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We present a theoretical investigation of the effects of low-frequency vibrations on
the motion of two-dimensional droplets on heterogeneous substrates in the presence of
gravity and substrate heterogeneities, both chemical and topographical. A combined
analytical and numerical approach is undertaken, extending the work of Savva &
Kalliadasis (J. Fluid Mech., vol. 725, 2013, pp. 462–491) on inclined heterogeneous
substrates to include the effects of substrate vibrations. Via a matching procedure and
under the quasi-static assumption, we obtain evolution equations for the moving fronts.
These equations are then invoked in a wide variety of case studies. It is demonstrated
that vertically vibrated horizontal ratcheted substrates can induce unidirectional motion.
For inclined substrates, we focus on a number of qualitative aspects of the peculiar
vibration-induced climbing of droplets reported in experiments by Brunet, Eggers &
Deegan (Phys. Rev. Lett., vol. 99, 2007, art. 144501). We examine the effects of
weak inertia on the dynamics, deduce analytical criteria for the uphill motion in the
limit of weak gravitational and vibrational effects, and demonstrate that substrate
heterogeneities may be utilised to enhance droplet transport.
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1. Introduction

The dynamics of vibrating droplets is among the classical problems in fluid
dynamics, dating back to the works of Kelvin (1863), Rayleigh (1879) and Lamb
(1881), which investigated the vibration modes of free liquid drops. These studies
have been extended to supported, nearly spherical, gravity-free droplets, both with
pinned contact lines (see e.g. Strani & Sabetta 1984, 1988; Celestini & Kofman 2006;
Bostwick & Steen 2009; Vejrazka, Vobecka & Tihon 2013) and movable contact lines
with hysteresis (see e.g. Dong, Chaudhury & Chaudhury 2006; Lyubimov, Lyubimova
& Shklyaev 2006; Fayzrakhmanova & Straube 2009). In these settings, a common
observation reported in experiments is that sufficiently strong vibrations excite waves
on the droplet free surface, which may lead to fragmentation and spray formation if
they become sufficiently violent (see e.g. James et al. 2003; Vukasinovic, Smith &
Glezer 2007, and references therein).
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Droplet mobility in the presence of vibrations is also influenced by substrate
heterogeneities. For instance, carefully fabricated heterogeneous substrates can be
used to control the motion of droplets with the help of vibrations, which can be
of interest in the design of microfluidic devices (see e.g. Daniel, Chaudhury &
de Gennes 2005; Duncombe et al. 2012a; Duncombe, Parsons & Böhringer 2012b).
Nevertheless, this problem has received much less attention theoretically, apart from
a handful of studies that developed some phenomenological models to match the
experimental observations.

In the seminal theoretical study of Johnson & Dettre (1964) on the effects of
substrate roughness on contact angle hysteresis, it was first suggested (but not studied
in detail) that vibrations may be utilised as a means to help a droplet overcome the
energy barriers associated with the heterogeneities (chemical and/or topographical)
that pin the droplet on a substrate. The experiments by Smith & Lindberg (1978)
demonstrated this for the first time with acoustic vibrations imposed on horizontal
substrates, where they observed that contact angle measurements varied with the
levels of vibration.

Since then, a number of studies have been devoted to investigate how vibrations
can alter the equilibrium state attained by the droplet, when vibrations cease. For
example, Della Volpe et al. (2002) and Meiron, Marmur & Saguy (2004) suggested
that vibrations may be used to measure the so-called ‘true’ equilibrium contact angle
at the global minimum of the free energy functional, which is attainable by escaping
the local metastable states with the help of a sufficiently strong external forcing. In
a more recent experimental study, where substrates were subjected to white noise
vibrations, Mettu & Chaudhury (2010) observed that the transition to this global
equilibrium state occurs regardless of whether its initial state was advancing or
receding, and attempted to rationalise their observations with a modified Langevin
equation based on a phenomenological spring-type model. Noteworthy also are
the experimental studies by Bormashenko et al. (2007a,b,c, 2008), where wetting
transitions on artificial and natural surfaces were investigated in detail. They observed
that, with the help of vibrations, droplets can move irreversibly from a state where
air is trapped between the substrate asperities and the droplet, the so-called Cassie
state, to the Wenzel state, where the fluid impregnates the asperities. According
to Bormashenko et al. (2007c), this transition, which happens continuously rather
than abruptly, appears to possess a distinct resonance character associated with the
gravity–capillary waves induced on the free surface of a vibrated drop.

Substrate vibrations have also been studied with the aim of understanding how to
control droplet mobility on surfaces. For example, Daniel & Chaudhury (2002) and
Daniel et al. (2004, 2005) studied extensively the influence of wettability gradients
on vibrated horizontal substrates, observing that droplet vibrations can help a droplet
to overcome the unavoidable substrate defects that tend to pin the contact line,
to the point of observing enhanced unidirectional motion along the gradient. Their
experiments with asymmetric vibrations (Daniel et al. 2005) also revealed the intricate
interplay between droplet velocity, the characteristics of vibration, as well as the
natural harmonics of the droplet, and pointed out the potential of utilising such
mechanisms in batch microfluidic processes. More recently, Mettu & Chaudhury
(2011) focused on the role of hysteresis in the dynamics observed in Daniel et al.
(2005) and argued that hysteresis can provide a symmetry-breaking mechanism
to promote directed motion, provided that it is not sufficiently large to introduce
a large pinning force that would prevent net transport. This prospect of utilising
the combined effects of vibrations and heterogeneities as an efficient means to
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control droplet motion on horizontal substrates was further demonstrated in the
experimental work of Duncombe and co-workers by using fabricated substrates with
asymmetric topographical topographical (Duncombe et al. 2012a) and wettability
features (Duncombe et al. 2012b).

Studies on the effect of vibrations on inclined substrates were first conducted by
Brunet, Eggers & Deegan (2007, 2009), in which they observed that vibrations are
capable of inducing a counter-intuitive uphill motion against gravity. They attributed
the observed dynamics to the breaking of symmetry due to the presence of the
substrate. Noblin, Kofman & Celestini (2009) investigated in further detail this
symmetry breaking introduced through vibration by demonstrating experimentally
that a combination of vertical and lateral vibrations on horizontal substrates can
yield pronounced directed motion, by appropriately tuning the amplitude and phase
difference between the two components of vibration.

The intriguing experiments by Brunet et al. (2007, 2009) also motivated a number
of theoretical and numerical studies, which attempted to rationalise the phenomenon
qualitatively by assuming thin two-dimensional (2D) drops (John & Thiele 2010;
Thiele & John 2010; Benilov 2010, 2011; Benilov & Billingham 2011), noting also
the recent analyses on three-dimensional (3D) droplets reported by Benilov (2011)
and Benilov & Cummins (2013).

More specifically, John & Thiele (2010) and Thiele & John (2010) performed
a series of numerical experiments using a hysteresis-free long-wave model in the
Stokes regime by assuming a precursor film ahead of the moving fronts, and they
demonstrated that uphill motion can occur by oblique vibrations in the low-frequency
regime. They argued that the lateral oscillations of the droplet fronts exhibit net
transport due to a nonlinear response to the changes in droplet mobility, which
increases as the droplet thickens and decreases as the droplet flattens because of the
normal component of vibration. This mechanism does not rely on the presence of
hysteresis, since symmetry breaking is provided by the manner in which the substrate
is vibrated.

The first analytical investigation of this problem was conducted by Benilov (2010)
for 2D droplets in the quasi-static limit, by considering essentially the Young–Laplace
equation supplemented by a condition at the moving front prescribing the contact line
velocity as an arbitrary function of the static and dynamic apparent contact angles,
concluding that uphill motion is impossible if the substrate is vibrated harmonically.
In a subsequent study, Benilov (2011) revisited his work on 2D droplets and further
extended it to a 3D geometry with small contact angles. For 2D droplets, he found
that uphill motion is possible with harmonic vibrations if second-order effects are
considered, but cannot occur at low frequencies. For 3D drops, he concluded that
uphill motion is possible for both high and low frequencies if the vibrations become
stronger than a certain threshold. In a more recent development, Benilov & Cummins
(2013) presented a similar type of analysis for 3D drops with large contact angles,
obtaining the appropriate criteria for uphill motion to occur. Noteworthy also is the
investigation of the inviscid limit of vibrated 2D drops by Benilov & Billingham
(2011), who developed a shallow-water model, imposing also the same type of
speed–contact angle relations at the moving fronts as in the work of Benilov (2010,
2011). Their analysis considered perturbations from a steady state, studying the
interaction of the spreading and swaying modes, which describe, respectively, the
symmetric and antisymmetric deformations of the free surface of the droplet, both of
which are prerequisite for uphill motion and maximise their effect when these modes
interact in phase.
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The aim of the present study is to present a combined analytical and numerical
investigation of the 2D droplet dynamics in the presence of substrate vibrations and
heterogeneities, by extending the work of Savva & Kalliadasis (2013, hereinafter
referred to as SK) on inclined heterogeneous substrates to include the effects of
substrate vibrations. We focus on a regime of low-frequency vibrations as done
previously (see e.g. Benilov 2010, 2011; John & Thiele 2010) and rigorously treat
the problem in its quasi-static limit. We need to emphasise that our analysis differs
from the general approach used by Benilov (2010, 2011) and Benilov & Cummins
(2013) in a number of respects. More specifically, in those studies the droplet shape
was determined solely by balancing surface tension, gravitational and vibrational
effects through the Young–Laplace equation, and driving the contact line dynamics
by imposing a priori a speed–contact angle relation as a boundary condition. Here,
instead, we consider the quasi-static dynamics of a time-dependent partial differential
equation (PDE), which includes viscous effects under the long-wave assumption.
Through the matched asymptotics that we employ, the speed–contact angle relation
is eventually the product of asymptotic analysis. More importantly, this is the first
study to treat the combined effects of vibration, gravity and substrate heterogeneities
both analytically and numerically, allowing us to properly characterise the dynamics,
without the need to utilise any of the ad hoc phenomenological spring-type models
introduced in previous studies (see e.g. Daniel et al. 2005; Mettu & Chaudhury 2010,
2011).

