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Neuroimaging biomarkers of depression have potential to aid diagnosis, identify individuals at risk and predict
treatment response or course of illness. Nevertheless nonehave been identified so far, potentially because no sin-
gle brain parameter captures the complexity of the pathophysiology of depression. Multi-voxel pattern analysis
(MVPA) may overcome this issue as it can identify patterns of voxels that are spatially distributed across the
brain. Here we present the results of an MVPA to investigate the neuronal patterns underlying passive viewing
of positive, negative and neutral pictures in depressed patients. A linear support vector machine (SVM) was
trained to discriminate different valence conditions based on the functional magnetic resonance imaging
(fMRI) data of nine unipolar depressed patients. A similar dataset obtained in nine healthy individuals was
included to conduct a group classification analysis via linear discriminant analysis (LDA). Accuracy scores of
86% or higher were obtained for each valence contrast via patterns that included limbic areas such as the amyg-
dala and frontal areas such as the ventrolateral prefrontal cortex. The LDA identified two areas (the dorsomedial
prefrontal cortex and caudate nucleus) that allowed group classification with 72.2% accuracy. Our preliminary
findings suggest that MVPA can identify stable valence patterns, with more sensitivity than univariate analysis,
in depressed participants and that itmay be possible to discriminate between healthy and depressed individuals
based on differences in the brain's response to emotional cues.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Brain imaging studies have traditionally relied on the analysis of
the univariate responses of individual voxels in the brain to differing
conditions. However, multivariate analyses that incorporate depen-
dencies between multiple voxels (Norman et al., 2006) may be
more appropriate for the functional architecture of the human
brain, which is characterised by distributed information processing
(Haxby et al., 2001; Pinel et al., 2004). Multi-voxel pattern analysis
(MVPA) has the ability to detect patterns at a finer resolution, with
weaker activations, where they are part of a collective representation
of a certain task condition ormental state. Previous studies have applied
MVPA for example to detect perceptual (e.g. Haxby et al., 2001;
Mourão-Miranda et al., 2005) or cognitive states (e.g. Davatzikos et al.,
2005; Haynes and Rees, 2005), predict disease (e.g. Craddock et al.,
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ork.
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2009; Mourão-Miranda et al., 2012a, 2012b; Zhang et al., 2005; Zhu et
al., 2005) or affective states (Yuen et al., 2012), identify dysfunctional
processes in clinical populations (e.g. Yoon et al., 2008) and for clinical
response prediction (e.g. Costafreda et al., 2009).

1.1. Studying emotion processing with MVPA

It has been argued that MVPA has superior sensitivity for determin-
ing patterns of response compared to univariate methods (De Martino
et al., 2008; Hanke et al., 2009; Norman et al., 2006; Yoon et al., 2008).
This makes it particularly appealing for emotion research. Emotion pro-
cessing is assumed to involve a widely distributed network of limbic
and prefrontal areas (Damasio, 1998). Its brain correlates have been
studied in humans using different models of affect which can be classi-
fied as categorical (e.g. Ekman, 1992; Roseman et al., 1990) or dimen-
sional (e.g. Schachter and Singer, 1962). Neuroimaging studies
(particularly in combination with MVPA) have the potential to resolve
the ongoing debate between both classes ofmodels. Categorical models
regard emotions as discrete entities that can be expected to bemediated
by distinct brain areas and revealed by univariate analysis. In contrast,
dimensional models describe emotions via their placement on two or
more dimensions. In terms of brain activation, this would be reflected
in changes in the balance of activation between different areas,
served.
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which can only be picked up by multivariate analyses. In this paper
we implemented one of the most influential dimensional models
that is based on the emotion circumplex (Russell, 1980) and assumes
that emotional states can be described via a combination of arousal
(the extent of activation one experiences) and valence (the extent
of pleasantness one experiences). In terms of brain imaging, this
can be utilised to compute contrasts between different types of affec-
tive stimuli and neural correlates of emotions. Previous studies with
univariate methodology have shown substantial overlap between
the cortical regions that process positive, negative and neutral affect
(Johnston et al., 2010; Murphy et al., 2003; Phan et al., 2002),
suggesting that univariate/categorical models may not fully capture
the complexity of emotion processing in the human brain. Converse-
ly, MVPA studies have suggested that multivariate analysis may be
sensitive to differences in neuronal patterns underlying different
levels of valence in healthy volunteers (Baucom et al., 2012; Yuen
et al., 2012). In the study by Baucom et al. (2012), one classifier pre-
dicted whether participants had viewed positive or negative pictures
evoking high or low arousal and another discriminated between pos-
itive and negative valence. These classifiers reached a maximum
within-participant accuracy of 77% and 92% respectively.

