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1 Introduction

The basic problem which this paper addresses is the following: given an arbi-
trary three-dimensional object, which moves along an arbitrary path (possibly
rotating as it does so0), to compute the volume swept out by the solid object as
it moves, or in other words, to find the new solid volume which represents all
of the points in space which the object has occupied at some time during the
motion.

The modelling of swept volumes is important for many areas of CAD and
CAM. For example, it can provide a solution to many different types of inter-
ference problem [31], where it is necessary to tell whether a moving object will
intersect or interfere with other objects as it moves. This is obviously very use-
ful in mechanism design, for ensuring that all parts of a mechanism stay inside
its casing as it operates, or that parts of the mechanism do not collide with each
other. As an example, consider the problem of determining whether a car wheel
collides with the wheel arch as it travels up and down on the suspension, and
steers left and right. Another application of interference checking is in robot
path planning [13,14,38], where a safe path is one that does not collide with any
of the fixtures or other objects in the robot’s environment. When machining a
solid object, interference checking can be useful to make sure that the cutter
does not gouge the table or clamps. Calculation of swept volumes may also be
used for cutter path verification [43,44]: if the volume swept out by the moving
cutter is subtracted from the original blank, the result should represent the same
shape as the part to be machined. A final use of swept shape calculation is as a
creative design tool, where the sweeping of an initial shape along a desired path
is used to produce new and useful solid shapes [17,37]. For example, the frame
of a chair made from tubular steel could be represented by the path swept out
by a moving sphere.
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It should be noted that other workers studying the interference problem have
suggested that the swept volumes need not be computed explicitly. For example,
if they are chosen carefully, several (many) successive three-dimensional models
of the moving solid at discrete times can be used for collision detection, although
there are problems of algorithm termination with this approach [13,38]. Alter-
natively, null object detection can be performed directly on four-dimensional
(space and time) models, using the technique of S-Bounds to obtain greater
efficiency, as advocated by Cameron [13,15]. Boyse [8] shows how interference
checking can be performed using an implicit description of swept volumes, but
his method is based on planar faced objects moving along straight or circular
paths.

The method given here of explicitly computing the swept volume has two ad-
vantages over those mentioned above. Firstly, some of those methods mentioned
above are specific to interference checking, and other uses of the modelling of
moving objects may require an explicit description of the swept volume. Sec-
ondly, our approach is a general one, allowing an arbitrary solid object to be
swept along an arbitrary path (possibly rotating as it goes).

Other previous workers have only considered restricted forms of sweeping.
For example, Ghosh et al. [24] consider a two-dimensional version of the problem
and show how it is of use in describing brush trajectories. The Build group [17]
discuss sweeping a two-dimensional lamina along a straight or circular arc path
to create prisms or solids of revolution for design purposes. Similar sweeping
of two-dimensional outlines along three-dimensional paths is reported by the
TIPS group [37], and Coquillart [18]. Wang and Wang [43,44] restrict their
attention to the cylindrical and spherical geometries that describe the motion
of a ball ended cutter during machining. De Pennington et al. [20] describe how
to compute the swept volume for a moving object represented as a CSG union.
However, their approach does not generalise to other CSG objects including the
intersection and difference operators. While sweep and union commute, sweep
does not commute with these other two operators.

Previous work by the current authors [31] discusses some of the basic ideas
involved in computing swept envelopes, and their application to interference
checking. This paper extends that work, and shows how it may be used in a
solid modeller.

2 Envelopes

2.1 Envelope Theory

Initially, we will consider how to find the swept volume for a single moving
surface. In later sections we will then show how this technique may be used for
composite solid models bounded by many different surfaces.

The basic theory required is the theory of envelopes from classical differential



geometry [5,22,23,45]. An implicit equation of the form

f(x,y,z) =0 (1)

represents a surface in space. (Given instead a parametric surface, where x, y,
and z are known as functions of u and v, say, then at least in principle it is
possible to implicitize [36] this description, by eliminating v and v between the
three equations, justifying the use of the implicit surface form as a starting
point.) On allowing this surface to move, a continuous family of surfaces is
generated, each of which may be specified by a particular value of time, ¢. This
family of surfaces

F(z,y,2z,t) =0 (2)

may also be thought of as a hypersurface in four dimensions.

The envelope to this family is that surface which just encloses all of the
members of the family. Thus, at any given instant of time, the corresponding
member of the family of surfaces will just touch the envelope surface in some
curve. This may also be expressed by saying that the envelope surface is that
surface which is tangential to all members of the family of surfaces. Consider
the two members of the family at times ¢ and ¢ + dt. The first has equation
F(x,y,z,t) = 0, while the second is F(x,y,z,t + dt) = 0. Noting that the
envelope must meet both of these surfaces, and thus satisfy both equations, it
can be seen by expanding the latter in terms of dt, and letting dt tend to 0, that
the envelope surface must simultaneously satisfy

OF (x,y, z,t)

F =0
(z,y,2,t) =0, P

—0. (3)

The implicit form of the envelope surface can be obtained, again, in principle,
by eliminating ¢ from these two equations, giving

e(z,y,z) = 0. (4)

One way of seeing that the envelope surface does indeed have the desired
property of being tangent to each of the surfaces in the family is to show that
it has the same surface normal as each member of the family where they meet.
The normal vector to a given member of the family of surfaces is given by

OF OF OF
N= <%’8_y7§) ) (5)

where t is thought of as having some definite value. The normal to the envelope

may be written as
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where ¢t must now be thought of as being able to vary, but constrained to do
so such that F(z,y,z,t) = 0 However, for the envelope, 9F /0t = 0, and so the
normal directions to the envelope and the individual members of the family are
the same.

