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Abstract

Identifying the most appropriate time series model to achieve a good forecasting accuracy is
a challenging task. We propose a novel algorithm that aims to mitigate the importance of
model selection, while increasing the accuracy. Multiple time series are constructed from the
original time series, using temporal aggregation. These derivative series highlight different
aspects of the original data, as temporal aggregation helps in strengthening or attenuating
the signals of different time series components. In each series the appropriate exponential
smoothing method is fitted and its respective time series components are forecasted. Subse-
quently, the time series components from each aggregation level are combined, and then used
to construct the final forecast. This approach achieves a better estimation of the different
time series components, through temporal aggregation, and reduces the importance of model
selection through forecast combination. An empirical evaluation of the proposed framework
demonstrates significant improvements in forecasting accuracy, especially for long-term fore-
casts.

Keywords: Aggregation, Combining Forecasts, Exponential Smoothing, M3 Competition,
MAPA, ETS

1. Introduction

In forecasting, the selection and parameterisation of models is of principal importance,
as it is tied to accurate and reliable predictions. Modern organisations have to produce
a large number of forecasts. It is desirable to automatically identify and parameterise the
appropriate model for each series, in order to reduce the associated workload. This endeavour
has been met with mixed success in both research and practice, resulting in Gooijer and
Hyndman (2006) identifying it as an open research question. The lack of statistical expertise
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in organisations complicates the problem further (Hughes, 2001), and a relatively simple
solution would be desirable for practical implementations.

In this paper, we propose a framework that mitigates the issue of model selection, while
improving forecasting accuracy, by taking advantage of temporal aggregation and forecast
combination.

It is possible to emphasise different time series characteristics by transforming the origi-
nal data to alternative time frequencies. We propose to aggregate a time series into multiple
lower frequencies, i.e., a monthly time series becomes bi-monthly, quarterly and so on. At
each aggregation level, different features of the time series are highlighted and attenuated
(Andrawis et al., 2011). At a lower aggregation (high frequency time series), periodic com-
ponents such as seasonality will be prominent. As the aggregation level increases, high
frequency signals are filtered out, and more importance is given to the lower frequency com-
ponents, such as the level and trend of a time series. Intuitively, we expect to capture the
seasonal elements of a time series better at lower aggregation levels (high frequency data).
The opposite is true for the level and trend, which are highlighted at higher aggregation
levels. Consequently, our motivation for such aggregation is to facilitate the identification,
selection and parameter estimation of forecasting models.

After temporal aggregation, we produce a forecast at each aggregation level, using the
appropriate forecasting method. For this purpose we use the exponential smoothing family
of methods, which provides a holistic framework to model all archetypal types of time series,
whether level, trended or seasonal. The calculation of numerous forecasts at different time
frequencies inevitably leads to the use of combination schemes. The combination step offers
further improvements in the robustness and accuracy of the resulting forecast.

Instead of combining the forecasts from the different aggregation levels directly, we pro-
pose to first break down the forecasts to their time series components, then combine these.
This is motivated by potential differences in the ways in which the components appear or
are transformed at different temporal aggregation levels. For example, if a seasonal monthly
time series is aggregated into an annual one, it will have no seasonality. Simply combining
monthly and annual forecasts would halve the seasonal signal. Therefore, the combination
of the seasonal information must be done only for the aggregation levels at which it exists,
whilst for the level and trend, the combination can be performed at any level. Moreover,
combining forecasts instead of time series components does not allow us to discriminate
between the desirable elements of each aggregation level that is to be combined. Further
advantages of combining components instead of forecasts are discussed in the description
of the proposed algorithm. Exponential smoothing provides such component information
directly (Gardner, 2006). The combined components are subsequently joined to produce
forecasts for the original time series.

The key advantages of the proposed framework are: i) it lessens the importance of model
selection, a principal problem in time series modelling; ii) it takes advantage of gains in
forecasting accuracy from both temporal aggregation and forecast combination, which have
been demonstrated separately in the literature; iii) it makes use of exponential smoothing,
a widely established and well researched forecasting method that is implemented in several
forecasting support systems; and, iv) it is simple, thus allowing transparency and direct
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implementation in organisations.
We conduct a large empirical evaluation of the proposed framework against exponential

smoothing. We also use the direct combination of forecasts produced at different aggregation
levels as a benchmark, in order to demonstrate the benefit of considering the time series
components separately. We test the robustness of the proposed Multi Aggregation Prediction
Algorithm (MAPA) by evaluating its performance, in terms of accuracy and forecasting bias,
across datasets with different sampling frequencies. We find that MAPA has promising
forecasting performance, with major improvements for long-term forecasts.

The rest of the paper is organized as follows: in the next section we discuss the benefits of
temporal aggregation and model combination in the literature, providing further motivation
behind our work. Section 3 describes the proposed MAPA, while section 4 outlines the
experimental setup and presents the evaluation results, followed by a discussion in section
5. A further refinement of the model is investigated in section 6, and concluding remarks
are given in section 7.

2. Background research

2.1. Aggregation and forecasting

There are two types of aggregation in the forecasting literature (Babai et al., 2012).
On the one hand, temporal aggregation refers to time (non-overlapping) aggregation for
a specific time series. This converts a high frequency time series into a lower frequency
time-series, according to the selected aggregation level. For example, we can derive the
annual demand of a monthly series by setting the aggregation level equal to 12 periods. On
the other hand, cross-sectional or hierarchical aggregation refers to the demand aggregation
(bottom-up) of multiple items or stock keeping units (SKUs) for the formation of families
of products.

Temporal aggregation has been investigated in the context of ARIMAmodels and GARCH
processes. For a thorough overview on the effects of temporal aggregation on time series
models the reader is encouraged to refer to the study by Silvestrini and Veredas (2008).
Even though there is no theoretical support (Wei, 1990), aggregation has shown empirically
to work remarkably well for ARIMA models, in terms of both forecasting accuracy (for ex-
ample see: Amemiya and Wu, 1972; Abraham, 1982) and bias reduction (Souza and Smith,
2004; Mohammadipour and Boylan, 2012).

