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Abstract 

We investigate a replenishment system with periodic inventory inspections, where at least one batch is 
completed between inspections, and where orders are placed once every P inspection periods. In this type of 
system, each ordering occasion will generate P orders for delivery in each of P periods in the future. We can 
keep the inventory level in each inspection period centered on the inventory norm (the safety stock level), but 
generating multiple orders at one point in time, with different delivery dates (effectively different lead-times), 
will cause the inventory variance to change over time. We call this phenomenon the inventory ripple effect. This 
paper identifies an Order-Up-To policy with minimum mean square error forecasts, under linear holding and 
backlog costs when demand is a normally distributed first-order autoregressive process. For this we identify a 
lower bound for the inventory ripple effect. We find that the introduction of positive autocorrelation in demand 
amplifies the inventory ripple effect in comparison to demand with independent and identically distributed (i.i.d.) 
error terms, while negatively correlated demand provides an effect smaller than that of i.i.d. demand. A time-
varying safety stock setting proves optimal, being significantly more efficient than constant safety stock levels. 
 
Keywords: Order-Up-To replenishment policy, Inventory variability, Staggered deliveries, Reorder period, 
Reorder cycle. 
 
1.  Introduction 
 
Just-In-Time principles are instrumental in the pursuit of supply chain efficiency. One of 
these is the idea of small batch sizes, which keeps cycle stocks low; another is the concept of 
level production, which not only reduces the need for frequent changes in capacity, but also 
minimizes the (peak) capacity requirement (Shingo, 1989). One way to achieve level 
production is via cyclical planning, i.e. to determine and freeze orders periodically, such that 
the orders for some time into the future (e.g. a week, fortnight, or month) are determined at a 
single point in time, and not changed until the next cycle begins. Level production can then be 
achieved, either by collecting all overtime work to one period, while the remaining periods 
have a constant production volume, or by distributing all of the overtime evenly over the 
cycle. 
 
Cyclical planning is commonplace. A survey of 292 Swedish companies found that 67% of 
the companies had daily planning, while 21% planned once per week, and 13% planned once 
every fortnight or less frequently (Jonsson and Mattsson, 2013). An international perspective 
on planning cycles can be found in Table 1. 
 
The question is how cyclical planning affects production system performance, particularly if 
small batch sizes are used. If at least one batch is produced per period, and inventory 
inspections take place at the end of each period; then the effect of cycle stock can be ignored. 
Under these conditions, we can determine the orders for each period in a cycle, such that the 
expected inventory level assumes any desired value. Typically, this equals the safety stock 
level. However, the inventory variance is another matter. Because multiple orders are placed 
at once, and they effectively have different lead times due to the timing of delivery relative to  
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Company Industry Planning frequency When 

Anonymous 
Computer 

consumables 
Weekly 2010-2014 

Tesco Grocery 
Every 8 hours or daily 
depending on store size 

2000-2005+ 

Renishaw 
Industrial 
measuring 
equipment 

Monthly 2014 

P&G Household goods Weekly 2000-2014 

BAT 
Fast moving 

consumer goods 
Monthly 2012 

Harmon Kardon Audio equipment Weekly 2001 
Princes Fruit Juice Weekly 2003 

TRW 
Automotive engine 

components 
Weekly 1999 

Table 1. Current industrial planning cycles (Source: Authors) 

 

 
Figure 1. Inventory standard deviation for two implementations of the Order-Up-To policy 

when the ripple effect is present (Hedenstierna and Disney, 2013) 
 
the time the plan was issued, the inventory variance will change over time. We term this the 
inventory ripple effect, as its graphical manifestation resembles ripples or saw teeth of various 
designs (see Figure 1). 
 
The phenomenon is studied in detail for independent and identically distributed demand in 
Hedenstierna and Disney (2013), where several factors are found to determine it. These 
include the reorder cycle length, the overtime strategy used and eventual use of production 
smoothing policies. An important result is that variable safety stocks are optimal when the 
effect is present (this can also be inferred from Flynn, 2008). 
 
