file of the turbine geometry consisted of several faces. Each blade 

comprised 19 faces. These faces were maintained in order to give more control 

when meshing. Due to the complex geometry of the turbine blades, tetrahedral 

cells were used. Face sizing was used to specify the cell size on the surfaces of the 

blades. A size of 0.03m was applied to approximately the outer third of each blade 

(nearest the tip). The middle third was set at 0.06m and the inner third (nearest the 

root) was set at 0.09m. These sizes were selected to give a cell density equivalent to 

that created by Mason-Jones (2010) and shown to be sufficient for mesh 

independency. This is illustrated in Figure 4.6. The increase in cell density from root 

to tip allows for a greater number of cells on the faces in the outer third of the 

blade, where the greatest proportion of pressure differential is present. Typical Y+ 

values on the blade surfaces of approximately 300-500 were achieved, which is 

within the limit for the use of wall functions, as discussed in Chapter 3. The size of 

the cells on the faces of the hub and the outer faces of the cylindrical sub-domain, 

Figure 4.7, were also controlled using face sizing, both with a size of 0.1m. These 

mesh settings, together with the global mesh setting discussed previously in Section 

4.1.4.1,  resulted in a cell count within the cylindrical subdomain of ~0.9M for the 2 

bladed turbine models, ~1.4M for the 3 bladed turbine models and 1.8M for the 4 

bladed turbine models. 
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Figure 4.6 Mesh on surface of blade 

 

Figure 4.7 Mesh on outer surface of MRF 
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4.2.3 Surrounding Domain 

The main domain was meshed with hexahedral cells which were aligned with the 

direction of the free stream flow. Face sizing was applied to the inner faces of the 

main domain, which share a physical location with the outer faces of the cylindrical 

domain, Figure 4.8. The same size of 0.1m was used to limit poor numerical 

diffusion across the interface, which is discussed in Section 4.2.4. The cell count for 

the surrounding domain was ~0.5M. 

 

Figure 4.8 Mesh on inner surface of main domain 

 

4.2.4 Named Selections 

During meshing, named selections were created to allow boundary conditions to be 

applied and results to be reported. Each turbine blade was named blade followed 

by the number 1, 2, 3 or 4, with blade 1 being the blade vertically above the hub 

and the number increasing with position in an anti-clockwise direction, as shown in 

Figure 4.9. These names enabled the forces on each blade to be reported. Some of 

the named selections included key words which are recognised by ANSYS and result 

in defined boundary conditions being applied to these faces within ANSYS FLUENT. 

This was the case for the inlet and outlet to the domain which were named inlet 

and outlet and hence defined as these boundary types. The outer faces of the 

cylindrical sub-domain were named turbine_interface and the inner faces of the 
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main domain were named sea_interface. The inclusion of the key word interface in 

these named selections meant that they were defined as interfaces within FLUENT 

and could then be easily matched up. The remaining named selections were the 

turbine hub, named hub, and the outer faces of the domain, named top, bottom 

and sides.  

 

Figure 4.9 Named Selections for Turbine Blades 

 

 

4.3 CFD Solver Settings  

ANSYS FLUENT offers both pressure-based and density-based solvers. Pressure-

based solvers were initially developed for low speed, incompressible flows and 

hence a pressure based solver was used for the work discussed in this thesis.  

The gradients of the variables were evaluated using the Least Squares Cell Based 

method which is more accurate than the Green-Gauss cell-based method and less 

computationally expensive than the Green-Gauss node-based method. The 

standard pressure interpolation scheme was used, which interpolates the pressure 
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at the cell faces using momentum equation coefficients and according to ANSYS 

(2010), is acceptable for most cases.   

The values of the flow variables at the cell faces are interpolated from the cell 

centre values. The values of momentum were interpolated using the second order 

upwind scheme, where the face values are found using a Taylor series expansion of 

the cell centre values. The turbulent kinetic energy, specific dissipation rate, 

intermittency and momentum thickness Re were found using the first order upwind 

scheme, where the face values are equal to the cell centre value of the upstream, 

or upwind, cell.  

When iterating the model solution, the difference between the calculated value 

and the previous value of each variable is multiplied by the under-relaxation factor 

and added to the previous value to give the solution for the next iteration. The 

under-relaxation factors, found within the solution controls menu were left at the 

default values where possible. These were pressure 0.3, density 1, body forces 1, 

momentum 0.7, turbulent kinetic energy 0.8, specific dissipation rate 0.8, 

intermittency 0.8, momentum thickness Re 0.8, Turbulent Viscosity 1. Where 

convergence was not easily achieved, the under-relaxation factors were reduced to 

improve stability and then increased once the model had stabilised to reduce the 

computational time required to obtain a full solution.  

 

4.3.1 Viscous Models 

The RSM model was shown by Mason-Jones (2010) to be more suitable than the k-ε 

models and the Spalart-Allmaras model for the application of modelling the HATT 

also used in this research. The k-ω SST model has also been widely used for the 

modelling of HATTs and hence the RSM and k-ω SST were the viscous models 

selected for use within this research. 
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4.3.2 Inlet  

The inlet to the domain was set as a velocity inlet with the velocity specification 

method set as magnitude, normal to boundary, which resulted in the flow being 

aligned with the rotational axis of the turbine. The velocity magnitude for all 

models presented in this thesis was 3.086 m/s, or 6 knots, as this is at the higher 

end of the ideal velocity range (Black and Veatch, 2005). The turbulence 

specification method was left at the default of k and ε with the turbulent kinetic 

energy and the turbulent dissipation rate both left at the default values of 1 m2s-2 

for the former and 1 m2s-3 for the latter. This was due to the lack of turbulence data 

available and the knowledge that the turbulence would likely decay significantly 

from the inlet to the turbine location. 

4.3.2.1 Reynolds Specification Method for Inlet 

Where the RSM was used as the viscous model and hence a Reynolds-stress 

specification method was required, this was set as k or turbulent intensity as the 

individual values of the Reynolds stresses were unknown.  

4.3.3 Outlet 

The outlet from the domain was set as a pressure outlet with a gauge pressure of 0 

Pa. The backflow direction specification method was set as normal to boundary and 

the turbulence specification method and related values were the same as for the 

inlet. Again where the RSM was used, the Reynolds-stress specification method was 

set as k or turbulent intensity. 

4.3.4 Wall conditions 

The outer boundaries of the models were set as stationary walls with default 

roughness values but the shear condition was set to specified shear with shear 

stress components of 0 Pa in all directions for all boundaries. 

4.3.5 Material Properties of fluid 

In addition to the default of air, the material water-liquid was created by copying it 

from the ANSYS FLUENT database. The density was changed to 1025 kgm-3 to 

represent sea water. The material for use was then specified by changing the 

material name from air to water-liquid for each zone in the cell zone conditions. 
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4.3.6 Rotation of Turbine Using MRF 

Rotation of the turbine was simulated by selecting frame motion in the cell zone 

conditions for the cylindrical sub-domain named turbine. The rotation-axis origin 

was set as 0, 0, 0 and the rotation-axis direction was along the z axis. The rotational 

velocity was varied to cover the operational range of the turbine while the 

translational velocity was set to 0 ms-1 in all 3 directions. The frame motion 

simulates rotation by imparting a rotational acceleration component to the fluid 

within the domain to which it is applied, as discussed in Chapter 3. 

4.3.7 Convergence Monitoring 

All steady state models were iterated until the residuals had stabilised rather than 

setting a convergence target. In addition to the residuals, convergence was also 

monitored by creating a point downstream of the turbine and plotting the axial 

component of velocity at this point using the area weighted average methodology.  

 

4.4 Post processing 

4.4.1 Extracting Torque 

The torque was extracted from each model by setting up a force report and 

selecting the moments option. The moment centre was set as 0, 0, 0 and the 

moment axis was set as the z axis. Each blade and the hub were selected as the wall 

zones and the results were printed to the text user interface where the torque 

resulting from each blade and the hub was displayed separately as well as the net 

torque for the whole turbine. 

4.4.2 Calculating turbine power 

The power was then calculated by multiplying the total torque by the rotational 

speed of the turbine. It should be noted that the theoretical maximum extractable 

power is 59% of the available upstream power, as shown by Betz (1966).  

4.4.3 Extracting Axial Loads 

The axial load was extracted by setting up a force report and selecting the forces 

option. The direction vector was set as the z axis and again the blades and the hub 
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were selected as the wall zones. Again the results were printed to the text user 

interface and the axial load on each blade and the hub was given as well as the net 

axial load. 

4.4.4 Calculation of Swirl Number 

Planes were created at a range of downstream distances from the turbine, over 

which the swirl number was calculated. These planes were perpendicular to the 

rotational axis of the turbine. Plots of axial and tangential velocity were created for 

each of these planes. These plots were then opened in Microsoft Excel and a simple 

formula was used to determine whether each cell was within the swept area of the 

turbine based on its x and y coordinates. Values of axial and tangential velocity for 

those cells determined to be within the swept area of the turbine were then used 

to calculate the swirl number using Equation 3.7.  

4.5 FSI models 

The hydrodynamic forces acting on the blades, whilst also resulting in a torque 

which causes the turbine to rotate, may also cause the blades to deform. The 

deformation of the blades will change the flow field around the turbine which in 

turn will alter the hydrodynamic forces. The CFD models were coupled with FEA 

models to predict the deformation of the blades and the resulting change in 

hydrodynamic forces.  

The hydrodynamic forces calculated by the CFD were transferred to the FEA models 

where the blade deformations were then calculated. The models were two-way 

coupled to allow the blade deformations calculated by the FEA to be transferred 

back to the CFD where the flow field was updated. This process was iterated until 

the changes in the flow field and the blade deformations were within the defined 

convergence criteria.  

4.5.1 Modifications to CFD models 

Existing CFD models, discussed in Sections 4.1-4.4 were used with dynamic meshing 

enabled. The turbine blades were selected and set as dynamic mesh zones with the 

System Coupling option. The cylindrical MRF was also set as a dynamic mesh zone 

but with the Deforming Zone option. These settings allowed the mesh on the 
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surface of the blades to move and also the surrounding mesh to deform to allow for 

the movement. The updated fluid mesh was controlled using both smoothing and 

remeshing to prevent negative cell volumes within the proximity of the turbine 

blades. Depending on model convergence either the Spring smoothing method or 

the Diffusion smoothing method was used. With the spring smoothing method the 

displacement of each node is opposed by a force which is proportional to the 

distance. The damping of the springs is controlled by the spring constant factor 

which is between 0 and 1 with 0 being no damping. This was set to 1. Diffusion 

smoothing offers more control over which areas of the mesh are allowed to 

deform. Areas with low diffusivity are allowed to deform more. A diffusion 

parameter is specified which determines the diffusivity of a cell based on either its 

distance from the moving boundary or its volume. This means that a higher mesh 

quality can be preserved near the moving boundary or in areas of high cell density 

and therefore generally results in a better mesh than when the spring smoothing 

method is used, but at a higher computational cost. Where the Diffusion method 

was used the boundary-distance option was selected for the diffusion function with 

a diffusion parameter of 1.5. When achieving convergence was problematic 

remeshing was also enabled, where local cell remeshing was selected with the 

minimum and maximum length scales taken from the mesh scale information 

panel. This instructs ANSYS FLUENT to mark any cells which have length scales 

outside minimum and maximum values specified or skewness above the maximum 

allowable skewness. The marked cells are then remeshed if their quality is 

improved. If remeshing the marked cells would not produce a mesh with improved 

cell quality, then local zone remeshing is performed where the entire zone adjacent 

to the moving boundary is remeshed (ANSYS, 2010). 
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4.5.2 FEA models 

4.5.2.1  Geometry 

The geometries used in the FEA models were the 2, 3 and 4 bladed turbine 

geometries created in preparation for the CFD models and described in Section 

4.1.1.  

4.5.2.2  Mesh 

The mesh for the FEA models was again controlled by the use of face sizing. Since 

the mapping was dependent on having cells of a similar size on the coupled faces, 

the mesh on the surface of each blade was assigned a face size of 0.09, Figure 4.10. 

 

Figure 4.10 Blade surface mesh in FEA models 

 

4.5.2.3  Materials 

Although it is unlikely that the blades of full size turbines will be a solid, 

homogeneous material, no information on blade construction was available for this 
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research. Hence, the blades were modelled as solid bodies for simplicity of the FEA 

models. The materials used for blade construction are likely to include composites 

but since no information on material properties was known, materials available for 

use within ANSYS, such as steel and aluminium, were selected and the Young’s 

modulus changed to vary the stiffness and allow a change in deflection. Therefore 

the stresses and strains calculated may be unrealistic. However, the main area of 

interest was the predicted effect of blade deflection on the performance 

characteristics of the turbine and as such these limitations were deemed 

acceptable.    

4.5.2.4  Constraints and Loads 

The model was constrained by applying a remote displacement to the rear face of 

the hub as illustrated in Figure 4.11a. This was set with a displacement of 0 m in the 

x, y and z directions and a rotation of 0o about the x, y and z axes. A rotational 

velocity matching that of the MRF in the CFD model was applied to the whole body 

of the turbine so that although the turbine did not physically rotate, the effect of 

the centrifugal forces was still accounted for, Figure 4.11b. To enable the loads to 

be transferred from the fluid model to the structural model, the surfaces of each 

blade were assigned as Fluid Solid Interfaces, Figure 4.11c. 
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(a) Remote displacement       (b) Rotational Velocity         (c) Fluid Solid 

Interfaces 

Figure 4.11 Constraints and Loads 

4.5.3 System Coupling 

To enable a 2-way coupling analysis the ‘System Coupling’ procedure was used 

within ANSYS. This process solves the CFD model to an acceptable or predefined 

residuals convergence tolerence and provides the hydrodynamic forces exerted on 

the blades via the fluid-solid interfaces. Following convergence of the CFD model 

the structural model is started within the system coupling and the hydrodynamic 

forces are transferred to the structural model, which in turn iterates the solution to 

convergence and, for the specified material properties, provides the displacement 

of the blades. The displacement results were then fed back to the CFD model where 

the mesh is once again deformed via system coupling mesh deformation and the 

spring damping/smoothing options as previously discussed. This process is then re-

iterated via the system coupling (ANSYS, 2011b).  

4.5.3.1  Data Transfers 

Two data transfers were created for each turbine blade. One of these was to 

transfer the forces from the fluid model to the structural model and the other was 

to transfer the displacement from the structural model to the fluid model. The 
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ANSYS component system from which the data are transferred is known as the 

“source” and the component to which it is transferred is known as the “target”. The 

data transfers involved three steps; mapping, interpolation and interpolated data 

post-processing (ANSYS, 2011b). 