Our model, its main assumptions and boundary conditions are presented in § 2.
In § 3 we derive evolution equations for the two moving fronts as a system of
integro-differential equations (IDEs), by invoking the results in SK upon which the
present study is based. In § 4 we investigate the ideal-substrate case, which has
been previously considered numerically by Thiele & John (2010) using a precursor
film model. Most notably, we derive the criteria for uphill droplet motion on ideal
substrates and look into the influence of weak inertial effects, by investigating the
corresponding Kármán–Pohlhausen model (see López, Miksis & Bankoff 1997). In § 5
we consider some representative examples with heterogeneous substrates, discussing a
number of interesting effects, such as the ability of heterogeneities to assist both the
downhill and uphill motion. While more focus in this section is placed on inclined
topographical substrates, some illustrative examples with horizontal and chemically
heterogeneous substrates are also considered. Our discussion concludes in § 6 with a
summary and some final remarks.

2. Model
Consider a 2D droplet on the X–Z plane, supported by a substrate that is inclined

at angle φ to the horizontal and vibrated at angle ψ with respect to the substrate
vertical, experiencing an acceleration Γ (T∗) at time T∗. The substrate is heterogeneous,
with a topographical structure prescribed by a smooth profile S(X), which is slowly
varying with X, i.e. ∂XS� 1. Moreover, the contact angle Θ(X), which is the angle
between the tangent to the free surface of the droplet and the tangent to the substrate
topography at the point of contact, varies locally according to tanΘ = F(X), and is
assumed to be small, i.e. 0 < F(X)� 1 (see figure 1 for a sketch of the geometry
using dimensionless variables). As in SK, we assume slip along the substrate, so that

U|Z=S(X) =Λ ∂ZU|Z=S(X) , (2.1)

where U(X, Z, T∗) is the velocity in the X direction and Λ is the slip length, taken
to be constant for simplicity. By neglecting fluid inertia (weak inertial effects are
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FIGURE 1. A 2D droplet on a heterogeneous substrate inclined at angle φ to the
horizontal. In non-dimensional units, the droplet has thickness h(x, t), with its contact
points located at x=b±(t). The substrate is vibrated at angle ψ with acceleration γ (t) with
respect to its vertical, with s(x) and f (x) prescribing the substrate profile and the contact
angle variations, respectively. The hatching below the substrate profile is used to show the
variations of the contact angle. It is shaded in grey between the maximum (white) and
minimum (dark grey/black) values of f (x) corresponding to the portion of the substrate
shown. The acceleration due to gravity, g, is vertically downwards.

discussed in § 4.4), we utilise the long-wave approximation to obtain an evolution
equation for the droplet thickness, H(X, T∗),

∂T∗H + ∂X(HŪ)= 0. (2.2)

Here, Ū is the height-averaged velocity of the fluid in the X direction, given by

Ū = H(H + 3Λ)
3µ

[σ∂3
X(H + S)− ρ(g cos φ + Γ cosψ)∂X(H + S)

+ ρ(g sin φ + Γ sinψ)], (2.3)

where g is the gravitational acceleration, with σ and µ being the surface tension
and dynamic viscosity of the fluid, respectively. Following SK, (2.2) is made non-
dimensional by introducing the variables

x= X
L
, h= H

L tan αs
, s= S

L tan αs
, t= T∗

τ
, λ= 3Λ

L tan αs
, f = F

tan αs
, (2.4a–f )

where αs is taken to be the average contact angle of the substrate, τ = 3µL/(σ tan3 αs)
is the characteristic time scale of the problem and L is its corresponding length scale,
defined in terms of the cross-sectional area of the droplet, A, as L=√A cot αs. With
this choice of scales, (2.2) becomes

∂th+ ∂x{h2(h+ λ)[∂3
x (h+ s)−w1∂x(h+ s)+w2]} = 0, (2.5)

which depends on w1(t) and w2(t), defined as

w1(t)=Bo(cosφ+ rγ (t) cosψ) and w2(t)=Bo(sinφ+ rγ (t) sinψ) cotαs, (2.6a,b)
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where Bo= ρgL2/σ is the Bond number, r=Γ0/g characterises the vibration strength
by comparing the gravitational acceleration with the amplitude of the acceleration
of the substrate vibrations, Γ0, and γ (t) = Γ (tτ)/Γ0 is the dimensionless substrate
acceleration.

We solve (2.5) subject to boundary conditions imposed at the right and left
boundary points, x= b±(t) (see figure 1),

h = 0, (2.7a)
∂xh = ∓α±, (2.7b)
ḃ± = λh∂3

x h, (2.7c)

where the dot denotes differentiation with respect to t and α± are given by

α± = f±
1+ s′ 2± tan2 αs

1± s′± f± tan2 αs
(2.8)

with s′± = ∂xs|x=b± and f± = f (b±).
Conditions (2.7a) require that the droplet thickness vanishes at the two contact

points and (2.7b) ensures that the droplet free surface meets the topography at an
angle prescribed locally through the heterogeneity function f (x). It is found by a
simple geometric argument, namely by considering the slope of the free surface in
dimensional units at the contact points and requiring that the tangents at the free
surface and the substrate form an angle Θ(X), satisfying tan(Θ(X))=F(X). Hence, at
the right and left contact points, the slopes are given by ∂XH=∓(tan(Θ∓Ψ )± tanΨ ),
respectively, where tan Ψ = ∂XS. We deduce (2.7b) by expressing these conditions in
dimensionless variables (Savva & Kalliadasis 2009).

The third set of conditions, (2.7c), are of kinematic type and are readily found from
(2.5) and the asymptotics of the solution as the contact points are approached. Thus,
the problem is closed without the need to impose any semi-empirical, Cox–Voinov-
type relations to advance the contact line, as done, for example, in the works of
Benilov (2010, 2011) and Benilov & Billingham (2011). Lastly, mass is conserved
at all times, and we take ∫ b+

b−
h(x, t) dx= 1, (2.9)

with our chosen dimensionalisation.
With these scalings, ḃ± correspond to 3Ca±/tan3 αs, where Ca± = µV±/σ can be

viewed as local capillary numbers for the (dimensional) velocities V± of the right
and left contact points, respectively. In the experiments by Brunet et al. (2007, 2009),
capillary numbers of O(10−3) were reported, consistent with the main assumption of
our theory which follows in the next section, namely that |ḃ±|� 1. More specifically,
in the next section we will see that analytical progress is possible for small droplets
with Bo� 1, for substrate vibrations with r = O(1) and in the limit where the time
scale of oscillations is much larger than the viscous time scale, τ . This underlying
assumption is not particularly restrictive, especially given that, for the type of liquids
used in the experiments of Brunet et al. (2007, 2009), τ is found to be of the
order of milliseconds. It is to be noted, however, that a fair comparison with
the aforementioned experiments is not possible because of both the 2D geometry
considered here and the large contact angles that Brunet et al. have measured in their
experiments. We will also explore a broader range of parameter values that do not
conform with the assumptions of the theory by considering directly the governing
PDE (2.5) and the conditions (2.7).
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3. Matched asymptotics
The analysis we follow is nearly identical to that in SK, the main difference being

two additional terms arising from ẇ1 and ẇ2 that appear in the IDEs for b±(t).
Even though these terms are small in general, their inclusion typically improves
the agreement between the numerical solution to (2.5) and the solution to the
IDEs obtained from matching. As in SK, we assume quasi-static dynamics, and,
by considering the flow in the bulk of the droplet and in the two regions near the
two contact points separately, we match asymptotically the solutions within the two
overlap regions that connect the contact point regions with the droplet bulk. The aim
of doing so is to obtain a system of IDEs for b±(t).