This paper presents an investigation of the minimum inventory ripple effect that will be 
experienced when demand is a first-order autoregressive process. We then extend this to cases 
where the autocorrelation function of demand is arbitrary. This is followed by a section on 
analytical and numerical insights and an investigation of the optimal (time varying) versus a 
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conventional (constant) safety stock strategies. Finally, we summarize our findings and 
implications. 
 
 
2.  Literature review 
We can trace remarks about the length of the reorder cycle back to 1924, when General 
Motors Corporation, following a decision by Alfred P. Sloan, shifted from reviewing their 
production plans once every three months, to once every ten days. Sloan (1963) documents 
that General Motors managed to increase their inventory turnover, from two, to seven-and-a-
half times per annum, due to the improvements made to the production and distribution 
system in the 1920’s. 
 
The Period Batch Control (PBC) system, used in the production of the Spitfire aircraft 
(Burbidge, 1989) also considers frequent reordering to be important. Burbidge claims that 
reordering cycles should be as short as capacity permits, and that reductions in set-up time 
should be pursued to allow further shortening of the reorder cycle. The same line of reasoning 
is presented by Shingo (1989) on the implementation of Just-In-Time production. At the time, 
the Toyota Motor Corporation used reordering cycles of ten days, but Shingo entertained the 
idea of reducing it to daily or weekly cycles. Ohno (1988) also writes about long reordering 
cycles and their harmful effect on inventory performance. 
 
Various models that contain reorder cycles have been presented. Several approaches to 
understanding the reorder cycle exist, with a fundamental one assuming that inventory 
inspections are synchronized with ordering, and that a single batch is produced over the order 
cycle. The result is the economic order quantity (EOQ) model, converted to an economic 
ordering cycle through division by the average demand rate (Waters, 2003). When this 
problem is relaxed to also consider inventory inspections at discrete points within an 
inventory cycle (multiple inspections per lot ordered) exact costs can be found in Chiang 
(2006, 2007), when the reorder period is given as an input variable. Silver and Robb (2008) 
seek to identify an optimum reorder period under these circumstances, but find that this type 
of system is sensitive even to small changes in the parameters, and that it is therefore difficult 
to make any general claims about how these systems can be improved. 
 
In a model with several batches per ordering decision, Modigliani and Hohn (1955) presents a 
model for production planning when all cyclical demand is known at the start of the reorder 
cycle. They find that the reorder cycle should not be longer than one seasonal cycle, and 
possibly shorter if inventory costs are high. Tang and Grubbström (2002) present a different 
model taking into account inventory holding costs and schedule change costs; they also 
identify a cost-optimal reorder cycle length for their model. 
 
Systems with multiple orders per reorder cycle, backlog and holding costs, plus fixed costs 
per order cycle, are covered in Flynn and Garstka (1997), who demonstrate that an optimum 
solution exists. Flynn (2001) describes how this applies to a multi-product scenario. 
 
Hedenstierna and Disney (2013) present a model considering the production of at least one 
batch between inventory inspections, linear holding and backlog costs, reactive capacity costs, 
and a fixed cost per reorder cycle. They identify that the inventory variance changes over the 
reorder cycle (the inventory ripple effect), and find that this is dependent on both the order 
rate, and the way in which overtime work is planned. Longer reorder cycles increase the 
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inventory related costs, but decrease capacity costs due to variability pooling over time. 
Optimum solutions are identified, and it is demonstrated that the reorder period should be as 
short as possible when cycle costs are absent. 
 
Reference Advice given 
Burbidge (1988) As frequently as capacity permits 
Flynn (2008) Approximate optimum 
Hedenstierna & Disney (2013) Optimize 
Modigliani and Hohn (1955) No longer than one seasonal cycle 
Shingo (1989) Ten days or weekly 
Silver and Robb (2008) No recommendation 
Tang and Grubbström (2002) Optimize 
King (2012, p.216-222) As short as possible based on “available time left over after 

changeovers”, or linked to the EOQ model 
Table 2. Current advice given on length of planning cycles 