One point which will further be considered later is that this envelope does
not start or finish at particular values of ¢, but assumes that members of the
family exist for all values of ¢.

2.2 Degenerate Cases

Although the theory above is straightforward in most cases, a little more care
is needed at times. Let us consider the special case of sweeping a plane, both
because it will be needed by many applications, and because it illustrates de-
generate envelopes. Let us take a general plane which starts out with equation

f(z,y,2) =ar + by +cz+d=0. (7)

If it is swept along a straight line with uniform velocity (V,,V,,V.), then at
time ¢, it will have equation

F(z,y,2,t) = alx — Vyt) + by — Vyt) + c(z — Vot) + d = 0. (8)

(How to construct the hypersurface from a description of the original surface
and the motion will be discussed in general in the next section.) The envelope
must also satisfy
oF
ot
Now, the latter expression is independent of all of the variables z,y,z and t,
which means that there are two possibilities.

Firstly, the normal to the family of planes, N = (a, b, ¢) is not perpendicular
to the velocity vector, in which case Equation 9 can not be satisfied, and no
envelope surface exists: there is no surface which just touches all planes parallel
to the initial plane.

Secondly, if the normal to the plane is perpendicular to the velocity vector,
this means that the motion is a translation of the plane onto itself, i.e. the
plane is moving within its own plane. Equation 9 is trivially satisfied, and so
Equation 8 tells us that the original plane is also the envelope of the whole
family, as ¢ disappears from this equation. Indeed, it is not difficult to see that
this will be the case whenever the plane is moving with any kind of motion
within its own plane.

A second type of degenerate case may be illustrated by the case of a vertical
plane rotating about the z-axis. This can be written as

= —(aVp + bV, +cV;) =0. (9)

F(z,y,z,t) = xcos(t) + ysin(t) = 0. (10)



Differentiating, it is found that

OF

ot
The solution to this pair of equations is x = y = 0, i.e. the z-axis. Here the
envelope surface degenerates to a straight line, and has lower dimensionality
than the general case.

These are only meant as illustrative examples, and many other degenerate
possibilities exist, such as a sphere rotating so that it maps onto itself. It
should furthermore be noted that the set of points satisfying Equations 3 for
the envelope may include other loci as well the envelopes being sought, such as
isolated points, and the loci swept out by any singular points and curves of the
moving surface. Although in many cases the fact that these problem loci will
correspond to repeated solutions of 0F /0t = 0, or appear as a multiple factor
(see Section 4.2) of the envelope surface e(z,y, z) = 0 may be used as a means
of detecting them [21], care must be taken, as such a locus may also accidentally
be the desired envelope locus. In general such loci must be compared to the
original surface, and the description of the motion, before they are discarded.

Further useful discussions of degeneracy of envelopes are to be found in
[9,29,39]. Tt is important that all types of degenerate cases are detected and
handled appropriately by any software which uses envelopes.

= —xsin(t) + ycos(t) = 0. (11)

3 Generating the Hypersurface

In the above section it was assumed that given a surface f(z,y, z) = 0 and some
description of its motion, it was possible to find the corresponding hypersurface
F(x,y,z,t) = 0. How to do this will now be considered.

Firstly, let us examine how the path may be specified. At each moment of
time, there are six degrees of freedom to specify the relative position and orien-
tation of the moving surface. Let us suppose that some point on or outside the
original surface (before motion) was chosen as a reference point, and that a set
of perpendicular axes was chosen through that point to describe the orientation
of the surface. Firstly, during motion, the reference point will have moved to
a new point. The vector linking the new reference point to the original one
can be written as T'(¢). Secondly, the object may also have rotated about the
reference axes, where Euler angles may be used to specify the relation between
the orientation of the old and new axes. This rotation may be described by a
3 x 3 orthogonal matrix, denoted by R(t). Thus, overall, a point on the original
surface p(0) corresponds to a point p(t) after the surface has moved, given by

p(t) = R(t)p(0) + T'(t). (12)

It should be noted that other methods of describing the rotation are also
possible. One such possibility would be to define the orientation of the surface



relative to the Frenet frame [34] of the curve, formed by the curve tangent,
normal, and binormal vectors, which may in some cases give a more “natural”
basis for describing the orientation of the moving object than a fixed set of axes.
One obvious case is when an object rotates rigidly in a circle about a fixed point,
such that it keeps the same orientation relative to the normal to the circle, i.e.
the same radial orientation. Klok [28] provides an useful discussion on the
choice of frames when sweeping two-dimensional objects along a space curve,
and shows how to handle problems which arise if the curve normal becomes
ill-defined.