3.1. Analysis
The outer-region dynamics is examined by mapping the time-dependent domain over
which (2.5) is solved, b−(t)6 x 6 b+(t), to the fixed interval −1 6 y 6 1 using

x= d(t)y+ `(t) (3.1)

with
d= b+ − b−

2
and `= b+ + b−

2
, (3.2a,b)

defined as the droplet radius and midpoint, respectively.
By neglecting slip effects in the outer region and using (3.1), equation (2.5)

transforms to

∂th− ḃ+(1+ y)+ ḃ−(1− y)
2d

∂yh+ 1
d4
∂y{h3[∂3

y (h+ s)− d2w1∂y(h+ s)+ d3w2]} = 0.
(3.3)

Since the outer-region dynamics cannot capture the behaviour in the inner regions,
(3.3) is solved with (2.7a) and (2.9). From the discussion in the previous section, we
expect |ḃ±(t)| � 1 and, by assuming low-frequency vibrations so that |γ̇ (t)| � 1, we
introduce a quasi-static expansion of the form

h= h0(y; b±(t), γ (t))+ h1(y; b±(t), γ (t), ḃ±(t), γ̇ (t))+ · · · , (3.4)

with h0 � h1 and time entering the problem through γ and b± and their time
derivatives. Using (3.4) in (3.3), we find that the leading-order outer solution, h0,
satisfies

∂3
y (h0 + s)− d2w1∂y(h0 + s)+ d3w2 = 0 (3.5)

with h0(b±) = 0 and
∫ b+

b− h0 dy = 2/d. Equation (3.5) is essentially the derivative of
the Young–Laplace equation as expressed in long-wave form, a simplified version of
which was considered by Benilov (2010) in the absence of topography. The solution
is identical to equation (3.5) in SK, namely

h0(y) =
1

2d
+ s̄− 1

2
(s+ + s−)

cosh k− k−1 sinh k
(cosh k− cosh ky)+ w2d3

k2

(
y− sinh ky

sinh k

)
+ 1

2
(s+ + s−)+ 1

2
(s+ − s−)

sinh ky
sinh k

− s(dy+ `), (3.6)
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with k= d
√

w1, s̄= 1
2 d−1

∫ b+
b− s(x) dx and s±= s(b±). Equation (3.6) gives the thickness

of the droplet along the substrate at leading order, so that h0+ s prescribes the shape
of the free surface. Note that the validity of this analysis is limited to the cases where
w2� 1, since (3.6) can become negative somewhere for sufficiently large values of w2,
which is clearly non-physical (see also the discussion in Savva & Kalliadasis (2013)).

The higher-order correction, h1, is assumed to depend linearly on ḃ± and γ̇ , so that,
by taking

∂th≈ ḃ+∂b+h0 + ḃ−∂b−h0 + ẇ1∂w1h0 + ẇ2∂w2h0 + · · · , (3.7)

and after some algebra, we obtain a linear differential equation for h1,

∂3
y h1 − d2w1∂yh1 =−d4D(y)

h3
0

, (3.8)

where
D(y)= q+(y) θ+ḃ+ + q−(y) θ−ḃ− + A1ẇ1 + A2ẇ2, (3.9)

with

q±(y) = 1
2

(
cosh ky− cosh k

k sinh k
± sinh ky− y sinh k

k cosh k− sinh k

)
, (3.10)

θ± = k2

d

1
2d
+s̄−s++s−

2
k coth k−1

± w2d2

k2
(k coth k− 1)∓ k

s+−s−
2d

coth k± s′±, (3.11)

A1 = − d2

4k4
(k coth k− 1)[(s+ − s−)k2 − 2d3w2][q−(1+ y)+ (1− y)q+]

− d2

4k4
[(s+ − s−)k2 − 4d3w2](1− y2 + 2q+ + 2q−)

− d3

4k2
(θ+ + θ− + s′+ + s′−)[q+(y− 1)+ q−(y+ 1)], (3.12)

A2 = −d3

k2

(
1− y2

2
+ q+ + q−

)
. (3.13)

Hence, two additional terms arise compared to the non-vibrating case in SK, A1
and A2. Equation (3.8) is to be solved subject to homogeneous boundary conditions,
namely

h1(±1)= 0 and
∫ +1

−1
h1(y) dy= 0. (3.14a,b)

To perform the matching, we are only interested in the asymptotic behaviour of h1 as
y→±1. Following SK, in which the procedure to obtain the asymptotics of equations
like (3.8) is outlined, we find that

∂yh1 ∼−ḃ±
d
θ 2±

[
ln

e
2
(1∓ y)+ β±

]
, (3.15)

where β± are functions of time given by

β± =
∫ +1

−1

[
1

1∓ y
− d3θ 2

±q±(y)
h3

0ḃ±
D(y)

]
dy, (3.16)
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obtained by multiplying (3.8) by q±(y) and integrating with respect to y from −1 to
+1, followed by a series of integrations by parts and application of the conditions
(3.14). Therefore, the behaviour of ∂xh is given by

∓ ∂xh∼ θ± ± ḃ±
θ 2±

[
ln
(
∓e

x− b±
2d

)
+ β±

]
, as x→ b±, (3.17)

where clearly θ± can be identified as the apparent contact angles. For small-amplitude
topographies, the apparent contact angle is simply given by θ± but with s≡ 0 (see also
discussion in § 5.3).

This outer-region behaviour needs to be matched asymptotically with the behaviours
from the inner regions near the moving fronts, which account for the influence of
slip. To probe into these regions, for which x− b±=O(λ), we introduce the stretched
variables

ξ± =∓(x− b±)α±/λ and Φ± = h/λ (3.18a,b)

to transform (2.5) to

± ḃ±∂ξ±Φ± + α3
±∂ξ±[Φ2

±(Φ± + 1)∂3
ξ±Φ±] = 0. (3.19)

In (3.19), we retained only the O(λ0) terms and neglected the effects of topography,
gravity and substrate vibrations, since λ2|w1|, λ2|w2| and λ|∂3

x s| are all assumed to
be small. The asymptotics of (3.19) have been treated in SK and elsewhere (see e.g.
Hocking 1983; Savva & Kalliadasis 2009, 2012; Vellingiri, Savva & Kalliadasis 2011).
Hence, using quasi-static dynamics and a wedge-shaped free surface, to leading order
we find that

∂ξ±Φ± ∼ 1∓ ḃ±
α3±
(ln ξ± + 1), as ξ±→+∞. (3.20)

A transformation back to the original variables gives

∓ ∂xh∼ α± ± ḃ±
α2±

[
ln
(
∓α± x− b±

λ

)
+ 1
]

as ∓ x− b±
λ
→∞ (3.21)

for the asymptotic behaviours of the inner regions, from which, when raised to
the third power, one obtains the equivalent Cox–Voinov law, with (dimensionless)
microscopic length λ/(α±e) (see e.g. Bonn et al. 2009, and references therein). The
behaviours in (3.21) are to be matched with those from the outer region, (3.17). As
it turns out (see e.g. Savva & Kalliadasis 2009), it is possible to match the third
power of (3.17) and (3.21) and we find

± ḃ±

[
ln

2dα±
λ
− β±

]
= θ 3
± − α3

±. (3.22)

Equations (3.22) are reminiscent of Cox–Voinov-type imposed boundary conditions
in studies with moving contact lines (see e.g. Hocking 1992; Wilson, Hunt & Duffy
2000), in which the velocity of a moving contact line, V , is prescribed by a semi-
empirical relation of the form V = κ(θ 3

macro − θ 3
micro), where θmacro is the macroscopic

apparent contact angle, θmicro is the microscopic angle at the contact line and κ is
some constant of proportionality. Thus, instead of assuming a relation of this form,
we derive it as a product of the matching procedure, which allows us to determine
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κ as a function of the contact line fronts and substrate heterogeneities. The matching
conditions, (3.22), may be solved for ḃ± to yield

ḃ± =± δ±G∓ + δ∓θ±G0

G−G+ − θ−θ+G2
0

(3.23)

with

G± = ln
2dα±
λ
−
∫ +1

−1

[
1

1∓ y
− d3θ 3

±q2
±

h3
0

]
dy, (3.24)

G0 = θ+θ−d3
∫ +1

−1

q+q−
h3

0
dy, (3.25)

δ± = 1
3
(θ 3
± − α3

±)∓ d3θ 2
±

∫ +1

−1

q±(A1ẇ1 + A2ẇ2)

h3
0

dy. (3.26)

Thus, equations (3.23) constitute a coupled system of IDEs, because determining ḃ±
requires the evaluation of the integrals, in G±, G0 and δ±. It is important to emphasise
that (3.23) are nearly the same as those obtained in SK, the only difference being
in the expressions for δ±, (3.26), where we now include the terms containing ẇ1
and ẇ2. As previously mentioned, the inclusion of these terms does not influence
the dynamics significantly, since they merely introduce O(T−1) corrections, which are
assumed to be small. However, they sometimes tend to improve the agreement with
the solutions to the governing PDE, (2.5), particularly at times when the moving fronts
slow down. With this analysis, we were able to map the slow dynamics of the infinite-
dimensional dynamical system corresponding to the governing PDE, (2.5), to a 2D
non-autonomous system of IDEs. In the following sections, we will be examining this
set of equations under different conditions. Even though the substrate vibrations can
be prescribed by any differentiable function γ (t), we will be focusing our discussion
on simple harmonic vibrations, so that the substrate experiences acceleration

γ (t)= cos
2πt
T
, (3.27)

where T is an appropriately non-dimensional period of oscillation.

3.2. Numerical methods; verification of asymptotics
The validity of the matching procedure can be readily verified by performing sets
of different computations to compare the solutions to the PDE (2.5) subject to (2.7)
and the equations obtained by matching, (3.23). As in SK, the governing PDE is
solved using a pseudospectral discretisation for the spatial coordinate (similar to the
method employed in Savva & Kalliadasis (2009)) and time marching is performed
using the method of lines and the ode15s routine in MATLABr. The IDEs are solved
using the Legendre–Gauss quadrature to obtain the associated integrals and a Runge–
Kutta scheme for time stepping. Whilst there can exist countless ways of choosing
the heterogeneity profiles, the focus of the present study will be limited primarily
to single-wavelength topographical heterogeneities, since the phenomenology of the
problem is not expected to change qualitatively. However, a few examples will be
considered with chemical heterogeneities as well.
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FIGURE 2. Plots of the evolution of `(t) and d(t) for a heterogeneous substrate with
s(x) = 0.01 cos 20x and f (x) = 1, comparing sample solutions to the governing PDE
(solid curves), (2.5), and the IDEs obtained by matching, (3.23), (dashed curves). (a) The
parameters for the computation are T = 100, λ = 0.005, Bo = 0.1, r = 6, αs = 15◦,
φ = 2◦, ψ = 10◦ and b±(0) = ±1.25. (b) As in panel (a), but with λ = 10−4. (c) As in
panel (a), but with r= 40 and ψ = 2◦. (d) As in panel (a), but with Bo= 0.2 and T = 20.
Note the excellent agreement between the IDEs and the governing PDE in panels (a–c),
where the dashed and solid curves are nearly indistinguishable. In panel (d) the agreement
is poor, which suggests that for these parameters the quasi-static assumption is no longer
applicable.

