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Abstract

This thesis describes the efforts made to provide protein flexibility in a molecular modelling
software application, which prior to this work, was operating using rigid proteins and semi
flexible ligands. Protein flexibility during molecular modelling simulations is a non-trivial
task requiring a great number of floating point operations and it could not be accomplished

without the help of supercomputing such as GPGPUs (or possibly Xeon Phi).

The thesis is structured as follows. It provides a background section, where the reader can
find the necessary context and references in order to be able to understand this report.
Next is a state of the art section, which describes what had been done in the fields of
molecular dynamics and flexible haptic protein ligand docking prior to this work. An
implementation section follows, which lists failed efforts that provided the necessary

feedback in order to design efficient algorithms to accomplish this task.

Chapter 6 describes in detail an irregular — grid decomposition approach in order to provide
fast non-bonded interaction computations for GPGPUs. This technique is also associated
with algorithms that provide fast bonded interaction computations and exclusions handling
for 1-4 bonded atoms during the non-bonded forces computation part. Performance
benchmarks as well as accuracy tables for energy and force computations are provided to

demonstrate the efficiency of the methodologies explained in this chapter.

Chapter 7 provides an overview of an evolutionary strategy used to overcome the problems
associated with the limited capabilities of local search strategies such as steepest descents,
which get trapped in the first local minima they find. Our proposed method is able to
explore the potential energy landscape in such a way that it can pick competitive uphill
solutions to escape local minima in the hope of finding deeper valleys. This methodology
is also serving the purpose of providing a good number of conformational updates such
that it is able to restore the areas of interaction between the protein and the ligand while

searching for optimum global solutions.
Page | iv



Acknowledgements

I lovingly dedicate this thesis to my wife Catherine, who supported me each step of the
way and never failed to remind me that “I've got to finish this at some point” and little
Matilda who emerged half way through the course of this Ph.D. | would like to thank my
supervisors Dr Andrea Brancale and Dr lan Grimstead for their unlimited and valuable
support in this three year period, which went well beyond my expectations. | also very
much appreciated the help of Professor Chris Jones at the group of Geoinformatics for his
help prior to finding this Ph.D. course. In addition, | would like to acknowledge, Professor
John Patrick’s from the school of Psychology help and advice during the second year of this
course. | would also like to thank fellow Ph.D. students who helped me on various aspects
throughout this project and post-Doctoral fellow Antonio Ricci who spent a big amount of
time and effort helping me during my first year. | also would like to acknowledge the efforts
of Tom and Gaia, the two project students who used the code written during my Ph.D. for
their thesis and gave me valuable feedback during this process. Finally | would like to thank
my parents and especially my mother in law Helen, who kindly helped us a lot with Matilda

during my third year, so that | could have the time needed to accomplish this work on time.

Page | v



Table of Contents

L1 0= ] = i SRS 1
1.1 INEFOAUCTION...ceiiiiiiiec e s s 1
1.2 High Performance Computing and GPGPUS..........ccooccuiiieiiiieeeeeieee e e eivee e e s ennnee e 1
13 Haptic tECHNOIOZY ...veeeiiiie e e e e e e aree e e 3
1.4 The Zodiac molecular modelling platform .......ccueeiieciiii e 3
1.5 Zodiac limitations and motivation for this project.......ccccccccveviieiiiiciiee e 4
1.6 Research hypothesis and challenges for this project......ccccceviveeieeiiiiieece e, 5
1.7 AIMS AN ODJECEIVES et e e et e s s saae e e e s abeeeeesnnraeeeenns 5
1.8 CONTIIDUTIONS ... s s s s s e snnee e 8
1.9 TRESIS OVEIVIEW ..ottt ettt e e s esneesnnees 9
(010 1= ] =1 U 10
2.1 The CUDA arChiteCtUIE. ...coiiiiiiiiieee ettt 10
2.2 The CUDA execution Model (SIMT) ...coi ettt e e e e e e canrreeeeeeeeeeenans 11
2.3 The CUDA MEMOTY NIBIarCRY ..uvveeeie e i ittt ettt eeebrre e e e e e e e eesaarreeeeeeesseennns 12
2.3.1 SHATEA IMBIMONY eeeiieiieeiciteeeeee ettt e e e e eeebb e e e e e e sessabraaereeeeeesessssraareeesessennnns 12

2.3.2 (00T 1y =1 o 0 a =1 ¢ Vo V2 12



2.3.3  REBIS OIS e e e e e e e e e e e e e e e e e e e e ns 13

2.4 OCCUPANCY eeeeeeeieieieee e e e e e s e s e s e s e s e s e s e s e s e e s s e s e s e s e s e sasesaaesesasesasasasasasasasasasasasasesasasasesaaaannns 13
2.5 CUDA SEraMIS...ueiiiiiieiiii ittt ettt e et e e e s s et e e e e s e s b e e e e e e e s s e s nnnrres 14
2.6 SUMMAIY iiieieiiiiieieieieieiesesesssesssese s e se s e ss s e s s ss s s s s s s s e sesssssesesssesssesasssasssssssssssesesssssssesensssnsnsnenns 15
(00T ] =1 S T PSRRI 16

3.1 Molecular force-fields .........ooiiiiiiiieiee e e 16
3.2 The MMFF94s FOrce-field.......cooiiiiiiiiiiieieeeee e 16
3.3 BONAEd INtEraCtioNS ....eeiiieiiieiiie ettt 17
3.3.1  Stretching ENErgy Y EBLJ......cooiiiiiiiiiiieeieeeee ettt 17
3.3.2  Bending ENergy Y EATJK........ccooouiiiiiiiiieeeee ettt 18
3.3.3  Stretch-Bend Interactions Y EBAGJK...........cccccoooiviiiiiiniiiniiiieenee e 20
3.3.4  Outof Plane BENdING ENEIZY c.cceee ettt e e e e e e e nrree e e e e e e e eeaaes 21
TG TR T [o Y3 o o = N =1 0 1T =4V PRSI 22
3.4 FUrther COMMENTS ..coiiiiiiiieeiee et e s 22
3.5 NON -BoNnded INTEracCtioNns .......ccoiiiiiiiiiiiiie ettt 23
3.5.1  Van Der Waals ENEIEY .....uuuiiieieei ettt e ettt e e e e e e e stree e e e e e e e e e s enntreaeeaaaeeenanns 23
3.5.2  Electrostatic INtEraCtions .........ccoeeieieerieiiieeeeee e e 25
3.6 Force calculations and conformational Updates ........cc.ccceveuvrveeieeieeieciiineeeeee e, 25

Page | vii



3.7 Approximation using the cut-off convention ........ccocceveiiiiiiiiiiiii s 26

3.8 SUMIMIATY ittt et e e e s s et e et e e e s e s s aa bt aeeeeeesesaasbbeaaaeeeesssasansstaaaeeeesennasnsrens 26
(O 0T o1 T o PSP PPPPRTPPR 28
4.1 Haptic protein—ligand dOCKING ......ccoiii e 28
411 4o o |- TP PP PP PO PPRPPPROTION 30
4.2 Algorithms for Molecular Mechanics Computations .........ccccvveeeeeeir e, 31
4.2.1 Non-Bonded INteractions.........cccuueiriieiiiiiiiiieieie e 31
4.2.2 Neighbour list algOrithms......ccocuuiiiiiee e 32
4.2.3 Notable GPGPU implementations .........ccovcuiiiiiriiiie e 33
43 CIT TISES ettt ettt ettt ettt e e e e sttt b e st e s nb e e s naeesneeas 34
4.4 Other notable implementations (wWorkgroup lists) .......ccccvveeeeiiiieiiiiiiieeeee e, 38
4.5 BONAEA FOICES ....iiieiiieee ettt 39
4.6 1-4 bonded Interactions Handling.........c...uvviieeiiii e 39
4.7 Integration of molecular mechanics computations in a simulation...............cccceeeens 40
4.8 EXploring energy landSCapes ... .uuuiiee ittt e e e e e e e 41
4.9 SUNMMIAIY ittt ettt et ettt e s e e e e et e eet b s e seeee ettt st e seeeeenaasssannsseseesesessannnseeseessanes 42
(010 F=Y o] =1 g T TSP PUTTRRPPP 43
5.1 Neighbour liSt @XPEITMENTS ....uviiieiieii it e e e e e e e e e s e eaarrereeeeeseennnns 43

Page | viii



L A 0= | [T (OO RRUPRR 44

5.3 ReSUIES aNd diSCUSSION ...ccutiiiiiiiiiiiieee ettt 46
54 SUMIMIAIY e e e e e s e s e e e e e s e s e s e s e s e s e e e s e e e s e s e e e e e e e e eaaaeaaaaaaaaaans 50
(00T ] =1 PSRRI 52

6.1  Algorithm implementation ... e 52
6.1.1 3D irregular grid deCoOMpPOSItION .......uuiiiiiiiii i 54
6.1.2  Cell lists and warp-group interaction bitmaps.......cccccevieeiiiiieeie e, 60
6.1.3  Force calculations using Warp intrinSiCS........couvuiiieeiiiiieeeirieee e esreee e esee e 61
6.2 EXCIUSIONS NANAIING ..vviiiiiiiieecee e e e e e aaee s 64
£.2.1  1-3 @XCIUSIONS .ttt ettt ettt s e e s naneeeas 64
6.3 Bonded forces and 1-4 electrostatic SCaliNg.......cccovvveeeeeiieiiiiiiieeeee e 66
6.4 MINIMIZATION....eiiiiiiiiii e e 68
6.5  PeIrfOrMAaNCE .. .eeiiiiiicee e s 69
o ST Yol of U [ = [0 A PP PRSP PPPPTPPPPR 79
6.7 Comparison to other implementationsS......cccoocciiiiiei e 81
e YU [0 ] 0 1 =1 PP PUPP PR 85
(010 =Y ] (=1 S AU PR U PO UPURRRRN 86

2% N o 11 A = g =T 40 =T €T PO P PPN 86



7.2 IMProved METROA ......coiiieee e e e s ear e s s sabaee s 89

7.3 Fast Surface Exploration and Induced Local Restoration ..........cccceeeeeeiieiccciiiiieeee e, 89
7.4 IMPEOVEIMENTS ..eeeeiiiiiiiieiiieitietetetetetetatetebebetetatatatasabesassbessbssssstsssssbssnsssssesssssnsssnsnsnnnnnsnnnnns 93
7.4.1 ASYNChIrONOUS EXECULION .. .uuuiiiiiieiee et e e e e e e s rer e e e e e e e s senereeeeeee s 93
7.5 ReSUItS and diSCUSSION.....ccoiuiiiiiiiiiiiictee e e s 95
7.6 PEITOIMANCE ..t s 96
7.7 Heuristic ability of our approach...........eueiiiiie e 100
7.8 SUMIMAIY ittt ettt ettt et et et e e et et et et et et et et et et e e et eeeeeeeeeeeeeeeeeeereeeeeees 104
L0 0T o1 T < PSP 105
8.1 EValuation Of FESUILS ........eiieiiiiiiiee et 105
8.2 Limitations Of OUr @PPrOACK ....uvvieiii et e et e e e e e eenaaes 108
8.3 Future research recommendations.........cooueiiiiiiiiiiiiiiecee e 108
8.4 Practical applications of the algorithms developed in this project........cccccvvvveeerennns 110
8.5 SUNMMIAIY etititiieie sttt e e ettt e s e e e e eeetaba e e e s eeetaestaasseeeeasaesssasssseeeesenesssnnnsseeeeseeens 110
(@0 =Y ] =1 S RS 112
9.1 Algorithm usability iN ZOdiacC.......cooceiiiieee e 112
9.2 (60e] 010 8 o TV} Ao o I3 PSPPSR 112
9.3 (00] o 1ol 0o [T 0T =T 0 =T <SPPI 114



Page | xi



Chapter 1

Introduction

In this chapter we present an introduction to the thesis and its outcomes. It gives
a brief introduction to the terms GPGPU computing, conformational sampling, haptics and
haptic protein ligand docking. Finally it provides the motivation for this project, the research
hypothesis, aims and objectives. The terms introduced in this chapter are explained in more

detail in Chapters 2, 3 and 4, with the appropriate referencing to other works in the literature.
1.1 Introduction

This work consists of a collection of high performance computing (HPC) algorithms targeted
at NVIDIA’s CUDA architecture. These algorithms were designed to solve the problem of real-
time conformation sampling on a haptic protein ligand docking (HPLD) simulation software
called Zodiac. The following chapters give an overview of the above terms and assist the

reader in gaining a better understanding of the problem we are trying to solve.
1.2 High Performance Computing and GPGPUs

High performance computing has played a very important role in the evolution of molecular
modelling applications. Multi-processor Clusters (a set of loosely coupled computers working
together to solve a single problem) have enabled researchers to design parallel algorithms for
simulating molecular conformations (accurate spatial atomic structures for molecular
systems) for the past twenty years[1], [2], [3], [4]. Recent HPC advances have produced

accelerators such as graphics cards, NVIDIA’s CUDA (Compute Unified Device Architecture)
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being an example. In this work, special attention has been paid to the CUDA architecture for
its parallel processing capabilities and its extremely high floating point operations to Watts
ratio (FLOPs/Watt) as illustrated in Figure 1-1. CUDA has been used in a wide variety of
molecular modelling applications and the benefits offered from this architecture to the field
of molecular modelling are many-fold. They span from enabling a workstation to achieve
cluster level performance to boosting cluster capabilities in thousand-core clusters equipped
with hundreds of GPGPU (General purpose graphics processing units often shortened to GPU)

cards such as the Blue-Waters super-computer at the University of lllinois.

The advanced performance capabilities offered by these accelerators have been translated
into the ability to perform faster conformational sampling in applications such as molecular
dynamics (MD), docking or protein folding [5][6]. In addition, enhanced processing power has
provided researchers with the potential to incorporate more accurate and computationally
expensive force-fields for their modelling applications. Finally, the portability of the GPGPUs
has provided the potential to design interactive modelling platforms where the user can see
molecular interactions on a screen or even feel the forces applied on a particular molecule

during interaction through the use of haptics [7], which we shall now discuss in more detail.
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Figure 1-1: The GPGPU road-map. Image courtesy of NVIDIA as presented in 2013 GTC.

Volta has now been changed to Pascal!
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1.3 Haptic technology

Haptic technology has recently developed as a computer-interface technology that enables
the mixing of real-world objects and computer-generated graphics. Haptics refers to the
action of sensing and manipulation through touch. Since the early part of the 20th century,
the term haptics has been used by psychologists for studies on the active touch of real objects
by humans. Exploiting the sense of touch in computer simulation is a strategy already used

with success in several other areas, ranging from sculpting to medical training.

With the aid of specific haptic devices, it is possible to control a selected object, such as a
ligand in our case, around the translational (x, y, z) and the rotational (Euler angles or yaw, roll
and pitch) in three dimensional (3D Cartesian) space. Moreover, these devices are able to
convert the forces calculated in the computer simulation into a haptic feedback, which is then
directly experienced by the user (such as a force expressed by an electric motor acting against
the operator’s movement). Several such devices are available to developers, from simple ones
that work only in the translational space (three degrees of freedom [DOF]) to the most
accurate six DOF, which can also cover rotational space [8]. The force feedback could be
efficiently used in CADD (computer aided design capable of dynamic mathematical modelling)
simulation experiments, allowing the researcher to feel the forces involved for example in
ligand-protein interactions. Indeed, the application of haptic technology to molecular
modelling is not a recent idea; one of the earliest successful implementations was reported

in the late 1980s [9] .

1.4 The Zodiac molecular modelling platform

Zodiac is a software application able to provide real-time simulation of the interactions
between a protein and a ligand. The ligand is controlled with the aid of a Phantom Omni haptic
device, which provides six degrees of freedom for the translation and rotation of objects (a
ligand molecule in our case) in three dimensional space and three DOFs of force feedback in
the X, Y and Z directions of Cartesian space. Force feedback on the rotational DOFs, pitch roll
and yaw, is available on haptic devices whose cost at the time of the submission of this thesis

would exceed £14,000.
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Zodiac has been designed primarily for HPLD simulations. That means that apart from the
visual and force feedback that a user can experience during simulation, the user can save
important docking results for further investigation. In other words, during a simulation the
user can probe the ligand into a protein cavity and save a pose at will, together with the
potential energy associated with this particular pose. The application’s main advantage over
non-human computer interactive applications is the fact that the user can choose the desired
pose and save it at will. Humans are more capable of evaluating shapes than the available
computer vision algorithms up to the time of submission of this thesis [10]. Zodiac, is taking
advantage of the above fact, by providing visual interaction and force-feedback, in order to
assist the user into generating the desired system configurations. The force feedback assists
in this selection as the user can feel the areas that produce the desired quality of attractive or

repulsive forces.

1.5 Zodiac limitations and motivation for this project

There were some limitations to Zodiac’s abilities before this work. Specifically, Zodiac was only
capable of performing simulations with rigid proteins and semi flexible ligands. In real life
molecules are flexible and their atoms may move around in three dimensional space. We will
refer to the simulation of this property in computers as conformational sampling. Assuming a
system with N atoms, conformational sampling is a 3N dimensional problem. Proteins usually
consist of several thousand atoms, whereas ligands are small molecules usually in the range
of 30-50 atoms in total. Clearly, protein size determines the scale of the search space and the
larger the system is, the higher amount of FLOPS needed during fully flexible conformation
sampling and hence slow execution times. That because each attempt to sample a
conformation in the 3N-dimensional space requires the computation of energy and force
gradients using a forcefield, whose running time complexity originally scales quadraticaly with
system size, as illustrated in Chapter 3. This is one reason why previous versions of Zodiac

only implemented a rigid protein flexible ligand simulations.

Protein flexibility varies for different bio-molecules. This means that the flexibility of the
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protein at its binding site is an important factor for evaluating the fit of a ligand against it and
thus the structure of a protein-ligand system pose generated by the previous version of Zodiac
can lead into inaccurate conclusions. Protein flexibility can assist or prevent a ligand from
binding into its pocket and both of the above scenarios will be misinterpreted by the rigid
version of the software. Finally, the potential energy scores are derived from the ligand's

atoms and a small part of the protein cavity.

Conformational sampling and potential energy calculations are classified as N-Body problems,
assuming N particle systems. This means that keeping the positions of the largest part of the
N-body system fixed, will produce results of low accuracy. This problem provided the
motivation for much of the work in this thesis. Zodiac along with other HPLD applications
listed in Chapter 4, had been showing strong potential in molecular modelling research.
However, these solutions lacked the level of accuracy required to make results derived from
them reliable towards compound selection for the initial stages of drug discovery, as they

were using rigid protein bodies for their simulations.

1.6 Research hypothesis and challenges for this project

As we already explained, the protein flexibility in HPLD simulations is a computationally
intense problem. Solutions for this problem had been provided in the literature in the field of
molecular dynamics. However, these solutions would only produce the necessary
performance for the HPLD problem in many-core clusters, using number of core processors in
the range of 500-2000. Using a cluster for interactive visual simulation is not an option, for
multiple reasons. The major one is the queuing system used in clusters for prioritizing
scheduled jobs. In addition, the operating costs of clusters are high and this could be off-
putting for the frequent use of the software. Finally, clusters are not widely available and
designing algorithms for clusters would restrict the potential users of the application to those

who have access to a cluster.

The introduction of GPGPUs provided the ability to get performance levels similar to a modest
cluster in a single workstation. The cost of a good GPGPU card (top of the GeForce line) is

relatively low (< 800 £). In addition, power consumption of these cards is low (250W for the
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gtx780 ) and would not generate any significant costs for every consumption. GPGPUs can
solve the problems mentioned above as they are portable, cheap to obtain and operate within

a user’s own workstation.

However, there are still challenges in using GPGPUs for conformational sampling for HPLD.
One challenge is, a ligand is probed against a protein cavity at a frequency rate equal to that
of the haptic’s I/O (input output) set-up. In our case it is set at 33Hz, which is matching the
visual output’s rendering frequency. This means that between subsequent ligand poses
against the protein target, there is a strict time limit to provide a stable conformation for the
system. In the case of probing the ligand close to a protein’s pocket, high forces are induced
on both molecules and this means that the system needs to map all the transient reactions to
the molecules up until a stable conformation is found. This constitutes an additional challenge
in visualizing the system’s interactions as the above mapping should ideally be performed

before the new ligand position is probed by the user.

A second challenge faced in this project was the force-field choice. As we explain in detail in
Chapter 3, the way to sample conformations is by moving atoms in Euclidean space such that
one minimizes an objective function consisting of a series of equations for bonded and non-
bonded interactions. This objective function is the force-field. Our force-field of choice,
MMFF94s, requires a substantially higher amount of FLOPS to compute compared to other
popular force-fields used by other modelling applications as we explain in more detail in

Chapter 3.

During the planning phase of this work, the available literature in HPLD was reviewed and a
summary of it was contributed in Ricci et.al [7], a perspective article for the haptics present
use and future potential in molecular modelling applications. However, no application at the
time was making any attempts towards flexible HPLD. We then performed an extensive
literature review in the areas of flexible (non-human-interactive) docking and molecular
dynamics. The former were applying techniques to approximate flexibility in the binding
pocket area, whereas the latter were using GPGPUs to provide accurate conformational

sampling.
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Early in this work we faced a dilemma, which was whether to follow the MD approach or less
computationally intensive ideas of approximating flexibility in the pocket provided in the
flexible molecular docking literature. The factors that helped us formulate our decision were
the fact that our problem was not facing other challenging requirements that docking
software do, such as virtual screening and the automatic generation of protein ligand poses.
The latter is a multidimensional problem on its own with high processing power requirements,
which in our case is solved by the user’s ability to evaluate shapes. On the other side, our
requirement to provide accurate system conformations at subsequent protein-ligand poses
using a computationally demanding force-field was an antagonistic factor towards the MD

approach.