In practice, the original surface will be expressed in one of two forms. In
a CSG modeller, it is most likely that the original surface will be expressed in
implicit form as already given in Equation 1:

flx,y,2) =0. (13)

This is a relationship between the z,y and z components of p(0). The corre-
sponding equation between the z,y and z components of p(t) gives the implicit
equation for the hypersurface, F(z,y, z,t) = 0. This can readily be found by in-
verting Equation 12 to make p(0) the subject, and substituting the components
into Equation 13.

On the other hand, more particularly in boundary representation modellers,
parametric surface descriptions of the form

r = (z(u,v),y(u,v), z(u,v)) (14)

are more likely to be used. In this case, a representation for a point on the
hypersurface, in parametric terms, is simply given by

R = (2(u,v,t), y(u,v,t), 2(u,v,1),t) (15)

where z,y and z are the components of p(¢) found by substituting r for p(0) in
Equation 12, and the fourth component of R is simply ¢.

In the latter case, although in principle u and v could be eliminated between
the first three components to give an implicit form for the family of surfaces, it
is also possible to work directly with the parametric form for the hypersurface,
as will be seen in the next section.

4 Finding the Envelope

4.1 Computer Algebra Methods

The next task is to use the hypersurface found above to determine the envelope
to the family of moving surfaces, by eliminating ¢ between the two functions
given in Equations 3. On the one hand, this can obviously be done in an ad-hoc
manner for particular instances of sweeping, such as a range of sweep types that



one wishes to allow in a CAD system being constructed. The results can then
be programmed individually for incorporation into the modeller. The disad-
vantages of doing this include the need to consider special cases, and the large
amount of code resulting from the number of possible types of sweep. On the
other hand, a much more flexible approach is to have a procedure within the
CAD system itself capable of performing the necessary elimination manipula-
tions as they are required.

In practice, in most CAD systems, surfaces of interest are described as poly-
nomials, or rational polynomials (whether as implicit or parametric functions).
If it is possible to express the hypersurfaces describing the moving shape in
terms polynomial or rational polynomial functions, advantage can be taken of
certain algorithmic procedures for eliminating variables between such equations,
but if other more complex functions of the variables are used, such as exponen-
tials and logarithms, this is not generally so. To perform the elimination, the
polynomial equations involved will be manipulated algebraically (i.e. by mul-
tiplying them, differentiating them, and so on, to produce new polynomials)
using the methods of Computer Algebra [19]. Here, it is advocated that the
CAD system should include such computer algebra routines as are necessary
to find envelope surfaces by carrying out the elimination calculations. Further
discussions of the use of computer algebra techniques in geometric modelling
are given in [6,7,32,42].

Although these methods are restricted to polynomial, or rational polynomial,
equations, it may be possible to convert other forms to them in some instances.
For example, sin(v) and cos(v) can be represented in rational polynomial form
as 2u/(1+wu?) and (1 —u?)/(1+u?) by means of the substitution tan(v/2) = u.
Another possibility if a set of n equations includes sin(v) and cos(v) is to replace
the latter pair with new variables s and ¢, and to include the extra equation
52 4+ c? = 1, giving a new set of n + 1 equations, containing one more unknown,
but do not include explicit trigonometric functions. Such methods will not
be of help, of course, if v appears both within the argument of trigonometric
functions and in terms of powers of itself, as the trigonometric functions are
transcendental.

One method of eliminating variables between algebraic equations is to use
resultants. Sylvester’s resultant has already been used by Sederberg [36], as
mentioned above, for performing elimination in the context of the impliciti-
zation of parametric surfaces. The use of the more powerful multi-equational
resultants for elimination in geometrical problems has been described by Bajaj
et al. in [2]. In particular, Macaulay’s form of the resultant has the advan-
tage that the solution found does not contain any extraneous factors. Thus,
Macaulay’s resultant will produce e(x,y,z) = 0 for the envelope surface on
eliminating ¢ from Equations 3, while other resultant methods may produce so-
lutions of the form e(z,y, z)a(z,y, z) = 0, where the factor a(x,y,z) = 0 is an
unwanted artifact introduced by the method of computing the resultant. This
is obviously an important consideration when interpreting the result, as well as



in keeping subsequent calculations as simple as possible.

A second method of performing elimination is to use Buchberger’s Algorithm
for computing Grobner Bases [10,11,12]. This is rather more difficult to under-
stand, and relies on deeper mathematical ideas, but again has the advantage of
not introducing spurious factors. However, this method can in the worst case
require a running time doubly exponential in the number of variables in the
equations, while the resultant methods only need singly exponential time [2].
No detailed comparisons of the use of these two approaches to performing geo-
metric manipulations appear to have yet been made.

