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Abstract 

Forecasting as a scientific discipline has progressed a lot in the last forty years, with 

Nobel prizes being awarded for seminar work in the field, most notably to Engle, 

Granger and Kahneman. Despite these advances, even today we are unable to answer 

a very simple question, the one that is always the first tabled during discussions with 

practitioners: “what is the best method for my data?”. In essence, as there are horses 

for courses, there must also be forecasting methods that are more tailored to some 

types of data, and, therefore, enable practitioners to make informed method selection 

when facing new data. The current study attempts to shed light on this direction via 

identifying the main determinants of forecasting accuracy, through simulations and 

empirical investigations involving fourteen popular forecasting methods (and 

combinations of them), seven time series features (seasonality, trend, cycle, 

randomness, number of observations, inter-demand interval and coefficient of 

variation) and one strategic decision (the forecasting horizon). Our main findings 

dictate that forecasting accuracy is influenced as follows: a) for fast-moving data, 

cycle and randomness have the biggest (negative) effect and the longer the forecasting 

horizon, the more accuracy decreases; b) for intermittent data, inter-demand interval 

has bigger (negative) impact than the coefficient of variation; c) for all types of data, 

increasing the length of a series has a small positive effect. 
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1. Introduction 

Forecasts are important for all decision-making tasks, from inventory management 

and scheduling to planning and strategic management. Makridakis and Hibon (2000) 

advocated: “predictions remain the foundation of all science”. To that end, 

identification of the best forecasting techniques for each data set, or, even, for each 

series separately, is still the ‘holy grail’ in the forecasting field, and, as a result, 

empirical comparisons to this direction are considered very important (Fildes and 

Makridakis, 1995). Advanced, sophisticated and simpler extrapolation methods could 

be associated with specific features of data. The development of a protocol for 

automatic selection of the best tools for resolving each problem, a protocol that would 

guarantee minimum out-of-sample forecasting error and therefore have a substantial 

impact on decision making, is the ultimate challenge for researchers and practitioners 

in the field. 

As early as the late 1960s and most of the 1970s, several researchers (Kirby, 

1966; Levine, 1967; Cooper, 1972; Naylor and Seaks, 1972; Krampf, 1972; Groff, 

1973; Newbold and Granger, 1974; Makridakis and Hibon, 1979) sought to determine 

the accuracy of various forecasting methods in order to select the most appropriate 

one(s). In addition, psychologists have been concerned with judgmental predictions 

and their accuracy, as well as the biases that affect such predictions, for more than 

half a century (Meehl, 1954; Slovic, 1972; Kahneman and Tversky, 1973; Dawes, 

1979; Meehl, 1986; Tversky and Kahneman, 1982; Hogarth, 1987). Amongst these 

biases, those affecting forecasting include over-optimism and wishful thinking, 

recency, availability, anchoring, illusory correlations and the underestimation of 

uncertainty. In a recent book, Kahneman (2011) describes these and other biases 

whilst also discussing what can be done to avoid, or minimize their negative 

consequences and emphatically states: “the research suggests a surprising conclusion: 

to maximize predictive accuracy, final decisions should be left to formulas, especially 

in low-validity environments” (Kahneman, 2011, p.225). Moreover, the growing 

demand for forecasting big data (e.g. more than 200,000 time series for major 

retailers) renders the use of automatic statistical procedures necessary. 

The purpose of this study is to measure the extent to which each of seven  

time series features (seasonality, trend, cycle, randomness, number of observations, 

inter-demand interval and coefficient of variation) and one strategic decision (the 
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forecasting horizon) affect forecasting accuracy. In order to do this, we measure the 

impact of each of these eight factors
1
 by generating a large number of time series - as 

well as using real data, and measuring the accuracy of the forecasts derived from 

fourteen methods and five combinations of them. Furthermore, a multiple regression 

analysis is performed to measure the extent to which each of the factors affects the 

accuracy of each of the time series methods/combinations. The findings of this 

research could be very useful for practitioners if used for the appropriate selection of 

the best statistical forecasting practices based on an ex-ante analysis of their data (and 

their respective features).  

This paper is structured as follows: after the literature review (Section 2), the 

simulation design for fast-moving and intermittent demand data is discussed in 

Section 3. In Section 4 the accuracy results are presented. Section 5 discusses the 

findings and Section 6 presents the practical implications for decision makers. Finally, 

Section 7 concludes and suggests possible avenues for future research.  

 

2. Background Literature 

Extrapolation models are used very often when facing large amounts of data. Among 

them, exponential smoothing forecasting approaches were developed in the early 

1950s and have become very popular amongst practitioners. Their main advantages 

are simplicity of implementation, relatively low computational intensiveness and no 

requirement for lengthy series, whilst being appropriate for short-term forecast 

horizons over a large number of items. Single Exponential Smoothing (SES - Brown, 

1956) uses only one smoothing parameter and is forecasting quite accurately 

stationary data. Holt’s two parameters approach (1957) expands the Single model 

with a smoothing parameter for the slope, making the method more appropriate for 

trended data. The Holt-Winters approach (Winters, 1960) is an expansion upon the 

Holt trended model, which assumes an additive or multiplicative seasonality in the 

data. Gardner and McKenzie (1985) added a dampening factor (0<φ<1) applied 

directly on the trend component, resulting in a very successful approach that is often 

considered the benchmark in many empirical evaluations. Assimakopoulos and 

Nikolopoulos (2000) proposed the Theta model - a prima facie variation of SES with 

drift, with the full theoretical underpinnings presented by Thomakos and 

                                                           
1
 We use the term ‘factor’ to refer to both the data features as well as the strategic decision (forecasting 

horizon) that we will examine their impact on forecasting accuracy through this study. 
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Nikolopoulos (2014), a method that topped the M3-Competition, the largest empirical 

forecasting competition to date (Makridakis and Hibon, 2000, Appendix B). 

On the other hand, the more complex but quite popular Box-Jenkins 

methodology (Box and Jenkins, 1970) uses an iterative three-step approach (model 

identification, parameter estimation and model checking) in order to find the best-fit 

ARIMA model. To date ARIMA models are still considered the dominant benchmark 

in empirical forecasting evaluations, and find great popularity among OR researchers 

in applications spanning from hospitality and production to healthcare and climate 

forecasting (for e.g. see Broyles et al., 2010; Cao et al., 2012; Cang and Yu, 2014). 

One result that stands for fast-moving data is that combining improves 

predictive accuracy (Surowiecki, 2005; Clemen, 1989; Makridakis and Winkler, 

1983). In addition to this, combining reduces the variance of forecasting errors and 

therefore the uncertainty in predictions, rendering the selection of combinations less 

risky than individual methods (Hibon and Evgeniou, 2005). Many recent studies have 

verified that the combination of methods leads to more accurate forecasts, whilst, at 

the same time proposing more sophisticated weightings such as the trimmed and 

Winsorized means (Jose and Winkler, 2008), and the use of information criteria 

(Taylor, 2008; Kolassa, 2011).  