The choice was in favour of the MD approach. That because, the MMFF94s choice of force-
field requirement of this project would have no rational on an approach approximating cavity
configurations in space. In other words, there would be no point of modelling configurations
with an accurate and computationally expensive forcefield, while introducing high levels of

approximation, by focusing on computations and flexibility around the binding pocket.

On these grounds our research hypothesis was formulated as follows:

“Is it possible to design algorithms for the latest CUDA architecture that would perform such
that an HPLD simulation could run in Zodiac with accurate conformational updates modelled
with the MMFF94s force-field for systems up to 30 000 atoms, matching the visual rendering
rate of 33 Hz?”.

It makes sense that there are some fuzzy factors in the above hypothesis. The choice of GPGPU
card can have a major impact on performance. For reasons explained in Chapters 6-8, we will
use the GTX 680 and 780 of the Kepler line of GPGPU cards as the cards of choice to answer
the above research question. These cards retail at 300-450£ at the point of submission of this
thesis. The second fuzzy parameter is the size of systems we target for these simulations. The
aforementioned solution choice is system size dependent and there will be a point that the
time-limit for protein-ligand interactions will not be sufficient for the force-field calculations

that are expected to scale linearly with system size. The motivation of this project was to
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simulate the induced fit effect on protein-ligand systems for the purposes of research in the
pharmaceutical sciences. The induced fit effect is the impact caused by the ligand positioned
inside a protein cavity. In some extreme cases the protein cavity can only be formed during
interactions with specific ligands. Most of the systems we intended to simulate range from
2K — 30K atoms. Therefore we will set as a requirement a ceiling of 30,000 atom systems

including hydrogens, which covers a wide range of protein sizes in drug design research.

Regarding the force feedback on the haptic device, it makes sense that it would be impossible
to provide feedback at a 1,000Hz update rate, which is the rate required by the haptic device
to provide smooth force feedback. However, aiming to generate force updates at the rate of
33Hz could be sufficient for an acceptable force feedback and feasible to provide with the new
version of our code. The feedback granularity could then potentially be improved with the

appropriate interpolation technique, providing the desired 1,000Hz update rate.

1.7 Aims and Objectives

Drawing upon our research hypothesis and the brief introduction we provided for our
research problem, we will formulate two objectives we need to accomplish in order to be able
to solve our research problem and provide a positive answer to our research hypothesis for

the targeted system sizes and GPGPU chipsets.

1. Design fast and accurate algorithms for the computation of the MMFF94s force-field, able
to complete a series of energy and force calculation functions within the 33 ms time-limit.
2. Design efficient energy minimization algorithms able to generate accurate conformations

for systems up to 30000 atoms within the 33Hz requirement.

For the rest of this thesis we will refer to the above objectives as the first objective and second

objective respectively, matching the listing above.

1.8 Contributions

The list of contributions of this thesis is listed below:

1. A cell-list approach for the computation of non-bonded interactions consisting of an
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adjustable irregular grid decomposition for neighbour cell search, whose cells aspect ratio

can be adjusted by the user prior to the simulation

2. A new meta-heuristics method for fast potential energy surface exploration for biomolecules

designed to solve our HPLD problem.

3. The first application to provide fully — flexible HPLD for system sizes up to 30, 000 atoms

The above contributions are explained in detail in Chapter 6 and Chapter 7.

1.9 Thesis overview

The rest of this thesis is organised as follows. In Chapter 2, we provide the necessary
background for the CUDA architecture and its associated programing language. The
background is designed such that it provides the necessary knowledge to follow the
implementation and outcomes of this thesis. Chapter 3 provides insight and references to our
force-field of choice MMFF94s. Chapter 4 contains a critical survey of the most up to date
related work (state of the art) of methodologies designed to solve problems similar to the
ones formulated in our two main objectives and HPLD in general. Chapter 5 describes initial
attempts towards the two objectives of this thesis. Chapter 6 provides the implementation
details and results of the final solution provided to the first objective of this thesis, where
contributions one to three are explained in detail. Chapter 7 provides the implementation
details, results and discussion for the second objective of this thesis as well as detailed
information of the fourth contribution. Chapter 8, provides a discussion regarding the
usability and limitations of this thesis’ outcomes, as well as perspectives and future research
recommendations. Chapter 9 provides the concluding remarks and re-states the contributions

of this thesis.
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Chapter 2

GPGPUs and the CUDA Architecture

The work presented in this thesis draws on the evolution of graphics processing units into
general purpose parallel computation devices, used to perform energy and force calculations
for the MMFF94s force-field. For this reason, this chapter provides an overview of the CUDA
architecture as well as information regarding coding practices for the above architecture using

the CUDA C programming language.

CUDA has been rapidly evolving during the past 4-5 years. This evolution has produced a
continuously improved line of GPGPU chipsets. The findings of this thesis are based on the
GK104 / GK110 chips of the Kepler line. As a result of this, the present chapter highlights the
new programing features available in these chipsets. Most of this chapter’s content is derived
from “CUDA C programming guide” and “CUDA C best practices guide” available from NVIDIA
[12-13].

2.1 The CUDA architecture.

GPGPUs are frequently defined as shared memory architectures with the ability of
multithreaded execution. A brief diagram of the recent GK104 chip is shown in Figure 2-1. The
GK104 chip contains 8 streaming multiprocessors (SMX), where each multiprocessor contains
192 CUDA cores. The CUDA execution model is performed in blocks of threads, where each

block can contain up to a fixed maximum amount of threads (1,024 for the Kepler line).
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Figure 2-1: The GK104 (Kepler line) chip architecture. Image courtesy of NVIDIA

2.2 The CUDA execution model (SIMT)

The execution unit of the GPGPUs is 32 parallel threads, termed a “warp”. CUDA executions
are triggered from the CPU using a kernel call specifying the number of blocks and threads
per block that the kernel is programmed to use. Threads in each block are grouped into warps
and dispatched via warp schedulers, where each warp schedule can process warps
concurrently. Fermi has 2 warp schedulers and Kepler architectures have 4. When a
multiprocessor is given one or more of these thread blocks to execute from the kernel, it
partitions them into warps and each of these warps gets scheduled by a warp scheduler for
execution. Warps are allocated a finite amount of registers each from the register file and
threads in a warp are executed in a SIMT manner (single instruction multiple threads). Each
core is assigned with the sequential execution of a single thread of a particular warp.
Instructions are executed one at a time, for each thread in a warp. When instructions within
a warp diverge, such as when a conditional statement causes some threads to execute

different code sections to other threads, then we have the divergent warp phenomenon. In

Page | 11



order to exemplify this, we assume a code block with a conditional branch where both paths
of the conditional branch are executed by at least one thread. In this case, due to the SIMT
nature, threads processing the “else” statement of the conditional are simply ignoring the “if”
part of the instructions, but paying the same penalty as if they have executed the code. This
phenomenon deteriorates performance as each thread may pay the performance penalty of

executing both paths of a branch [12].

2.3 The CUDA memory hierarchy

The CUDA memory hierarchy synopsis is provided in Table 2-1. Global memory is visible to all
threads in all blocks and can be cached in the GPU’s L1 and L2. If cached in L2 only it is serviced
by 32 byte memory transactions, whereas if cached in both L1 and L2 global memory can be
serviced in 128 byte memory transactions. The most important characteristic of this memory
type is that it has a relatively low bandwidth when randomly accessed. If it is accessed in
sequential order by consecutive threads then the resulting high rates of L2 cache hits improve
its bandwidth significantly. Global memory accesses have to be performed in a coalesced
manner in 4, 8, 16 or 32, 64 or 128 bytes otherwise transactions are partitioned in two

memory fetch orders and performance deteriorates.
2.3.1 Shared Memory

The shared memory resides in L1 cache on-chip and is configurable either as a 16KB L1 cache
and 48Kb of shared memory or vice versa. In Kepler it can also be conFigured as 32KB of
shared memory and 32Kb L1 cache. Shared memory is visible by all threads of a single block
and its read/write bandwidth is very fast. There is no need to be accessed in sequential order
asitis cached. The shared memory bandwidth is 32 bits per clock cycle. If two or more threads
are accessing words from the same shared memory bank, then there is a bank conflict and
access to the requested word is serialized. However, if all threads in a warp access the same

bank, the word is broadcast to all threads and there is no bank conflict.
2.3.2 Constant memory

There is a total of 64KB of read-only memory cached on the device. The requirement for
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achieving the high access bandwidth of this memory is that all threads are reading the same
memory location. In Kepler and Fermi architectures the “load uniform” instruction is also
supported which means that when two or more threads of a warp are accessing the same

global address the fetch is broadcast amongst them.

2.3.3 Registers

Registers are the fastest type of memory and they are only visible by their host thread. For
Fermi and Kepler there are 63 registers available per thread. If a kernel attempts to use more,
the compiler spills the excess data to local memory whose access is at the rate of global
memory. For Kepler architectures and above, register values can be visible and exchanged
with other registers of threads belonging to the same warp. This is done by the newly

introduced shuffle operation whose bandwidth is that of a register operation.

Location

on/off
Memory chip Cached Access Scope Lifetime
Register On n/a R/W 1 thread Thread
Local Ooff T R/W 1 thread Thread
Shared On n/a R/W All threads in block Block
Global Off T R/W All threads + host Host allocation
Constant Off Yes R All threads + host Host allocation
Texture Off Yes R All threads + host Host allocation
T cached only on devices of compute capability 2.x.

Table 2-1: CUDA memory hierarchy. Source: CUDA C programming guide (NVIDIA).

2.4 Occupancy

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum
number of possible active warps. Thread instructions are processed sequentially and in order
within a warp, but if an operand is not ready the warp will stall. Context switching to another
warp for processing is the way that CUDA hides latencies, such as from memory reads/writes.
High occupancy ratios assist this approach. Occupancy ratios up to 50% are known to help

realise the full performance potential of a GPU, while occupancies higher than 50% have not
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been shown to add further performance gains. However, low occupancy rates known to result

in performance loss and should be avoided if possible.

One factor that affects occupancy levels is register usage within a kernel. The register file is a
limited resource that all blocks resident in a multiprocessor have to share. Registers are
allocated in a thread block all at once. This means that the more registers a kernel use, the
fewer thread blocks can be resident in a multiprocessor at a given time, lowering the
occupancy levels. The size of the thread block is another factor affecting occupancy as
registers are allocated per thread, so the total amount of threads used per block is directly
proportional to the number of threads contained in it. Similarly shared memory usage is a

factor affecting occupancy levels as the L1 cache is also a limited resource per SMX.

Latencies can also be hidden using instruction level parallelism (ILP) by using more on-chip
memory as long as it is within the hardware limits. This constitutes an alternative to achieving
higher occupancy levels by limiting the amount of on-chip memory usage. It is difficult to
argue at this point which approach is superior, as it seems that it depends largely on the nature
of the problem and the algorithmic solution applied. NVIDIA recommends higher occupancies
for memory bound kernels, while higher occupancies can benefit computationally bound

kernels too, but ILP can also be considered [13].

2.5 CUDA streams

The recent generation of Kepler cards (GK110) has introduced new features in GPGPU
computing and one of them is the ability to run up to 32 kernels asynchronously, achieving
execution overlaps very close to that of a parallel execution. This feature introduces an
additional dimension of parallelism in CUDA and initiates the need of new optimization
techniques in CUDA-parallel programming. To be more specific, considering this new feature,
an algorithm designer should not treat each kernel individually any more, but as part of a

wider context able to utilize the graphics card more efficiently.

However, there are some rules and constraints on the way that GPGPUs parallelize kernel
execution [12-13]. At the moment, Nvidia GPGPUs are able to run 16 scheduled blocks per

streaming multiprocessor (SM). In the case of a K20 card, that gives a total of 208 blocks able
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to run concurrently at any time in its 13 SMs. From a resources perspective, the shared
memory limits are bound to 48kB. This means that the total amount of shared memory used
by the asynchronously scheduled kernels in each stream should not exceed the above limit. If
it does, then the parallel execution is restricted to the number of streams whose total shared
memory usage is below the 48kB limit. Regarding register usage, similar restrictions apply and
if the total number of registers used per thread exceeds the card’s limit (255 for GK110s) then
some register overspill might take place and the slower performing local memory might be
used. Finally overlapping streams can only write to independent memory addresses, but this
is not a significant constraint as arrays can be copied into multiple buffers for each stream to

operate individually upon them.

2.6 Summary

This chapter provided the fundamentals of the CUDA architecture and its associated
programming model. In particular we referred to the CUDA execution model, explaining the
terms threads, blocks and computational kernels. In addition we provided information
regarding the memory hierarchy available in CUDA, along with its performance characteristics.
Finally, the terms stream execution and multiprocessor occupancy were also explained. In
Chapters 5-7 we list a number of algorithms and methodologies targeted for the CUDA
architecture. The algorithms’ implementation description is based on CUDA’s properties as
explained in this chapter. Therefore this chapter can act as an initial guide to the reader, in

order to be able to follow the outcomes of Chapters 5-7.
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Chapter 3

The MMFF94s Force-field

This chapter gives an overview of the MMFF94s forcefield, which is used as a modelling tool
for our software and gives an overview of bonded and non-bonded interactions. It also
provides an indication to the level of complexity of this force-field’s non-bonded interactions

due to its Van Der Waals interactions modelling approach.
3.1 Molecular force-fields

Force-field methods assist in molecular mechanics computations by providing the necessary
equations to calculate the total energy of the system as a function of its nuclear positions.
They are used extensively by many software applications in the field of molecular docking and
molecular dynamics. There are many variations of the force-field equation, whose general

form is (Equation 3-1):

YEtotal = XEBondea T XENon-Bonded

Equation 3-1: The general force-field equation for the total of bonded and non-bonded terms

3.2 The MMFF94s Force-field

Zodiac uses the MMFF94s force-field for modelling molecular conformations, as it is
recommended for use in pharmaceutical research. This forcefield is explained in detail in a

series of publications [15 - 21]. The present chapter highlights the equations and other
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important modelling properties listed in the above mentioned publication series. For

MMFF94s the general force-field Equation 3-1 is unrolled as follows:
YEpondea = XEBij + Y EA;jx + XEBA;ji + YEOOP;jiq + YET;jiy
Equation 3-2: The bonded energy potential
YENon-Bondea = LEVAW;; + Y EQ;;
Equation 3-3: The non-bonded energy potential

The terms of Equation 3-2 and Equation 3-3 are explained in the following sections. The
following equations have been taken from MMFF94s publication series [15-21]. In these
equations some constants are represented by two letter combinations, which might confuse
someone from a mathematical background. However, this is the best way to describe them as

it is the industry standard for the specific forcefield.

3.3 Bonded Interactions

The bonded interactions are the trivial part of each force-field and can be derived at linear
time O(N), for an N-atom system. This is since bond information is provided and the
interactions consist of bonded atom pairs for bonded forces, triplet groups for the angle and

stretch bend forces and 4-atom structures for the dihedral and out of plane potentials.

3.3.1 Stretching Energy Y EB;;

The first term of Equation 3-2 is the bond stretching energy between two bonded atoms j,j at

an inter-atomic distance r between them as shown in Figure 3-1.
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Figure 3-1: The bond stretch interaction between 1-2 bonded atoms i and j.

In Equation 3-4 (below), Ar;; denotes the deviation of r;;from a reference bond length .
kb;jis a constant whose value depends on the type of atoms ij, and ¢s ( cubic strength ) is a

constant whose value is -2A.

kbi; 7,
YEB;; = 143.9325 TATij(l + csdry;) + 1265 Arf;

Equation 3-4: the bonded energy potential between two bonded atoms

3.3.2 Bending Energy Y EA;jj

In Equation 3-2, the term YEA;jirefers to the energy related with the binding angle between

two bonds formed by three 1-3 bonded atoms ijk at an angle 6, as shown in
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Figure 3-2 below.

Figure 3-2: The bending interaction between 1-3 bonded atoms i, j and k.

The bending energy is given by Equation 3-5 below,

kai]-k

YEA;j; = 0.042844 A6%, (1 + cb 46,

Equation 3-5: The bending energy potential
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where ka;jj is a constant whose value depends on atoms ijk and 46, is the deviation of
8;jxfrom a reference angle value 6, for the atoms ijk. The constant cb is the cubic bend

constant and equals —0.4 rad 1.
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3.3.3 Stretch-Bend Interactions Y} EBA;jj

In Equation 3-2, the term Y EBA; . refers to the energy related with the stretching of two

bonds formed by three atoms jjk at an angle 6;,as shown in Figure 3-3 below.

Figure 3-3: The stretch bend interaction between three 1-3 bonded atoms i, j and k.
The stretch-bend energy is given by the Equation 3-6 below,
YEBA;j = 2.51210(kba;j Arij + kbay j;Ary ;) A0 i
Equation 3-6: The stretch bend energy potential

where kba;jiand kbay j;in Equation 3-6 are force constants that depend upon the stretches
of i-j and k-j to the i-j-k bend respectively. Ar is the deviation of the interatomic distance from

the reference value ry and 46, have been already defined in Equation 3-5 above.
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3.3.4 Out of Plane Bending Energy

The term }EOOP;j refers to the non-planar tri-coordinate atoms / at an angle x (Wilson

angle) between them and the plane formed by atoms kji on a planar set-up like an aromatic

ring.

Figure 3-4: The out of plane interaction between atom | and the plane formed by atoms ijk

The Out of Plane Bending Energy is given by the Equation 3-7 below,

kOOPijkl 2

YXEOOP;j,; = 0.043844 > Xijki

Equation 3-7: The out of plane energy potential

where koop is a constant depending on atoms ijk/ and x is the Wilson angle between the /-
bond and the jjk plane. The out of plane potential (improper dihedrals) is one of the distinct
characteristics of the MMFF94s force-field that cannot be found in other commonly used ones

such as CHARMM [22], AMBER [23], Gromos [24] and others.
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3.3.5 Torsional Energy

The term Y ET;jy, refers to the torsional energy between 4 bonded atoms.

Figure 3-5: The torsional interactions between 1-4 bonded atoms ijkl
The torsional energy is given by the Equation 3-8 below:
2ETijiue = 0.5(V1(1 + cos(9)) + V2(1 — cos(2¢)) + V3(1 — cos(3¢)))
Equation 3-8: The torsion energy potential

where the angle ¢ (schematically represented in Figure 3-5) is the dihedral angle formed by
the two planes jkl and ijk . V;,V,, Vs (kilocalories /mole), are three constants depending on

atoms ijkl, where i-j, j-k and k-l are bonded pairs and i is not equal to /.
3.4 Further Comments

In reality bond lengths and bond angles do tend to deviate from their reference bond length
roand reference bond angle 6;,and Wilson angle x (for chemical structures that form a plane)
only by a very small factor. For this reason, some modelling applications who focus solely on
performance would not perform calculations on bending, stretch bend, angle bend and out

of plane energies due to their restricted degree of freedom. However, this is not a
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recommended method to apply to large protein macromolecules as small angle deviations

may cause big moves further down the chain [14].
3.5 Non- Bonded Interactions

The non-bonded interactions constitute the challenging part of the force-field calculation.
Contrary to bonded interactions, their asymptotic complexity is of order O(N?) as in theory,

each atom interacts with every other atom in the N-body molecular system.

3.5.1 Van Der Waals Energy

For a pair of atomsjand j, where the distance between them is 1;;, MMFF94s adopts a special
"Buffered-14-7" (Buf-14-7 Equation 3-9 ) form for the Van Der Waals (VDW) potential instead
of the Lennard-Jones or Exp-6 potentials used in other force fields such as the popular AMBER,
CHARMm and GROMOS [22 - 24]. The reason is that the aforementioned potential is capable

of producing more accurate results as Halgren 1992 proved [20]. This potential is given by:

O07R;; \ [ 1.12R;
ZEvdWij=€ij< 107RJ ) ( S —2),

rij+0.07R;; ) \r/+0.12R];
Equation 3-9: the Van Der Waals energy potential

where R;;is the minimum-energy separation in angstroms and ¢;; is the well depth in
kilocalories per mole. The minimum energy separation R;; is derived through the “augmented

arithmetic mean” as in Equation 3-10. However, according to Halgren [16], a very good

approximation of the potential can be given by the “cubic mean” of Equation 3-11:
Ri; = 0.5(R; + R)(1 + B(1 — exp(—12v#)))
Equation 3-10: “Augmented arithmetic mean"
Bis equal to 0.2 or 0.0 if one of the atoms is polar hydrogen and y;; is given by Equation 3-12.

R} +R}

R:: = ———
Y R} + R}
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Equation 3-11: “Cubic mean”

R; —
R; +

=

Yij =

=

Equation 3-12: The Gama value
The well depth ¢&;; is given by:

£ =
Y ((ai/N)Y? + (a;/N)YRY,

Equation 3-13: The well-depth

where a;is atomic polarizability of atom i, N; and N; are the Slater-Kirkwood effective
numbers of valence electrons and G;, G; and A; are scale factors. In addition, if atom pair i~ is
classified as a donor-acceptor interaction, R gets further scaled by the factor DARAD = 0.8,
and the well depth ¢;; gets scaled as given by Equation 3-13 and calculated using the unscaled

R, by the factor DAEPS = 0.5.

At this point we can observe that in order to calculate this potential we need to include a
degree of conditional branching to account for the above predicates. In a case of a warp of 32
threads, where each thread evaluates the force of the atom i held by thread Ti. If at least one
of the atoms inside a warp is not a polar hydrogen, then all threads in the warp will be paying
the penalty of the exponent. Moreover, if there are various combinations of hydrogen bond
donating or receiving between the atom pairs that the warp is going to evaluate, then the
penalty of executing operations inside many conditional branches is going to be paid during
execution. This is a challenging part to implement efficiently in CUDA. A good approximation
of the potential can still be given by simply replacing the expensive “augmented arithmetic
mean” in Equation 3-10, with the computationally faster “cubic mean” of Equation 3-11. The

latter behaves similarly when Ri and Rj differ by less than a third, which is usually the case.

