
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/61825/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Ji, Zhongping, Sun, Xianfang , Li, Shi and Wang, Yigang 2014. Real-time bas-relief generation from depth-
and-normal maps on GPU. Computer Graphics Forum 33 (5) , pp. 75-83. 10.1111/cgf.12433

Publishers page: http://dx.doi.org/10.1111/cgf.12433

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Eurographics Symposium on Geometry Processing 2014
Thomas Funkhouser and Shi-Min Hu
(Guest Editors)

Volume 33 (2014), Number 5

Real-time Bas-Relief Generation from Depth-and-Normal
Maps on GPU

Zhongping Ji1, Xianfang Sun2, Shi Li3, and Yigang Wang3†

1 School of Computer Science, Hangzhou Dianzi University, China
2 School of Computer Science and Informatics, Cardiff University, UK

3 School of Media and Design, Hangzhou Dianzi University, China

Abstract
To design a bas-relief from a 3D scene is an inherently interactive task in many scenarios. The user normally needs to
get instant feedback to select a proper viewpoint. However, current methods are too slow to facilitate this interaction. This
paper proposes a two-scale bas-relief modeling method, which is computationally efficient and easy to produce different
styles of bas-reliefs. The input 3D scene is first rendered into two textures, one recording the depth information and the other
recording the normal information. The depth map is then compressed to produce a base surface with level-of-depth, and
the normal map is used to extract local details with two different schemes. One scheme provides certain freedom to design
bas-reliefs with different visual appearances, and the other provides a control over the level of detail. Finally, the local
feature details are added into the base surface to produce the final result. Our approach allows for real-time computation
due to its implementation on graphics hardware. Experiments with a wide range of 3D models and scenes show that our
approach can effectively generate digital bas-reliefs in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Modeling packages

1. Introduction

Recently, the problem of automatic generation of bas-reliefs from
3D input scenes has received great attention. The key ingredient
of this procedure is compressing the height field sampled from the
input scenes with detailed geometric features preserved. The pre-
vious work has solved this problem to some extent. Most of them
focused on designing sophisticated non-linear depth compression
algorithms which induces very high computational cost. However
in many scenarios, designing a bas-relief from a 3D scene is an
inherently interactive task. Given a 3D scene, it requires tedious
work for users to obtain aesthetically pleasing bas-reliefs. The
user interactively selects a view angle of the 3D scene, as well as
tweaks the appropriate parameter values by trial, then waits for
the result. The computational cost of the algorithm which con-
verts the 3D model to the bas-relief is the key factor to real-time
bas-relief designing. In this paper, we design the converting pro-
cedure exploiting the parallel character of the modern graphics
hardware, so that real-time design is made possible.

† Corresponding: wangyg@cad.zju.edu.cn

Contributions We develop a simple and fast modeling system
for generating visually plausible bas-reliefs from 3D input scenes.
We make three main improvements and contributions:

•We have developed a two-scale approach for converting 3D
scenes to bas-reliefs. The input 3D scene is decomposed into
two layers encoding the level-of-depth and detailed features re-
spectively. Users can edit each layer separately and combine
them to form a seamless bas-relief.
•Our approach allows for changing the styles of bas-relief by

editing the depth or normal maps in real time. The feedback is
instant, which is quite useful for obtaining a series of bas-reliefs
with visually different appearances for a given 3D scene.
•Our system provides a real-time artistic tool for bas-relief mod-

eling. The user only needs to focus on specifying a small num-
ber of control parameters.

2. Related Work

We briefly summarize state-of-the-art approaches in this sec-
tion. Cignoni et al. [CMS97] treated bas-relief generation as a
problem of compressing the depth of a 3D scene onto a view