4.5.3.2 Mapping 

Mapping is the first step in the process of transferring data from one ANSYS 

component system, e.g. FLUENT, to another, e.g. Mechanical. It involves matching 

nodes within each mesh to generate weights. ANSYS uses the Bucket Surface 

mapping algorithm for transferring displacement from Mechanical to FLUENT and 

the General Grid Interface (GGI) mapping algorithm for transferring forces from 

FLUENT to mechanical.  

The Bucket Surface algorithm divides the target mesh into a relatively coarse grid of 

groups of cells, known as buckets. Each node on the source mesh is then assigned 

to a bucket. It is then mapped to an element within the bucket based on a 

proximity tolerance and the weighting is obtained by evaluating the shape function 

associated with the element. Any nodes which do not fit the proximity tolerance 

are reported as unmapped but are still in reality mapped to the nearest node.   

The GGI algorithm splits each element face on the surfaces to be mapped into sub 

faces. The number of sub faces is equal to the number of nodes on the face. The 

sub faces from the source and target surfaces are intersected and the overlapping 

areas create a number of control surfaces as shown in Figure 4.12, where S1 and S2 

are sub faces on the surface which is sending data, R1 and R2 are sub faces on the 

surface receiving data, and A1, A2 and A3 are control surfaces. The areas of the 

control surfaces are used to calculate the mapping weights. The weights associated 

with sub face R1 are found according to Equations 4.1 and 4.2, taken from ANSYS 

(2011b) with similar equations used to find the weights for all of the other sub 

faces. Unlike the Bucket Surface mapping algorithm, any areas of the target mesh 

that are unmapped are assigned a value of 0. 
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Figure 4.12 General Grid Interface Mapping (ANSYS, 2011b) 

 

   
  

  
                     4.1 

   
  

     
                        4.2 

A mapping summary was provided at the beginning of each analysis, stating both 

the percentage of nodes and the percentage of the area that were mapped. A visual 

assessment of the mapping was also possible via the beta feature 

“DumpInterfaceMeshes”. This allowed the mapped and unmapped areas of each 

blade to be displayed in CFD post.  Figure 4.13 shows an example of poor mapping 

where the mesh settings used for the CFD model were those discussed in Section 

4.2 and the cell size in the FEA model was 0.2. The FEA mesh used for the models 

discussed in this thesis resulted in 95% of the area being successfully mapped, as 

shown in Figure 4.14. This was considered sufficient since the actual magnitude of 

deflection was not the main focus but rather the effect of the deflection on the 

performance characteristics of the turbine. 
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(a) Source                    (b) Target 

Figure 4.13 Example of poor mapping where unmapped cells are shown in red. 

   

(a) Source      (b) Target 

Figure 4.14 Mapping achieved in FSI models where unmapped cells are shown in 
red. 

 

4.5.3.3  Analysis Settings 

The coupling sequence was set up such that the FEA model was solved first, 

followed by the CFD model.  
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5 Flume Testing and Model Validation 

In order to validate the CFD models described in Chapter 4, a prototype turbine was 

developed and tested in a recirculating flume. This chapter describes the prototype 

turbine and the testing undertaken. Although the prototype was designed and 

developed at Cardiff University and the author participated in testing; flume 

calibration, dynamometer calibration and blockage correction calculations were 

undertaken by Sian Tedds at the University of Liverpool. 

5.1 Flume Specifications 

All testing was carried out in the recirculating flume at the University of Liverpool. 

Figure 5.1 gives a schematic of this flume.  

 

Figure 5.1 Schematic of Recirculating Flume at the University of Liverpool 

 

The working section of the flume is 1.4 m in width and 4 m in length with a depth 

range up to 0.85 m and can be operated as an open channel or an enclosed 

channel. All of the tests were carried out with the open channel set-up, at the 

maximum depth of 0.85 m. To remove the water surface velocity deficit caused by 

air drag, a plane jet is used at the entrance to the working section. This jet is 

located at the water surface and spans the width of the working section. At the 

inlet to the working section there is a flow straightener to ensure that the flow is 

uniform. 
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5.2 Improvements made to turbine design 

Following previous testing of the turbine described in Mason-Jones (2010) and 

shown in Figure 5.2, an improved turbine was developed. The data from the tests 

using the initial turbine showed a high level of scatter and the main causes of this 

were given by Mason-Jones (2010) as insufficient distance between the rotational 

plane of the turbine and the support stanchion and the two types of coupling used 

to connect the turbine to the motor (Figure 5.3), which was located above the 

surface of the water. 

 

Figure 5.2 Previous turbine design 

 

Figure 5.3 Couplings used to connect the previous turbine to the motor 
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Therefore, during the development of the improved turbine, the length of the 

nacelle was increased so that the distance between the rotational plane of the 

turbine and the front of the support stanchion was 3 hub diameters. Also, a new, 

physically smaller motor was used and housed within the nacelle to allow for a fixed 

drive shaft to be used due to the alignment of the turbine and the motor (Figure 

5.4). The power and encoder cables were connected through the rear of the nacelle 

using gland seals to prevent water ingress. The replacement motor was a Baldor 

Brushless AC Servomotor. This motor was selected as its physical size allowed it to 

be housed within the nacelle. However, it was subsequently found that it cut out at 

a lower torque than the peak torque generated by the turbine due to overheating. 

As such data for the entire operating range of the turbine could not be obtained 

.The control system was the same used with the original turbine and is described in 

detail in (Mason-Jones, 2010).  

 

Figure 5.4 Improved turbine design during testing 

 

5.3 Blade Design 

The blades used during testing were those used by (Mason-Jones, 2010). The profile 

of the blade is a variant on the Wortman FX63-137, shown in Figure 5.5.  The chord 

length is     0.03 m at the blade tip and 0.08 m at the root with a twist of 35o along 
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the length of the blade. The length of the blade is 0.2 m giving a turbine diameter of 

0.5 m and a blockage ratio of 0.17. A pin of 32 mm in length and 15 mm in diameter 

allows the blades to be clamped to the hub in configurations of 1,2,3,4 and 6 

blades. The 3 bladed configuration was used for testing. The centre of the pin is 22 

mm from the leading edge.  

 

Figure 5.5 FX 63-137 profile and profile of HATT used in this work 

 

5.4 Pitch Angle Setting 

The pitch angles were set using the precision machined blocks described by Mason-

Jones (2010) and shown in Figure 5.6. The optimum pitch angle setting had been 

calculated and verified by Maon-Jones, (2010) as 6o for the 3 Bladed turbine, hence 

this was the setting used for the testing. 

 

Figure 5.6 Precision machined blocks with blade tip chord aligned with 6o block 
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5.5 Location of HATT within Flume 

The turbine was located at the centre of the flume cross-section i.e. midway 

through the depth and midway across the width and approximately half-way along 

the length of the working section.  

5.6 Flume Velocity  

The maximum flow velocity of the flume is 6ms-1 with the tests decribed here 

carried out at the dial setting which equates to 1m/s. At this flow velocity, the 

performance characteristics of this turbine have been shown to be independent of 

Reynolds number (Mason-Jones et al, 2012). An Acoustic Doppler Velocimeter 

(SonTek/YSI 10-MHz ADV) was used to measure the free-stream velocity within the 

flume. This was done with the channel empty and with the turbine in place to 

determine any reduction in velocity due to the extra resistance caused by the 

turbine. Measurements were taken at 1.5 m (3 turbine diameters) upstream of the 

turbine at freewheeling and at the maximum power measured. The sampling rate 

was 25 Hz and approximately 10 000 velocities were measured with an estimated 

statistical uncertainty of 1%, although ADV system is accurate to approximately ± 

5% of the resaultant velocity (Tedds et al, 2011). Figure 5.7 shows the measured 

free-stream water-channel velocity (UADV) versus the nominal free-stream water-

channel velocity (Uf) as per the dial setting. 

 

The empty channel data is slightly higher than the dial setting with a least squares 

fit giving a slope of 1.03. In addition it can be seen that the presence of the turbine 

reduces the velocity in the channel to around 94% of the dial setting.  
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Figure 5.7 measured free-stream water-channel velocity (UADV) versus the nominal 
free-stream water-channel velocity (Uf) as per the dial setting 

 

5.7 Thrust Load measurement 

The thrust on the HATT was measured using a 50 kg strain gauge dynamometer. 

The design of this dynamometer is described in detail in Milward and Rossiter 

(1983). The force block was calibrated by applying a mass with an Instron model 

5582 machine. Mass was applied from 5 kg to 50 kg in steps of 5 kg. It is estimated 

that this produced a calibration which is accurate to about 1%. 

 

5.8 Test Procedure 

During testing the turbine was first allowed to freewheel before an opposing torque 

was applied via the programme written by Mason-Jones (2010) using the software 

package MintMT within WorkBench v5. This programme allowed the opposing 

torque to be increased incrementally whilst capturing the rotational speed of the 
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turbine via the encoder at each torque setting. To ensure the rotational speed of 

the turbine had stabilised at each setting, the torque was held constant for a period 

of 5 s before data was collected for a period of 120 s. The sample rate was 0.92 Hz, 

giving 110 data points at each torque setting. Figure 5.8 and Figure 5.9 show the 

measured current and angular velocity, demonstrating the incremental increases in 

current, and hence torque, and the associated incremental reductions in angular 

velocity. 

 

Figure 5.8 Current vs time from experimental testing 

 

Figure 5.9 Angular velocity v time from experimental testing 
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5.9 Reduction in Scatter 

Figure 5.10 compares the raw data from these tests (referred to as new data) with 

those from the tests using the previous prototype HATT (referred to as old data) as 

undertaken by Mason-Jones (2010). The electrical current data follows the same 

trend although the new data begins at a lower electrical current. The increments in 

electrical current are the same and the increasing separation of the data sets is 

simply due to the differing test duration since it was possible to run these tests for a 

far longer time period as the drive shaft issues discussed previously had been 

overcome. However, the old data reaches a maximum electrical current of around 

3.6 A, whereas the new data ends at around 2.7 A. This is because the motor cut 

out above this current due to overheating.  

The new angular velocity data show greatly reduced scatter in comparison with the 

old data. As discussed above, this is due to the increased distance between the 

rotor and the support stanchion and the fixed drive shaft. The minimum angular 

velocity is higher for the new data due to the lower electrical current at which the 

motor cut out. In addition, the torque constant of the motor is smaller meaning a 

larger electrical current would be required to achieve the same reduction in angular 

velocity.  
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Figure 5.10 Comparison of experimental data with that from the previous turbine 
design 

5.10 Power Measurements 

The experimental data were used to calculate the power output of the turbine. The 

power and angular velocity were then non-dimensionalised to give Cp and λ, based 

on the upstream value given by the ADV. Figure 5.11 gives the mean Cp for each 

sample period, based on the mean ADV value and free stream velocities of 1% 

above and below this value. It is clear that Cp is very sensitive to the free stream 

velocity, with a maximum difference of 5% in Cp for a 2% difference in U due to the 

available power being proportional to the cube of the flow velocity.   
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Figure 5.11 Cp vs λ from experimental data 

 

The Cp values given in Figure 5.11 do not account for the blockage effects of the 

flume. A blockage correction factor Ut/u of 0.96 was calculated for this HATT and 

flume, based on the work of Bahaj et al (2007b). When corrected for blockage the 

experimental Cp values reduce to those given in Figure 5.12. 

The results of the CFD models developed in this work are also given in Figure 5.12 

and show very good correlation with the experimental data, although a comparison 

is only possible at λ = 4.4 and above which does not include peak Cp. The results of 

the RSM model show particularly close correlation with a difference at λ = 4.4 of 

0.1%. Given the inherent error within the ADV system, the results of the SST model 

are also considered good and at λ = 4.4 the difference is 6.3%. The differences 

between the CFD results will be discussed later, in Chapter 6. The experimental 

data from these tests also compare well with the experimental data of Bahaj et al 

(2007b), which are based on cavitation tunnel and towing tank tests of a 0.8 m 

diameter, 3 bladed HATT and give a peak Cp of between 0.41 and 0.46 for optimum 

pitch angle.    

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0 1 2 3 4 5 6 7 8 

C
p
 

λ 

U ADV 

U +1% 

U -1% 



 
75 

 

 

Figure 5.12 Cp vs λ from blockage corrected experimental data and from CFD 
models 

 

5.11 Thrust Measurements 

Figure 5.13 shows the experimental thrust data and the CFD predictions. Although 

the correlation is not quite as close as for Cp, it is still reasonable, with a maximum 

difference of 10%. Again, a comparison is only possible at λ = 4.4 and above. The 

predictions from the SST CFD model shows a closer correlation to the experimental 

thrust data but again, given the inherent error within the ADV system, both models 

are considered to correlate reasonably well with the experimental data. 
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Figure 5.13 Ct  vs λ from blockage corrected experimental data and from CFD 
models 

 

5.12 Summary of Fume Testing and Model Validation 

The improvements to the prototype turbine design significantly reduced the scatter 

in the experimental data which was the first objective of this work. However, due to 

the motor overheating, the experimental measurements were limited to λ = 4.4 and 

above and therefore peak power could not be captured. When corrected for 

blockage, the experimental data showed good correlation with the results from the 

CFD giving confidence in the numerical modelling. 
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6 Performance Characteristics  

As discussed and defined in Chapter 3, the main performance characteristics, by 

which a TST can be described, are the torque coefficient, Cθ, the power coefficient, 

Cp, and the thrust coefficient, Ct. This chapter considers the variation in these 

coefficients with λ, also defined in Chapter 3, for the 2, 3 and 4 bladed turbines with 

each of the viscous models used, and then compares the results for each 

configuration. The effect of differing turbulence decay is also investigated by 

comparing the performance characteristics under normal operating conditions, 

taken as peak power generation, with models with fixed minimum turbulence.   

6.1 Torque 

Figure 6.1 shows that with the RSM model the cut-in Cθ of the 2 bladed turbine is 

0.025. The Cθ then increases, reaching a peak of 0.114 at a λ of 2.43. The increase is 

approximately linear from a λ of 1 until peak Cθ (at a rate of 0.052). After the peak, 

Cθ decreases, again linearly but at a slower rate (0.020), until it reaches 0 at a λ of 

around 8.1, which is the freewheeling λ. This is the maximum velocity at which the 

turbine would rotate due to the hydrodynamic forces imparted on the blades by 

the tidal current. For the turbine to rotate at a λ greater than this, it would have to 

be driven by a motor and would effectively act as a pump.  

The SST model is shown to predict a slightly higher Cθ than the RSM model over the 

range of λ studied, with a peak of 0.116 compared with a peak of 0.114 for the RSM 

model. The maximum torque for the 2 bladed turbine predicted by the SST model is 

therefore 1.8% higher than the RSM model. Since CFD only provides an estimate of 

the field and the forces on the blades, with potential errors from truncation and 

numerical diffusion, this difference is considered to be small and is of little 

significance. Most importantly, both models show the same trend, which is typical 

of a horizontal axis turbine (Orme and Masters, 2004, Mason-Jones, 2010) and the λ 

at which peak Cθ is predicted to occur is the same.  
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Figure 6.1 Cθ vs λ for the 2 bladed turbine 

 

The Cθ curves for the 3 and 4 bladed turbines are shown in Figures 6.2 and 6.3. They 

follow the same general trend as those of the 2 bladed turbine, with an almost 

linear increase from λ = 1 to peak Cθ and a linear but slower decrease from peak Cθ 

to freewheeling. 