For count data/intermittent data, Croston (1972) proposed decomposing the 

data into two subseries (demands and intervals) with Syntetos and Boylan (2005) 

proposing a bias-correction to the Croston method (Syntetos and Boylan 

Approximation or SBA). More recently, Teunter et al. (2011) suggested a 

decomposition method that relies on the separate extrapolation of the non-zero 

demands and the probability to have a demand. This method is very useful in cases of 

obsolescence. Lastly, simpler approaches, such as Naïve, Moving Averages and SES, 

have also been quite popular for such data especially among practitioners. 

An interesting spin-off  from the later intermittent demand literature came 

from Nikolopoulos et al. (2011) with the ADIDA non-overlapping temporal 

aggregation forecasting framework, that although designed and successfully evaluated 

empirically on count data (Babai et al., 2012), the  implications pretty fast span out for 

fast-moving data as well (Spithourakis et al., 2011; Kourentzes et al., 2014). The 

proposed framework soon was perceived as a forecasting method “self-improving” 

mechanism that by changing the data series features through frequency 

transformation, can help extrapolation methods achieve better accuracy performance. 

http://www.amazon.com/James-Surowiecki/e/B001IGORPE/ref=sr_ntt_srch_lnk_1?qid=1327574140&sr=8-1
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The first theoretical results for the ADIDA framework appeared recently in the 

literature (Spithourakis et al., 2013; Rostami-Tabar et al., 2013).  

 

2.1 ‘Horses for courses’ 

Given the plethora of the aforementioned methods, it is now even more unclear: when 

should each method be used? Many researchers compared the performance of 

aggregate and individual selection strategies (Fildes 1989; Shah 1997; Fildes and 

Petropoulos, 2013). While selecting a single method for an entire data set would make 

sense for homogeneous data, model selection should be done individually (per series) 

when we deal with heterogeneous data, as to capture the different features met in each 

series.  

Pegels (1969) presented the first graphical classification for exponential 

smoothing models, separating trend from cycle patterns, and also as additive from 

multiplicative forms. In a simulation study, Adam (1973) evaluated several 

forecasting models across five different demand patterns, including constant, linear 

trend, seasonal and step function. His findings indicate that no single model is 

consistently better than the others, and their performance depends primarily on the 

demand pattern, the forecasting horizon and the randomness, and secondarily on the 

selected accuracy metric. Gardner and McKenzie (1988) provided a procedure for 

model identification in the case of large forecasting applications. Their selected 

course of action involved the calculation of variances at various levels of differences 

in data, and using those for classifying the underlying pattern of the time series 

(constant or trended, seasonal or not seasonal, and so on).  

A first attempt for a rule-based selection procedure of the best model derived 

from Collopy and Armstrong (1992). They proposed a framework that combines 

forecasting expertise with domain knowledge in order to produce forecasts based on 

the characteristics of the data. Their procedure consisted of 99 rules and four 

extrapolation techniques, while 18 time series features were used. A simplified 

domain knowledge-free version of this rule-based procedure was presented by Adya 

et al. (2000), using just 64 rules, three forecasting methods and six time series 

features. In order to render the procedure fully automated, Adya et al. (2001) 

presented an automatic identification of time series features for rule-based 

forecasting, which reduces significantly the forecasting cost of large data sets without 

serious losses in accuracy.  
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Shah (1997) proposed a seven-step model selection procedure for univariate 

series forecasting, using an individual selection rule based on 26 features. In a later 

study, Meade (2000) used 25 simple statistics as explanatory variables in order to 

predict the forecasting accuracy performance of nine extrapolation methods and, thus, 

select the most promising one. His results were evaluated on two empirical data sets.  

A different path for model selection focuses on the application of families of 

methods (for example, Exponential Smoothing or ARIMA) and subsequently the 

selection of the single method that has the best trade-off between the goodness-of-fit 

and the complexity of the problem. To this end, the use of information criteria 

(Hyndman et al. 2002) has been very popular. At the same time, there is little to 

distinguish from the application of different information criteria (Billah et al., 2006). 

A disadvantage of model selection with information criteria is the inability to compare 

across different families of methods. An alternative to the use of information criteria 

is the evaluation of the performance of methods in a hold-out sample where forecasts 

are calculated for multiple origins and for single or multiple lead times (Fildes and 

Petropoulos, 2013). Depending on the specific experimental design, this strategy is 

known as “validation” or “cross-validation”. 

For count data, Bacchetti and Saccani (2012) provided a comprehensive 

literature review of the classification methods, whilst a demand-based classification 

for intermittent demand was proposed by Syntetos et al. (2005), later revised by 

Kostenko and Hyndman (2006).  

Lastly, it is worth emphasizing that various similar attempts to identify 

suitable methods for forecasting cross-sectional data had been presented over the 

years; as for example in Nikolopoulos et al. (2007) in a marketing application and 

Bozos and Nikolopoulos (2011) in a strategic financial decision-making application, 

where a series of economics, econometrics, time series, artificial intelligence and 

computational intensive approaches as well as human judgment were compared 

within the context of the respective investigations. 

 

2.2 Forecasting Competitions 

Forecasting competitions have evaluated the performance of time series methods 

(Makridakis et al., 1982; Makridakis et al., 1993; Makridakis and Hibon, 2000) in 

order to better understand their relative accuracy and improve their usefulness. Since 

then, a large number of studies have compared the accuracy of various methods in 
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different forecasting settings. For example, Franses and van Dijk (2005) concluded 

that simpler models for seasonality perform better for short horizons. At the same 

time, more complex models should be preferred for longer forecasting horizons.  

Furthermore, many researchers focused on the performance of exponential 

smoothing methods. Gardner (2006) compared the performance of damped trend to 

the class of state-space models. Using the data sets from the M and M3 forecasting 

competitions, he concluded that the damped approach is more robust and accurate 

than the individual selection of models through information criteria in almost every 

case, except for the short horizons of the monthly M3 data. Gardner and Diaz-Saiz 

(2008) explored the performance of exponential smoothing methods using 

telecommunications data. An analysis of the results suggested that SES with drift - a 

simplification of the Theta method (Assimakopoulos and Nikolopoulos, 2000) as 

proposed by Hyndman and Billah (2003) - provided the most accurate forecasts 

compared to any other smoothing method for every horizon.  

Crone et al. (2011) conducted a forecasting competition for Computationally 

Intensive approaches, most notably Artificial Neural Networks (ANN). One of their 

main findings was that only one ANN method outperformed the damped trend. Lastly, 

Athanasopoulos et al. (2011) found that tourism data are best extrapolated using time 

series approaches rather than causal models, whilst the forecasting performance of 

“Naive” for annual data was “hard to beat”. This result is also evidenced in another 

relevant study using tourism data (Gil-Alana et al., 2008), in which a simple model 

outperformed more complex ones for short horizons.  

 

2.3 Research Questions 

Having revisited all this literature, we believe there is still scope for studies 

investigating what makes some methods more (or less) accurate, and under what 

conditions; having that said, the main Research Question (RQ) of this study is as 

follows: 

RQ: How various factors affect - if at all, the forecasting accuracy of time 

series extrapolation methods?  

To address this question, we design two extensive simulations for fast-moving 

and intermittent data respectively - as well as empirical evaluations in real data, 

involving fourteen univariate forecasting methods and five combinations of them. 
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Consequently, the extent of the influence of each factor is calculated through 

regression analysis. 