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

plane. Their principle rule is treating the 3D scene as a height
field from the point of view of the camera, which is followed
by the subsequent literature and our approach. An advantage of
this treatment is that we can easily borrow some approaches de-
veloped for tone mapping of High Dynamic Range (HDR) im-
ages [FLW02]. For bas-reliefs, depths take place of the inten-
sities in HDR image. Weyrich et al. [WDB∗07] proposed an
HDR-based approach for constructing digital bas-reliefs from 3D
scenes. They did not compress the depths directly, but nonlinearly
compress the gradient magnitude to remove depth discontinuities.
Kerber et al. [KBS07] proposed a feature preserving approach
combined with linear rescaling and unsharp masking of gradi-
ent magnitude. An improvement on this approach is proposed
in [Ker07], which rescales the gradient nonlinearly, Using four
parameters, one can steer the compression ratio and the amount
of details to be perceivable in the output. Kerber et al. [KTZ∗09]
also presented a filtering approach which preserves curvature ex-
trema during the compression process. Song et al. [SBS07] gen-
erated bas-reliefs on the discrete differential coordinate domain,
combining the concepts of mesh saliency, and shape exaggera-
tion. Bian and Hu [BH11] proposed an approach based on gradi-
ent compression and Laplacian sharpening, which produces bas-
reliefs with well-preserved details. Inspired by the relations be-
tween histogram equalization and bas-relief generation, Sun et
al. [SRML09] presented an approach base on adaptive histogram
equalization, which provides a new algorithm on bas-relief gen-
eration. This approach produces high quality bas-relief and pre-
serves surface features well. Li et al. [LWYM12] presented a two-
scale approach for bas-relief estimation from a single image, aim-
ing at restoring brick and stone relief from their rubbing images
in a visually plausible manner. Wu et al. [WMR∗13] developed an
approach of producing bas-reliefs from human face images. They
first created a bas-relief image from a human face image, and then
used shape-from-shading (SfS) approach on the bas-relief image
to construct a corresponding bas-relief. They trained and used a
neural network to map human face images to bas-relief images,
and applied image relighting technique to generate relit human
face images for bas-relief reconstruction. Sýkora et al. presented
an interactive approach for generating bas-relief sculptures with
global illumination renderings of hand-drawn characters using a
set of annotations [SKv∗14]. Recently, Ji et al. [JMS14] presented
a novel modeling technique for creating bas-reliefs in normal do-
main. The predominant feature of their approach is that it is able
to produce different styles of bas-reliefs and permits the design of
bas-reliefs in normal image space rather than in object space.

The previous work from 3D scenes to bas-reliefs can produce
high-quality or acceptable results. As explained above, most of
them failed to create bas-reliefs in real time. The computational
cost of the algorithm which converts the 3D model to the bas-
relief is the crucial factor of real-time bas-relief designing. Zhang
et al. [ZZZY13] presented a different algorithm based on detail
extraction and geometric compression in object space. Their ap-
proach reduced the computational cost comparing with traditional
work on CPU. Kerber et al. [KTB∗10] proposed two algorithms
on bas-relief generation in real time. They implemented the full

algorithm on graphics hardware and achieved real-time perfor-
mance.

All the above approaches were built upon the given 3D input
scenes. However, only one part of the input 3D scene are ex-
ploited, such as the depth, the geometry or the normal. Based on
the merits of existing techniques, we develop a bas-relief mod-
eling technique with intuitive stylizing at interactive rates in this
paper, making full use of the depth and normal information from
the input 3D scenes.

3. Bas-Reliefs from Depth-and-Normal

3.1. Algorithm Overview

The fundamental problems in bas-relief modeling from 3D
scenes include preserving the appearance for orthogonal views
and squashing the depth gaps [WDB∗07]. The previous work
[WDB∗07, Ker07, KTZ∗09, SRML09, BH11, JMS14] has solved
them to some extent. However, traditional 3D model-based bas-
relief modeling algorithms are often limited to high computa-
tional cost or monotonic styles. To improve this work in these
directions, we decompose bas-relief generation into two scales:

•extracting a base surface from the depth map using a simple
non-linear compression and a box filter;
• restoring fine details from the normal map, with a few intuitive

artistically relevant parameters to control the styles.

The involved operators can be implemented in parallel, making
our algorithm an ideal candidate for acceleration via GPU imple-
mentation. The algorithmic pipeline of our technique is similar
to the one of deferred shading technique in the field of 3D com-
puter graphics. We design an OpenGL application to implement
the full algorithmic pipeline which is composed of two stages, in-
cluding decomposition and compression. Figure 1 demonstrates
the flowchart of our algorithm, illustrating two stages and how
the GPU pipeline is used for real-time bas-reliefs generation. The
shading step provides an instant interactive feedback to the user.
The user can interactively manipulate the parameters using GUI
widgets. The parameters can be dynamically selected, allowing
for instant comparison between different styles. This type of in-
teractive feedback is very useful for rapid visual evaluation.

The parallel nature of our algorithm is highly suitable to ex-
ploit the properties of GPU. Based on GPU, we developed a high-
performance algorithm at interactive rates. The whole framework
is conceptually simple, intuitive and easy to implement and use.
An example is shown in Figure 2. Due to decomposing the 3D
model to two layers, we obtained a bunny bas-relief model with
the relative importance of high frequency details enhanced.

3.2. Scene Input and Decomposition

Given a 3D input scene, we do not start from the depth buffer of
the scene like the previous work. From 3D models we can obtain
the depth information as well as other important geometric infor-
mation, such as normals. Most of previous work only exploit the

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

Figure 1: The flowchart of our bas-reliefs generation on the GPU.