For the 3 bladed turbine, the RSM predicts a cut-in Cθ of 0.05, and a peak Cθ of 

0.158, both higher than those of the 2 bladed turbine. The curve can be seen to 

increase from λ = 1 with a rate of 0.105 to the peak which occurs at a λ of 1.94. 

Freewheeling λ occurs at around 7.1, lower than the 2 bladed turbine, with the rate 

of decrease being 0.031. 

For the 4 bladed turbine, the RSM prediction of cut-in Cθ has again increased, to 

0.07, and the peak Cθ has increased to 0.188. The λ at which peak Cθ occurs has 

further decreased, to around 1.8, and the freewheeling λ has reduced to 6.4. The 

linear increase from λ = 1 to the peak has a rate of 0.125 and the rate of decrease 

from the peak is 0.042.   
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3 bladed turbine is 0.163 for the SST compared with 0.158 for the RSM, or an 

increase of 3.0%. For the 4 bladed turbine the peak Cθ predicted by the SST model is 

5.7% higher than the RSM, at 0.199 compared with 0.188. 

 

Figure 6.2 Cθ vs λ for the 3 bladed turbine 

 

Figure 6.3 Cθ vs λ for the 4 bladed turbine 
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The SST models give slightly higher values than the RSM models for Cθ for all three 

turbine configurations at all values of λ considered. It is thought that this is partly 

due to the difference in turbulence intensity immediately upstream of the turbine, 

as will be discussed in Section 6.4. It may also be a result of the improved ability of 

the RSM model to give accurate predictions in complex flows such as those with 

swirl, due to its ability to model anisotropic turbulence, as discussed in Chapter 3. 

However, since the values are all within 1.7% to 6.5% at peak power and follow the 

same trends for each performance characteristic of each turbine, a comparison is 

only shown here for the RSM model. Similar observations are found for the SST 

model and these are given in Appendix A. 

Figure 6.4 compares the Cθ curves for the 2, 3 and 4 bladed turbine configurations. 

It is clear that the cut-in Cθ increases with the number of blades due to the resultant 

force on each blade being multiplied by the number of blades. The rate of increase 

of cut-in Cθ also increases with the number of blades with a larger difference 

between 3 and 4 blades than between 2 and 3 blades. Near λ = 0, there is little to 

no flow over the rear surface of the blade (upper portion of the hydrofoil) and 

hence there is very little lift and the torque is dominated by the reaction force as 

the fluid is deflected around the blade. The increase in pitch angle with the number 

of blades means that the resultant force per blade also increases.  

The increase in peak Cθ with the number of blades is in agreement with the findings 

for a Vertical Axis Wind Turbine by Roh and Kang (2013), who found that peak Cθ 

increased with solidity for   between 0.033 and 0.08. One consequence of this is 

that the 4 bladed turbine would require the largest diameter of drive shaft and the 

2 bladed turbine the smallest, implying that the cost of the drive shaft could 

increase with the number of blades. Based on these results, maintaining a constant 

shear stress would require a ~25% increase in the shaft diameter from the 2 bladed 

turbine to the 4 bladed turbine. This is based on a simplistic consideration that 

         . 

It is also clear from Figure 6.4 that the λ at which both peak Cθ and freewheeling 

occur decrease with an increase in the number of blades.  This is because the 



 
81 

 

optimum pitch angle increases with the number of blades and hence a lower value 

of λ is required to achieve the optimum lift to drag ratio. If a traditional mechanical 

power train were used, this may result in additional stages within the gearbox for a 

higher number of blades, with the increased costs and losses associated. All of the 

turbines have a torque curve typical of a HATT, (Orme and Masters 2004, Mason-

Jones, 2010).  

 

Figure 6.4 Cθ vs λ for the 2,3 and 4 bladed turbines 

 

Figure 6.5 shows the Cθ curves with the RSM for all three turbine configurations, 

normalised with respect to maximum Cθ and maximum λ for each turbine. Aside 

from at start up and at very low values of λ, the curves of the 3 and 4 bladed 

turbines show very good correlation. The 2 bladed turbine data do not compare as 

well but still fall within 10% of the values for the other turbine configurations at λ 

from peak Cθ/ Cθ max to freewheeling. Therefore, for this blade design, with 

knowledge of the torque characteristics of one turbine configuration, a reasonable 

estimation of the torque characteristics of another configuration over the majority 

of its operational range could be made. In practical terms, once the freewheeling λ 

had been established, the λ at which peak Cθ occurs could be estimated to within 

7% and vice versa.   
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Figure 6.5 Normalised Cθ vs normalised λ for the 2, 3 and 4 bladed turbines 

 

6.2 Power 

Figure 6.6 shows the power curves for the 2 bladed turbine. With the RSM, peak Cp 

was found to be 0.37, occurring at a λ of 4.4. Again, freewheeling occurs around 

8.1. Since the power is calculated from the torque and the rotational speed, and the 

model was run at the same rotational speeds, it follows that if the Cθ is higher with 

the SST model than with the RSM, the Cp must also be higher. Figure 6.6 shows that 

this is the case, with the SST model predicting a higher Cp than the RSM model at all 

of λ considered. However, whereas the difference between the Cθ predicted by 

each model is fairly constant, the difference in Cp varies with λ. This is because the 

torque is multiplied by the rotational speed, which is less than 1 for values of λ 

below 1.5, thereby reducing the difference, and at higher λ is greater than 1, 

therefore increasing the difference. The maximum Cp predicted by the SST model is 

0.39 which is 0.02 greater than that predicted by the RSM model. This is a 

difference of 5.4%. Given that the experimental data is based on a free stream 

velocity measured with an ADV system that is estimated to be accurate to ± 5%, the 

difference between the models is considered small. 
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The SST model also predicts a slightly larger operational range, with freewheeling 

occurring at a λ of around 8.3 compared to around 8.1 for the RSM model, a 

difference of 2.5%. The λ at which peak power occurs is only slightly increased by 

the SST model, with 4.4 being the closest λ modelled for both the RSM and SST 

models.  

 

Figure 6.6 Cp vs λ for the 2 bladed turbine 

 

The Cp curves of the 3 and 4 bladed turbines, Figures 6.7 and 6.8, also follow the 

same general trend as those of the 2 bladed turbine. With the RSM, peak Cp for the 

3 bladed turbine, Figure 6.7, is 0.41 compared with 0.37 for the 2 bladed turbine. It 

occurs at a lower λ of around 3.65. Peak Cp predicted by the RSM for the 4 bladed 

turbine, Figure 6.8, is 0.43, which is higher than both the 2 and 3 bladed turbines. It 

occurs at a λ of around 3.4, lower than both other turbine configurations.  

For the 3 and 4 bladed turbines the values of predicted Cp are again slightly higher 

for the SST model at all values of λ considered. The maximum Cp predicted by the 
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7.1 for the RSM model. The λ at which peak power occurs for the 3 bladed turbine 

is 3.65 for both the RSM and SST models. 

The peak Cp predicted by the SST model for the 4 bladed turbine is 6.5% higher than 

that predicted by the RSM at 0.46 compared with 0.43. The difference is again very 

small at values of λ below 1.5 and increases with λ. 

 

Figure 6.7 Cp vs λ for the 3 bladed turbine 

 

Figure 6.8 Cp vs λ for the 4 bladed turbine 
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As seen in Figure 6.9, peak power increases with the number of blades and the tip 

speed ratio at which peak power occurs decreases. The difference in both peak 

power and the λ at which it occurs is greater between the 2 and 3 bladed turbines 

than between the 3 and 4 bladed turbine, with diminishing returns from each 

additional blade as expected from Hau (2006). In this case the peak Cp values are 

0.37, 0.41 and 0.43, occurring at λ of 4.37, 3.65 and 3.40 for the 2, 3 and 4 bladed 

turbines respectively. These values fall within the range given in the literature for 

peak Cp of a HATT (Mason-Jones, 2010, Jo et al., 2013, Faudot et al., 2013, Walker 

et al,, 2013).  

The operating range is shown to  increase with decreasing number of blades, with 

freewheeling occurring around a λ of 8.1 for the 2 bladed turbine, 7.3  for the 3 

bladed turbine and 6.4 for the 4 bladed turbine. This trend has also been shown to 

occur for HAWTs and VAWTs (Hau, 2006, Roh and Kang, 2013).  

The increasing Cp, at a lower λ, and the reduced operating range, with increasing 

number of blades also occurs with the SST model albeit with slightly higher values 

predicted for each turbine at all values of λ and slightly larger operational ranges, as 

given in Appendix A.   
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Figure 6.9 Cp vs λ for the 2, 3 and 4 bladed turbines 

 

Normalising the Cp curves with respect to maximum λ and maximum Cp gives the 

curves shown in Figure 6.10. As with the normalised Cθ curves, the data show good 

correlation for all three turbines, particularly from peak Cp to freewheeling. The λ at 

which peak Cp occurs could be estimated to within 6% from the knowledge of the 

freewheeling λ for any of the configurations. It should be noted that the asymmetry 

of the correlation is simply due to λ being normalised against λ max, whereas if the 

normalisation was based on λ at peak Cp the correlation would be symmetrical. The 

same trends are again shown for the normalised SST results and are again given in 

Appendix A. 
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Figure 6.10 Normalised Cp vs normalised λ for the 2, 3 and 4 bladed turbines 

 

6.3 Thrust 

With the RSM, the Ct of the 2 bladed turbine when it is stationary is 0.17, as shown 

in Figure 6.11. This then increases with λ, reaching a maximum of 1.06 at 

freewheeling. Since operating at peak power would result in the greatest quantity 

of electricity being produced, it is assumed that this would be the normal operating 

condition. If the 2 bladed turbine was operated at peak power, i.e. a λ of 4.4, the Ct 

would be 0.82. 

At λ below 5 the thrust predictions are very similar for both the RSM and SST 

models with the SST model giving slightly higher values. Above this λ the difference 

between the values of Ct, predicted by both models, increases with λ. However, the 

maximum difference, at a λ of 7.8, is 5.3% between both models. At peak Cp the 

predicted Ct is 0.03, or 3.4%, higher for the SST model.   
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Figure 6.11 Ct vs λ for the 2 bladed turbine 

 

As expected the Ct of the 3 bladed turbine, Figure 6.12, is higher when stationary 

than the Ct of a stationary 2 bladed turbine due to the higher solidity, with a Ct 

predicted by the RSM of 0.25. The RSM prediction of Ct for the 4 bladed turbine, 

Figure 6.13, is higher again, at 0.34, due to its even higher solidity. 

For the 3 bladed turbine the Ct predicted by the RSM at the λ corresponding to 

maximum Cp is 0.85 which is slightly higher than under the same condition for the 2 

bladed turbine. Unlike with the 2 bladed turbine, the Ct of the 3 bladed turbine 

does not continue to increase with λ to freewheeling but instead reaches a 

maximum at a λ of 5.8, before decreasing slightly to freewheeling. Peak Ct is lower 

at 0.94, compared with 1.06 for the 2 bladed turbine.  

As with the 3 bladed turbine, the Ct for the 4 bladed does not continue to increase 

with λ to freewheeling. It reaches a maximum of 0.86, the lowest of the three 

configurations, at a λ of 3.9 before falling to 0.77 at freewheeling. The Ct of the 4 

bladed turbine at peak power is 0.85, which is the same as that of the 3 bladed 

turbine at peak power. 
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It is clear from Figures 6.12 and 6.13 that at all λ; the SST model predicts a slightly 

higher Ct than the RSM model. As with the 2 bladed turbine, the difference 

predicted by each model increases at higher λ for the 3 and 4 bladed turbines. For 

the 3 bladed turbine the difference at peak Ct is 0.06, or 6.5%, at a λ of 6.8. At peak 

Cp the difference is lower at 0.035, or 4.2%. For the 4 bladed turbine peak Ct 

predicted by the SST is 0.91 compared with 0.86 for the RSM. This is a 4.6% 

increase. At peak power the SST model predicts a Ct which is 5.0% higher than the 

RSM model, at 0.90. Again, given the ±5% uncertainty in the flume velocity 

measurements, these differences are of the same magnitude and therefore 

considered reasonable. 

As with the RSM, the SST model also predicts that for the 3 bladed turbine the Ct 

does not continue to increase with λ but instead reaches an almost constant value 

above λ=5.8, with a slight reduction at the highest value of λ. The SST model also 

predicts the drop in thrust at high λ, near freewheeling, for the 4 bladed turbine.   

 

Figure 6.12 Ct vs λ for the 3 bladed turbine 
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Figure 6.13 Ct vs λ for the 4 bladed turbine 

 

Figure 6.14 compares Ct against λ for the 2, 3 and 4 bladed turbines. It shows that at 

lower λ the Ct of the 4 bladed turbine is highest and the Ct of the 2 bladed turbine is 

lowest but that at higher λ this is reversed. It also shows that at the freewheeling λ 

for each turbine the Ct of the 2 bladed turbine is still increasing, the Ct of the 3 

bladed turbine is steady and the Ct of the 4 bladed turbine is decreasing. This is 

because the pitch angle increases with the number of blades. Mason-Jones et al. 

(2012) investigated the effect of changing the pitch angle of a 3 bladed turbine, 

using the same blade design as used in this work. The findings showed that pitch 

angle had little effect on Ct at λ less than 1.2 but with a pitch angle less than 6
o, Ct 

continues to increase with λ to freewheeling whereas with a pitch angle above 6o, 

Ct reaches a maximum before decreasing toward freewheeling. 

The consequences of this behaviour at high λ would be important when designing 

the turbine to withstand loads in the event of a failure of the control or braking 

system with the steady load on the 3 bladed turbine and the decreasing load on the 

4 bladed turbine being an advantage. The peak Ct for each turbine over the 

operating range are 1.06, 0.94 and 0.86 for the 2, 3 and 4 bladed turbines 
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respectively. It is therefore clear that the peak Ct is highest for the 2 bladed turbine 

and lowest for the 4 bladed turbine. This means that if these blades were used for a 

fixed pitch 2 bladed rotor, the control system would need to be very reliable or the 

blade roots strong enough to withstand the high bending moments that would 

result from the high thrust in the event of a failure. The alternatives would be to 

have: 

1)  variable pitch blades, which could increase the cost and complexity of the 

device and potentially reduce reliability. 

2)  bend-twist coupled blades where the tip pitch angle would increase with 

deflection.  