1.2. MVPA and pathological emotion processing in depression

Functional imaging has elucidated the brain networks associated
with altered emotion processing in affective disorders (Phillips et
al., 2003) and has revealed changes in neural activation both in symp-
tomatic and remitted states (Goldapple et al., 2004; Grimm et al.,
2008; Siegle et al., 2002). Neuroimaging biomarkers would be of in-
terest to improve diagnosis, for example in the differentiation be-
tween unipolar and bipolar depression, or as trait markers of risk
for mood disorder in vulnerable individuals (Linden, 2012), and
MVPA may be particularly useful for this purpose (Mourão-Miranda
et al., 2012b) because no single parameter of brain structure or acti-
vation can capture the complexity of the pathophysiology of depres-
sion. Such biomarkers would also be potentially useful as predictors
of treatment response, for treatment stratification or as surrogate
markers in clinical trials (Keedwell and Linden, 2013). Several previ-
ous studies have applied MVPA in the context of depression (Fu et al.,
2008; Hahn et al., 2011; Marquand et al., 2008). In one study individ-
uals were classified as healthy or depressed (with 86% accuracy)
based on the pattern of cortical activity representing the implicit pro-
cessing of sad facial expression (Fu et al., 2008). Another study ap-
plied pattern recognition to the functional magnetic resonance
imaging (fMRI) data of healthy and depressed individuals who com-
pleted two versions of the monetary incentive delay task and passive-
ly viewed facial expression (Hahn et al., 2011). A combination of the
conditions involving neutral faces, receiving large rewards and antic-
ipating no loss resulted in the highest group classification accuracy.

1.3. Current study

To our knowledge no study has investigatedwhether it is possible to
accurately identify specific valence conditions in response to Interna-
tional Affective Picture System (IAPS; Lang et al., 1999) pictures in
brain activation data from depressed patients, which thus formed the
main aim of the current study. While Mourão-Miranda et al. (2012a,
2012b)) investigated the discriminability of patterns that underlie
viewing happy and neutral faces in unipolar and bipolar depressed pa-
tients, the current study focused on unipolar depression, was not con-
fined to the processing of facial expressions and included negative
valence cues aswell. Patients suffering from depressionwere presented
with an emotion localiser composed of positive, negative and neutral
images. A support vector machine (SVM) was trained to classify the
data as belonging to one of the three picture valence categories. Suc-
cessfully discriminating brain patterns related to the processing of
different valence cues via MVPA is of interest for two reasons. First of
all, this would illustrate the ability of MVPA to disentangle closely
overlapping neural substrates. This in turn would allow the detection
of more fine-grained abnormalities that potentially underlie the dys-
functional emotion processing associated with depression. Further-
more, MVPA offers key ingredients for successful fMRI neurofeedback
(Sitaram et al., 2011): detection, decoding and prediction of neural
states in a short period of time. Rapidly identifying activation patterns
corresponding to specific tasks or states, instead of just focusing on sin-
gle regions, might lead to more accurate neurofeedback and eventually
boost its quality and long-term effects in depression, which is an area of
current development (Linden et al., 2012).

To preempt our results, we show a successful application of MVPA
in discriminating positive, negative and neutral valence cues in pa-
tients with depression. In addition, we demonstrate that less sensitive
univariate approaches leave areas undetected that are highly discrim-
inatory in MVPA. Finally, it was possible in our sample to discriminate
healthy from depressed individuals based on differences in bivariate
response patterns to stimuli of different valence conditions.

2. Materials and methods

2.1. Data

Nine patients (8 male; age range = 21–67 years, mean age =
48.8 years) suffering from unipolar depression as established by the
SCID (First et al., 2002) were included in the analysis (see Table S1
for more details). None of the patients had any DSM-IV defined
comorbidities. All patients were on anti-depressants, the dose of
which remained stable for at least the six weeks preceding the inter-
vention and for the entire duration of the study. Data was acquired on
a 3-T Philips Achieva System (Best, The Netherlands) and data acqui-
sition procedures were similar as in Johnston et al. (2011); TR = 2 s,
TE = 30 ms, 30 slices, 3-mm slice thickness, inplane resolution
2 × 2 mm). The same localiser as previously described in Johnston
et al. (2010, 2011) was adopted, consisting of positive, negative and
neutral stimuli adopted from the IAPS. IAPS pictures were employed
as these induce the expressive, somatic and autonomic changes that
are typically associated with affective expression, in a controlled
manner (Lang and Bradley, 2007). Additionally, the IAPS picture set
comes along with well-documented ratings of arousal and valence
as these two factors have been found to explain most of the variance
in evaluative judgments (Lang and Bradley, 2007). During the
localiser, 12 trials of each valence type (positive, negative and neu-
tral) were presented in a pseudo-randomised order (see Fig. 1). Per
trial either four neutral, negative or positive IAPS pictures were
shown for 1.5 s each, alternating with a fixation baseline of 12 s.
Two patients participated in three sessions during which they
viewed the same localiser and the remaining patients in four ses-
sions. Per patient we thus obtained a total of either 36 of 48 trials
per valence condition. The functional data were preprocessed using
motion correction and linear detrending to remove signal drift
(GLM-Fourier, 2 sines/cosines). The data were then coregistered
with the anatomical data and transformed into Talairach Space
(Talairach and Tournoux, 1988).