(a) (b) (c)

Figure 2: An example generated using our bas-reliefs modeling
tool. (a) The original depth and normal maps; (b) the final output
texture encoding the bas-relief; (c) the resulting bas-relief surface.

depth map, and the recent work [JMS14] only exploits the normal
map. We focus on generating bas-reliefs by combining the depth
map with the normal map. At the first stage of our pipeline, we
decompose the 3D input scene into two items, a depth map and a
normal map with different purposes respectively.

•Such a depth map can be provided by the depth buffer of an
OpenGL application by default.
•The normal map is not provided by the OpenGL pipeline by de-

fault. We use OpenGL Shading Language to render the normal
map in OpenGL context. In this paper, the normal vector is al-
ways described in camera space, and the z components of visible
normals in camera space are always positive.

We render the involved two maps into G-buffers at one pass on
the GPU like the deferred shading technique. As the result at this
stage, we obtain two textures containing the depth map and the
normal map respectively.

3.3. Base Surface Generation

The goal of bas-relief generation is to compress large magnitude
changes in depth, while preserving local changes of small mag-
nitude as much as possible. In general, the depth map exhibits
high jumps in boundary regions and its occlusion areas, thus spe-
cial methods are introduced to remove these large gaps in previ-

(a) (b) (c)

Figure 3: Base surface obtained through the compression along
with a low-pass filter. (a) The original depth map; (b) the corre-
sponding mesh surface of (a); (c) the resulting base surface.

ous work. Most previous gradient-based methods successfully re-
moved the depth gaps, and eliminated the level-of-depth as well.

We use a simple non-linear compression along with a low-
pass filter to fulfill this task. With small magnitude changes and
smooth appearance, the compressed depth encodes the global and
coarse structure of the underlying relief which is regarded as a
base surface B(u,v) in our approach. In our test, a global com-
pression via a nonlinear compression function to the depth works
well, because it is not necessary to preserve local features for gen-
erating the base surface. The range of the depth map H(u,v) is
normalized into [0,1] by default in OpenGL, so we rescale the
depth map as follows,

H
′(u,v) =H(u,v)/(1+βH(u,v)), (1)

where β >= 0. After rescaling, a low-pass filter is used for further
smoothing the jumps of the rescaled depth map H′(u,v). To elim-
inate the depth jumps isotropically, we use the box filter which is
a simple average of all the pixels inside a square region. Users
can specify the filter kernels as (2n+ 1)× (2n+ 1) rectangular
arrays of pixel contributions, and all values of the filter kernel are
assigned the same weights 1/(2n+1)2. Users can choose the ker-
nel size n according to the image resolution, and pass it directly
as a parameter to the shader. The box filter is implemented as a
two-pass convolution, which does not sacrifice the efficiency even
with a big size (like n = 20) in our experiments. An example is
given in Figure 3. Figure 3(a) and Figure 3(b) show the original
depth map, and Figure 3(c) shows a smooth base surface obtained
through a nonlinear scaling along with a box filter. In this exam-
ple, we set β = 2 and n = 3. Our simple approach eliminates the
high jumps at boundary and occlusion regions effectively. How-
ever, this filter meanwhile diminishes local details which will be
extracted from normal map and added into the base surface to
generate a bas-relief as described in the following section.

3.4. Detail Peeling

Control over detail is a central requirement when designing a bas-
relief. Accordingly, to preserve local details for orthogonal views
of the given 3D input scenes is a key step in the compression stage

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

(a) (b) (c)

Figure 4: An example for Scheme I using different scaling func-
tions. (a) A normal map; (b) function F1(x) = x nearly pre-
serves the original appearance; (c) and the result from function
F1(x) =

√
x conveys a flattened impression.

of our pipeline. We address this by introducing two kinds of detail
peeling operators in the following subsections.

3.4.1. Scheme I

It is well known that normals play an important and essential
role in real-time rendering. Normal is also essential in the in-
verse problems of rendering, such as photometric stereo, shape
from shading [Woo84] and 3D modeling [WTBS07]. Our work
is somewhat related to these work, but our goal is to create
bas-reliefs under a height constraint and free from depth gaps.
The normal can directly play a role as the feature detail in
our bas-reliefs generating pipeline. Given a normal vector NNNc =
(NNNc

x,NNN
c
y,NNN

c
z) in camera space, the z components of visible nor-

mals NNNc
z are always positive. Utilizing the normal straightfor-

wardly, we define the feature detail for orthogonal views peeled
off the 3D shape as follows,

D1(u,v) = F1(NNN
c
z(u,v)) (2)

where NNNc
z(u,v) is the the z components of the visible normal,

F1(x) is a scaling function which can be a nonlinear compres-
sion to the scalar magnitude, largely boosting small details while
attenuating large ones. Figure 4(b) and 4(c) show an example for
different scaling functions applied to the same input scene Fig-
ure 4(a). For this example, we used scaling functions F1(x) = x
(figure 4(b)) and F1(x) =

√
x (Figure 4(c)) to generate different

effects.