By plotting the evolution of the droplet radius, d(t), and midpoint, `(t), we show
in figure 2 a small selection of different possible behaviours that can be observed
for a droplet moving on a topographically heterogeneous substrate whose profile
is prescribed by s(x) = 0.01 cos 20x and is inclined at angle φ = 2◦. In figure 2(a)
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we show that the choice of parameters mentioned in the figure caption yields a
pronounced climbing behaviour and relaxation-type oscillations in the droplet width.
In figure 2(b) we see that changing the slip length yields a markedly different
behaviour compared to figure 2(a), with the droplet eventually being trapped in the
heterogeneity features with no net uphill or downhill motion. This is contrary to our
expectation that the dynamics depend weakly on the slip length, given that λ appears
in the logarithm of (3.23). Even though, indeed, the dynamics depend weakly on λ, it
is also possible that changes in slip, which may cause minute changes in speed, can
be crucial when the contact line tries to overcome a topographical feature. Note that
in the present study we fixed λ= 0.005 in most of our computations, despite the fact
that our numerical scheme can accurately capture the dynamics with slip lengths that
are at least two orders of magnitude smaller than this value. A larger slip length was
chosen because smaller slip lengths make the PDE stiffer to solve numerically, which
can be inefficient especially for tracing full regime diagrams. Besides, the interesting
behaviours are observed at small Bo, which would correspond to smaller droplets
and the non-dimensional λ, which scales with the size of the droplet, will tend to be
larger. Lastly, we do not expect the results to change qualitatively had we chosen a
smaller λ.

If we alter the vibration strength in figure 2(a), we observe in figure 2(c) that the
droplet moves on average slightly further up the inclined plane, noting also the higher-
amplitude oscillations in `(t) compared to figure 2(a). As a result, during the course of
a vibration period, the droplet travels across more peaks and valleys of the substrate
topography, and this is manifested in the secondary oscillations in the evolution
of d(t).

It should be noted that in figure 2(a–c) we plotted the solution to both the IDEs,
(3.23), and the governing PDE, (2.5), and we observe that they are indistinguishable.
This is typically the case when Bo, ψ, φ and r are relatively small and when
T is large, although it is impossible to pinpoint precise regimes of validity of our
theory. For example, in figure 2(d), we show a calculation where our theory fails
to capture the behaviour of the PDE. More importantly, the motion appears to be
aperiodic compared to the other cases presented in figure 2, which exhibit periodic
behaviour after some initial transient. This effect is frequently observed for substrates
with small amplitude and wavelength, but it is difficult to predict when it might occur.
This behaviour is presumably a result of some type of bifurcation at which the system
switches to a new periodic behaviour having a period equal to a multiple of the period
of forcing, T . Although this effect is rather interesting, we will not elaborate on it any
further, apart from presenting some additional examples later on, in § 5.2.

4. Ideal substrates
Before looking into the effects of substrate heterogeneities, we briefly revisit the

ideal-substrate case (s(x)= 0, f (x)= 1), first investigated numerically with a precursor
film by John & Thiele (2010). The motivation behind this discussion is to use
the preceding analysis to extract analytically a climbing criterion valid for weak
vibrational and gravitational effects, to contrast the present analysis with related
works (Benilov 2010, 2011; Benilov & Billingham 2011) and to study briefly how
the dynamics is affected when weak inertial effects are also included.

4.1. Mean drift velocity

When we are dealing with an ideal substrate, it is easy to see that ḋ= (ḃ+− ḃ−)/2 and˙̀ = (ḃ+ + ḃ−)/2 both depend on t and d(t), but not on `(t). This is to be expected,
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since the dynamics on an ideal substrate is characterised by translational invariance.
Hence, one can solve for the evolution of the droplet radius independently from its
displacement along the substrate. In fact, when w1(t) and w2(t) are both small, we
can obtain an approximate expression for the drift velocity, ˙̀(t). By neglecting O(ẇ1)

and O(ẇ2) terms, which corresponds to the low-frequency limit, T→∞, we obtain
the following expansion for d(t),

d(t)=
√

6
2

1+ 1
20

w1 + 9
5600

w2
1 +

ln
6
λ2
− 8

8 ln
6
λ2

w2
2

+O(w3
1,w1w2

2), (4.1)

found by taking ḋ = O(ẇ1, ẇ2) and matching powers of w1 and w2. Using this
expansion in ˙̀, we find after some algebra

˙̀(t)= w2

ln
6
λ2

− 3w1w2

5 ln2 6
λ2

+O(w3
2,w2

1w2). (4.2)

From (4.2) we can obtain the mean drift velocity, defined as

v̄ = 1
T

∫ T

0

˙̀(t) dt, (4.3)

and hence, since by assumption Bo� 1, we have

v̄ = Bo

tan αs ln
6
λ2

sin φ − 3 sin 2ψ

20 ln
6
λ2

r2Bo− 3 sin 2φ

10 ln
6
λ2

Bo

+O(Bo3, Bo3r2). (4.4)

It is apparent from this analysis that the non-zero time-averaged velocities of the
contact points arise due to the nonlinear term w1w2 in (4.2), whereas the linear term
averages to net downhill motion. It is also important to note that, unlike other analyses
with inclined 2D droplets (see e.g. Benilov 2010, 2011; Benilov & Billingham 2011),
(4.4) can predict that uphill motion can be observed with low-frequency harmonic
vibrations, which is consistent qualitatively with the numerical work of John & Thiele
(2010) with a precursor film model. Uphill motion at low frequencies was also found
by Benilov (2011) and Benilov & Cummins (2013) in their analysis of the 3D
problem.

Numerical solutions of the governing equation (2.5) suggest that the ideal-substrate
case settles, after some brief initial transient due to spreading, to a motion that
exhibits periodically evolving speeds and free-surface shapes for the harmonic forcing
prescribed through γ (t), (3.27). Hence, to determine v̄ numerically as a means to
verify (4.4), we have neglected the transient dynamics and focused on extracting the
long-time behaviour. This has been achieved by treating time in (2.5) as a periodic
variable, which transforms the problem into solving a ‘steady’ PDE in two dimensions.
Solutions to this problem were obtained efficiently and accurately by discretising the
governing PDE spectrally in both time and space and utilising Newton iterations until
convergence was achieved.
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FIGURE 3. Long-time behaviour of a droplet with Bo = 0.2 that moves on an ideal
substrate with λ= 0.005, αs = 15◦ and φ = 2◦, vibrated at angle ψ = 2◦, period T = 100
and r = 24. (a) Surface plot of h(x, t) showing the evolution of the droplet free surface
during a vibration period. (b) Periodic evolution of d(t). (c) Plot of `(t) with `(0) = 0,
which demonstrates the uphill translation of the droplet at the end of each period.

Figure 3 shows the result of such a computation for a droplet with Bo= 0.2 moving
on a substrate with λ= 0.005, αs= 15◦ and φ= 2◦, which is vibrated at angle ψ = 2◦,
period T = 100 and r= 24. The particular configuration yields v̄=−0.0030, i.e. uphill
motion is observed (the linear theory, (4.4), predicts v̄ = −0.0038; this discrepancy
is expected since the chosen parameters lie beyond the regime where (4.4) is an
acceptable approximation). A plot of h(x, t) is given in figure 3(a), which shows
the free-surface oscillations during the course of a period. Figure 3(b) shows the
periodically evolving width of the droplet, d(t), over a period, and figure 3(c) shows
the plot of `(t) with `(0)= 0 to demonstrate the uphill shift of the droplet midpoint
when t = T , where we should reiterate that ˙̀(t) is periodic with non-zero mean
and gives `(t) as a superposition of harmonic oscillations and a constant-velocity
translation.
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4.2. Horizontal substrates
When the substrate is horizontal (φ = 0), the sign of the mean drift velocity is
determined solely by the sign of ψ , as expected from (4.4), which becomes

v̄ =− 3r2Bo2 sin 2ψ

20 tan αs ln2 6
λ2

+O(Bo3, Bo3r2). (4.5)

From (4.5) we anticipate that |v̄| is maximised when ψ =±45◦. A heuristic argument
why this is so can be made by considering the extreme values of ψ , 0 and 90◦, where,
due to symmetry, we do not expect any net motion. At ψ = 0◦ the contact points
evolve symmetrically since the substrate is vibrated in the direction normal to the
substrate. At ψ = 90◦ the substrate is shaken horizontally, and the motion in each
half-cycle is reversed in the other half-cycle. In these extreme values, v̄ = 0. Hence,
it is natural to expect v̄ for the linearised problem to attain its maximum value when
ψ is close to 45◦.