 

3. Simulation of Data 

3.1 Simulation of fast-moving data 

Before we start elaborating on the empirical investigations, we need to formally 

introduce the data features that we will simulate in this study.  

To that end we were inspired originally by the work of Adam (1973) that he 

identified the importance of trend, seasonality, randomness and the forecasting 

horizon. We were further influenced by the work of Collopy and Armstrong (1992) 

where they proposed their Rule-Based Forecasting (RBF) framework, the very 

essence of which is dominated by the identification of data featuresAmong the 

selected time series features, the trend, the cycle, seasonality and the length of the 

series were of key importance. Finally, the work of Nikolopoulos and 

Assimakopoulos (2003) where many of these data features were used as key elements 

in the object-oriented architecture of a prototype Forecasting Support System - TIFIS, 

gave us more firm evidence on the importance of the aforementioned data features.  

The level of temporal aggregation (frequency) and the level of cross-sectional 

aggregation (level in hierarchy) of the data were not considered in this study. We 

focus on the forecasting performance of a specific level of temporal/cross-sectional 

aggregation. Most of the patterns described above may be observed at any level of 

aggregation and thus this latter feature was not simulated. The only exception is the 

seasonality. The effects of temporal and cross-sectional aggregation have been 

addressed elsewhere. Nikolopoulos et al. (2011) and the ADIDA framework indicate 

that forecasters may via temporal aggregations switch to different frequencies (than 

the ones the data are observed), while Kourentzes et al. (2014) present a framework to 

efficiently combine forecasts derived from multiple frequencies. Lastly, 

Athanasopoulos et al. (2009) explore different approaches to hierarchical forecasting, 

proposing an “optimal” approach, which provides reconciled forecasts at every level. 

So the RQ can now be narrowed for fast-moving data as follows: 

RQ1: How six factors (seasonality, trend, cycle, randomness, the number of 

observations and the forecasting horizon) affect, if at all, the forecasting 

accuracy of time series extrapolation methods on fast-moving data?  
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To generate simulated series for testing the above-mentioned research 

question, each of the first five factors (seasonality, trend, cycle, randomness and the 

number of observations) was varied around six levels (see Table 1) while 10,000 

series were randomly generated at each level (ceteris paribus). Since there are six 

levels and five factors to vary, there is a total of 7,776 (6
5
) combinations, resulting in 

77,760,000 generated time series covering every possible combination. For each of 

the generated time series, 18 forecasts were produced.  The values and variation of 

each of the six levels was selected by using the respective ranges of the 1,428 real 

monthly series of the M3 competition.  

 

Table 1: Levels for the five factors for fast-moving data 

Components 
Level 

1 2 3 4 5 6 

Seasonality 0.0 0.5 2.5 7.5 13.5 20.0 

Trend 0.0 0.6 1.2 1.8 2.4 3.0 

Cycle 0.0 0.4 0.8 1.2 1.6 2.0 

Randomness 0.0 0.5 2.0 4.0 7.0 10.0 

Number of observations 36 48 60 84 108 144 

 

The generation procedure assumes a deterministic, multiplicative model where each 

component is applied individually as suggested by Miller and Williams (2003), but in 

addition we introduce a cycle component as well. Thus:  

ttttt RCTSX   (1) 

where Xt is the series, St is the seasonal component, Tt is the trend component, Ct is the 

cycle component and Rt is the random component.  

The procedure of simulating fast-moving series is described below. First, a 

vector of length equal to a selected number of observations plus 18 (out-of-sample) is 

defined, with all values being set equal to a randomly selected initial level (L). This 

vector is multiplied by the respective seasonal indices, which, given a seasonality 

level (SL), are defined as: 











)(
*

FDMAP

SL
SIS kt

 (2) 
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where SI is a zero-based single dimensional array of 12 values, containing the mean 

seasonality curve of the monthly seasonal time series of M3-Competition and 

MAP(FD) represents a normalization factor calculated as the mean absolute 

percentage of first differences of the SI values. Then, the trend component is applied 

to each observation. This component is equal to: 

 p t

t TLT  1  
(3) 

where TL is the selected trend level and p represents the number of periods within a 

year. The cyclical component, Ct, is introduced as: 

 3/1,1   CVCLNCC ttt
 (4) 

where 00 C and Nt is a normally distributed random variable with mean value CL 

(the selected level of the cycle component) and a standard deviation so that CV=1/3.  

A new value of Nt is generated for each data point. Lastly, for the randomness 

component, a normally distributed and randomly selected variable with mean value 

RL (level of randomness) and CV=1/3 is generated, or: 

)3/1,(  CVRLNR tt
 (5) 

Lastly, Xt is calculated as follows: 

ttttt RCTSLX   (6) 

The forecasting methods used in the study are (for more details on these 

methods, see appendix A):  

Naïve 1, Naïve 2, four exponential smoothing methods (Single, Holt, 

Damped, Holt-Winters), Theta (Assimakopoulos and Nikolopoulos, 2000), 

Linear Trend and two commercial packages (Autobox and Forecast Pro).  

Moreover, the following five combinations of the above methods were constructed: 

 Single-Damped (SD) 

 Single-Holt-Damped (SHD) 

 Single-Theta (ST) 

 Single-Damped-Theta (SDT) 

 Single-Holt-Damped-Theta (SHDT) 

With the six methods (Naïve 2, Single, Holt, Damped, Linear Trend and 

Theta) not suitable to handle seasonality, the forecasts were produced following a 

three-step procedure: firstly the data was deseasonalized via a Classical 

Decomposition approach. Secondly, 18 forecasts were computed using the 
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deseasonalized data. Finally, these 18 forecasts were reseasonalized using the same 

seasonal indices as the Classical Decomposition. The remaining methods (Naïve 1 

and Holt-Winters) and the methods implemented in the commercial packages 

(Autobox and Forecast Pro) where applied directly to the original data. The selection 

of the optimal forecasting model was always carried out without using the last 18 out-

of-sample observations which were being kept for evaluating the forecasting accuracy 

of each method. For all forecasting methods, except the two commercial packages, 

10,000 series were generated for each of the 7,776 permutations; in contrast, for the 

two commercial packages only 300 series were generated for each of the 7,776 

permutations (i.e. 2,332,800 series in total) because of the time required in order to 

run them. 

The forecasting accuracy was measured by comparing the 18 hold out data 

points with the 18 point forecasts. Three accuracy metrics were calculated: 

 The Symmetric Mean Absolute Percentage Error (sMAPE), the main 

metric of the M3 competition (Makridakis and Hibon, 2000). 

 The Percentage Better, where the accuracy of each method was 

benchmarked against Naïve 2. 

 The Mean Absolute Scaled Error (MASE), introduced by Hyndman and 

Koehler (2006). 

The overall evaluation involves the calculation and comparison of over 55 billion 

forecast errors. 