Re-normaling. The above presented Equation 2 already provides
an effective automated detail generation from 3D scenes. How-
ever, it only accesses the z components of normals without taking
the x and y components into account.

Furthermore, we manage to make our approach allow for addi-
tional intuitive editing operations depending on artistic demands.
A fundamental insight in bas-relief is that the changing of normal
strongly influences the appearance of a bas-relief. For instance,
raising the z component Nc

z and renormalizing the new normal

(a) k = 0.02 (b) k = 0.2 (c) k = 2.0

Figure 5: Users can intuitively control over the appearance styles
of the resulting bas-relief by tweaking one parameter in real time.

vector generates a flatten effect. A family of functions F1 in
Equation 2 can be used to modify the normals directly while hold-
ing the geometry of the 3D scene. Alternatively, we scheme out a
simple formula to control over the surface features via tweaking
a couple of parameters. First, we forwardly modify the z compo-
nent of the normal vector as follows,

N̄c
z (u,v) =

αkNc
z (u,v)

1+ kNc
z (u,v)

(3)

where k > 0 is used for the non-linear compression, α > 0 is for
scaling the result (α = 1 by default), the combination of them
are for controlling over the sharp or flatten effects. Then we up-
date the normal by normalizing the vector (Nc

x ,N
c
y , N̄

c
z). Our re-

normaling scheme applies a nonlinear compression function to
the z component Nc

z indirectly, inducing to attenuate or boost the
surface slopes. We found that it provides reasonable effects as
seen from the example shown in Figure 5. Given an input sphere
model, users can easily turn out a cusp-like or a disk-like result by
tweaking a proper value of the parameter k. In Figure 5, the upper
row shows the updated normal maps and the lower row shows the
resulting height fields corresponding to the z component of the
updated normals.

To follow and improve the stylizing process proposed in
[JMS14], we address this by including three intuitive styles which
exhibits sharp, round and flat impressions respectively. The styl-
ization problem in previous work is accomplished by formalizing
the problem as a quadratic optimization, which results in solving
a sparse linear system. Therefore, the resulting style can not be
visible quite instantly. In our pipeline, we present an interactive
scheme to produce different styles in real time. The stylization
effects of changing parameters are feeding back without delay. In
this way, the style generation of bas-relief becomes interactive.
Figure 6 gives an example, showing that our approach allows for
constructing relief surfaces with different visual appearances by
controlling a couple of parameters.

It is worth noting that we only exploit the normal information
here, without compressing the depth map. Our simple trick pro-
vides reasonable results without eliminating important features as
seen from the figures. Generally speaking, normals from a single
view cannot be utilized to restore the underlying fully extended

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

(a) k = 0.3,α = 1.0 (b) k = 1.0,α = 1.0 (c) k = 1.0,α = 10.0

Figure 6: Bas-relief generation with different visual appearances
though selecting a couple of parameters. The most advance of our
scheme is that the feedback is instant in our GPU-based pipeline.

3D objects directly. However, details peeling off normals is ad-
equate to the bas-relief generating which focuses on the feature
details for orthogonal views.

Remarks. As can be seen from the above examples, by turn-
ing the z-components of the visible normal, users can easily ob-
tain multiple detail styles, which is our motivation to introduce
this scheme. In this paper, we focus on approximating or simu-
lating local details from normals, rather than reconstructing the
geometry globally. We roughly treat the variation of the normal
z-component as the detail under an orthographic view. Gener-
ally speaking, it may also produce extra details (see the example
shown in Figure 11) into the resultant bas-relief. Figure 4 and Fig-
ure 11 show that this scheme may generate results with the effect
of carving along the occlusion edges.

This scheme has its limitation. For example, if the input
shape is a cone with the axis in z-direction, then all normal z-
components are constant, and the produced details are also con-
stant. However, the cone shape has been retained in the base sur-
face generated above. This scheme is still useful for two reasons.
Firstly, although using normal directly as height values may not
faithfully reproduce the original shape surface, it can still produce
similar diffuse shading to the original surface in some cases, if the
light direction is parallel to z axis. Secondly, the extracted details
using this scheme are used to simulate the visual effects in a visu-
ally plausible manner, not to preserve its shape features faithfully.
In fact, the global shape of the bas-relief is determined by the base
surface discussed in Section 3.3, and the combination of the base
surface and the details will be discussed in Section 3.5.