In figure 4 we show a number of low-frequency calculations that demonstrate
that, when we have both Bo, rBo � 1, we get very good agreement between
theory and numerical experiments, with the maximum |v̄| indeed occurring around
ψ = 45◦. Interestingly, when the assumptions of our linear theory no longer hold, the
calculations tend to exhibit excellent agreement with (4.5) only for small ψ , with the
maximum speed occurring at progressively smaller vibration angles as Bo and r both
increase. A plausible explanation why the optimum angle is reduced can be given
in terms of the aforementioned mechanism of uphill motion suggested by John &
Thiele (2010). Hence, since, according to this mechanism, the vertical component of
vibration is ultimately responsible for drop mobility along the substrate, the reduction
of the optimum angle is indicative of the need for stronger vibrations along the
normal to the substrate (see curves C and D in figure 4), which may be attributed to
the stronger coupling between the horizontal and vertical components of acceleration
in the nonlinear regime.

4.3. Inclined substrates
4.3.1. Climbing criterion

The sign of v̄ in (4.4) determines which way the droplet will move in the long-time
limit. Hence, for an inclined substrate (φ > 0), we get uphill motion when v̄ < 0. Thus,
the first two terms in the expansion of (4.4) reveal the two competing mechanisms
that decide the direction of net transport. One is the component of gravity along
the substrate, Bo sin φ, and the other is the effect of substrate vibrations through
r2Bo2 sin 2ψ , whose influence is determined by the vibration angle, which ultimately
characterises the breaking of symmetry (see earlier discussion on figure 4). Moreover,
since droplet transport is facilitated by larger values of λ, we also see that larger λ
promotes the uphill motion, albeit weakly, as it appears in the logarithm, and one
would need to change λ by orders of magnitude to see an appreciable effect. Hence,
since φ, ψ and Bo are assumed to be small, while ln(6/λ2) is typically of O(10),
uphill motion occurs if we choose r� 1, so that

r2 >
20 sin φ ln

6
λ2

3Bo sin 2ψ
+O(Bo2, Bo3r2). (4.6)
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FIGURE 4. Influence of vibration angle on the mean drift velocity, v̄, where we plot
−20v̄ tan αs ln2(6/λ2)/(3r2Bo2) as a function of ψ (in all computations, T = 1000, λ =
5 × 10−3 and αs = 10◦). The solid curves A–C correspond to Bo = 0.05 with r = 1, 5
and 8, respectively, and curve D to Bo= 1 and r= 2 (note that curve D is computed up
to ψ = 13◦ because the problem becomes too stiff to be efficiently resolved). The dotted
curve is the theoretical prediction from (4.5), sin 2ψ .

At the same time, we must require that rBo� 1 and T→∞ to be consistent with
the derivation of (4.4). Note that this result agrees, at least qualitatively, with the
numerical experiments of John & Thiele (2010), who demonstrated that for small
drops r is inversely proportional to ψ−1/2. Here we have shown rigorously how this
relation arises naturally by linearising the equations obtained through asymptotic
matching.

Figure 5 shows calculations that verify the climbing criterion, where we plot the
square of the critical amplitude of the vibration acceleration, r2

c Bo2, for which v̄ = 0,
as a function of Bo. The agreement is typically excellent for very small values of Bo,
but it can be extended to higher Bo as both φ and ψ are made smaller. Since ψ is the
only parameter that differs among the curves in figure 5, we can also infer that using
larger ψ can generally promote the uphill droplet motion, since we need to vibrate
the substrate less vigorously (i.e. lower rc) to get the droplet to move against gravity.
The same conclusion is reached by looking at (4.4), but one has to bear in mind the
earlier discussion on horizontal substrates, since nonlinearities can shrink the range of
vibration angles over which v̄ increases monotonically with ψ .

4.3.2. Regime diagram
Figure 6 shows a typical regime diagram that illustrates the effect of the vibration

strength, r, and period of oscillation, T , on the time-averaged motion of the droplet.
As T becomes larger, v̄ tends to be independent of T , which is consistent with
our derivation of the mean drift velocity, (4.4) (see also figure 7). In fact, the
low-frequency critical vibration strength determined from the numerics is found to be
rc=14.5, which is less than 1.5 % in error from the theoretically predicted value using
(4.6), rc = 14.3. There also appears to be a cutoff frequency above which substrate
vibrations, no matter how strong, cannot induce uphill motion. We will return to this
point when we discuss weak inertial effects. This regime diagram is topologically
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FIGURE 5. Plots of the critical amplitude of the vibration acceleration as a function of
the Bond number to verify the climbing criterion, (4.6). The solid curves are the result of
computations tracing rc so that v̄= 0 for different values of ψ labelling each curve in the
figure, plotted together with the corresponding prediction from theory (dotted lines). The
other parameters used for the computations are λ= 5× 10−3, αs = 10◦ and φ = 2◦.
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FIGURE 6. Regime diagram for varying T and r (see caption of figure 3 for the
other parameters). The thin curves are contours of constant v̄, whereas along the thick
curve we have v̄ = 0. The shaded region represents the regime of uphill motion; in the
unshaded region the droplet would move downhill. The solid circle marks the parameters
corresponding to the calculation in figure 3.

similar to those obtained by Benilov & Cummins (2013) for 3D droplets with large
contact angles and by Thiele & John (2010) for a 2D precursor film model, which
is not surprising given the equivalence of slip and the precursor film models (Savva
& Kalliadasis 2011).
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FIGURE 7. Plot of the ratio of the numerically determined v̄ and the one predicted by
(4.4) as a function of T for r = 1, 2, . . . , 30 (see caption of figure 3 for the remaining
parameters). The curves are drawn with a lighter colour as r is increased. Curves A–D
correspond to r= 5, 10, 14 and 15, respectively. As expected, v̄ becomes independent of
T as T→∞. The largest difference between theory and numerics is observed when r= 14
and r= 15 (curves C and D), since around r= 14.5 we have v̄ = 0 and round-off errors
are naturally amplified when computing the ratio of the two vanishing speeds.

However, it is worth noting that the topology of the regime diagram differs in some
respects from that observed in the experiments of Brunet et al. (2007, 2009). The most
striking difference is that Brunet et al. observed that there can exist ‘static’ regions,
where the droplet does not appear to exhibit measurable net motion, especially in the
high-frequency regime. This behaviour cannot possibly be captured by the physical
mechanisms assumed in the inertia-less, ideal-substrate and 2D model that we have
utilised here, which only predicts either uphill or downhill motion. In the following
sections, we will attempt to understand how the inclusion of weak inertia and substrate
heterogeneities can possibly affect the droplet dynamics in an effort to identify the
underlying mechanisms for the behaviour observed in experiments.

4.4. Weak inertial effects

In deriving (2.5) we have neglected the effects of fluid inertia, but it is also of
interest to examine how its inclusion affects the regime diagram of figure 6. We
thus retain the inertial terms in the momentum equations, by adopting the so-called
Kármán–Pohlhausen averaging method. Thus we consider the following appropriately
non-dimensionalised system of PDEs:

Oh

{
∂tq+ ∂x

[
q2

6
5 h2 + 2hλ+ λ2

h(h+ λ)2
]}
= h(∂3

x h−w1∂xh+w2)− q
h(h+ λ) , (4.7a)

∂th+ ∂xq = 0. (4.7b)
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Here q(x, t) is the flow rate in the x direction and Oh is the Ohnesorge number,

Oh= ρσL tan5 αs

9µ2
= inertia× (surface tension)

(viscous forces)2 , (4.8)

which relates the viscous forces to inertial and surface tension forces and is assumed
to be at most O(1). The derivation of the long-wave equation is given in appendix A
and is nearly identical to the derivation of the model utilised by López et al. (1997) to
study the contact line instability of a thin film coating an inclined plane. Obviously,
if we neglect inertia and take Oh = 0 in (4.7), we recover (2.5). To see the effect
of inertia on the dynamics, we compare the regime diagram obtained for non-zero
Oh with the one presented in figure 6. To obtain v̄ numerically, we adopt the same
strategy, namely convert the moving-boundary problem to a fixed-boundary one and
extract in the same manner the long-time periodic behaviour of the equations, namely
by assuming periodicity in time of the flow rate, the velocities of the contact points
and the evolution of the free surface of the droplet.

Figure 8(a) shows the regime diagram when Oh= 5, using the same parameters as
in figure 6. We observe that, with the inclusion of inertia, a secondary climbing regime
appears at higher frequencies. Overall, we observe that inertia generally reduces |v̄|,
as expected. However, given that our model is valid for relatively small Oh, it is
unclear whether the pinned no-net-transport regimes observed in the experiments of
Brunet et al. (2007, 2009) at high frequencies can be attributed to sufficiently strong
inertial effects. Moreover, the pronounced free-surface deformations shown by Brunet
et al. appear to be consistent qualitatively with the deformations that we observe in
our model at higher frequencies and sufficiently strong vibrations.

In figure 8(b) we overlay the contours in figures 6 and 8(a) when Oh = 0 (solid
curves) and Oh = 5 (dashed curves), respectively, together with those obtained for
Oh = 10 (dotted curves). We observe that the secondary climbing regime when
Oh = 10 is shifted towards lower frequencies compared to the Oh = 5 case and
that speeds are further reduced. More importantly, the contours in the low-frequency
region appear to be affected to a much lesser extent by inertia compared to the
high-frequency region, which is most likely due to the fact that the substrate is less
vigorously vibrated.

In an attempt to understand better the presence of the secondary climbing regime,
we have computed regime diagrams for various values of Oh. An important outcome
of this investigation is that the secondary climbing region is present even at Oh= 0,
but it was not seen in figure 6, as it required r to be of O(100) and T to be small.
Hence, the inclusion of inertia shifts this climbing regime towards lower frequencies
and smaller values of r compared to the case when Oh= 0.