The consequences of temporal aggregation and systematic sampling, in terms of lag
lengths (Brewer, 1973) and dynamic relationships between variables (Weiss, 1984), have
also been investigated, giving useful theoretical insights on the stability of ARMA and
ARMAX models. Moreover, Drost and Nijman (1993) showed that, in the case of univariate
GARCH model, the variance parameters of the low frequency model generally depend on
mean, variance, and kurtosis parameters of the high frequency model. Hafner (2008) derived
results for the temporal aggregation of multivariate GARCH(1,1) processes, and concluded
that the dynamics of the aggregated processes can be acquired in a very simple way. As
a result, plenty of empirical and theoretical work has been done on ARIMA models and
GARCH processes in regards with temporal aggregation. On the other hand, the literature
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on the effects of temporal aggregation with exponential smoothing models is much more
limited, even though the method itself is widely applied in practice (Gardner, 2006).

Spithourakis et al. (2011) examined the efficiency of a temporal aggregation framework
on widely used forecasting techniques. The results, based on the monthly data from the M3-
Competition (Makridakis and Hibon, 2000), demonstrated significantly improved forecasting
accuracies for Naive, SES and Theta (Assimakopoulos and Nikolopoulos, 2000). Athana-
sopoulos et al. (2011) showed that, in the tourism industry, aggregated forecasts (produced
from high frequency data) were more accurate than forecasts produced from low frequency
data directly. They were the first to investigate the impact of temporal aggregation on
the performance of the exponential smoothing family of methods empirically, though their
study was limited to aggregating monthly and quarterly data to yearly. Their forecasting
evaluation was performed only at the lowest frequency (yearly data). However, the effects
of temporal aggregation on exponential smoothing models remain largely unexplored, par-
ticularly across different time frequencies.

Research has also focused on the application of temporal aggregation to count and in-
termittent data. In these cases, aggregation is intuitively appealing, as it is likely that the
resulting time series will have a lower degree of intermittency. Willemain et al. (1994) were
the first to examine the impacts of temporal aggregation in the context of intermittent de-
mand empirically. Although it was limited to just 16 series, their research demonstrated
significant improvement in the behaviour of Croston’s method when data were aggregated
in weekly time buckets. Nikolopoulos et al. (2011) performed a more extensive empirical
evaluation of the effect of the aggregation level in the performances of the random Walk and
the Syntetos and Boylan approximation of Croston’s method (Syntetos and Boylan, 2005).
They proposed an Aggregate-Disaggregate Intermittent Demand Approach (ADIDA) algo-
rithm that acts as a “self improving mechanism” by reducing bias and improving accuracy.
Babai et al. (2012) showed that ADIDA also results in improved customer service levels.
Spithourakis et al. (2012) presented a systemic view of the ADIDA framework. Using sim-
ulated examples, they demonstrated that there is a reduction in the output noise as the
aggregation level increases. They concluded that temporal aggregation up to a limited level
is considered beneficial, as the randomness is smoothed and the long-term features of the
series are enhanced. At the same time, they found that large time buckets suffer from excess
smoothing in trending or seasonal data.

One of the main issues is the selection of the optimum temporal aggregation level for a set
of series, or per series individually, as there is no evidence that this level is universal across
a dataset. In this direction, Nikolopoulos et al. (2011) proposed setting the aggregation
level of each series as the lead time plus one review period. This heuristic demonstrated a
good forecasting accuracy. In order to identify an optimal aggregation level for each series
empirically, Spithourakis et al. (2011) used various in-sample criteria and found significant
improvements for aggregation levels up to around 12 periods.

The proposed MAPA builds on these findings. However, it does not focus on a pre-
determined single level of aggregation, due to the absence of any theoretical understanding of
the best way to choose one. While ADIDA uses a single aggregation level, MAPA considers
a time series under multiple temporal aggregation levels simultaneously, with the aim of
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capitalising on the advantages of each aggregated and original time series. Since no single
level is selected, different forecasts are produced for the same item. The resulting information
can be combined in a single prediction, the output of MAPA.

2.2. Combining forecasts for different aggregation levels

Combining has been considered widely to be beneficial for forecasting (Bates and Granger,
1969; Makridakis and Winkler, 1983; Clemen, 1989). Averaging statistical approaches leads
to improvements in predictive accuracy. Combining also results in lower levels of uncer-
tainty, by reducing the variance of forecasting errors (Hibon and Evgeniou, 2005). Many
recent studies have examined sophisticated weight selection processes for combining forecasts
(He and Xu, 2005; Taylor, 2008; Kolassa, 2011); however, simple approaches are considered
to be robust and perform reasonably well relative to more complex methods (Clemen, 1989;
Hibon and Evgeniou, 2005; Timmermann, 2006; Jose and Winkler, 2008). According to
Kolassa (2011), there is little consensus in the literature as to whether the mean or median
of forecasts should be selected, in terms of forecasting performance.

The combination of forecasts produced from different frequencies of the same data is
intuitively appealing, with the aim of capturing different dynamics of the data at hand. To
the best of our knowledge, Cholette (1982) was the first to investigate the advantages of
this scheme, by modifying monthly forecasts produced from an ARIMA model through the
integration of judgmental forecasts derived from experts using data of alternative frequencies.
Trabelsi and Hillmer (1989) investigated the problem of combining forecasts constructed
on series of different frequencies, again using ARIMA models. A process used to specify
a high frequency model for multiple series sampled at different frequencies is discussed
by Casals et al. (2009). They demonstrated theoretically that aggregation may have a
positive effect on the predictive accuracy, by combining forecasts from data of different
frequencies efficiently. Andrawis et al. (2011) investigated the benefits of combining short-
and long-term forecasts. They used monthly and yearly time series and investigated the
best method for combining the forecasts. In order to make the combination feasible, they
first deseasonalised the monthly time series. They concluded that the combination can be
beneficial for forecasting accuracy. Granger (1993) argued that temporal aggregation should
be done with care, especially in the presence of cointegration, as it may have a variety of
effects and implications.