2.2. Multi-voxel pattern analysis

2.2.1. Trial estimation/feature extraction
The BrainVoyager QX (Brain Innovation, Maastricht, The Nether-

lands) software was used to perform supervised multivariate pattern
classification via the SVM. A general linearmodel (GLM) analysis was
performed that computed voxel-wise beta estimates for each trial
within each valence condition within the following contrasts: positive–
negative, positive–neutral andneutral–negative. In totalwe thus obtained
48 sets of beta estimates per valence condition across all localiser sessions



Fig. 1. Schematic overview of data compiling one valence condition. Within one trial,
four pictures of the same valence type (either positive, negative or neutral) were
presented for 1.5 s each. Twelve trials were presented in each localiser session for
each valence type amounting to either 36 or 48 trials per valence type patient
(depending on whether the patient had participated in three or four localiser sessions).
A total of 144 (or 108) trials was obtained per patient collapsed over the three valence
conditions and the four (or three) localiser sessions.
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with the exception of two participants who only participated in three
localiser sessions (total of 36 beta estimates per valence condition; see
Supplementary Information: Materials for more details). No temporal
or spatial smoothing was applied to ensure that the selection of infor-
mative voxels (and as a consequence the input for the classifier) was
not biased as smoothing can hinder the detection of isolated voxels
and can instead favour spatially clustered ones. The patterns of estimat-
ed beta values (z-normalised)were stored in feature vectors and served
as input for the feature selection step.

2.2.2. Feature selection
Feature selection on the dataset is an essential step for the classi-

fication of fMRI data (see Mitchell et al., 2004; Norman et al., 2006)
for background). The selected parameters are similar to Yuen et al.'s
(2012). The visual cortex was masked by excluding all brain tissue
posterior to the occipito-parietal sulcus to prevent categorisation
driven by differences in visual cortex responses to the dissimilar visu-
al input in each condition. In addition, the ventricles were masked for
each patient individually. An initial data reduction step via univariate
F-tests followed by multivariate recursive feature elimination (RFE)
has been found to result in maximum sensitivity and generalisation
performance (De Martino et al., 2008). First a crude selection was
made by selecting the top 50% (13 000–27 000) of the voxels that
showed the strongest activation, for each of the three contrasts (pos-
itive–negative, positive–neutral and neutral–negative).Then a more
fine-tuned selection procedure was adopted that selected the top 5%
(600–1400 voxels) of the remaining voxels via RFE (see Supplemen-
tary Information: Materials for more details). At the end of this
stage only the SVM weights of the selected voxels were retained for
each trial. Five randomly selected trials out of 48 (or 36) were set
apart as testing dataset while the remainder of the trials (either 43
or 31) served as training input.

2.2.3. Classifier training
In the third step a linear SVM, known for their good generalisation

performance even in studies with relatively small datasets, was trained
(see Belousov et al., 2002; Misaki et al., 2010 for background). A
cross-validation procedure testing a series of different SVMs using dif-
ferent values for the regularisation parameter C was run for each of
the three contrasts separately (see Supplementary Information: Mate-
rials for more details). The C-value, which establishes the trade-off be-
tween classification accuracy and generalisability, that resulted in the
maximum cross-validation accuracy determined the optimal hyper-
plane that separated the training trials of the valence conditions. This
hyperplane, or decision boundary, can be described by the linear dis-
criminant function f(x) = wx + b, where w is the vector containing
the SVM weights, x the training patterns containing the beta estimates
of the valence conditions in the contrast (of the selected voxels) and b
the bias term. Depending on the side of the decision boundary at
which the training pattern of a trial appeared in feature space, a trial
was assigned to one of the two valence conditions in the contrast. The
class assignment was then checked with the experimental protocol to
determine the correctness of the classification. In the last phase of this
third step an overall accuracy score indicating the proportion of correct-
ly allocated training trials was calculated for each contrast separately.

2.2.4. Classifier testing
In the final step of the MVPA the remaining data served as input

for the trained SVM to test the performance on a set of input new to
the classifier. This SVM was used to predict the categories of the
test trials for each contrast and individual separately. Overall predic-
tion accuracy scores for each contrast were computed based on the
prediction accuracy of all trials together. For all contrasts five trials
(out of 48/36 trials) of each condition were randomly selected to be
left out of the training stage (decoding and classifying) which later
served as testing (predicting) data.