As an alternative, another scheme to extract more faithful fea-
ture details is presented in the following subsection.

3.4.2. Scheme II

Besides the pixelwise scheme described above, we introduce an-
other scheme to define local detail by taking neighboring pixels
into account. Given a normal map NNNc obtained at the decompo-
sition stage, we compute the details similarly to [JMS14] as fol-

lows,

D2(u,v) = g(Div((NNNc
x/NNNc

z ,NNN
c
y/NNNc

z)),NNN
c), (4)

where function g is used to screen out the fine details from the
given normal map. g can be a truncated function involving a
threshold to trim away the outliers. To attenuate the spurious fea-
tures especially along the the steep boundaries and occlusion ar-
eas, we define g as follows,

g(x,NNNc) = x ·NNNc
z (5)

where NNNc
z is small at the occlusion areas. On the other hand, the

boundaries and occlusion areas are already preserved on the base
surface to a certain extent. This simple function worked well for
bas-reliefs generation in our experiments. Then we use backward
difference to define a discrete analog of the divergence operator,

Div(X) = Xu(u,v)−Xu(u−1,v)

+Xv(u,v)−Xv(u,v−1).
(6)

It is worth while to note that we compute the detailed features
using the normal map rather than the depth map. The disconti-
nuities in the depth map of the input scene will introduce large
gradient discontinuities, so the users have to remove the disconti-
nuities by setting an interval value explicitly. Another advantage
of our normal-based method is that allows editing the details in-
tuitively (like the re-normaling operator in Scheme I).

3.5. Post-processing

At this stage we have obtained two layers, a base layer and a de-
tailed layer which are both in the form of textures on the GPU.
The base layer encodes the coarse surface extracted from the
depth map, and the detailed layer encodes the local details ex-
tracted from the normal map. We need to combine both layers to
retain the final bas-relief with a global structure and visually im-
portant features. This results in a new height field with adjusted
weights for the different layers. This step is similar to the one
of previous work like [LWYM12] which aimed at restoring brick
and stone reliefs from their rubbing images. However, the motiva-
tion of our method is to present a real-time solution to the problem
from 3D scenes to bas-reliefs. To this end, our approach involves
only local computations for both the base surface and the detailed
features, which is different from the previous work involving a
large linear or non-linear system. Finally, we combine these two
layers in an additive way as follows,

R(u,v) =B(u,v)+λF2(D(u,v)). (7)

The above equation contains only one user defined parameter
λ to balance these two items. Now that the detailed layer contains
the high-frequency small-scale features of the surface, we will
further boost or attenuate their influence relative to the coarse
shape in the base layer by introducing a function which is set
F2(x) = x by default. To suppress the sharp edges (such as the
boundaries and occlusions) and to boost the weak features, we
introduce a non-linear blending F2(x) = x/(ε+

√
|x|). However,

the linear or non-linear combination of two layers may introduce

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

(a) (b) (c)

Figure 7: Bas-relief obtained by combining two layers. (a) The
original depth map which exhibits high jumps at boundary and
occlusions regions; (b) base surface extracted from (a); (c) add
local details into the base surface to form the final bas-relief.

artifacts in the resulting bas-relief. To eliminate the artifacts, we
use a Gaussian blur filter to extract the final bas-relief. An ex-
ample is given in Figure 7. We set the parameters λ = 1 and
F2(x) = x in this example. The high jumps at occlusion regions
in the original depth map were eliminated as well as the visually
important details (see Figure 7(b)). Scaling each layer and recom-
bining them by above parameter to yields a modified height field
with important features preserved (see Figure 7(c)).

4. Implementation and Results

4.1. Implementation

As explained above, we designed the converting procedure ex-
ploiting the parallel character of the modern GPUs. To efficiently
exploit the properties of GPU, we convert the 3D data to the
height and the normal in a local way. The pipeline of our algo-
rithm can be fully implemented in the OpenGL context on modern
GPUs. This results in a single application that achieves real-time
performance and allows the user to seamlessly control the mean-
ingful parameters as well as transform objects in the scene. The
effect of changing parameters is visible instantly, thus the whole
process of bas-relief generation is truly at interactive rate.

In our implementation, we render all intermediate results into
float-point textures with a resolution of 800x800 pixels, and we
render them into separate textures at once using a capability
of OpenGL called Multiple Render Targets (MRT). The perfor-
mance is nearly independent of the complexity of our tested
scenes (with 7k to 870K vertices), and it achieves frame rates
about 28.9 FPS averagely. The performance was measured using
an NVidia GeForce 9800 GT and a 3.00GHz Intel Core 2 Duo
CPU E8400 with 2GB RAM, in OpenGL Shading Language.

