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Note on the shape circularity measure method based on

radial moments

Jovǐsa Žunić ∗ Kaoru Hirota† Paul L. Rosin‡

Abstract

In this note we show that the, so called, circularity measures based on radial mo-
ments, as defined in [1], are a particular case of the circularity measures introduced by
[2].

Keywords: Shape, Circularity measure, Hu moment invariants, Pattern recognition,
Image processing.

1 Introduction

A family of circularity measures Cβ(S) was introduced recently in [2]. More precisely, if S
denotes a planar shape, µ0,0(S) is the area of S, and β is a number from the interval (−1,∞),
then the quantities Cβ(S) indicate/measure how much the considered shape S differs from
a planar circular disc, of the same area as the given shape S. The formal definition, of the
circularity measures Cβ(S), is as follows.

Definition 1 Let S be a given shape whose centroid coincides with the origin and a real β

such that −1 < β and β 6= 0. Then the circularity measure Cβ(S) is defined as

Cβ(S) =























µ0,0(S)
β+1

(β + 1)πβ
∫∫

S
(x2 + y2)βdxdy

, β > 0

(β + 1)πβ
∫∫

S
(x2 + y2)βdxdy

µ0,0(S)β+1
, β ∈ (−1, 0).
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∗J. Žunić is with the Department of Computer Science, University of Exeter, Exeter EX4 4QF, U.K.
e-mail: J.Zunic@ex.ac.uk

†K. Hirota is with the Graduate School of Science and Engineering, Tokyo Institute of Technology, G3-49,
4259 Nagatsuta, Modori-ku, Yokohama 226-8502, Japan.
e-mail: hirota@hrt.dis.titech.ac.jp

‡P.L. Rosin is with Cardiff University, School of Computer Science, Cardiff CF24 3AA, Wales, U.K.
e-mail: Paul.Rosin@cs.cf.ac.uk

1



The formula in (1) is given in Cartesian coordinates. If the polar coordinate system is
involved (instead of the Cartesian coordinate system):

x = r · cosθ, y = r · sin θ (the Jacobian for this coordinate transformation is |J | = r)

then
∫ ∫

S

(x2 + y2)β dx dy =

∫

θ

∫

r

((r · cosθ)2 + (r · sin θ)2)β · r dr dθ =

∫

θ

∫

r

r2β+1 dr dθ

and consequently (1) becomes

Cβ(S) =




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µ0,0(S)
β+1

(β + 1)πβ
∫

θ

∫

r
r2β+1 dr dθ

, β > 0

(β + 1)πβ
∫

θ

∫

r
r2β+1 dr dθ

µ0,0(S)β+1
, β ∈ (−1, 0).

(2)

Now, by setting β = p
2
, the first expression (for β > 0) in (2) becomes

Cβ(S) = Cp/2(S) =

2

p+2
· π−p/2 · µ0,0(S)

p+2

2

∫

θ

∫

r
rp+1 dr dθ

. (3)

Circularity measures based on radial moments, introduced in [1], are denoted by ζp(D)
and formally defined, by the expression in (9) from [1], as

ζp(D) =

2

p+2
· π−p/2 · [u0(D)]

p+2

2

up(D)
. (4)

Further, [1] uses the following denotation

• up(D) =

∫ ∫

D

(r − r̄)pds, with ds = r · dr · dθ r̄ =
√

x2
c + y2c , and

(xc, yc) =

(

∫∫

D
x ds

∫∫

D
ds

,

∫∫

D
y ds

∫∫

D
ds

)

being the centroid of the considered shape D.

(Notice: u0(D) = µ0,0(D) and up(D) =
∫

θ

∫

r
rp+1drdθ, if r̄ = 0, i.e. (xc, yc) = (0, 0).)

Finally, since ζp(D) is translation invariant (see Theorem 2 from [1]) we can set r̄ = 0 (i.e
we can assume that the shape D is translated such that its gravity center (xc, yc) coincides
with the origin (0, 0)), and deduce that (for p > 0)

ζp(D) = Cp/2(D). (5)

2



In other words, the formula in (4) is equivalent to the formula in (3), and further, shape
circularity measures ζp(D) based on radial moments, from [1], are particular subcases of the
family of circularity measures Cβ(S), introduced by [2] (measures from [2] are defined for
β = p

2
negative, as well).

It is worth mentioning that the identity in (5) is evident in the experimental results from
Table 1 in [1], which includes Cp(D) denoted by Hp(D). Although there is a systematic
offset between ζp(D) and Cp/2(D), possibly caused by digitization and numerical errors, the
results for ζp=2(D) are similar to Cp=1(D), such that their ratios are all the same to within
3 significant places. Likewise, the ratios of ζp=4(D) and Cp=2(D) are the same to within 3
significant places.
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