2.2.5. Group-level activation probability maps
Group-level probability maps were generated to determine the

areas that were driving the classifications. For this purpose, individual
discriminative maps based on the SVM weights were created first for
each of the three contrasts. These served as the basis for masks that
contained all discriminative voxels. Group-level probability maps
were then calculated via these masks and were smoothed with a
4 mm FWHM Gaussian kernel to adjust for individual differences in
neural anatomy. These maps were thresholded at 60%, entailing that
a voxel only appeared on the probability map if it was discriminative
in more than five individuals.

2.2.6. Permutation tests
Finally permutation tests were performed to compare the perfor-

mance of the classifier to a null-distribution. The trials were randomly
categorised after which the classifier was retrained with these new
and possibly wrong categorisations. This classifier was repeatedly test-
ed (200 permutations) with a ‘leave one out’ cross-validation method
and provided a null distribution that showed the probability of gaining
a correct classification result while the conditions were randomly allo-
cated. Classification accuracies of above the 95th percentile of the null
distribution indicated that a significant classifier accuracy result was
obtained.

2.3. Univariate analysis

The sensitivity of the multivariate method was compared with a
univariate analysis. In accordance with standard univariate analysis
procedures the data were corrected for head motion, linearly
detrended and temporally (3 s) and spatially smoothed (4 mm
FWHM Gaussian Kernel) to increase the signal-to-noise ratio for
the group analysis. The same mask as in the multivariate method
was applied for each patient. A conventional single-subject GLM
(p b .05) was performed for the three contrasts. This served as the
basis for individual masks of the activated voxels in each valence
condition in each contrast. Group-level activation probability maps
(thresholded at 60%) were generated based on these masks to
allow for comparison with the multivariate probability maps.



Fig. 2. Areas underlying the valence patterns for the three different contrasts as identified
via MVPA. a) Contrast positive versus negative. Areas carrying information about positive
valence included the insula, parahippocampal gyrus and postcentral gyrus (x = −37).
For negative valence the areas included the putamen, inferior frontal gyrus (IFG), middle
frontal gyrus (MFG), middle temporal gyrus (MTG), parahippocampal gyrus, ventral stri-
atumand cingulate gyrus (y = 4, radiological convention). The areas that formpart of the
valence patterns are coloured in blue. b) Contrast positive versus neutral. The cingulate
gyrus and hypothalamus were amongst other regions part of the pattern underlying pos-
itive valence (x = −9). The cingulate gyrus, insula, putamen, superior temporal gyrus
(STG) and occipitotemporal gyrus (OTG) formed part of the pattern underlying neutral
valence (y = 4, radiological convention). c) Contrast neutral versus negative. For neutral
valence the anterior cingulate gyrus (ACG), thalamus and midbrain carried information
related to neutral valence (x = 15). For negative valence the areas included the
orbitofrontal cortex (OFC), IFG, temporoparietal junction (TPJ) and insula (z = 12, radio-
logical convention). d)Differential activationpatterns in thedepressed and healthy group,
in the contrast positive versus negative, were found in the bilateral ventrolateral cortex
(VLPFC) and dorsal cingulate gyrus (all represented in orange) and allowed group classi-
fication with an accuracy of 100%.
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2.4. Group classification

In follow up of theMVPA results we investigatedwhether it was pos-
sible to discriminate activation patterns in response to different valence
conditions in different groups of people. Due to software limitations this
was not examined via MVPA but a bivariate differentiation analysis sim-
ilar to Ihssen et al.'s (2011). Since the healthy controls only participated
in 12 trials itwas not possible to train a separate classifier on the data col-
lected in healthy controls either. Instead, the localiser data of one session
of nine healthy controls (7 male, age range = 30–56 years; mean
age = 38 years) were added to the localiser dataset of the first session
of the depressed patients. The data had been collected during a previous
study (Johnston et al., 2010) that applied the same localiser protocol as
the depression study. Therewas no significant difference of age between
the two groups (t(16) = 2.023, p > .05) and both groupswerematched
for gender. Activity mapswere created via a two-way ANOVA to identify
areas that showed a significant interaction between group and valence
contrast. As this was an exploratory analysis an arbitrary threshold of
p b .002was chosen thatwould ensure that only themost discriminative
areas would be maintained in the analysis. Subsequently two stepwise
linear discriminant analyses (LDAs) were conducted in SPSS 18.0
(SPSS, Chicago, IL, USA) that searched for the brain areaswith the highest
discriminative power and thereby investigated how well the different
areas discriminate between the healthy and depressed group. One LDA
was conductedwith all areas identified on the activitymaps and another
with all areas that survived multiple comparison correction via cluster
thresholding (p b .05, cluster size threshold of 108 mm3 for all three va-
lence contrasts). After this exploratory analysis another stepwise LDA
was conducted that is not affected by a potential bias from circularity.
For each of the three valence pairs the five clusters that showed the
most significant main effect of valence were identified. From these 15
areas the clusters surviving cluster threshold correction (p b .05, cluster
size threshold of 108 mm3 for the contrast [positive–negative], 81 mm3

for the contrast [positive–neutral] and 135 mm3 for the contrast [neu-
tral–negative]) were selected as input for the LDA. Areas that also
showed a significant interaction between group and valence contrast
were excluded from the LDA. The generalisation of the classifierwas test-
ed via a leave-one-out cross-validation procedure.