The fact that the minimum energy separation and well depth are derived at run time is a

characteristic that distinguishes MMFF94s and other algorithms that use the simplified
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Lennard-Jones potential for the approximation of Van Der Waals forces. In [16], [20] it is
shown how this version of VDW calculations contributes into more accurate free energy

results.
3.5.2 Electrostatic Interactions

The electrostatic interaction between two non- bonded atoms is given by the following

equation,

qi9;
EQ;; = 332.0716 ——————
2EQi =1+ D(Ry; + 0)

Equation 3-14: Electrostatics potential

where D is the dielectric constant for which the default value is 1. g; and qjare the MMFF94s
partial charges on atoms i and j, R;jis the inter-atomic distance, 6 is the “electrostatic
buffering” constant of 0.05A. The scaling factor f is 0.75 for 1-4 interactions, and 1.0

otherwise.
3.6 Force calculations and conformational updates

Forces are calculated as the negative gradient of the energy potential of each atom i in the

system —VE;. Once the force vector ﬁi is available for each atom i, a scalar value A (step-
value) needs to be found in order to update the system into the new conformation. The
conformational update is performed for each atom in the system in Euclidean space as

follows:
Cll' = Cl + }LFL
Equation 3-15: The conformation update formula

Where C’, is the updated vector of an atom i and EZ is its position before the update.
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3.7 Approximation using the cut-off convention

Figure 3-6a shows a graphical representation of Van der Waals energy against distance. From
the graph we observe that energy decays rapidly after a certain distance ;. It is obvious that
Van Der Waals forces can be computed at a very good approximation following the constraint
that the computation will only apply to atoms whose distance is less or equal to some cut-off.
This cut-off value is usually in the range of [9-12.5] A. We can metaphorically say that the cut-

off value acts like a dimmer switch that balances speed of execution with accuracy.

Looking at Figure 3-6 b we can observe that electrostatic forces decay more slowly than the
VDW forces beyond 7, but a good approximation of the potential can still be obtained for the
above cut-off distance range. A common practice for calculating the non-bonded potential
employed in MD packages is to split the calculation domain into short range and long range
forces (the ones including atom pairs further than cut-off distance apart). Short range forces
are computed for both electrostatic and VDW potentials. Long range potentials are only
computed for the electrostatics, which can be approximated by algorithms such as Particle

Mesh Ewald in O(NlogN) [25] or Multilevel summation in O(N) [26] on GPGPUs.

a) b)

Figure 3-6: The Van der Waals potential energy plot on the left (a) and the electrostatic

energy potential plot on the right (b).

3.8 Summary

This chapter described in detail our modelling force-field of choice, the MMFF94s. In

particular, in this chapter we explained the equations used for both bonded and non-bonded
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interactions. We also provided details of the out of plane potential, which is used to model
dihedral angles between an atom and the plane of a ring structure. We also explained that
MMFF94s’s non-bonded potential requires more FLOPs to compute compared to L-J based
forcefields, due to its Van Der Waals interactions mapping. Finally we explained how the
guadratic complexity of the forcefield computation can be reduced by using the cut-off
convention as well as providing information on the degree of approximation when this
technique is employed. This chapter can be a useful guide for Chapter 6 where we explain the
algorithms designed for the computation of the atomic forces and energy potential of protein-

ligand systems using the aforementioned force-field.
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Chapter 4

Related Work Overview

This chapter is an overview of the state of the art. It reviews the latest and most innovative
approaches in areas relevant to this work. In particular, we review the most notable Haptic-
driven protein—ligand docking (HPLD) implementations so far with a small reference to other
relevant modelling areas such as steered molecular dynamics. Next we review the state of the
art in regards to parallel algorithms in CUDA for the non-bonded interactions calculation
problem. A description of bonded interactions implementations follows. Finally, a section (4.7
— 4.8) describing various techniques for potential energy surface exploration is listed to
provide some insight into evolutionary strategies and their usage in molecular docking

applications.
4.1 Haptic protein—ligand docking

Haptic-driven protein—ligand docking (HPLD) refers to molecular modelling simulations that
use a haptic device to control the movement of the ligand against a protein’s active site. One
of the main driving factors that contributed towards the development of this technique is that
the human brain is still better in understanding shape interactions than the computer [27].
However, to really gain the full advantage of human abilities, it is necessary to provide the
user with a very natural experience: this means a stable force-feedback, with updates of 1 kHz
and a smooth visual representation (updates of 33 Hz). The latter factor has been the first to
be tackled and various strategies have been implemented during the years to perform faster
energy minimizations and emulate forces and conformations mainly on the ligand. Table 4-1

lists some of the most notable HPLD and IMD (Interactive Molecular Dynamics) applications.

Page | 29



software Description Availability  ref

VMD IMD Proprietary [11]
Haptimol Haptic — interactive molecular modelling Freeware [28]
HMolDock Iterative evaluation of L-J. Force feedback Proprietary [29]
MDDriver IMD Freeware [30]
Kinimmerse  Exploring local conformations with the aid of haptics Freeware [31]
Samson HPLD with binary assembly tree technique for molecule flexibility Proprietary [32]
Zodiac HPLD with H-bond highlighting Freeware [10]

Table 4-1: HPLD and IMD software

One of the most successful HPLD techniques for force calculation to date has been that of
potential grids to describe the energy profile of the binding site. The energies obtained from
the grid calculation can be translated into gradient vectors, which are finally converted into
force values through an interpolation algorithm [33]. Two remarkable examples of software
using such an approach are the chemical force-feedback system [34] and HAMStER [35]. This
strategy considerably sped up the energy evaluation, making the required smooth haptic-
force feedback feasible to implement for these kinds of programs. However, the grid approach
was not able to manage large molecular systems (such as enzymes), forcing researchers to

focus their software development in other directions.

A different way to overcome the HPLD drawbacks can be found in the software developed by
Subasi and Basdogan of Koc University [36]. Their approach consists of a rigid ligand—rigid
receptor exploration, where the user can control the translational and rotational movements
of the ligand with the aid of a six-DoF haptic device. This first part of the experiment gives the
possibility to the user to explore all the potential cavities of the receptor in order to find the
best candidate for his or her lead molecule. An innovative implementation, called the ‘active
haptic workspace’, allows the user to continuously explore all of the surface of the receptor

through an automatic shift of the coordinates once the haptic pointer reaches the limits of
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the active haptic workspace. Once the user selects a particular cavity and an approximate
position of the ligand inside it, the software performs a small MD simulation to correctly fit
the ligand inside the cavity. To test their program, the authors performed two experiments:
the first was focused to test the effectiveness of the application for the proper understanding
of the active sites of the protein; the second aimed to identify whether the system would help
to identify the correct pose (position and orientation) of the ligand against a given active site.
In both cases, the results obtained were very close to the references taken from the Protein

Data Bank (PDB) archive.

4.1.1 Zodiac

A further improvement in the HPLD field is Zodiac [10], designed in our laboratory, capable of
handling protein—ligand interactions in real time using the rigid protein-flexible ligand
approach. In this application, the six-DoF haptic pointer is fixed to the centre of mass of the
ligand. Its conformational flexibility is performed on the dihedral angles only, leaving the
angles and bond values of the selected compound fixed. Such flexibility is controlled by a
minimization algorithm (steepest descent), which drives the system, step by step, to lower
potential energies. Although this is more computationally expensive than the potential grid
approach, it has the advantage of helping users during their experiments. While the
experimenter is moving the ligand to probe the protein’s surface, the total force of the system
is calculated through the MMFF94 force-field and the total force component for the ligand
atoms is fed back to the user through the haptic device. The application provides force values
to the device at a rate of approximately 1 KHz to match the feedback device’s requirements
(with the aid of an interpolation algorithm). Zodiac is also capable of visualizing the energy
contribution of individual atoms by using a colour code. Another visual effect of the software
that could be effective for drug-design investigations is the visualization of the hydrogen bond
between the protein and the ligand, which is displayed as a red line. This is helpful as it
highlights the positions generating dipole-dipole attractions between atoms of the two
molecules. These attractions constitute the generation of strong attractive forces and this
illustration can help the user identify whether a strong attraction is generated due to

hydrogen bonding or not.
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More recently, NANO-D research developed a new suite of programs to interactively
implement the haptic input in the simulation of biomolecular complexes. This package, called
SAMSON [32], contains several new features for the treatment of the molecular systems. Of
these features, the binary assembly tree approach [32] is of particular interest: the
investigated molecule is split into several rigid subgroups, which are chosen by the user
according to his/her requirements. The different subgroups are then joined together through
flexible bonds that give the correct flexibility to the overall molecule. The overall result was a

fast algorithm that sped up the force calculations required for a smooth haptic feedback.

Most of the research in the past has focused on ways to approximate forces and ligand
conformations. Some attempts have been made towards protein flexibility but this would
mainly include techniques to emulate conformational sampling in the binding pocket area,
ignoring the rest of the intermolecular interactions. The running time complexity of the HPLD
problem is high enough to discourage researchers from calculating the force-field for the
whole system and introducing full protein — ligand flexibility during protein ligand docking

experiments, the problem we address in this work.

4.2 Algorithms for Molecular Mechanics Computations

The following sections list algorithms for the full force-field computation. The first section lists
algorithmic techniques for the computation of the non-bonded interactions. The second
section provides a brief review on the more trivial algorithms for bonded interactions. Both
sections mainly focus on algorithmic techniques used for the CUDA architecture and

programming interface.
4.2.1 Non-Bonded Interactions

This section contains a critical literature review on the topic of the computation of the non-
bonded interactions. Initially, this problem appears to have a quadratic running time
complexity ( O(N?) ). However, this problem, as mentioned in previous chapters can be
decomposed into short range and long range non-bonded interactions. The short range part
computes interactions within the range [0, 7] and the long range part computes interactions

beyond 7., where, 1. is a predefined cut-off distance. For cut-off distances between 9 to 12.5
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A, a very good approximation of VDWs and electrostatics can be obtained as explained in

section 3.7.
4.2.2 Neighbour list algorithms

Neighbour list algorithms have been implemented in the past on clusters [1, 4, 37, 38] and
recently on GPGPUs [39 - 41]. They are based on a neighbour list built per atom. The algorithm
has been invented from Verlet [42] hence the algorithm is also referred to as Verlet-lists. The
purpose of the neighbour list is to reduce the running time complexity of free energy and
force calculations for the non-bonded forces with cut-off, from O(N?) to O(CN), where C is the
maximum number of neighbours that an atom can have for a given simulation. The most
complex part of the algorithm is the actual neighbour list creation. This is often performed
using a space decomposition scheme. Atoms are placed in bins of 7.3 volume forming a three
dimensional regular grid of cubes containing the atoms of the macromolecule. This spatial
arrangement helps in reducing the running time complexity of the following step from O(N?)
to O(C'N), where C' is the maximum number of atoms that the 26-connected neighbour cubic
bins can hold. The next step consists of loading a home bin and all of its 26-connected
neighbours. The spatial relationships between the home bin and its 26-connected neighbours
make sure that, for each atom in the home bin, its whole set of neighbours are contained in
this load. Any other bin in the grid is further than a cut-off distance away. On a GPU. each
home atom's coordinates can be held in registers by a single thread, and each 26-connected
neighbour bin is loaded into the GPU's shared memory, one at a time. Then each thread
iterates through all atoms in the bin evaluating the condition 7;; < 1, where 1;; is the distance
between the home atom i and a neighbour candidate j held in shared memory. The indices of
neighbours succeeding the conditional are written to atom's i neighbour list. The neighbour
list is then used for a few time steps to perform the short range non-bonded forces
calculations. Neighbour list updates are performed frequently, usually after a fixed number of
time steps. Free energy and force calculations are then performed using an atom
decomposition scheme where each thread is assighed one home atom and iterates through

all of its neighbours to perform the calculations.
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4.2.3 Notable GPGPU implementations

Liu et.al implemented a version of this algorithm [39 - 40]. Bin sizes on their implementation
were 7. + & where § is termed as a skin value. Neighbour atom pairs j,j were built satisfying
the conditional 7;; < 7. + §. The purpose of the skin value & was to assist with neighbour list
updates. During position updating of atoms in each step a record of their displacement away
of their initial position was kept. If the displacement was greater than §, this would trigger a
neighbour list update. The greater the skin value the less frequent the updates would be. This
method ensures that no step is performed with an overly outdated neighbour list. The keeping
of displacement records does require some extra floating point operations and global

memory, which in turn add an overhead to the overall algorithm performance.

Neighbour lists compatibility with GPGPUs has been questioned by many authors in the past
[51, 75]. GPGPUs’ performance on random global memory accesses has been poor up to the
date of this thesis’ submission. Storing the neighbour lists and fetching data from it, requires
out of order global memory fetches. The same applies for writing back the force values to
each neighbour especially in the case that Newton's third law is applied. Anderson et.al [41]
implemented a Verlet-list version in the GPGPU trying to address the out of order read/write
problem. They tried to solve this problem by spatially rearranging the atom indexes using a
Hilbert curve spatial sorting algorithm [43] and improved the in order access of the neighbour
list and the L2 cache hit rate. This technique achieved up to 4X speed-ups for systems of
greater than 50,000 atoms. It is worth mentioning that the original ordering of atoms in the
input file follows the order of the residues in the peptides and nucleic acid chains. That in turn
achieves good sequential access rates for the bonded forces calculations and some MD

packages also exploit this ordering to handle 1-4 bonded atom exclusions.

Scattered writes on these algorithms have been avoided by not taking advantage of Newton's
third law. This means that for every atom i, neighbours are gathered around all its 26
neighbouring bins. Then for every valid atom pair i-j there exists its mirror pair j-i which has
to be re-calculated leading into doubling the calculation workload. The benefit of it though, is
that memory writes for each atom forces are performed in-order. In addition, a great amount

of costly atomic operations is avoided as if Newton's third law was implemented, then both i-
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j and j-i force updates should have been performed atomically to avoid race conditions.

Verlet lists are a good example of the difference of clusters with shared memory architectures.
Verlet lists have proved to be the best option for years in clusters and variations of this
algorithm have been used from almost all the MD packages (Gromacs, NAMD etc.) for their
cluster implementation. However, the CUDA architecture offers different capabilities and
drawbacks to algorithm designers. Verlet lists on the GPGPU result in processing a big list of
neighbours of variable length for each atom. The drawbacks of this fact are two-fold. First,
although the CUDA architecture excels at processing large amounts of threads concurrently,
it does not perform well when serially executing big loops of variable size within each thread
as the variability of the size of the neighbour lists will cause warp divergence. The warp
execution time will always be determined on the largest amount of neighbours that any single
thread that belongs to the warp holds. The O(CN) global memory reads causes problems for
L2 cache hit rates, despite the fact that Anderson et.al reported a good solution on this issue.
Finally Newton’s third law is challenging to implement on GPGPU architectures with capability

up to 2.x due to the O(CN) global memory atomic operations that it would require.
4.3 Celllists

These algorithms have the binning process in common with the Verlet list approaches
discussed above. The macromolecule's domain is divided into 7.3 cubes and atoms are binned
into these cubes according to their co-ordinates. The advantage of this method over the Verlet
lists is the ability to exploit the on-chip memory, which is cached. Home shell atom
coordinates and parameters are loaded into registers and the 26 connected neighbouring
shells atom coordinates and parameters are loaded into the shared memory, one bin at a
time. Each register stored atom iterates through all of the atoms in each bin and performs
energy and force calculations if their interatomic distance is less than the cut-off. All the
reported implementations [38 - 40], chose not to use Newton's third law to avoid scattered

writes and atomic operations, which in turn translated into faster overall performance.

Updating the cell list can be performed similarly to Verlet lists at fixed intervals, or by tracking

atom movement and updating the cell list when an atom has deviated away from its initial
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position by a distance § as explained earlier. Van Meel [44] implemented this algorithm and

performed these updates on the GPGPU using a double buffering method.

Stone et.al [46] implemented this algorithm varying the sizes of the bins to cut-off + § where
1< § <3 A. This would vary the actual occupancy of the GPGPU as the size of the bins
determines the number of atoms residing in them and the total number of blocks needed for
the simulation. Varying the size of the bins above the cut-off distance results in more failed
atom distance comparisons. However, higher occupancy levels lead to the ability to manage
more warps concurrently, and this can improve performance. In the NAMD case there was a
trade-off between higher occupancy and greater number of failed distance evaluations. The
published results shown that for the 8 and 10 Angstrom cut-offs, one Angstrom larger bin sizes
were degrading performance, but at 12 A the results between the two approaches were

similar. Overall, the GPGPU version outperformed the CPU one by a factor of four.

However, this scheme has some drawbacks. The first is that of load imbalance. As we can
observe from Figure 4.1, the number of atoms resident in the cell varies. Due to the CUDA
execution model, each computational kernel is launched with a fixed amount of warps w
containing 32 threads per block [12]. This means that the atoms resident in a block will be less
than the total amount of threads that each block executes. As a result, each block's final warp
will have 0-31 threads without any work to do, which in turn may waste parallelism. Similarly,
the number of warps issued for each block that have work to do will either be less than or

equal to w, depending on the corresponding cell's atom concentration.

The second major problem is that of void computations. During each voxel pair processing,
86% of the distance calculations checks are performed for atom pairs further than . apart
[47]. This creates an overhead in these algorithms, especially considering that most
implementations have described them as computationally bound. Some applications tried to
solve these problems by using finer grained regular grids using 7,./2 sided cells [45]. This
approach improves the unnecessary distance checks issue, but introduces more global
memory transactions. Global memory throughput is slower than simple floating point

operations especially when memory access is not in order.
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When this decomposition scheme is used for potential energy calculations it is more efficient
to use a different traversal approach such as the half shell [48] to generate cell lists. This would
guarantee that each cell-pair will only interact once during the simulation and potential
energy values for the neighbour cell can be derived using Newton's third law without
repeating the whole calculation. Regarding force calculations, using Newton's third law is not
as efficient as it requires a vast amount of atomic operations. In order to exemplify this,

consider the following code snippet:

. float3 *Fh; //home atom forces held in register

. float3 *Fnb; //neighbour shell forces held in shared memory

1

2

3. for j = 0 - neighbour cell number of atoms

4 calculate force between home atom and j and add it to Fh;
5

subtract Fh from Fnb[j]; //race conditions!

Assume a warp of threads 0-32 executing the above snippet in a SIMT (single instruction
multiple threads) manner [49]. The subtraction instruction in line 5 will be executed by all 32
threads in parallel creating race conditions. One option would be the use of shared memory
atomics, which would ensure accuracy. Our experiments show that this method under-
performs by nearly 50% compared to the normal 26-connected neighbour shell traversal.
Therefore we can argue that this is the third drawback of cell-list based algorithms regarding

force calculations.
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Figure 4-1: A regular grid decomposition scheme in 2D. Load imbalance and atoms beyond
cut-off range are highlighted. Atoms in the light cyan circle are within the cut-off range of
the blue home atom. Particles in the light red region belong to the 26 connected (8-

connected in 2D) cells, but their distance from the blue home atom is greater than r.

Pal and Hess [50] designed an approach that uses aspects of both cell and Verlet lists. In
particular, they designed a neighbour search method using a fine grained spatial
decomposition approach. Atoms were binned in a rectangular grid of fixed base size and
variable height (z-axis). The neighbour list’s work unit would be a group of eight atoms instead
of a single one. This would help minimizing the effects of cache misses when loading atoms
and updating forces as the pair interaction would be on groups of eight atoms rather than
single atom pairs. Computational kernels would be called in groups of eight 8-grouped work
units. This approach aims to minimize the void computations effect evident in cell lists and
also improve the cache hits on global memory with the aforementioned 8-atom grouping.

Page | 38



However, it still requires a vast amount of out-of-order memory transactions, including atomic
memory writes to global memory. Finally, the authors would execute their computational
kernels in groups of eight 8-atom groups, resulting in 64-thread blocks execution, which in

turn results into very low multiprocessor occupancy on the GPU.
4.4 Other notable implementations (workgroup lists)

Both cell list and Verlet list algorithm suitability on GPGPUs has been questioned in the past,
for reasons that we addressed in this chapter. An implementation designed explicitly to run in
CUDA was created in OpenMM [51] .The simulation system was divided in workgroups of 32
atoms, in order to match CUDA's parallel execution unit (warp). A neighbour list of all warps
was then created and interacting workgroup pair lists would perform the non-bonded force
and energy calculations. The criteria that would flag two workgroups as neighbours would be
that the minimum distance between their bounding boxes would be less than the cut-off. This
ensures that workgroup pairs that had no interactions are pruned reducing the run time of

the algorithm.