3. Forecasting through temporal aggregation of time series components

The proposed framework can be separated into three steps: i) the aggregation step; ii) the
forecasting step; and iii) the combination step. We will discuss each step individually, then
present MAPA holistically. A visual overview of MAPA is presented in Fig. 1, outlining the
three different steps. We will refer to this figure in the detailed description of the algorithm.

3.1. Time series temporal aggregation

Let Y be a time series, with observations yt and t = 1, . . . , n, sampled at a given fre-
quency. We can aggregate this time series by considering consecutive groups of values of the
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Figure 1: Flowchart of the proposed Multi Aggregation Prediction Algorithm (MAPA).

original time series in sets of length k. We denote the temporally aggregated time series as
Y [k] with observations y

[k]
i and i = 1, 2, . . . , n/k, such as:

y
[k]
i = k−1

∑ik

t=1+(i−1)k
yt. (1)

Obviously, for k = 1, y
[1]
i = yt. Hereafter, for consistency, we will use only y

[k]
i . Observe

that we consider the arithmetic mean as the aggregation operator. We do this in order
to keep the level of the aggregated time series Y [k] similar to the level and units of the
original time series Y [1]. The resulting Y [k] has ⌊n/k⌋ observations. If the remainder of
the division n/k is not zero for a specific aggregation level k, then some observations will
not be taken into account when forming the temporal aggregation buckets. In this case, we
remove n − ⌊n/k⌋ observations from the beginning of the time series in order to be able
to form complete aggregation buckets. In theory, we can aggregate a time series for all
k = 2, . . . , n, bur in practice it is preferable for k ≪ n in order to leave an adequate sample
for parameterising a forecasting method on Y [k].

An example is provided in Fig. 2, where a monthly time series is aggregated for k =
1, 3, 5, 12. Plots of the time series are provided, together with the corresponding power
spectra. For k = 1, a clear seasonal signal is evident in the power spectrum. The same is
true for k = 3, although the variance it explains is now smaller, and a shift in frequency
is also clear. For higher aggregation levels, the seasonal component cannot be observed in
either time series or power spectra plots; in fact, the level and trend components dominate.

In the first step of MAPA, as shown in Fig. 1, K time series are produced through time
series temporal aggregation.

3.2. Forecasting

After constructing the aggregate Y [k] series, we fit appropriate forecasting models to
each one. It is desirable to consider the different time series components that appear at
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Figure 2: Time series plot and power spectrum for k = 1, 3, 5, 12.

each aggregation level, instead of the forecasts, so as to distinguish the aggregation levels
at which the seasonal component can appear. Furthermore, the focus on the components
simplifies the forecast combination, as a combination of different level components or differ-
ent seasonal components can be done directly, with no special pre-processing. On the other
hand combining level, trended and seasonal forecasts is not trivial. For example, combining
a seasonal and a non-seasonal forecast would result in the seasonal signal being halved.
Previous studies have tackled this issue by seasonally adjusting the original data (for ex-
ample, Andrawis et al., 2011), and thus forcing a deterministic seasonality, which may be
inappropriate, as well as requiring its characterisation between additive or multiplicative.
This shift, from combining forecasts to combining forecasted time series components, is one
of the key innovations of the proposed algorithm.

The exponential smoothing forecasting method lends itself to this purpose, as one can
extract the level, trend and seasonal components of the fitted model directly. In this paper
we will refer to it as ETS from ExponenTial Smoothing, as was proposed by Hyndman
et al. (2008). ETS is a family of methods, designed for forecasting time series with different
characteristics, covering a wide range of additive and multiplicative combinations of level,
trend, seasonality and noise (Gardner, 1985; Taylor, 2003; Gardner, 2006). ETS has been
shown to provide a relatively good forecasting accuracy over a large number of time series
from many different sources (Makridakis and Hibon, 2000; Hyndman et al., 2008). The
state space framework, proposed by Hyndman et al. (2002), offers a statistical rationale to
support the ETS models. Under the state space formulation, each of the components of the
time series is modelled in the state vector, and is available for further manipulations.

ETS models capture and smooth the existing structural components of a time series:
level, trend and seasonality. The components of the method can interact in either an additive
or multiplicative way. The trend can be linear or damped. For a full description of ETS,
together with a discussion on how to optimise its smoothing parameters see Hyndman et al.
(2008). For each time series the appropriate components must be selected. Hyndman et al.

7



(2002) propose that Akaike’s Information Criterion be used for selecting between the different
types of ETS automatically, with good accuracy results. Since our focus here is not on ETS,
we follow their suggestion, which is widely regarded as being the state-of-the-art, on how to
select the appropriate model.

For each temporally aggregated Y [k] time series, an ETS is fitted. We are interested
in the last state vector x

[k]
i of ETS. The state vector contains the updated values for each

time series component: level (li), trend (bi) and seasonality (si), where available; x
k
i =

(li, bi, si, si−1, . . . , si−S+1)
′. Using this information and knowing the type of fitted ETS, we

can produce forecasts for any forecast horizon desired. Note that, for k > 1 the desired
forecast horizon h is adjusted for each aggregation level to h[k] = ⌈h/k⌉. Moreover, for the
original time series, horizon h[1] = h.