 

3.2 Simulation on Intermittent Data 

We also considered the case of intermittent demand data, where two main factors 

were considered, namely average inter-demand interval (IDI) and squared coefficient 

of variation (CV
2
) of the non-zero demands as it is dictated by the work of Syntetos et 

al. (2005). On top of that, we examined also the effect of the length of the series 

(number of available observations) that is quite ignored in the respective literature as 

usually in practice these series are short. Lastly, in line with the investigation on fast-

moving data, we study the effects of forecasting horizon. So the basic research 

question may now be narrowed to: 

RQ2: How four factors (inter-demand interval, coefficient of variation, the 

number of observations and the forecasting horizon) affect, if at all, the 



12 
 

forecasting accuracy of time series extrapolation methods on intermittent 

data?  

To generate simulated series for testing the above-mentioned research 

question, each of the first three factors (IDI, CV
2
 and the number of observations) was 

varied around six levels (see Table 2) while 10,000 series were generated at each level 

(ceteris paribus). Given the number of different combinations (216=6
3
) considered, 

we examine in total 2,160,000 simulated time series. For each series, we produce 

forecasts for the next 12 periods.  

 

Table 2: Levels for the three factors considered in the intermittent demand data 

Components 
Level 

1 2 3 4 5 6 

IDI 1.00 1.16 1.32 1.60 2.00 4.00 

CV
2
 0.00 0.25 0.49 0.75 1.00 2.00 

Number of observations 24 36 48 60 84 108 

 

The procedure followed to generate the intermittent demand data is given 

below. For a selected level of number of observations (l) and level of IDI, we generate 

a vector which specifies the occurrence of non-zero demands as a Bernoulli 

distribution (Croston, 1972; Syntetos and Boylan, 2001), where p=1/IDI. The output 

of this step is a binary vector of length l. For the demand sizes we use randomly 

generated numbers following a negative binomial distribution (see Syntetos et al., 

2011) and increase them by one (1) as not to generate zero demands. The number of 

successful trials (n) and the success probability (p) can be easily derived as: 

)1( p

p
n





           22 1






vc
p  (7) 

where cv>0 is the required coefficient of variation (square root of CV
2
) and μ is the 

mean, selected randomly in [10, 50]. Letting the l generated values of the negative 

binomial distribution be the vector d, the required non-zero demand sizes can be 

derived as D=d+1. Finally Xt is calculated as Xt =It * Dt  for t=1,…, l. If  cv=0, then 

d=round(μ) for every t, where round denotes the rounding function. 

The forecasting methods used in this simulation are (for more details on these 

methods, see appendix A):  
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Naïve, Simple Moving Averages (SMA) of length 4, 8 and 12, SES with a 

prefixed smoothing parameter equal to 0.1 (SES(0.1)), SES with optimized 

smoothing parameter (SES(auto)), Croston’s method, Syntetos-Boylan 

Approximation (SBA) and Teunter-Syntetos-Babai method (TSB).  

For the methods designed specifically for intermittent demand (Croston, SBA, TSB), 

small values for the smoothing parameters were applied, as suggested by the literature 

(Syntetos and Boylan, 2005). In more detail, the smoothing parameter for estimating 

both demands and intervals in Croston’s method and SBA and demands in TSB 

method is set equal to 0.1. Moreover, the smoothing parameter for estimating the 

probability of the occurrence of a non-zero demand in TSB method is set equal to 

0.02. 

The forecasting accuracy was measured by comparing the 12 hold out data 

points with the 12 point forecasts of each method. Due to the presence of zero 

demands, the use of percentage errors is not appropriate. We, therefore, use a scaled 

version of the Mean Absolute Error (sMAE), where the scaling is performed through 

dividing with the in-sample mean demand. The point forecast error (scaled absolute 

errors or sAE) for the h-step-ahead forecast can be calculated as follows: 




 


N

t

t

hhN

hi

X
N

FX
sAE

1

,
1

 
(8) 

where X is the vector of observations generated previously, F is the vector of point 

forecasts and N is the length of the in-sample. The same is simply derived by 

averaging across horizons and series. 

 

4. The Results: measuring the Influence of the factors 

In this section we present results from simulated data for fast-moving and intermittent 

series, as well as for real fast-moving data from the M3 competition. 

 

4.1 Simulations on fast-moving data 

The accuracy results for the entire dataset are summarised in Table 3. 
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Table 3: Average sMAPE (bold) for all simulated fast-moving data [and MASE (italics), Percentage 

Better (versus Naïve 2) for 1 to 18 (underlined)] 

Methods 
sMAPE 

(per Forecasting Horizon) 

M
3

 -
 A

v
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e 

sM
A

P
E

 1
-1

8
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: 

sM
A

P
E

 

M
3
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te
d

 

A
ve

ra
g

e 

M
A

S
E

 

A
v

er
a

g
e 

P
er

ce
n

ta
g

e 

B
et

te
r 

1 6 12 18 1-6 1-12 1-18 1-18 1-18 

Naïve 1 5.89 15.05 6.60 16.58 9.09 10.88 10.71 
 

1.39 15.20% 

Naïve 2 5.36 6.45 6.60 7.96 5.85 6.31 6.67 16.91 2.54 1.09 - 

Single 4.61 5.43 6.00 7.00 5.01 5.43 5.81 15.32 2.64 1.01 55.70% 

Holt 4.67 5.58 6.53 7.70 5.13 5.66 6.20 15.36 2.48 0.98 55.50% 

Damped 4.61 5.42 5.96 6.93 5.01 5.42 5.78 14.59 2.52 0.95 58.50% 

Holt-Winters 4.69 5.76 6.98 8.57 5.25 5.89 6.59 15.44 2.34 1.05 52.00% 

Theta 4.62 5.32 5.89 6.65 4.98 5.35 5.69 13.85 2.43 0.94 60.20% 

Linear Trend 5.63 6.09 6.77 7.39 5.88 6.19 6.53 19.78 3.03 1.13 51.20% 

Autobox 5.40 6.25 6.53 8.04 5.66 6.16 6.55 15.83 2.42 1.04 49.90% 

Forecast Pro 4.62 5.42 6.13 7.14 5.03 5.46 5.88 13.86 2.36 0.93 56.70% 

SD 4.61 5.42 5.96 6.95 5.00 5.42 5.79 

 

0.97 58.80% 

SHD 4.61 5.39 5.96 6.88 5.00 5.41 5.78 0.95 59.60% 

ST 4.61 5.36 5.91 6.77 4.98 5.37 5.72 0.96 60.70% 

SDT 4.60 5.37 5.91 6.80 4.98 5.38 5.73 0.96 60.70% 

SHDT 4.61 5.36 5.92 6.78 4.99 5.38 5.73 0.94 60.00% 

 

We note: 

 The very good performance of the five combinations, a finding consistent 

with the conclusions from the M-Competitions. 

 The strong similarities in the performance of methods (in terms of sMAPEs) 

with comparison to the ones in the M3-Competition, as depicted by the close 

values of the respective ratios.  

 There are three single methods that consistently perform better: Single 

Exponential Smoothing
2
, Damped Exponential Smoothing and the Theta 

method.   

 The quite similar average results for MASE and Percentage Better as 

presented in the last two columns of Table 3. 