This algorithm effectively eliminates the problems associated with warp divergence that were
evident in the previous two implementations. In addition, it achieves high levels of L2 cache
hits, as decomposition takes place sequentially along the polymer chain. Also, this method
takes advantage of Newton's third law on force calculation, at the expense of reducing the

forces out of an (N /32)? matrix

Although the problem of void pairwise distance calculations still persists, it is difficult to
understand which approach suffers from it the most. A drawback of this approach is that it
needs to be implemented by kernels using 32 threads which again leads to low occupancy
levels. In addition, the decomposition scheme is more fine-grained and hence will result in
more global memory reads/writes than can be performed in order. The performance of this
algorithm was tested against serial codes of existing MD packages. It is reported to perform
28 times faster than that of the serial NAMD, whereas the CUDA implementation of NAMD
was only 4-5x faster than its serial one [51]. However these comparisons are subject to bias

stemming from benchmarks made in different hardware systems and biological targets.
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4.5 Bonded Forces

Bonded forces are a much more simplified potential to compute as the bonds between atoms
are known and do not change throughout the simulation. The most common way of
calculating this potential in parallel on the GPGPU is through an atom decomposition where
a thread is gathering the force for each atom. Xu et.al [52] implemented this algorithm with
three separate kernels dealing with bond, angle and dihedral potentials. The above algorithm
is not very memory efficient as atom indexes and their coordinates will be loaded from global
memory multiple times to calculate each potential. Friedrichs et.al [53], implemented the
bonded forces in a different way in order to minimize global memory reads and writes. The
simulation domain was decomposed into quads of atoms forming unique dihedral potentials.
Within those quads, all the unique bonded and angle interactions would be computed.
Duplicate bond and angle entry parameters would be set to zero in order to ensure that
bonded and angle interactions would only be calculated once. Although this algorithm is much
more memory efficient, it does increase the number of math operations needed accounting
for the ones performing void calculations. It does not entirely solve the problem of multiple
atom coordinates out of order reads and force writes from and to global memory. Also,
around a single bonded atom pair there can be up to eight different unique dihedral
potentials, which means that the same bonded pair will be loaded 8 times from global

memory and its forces will be also updated eight-fold.
4.6 1-4 bonded Interactions Handling

One of the most expensive operations in free energy and force calculations is that of
exclusions handling. In non CUDA architectures, that could be dealt with accessing an N?
boolean array checking if atom pair i-j is included or excluded in the calculations.
Unfortunately, in CUDA, that would hinder performance by a large factor due to the out of

order memory reads required.

Friedrichs [53], reduced the size of the N2matrix to N?/4 by including the exclusion flags of 4
consecutively indexed atoms in each array integer. However that was implemented in an

O(N?) implementation (no Verlet or cell lists) and therefore the exclusions array was accessed
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in order and resulted in maximum L2 cache hits.

NAMD [46] adopts an interesting approach to exclusions handling based on the observation
that in a .pdb or .mol2 file bonded atoms are sequentially indexed. Therefore there is a
maximum index range r where two atoms are 1-4 bonded. Accessing exclusion arrays should
be performed only for atoms whose index difference lies within this range. Constructing
exclusion lists for each atom, helps checking the atoms excluded for every atom pairs whose
index range is below the maximum. A further observation made was that for large arrays, the
number of unique exclusion arrays would be much less than N and restricted to 700-800.
Therefore unique exclusion arrays could fit in the GPU's constant array and accessed from
there. However, constant memory accesses perform well only when the same memory
address is accessed on the same instruction by all threads in a warp (broadcast). In this case
though there is no guarantee that all atom indexes in a warp can request the same exclusion
sequence, therefore it is doubtful how much performance gain can be realised from storing

the exclusion list into the constant memory, especially for smaller system sizes.

4.7 Integration of molecular mechanics computations in a simulation

The objective of finding stable (or preferred) conformations for the system requires locating
those conformations that lie on minimum points on the energy surface [54]. However, this is
a complex multi-dimensional problem. For a system with N atoms, its potential energy is a
function of 3N Cartesian co-ordinates. Therefore, the molecular energy surface is rather
chaotic and searching for the global minimum cannot always be feasible. Failing that,
exploring the potential energy surface is the way to find a set of optimal solutions (local

minimums) where the best solution can be chosen.

Force-field computations need to run in a continuous loop in order to give simulation results
and continuous conformational updates. For the case of molecular dynamics, conformations
are updated using Newton’s laws of motion on all atoms of the system concurrently using a
small fixed time-step to generate new atom positions and velocities. In the case of flexible
docking, different poses of the ligand are generated against the protein’s binding site and the

software evaluates fit considering the poses that generate the lowest delta energy value. This
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process is termed “energy minimization”.

Molecular conformations are updated using the appropriate algorithm, depending on the
degree of flexibility that the application offers. Zodiac had previously been using the steepest
descent approach in order to provide conformational flexibility on the ligand. Steepest
descents, is a simple and easy way to find a local minimum and its main characteristic is that
it only takes downhill moves on a potential energy surface (PES). However, choosing the first
encountered local minimum is not the only way to optimize the force-field function. Exploring
the PES can sometimes yield better results to the one initially found. The search for optimal

solutions can be facilitated with the use of meta-heuristics [55].

4.8 Exploring energy landscapes

Meta-heuristic methods cover a wide spectrum of algorithmic techniques. Evolutionary
algorithms (EA) and genetic algorithms (GA) are methods able to iteratively generate a set of
solutions. Evolutionary algorithms are amongst the most popular meta-heuristics and attempt
to solve the optimization problem by generating a population of possible solutions from a
parent (mutation). From the generated population the fittest is chosen to generate the new
pool of solutions and so forth [56]. Genetic algorithms adopt a similar approach, with the
addition of the concept of crossover between two solutions to create the new generation [57].
These solutions generations will be gradually improving with respect to the strategy adopted

to move across the energy landscape.

The exploration of potential energy surfaces requires the adoption of uphill moves in order to
recover from local minima. Such strategies for uphill move selection include simulated
annealing (SA), Monte-Carlo (MC), iterated local search (ILS), Guided local search (GLS)
amongst others. Simulated annealing uses a temperature variable to generate a probability
function that aids into accepting solutions that go uphill on the energy surface. This helps the
system avoid being trapped at local minima and be able to also explore other minima [58,59].
Monte Carlo methods adopt a similar approach of escaping local minima by accepting uphill
moves based on a probability function such as the Metropolis criterion [60, 61]. ILS reaches

optimal solutions by iteratively performing local search[62] to reach a local minimum[63-65].
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The way it escapes a local minimum is by perturbing the discovered solution in hope that the
perturbation mechanism will bring the system into a well with a lower minimum than the
parent one. GLS, escapes from local minima, by gradually increasing the global minimum
energy value. This way, the system will escape from a well if it is trapped, by taking an uphill
move close to the minimum, which will result into a new landscape with the hope that a better

minimum solution will be discovered [66-68].

Various meta-heuristics have been used by many recent molecular docking applications.
Autodock-Vina [69] uses a hybrid ILS strategy using the Metropolis criterion to accept optimal
solutions and predict binding affinity of protein-ligand systems [69]. Variations of the genetic
algorithm have been implemented in various published works [70,71] to predict molecular
structures. Soares [72] used an evolutionary strategy to solve this problem and CAl and Shao
[73] used a hybrid method of EA combined with SA for structure prediction. Paradiseo [74]
approaches the docking problem with a parallel GA in order to leverage additional processing

power and improve its performance and efficiency.

49 Summary

This chapter reviews the state-of-the art implementations in areas of molecular mechanics
and mathematical optimization. It also provides the necessary background in order to judge
the level of novelty of the contributions claimed in this thesis and listed in sections 1.8 and
9.2. In particular we described a number of HPLD applications focusing on the approach they
follow regarding protein flexibility. Then we described the most notable implementations in
force-field calculations, with an emphasis in non-bonded interactions. Finally, we described
integration methods for providing conformation sampling, highlighting the use of meta-

heuristic approaches and their contribution in conformational sampling.
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Chapter 5

Initial Experiments

In this chapter we describe some initial unsuccessful implementations. These methodologies’
performance was not adequate in order to meet the two objectives set in Chapter 1. However,
they provided useful feedback for the final implementation which is listed in detail in Chapters
7 and 8. This chapter does not provide any of the contributions of this thesis, hence the
description of the methodologies used as well as the results produced are not discussed in

detail.
5.1 Neighbour list experiments

The very first implementation attempted to solve the non-bonded interactions problem
included the use of Verlet lists. The implementation was similar to those listed in Section 4.2.2
in its most simple form (ie. no Hilbert curve spatial sorting). The list was created after binning
the atoms in a regular grid made of cubes of 7.3 dimensions. This implementation was only
intended to provide us with an indication on how this algorithm performed in CUDA and for
our specific force-field, which requires a greater number of FLOPS compared to other force-
fields as explained in section 3.5. The results listed in Figure 5-1 were only able to show that
this methodology could not suit the simulation’s requirements. Although the algorithm scaled
linearly with system size, the results would not be able to meet the 33ms limit. The potential
energy kernels would take too long to execute even for very small proteins and a single update
step would require at least a force kernel calculation in addition. This would result in the total

running time exceeding the 33ms limit. This experiment ran on an Nvidia Tesla 2070.
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Figure 5-1: A simple neighbour list implementation for potential energy calculations.

5.2 Cell lists

The next attempt was that of a cell list approach similar to that explained in section 4.3
without any attempts to optimize the solution. The results were much better compared to
that of neighbour lists for potential energy kernels. Although the results were not sufficient
to meet the first objective, the methodology showed good potential. The comparison results
between Verlet and cell lists were consistent to already published research supporting that
the former are not suitable for GPGPU implementations due to the amount of random
memory access generated on the computation kernels[51,75]. Therefore, the decision at the
time was to research new optimization techniques in order to improve performance of the

simple cell list implementation.

The initial optimization ideas focused on improving the global memory usage and to develop
methodologies able to accommodate Newton’s third law on force calculations. Regarding the
former the decision was to implement an algorithm for the cell list generation based on the
8t cell concept [48] , where cells (atom co-ordinates and parameters) would be loaded as

groups of eight as demonstrated in Figure 5-2.
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Figure 5-2: Left, a group of eight adjacent cells, two in each axis, numbered from 0-7. Right

the required cell-pair interactions flagged with an (x). Dash (-) denotes no interaction.

The 3D regular grid needs to be traversed such, that each block will become cell 0 once during
traversal and its adjacent cells will be loaded matching the structure illustrated in Figure 5-2.
For each loaded 8-cell structure, the required cell pair processing as demonstrated in Figure

5-2 on the right, needs to be performed.

The above cell pair interactions achieve the same result as that of the half-cell traversal
approach[48]. The benefit of this approach is the fact that instead of importing thirteen cells
from global memory, only eight are needed at each time to perform thirteen cell pair
interactions. This results in more data re-use and less global memory transactions in total for
both energy and force kernels. However, this approach introduces a new problem, as more

on-chip resources are needed at each time-step to accommodate eight cells.

The initial results were based on a code where all 8 cells were loaded in shared memory, but
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this was under performing as it was suppressing occupancy levels to a minimum and it was
obvious that a more on-chip memory efficient method was needed. The final version would
have four cells in flight at a time, two of those in registers and the other two in shared memory.
This way, all transactions could be processed between the eight cells in a rather complicated
algorithm requiring frequent variable switching between global memory, shared memory and

registers.

The second issue to tackle in these attempts, was that of Newton’s third law. The first idea
was that shared memory atomics could avoid the race conditions explained in Section 4.3
during the force computation kernels. This was attempted on Fermi generation cards for both
8t cell and half-cell approaches. The second idea was that of using a shared memory buffer
to store the force matrix between groups of 32x32 home versus neighbour groups followed

by a reduction, attempted on the half shell approach only.

5.3 Results and discussion

The first surprise came in the energy kernels evaluation between the half cell and 8™ cell
approaches. The two methods were using the same code to calculate the non-bonded energy
between cell-pairs. The only difference was the grid traversal and on-chip memory sources
between the two approaches. The half-cell method, although less global memory efficient,

was outperforming the 8 cell by a small factor of 5-10%.
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Energy kernels benchmarks (c)
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Figure 5-3: From a to ¢ (12.25 — 9.25 A cut-off distances) Benchmarks for the energy kernels
between the 8th cell (blue line) and the half cell (13 neighbours plus home cell, orange line)

approaches.

algorithm Occupancy Registers/Thread  Shared Memory/Block

8t shell 29.2% 50 14 kB
27 Shell 43.8% 40 8 kB

Table 5-1: Occupancy comparison for the two approaches:

The conclusion from the above benchmarks is that multiprocessor occupancy is vital to our
problem. The reason that this was not considered before designing this approach is that
previous research focused on the performance benefits of occupancy [76]. The overall
conclusion was that occupancy would always benefit memory bound kernels and would
sometimes benefit compute bound problems too. Our problem is compute bound, and it is
obvious that multiprocessor occupancy is also optimizing it by a factor higher than that shown
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in Figure 5-3. This is because it also outweighs the performance gain from fewer global

memory fetches and fewer thread synchronisations for the 8™ cell algorithm.

In Figure 5-4 we can see the results of eighth cell shared memory atomics for force calculations
(851_g) versus the half cell and 27-cell approaches (27S_g, HS g curves). Regarding the
comparison between the half cell and the 26-neighbour approaches (where no atomics
needed as Newton’s third law is not applied), the performance is similar. This means that the
cost of introducing shared memory atomics outweighs the amount of FLOPS saved for the
kernel. The 8t cell approach still underperforms as the on-chip memory resources for the
gradients are greater, due to the forces storage. Also the approach would require an amount
of global memory atomics as well (slow on Fermi devices!). This amount could be avoided
with the introduction of eight buffers to store unique force values for cells 1-8 followed by a
reduction in the end. This technique was implemented, but performance benchmarks
following implementation showed that there was no performance gain for doing so. Both
buffered and global memory atomics implementations were producing very similar results,
meaning that the overhead of using global memory atomics in our case was similar to the one
launching an additional kernel for the reduction of the eight buffers. Finally, the attempt to
decompose the cell-pair interactions into 32 atom work units and store the forces into a 32x32
matrix in shared memory, followed by a reduction, has shown a similar performance to the
27S g and HS_g curves. The data were not recorded as at that time the project focus had

already switched to a much more efficient implementation.
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Figure 5-4: An overall benchmark for the Sth cell (8S1) half cell (HS) and 26-neighbour (275)
approaches. In the legend the _g extension stands for gradients (forces) and the rest of the
curves represent potential energy computations. (Figure recovered from a 2011 presentation

as an image, hence the low resolution. Data not available to reproduce!)

From this chapter we can conclude that there is no point trying to improve the memory
efficiency of a compute bound kernel. Instead, an approach to reduce unnecessary FLOPs such
as distance checks for atoms beyond cut-off and an efficient way to implement Newton’s third
law with no extra memory overheads would be more beneficial. In addition, we should seek
a method that makes the most of the parallelism available by CUDA and also try to maximise

occupancy to match Nvidia’s recommended levels of 50% [13].

5.4 Summary

This chapter highlights research conducted between terms 2 - 3 of the 6 term period of this
Ph.D. project. This research did not provide any contributions to the body of literature, but
provided the foundations for future implementations. Firstly, it proved that in our case,
multiprocessor occupancy benefits the performance of our kernels, although we are dealing

with a compute bound problem. Secondly, it highlighted the importance of optimizing this
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code by minimizing the amount of FLOPS performed. That means, ideally we want the
minimum amount of pair distance computations of atoms beyond the cut-off distance. Thirdly,
we should aim to avoid computing the same atom pair twice on the gradients computation

by finding a memory efficient way to implement Newton’s third law.

As a final concluding remark we need to highlight that the above experiments were performed
on the Fermi line of NVIDIA GPUs. In regards to a remark made for global memory atomics,
we need to mention that for the Keppler architectures and onwards, the performance of
global memory atomics is comparable to non-atomic operations. Hence we relied on this

feature on newer versions of our algorithm listed in the following chapter.
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Chapter 6

CUDA-Parallel Algorithms for Molecular
Mechanics Computations

In this chapter, an improved cell-list approach designed to match the Kepler architecture of
General-Purpose Graphics Processing Units (GPGPU) is described. An explanation of how
this approach improves load balancing for the above algorithm and how warp intrinsics are
used to implement Newton's third law for the non-bonded force calculations is provided.
We also describe our approach to handling exclusions together with a method for
calculating bonded forces and 1-4 electrostatic scaling using a single CUDA kernel.
Performance benchmarks are included in the last section to show the linear scaling of this
implementation using a step minimization method (greedy algorithm). In addition, multiple
performance benchmarks demonstrate the contribution of various optimizations used for
the described implementations. The methodologies and results listed in this chapter have

been published in the Journal of Computational Chemistry [77].
6.1 Algorithm implementation

Our initial designs were based on regular grid spatial decomposition schemes with 7.3 cell
dimensions as described in the previous chapter. We decided to redesign and improve the
above algorithm to suit the Kepler architecture, aiming to address the three major drawbacks
we referred to previously in Section 4.3, namely load imbalance, void distance checks and lack

of Newton’s third law.

Our first observation was that we could enhance the granularity of the regular grid by logically
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sub-dividing a cell's space (super-cell) into 8 sub-cells of (rc/2)3. This means that cell pair
processing can now be decomposed into 8x8 = 64 sub-cell pair processes between an
interacting super-cell pair. Sub-cells whose bounding boxes are further than r,. apart, will be
excluded from processing (see Figure 6-1: Spatial decomposition in 2D. Cells are logically
divided into 4 1.2 /4 sub-cells. Purple shaded sub-cells are further than 1, apart from the blue
home particle ) resulting in fewer distance checks per super-cell pair. This way we could
combine the benefits of both finer and coarser grained decomposition schemes, keeping the

memory usage efficiency of the former and the fewer distance checks needed for the latter.

Figure 6-1: Spatial decomposition in 2D. Cells are logically divided into 4 1.2 /4 sub-cells.

Purple shaded sub-cells are further than 7, apart from the blue home particle

The execution grid for the above decomposition scheme consists of 256-thread blocks for
both energy and force computations for two main reasons. Firstly, the logical subdivision of
super-cells could be performed such that we could guarantee a number of atoms not to

exceed the size of the warp (32) for each sub-cell (warp-group). This will enable us to use warp
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intrinsic functions on a warp-group pair interaction, which, under this decomposition scheme,
can be processed by a single warp of 32 threads. This will result in faster exchange of values
between registers belonging to different threads without the need of using shared or global

memaory resources.

Secondly, considering that our computational kernels require 9KB of shared memory size and
60 registers per thread, 256 thread-blocks will result in 50% theoretical multiprocessor
occupancy levels. These occupancy levels are sufficient enough to take advantage of the

latency hiding optimizations available to GPGPUs [12, 13].

6.1.1 3D irregular grid decomposition

Considering the above, we would now aim to design a decomposition scheme that would
produce load balanced cells of 256 atoms, which can be logically divided into 8 warp-groups.
It makes sense that the smaller the bounding box of the warp-groups, the less distance checks
we will have to perform during force and energy computations. Hence, we would aim for
warp-groups to be as compact as possible and have non-overlapping bounds (ie. Their

bounding boxes should not overlap).

This could be done by mapping a molecular system's atoms into a three dimensional

rectangular grid using cells with base dimensions of 7,2

and variable height similar to the
approach that Pal and Hess implemented in a more fine-grained grid manner [50]. The atoms
of a bio-molecular system would be geometrically mapped in two dimensions first, according
to their x and y co-ordinates, forming a stack of atoms belonging to each x-y rectangular tile
( XY stack ). Then for each of these stacks, atoms could be sorted on their z-coordinates and
divided into blocks of 256 atoms (cells). In this way the spatial relationships between cells on

the x and y directions would be maintained and load balanced shells of variable height can be

created.

However, the above approach introduces three new problems. Firstly and most importantly, the

the smaller the cut-off distance used the more elongated the cells (and hence the warp-groups)
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groups) in the irregular grid would be. This could in turn affect performance by lowering the
amount of interacting atoms per warp-group pair and hence introduce more global memory
reads. The second problem would be that the last cell on the z direction for each XY stack would
would not necessarily be load balanced. The third problem is represented by the poor

parallelism caused by incidences of distant cell pairs, as shown in

Figure 6-2c. Although cell atom pairs are formed from adjacent XY stacks, there are no
adjacency criteria on the z axis and distant cell pairs can be formed with only a few interacting
atoms between them. One of the major side-effects of this scenario is that there will be an
amount of global memory fetches of warp-groups with no interactions at all. Another
deficiency of this scenario is the fact that a warp of 32 threads is going to be under-utilized to

serve very few atom interactions.

In order to avoid the aforementioned problems that a rectangular grid approach would
introduce to our code, we implemented the following approach leading to a more load

balanced irregular grid decomposition.

In order to address the first problem, proteins were rotated in space such that their
orientation would be perpendicular to the XY plane at the beginning of the simulation. This
way it would be expected that the top face of the simulating system's bounding rectangle will
be its smallest and hence will decrease the amount of imbalanced top cells. The problem
would still be evident, but the candidate top cells number would drop and the number of load
balanced cells would potentially increase depending on the elongatedness of the protein
shape. This technique would not always help, though as we can see in Table 6-1. This means
that finding the system’s orientation that minimizes its stack count is a more complex
optimization problem and its optimal solution cannot be located just by rotating the system
such that its principal axis is perpendicular to the XY plane. Certainly a better solution to this
optimization problem could be found with a suitable minimization method. We decided not
to investigate this issue any further, as the performance benefits expected from a better
optimization method would be too small for the time estimated to spend on it. In our code,

if the perpendicular principal axis solution produces less stacks, we accept the transformation,
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else we reject it.

Not Rotated Rotated
X,Y,Z stacks count X, Y, Z stacks count
1UGM (4, 3,6) 9 (4,3,8) 9
3RDD (4, 3, 6) 10 (4,4,8) 11
3F9E (5, 5,10) 17 (5,4,12) 14
3FAU (5, 4,12) 12 (5,4,12) 13
2000 (5, 5,10) 17 (5, 5, 10) 17
3005 (6, 6,16) 24 (6, 6, 16) 24
2EAR (7, 6,20) 26 (5, 6, 22) 21
1AFR (9, 9,20) 55 (8, 9,20) 42

Table 6-1: Comparison of total XY stacks between transformed and not transformed systems.
Transformation was such that the protein's principal axis would be perpendicular to the XY

plane.