The seasonality may disappear and reappear at different aggregation levels. If Y [1] has
seasonal period S, then seasonality will be considered again only if S/k is an integer number
and k < S. For example, if the original periodicity is S = 12 for monthly data, then
seasonality will be modelled again for k equal to 2, 3, 4 and 6. Potential non-integer
seasonalities are not considered due to the inability of ETS and other conventional forecasting
methods to model them.

The numerical values of the additive and multiplicative components of x
[k]
i are not di-

rectly comparable. It is possible that an additive ETS could be fitted at one aggregation level
and a multiplicative at a different one. This can increase the complexity of the subsequent
combination of the components from all Y [k]. We propose that multiplicative components
be translated to additive ones. Using the components in the state vector x

[k]
i , we construct

predictions for each level (li), trend (bi) and seasonality (si), where available, translating
to additive when needed, using the formulas in Table 1. The formulas can be derived triv-
ially from the multi-step-ahead ETS forecast formulation, and are based on adding the level
information to the multiplicative trend and seasonality. Note that parameter optimisation
and calculation of the updated states are done using the original formulation of ETS (Hynd-
man et al., 2008), independently at each aggregation level. Once the components have been
translated to additive ones, the model parameters of each level are no longer needed and
only the values of the translated components at each point t are used hereafter.

The additive translation of the components is only used for constructing the out-of-
sample component predictions. Although the nature of the interaction of the error with the
rest of the components, i.e., additive or multiplicative, is important for correctly optimising
ETS and updating its state vector, it does not affect the out-of-sample prediction of the
components, and Table 1 can be used for both cases.

Once all components have been translated to additive, we can proceed to the next step
of the proposed algorithm. For notation consistency, we will add a superscript k to each
component to indicate its respective level of aggregation. Note that under this additive
reformulation, forecasted values of Y [k] can be calculated as a simple addition of the predicted
components:

ŷ
[k]

i+h[k] = l
[k]

i+h[k] + b
[k]

i+h[k] + s
[k]

i−S+h[k] . (2)
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Table 1: Component prediction in the additive formulation

Trend
Seasonal

N A M

N li+h = li
li+h = li

si−S+h = si−S+h

li+h = li

si−S+h = (si−S+h − 1)li+h

A
li+h = li

bi+h = hbi

li+h = li

bi+h = hbi

si−S+h = si−S+h

li+h = li

bi+h = hbi

si−S+h = (si−S+h − 1)(li+h + bi+h)

Ad
li+h = li

bi+h =
∑h

j=1
φjbi

li+h = li

bi+h =
∑h

j=1
φjbi

si−S+h = si−S+h

li+h = li

bi+h =
∑h

j=1
φjbi

si−S+h = (si−S+h − 1)(li+h + bi+h)

M
li+h = li

bi+h = (bhi − 1)li+h

li+h = li

bi+h = (bhi − 1)li+h

si−S+h = si−S+h

li+h = li

bi+h = (bhi − 1)li+h

si−S+h = (si−S+h − 1)(li+h + bi+h)

Md
li+h = li

bi+h = (b
∑h

j=1 φj

i − 1)li+h

li+h = li

bi+h = (b
∑h

j=1 φj

i − 1)li+h

si−S+h = si−S+h

li+h = li

bi+h = (b
∑h

j=1 φj

i − 1)li+h

si−S+h = (si−S+h − 1)(li+h + bi+h)
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The forecast of different aggregation levels, for a given time period, outputs different
numbers of values. For example, if the original time series Y [1] is sampled at a monthly
frequency, predicting one year ahead requires 12 forecasted values, while the Y [12] aggregate
series requires only one value for the same forecast. It is desirable, in order to facilitate the
combination of the forecasts, to have all aggregate forecasts on the time scale of the original
time series Y [1]. For any value z

[k]
i , this can be done using:

zt =
k

∑

j=1

ωjz
[k]
i , (3)

with t = 1, 2, . . . , n and i = ⌈t/k⌉. Essentially, Eq. (3) spreads the ith value to k observations
in the original time domain t, acting as a piecewise constant interpolation.1 This approach
is fully equivalent to calculating point forecasts directly to the aggregated level and then
reverting the forecasts back to the original level through disaggregation with equal weights
(ωj = 1/k) (Nikolopoulos et al., 2011; Spithourakis et al., 2011).

We apply Eq. (3) to all l
[k]
i , b

[k]
i and s

[k]
i , resulting in up to k different estimations

for each of the time series components in the original time domain. Fig. 3 illustrates
this for the estimated trend component of a time series. The trend component estimated
at aggregation levels k = (1, 4, 8) is displayed. Note that these have different slopes and
number of observations and they can be additive or multiplicative, damped or not. These
are subsequently transformed to additive using Table 1 and back to the original time scale
using Eq. (3).
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Figure 3: Estimated trend component for k = (1, 4, 8) and in the original time scale.

In some cases, not all ETS components are fitted in all aggregation levels. For instance,
ETS may capture trend in some aggregation levels, but not in other. When there is no
estimate of a particular component at an aggregation level, we set its predictions equal
to zero. The rationale is that if a component is left out, then it is not identified in the
time series, having zero impact on the forecast, or; in other words, it has zero additive
contribution.

In the second step of the MAPA algorithm, as illustrated in Fig. 1, an ETS model is
fitted for each aggregation level, and its components are extracted. These are subsequently

1More complex interpolation methods can also be used for this purpose; however’ they introduce addi-
tional undesired complexity, particularly for aligning time across aggregation levels.
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transformed into additive ones and in the original time domain of Y [1]. The output of this
step is sets of level, trend and seasonal components from each aggregation level, ready to be
combined in the next step.

3.3. Combined component forecast

In the third and final step of the MAPA algorithm, as shown in Fig. 1, the different
components that were calculated before are combined to produce the final level, trend and
season estimates, which are subsequently used to produce the final forecast.