3. Results

3.1. Multi-voxel pattern analysis

For all valence discriminations the SVM achieved accuracy levels
between 80 and 100% (positive–negative: 92%; negative–neutral:
86%; neutral–positive 89%). The permutation tests demonstrated the
statistical significance of the SVM accuracy results as the obtained dis-
crimination accuracy for all valence labels and all depressed subjects
was significantly higher than at the chance level of .05 (see Fig. S1).

The emotional valence information for neutral, negative and posi-
tive stimuli in depressed patients was reflected in a highly distributed
activity pattern across the brain and covered areas that have previ-
ously been linked to emotional processing (see Table S2 for complete
overview). Several areas were identified that are part of the
fronto-limbic system such as the VLPFC, insula, striatum, cingulate
cortex, amygdala and hippocampus (see Fig. 2). None of these areas
showed selectivity for only one valence condition (see Table 1). In-
stead they contained voxels weighted for several valence conditions
in several contrasts, albeit at varying locations within that area.

3.2. Univariate analysis

The group-level activation probability maps across all patients
created by univariate analysis were thresholded at the same level
(60%) as in the multivariate approach. Only activation related to neg-
ative valence survived this threshold. For positive valence, the first
activation appeared at 50% (contrasted to the neutral condition) and
at 40% (contrasted with the negative condition).

3.3. Group classification

An LDA was performed to investigate the differentiability be-
tween affect processing areas in depressed and healthy participants.
Exploratory activation maps were constructed for the interaction
‘group’ × ‘valence contrast’ to identify areas that would serve as
input for the LDA (see Table 2A). Based on the activation levels in
four areas, the stepwise LDA was able to correctly classify all

image of Fig.�2


Table 1
Fronto-limbic areas aiding classification per valence condition per contrast.

Positive vs
Negative

Positive vs
Neutral

Neutral vs
Negative

Pos Neg Pos Neu Neu Neg

Insula x x x x x x
IFG x x x x x x
Amygdala x x x
Caudate nucleus x x x
Putamen x x x x x
Hippocampus x x x x x
ACG x x x

IFG = inferior frontal gyrus, ACG = anterior cingulate gyrus.

Fig. 3. Activation patterns of the areas underlying successful group classification. a) Areas
identified via a ‘group’ × ‘valence contrast’ interaction, without cluster threshold correc-
tion. Based on the bivariate response patterns in four areas (in different contrasts) all par-
ticipants were classified in the correct group. Elevated activation levels were found for
negative valence in the depressed group in comparison to the healthy control
group. b) Areas identified via a ‘group’ × ‘valence contrast’ interaction, surviving
cluster threshold correction. The bivariate response patterns of three areas that sur-
vived cluster threshold correction allowed successful group classification. Apart
from a cluster in the right VLPFC that was identified without cluster threshold correc-
tion, the left MFG and left IPL showed a marked difference in the activation pattern in
both groups. c). Areas identified via a main effect of valence, surviving cluster thresh-
old correction. The group classification was based on the bivariate response patterns
in the left DMPFC and left caudate nucleus. D = depressed, H = healthy.
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participants. These areas were the right VLPFC and dorsal cingulate
gyrus in the [neutral–negative] contrast, the left VLPFC in the con-
trast [positive–neutral] and the dorsal cingulate gyrus in the contrast
[positive–negative]. For both areas located on the cingulate gyrus the
depressed group had higher activation levels in the negative than
neutral or positive conditions, whereas the healthy controls had
lower activation levels in the negative than neutral or positive condi-
tions (see Fig. 3A). When the LDA was conducted with the areas that
had survived cluster threshold correction (see Table 2B), the cluster
in the right VLPFC in the contrast [neutral–negative] was retained
and was able to classify all individuals with 100% accuracy in con-
junction with a cluster in the MFG and IPL in the contrast [positive–
neutral] (see Fig. 3B).