When Oh = 0 and r = O(100), we observe more pronounced free-surface
deformations, with the contact line fronts moving very little over a period of
oscillation. As previously mentioned, a similar behaviour was reported in the
experiments by Brunet et al. (2007), which is to be contrasted with the case of
low-frequency oscillations, where we see less pronounced free-surface deformations
but appreciable variation in the location of the moving fronts. In figure 9(a) we
show the evolution of the free surface for an uphill-moving droplet at higher
frequencies, plotting h(x, t) over a vibration period at T = 1 and r = 100 (v̄ ≈
−0.0053), which is to be contrasted with the calculation shown in figure 3(a) with
T = 100 and r = 24 (v̄ ≈ −0.0030), keeping all the other parameters the same.
Figure 9(b) shows the evolution of the droplet midpoint, `(t), and the change in the
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FIGURE 8. Influence of inertia on droplet transport as the period of oscillation, T , and
the acceleration amplitude, r, vary. (a) Regime diagram using the same parameters as
in figure 6, but with Oh = 5. Note the secondary climbing regime present at small T
compared to figure 6 (Oh= 0). (b) Overlaid contours from the regime diagrams in figure 6
(solid curves) and panel (a) here (dashed curves), together with the regime diagram with
Oh= 10 (dotted curves). Lower-frequency vibrations do not appear to be affected by the
inclusion of weak inertial effects. The secondary climbing regime that is present at Oh= 5
is shifted towards lower frequencies for Oh= 10. The thicker curves demarcate the zero-v̄
contours.

droplet width, 1d(t) = d(t) − d(0), by solving the time-dependent problem with
d(0)= 1.25. The curve for `(t) confirms that we have uphill motion, even though the
droplet moves downhill initially, whereas the curve for 1d(t) indicates that the initial
transients due to spreading exist up to t=O(10). Lastly, in figure 9(c) we show the
portion of the regime diagram for 1/8 6 T 6 2 and 50 6 r 6 150 corresponding to
figure 6 to demonstrate that, indeed, uphill motion is possible for Oh= 0 and at high
frequencies. Admittedly, the range of values of T that we considered is somewhat
restricted, but it is important to emphasise that it becomes more likely for the droplet
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FIGURE 9. (a) Plot of h(x, t) showing the long-time evolution of the droplet profile during
a vibration period for an uphill-moving droplet with T = 1 and r= 100, keeping all other
parameters the same as in figure 3(a). (b) Time-dependent computation corresponding
to panel (a) with d(0) = 1.25, showing the evolution of `(t) and 1(t) = d(t) − d(0).
(c) Portion of the T−1–r regime diagram shown in figure 6 at higher frequencies, where
the shaded region represents the regime of uphill motion.

to experience instabilities and ultimately breakup if it undergoes accelerations of this
magnitude for longer periods. Besides, under these conditions, the inclusion of inertia
may be more appropriate.

5. Heterogeneous substrates
In the remainder of this study, we will look into the effects of substrate

heterogeneities in greater detail. As previously mentioned, more focus will be placed
on rough inclined substrates, but we will also comment briefly on the phenomenology
of vibrated horizontal substrates.

5.1. Horizontal substrates
We saw in § 4.2 that ideal substrates require symmetry breaking in order to induce
net droplet transport to either the left or the right, which is achieved using a non-zero
vibration angle, ψ . Symmetry breaking is also a prerequisite for net droplet motion
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FIGURE 10. Influence of chemical heterogeneities on a droplet with Bo= 0.5 and αs= 10◦
moving on a flat horizontal vibrating substrate with r = 2, ψ = 5◦ and T = 200, when
b±(0)=±1.2. The evolution plots of `(t) and d(t) are shown for: (a) the homogeneous
case, f (x) = 1; (b) a weak short-wavelength heterogeneity, f (x) = 1 + 0.1 sin 20x; (c) a
stronger heterogeneity, f (x)= 1+ 0.3 sin 13x, which causes leftward droplet transport; (d) a
stronger heterogeneity, f (x) = 1 + 0.3 sin 12x, which causes rightward motion. In all the
panels, the solution to the PDE (solid curves), (2.5), and the IDEs obtained by matching
(dashed curves), (3.23), are nearly indistinguishable.

in the presence of heterogeneities. However, the dynamics becomes considerably more
complex, as the following set of computations illustrates.

In figure 10 we present examples of how chemical heterogeneities can influence the
dynamics of vibrated horizontal substrates. In each of the four sets of calculations,
all parameters are kept the same apart from the chemical heterogeneity function, f (x),
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which prescribes the spatial contact angle variations. In all calculations, the vibration
angle is set to ψ = 5◦ to break the symmetry and allow for droplet transport (see
figure caption for all parameters used).

In figure 10(a) the substrate is ideal and we see that `(t) exhibits large-amplitude
oscillations as the droplet moves to the left. The introduction of weak but rapid
contact angle variations (see figure 10b) shows that, even though the evolution of `(t)
is not appreciably different from the ideal-substrate case, the droplet width exhibits
T-periodic oscillations modulated by high-frequency oscillations. These secondary
oscillations arise due to the moving fronts travelling across many wavelengths
of the heterogeneity profile, which alter the contact line behaviour in order to
accommodate the local variations in the equilibrium angle, noting that a similar effect
was demonstrated for a rough substrate in figure 2(c). These seemingly high-frequency
components do not invalidate the quasi-static assumption, as they occur on a long time
scale, as also attested by the excellent agreement between our theory and solutions
to the governing PDE.

Nevertheless, one can tune the heterogeneity function to get a more pronounced
and less oscillatory motion compared to that in figure 10(a). For example, f (x) is
appropriately chosen in figure 10(c) to reduce the strong oscillations seen for `(t) in
figure 10(a) and to enhance the leftward motion. Heterogeneities, however, can also
induce other types of motion. For instance, by merely changing the wavelength of
the heterogeneity in figure 10(c), a different, unexpected behaviour is observed in
figure 10(d): the droplet moves to the right in spite of using a positive vibration angle,
which naturally favours motion to the left. These calculations serve as an illustration
of the intricate interplay of substrate heterogeneities and vibrations, whereby the
appropriate choice of heterogeneities can possibly enhance or completely alter droplet
transport. In contrast, such heterogeneities on non-vibrating substrates would only
introduce barriers to motion.

The experiments of Duncombe et al. (2012a) have demonstrated that vertical
vibrations of a horizontal ratcheted substrate can induce a unidirectional motion, thus
suggesting that heterogeneities can also be used as another mechanism for breaking
the symmetry in the system. Even though a detailed investigation of ratcheted
substrates is beyond the scope of the present work, we have performed a few sample
calculations to demonstrate that our model can also capture this behaviour.

In figure 11 we show a few examples based on a ratchet profile that was introduced
in SK (see equation (6.14) in SK for its generic form). More specifically, we utilise
the substrate profile s(x)= s0ζ (x), where

ζ (x)= c tanh(2 sin 8x) ln
[

cosh(2 cos 4x)
cosh(2 sin 4x)

]
, (5.1)

where c is approximately equal to 1.1484. The function ζ (x) produces a slightly
sheared sine function with period π/8 and amplitude 1 (see figure 11a). In
figure 11(b) we show the case of a vertically vibrated drop with r = 6, T = 100,
Bo = 0.5 and αs = 10◦ moving on substrates of this form for three different s0,
namely 0.01, 0.015 and 0.02. The largest-amplitude substrate, s0 = 0.02, is able to
trap the droplet, whereas droplets on substrates with s0= 0.01 and 0.015 behave in a
very similar fashion, causing the droplet to be transported to the right. The picture is
drastically altered when the vibration is made stronger, using r= 10 (see figure 11c).
When s0= 0.015 the rightward droplet motion is enhanced considerably. The same can
be said for the s0= 0.02 substrate, for which the droplet also moves to the right at a



538 N. Savva and S. Kalliadasis

0

0

0.5

–0.5

–1.0

1.0

x

(a)

0 T 2T 3T 4T

0

1

2

3

t

(c)

0 T 2T 3T 4T

0

0.5

1.0

1.5

t

(b)

–π –π π π

FIGURE 11. (a) Plot of ζ (x), (5.1) (solid curve), compared with the plot of sin 16x
(dashed curve). (b) Evolution of `(t) corresponding to vertical vibrations with r = 6 and
T = 100 of a horizontal rough substrate with profile s(x)= s0ζ (x), where a drop, whose
fronts were initially given by b±(0)=±1.1, has Bo= 0.5 and αs = 10◦. The black, dark
grey and light grey curves correspond to s0= 0.02, 0.015 and 0.01, respectively. (c) As in
panel (b), but with r= 10. Note that in panels (b) and (c) the solution to the PDE (solid
curves) and the IDEs obtained by matching (dashed curves) are indistinguishable.

rate that is faster than for the lowest-amplitude substrate, s0 = 0.01. This remarkable
result is a prime example that illustrates that higher-amplitude substrates can enhance
droplet transport more than lower-amplitude ones, but this strongly depends on the
droplet and vibration characteristics. We will return to this towards the end of the
next section, where we compute a regime diagram that shows the dependence of v̄
on the amplitude and wavelength of a rough inclined substrate.