4.2 Envelopes for Implicit Surfaces

The hypersurface representing the moving surface may either be given in implicit
or parametric form. Taking the first of these possibilities, we have

F(x,y,2,t) =0 (16)

which can be symbolically differentiated with respect to ¢ by algebra routines

to obtain
8F(x7 y7 Z? t)

ot
Straightforward application of either resultants or Grébner Bases to eliminate ¢
from this pair of equations will produce the envelope surface in the form

—0. (17)

e(z,y,z) = 0. (18)

However, this solution may not be as simple as it seems at first. For example,
consider, in two dimensions for simplicity, sweeping the small circle initially
described by

(x—52%+y*-1=0 (19)

around a circular path, so that its centre moves along the locus
2?4 9% -5 =0, (20)

as shown in Figure 1. It is easy to see that the geometric result is the pair of
concentric circles given by

4y’ —42=0, 2P+y’-62=0. (21)
However, the result produced by the elimination methods above has the form
ot 4+ ot + 22%% — 5222 — 52y + 576 = 0. (22)

In general the expression resulting from elimination has to be factorised to
separate the different geometric entities which make it up:

(22 + > —4%)(2* + > - 6%) = 0. (23)



Figure 1: Sweeping a Circle, Resulting in a Pair of Curves




This concept is taken further by Neff [33], who shows how Grébner Bases
together with factorization can be used to decompose any algebraic set (an
object defined by the common zeros of a set of polynomial equations, rather
than the single equation considered here) into its irreducible components.

Although factorization routines are a feature of most current computer alge-
bra systems, the problem of separating the components is in fact more difficult
than suggested above. Again this is perhaps best illustrated by means of an
example. Taking the pair of vertical lines two units from the y axis, x = +2 and
x = —2, they will have the combined equation of (x—2)(z+2) =0, or 22 —4 = 0,
which can readily be factorised. However, a seemingly very similar case, the pair
of lines parallel to and two units from the line y = x, have a combined equation
of 2 + 5% — 2zy — 2 = 0, which factorises into (z —y — v2)(z —y + v/2) = 0.
The crucial difference here is the presence of surds. Factorization routines usu-
ally used by most algebra systems are not capable of finding factors involving
arbitrary roots. Nevertheless, algorithms are available for solving this question
of “absolute irreducibility”, although they are quite complex [26,27].

It should be noted that although factorization provides a start to answering
the question of how many pieces of surface a given implicit equation represents,
it certainly does not give a complete answer. Again considering an example in
two dimensions for simplicity, elliptic curves are those having equations of the
form

y* —ax® —ba? —cxr —d = 0. (24)

In general, this expression cannot be factorised, but may have either one or
two branches depending on whether the cubic in x has one or three real roots
respectively. Examples of each type of curve are shown in Figure 2. (The two
values of y which correspond to a single value of z always belong to the same
branch, above and below the z-axis.)

Separating the different connected components of a surface presents a prob-
lem for other areas of computational geometry. For example, Woodwark [48]
describes how components other than the desired one may unexpectedly appear
when using Liming-type methods for creating blending surfaces. Canny, in his
thesis [16], shows how the existence of a suitable path for a robot can be reduced
to the problem of deciding whether two points of an n-dimensional surface lie
in the same or different components. Usefully, he goes further, and also gives
an algorithm for solving this problem, which he calls the Roadmap Algorithm.
It basically works by recursively reducing n-dimensional entities down to one-
dimensional ones, such that each connected component of the n-dimensional
entity eventually corresponds to a single piece of the one-dimensional one. Of
course, it is then much easier to traverse the one-dimensional entity to determine
its pieces. In passing, it should also be mentioned that his thesis contains much
other material, for example on resultants and silhouettes, which is relevant to
the current paper.

Finally, it is worth remarking that although in boundary modellers it will

10



y2—x3+3x—3=0 y -x +x =0

Figure 2: Elliptic Curves with One and Two Branches

be usually be necessary to know exactly how many connected pieces the swept
envelope comprises (as they will be described as separate bodies), it may be
possible in CSG modellers to avoid these complexities under certain circum-
stances. For example, if it is only desired to draw a ray-traced picture of a solid
composed of several pieces, the ray tracing process itself will be sufficient to
distinguish between the components.

4.3 Envelopes for Parametric Surfaces

In the case where the hypersurface describing the sweep has the parametric form
R = (z(u,v,t),y(u,v,t), z(u,v,t),t), it is possible to find the envelope surface
as follows. Let us suppose that this hypersurface can be put into the implicit
form F(xz,y,z,t) = 0 (it will be seen later that it is not necessary to actually
carry out this step). Then the envelope surface satisfies both this equation, and
OF (z,y, z,t)/0t = 0. Thus, taking the total derivative of the former equation,
and substituting the latter equation into the result, it can be seen that

OF 0x OF 0y OF 0z

Ttk A oAy | 25
oz ot oy ot T 0z ot (25)

However, the surface normal N to a particular member of the family of

moving surfaces can be expressed either, if the surface is written in implicit
terms, as

(6‘F oF 8F>

%7%75 (26)