In order to assess the Ct for each turbine under normal operating conditions it is 

necessary to compare the Ct of each turbine at the λ at which it is run. If each 

turbine is run at peak power the Ct values predicted by the RSM for the 2, 3 and 4 

bladed turbines are 0.82, 0.85 and 0.85 respectively. Hence it can be seen that 

under normal conditions the Ct of each turbine is 0.84 (± 2%).   

 

Figure 6.14 Ct vs λ for the 2, 3 and 4 bladed turbines 
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When comparing the normalised Ct curves for each turbine, shown in Figure 6.15, it 

is clear that unlike the Cp and Cθ characteristics none of the curves overlay and that 

the Ct curve of one configuration cannot be estimated from the Ct curve of another.  

 

Figure 6.15 Normalised Ct vs normalised λ for the 2, 3 and 4 bladed turbines 
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4 turbines respectively. Therefore, even under these conditions, the thrust per 

blade is 1.3 times greater for the 3 bladed turbine and 1.9 times greater for the 2 

bladed turbine when comparing with the thrust per blade on the 4 bladed turbine. 

This blade design is therefore better suited to a 3 or 4 bladed rotor since, even at 

peak power the load on each blade of a 2 bladed rotor is much greater and, in the 

case of a failure, continues to increase to freewheeling. 

 

Figure 6.16 Thrust per blade vs λ for the 2, 3 and 4 bladed turbines 
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withstand would be of a similar magnitude regardless of the number of blades. The 

blades themselves would, though, need to be designed for much greater loads with 

fewer blades. However, more blades would mean an increased cost of 

manufacture, increased cost and complexity of installation and maintenance, and 

more parts resulting in more areas of potential failure. It is also worth considering 

that an even number of blades may suffer from tower shadow problems for certain 

designs, as discussed in Chapter 2, which could result in torque fluctuations. 

6.5 Effect of Different Turbulence Decay 

Having established that the trends are the same for each turbine with the RSM and 

SST model, possible reasons for the, albeit small, differences in actual predictions 

were considered. It became apparent that although the same settings were used 

for the turbulence at the inlet for both the RSM and SST models, due to the slower 

decay in turbulence with the SST model, the turbulence immediately upstream of 

the turbine was much greater with the SST model. As shown in Figure 6.17, the 

turbulent intensity around 1 turbine diameter upstream of the rotational plane of 

the turbine was between 9.1 and 12.9%, which is thought to be realistic for 

conditions in marine environment suitable for placement of tidal stream turbines 

(McCann et al., 2008, Osalusi et al., 2009, McCaffrey et al., 2013). Figure 6.18 shows 

that with the SST model the turbulent intensity around 1 turbine diameter 

upstream of the rotational plane of the turbine is between 43.3% and 47.0%.     

Therefore, rather than trying to match the turbulence immediately upstream of the 

turbine by trial and error through varying the turbulence at the inlet, a minimum 

turbulence level was set throughout the entire domain. This may be considered 

more realistic since the turbulence in the ocean would not decay as in an idealised 

domain as it would constantly be generated by waves, seabed topography, marine 

life etc. Setting a minimum turbulence level throughout the domain may therefore 

be considered as the background turbulence in a realistic setting. Fixing the 

minimum background turbulence was achieved by setting a minimum turbulent 

kinetic energy of 0.05 m2s-2 through the domain. This resulted in a turbulent 

intensity, at 1 turbine diameter upstream of the rotational plane of the turbine, of 

18% for both the RSM and SST models. This value is at the upper end of the range 
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found in the literature (McCann et al., 2008, Osalusi et al., 2009, McCaffrey et al., 

2013) and between the values in the original models.   

 

 

Figure 6.17 Contours of Turbulent Intensity with the RSM model 

 

Figure 6.18 Contours of Turbulent Intensity with the SST model 

Figures 6.19, 6.20 and 6.21 compare the Cθ, Cp and Ct at peak power of the 2, 3 and 

4 bladed turbines for each of the fixed minimum turbulence models with the results 

from the original RSM and SST models. 
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Figure 6.19 Cθ vs Number of Blades at peak Cp (normal operating condition) 
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in predicted values increases with the number of blades. This is due to the small 

changes in the predicted forces on each blade, hence a greater difference with 

more blades. 

 

Figure 6.20 Cp vs Number of Blades at peak Cp (normal operating condition) 
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or 4.1%, 4.3% and 4.9%. As for Cθ there is again an increasing disparity with an 

increasing number of blades due to the difference per blade resulting in a greater 

total difference with more blades.   

 

Figure 6.21 Ct vs Number of Blades at peak Cp (normal operating condition) 
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of thrust on turbulence is different to that of torque. Again, further values of 

turbulent intensity would need to be modelled to investigate this further. 

Fixing the minimum turbulence has reduced the difference in predictions of each 

performance characteristic for each turbine showing that the differences in the 

values predicted by the original RSM and SST models were partly due to the 

difference in turbulent intensity immediately upstream of the turbine. The results 

suggest a non-linear dependence on turbulence, with a different relationship 

between thrust and turbulence to the relationship between torque and turbulence. 

More modelling would be required at different turbulent intensities to establish 

these relationships. Even with a fixed minimum turbulence there are still 

differences in the predictions of each model. These are due to differences inherent 

within each model such as the ability to model anisotropic turbulence with the RSM 

model which is particularly relevant in near wall regions, as discussed in Chapter 3. 

Given that the differences in predictions are small, especially where the turbulence 

is specified so as to give a similar level in the vicinity of the turbine; it is not 

considered necessary, or economical, to use the RSM model with its much longer 

run time if only the performance characteristics of the turbine are of interest. 

Chapters 7 and 8 will investigate whether there is a considerable difference in the 

swirl and wake characteristics predicted by each model.   
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7 Swirl Characteristics 

This chapter evaluates the swirl characteristics in the wake of each turbine by 

considering the swirl number, the swirl decay, the decay of maximum tangential 

velocity, the vortex type and the dynamic pressure profiles.  

As discussed in Section 4.4, the swirl number, S, is calculated over the swept area of 

the turbine at a number of x/D positions, where x is the downstream distance and D 

is the turbine diameter. Since the level of swirl was unknown, both the RSM and 

SST models were used for this work. The RSM model is recommended for highly 

swirling flows, whilst the SST model, incorporating isotropic turbulence is suitable 

for low swirl. Comparisons between the two models are given for the main points 

of interest.  

7.1 Swirl Number 

Figure 7.1a shows how the Swirl number varies with λ and downstream distance for 

the 2 bladed turbine, based on the RSM model. Close to the turbine, at x/D=0.1, the 

swirl varies with λ with a similar trend to that of Cθ, peaking at the same λ of 2.43, 

with a swirl number of 0.17. However, at very low values of λ, below 1, the swirl is 

in the same direction as the rotation of the turbine and the opposite direction to 

the flow further downstream of the turbine. This is due to recirculation zones 

behind the turbine blades which occur at very low rotational speeds as shown in 

Figure 7.1b. Equation 3.7 shows the equation for the calculation of swirl number. If 

the negative axial velocities were removed from the calculation then the swirl 

number would be 0 at a λ of 0.49 and 0.03 at a λ of 0.97. At values of λ of 1.45 and 

above, the only recirculation zone is behind the hub. At all values of λ above 1, the 

swirl is highest at x/D=0.1, decreasing with increasing downstream distance. At 

downstream distances between x/D=10 and x/D=40, the λ at which peak swirl 

occurs has increased to around 4, before decreasing with further increases in 

downstream distance, again reaching 2.43 at x/D=25.    
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Figure 7.1a Variation of swirl number with downstream distance for the 2 bladed 
turbine 

 

Figure 7.2b Recirculation zones behind turbine blades at λ=0.49 

 

Figure 7.2 compares the swirl number at x/D=0.1 downstream of the rotational 

plane of the turbine, for both the RSM and SST models. The peak swirl number 
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RSM, i.e. a reduction of 6.6%. As with the RSM model, at a λ of 0.49, the swirl 
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predicted by the SST model is of the opposite direction to that at λ above 1 but its 

magnitude is slightly reduced. At a λ of 0.97, the direction of swirl predicted by the 

SST model is opposite to that predicted by the RSM model but the magnitude is 

similar and is again small. The differences at these low values of λ are likely to be 

mostly due to the difference in turbulent intensity in each model since the blades 

are moving so slowly that the ambient flow conditions are dominant. At all values 

of λ above 1, the values of S predicted by each model are very similar, with the SST 

predicting slightly lower swirl numbers at λ between 1 and 5 and slightly higher 

swirl numbers at λ above 6. This indicates that the difference in turbulent intensity 

has less effect at these values of λ as the flow field is dominated by the presence of 

the turbine. 

 

Figure 7.3 Swirl Number vs λ at x/D=0.1 with RSM and SST for the 2 bladed turbine 

 

Figures 7.3 and 7.4 show how the swirl number varies with λ and downstream 

distance for the 3 and 4 bladed turbines.  

Close to the turbine, at x/D=0.1, the swirl again varies with λ with a similar trend to 

that of Cθ, peaking at the same λ of 1.94 for the 3 bladed turbine, with a swirl 

number of 0.23, and λ around 1.8 for the 4 bladed turbine, with a swirl number of 

0.28.  
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As with the 2 bladed turbine, at the lowest λ, 0.49, the swirl at x/D=0.1 downstream 

of the 3 bladed turbine is in the same direction as the rotation of the turbine and 

the opposite direction to the flow further downstream of the turbine. This is again 

due to recirculation zones which occur at very low rotational speeds. The size of 

these zones has decreased due to the increased blade pitch angle and the positive 

swirl imparted to the flow has increased due to the additional blade. Therefore, the 

relative effect of the recirculation zones is reduced resulting in a lower magnitude 

of negative swirl at a λ of 0.49 and positive swirl at a λ of 0.97. However, unlike the 

2 and 3 bladed turbines, even at the lowest λ, 0.49, the swirl at x/D=0.1 

downstream of the 4 bladed turbine is in the opposite direction to the rotation of 

the turbine and the same direction as the flow further downstream. This can be 

attributed to the further reduction in size of recirculation zones from the increased 

blade pitch angle and an increase in positive swirl imparted by another additional 

blade.  

For the 3 bladed turbine, at values of λ between 0.9 and 5, the swirl is highest at 

x/D=0.1, again decreasing with increasing downstream distance. At values of λ 

above 5, the highest swirl no longer occurs at x/D =0.1 but is instead further 

downstream, although the degree of swirl at x/D=0.1, 1 and 2 is very similar. This is 

because, although the tangential velocity has reduced from x/D=0.1 to x/D=1, the 

axial velocity has also reduced (within the swept area of the turbine), and by a 

greater amount, so the ratio of angular momentum to linear momentum is higher. 

The same is true for the 4 bladed turbine, although it is found to occur over more of 

the operational range, at values of λ above 3.  This is because the reduction in axial 

velocity increases with the number of blades due to a higher proportion of energy 

extraction. 

The λ at which peak swirl occurs increases with downstream distance to around 3 at 

x/D=4, for both the 3 and 4 bladed turbines, before decreasing with further 

increases in downstream distance, following the same trend as the 2 bladed 

turbine.    
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Figure 7.4 Variation of swirl number with downstream distance for the 3 bladed 
turbine 

 

Figure 7.5 Variation of swirl number with downstream distance for the 4 bladed 
turbine 
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As for the 2 bladed turbine, Figures 7.5 and 7.6 show that the peak swirl predicted 

by the SST model at 1m downstream of the turbine is lower than that predicted by 

the RSM model for the 3 and 4 bladed turbines. The peak swirl number predicted 

by the SST model for the 3 and 4 bladed turbines are 0.21 and 0.37 respectively, 

6.4% and 5.1% lower than with the RSM model.  

The trends shown for the 2 bladed turbine are again evident with the SST model 

predicting higher swirl numbers than the RSM model for values of λ near start up 

and freewheeling, with higher predictions at λ below 1 and above 5.5 for the 3 

bladed turbine and below 1 and above 4 for the 4 bladed turbine. Again, the 

difference in predicted S is greater at the lowest values of λ and again is likely to be 

due to the greater effect of differing turbulence predictions at these low rotational 

speeds.   

 

Figure 7.6 Swirl Number vs λ at x/D=0.1 with RSM and SST for the 3 bladed turbine 
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Figure 7.7 Swirl Number vs λ at x/D=0.1 with RSM and SST for the 4 bladed turbine 

 

Figure 7.7 compares the swirl number against λ at x/D=0.1 for the 2, 3 and 4 bladed 

turbines with the RSM model. Maximum swirl number is shown to increase with the 

number of blades. The maximum calculated values of S are 0.168, 0.228 and 0.281 

for the 2, 3 and 4 bladed turbines respectively, indicating that the turbine generates 

either a very weak swirl (S < 0.2) or weak swirl (0.2 < S <0.5).  As discussed in 

Chapter 3, this means that the tangential component of velocity is decoupled from 

that of the axial velocity; hence the length of the wake cannot be inferred from 

knowledge of the swirl number. However, Gupta et al (1984) have shown that for a 

stronger swirl flow, i.e. S ≥ 0.3 the tangential velocity starts to become coupled with 

the axial velocity, hence the stronger the swirl, the faster the decay in the wake 

length. The swirl number of the 4 bladed turbine is close to this threshold and 

therefore it is possible that for some turbine designs, the wake recovery will be 

related to the swirl number. Furthermore, since this work is based on a constant 

velocity, it is not possible to state whether S is independent of u from this particular 
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study, as Cθ, Cp and Ct have been shown to be by Mason-Jones et al. (2012). Higher 

levels of swirl could therefore occur at different flow velocities. 

Figure 7.7 also shows the negative values of S at the two lowest values of λ for the 2 

bladed turbine and the lowest value of λ for the 3 bladed turbine with no negative 

values for the 4 bladed turbine. As discussed above, this is due to the decreasing 

ratio of negative swirl in the recirculation zones behind the blades to positive swirl 

imparted by the blades, with an increasing number of blades. Similar trends are 

observed with the SST model as shown in Appendix B. 

 

Figure 7.8 Swirl Number vs λ at x/D=0.1 for the 2, 3 and 4 bladed turbines 
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produces maximum swirl at x/D=0.1 for the 2 and 3 bladed turbines, and slightly 

lower for the 4 bladed turbine.  