The stepwise LDA based on only areas showing a main effect of va-
lence (see Table 3) correctly classified all participants based on acti-
vation levels in the caudate nucleus and dorsomedial prefrontal
cortex (DMPFC; see Fig. 3C). In the cross-validation procedure that
was run to test the generalisation of the classifier, 72.2% (chance
level: 50%) of all cases were correctly classified as either belonging
to the depressed or healthy group.

To summarise, the SVM classified the different valence conditions
in patients with depression with high accuracy. Several of the neural
correlates underlying these conditions form part of a fronto-limbic
system. Conversely, a standard univariate analysis did not pick up
any activation differences in any of the contrasts. Based on the activ-
ity patterns in the DMPFC and caudate nucleus the LDA was able to
perfectly separate healthy from depressed individuals.

4. Discussion

4.1. MVPA findings

This study identified activation patterns of specific valence condi-
tions elicited by IAPS pictures in patients with unipolar depression.
The group-level probability maps obtained via MVPA showed that a
distributed pattern of brain regions contributed to the representation
of each valence condition, with overlap in the brain areas associated
with the different valence conditions. The overlap could indicate
that an area fulfills a more general role in affective processing such
as emotion reappraisal (Ochsner and Gross, 2005) or may indicate
emotion specific involvement in both valence conditions, for example
arousal responses that are similar across valence directions. Our find-
ings in patients are thus generally in line with previous studies in
healthy individuals (Baucom et al., 2012; Johnston et al., 2010;
Murphy et al., 2003; Yoon et al., 2008; Yuen et al., 2012) and confirm
the view that neural correlates of affective states are dispersed across
the brain. Anderson and Oates (2010) have criticised the identifica-
tion of neural correlates via MVPA arguing that MVPA can yield unsta-
ble results. However, Li et al. (2012) demonstrate the effectiveness of
recursive feature elimination in combination with permutation tests
to improve the overlap between informative features obtained in
different folds and to limit the chance of including irrelevant features. If
the MVPA results had indeed been unstable like Anderson and Oates
argue then the likelihood ofmeasuring substantial overlap of discrimina-
tive voxels across participants, as shown on the group-level probability
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Table 2
Areas selected as LDA input.

Region Side TAL coordinates No. of voxels

A. Group × valence contrast interaction (p b .002)
A. Group × (positive–negative) interaction

Dorsal cingulate gyrus L −13/−21/29 326
Amygdala R 23/4/−18 4
VLPFC R 27/41/0 31

L −31/43/1 99
Precentral gyrus R 24/−7/48 348

B. Group × (positive–neutral) interaction
MFG L −41/4/50 139
VLPFC L −55/6/20 60
Postcentral gyrus R 42/−28/44 229

L −30/−20/42 56
Subgyral region L −37/−32/0 12
SFG L −19/36/45 34
IPL L −39/−39/37 151

L −47/−33/39 342
DMPFC L −12/34/42 20
Insula L −40/−8/−9 4

C. Group × (neutral–negative) interaction
VLPFC R 33/41/0 225

L −34/38/−2 108
DMPFC R 10/44/37 81
Caudate nucleus L −15/−3/20 58
Precuneus R 15/−54/38 66

L −17/−62/30 57
Dorsal cingulate gyrus L −13/13/27 6
Precentral gyrus R 51/−16/47 24
IPL R 28/−53/27 13
Posterior cingulate gyrus R 17/−42/9 12

B. Main effect valence per contrast (p b .001)
A. Contrast (positive–negative)

MFG R 42/15/30 352
DMPFC L −4/43/46 424
MTG L −57/−20/−6 253
VLPFC R 35/23/19 141
Insula L −33/3/10 60

B. Contrast (positive–neutral)
DMPFC R 3/24/45 11
MFG R 41/19/31 227
Putamen R 32/−10/13 56
Midbrain R 19/−17/−9 22
Insula L −33/−23/15 19

C. Contrast (neutral–negative)
Caudate nucleus L −11/5/14 224
STS L −38/−52/9 87
VLPFC L −30/27/4 254
MTG L −42/−70/−5 772
ITS R 39/−61/−11 515

The areas surviving cluster threshold correction are printed in bold.
VLPFC = ventrolateral prefrontal cortex, MFG = middle frontal gyrus.
SFG = superior frontal gyrus, IPL = intraparietal lobule.
DMPFC = dorsal medial prefrontal cortex, MTG = middle temporal gyrus.
STS = superior temporal sulcus, ITS = inferior temporal sulcus.
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maps, would have been slim. We thus argue that our RFE approach
allowed us to obtain discriminative voxels that were indeed informative
in different individuals. This approach alone does not refute the other
main critique brought forward by Anderson and Oates, that successful
classifier performance does not imply that the brain solves a task in the
same way. Although we did not address this issue by testing perfor-
mance of different classifiers, we are confident that the identified brain
areas contributed to the perceptual-affective response to emotional va-
lence because several of the discriminatory areas identified in the current
study form part of a fronto-limbic system of areas involved in emotion
processing and/or dysfunctional in patients with depression (Damasio,
1998; Drevets, 2001; Phan et al., 2002; Phillips et al., 2003), including
the insula, amygdala, striatum, thalamus, hippocampus, SFG, (anterior)
cingulate cortex and VLPFC.