In order to address the second problem, that of elongated cells, we introduced a skin value 6
for the bins base, such that 1, = 1. + §, where 13, is the base side's length (Figure 6.2a). This
technique allows the adjustment of the shape of the cells and warp-groups, in the hope that
through investigation the skin value range that produces the highest performance would be

found.

In addition, a migration method can improve the first problem (imbalanced top cells) even
further. After binning the system’s atoms in 2D, a method is used to traverse XY stacks aiming
to make their atom count divisible by 256. This can be done using a two pass algorithm as
follows. Atoms in each XY stack are ordered according to their x co-ordinates. Then each stack
is visited and if its atom count is not divisible by 256, half of the excess atoms are donated to

the next XY stack along the x-axis direction. The second pass is a similar step on the y direction.

Page | 57



Atoms on each XY stack are sorted according to their y co-ordinates. Stacks are traversed again
and if they have any excess atoms they donate them all to the next stack on the y direction.
The two-pass method is used to encourage atom migration in both x and y directions and
preserve the cells aspect ratio as much as possible so that’s why the first pass moves only half
of the excess atoms. At the end of this process, most of the top super-cells on the XY stacks
will be load balanced and the resulting structure will be a 3-dimensional irregular grid as

shown in Figure 6.2b.

An example of how the migration method assists in reducing the amount of top-level load-
imbalanced cells is illustrated in Figure 6.2d, where we can see a reduction of imbalanced cells
from 30 to 6. The only problem on this technique is the fact that the outer most stack row (or
column depending on whether the x or y axis is processed first) will be load imbalanced.
During the design phase of this method, we tried reducing this problem by adding a step
migrating atoms on the affected row, resulting in reducing the amount of imbalanced top cells
to 1. However, this was not translated into a performance gain and in some cases it even

hindered performance so this optimization was cancelled.

Atom migration can take place only as long as the donating super-cell's affected XY side will
remain greater or equal to cut-off after migration (r;, = 1;.). This will ensure that cell pairs on
the list are going to be formed from adjacent XY stacks and avoid generating cell-pairs with
only few atom pair interactions. This technique is effective for large systems (>8,000 atoms)
when there is a large enough skin value (ie. 8 = 1A). Smaller systems have fewer atoms in

stacks and migrating atoms cannot happen safely without violating the r;, = 7, rule.

The reason why this method migrates atoms on a 4-connected stack region and not an 8-
connected one, is purely down to performance constraints. The 8-connected option would
require more steps, hence more migrating and sorting phases and that would add extra

computational overhead on an already rather expensive binning method.

The next step would be to logically sub-divide the resulting cells into 8 load balanced sub-cells
(or warp-groups). This is accomplished, by bisecting cells in z, y and x direction. Z-bisection

would give us two 3D rectangular segments, each further divided in the y direction resulting
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into four segments. The resulting four segments would be bisected in the x direction giving us
the 8 warp-groups. Bisection was implemented by sorting particles according to their x, y and
z co-ordinates. The final pseudocode of the resulting binning technique for the

aforementioned (adjustable) irregular grid decomposition is listed below.

Routine: bin_irregular_grid

1 Rotate system principal axis - perpendicular to XY plane

2 Bin atoms in 2D (XY axis) forming a structure of XY stacks
3. Sort all atoms on their x co-ordinates

4. Traverse each cell and donate half of its excess atoms to
the next adjacent stack on the XY grid on the x direction.

5. Sort all atoms on their y co-ordinates

6. Traverse each cell and donate all of its excess atoms to

the next adjacent stack on the XY grid on the y direction.
7. Sort each XY stack of atoms according to their z-co-ordinate

8. For each 256 atom block on the resulting irregular grid:

9. Construct 8 groups of 32 atoms (no overlap between them).
10. Bisect in Z direction in 2 X 128 atom compartments

11. Bisect each 128 atom compartment 1in 2 X 64 atom

compartments in Y direction

12. Bisect each resulting 64 atom compartment in 2 X 32 atom
compartments in X direction

Where count isthe atom count of each XY stack and excess atoms = count %
256.

The third problem mentioned above is non-trivial and the best work-around it was to filter out (not
fetch from memory) warp-groups of neighbour shells with no interactions during the computational
kernel phase. This saves the overhead of the required global memory fetches for these atom-groups.

Performance results showing the benefit of the techniques explained so far are listed in Section 6.5.
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X
molecule file: 3005.pdb | atoms: 13053 |

[ 0- 0] [ 157- 157] [ 402- 146] [ 242- 242] [ 2- 21 [ 0- 0]

[ 23- 23] [ 439- 183] [ 583- 71] [ 450- 194] [ 58- 58] [ 0- 0]

[ 81— 81] [ 877- 109] [ 667 155] [ 423- 167] [ 275- 19] [ 3— 3]

[ 744- 232] [1601- 65] [1263— 239] [ 283— 27] [ 73— 73] [ 0- 0]

[ 53— 27] [1195- 171] [1182- 158] [ 767- 255] [ 171- 171] [ 0- 0

[ 28- 28] [ 105- 105] [ 140- 140] [ 274- 18] [ 37- 371 [ 0= 0]
R ..............................................................................................................

[ o- 0 [ ©- 0] [25- 0] [25- 0] [ 0- 0l [ o0- 0]

[ 0- 0] [ 256- 0] [ 512- 0] [ 512- 0] [ 0- o1 1 0- 0]

[ o- 0] [768- 0] [ 768- 0] [ 5lz- 0] [ 256- 0] [ 18- 18]

o [ s12- 0] [1792- ©] [1280- O] [ 256~ 0] [ 0O- 0] [ 0- 0]

e
[ 512- 0] [1024- 0] [1024- 0] [ 768~ 0] [ 256- 0] [ 0- 0]
4 [ 197- 197] [ 238- 238] [ 317- 61] [ 482- 226] [ 312- 56] [ 0- 0]
Y
— —_—
X

Figure 6-2A: 2D rectangular grid decomposition. Base width is still equal to 1, and height is
adjusted to achieve load balance. All cells apart from the last one on the z direction hold the
same number of atoms. B: Irregular grid decomposition after atom migration. Super-cells in

green borders constitute of four warp-groups (eight in 3D). Most of the top cells of the stack
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are now load-balanced. C: A distant cell pair with only one atom pair within a cut-off distance.
D: An overview of the XY stacks before and after the atom migration process. The numbers in
brackets represent the amount of atoms contained in each stack and its top cell [stack — top].
Above the dotted line is the structure before migration and below the dotted line is the one
after. Before migration there were 30 top cells imbalanced versus 6 after the atom migration

process.

6.1.2 Cell lists and warp-group interaction bitmaps

After the binning process, an interaction map is formed for the interacting super-cell pairs
using the half shell [48] traversal approach. It is stored in the form of an array holding the
index of cells interacting with the home cell. In addition, for each interacting cell pair a 64 —
bit bitmap (using two 32-bit unsigned integers) is created reflecting the 64 warp-group
interactions that take place for each interacting cell pair. Each warp-group pair's bounding box
distance is calculated and if it is beyond 7, then it is guaranteed that there are no valid atom
pair calculations between the warp-group pair and the bit representing it can be flagged off.
In this way, during force and energy kernels it is possible to determine whether a neighbour
warp-group has interactions with any of the home warp-groups, using a small number of bit-
shift operations. In a similar way it is possible to determine which home-neighbour warp-
group pairs have no interactions, saving 32x32 = 1,024 distance checks per flagged-off warp-

group pair.

Both the interaction map and the bitmap are stored in constant memory as in both cases all
threads in a block will be accessing the same constant memory address. Considering that
constant memory is finite and capped at 64 kB, there will be a point where large molecular
systems will require more than 64 kB to store interaction data. For systems up to 100,000
atoms the constant memory size is adequate for storage. For larger systems, this data can be
stored in global memory and accessed in order for each block and in an LDU (load uniform)

manner for each thread in the block.
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Initially, some of the binning methods were calculated on the host (c++). However, during the
energy minimization experiments the binning code was redesigned to run entirely on the
device in order to exploit the Keppler line’s asynchronous streaming capabilities, as explained
in the next chapter. That meant that less data copies would take place from host to device and
vice versa. In regards to the constant memory allocation. The data was initially stored in global
memory and then transferred to constant using the “cudaMemcpyDeviceToDevice” flag. This
means that the data allocation would take place on the GPU with no need for the host’s
intervention. In Fermi and Keppler, constant memory is a cashed partition of global memory
and explicit allocation is not necessary. However, we believe that explicit allocation is a good
practice as both future programmers and the compiler know that the specific data has been

designed to be used as constant memory.
6.1.3 Force calculations using warp intrinsics

The data structures obtained from the binning process will be used in energy and force
calculation kernels. Force calculation kernels are of special interest as they are using warp
intrinsics (shuffle in CUDA terms) to exchange values in force calculations between warp-
group pairs. The pseudo-code warpPairForces demonstrates how warp-group pair processing
is performed. There are two float3 variables held in registers Fl and F} holding the home and
the neighbour atom's force values. The routine loops over the 32 atoms of the neighbouring
warp-group, summing up force values of each home atom i interacting with neighbour atom
j and storing the result in a temporary float3 E whose scope is within the loop. E is then
subtracted from Fl which after the end of the loop will hold the total force of atom i's

interaction with the 32 atoms of the neighbouring warp-group.

—_—

During each step of the loop, the force values F are also summed for each atom j interacting
with atom i processed by threads with laneld (thread id inside a warp) 0 -> 31 (Figure 6.3),
which belong to the same warp-group. This is done using a butterfly reduction with the shuffle
command [16] at line 9 of the pseudocode for the variable H The reduction sums the force
values of each neighbour atom j interacting with home atom j hosted by threads with lane id
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0 -> 31. At this point all threads in the warp are holding atom j's force vector. Only the thread
whose laneld = j will be eligible to store it though as each thread has only one allocated
register to hold a neighbour atom's force vector. A warp voting instruction is issued to ensure
that the neighbour atom's force vector will be stored by the correct thread. Neighbour atoms
forces are added to global memory using an atomic add instruction straight after the warp-
group pair processing. Then the buffer registers can accommodate the next warp-group's

force vectors and so forth.

0 1 t 31
Fo F1 F: Fa1
Perform
summation
inside warp
s J ¥ 4
S S S S
\< >< laneld = t ? \<
/ /
+ L v "
Fj=0 Fj=0 Fj=S Fj=0

Figure 6-3 Threads with lane 1d 0 -> 31 of a given home warp-group hold their individual
force values for the interaction with the " atom of a neighbour warp-group. Threads have
the same value S (forces sum) after reduction using CUDA's __shfl(). Only one S will be

written after the warp voting, on the thread whose lane id = t.
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routine: warpPairForces

//function parameters
float3 1_7; // forces vector home pointer, held in registers.

float3 1_7; // forces vector neighbour pointer, held in registers
//member variables
float rc2 // cut-off squared

int laneld // index of thread in warp 0-31

1. forj=0to 32

2. Require: rij2 //square distance between atoms i and j
3. Require: excluded

4. float3 fj

5. if rij2 < rc2 && not excluded

6 fj = calculate VDW

7. Fﬁ: Calculate electrostatics

8. _F': += ﬁ]

9. sum ﬁ] across all threads in the warp using __shfl
10. if laneld equals j

11. F; = F;

The term Require refers to variables required for the routine. The variable excluded is a
Boolean value which is true if the pair is not 1-3 connected.
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6.2 Exclusions handling

In MMFF94s 1-2 and 1-3 bonded atom pairs are excluded and for 1-4 bonded atom pairs
electrostatic forces and energy potentials are scaled by 75% [21]. This constitutes a
challenging part for forcefield calculation algorithms in CUDA as the obvious solution of
storing a 2D exclusion matrix would involve frequent random access global memory fetches
and this would affect performance [46][53]. We designed a two-pass solution to this problem:
the first step will take into account 1-2 and 1-3 exclusions and the second step will address

the 1-4 scaling.

The 1-3 exclusion handling approach is designed around the fact that an atom pair is excluded
if and only if its atoms are either directly bonded or bonded to a common atom. Handling 1-
4 scaling can be more efficient by subtracting 25% of the force and energy potentials during
bonded force and energy calculations rather than designing a method to detect 1-4 bonded
atom pairs during computing non-bonded interactions. The above approaches are

implemented in practice as follows.

6.2.1 1-3 exclusions

Our 1-3 exclusions implementation is performed with the aid of a 32 bit unsigned integer
holding information regarding the bonding properties per atom. The first two bits hold the
values 0,1,2 denoting whether the atom is a hydrogen bond donor, acceptor or none. This
information is used to decide which calculation path is going to be taken for the range
parameter values Rijduring the VDW calculations. The second two bits are used to store the
bond order for the atom. Values 0,1,2 represent 1,2 and 3 bonds. The remaining 4X7 = 28 bits
are used to store the index difference between the current atom and each non—-hydrogen
atom it is bonded to. Seven bits are adequate to store index differences in the range of [-64,

63].

PDB and Mol2 files preserve spatial locality amongst bonded atoms generally well, as reported

in [46] and for most files the maximum index difference between two bonded atoms is in the
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range of 7-63. For files whose indexing does not match the above criteria (ie. index difference
between two atoms greater than 63 exists), we perform a one off re-indexing of the file such
that the maximum index difference between a bonded pair is below 64. Protein molecules are
protonated before simulations and the added hydrogens are expected to have index
differences greater than 63 with the atoms they are bonded to. For this reason, atoms with
bond order 0 (meaning one bond) are using the whole 28 bit sequence to store the index
difference with the atom to which they are bonded, which leaves adequate space to store the
index difference in hydrogen bonds. This way we can easily detect whether an atom pair is
directly bonded or bonded to a common atom during distance checks in the main part of the
non-bonded force calculations with just a few bit shift and bit masking operations as

demonstrated with the CUDA code snippet below.

__inline = device  bool excluded(uint iBmp, uint jBmp, uint idx i,
uint idx j, uint maxDiff) {

// bond order for ats i and ]
ushort bo i = (iBmp & 12) >> 2;
ushort bo j (JBmp & 12) >> 2;

//shift out bits holding Donnor-Acceptor flags (not needed here)
iBmp = iBmp >> 4;
JBmp = jBmp >> 4;

//bit masks for atoms 1 and jJ

uint msk i = (bo i == 0) 2 0 : 25;

uint msk j = (bo j == 0) 2 0 : 25;

for (ushort i = 0; i < bo 1 + 1; ++i) {
uint ati = (iBmp << (msk i - 7 * i)) >> msk i;
ati = (ati > 0) ? idx i + maxDiff - ati : idx i;

for (ushort j = 0; j < bo j + 1; ++3) {

uint atj = (jBmp << (msk j - 7 * j)) >> msk j;

atj = (atj > 0) ? idx j + maxDiff - atj : idx j;

//atoms i, J bonded to each other or common atom?

if (ati == atj || ati == idx j || atj == idx 1)
return true;

}
}

return false;
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An easy way to avoid exclusions checking for every single atom pair is by recording the
maximum distance of an atom and its 1-3 bonded pairs for each warp-group. Then for a given
atom pair between two warp-groups, the exclusions checking need only be evaluated if their
distance is less than the minimum of the two warp-groups maximum 1-3 bonded atom-pair
distances. Performance checks showed that avoiding the min operation and just using the max
1-3 distance available for the home warp-group performs slightly faster (2-3%), hence we

adopted that in our code.

The maximum 1-3 distance data-structure is computed by a fast helper kernel using dedicated
data structures for 1-3 bonded pairs. This array can be stored in constant memory, but only
for smaller systems (up to 75,000 atoms) as it will lower the available constant memory
resources for the interaction pair maps. For larger systems it can be stored in global memory

and accessed in a load uniform manner for each warp.

6.3 Bonded forces and 1-4 electrostatic scaling

Bonded forces are a less complex O(N) computation and they can still benefit from being
implemented on the GPGPU. In contrast to the non-bonded part of the computation this
algorithm is not calculation bound but memory bound. Therefore our focus was towards
designing a decomposition scheme that minimizes memory accesses. Our solution came

through a bonded pair decomposition scheme as depicted in Figure 6-4.
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Figure 6-4: Merged structure for bonded interaction. All the bonded atom pairs 0,1 are
collected at first. Then their directly bonded atoms on their left and right are attached in

positions 2-4 and 5-7 accordingly.

A data-structure containing the parameters and indexes of each covalently bonded pair (0, 1)
along with the rest of the atoms directly bonded to the pair (2,3,4,5,6,7) is gathered. For atoms
containing less than four bonds, positions 2-7 can become ghost particles with zero
parameters and hence no effect on the computations. For example if atoms 0,1 are both
carbons connected via a triple bond, atoms 3,4,6 and 7 will be the ghost particles. Using the
above scheme we can calculate bonds, angles, dihedrals and out of plane forces and potentials
as well as scaling the electrostatics in one kernel. Special care has to be taken for angle and
out of plane potentials as the same bonded atom triplets or quadruplets for angle and out of
plane potentials can be found multiple times in a kernel. Parameters for duplicate angle
triplets or out of plane quads need to be set to zero so their existence will not affect accuracy.

Bonds and dihedrals can then only be unique using this scheme.

As mentioned in previous sections, we take advantage of this scheme to perform a 25%
subtraction on the electrostatic potential and forces in order to achieve the overall 75% scaling
for the 1-4 bonded atom pairs. Some issues here require extra attention: if a 1-4 bonded atom
pair belongs to a five member ring, then it is also 1-3 bonded and hence the computation is

excluded. In addition if the 1-4 pair is a member of a 6-atom ring, then it may occur in this
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structure twice and that means that the duplicate should be excluded as shown in Figure 6-5:
An Imidazole ring and a Pyrazine ring. Nitrogen atoms in Imidazole are both 1-3 and 1-4
bonded. Nitrogens in Pyrazine are 1-4 bonded in 2 different dihedral quad structures. Similar
issues occur in tricyclic rings and four member rings. In the case of tricyclic, atoms in positions
two and five in Figure 6-5 may belong to the same atom and for four member rings they may
be bonded. We address all of the above issues by introducing a 32-bit bitmap, which is
included in the 8 atom structure and read in order inside the kernel. A single bit represents
each 1-4 pair inside the structure and the computation result for the electrostatics is set to 0

if its corresponding bit is set.

= S
N / N/

Imidazole Pyrazine

Figure 6-5: An Imidazole ring and a Pyrazine ring. Nitrogen atoms in Imidazole are both 1-3

and 1-4 bonded. Nitrogens in Pyrazine are 1-4 bonded in 2 different dihedral quad structures.

6.4 Minimization

The above algorithms have been incorporated in our drug design application performing
manual real-time docking simulations with the help of a haptic device. The application is using
a steepest descent (SD) minimisation algorithm, which features a high number of autonomous
and fast executing energy minimization steps. This fits well with our application as frequent
force feedback is required for the haptic device to match 1 kHz rates. It should be noted that
the algorithms listed in this report can be applied to molecular dynamics simulations, possibly

using a velocity Verlet method or similar.
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6.5 Performance

In order to run performance benchmarks for our algorithm, we used a set of pdb files spanning
from 1,500 to 65,000 atoms (Table 6-22), which represents the range of systems we aim to
support with our application. The selection criteria for this test set was mainly system size and
the files were chosen such that there would be adequate atom count difference between any
two subsequent pdb files. For these benchmarks, an NVIDIA GTX 680 GPGPU was used
connected to a workstation powered by a quad core Intel Xeon E5335. Our GPGPU code was
compiled with -arch=compute_30 and -use_fast_math compilation flags. The former compiles the
code for GPGPUs with compute capability 3.0 or higher. The latter forces the compiler to use
the fast option for all mathematical operations which in our case affects accuracy on divisions
and exponents (plus other functions not included in our code such as trigonometrical
functions, logarithms etc.), only by a very small factor [16]. As we can see in the accuracy
section that follows, this effect is almost non-noticeable. Some additional information on the

system’s configuration is given in Table 6-3: Additional information on system configuration3.

flename atoms
1UGM.pdb 2,103
3RDD.pdb 2,786
3FS1.pdb 4,100
3F9E.pdb 4,740
3FAU.pdb 5,917
2000.pdb 7,165
3VB3.pdb 9,903
3005.pdb 13,053
2EAR.pdb 15,528
1TBG.pdb 26,927
1AFR.pdb 34,863
4A0B.pdb 47,339
1A8R.pdb 56,008
30J5.pdb 61,418

Table 6-2: The pdb file test set.
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NVIDIA Driver  Cuda Version Ubuntu Version DRAM PCIE Slot
326.8 5 10.04LTS 2GB PCIE x16

Table 6-3: Additional information on system configuration

One of the major differences between our proposed algorithm and that of common cell lists
is the binning process. Preparing the 3-dimensional irregular grid is slightly more
computationally expensive as it requires three sets of O(NLog?N) bitonic sort operations as
follows. One bitonic sort on each XY stack of the grid, sorting particles according to their Z co-
ordinate to form blocks of 256 z-sorted atoms. Block partitioning uses a sequence of two
bitonic sorts (y and x axis) to partition particles into eight warp-groups inside each block. The
sequence takes place using a dedicated thread-block for each super-cell inside a kernel and
the overhead of the extra sorts is minimal due to data re-use. If atom migration is switched
on, then there are two more calls for bitonic sort, sorting particles according to their x and y
co-ordinates, in order to donate atoms to neighbouring columns in the x and y direction.

Processing times for the routines used during binning are listed in Table 6-44.

X/Y/Z-direction Block
Molecule Atoms Bin 2D

Sort Partitioning
3FAU 5,917 10.5 459 48
200P 13,053 18.4 65.2 69.7
2F3M 22,303 25.76 94.18 105.39
AA0B 47,339 42.15 293.162 218.162

Execution times are displayed in microseconds (ps)
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Table 6-4: Performance of binning N atoms into an irregular grid with base 1, = 13.75A.