 

Figure 7.9 λ at which peak swirl occurs for each downstream location for the 2, 3 
and 4 bladed turbines 
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ambient turbulence on swirl predictions. Figure 7.9 shows peak swirl predicted by 

the minimum turbulence models along with the predictions of the original models 

for each turbine configuration. The maximum swirl numbers predicted by each 

model are close, and they all show an increase in S with increasing number of 

blades. The largest relative difference in values predicted by the two original 

models is 6.6% for the 2 bladed turbine. For both of the original models and the SST 

fixed minimum turbulence model the increase in S with number of blades is almost 

linear although there is a slight reduction in the increase between 3 and 4 blades 

compared with the increase from 2 to 3 blades. This is to be expected since it is not 

feasible for the swirl number to increase linearly with a continually increasing 

number of blades. However, the RSM fixed minimum turbulence model shows a 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

0 5 10 15 20 25 

λ 

x/D 

2 Blades 

3 Blades 

4 Blades 



 
109 

 

greater increase in S from 3 to 4 blades than from 2 to 3 blades. This suggests that 

the sensitivity of S to the turbulence intensity, at x/D=0.1, increases with the 

number of blades when using the RSM model as the results get further from those 

predicted by the other models. This could be because S is more sensitive to 

turbulence at lower values of λ with the RSM model, than with the SST model  

 

Figure 7.10 Peak swirl number vs number of blades for each model 

 

At peak power the predicted swirl numbers are very close, and again, all models 

show an increase in S with the number of blades, as seen in Figure 7.10. Unlike at 

peak swirl, at peak power, there is a reduction in the rate of increase from 3 to 4 

blades shown for all models and the change in this rate is much greater. The greater 

change in rate at peak power is expected since there is a greater difference in λ for 

each turbine than at peak swirl. The RSM fixed minimum turbulence results are 

closer to those of the other models than at peak swirl, indicating a reduction in the 

dependence of S on turbulence at higher rotational speeds. 
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Figure 7.11 Swirl at peak power vs number of blades for each model 

 

7.2 Swirl Decay 

Figure 7.11 compares the swirl decay for the λ which coincide with peak S, λ=2.4 

and peak Cp, λ=4.4, for the 2 bladed turbine using the RSM model. At λ=2.4 the swirl 

at x/D=0.1 is higher, at 0.17, compared with 0.14 at λ=4.4. However, the initial 

decay in swirl is more rapid at λ=2.4 and hence the swirl is lower for downstream 

distances between x/D=1 and x/D=5. At downstream distances above x/D=5, the 

predicted swirl numbers are close for both values of λ and above x/D=15 the 

differences between the predictions are negligible. This suggests that S is only 

affected, marginally, by λ in the near wake region.  
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Figure 7.12 Swirl decay at peak swirl and peak power for the 2 bladed turbine 

 

Figures 7.12 and 7.13 compare the swirl decay for the λ which coincide with peak Cθ 

and peak Cp, for the 3 and 4 bladed turbines.  

At x/D=0.1 downstream of the 3 bladed turbine, the swirl at peak power is 0.17 

compared with a peak swirl of 0.23. For the 4 bladed turbine the swirl at x/D=0.1 is 

0.18, 0.1 lower than the peak swirl of 0.28. The difference between S at peak swirl 

and at peak power is therefore increasing with the number of blades meaning that 

S is more sensitive to λ at higher  , as also shown by Figure 7.14. 

For the 3 bladed turbine the initial decay in swirl is again more rapid at peak swirl. 
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downstream of the 4 bladed turbine shows very little decay at downstream 
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greater amount, so the ratio of angular momentum to linear momentum is higher 

at x/D=1. This occurs over more of the operational range for the 4 bladed turbine 

than for the 3 bladed turbine and does not occur within the operational range for 
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0.00 

0.02 

0.04 

0.06 

0.08 

0.10 

0.12 

0.14 

0.16 

0.18 

0 5 10 15 20 25 

S 

x/D 

Peak Swirl 

Peak Power 



 
112 

 

energy from the flow, and therefore has the greatest axial velocity deficit, as 

discussed further is Chapter 8.  

As with the 2 bladed turbine, other than immediately downstream of the turbine, 

the predicted swirl numbers are close at peak swirl and peak power for both the 3 

and 4 bladed turbines. There is very little difference in S at downstream distances of 

x/D=1 and above for the 3 bladed turbine and x/D=3 and above for the 4 bladed 

turbine again suggesting that S in not dependent on λ outside the near wake region.  

 

 

Figure 7.13 Swirl decay at peak swirl and peak power for the 3 bladed turbine 
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Figure 7.14 Swirl decay at peak swirl and peak power for the 4 bladed turbine 

 

 

Figure 7.15 Difference between peak swirl and swirl at peak power vs number of 
blades at x/D=0.1 
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above, the peak swirl predicted by the SST model is lower than that predicted by 

the RSM. The decay in swirl predicted by the SST model is more rapid with the 

difference in predicted values increasing with downstream distance to x/D =10 

before decreasing  to x/D=25. The more rapid decay predicted by the SST model 

results in the swirl number being close to 0 by x/D=15. It is clear that when the 

minimum turbulence is fixed, the results from each model are very close with a rate 

of decay between those of the original models. This is to be expected since the 

turbulent intensity immediately upstream of the turbine is greater than with the 

original RSM model and less than with the original SST model.  The rate of decay is 

closer to that of the original RSM model for downstream distances of x/D=5 and 

below but then moves further from the RSM and closer to the SST predictions. This 

is because the turbulent intensity continues to decay with downstream distance for 

the RSM and SST models so whilst the turbulence in the RSM model is closer to that 

in the fixed minimum turbulence models close to the turbine, the turbulence in the 

SST models becomes closer for greater values of x/D. It is therefore clear that the 

difference in swirl decay predicted by the RSM and SST models is mostly due to the 

difference in turbulence predicted by each model.  

 

Figure 7.16 Swirl decay at peak swirl for the 2 bladed turbine with each model 
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Figures 7.16 and 7.17 show the decay in swirl downstream of the 3 and 4 bladed 

turbines at the λ at which peak swirl occurs for the each of the original models 

along with the fixed minimum turbulence models.  As with the 2 bladed turbine, the 

SST model predicts a lower Swirl number at x/D=0.1 and a more rapid decay in swirl 

than the RSM model for each of the other configurations with a swirl number again 

close to 0 by x/D=15.  

The difference in swirl decay predicted by the models with fixed minimum 

turbulence is again less than the difference in decay predicted by the original 

models with the decay rates predicted with fixed minimum turbulence falling 

between those of the original models at most downstream distances. However, at 

x/D=0.1, the swirl predicted by the RSM model with fixed minimum turbulence is 

slightly lower than either of the original models indicating that, close to the turbine, 

S is affected both by the predicted forces on the blades and the turbulent intensity.  

As with the 2 bladed turbine, the decay predicted by the fixed minimum turbulence 

models moves further from the original RSM predictions and closer to the original 

SST predictions with increasing downstream distance due to the continuing decay 

of turbulence seen with both of the original models.   

The values for the SST model with fixed minimum turbulence are higher than those 

for the RSM model with fixed minimum turbulence due to the higher torque and 

hence greater S, predicted by the SST models. The difference is greater with the 4 

bladed turbine than with the 3 bladed turbine as would be expected since the 

difference in predicted torque also increases with the number of blades due to the 

disparity in the forces on each blade being multiplied by the number of blades as 

discussed in Chapter 6.    
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Figure 7.17 Swirl decay at peak swirl for the 3 bladed turbine with each model 

 

Figure 7.18 Swirl decay at peak swirl for the 4 bladed turbine with each model 

 

Figure 7.18 compares the decay in swirl at the λ coinciding with peak swirl for the 2, 

3 and 4 bladed turbines using the RSM model. It is clear that for all three turbines 

there is a rapid decay in swirl immediately downstream of the turbine, followed by 

a slow, steady decline. The peak swirl number is highest for the 4 bladed turbine 

and lowest for the 2 bladed turbine. This indicates that more tangential momentum 
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is generated compared to the axial momentum when the number of blades is 

increased. However, the rate of decay slows closer to the turbine for the 2 bladed 

turbine and further from the turbine for the 4 bladed turbine so that by x/D=10 the 

values of S for each turbine are close and by x/D=20 are approximately the same. 

Therefore the swirl number is only affected by the number of blades in the near 

wake region.  Similar trends can be seen with the SST, and fixed minimum 

turbulence models as given in Appendix B. 

 

Figure 7.19 Swirl decay at peak swirl for the 2, 3 and 4 bladed turbines 
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does not happen until much further downstream. This is because the decay in 

downstream turbulence is dependent on the rotational speed of the turbine, as 

illustrated by Figure 7.20, and therefore the point at which the turbulence in the 

SST model becomes closer than the RSM model to the fixed minimum turbulence 

models moves closer to the turbine. 

 

Figure 7.20 Swirl decay at peak power for the 2 bladed turbine with each model 

 

 

Figure 7.21 Turbulent Intensity downstream of the 2 bladed turbine at peak swirl 
(top) and peak power (bottom) 
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Figures 7.21 and 7.22 show the swirl decay downstream of the 3 and 4 bladed 

turbines, at the λ which coincides with peak Cp for each of the original models, 

along with the fixed minimum turbulence models. As for the 2 bladed turbine the 

swirl numbers predicted by the SST model at x/D=0.1 are very close to those 

predicted by the RSM model, with differences of 2.6% and 1.1% respectively. The 

decay in swirl predicted by the SST model is once again more rapid with the 

difference in predicted values increasing to x/D =5 and the swirl number predicted 

by the SST model being close to 0 by x/D=15. 

Again the difference between the predictions of each of the models with fixed 

minimum turbulence is very small and again the rates of decay fall between the 

rates predicted by the original models, confirming that the difference in S predicted 

by each of the original models is mostly due to differences in turbulence. As with 

the 2 bladed turbine the rates predicted by the fixed minimum turbulence models 

are closer to the rates predicted by the original RSM models at x/D=2 and below 

and closer to those predicted by the SST models for x/D=3 and above for both the 3 

and 4 bladed turbines. 

Although the lack of swirl decay between x/D=0.1 and x/D=1 downstream of the 4 

bladed turbine predicted by the original RSM model is not shown with the SST or 

fixed minimum turbulence models, the fixed minimum turbulence models show a 

slower decay predicted between these downstream distances than at distances 

between x/D=1 and x/D=5. This is because the reduction in axial velocity between 

x/D=0.1 and x/D=1 is greater for lower turbulence levels as will be discussed further 

in Chapter 8.  
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Figure 7.22 Swirl decay at peak power for the 3 bladed turbine with each model 

 

From Figures 7.13 and 7.22 the RSM prediction of swirl number, for x/D = 0.1 and 1, 

show a lack of decay compared to all the other models. The flow off the back of the 

turbine for this condition must be anisotropic as the SST does not show this detail. 

Also the level of the fixed minimum turbulence intensity must drive the RSM to also 

simulate that of an isotropic flow. By fixing the minimum turbulence intensity there 

are clearly advantages by not allowing the turbulence to decay when in reality it 

wouldn’t, but this also raises a possible disadvantage of anisotropic characteristics 

being smothered. 
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Figure 7.23 Swirl decay at peak power for the 4 bladed turbine with each model 

 

Figure 7.23 shows that at peak power the swirl number is still highest for the 4 

bladed turbine and lowest for the 2 bladed turbine. However, the difference 

between the peak swirl numbers has decreased from those at peak torque, with 

swirl numbers of 0.14, 0.17 and 0.18 for the 2, 3 and 4 bladed turbines respectively 

compared with 0.17, 0.23 and 0.28 at peak torque. S is therefore more dependent 

on   in the near wake region at peak swirl than at peak power, due to greater 

differences in Cθ.  

At downstream distances of x/D=1 and above, similar trends to those found at peak 

torque are apparent, with the most rapid decay in swirl occurring for the 4 bladed 

turbine and the least rapid for the 2 bladed turbine. However, the decay in swirl 

from x/D=0.1 to x/D=1 is greatest for the 2 bladed turbine, with a smaller decay for 

the 3 bladed turbine and no decay for the 4 bladed turbine. As discussed above, this 

is because at higher rotational speeds there is a more rapid reduction in axial 

velocity than in tangential velocity between x/D=0.1 and x/D=1. This effect 

increases with the number of blades, as more energy is extracted from the flow, as 

discussed further in Chapter 8.   Similar trends can again be seen with the SST, and 

fixed minimum turbulence models, as given in Appendix B. 
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Figure 7.24 Swirl decay at peak power for the 2, 3 and 4 bladed turbines 

 

7.3 Tangential velocity decay, Wm/Wm0 

 

Overall flow characterisation of swirling flows is provided by Gupta et al. (1984) 

based upon experimental time-mean data provided by Chigier and Chervinsky 

(1967). The work presents curves detailing the downstream decay and cross-stream 

profiles of axial and swirl velocities and static pressure. Swirling flows can be 

produced by a number of methods within industry and include a wide range of 

applications, i.e. swirl burners, cyclones, etc. However no matter what method used 

to produce the swirl, the characteristics seem to collapse onto reasonably well 

defined profiles. The findings of this work are no different to any swirl generator 

where the swirl number defines a very weak swirl as can be seen in Figure 7.24, 

which superimposes the maximum tangential velocity at peak swirl and peak power 

for each turbine at each x/D, normalised to that at x/D = 0.1, onto the curves of 

Chigier and Chervinsky (1967).   
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Chigier and Chervinsky (1967) based upon data from swirling jets as supposed to a 

turbine wake. That said; similarities can be seen between the decay in maximum 

tangential velocities of the turbine wake and jets. With D assumed to be the turbine 

diameter, the decay of the turbine wake swirl velocity maximum appears to 

replicate that of the jet very well, with the principle characteristics of an 

exponential fall when x/D is small and a subsequent slow but steady decline with 

increasing x/D.  Furthermore the majority of this decay has occurred by x/D = 5. 

 

Figure 7.25 Decay of maximum tangential velocity along axis of swirling jets (Chigier 
& Chervinsky, 1967) & in the wake of 2, 3 and 4 bladed turbines at peak swirl & 

peak power 

 

Figure 7.25 shows that the decay in maximum w follows the same trend with the 

SST model as with the RSM and fits even more closely with the experimental data 

of Chigier and Chervinsky (1967).   
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Figure 7.26 Decay of maximum tangential velocity along axis of swirling jets (Chigier 
& Chervinsky, 1967) and in the wake of the 3 bladed turbine at peak swirl and peak 

power with the RSM and SST models 

 

7.4 Type of Vortex 

Figure 7.26 shows the tangential velocity profiles taken at x/D=1 downstream of the 
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along the x axis but at peak power this is reversed as the area of maximum w 

rotates as the flow moves downstream and is closer to the x axis at peak power 
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negative, indicating a small rotation in the opposite direction to that in the wake 

due to eddies shedding off the blades, before recovering towards 0 with increasing 

r/R. On the y axis, w remains close to 0 at r/R above 1.5. 