Combining time series components instead of forecasts makes the process substantially
simpler. We combine the level, trend and seasonal components separately, which are subse-
quently used to construct the final forecast. Since the aggregation of the time series was done
using the arithmetic mean, we do not have to adjust the level of the resulting components
further. In this work, we consider only two combination methods that have been shown
to perform well and be robust: the unweighted mean and the median (see Agnew, 1985;
Clemen, 1989; Miller et al., 1992; Palm and Zellner, 1992; Timmermann, 2006; Clements
and Hendry, 2007). A detailed comparison of the different combination schemes is out of
the scope of this paper.

In the case of the unweighted mean, each component is combined as follows:

l̄t+h[1] = K−1
∑K

k=1
l
[k]

t+h[1] , (4)

b̄t+h[1] = K−1
∑K

k=1
b
[k]

t+h[1] , (5)

s̄t+h[1] = K ′−1
∑K′

k=1
s
[k]

t+h[1] , if (S/k) ∈ Z and k < S, (6)

where K is the maximum aggregation level considered and K ′ is the number of aggregation
levels where seasonality may be identified, i.e., when S/k results in an integer and k < S,
as discussed in Section 3.1.

The combination is illustrated in Fig. 4. Estimates of the level and trend components of
a trended time series are provided for temporal aggregation levels k = (1, 4, 8), as well as the
resulting combined components. Although in the examples we use only a few aggregation
levels for illustrative purposes, we propose to build the combined MAPA components based
on multiple continuous aggregation levels, resulting in smoother combined components.

Alternatively, we explore the use of the median instead of the mean in the construction of
l̄t+h[1] , b̄t+h[1] and s̄t+h[1] . The median is more robust to extreme values and will therefore be
less affected by poorly estimated components. If the ETS, applied at different aggregation
levels, identifies different components, the median will favour the most popular component
type. On the other hand the mean considers all components equally, disagreeing or not.

To produce the final forecast for h[1] steps ahead, the forecast horizon of the original time
series, we simply add the combined components:

ŷ
[1]

t+h[1] = l̄t+h[1] + b̄t+h[1] + s̄t−S+h[1] (7)
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Figure 4: Level and trend components for k = (1, 4, 8) and the resulting combined l̄t+h[1] and b̄t+h[1]

components.

Note that if a component is missing in all K aggregation levels, then its contribution on
ŷ
[1]

t+h[1] is zero. For instance, for a non-seasonal time series, the forecasted seasonal component
is always zero for each k level, as well as the combined s̄t−S+h[1] .

4. Empirical Evaluation

4.1. Experimental Setup

In order to evaluate the proposed MAPA empirically, we compare its performance against
ETS applied on the original data frequency directly. We use the annual, quarterly and
monthly data from the M3-Competition (Makridakis and Hibon, 2000) and the semi-annual
data from the Federal Reserve Bank of St. Louis, FRED.2 The objective is to compare
MAPA’s performance against ETS at different time series frequencies. Table 2 shows the
number of series available in each dataset, along with the number of the observations in the
holdout sample and the maximum aggregation level investigated in each frequency.

Table 2: Data used for empirical evaluation

Original
Frequency

Source
Number of

Series
Holdout
Sample

Maximum
Aggregation Level

Annual M3-Competition 645 6 2

Semi Annual FRED 1,483 8 2

Quarterly M3-Competition 756 8 4

Monthly M3-Competition 1,428 18 12

We have excluded the “Other” series of the M3-Competition, as their frequency is un-
known. We retain a similar experimental setup to the M3-Competition. The forecast horizon
for each dataset is equal to its holdout sample. This allows direct comparison with the re-
sults and findings from the original (Makridakis and Hibon, 2000) and derivative works. For

2Accessed 20/11/2012 at http://research.stlouisfed.org/fred2/.
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all datasets, with the exception of the annual, we set the maximum aggregation level so as to
consider up to annual time series. For the annual dataset we use one additional aggregation
level.

We compare MAPA with state space ETS forecasts. ETS has been shown to perform
very well on the M3-Competition dataset (Makridakis and Hibon, 2000; Hyndman et al.,
2002). To fit the ETS, select the appropriate type and produce forecasts, we use the im-
plementation available in the forecast package version 3.25 by Hyndman and Khandakar
(2008) for the R Project (R Core Team, 2012). Note that the results obtained are slightly
different from the results by Hyndman et al. (2002), due to updates in the publicly available
R code. We compare this with forecasts resulting from mean and median combination of
the forecasted components, as outlined in Section 3. At each level of aggregation, an ETS
model is fitted. We produce two sets of MAPA forecasts, using the Mean and Median to
combine the forecasted components at different aggregation levels. These will be referred to
as MAPA(Mean) and MAPA(Median). In order to assess the necessity of combining compo-
nents instead of forecasts, we also benchmark MAPA against mean and median combination
of forecasts produced at each aggregation level. These will be referred to as Comb(Mean)
and Comb(Median).

The performance of the proposed framework is measured using four different error met-
rics: i) the Mean Percentage Error (MPE), which is appropriate for measuring the bias of
the forecasts; ii) the symmetric Mean Absolute Percentage Error (sMAPE), to allow com-
parisons with previous studies (Makridakis and Hibon, 2000; Hyndman et al., 2002); iii)
the Geometric Mean Relative Absolute Error (GMRAE); and iv) the Mean Absolute Scaled
Error (MASE), as proposed by Hyndman and Koehler (2006). These are calculated as:

MPE = m−1
∑m

j=1

(yj − ŷj)

yj
, (8)

sMAPE = m−1
∑m

j=1

2 |yj − ŷj|

(|yj|+ |ŷj|)
, (9)

GMRAE = m

√

√

√

√

m
∏

j=1

|yj − ŷj|
∣

∣yj − ŷ′j
∣

∣

, (10)

MASE = m−1
∑m

j=1

|yj − ŷj|

(n− 1)−1
∑n

r=2 |yr − yr−1|
, (11)

where yt and ŷt are the actual and the forecasted values, respectively, at time t; m is
the number of observations in the hold-out sample; and n the number of observations in
the fitting sample. For GMRAE a benchmark forecast ŷ′t is needed. For this purpose we
use conventional ETS forecasts, thus directly highlighting how MAPA contributes to the
forecasting accuracy of ETS.