Sort Z and Block Partitioning are the most expensive routines during the binning process.

In Figure 6-6, we can see a direct comparison of the performance of the two decomposition
methods during short range non-bonded interaction calculations using a cut-off distance of
10.25A and a base length of 13.75 A for our decomposition approach. Both implementations
run the same code snippet for the VDW and electrostatic calculations. In order to make a fair
direct comparison, 1-4 electrostatics were not scaled and both approaches were running a
similar exclusion approach for 1-2 and 1-3 atom pairs. In addition, we disabled the warp-group
bit-map optimization on our approach and ran all versus all atom comparisons between cell

pairs as our benchmark initial approach did not use this optimization.

Regarding potential energy calculations in Figure 6-6a, for systems up to 9,000 atoms there is
a performance gain building gradually up to 2x. For systems ranging between 9,000 and
65,000 atoms we can see a 2x to 3.5x speed up. This outcome was expected as the efficiency
of our approach improves proportionally to the system size. On smaller systems (<9,000
atoms) load balancing is harder to achieve using our approach. That is because the XY stacks
consist of fewer atoms with the top level unbalanced. Our migration technique is not effective
on these sizes for reasons we explained in the algorithm implementation section. That means
that the ratio of load balanced to total cells will be lower to that of larger systems, but still
higher to conventional cell-lists using the regular grid approach. That explains the small
performance gain. For larger systems, the ratio of load balanced cells to total number of cells
gets higher and the performance gains of our space decomposition approach follow suit

reaching 2.5x.

Regarding the force calculations, Figure 6-6b depicts the comparison between the two
approaches. In this benchmark we can see the performance gains from both load balancing
and Newton’s third law using warp intrinsic functions. The curves show almost an extra 1x
speed-up compared to the energy benchmarks (reaching 3.5x in total). This is consistently
evident almost throughout our sample test set and solely due to Newton’s third law

implementation using warp intrinsics.
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Regular vs Irregular grid
Energy calcs at rc=10.25

[ e T
o N OB~ O

Performance (ms)
(o]

0
0 10 20 30 40 50 60 70
Atoms (x1000)
—@— Irregular Grid —@— Regular Grid
Regular vs Irregular grid
Force gradients at r.=10.25

45

40
35
£ 30
(O]
S 25
©
€ 20
[©]
€ 15
(O]
a

10

5

0

0 10 20 30 40 50 60 70

Atoms (x1000)

—@—Irregular Grid —@—Regular Grid

Figure 6-6 a (above) and b (below):. The light blue curves represent the performance of our
decomposition approach in energy and force calculations. The orange curves represent the
performance of conventional cell-list decomposition schemes for energy and force

calculations.
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Figure 6-7 shows the speed-up effect of the warp-group bitmap and atom migration
optimizations that we referred to in this report. In Figure 6-7a (energy potential computations)
we can see that the speed-up effect of minimizing the void distance checks using the warp-
group pair 64 bit bit-map is approximately 20%. The same optimization for the force
calculations is ranging between 25%-35%. This is because in our force gradients
implementation when the warp-group pair bit is set, it also saves 32 atomic force updates to
global memory for the neighbour warp-group’s atoms. Regarding atom migration we can see

a consistent 7-10% improvement for system sizes above 8,000 atoms.
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Potential energy benchmarks
rc=10.25A & rb=13.75A
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Figure 6-7: Benchmarks showing the performance gains for warp-group bitmap and atom
migration techniques on both force and potential energy calculations. The blue curve
represents performance when atom migration is disabled. The grey curve shows performance
when the warp-group interaction bitmap optimization is disabled. The orange curve represents

performance with all optimizations enabled.
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In the description of our algorithm we mentioned our concerns regarding the warp-groups
bounding box elongatedness and its effect in performance especially for smaller cut-off
distances. In order to resolve how it affects performance and determine the best way to
launch our grids, we designed a set of experiments. We recorded the average aspect ratio of
the warp-groups that different base lengths 73, in the range 8.25-17.25 A produce for each pdb
file across our test set. We repeated the procedure for different cut-off distances 7;in the

range 9-12 A, and then we took the average of these readings for each 1, /7, combination.

Our findings are summarised in the curves of the graph in Figure 6-8. The four coloured curves
represent the average aspect ratio for our four different cut-off set-ups. The four curves
behave similarly showing a peak of 5.75-6.00 at approximately 7,= 13.75A. The reason for
small deviations in the curves across different cut-off set-ups is due to atom migration. As
explained previously, during atom migration, stacks donate atoms to xy direction, as long as
1, = 1. Therefore it makes sense that for the same base side lengths and different cut-off

distances, slightly different warp-group dimensions will be produced.

In Figure 6-9 we show performance results for various molecular systems (pdb files) running
force calculations for the short range non-bonded interactions using three different cut-off
set-ups 8, 10 and 12A. From the curves we can see that performance deteriorates when the
base side length approaches the two extrema 8 and 19.25A. This supports our hypothesis that
the cell shape affects performance and that low warp-group aspect ratios deteriorate speed
of execution by a factor ranging from 10-40% compared to the peak. From the curves we can
observe that the performance deterioration towards the two extrema points of the graph is
greater on larger systems whereas on smaller systems is barely evident. That makes sense as
smaller systems are processed by smaller grids (ie. 3RDD: 4x3x6 cells), so a large proportion
of the cell-pair processing comes from cells located in the borders, which might in turn
affecting the outcome of the experiment as border cells are processed by a lesser number of
pair interactions. However, this is not a discouraging factor, as the need for performance gains

is higher for larger system sizes.

Best performance is usually observed in the base length range of 12 - 14.25 A. From the curve

in Figure 6-8 we can see that this range corresponds to the most compact warp-group shapes
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with the highest aspect ratio. However the peak varies in this range for different molecules,
which means that there are other factors there that influence performance apart from cell
compactness and there is no easy way to identify the base-length that produces the peak for
each system. For simplicity reasons we chose to pick a fixed base length of 13.75A for all our
benchmarks in this report and our simulations so far, which stands between the range that
produces the peak performance and the most compact warp-groups for our test set. However,
a better approach could be to write algorithms to detect in the first few thousand energy
minimisation steps which base length produces the peak performance and switch to that for

the rest of the simulation.

Aspect ratio vs Cell Base length (A)
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Figure 6-8: The average warp-group aspect ratio recorded across our test set for different

base dimensions.
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Performance vs Base length
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Figure 6-9 a-c (top to bottom): Performance versus cell base lengths for cut-off distances 8,

10 and 12 A. Peak performance is observed for base dimensions in the range [12 — 14.25 A].

The curve in Figure 6-10 depicts the performance of our algorithm performing 1,000 steepest
descent energy minimization steps calculating the full forcefield (Bonded plus Non-bonded
energy potentials and forces) using the algorithms described in the present chapter at 1. =
10.25A and r, = 13.75A for different molecular systems interacting with a 31- atom ligand in
vacuum. Cell lists are updated every 15 steps as long as there is a conformational update. The
initial aim of our application is to simulate the drug—protein interactions in a haptic driven
simulation environment. The ligand is driven by a haptic device, which in turn returns a force
feedback at a 1,000 Hz rate. The curve in Figure 6-10 clearly depicts a linear scaling . Regarding
the system sizes that we wish to support with our application, the target 1,000 Hz feedback
rate magnitude can be reached for smaller system sizes up to 10,000 atoms. For bigger system
sizes (10,000 — 70,000 atoms) we are aiming to design an interpolation method that will be

able to generate smooth feedback based on the actual results obtained from the energy
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minimization.

Performance for 1000 steps
re=10.25A

Performance (ms)
S

0 10 20 30 40 50 60 70
Atoms (x1000)

Figure 6-10: Performance benchmarks for executing 1000 energy minimization steps at 17.=

10.25A

6.6 Accuracy

In order to benchmark the accuracy of our GPGPU implementation we decided to perform
tests against the CPU version of our code, which uses the Openbabel 2.3 library to perform
MMFF94s computations [31]. Our code at the moment supports single precision only.
Comparing codes in single precision between GPGPU and CPUs using the CPU version as the
frame of reference can lead to false conclusions, due to the rounding of floating point
operations caused by either the structure of the code or the rounding methods used by the
hardware architecture. Although, both architectures support both IEEE and FMA [78], we
decided to compare the CUDA implementation using the FMA rounding option against the

double precision version of our CPU code and investigate rounding deviations from the GPGPU
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side only. During our first attempts, we were getting a significant error due to rounding
coordinates in the CUDA code, as a result of casting them to single precision (floats) and
porting them to the GPGPU. The rounding error was then growing in magnitude as the co-
ordinates are used for all forces and potentials computations. For a fairer comparison, we
decided to run our experiments by casting the CPU code’s co-ordinates to single and then
back to double precision, in order to avoid judging for rounding errors of non-GPGPU code.

The results are listed in Table 6-55 for the systems of our test set. Regarding energy potentials

Ecpu— Egpu
CPU

the metric devg = measures accuracy as a deviation of the GPGPU energy (E¢py)

from the CPU energy value (Ecpy). The results are accurate up to 6 significant Figures.

Regarding force values, a similar metric is used for the x,y,z components of every atom i that

Fgpu;—Fcpu;

belongs in the system devF; = Fepu
i

. Then the average is computed as avg devF; =

YldevF;| . -
%for every x,y,z force component for a system with n atoms. The results are similar and

the average deviation from the CPU force values is consistently accurate to 6 significant
Figures. Finally the maximum deviation from the master CPU value for each force x,y,z

component has been recorded and it is accurate to 4 significant Figures.

Assessing the accuracy of our energy potential and force calculations is a non-trivial task. That
because it is difficult to argue or find information regarding a cut-off value for our metrics that
distinguishes accuracy. Certainly, on our table the lower the magnitude of error the higher the
accuracy is. Regarding the force calculations we can argue that our results are adequate as
the PDB standard for accuracy is 3 decimal places on XYZ atom co-ordinates. Considering our
force calculations guarantee 3 decimal places of accuracy, we can argue that the accuracy of
our calculations is adequate. We could also argue that 4 decimal places of accuracy is the cut-
off Figure to guarantee accuracy as 3 decimal places would start introducing small errors in

our conformations.

Regarding the potential energy accuracy during energy minimizations, 5 decimal places are
also adequate for accuracy. During our experiments energy values on conformation updates
have been inspected for various reasons. We can only argue here that conformational updates
for two different structures whose energy difference was in the band of E-05 would only take

place on lamda values in the range of E-05 to E-06. These lamda values can only affect systems
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that contain at least one atom whose force vector has at least one component with magnitude
similar to ten into the power of two or greater. This in turn means that the atoms are
misplaced anyway as this magnitude represents a high attractive or repulsive force and should
move towards the trajectory of their force vector. Therefore we can argue that our potential
energy accuracy cannot produce any errors during energy minimizations and conformation

updates.

In regards to whether there is a cut-off value for potential energy accuracy, this is a difficult
guestion to answer. The fact is that larger systems tend to produce higher potential energy
values. There will be system sizes beyond which, 5 decimal places could be inadequate to
qguantify with certainty the binding of a ligand against a protein cavity. Perhaps a more robust
way to quantify energy differences on such large systems could be to isolate the potential
energy produced from the atoms around a certain radius of the ligand. However this issue is
something to consider on future better performing versions of the software as the present
one can only simulate systems up to 30,000 atoms. For these systems five decimal places of
accuracy are enough to quantify the binding energy differences of good and bad binding

protein-ligand structures.

filename  devE avg_devFx avg devFy avg devFz max _devFx max_devFy max_devFz
3005.pdb 1.3E-05 3.116E-06 3.468E-06 3.247E-06 2.328E-04 2.908E-04 2.106E-04
2EAR.pdb  1.0E-06 3.274E-06 3.259E-06 3.234E-06 2.698E-04 2.675E-04 3.095E-04
1TBG.pdb  1.0E-06 3.370E-06 3.385E-06 3.454E-06 3.217E-04 3.619E-04 2.615E-04
1AFR.pdb  3.0E-06 3.251E-06 7.514E-06 2.869E-06 3.099E-04 3.246E-04 2.882E-04
4AOB.pdb 2.0E-06  3.226E-06  4.969E-06  2.812E-06 3.198E-04 3.355E-04 2.950E-04
1A8R.pdb  4.0E-06 3.202E-06 2.424E-06 2.756E-06 3.298E-04 3.464E-04 3.018E-04
30J5.pdb 2.0E-06 3.177E-06 1.212E-06 2.699E-06 3.397E-04 3.574E-04 3.086E-04

Table 6-5: Accuracy tests for various molecules across our test set.

6.7 Comparison to other implementations

Looking at the above performance results it can be argued that code able to run faster force
and energy calculation results has been reported [41, 51]. However, it should be noted that

these algorithms use force-fields that incorporate Lennard-Jones or Exp-6 based potentials
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for the non-bonded part of their force-fields. Our force-field of choice uses a special “buffered
14-7”, which is more accurate but also more computationally expensive as Halgren 1995
proved [16]. For this reason, our short-range non-bonded forces code needs considerably
more floating point operations, including exponents and some branching compared to other
published samples. To be more specific our code for Van Der Waals forces requires 40 FLOPS
plus an exponent in the case of a warp-group of hydrogen bond donors, 34 FLOPS in the case
of hydrogen bond donor-acceptor pairs and 42 FLOPS plus an exponent in the case of a warp-
group that contains at least one of each of the above donor or acceptor groups as
demonstrated in the following code snippet. Codes that use the L-J potential require 9-10
FLOPs maximum as in the code snipet reported by Stone in [46]. Knowing that algorithms for
short range non-bonded forces are characterised as compute-bound, it makes sense to take
into consideration the FLOP requirements of each code, when we perform performance

comparisons.

__inline__ __device__ void forceCalc(NBAtom_t *sAt_b, NBAtom_t *sAt_h, float3 *fHome, float3 *fOct, uint
oct, uint laneld, float rc2, float diff1, uint maxDiff) {

#pragma unroll 4
for (uinti=0;i<32;i++) {

float3 Fij;
uint position = (oct << 5) +i;

//a-b

Fij.x = sAt_h->x - sAt_b[position].x;

Fij.y = sAt_h->y - sAt_b[position].y;

Fij.z = sAt_h->z - sAt_b[position].z;

float rab2 = Fij.x * Fij.x + Fij.y * Fij.y + Fij.z * Fij.z;
uint bDA = sAt_b[position].DAE;

const boolinclude = (rab2 < rc2) && ((rab2 > diff1) | | (!excluded(sAt_h->DAE, bDA, sAt_h->idx,
sAt_b[position].idx, maxDiff)));

if (linclude)
Fij = make_float3(0.0f, 0.0f, 0.0f);

else {

bDA = bDA & 3;
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//normalize force vector
float r_ij = rsqrtf(rab2);
Fij.x *=r_ij;

Fij.y *=r_ij;

Fij.z *=r_ij;

[ e Van Der Waals

float epsilon = (sAt_b[position].GxA * sAt_h->GxA) / (sAt_b[position].vSqrt + sAt_h->vSqrt);

float R_ij = (sAt_b[position].R + sAt_h->R);

//hydrogen bond donor?

if (I(bDA == 1 || (sAt_h->DAE & 3) == 1)) {
const float g_AB = (sAt_b[position].R - sAt_h->R) / R_ij;
const float g AB2=g AB *g_AB;
R_ij *= (1.2 - 0.2f * expf(-12.0f * g_AB2));

}

float R_AB6 = R_ij * R_ij * R_ij;
R_ABG6 *= R_AB6;
epsilon /= (R_AB6);

// hydrogen bond acceptor-donor pair

if (bDA * (sAt_h->DAE & 3) == 2) {
epsilon *=0.5f;
// R_AB is scaled to 0.8 for D-A interactions - epsilon is not scaled.
R_ij *= 0.8f;

}

r_ij=1.0f/ r_ij;

const float g =r_ij / R_ij;

floatgb=q *q*q;

a6 *=q6;

const float q7 =6 * q;

const float erep = 1.07f / (q + 0.07f);

float erep7 = erep * erep * erep;

erep7 *=erep7 * erep;

const float term = q7 + 0.12f;

const float term2 = term * term;

const float eattr = (-7.84f * g6) / term2 + ((-7.84f / term) + 14.0f) / (q + 0.07f);
float dE = (epsilon / R_ij) * erep7 * eattr;

/l

r_ij += 0.05f;

rab2 =r_ij * r_ij;

dE -= ((sAt_b[position].cq * sAt_h->cq) / rab2);
//

Fij.x *=dE;
Fij.y *=dE;
Fij.z *=dE;

//gradient vector
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fHome->x -= Fij.x;
fHome->y -= Fij.y;
fHome->z -= Fij.z;

}
for (uint ii = 16; ii >= 1; ii /= 2) {
Fij.x += __shfl_xor(Fij.x, ii, 32);

Fij.y += __shfl_xor(Fij.y, ii, 32);
Fij.z += __shfl_xor(Fij.z, ii, 32);

}

if (laneld == i)
*fOct = Fij;

The present chapter has provided a technical comparison between our improved cell-list
based approach to the conventional regular grid one. We proved that load balancing in cell-
list based algorithms is feasible and it improves performance by at least 2Xx for systems
containing more than 7000 atoms. We also provided a high performance solution to the
Newton's third law issue that cell-list based algorithms faced by using warp-intrinsics available

in Kepler devices, which improved performance by an additional 1X.

Comparing this approach to others is a little less trivial. The Verlet-lists are a popular algorithm
performing well in clusters but not GPGPUs. This is because it relies solely on GPU’s global
memory, requesting a vast amount of random memory accesses with a proportional rate of
cache memory misses. We initially experimented comparing cell-list and Verlet-list
approaches and the latter performed 6-8X slower than the former (see section 5.3). In
addition, previous research has shown that Cell-lists perform better in shared memory
architectures for their ability to group nearby atoms quite well and use on-chip memory

sources such as registers and shared memory for processing [75].

Anderson reported a factor of 4X improved performance for Verlet lists by sorting the system

atoms using Hilbert curves and achieving higher L2 cache hits during computations [41].
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However, re-indexing atoms to achieve spatial coherence means that the algorithm cannot
rely on the consecutive indexing along the polymer chain anymore and that will eliminate the
option of exploiting index differences for more efficient exclusions handling. Finally, the above
implementation and others published more recently, could not take advantage of Newton’s
third law as this would generate a vast amount of atomic global memory writes and a resulting

slowdown of execution [39 - 40, 79 - 80].

Eastman and Pande reported an approach of assigning atoms into blocks of 32 along the
polymer chain of proteins. Then, they performed pair comparisons on groups whose bounding
boxes are less than the cut-off apart [51]. This method uses Newton's third law, solves load
balancing problems, and exploits fast on-chip memory during group-pair comparisons by
loading the atom blocks into shared memory first, similar to ours. However it lacks control of
the shape of the warp-groups formed compared to ours as it relies on the indexing of pdb
files. As we proved in this chapter work-groups aspect ratio affects performance (Figure 6-9)
whereas the method in comparison cannot guarantee an efficient aspect ratio. Moreover,
our further grouping of eight adjacent warp-groups in a super-cell results in reduced global

memory fetches over their method in comparison, as it enhances data reuse.

6.8 Summary

In this chapter, we presented a new cell-list based algorithm for non-bonded interactions
whose performance scales linearly with system size. This algorithm is fine-tuned for GPGPUs
and the Kepler architecture. It improves parallelism using an irregular grid approach and
boosts performance using intra-warp functions, exchanging forces values between registers.
Bonded forces calculations are also designed in a way to improve the overall efficiency of the
algorithm by accommodating part of the exclusions handling for the non-bonded interactions.
The forthcoming optimization plans included stream-processing based approaches in order to
improve our step minimization algorithm's efficiency. Implementation details and

performance results are listed in the following chapter.
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Chapter 7

Exploring potential energy surfaces using
hybrid meta-heuristics and CUDA-Streams

In this chapter, a hybrid meta-heuristics method of energy minimization and conformational
sampling is provided. The proposed method has been designed to suit real-time molecular
docking simulations, where the time-lapse between two successive ligand poses is relatively
short (33ms in our case). In these situations the energy minimization problem becomes
increasingly complex and chaotic. Its complexity stems from the need to calculate a series of
computationally intensive functions to model atom conformations in space (force-field). The
problem becomes chaotic (3N-dimensional) during the search of optimal solutions that will
drive the system to more accurate conformations and lower energy states in a potential
energy landscape. An adequate solution of this problem needs a method that is able to bring
the protein-ligand system into successive stable conformational states. In this report we
propose a method that solves this problem on a visual docking simulation software for small
to medium size fragments (<30,000 atoms). Our proposed method is tuned to take advantage
of recent advances in GPGPU computing with asynchronous kernel execution. The present
chapter has been submitted for publication in the Royal Society for Chemistry’s Faraday

Discussion special issue 169: “Molecular Simulations and Visualization”.
7.1 |Initial experiments

Given that each minimization cycle must be performed within a 33ms timeframe, the initial
plan was to find a local minimum and exit searching in the hope that the minimum would
correspond to a stable molecular conformation. For this reason we used a simple steepest
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descent (SD) step minimization approach. Its characteristic is that it takes only downbhill

moves, which results in converging into the first local minimum it finds [81-83].

The conformation sampling that we obtained from this method was slow and sometimes
erroneous and it only helped us understand some additional aspects of the problem we were
trying to solve. An example conformation produced by the algorithm is presented in Figure
7-1 and it is obvious that the atom configurations are wrong. The 6 atoms in the aromatic ring
should be perfectly co-planar, but in this instance they are not. The test system was relatively
small (<2,500) atoms and there were no performance restrictions. The SD algorithm was
converging before t expired and the system would quickly optimize its configuration, within a
few minimization cycles, up to a certain erroneous extent as demonstrated in Figure 7-1.
Further improvements on the system’s configuration would be either really slow or not
evident and the conformation in the pocket area would always be non-ideal. As a first thought
one could suspect that this would be an accuracy problem on the force-field calculations.
However, probing the ligand into a different area, inducing further conformational updates,
would quickly restore the previously distorted area and cause the same problems in the area

of latest interaction.