 

Figure 7.27 Tangential velocity profile at x/D=1 downstream of the 2 bladed turbine 
on x and y axes 

 

(a) Peak Swirl      (b) Peak Power 

Figure 7.28 Tangential Velocity Contours at x/D=1 downstream of the 2 bladed 
turbine 
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Figures 7.28 and 7.29 show the tangential velocity profiles taken at x/D=1 

downstream of the 3 and 4 bladed turbines along the y and x axes at peak swirl and 

peak power. As with the 2 bladed turbine, maximum w is higher at peak swirl than 

at peak power along both axes for both of the other turbine configurations. Unlike 

the 2 bladed turbine, there is little difference between the profiles along the x axis 

and the y axis for the 3 or 4 bladed turbine. This is because the blades are physically 

closer and therefore the tangential velocity profile becomes more uniform over the 

swept area of the turbine. The tangential velocity profiles follow the same trend as 

those of the 2 bladed turbine but there is less variation in the radial position at 

which maximum w occurs, which is around r/R=0.5 for both the 3 and 4 bladed 

turbines at peak swirl and peak power along both axes. The profiles therefore 

demonstrate a Rankine vortex in the wake of each turbine at both peak swirl and 

peak power. Outside the wake region, at r/R above 1.5, w is close to 0 for both 

turbines.   

 

Figure 7.29 Tangential velocity profile at x/D=1 downstream of the 3 bladed turbine 
on x and y axes 
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Figure 7.30 Tangential velocity profile at x/D=1 downstream of the 4 bladed turbine 
on x and y axes 

 

7.5 Dynamic Pressure 

It has been shown in this chapter that the turbine generates either a very weak 

swirl or a weak swirl, depending on the number of blades, and it is known that very 

low swirl flows should result in a significant lateral (or radial), but a low axial, 

pressure drop (Gupta et al, 1984). To ensure that the results were in agreement 

with swirl theory for all three turbine configurations, the dynamic pressure was 

examined for the 2, 3 and 4 bladed turbines at λ at which peak Swirl occurred and 

peak power since this is assumed to be the normal operating λ. Since the results at 

x/D=0.1 were found to be heavily influenced by the hub, the pressure gradient in 

the radial direction was calculated at x/D=1. The dynamic pressure at x/D=25 was 

also extracted to enable the pressure gradient in the axial direction to be 

calculated. The results shown in Figures 7.27 to 7.29 are based on the RSM models 

with a sample comparison with an SST model given in Figure 7.30.  
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of 396 Pa/m. In the axial direction, the dynamic pressure has recovered to 3730 Pa 

at x/D=25 which results in a much smaller axial pressure gradient of ~8.5 Pa/m. At 

peak power, the minimum dynamic pressure at x/D=1 downstream of the 2 bladed 

turbine is around 1400 Pa at r/R~±0.65, also shown in Figure 7.30. This has 

recovered in the radial direction to 4860 Pa at r/R~±1.5 and in the axial direction to 

3160 Pa at x/D=25. As at peak swirl, the pressure gradient is therefore much 

greater, at 814 Pa/m in the radial direction, compared with 7.3 Pa/m in the axial 

direction. 

 

Figure 7.31 Dynamic pressure profiles downstream of the 2 bladed turbine 

 

Figure 7.31 shows the dynamic pressure profiles at x/D=1 and x/D=25 downstream 

of the 3 bladed turbine at peak swirl and peak power. At x/D=1 at peak swirl the 

minimum dynamic pressure is around 1000 Pa. At x/D=25 the pressure has 

recovered, so that the minimum pressure is now 3370 Pa, thus giving an average 

pressure drop of ~10.5 Pa/m in the axial direction. In the radial direction the 

maximum pressure difference can be seen to be ~ 4000 Pa at x/D=1 over a radial 

distance of ~7 m, giving a pressure drop of ~560 Pa/m. By x/D=25 the maximum 
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pressure drop in the radial direction has reduced to ~110 Pa/m showing that the 

radial pressure drop is still dominant relative to the axial pressure drop. 

At peak power the minimum dynamic pressures at x/D=1 and x/D=25 are around 

1000 Pa, at r/R~±0.7, and 3000 Pa, at r/R=0, respectively. This is an axial pressure 

gradient of 8.3 Pa/m. The dynamic pressure at x/D=1 is around 4670 Pa at r/R~±1.4, 

giving a radial pressure gradient of ~1050 Pa/m.  

As with the 2 and 3 bladed turbines, the 4 bladed turbine also produces a wake with 

a much greater pressure gradient in the radial direction than in the axial direction. 

Figure 7.29 shows that, at peak swirl, the pressure difference in the radial direction 

is around 3920 Pa over a radial distance of r/R~1.4, or 7 m, and in the axial direction 

the pressure difference is around 2450 Pa over x/D=24, or 240 m. These pressure 

differences give gradients of 560 Pa/m and 10.2 Pa/m in the radial and axial 

directions respectively.  

Again, at peak power, the pressure gradient in the wake of the 4 bladed turbine is 

much greater in the radial direction than the axial direction. From Figure 7.32 the 

pressure difference in the radial direction is 3660 Pa over a distance of 4.25 m 

giving a pressure gradient of 861 Pa/m. In the axial direction the pressure 

difference is 1880 Pa over 240 m giving a pressure gradient of 7.8 Pa/m. 

 

Figure 7.32 Dynamic pressure profiles downstream of the 3 bladed turbine 
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Figure 7.33 Dynamic pressure profiles downstream of the 4 bladed turbine 

Figure 7.33 shows the dynamic pressure profiles at x/D=1 and x/D=25 downstream 

of the 3 bladed turbine at peak power for the RSM and SST models. At x/D=1 the 

profiles are very similar and whilst at x/D=25 the dynamic pressure has recovered 

more with the SST model, due to the higher ambient turbulence discussed in 

Chapter 6, the radial pressure gradient is still much greater than the axial pressure 

gradient. Similar observations were seen at peak swirl and for the 2 and 4 bladed 

turbines and are given in Appendix C.  It is therefore clear that the condition of a 

large dynamic pressure gradient in the radial direction when compared with that in 

the axial direction is satisfied by all three turbine configurations at peak swirl and 

under normal operating conditions. 
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Figure 7.34 Dynamic pressure profiles downstream of the 3 bladed turbine with the 
RSM and SST models 

 

7.6 Summary of Swirl Characteristics in Wake 
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with the SST model than the RSM model for all cases. It is clear that the difference 

in swirl decay is largely due to the difference in turbulence resulting from the more 

rapid decay in turbulence with the RSM model since when the minimum turbulence 

is fixed, both models give very similar rates of swirl decay.  

The difference in swirl decay between both of the models with fixed minimum 
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As with the performance characteristic results presented in Chapter 6, this is due to 
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number of blades. With a fixed minimum turbulence, the results at peak power are 

very close. For each turbine configuration the results move away from RSM and 

toward SST with increases in x/D as the turbulence intensity in the original models 

continues to decay along the length of the domain. With fixed minimum 

turbulence, the rate of decay is approximately the same for RSM and SST for all 3 

turbines but SST gives higher values at all x/D=0.1 due to the higher predictions of 

torque shown in Chapter 6 and hence higher swirl imparted to the flow.  

Since the swirl was found to be weak or very weak, the RSM did not offer a 

significant advantage over the SST model with very similar predictions for the 

models with fixed minimum turbulence. Hence, for a turbine with weak or very 

weak swirl the SST model is sufficient for analysing the swirl characteristics, 

provided the turbulence can be accurately matched to the proposed site. However, 

for a turbine with a higher swirl it may be necessary to use the RSM.   

Peak swirl increases with the number of blades but is weak or very weak in all 

cases. However, peak S for the 4 bladed turbine is close to the threshold of 0.3 

stated by Gupta et al (1984) at which axial velocity starts to become coupled with 

tangential velocity and therefore wake recovery may be related to S for some 

turbine designs. It is also possible that this may occur for this turbine design with a 

different mean flow velocity since the ratio of axial to tangential momentum may 

not be independent of flow velocity. 

Swirl is only affected by the number of blades in the near wake region with values 

converging after x/D=10. In the far wake the ambient turbulence is of much greater 

significance to the swirl than the number of blades. Accurate turbulence data from 

a proposed site is therefore crucial if the swirl in the far wake is of importance.  

Since the wakes of all three turbines, at both peak swirl and peak power compare 

well with the experimental work of Chigier and Chervinsky (1967), demonstrate a 

classical Rankine vortex and follow the principle of a much greater pressure drop in 

the radial direction than in the axial direction it is reasonable to state that they fit 

classical swirl theory.  
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8 Wake Recovery 

In areas where more than one row of turbines can be sited, in an array, an 

estimation of the wake length of each device is critical when determining the 

spacing of the devices in order to make the most efficient use of the available area. 

This chapter considers the wake length predicted by each model for the 2, 3 and 4 

bladed turbines at their respective normal operating λ, again assumed to be at peak 

Cp, and then compares the wake length for each configuration. 

8.1 Centre Line Velocity 

Figure 8.1 shows the normalised axial velocity downstream of the 2 bladed turbine 

along its rotational axis for each of the models, where x/D is as defined in Chapter 6 

and u/U is the axial velocity, normalised to the inlet velocity, 3.086ms-1. Negative 

values in the recirculation zone immediately behind the hub have been removed for 

clarity. Each of the models predicts an initial rapid recovery to between 65% and 

69% of the upstream value at x/D~0.5, followed by a drop to between 53% and 56% 

at 3.6<x/D<5.2, and then a gradual recovery through the remainder of the domain.  

There is a clear difference between the recovery predicted by each of the original 

models with an 80 % recovery at x/D=23 with the RSM model and the same 

recovery at a much reduced downstream distance of x/D=14 with the SST model. It 

is also evident that the difference in predicted recovery is almost entirely due to the 

difference in turbulence since the recovery predicted by each of the models with 

fixed minimum turbulence is very similar. The recovery predicted by both of the 

models with fixed minimum turbulence is closer to that predicted by the original 

SST model than the RSM model. This is because downstream of the turbine the 

turbulence intensity is closer to that predicted by the original SST model due to the 

continual decay of turbulence throughout the domain with both of the original 

models. The centre line velocity is insensitive to the viscous model from x/D=0 to 

x/D~2.5 as the turbulence immediately behind the turbine is much higher than the 

ambient turbulence and is similar for all of the models.  
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Figure 8.1 Normalised centre line axial velocity downstream of the 2 bladed turbine 

 

Figures 8.2 and 8.3 show the normalised axial velocity downstream of the 3 and 4 

bladed turbines along their rotational axes for each of the models. Again, negative 

values in the recirculation zone immediately behind the hub have been removed for 

clarity. The trends follow the pattern of the 2 bladed wake, with an initial rapid 

recovery, followed by a drop in velocity and then a gradual recovery.  

Immediately downstream of the 3 bladed turbine the initial rapid recovery reaches 

61% to 62% of the upstream value at x/D~0.4, lower than the 2 bladed turbine but 

occurring closer to the turbine. The initial rapid recovery downstream of the 4 

bladed turbine reaches 66% to 67% of the upstream value at x/D~0.3, between the 

values of the 2 bladed turbine and 3 bladed turbines but occurring closer to the 

turbine. It is unclear why this occurs but it is possibly due to difference in 

accelerated flow between blades and hub and also between blades themselves as 

they get closer together. 

The minimum axial velocity downstream of the 3 bladed turbine, outside the 
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of the 4 bladed turbine, after the initial rapid recovery, the axial velocity drops to 

between 44% and 47% at 3.8<x/D<7.1, lower than for the 2 and 3 bladed turbines 

and slightly further downstream. This is because the 4 bladed turbine extracts the 

most energy from the flow and the 2 bladed turbine the least, as discussed in 

Chapter 5. 

There is again a clear difference between the recovery predicted by each of the 

original models with an 80 % recovery at x/D=26 downstream of the 3 bladed 

turbine with the RSM model and at x/D=14 with the SST model. Downstream of the 

4 bladed turbine an 80 % recovery is seen at x/D=26 with the RSM model and at 

x/D=15 with the SST model.  

As with the 2 bladed turbine, the difference in predicted recovery downstream of 

the 3 and 4 bladed turbines is almost entirely due to the difference in turbulence 

since the recovery predicted by each of the models with fixed minimum turbulence 

is very similar. Again, the recovery predicted by both of the models with fixed 

minimum turbulence is closer to that predicted by the original SST model than the 

RSM model due to the turbulence being closer to that predicted by the original SST 

model.  
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Figure 8.2 Normalised centre line axial velocity downstream of the 3 bladed turbine 

 

 

Figure 8.3 Normalised centre line axial velocity downstream of the 4 bladed turbine 
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Analysis of the centre line axial velocity and the swept area average axial velocity 

for the 2, 3 and 4 bladed turbines has shown that the differences in wake 

predictions are almost entirely due to the difference in turbulence in each model 

since there is negligible difference in the results of the models with fixed minimum 

turbulence. Therefore the comparison between 2, 3 and 4 blades is based on the 

original RSM and SST models as these give the upper and lower values with those of 

the fixed minimum turbulence models falling between the original models in every 

case. 

Figure 8.4 compares the normalised centre line axial velocity for the 2, 3 and 4 

bladed turbines, as predicted by the RSM and SST models. For each turbine, the 

centre line axial velocity is shown to be insensitive to the viscous model from x/D=0 

to x/D=2.5 due to similar turbulence, as discussed previously. Both models show a 

greater drop in velocity in the near wake with an increasing number of blades and 

both show a greater difference between 2 and 3 blades than between 3 and 4 

blades. This is to be expected since at peak Cp for each turbine, the Cθ and Cp are 

highest for the 4 bladed turbine and lowest for the 2 bladed turbine, with a larger 

difference in both of these values between 2 and 3 blades than between 3 and 4 

blades, as shown in Chapter 6. The higher values of Cθ and Cp with an increase in 

the number of blades means that more of the energy is extracted and hence the 

lower axial velocity seen in the wake. The differences in the RSM and SST 

predictions for each turbine can be explained by the difference in turbulence, as 

discussed above, but there is also a difference in the trend for varying numbers of 

blades. Both models show a reduction in the dependence on the number of blades 

with increasing downstream distance. This is a similar finding to that of Myers and 

Bahaj (2010), who compared the wake recovery for differing Ct values and found 

that the far wake was insensitive to Ct. However the SST model shows a 

convergence in recovery for all 3 turbine configurations at the same downstream 

distance whereas the RSM model shows a convergence of the 3 and 4 bladed 

centre line velocities much further upstream than where they converge with the 2 

bladed turbine. This suggests that the centre line wake recovery is more sensitive to 

the number of blades at low turbulence levels and that low solidity rotors may offer 
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higher overall array efficiencies in areas of low turbulent intensity.  At x/D=10 and 

above, the differences in velocity recovery as a result of the number of blades are 

smaller than the differences caused by different turbulence levels meaning that the 

far wake is more dependent on turbulence than solidity and reinforcing the 

importance of having accurate turbulence data for a proposed array site.  