4.2. Results

As mentioned above, one of our goals is to reconstruct a height
field under a height constraint so that the appearance looked in
front of the bas-relief should appear similar to that of the input
scene. We have experimented our approach on a variety of 3D
scenes. In all cases, our approach is capable of producing percep-
tually plausible digital bas-reliefs without much parameter tweak-
ing. The following figures are given to demonstrate these results.

(a) (b) (c)

Figure 8: Bas-relief obtained by combining depth-and-normal
maps. (a) The base surface from the depth map only; (b) the de-
tailed layer extracted using the normal map only; (c) add local
details into base surface to form the final bas-relief (λ = 1).

(a) (b) (c) (d)

Figure 9: Bas-reliefs generated by our approach with different
compression over the depth. (a) The resulting height map using
parameters β = 0, λ = 0.3; (b) the bas-relief from the height map
(a); (c) the resulting height map using parameters β = 4, λ = 0.3;
(d) the bas-relief from the height map (c).

The example in Figure 8 shows that the effects of decomposi-
tion and combination of two layers. The left image was produced
using only the depth map, the middle image was produced us-
ing the normal map, and the right image was resulted from the
combination of two maps. The detailed layer (shown in Figure
8(b)) was extracted using the Scheme I without re-normaling. Al-
though the detailed layer can be regarded as a flattened bas-relief,
the combination result displays the level-of-depth.

The example in Figure 9 shows that the effects resulting from
different compressions over the depth map. As can be seen in
the figures, a smaller value of β accentuates the original depth
map and maintains the perceptually salient parts, while a bigger
value of β induces a higher compression over the bigger depth
and results in a smaller range of depths.

By tweaking the parameters λ in Equation 7, user can create
a series of bas-reliefs with different levels of detail. An example
is shown in Figure 10. The detailed layer (used in Figure 10(b)
and Figure 10(c)) was extracted using the Scheme II. Due to the
separate extraction of feature details and base surface, the visual

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

(a) (b) (c)

Figure 10: Bas-relief obtained by combining two layers. (a) The
base surface; (b) adding details into the base surface to form a
bas-relief (λ = 0.1); (c) adding details into the base surface to
form a bas-relief (λ = 0.5).

(a) (b) (c) (d)

Figure 11: Comparisons between two detail schemes testing on
a noisy model. (a) Scheme I (λ = 0.2); (b) Scheme II (λ = 0.2);
(c) bas-reliefs generated from a different view of the same model;
(d) a tilted view of (a) and (b).

cues remain perceivable in resulting bas-reliefs even with a small
range of height. Our approach provides certain freedom to design
bas-reliefs with different levels of detail at interactive rates.

As described above, we scheme out two formulas to encode the
local details. Figure 11 illustrates comparisons between these two
schemes. There are slight differences between them as seen from
these images. In comparison with Scheme I, Scheme II keeps a
sharp and faithful impression of small details (also faithfully pre-
served the heavy noises throughout the original 3D model) for the
same parameters setting since it evaluates the detail by accessing
the neighboring pixels. Scheme I converted the z component of
the normal to the depth value, which may introduce some visible
artifacts or called unfaithful details, such as the rings on the right
wing and some occlusion edges. The causation of this effects is
that the z components are insensitive to the ridges and valleys.
It might not be accepted to reconstruct faithfully objects in 3D
space. However, as seen from the figures, Scheme I generated
visibly reasonable bas-reliefs impressing ones with the effect of
carving along the occlusion edges (see Figure 11(a)). Users may
choose the schemes and further edit the details by altering the
parameters to meet their artistic demands.

(a) (b) (c) (d)

Figure 12: Examples for Scheme I using different values of
the parameter k. (a) The depth and normal maps of the input
3D scene; (b) the resulting bas-relief using the parameter setting
k = 2 in Equation 3; (c) the resulting bas-relief using the parame-
ter setting k = 0.2 in Equation 3; (d) a tilted view.

(a) (b) (c) (d)

Figure 13: Examples for layers blending via different functions
F2(x) (λ = 0.2). (a) The depth and normal maps of the input 3D
scene; (b) the resulting bas-relief using the function F2(x) = x in
Equation 7; (c) the resulting bas-relief using the function F2(x) =
x/(ε+

√
|x|),ε = 10−6 in Equation 7; (d) a tilted view.

The following figures displayed various appearances through
different parameters and functions. For the example shown in Fig-
ure 12, we controlled over the detail using the Scheme I. A larger
value of k in Equation 3 turns out more flattened appearance. In
Figure 13, we showed an example using different functions F2(x)
in Equation 7. The non-linear function F2(x) = x/(ε+

√
|x|) en-

hanced the detailed features exaggeratedly. Our algorithm pro-
vides certain freedom to design bas-reliefs with visually various
styles at interactive rates.