4.2. Results

For each dataset, we provide results for the total forecast period, and short-term forecast,
medium-term forecast and long-term forecast. Table 3 presents the results for the annual
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M3-Competition dataset. Each column refers to a different error measure, and the best
result for each error measure and forecast horizon is highlighted in boldface. Note that since
the maximum aggregation level for this dataset is two, the Mean and Median operators are
the same for MAPA and Comb. Therefore, we summarise the results in a single row, under
MAPA and Comb respectively. The results for MAPA and Comb are identical, as there is
no seasonality in the annual time series.

Table 3: M3 Competition Results: Annual Time Series

MPE % sMAPE % GMRAE MASE

All (t+1 to t+6)

ETS -14.50 18.70 1.00 3.53

Comb -12.56 18.42 1.03 3.23

MAPA -12.56 18.42 1.03 3.23

Short (t+1 to t+2)

ETS -4.30 10.60 1.00 1.51

Comb -4.83 11.17 1.15 1.57

MAPA -4.83 11.17 1.15 1.57

Medium (t+3 to t+4)

ETS -14.30 19.50 1.00 3.46

Comb -12.82 19.03 0.97 3.21

MAPA -12.82 19.03 0.97 3.21

Long (t+5 to t+6)

ETS -25.10 25.90 1.00 5.62

Comb -20.04 25.07 0.97 4.92

MAPA -20.04 25.07 0.97 4.92

Across the complete forecast horizon, the proposed MAPA outperforms the benchmark
ETS for all error metrics apart from GMRAE. Considering sMAPE, it falls short of the best
M3-Competition performance (Hyndman et al., 2002). Interestingly, if we look into more
detail, the benchmark ETS clearly performs better for short forecast horizons, while such is
not the case for longer horizons. This provides some evidence that the proposed framework
performs well for long-term forecasts.

Table 4 presents the results for the semi-annual dataset. Again the maximum aggrega-
tion level is two, making theMean andMedian results identical, which are again summarised
in single rows. A picture similar to that for annual results emerges. Overall, ETS is out-
performed across all error metrics. Both bias and forecasting accuracy are improved by the
MAPA forecasts. The same is true for the Comb forecasts. The improvements are smaller
for short forecast horizons, but become more substantial for longer horizons, providing ad-
ditional evidence of strong benefits for long-term forecasts. Although there are very small
differences between the combination and MAPA forecasts, due to the small semi-annual sea-
sonality, these cannot be seen in the summarised figures that are reported due to rounding.

Table 5 summarises the quarterly dataset. In this case, ETS performs best from t+1
to t+8, for all metrics but MASE. Considering the MASE, MAPA(Mean), MAPA(Median)
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Table 4: FRED Database Results: Semi-Annual Time Series
MPE % sMAPE % GMRAE MASE

All (t+1 to t+8)

ETS -8.66 8.75 1.00 4.69

Comb -7.73 8.04 0.90 4.17

MAPA -7.73 8.04 0.90 4.17

Short (t+1 to t+3)

ETS -8.08 7.85 1.00 3.60

Comb -7.27 7.25 0.95 3.28

MAPA -7.27 7.25 0.95 3.28

Medium (t+4 to t+6)

ETS -9.33 9.20 1.00 5.08

Comb -8.24 8.38 0.88 4.45

MAPA -8.24 8.38 0.88 4.45

Long (t+7 to t+8)

ETS -8.50 9.40 1.00 5.72

Comb -7.66 8.73 0.88 5.07

MAPA -7.66 8.73 0.88 5.07

and ETS all perform the same. Looking at the results in more detail, one can see that
both MAPA(Mean) and MAPA(Median) improve for longer horizons, to the extent that
for long-term forecasts ,MAPA(Mean) ranks first according to sMAPE and MASE, while
MAPA(Median) ranks first according to GMRAE. Both outperform ETS on all metrics,
apart from MPE, with ETS providing the least biased forecasts. Consistent with the results
in Tables 3 and 4 MAPA performs better for long horizon forecasts than for short-term ones.

Comparing the forecast combination with MAPA, we can see that MAPA is consistently
more accurate across all horizon. Furthermore, MAPA(Median) is consistently less biased
than Comb(Median). The same is true for the Mean models. The improved MAPA results
are attributed to the way in which seasonality, which is more prominent in the quarterly
data, is handled by combining the components.

Table 6 provides the results for the monthly dataset. Considering the overall accuracy,
MAPA(Mean) outperforms the benchmark ETS for all metrics but MASE. MAPA(Median)
demonstrates a similar behaviour, achieving a similar performance to ETS for MASE. Note
that, according to the sMAPE results, the proposedMAPA(Mean) performs very close to the
best method in the original M3-Competition, the Theta method that achieved an sMAPE
of 13.85% (Assimakopoulos and Nikolopoulos, 2000). For short-term forecasts, the relative
performance of ETS improves, with only MPE and sMAPE favouring MAPA(Mean). How-
ever, for medium- and long-term forecast horizons both MAPA(Mean) and MAPA(Median)
clearly outperform the benchmark ETS for all error metrics.