                                                           
2
 Also referred in the literate as ‘Simple’ Exponential Smoothing, or just abbreviated as SES and it is 

equivalent to an ARIMA(0,1,1) without constant model. 
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Regressions 

Table 4 shows the results of the regression analysis. It lists the standardized beta 

coefficients for each factor, the corresponding t-tests as well as the overall R
2
 and 

standard errors. Table 4 suggests that for all variables and methods the regression 

coefficients are statistically significant (at 0.01) with Naïve 1 being the only 

exception. Moreover the R
2
 values range from 0.850 to 0.932, indicating a very good 

fits as expected from such a rich dataset. 

[Insert Table 4 about here] 

A positive beta coefficient means less accuracy whilst a negative one means 

improvement. Furthermore, the bigger the absolute value of the coefficient the greater 

the deterioration or improvement in forecasting performance. The signs of most 

regression coefficients are positive (seasonality, cycle, randomness and the 

forecasting horizon) and this means that when these following factors increase, the 

forecasting accuracy for all methods and combinations decreases. 

Notable exceptions are the negative betas for: a) the number of observations factor for 

all methods with the exception Naïve 1, thus when the length of the series increases 

the accuracy increases as well even if it is a marginal improvement, and b) the trend 

factor for  Holt, Holt-Winters and Linear Trend methods as these methods capture the 

trend in the data (see Table 4, column 4), and therefore marginally improve accuracy.  

Randomness is the variable that most affects forecasting accuracy. Moreover, 

the values of these coefficients for the majority of methods are similar (ranging from 

0.823 to 0.878); this means that the accuracy of all methods rapidly decreases as the 

randomness in the data increases, but also that practically all methods are equally 

capable of dealing with increasing levels randomness. The variable with the least 

influence is trend, in particular for the Holt, Holt-Winters and Linear Trend methods 

as the values of the corresponding regression coefficients are small. Cycle and the 

Forecasting Horizon variables appear to have less influence in terms of the extent to 

which they affect forecasting accuracy. Furthermore, the seasonal fluctuations in the 

data are captured in a similar way by practically all methods, as their regression 

coefficients are small, ranging from 0.026 to 0.063 (the exceptions are Naïve 1 and 

one of the commercial packages).  

 



16 
 

4.2 Application in real data 

One way to apply the findings of the previous section in real data is as follows: when 

decomposing a time series we can estimate the levels of seasonality, cycle, trend, and 

randomness while we also do know exactly the number of available observations of 

the series and we decide on the forecasting horizon. This information allows us to 

estimate the percentage error for each forecasting horizon by utilizing the 

corresponding regression equation for each method and combination of methods 

shown in Table 4. Consequently we can identify the method/combination with the 

smallest error as well rank all methods according to their respective errors. We can, 

therefore, select for each series and forecasting horizon the method or combination 

with the minimum expected error. 

Often the difference between the best method/combination identified and the 

second, third and fourth are small and to account for this we consider the simple 

combination of these methods/combinations for which a specific criterion - hereafter 

called Threshold Ratio - is more than a pre-defined value. The Threshold Ratio may 

be calculated by dividing the smallest expected sAPE of the ‘optimal’ 

method/combination for a given forecasting horizon with the expected sAPE of the 

second, third and fourth method/combination respectively. The maximum number of 

models to be combined could be limited and in this example we use the ad-hoc value 

of 6, as combinations of large pools of methods is not regarded as beneficial (Fildes 

and Petropoulos, 2013). 

We apply this model selection and combination approach to the monthly series 

of the M3-Competition (1,428 time series, Makridakis and Hibon, 2000). The results 

are presented in Table 5 illustrating that the proposed model selection protocol, based 

on the regression estimation in Table 4, results in improved forecasting performance 

of 9.9% and 5.4% compared to SES and Damped respectively. For low values of the 

threshold so as to allow more models to be included in the simple combination, the 

performance gets even better than that of Theta model (Figure 1). 
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Table 5. Forecasting performance of the model selection protocol (sMAPE %) 

Models Forecasting Horizon 

M
o

d
el

 S
el

ec
ti

o
n
 

Threshold 1 2 3 1 to 4 1 to 8 1 to 12 1 to 18 

0.4 11.7 10.7 12.2 11.93 12.10 12.49 13.80 

0.5 11.8 10.8 12.3 12.06 12.19 12.57 13.86 

0.6 11.9 10.9 12.5 12.14 12.32 12.75 14.08 

0.7 12 11.1 12.6 12.35 12.54 13.05 14.48 

0.8 12.1 11.2 12.7 12.45 12.67 13.30 14.86 

0.9 12.3 11.1 13 12.59 12.89 13.62 15.30 

1 12.3 11.3 13 12.75 13.14 13.96 15.90 

SES 13 12.1 14 13.53 13.60 13.83 15.32 

Damped 11.9 11.4 13 12.63 12.85 13.10 14.59 

Theta 11.2 10.7 11.8 11.54 12.13 12.50 13.85 

 

 

Figure 1. Forecasting performance of the model selection protocol on real data (M3-monthly data) 

 

4.3 Simulations on Intermittent Data 

The sMAE results for the entire dataset are shown in Table 6.  

 

Table 6. Average sMAE for all simulated intermittent demand data 

Methods 
Forecasting Horizon Average 

1 2 3 6 12 1 to 3 1 to 6 1 to 12 

Naïve 1.213 1.211 1.212 1.213 1.210 1.212 1.213 1.212 

SMA(4) 1.070 1.068 1.068 1.069 1.068 1.069 1.069 1.068 

SMA(8) 1.037 1.036 1.036 1.036 1.035 1.036 1.036 1.036 

SMA(12) 1.026 1.024 1.024 1.025 1.024 1.025 1.025 1.024 

SES(0.1) 1.017 1.015 1.015 1.016 1.015 1.016 1.016 1.015 

SES(auto) 1.016 1.015 1.014 1.015 1.014 1.015 1.015 1.015 

Croston 1.026 1.024 1.024 1.024 1.023 1.024 1.024 1.024 

SBA 1.015 1.013 1.013 1.014 1.013 1.014 1.014 1.013 

TSB 0.990 0.988 0.988 0.988 0.987 0.988 0.988 0.988 
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There are a few interesting findings in Table 6: 

 TSB performs slightly better than the other methods for all respective 

horizons. 

 The improvement in forecasting accuracy as the length of the Simple Moving 

Average increases. 

 Forecasting horizon does not affect accuracy. 

Regressions 

In Table 7 we present the results of the multiple regression analysis where the 

standardized beta coefficients and their corresponding values of t-test are listed for 

each factor. Moreover, the overall goodness of fit (R
2
) and the standard error 

estimates are provided. The reported R
2 

values indicate very good fit for all equations 

as in the case of fast-moving data. 