 

Figure 8.4 Normalised centre line axial velocity downstream of the 2, 3 and 4 bladed 
turbines 
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Figure 8.5 shows the normalised average axial velocity over the swept area of the 2 

bladed turbine at downstream distances of x/D between 0.1 and 25 for each of the 

models. The trends are similar to those of the centre line values but there are no 

negative values immediately behind the turbine since the effect of the recirculation 

zone behind the hub is negated. As with the centre line values there is a drop from 

66% to 68% of the free stream value close to the turbine to a minimum shortly 

downstream followed by a gradual recovery. The minimum value for the average 

velocity is slightly higher than the centre line value at 54% to 57% and occurs closer 

to the turbine at x/D=1 to x/D=2. The gradual recovery is also shifted closer to the 

turbine with an 80% recovery at x/D=18 for the RSM and x/D=10 for the SST, 

compared with x/D=23 and x/D=14 for the centre line values. This is a 22% to 29% 

reduction in the distance to this recovery. The models with fixed minimum 

turbulence again show a recovery that falls between those of the original models 

and closer to the SST than RSM. With the swept area average there is almost no 

difference in predictions for each of the fixed minimum turbulence models, again 

confirming that the difference in the predictions of recovery of the original models 

is almost entirely due to differences in turbulence. As with the centre line velocity, 

immediately downstream of the turbine the average axial velocity over the swept 

area of the turbine is insensitive to the viscous models but differences are seen by 

x/D=1 indicating that there is more variance in the turbulence in each model over 

the swept area than at the centre line.       
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Figure 8.5 Normalised swept area average axial velocity downstream of the 2 
bladed turbine 

 

Figures 8.6 and 8.7 show the average axial velocity over the swept area of the 

downstream of the 3 and 4 bladed turbine at distances of x/D between 0.1 and 25 

for each of the models. As with the 2 bladed turbine the trends are similar to those 

of the centre line values but again there are no negative values as the recirculation 

zone behind the hub is negated.  

The average axial velocity at x/D=0.1 is 64% to 67% of the free stream value for the 
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47% to 54% at x/D=1 to x/D=2 for the 4 bladed turbine.  

The gradual recovery is also shifted closer to the turbine. For the 3 bladed turbine 

there is an 80% recovery at x/D=22 for the RSM and x/D=11 for the SST, compared 
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occurs at x/D=22 for the RSM and x/D=12 for the SST, compared with x/D=26 and 

x/D=15 for the centre line values. This is a 15% to 20% reduction in the distance to 

this recovery.  

The models with fixed minimum turbulence again show a recovery that falls 

between those of the original models and closer to the SST than RSM. As with the 2 

bladed turbine, the average axial velocity immediately downstream of the 3 and 4 

bladed turbines is insensitive to the viscous model and differences between the 

models occur closer to the turbine than for the centre line values. 

 

Figure 8.6 Normalised swept area average axial velocity downstream of the 3 
bladed turbine 
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Figure 8.7 Normalised swept area average axial velocity downstream of the 4 
bladed turbine 

 

The recovery of average axial velocity over the swept area of the turbine is shown 

in Figure 8.8 for the 2, 3 and 4 bladed turbines with the RSM and SST models. As 

with the centre line values, both models show a reduction in the minimum average 

velocity with an increasing number of blades for the same reasons.  However, there 

is no longer a significantly greater difference between 2 and 3 blades than between 

3 and 4 blades. Both models again show a decreasing dependence on the number 

of blades with increasing downstream distance and the recovery of all 3 turbines 

converge further upstream with the SST model than with the RSM model, again 

showing a higher dependence on the number of blades at a lower turbulent 

intensity. The recovery of the average axial velocity for the 3 and 4 bladed turbines 

with the RSM model converge further downstream than the centre line values 

suggesting that the average velocity is more sensitive than the centre line velocity 

to the number of blades at low turbulence levels.  

Again, at x/D=10 and above, the differences in velocity recovery as a result of the 

number of blades are smaller than the differences caused by different turbulence 

levels. As discussed above, this means that the far wake is more dependent on 

turbulence than on solidity.  
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Figure 8.8 Normalised swept area average axial velocity downstream of the 2, 3 and 
4 bladed turbines 

8.3 Comparison of centre line and swept area average velocity  

Figure 8.9 gives a comparison of the centre line and swept area average axial 

velocities for each turbine with both the RSM and SST models. It is clear that basing 

the calculation on the swept area rather than the centre line reduces the 

downstream distance at which the velocity reaches a given velocity. This effect is 

most pronounced at downstream distances between x/D=5 and x/D=8, depending 

on the model, and decreases with downstream distance above this. Therefore if 

device spacing is based on a 90% recovery, using the swept area average axial 

velocity will have less effect than if it is used where spacing is based on an 80% 

recovery. Although it is not possible to make a comparison at 90% recovery as the 

RSM models have not reached this by the end of the domain, at 80% recovery, 

there is a greater difference between the centre line velocity and the swept area 

average velocity with the RSM model than with the SST model. This shows that at 

lower turbulence levels, there is a greater variation in u with radial distance from 

the centre and therefore, a more conservative recovery given by the centre line 

value.     
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Figure 8.9 Normalised centre line and swept area average axial velocity 
downstream of the 2, 3 and 4 bladed turbines 

 

Figure 8.10 shows the swept are average velocity against the centre line velocity for 

the wake recovery downstream of the 2, 3 and 4 bladed turbines with each of the 

models. It is clear that, in general, the difference between the centre line and swept 

area average values decreases with increasing velocity. This would be expected 

since the highest velocities are found toward the end of the wake where the 

velocity across the whole of the swept area has recovered to close to the free 

stream value. Only the values for x/D=4 and above are shown since those closer to 

the turbine are of little interest. It is interesting to note that the difference between 

swept area average velocity and centre line velocity shows good correlation for all 

three turbine configurations with very similar values where the centre line velocity 

is at 0.6ms-1 and above.  
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Figure 8.10 Swept area average axial velocity v centre line axial velocity at x/D=4 
and above downstream of the 2, 3 and 4 bladed turbines 

8.4 Summary of Wake Study 

All of the models for each of the turbines show the same trend of a rapid recovery 

in axial velocity very close to turbine, a drop shortly downstream and then a gradual 

recovery. The SST model predicts a shorter wake length than RSM for each turbine 

and when based on the centre line as well as the swept area average value. This is 

almost entirely due to the difference in turbulence as there was negligible 

difference between the results of the fixed minimum turbulence models. The axial 

velocity immediately behind the turbine is insensitive to turbulence. This extends to 

x/D~2.5 for the centre line values but is only true at x/D=0.1 with the swept area 

average. 
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The minimum axial velocity in the wake, outside the recirculation zone behind the 

hub, decreases with increasing number of blades since more energy is extracted 

from the flow. The difference in this minimum velocity is significantly greater from 

2 to 3 blades than from 3 to 4 for the centre line values but the decrease is 

approximately linear with the swept area average values. 

There is a reduction in the dependence of the recovery on solidity with increasing 

downstream distance. The centre line recovery is more sensitive to the number of 

blades at low turbulence than at high turbulence, and the swept area average more 

sensitive than the centre line value. The far wake is more dependent on turbulence 

than on solidity. However, at low turbulence there is still some dependence on the 

number of blades at x/D=25, with the 2 bladed turbine showing the greatest 

recovery. Low solidity devices may therefore be better suited to low turbulence 

areas than high solidity devices and in some sites it may be beneficial to have a 

combination of different rotor solidities within an array. 
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9 Blade Deflection 

The performance characteristics, swirl and wake discussed so far in Chapters 6, 7 

and 8 are all based on a rigid turbine. In reality the hydrodynamic forces would 

cause the blades to deflect and possibly alter some of these findings. This chapter 

presents the results of the 2 way coupled FSI models which account for blade 

deflection. Only the performance characteristics at peak power for each turbine are 

analysed. The SST model was used for all of the FSI work since the SST and RSM 

models showed little difference in predictions of performance characteristics and 

the RSM models required a much longer run time.  

9.1 Torque 

Figure 9.1 shows the torque output against modulus for the 2 bladed turbine 

configuration. It is clear that the torque increases with decreasing modulus, 

reaching a maximum of 184.8 kNm at a modulus of 20 GPa. This is an increase of 

1.5% from 182.1 kNm at a modulus of 200 GPa. This suggests that the blade is not 

in its optimum position for the rigid turbine design. It is expected that at lower 

values of modulus, which would result in an increase in blade deflection, the torque 

would continue to increase but would eventually decrease due to the reduction in 

swept area, additional tip losses and change in angle of attack as the blade tip 

moves further from the plane of rotation. However, at lower values of modulus the 

model became unstable due to problems with inverted cells caused by dynamic 

meshing and convergence was not possible.  
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Figure 9.1 Torque vs E for the 2 bladed turbine 

 

The torque output against modulus for the 3 and 4 bladed turbines is shown in 

Figures 9.2 and 9.3. Unlike the 2 bladed turbine, the torque produced by the 3 

bladed turbine is shown to decrease with decreasing modulus. The torque at a 

modulus of 200 GPa is 242.1 kNm and this has dropped by 0.4% to 241.1 kNm at a 

modulus of 40 GPa. It is expected that the torque would continue to decrease with 

further reductions in modulus. This suggests that the blade is close to optimum in 

its original position.  

The torque generated by the 4 bladed first increases with decreasing modulus, 

following a similar trend to the 2 bladed turbine, before eventually falling at very 

small values of modulus. Peak torque is 257.0 kNm and occurs at a modulus of 

around 20 GPa. This is 0.3% higher than the torque of 256.2 kNm which occurs at a 

modulus of 200 GPa. At a modulus of 10 GPa, the torque has then reduced to 256.5 

kNm and it is expected that at lower values of modulus this would continue to 

decrease. As with the 2 bladed turbine the results suggest that the blade is not in its 

optimum position for the rigid turbine design. 
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Figure 9.2 Torque vs E for the 3 bladed turbine 

 

 

Figure 9.3 Torque vs E for the 4 bladed turbine 
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9.2 Thrust 

The thrust load on the 2 bladed turbine is shown in Figure 9.4 for the range of 

moduli considered. The thrust is shown to follow a similar trend to the torque 

produced by the 2 bladed turbine, in that it increases with decreasing modulus. The 

maximum thrust found was 325.8 kN at a modulus of 20 GPa which is 2.0% higher 

than the thrust of 319.4 kN at a modulus of 200 GPa. As with the torque, the thrust 

would also be expected to first increase and finally decrease at lower values of 

modulus, again due to the lower swept area.  

 

Figure 9.4 Thrust vs E for the 2 bladed turbine 
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modulus considered, which is 10 GPa, the rate of increase is slowing. At this 

modulus, the thrust load is 330.4 kN which is 1% higher than the thrust of 327.0 kN 

seen at a modulus of 200 GPa. It is expected that the thrust would continue to 

increase at values of modulus just below 10 GPa but would then decrease at lower 

modulus values. 

 

Figure 9.5 Thrust vs E for the 3 bladed turbine 

 

Figure 9.6 Thrust vs E for the 4 bladed turbine 
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9.3 Blade Deflection 

The maximum blade deflection for the 2 bladed turbine for each value of modulus 

studied is shown in Figure 9.7. Clearly, the blade deflection increases with 

decreasing modulus as expected. It is shown to follow a power law, where the 

deflection changes by a factor which is the inverse of that by which the modulus is 

changed. The deflection at 200 GPa is 0.035 m and this has increased to 0.35 m at a 

modulus of 20 GPa.  

 

Figure 9.7 Deflection vs E for the 2 bladed turbine 
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Figure 9.8 Deflection vs E for the 3 bladed turbine 

 

 

Figure 9.9 Deflection vs E for the 4 bladed turbine 
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For all three blade configurations the deflection increases with decreasing modulus 

or increasing flexibility, as shown in Figure 8.10. For all values of modulus, the 2 

bladed turbine has the highest deflection and the 4 bladed turbine the lowest. This 

is expected since although the 2 bladed turbine has the lowest overall thrust, the 

thrust load on each blade is greater as discussed in Chapter 5. 

 

Figure 9.10 Deflection vs E for the 2, 3 and 4 bladed turbines 
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3 Bladed turbine configuration. The twist along the length of the blade is therefore 

based on the tip speed ratio at which peak power is achieved for the 3 Bladed 

configuration. In addition the blade pitch angle was found to the nearest whole 

degree during previous work but in reality the optimum may be slightly above or 

below this value.  

 

Figure 9.11 Power vs deflection for the 2 bladed turbine 

 

Figures 9.12 and 9.13 give the power output against deflection for the 3 and 4 

bladed turbines. The power output of the 3 bladed turbine first increases marginally 

for a small blade deflection and then decreases for larger blade deflections. This 

again suggests that although the original blade design may not be fully optimised, it 

is close to the optimum design for the 3 bladed configuration. Peak power is shown 

to occur at a deflection of approximately 0.02 m. At this deflection the power 

increases by 0.04% from the baseline of 544.5 kW to 544.7 kW before falling by 

0.4% from the baseline to 542.5 kW. It is expected that the power would continue 

to fall at higher values of deflection. As for the 3 Bladed turbine, the power output 

of the 4 bladed turbine first increases with blade deflection before finally 

decreasing at larger deflections. However, peak power occurs at a much larger 

blade deflection of around 0.2 m, compared with 0.02 m for the 3 bladed turbine 

488.0 

490.0 

492.0 

494.0 

496.0 

498.0 

500.0 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

P
o

w
e

r/
kW

 

Deflection/m 



 
156 

 

again suggesting that the 4 bladed turbine is further from optimum in its original 

position. Peak power of the 4 bladed turbine is 539.7 kW which is 0.4% higher than 

the baseline of 537.8 kW. 

 

Figure 9.12 Power vs deflection for the 3 bladed turbine 

 

 

Figure 9.13 Power vs deflection for the 4 bladed turbine 
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The FSI models with a very high modulus (10 000 GPa), and hence no deflection, 

predict a slightly different power output than their respective uncoupled CFD 

models with a variance of ± 2%. This is thought to be due to the higher convergence 

and hence greater accuracy that was achieved with the uncoupled CFD models 

since the problem is inherently transient but has been modelled here as a static 

case as part of the development of transient models. Therefore the magnitude of 

power output may be slightly over or under predicted by the FSI models but since 

these were all run with the same convergence criteria, and each turbine 

configuration was run with the same mesh for all moduli, it is reasonable to assume 

that the trends are correct. This can explain why the predicted power output of the 

3 bladed turbine is higher than the 4 bladed turbine, as shown in Figures 9.12 and 

9.13, whereas the uncoupled models presented in Chapter 5 show that the 4 

bladed turbine has the highest power output.   