 
3.  Model development 
Consider a supply chain whose inventory level i  is inspected at discrete points in time, t ∈ℕ, 
and where negative inventory indicates a backlog. In every period, the inventory satisfies 
demand td  and receives orders 1t Lo − −  that were released (but not necessarily planned) 1L+  
periods ago, where L ∈ℕ 0  is the lead time exceeding the inventory inspection interval. For a 
lead time of zero, orders would arrive prior to the next inventory inspection. The inventory 
balance equation is 1 1t t t L ti i o d− − −= + − , and an accompanying Work-In-Progress (tw ) term 

1

1 1 1 1

L

t t t t L t ii
w w o o o

+
− − − − −=

= + − =∑ . In each period a holding cost H, or a backlog cost B is 
applied to the inventory level according to [ ] ( ) ( )$i t tt H i B i

+ −= +  where ( ) { }max 0,x x
+ = −  

and ( ) { }max 0,x x
− = − . 

 
Demand is expressed as a first-order autoregressive (AR(1)) process, where the demand d in 
any given period t consists of a random noise element tε ∼N 2(0 )εσ, , plus a multiple of the 
stochastic components in the previous period’s demand 
 

( )1t t td dφ µ ε µ−= − + +  (1) 

 
where µ  is the average periodic demand and φ  is the autoregressive parameter, which is 
defined for all φ , but provides a stable and invertible signal only when 1φ < . Note 1φ <  is 
required for a finite demand order variance, but finite inventory variances are produced for all 
φ , Graves (1999). A practical justification for the AR(1) demand process can be found in Lee 
et al. (2000), who employed it following an investigation where the demand signals for over 
130 products were identified as AR(1).  Under these assumptions, the expected inventory cost 
$i  in an arbitrary period k is known to be 
 

[ ] ( )
0

,
, , ,

$ k k
i k k i k

i k i k i k

x SS SSH B
E k H SS xdx H SS H B Gϕ σ

σ σ σ−∞

   −+= ⋅ − = ⋅ + +      
      

∫  (2) 

 
where [ ] [ ] ( [ ] 1)G x x x xϕ= + Φ −  is the standard normal loss function, kSS is the safety stock 
level in period k, and ,i kσ is the standard deviation of the inventory at time k (Axsäter, 2000). 
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[ ]ϕ ⋅  is the probability density function of the standard normal distribution, while  [ ]Φ ⋅  is the 
cumulative standard normal distribution function. The minimum inventory cost is obtained 
when *

,k i k iSS zσ= , where [ ]1 B
i B Hz −

+= Φ , in which [ ]1−Φ ⋅  is the inverse of [ ],Φ ⋅  applied to the 
critical ratio, / ( )B B H+ . When *

kSS  is used, the inventory costs are linear in ,i kσ  
and can be 

expressed as 
 

( ) [ ]*
, , ,$ .i k i k i k iB H zσ σ ϕ  = +   (3) 

 
We note that if the standard deviation of the inventory changes, the safety stock must be 
adapted so that cost optimality can be maintained. 
 
4.  The reordering mechanism 
While inventory is observed every period, we assume that the production quantities are 
determined only once every P periods, when |P t , and are released for production over the 
next P periods. These orders will then be received in the periods t L k+ + where 1 k≤ ∈ℕ P≤  
denotes an arbitrary day in the inventory cycle. The relation between the inventory and 
ordering mechanism are described in Figure 2.  
 
We seek an ordering policy that minimizes the inventory cost given the reordering cycle 
constraint on orders. Consider that a unit demand impulse that occurs in the m’th period, 
counted backwards from the point of ordering, where 1 m P≤ ≤  can be corrected via order 
receipts no earlier than L m+  periods ahead of the impulse. The inventory shortfall, resulting 
from a unit impulse and its autocorrelation, is at the time of the first possible receipt 
 

0

11
.

1

LL m
n

m

n

φ
φ

φ
++ +

=

−
−

=∑  (4) 

 
In every period, the expected inventory should equal the safety stock level. For the specific 
case when 1k = , the amount to order equals all independent demand shocks (indexed by m) 
from the previous cycle multiplied by (4). Because AR(1) processes with i.i.d. shocks are 
Markovian, the order quantity simplifies to the first term in (6). For the remaining 1P −  
periods in the cycle, we can also set the expected inventory level equal to the safety sock by 
ordering the quantity provided by the minimum-mean-squared-error (MMSE) forecast, 

1L m kφ + + − . 
 