 

 Table 7: Multiple regression analysis for intermittent data: Dependent variable is sMAE 

(Standardized Coefficients) 

Methods 
IDI CV2 

Number of 

Observations 

Forecasting 

Horizon R2 
Std 

Error 
b1 t1 b2 t2 b3 t3 b4 t4 

Naïve 0.722 90.4 0.557 69.7 -0.061 -7.6 -0.001 -0.2 0.835 0.193 

SMA(4) 0.797 120.8 0.499 75.6 -0.062 -9.3 -0.001 -0.2 0.887 0.153 

SMA(8) 0.814 126.8 0.476 74.2 -0.063 -9.8 -0.001 -0.2 0.893 0.147 

SMA(12) 0.820 129.1 0.468 73.6 -0.063 -9.9 -0.001 -0.2 0.896 0.145 

SES(0.1) 0.825 130.7 0.460 72.9 -0.064 -10.2 -0.001 -0.2 0.897 0.143 

SES(auto) 0.827 132.9 0.458 73.5 -0.080 -12.8 -0.001 -0.2 0.900 0.143 

Croston 0.835 135.0 0.445 71.9 -0.077 -12.5 -0.001 -0.2 0.901 0.146 

SBA 0.841 137.7 0.437 71.5 -0.080 -13.0 -0.001 -0.2 0.904 0.140 

TSB 0.797 114.8 0.488 70.2 -0.040 -5.8 -0.001 -0.2 0.875 0.144 

 

Forecasting performance for all methods is heavily affected by the increase of 

intermittence of the data (IDI) as well as the coefficient of variation. As the values of 

these two factor increase, the respective accuracy of all models decreases. Even if the 

differences are very small, Croston and SBA are the two methods most affected by 

the increase of the average IDI, despite the fact that both methods are specifically 

designed for intermittent demand data. On the other hand, Naive is the method which 

is least affected by the IDI, as increase of intermittency results in spot-on forecasts 

(for zero demand). The exact opposite is true for the coefficient of variation. SBA and 
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Croston are the two methods with the lowest effect of on their forecasting accuracy. 

On the contrary, Naïve, SMA(4) and TSB are the three methods affected the most by 

variability in demand, according to the standardized beta coefficients.  

The number of available observations has a very small positive impact on the 

forecasting accuracy. Finally, forecasting horizon has practically no impact on the 

predictive power of the alternative methods (non-statistically significant beta 

coefficients). 

 

5. Discussion  

For regular/fast-moving data, three relatively simple methods, Single and Damped 

exponential smoothing as well as the Theta method, demonstrated the best 

performance for all the three accuracy measures used. In between them, Theta 

performed better for longer forecasting horizons, the reason being its ability to more 

accurately predict the trend in the data, whilst Single and Damped exponential 

smoothing were more accurate for shorter forecasting horizons. Moreover, the five 

combinations of forecasting methods performed well, often exceeding the accuracy of 

the individual methods being combined, whilst also reducing the variance of 

forecasting errors. The above three findings are consistent and corroborate to the 

findings of the literature on empirical forecasting competitions. 

The regression coefficients as presented in Table 4 allow us to identify which 

factors affecting methods’ accuracy as well as measure the extent of such influences. 

Cycle and randomness have the biggest effect on the forecasting accuracy of all 

methods. It is interesting that Naïve 1 exhibits the best performance in respect to these 

two factors (it has the smallest regression coefficients of all methods), which could be 

attributed to the random walk nature of many of the simulated data series. Seasonality 

is well captured by all methods with the expected exception of Naïve 1. The similarity 

of the regression coefficients for this specific factor is due to the fact that the seasonal 

indexes, with the exception of Holt-Winters, were estimated using the classical 

decomposition approach. As expected, trend is best captured by Holt, Holt-Winters 

and Linear Regression, whilst Single, Naïve and Naïve 2 are unable to do so.  

The regression coefficients of the number of observations factor, although 

negative, have a minimal effect on improving forecasting accuracy. The forecasting 

horizon factor coefficient indicates that accuracy decreases the longer the forecasting 
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horizon, providing a considerable advantage to Theta whose beta coefficient is 

smaller than that of all other methods except for that for Linear Trend. This later one 

however gets worse for longer horizons because of not being able to accurate capture 

and predict cyclical changes.  

The poor performance, in contrast to other empirical studies in the literature, 

of the two commercial packages may be the result of three factors. Firstly, Autobox 

and Forecast Pro were tested only in 300 time series for each of the 7,776 cases (i.e. 

for a total of 2,332,800 time series versus 77,760,000 for all the other methods) due to 

time and computational constraints. Secondly, Tom Reilly (personal communications) 

pointed out that the poor performance of Autobox could be explained by the 

deterministic character of the models used to generate the data however the authors 

believe that this could only be partially true as the simulated data were derived from 

ranges and values from the real M3 data, where there as well Autobox was not one of 

the top-performing methods. So maybe the very range of values could be blamed but 

not the deterministic nature. Lastly, the commercial packages were used in fully 

automatic mode, with no supervision at all in this study and thus their parameters 

were not manually adjusted for the features of the generated data. We believe that this 

latter argument provides the best explanation for the software packages not being en 

par with the benchmarks.  

We believe that through the regression analysis we can isolate the influence of 

each factor on forecasting accuracy, in a ceteris paribus fashion. This means that we 

can determine the most/least important factors influencing forecasting accuracy. 

Seasonality, for instance, seems to be able to be captured through the classical 

decomposition process. Trend, on the other hand, seems to be a much bigger 

challenge, as random and cyclical changes make the identification of a robust trend 

very difficult and, for this reason, Single and even Naïve 2 perform so well. 

Furthermore, additional historical information in the form of more observations and 

lengthier series improves accuracy but to a small extent, whilst cyclical fluctuations 

are found to play the most important role in forecasting accuracy. Furthermore, 

randomness also plays a significant role, but this is to be expected to a large extent 

and hard to deal with. Finally, combining forecasts appears to improve forecasting 

accuracy in the majority of cases whilst also reducing the variance of forecasting 

errors, highlighting that it is almost impossible to identify one single optimal model 

based on the data features. 
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For intermittent data there were no big surprises given the lot of attention in 

the recent year in the respective literature and the plethora of empirical investigations. 

The negative effects on forecasting accuracy from marginal increases of IDI or CV
2
 

were more or less expected. However, the performance of TSB is remarkable and an 

interesting finding given the extended simulation exercise. A few more remarkable 

findings were surfaced: first and foremost further research should shed light why the 

length of the series has so small impact and even more why the forecasting horizon is 

not influencing at all the forecasting accuracy. 

 

6. Practical Implications for Decision Makers 

One of the most important challenges of any academic article is how the results of the 

proposed research can be translated into practical recommendations for decision 

makers. To that end, we are in the comfortable position to claim to be informing real-

life professionals on the appropriate uses of ‘Horses for Courses’ in demand 

forecasting. While the fundamental question still remains: “what is the best method 

for my data?”, we believe now, and through the illustration of the use of the protocol 

in real data with improved forecasting performance (see section 4.2), that we are in a 

position to partially answer this question. 

In essence, through this study we are providing guidance to practitioners on 

which are the most appropriate forecasting methods, given the specific data features 

they are facing. In order to accommodate this, we provide a graphical representation 

of the main results of our study (Figure 2). The numerical standardized beta 

coefficients of Table 4 have been converted into an eleven-scale (-5 to +5), 

representing the effect of each factor (seasonality, trend, cycle, randomness, number 

of observations and forecasting horizon) upon forecasting accuracy for the most 

popular forecasting methods among practitioners. 