MAPA forecasts consistently outperform both Comb(Mean) and Comb(Median). The
seasonality in monthly time series is even more prominent, and the special handling of the
seasonal component by MAPA is responsible for the improvements in accuracy. Moreover,
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Table 5: M3 Competition Results: Quarterly Time Series

MPE % sMAPE % GMRAE MASE

All (t+1 to t+8)

ETS -2.86 9.84 1.00 2.40

Comb(Mean) -5.49 10.51 1.15 2.43

Comb(Median) -5.14 10.68 1.16 2.44

MAPA(Mean) -5.26 10.18 1.10 2.40

MAPA(Median) -4.83 10.26 1.09 2.40

Short (t+1 to t+3)

ETS -1.12 6.53 1.00 1.38

Comb(Mean) -3.60 8.10 1.34 1.67

Comb(Median) -3.42 8.29 1.35 1.67

MAPA(Mean) -3.21 7.62 1.26 1.64

MAPA(Median) -2.97 7.68 1.24 1.62

Medium (t+4 to t+6)

ETS -6.91 10.62 1.00 2.58

Comb(Mean) -9.57 11.16 1.10 2.58

Comb(Median) -9.20 11.36 1.11 2.58

MAPA(Mean) -9.37 10.86 1.05 2.55

MAPA(Median) -8.89 10.95 1.05 2.53

Long (t+7 to t+8)

ETS 0.60 13.62 1.00 3.64

Comb(Mean) -2.20 13.15 0.97 3.35

Comb(Median) -1.62 13.26 0.98 3.39

MAPA(Mean) -2.17 13.01 0.95 3.34

MAPA(Median) -1.51 13.08 0.94 3.36

the forecasts of Comb(Mean) and Comb(Median) are almost always worse than the bench-
mark ETS, demonstrating that simple combination of different aggregation levels is not
enough to achieve forecasting performance improvements.

Overall, across all four datasets, we can see that bothMAPA(Mean) andMAPA(Median)
improve upon ETS, in particular for long-term forecasts. Although the exact ranking of the
competing methods depends on the error metric, it appears that the MAPA(Mean) is more
accurate, while the MAPA(Median) is less biased. Across all datasets, both MAPA models
are significantly better than the benchmark ETS for the medium, long and overall forecast
horizons, as indicated by a Friedman followed by an MCB post-hoc test, according to the
procedure outlined by Koning et al. (2005). For short horizons, no significant differences
were identified. In both the quarterly and monthly datasets that contain seasonal time
series, MAPA significantly outperforms forecast combination across different aggregation
levels. In many cases, the later performs worse than the benchmark ETS.
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Table 6: M3 Competition Results: Monthly Time Series

MPE % sMAPE % GMRAE MASE

All (t+1 to t+18)

ETS -10.08 14.38 1.00 2.12

Comb(Mean) -11.10 14.40 1.04 2.17

Comb(Median) -10.40 14.90 1.06 2.17

MAPA(Mean) -10.02 13.89 0.99 2.13

MAPA(Median) -9.01 14.07 1.00 2.12

Short (t+1 to t+6)

ETS -7.51 12.01 1.00 1.27

Comb(Mean) -7.57 12.42 1.13 1.43

Comb(Median) -7.59 12.85 1.13 1.41

MAPA(Mean) -6.49 11.90 1.07 1.38

MAPA(Median) -6.38 12.01 1.07 1.36

Medium (t+7 to t+12)

ETS -7.17 13.69 1.00 2.08

Comb(Mean) -5.91 13.73 1.01 2.12

Comb(Median) -5.96 14.26 1.04 2.13

MAPA(Mean) -5.89 13.18 0.96 2.08

MAPA(Median) -5.47 13.34 0.99 2.08

Long (t+13 to t+18)

ETS -15.57 17.43 1.00 3.01

Comb(Mean) -19.67 16.96 0.98 2.96

Comb(Median) -18.06 17.50 1.01 2.98

MAPA(Mean) -17.68 16.59 0.95 2.93

MAPA(Median) -15.20 16.85 0.96 2.92

5. Discussion

We find that MAPA improves on the forecasting performance (in terms of both accuracy
and bias) of ETS. In particular, the good long-term performance of the MAPA can be
explained by the proposed time series temporal aggregation. This step of MAPA functions
as a low-pass filter that enhances the estimation of the low frequency components (level
and trend). As a result, the long-term movements in the series associated to these low
frequency components can be estimated better. In contrast, conventional ETS appears to
perform best for short-term forecasts, where the impact of such low frequency components is
small. The same improvements can be achieved by simply combining forecasts from different
aggregation levels, as long as there is no seasonality.

In the second step of MAPA, as shown in F 1, the time series of each level are smoothed
using ETS. This allows a better estimation of the expected value of each time series compo-
nent at each aggregation level. As illustrated in the empirical results of the quarterly and the
monthly time series, a simple combination of the ETS forecasts is not adequate for seasonal
time series. On the other hand, MAPA is able to provide performance improvements due to
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its selective consideration of the estimated components.
The third step combines the forecasted components, calculated at different temporal

aggregation levels. Depending on the type of the ETS model fitted at each aggregation
level, the time series components may be either similar or different in their nature. The
combination step can be seen as a further type of smoothing, a model smoothing, where
the most common type of model across aggregation levels is weighted more heavily in the
final forecast. This lessens the importance of model selection at each individual aggregation
level. In contrast, the ETS forecasts are based on a single model that may be selected
wrongly. The improved forecasting accuracy of MAPA is attributed to these multiple types
of “smoothing”.

MAPA requires an ETS model to be fitted at each aggregation level. This obviously
increases the computations required. However, as the level of aggregation increases, the
series derived have considerably fewer observations. Moreover, for many aggregation levels,
no seasonal models are considered. These points limit the total computational time required.
The calculations needed for the component transformations and their combinations are
trivial, and add little to the required computations.

In Section 4, we focused on the improved accuracy of point forecasts; however, prediction
intervals are also useful, in that they provide an indication of the uncertainty of the forecasts.
To produce prediction intervals with MAPA, one can use a bootstrap method and simulate
a large number of future sample paths, as described by Hyndman et al. (2002). This can
be done using the final forecast of MAPA, as calculated in Eq. (7), thus making the pro-
cess similar to calculating prediction intervals using simulation for conventional exponential
smoothing.