More examples are shown in Figure 14. We can see the bas-
reliefs shown in this figure preserve very fine details with a
smaller range of depths compared to the original scene, without
losing the level-of-depth (see Figure 14(a)-14(c)).

Parameter exploration. We briefly list the intuition behind the
parameter setting hereinafter. The parameter β in Equation 1 is
used to control the level-of-depth. A larger value of β removes
the gaps of the depth map more effectively, but loses more of
the level-of-depth and produces a more flattened result; a small
value approximates a linear scaling of the depth and generates
a result with more levels of depth. We set β = 0.3 by default. By

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14: More bas-reliefs generated using our approach.

(a) (b) (c)

(d) (e) (f)

Figure 15: Bas-reliefs produced by the approaches of Cignoni et
al. [CMS97] (a), Kerber et al. [KBS07] (b), Kerber [Ker07] (c),
Sun et al. [SRML09] (d) and our approach using Scheme I (λ= 1)
(e), our approach using Scheme II (λ = 1) (f).

tuning the parameter λ in Equation 7, the user can intuitively con-
trol how much the fine details appear in the resulting bas-relief.
Higher values of λ imply that more details will remain perceivable
in the bas-relief. We set λ = 0.2 by default. The re-normaling for-
mula (Equation 3), and augment functions F1, F2 are optional.
To sharpen or flatten the details when using the first scheme, the
user can tweak the parameter k in Equation 3. In our experiments,
k is usually set to values between 0.01 and 2, higher values corre-
sponding to a stronger flattened effect while lower values corre-
sponding to a stronger sharpened effect. If a large λ is inadequate
to emphasize the detailed features, the user may further set these
functions as above mentioned to enhance the detailed effect. Ta-
ble 1 lists a table about the complexity, frame rates and impor-
tant parameters of most examples shown in the paper. As we can
see, the performance of our approach is nearly independent of the
complexity of our tested models.

4.3. Comparison

Now we turn to compare our approach with other CPU-based
bas-relief generation approaches. We begin by comparing our
results with those of Cignoni et al. [CMS97], Kerber et al.
[KBS07, Ker07], and Sun et al. [SRML09]. Results for both of
Kerber’s approches were obtained using default parameter set-
tings (τ = 5, σ1 = 4, σ2 = 1, α = 4, and the compression ratio is
0.02). Results for Sun’s approach were obtained using the follow-
ing parameters: B = 10000, m0 = 32, n = 4, l = 16, and K = 1.
Figure 15 shows results using the above mentioned approaches.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Z. Ji, X. Sun, S. Li, Y. Wang / Real-time Bas-Relief Generation

Model Vertices FPS Important Parameters
Figure 8 212634 28.9 β = 0,λ = 1
Figure 10(c) 172974 28.9 β = 0.5,λ = 0.5
Figure 11(a) 863210 28.9 β = 0.5,λ = 0.2
Figure 12(c) 195586 28.9 β = 0.3,λ = 0.25
Figure 13(c) 172974 28.9 β = 0.3,λ = 0.2
Figure 14(d) 55375 28.9 β = 0.3,λ = 0.2
Figure 14(e) 7546 28.9 β = 0.3,λ = 0.2
Figure 14(f) 437645 28.9 β = 0.3,λ = 0.2

Table 1: A table showing the complexity, frame rates and impor-
tant parameters for some typical examples shown above. We set
F2(x) = x/(ε+

√
|x|),ε = 10−6 for the examples shown in Fig-

ure 13(c) and Figure 14(d)-14(f); and set k = 0.2 for Figure 12(c).

Except Cignoni’s approach, other approaches produced natural or
feature enhanced results. Our approach provides different types
of results with natural or exaggerated features. Due to its whole
pipeline remains on GPU, our approach achieves real-time per-
formance. An execution of the entire pipeline of our approach
including the shading step elapsed about 18 milliseconds, while
other CPU-base approaches expended about several seconds in
our experiments.

5. Conclusion and Future Work

We presented a real-time interactive tool designed to support
artists and enthusiasts in creating bas-relief using 3D scenes.
Beside the capability of producing bas-reliefs in real time, we
demonstrated that our approach is also suitable to create bas-
reliefs with different styles.

The main contributions of the paper consist of enlarging the
palette of bas-relief generation schemes and using a GPU-based
acceleration scheme. Unlike most of the previous work, our ap-
proach generates bas-reliefs from 3D scenes without solving a
large sparse system of linear equations. And the parallel nature of
our algorithm is highly suitable to exploit the properties of GPU.