So, how this Figure 2 should be used from practitioners? First they need to 

decompose their time series so as to find out its seasonality, cycle, trend and 

randomness (whilst also number of observations and the forecasting horizon are 

known in advance). This information will allow them through Figure 2 to select the 

most appropriate methods amongst the ten presented in this study, the methods that 

are expected to end up with the lowest out-of-sample (sMAPE) and thus the best 

forecasting accuracy.  
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Figure 2: The Method Selection Protocol for fast-moving data. 

(=decreasing accuracy where =0.5, =increasing accuracy where =0.5) 

 

For example, following the Method Selection Protocol for regular/fast-

moving data in Figure 2, if seasonality and trend are the only features present in the 

data, then Holt, Holt-Winters and Linear Trend should be selected, with Linear Trend 

being the best approach. When trended data with many observations are to be 

extrapolated, Holt seems the most obvious choice. In the case of a strong presence of 

cycle, randomness or both, Naïve is by far the best option. If cycle is present as well 

as seasonality, then Naïve 2 is the method to select. On the other hand, if cycle is the 

dominant feature, while we are dealing with time series with many data points, then 

Linear Trend should be avoided. In the case of large forecasting horizons, Holt-

Winters, Holt and Forecast Pro are not considered as good options. On the contrary, 

Naïve and Theta should be selected. Concluding, this specific protocol could be used 

from practitioners as a broad ‘rule of thumb’ for method selection given their specific 

data. 

When it seems from the protocol that many methods could be used for a 

specific data series then a simple combination of those methods could well be used 

instead. The benefit from the aforementioned combination is twofold as the variance 

of the forecasting errors is also reduced. 

The respective Method Selection Protocol for Intermittent data is illustrated in 

Figure 3, which is practically the graphical equivalent of Table 7. 
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Figure 3: The Method Selection Protocol for intermittent data. 

(=decreasing accuracy where =0.5, =increasing accuracy where =0.5) 

 

By and large for high values of IDI forecasters are prompted to use either TSB 

or SMA (Naïve is not suggested, as this method will result in under-stocks), while for 

high values of CV
2
 SES or Croston/SBA should be used. In the unlikely event of 

having many observations, then yet again SES or Croston/SBA should be used.  

 

 

Figure 4: Given a specific level of temporal and cross-sectional aggregation level , the 

formed time series will have some characteristics based on which the Method Selection Protocol can 

be applied. 

 

It needs to be emphasized that the Method Selection Protocol can be applied 

for any level of temporal (frequency) and hierarchical/family cross-sectional 

aggregation. Forecasters might select a specific frequency for either reasons of plain 

convenience or scientifically driven from the need to improve forecasting accuracy 

(see the ADIDA framework, Nikolopoulos et al. 2011), and in a similar fashion a 
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specific level of cross-sectional aggregation. As a result, a specific time series will be 

constructed; this time series will have specific features and, based on these features, 

the Model Selection Protocol could well be applied as illustrated in Figure 4. 

 

7. Conclusion and Future Research  

One of the biggest challenges that forecasters and practitioners are constantly facing is 

the selection of the most appropriate method for a specific data set or even for a single 

time series. The quest for forecasting approaches tailored to specific types of data, led 

researchers to the development of method selection protocols, usually based on a 

large number of rules necessitating advanced data analysis. 

In this study we assume that seven time series features (seasonality, trend, 

cycle, randomness, number of observations/length, IDI, CV
2
) and one strategic 

decision (forecasting horizon) are the dominant determinants of forecasting accuracy. 

Through two extensive simulations with almost 80 million regular/fast-moving and 

intermittent time series, we study the accuracy of the most popular forecasting 

methods and measure the factors that affect their respective performance. Fourteen 

forecasting methods plus five combinations of them are employed in order to predict 

twelve to eighteen periods ahead and respectively measure the out-of-sample 

forecasting accuracy using four fit-for-purpose metrics (sMAPE, Percentage Better, 

MASE and sMAE). Consequently, regressions analysis was performed so as to 

determine the sign and the amplitude of the effect of each of the factors on the 

performance of the evaluated methods. Our main findings conclude that in terms of 

the achieved forecasting accuracy:  

For regular/fast-moving data  – where demand occurs each and every period: 

 Cycle and randomness have the biggest (negative) effect on forecasting 

accuracy. 

 The longer the forecasting horizon, the more accuracy decreases. 

For intermittent data:  

 Increasing IDI has the biggest (negative) effect in accuracy. 

 Increasing CV
2
 has also a negative effect. 

For all types of data  

 Increasing the length of the series has a small positive effect in 

accuracy. 
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One of the main practical contributions of the current work is that it translates 

the statistical findings into a graphical Method Selection Protocol that enables 

decision makers and practitioners to select the most appropriate forecasting method 

for their own data.  

As far as the future of similar investigations is concerned, it is important to 

expand the pool of both methods and factors/data features being considered. Paths for 

future research could also include: 

 Evaluating density forecasts rather than point forecasts in similar simulation 

setups. 

 Introducing temporary and permanent structural changes in the level and trend 

of the data and determine their impact on accuracy. 

 Running sliding simulations in the forecast evaluations (Tashman, 2000). 

Epilogue: as the quest for ‘Horses for Courses’ in demand forecasting is a long 

standing issue in the forecasting literature, we hope that we have shed some light 

towards that direction… 
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Appendix A: Forecasting Methods 

Naïve. This is the simplest forecasting approach. Point forecasts for all lead times are 

equal to the latest available actual observation (random walk). 

Naïve 2. The point forecasts are derived as in the Naïve method, using the seasonally 

adjusted data. A deterministic multiplicative seasonality is assumed. Finally, point 

forecasts are reseasonalised using the appropriate seasonal indices.  

Exponential Smoothing. The exponential smoothing methods are based on averaging 

(smoothing) past values of a time series in a decreasing (exponential) manner. Single 

Exponential Smoothing (Single) assumes no trend or seasonal patterns (Brown, 1956). 

Forecasts for Single can be produced via the following formula: 

  ttt FaaXF  11  (A.1) 

where α refer to the exponential smoothing parameter for the level. 

Holt Exponential Smoothing (Holt) expands Single adding one additional 

parameter for smoothing the short-term trend (Holt, 1957). The point forecasts for 

Holt can be calculated via: 

  111   tttt TLaaXL  (A.2) 

    11 1   tttt TLLT   (A.3) 

ttmt mTLF   (A.4) 

where β is the smoothing parameter for the trend, Lt refers to the forecast of the level 

for period t and Tt is the forecast for the trend for period t. 

Damped Exponential Smoothing (Damped) introduces a dampening factor (φ) 

that is multiplied on the trend component of Holt’s method in order to give more 

control over the long-term extrapolation of the trend (Gardner and McKenzie, 1985). 

Forecasts for Damped can be calculated as: 

  111   tttt TLaaXL   (A.5) 

    11 1   tttt TLLT   (A.6) 


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Single, Holt and Damped are applied on non-seasonal or seasonally adjusted 

data, where the final forecasts are reseasonalised. However, their performance is 

contrasted with Holt-Winters (Winters, 1960) a method which includes stochastic 

multiplicative modelling of seasonality. Forecasts for Holt-Winters are derived as 

follows: 

  111 
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aL  (A.8) 
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    11 1   tttt TLLT   (A.9) 

  st

t

t
t S

L

X
S   1  (A.10) 

  mstttmt SmTLF    (A.11) 

where St is the estimate of the seasonal index for period t and γ is the seasonal 

smoothing factor. 