From the above, we ascertained that, for the type of protein ligand simulations performed by
our application, finding the first potential energy minimum on the molecular energy
landscape would not guarantee a stable conformation around the area of interaction between
the two molecules. This might be because the rest of the protein could be well minimized and
no scalar value A for the Equation 3-15 would exist, able to move all atoms in Euclidean space
such that the system would reach a lower energy value. What is also worth noting is that
keeping the ligand stalled in its position in order to allow the system to slowly recover would
not always work either. This gave the impression that every new minimization cycle would
pick up from almost where it left off and a new minimum could not be found. As a result
further conformational updates would either not be performed or they would be too few with
a very small lambda value (i.e. 1 = 107°), which would have a quite insignificant impact on

the system’s configuration.

The first thought to solve this problem was to perform a “shuffle” technique. This means that
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at the beginning of each minimization cycle and before searching for a local minimum, all
atoms in the system would move along their force vector trajectories using a certain A value.
Experimenting and fine-tuning with different A values showed that a good value can be found
in the 1073 magnitude. In order to avoid big atom moves, a constraint was placed for the
maximum value of displacement. This technique improved the situation, but raised concerns

for the overall quality of the system’s conformation as a result of the frequent shuffling.

Another possibility was to introduce an uphill move approach. That is accepting a random
small uphill step as a transient state to recover the system from a local minimum and explore
the potential energy landscapes for other valleys in the hope that a lower energy value can
be found. This technique improved the local restoration defect evident in previous
experiments. The potential energy surface (PES) exploration would not always result in a lower
energy configuration, but the configurations visualized within the interaction area between
the two molecules improved significantly. This is due to the fact that exploring the energy
landscape this way, triggered a higher number of conformation updates. This in turn caused
the atoms within the interaction area to move along their force vectors a number of times
and eventually form a stable conformation, with correct bond lengths and angles on both

molecules.

Figure 7-1: A snapshot of a ligand (left) approaching a protein (right) using a greedy local
search approach. The algorithm is continuously improving the state of the system after the
initial interaction of the two molecules, but settling at erroneous configurations. The atoms of

the aromatic ring are not co-planar as they should be.
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7.2 Improved Method

The initial experiments, lead us to reformulate our objectives to find a method able to search
the potential energy landscape for a good minimum and also restore the area of interaction
between the two molecules in a single minimization cycle. The new algorithm should be able
to evaluate candidate solutions in an efficient manner. It should also ensure that within each
minimization cycle there would be enough conformational updates to restore the area of

interaction.

The new implementation uses an evolutionary algorithm to generate a set of candidate
solutions to the problem (system conformations). The candidates are evaluated by calculating
their potential energy asynchronously using CUDA streams, instead of calculating them
serially back to back, which allows for a degree of performance gain as we demonstrate in our
results section. The potential energy value of each candidate is used as an indicator of fitness.
The fit candidate is the one whose potential energy value is lower than the latest recorded
potential energy minimum (old minimum). If no child solution has a value lower than the old
minimum, then the fittest child is chosen with criteria set by our uphill move strategy. The
fittest child becomes the parent of the new solutions generation and the system’s
configuration is updated adopting its co-ordinates. Finally after the conformational update,
the force vectors for the newly updated system are calculated. The process of mutation,
candidates’ evaluation, choice of fittest, conformational update and calculation of force

gradients is called a move.

7.3 Fast Surface Exploration and Induced Local Restoration

Initially our algorithm will find its first valley and aim downhill until it reaches a minimum.
When it does, the parent solution will be unable to generate a population with a candidate
solution whose energy value is less than the old minimum. At this point a strategy for escaping
the local minima is needed, which would be to immediately try a different valley in hope of
finding a better minimum and induce stable conformational updates at the same time. The
perturbation strategy of ILS (Iterated Local Search) is ideal for quick jumping from one valley

to another by accepting an uphill move when the system lies at a local minima [84 - 85]. This
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is achieved by choosing a scalar value A able to perform a shuffle operation in a similar way

as we explained before.

ILS initially gave promising results, however, there were two main problems with it. The first
is that it would occasionally show a visual pulsating effect, where atoms would seem to
perform a fast oscillation. That was because the time-lapse of the algorithm would expire
immediately after a perturbation and the system configuration exiting the algorithm would
not be optimal. This problem could be easily solved with a ghost particles buffer holding atom
co-ordinates after a perturbation move. The post-perturbation generations would inherit and
update co-ordinates on the ghost buffer up until a new minimum is reached lowest to the one
associated with the real co-ordinates array. This solved the pulsating visual effect, but
initiated the second problem that we referred to where ILS would often find a good minimum
within the first few moves, and the background search following the last visited minimum
would not be able to find a better solution. This would lead into the aforementioned problems

of too few conformational updates and hence inefficient minimization cycles.

Guided local search is ideal for inducing updates on the principle that the old minimum is
being raised by a small percentage at every solution evaluation (penalty function) [67].
Eventually, the algorithm can escape from the well, but will spend some time in it waiting for
its penalty function to reach the appropriate levels. Experiments showed that this method
underperformed compared to ILS for our simulations as shown in the results section (Section

7.5).

Our final solution came as an amalgamation of the two approaches. That is, we introduced a
penalty value p and an energy function E, which is updated at every iteration (energy
evaluation) j, as described in Equation 7-1. The penalty value is usually in the magnitude range

of 0.001 - 0.01.

EG+1)=E{) 1+p)

Equation 7-1 the penalty function

This means that on every iteration the old minimum bar is slightly raised so that it can allow
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for an update of the system’s real co-ordinates. This modification aims to keep the fast track
of valley exploration that ILS can offer and introduce enhanced conformational update
abilities to our approach. We will refer to this algorithm as IGLS (Iterated Guided Local Search).
In essence this algorithm achieves the following goals. It accepts updates for energy values
close to a recently visited lowest energy configuration, for subsequent solution populations.
Failing this, when subsequent solution generations do not produce an update, it prevents the
algorithm from wasting too many generations without performing an update, which in turn
benefits the visual effect of our application as well as the interacting molecules configuration,

especially within their interaction zone.

The implementation of the above technique is performed by using two energy variables, the
current_lowest and the global_lowest. Every time a new minimum is reached, both the
current_lowest and the global_lowest take its value as demonstrated in pseudocode 7-1.
When a local minimum is reached and the new generation cannot provide a candidate with a
lower energy value, perturbation takes place for a new well to be explored and the current
lowest takes the corresponding energy value. While in the new valley, the global_lowest value
is raised at every energy evaluation by a small factor (i.e. 0.5%), while the current_lowest

keeps reaching lower values, until we reach the new local minimum.

Now at this point there are two possible outcomes. The first is that the new local minimum
(current_lowest), is lower than the global lowest and a conformation update is being
performed. Otherwise, a new perturbation move is being performed. However, the
probability of finding a new minimum this way is directly proportional to the number of
energy evaluations performed. This way, a bigger ratio of contributing moves compared to the
total number of moves is achieved, which in turn assists into solving the local restoration
problem. Figure 7-2 illustrates how each of the four methods in comparison performs in a
single minimization circle comprising of 8 steps for a protein already minimized using the SD

approach..
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Figure 7-2 a-d. A schematic overview figure of the four algorithms compared in this report,
depicting how a calculation circle of t=33ms is subdivided into 8 steps of a group of energy
kernel evaluation streams for the 1UGM.pdb protein file. The system is already minimized with
a local search method prior to running the experiment. The blue curve depicts the

current_lowest and the red one the global lowest.

This algorithm allows for quick exploration of molecular energy surfaces, by encouraging more
conformational updates than a purely ILS strategy would perform. The visual result is
improved by a large factor as there is rapid local restoration on the impact area. However, the
fact that this hybrid approach induces extra conformational updates generates an important
ambiguity. That is whether there is a systematic sacrifice of the final energy value due to the
uphill move strategy adopted. This was investigated and discussed in section 7.7 .
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7.4 Improvements

The above algorithm can be improved by adding a stopping criterion for the guided local
search phase. That is to stop inducing conformational updates after a certain condition has
succeeded. For example if the max force value is close to the mean or an adequate number
of conformational updates has been performed. This can help us choose the conformation
with the energy minimum that we want, such as the lowest we came across after local
restoration was achieved, rather than the last visited one. This improvement is only
worthwhile for smaller system sizes (<10,000 atoms), where each minimization cycle can

include a number of population evaluations.
7.4.1 Asynchronous execution

The performance of the above algorithm is important for our application as the potential
energy landscape exploration is constrained to run for a small finite time-lapse t. The more
moves we are able to perform in the landscape the better the quality of the resulting solution
will be. In addition, the more parent solutions the algorithm generates, the higher the
probability of discovering lower energy minimums. From the above, we understand that
performance is vital for our simulations. Hence we designed our algorithm to take advantage
of asynchronous kernel execution using CUDA-streams. On the current generation of graphics
cards (GK110), we can evaluate fit of a whole generation of solutions asynchronously and
almost in parallel for smaller protein-ligand systems. This means that the first energy
evaluation kernel hides the latency of the remaining s-1 evaluation kernels scheduled to run
asynchronously in s streams within a single move (a population evaluation series, followed by
a force calculation for the fittest child), where s<=16. However, if the conditions mentioned in
the background section are not met, then the number of asynchronous streams running

concurrently at any time drops as demonstrated in Figure 7-3.

In addition, we can hide the latency of binning the atoms into a 3D irregular grid for the cell-
list generation under the force gradients kernel. This means that binning overheads are no-
longer an issue and binning can be safely performed at every single move, with a small skin

value &' that caters for the biggest displacement that we anticipate during each move (i.e.
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Cutoff_list = cut-off + §')

The present stream-based solution is simple in its implementation and its only challenge is
synchronisation between different streams or stream groups in the code. The performance
gain using this approach comes on the assumption that on average the stream approach will
need less time for child solutions evaluations. In order to exemplify this let’s assume for the
example case of Figure 7-3 that we run a 3 step simulation using both approaches. If the serial
approach finds a minimum on the second, fifth and eighth energy kernel evaluation, then the
serial version will have computed 14 energy kernels (both bonded and non-bonded) in total.
The stream approach will have evaluated 42 energy kernels, but will have done so in the time
needed to evaluate 9. In addition, the stream approach will pick the best child solution each
time, whereas the serial one will choose the first solution to reach a lower energy value. The
stream solution can potentially be extended in multiple GPUs especially on the arrival of the
Pascal line, where GPU-GPU communication will be achieved directly (and faster) between
them and not via a PCle bus. The multi-GPU option has not been explored in the present

implementation as we lacked the equipment.

step, cudaNBSimulatio...

Iuaaﬁmﬂ.m Imaﬁmu kE(step, cuda... | [ [ kF

Figure 7-3 Visual profiling data for a move. Asynchronous execution of s streams where the
total block and shared memory conditions are not met. Overlapping is divided into stream
groups that meet the hardware’s block and shared memory restrictions. The kE blocks
represent the non-bonded energy kernels, the dispersed blue blocks are the bonded energy
potentials the kF block is the non-bonded forces kernel. The bonded forces and the 3D grid

binning kernels are represented by the small blocks below kF.
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Pseudo code 7-1: Hybrid algorithm asynchronous for n streams

//get initial potential energy and force vectors
Energy nonBonded<<<stream 0>>>

Energy bonded<<< stream 1>>>

ForceGradients nonBonded<<< stream 2>>>

ForceGradients bonded<<< stream 3>>>

//explore various molecular energy landscapes till time expires
while (time left)

//generate solution population for different lambda values

for i = 0 -> n

mutate<<<stream(i)>>> (i, lambdal[i])

//calculate energy for each child asynchronously
for i = 0 -> n
Energy nb <<< stream(2i+1)>>>((1i, step[i])
Energy b <<< stream(2i)>>> (21, step[i])
//the fittest child becomes the parent solution
Choose fittest solution
//calculate the force gradients
ForceGradients nb<<< stream (1)>>>
ForceGradients b<<< stream (2)>>>
//prepare the 3D irregular grid for the parent

BinToGrid<<< stream (3)>>>

7.5 Results and discussion

The improved hybrid algorithm’s performance results are appended in the following section.
The visual result was better as the reviewers of the code could observe that the aberrant
structures produced were more accurate than any other previous versions. In order to assess
the aberrant conformations, a project student, Gaia Pasqualetto performed qualitative and
guantitative studies on the code’s ability to simulate protein-ligand interactions for her final

year project and a summary of her outcomes is included in Chapter 8.
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7.6 Performance

The performance of our CUDA-streams implemented hybrid approach has been benchmarked
against a synchronous execution version of the above algorithm. In order to perform a fair
comparison, benchmarks were scheduled such that both versions would perform the exact
same amount of energy and force gradient kernel calls. The results are listed in Figure 7-4 a-d
for 4—16 concurrent streams. From the Figures we can observe that there are performance
gains fluctuating from 1.2X - 4X depending solely on the system size and number of streams.
Regarding shared memory usage, both our non-bonded energy and force gradient kernels are
using 9Kb whereas the bonded energy and forces kernels do not use shared memory. This
means that our concurrent execution on energy evaluations at any time is restricted to five as

a sixth one would exceed the 48kB shared memory per SM limit.

Our algorithm achieves five concurrent energy evaluations for system sizes up to 10,000
atoms. This is because the energy kernels called, divide execution into blocks of 256 threads,
where each thread is associated with one atom. This equates into a maximum of 40 blocks
per stream, which is good enough to saturate the limit of five concurrent streams given from
shared memory restrictions (5 x 40 < 208 concurrent blocks limit). Beyond that limit, the
number of blocks needed to process the energy kernels rises above 208 and that means that
CUDA cannot handle the total number of blocks scheduled for asynchronous executions,
hence concurrency efficiency starts deteriorating. Finally for systems above 50,000 atoms,
concurrency almost vanishes on the energy kernels. This is because the number of blocks
needed to process one system alone is close to the architecture’s limit. However, concurrency
in the forces-binning stream pair still holds as our binning method has been designed using a
series of fast executing kernels able to run using only a few blocks. In addition, bonded forces
kernels require fewer thread blocks and hence can contribute towards some asynchronous
execution too. This is why even in the case of large systems (50,000 — 65,000 atoms), there is

still a small performance gain.
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Hyper-Q vs Synchronous
12-Streams (c)
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Figure 7-4 a-d Performance benchmarks between concurrent and serial stream versions. The
same amount of energy kernels (1000) and Force gradient kernels (1000/nstreams) are

evaluated from both approaches in each graph.
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Tables 7-1 a and b demonstrate a comparison of the elapsed time of execution for the
calculations demonstrated in Figure 7-4 between CUDA-synchronous and CUDA-asynchronous
executions. In addition, it appends execution times for the serial implementation on a
workstation equipped with a Tesla K-20 GPGPU card and Intel Xeon E5-4620 CPUs running at

2.20 GHz. The serial execution uses the OpenBabel library for the MMFF94s calculations.

4-Streams (a)

Proteins K atoms synchronous hyper-Q Serial

1UGM.pdb 2.103 1.8 0.87 127.5
3RDD.pdb 2.786 1.976 1.115 235
3F9E.pdb 4.74 2.508 1.378 647.5
3FAU.pdb 5.917 3.126 1.677 1017.5
2000.pdb 7.165 3.074 1.662 1447.5
3005.pdb 13.053 4.216 2.368 7430
2EAR.pdb 15.528 414 2.826 7450
1TBG.pdb 26.927 5.46 4.74 32277.5

12-Streams (b)

Protein K atoms synchronous hyper-Q serial

1UGM.pdb 2.103 1.272 0.393 89.16667
3RDD.pdb 2.786 1.502 0.511 165
3F9E.pdb 4.74 1.862 0.74 455.8333
3FAU.pdb 5.917 2.307 0.868 719.1667
2000.pdb 7.165 2.248 0.941 1015.833
3005.pdb 13.053 3.022 1.486 5870
2EAR.pdb 15.528 2.999 1.8 5423.333
1TBG.pdb 26.927 3.559 3.062 25385.83

Table 7-1 a-b:Results for CUDA-synchronous, CUDA-asynchronous and serial executions.
Page | 100



7.7 Heuristic ability of our approach

Itis important to also evaluate our approach in respect to its heuristic abilities. In other words,
its ability to reach good local minima, considering the fact that we encourage it to take a
number of guided uphill moves at the start. For this reason a set of experiments was designed
to show the fluctuation of energy values using different algorithmic approaches including our
hybrid method. In order to perform this evaluation, we ran four protein-ligand simulations
using a different protein each time. For each simulation, the ligand was induced into a protein
pocket and the resulting conformation was saved. The above simulations were performed
using the simple local search method that fails to restore the proteins structure well. This way,
the different approaches would be evaluated against our problem situation which is to find a
good minimum, from an erroneous initial structure in a minimum amount of minimization

steps.

In the simulation results presented in Figure 7-5 a and ¢ we can see that the hybrid method
and the ILS clearly outperform the GLS and the greedy approach. It is also interesting to see
that in all four Figures the curves of the hybrid and ILS methods having a similar trend, with
the hybrid one following a more turbulent trajectory due to its GLS element. Figure 7-5 b, is
an interesting case as we can see that ILS is trapped at a minimum from which it cannot
escape. From Table 7-22 we can see that for the experiment with 3F9E.pdb, ILS could only
reach four minima and hence perform four updates. This explains why this method cannot
perform well on our simulations, as this case can happen quite often. Four updates are usually
not enough to bring the system back to a stable conformation nor to restore the conformation
of the interaction area between the two molecules. Our method on the other hand, using the
GLS element, can escape such a minimum and carries on exploring different energy
landscapes, finding new minimums and updating the system into better conformations.
Regarding GLS on its own, as we can see it always underperforms compared to the hybrid
method and it only performs better than the ILS at the 3F9E experiment, where ILS gets stuck

at a well.

Looking at the results in Figure 7-5 and Table 7-22, it is evident that the hybrid approach is the

most suitable for the type of simulations that our software performs for its ability to find a
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very good potential energy minimum by inducing more conformational updates than it would
following a pure ILS strategy. Also, the GLS element in it does not really mean that the resulting
global minimum would be lower than the corresponding ILS nor the opposite. The hybrid
method seems promising in solving other optimization problems too, due to its ability to
change over different energy landscapes and evaluate lots of different minima at a small

temporary potential energy cost.

Hybrid ILS GLS Greedy
1UGM.pdb 27 24 20 15
3VB3.pdb 26 20 22 11
3F9E.pdb 18 4 17 5
3005.pdb 26 20 18 10

Table 7-2: Number of conformational updates for each experiment for the four different

algorithmic approaches.
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Figure 7-5 a-d: Comparison of the 4 different approaches (lower equals better score).
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7.8 Summary

In this chapter we demonstrated a hybrid evolutionary strategy of exploring molecular energy
landscapes in a small elapsed time period. Our algorithm has been tuned to take advantage
of the extra parallelism that asynchronous CUDA streams can provide. We explained the
reasons behind opting for energy landscape exploration rather than adopting a simple local
search method exiting at the first local minimum. The proposed method works well for
conformational sampling in situations where the exit criterion for the meta-heuristic is the

expiration of a very small time-lapse.
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Chapter 8

Discussion of Results

8.1 Evaluation of results

Looking at the results reported in the previous two chapters, we will now evaluate to what
extent the objectives set in Section 0 are met. To be more specific, regarding objective number

one:

“Design fast and accurate algorithms for the computation of MMFF94s force-field, able to

complete a series of energy and force calculation functions within the 33 ms time-limit.”

The related results are presented in Figure 6-7. The performance results of our irregular grid
approach on the previous generation card GTX 680 (the current equivalent is GTX 780) is able
to perform force calculations in less than 4 ms and energy calculations in less than 2.5 ms for
a system containing 30 000 atoms. This stands at the top of the size range of systems we aim

to simulate with Zodiac.
Regarding the second objective:

“Design efficient energy minimization algorithms able to generate accurate conformations for

systems up to 30,000 atoms within the 33Hz requirement.”

The results are presented in Table 8-1. This table shows how many steps can be performed
during a 33ms period (minimization cycle), which is the time distance between two successive
protein-ligand poses, using the IGLS technique developed in this project. This table shows that
the number of moves is a factor of how many concurrent streams are employed and system
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size. The number of steps completed per 33ms period could be treated as an index to how the

user can interact with the software.

For smaller systems of up to 10,000 atoms, the software is able to complete 4-5 minimization
cycles within a 33ms period, which in turn ensures frequent conformation updating and
protein-ligand interactions are mapped on the screen in interactive time. However for bigger
systems, the user will have to use the haptic slower. This means that a stable conformation

can be achieved in 2-4 minimization cycles depending on the system size.

At this point it makes sense to wonder how many minimization circles needed for a system in
order to ensure quality conformations during a simulation. An answer can be attempted by
looking at Figure 7-5 and proteins 1UGM and 3F9E at the specific configuration and pose
against the BTN_Model ligand that these results were recorded. In this figure, we can observe
that our algorithm (as well as the other approaches tested) can reach a good energy minimum

in significantly fewer steps for the 3F9E system.