5.2. Inclined substrates
Obtaining a regime diagram like the one shown in figure 6 is considerably more
difficult numerically when substrate heterogeneities are present. This is because we
can no longer use the technique employed in figure 6, where we assumed that
h(x, t), ˙̀(t) and ḋ(t) are T-periodic. The reason is because substrate heterogeneities
can sometimes yield behaviours that are periodic with a different period. This is
shown in figure 11(a–d), where we present calculations of a rough substrate whose
profile is given by s(x) = 0.02 cos 9.2x with φ = 2◦, ψ = 10◦, αs = 15◦, Bo = 0.1
and T = 100 for different values of r. More specifically, we plot d as a function of
time modulo the period of oscillation, as an efficient way to detect the period of the
motion, which is found by the number of distinct curves times the vibration period,
T . Hence, seeing a single distinct curve, where the rest of the data collapses onto
this curve, corresponds to T-periodic motion, two curves corresponds to 2T-periodic
motion, etc. In all the plots in figure 12, we show the results for 5T 6 t 6 55T ,
having neglected the first five vibration periods to avoid the transient effects. We
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FIGURE 12. Evolution of d as a function of time modulo the period of oscillation plotted
for 5T 6 t6 55T . (a) T-periodic evolution with parameters s(x)= 0.02 cos 9.2x with φ= 2◦,
ψ = 10◦, αs = 15◦, Bo = 0.1 and T = 100. (b) As in panel (a), with r = 6 (2T-periodic
evolution). (c) As in panel (a), with r= 22.5 (3T-periodic evolution). (d) As in panel (a),
with r = 22 (6T-periodic evolution). (e) Plot corresponding to the calculation shown in
figure 2(d). No period could be identified.

observe that, when r = 30, the motion is T-periodic (figure 12a), when r = 6 it is
2T-periodic (figure 12b), when r= 22.5 it is 3T-periodic (figure 12c) and when r= 22
the free-surface oscillations are 6T-periodic. In figure 12(e), which corresponds to the
calculation shown in figure 12(d), the motion appears to be quasi-periodic, since no
period could be detected, at least over the duration of the simulation.

The period of free-surface oscillations cannot be known a priori and the previously
used numerical technique no longer applies. To partially remedy this difficulty, we
solve (2.5) forward in time for a specified number of vibration periods, neglect
the transient dynamics and extract an approximation for v̄ based on the remaining
data. This is a time-consuming process and often involves many thousands of such
calculations to reveal a portion of the regime diagram. To construct each of the
following T−1–r regime diagrams, we have used this method and performed 18 750
simulations on a 150× 125 grid in the T−1–r parameter space, bearing in mind that
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an accurate estimate of v̄ is possible only if a large number of periods are taken
into account. For this calculation, we considered 20 periods, after discarding any
transient effects to avoid including, for example, the regime where spreading effects
are dominant.

Instead of a contour plot shown, for example, in figures 6 and 8(a), we have filled
the areas between contours with different shades of grey depending on the sign of
v̄. In an attempt to represent both negative and positive values of v̄ using greyscale
shades, we mapped in a discontinuous manner each range of values of v̄ to a certain
grey shade so that darker shades correspond to uphill motion and lighter shades to
downhill motion (see greyscale bar in figure 13d). Within the unshaded white regions,
the droplet moves slowly with |v̄| 6 10−3. Given that the computation of the v̄ = 0
curve is more sensitive to the number of oscillations considered in the estimation of v̄,
this curve is not shown, with the understanding that in the case of rough surfaces there
are regions within the unshaded areas where the droplet is trapped by the features of
the heterogeneities with no net transport.

In all the calculations shown in figure 13, we have used the same parameters as in
the ideal-substrate case in figure 6. Moreover, in order to make comparisons with the
regime diagrams of the ideal-substrate case, we have reproduced figure 6 with the
aforementioned greyscale scheme (see figure 13a). As the substrate is made rough
(see figure 13b, where we used s(x) = 0.01 cos 20x), the unshaded regions expand,
which is suggestive of the fact that roughness tries to prevent the downhill motion.
In fact, nearly throughout region B the droplet has practically zero mean speed
compared to region A for which we get nearly zero speed only within a portion
of the corresponding parameter space. By doubling the amplitude of the substrate
heterogeneity (see figure 13c, where we used s(x) = 0.02 cos 20x), we see further
expansion of the unshaded, slow-transport regions. It is also interesting to note that
the region over which we get uphill motion is not appreciably altered by weak
roughness, recalling that a similar observation was made in § 4.4, while considering
weak inertial effects. These calculations seem to suggest that the so-called ‘static’
regions observed in the experiments of Brunet et al. (2007, 2009), where the droplet
does not exhibit net transport, can also possibly be attributed, at least in part, to
unavoidable substrate heterogeneities that are naturally present.

An interesting problem arising from these considerations is finding the optimal
substrate amplitude and wavelength that maximise |v̄| for fixed vibration and droplet
characteristics. However, solving the associated optimisation problem is beyond the
scope of the present work, and a brute-force computation was used to obtain figure 14,
namely by solving the associated PDE thousands of times and determining v̄ over 10
oscillation periods, having neglected the initial transient dynamics.

In figure 14 we show contours of v̄ as the amplitude, s0, and wavenumber, k0, are
varied for a substrate whose profile is given by s(x) = s0 cos k0x (see figure caption
for the remaining parameters). As expected, we find that, as the substrate becomes
more rough (larger s0 and k0), no net motion and reduced transport are favoured. Most
importantly, note the alternating regions in the parameter space of enhanced uphill and
downhill motion, which is especially pronounced at moderately small k0. Noteworthy
also is that, even though one might have inferred from previous regime diagrams
throughout this work that vibrations with r= 6 might be too weak for uphill motion
to occur, we see that by appropriately tuning the substrate properties this becomes
feasible.

Interestingly, there are important structural changes in the associated regime
diagrams for substrates that optimise droplet transport. These are shown in figure 15,
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FIGURE 13. (a–c) Regime diagrams showing the dependence on substrate heterogeneities.
Areas between contours of v̄ are shaded according to the greyscale bar in panel (d). In
particular, panel (a) is a reproduction of the regime diagram of figure 6; in panels (b)
and (c) the same parameters are used as in panel (a), but with s(x)= 0.001 sin 20x and
s(x)= 0.002 sin 20x, respectively. (d) Greyscale bar for the areas between the v̄ contours
in panels (a–c). Darker shades of grey correspond to uphill motion and lighter shades to
downhill motion; the unshaded regions correspond to |v̄|6 10−3.
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FIGURE 14. Influence of substrate topography on droplet transport, showing contours of
v̄ as the substrate wavenumber, k0, and amplitude, s0, vary for substrate profiles given by
s(x)= s0 cos k0x. Areas between the contours of v̄ are filled according to the greyscale bar
in figure 13(d) (lighter grey regions correspond to downhill motion; darker grey regions
to uphill motion; in the unshaded regions the droplet speed is typically very small). The
remaining parameters used in the computation are λ = 0.005, Bo = 0.1, T = 100, r = 6,
φ = 2◦, ψ = 10◦ and θ = 15◦. Point A, for which k0 = 7.7 and s0 = 0.017, lies in the
vicinity of optimal downhill motion, whereas point B, for which k0 = 9.3 and s0 = 0.021,
lies in the vicinity of optimal uphill motion (see also figure 15 for the corresponding
regime diagrams).

where we fix s0 and k0 appropriately and let r and T vary, while keeping the other
parameters as in figure 14. For comparison, we show in figure 15(a) the r–T−1

regime diagram in the absence of substrate topography, where we see that for r = 6
and T = 100 the droplet translates with a small downhill speed. The calculation is
repeated in figure 15(b) with substrate parameters that lie in the vicinity of optimal
downhill motion when r = 6 and T = 100 (s0 = 0.017, k0 = 7.7; see point A in
figure 14). We observe that generally downhill regions are significantly diminished,
yet we see that downhill motion is enhanced more than 10-fold at r= 6 and T = 100
compared to figure 15(a).

On the other hand, choosing substrate parameters that lie near the optimal uphill
motion when r = 6 and T = 100 (s0 = 0.021 and k0 = 9.3; see point B in figure 14),
the regime diagram in figure 15(c) reveals a markedly different behaviour. In
comparison with other regime diagrams shown throughout this study, the droplet
can no longer move downhill at lower frequencies and we only get uphill motion
when r is sufficiently high. This is another illustration that highlights the fact that
substrate heterogeneities, no matter how small, can profoundly affect the underlying
droplet dynamics when appropriately chosen. Moreover, this optimisation of substrate
parameters can be of great importance from a practical point of view, especially in
applications where it is desirable to enhance unidirectional droplet transport using
weaker vibrations.

5.3. Hysteresis-like effects
We have seen throughout this study that one of the features introduced by substrate
heterogeneities is their ability to trap the contact line and prevent the droplet
from exhibiting net transport (see e.g. figure 2b). Even though our model does
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FIGURE 15. Regime diagrams based on the calculation in figure 14 by allowing r and T
to vary for fixed substrate profiles. The points demarcated with a crossed circle correspond
to r= 6, T = 100, which directly correspond to parameters in figure 14. (a) Ideal-substrate
case, s0 = 0; at the crossed circle, v̄ = 0.0006. (b) Rough substrate with s0 = 0.017 and
k0 = 7.7. The crossed circle corresponds to point A in figure 14 (v̄ = 0.0082). (c) Rough
substrate with s0 = 0.021 and k0 = 9.3. The crossed circle corresponds to point B in
figure 14 (v̄ =−0.0068).

not incorporate the effects of contact angle hysteresis by prescribing advancing
and receding contact angles, which would pin the droplet fronts, the use of
heterogeneities can yield hysteresis-like effects. Besides, we also ascribe to the
view that heterogeneities are the principal source of contact angle hysteresis (see
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FIGURE 16. Trapped droplet dynamics computed using the IDEs obtained by matching,
(3.23). The same parameters are used as in figure 2(a), but with s(x) = 0.003 cos 150x
and r = 9. (a) Evolution of the location of the two droplet fronts. (b) Evolution of the
dimensional apparent contact angles, computed as if the substrate were ideally flat, using
(3.11) with s(x) = 0. In panels (a) and (b) the solid and dashed curves refer to the
evolutions for the right and left droplet fronts, respectively. (c) Shapes of the free surface
using the leading-order outer solution, namely plots of h0+ s as a function of x=dy+ `, at
different times. When t= 0 and t=T/2 the droplet shape exhibits the largest deformations.
The substrate shape is also shown for clarity.

also discussion on non-vibrating droplets on inclined substrates (Savva & Kalliadasis
2013)).