11



or as
N = fuX T (27)
|ty X 1Ty
if the surface is expressed parametrically, where the subscripts denote differen-
tiation. Replacing the second of these forms for the first in Equation 25, which
can be rewritten as N.r, = 0, it can be seen that the following determinant

must be zero for points on the envelope surface:

ox Oy Oz
ot ot ot
Oz Oy 09z | =o. 2
ou Ou Ou 0 (28)
oz Oy 0z
ov Ov Ov

This is a relationship between u, v and ¢, which can be used to eliminate
either w or v (whichever is simpler) from the expressions x = z(u,v,t), y =
y(u,v,t), and z = z(u, v,t). With luck, z,y and z will appear as linear factors
in the result, in which case, it will be possible to express the envelope surface
in parametric form as

e = (z(v,t),y(v,t), z(v, 1)) (29)
e = (z(u,t),y(u,t), z(u,t)). (30)

It is much more likely, however, that any or all of x,y and 2z will appear in
more complex combinations with the other two variables. In general, the surface
form which will result will be

g(z,u,t) = 0
h(y,u,t) = 0, (31)
k(z,u, t) =

assuming v was eliminated rather than w. To find points on the envelope surface
corresponding to a particular choice of v and t, these three non-linear equations
for z,y and z must be solved. Deciding which of the multiple solutions for z
corresponds to which of those for y and z may be non-trivial, requiring backsub-
stitution into the original parametric form for the hypersurface, and checking
the corresponding values for v.

The surface form given above is really a hybrid form. It is neither explicitly
a parametric form for z,y and z as functions of u and ¢, nor is it an implicit
form for the surface. It is perhaps best described as an implicit parametric form,
because there is an implicit equation for each of x,y and z. On the one hand, it
can readily be converted into the implicit form for the surface, by elimination of
the variables u and ¢ between the three equations using the techniques discussed

12



earlier. On the other hand, the starting point for this discussion was originally
a moving parametric surface, and it is quite probable that any solid modeller
describing the original moving surface in parametric form would also require,
or at least prefer, the final description of the envelope surface in parametric
form rather than implicit form. Unfortunately, this can not in general be found.
Although any polynomial parametric surface can be implicitized, the converse
is not true, and it is not always possible to find rational polynomial parametric
forms for implicit surfaces of degree greater than three [1,12], which in turn
implies that Equations 31 cannot individually be put into parametric form as a
first step towards finding a parametric form for x, y and z.

4.4 Self-Intersection of the Envelope

One problem which may arise is that the envelope surface may intersect itself.
Loosely speaking, this is likely to happen if the object is moving along a curved
path which locally has a small radius of curvature compared to the size of the
object. It may also happen if the path passes close to earlier points on the path,
close being interpreted as meaning a within a distance less than the size of the
object.

This may be of no real consequence if a CSG modeller is being used, as
for example a ray tracing procedure will find the outer boundary of a self-
intersecting surface by virtue of the way ray-tracing works. On the other hand,
it may be quite important to remove unwanted, inner, pieces of surface in the
context of a boundary modeller which relies on all objects it is handling being
manifold objects. In this case, an edge of self-intersection would be considered
locally as having four distinct faces around it, and thus a surface containing such
an edge would be a non-manifold object. Although recent progress has been
made in the description of non-manifold objects by boundary modellers [46], it
is probably still desirable to remove all pieces of the envelope surface which lie
inside the envelope volume.

In fact, two types of self-intersection of the envelope surface may be dis-
tinguished, as shown in the two-dimensional example given in Figure 3, which
represents a circle moving around a closed figure-of-eight path. On computing
the envelope curve, it will be found to have two factors e; and es such that

€1€2 = 0. (32)

Firstly, the different factors may in general intersect each other, as shown in
this example at points A and B. Secondly, the individual factors may intersect
themselves, as e; does at S7, and es at So. The overall swept shape desired
is found in this case by taking each of the segments of e; and ey, limited by
these intersections, and joining them together appropriately. Consideration of
test points on each such part will show whether they are to be included in the
final result.

13
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Figure 3: Self-Intersecting Envelope
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Intersections between the different factors can be computed using the usual
methods of surface intersection. Bajaj et al. give a useful discussion of reliable
methods of performing surface intersections using algebraic techniques in [3].

Ideas from algebraic geometry again prove to be useful in finding and clas-
sifying the singular points and curves of a single surface [41]. In general, at
singular points the surface normal becomes ill-defined, such as at the tip of a
cone, or along an edge where a surface penetrates itself. Thus, the singular
points of the surface e(z,y,z) = 0 can be found by simultaneously solving

Oe Oe Oe
e(z7 y? Z) - 07 ax - 05 8:1/ - 0’ 827 (33)
the last three equations expressing the condition that the surface normal is
indeterminate at the point. Another way of looking at this is to say that such
self-intersections represent multiple points on the surface, and a value which is
a multiple root of a polynomial equation must satisfy both the equation itself,
and its derivative.