This explains that there is not an absolute cut-off steps value to guarantee conformation
quality as the number of steps needed for a good conformation varies between systems and
protein-ligand poses. It is also evident that the smaller the system, the more minimization
steps we can complete per minimization circle and the faster our algorithm can find an optimal
conformation. However, we can here give a cut-off value of minimization steps needed in
order to be able to provide simulations and this value is one. We can also suggest that with
the current state of the software, the user needs to be able to understand how fast the
algorithm discovers stable conformations for the protein-ligand system and adjust the speed

at which he/she moves the ligand inside the pocket accordingly.

The above results have been recorded with a Tesla k20 card. This means that similar
performance can only be achieved with cards supporting Hyper-Q such as the GTX 780 (GK
110 chipset). For older generation cards such as the GTX 680, the results will be slightly inferior

as asynchronous kernel execution is not as efficient in GK104 chipsets.
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pdb file Atoms Streams: 4 Streams: 8 Streams: 12

1UGM.pdb 2,103 11 11 9
3RDD.pdb 2,786 11 9 7
3FS1.pdb 4,100 9 7 5
3F9E.pdb 4,740 9 6 5
3FAU.pdb 5,917 6 5 4
2000.pdb 7,165 6 4 3
3VB3.pdb 9,903 5 4 3
3005.pdb 13,053 4 3 2
2EAR.pdb 15,5628 3 3 2
1TBG.pdb 26,927 2 2 1

Table 8-1: Number of minimisation cycles completed per 33ms period.

As to whether the second objective has been addressed by the outcomes of this thesis, the
answer cannot be a simple yes or a no. We can conclude that for systems up to 10,000 atoms,
the application performs well, able to serve 160-200 steps per second and produce good
quality updates at the rate of 33Hz. For bigger systems, the application needs the help of the

user and requires a slightly slower rate of ligand move in the protein cavity.

However, this is an answer from a programmer’s point of view. In reality, this application
should be used such that the experimenter/user would try to stabilize the ligand against a
protein cavity, which would give him/her time to observe the reactions and give time to
understand the direction of the forces felt. Taking this into consideration, the software is

usable for systems in the top size range.

Another factor that needs to be taken into consideration is the constant evolution of graphics
cards. Future generations are expected to have greater FLOP capabilities. Moreover, it is
always possible that new cards can accommodate more warp schedulers enhancing
parallelism, benefiting more from high multiprocessor occupancies or even improve Hyper-Q
performance by allowing more concurrent thread blocks to be processed. The reported
algorithms have been designed with the above facts in mind. The vast majority of

computations are floating point operations, with integer arithmetic avoided as much as
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possible, so that future generation cards would achieve better results according to NVIDIA's
published FLOPS road map (Figure 1-1). The reason that integer arithmetic is avoided is
because it has slower speed of execution, which is 32 multiply instructions or 160
add/subtract ones compared to 192 of 32-bit FLOPS for both multiplications and

additions/subtractions.

Regarding our research hypothesis:

“Is it possible to design algorithms for the latest CUDA architecture that would perform such
that an HPLD simulation could run in Zodiac with accurate conformational updates modelled
with the MMFF94s force-field for systems up to 30,000 atoms, matching the visual rendering
rate of 33 Hz?”

We can provide a positive answer. The application works as a fully flexible HPLD application
and there are already researchers in the molecular modelling lab working on it with systems
up to 16,000 atoms on GTX 680 cards. In addition, there has been another researcher that
used the software with the previous version of the minimization algorithm (Steepest

Descents ) in the past with smaller system sizes.

8.2 Limitations of our approach

There are some limitations on the efficiency of our application at the moment. The first and
foremost is that it does not take into consideration the long range electrostatics. As explained
in Chapter 3, the cut-off convention provides a very close approximation for the VDW
interactions, but regarding the electrostatics the approximation is less accurate and it is
recommended for MD applications to include the long range electrostatics for more accurate

conformation sampling.

8.3 Future research recommendations

In future releases, the application could benefit from the implementation of long range
electrostatics. A CUDA algorithm can be designed using the PME method similar to that in

Harvey 2009 [25]. The resulting CUDA algorithm can be used as a stream together with the
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rest of the concurrent streams inside the hybrid energy minimization algorithm. Considering
that this algorithm’s complexity is O(NLogN) it would be expected that a full force range
version (short plus long range) should be able to run well on smaller system sizes. The benefit
of such an approach would be enhanced conformational quality and hence enhanced clarity

on research outcomes.

A further improvement of the designed methodology would be to improve the graphical
representation of the software. At the moment the only graphics mode that can be supported
with the flexible approach is that of a wire model. However, space filling models (CPK) [86]
are superior for protein cavity visualization and give a better understanding of the molecular
system’s space to the human eye. CPK surfaces can be rendered using marching cubes
algorithms[87-89]. Marching cubes can also be implemented in CUDA showing very good
performance gains in parallel compared to serial versions as in Johanson 2006 [90]. Again this
algorithm can be programmed as a CUDA stream running concurrently in the same stream
group as the Forces kernels. Its impact on performance will be minimal, as it will only need to
be present once every interaction cycle together and returned from the minimization method

along with the final co-ordinates.

Another improvement, would be the use of multiple GPGPUs for the simulation of larger
systems. This would mean that on the concurrent energy kernels evaluation, kernels can be
assigned to multiple GPGPUs, which in turn can improve the performance of population
evaluation of the evolutionary part of the algorithm. That can also have substantial benefits
on a potential version with a PME kernel for long range electrostatics. The forthcoming line of
GPGPUs (Pascal), is expected to provide faster GPU-GPU communication on multi-GPU

systems (5x faster than the present PCle data transfer speed).

The software can further improve by implementing an improved force feedback technique on
the haptic for the flexible mode. As a matter of fact the force feedback available now is at a
rate of 33Hz. However, a better force experience is fed to the user at 1 kHz updates. A sensible
solution would be to interpolate feedback between two cycles and feed it back to the user.
However implementing this in real time would require intelligent and fast heuristics in order

to guess the magnitude and direction of the feedback on the next circle. An easy way to
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implement this could be to delay force feedback for 33Hz, which is going to be unnoticeable
by the user because this time-lapse is small enough for the human to detect. This way

feedback between two minimization cycles can be easily interpolated and fed back to the user.

8.4 Practical applications of the algorithms developed in this project

The code developed for the purposes of this project has been incorporated in Zodiac user
interface and several medicinal chemistry students have tried to produce some docking
results in order to evaluate the efficiency and accuracy of this project’s efforts. The first
attempts were not very promising as they were carried out before the evolutionary approach
was developed and in non-complete versions of the force-field calculations. The last efforts
made by project student Gaia Pasqualetto who used this code for her project thesis, were very
promising and submitted for publication along with the outcomes of Chapter 7 in the Faraday
Discussion May 2014 issue. The code produced very accurate aberrant conformations for
protein-ligand systems requiring a small degree of flexibility during the interaction of a ligand
in the protein’s cavity. For systems requiring a very high degree of flexibility during binding
such as the HIV reverse transcriptase case, the approach shown a good potential by producing
aberrant conformations on the right trajectory, but the need for producing a larger set of
candidate conformations was evident to produce a perfect end result. The evaluation was
carried out on a GTX680 GPU card, which does not support the Hyper-Q functionality and we
believe that the results could have been substantially better on a GK110 chip GPU such as the
GTX780. A more detailed report on the outcomes of the algorithm evaluation composed by

G. Pasqualetto can be found in Appendix 1 at the end of this thesis.

8.5 Summary

This chapter provides a critical evaluation of our aims and objectives set in Section 1.7 as well
as an answer to our research question. Our first objective was met as demonstrated from
results provided in Chapter 6. The second objective was met as demonstrated with the
performance quality of our application being higher for smaller systems. The application is
also able to model systems in the range of 15,000 -30,000 atoms, but conformations need 2-

3 minimization cycles to converge into a stable state. We also listed recommendations for
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future research. An implementation of PME for the long range electrostatic forces as an
asynchronous stream has been proposed in order to provide higher conformation sampling
accuracy to the application at the expense of a lower system size range. In addition the
graphical display can be enhanced by CPK surface rendering with the aid of a well-designed
Cuda-parallel implementation of the marching cubes algorithm. This implementation can run

as an asynchronous stream on every update together with the forces and binning kernels.
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Chapter 9

Conclusions

9.1 Algorithm usability in Zodiac

This thesis describes the efforts made within a three year period to transform Zodiac, from a
rigid protein, semi-flexible ligand HPLD application to a fully-flexible simulation. The
conformation sampling that Zodiac is able to perform and the delta energy results it is capable
of producing are a very close approximation to what MMFF94s can model. The level of
approximation depends on the cut-off distance set by the user. Another parameter that the
user can adjust is the cells aspect ratio by setting the initial cell base width to the desired value
as explained in section 6.1.1. Our recommended optimum value is 13.75 Angstrom, but the
user is free to test the system with different values and find the best one for each candidate
system. Finally, the user can select the desired number of asynchronous streams that he/she
wants for each simulation, in the range of 4-16. Four streams are the minimum value in order
to cover a good range of values for lambda and 16 is the maximum number of streams that

our conformations sampling algorithm can run asynchronously.
9.2 Contributions

Our contribution to knowledge from this thesis can be summarized as follows. In Chapter 6
we provide a solution for the non-bonded interactions computations that maintains the
benefits of coarse grained kernel executions. That is, high occupancy levels and fewer thread
blocks, which enables us to run more computational kernels asynchronously in GK110
chipsets. Our algorithms contributed a solution to the load balancing problem, by providing

the structure of an irregular grid with adjustable cell aspect ratios. The irregular grid is
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designed from a rectangular grid of adjustable base lengths and variable height, followed by
a step of atom migration, where atoms move along the X and Y axis such that each column of

the grid can be divided in cells of 256 atoms.

The adjustable cell aspect ratios were designed on the hypothesis that the more compact the
blocks and hence the warp-groups aspect ratios, the more efficient the computational kernels
become and that is proved by the results shown in Figure 6-8 and Figure 6-9. This observation
was generated after reviewing the Eastman and Pande 2010 article [51], where the authors
were decomposing the molecules space in an irregular grid of randomly shaped cells of 32
atoms with potential overlap, grouping atoms sequentially by their index in the pdb file. Our
hypothesis then was whether a new approach, performing 32x32 atom calculations in a more

spatially efficient way could be designed.

Our algorithm improves the above approach, by providing a methodology that can perform
the same calculation with fewer 32x32 atom interactions, resulting from the improved spatial
efficiency. In addition, our approach can exploit the benefits of higher occupancies, better
Hyper-Q utilization and enhanced memory efficiency through our nested list approach

stemming from cell decomposition into eight non-overlapping 32 atom groups.

A further contribution to the existing literature is our combined way of providing the bonded
forces calculations and 1-4 atom exclusions. Our decomposition approach is able to calculate
with a single kernel all the bonded force interactions in addition to subtracting the 1-4
electrostatic potential. This is very important as it becomes easier to hide these kernels’
latency with asynchronous stream execution. In addition, this approach is the most memory
efficient one to our knowledge up to the time of submission of this thesis, as it only loads

atom co-ordinates and parameters once for each bonded pair in positions 0-1 of Figure 6-4.

An additional contribution of our approach is the exclusions handling method. Our
implementation avoids the construction of NxN matrices for exclusion handling as in
Friedrichs 2009 [53]. This is achieved by subtracting the scaled 1-4 electrostatics in the bonded
forces kernels and using a bitmap for each atom storing information of its hydrogen bonding

properties as well as the index difference of each non-hydrogen bonded atoms. This way, with
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only a few bit-shift and bit-mask operations we identify whether two atoms are bonded to
each other or a common atom, hence they are excluded. This way we provide a memory
efficient method for 1-2 and 1-3 excluded atom pair identification as well as 1-4 atom pairs
electrostatic scaling. The above contributions have been published in an article titled “GPU
Accelerated Molecular Mechanics Computations” published in the Journal of Computational

Chemistry [77].

The algorithm described in Chapter 7 for conformation sampling has several contributions to
existing literature. First and foremost it is the first occurrence of the combination of the ILS
and GLS methods into a single hybrid approach. Our results proved that the IGLS performs
similarly to ILS and more efficiently than GLS. Its main characteristic is that it arrives at a
similar result to ILS, but with the ability to sample results from valleys shallower to the last
visited deepest ones. This helped our application to provide faster restoration to the impact
of inducing the ligand near a protein. Probing the ligand near the protein, results in high forces
between the two molecules, which in turn have to be simulated ideally within one
minimization cycle. Wasting algorithmic steps in order to find the optimum value results in
slow restoration and thus future ligand movements are based on erroneous conformation
around the impact zone. The IGLS approach provided a very robust solution to this problem.
The above contributions have been submitted for submission at the Faraday Discussion 169:

“Molecular Simulations and Visualization”

Finally, our application is the first to perform fully flexible real time HPLD up to the point of
this thesis submission and to the best of our knowledge. Our recent research with the state
of the art of HPLD applications provided in Ricci et.al [7], proves that Zodiac is the first
application able to provide real time HPLD with fully flexible conformation sampling with cut-

off accuracy. Also, our GPGPU implementation is the first to utilize the MMFF94s force-field.

9.3 Concluding remarks

This document listed methodologies and algorithms designed for the CUDA architecture for
the solution of the problem of real-time conformation sampling during protein simulations in

Zodiac. These algorithms are able to run on Kepler generation cards only and perform best on
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GK110 chipsets and beyond as they support the Hyper-Q feature, which our conformational
sampling algorithm is designed to take advantage. These algorithms are available in the new
version of Zodiac, which is available from the molecular modelling lab of Cardiff School of

Pharmacy and Pharmaceutical Sciences.
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Appendix 1

The work presented in this appendix is courtesy of Gaia Pasqualetto and describes her

efforts evaluating the practical application of the algorithms presented in this thesis.

Algorithm practical applications

To further validate and assess our system we have also carried out a set of simulations that
aimed to mimic the actual use of the software. To evaluate the induced fit effect, we have
selected a series of known biological target for which a series of crystal structures are

available (table 1) as apo form and co-crystallised with one or more ligands.
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Protein PDB Ligand Name
1HCLY -
1Gz818 MBP
1Jvp1e LIG
2R3F%0 SC8

CDK2 2R3H%0 SCE
2R31%° SCF
2R3R%0 6SC
4EK4%1 1CK
4FKL?? CK2
1NB422 -
3UPH% 0C1

HCV NS58 3U40% 08E
3GNW? XNC
4)02% 1JE
4)062%° 1)G
4))u?’ 1MB
1RTJ?8 -

HIV RT

1VRT?® NVP Fragment

Table 1. Structures used in the haptic-driven simulations

Our approach was to extract a ligand from a specific complex, then place it in the apo form
of the corresponding protein using the haptic-driven simulator. The results obtained from
the docking were then compared with the structure of the complex from which the ligand
was extracted, measuring both the root mean square deviation (RMSD) of the ligand and

the protein residues of the binding pocket. Furthermore, the pocket residues were also
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compared with the corresponding amino acids in the apo form and their RMSD calculated.
In this manner, we could estimate of how much the protein had reacted to the ligand
binding and if the induced-fit effect was comparable to the actual crystallographic structure

of the complex.

The protein we have chosen presents three scenarios: CDK2 presents a fairly rigid binding
pocket and only few minor side chain movements are visible between the apo form and
the ligand/protein complexes; the two chosen allosteric pockets of the HCV NS5b present
a more evident induced-fit effect and, in some cases, there is also a clear protein backbone
movement; the HIV reverse transcriptase presents one of the most dramatic effects of
induced-fit, as the binding pocket of the non nucleoside reverse transcriptase inhibitors
(NNRTIs) is not even visible in the apo form. All the simulation were performed on a 2009
guadcore MacPro, running Ubuntu 12.04, equipped with a NVIDIA Geforce 680 and a
Phantom Omni haptic device. As we consider the idea of developing a natural and intuitive
interface at the core of our software development efforts, we have asked an undergraduate

Medicinal Chemistry student to perform the simulations.
2.6.1 CDK2 results.

For CDK2 we have run 8 simulations, one for each ligand reported in table 1. In terms of
ligand placement, the haptic-driven simulation performed relatively well; the ligand RMSD
values ranged between 0.89A and 2.23A. The binding site residues RMSD also produced
some very interesting results: Figure 1 shows two example of the results obtained and it is
possible to see how the protein has moved in the simulation. Interestingly, the biggest
movements are seen on the residues that are indeed the most flexible when the apo and

the complex structures are compared.
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Figure 1: Snapshot of two ligands manually docked in the CDK2 binding site (a: SCF; b: CK2)
as examples of residue movements. The apo structure represented in grey; the crystallised
complex represented in cyan; the structure obtained from the simulation is indicated in

orange.

Figure 2 shows how the different residues have changed and if their movement is toward
the conformation present in the complex structure. In this case, it is possible to see a more
complex scenario, where some residues move towards the corresponding position in the
complex structure (indicated in green) and others that move away from that ideal position

(indicated in red).
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Figure 2. Visual representation of how CDK2 residues had moved during the simulation.

The percentage of structures (8 structures — 100%) whose residue RMSD- cryst /haptic.

(referred as RMSD c/h in the legend) is lower than correspondent residue RMSD-apo/cryst.

(referred as RMSD a/c) are shown in green while higher ones are shown in red.

However, we should point out that the intervals parameters represented in Figure 2 are

not absolute values but they represent how far away the haptic generated structure is to

the crystallised structure, relative to the the RMSD of the crystallised structure vs the apo

structure. As most of the residues virtually retain the same conformation in all the different

structures, their actual absolute RMSD-apo/cryst. values are very small. Hence, any minor,

favourable or unfavourable, movement generated from the haptic-driven simulation will

be flag out as significant. An exception is represented by Lys33, which moves considerably

from the apo structure to the 1JVP crystal structure (RMSD of 2.45A). In the haptic driven
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simulation, the residue move toward the position present in the crystal giving a RMSD-
haptic/cryst. of 1.75A (figure 3). In this case it is clearly evident the induced-fit effect

generated by the hapic-driven ligand placement.

Figure 3: Snapshot of ligand “LIG” in the CDK2 binding site. Lys33 moves toward the
position present in the crystallized structure. The apo structure represented in grey; the
crystallised complex represented in cyan; the structure obtained from the simulation is

indicated in orange.

2.6.2 HCV NS5b results.

The two pockets selected for this target (Palm and Thumb-2) present a more obvious
induced-fit effect, compared to what has been observed with CDK2. Indeed, the results
obtained are more informative (figure 4) as significant conformational changes from the
apo structure to both the haptic generated structure and the crystal complex are evident

for a good number of residues.
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Figure 4: Visual representation of how HCV NS5B residues had moved during the
simulation. The percentage of structures whose residue RMSD- cryst /haptic. (referred as
RMSD c/h in the legend) is lower than correspondent residue RMSD-apo/cryst. (referred as

RMSD a/c) are shown in green while higher ones are shown in red.

The data presented in figure 4 suggests that there is a general tendency of the binding site
residues to move in the direction of their respective complex conformation. In one specific
case, even a relevant backbone movement is present (figure 5). Interestingly, some
residues move away from the ideal final position and this seems to be happening for two
reasons: the placement of specific ligands is not accurate (the ligands RMSD range between
1.10A and 3.10A); some specific residues should undergo a considerable conformational

change and the algorithm is not yet able to explore the full rotamer space available to the
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Figure 5. Snapshot of 1JE in the HCV NS5b binding pocket. His475 backbone movement is
highlighted. The apo structure represented in grey; the crystallised complex represented in

cyan; the structure obtained from the simulation is indicated in purple.

2.6.3 HIV RT results.

The HIV reverse transcriptase presents a very different scenario: the NNRTIs pocket is not
structured or visible in the apo form. The extent of the induced fit effect, in this case, is
really remarkable. The haptic-driven placement results are shown in figure 6 and they
clearly demonstrate the complexity of these simulations. The user can push the ligand

inside the pocket and all the RMSD values shows a positive move.
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Figure 6. Snapshot of ligand NVP in the HIV RT. The apo structure represented in grey; the
crystallised complex represented in green; the structure obtained from the simulation is

indicated in blue.

To a certain extent, this is not surprising, considering how different the apo structure and
the crystal complex are. Indeed, we can see that although the haptic-driven simulation is
able to induce a substantial rearrangement in the protein to accommodate the ligand in a
reasonable manner, the extent of the protein structural change upon ligand binding in
reality is so extensive that, once again, the algorithm cannot explore efficiently such
conformational space.
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3. Conclusions

In this paper we have reported a hybrid evolutionary strategy for exploring molecular
energy landscapes in a small elapsed time period. Our algorithm was tuned to take
advantage of the extra parallelism that Cuda streams can provide as the forcefield used
was also coded in Cuda. The proposed method works well for conformational sampling in
situations where the exit criterion for the meta-heuristic is the expiration of a very small
time-lapse. We have also tested the algorithm in a possible actual usage scenario, by
implementing it in our haptic-driven molecular modelling simulator. Using a series of
crystal structures, we have examined how the fully flexible haptic-driven simulation was
able to mimic an induced-fit effect. Overall, we believe the results are positive and very
encouraging. The haptic-driven simulations occur in a very natural and intuitive fashion.
Furthermore, the results obtained shows that we can induce meaningful and appropriate
conformational changes into a protein by placing a ligand using an interactive, real time
approach. The data obtained also shows some limitations of this method. Although the
algorithm performs extremely well, it is possibly too conservative when sampling the
conformational space of the protein residues. This should not be considered always a
negative aspect, as, for example, this more cautious exploration would preserve some
important structural information in a binding pocket in those cases when the user applies
a strong force to the ligand through the haptic device. However, as in the case of HIV RT,
sometime the changes are indeed dramatic and they would require an algorithm able to
sample a considerably bigger conformational space to obtain an accurate prediction. In
conclusion, the results presented are very promising and we are now taking the next step
in the validation of this approach, by comparing the haptic-driven simulator to other

commercial flexible docking packages.
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