To enable a comparison between the 2, 3 and 4 bladed turbines, the power was 

normalised against the value given at a modulus of 10 000 GPa and is shown in 

Figure 9.14 for each of the configurations. It is clear that the greatest effect is on 

the 2 bladed turbine, although even this is small, with a maximum increase of less 

than 2% for a blade deflection of around 0.35 m. In comparison with the 2 bladed 

turbine, the power output of the 4 bladed turbine increases by a much smaller 

amount, reaching a maximum of 0.4% above the baseline value at a blade 

deflection of around 0.2 m before falling at greater deflections. The power output 

of the 3 bladed turbine falls below the baseline level at a blade deflection of 0.04 m 

and continues to decrease at blade deflections above this reaching 99.6% of its 

original value at a deflection of 0.12 m; a reduction of 0.4%. At blade deflections 

below 0.04 m, the power output increases marginally, reaching a maximum of 

0.04% above the baseline value at a blade deflection of around 0.02 m. The results 

for the 3 bladed turbine agree with Jo Chul-Hee et al (2013) and Se Wan Park et al 

(2013), with blade deflection resulting in a power reduction. The reductions given 

by these studies were higher than in this work, at 2.2% and 1.7% respectively but 

were based on different blade profiles. In addition, neither of these studies 
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investigated whether there was any increase in power at smaller deflections, since 

only one case was considered with no change in material properties of the blade or 

flow velocity. The results of the 2 and 4 bladed turbine show that it is possible that 

blade deflection can result in an increase in power as also shown by Nicholls-Lee et 

al, who found an improvement of up to 5%. This means that blades could be 

designed to reach their optimum position at a given deflection. 

 

Figure 9.14 Normalised power vs deflection for the 2, 3 and 4 bladed turbines 
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change in power output was due to the change in pitch ngle and not caused by 

errors in the coupling, the 2 bladed CFD model was re-run with modified pitch 

angles, since this configuration showed the largest power change. Figure 9.16 

shows reasonable correlation between the FSI results and the modified CFD results, 

giving confidence in the coupled models. It should be noted that while there is a 

difference between the results of the FSI and modified CFD results, the CFD results 

due not include any blade deflection or change in twist along the length of the 

blade.    

 

Figure 9.15 Normalised power vs change in pitch angle for the 2, 3 and 4 bladed 
turbines 
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Figure 9.16 Normalised power vs change in pitch angle for the 2, 3 and 4 bladed 
turbines 
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reduction in comparison to that of the 3 and 4 bladed turbines. This would make 

very little difference to the power output if the tip pitch angle was set to optimum 

since the inner part of the blade, nearest the hub, contributes a small proportion of 

the torque. Although the effect of the reduction in twist may be small, when 

combined with the increase in tip pitch angle, could explain the 1.7% increase in 

power seen for the 2 bladed turbine. Since the required twist is slightly higher for 

the 4 bladed turbine that for the 3 bladed turbine, the reduction in twist with 

deflection would be expected to result in a reduction in power. This could explain 

why the change in power output of the 4 bladed turbine is smaller than that of the 

2 bladed turbine as the tip pitch angle moves closer to optimum but the twist 

moves further from optimum. The reduction in power seen for the 3 bladed turbine 

could be a result of both tip pitch angle and twist moving away from the optimum 

position as the blade deflects.           

 

Figure 9.17 Normalised power vs change in twist angle for the 2, 3 and 4 bladed 
turbines 
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Figure 9.17 Twist required to maintain a constant angle of attack at λ for peak 
power found in this study 
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The thrust load on the 2 and 4 bladed turbines show similar trends although the 

thrust on 4 bladed turbine starts to taper off around a modulus of 15 GPa. It was 

not possible to run the 2 bladed model at a modulus below 20 GPa due to the large 

deflection that occurs, as discussed in Section 9.1. It is therefore not possible to 

determine whether the same reduction in the rate of increase would be seen for 

the 2 bladed turbine. Unlike the 2 and 4 bladed configurations the 3 bladed turbine 

shows a decrease in thrust with blade deflection indicating that a reduction in 

thrust can be achieved with blade deflection where the blade is at, or close to, 

optimum in its original position. 
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10 Conclusions and recommendations 

This chapter summarises the findings of the work that has been presented in this 

thesis, which investigated the effect of solidity on the performance, swirl 

characteristics, wake recovery and blade deflection of a HATT. The main 

conclusions are given, followed by specific observations and finally, 

recommendations for further work.  

10.1 Conclusions 

Increasing the solidity of a HATT by increasing the number of blades has been found 

to increase the peak Cθ and peak Cp and reduce the λ at which these occur. Ct was 

found to be approximately the same at peak Cp, which has been assumed to be the 

normal operating condition. At λ above peak Cp, near freewheeling, Ct continued to 

increase for the 2 bladed turbine, remained approximately constant for the 3 

bladed turbine and decreased for the 4 bladed turbine, indicating that with the 

blade profile used in this work, higher solidity rotors would have to withstand lower 

loads in the event of a failure. In addition, the thrust per blade was shown to 

increase with a reduction in the number of blades. Additional costs associated with 

additional blades may therefore be offset by the lower loads which they must be 

designed to withstand.  

The swirl characteristics in the wake were found to agree with swirl theory and the 

swirl was found to increase with solidity whilst being weak or very weak in each 

case. Swirl number was found to be dependent on solidity only up to distances of 

10 diameters downstream. 

At higher turbulent intensities, the wake recovery was only influenced by solidity up 

to 15 diameters downstream of the HATT but at low turbulence intensities the 

wake length increased with solidity indicating that low solidity rotors may offer 

higher overall array efficiencies in areas of low turbulent intensity. Depending on 

site conditions, it may also be beneficial to have different solidity rotors at different 

locations within an array. 
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Blade deflection was shown to increase with a reduction in solidity, due the 

increased thrust per blade. The power output of the 3 bladed turbine was shown to 

decrease with deflection, whereas for the 2 and 4 bladed turbines it was found to 

first increase as it was subsequently found that the pitch settings found in a 

previous study were not fully optimised. The power output of the 4 bladed turbine 

was found to initially increase with deflection and then decrease with further 

deflection. It is expected that the power output of the 2 bladed turbine would 

eventually decrease with further deflections but no decrease was found for the 

maximum deflection achieved in this work. It was that therefore found that blade 

deflection will alter the power output and that blades could be designed so as to 

reach their optimum setting at a given blade deflection. 

10.2 Specific Observations 

10.2.1 Validation Data 

The modifications made to the laboratory scale prototype HATT resulted in greatly 

reduced scatter in the angular velocity measurements, giving more confidence in 

the data. However, the replacement of the motor with a physically smaller version 

meant that the motor cut out at a current of around 3 A, and therefore the peak Cp 

was not captured. 

10.2.2 Performance Characteristics 

Of the two turbulence models used in this work, the SST model predicted higher 

values than the RSM for Cθ, Cp and Ct over the entire operating range of each 

turbine but the trends were the same with each model. The difference is thought to 

be due to the ability of the RSM to model anisotropic turbulent viscosity which is 

particularly relevant in the near wall region, near the surface of the blades. The 

RSM predicted peak Cθ values of 0.114, 0.158 and 0.188 for the 2, 3 and 4 bladed 

turbines respectively, with the SST predicting values of 0.116, 0.163 and 0.199. 

Predictions of peak Cp for the 2, 3 and 4 bladed turbines of 0.37, 0.41 and 0.43 were 

found with the RSM compared with 0.39, 0.44 and 0.46 with the SST. Maximum Ct 

for each turbine was 1.06, 0.94 and 0.86 with the RSM and 1.14, 0.99 and 0.91 with 
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the SST. The Ct at peak power is similar for each turbine at 0.82, 0.85 and 0.85 with 

the RSM and 0.85, 0.89 and 0.90 with the SST.  

The increase in Cp shows diminishing returns with an increase of between 4.5% and 

4.8% from 3 to 4 blades compared with between 10.8% and 11.5 % from 2 to 3 

blades. Normal operating λ, which was assumed to be at peak Cp was found to be 

around λ=4.4, λ=3.65 and λ=3.4 for the 2, 3 and 4 bladed turbines respectively.   

Setting a minimum turbulence made very little difference to the performance 

characteristics. 

10.2.3 Swirl 

Maximum swirl numbers of 0.17, 0.23 and 0.28 were predicted by the RSM for the 

2, 3 and 4 bladed turbines. The maximum swirl numbers predicted by the SST are 

slightly lower at 0.16, 0.21 and 0.27. The weak or very weak swirl means that the 

tangential component of velocity is decoupled from axial component and hence 

wake length cannot be inferred from the swirl number. 

Immediately downstream of the turbine, peak swirl occurs at approximately the 

same λ as peak torque. Further downstream, at distances between 1 and 5 turbine 

diameters, the swirl is greater with a higher rotational speed of the turbine. At 

downstream distances above this, the λ which produces maximum swirl is reduced. 

Although the maximum swirl close to the turbine occurs at peak torque, the decay 

is more rapid than at peak power and therefore at distances of 10 diameters or 

more downstream of the turbine, the swirl produced at peak torque is very close to 

that produced at peak power.  

The difference in max swirl number for each turbine design is greater at peak 

torque than at peak power . At peak torque swirl number increases almost linearly 

with the number of blades with only a slight decrease in gradient between 3 and 4 

blades compared to that between 2 and 3 blades. At peak power the increase in 

swirl between 3 and 4 blades is much less than the increase between 2 and 3 

blades. 
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The SST model predicts a more rapid decay in swirl than the RSM model as the 

turbulent decay is much less rapid. With a fixed minimum background turbulence 

level, the differences in predictions of swirl and swirl decay were reduced with the 

models showing very similar predictions at peak power. There were still small 

differences between the swirl decay at peak torque although the difference was 

very small for the 2 bladed model. The difference in predictions increased with the 

number of blades due to the small difference in the swirl imparted per blade being 

multiplied by the number of blades. 

 

10.2.4 Wake 

The velocity recovery in the wake is highly dependent on the ambient turbulence, 

with higher turbulence intensity resulting in a shorter wake length. The difference 

in turbulence almost entirely accounted for the difference between the RSM and 

SST wake recovery predictions, with negligible difference in predictions when a 

fixed minimum turbulence was set.  

The swept area average velocity can give a better estimate of the available energy 

at a given position downstream of a turbine and gives a shorter wake length than 

the centre line value. 

The minimum axial velocity, outside the recirculation zone, decreases with 

increasing solidity. The dependence of the velocity recovery on solidity decreases 

with increasing downstream distance with the far wake being more dependent on 

turbulent intensity than on solidity.   

10.2.5 Blade Deflection 

The 3 bladed turbine shows a very small increase in torque, and hence a 0.04% 

increase in power, with a very small blade deflection of 0.02 m. There is then a 

reduction in torque and power with a reduction in modulus and an increase in 

blade deflection, giving a reduction in power of 0.4% at a deflection of 0.12 m. 

Unlike the 3 bladed turbine, the 2 and 4 bladed turbines show a small increase in 

power with a relatively large blade deflection. The 4 bladed turbine reaches 
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maximum power at a blade deflection of around 0.2m whereas the power for the 2 

bladed turbine continues to increase at the maximum deflection modelled of 

0.35m. The maximum increase in power found was 1.7% for the 2 bladed turbine 

and 0.4% for the 4 bladed turbine, although the results indicate that for the 2 

bladed turbine the maximum is slightly above that found in this study.  

The results indicate that the torque, power and thrust are relatively insensitive to 

changes in modulus and blade deflections. They also indicate that the 3 bladed 

turbine is close to its optimum setting, whereas the 2 and 4 bladed turbine reach 

their optimum settings with blade deflections of at least 0.35m and around 0.2m 

respectively. It is suggested that this may be partly due to the 3 bladed being 

closest to its optimum blade pitch angle in its undeflected state with the 4 bladed 

turbine being around 0.3o below its optimum and the 2 bladed turbine at least 0.4o 

below optimum. The change in twist along the blade may also alter the 

performance although it is not possible to state whether the change in pitch or the 

change in twist has a greater effect. 

 

10.3 Recommendations and future work 

Further modifications should be made to the laboratory scale HATT to include 

instrumentation such as strain gauges, which would enable validation of the FEA 

models. It would also be beneficial to include a motor with a higher rated current so 

that more of the power curve could be covered by the experimental testing.  

The influence of solidity on the various parameters considered could be 

investigated by changing the chord length instead of the number of blades. This 

would enable comparisons to be made and hence the effect of blade number 

separated from the effect of solidity. 

The effect of ambient turbulence on the swirl and the wake recovery could be 

further assessed by testing a range of values of fixed minimum turbulence. This 

could help to inform array spacing based on the turbulence measured at a site. 
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Field measurements of the far wake are required to validate wake modelling and 

improve confidence in the predicted recovery.   

A series of CFD models should be run with changes in pitch angles in small 

increments of around 0.1o to establish a more exact optimum position for a rigid 

blade before any further FSI modelling which is focussed on changes in 

performance.  

Transient FSI models with the inclusion of a support stanchion could be developed 

to explore the dynamic loading and fluctuations in blade deflection as the blades 

pass in front of, or behind the stanchion. Velocity profiles could also be included in 

these models. 

The blades should be redesigned so they are more realistic for a full scale turbine, 

with a larger diameter tapered root, and composite materials with internal blade 

structure. This would allow realistic stress and strain outputs from the FEA models 

and hence would inform fatigue and life predictions. 

Finally, the drive train could also be included in the FEA models to study the load 

distribution on the various internal components, again informing life predictions 

and contributing to estimation of required maintenance cycles.  
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Appendix A Performance Characteristics with SST model 

 

 

 

Figure A-1 Cθ vs λ for the 2,3 and 4 bladed turbines 

 

 

Figure A-2 Cp vs λ for the 2,3 and 4 bladed turbines 
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Figure A-3 Cp/Cp max vs λ/ λ max for the 2,3 and 4 bladed turbines 

 

 

Figure A-4 Ct vs λ for the 2,3 and 4 bladed turbines 
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Appendix B Swirl Characteristics with SST model 

 

 

Figure B-1 Swirl Number vs λ at x/D=0.1 for the 2, 3 and 4 bladed turbines 

 

 

 

Figure B-2 Swirl decay at peak swirl for the 2, 3 and 4 bladed turbines 
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Figure B-3 Swirl decay at peak power for the 2, 3 and 4 bladed turbines 
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Appendix C Dynamic Pressure Profiles with SST model 

 

 

 

Figure C-1 Dynamic pressure profiles downstream of the 2 bladed turbine at peak 
power 

 

 

Figure C-2 Dynamic pressure profiles downstream of the 2 bladed turbine at peak 
swirl 
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Figure C-3 Dynamic pressure profiles downstream of the 3 bladed turbine at peak 
swirl 

 

 

Figure C-4 Dynamic pressure profiles downstream of the 4 bladed turbine at peak 
power 
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