Tsypkin (1964) provides that the variance of a process equals the sum of its squared impulse 
response from zero to infinity (i.e. its autocorrelation function), but since only the first P L+  
periods are non-zero, only these will influence the inventory costs when an MMSE Order-Up-
To policy is employed.  
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Figure 2. The sequence of events (Hedenstierna & Disney, 2013) 

 
We seek to identify the inventory variance when k is given. The greatest possible deficit from 
a single impulse at a point k is 1

0

L k x

x
φ+ −

=∑ , where the impulse has occurred at the beginning of 
the current protection interval. There will also be one uncorrected i.i.d. impulse for every 
period between this point in time, until the present. Knowing this, Tsypkin’s relation (Tsypkin 
1964) can be used to obtain the inventory variance ratio, 
 

( )( )
( ) ( ) ( )

12 1
,

3 22
0 0

2 1 2

1 1

k L k LL k n
i k x

n x

k L

ε

φ φ φ φσ
φ

σ φ φ φ

+ + ++ −

= =

− − − += = 
  +

− +  −1
∑ ∑ . (5) 

 
From (5), we can see that the inventory variance changes with the particular period of the 
inventory cycle. That is, inventory levels are heteroskedactic. As (5) is used for calculating 

*SS and the inventory cost, both are varying over the periods in the inventory cycle. 
 
The variance of the orders at time k in the order cycle can be found in a similar manner. 
Consider first the initial reaction to a unit impulse, possible only when 1k = . At this point in 
time, 

0

L m x

x
φ+

=∑ units will be ordered in response to an original shock, and L xP mφ + + , where 
x∈ℕ will be ordered due to autocorrelation with past shocks. 
 
At this point in time, orders will be placed such that the projected inventory deviation at the 
time of receipt is zero. 
 

( ) ( )

( )

1

1

1 1

1
when  = 1

1

otherwise

L

t t t t L
t

L k
t k t L t L

d i w S k
o

d S S

φ φ
µ µ

φ
µ µ φ

+

+ +

+
− + + + +

 −
 + − − − +

= −
 + − + −

 (6) 

 
It is possible to eliminate k via the following substitution: / 1k t P t P= − +   , assuming that 
that 1k =  occurs when 0t = . Just as before, the variance will differ over the inspection 
periods in the cycle. Again, the impulse response is considered for all P random variables that 
affect each independent period, k. It is beneficial to consider that the order rate consists of two 
components: the first being orders to correct for unforeseen deviations, and the second being 
corrections for foreseeable deviations, i.e. the autocorrelations of demand observed in 
previous cycles. This second component is used for all periods, but the first component is 
only invoked when k P= . 
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Starting with the second component, we know that the first deviation where we can “catch 
up” with demand, is 1k L+ +  periods ahead (all demand occurring before this must be 
corrected as an inventory shortfall). Given that we have P interlacing signals, the squared 
impulse response is given by 
 

( )
2(1 )

2

2
1

 
1

k L
n

n L k

φφ
φ

+ +∞

= + +

=
−∑ .  (7) 

 
Apart from this, there is the first component (only used for orders where 1k = ), which 
corrects for unforeseen deviations that have occurred in the most recent order cycle. This 
deviation will accumulate until it can be corrected m L+  periods later, giving the impulse 
response ( )2

01

P m L

n

n

m
φ

=

+

=∑ ∑ , which when combined with (7) gives the following general 
expressions for the order rate variance, 
 

( )
( )

( )
( )
( ) ( )

2 2 2 2 2 2 1 22
,1 2

2 3 32
1 0 1

2 2

1 1

1

1 1

L P L P PP m L
o n n

m n n k L

P

ε

φ φ φ φ φ φσ
φ φ

σ φ φ φ φ

+ + ++ ∞

= = = + +

  + − = + = − −    − − − +  

−
∑ ∑ ∑ ,  (8) 

( )2 2
, 2
2 2

when 1
1

k L
o k n

n k L

k
ε

σ φφ
σ φ

+∞

= +

 = = ≠  − 
∑ .  (9) 

 
We note that the order rate is also heteroskedactic. In periods when 1k = , it exhibits a rich 
behavior depending upon φ , but when k P< , the order rate variance is decreasing in 
{ },  k L φ∀ . 
 