When the envelope surface is described in implicit parametric form, as in
Equation 31, one approach to finding self-intersections is to implicitize the sur-
face and proceed as above. Alternatively, a more numerical approach attempts
to find corresponding values of ui,us,t; and to such that

g(xaulvtl) = g(‘rquatQ)
h(y,ui,t1) = h(y,uz,ts), (34)
k(z,ur,t1) = k(z,us,t2)

in a manner reminiscent of that used for finding the intersection of two different
parametrically defined surfaces.

Self-intersections are not the only type of surface singularity. Other possi-
bilities include cuspidal edges, and isolated points, for example. Examination of
the higher derivatives of the surface equation serve to distinguish between self
intersections and other surface singularities [4] when unwanted pieces of surface
must be discarded later. Further details of how to cope with degeneracies when
interrogating surfaces can be found in [3].

5 Sweeping Solid Models

The result of sweeping a single surface was discussed in the previous section.
However, solid models are usually bounded by many simple faces each with their
own surface equations. The aim of this section is to show how the results of
sweeping each of the faces in the original model may be combined to find the new
overall swept volume. The main discussion which follows will be in the context
of a boundary modeller, as the process to be described produces an explicit
representation for the boundary of the swept volume. Note that because of the
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limitations discussed above, although the original moving object may have its
faces described either as implicit or parametric surfaces, the description of the
faces of the swept volume will (usually) only be available in implicit, or implicit
parametric form.

5.1 Boundary Modelling of Swept Shapes

In order to illustrate the algorithm to be described in this section with mean-
ingful diagrams, the process will be described in one dimension lower, viz. a
two-dimensional composite object will be swept along a two-dimensional path,
giving a three-dimensional volume, which will then be collapsed back down into
the desired two-dimensional swept area. This is justified in that the algorithm
generalises in a straightforward manner to the higher-dimensional case which is
really the aim of the work.

The basic process is as follows. Each of the boundary curves in the original
model is formed into the corresponding hypercurve (surface) in three dimensions,
by including its time dependence. A three-dimensional model is created by
joining these (z,y,t) surfaces together. Assuming that the motion starts and
stops at particular times, and does not follow a closed (repeating) path, the
three-dimensional model must be restricted to a finite interval of time, and
closed by using the initial and final two-dimensional models as its end faces,
after limiting the other surfaces to that period of time which is of interest, i.e.
between the starting and finishing times.

An example of this process is shown in Figure 4. The x and y axes are in the
plane of the paper, with ¢ going into the paper. The original two-dimensional
shape has been swept along a straight line. Note that each edge in the original
shape leads to corresponding surface in the three-dimensional volume. The
extents of these faces, and the order in which they are joined to each other can
readily be determined by consideration of the original two-dimensional shape.
Note also that the initial and final positions of the two-dimensional shape give
the end faces of the three-dimensional volume.

In greater detail, the edges of the three-dimensional volume are composed
of the swept vertices of the original two-dimensional model, together with the
edges belonging to the initial and final positions of the two-dimensional shape.
Alternatively, the former edges of the three-dimensional volume may also be
thought of as the intersections of the surfaces formed by sweeping the original
edges.

From this three-dimensional volume, the two-dimensional swept shape is
now to be computed. The edges of the two-dimensional swept shape will be
of three types. These are, firstly, edges, or parts of edges, of the models of
the original two-dimensional shape at its starting and finishing times; secondly,
projections of the whole or parts of the other edges of the three-dimensional
volume onto the z-y plane; and thirdly, the whole or parts of edges of the
two-dimensional envelope curves obtained by sweeping the various original two-
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dimensional edges. As an example, compare the final result as shown in Figure 8
with Figure 5, which shows edges of each of these three types that go towards
making up the final swept shape.

Edges of the first type described above are immediately available. For
the second type, if two adjacent edges of the original two-dimensional model,
f(z,y) =0 and g(z,y) = 0, have been swept into the three-dimensional surfaces
F(x,y,t) =0 and G(z,y,t) = 0 respectively, the implicit form for the equation
of the projection of the edge between them onto the ¢ = 0 plane can be found
by eliminating ¢ between these two equations. (If the original edges were de-
scribed in parametric form, the simplest method seems to be to implicitize the
parametric surface forms obtained after sweeping before attempting to elimi-
nate t. Other approaches are possible, however, based on surface intersection
techniques such as those mentioned earlier).

Edges of the third type required are envelope curves, and methods of finding
their algebraic form have been discussed (at least, in the three-dimensional case)
earlier.

Having generated these three types of edges, to find the overall swept shape,
we only wish to keep those pieces of them which form the external boundary of
the projection of the three-dimensional volume (and the boundaries of any holes
within it). These pieces enclose the region of the z-y plane which our moving
two-dimensional object has passed through.

One way of performing this restriction is as follows. After each edge of each
type has been projected onto the z-y plane, all intersections between pairs of
edges are found, as are self-intersections of single edges. Each edge is broken
into segments lying between adjacent intersection points. It can now be seen
that each segment will either contribute in its entirety to the boundary of the
swept shape, or it will lie entirely within the shape (except possibly for its end
points), and so can be discarded. This process is illustrated in Figure 6, where
each segment has been marked.