Our study explored the neural underpinnings of the processing of
IAPS pictures in a depressed sample via multivariate analysis. Several
other studies have previously investigated the discriminability of dif-
ferent types of valence via a multivariate approach in healthy individ-
uals (e.g. Baucom et al., 2012; Sitaram et al., 2011; Yuen et al., 2012)
or patients with mood disorders (e.g. Mourão-Miranda et al., 2012a).
The classifier accuracies that we obtained are comparable with simi-
lar studies. Baucom et al. (2012) presented IAPS pictures of different
levels of arousal and valence to healthy participants and achieved ac-
curacy scores around 80%. One explanation for the high classification
accuracies in their study may be that the physical properties of the vi-
sual stimuli were more similar within than across valence conditions.
Although they matched the stimuli set for hue, saturation and inten-
sity values, identical stimuli could be repeated in the training and test
trials, and the same was true for our study. To prevent the low level
visual properties of the stimulus set from interfering with the classi-
fication of the emotional content we therefore excluded the posterior
cortex from the analysis. Mourão-Miranda et al. (2012a) trained a
classifier to discriminate between happy and neutral faces presented
to groups composed of healthy controls, unipolar depressed patients
and bipolar patients. Prediction rates of 81%, 70% and 61% respectively
were obtained. In our study we show that high classification accura-
cies can be obtained even when comparing positive or negative emo-
tions with a neutral condition in patients with unipolar depression.

Our study also shows that high classification accuracies can be
obtained across sessions, which attests to the good reliability of the
procedure. The stable representation of valence across the brain and
across time is relevant for further clinical applications such as fMRI
neurofeedback. Future neurofeedback studies will have the option
to provide feedback of brain patterns (LaConte, 2011; Shibata et al.,
2011; Sitaram et al., 2011) instead of restricted ROIs which might
lead to more pronounced behavioural effects. As an example, the de-
sign of this study could be translated into a neurofeedback paradigm
in which depressed patients would receive neurofeedback on their
emotion regulation in response to the presentation of the positive,
negative or neutral IAPS pictures. As depression has been associated
with physiological abnormalities that are dispersed across the brain,
it might be crucial to attempt to regulate patterns of brain activity
across the whole brain with the aid of MVPA. Given the time con-
strains that apply to neurofeedback, the feasibility of real-time feed-
back from a pattern classifier was tested by running the SVM
procedure only once. This resulted in very high prediction accuracies
suggesting that the future for neurofeedback experiments applying
real-time classification looks promising.

4.2. Univariate versus multivariate analysis

Although the sensitivity threshold of the univariate and multivar-
iate analysis seems to differ only marginally, the group-level proba-
bility maps resulting from the univariate analyses were based on a
substantially higher number of voxels due to the feature elimination
steps conducted in the multivariate analyses. While the masks used
to create the univariate-based group maps contained on average
109,701 voxels, the number of voxels that survived RFE ranged from
600 to 1400. Hence the likelihood of spatial overlap between discrim-
inative voxels was much higher in the univariate compared to the
multivariate analysis. Yet, we found the opposite: the group-level
probability maps based on the univariate analysis showed less spatial
overlap than the multivariate-based group maps. Because of the abil-
ity of MVPA to detect fine-grained activation patterns, MVPA thus
seems more sensitive to detect stable representations. One reason
for the lower stability of the univariate analysis might be that the ac-
tivity levels in the areas for different conditions cancel each other out
because of the high overlap between the conditions (Murphy et al.,
2003). Another explanation could be that relatively weak activations
that discriminated between conditions are too subtle to be picked up
by univariate approaches. Several studies that compared the neural
correlates of different valence conditions via a passive IAPS picture



Table 3
Stepwise LDA results.

Wilks λ χ2 Significance level Classification accuracy

Input based on areas showing a ‘group’ × ‘valence contrast’ interaction
All contrasts before cluster threshold correction

• VLPFC (neu–neg)
• VLPFC (pos–neu)
• Dorsal cingulate gyrus (neu–neg)
• Dorsal cingulate gyrus (pos–neg)

0.067 37.067 p b 0.001 100%

All contrasts after cluster threshold correction

• MFG (pos–neu)
• IPL (pos–neu)
• VLPFC (neu–neg)

0.159 26.768 p b 0.001 100%

Input based on areas showing a main effect of valence
All contrasts after cluster threshold correction

• Caudate nucleus (neu–neg)
• DMPFC (pos–neg)