Noting that the amplitude of the oscillations of the fronts can be diminished by
using a rougher substrate, we show in figure 16 the results of such a calculation
with a small-amplitude short-wavelength substrate whose profile is given by
s(x) = 0.003 cos 150x, using the equations obtained by matching, (3.23) (see figure
caption for the parameters used). For a droplet with characteristic length scale
L = 1 mm, the amplitude and wavelength of the topography of such a substrate
would be approximately 0.8 µm and 42 µm, respectively. In figure 16(a) we plot
the evolution of the droplet fronts over two periods of oscillation after discarding
the initial transient dynamics. We observe that the droplet fronts are not actually
pinned, but exhibit small-amplitude oscillations. However, macroscopically the droplet
appears to be pinned with oscillating contact angles. This is illustrated in figure 16(c),
where we show the leading-order free-surface shape at the times it exhibits the largest
deformations (t = 0 and t = T/2). The oscillating angles are shown in figure 16(b),
where we plot the apparent contact angles Θ± corresponding to the two fronts at
x = b±, which are computed as if the substrate were ideally flat, using (3.11) with
s(x)= 0 and the reference angle αs = 15◦. Clearly, substrate profiles of this kind can
be thought of as more representative of real surfaces than the ones we have used in
the preceding sections, but it is to be noted that solving the governing PDE becomes
increasingly more difficult as we decrease the wavelength of the topography.
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6. Concluding remarks
In the present study, we considered how the combined effects of gravity, substrate

vibrations and substrate heterogeneities influence the dynamics of 2D droplets,
by adopting the appropriate long-wave models. By assuming that the dynamics
is quasi-static, we have utilised the method of matched asymptotic expansions to
deduce a set of IDEs for the evolution of the two droplet fronts in the limit of
long oscillation periods. This analysis, which was verified by numerous numerical
experiments performed throughout this work, was largely based on the recent work of
the present authors on inclined heterogeneous substrates (Savva & Kalliadasis 2013).
It is important to emphasise that, even though we assumed the presence of slip in our
model, our results can be easily mapped to other types of models that are commonly
used to relax the stress singularity occurring at a moving contact line (see e.g. Savva
& Kalliadasis 2011; Sibley, Savva & Kalliadasis 2012; Sibley et al. 2013a,b).

In the limit of low-frequency vibrations (T−1→ 0), we obtained an expression for
the mean drift velocity, (4.4), valid for small Bo, φ and ψ . From this calculation,
we were able to deduce a climbing criterion, (4.6), so that, by vibrating the substrate
sufficiently strongly, uphill motion can be observed. This result and the regime
diagrams we obtained are qualitatively consistent with the numerics conducted by
John & Thiele (2010) with precursor film models and the analytical work of Benilov
& Cummins (2013), but for 3D droplets with large contact angles. In contrast,
related analyses with 2D droplets predicted vanishing v̄ as T−1→ 0 (Benilov 2011;
Benilov & Billingham 2011), thus implying that climbing cannot be observed in the
low-frequency limit.

We have also briefly considered the inclusion of weak inertial effects, observing
appreciable changes in the high-frequency limit, such as the reduced average speeds
and the presence of a secondary climbing regime, which is likely to be the regime
where the experiments by Brunet et al. (2007, 2009) were conducted. This secondary
climbing regime was also shown to be present in the inertia-less case as well, but
droplets would need to undergo strong vibrations at high frequencies, which could
make them more susceptible to instabilities. Moreover, the ‘static’ parameter regimes,
i.e. the regimes where no net transport is observed, which typically occur at higher
frequencies, may be possibly be attributed, at least partly, to inertial effects.

In our view, to rationalise the ‘static’ regimes, it might be necessary also to include
the substrate heterogeneities, which manifest themselves macroscopically as contact
angle hysteresis. Even though our model does not assume hysteresis, by prescribing,
for example, advancing and receding contact angles, it can exhibit hysteresis-like
effects if the heterogeneities vary at smaller length scales. We have shown that
substrate heterogeneities influence the underlying dynamics quite significantly at both
low and high frequencies. In fact, we have demonstrated for the first time the rich
behaviour of this system, whereby heterogeneities can enhance and impair droplet
transport, both uphill and downhill, if appropriately tuned. We have also seen that
directed droplet transport on vertically vibrated horizontal substrates is also possible
by using ratcheted substrates, which is qualitatively consistent with the experiments of
Duncombe et al. (2012a,b). Admittedly, we have only considered somewhat contrived
heterogeneity profiles, instead of, say, heterogeneities that take into account random
effects that are naturally present in a real substrate (see e.g. Savva, Kalliadasis &
Pavliotis 2010; Savva, Pavliotis & Kalliadasis 2011a,b), but we chose to do so since
the principal focus of the present work was to highlight the most important features
of the possible dynamic scenarios in the many-dimensional parameter space of the
problem.
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Since we have observed uphill motion without the need for contact angle hysteresis,
our model supports the mechanism proposed by John & Thiele (2010), who argued
that the observed uphill motion is due to the vertical vibrations of the substrate, which
ultimately influence the lateral motion of the droplet through the deformations caused
on the free surface of the droplet. This, however, can only occur provided that the
substrate is vibrated in such a way that breaks the back-and-forth symmetry of the
lateral motion. For example, a droplet on an inclined substrate can never move uphill
if ψ = 0◦, regardless of the strength of vibrations. In this case, one can utilise a
different mechanism to break the symmetry and yield directed transport, such as the
heterogeneities of the substrate.

Lastly, we should note that the results of the present work are not directly verifiable
with existing experiments (see e.g. Noblin, Buguin & Brochard-Wyart 2004; Brunet
et al. 2007, 2009; Noblin et al. 2009; Duncombe et al. 2012a,b), mainly as a result
of the 2D geometry considered, which not only makes the droplet susceptible to
transverse instabilities, but also requires that the substrate be vibrated more strongly to
get the droplet to climb uphill (see also John & Thiele 2010; Benilov 2011). However,
the main qualitative features of the dynamics is adequately captured with our model,
and the present study can be viewed as a first step towards gaining a better physical
understanding of the phenomenon. Thus, to allow for more reliable quantitative
comparisons with experiments, the combined effects of substrate heterogeneities,
inertia and the three-dimensionality of drops need to be considered, a considerably
more difficult problem to be examined both analytically and numerically.

Appendix A. Derivation of (4.7)
Using the scales introduced in the text, we use as a starting point the non-

dimensional Navier–Stokes equations,

Oh{∂tu+ ∂x(u2)+ ∂z(uv)} =−∂xp+ 1
3∂

2
z u+w2, (A 1)

0=−∂zp−w1, (A 2)

as simplified in a long-wave expansion, where u and v are the velocities in the x
and z directions, respectively, and p is the pressure. The momentum equations are
supplemented with the continuity equation

∂xu+ ∂zv = 0 (A 3)

and boundary conditions at the free surface of the droplet (z = h) and the substrate
(z= 0). More specifically, at z= h we have the kinematic boundary condition

∂th+ u∂xh= v, (A 4a)

together with the normal and tangential stress balance,

p=−∂2
x h and ∂zu= 0, (A 4b,c)

respectively. At z= 0, we have the slip and no-penetration conditions,

u= 1
3λ∂zu and v = 0, (A 4d,e)

respectively. The pressure can be readily computed from (A 2) and (A 4b), and we find

p=−∂2
x h+w1(h− z). (A 5)
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Next, consider the integral of (A 1) with respect to z from 0 to h, which simplifies to

Oh
{
∂t

∫ h

0
u dz+ ∂x

(∫ h

0
u2 dz

)}
= h(∂3

x h−w1∂xh+w2)− 1
3 ∂zu|z=0 , (A 6)

by using (A 5) and applying conditions (A 4a), (A 4c) and (A 4e) to eliminate the
boundary terms. To proceed, we assume that the velocity profile is parabolic in the z
direction,

u= ( 1
2 z2 − zh− 1

3λh)c(x, t), (A 7)

which automatically satisfies conditions (A 4c) and (A 4e). Letting q(x, t) denote the
flow rate in the x direction,

q=
∫ h

0
u dz, (A 8)

we find that
c=− 3q

h2(h+ λ) . (A 9)

Then, by substituting the profile (A 7) in (A 6) and making use of (A 9), it is a matter
of simple algebra to obtain (4.7a).

Equation (4.7b) corresponds to mass conservation. It can be obtained by integrating
(A 3) with respect to z from 0 to h to obtain v|z=h, which is then substituted into the
kinematic boundary condition, (A 4) to yield (4.7b).
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