When measuring the order rate variance over every t (ignoring the cyclical 
heteroskedacticity), the effects of using a time-varying safety stock becomes apparent. Let 

1t t L t LS S S+ + −∆ = −  denote the quantity that is required to be ordered in period t to change the 
safety stock to its desired level. Obviously, the variance of the tS∆  is zero when measured 
once every P periods, but when measured over every t, the average variance of the orders 
required to change the safety stock quantity is 
 

2 1 2

1

P

S tt
P Sσ −

∆ =
= ∆∑ ,  (10) 

 
where we exploit the cyclical nature of the safety stock 1

0
0

P

tt
S P S−

=
∆ = ∆ =∑ . Then, the total 

order variance, measured over every t , is 2 1 2
,1

P

S O kk
Pσ σ−

∆ =
+ ∑ . 

 

5.  The general case for auto-correlated demand 
The inventory variance can also be determined for the cyclical case if we can simply define 
the autocorrelation function of demand ( )R t . The variance of the demand process is known 
to be 
 

( )
2

2
2

0

d

n

R n
ε

σ
σ

∞

=

=∑ .  (11) 
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Let us now consider how inventory is affected by demand. Let the inventory deficit after q 
periods of cumulative demand that results from a single unit impulse be denoted as 

( ) ( )1

0

q

n
S q R n

−

=
= −∑ . Under an optimal policy, with the cyclical planning constraint, the 

maximum inventory shortfall resulting from a demand impulse that occurred k periods before 
the ordering occasion is ( )S k L+ .  Since we have k + L of these 

 

[ ]2
1

, 2
2

.i
k

k
L

m

S m
ε

σ
σ

+

=

=∑  (12) 

 
Because d ∈ℝ , we know that the inventory variance is increasing in both k and L. We can 
also conclude that the average standard deviation of inventory increases with P. 
 
 
6.  Properties of the AR(1) policy with MMSE forecasting 
From our investigation above, we can identify several important properties of the AR(1)-
optimal policy under cyclical reordering. While this policy may not be a natural one to 
implement, it is important because it puts a definitive lower bound on the inventory ripple 
effect. For the general case, even if demand is not AR(1), we know that { },  k L∀ , the 
inventory variance is increasing. This also implies that the average inventory standard 
deviation, to which the inventory cost function is linearly related, increases with P. Therefore, 
the optimum reorder cycle length equals one (* 1P = ) when no ordering or cycle costs are 
present. 
 
Before investigating AR(1) demand, consider the i.i.d. case, i.e. 0φ = , 
 

2 1

20 0
0

2

0

lim lim
L k n

xi

n x

k L
φ φ

ε

σ φ
σ

+ −

→ →
= =

  = + 
 

= ∑ ∑ . (13) 

 
(13) is identical to the corresponding expression in Hedenstierna & Disney (2013), where 
only i.i.d demand was investigated. Let us also consider the cases which limit demand as a 
stable and invertible AR(1) signal, i.e. 1 1φ− < < .  The upper limit, 
 

( ) ( ) ( )
2 1

21 1
0 0

2
1

lim lim 1 1 2 2 ,
6

L k n
xi

n x

k L k L k L
φ φ

ε

σ φ
σ

+ −

→ →
= =

  = 
 

= + + + + +∑ ∑  (14) 

 
shows that the inventory variance is a cubic function of both k and L. We can consider this as 
an upper bound for the inventory variance, when 0 1φ< ≤ . The other limiting case, when 

1φ = −  is 
 

2 1

21 1
0 0

2
1 ( 1)

lim lim
4 2

k LL k n
xi

n x

k L
φ φ

ε

σ φ
σ

++ −

→− →−
= =

  = 
 

− − += +∑ ∑ . (15) 