0.477 11.094 p = 0.004 100%

VLPFC = ventrolateral prefrontal cortex, MFG = middle frontal gyrus, IPL = intraparietal lobule, DMPFC = dorsomedial prefrontal cortex.
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viewing paradigm in healthy subjects did find suprathreshold clusters.
A direct comparison of negative over positive valence for instance
resulted in clusters in the bilateral VLPFC and along the left middle
and bilateral superior temporal gyrus in one study (Kensinger and
Schacter, 2006), yet did not result in any significant clusters in another
(Gerdes et al., 2010). Itmust be noted however that different studies se-
lected different pictures from the IAPS database and that these studies
were conducted in healthy individuals.
4.3. Group classification findings

Although we cannot make any claims about the predictive perfor-
mance of the LDA analysis as it was based on activity maps created
from the same data, our results suggest that significant differences
exist between healthy and depressed individuals with respect to va-
lence processing. The exploratory LDAs demonstrated that based on
clusters in the bilateral VLPFC and dorsal cingulate cortex a perfect
separation between the data of depressed patients and healthy con-
trols was obtained. One previous classification study investigated
which mixture of task conditions resulted in the maximum discrimi-
nation between healthy and depressed individuals (Hahn et al.,
2011). While the single level classifiers performed above chance
when taking neutral, happy or sad faces into account, it was only
the responsiveness to neutral faces that served as a vital discriminato-
ry criterion. It thus seemed that the differences between patients and
controls in response to viewing happy and sad faces were highly sim-
ilar to those in response to neutral faces. In contrast, the results from
the current study suggest that the responsiveness to all valence levels
was distinct in healthy and depressed participants. A potential expla-
nation for the discrepancy in results is that our study used broader
emotion categories because of which there were more facets along
which healthy and depressed individuals could have differed, thereby
being more suitable for group classification purposes. An alternative
reason might be that in order to identify the most discriminative clas-
sifier, Hahn et al. (2011) predicted the accuracy for each of the 15 sin-
gle condition classifiers as well as a decision tree algorithm that
combined the descriptive probabilities of all single classifiers first. It
has been demonstrated that the testing and selection of (most rele-
vant) dependent variables from a subset inflates false-positive results
(Simmons et al., 2011) yet the study did not take any measure to cor-
rect for potential type I errors. Its findings should thus be interpreted
with caution. In contrast to Hahn et al. we obtained high group
classification accuracies while solely depending on the neural pat-
terns underlying emotion processing. This is intriguing since symp-
tom constellations can vary considerably across patients with
depression. Nevertheless our results suggest some common ground
in emotion processing across patients with depression. We have
also provided preliminary evidence that this neural basis differs
from that observed in healthy controls. The replication of successful
classifiers with independent samples could contribute to the develop-
ment of biomarkers of mood state that might be used in the diagnosis
and longitudinal monitoring of mood disorders.

4.4. Limitations and future studies

The major limitation of this study is that the datasets were not op-
timally designed for classification purposes. Consequently the test
data in the MVPAwas not composed of an independent sample. In ad-
dition, any medication-related differences cannot be ruled out due to
the nature of both groups. Another limitation is that even though the
visual cortex was excluded in the classification and prediction pro-
cesses it cannot be ruled out that neural responses to the identical
physical features of the stimuli in each session may have aided classi-
fication. The limited number of trials acquired in our healthy sample
unfortunately did not allow a comparison of MVPA results obtained
in healthy and depressed participants. Even though this was not the
aim of our paper, which was to investigate the feasibility of pattern
classification of valence in a depressed sample, future studies should
attempt to contrast healthy and depressed individuals via MVPA.
This may reveal potential differences previously unidentified by uni-
variate methods. It would be beneficial for future studies to adopt
larger datasets since the small number of participants in the current
study limits the generalisability of our findings. Finally, future studies
are required to confirm the advantage of multivariate over univariate
analysis in other forms of emotion processing and other domains.

4.5. Conclusion

In conclusion, this study illustrated the capacity of multivariate
analysis of brain activation data to successfully differentiate between
highly overlapping neural activations that carry information about
emotional valence in patients with depression with a limited num-
bers of trials and its superior sensitivity compared to the univariate
analysis conducted in this study. Moreover, it appears that in our
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sample depressed patients could be separated from healthy controls
with the use of regional activity patterns and the appropriate valence
contrast. However, we did not test the discriminatory power of the
same patterns in an independent patient group, which would be nec-
essary to infer valid classification in the general population. The
long-term goal of this research programme is the development of re-
liable diagnostic markers that allow the discrimination between
healthy and depressed individuals, the identification of current
mood state and predictions of which individuals are most likely to
benefit from certain type of treatments ((Mourão-Miranda, Oliveira,
et al., 2012).
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