A minor complication is that some of the segments may overlap in projection,
in whole or in part. This will occur, for example, when a straight edge of
the object ends up after the motion occupying the same place that the same
or another straight edge occupied at the start of the motion. In such cases,
duplicate segments should be removed at this stage to avoid problems with
repeated edges when constructing the final model.

The next step is performed once more in three dimensions. A representative
point (not an end point) is chosen on each of the segments. Firstly, the object
is looked at from the front, i.e. in the 4+t direction, and a ray is cast to each
representative point. Those segments corresponding to points which cannot
be seen, because another part of the three-dimensional volume is in the way,
are discarded. As can be seen by the results shown for our example object in
Figure 7, the pieces left are exactly those which form a hidden-line view of the
three-dimensional shape as seen from the front.

The final step is then to perform a similar computation looking from the back
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Figure 6: Projections of Edges Segmented and Marked

20



Figure 7: Elimination of Segments Not Visible from the Front
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Figure 8: Segments Not Visible from the Rear also Eliminated

of the object, in the —t direction, again discarding those segments which cannot
be seen. The final result after both stages of discarding unwanted segments have
been performed is exactly that set of segments which form the boundary of the
two-dimensional swept object, as shown for the current example in Figure 8.

A simple examination of the segments which remain will allow them to be
readily pieced together in the correct order to form a boundary model (in two
dimensions) of the final swept area, as desired.

Although this solves the problem, let us now reconsider the issue of generat-
ing the envelope curves required. If a three-dimensional object which includes
curved faces is represented as a wireframe drawing, then not only are the real
edges drawn in the projection, but also virtual, silhouette, edges must be added,
at places where a curving face bends so that it changes from pointing towards
the viewer to pointing away from the viewer, as shown in Figure 9. This is
of direct interest, because the two-dimensional envelope curves of the original
moving curves are ezactly the silhouette curves of the three-dimensional volume
when its projection is drawn on the z-y plane, as can be seen by looking at the
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example in Figure 4. This assertion can readily be justified. If some surface of
the three-dimensional volume has implicit form

flz,y,t) =0, (35)
then the normal vector to this surface is given by
_(Of Of Of
B (83:’ dy’ ot )’ (36)

On projecting this surface onto the z-y plane, the silhouette curve comprises
the boundary between when the ¢ component of the surface normal changes
from pointing towards the viewer (negative) to pointing away from the viewer
(positive), i.e. those points where the ¢ component of the surface normal is
zero: Of /0t = 0. The silhouette curve simultaneously satisfies this equation,
and f = 0, as it lies on the surface, which is exactly the pair of equations that
the envelope curve satisfies.

The usefulness of this observation that envelope curve generation in two di-
mensions is the same problem as silhouette curve generation for drawings of
three-dimensional objects, is that the silhouette curve problem is a well known
one in computer graphics. Thus, algorithms developed for silhouette curve gen-
eration can be used in a rather different context to generate envelope curves.
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Indeed, as already pointed out, the steps described above for finding the swept
outline are exactly the same as those needed to compute a hidden-line view with
silhouette curves of a three dimensional object, except, of course, that ray-firing
has taken place from both the front and the back, whereas the production of a
hidden-line picture would require only examination from the front. Thus, any
of the ideas already explored in the literature for the generation of such pictures
could be used to produce two-dimensional swept shapes from corresponding
three-dimensional volumes. Although this might seem to be a promising av-
enue for seeking other approaches to the straightforward one discussed above
(for example, using a preprocessing step to eliminate some curves in their en-
tirety before intersecting them), the literature on producing such pictures seems
surprisingly poor. Many papers only discuss how to proceed with parametric
surfaces, or they start by faceting their model first [25,30,35,47].

So far, the discussion has covered the simplified task of constructing the
swept area of a moving two-dimensional shape. Whilst this problem is of interest
in its own right in computer graphics, as it describes the trail of ink left behind
by a moving pen or brush [24], we will now reconsider the original problem of
finding the volume swept out by a moving solid. Each of the steps described
above can be straightforwardly generalised to one dimension higher. Thus, the
three-dimensional surfaces are swept to form a four-dimensional model, which is
terminated by the initial and final three-dimensional solids. The other bound-
ary (volume) elements of the four-dimensional model are the swept edges of the
original three-dimensional model. These, on projection back into three dimen-
sions, together with envelope surfaces of the moving three-dimensional surfaces,
will give rise to the faces of the new three swept volume to be formed. Simple
consideration of the three-dimensional models will readily permit decisions as to
how the pieces of the four-dimensional model fit together. Intersections of the
projections of these various surface elements are then computed, again resulting
in segments which can be tested for inclusion or exclusion in the boundary of
the final model by ray-firing as before. Again, the ideas in Bajaj et al. [3] will
be of use. Techniques such as those proposed by Canny [16] may be used to
keep track of the various surface pieces. Both when computing and using the
envelope surfaces, care must be taken to detect and correctly handle degenerate
cases such as those discussed in Section 2.2, for example if no envelope surface
exists, or if it has reduced dimensionality.