Theta Model. The Theta model (Assimakopoulos and Nikolopoulos, 2000, 

Thomakos and Nikolopoulos, 2013) decomposes the seasonally adjusted series into 

two so-called ‘Theta lines’. The first Theta-line is calculated as the time regression of 

the data, thus corresponds to the long-term trend of the data. This Theta-line is 

extrapolated as usual (linear regression line). The second Theta-line has double the 

curvatures of the seasonally adjusted data and is simply calculated as 2X-LRL, where 

X is the vector of the seasonally adjusted data and LRL are the values of the linear 

regression line. The second Theta-line is extrapolated using Single Exponential 

Smoothing. The point forecasts if the two Theta-lines are combined using equal 

weights. The final forecasts are reseasonalised. 

Linear Regression. This method assumes a relationship between the values 

(dependent variable) and the timestamps of the respective periods (independent 

variable). The mathematical model of this relationship is the linear regression 

equation. We calculate this equation using ordinary least squares. In this research, 

Linear Regression is applied on the seasonally adjusted data, while final forecasts are 

reseasonalised. 

Forecast Pro. Forecast Pro’s Expert Selection is a routine implemented in the 

Forecast Pro commercial package (www.forecastpro.com). This method analyses each 

time series and performs individual model selection. 

Autobox. A fully automated Box-Jenkins model building process is implemented in 

the commercial package Autobox (www.autobox.com). This includes model 

identification, estimation and diagnostic feedback loop.  

Simple Moving Averages. The point forecasts are calculated as an unweighted 

average of the last k observations, as follows:  




 
t

kti

it X
k

F
1

1

1
 (A.12) 

Croston’s method. Croston (1972), suggested the decomposition of an intermittent 

demand series in the non-zero observed demands and the intervals (in time periods) 

between successive non-zero demands. The demands and the intervals are 

extrapolated separately, using simple exponential smoothing parameter (α) with 

relatively low smoothing value. Updating for both demands and intervals performs 

only for non-zero demands. The ratio of the two forecasts will constitute the final 

forecast: 
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where 1
ˆ
tz   and 1

ˆ
tp  are the forecasts for the demands and the intervals respectively 

for period t+1. 

Syntetos & Boylan Approximation (SBA). Syntetos and Boylan (2001) proved that 

Croston’s method is positively biased. Subsequently, they proposed (Syntetos and 

Boylan 2005) that final forecasts should be multiplied by a debiasing factor, which 

depends on the value of the smoothing parameter. The forecasts for their proposed 

approximation (SBA) can be derived as follows: 
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Teunter, Syntetos & Babai (TSB) Method: Teunter, Syntetos and Babai (2011) 

considered an alternative decomposition approach. They proposed that the forecasts 

of the non-zero demands should be multiplied by the forecast of the probability that a 

non-zero demand will occur, thus: 

111
ˆˆ
  ttt zF   (A.15) 

where 1
ˆ
t is the forecast of the probability observing a non-zero demand. While z 

updates when a non-zero demand occurs, ρ will be updated every period. 

 

Appendix B: M3-Competition 

The M3-Competition (Makridakis and Hibon, 2000) is still to date the largest 

empirical forecasting competition. The study compared the forecasting performance 

of 26 different approaches (19 research teams/benchmarks and 7 forecasting 

packages) on 3,003 time series. The data covered a range of frequencies (yearly, 

quarterly, monthly, other) and various types of time series (micro, macro, industry, 

etc.). The results of the M3-Competition have referred to numerous publications, with 

its data being used very often for empirical studies. Theta model (Assimakopoulos 

and Nikolopoulos, 2000) achieved the best performance from the academic 

contestants while Forecast Pro (http://www.forecastpro.com/) topped the table of 

commercial forecasting packages. 

 

Appendix C: Replicability 

With regards to the replicability of this study, readers can download a special built 

software from http://www.forlab.eu/forecasting-software entitled ‘HorsesforCourses 

Simulator’. Simulated time series as well as forecasts for all methods considered in 

this research can be reproduced using the provided software, with the only exception 

being for forecasts produced from Forecast Pro and Autobox as these are copyrighted 

commercial software packages. 

http://www.forecastpro.com/
http://www.forlab.eu/forecasting-software
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Table 4: Multiple regression analysis: the dependent variable is the sMAPE (standardized coefficients) 

sMAPE 
Seasonality Trend Cycle Randomness 

Number of 

Observations 

Forecasting 

Horizon R
2
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td

. 
E

rr
o
r 

o
f 

th
e 

E
st

im
a
te

 

b1 t1 b2 t2 b3 t3 b4 t4 b5 t5 b6 t6 

Naïve 1 0.569 279.9 0.035 17.1 0.070 34.7 0.292 143.7 0.002 0.8 0.088 43.4 0.422 6.731 

Naïve 2 0.043 61.5 0.054 76.8 0.241 344.7 0.916 1309.8 -0.040 -56.9 0.166 236.9 0.932 1.067 

Single 0.031 40.4 0.071 92.7 0.323 420.6 0.874 1139.7 -0.037 -48.7 0.206 268.0 0.918 0.936 

Holt 0.050 65.5 -0.002 -2.2 0.408 532.8 0.824 1076.1 -0.101 -131.7 0.244 318.7 0.918 1.072 

Damped 0.033 43.3 0.056 74.0 0.342 448.5 0.870 1142.1 -0.044 -57.8 0.195 256.2 0.919 0.947 

Holt-Winters 0.044 59.6 -0.003 -4.2 0.396 540.4 0.823 1123.5 -0.052 -71.3 0.295 402.7 0.925 1.096 

Theta 0.030 40.2 0.024 32.1 0.346 459.0 0.875 1162.1 -0.042 -55.1 0.178 235.7 0.921 0.939 

Linear Trend 0.026 29.2 -0.012 -13.5 0.549 612.4 0.747 834.1 0.041 45.7 0.160 178.3 0.888 1.171 

Autobox 0.140 134.9 0.071 68.3 0.383 370.2 0.799 771.6 -0.029 -28.1 0.197 189.9 0.850 1.384 

Forecast Pro 0.063 86.2 0.033 45.9 0.378 518.3 0.854 1170.3 -0.055 -76.1 0.214 292.7 0.926 0.931 

SD 0.031 41.1 0.062 81.8 0.332 438.8 0.874 1155.9 -0.040 -52.5 0.199 262.8 0.920 0.932 

SHD 0.037 50.0 0.034 45.5 0.352 471.7 0.870 1166.0 -0.051 -68.8 0.192 257.9 0.922 0.938 

ST 0.031 40.9 0.046 60.8 0.333 442.9 0.878 1165.6 -0.037 -48.5 0.187 248.8 0.921 0.925 

SDT 0.031 41.1 0.048 64.0 0.335 447.4 0.877 1169.5 -0.038 -50.2 0.188 250.9 0.921 0.924 

SHDT 0.035 46.5 0.031 42.1 0.348 467.1 0.873 1170.7 -0.047 -62.8 0.186 249.3 0.922 0.933 

 