In this paper we discussed the calculation of predicted time series components using ETS.
It is possible to consider alternative methods. Once forecasts for ŷ

[k]

i+h[k] are constructed, we
can use time series decomposition to extract each component from the forecasts (such as
TRAMO SEATS, see Gómez and Maravall, 1996). In this case, the additive or multiplicative
decomposition must be selected appropriately. Next, the resulting components must be
transformed to additive.

6. A hybrid model

If we consider the way in which the forecasts for the MAPA(Mean) are constructed, we
can see that 1/K of it is conventional ETS modelled on the original Y [1] time series. ETS
performs better at short forecast horizons, because low frequency time series components
do not have a prominent effect on the time series. for such horizons. A combination of ETS
with theMAPA(Mean) (or theMAPA(Median)) will potentially perform well for both short-
and long-term forecasts. We construct simple combinations of ETS and MAPA forecasts
using an unweighted average. The results of this combination are summarised in Table 7.
The results for all four error metrics are provided, for the complete forecast trace, for each
dataset. The numbers in brackets refer to the combination of ETS with the MAPA(Median),
while the rest refer to the combination of ETS with the MAPA(Mean). Underlined figures
outperform all ETS, MAPA(Mean) and MAPA(Median) for that particular dataset and
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error metric from the respective Tables 3-6. In each case, the best result across all models
and their combination is highlighted in boldface.

Table 7: Combined ETS with MAPA(Mean) and (MAPA(Median))

MPE % sMAPE % GMRAE MASE

Annual -13.56 (-13.56) 18.37 (18.37) 1.01 (1.01) 3.34 (3.34)

Semi-Annual -8.20 (-8.20) 8.36 (8.36) 0.95 (0.95) 4.40 (4.40)

Quarterly -4.06 (-3.84) 9.63 (9.58) 0.99 (0.99) 2.27 (2.25)

Monthly -10.05 (-9.55) 13.69 (13.72) 0.96 (0.95) 2.04 (2.04)

For both annual and semi-annual datasets, with maximum aggregation level K = 2, the
gains are small. In these cases, ETS does not contribute different information. On the other
hand, we observe improvements for both quarterly and monthly datasets. For all accuracy
error metrics, sMAPE, GMRAE and MASE, the combined forecasting accuracy is superior
to ETS, MAPA(Mean) or MAPA(Median) separately. The bias results of MPE demonstrate
improvements over the benchmark ETS in most cases, however there are no cases that the
combined forecasts are the least biased. It is worth noting that, for the monthly dataset, the
results for both MAPA(Mean) and MAPA(Median) combinations with ETS outperform the
Theta model that achieved the best performance in the original M3-Competition (Makridakis
and Hibon, 2000; Hyndman et al., 2002).

Due to the transparency of MAPA, we can understand how these improvements in accu-
racy occur. Focusing on theMAPA(Mean) for the monthly dataset, we employed a maximum
aggregation level of K = 12. Based on Eqs. (4) and (7), we can easily see, for example,
that the ETS on the original time series is represented 13 times in the combined forecast for
the level component, while aggregation levels 2 to K are represented only once. Essentially,
the hybrid model is a weighted average of the components estimated at different temporal
aggregation levels. We can generalise by rewriting Eq. (4) as:

l̄t =
∑K

k=1
wkl

[k]
t , (12)

where w1 = (K + 1)/2K and w2 to wK equal to 1/2K. Eqs. (5) and (6) can be revised
similarly. This finding reveals that temporal hierarchies could be considered, which could
improve the accuracy of the forecasts further.

7. Conclusions

We have proposed a novel forecasting framework that is based on using temporal ag-
gregation to strengthen or attenuate different time series elements, thus allowing a more
holistic modelling of time series. High frequency components are easier to model at low
levels of aggregation, while low frequency components are more apparent at high levels of
aggregation. This was the main motivation for this work.

A key innovation is the use of time series components instead of forecasts at each aggre-
gation level. This has several computational advantages and improves the transparency of
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the proposed framework. More importantly, it allows us to determine how the different com-
ponents are combined, which is useful for the seasonal component that may not appear at
all aggregation levels. We showed that ETS is readily applicable to this task, and introduced
transformations of the different ETS models to additive ones, simplifying the combination
of the different components over the different aggregation levels.

The reconciliation of the forecasts was done by combining the forecasted components
calculated at different temporal aggregation levels. We used the mean and median as com-
bination operators, as they have been shown to be both robust and accurate. The proposed
framework has been evaluated using four large datasets. We found good forecasting per-
formance over the benchmark ETS, which has been shown to perform well in a variety of
forecasting applications, including, importantly, the M3-Competition datasets that we used
in this case.

Makridakis et al. (1982) and Fildes and Makridakis (1995) had stressed the need for more
work on trend extrapolation and long-term forecasting. Although exponential smoothing has
evolved substantially since then, long term forecasting has remained challenging. The pro-
posed MAPA offers improvements in accuracy, in particular for long-term forecast horizons.
We attribute this to the prominent impact of the low frequency time series components at
long forecast horizons. Using MAPA, we improve the forecasting accuracy and bias of ETS,
a widely researched and established method.

Trying to reconcile short- and long-term performances, we also demonstrated that weighted
combinations are beneficial, hinting at temporal hierarchies that could improve forecasting
performances further. In particular, for the monthly M3-Competition dataset, the forecasts
derived from this process were more accurate than the best performer in the literature:
the Theta model. We aim to explore such temporal hierarchies in future work, potentially
leading to theoretically motivated combination weights.
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Appendix A. Online supplement

R code for MAPA can be downloaded from the International Journal of Forecasting
website at http://www.forecasters.org/ijf/.
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