A final point which has not been considered so far, but can be easily handled,
is how to cope with a motion that is not continuous, but is described piecewise
in terms of several simpler motions one after the other, such as sweeping a
given distance in the x direction immediately followed by sweeping a distance
in the y direction. The most straightforward approach is to evaluate the sweeps
corresponding to the different parts of the motion separately, and then use the
usual set union operator to combine the results together. The correctness of this
method follows directly from the definition of a sweep as being the continuous
union of all instances of the moving object at every moment of time during the
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motion.

An alternative approach involves constructing an overall four-dimensional
model for the whole motion, which now consists of the four-dimensional models
for each of the separate parts of the motion, joined together on faces corre-
sponding to the three-dimensional models of the object at the times when the
motion changes over from one part of the piecewise description to the next.
These changeovers play a similar role to the inclusion of the initial and final
models for a simple motion.

5.2 CSG Modelling of Swept Shapes

We will now briefly consider how the above ideas might be used in a set-theoretic
context. Firstly, it should be noted that the computation of the four-dimensional
model from a description of the path and the three-dimensional model is simple,
at least in principle. This is because the four-dimensional model resulting from
sweeping a set-theoretic combination of primitive solids along a given path is
equivalent to sweeping each of the primitives individually, and then combining
them using the same set-theoretic tree, as shown by Cameron [13]. (Note the
difference between this result, and the one mentioned earlier, which is that when
this four-dimensional volume is projected back into three dimensions to find the
three-dimensional swept volume, the intersection and difference operators do
not commute with the combined operation of sweeping into four dimensions
followed by projection back into three dimensions.)

The four-dimensional model created above now has to be projected back
onto the ¢ = 0 hyperplane. As discussed above, this process is rather akin
to creating a drawing. Apart from the process of ray-tracing which produces a
primitive kind of picture, i.e. a set of pixels, methods of creating pictures of set-
theoretic models rely on converting them to a suitable boundary representation
model first. Thus, it would seem that any description which we produce of the
swept volume will be in boundary representation terms. However, the further
use of this volume within a set-theoretic modeller would require its conversion
into set-theoretic terms. Unfortunately, conversion of boundary models into
set-theoretic ones is a long-standing problem of geometric modelling, with no
well understood solution at present. One method relies on recursively taking
convex hulls of the object and subtracting what is left, but has problems with
curved objects, and algorithm termination. A positive piece of work in this
area by Vossler [40] shows a method of converting boundary representations
of two-dimensional objects consisting of circular arcs and straight lines into a
set-theoretic description.
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6 Conclusions

This paper has presented a theoretical basis for computing the volumes swept
out by solid objects as they move. This work brings together ideas from cur-
rent solid modelling technology, differential geometry, computer algebra and
computer graphics algorithms. Although preliminary experiments have been
carried out, it is fair to say that a fully working system has not yet been put
into practice, mainly because of administrative problems with the research grant
rather than because of practical difficulties.

It should be pointed out that working systems including each of the ma-
jor components discussed do exist, and implementing a single system which
ties them together should present no unforseen difficulties. (General four-
dimensional modelling will not be required, but only a restricted set of opera-
tions). On the other hand, careful consideration will be required when taking
into account some of the detailed points discussed, such as the correct detection
and handling of degenerate envelope surfaces.

As the discussion in the Introduction shows, there are many applications in
Computer Aided Engineering which could usefully use the computation of swept
volumes. An obvious question to ask is whether this work is likely to be able to
produce practically useful results, particularly in a realistic length of time.

The two main components of the method presented are the algebraic ma-
nipulation stages, and the algorithm for combining the results of sweeping the
individual faces of the object. The latter should take a similar amount of time
(in order of magnitude terms) to producing a hidden-line removed picture of
the original object, as each two-dimensional face in the solid model leads to a
single three-dimensional hypersurface in the four-dimensional model. As such
pictures are produced as a matter of routine by current systems, this gives no
cause for concern.

The more straightforward computer algebra manipulations can be carried
out rapidly, in milliseconds or less. However, elimination calculations can take
several minutes, tens of minutes, or more, using current workstation technology,
even for fairly simple surfaces moving along fairly simple paths. It is thus
fair to observe that perhaps some of the more complicated sweeps of current
engineering interest can not be computed in a realistic amount of time with
current hardware technology and computer algebra methods. Furthermore, this
observation is perhaps unlikely to change greatly with time, because of the
exponential behaviour of the algorithms involved, and the fact that the resulting
algebraic surfaces will necessarily be complicated objects. For example, even a
simple bicubic parametric patch, when expressed in implicit form, is represented
by a degree 18 equation with 1330 coefficients [36], and this is even before its
motion has been considered! Further work is needed to investigate what types
of surface and motion can be realistically handled these methods, before the
true practical usefulness of the approach advocated here can be finally assessed.
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