Our work focused on creating bas-reliefs using depth-and-
normal maps currently. However, it would be easy and useful to
add more properties into our real-time pipeline, such as lines, tex-
tures, etc. The lines can be extracted in object space or in image
space, and the textures will be attached to create colorful bas-
relief which reflects different materials. Such work will be inves-
tigated in our future work.

Acknowledgement

We would like to thank the anonymous reviewers for their
constructive comments. This work was partially supported by
the National Natural Science Foundation of China (61202278),
the Zhejiang Provincial Natural Science Foundation of China
(Y1111101), the Defense Industrial Technology Development
Program of China and EPSRC (EP/J02211X/1).

References
[BH11] BIAN Z., HU S.-M.: Preserving detailed features in digital

bas-relief making. Computer Aided Geometric Design 28, 4 (2011),
245–256. 2

[CMS97] CIGNONI P., MONTANI C., SCOPIGNO R.: Computer-
assisted generation of bas- and high-reliefs. J. Graph. Tools 2, 3 (1997),
15–28. 1, 8, 9

[FLW02] FATTAL R., LISCHINSKI D., WERMAN M.: Gradient do-
main high dynamic range compression. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and interac-
tive techniques (2002), pp. 249–256. 2

[JMS14] JI Z., MA W., SUN X.: Bas-relief modeling from normal
images with intuitive styles. IEEE Transactions on Visualization and
Computer Graphics 20, 5 (2014), 675–685. 2, 4, 5

[KBS07] KERBER J., BELYAEV A., SEIDEL H.-P.: Feature preserv-
ing depth compression of range images. In Proceedings of the 23rd
spring conference on computer graphics (2007), Budmerice, Slovakia,
pp. 110–114. 2, 8, 9

[Ker07] KERBER J.: Digital Art of Bas-Relief Sculpting. Masters the-
sis, Universität des Saarlandes, August 2007. 2, 8, 9

[KTB∗10] KERBER J., TEVS A., BELYAEV A., ZAYER R., SEI-
DEL H.-P.: Real-time generation of digital bas-reliefs. Journal of
Computer-Aided Design and Applications 7, 4 (2010), 465–478. 2

[KTZ∗09] KERBER J., TEVS A., ZAYER R., BELYAEV A., SEIDEL
H.-P.: Feature sensitive bas relief generation. In IEEE International
Conference on Shape Modeling and Applications Proceedings (Bei-
jing, China, June 2009), IEEE Computer Society Press, pp. 148–154.
2

[LWYM12] LI Z., WANG S., YU J., MA K.-L.: Restoration of brick
and stone relief from single rubbing images. IEEE Transactions on
Visualization and Computer Graphics 18, 2 (2012), 177–187. 2, 5

[SBS07] SONG W., BELYAEV A., SEIDEL H.-P.: Automatic gener-
ation of bas-reliefs from 3d shapes. In SMI ’07: Proceedings of the
IEEE International Conference on Shape Modeling and Applications
(2007), pp. 211–214. 2

[SKv∗14] SÝKORA D., KAVAN L., ČADÍK M., JAMRIŠKA O., JA-
COBSON A., WHITED B., SIMMONS M., SORKINE-HORNUNG O.:
Ink-and-ray: Bas-relief meshes for adding global illumination effects
to hand-drawn characters. ACM Transaction on Graphics 33, 2 (2014),
16. 2

[SRML09] SUN X., ROSIN P. L., MARTIN R. R., LANGBEIN F. C.:
Bas-relief generation using adaptive histogram equalization. IEEE
Transactions on Visualization and Computer Graphics 15, 4 (2009),
642–653. 2, 8, 9

[WDB∗07] WEYRICH T., DENG J., BARNES C., RUSINKIEWICZ S.,
FINKELSTEIN A.: Digital bas-relief from 3d scenes. In SIGGRAPH
’07: ACM SIGGRAPH 2007 papers (2007), p. 32. 2

[WMR∗13] WU J., MARTIN R. R., ROSIN P. L., SUN X., LANG-
BEIN F. C., LAI Y.-K., MARSHALL A. D., LIU Y.-H.: Making bas-
reliefs from photographs of human faces. Computer-Aided Design 45,
3 (2013), 671–682. 2

[Woo84] WOODHAM R. J.: Photometric Method for Determining
Shape from Shading. Tech. rep., 1984. 4

[WTBS07] WU T.-P., TANG C.-K., BROWN M. S., SHUM H.-Y.:
Shapepalettes: interactive normal transfer via sketching. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 papers (2007), p. 44. 4

[ZZZY13] ZHANG Y., ZHOU Y., ZHAO X., YU G.: Real-time bas-
relief generation from a 3d mesh. Graphical Models 75, 1 (2013), 2–9.
2

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