 
We notice that this variance ratio is always smaller than the i.i.d. case, except when 1k = . It 
also has the peculiar property of assuming the same value twice in a row, only increasing with 
every other k. If L is even, this transition occurs whenever k switches to an odd number, and 
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conversely, when L is odd, the switch occurs when k becomes even. It is noteworthy, that the 
upper limit 1φ =  gives an inventory variance that grows cubically with both k and L, while 
the i.i.d. case gives linear growth with a gradient of unity, and the lower limit, φ = −1 , gives a 
linear growth of ½, when k and L are measured in increments of two. The inventory variance 
of these limiting cases, and settings where demand is stationary and non-stationary, are 
presented in Figure 3. From numerical observations, we find that the least ripple effect is 
encountered in the range 1 0φ− ≤ < . 
 
 

 
Figure 3. The inventory ripple effect under non-stationary demand 

For a comprehensive look at the cases when 1φ < , we may consult Figure 4, where the 
inventory variance again is given as a function of k+L and φ . Since the inventory ripple effect 
indicates multiple variances, it should be read from 1L+  to L P+  on the y-axis. Noticeably, 
the inventory variance increases the most for large positive values of φ , and to a lesser degree 
for negative φ . 
 
The influence of the ripple effect on the safety stock and its associated costs still remains to 
be demonstrated. Let us first assume a zero-lead time, 0L = , as this gives a clear illustration 
of the inventory ripple effect. It is also possible to consider non-zero lead times, but in that 
case the relative cost of the ripple effect becomes smaller. Further assume the inventory cost 
factors { }1,  9H B= = , which imply an optimal availability of 90%. We shall consider the 
difference between a constant safety stock setting designed to cover the entire protection 
interval, i.e. L P+ , and an optimal safety stock setting, which due to the heteroskedacticity of 
the inventory deviations from the norm, must be time-varying (see (3)). The results for some 
different reorder cycle lengths (P), is shown in Table 3. 
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Figure 4. The inventory variance development for stable demand  

 

     φ   

  P   -0.9 -0.5 0 0.5 0.9 
*
PSS   1  1.75 1.75 1.75 1.75 1.75 

 5  2.39 2.47 3.31 5.32 8.98 
 10  2.98 3.25 4.60 8.26 19.67 
  20   3.87 4.43 6.45 12.24 40.00 

*
kSS  1  1.75 1.75 1.75 1.75 1.75 

 5  2.22 2.31 2.94 4.26 6.26 
 10  2.73 2.90 3.94 6.52 12.83 
  20   3.45 3.82 5.41 9.75 26.18 
Table 3. Costs resulting from conventional and optimal configurations. 

 
It is clear that the optimal setting is superior to the sub-optimal one in all cases except when 

1P =  when they are equal (also note that the cost does not change with φ  for this setting, due 
to the lead time being zero). Analogous to the inventory variance, we find that inventory costs 
are lower for strongly negatively correlated demand, and small values of φ , while costs 
increase with φ  and P. For monthly planning ( )20P = , strongly positively correlated demand 
has a 33% higher inventory costs with the conventional setting over the optimal one, but when 
demand is uncorrelated this difference is 18%, and for strongly negatively correlated demand, 
only 16%. 
 
7. Concluding remarks 
In many cases, supply chain planning takes place once per week or less frequently (34% of 
292 Swedish companies). If planning occurs less frequently than inventory inspections, a 
ripple effect occurs, causing inventory deviations to change over time. Infrequent reordering 
is not optimal from an inventory cost perspective but when it is used, constant safety stock 
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levels lead to suboptimal costs. Instead a time-varying safety stock lends the lowest overall 
costs. The inventory ripple effect is especially pronounced when demand is positively auto-
correlated, which is often the case for real demand. The ripple effect we have indicated is the 
bare minimum an inventory system will experience under linear reordering policies. 
Therefore, it is likely that the ripple effect will be worse than we have indicated, for those 
companies that plan once per week or less frequently. Our numerical example indicates a 
large cost differential between supply chains that would consider the effect, and those that 
ignore it. It should therefore be of interest, to managers and academics alike, to find evidence 
of the inventory ripple effect in the real world, and to design pragmatic policies to minimize 
its consequences. 
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